
Microsoft. QuickC"
Compiler

: Run-Time Library Reference

lis

p,lhI On

aJcpoint
II BNakpoi

AficlOsoft ~

FOR THE MS-DOS® OPERATING SYSTEM

RUN-TIME LIBRARY REFERENCE

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and recording, for
any purpose other than the purchaser's personal use without the written permis­
sion of Microsoft Corporation.

©Copyright Microsoft Cor~oration, 1984-1987. All rights reserved. Simultaneously
published in the U.S. and Canada.

Microsoft®, MS-DOS®, Code View® , and XENIX® are registered trademarks and QuickClH is
a trademark of Microsoft Corporation.

IBM® is a registered trademark of the International Business Machines Corporation.

UNIX® is a registered trademark of AT&T Bell Laboratories.

Document No. 410840017-S00-R04-0887

TAB OF CONTENTS

Part 1 0 Overview

1 In trod uction ... 5
1.1 About the C Library .. 7
1.2 About This :rv1:tnual .. 8
1.3 Notational Conventions ... 10

2 Using C Library Routines 13
2.1 Introduction ... 15
2.2 Identifying Functions and Macros 15
2.3 Including Files ... 17
2.4 Declaring Functions ... 18
2.5 Stack Checking on Entry ... 1 9
2.6 Argumentr Type Checking .. 20
2.7 Error &ndling ... 21
2.8 File Names and Path Names 22
2.9 Binary and Text Modes .. 24
2.10 MS-DOS Considerations ... 26
2.11 Floating-Point Support .. 27

2.12 ~~gt~~~ ~l~ions .. 28

iii

Global Variables
and Standard Types 31

3.1 Introduction ... 33
3.2 _ amblksiz .. 33
3.3 daylight, timezone, tzname 34
3.4 _ doserrno, errno, sys- errlist, sys- nerr 35
3.5 _fmode .. 35
3.6 _ osmajor, _ osminor, _ osversion 36
3.7 environ, - psp ... 36
3.8 Standard Types ... 37

4 Run-Time Routines by Category 41
4.1 Introduction ... 43
4.2 Buffer ~nipulation ... 43
4.3 Character Classification and Conversion 44
4.4 Data Conversion .. 46
4.5 Directory Control ... 46
4.6 File I-Ia,ndling ... 47
4.7 Graphics .. 48

4.7.1 Using Graphics Functions 48
4.7.2 Configure .. 49
4.7.3 Set Coordinates ... 49
4.7.4 Set Palette .. 51
4.7.5 Set Attributes .. 52
4.7.6 Output Images .. 53
4.7.7 Output Text .. 54
4.7.8 Transfer Images ... 55

iv

4.8 Input and Output .. 56
4.8.1 Stream Routines .. 57

4.8.1.1 Opening a Stream .•.............•...•.•.......... 59
4.8.1.2 Predefined Stream Pointers:

stdin, stdout, stderr, stdaux, stdprn 59
4.8.1.3 Controlling Stream Buffering•..•......... 61
4.8.1.4 Closing Streams .•..•••...•...•.......•.•.........• 61
4.8.1.5 Reading and Writing Data•............ 61
4.8.1.6 Detecting Errors•....•...••.••.••......... 62

4.8.2 Low-Level Routines .. 62
4.8.2.1 Opening a File•....•.........•.•..•.•.......... 63
4.8.2.2 Predefined Handles ...•....•....•.•.••••.......... 63
4.8.2.3 Reading and Writing Data ..•.....•............ 65
4.8.2.4 Closing Files•..•.•..........•............ 65

4.8.3 Console and Port 1/0 65
4. 9 ~th .. 67
4.10 Memory Allocation ... 69
4.11 Process Control .. 72
4.12 Searching and Sorting .. 7 6
4.13 String Manipulation ... 76
4.14 System Calls .. 78

4.14.1 BIOS Interface ... 78
4.14.2 MS-DOS Interface .. 78

4.15 Time .. 81
4.16 Variable-Length Argument Lists 83
4.17 Mscellaneous ... 83

5 Incl ude Files ... 87
5.1 Introduction ... 89
5.2 assert.h .. 89
5.3 bios.h ... gO
5.4 conio.h ... 90
5.5 ctype.h ... 90

v

direct.h .. 9 1
dos.h .. 91

5.8 errno.h ... 92
5.g fcntl.h .. 93
5.10 float.h .. 93
5.11 graph.h .. 93
5.12 io.h ... 94
5.13 lirrrlts.h ... 94
5.14 malloc.h ~ .. 94
5.15 math.h ... 95
5.16 memory.h ... 95
5.17 process.h .. 96
5.18 search. h .. 96
5.1g setjmp.h ... 96
5.20 share.h ... 97
5.21 signal.h .. 97
5.22 stdarg.h .. 97
5.23 stddef.h .. 97
5.24 stdio.h .. 98
5.25 stdlib.h ... 99
5.26 string.h ... 100
5.27 sys \ locking.h ... 100
5.28 sys\stat.h .. 100
5.29 sys \ timeb.h .. 101
5.30 sys\ types.h .. 101
5.31 sys\ utime.h .. 101
5.32 time.h ... 101
5.33 varargs.h .. 102

vi

Part 2 0 Reference

abort 107 _ clearscreen 165
abs 10g clock 167
access 110 close 168
acos 112 _ control87 169
alloca 114 cos, cosh 171
_ arc 115 cprintf 172
asctime 117 cputs 174
asin 11 g creat 175
assert 121 cscanf 177
at an , atan2 123 ctime 179
atexit 124
atof, atol 126
bdos 128

dieeetomsbin,
dmsbintoieee 181
difftime 182

bessel 130 _ disable 184
_ bios- disk 132 _ displaycursor 185
_ bios- equiplist 136
_ bios- keybrd 138
_ bios- memsize 140

div 186
_ dos- allocmem 188
_ dos- close 1 gO

_ bios- printer 141
_ bios- serial com 143

_ dos- creat,
_dos-creatnew 1g2

_ bios- timeof day 146
bsearch 147

_ dos- findfirst,
_ dos- findnext 1 g4

cabs 14g _ dos- freemem 1g6
calloc 150 _ dos- getdate 1 g7
ceil 152 _ dos- getdiskfree 198
cgets 153
_ chain- intr 155

_ dos- getdrive 200
_ dos- getfileattr 201

chdir 156 _ dos- getftime 203
chmod 158 _ dos- gettime 205
chsize 160 _ dos- getvect 206
- clear87 162 _ dos- keep 207
clearerr 164 _ dos- open 208

vii

_ dos..... read 210 fileno 267
_ dos..... setblock 212 _ floodfill 268
_ dos..... setdate 214 floor 270
_ dos..... setdrive 216 fl ushall 271
_ dos..... setfileattr 218 fmod 273
_ dos..... setftime 220 fopen 274
_ dos..... settime 222 FP_OFF, FP_SEG 277
_ dos..... setvect 224 _ fpreset 279
_dos..... write 225 fprintf 281
dosexterr 227 fputc, fputchar 283
dup, dup2 229 fputs 285
ecvt 231 fread 287
_ ellipse 233 free, _ £free, _ nf ree 289
_ enable 235 _ freect 29 1
eof 236 freopen 293
execl - execvpe 238 frexp 296
exit, _ exit 243 fscanf 297
exp 245 fseek 299
_ expand 246 fsetpos 301
fabs 248 fstat 303
fclose, fcloseall 249 ftell 306
fevt 251 ftime 308
fdopen 253 fwrite 310
feof 256 gcvt 312
ferror 257 _ getbkcolor 314
ffiush 258 getc, getchar 315
fgetc, fgetchar 260 getch, getche 317
fgetpos 262 _ getcolor 318
fgets 264 _ getcurrentposition 319
fieeetomsbin,
fmsbintoieee 265
filelength 266

getcwd 321
getenv 323
_ getfillmask 325

viii

_ getimage 327 ito a 381
_ getlinestyle 32g kbhit 382
_ getlogcoord 331 labs 383
_ getphyscoord 333 ldexp 384
getpid 335 ldiv 385
_ getpixel. 336 lfind, lsearch 387
gets 337 _lineto 38g
_ gettextcolor 338 localtime 3g1
_ gettextposition 340 locking 3g4
_ getvideoconfig 342 log, logI0 3g8
getw 343 longj mp 400
gmtime 345 _lrotI, _lrotr 402
halloc 347 lseek 403
_ harderr, _ hardresume,
- hardretn 348
_ heapchk _ fheapchk,
_ nheapchk 352

Ito a 406
_ makepath 407
malloc, _fmalloc,
_ nmalloc 40g

_ heapset, _ fheapset,
_ nheapset 354

matherr 411
max 413

_ heapwalk _ fheapwalk,
_ nheapwalk 356
hfree 35g
hypot 361
_ imagesize 362
inp, inpw 364
int86 365

_ memavl 414
memccpy 416
memchr 418
memcmp 41g
memcpy 421
memicmp 423
_ memmax 425

int86x 367
intdos 370
intdosx 372
isalnum - isascii 374

memmove 426
meIIlSet 428
min 42{)
mkdir 430

isatty 376
iscntrl - isxdigit 378

mktemp 432
mktime 434

ix

modf 436 _ rotl, _ rotr 498
movedata 437 sbrk 499
_ moveto 439 scanf 501
_ msize, _ fmsize, _ searchenv 507
_ nmsize 440 segread 508
onexit 442 _ selectpalette 509
open 444 _ setactivepage 512
outp, outpw 448 _ setbkcolor 514
_ outtext 449 setbuf 516
perror 451 _ setcliprgn 518
_pie 453 _ setcolor 520
pow 455 _ setfillmask 521
printf 456
putc, putchar 464
putch 466

setjmp 523
_ setlinestyle 525
_ setlogorg 527

putenv 467 setmode 528
_ putimage 470 _ setpixel 530
puts 472 _ settextcolor 531
putw 473 _ settextposition 533
qsort 475 _ settextwindow 535
raise 477 setvbuf 537
rand 479 _ setvideomode 539
read 480
realloc 482
_ rectangle 484
_ remapallpalette,
_remappalette 486
remove 490
rename 491
rewind 493
rmdir 495
rmtmp 497

_ setviewport 541
_ setvisualpage 542
signal 543
sin, sinh 547
sopen 548
spawn 553
_ split path 559
sprintf 561
sqrt 563
srand 564

x

sscanf 566 swab 606
stackavail 568 system 607
stat 569 tan, tanh 609
- status87 572 tell 610
strcat - strdup 574 tempnam, tmpnam 611
_ strdate 578 time 613
strerror, _ strerror 580 tmpfile 614
strlen 584 toascii - _ toupper 616
strlwr 585 tzset 618
strncat - strnset 586 ultoa 621
strpbrk 589 umask 622
strrchr 590 ungetc 624
strrev 591 ungetch 626
strset 593 unlink 628
strspn 594 utime 629
strstr 595 va-arg - va-start 631
- strtime 596 vfprintf - vsprintf 635
strtod, strtol, strtoul 598 - wrapon 638
strtok 602 write 640
strupr 604

xi

Appendixes
A Error Messages ... 645

Al Introduction ... 647

A2 errno Values ... 647

A3 l\t1a,th Errors ... 650

B Common Libraries 651

B.1 Introd uction ... 653
B.2 Run-Time Routines .. 653

B.2.1 Routines Common to MS-DOS and XENIX 653
B.2.2 Routines Common

to MS-DOS and UNIX System V 654
B.2.3 Routines Specific to MS-DOS 655
B.2.4 ANSI Library ... 656

B.3 Global Variables ... 657
B.3.1 Variables Common

to MS-DOS and XENIX 657
B.3.2 Variables Common

to MS-DOS and UNIX System V 658
B.3.3 Variables Specific to MS-DOS 658

B.4 Include Files ... 658
BA.1 Include Files Common

to MS-DOS and XENIX 658
BA.2 Incl ude Files Common

to MS-DOS and UNIX System V 659
BA.3 Include Files Specific to MS-DOS 659
BAA ANSI Include Files 659

B.5 Differences Between Routines
Common to MS-DOS and XENIX 660
B.5.1 abort .. 660
B.5.2 access •• 660
B.5.3 chdir ... 660
B.5.4 chmod ... 661
B.5.5 creat ... 661
B.5.6 exec .. 661

xii

B.5.7
B.5.8
B.5.9
B.5.I0
B.5.II
B.5.I2
B.5.I3
B.5.I4
B.5.I5
B.5.I6
B.5.I7
B.5.I8
B.5.I9
B.5.20
B.5.2I
B.5.22
B.5.23
B.5.24
B.5.25
B.5.26

fopen, freopen ... 662
fread ... 663
fseek ... 663
fstat .. 663
ftell .. 664
ftime ... 664
fwrite .. 664
getpid ... 665
locking .. 665
log, logI0 .. 665
lseek ... 665
open ... 666
read .. 666
signal, ... 666
stat ... 667
system .. 667
umask ... 668
unlink ... 668
utime .. 668
wri te ... 668

Index ... 669

xiii

Figure 4.1
Figure 4.2
Figure 4.3
Figure R.l
Figure R.2
Figure R.3
Figure R.4
Figure R.5
Figure R.6
Figure R.7

xiv

The Physical Screen 50
The Logical Screen .. 51
Bounding Rectangle 54
Output of _ arc Progran1 116
Output of _ ellipse Program 234
Output of _lineto Program 390
Output of _ pie Program 454
Output of _ rectangle Program 485
Output of _setcliprgn Program 519
Output of _ setfillmask Program 522

Tables
Table 4.1 Forms of the spawn and exec Routines 75
Table R.1 Type Characters for printf 458
Table R.2 Flag Characters for printf 459
Table R.3 How printf Precision Values Affect Type 461
Table R.4 Type Characters for scanf 503
Table R.5 :MRES4COLOR Palette Colors 509
Table R.6 :MRESNOCOLOR Mode

CGA Palette Colors 510
Table R.7 :MRESNOCOLOR Mode

EGA Palette Colors 510
Table R.8 Manifest Constants for Screen Mode 539
Table R.9 Function Arguments 544
Table Al errno Values and Their Meanings 648

xv

PARTl

VERVIEW

The first part of this manual provides infor­
mation common to all of the run-time library
functions.

Here you'll find descriptions of the common
attributes of the run-time library, definitions for
global variables, data types, and include files,
and useful background information on the
different categories of run-time routines.

3

CHAPTER

INTRODUCTION

1.1 About the C Library ... 7
1.2 About This Manual .. 8
1.3 Notational Conventions .. 10

Introduction

1.1 About the C Library

The Microsoft® C Run-Time Library is a set of more than 200 predefined
functions and macros designed for use in C programs. The run-time library
makes programming easier by providing the following:

1. An interface to operating-system functions (such as opening and
closing files)

2. Fast and efficien t functions to perform common programming tasks
(such as string manipulation), sparing the programmer the time
and effort needed to write such functions

The run-time library is especially important in C programming because C
programmers rely on the library for basic functions not provided by the
language. These functions include, among others, input and output, stor­
age allocation, and process con trol.

The functions in the Microsoft C Run-Time Library have been designed to
maintain maximum compatibility between 11S-DOS® and XENIX® or
UNIXlM systems. Throughout this manual, references to XENIX systems
encompass UNIX and other UNIX-like systems as well.

Most of the functions in the C run-time library for MS-DOS operate com­
patibly with functions having the same names in the C run-time library for
XENIX operating systems. If you are interested in portability, see Appen­
dix B, "Common Libraries." This appendix lists the functions of the run­
time library that are specific to 11S-DOS and describes differences (if any)
between the operation of functions with the same names on XENIX and
MS-DOS.

For additional compatibility, the math functions of the Microsoft C Run­
Time Library have been extended to provide exception handling in the
same manner as UNIX System V math functions.

The library is also designed for compatibility with the Draft Proposed
American National Standard-Programming Language C (ANSI C), except
for the internationalization functions. The functions that conform to the
ANSI C standard are also listed in Appendix B.

For programmers who are interested in taking advantage of the specific
features of 11S-DOS, the library includes 11S-DOS interface functions.

7

Microsoft C Run-Time Library Reference

These functions allow MS-DOS system calls and interrupts to be invoked
from a C program. The library also contains console input and output
functions to allow efficient reading and writing from the user's console.

To take advantage of the compiler's type-checking capabilities, the include
files that accompany the run-time library have been expanded. In addition
to the definitions and declarations required by library functions and mac­
ros, the include files now contain function declarations with argument­
type lists. The argument-type lists enable type checking for calls to library
functions. This feature can be extremely helpful in detecting subtle pro­
gram errors resulting from type mismatches between actual and formal
arguments to a function.

To provide argument-type lists for all run-time functions, several new
include files have been added to the list of standard include files for the C
run-time library. The names of the new include files have been chosen to
maintain as much compatibility as possible with the proposed ANSI Stan­
dard for C and with XENIX and UNIX names.

1.2 About This Manual

The Microsoft G Run-Time Library Reference describes the contents of the
Microsoft C Run-Time Library. The manual assumes that you are familiar
with the C language and with MS-DOS. It also assumes that you know
how to compile and link C programs on your MS-DOS system and that
you can set up a compiler and linker environment using environment vari­
ables. If you have questions about compiling, linking, or setting up an
environment, see your compiler guide. If you have questions about the C
language, see the Microsoft G Language Reference.

Note

Since MS-DOS and PC-DOS are essentially the same operating system,
this manual uses the term MS-DOS to refer to both systems, except in
those cases where the distinction is significant.

This manual has two major parts. Part 1, "Overview," gives an introduc­
tion to the C run-time library. It discusses general rules that apply to the
run-time library as a whole and summarizes the elements of the run-time
library.

8

Introduction

Part 2, "Reference," gives descriptions of the run-time routines in alpha­
betical order for quick reference. Once you have familiarized yourself with
the library rules and procedures, you will likely use Part 2 of this manual
most often.

The remaining chapters of Part 1 are as follows:

Chapter 2, "Using C Library Routines," gives general rules for under­
standing and using C library routines and mentions special considerations
that apply to certain routines. It is recommended that you read this
chapter before using the run-time library; you may also want to turn to
Chapter 2 when you have questions about library procedures.

Chapter 3, "Global Variables and Standard Types," describes variables
and types that are declared and defined in the run-time library and used
by the library routines. This chapter also provides a cross-reference to the
include file that defines or declares these variables and types. You may find
them useful in your own routines. They are also described in the reference
pages for the routines that use them.

Chapter 4, "Run-Time Routines by Category," breaks down the run-time
library routines by category, lists the routines that fall into each category,
and discusses considerations that apply to each category as a whole. The
chapter complements the reference section, making it easy to locate rou­
tines by task. Once you decide on the routines you want, simply turn to
the appropriate reference pages in Part 2 for a detailed description.

Chapter 5, "Include Files," summarizes the contents of each include file
provided with the run-time library.

The appendixes at the back of the binder provide more detailed informa­
tion about error messages and about XENIX-compatible routines. Appen­
dix A, "Error Messages," describes the error values and messages that can
appear when using library routines. Appendix B, "Common Libraries,"
lists routines of the MS-DOS C library that operate compatibly both with
routines of the same name on XENIX and UNIX systems and with routines
that conform to the Draft Proposed American National Standard­
Programming Language C. Appendix B also describes differences (if any)
between the DOS and XENIX versions of the routines and discusses com­
mon global variables and include files.

The remainder of this chapter describes the notational conventions used
throughout the manual.

9

Microsoft C Run-Time Library Reference

1.3 Notational Conventions

The following notational conventions are used throughout this manual:

10

Convention

keywords,
routines,
include files

ENVIRONMENT
VARIABLES,
MS-DOS
COMMANDS

placeholders

Examples

Meaning

C keywords, such as double and char, are set
in bold type to distinguish them from ordinary
identifiers and text. Within discussions of syn­
tax, bold type indicates that the text must be
entered exactly as shown.

The names of run-time library routines, include
files, global variables, standard types, constants,
and identifiers used by the C library are also set
in this font to emphasize that these names are
reserved by the run-time library. For example,
the routine name strcpy appears in this font; so
does the include file stdio.h.

Bold capital letters are used for the names of
environment variables (such as TZ and PATH)
and MS-DOS commands (such as SET and
PATH). However, on MS-DOS you are not re­
quired to use capital letters for these variables
and commands.

Italics are used for the names of arguments to
library routines. In an actual program, a specific
name or value replaces the italicized argument
name. For example, in

double atof(string);

the argument string is italicized to indicate that
this is the general form for the atof routine. In
an actual program, the user supplies a particu­
lar argument for the placeholder string.

Occasionally, italics are used to emphasize par­
ticular words in the text.

Programming examples are displayed in a spe­
cial typeface to resemble the output on your
screen or the output of commonly used com­
puter printers. Program fragments and variables
quoted within regular text also appear in this
format, as do error messages.

User input

Missing

code

Repeating
elements ...

[optional items]

Arrays []

Subscripts []

Introduction

Some examples show both program output and
user input; in these cases, input is shown in a
darker font. In the following example, .5 is
entered by the user in response to the prompt
Cosine value =:

Cosine value = .5
Arc cosine of 0.500000 = 1.047198

Vertical ellipsis dots are used in program ex­
amples to indicate that a portion of the program
is omitted. For instance, in the following ex­
cerpt, the ellipsis dots between the two state­
ments indicate that intervening progra..m lines
occur but are not shown:

int x, y;

y = abs(x);

Horizontal ellipsis dots following an item indi­
cate that more items having the same form may
appear. For instance,

= { expression [, expression] ... }

indicates that more expressions, separated by
commas, may appear between the braces ({ j).

Double brackets enclose optional arguments in
the specification for each library routine. For
example, in

int open(path, oflag[, pmode]);

the double brackets around pmode indicate that
this argument is optional and that, when given,
pmode must be separated from the previous
argumen t by a comma.

Single brackets appear in syntax descriptions
and examples containing arrays and subscript
expressions. The C language also uses brackets
for array declarations and subscript expressions.
To illustrate,

char *args[4];

is an example showing the declaration of a four­
element array; the brackets around 4 are a
required part of the C language.

11

Microsoft C Run-Time Library Reference

"Defined terms"

KEY+KEY

12

Quotation marks set off terms defined in the
text. For example, the term "token" appears in
quotation marks when it is defined.

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the
language have the form " "rather than" " .
For example,

"abc"

is a C string.

Small capital letters are used for the names of
keys and key sequences, such as CTRL+C.

CHAPTER

USING C LIBRARY R OUTINES

2.1 Introduction ... 15
2.2 Identifying Functions and Macros 15
2.3 Including Files .. 17
2.4 Declaring Functions .. 18
2.5 Stack Checking on Entry 19
2.6 Argument-Type Checking 20
2.7 Error lIa,ndling .. 21
2.8 File Names and Path Names 22
2.9 Binary and Text Modes .. 24
2.10 MS-DOS Considerations 26
2.11 Floating-Point Support ... 27
2.12 Using Huge Arrays

with Library Functions ... 28

Using C Library Routines

2.1 Introduction

To use a C library routine, simply call it in your program, just as if the
routine were defined in your program. The C library functions are stored
in compiled form in the library files that accompany your C compiler
software.

At link time, your program must be linked with the appropriate C library
file or files to resolve the references to the library functions and provide
the code for the called library functions. The procedures for linking with
the C library are discussed in detail in Chapter 4 of the Microsoft C
Optimizing Compiler User's Guide.

In most cases you must prepare for the call to the run-time library func­
tion by performing one or both of the following steps:

1. Include a given file in your program. Many routines require defini­
tions and declarations that are provided by an include file.

2. Provide declarations for library functions that return values of any
type but into The compiler expects all functions to have int return
type unless declared otherwise. You can provide these declarations
by including the C library file containing the declarations or by
explicitly declaring the functions within your program.

These are the minimum steps required; you may also want to take other
steps, such as enabling type checking for the arguments in function calls.

The remainder of this chapter discusses the preparation procedures for
using run-time library routines and special rules (such as file-name and
path-name conventions) that may apply to some routines.

2.2 Identifying Functions and Macros

The words "function" and "routine" are used interchangeably throughout
this manual, and in fact most of the routines in the C run-time library are
C functions; that is, they consist of compiled C statements. However, some
routines are implemented as "macros." A macro is an identifier defined
with the C preprocessor directive # define to represent a value or expres­
sion. Like a function, a macro can be defined to take zero or more argu­
ments, which replace formal parameters in the macro definition. Defining
and using macros are discussed in detail in Chapter 8 of the Microsoft C
Language Reference.

15

Microsoft C Run-Time Libra.ry Reference

The macros defined in the C run-time library behave like functions: they
take arguments and return values, and they are invoked in a similar
manner. The major advantage of using macros is faster execution time;
their definitions are expanded (replaced by their definitions) in the prepro­
cessing stage, eliminating the overhead required for a function call. How­
ever, because macros are expanded before compilation, they can increase
the size of a program, particularly when the macro appears several times
in the program. Unlike a function, which is defined only once regardless of
how many times it is called, each occurrence of a macro is expanded. Func­
tions and macros thus offer a trade-off between speed and size. In several
cases, the C library allows you to choose by providing both macro and
function versions of the same library routine.

Some important differences between functions and macros are described in
the following list:

1. Some macros may treat arguments with side effects incorrectly
when the macro is defined so that arguments are evaluated more
than once. See the example that follows this list.

2. A macro identifier does not have the same properties as a function
identifier. In particular, a macro identifier does not evaluate to an
address, as a function identifier does. You cannot, therefore, use a
macro identifier in contexts requiring a pointer. For instance, if
you give a macro identifier as an argument in a function call, the
value represented by the macro is passed; if you give a function
identifier as an argument in a function call, the address of the func­
tion is passed.

3. Since macros are not functions, they cannot be declared, nor can
pointers to macro identifiers be declared. Thus, type checking can­
not be performed on macro arguments. The compiler does, how­
ever, detect cases where the wrong number of arguments is
specified for the macro.

4. The library routines implemented as macros are defined through
preprocessor directives in the library include files. To use a library
macro, you must include the appropriate file, or the macro will be
undefined.

The routines that are implemented as macros are noted in the reference
section of this manual. You can examine particular macro definitions in
the corresponding include file to determine whether arguments with side
effects will cause problems.

16

Using C Library Routines

• Example

#include <ctype.h>

int a = 'm',;
a = toupper(a++);

This example uses the toupper routine from the standard C library. The
toupper routine is implemented as a macro; its definition in ctype.h is as
follows:

#define toupper(c) ((islower(c))? _toupper(c) : (c))

The definition uses the conditional operator (? :). In the conditional ex­
pression, the argument c is evaluated twice: once to determine whether or
not it is lowercase, and once to return the appropriate result. This causes
the argument a ++ to be evaluated twice, thus increasing a twice rather
than once. As a result, the value operated on by islower differs from the
value operated on by _ toupper.

Not all macros have this effect; you can determine whether a macro will
handle side effects properly by examining the macro definition before
using it.

2.3 Including Files

Many run-time routines use macros, constants, and types that are defined
in separate include files. To use these routines, you must incorporate the
specified file (using the preprocessor directive #include) into the source
file being compiled.

The contents of each include file are different, depending on the needs of
specific run-time routines. However, in general, include files contain combi­
nations of the following:

• Definitions of manifest constants

For example, the constant BUFSIZ, which determines the
hardware-dependent size of buffers for buffered input and output
operations, is defined in stdio.h.

17

Microsoft C Run-Time Library Reference

• Definitions of types

Some run-time routines take data structures as arguments or re­
turn values with structure types. Include files set up the required
structure definitions. For example, most stream input and output
operations use pointers to a structure of type FILE, defined in
stdio.h.

• Two sets of function declarations

The first set of declarations gives return types and argument-type
lists for run-time functions; the second set declares only the return
type. Declaring the return type is required for any function that
returns a value with type other than into (See Section 2.4, "Declar­
ing Functions.") The presence of an argument-type list enables
type checking for the arguments in a function call. See Section 2.6,
"Argument-Type Checking," for a discussion of this option.

• Macro definitions

Some routines in the run-time library are implemented as macros.
The definitions for these macros are contained in the include files.
To use one of these macros, you must include the appropriate file.

The include file or files needed by each routine can be found in the refer­
ence section of this manual.

2.4 Declaring Functions

Whenever you call a library function that returns any type of value but an
int, you should make sure that the function is declared before it is called.
The easiest way to do this is to include the file containing declarations for
that function, causing the appropriate declarations to be placed in your
program.

Two sets of function declarations are provided in each include file. The
first set declares both the return type and the argument-type list for the
function. This set is included only when you enable argument-type check­
ing, as described in Section 2.6. Use of the type-checking feature is highly
recommended, since type mismatches between a function's arguments and
formal parameters can cause serious and possibly hard-to-detect errors.

The second set of function declarations declares only the return type. This
set is included when argument type checking is not enabled.

Your program can contain more than one declaration of the same function
as long as the declarations are compatible. This is an important feature to

18

Using C Libra.ry Routines

remember if you have older programs whose function declarations do not
contain argument-type lists. For instance, if your program contains the
declaration

char *calloc();

you can also include the following declaration:

char *calloc(unsigned, unsigned);

Although the two declarations are not identical, they are compatible, so
no conflict occurs.

If you wish, you can provide your own function declarations instead of
using the declarations in the library include files. However, you should
consult the declarations in the include files to make sure that your decla­
rations are correct.

2.5 Stack Checking on Entry

Stack checking means that, on entry to a routine, the stack is first checked
to determine whether or not there is room for the local variables used by
that routine. If there is, space is allocated by adjusting the stack pointer.
Otherwise, a "stack overflow" run-time error occurs. If stack checking is
disabled, the compiler assumes there is enough stack space. If in fact there
is not sufficient space on the stack, you may overwrite memory locations in
the data segment and receive no warning.

Typically, only functions with large local variable requirements (more than
about 150 bytes) have stack checking enabled, since there is enough free
space between the stack and data segments to handle functions with
smaller requirements. If the function is called many times, stack checking
will slow down execution slightly.

The following library functions have stack checking enabled:

execvp
execvpe
printf
fprintf

sprintf
vprintf
scanf
fscanf

sscanf
spawnvp
spawnvpe
system

19

Microsoft C Run-Time Libra.ry Reference

2.6 Argument-Type Checking

Microsoft C offers a type-checking feature for the arguments in a function
call. Type checking is performed whenever an argument-type list is present
in a function declaration and the declaration appears before the definition
or use of the function in a program. The form of the argument-type list
and the type-checking method are discussed in full in Chapter 7 of the
M'':crosoft G Language Reference.

For functions that you write yourself, you are responsible for setting up
argument-type lists to invoke type checking. You can also use the /Zg
command-line option to cause the compiler to generate a list of function
declarations for all functions defined in a particular source file; the list can
then be incorporated into your program. See your compiler guide for
details on using the /Zg option.

For functions in the C run-time library, type checking is always enabled.
Only limited type checking can be performed on functions that take a
variable number of arguments. The following run-time functions are
affected by this limitation:

20

• In calls to cprintf, cscanf, printf, and scanf, type checking is
performed only on the first argument: the format string.

• In calls to fprintf, fscanf, sprintf, and sscanf, type checking is
performed on the first two arguments: the file or buffer and the for­
mat string.

• In calls to open, only the first two arguments are type checked: the
path name and the open flag.

• In calls to sopen, the first three arguments are type checked: the
path name, the open flag, and sharing mode.

• In calls to execl, execle, execlp, and execlpe, type checking is
performed on the first two arguments: the path name and the first
argument pointer.

• In calls to spawnl, spawnle, spawnlp, and spawnlpe, type
checking is performed on the first three arguments: the mode flag,
the path name, and the first argument pointer.

Using C Library Routines

2.7 Error Handling

When calling a function, it is a good idea to provide for detection and han­
dling of error returns, if any. Otherwise, your program may produce unex­
pected results.

For run-time library functions, you can determine the expected return
value from the return-value discussion on each library page. In some cases
no established error return exists for a function. This usually occurs when
the range of legal return values makes it impossible to return a unique
error value.

The description of some functions in Part 2 indicates that when an error
occurs, a global variable named errno is set to a value indicating the type
of error. Note that you cannot depend on errno being set unless the de­
scription of the function explicitly mentions the errno variable.

When using functions that set errno, you can test the errno values
against the error values defined in errno.h, or you can use the perror or
strerror functions. If you want to print the system error message to stan­
dard error (stderr), use perror; if you want to store the error message in
a string for later use in your program, use strerror. For a list of errno
values and the associated error messages, see Appendix A, "Error Mes­
sages."

When you use errno, perror, and strerror, remember that the value of
errno reflects the error value for the last call that set errno. To prevent
misleading results, you should always test the return value before access­
ing errno, to verify that an error actually occurred. Once you determine
that an error has occurred, use errno or perror immediately. Otherwise,
the value of errno may be changed by intervening calls.

The math functions set errno upon error in the manner described on the
reference page for each math function in Part 2. Math functions handle
errors by invoking a function named matherr. You can choose to handle
math errors differently by writing your own error function and naming it
matherr. When you provide your own matherr function, that function
is used in place of the run-time library version. You must follow certain
rules when writing your own matherr function, as outlined in the refer­
ence section.

You can check for errors in stream operations by calling the ferror func­
tion. The ferror function detects whether the error indicator has been set
for a given stream. When the stream is closed or rewound, the error indi­
cator is cleared automatically; or you can reset it by calling the clearerr
function.

21

Microsoft C Run-Time Library Reference

Errors in low-level input and output operations cause errno to be set.

The feof function tests for end-of-file on a given stream. An end-of-file
condition in low-level input and output can be detected with the eof func­
tion or when a read operation returns 0 as the number of bytes read.

2.8 File Names and Path Names

Many functions in the run-time library accept strings representing path
names and file names as arguments. The functions process the arguments
and pass them to the operating system, which is ultimately responsible for
creating and maintaining files and directories. Thus, it is important to
keep in mind not only the C conventions for strings, but also the operating
system rules for file names and path names and the differences between
MS-DOS and XENIX rules. There are three considerations:

1. Case sensitivity

2. Subdirectory conventions

3. Delimiters for path-name components

The C language is case sensitive, meaning that it distinguishes between
uppercase and lowercase letters. The MS-DOS operating system is not case
sensitive. When accessing files and directories on MS-DOS, you cannot use
case differences to distinguish between identical names. For example, the
names "FILEA" and "fileA" are equivalent and refer to the same file.

Portability considerations may also affect how you choose file names and
path names. For instance, if you plan to port your code to a XENIX sys­
tem, you should take the XENIX naming conventions into account. Unlike
MS-DOS, XENIX is case sensitive. Thus, the following two directives are
equivalent on MS-DOS but not on XENIX:

#include <STDIO.H>
#include <stdio.h>

To produce portable code, you should use the name that works correctly
on XENIX, since either case works on MS-DOS.

The convention of storing some include files in a subdirectory named sys is
also a XENIX convention. The convention is adopted in this manual,
which includes the sys subdirectory in the specification for the appropriate

22

Using C Library Routines

include files. If you're not concerned with portability, you can disregard
this convention and set up your include files accordingly. If you are con­
cerned with portability, using the sys subdirectory can make portability
between XENIX and MS-DOS easier.

The MS-DOS and XENIX operating systems differ in the handling of path­
name delimiters. XENIX uses the forward slash (/) to delimit the com­
ponents of path names, while MS-DOS ordinarily uses the backslash (\).
However, MS-DOS recognizes the forward slash as a delimiter in situatIOns
where a path name is expected. Thus, you may use either a backslash or a
forward slash in MS-DOS path names within C programs, as long as the
context is unambiguous and a path name is clearly expected.

Note

In C strings, the backslash is an escape character. It signals that a spe­
cial escape sequence follows. If an ordinary character follows the back­
slash, the backslash is disregarded and the character is printed. Thus,
the sequence "\ \" is required to produce a single backslash in a C
string. (See Chapter 2 of the Microsoft C Language Reference for a full
discussion of escape sequences.)

For most of the functions in the run-time library, you may use either a for­
ward slash or a backward slash as a delimiter whenever a path-name argu­
ment is required. If you are concerned with portability to XENIX, you
should use the forward slash.

However, the exceptions to the rule are important. The following functions
accept string arguments that are not known in advance to be path names
(they may be path names, but are not required to be). In these cases, the
arguments are treated as C strings, and the following special rules apply:

• In the exec and spawn families of functions, you pass the name of
a program to be executed as a child process and then pass strings
representing arguments to the child process. The path name of the
program to be executed as the child process can use either forward
slashes or backslashes as delimiters, since a path-name argument is
expected. However, it is recommended that you use backslashes in
any path-name arguments to the child process, since the program
being executed as the child process may simply expect a string
argumen t that is not necessarily a path name.

23

Microsoft C Run-Time Libra.ry Reference

• In the system call, you pass a command to be executed by MS-
DOS; this command mayor may not include a path name.

In these cases, only the backslash (\) separator should be used as a path­
name delimiter. The forward slash (1) will not be recognized.

When you want to pass a path-name argument to the child process in an
exec or spawn call, or when you use a path name in a system call, you
must use the double-backslash sequence (\ \) to represent a single path­
name delimiter.

• Examples

result = system("DIR B:\\TOP\\DOWN");

In the example above, double backslashes must be used in the call to sys­
tem to represent the path name B: \TOP\DOWN. Note that not all calls to
system use a path name; for example,

result = system("DIR");

does not contain a path name.

spawnl(P_WAIT, "bin/show", "show", "sub", "bin\\tell", NULL);

In the above example, the spawnl function is used to execute the file
named show. exe in the bin subdirectory. Since a path name is expected
as the second argument, the forward slash can be used. (A double
backslash would also be acceptable.) The first two arguments passed to
show. exe are the strings show and sub. The third argument is a string
representing a path name. Since this argument does not require a path
name, the sequence \ \ must be used to represent a single backslash
between bin and tell.

2.9 Binary and Text Modes

Most C programs use one or more data files for input and output. Under
MS-DOS, data files are ordinarily processed in "text mode." In text mode,
carriage-return-line-feed combinations are translated into a single line­
feed character on input. Line-feed characters are translated to carriage­
return-line-feed combinations on output.

24

Using C Library Routines

In some cases you may want to process files without making these trans­
lations. In binary mode, carriage-return-line-feed translations are
suppressed.

You can control the translation mode for program files in the following
ways:

• To process a few selected files in binary mode, while retaining the
default text mode for most files, you can specify binary mode when
you open the selected files. The fopen function opens a file in
binary mode when the letter b is specified in the access type string
for the file. If you use the open function, you can specify the
0_ BINARY flag in the oflag argument to cause the file to be
opened in binary mode. For more information, see the reference
pages for these functions in the reference section of this manual.

• To process most or all files in binary mode, you can change the
default mode to binary. The global variable _fmode controls the
default translation mode. When _ fmode is set to 0_ BINARY,
the default mode is binary, except for stdaux and stdprn, which
are opened in binary mode by default. The initial setting of
_ fmode is text, by default.

You can change the value of _ fmode in one of two ways. First,
you can link with the file BINMODE.OBJ (supplied with your
compiler software). Linking with BINMODE.OBJ changes the
initial setting of _ fmode to 0_ BINARY, causing all files except
stdin, stdout, and stderr to be opened in binary mode. This
option is described in Chapter 3 of the Microsoft C Optimizing
Compiler User's Guz·de.

Second, you can change the value of _ fmode directly by setting it
to 0_ BINARY in your program. This has the same effect as link­
ing with BINMODE.OBJ.

You can still override the default mode (now binary) for particular
files by opening them in text mode. The fopen function opens a file
in text mode when the letter t is specified in the access type string
for the file. If you use the open function, you can specify the
0_ TEXT flag in the oflag argument to cause the file to be opened
in text mode. For more information, see the reference pages for
these functions in Part 2.

• The stdin, stdout, and stderr streams are opened in text mode by
default; stdaux and stdprn are opened in binary mode. To process
stdin, stdout, or stderr in binary mode instead, or to process
stdaux or stdprn in text mode, use the setmode function. This

25

Microsoft C Run-Time Library Reference

function can also be used to change the mode of a file after it has
been opened. The setmode function takes two arguments, a file
handle and a translation-mode argument, and sets the mode of the
file accordingly.

2.10 MS-DOS Considerations

The use of some functions in the run-time library is affected by the version
oLMS-DOS you are using. These functions are listed and described below:

Function

dosexterr
locking
sopen

dup
dup2

exec
spawn

Restrictions

These three functions are effective only on :tv1S-DOS Ver­
sions 3.0 and later. The sopen function opens a file with
file-sharing attributes; this function should be used instead
of open when you want a file to have such attributes. The
locking function locks all or part of a file from access by
other users. The dosexterr function provides error hand­
ling for system call 59H (Get Extended Error) in :tv1S-DOS
Versions 3.0 and later.
In certain cases, using the dup and dup2 functions on ver­
sions of :tv1S-DOS earlier than 3.0 may cause unexpected
results. When you use dup or dup2 to create a duplicate
file handle for stdin, stdout, stderr, stdaux, or stdprn
under versions of :tv1S-DOS earlier than 3.0, calling the
close function with either handle causes errors in later I/O
operations that use the other handle. Under MS-DOS Ver­
sions 3.0 and later, the close function is handled correctly
and does not cause later errors.
When using the exec and spawn families of functions
under versions of :tv1S-DOS earlier than 3.0, the value of the
argO argument (or argv[O] to the child process) is not avail-
able to the user; the character "C" is stored in that posi­
tion instead. Under :tv1S-DOS Versions 3.0 and later, the
complete command path is stored in argO.

To write programs that will run on all versions of MS-DOS, you can use
the _ osmajor and _ osminor variables (discussed in Chapter 3, "Global
Variables and Standard Types"). These variables allow you to ascertain
the current operating-system version number and take the appropriate
action based on the result of the test.

26

Using C Library Routines

• Example

unsigned char _osmajor;

if (_osmajor < 3)
open ("TEST.DAT", O_RDWR);

else
sopen("TEST.DAT", O_RDWR, SH_DENYWR);

In the above example, the global variable _ osmajor is tested to determine
whether the file TEST. DAT should be opened using the open function
(under versions of MS-DOS earlier than 3.0) or the sopen function (MS­
bas Versions 3.0 and later).

2.11 Floating-Point Support

The math functions supplied in the C run-time library require floating­
point support to perform calculations with real numbers. This support can
be provided by the floating-point libraries that accompany your compiler
software or by an 8087 or 80287 coprocessor. (For information on selecting
and using a floating-point library with your program, see your compiler
guide. The names of the functions that require floating-point support are
listed below:

acos _clear871 exp frexp sin
asin _control871 fabs gcvt sinh
atan cos fcvt hypot sqrt
atan2 cosh fieeetoms bin ldexp ~tatus871
atof dieeetomsbin floor log strtod
bessel2 difftime fmod loglO tan
cabs dmsbintoieee fmsbintoieee modf tanh
ceil ecvt Jpreset pow

In addition, the printf family of functions (cprintf, fprintf, printf,
sprintf, vfprintf, vprintf, and vsprintf) requires support for floating­
point input and output if used to print floating-point values.

The C compiler tries to detect whether floating-point values are used in a
program so that supporting functions are loaded only if required. This
behavior saves a considerable amount of space for programs that do not
require floating-point support.

1 Not available with the /FPa compiler option

2 The bessel function does not correspond to a single function, but to six functions named
jO, jl, jn, yO, yl, and yn.

27

Microsoft C Run-Time Library Reference

When you use a floating-point type character in the format string for a
printf or scanf call (cprintf, fprintf, printf, sprintf, vfprintf, vprintf,
vsprintf, cscanf, fscanf, scanf, or sscanf), make sure that you specify
floating-point values or pointers to floating-point values in the argument
list to correspond to any floating-point type characters in the format
string. The presence of floating-point arguments allows the compiler to
detect floating-point values. If a floating-point type character is used to
print an integer argument, for example, floating-point values will not be
detected because the compiler does not actually read the format string
used in the printf and scanf functions. For instance, the following pro­
gram produces an error at run time:

main () / * THI S EXAMPLE PRODUCES AN ERROR * /
{

long f = lOL;
printf ("%f", f);

}

In the preceding example, the functions for floating-point I/O are not
loaded for the following reasons:

• No floating-point arguments are given in the call to printf.

• No floating-point values are used anywhere else in the program.

As a result, the following error occurs:

Floating point not loaded

The following is a corrected version of the above call to printf:

maine) /* THIS EXAMPLE WORKS JUST FINE */
{

long f = lOL;
printf ("%f", (double) f);

}

This version corrects the error by casting the long integer value to dou­
ble.

2.12 Using Huge Arrays
with Library Functions

In programs that use small, compact, medium, and large memory models,
Microsoft C allows you to use arrays exceeding the 64K (kilobyte) limit of
physical memory in these models by explicitly declaring the arrays as

28

Using C Library Routines

huge. (See your compiler guide for a complete discussion of memory
models and the near, far, and huge keywords.) However, you cannot gen­
erally pass huge data items as arguments to C library functions. In the
case of small and medium models, where the default size of a data poin ter
is near (16 bits), the only routines that accept huge pointers are halloc
and hfree. In the compact-model library used by compact-model pro­
grams, and in the large-model library used by both large-model and huge­
model programs, only the functions listed below use argument arithmetic
that works with huge items:

bsearch
fread
fwrite

halloc
hfree
Hind

lsearch
memccpy
memchr

memcmp
memcpy
memicmp

memset
qsort

With this set of functions, you can read from, write to, search, sort, copy,
initialize, compare, or dynamically allocate and free huge arrays; a huge
array can be passed without difficulty to any of these functions in a
compact-, large-, or huge-model program.

There is a seman tic difference between the function and intrinsic versions
of the memset, memcpy, and memcmp library routines. The function
versions of these routines support huge pointers in compact and large
model, but the intrinsic versions do not support huge pointers.

29

CHAPTER
GLOBAL VARIABLES
AND STANDARD'TITES

3.1 Introduction ... 33
3.2 _ amblksiz ... 33
3.3 daylight, timezone, tzname 34
3.4 _doserrno, errno, sys..... errlist, sys..... nerr 35
3.5 _ fmode ... 35
3.6 _ osmaj or, _ osminor, _ osversion 36
3.7 environ, _ psp ... 36
3.8 Standard Types .. 37

Global Variables and Standard Types

3.1 Introduction

The C run-time library contains definitions for a number of variables and
types used by library routines. You can access these variables and types by
including in your program the files in which they are declared or by giving
appropriate declarations in your program, as shown in the following sec­
tions.

3.2 _ amblksiz

unsigned _ amblksiz;

The _ amblksiz variable can be used to control the amount of memory
space in the heap that is used by C for dynamic memory allocation. This
variable is declared in the include file malloc.h.

The first time your program calls one of the dynamic-memory-allocation
functions, such as calloc or malloc, it asks the operating system for an
initial amount of heap space that is typically much larger than the amount
of memory requested by calloe or malloc. This amount is indicated by
_amblksiz, whose default value is 8K (8192 bytes). Subsequent memory
allocations are allotted from this 8K of memory, resulting in fewer calls to
the operating system when many relatively small items are being allo­
cated. C calls the operating system again only if the amount of memory
used by dynamic memory allocations exceeds the currently allocated space.

If the requested size in your C program is greater than _ amblksiz, mul­
tiple blocks, each of size _ amblksiz, are allocated until the request is sat­
isfied; since the amount of heap space allocated is more than the amount
requested, subsequent allocations can cause fragmentation of heap space.
You can control this fragmentation by using _amblksiz to change the
default "memory chunk" to whatever value you like, as in the following
example:

_amblksiz = 2000;

Since the heap allocator always rounds the MS-DOS request to the nearest
power of two greater than or equal to _ amblksiz, the preceding state­
ment causes the heap allocator to reserve memory in the heap in multiples
of 2K (2048 bytes).

Note that adjusting the value of _ amhlksiz affects only far-heap alloca­
tion (for example, standard malloc calls in compact, large, and huge
memory models and _ fmalloc calls in small and medium memory models).
Adjusting this value has no effect on halloc or _ nmalloc in any memory
model.

33

Microsoft C Run-Time Libra.ry Reference

3.3 daylight, timezone, tzname

int day light;
long timezone·
char *tzname(2];

The daylight, timezone, and tzname variables are used by several of the
time and date functions to make local-time adjustments and are declared
in the include file time.h. The values of the variables are determined by
the setting of an environment variable named TZ.

You can control local-time adjustments by setting the TZ environment
variable. The value of the environment variable TZ must be a three-letter
time zone, followed by a possibly signed number giving the difference in
hours between Greenwich mean time and local time.' The number is posi­
tive moving west from Greenwich, negative movin~ east. The number may
be followed by a three-letter daylight-saving-time lDST) zone. For exam­
ple, the command

SET TZ=ESTSEDT

specifies that the local time zone is EST (Eastern standard time), that
local time is five hours earlier than Greenwich mean time, and that EDT is
the name of the time zone when daylight saving time is in effect. Omitting
the DST zone, as shown below, means that daylight time is never in effect:

SET TZ=ESTS

When you call the ftime or localtime function, the values of the three
variables daylight, timezone, and tzname are determined from the TZ
setting. The daylight variable is given a nonzero value if a DST zone is
present in the TZ setting; otherwise, daylight is o. The time zone vari­
able is assigned the difference in seconds (calculated by converting the
hours given in the TZ setting) between Greenwich mean time and local
time. The first element of the tzname variable is the string value of the
three-letter time zone from the TZ setting; the second element is the
string value of the DST zone. If the DST zone is omitted from the TZ set­
ting, tzname[l] is an empty string.

If you do not explicitly assign a value to TZ before calling ftime or
localtime, the following default setting is used:

PST8PDT

The ftime and localtime functions call another function, tzset, to assign
values to the three global variables from the TZ setting. You can also call
tzset directly if you like; see the tzset reference page in Part 2 of this
manual for details.

34

Global Variables and Standard Types

3.4 _doserrno, errno, sys- errlist, sys- nerr

int _ doserrno;
int errno;
char *sys_errlist[];
int sys_ nerr;

The errno, sys_ errlist, and sys_ nerr variables are used by the perror
function to print error information and are declared in the include file
stdlib.h. When an error occurs in a system-level call, the errno variable
is set to an integer value to reflect the type of error. The perror function
uses the errno value to look up (index) the corresponding error message
in the sys_ errlist table. The value of the sys_ nerr variable is defined
as the number of elements in the sys_errlist array. For a listing of the
errno values and the corresponding error messages, see Appendix A,
"Error Messages."

The errno values on MS-DOS are a subset of the values for errno on
XENIX systems. Therefore, the value assigned to errno in case of error
does not necessarily correspond to the actual error code returned by an
MS-DOS system call. Instead, the actual MS-DOS error codes are mapped
onto the perror values. If you want to access the actual MS-DOS error
code, use the _ doserrno variable. When an error occurs in a system call,
the _ doserrno variable is assigned the actual error code returned by the
corresponding MS-DOS system call.

In general, you should use _ doserrno only for error detection in opera­
tions involving input and output, since the errno values for input and
output errors have MS-DOS error-code equivalents. Not all of the error
values available for errno have exact MS-DOS error-code equivalents,
and some may have no equivalents, causing the value of _ doserrno to
be undefined.

3.5 _fmode

int _fmode;

The _ fmode variable controls the default file-translation mode. It is
declared in stdlib.h. By default, the value of _ fmode is 0, causing files
to be translated in text mode (unless specifically opened or set to binary
mode). When _fmode is set to O_BINARY, the default mode is binary.
You can set _ fmode to 0_ BINARY by linking with BINMODE.OBJ
or by assigning it the value 0_ BINARY. See Section 2.9, "Binary and
Text Modes," for a discussion of file-translation modes and the use of the
_fmode variable.

35

Microsoft C Run-Time Library Reference

3.6 _ osmajor, _ osminor, _ osversion

unsigned char _ osmajor;
unsigned char _ osminor;
unsigned _ osversion

The _osmajor and _osminor variables specify the version number of
MS-DOS currently in use. They are declared in stdlih.h. The _osversion
variable provides the complete version number. It is declared in dos.h.
The _osmajor variable holds the "major" version number and the
_osminor variable stores the "minor" version number. For example,
under MS-DOS Version 3.20, _ osmajor is 3 and _ osminor is 20.

These variables are useful when you want a program to run on different
versions of MS-DOS. For example, you can test the _osmajor variable
before making a call to sopen; if the major version number is earlier (less)
than 3, open should be used instead of sopen.

3.7 environ, _ psp

char • environ [];
unsigned int _psp;

The environ and _ psp variables provide access to memory areas contain­
ing process-specific information. Both variables are declared in the include
file stdlih.h.

The environ variable is an array of pointers to the strings that constitute
the process environment. The environment consists of one or more entries
of the form

name= strt"ng

where name is the name of an environment variable and string is the value
of that variable. The string may be empty. The initial environment set­
tings are taken from the MS-DOS environment at the time of program exe­
cution.

The getenv and putenv routines use the environ variable to access and
modify the environment table. When putenv is called to add or delete
environment settings, the environment table changes size, and its location
in memory may also change, depending on the program's memory require­
ments. The environ variable is adjusted in these cases and will always
point to the correct table location.

36

Global Variables and Standard Types

The _ esp variable contains the segment address of the program segment
prefix lPSP) for the process. The PSP contains execution information
about the process, such as a copy of the command line that invoked the
process and the return address on process termination or interrupt. The
_ psp variable can be used to form a long pointer to the PSP, where _ psp
is the segment value and 0 is the offset value.

3.8 Standard Types

A number of run-time library routines use values whose types are defined
in include files. These types are listed and described as follows, and the
include file that defines each type is given. For a list of the actual type
definitions, see the description of the appropriate include file in Chapter 5,
"Include Files."

Standard Type

clock- t

complex

diskfree_t

diskinfo_t

div_ t, ldiv_ t

dosdate-t

dostime-t

DOSERROR

Description

The clock_ t type, defined in time.h, stores
time values and is used by the clock function.

The complex structure, defined in math.h,
stores the real and imaginary parts of complex
numbers and is used by the cabs function.

The diskfree_ t structure, defined in dos.h,
stores disk information used by the
_dos_getdiskfree routine.

The diskinfo_ t structure, defined in bios.h,
records information about disk drives returned
by the _bios_ disk routine.

The div _ t and ldiv _ t structures, defined in
stdlib.h, store the values returned by the div
and ldiv functions, respectively.

The dosdate- t structure, defined in dos.h,
records the current system date used in the
_dos-getdate and _dos_setdate routines.

The dostime_ t structure, defined in dos.h,
records the current system time used in the
dos gettime and _dos_ settime routines.

The DOSERROR structure, defined in dos.h,
stores values returned by the MS-DOS system
call 59H (available under MS-DOS Versions 3.0
and later).

37

Microsoft C Run-Time Library Reference

exception

FILE

find_t

fpos_t

jrnp_buf

onexit_ t

rccoord

REGS

size- t

SREGS

38

The exception structure, defined in math.h,
stores error information for math routines and
is used by the matherr routine.

The FILE structure, defined in stdio.h, is the
structure used in all stream input and output
operations. The fields of the FILE structure
store information about the current state of the
stream.

The find_ t structure, defined in dos.h, stores
file-attribute information returned by the
dos findfirst and _dos_ findnext routines.

The fgetpos and fsetpos functions use the
fpos- t object type, defined in stdio.h, to re­
cord all the information necessary to uniquely
specify every position within the file.

The jmp_ buf type, defined in setjmp.h, is
an array type rather than a structure type.
It defines the buffer used by the setjmp and
longjmp routines to save and restore the pro­
gram environment.

The onexit routine is declared as an onexit_ t
pointer type, which is defined in stdlib.h.

The rccoord structure, defined in graph.h, is
used in the graphics library to store the row and
column coordinates of the current text output
position in the display.

The REGS union, defined in dos.h, stores
byte and word register values to be passed to
and returned from calls to the MS-DOS inter­
face functions.

The size- t type, defined in stddef.h and sev­
eral other include files, is the unsigned integral
result of the sizeof operator.

The sig_ atomic_ t type, defined in signal.h,
is the integral type of an object that can be
modified as an atomic entity, even in the pres­
ence of asynchronous interrupts. It is used in
conjunction with the signal routine.

The SREGS structure, defined in dos.h, stores
the values of the ES, CS, SS, and DS registers.
This structure is used by the MS-DOS interface
functions that require segment register values
(int86x, intdosx, and segread).

stat

time-t

timeb

tm

utimbuf

va-list

videoconfig

xycoord

Global Variables and Standard Types

The stat structure, defined in sys\stat.h, con­
tains file-status information returned by the
stat and fstat routines.

The time- t type, defined in time.h, represents
time values in the mktime and time routines.

The timeb structure, defined in sys \ timeb.h,
is used by the ftime routine to store the current
system time in a broken-down format.

The tm structure, defined in time.h, is used by
the asctime, gmtime, and localtime functions
to store and retrieve time information.

The utimbuf structure, defined in
sys \ utime.h, stores file access and modification
times used by the utime function to change
file-modification dates.

The va-list array type, defined in stdarg.h, is
used to hold information needed by the va- arg
macro and the va-end routine. The called func­
tion declares a variable of type va-list, which
may be passed as an argument to another func­
tion.

The videoeonfig graphics-library structure is
defined in graph.h. It stores configuration infor­
mation about the hardware graphics environ­
ment.

The xycoord structure, defined in graph.h, is
used in the graphics library to store pixel coordi­
nates.

39

CHAPTER
RUN-TIME ROUTINES
BY CATEGORY
4.1 Introduction ... 43
4.2 Buffer 11anipulation .. 43
4.3 Character Classification and Conversion 44
4.4 Data Conversion ... 46
4.5 Directory Control ... 46
4.6 File I-Ia,ndling .. 47
4.7 Graphics ... 48

4.7.1 Using Graphics Functions 48
4.7.2 Configure ... 49
4.7.3 Set Coordinates .. 49
4.7.4 Set Palette ... 51
4.7.5 Set Attributes .. 52
4.7.6 Output Images ... 53
4.7.7 Output Text .. 54
4.7.8 Transfer Images .. 55

4.8 Input and Output ... 56
4.8.1 Stream Routines ... 57

4.8.1.1 Opening a Stream••...........•........ 59
4.8.1.2 Predefined Stream Pointers:

stdin, stdout, stderr, stdaux, stdprn• 59
4.8.1.3 Controlling Stream Buffering 61
4.8.1.4 Closing Streams •.....••••..•.•.•.......•...... 61
4.8.1.5 Reading and Writing Data•..•.•...... 61
4.8.1.6 Detecting Errors•......•......•.. 62

CHAPTER

4.8.2 Low-Level Routines 62
4.8.2.1 Opening a File•......•.•.......... 63
4.8.2.2 Predefined Handles•.............. 63
4.8.2.3 Reading and Writing Data 65
4.8.2.4 Closing Files•............ 65

4.8.3 Console and Port I/O 65
4. 9 :rv1a,th ... 67
4.10 Memory Allocation ... 69
4.11 Process Control ... 72
4.12 Searching and Sorting ... 76
4.13 String :rv1a,nipulation ... 76
4.14 System Calls ... 78

4.14.1 BIOS Interface ... 78
4.14.2 MS-DOS Interface 78

4.15 Time ... 81
4.16 Variable-Length Argulnent Lists 83
4.17 Mscellaneous .. 83

42

Run-Time Routines by Category

4.1 Introduction

This chapter describes the major categories of routines included in the C
run-time libraries. The discussions of these categories are intended to give
a brief overview of the capabilities of the run-time library. For a complete
description of the syntax and use of each routine, see Part 2, "Reference."

4.2 Buffer Manipulation

Routine

memccpy

memchr

memcmp

memicmp

memmove

memcpy

memset

movedata

Use

Copies characters from one buffer to another, until
a given character or a given number of characters
has been copied

Returns a pointer to the first occurrence, within a
specified number of characters, of a given charac­
ter in the buffer

Compares a specified number of characters from
two buffers

Compares a specified number of characters from
two buffers without regard to the case of the
letters (uppercase and lowercase treated as
equivalen t)

Copies a specified number of characters from one
buffer to another

Copies a specified number of characters from one
buffer to another

Uses a given character to initialize a specified
number of bytes in the buffer

Copies a specified number of characters from one
buffer to another, even when buffers are in different
segments

The buffer-manipulation routines are useful for working with areas of
memory on a character-by-character basis. Buffers are arrays of characters
(bytes). However, unlike strings, they are not usually terminated
with a null character ('\ 0'). Therefore, the buffer-manipulation routines
always take a length or count argument.

43

Microsoft C Run-Time Library Reference

When the source and target areas overlap, only the memmove function is
guaran teed to properly copy the full source.

Function declarations for the buffer-manipulation routines are given in the
include files memory.h and string.h.

4.3 Character Classification and Conversion

Routine

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

toascii

tolower

_ tolower

toupper

_ toupper

Use

Tests for alphanumeric character

Tests for alphabetic character

Tests for ASCII character

Tests for control character

Tests for decimal digit

Tests for printable character except space

Tests for lowercase character

Tests for printable character

Tests for punctuation character

Tests for white-space character

Tests for uppercase character

Tests for hexadecimal digit

Converts character to ASCII code

Tests character and converts to lowercase if
uppercase

Converts character to lowercase (unconditional)

Tests character and converts to uppercase if
lowercase

Converts character to uppercase (unconditional)

The character classification and conversion routines let you test individual
characters in a variety of ways and convert between uppercase and lower­
case characters. The classification routines identify characters by finding

44

Run-Time Routines by Category

them in a table of classification codes; using these routines to classify char­
acters is generally faster than writing a test expression such as the follow­
ing:

if ((c >= 0) :: c <= Ox7f»)

The tolower and toupper routines are implemented both as functions
and as macros; the remainder of the routines in this category are imple­
mented only as macros. All of the macros are defined in ctype.h; this file
must be included to use these macros.

The tolower and toupper macros evaluate their argument twice and
therefore cause arguments with side effects to give incorrect results. For
this reason, you may want to use the function versions of these routines
instead.

The macro versions of tolower and toupper are used by default when
you include ctype.h. To use the function versions instead, you must
give # undef preprocessor directives for tolower and toupper after the
include directive for ctype.h but before you call the routines. This pro­
cedure removes the macro definitions and causes occurrences of tolower
and toupper to be treated as function calls to the tolower and toupper
library functions.

If you want to use the function versions of toupper and tolower and you
do not use any of the other character-classification macros in your pro­
gram, you can simply omit the ctype.h include file. In this case no macro
defInitions are present for tolower and toupper, so the function versions
are used.

Function declarations for the tolower and toupper functions are given
in the include file stdlib.h instead of ctype.h to avoid conflict with the
macro definitions. When you want to use tolower and toupper as func­
tions and include the declarations from stdlib.h, you must follow this
sequence:

1. Include ctype.h if it is required for other macro definitions.

2. If you include ctype.h, give # undef directives for tolower and
toupper.

3. Include stdlib.h.

The declarations of tolower and toupper in stdlib.h are enclosed in
an # ifndef block and are processed only if the corresponding iden tifier
(toupper or tolower) is not defined.

45

Microsoft C Run-Time Library Reference

4.4 Data Conversion

Routine

atof

atoi

atol

ecvt

fcvt

gcvt

itoa

ltoa

strtod

strtol

strtoul

ultoa

Use

Converts string to float

Converts string to int

Converts string to long

Converts double to string

Converts double to string

Converts double to string

Converts int to string

Converts long to string

Converts string to double

Converts string to a long integer

Converts string to an unsigned long integer

Converts unsigned long to string

The data-conversion routines convert numbers to strings of ASCII charac­
ters and vice versa. These routines are implemented as functions; all are
declared in the include file stdlib.h. The atof function, which converts a
string to a floating-point value, is also declared in math.h.

4.5 Directory Control

Routine

chdir

getcwd

mkdir

rmdir

Use

Changes current working directory

Gets current working directory

Makes a new directory

Removes a directory

The directory-control routines let you access, modify, and obtain infor­
mation about the directory structure from within your program. With
them, you can get the current working directory, change directories, and
add or remove directories.

The directory routines are functions and are declared in the include file
direct.h.

46

Run-Time Routines by Category

4.6 File Handling

Routine

access

chmod

chsize

filelength

fstat

isatty

locking

mktemp

remove

rename

setmode

stat

umask

unlink

Use

Checks file-permission setting

Changes file-permission setting

Changes file size

Checks file length

Gets file-status information

Checks for character device

Locks areas of file (available with MS-DOS Ver­
sions 3.0 and later)

Creates unique file name

Deletes file

Renames file

Sets file-translation mode

Gets file-status information on named file

Sets default-permission mask

Deletes file

The file-handling routines work on a file designated by a path name, or by
a "file handle": a file-management structure returned by the operating sys­
tem when a file is created or opened. The file-handling rou tines modify
or give information about the designated file. All of these routines except
fstat and stat are declared in the include file io.h. The fstat and stat
functions are declared in sys\stat.h. The remove and rename functions
are also declared in stdio.h.

The access, chmod, remove, rename, stat, and unlink routines
operate on files specified by a path name or file name.

The chsize, filelength, isatty, locking, setmode, and fstat routines
work with files designated by a file handle.

The locking routine works only under MS-DOS Versions 3.0 and later.

The mktemp and umask routines have slightly different functions than
the above routines. The mktemp routine creates a unique file name. Pro­
grams can use mktemp to create unique file names that do not conflict

47

Microsoft C Run-Time Library Reference

with the names of existing files. The umask routine sets the default per­
mission mask for any new files created in a program. The mask may over­
ride the permission setting given in the open or creat call for the new file.

4.7 Graphics

The Microsoft C run-time library includes a graphics library which can be
called from Microsoft C as well as from other Microsoft languages that
support the C calling conventions. The graphics package supports the IBM
(and com~atible) Enhanced Graphics Adapter (EGA), Color Graphics
Adapter l eGA), and certain operating modes of the Video Graphics Array
(VGA) hardware configurations.

4.7.1 Using Graphics Functions

The graphics routines are a large-model library that must be explicitly
linked. All graphics functions are declared in the include file graph.h. The
library can be divided into the seven categories listed below, corresponding
to the different tasks involved with creating and manipulating graphic
objects:

Task

Configure

Set coordinates

Set palette

Set attributes

Output images

Output text

Transfer images

Description

Selects the proper display mode for the hardware
and establishes memory areas for writing and dis­
playing images

Specifies the logical origin and the active display
area within the screen

Specifies a palette mapping

Specifies background and foreground colors and
mask and line styles

Draws and fills figures on the screen

Writes text to the screen

Stores images in memory and retrieves them

The following sections explain each of these tasks.

48

Run-Time Routines by Ca.tegory

4.7.2 Configure

Routine Use

_ displaycursor Determines whether the cursor will be left on or off
on exit from graphics routines

_getvideoconfig Obtains status of current graphics environment

_ setactivepage Sets memory area for writing images

_ setvideomode Selects screen display mode

_ setvisualpage Sets memory area for displaying images

The _displaycursor routine determines whether or not the cursor will
be restored on exit from graphics routines. The setting of this routine
remains in effect until the routine is called again to change it.

The _ setvideomode function selects an operating mode for the display
hardware.

The _ setactivepage and _ setvisualpage functions define memory re­
gions for storing the working page and the displayed page, respectively, in
configurations which support multiple video pages.

The _ getvideoconfig function returns a structure containing information
about the hardware environment. Several of the other graphics routines
use this information.

4.7.3 Set Coordinates

Routine Use

_ getlogcoord Converts physical coordinates to logical coordi­
nates

_getphyscoord Converts logical coordinates to physical coordi-
nates

- setcliprgn Limits graphic output to part of the screen

_ setlogorg Positions the logical origin

_setviewport Limits graphic output and positions the logical ori­
gin within a limited area

The Microsoft C graphics functions recognize two sets of coordinates:

1. Fixed physical coordinates determined by the hardware and display
configuration of the user's environment

2. Logical coordinates defined by the application

49

Microsoft C Run-Time Libra.ry Reference

The functions in this category alter the logical coordinate system and
translate logical coordinates to physical coordinates and vice versa.

The default logical coordinate system is identical to the physical one. The
physical origin (0, 0) is always in the upper-left corner of the display. The
x axis extends in the positive direction left to right, while the y axis ex­
tends in the positive direction top to bottom. These characteristics are
shown in Figure 4.1.

increasing y values

Figure 4.1 The Physical Screen

The dimensions of the x and y axes depend upon the hardware display
configuration and the selected mode. These values are accessible at
run time by examining the numxpixels and numypixels fields of the
videoconfig structure returned by _ getvideoconfig.

The origin can be moved to a new position relative to the physical origin
with the _ setlogorg function. This function also remaps the pixel coordi­
nates with new logical coordinates, as shown in Figure 4.2.

50

Run-Time Routines by Category

Physical (0,0)
Logical (-320, -175)

•

I
Physical (320, 175)
Logical (0,0)

•

Physical (640,350)
Logical (320, 175)

Figure 4.2 The Logical Screen

•

The physical coordinates of any logical point can be determined with the
_ getphyscoord function, and the logical coordinates of any physical
point can be determined with the _ getlogcoord function.

The _ setcliprgn function defines a restricted active display area on the
screen. The _ setviewport function does the same thing and also resets
the logical origin to the upper-left corner of the restricted active display
area.

There IS no scaling or built-in axis translation. However, you can do axis
translation by redefining the provided interface using C macros to flip the
signs of the coordinates.

4.7.4 Set Palette

Routine

_ remapallpalette

_ remappalette

_ select palette

Use

Assigns colors to all pixel values

Assigns colors to selected pixel values

Selects a predefined palette

51

Microsoft C Run-Time Libra.ry Reference

In a graphics mode, a screen pixel can be represented as a one-, two-, or
four-bit value, depending upon the particular mode. The representation
is called the "pixel value." The range of pixel values can be derived from
the bitsperpixel field in the videoconfig structure returned by
_ getvideoconfig.

Each color that can be displayed is represented by a unique ordinal value.
To bind a color ordinal with each pixel value, the graphics library uses the
concept of a "palette." A palette is simply a mapping of the actual display
colors to the legal pixel values.

Most video modes support only one palette, but the medium-resolution
graphics modes, _MRES4COLOR and _MRESNOCOLOR, support a
number of palettes. In these modes, the palette consists of a background
color and three other colors. The _ selectpalette function selects a palette
from among the available palettes. All functions that require a color pa­
rameter expect to be passed a pixel value.

In addition, the EGA hardware provides the capability of remapping a
palette, allowing any available color to be mapped to any pixel value. Two
graphics functions allow the EGA configuration to provide this
capability: the _ remappalette function remaps one pixel value; the
_ remapallpalette function remaps the entire palette. These two func­
tions are the only ones that recognize actual color ordinals defined by the
display adapter.

Many graphics functions operate only under certain hardware configura­
tions or in certain graphics modes. These functions return a negative value
if they are called in an invalid hardware environment.

4.7.5 Set Attributes

52

Routine

_ getbkcolor

_getcolor

_getlinestyle

_ getfillmask

_ setbkcolor

_setcolor

_ setfillmask

_ setlinesty Ie

Use

Reports the current background color

Obtains the current color

Obtains the current line style

Obtains the current fill mask

Sets the current background color

Sets the current color

Sets the current fill mask

Sets the current line style

Run-Time Routines by Category

The output functions (described in Section 4.7.6, "Ouput Images") do not
specify color or line-style information. Instead, they rely on a set of cur­
rent "attributes" which are set independently by the functions listed
above.

The _getcolor and _setcolor functions deal with the "current color"
attribute, which is used by the _ floodfill function, as well as the closed­
figure output functions. Similarly, the _getbkcolor and _setbkcolor
functions deal with the "current background color" attribute, employed
by the _ clearscreen function.

The _ getfillmask and _ setfillmask functions pertain to the "current
fill mask" attribute. The mask is an 8-by-8-bit template array, with each
bit representing a pixel. If a bit is 0, the pixel in memory is left untouched:
the mask is transparent to that pixel. If a bit is 1, the pixel is assigned the
current color value. The template is repeated over the entire fill area.

The _getlinestyle and _setlinestyle functions pertain to the "current
line style" attribute. The line style is determined by a 16-bit template
buffer, with each bit corresponding to a pixel. If a bit is 0, the pixel is set
to the current background color. If a bit is 1, the pixel is set to the current
color. The template is repeated for the length of the line.

4.7.6 Output Images

Routine

_arc

_ clearscreen

_ellipse

_floodfill

_ getcurrentposition

_getpixel

_lineto

_moveto

_pie

_rectangle

_setpixel

Use

Draws an arc

Erases the screen and fills it with the
curren t background color

Draws an ellipse

Fills an area of the screen with the current
color

Obtains the logical coordinates of the
current graphic-output position

Obtains a pixel's value

Draws a line from the current graphic out­
put position to a specified point

Moves the current graphic-output position
to a specified point

Draws a pie-slice-shaped figure

Draws a rectangle

Sets a pixel's value

53

Microsoft C Run-Time Library Reference

These functions assume the presence of current line-style, fill-mask,
background-color, and foreground-color attributes to specify their asso­
ciated parameters. You must write separate calls to select a particular
line style, mask, background color, or foreground color. Subsequent out­
put routines employ these parameters.

Circular figures, such as arcs and ellipses, are centered within a "bound­
ing rectangle," specified by two points that define the diagonally opposed
corners of the rectangle. The center of the rectangle becomes the center of
the figure, and the rectangle's borders determine the size of the figure. Fig­
ure 4.3 shows start and end vectors and a bounding rectangle.

(x3,y3) ,
I

Figure 4.3 Bounding Rectangle

4.7.7 Output Text

54

Routine Use

_ displaycursor Sets the cursor "on" or "off" on exit from a graph­
ics routine

_ gettextcolor Obtains the current text color

_ gettextposition Obtains the current text-output position

_outtext Outputs text to the screen at the current position

Run-Time Routines by Category

_settextposition Relocates the current text position

_ settextcolor Sets the current text color

_settextwindow Sets the current text-display window

_wrapon Enables or disables line wrap

These routines provide text output in both graphics and text modes. Un­
like the standard console I/0 library routines, these functions recognize
window boundaries and should be used in windowing applications.

No formatting capability is provided. If you want to output integer or
floating-point values, you must convert the values into a string variable
before calling these routines.

All screen positions are specified as character-row and -column coordi­
nates.

The _settextwindow routine is analogous to the _setcliprgn routine,
except that it restricts only the text display area for the _ outtext rou­
tine (it doesn't affect the standard console I/O library routines, such as
_ printf). The _ outtext routine displays a zero-terminated string on the
screen. Text has a color attribute you can obtain with _gettextcolor
and set with _settextcolor. There is also a text-position attribute, which
is the current character row and column position where the next text
character will be output. This attribute can be obtained and set with the
_ gettextposition and _ settextposition functions, respectively.

The _ wrapon function turns on or off line-wrapping of text output. "Line
wrapping" refers to breaking a line of text and starting a new one when
output encounters a window boundary. Without line-wrap, lines are trun­
cated at the window boundary.

4.7.8 Transfer Images

Routine

_getimage

_imagesize

_putimage

Use

Stores a screen image in memory

Returns image size in bytes

Retrieves an image from memory and displays it

These functions transfer screen images between memory and the display,
using a buffer allocated by the application. The _ imagesize function
returns the size in bytes of the buffer needed to store a given image.

55

Microsoft C Run-Time Library Reference

4.8 Input and Output

. The input and output routines of the standard C library allow you to read
and write data to and from files and devices. In C, there are no predefined
file structures; all data are treated as sequences of bytes. The following
three types of input and output (I/O) functions are available:

1. Stream I/O

2. Low-level I/O

3. Console and port I/O

The "stream" functions treat a data file or data item as a stream of indivi­
dual characters. By choosing among the many stream functions available,
you can process data in different sizes and formats, from single characters
to large data structures.

When a file is opened for I/0 using the stream functions, the opened file is
associated with a structure of type F~E (defined in stdio.h) containing
basic information about the file. A pointer to the F~E structure is re­
turned when the stream is opened. Subsequent operations use this pointer
(also called the "stream pointer," or just "stream") to refer to the file.

The stream functions provide for buffered, formatted, or unformatted
input and output. When a stream is buffered, data that is read from or
written to the stream is collected in an intermediate storage location
called a buffer. In write operations, the output buffer's contents are writ­
ten to the appropriate final location when the buffer is full, the stream
is closed, or the program terminates normally. The buffer is said to be
"flushed" when this occurs. In read operations, a block of data is placed
in the input buffer and data are read from the buffer; when the input
buffer is empty, the next block of data is transferred into the buffer.

Buffering produces efficient I/O because the system can transfer a large
block of data in a single operation rather than performing an I/0 opera­
tion each time a data item is read from or written to a stream. However,
if a program terminates abnormally, output buffers may not be flushed,
resulting in loss of data.

The console and port I/O routines can be considered an extension of the
stream routines. They allow you to read or write to a console (terminal) or
an input/output port (such as a printer port). The port I/O routines sim­
ply read and write data in bytes. Some additional options are available
with console I/0 routines. For example, you can detect whether a charac­
ter has been typed at the console. You can also choose between echoing
characters to the screen as they are read, or reading characters without
echoing.

56

Run-Time Routines by Category

The "low-level" input and output routines do not perform buffering and
formatting; rather, they invoke the operating system's input and output
capabilities directly. These routines let you access files and peripheral dev­
ices at a more basic level than the stream functions.

When a file is opened with a low-level routine, a file "handle" is associated
with the opened file. This handle is an integer value that is used to refer to
the file in subsequent operations.

Warning

Stream routines and low-level routines are generally incompatible, so
either stream or low-level functions should be used consistently on a
given file. Since stream functions are buffered and low-level functions
are not, attempting to access the same file or device by two different
methods causes confusion and may result in the loss of data in buffers.

4.S.1 Stream Routines

Routine

clearerr

fclose

fcloseall

fdopen

feof

ferror

mush

fgetc

fgetchar

fgetpos

fgets

fileno

flushall

fopen

Use

Clears the error indicator for a stream

Closes a stream

Closes all open streams

Opens a stream using its handle

Tests for end-of-file on a stream

Tests for error on a stream

Flushes a stream

Reads a character from a stream (function version)

Reads a character from stdin (function version)

Gets the position indicator of a stream

Reads a string from a stream

Gets file handle associated with a stream

Flushes all streams

Opens a stream

57

Microsoft CRun-Time Library Reference

58

fprintf

fputc

fputchar

fputs

fread

freopen

fscanf

fseek

fsetpos

ftell

fwrite

getc

getchar

gets

getw

printf

putc

putchar

puts

putw

rewind

rmtmp

scanf

setbuf

setvbuf

sprintf

sscanf

ternpnam

tmpfile

tmpnam

Writes formatted data to a stream

Writes a character to a stream (function version)

Writes a character to stdout (function version)

Writes a string to a stream

Reads unformatted data from a stream

Reassigns a FILE pointer

Reads formatted data from a stream

Repositions FILE pointer to given location

Sets the position indicator of a stream

Gets current FILE pointer position

Writes unformatted data items to a stream

Reads a character from a stream (macro version)

Reads a character from stdin (macro version)

Reads a line from stdin

Reads a binary int item from stream

Writes formatted data to stdout

Writes a character to a stream (macro version)

Writes a character to stdout (macro version)

Writes a line to a stream

Writes a binary int item to a stream

Repositions FILE pointer to beginning of a stream

Removes temporary files created by tmpfile

Reads formatted data from stdin

Con troIs stream buffering

Controls stream buffering and buffer size

Writes formatted data to string

Reads formatted data from string

Generates a temporary file name in given directory

Creates a temporary file

Generates a temporary file name

Run-Time Routines by Category

ungetc

vfprintf

vprintf

vsprintf

Places a character in the buffer

Writes formatted data to a stream

Writes formatted data to stdout

Writes formatted data to a string

To use the stream functions you must include the file stdio.h in your pro­
gram. This file defines constants, types, and structures used in the stream
functions, and contains function declarations and macro definitions for the
stream routines.

Some of the constants defined in stdio.h may be useful in your program.
The manifest constant EOF is defined to be the value returned at end-of­
file. NULL is the null pointer. FILE is the structure that maintains infor­
mation about a stream. BUFSIZ defines the default size of stream buffers,
in bytes.

4.8.1.1 Opening a Stream

A stream must be opened using the fdopen, fopen, or freopen function
before input and output can be performed on that stream. When opening a
stream, the named stream can be opened for reading, writing, or both, and
can be opened either in text or in binary mode.

The fdopen, fopen, and freopen functions return a FILE pointer, which
is used to refer to the stream. When you call one of these functions, assign
the return value to a FILE pointer variable and use that variable to refer
to the opened stream. For example, if your program contains the line

infile = fopen ("test.dat", "r");

you can use the FILE pointer variable infile to refer to the stream.

4.8.1.2 Predefined Stream Pointers:
stdin,stdout,stderr,stdaux,stdprn

When a program begins execution, five streams are automatically opened.
These streams are the standard input, standard output, standard error,
standard auxiliary, and standard print. By default, the standard input,
standard output, and standard error refer to the user's console. This
means that whenever a program expects input from the "standard input,"
it receives that input from the console. Similarly, a program that writes to
the "standard output" prints its data to the console. Error messages gen­
erated by the library routines are sent to the "standard error," meaning
that error messages appear on the user's console.

59

Microsoft C Run-Time Library Reference

The assignment of the "standard auxiliary" and "standard print" streams
depends on the machine configuration; these streams usually refer to an
auxiliary port and a printer, respectively, but they might not be set up on
a particular system. Be sure to check your machine configuration before
using these streams.

You can refer to the five standard system streams by using the following
predefined file handles:

Handle Stream

stdin Standard input

stdout Standard output

stderr Standard error

stdaux Standard auxiliary

stdprn Standard print

You can use these pointers in any function that requires a stream pointer
as an argument. Some functions, such as getchar and putchar, are
designed to use stdin or stdout automatically. The pointers stdin,
stdout, stderr, stdaux, and stdprn are constants, not variables; do not
try to assign them a new stream pointer value.

You can use the 11S-DOS redirection symbols (<, >, or > >) or the
pipe symbol (I) to redefine the standard input and standard output for
a particular program. (See your operating-system manual for a complete
discussion of redirection and pipes.) For example, if you execute a program
and redirect its output to a file named resul ts, the program writes to
the resul ts file each time the standard output is specified in a write
operation. Note that you don't change the program when you redirect
the output. You simply change the file associated with stdout for a single
execution of the program.

You can redefine stdin, stdout, stderr, stdaux, or stdprn so that it
refers to a disk file or to a device. The freopen routine is used for this
purpose. For a description of this option, see the freopen description in
the reference section of this manual.

Important

60

At the MS-DOS command level, stderr (standard error) cannot be
redirected.

Run-Time Routines by Category

4.8.1.3 Controlling Stream Buffering

Files opened using the stream functions are buffered by default, except for
the preopened streams stdin, stdout, stderr, stdaux, and stdprn. The
stderr and stdaux streams are unbuffered by default, unless they are used
in one of the printf or scanf family of functions, in which case they are
assigned a temporary buffer. These two streams can also be buffered with
setbuf or setvbuf. The stdin, stdout, and stdprn streams are buffered;
each buffer is flushed whenever it is full, or whenever the function causing
I/O terminates.

By using the setbuf or setvbuf functions, you can cause a stream to be
unbuffered, or you can associate a buffer with an unbuffered stream.
Buffers allocated by the system are not accessible to the user, but buffers
allocated with setbuf or setvbuf are named by the user and can be mani­
pulated as if they were variables. Buffers can be any size: if you use set­
buf, this size is set by the manifest constant BUFSIZ in stdio.h; if you
use setvbuf, you can set the size of the buffer yourself. (See setbuf and
setvbuf in the reference section of this manual.)

Buffers are automatically flushed when they are full, when the associated
file is closed, or when a program terminates normally. You can flush
buffers at other times by using the mush and flushall routines. The mush
routine flushes a single specified stream, while flushall flushes all streams
that are open and buffered.

4.8.1.4 Closing Streams

The fclose and fcloseall functions close a stream or streams. The fclose
rou tine closes a single specified stream; fcloseall closes all open streams
except stdin, stdout, stderr, stdaux, and stdprn .. If your program does
not explicitly close a stream, the stream is automatically closed when the
program terminates. However, it is a good practice to close a stream when
finished with it, as the number of streams that can be open at a given time
is limited.

4.8.1.5 Reading and Writing Data

The stream functions allow you to transfer data in a variety of ways. You
can read and write binary data (a sequence of bytes), or specify reading
and writing by characters, lines, or more complicated formats. A list at
the beginning of this section summarizes the stream functions for reading
and writing data; for a full description of each function, see the reference
section of this manual.

61

Microsoft C Run-Time Library Reference

Reading and writing operations on streams always begin at the current
position of the stream, known as the "file pointer" for the stream. The
file pointer is changed to reflect the new position after a read or write
operation takes place. For example, if you read a single character from a
stream, the file pointer is increased by one byte so that the next operation
begins with the first unread character. If a stream is opened for appending,
the file pointer is automatically positioned at the end of the file before
each write operation.

The feof macro detects an end-of-file condition on a stream. Once the
end-of-file indicator is set, it remains set until the file is closed, or until
clearerr or rewind is called.

You can position the file pointer anywhere in a file by using the fseek
function. The next operation occurs at the position you specified. The
rewind function positions the file pointer at the beginning of the file. Use
the ftell function to determine the current position of the file pointer.

Streams associated with a device (such as a console) do not have file
poin ters. Data coming from or going to a console cannot be accessed ran­
domly. Routines that set or get the file-pointer position (such as fseek,
fgetpos, fsetpos, ftell, or rewind) have undefined results if used on a
stream associated with a device.

4.8.1.6 Detecting Errors

When an error occurs in a stream operation, an error indicator for the
stream is set. You can use the ferror macro to test the error indicator and
determine whether an error has occurred. Once an error has occurred, the
error indicator for the stream remains set until the stream is closed, or un­
til you explicitly clear the error indicator by calling clearerr or rewind.

4.8.2 Low-Level Routines

62

Routine

close

creat

dup

dup2

eor

lseek

Use

Closes a file

Creates a file

Creates a second handle for a file

Reassigns a handle to a file

Tests for end-of-file

Repositions file pointer to a given location

Run-Time Routines by Category

open

read

sopen

tell

write

Opens a file

Reads data from a file

Opens a file for file sharing

Gets current file-pointer position

Writes data to a file

Low-level input and output calls do not buffer or format data. Files
opened by low-level calls are referenced by a "file handle," an integer
value used by the operating system to refer to the file. The open function
is used to open files; on MS-DOS Versions 3.0 and later, sopen can be
used to open a file with file-sharing attributes.

Low-level functions, unlike the stream functions, do not require the
include file stdio.h. However, some common constants are defined in
stdio.h; for example, the end-of-file indicator, EOF, may be useful. If
your program requires these constants, you must include stdio.h.

Declarations for the low-level functions are given in the include file io.h.

4.8.2.1 Opening a File

A file must be opened with the open, sopen, or creat function before
input and output with the low-level functions can be performed on that
file. The file can be opened for reading, writing, or both, and opened in
either text or binary mode. The include file fcntl.h must be included when
opening a file, as it contains definitions for flags used in open. In some
cases the files sys\ types.h and sys\stat.h must also be included; for
more information see the reference page for open in the reference section
of this manual.

These functions return a file handle, to be used to refer to the file in later
operations. When you call one of these functions, assign the return value
to an integer variable and use that variable to refer to the opened file.

4.8.2.2 Predefined Handles

When a program begins execution, five file handles, corresponding to the
standard input, standard output, standard error, standard auxiliary, and
standard print, are already assigned. By using the following predefined
handles, a program can call low-level functions to access the standard
input, standard output, standard error, standard auxiliary, and standard
print streams (described with the stream functions in Section 4.8.1.2):

63

Microsoft C Run-Time Libra.ry Reference

Stream Handle

stdin 0

stdout 1

stderr 2

stdaux 3

stdprn 4

You can use these file handles in your program without previously opening
the associated files. They are automatically opened when the program
begins, as shown by the output from the following short program, which
uses the fileno function to print the file-handle values assigned to the
standard input, standard output, standard error, standard auxiliary, and
standard print streams:

#include <stdio.h>

main ()

Output:

{
printf("stdin:
printf("stdout:
printf("stderr:
pr int f (" stdaux :
printf ("stdprn:
}

stdin: 0
stdout: 1
stderr: 2
stdaux: 3
stdprn: 4

%d\n",fileno(stdin»;
%d\n",fileno(stdout»;
%d\n",fileno(stderr»;
%d\n",fileno(stdaux»;
%d\n",fileno(stdprn»;

As with the stream functions, you can use redirection and pipe symbols
when you execute your program to redirect the standard input and stan­
dard output. The dup and dup2 functions allow you to assign multiple
handles for the same file; these functions are typically used to associate
the predefined file handles with different files.

Important

64

At the MS-DOS command level, stderr (standard error) cannot be
redirected.

Run-Time Routines by Category

4.8.2.3 Reading and Writing Data

Two basic functions, read and write, perform input and output. As with
the stream functions, reading and writing operations always begin at the
current position in the file. The current position is updated each time a
read or write operation occurs.

The eof routine can be used to test for an end-of-file condition. Low-level
I/O routines set the errno variable when an error occurs. This means that
you can use the perror function to print information about I/O errors, or
the strerror function to store this error information in a string.

You can position the file pointer anywhere in a file by using the lseek
function; the next operation occurs at the position you specified. Use the
tell function to determine the current position of the file pointer.

Devices (such as the console) do not have file pointers. Th.e lseek and tell
routines have undefined results if used on a handle associated with a dev­
Ice.

4.8.2.4 Closing Files

The close function closes an open file. Open files are automatically closed
when a program terminates. However, it is good practice to close a file
when finished with it, as the number of files that can be open at a given
time is limited.

4.8.3 Console and Port I/O

Routine

cgets

cprintf

cputs

cscanf

getch

getche

inp

inpw

kbhit

Use

Reads a string from the console

Writes formatted data to the console

Writes a string to the console

Reads formatted data from the console

Reads a character from the console

Reads a character from the console and echoes it

Reads one byte from the specified I/O port

Reads a two-byte word from the specified I/O port

Checks for a keystroke at the console

65

Microsoft C Run-Time Library Reference

outp

outpw

putch

ungetch

Writes one byte to the specified I/O port

Writes a two-byte word to the specified I/O port

Writes a character to the console

"Vngets" the last character read from the console
so that it becomes the next character read

The console and port I/O routines are implemented as functions and are
declared in the include file conio.h. These functions perform reading and
writing operations on your console or on the specified port. The cgets,
cscanf, getch, getche, and kbhit routines take input from the console,
while cprintf, cputs, putch, and ungetch write to the console. The input
or output of these functions can be redirected. (Redirection occurs at the
operating-system level; the library itself has no control over it.)

The console or port does not have to be opened or closed before I/O is
performed, so there are no open or close routines in this category. The
port I/O routines inp and outp read or write one byte at a time from
the specified port. The routines inpw and outpw read or write two-byte
words, respectively.

The console I/O routines allow reading and writing of strings (cgets and
cputs), formatted data (cscanf and cprintf), and characters. Several
options are available when reading and writing characters.

The putch routine writes a single character to the console. The getch and
getche routines read a single character from the console; getche echoes
the character back to the console, while getch does not. The ungetch
routine "ungets" the last character read; the next read operation on the
console begins with the "ungotten" character.

The kbhit routine determines whether a key has been struck at the con­
sole. This routine allows you to test for keyboard input before you
attempt to read from the console.

Notes

66

The console I/O routines use the corresponding MS-DOS system calls
to read and write characters. Since these routines are not compatible
with stream or low-level library routines, console routines should not
be used with them.

4.9 Math

Routine

acos

asin

atan

atan2

bessel!

cabs

ceil

_clear872

_ control872

cos

cosh

dieeetomsbin

dms bintoieee

exp

fabs

fieeetoms bin

floor

fmod

fms bintoieee

_fpreset

frexp

Run-Time Routines by Category

Use

Calculates arc cosine

Calculates arc sine

Calculates arc tangent

Calculates arc tangent

Calculates Bessel functions

Finds absolute value of a complex number

Finds integer ceiling

Gets and clears floating-point status word

Gets old floating-point control word and
sets new control-word value

Calculates cosine

Calculates hyperbolic cosine

Converts IEEE double-precision number to
Microsoft binary format

Converts Microsoft binary double-precision
number to IEEE format

Calculates exponential function

Finds absolute value

Converts IEEE single-precision number to
Microsoft binary format

Finds largest integer less than or equal to
argument

Finds floating-point remainder

Converts Microsoft binary single-precision
number to IEEE format

Reini tializes the floating- poin t-math
package

Calculates an exponential value

67

Microsoft C Run-Time Library Reference

hypot

ldexp

log

loglO

matherr

modf

pow

sin

sinh

sqrt

_status872

tan

tanh

Calculates hypotenuse of right triangle

Calculates argument times 2 exp

Calculates natural logarithm

Calculates base-10 logarithm

Handles math errors

Breaks down argument into integer and
fractional parts

Calculates a value raised to a power

Calculates sine

Calculates hyperbolic sine

Finds square root

Gets the floating-point status word

Calculates tangent

Calculates hyperbolic tangent

The math routines allow you to perform common mathematical calcula­
tions. All math routines work with floating-point values and therefore
require floating-point support (see Section 2.11, "Floating-Point Sup­
port"). Function declarations for the math routines are given in the
include file math.h, with the exception of _ clear87, _ control87,
- fpreset, and _ status87, whose definitions are given in the float.h
include file.

The matherr routine is invoked by the math functions when errors occur.
This routine is defined in the library, but can be redefined by the user if
different error-handling procedures are desired. The user-defined matherr
function, if given, must conform to the specifications given on the math­
err reference page in Part 2 of this manual.

You are not required to supply a definition for matherr. If no definition is
present, the default error returns for each routine are used. See the refer­
ence page for each routine in Part 2 of this manual for a description of
that routine's error returns.

1 r.he. bessel routin~ does not correspond to a single function, but to six functions named jO,
Jl, In, yO, yl, and yn.

2 Not available with the /FPa compiler option

68

Run-Time Routines by Category

4.10 Memory Allocation

Routine

alloca

calloc

_expand

_ffree

_fheapchk

_fheapset

_fheapwalk

_fmalloc

free

_freect

_fmsize

halloc

_heapchk

_heapset

_heapwalk

hfree

malloc

_memavl

_memmax

_msize

Use

Allocates a block of memory from the program's
stack

Allocates storage for array

Reallocates block of memory without moving its
location

Frees a block allocated by _ fmalloc

Checks the memory space outside the default data
segment (far heap) for consistency

Fills the free far heap entries with a specified value

Walks through the far heap, one entry at a time,
and returns information about each far heap entry

Allocates a block of memory outside the far heap
and returns a far pointer

Frees a block allocated with calloc, malloc, or
realloc

Returns approximate number of items of given size
that could be allocated

Returns size of memory block pointed to by far
pointer

Allocates storage for huge array

Checks the heap for consistency

Fills the free heap entries with a specified value

Walks through the heap, one entry at a time, and
returns information about each heap entry

Frees a block allocated by halloc

Allocates a block

Returns approximate number of bytes available in
memory for allocation

Returns size of largest contiguous free space in the
near heap

Returns size of block allocated by calloc, malloc,
or realloc

69

Microsoft C Run-Time Library Reference

_nfree

_nheapehk

_nheapset

_nheapwalk

_nmalloe

_nmsize

realloc

sbrk

stackavail

Frees a block allocated by _ nmalloe

Checks the near heap (default data segment) for
consistency

Fills the free near heap entries with a specified
value

Walks through the near heap, one entry at a time,
and returns information about each near heap
entry

Allocates a block of memory in default data seg­
ment, returns a near pointer

Returns size of memory block pointed to by near
pointer

Reallocates a block

Resets break value

Returns size of stack space available for allocation
with alloca

The memory-allocation routines allow you to allocate, free, and reallocate
blocks of memory. They are declared in the include file malloe.h.

When a program written in Microsoft C is loaded for execution, it first
shrinks its MS-DOS-allocated memory to fit within a single 64K data seg­
men t. This is true even though the program header indicates that all of
memory is allocated for the program. The extent to which the program's
memory allocation is reduced can be altered with the /CPARMAXAL­
LOC linker option, described in your compiler guide.

The calloe and malloc routines allocate memory blocks. The malloc
routine allocates a given number of bytes, while calloc allocates and ini­
tializes to 0 an array with elements of a given size. In small data models
(small- and medium-model programs), malloe maps to (is defined as)
- nmalloc, and free maps to _ nfree. In large data models (compact­
and large-model programs), malloc maps to _fmalloc, and free maps
to _ffree.

The halloc routine performs essentially the same function as calloc, with
the difference that halloc can be used to allocate space for huge arrays
(those exceeding 64K in size). Arrays greater than 64K allocated with
halloc must satisfy the requirements for huge arrays discussed in your
compiler user's guide.

When _ nmalloc is called, it allocates from the default data segment
("near heap"), and _ nfree releases memory back to the near heap. The

70

Run-Time Routines by Category

first time _ fmalloc is called, it allocates an additional segment from
MS-DOS, then returns to the calling program a pointer to the requested
amount of memory. It performs heap management on the rest of the seg­
ment for subsequent calls until that segment has been completely allo­
cated, then gets another segment from MS-DOS, and so on. The _ ffree
function returns allocated memory to the heap block it came from,
without releasing it back to MS-DOS. If _ fmalloc runs out of MS-DOS
memory to allocate, it will attempt to allocate from the near heap as a
last resort.

The halloc and hfree routines differ from _ nmalloc/ _ nfree and
_ fmalloc/ _ nfree in that the halloc and hfree allocate and free memory
directly from MS-DOS, instead of in the near or far heap space. The hal­
loc function does not do heap management on the MS-DOS memory space.
When hfree is called, it simply returns memory back to MS-DOS.

The _ nmalloc function is fastest and should be used in small-model pro­
grams where total memory allocation is less than 64K. The exact amount
of memory available for near heap allocations depends on how much of the
default data segment is used by the stack, program data, and run-time
data. The _ fmalloc function is slower. It should be used when total
memory allocation requirements are too large to use _ nrnalloc, but no
single data object is greater than 64K.

The halloc function is the slowest of all because it allocates from MS-DOS
for every request; however, it is useful in two cases:

• When you want data objects larger than 64K

• When you want to make sure you can free allocated memory back
to MS-DOS for subsequent calls to the spawn functions

The realloc and _expand routines change the size of an allocated block.
The _ expand function always attempts to change the size of an allocated
block without moving its heap location; it expands the size of the block to
the size requested, or as much as the current location will allow, whichever
is smaller. In contrast, realloc changes the location in the heap if there is
not enough room.

The halloc routine returns a huge pointer to a char item, _ fmalloc
returns a far pointer toa char item, and _ nmalloc returns a near pointer
to a char item; all other allocation routines return a char pointer. The
spaces to which these routines point satisfy the alignment requirements for
any type of object. When allocating items of types other than char, use a
type cast on the return value.

The _ freect and _ memavl routines tell you how much memory is avail­
able for dynamic memory allocation in the default data segment. The

71

Microsoft C Run-Time Libra.ry Reference

_ freect routine returns the approximate number of items of a given size
that can be allocated, while _ memavl returns the total number of bytes
available for allocation requests.

The _ msize function returns the size of a memory block allocated by a
call to calloc, _ expand, malloc, or realloc. The functions _ fmsize and
_ nmsize return the size of a memory block allocated by a call to
_ fmalloc or _ nmalloc, respectively.

The sbrk routine is a lower-level memory-allocation routine. It increases
the program's break value (the address of the first location beyond the end
of the default data segment), allowing the program to take advantage of
available unallocated memory.

Warning

In general, a program that uses the sbrk routine should not use
the other memory-allocation routines, although their use is not
prohibited. In particular, using sbrk to decrease the break value may
cause unpredictable results from subsequent calls to the other
memory-allocation routines.

The preceding routines all allocate memory dynamically from the heap.
Microsoft C also provides two memory functions, alloca and stackavail,
for allocating space from the stack and determining the amount of avail­
able stack space. The alloca routine allocates the requested number of
bytes from the stack, which are freed when control returns from the func­
tion calling alloca. The stackavail routine lets your program know how
much memory (in bytes) is available on the stack.

4.11 Process Control

72

Routine

abort

atexit

execl

execle

Use

Aborts a process

Execu tes functions at program termination

Executes child process with argument list

Executes child process with argument list and
given environment

execlp

execlpe

execv

execve

execvp

execvpe

exit

_exit

getpid

onexit

raise

signal

spawnl

spawnle

spawnlp

spawnlpe

spawnv

spawnve

spawnvp

spawnvpe

system

Run-Time Routines by Ca.tegory

Executes child process using PATH variable and
argument list

Executes child process using PATH variable,
given environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and
argumen t array

Executes child process using PATH variable,
given environment, and argument array

Terminates process

Terminates process without flushing buffers

Gets process ID number

Executes functions at program termination

Sends a signal to the calling process

Handles an interrupt signal

Executes child process with argument list

Executes child process with argument list and
given environment

Executes child process using PATH variable and
argument list

Executes child process using PATH variable,
given environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and
argumen t array

Executes child process using PATH variable,
given environment, and argument array

Executes an :MS-DOS command

The term "process" refers to a program being executed by the operating
system. A process consists of the program's code and data, plus informa­
tion pertaining to the status of the process, such as the number of open

73

Microsoft C Run-Time Libra.ry Reference

files. Whenever you execute a program at the MS-DOS level, you start a
process. In addition, you can start, stop, and manage processes from
within a program by using the process-control routines.

The process-control routines allow you to do the following:

1. Identify a process by a unique number (getpid)

2. Terminate a process (abort, exit, and _exit)

3. Call a new function when a process terminates (atexit, onexit)

4. Handle an interrupt signal (signal)

5. Send a signal to a process (raise)

6. Start a new process (the exec and spawn families of routines, plus
the system routine)

All process-control functions except signal are declared in the include file
process.h. The signal function is declared in signal.h. The abort, exit,
and system functions are also declared in the stdlib.h include file.

The abort and _exit functions perform an immediate exit without flush­
ing stream buffers. The exit call performs an exit after flushing stream
buffers.

The atexit and onexit functions both create a list of functions to be exe­
cuted when the calling program exits; the only difference between the two
is that atexit is part of the draft proposed ANSI standard. The onexit
function is retained for compatibility with previous versions of Microsoft
C.

The system call executes a given MS-DOS command. The exec and
spawn routines start a new process, called the "child" process. The
difference between the exec and spawn routines is that the spawn rou­
tines are capable of returning control from the child process to its caller
(the "parent" process). Both the parent process and the child process are
present in memory (unless P _ OVERLAY is specified).

In the exec routines, the child process overlays the parent process, so
returning control to the parent process is impossible (unless an error
occurs when attempting to start execution of the child process).

There are eight forms each of the spawn and exec routines. The differ­
ences between the forms are summarized in Table 4.1. The function names
are given in the first column. The second column specifies whether the cur­
rent PATH setting is used to locate the file to be executed as the child
process.

74

Run-Time Routines by Category

The third column describes the method for passing arguments to the child
process. Passing an argument list means that the arguments to the child
process are listed as separate arguments in the exec or spawn call; pass­
ing an argument array means that the arguments are stored in an array,
and a pointer to the array is passed to the child process. The argument-list
method is typically used when the number of arguments is constant or is
known at compile time, while the argument-array method is useful when
the number of arguments must be determined at run time.

The last column specifies whether the child process inherits the environ­
ment settings of its parent or whether a table of environment settings can
be passed to set up a different environment for the child process.

Table 4.1

Forms of the spawn and exec Routines

Use of Argument-Passing
Routines PATH Setting Convention

exeel, Do not use Argumen t list
spawnl PATH

exeele, Do not use Argument list
spawnle PATH

exeelp, Use PATH Argumen t list
spawnlp

exeelpe, Use PATH Argument list
spawnlpe

exeev, Do not use Argument array
spawnv PATH
exeeve, Do not use
spawnve PATH

Argument array

exeevp, Use PATH Argument array
spawnvp

exeevpe, Use PATH Argument array
spawnvpe

Environment

Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument
Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument
Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument

Inherited from parent

Pointer to environ­
ment table for child
process passed as last
argument

75

Microsoft C Run-Time Library Reference

4.12 Searching and Sorting

Routine

bsearch

Hind

lsearch

qsort

Use

Performs binary search

Performs linear search for given value

Performs linear search for given value, which is
added to array if not found

Performs quick sort

The bsearch, Hind, lsearch, and qsort functions provide helpful binary­
search, linear-search, and quick-sort utilities. They are declared in the
include file search.h.

4.13 String Manipulation

76

Routine

strcat

strchr

strcmp

strcmpi

strcpy

strcspn

strdup

strerror

stricmp

strlen

strlwr

strncat

Use

Appends a string

Finds first occurrence of a given character in string

Compares two strings

Compares two strings without regard to case ("i"
indicates that this function is case insensitive)

Copies one string to another

Finds first occurrence of a character from given
character set in string

Duplicates string

Saves system-error message and optional user-error
message in string

Compares two strings without regard to case
(identical to strcmpi)

Finds length of string

Converts string to lowercase

Appends characters of string

strncmp

strncpy

strnicmp

strnset

strpbrk

strrchr

strrev

strset

strspn

strstr

strtok

strupr

Run-Time Routines by Ca.tegory

Compares characters of two strings

Copies characters of one string to another

Compares characters of two strings without regard
to case ("i" indicates that this function is case
insensitIve)

Sets characters of string to given character

Finds first occurrence of character from one string
in another

Finds last occurrence of given character in string

Reverses string

Sets all characters of string to given character

Finds first substring from given character set in
string

Finds first occurrence of given string in another
string

Finds next token in string

Converts string to uppercase

The string functions are declared in the include file string.h. A wide
variety of string functions is available in the run-time library. With these
functions, you can do the following:

• Perform string comparisons

• Search for strings, individual characters, or characters from a
given set

• Copy strings

• Convert strings to a different case

• Set characters of the string to a given character

• Reverse the characters of strings

• Break strings into tokens

• Store error messages in a string

All string functions work on null-terminated character strings. When
working with character arrays that do not end with a null character, you
can use the buffer-manipulation routines, described earlier in this chapter.

77

Microsoft C Run-Time Library Reference

4.14 System Calls

The following routines give access to BIOS (Basic Input/Output System)
interrupts and MS-DOS system calls.

4.14.1 BIOS Interface

Routine

_bios_disk

bios equiplist

bios key brd

bios memsize

bios printer

bios serialcom

bios timeofday

Use

Issues service requests for both hard and
. floppy disks, using INT Ox13

Performs an equipment check, using INT Ox11

Provides access to keyboard services, using
INT Ox16

Obtains information about available memory,
using INT Ox12

Performs printer output services, using INT
Ox17

Performs serial communications tasks, using
INT Ox14

Provides access to system clock, using INT
OxlA

The functions in this category provide direct access to the BIOS interrupt
services. They are all declared in bios.h.

4.14.2 MS-DOS Interface

78

Routine

bdos

chain intr

_disable

dos allocmem

_dos_close

_dos_creat

Use

Invokes MS-DOS system call; uses only DX
and AL registers

Chains one interrupt handler to another

Disables interrupts

Allocates a block of memory, using MS-DOS
system call Ox48

Closes a file, using MS-DOS system call Ox3E

Creates a new file and erases any existing file
having the same name, using MS-DOS system
call Ox3C

dos creatnew

dos findfirst

dos findnext

dos freemem

_doB- getdate

dos getdiskfree

dos getdrive

dos getfileattr

dos getftime

dos gettime

dos getvect

_dos_read

_doB- set block

dos setdate

dos setdrive

dos setfileattr

dos setftime

Run-Time Routines by Category

Creates a new file and returns an error if a file
having the same name exists, using MS-DOS
system call Ox5B

Finds first occurrence of a given file, using
MS-DOS system call Ox4E

Finds subsequent occurrences of a given file,
using MS-DOS system call Ox4F

Frees a block of memory, using MS-DOS sys­
tem call Ox49

Gets the system date, using MS-DOS system
call Ox2A

Gets information on a disk drive, using MS­
DOS system call Ox36

Gets the current default drive, using MS-DOS
system call Ox19

Gets current attributes of a file or directory,
using MS-DOS system call Ox43

Gets the date and time a file was last written,
using MS-DOS system call Ox57

Gets the current system time, using MS-DOS
system call Ox2C

Gets the current value of a specified interrupt
vector, using MS-DOS system call Ox35

Installs terminate-and-stay-resident (TSR)
programs using MS-DOS system call Ox31

Opens an existing file, using MS-DOS system
call Ox3D

Reads a file, using MS-DOS system call Ox3F

Changes the size of a previously allocated
block, using MS-DOS system call Ox4A

Sets the current system date, using MS-DOS
system call Ox2B

Sets the default disk drive, using MS-DOS
system call OxOE

Sets the current attributes of a file, using
MS-DOS system call Ox43

Sets the date and time that the specified file
was last written, using MS-DOS system call
Ox57

79

Microsoft C Run-Time Libra.ry Reference

dos settime

dos setvect

dosexterr

_enable

FP_OFF

FP_SEG

Jtarderr

Jtardresume

_hardretn

int86

int86x

intdos

intdosx

segread

Sets the system time, using MS-DOS system
call Ox2D

Sets the current value of the specified inter­
ru pt vector, using MS-DOS system call Ox25

Sends output to a file, using MS-DOS system
call Ox40

Obtains register values from MS-DOS system
call Ox59

Enables interrupts

Returns offset portion of a far pointer

Returns segment portion of a far pointer

Establishes a hardware error handler

Returns to MS-DOS after a hardware error

Returns to the application after a hardware
error

Invokes MS-DOS interrupts

Invokes MS-DOS interrupts with segment
register values

Invokes MS-DOS system call using registers
other than DX and AL

Invokes MS-DOS system call using registers
other than DX and AL with segment register
values

Returns current values of segment registers

These routines are implemented as functions and declared in dos.h.

The -1larderr routine is used to define a hardware-error interrupt
handler. The Jtardresume and Jtardretn routines are used within a
hardware error handler to define the return from the error.

The dosexterr function obtains and stores the register values returned by
MS-DOS system call Ox59 (extended error handling). This function is pro­
vided for use with MS-DOS versions 3.0 and later.

The bdos routine is useful for invoking MS-DOS calls that use either or
both of the DX (DH/DL) and AL registers for arguments. However, bdos
should not be used to invoke system calls that return an error code in AX
if the carry flag is set; since the program cannot detect whether the carry
flag is set, it cannot determine whether the value in AX is a legitimate
value or an error value. In this case, the intdos routine should be

80

Run-Time Routines by Category

used instead, since it allows the program to detect whether the carry flag
is set. The intdos routine can also be used to invoke MS-DOS calls that
use registers other than DX and AL.

The intdosx routine is similar to the intdos routine, but is used when
ES is required by the system call, when DS must contain a value other
than the default data segment (for instance, when a far pointer is used),
or when making the system call in a large-model program. When calling
intdosx, give an argument that specifies the segment values to be used in
the call.

The int86 routine can be used to invoke MS-DOS interrupts. The int86x
routine is similar, but, like the intdosx routine, is designed to work with
large-model programs and far items, as described in the preceding para­
graph for intdosx.

The FP_OFF and FP_SEG routines allow easy access to the segment
and offset portions of a far pointer value. FP _ OFF and FP _ SEG are
implemented as macros and defined in dos.h.

The segread routine returns the current values of the segment registers.
This routine is typically used with the intdosx and int86x routines to
obtain the correct segment values.

The _chain_ int routine is useful for chaining interrupt handlers together.
The _enable routine enables interrupts, while the _disable routine dis­
ables interrupts.

The routines prefixed with _dos_ are all direct system interfaces that use
the system calls noted above. More detailed information on these system
calls can be found in the MS-DOS Programmer's Reference.

Note

Do not use the MS-DOS interface I/O routines in conjunction with the
console, low-level, or stream I/O routines.

4.15 Time

Routine

asctime

clock

Use

Converts time from structure to character string

Returns the elapsed CPU time for a process

81

Microsoft C Run-Time Library Reference

ctime

difItime

ftime

gmtime

localtime

mktime

....strdate

....strtime

time

tzset

utime

Converts time from long integer to character
string

Computes the difference between two times

Gets current system time as structure

Converts time from integer to structure

Converts time from integer to structure with local
correction

Converts time to a calendar value

Returns the current system date as a string

Returns the current system time as a string

Gets current system time as long integer

Sets external time variables from environment
time variable

Sets file-modification time

The time functions allow you to obtain the current time, then convert and
store it according to your particular needs. The current time is always
taken from the system time. The time and ftime functions return the
current time as the number of seconds elapsed since Greenwich mean time,
January 1, 1970. This value can be converted, adjusted, and stored in a
variety of ways, using the asctime, ctime, gmtime, localtime, and
mktime functions. The utime function sets the modification time for a
specified file, using either the current time or a time value stored in a
structure.

The clock function returns the elapsed CPU time for the calling process.

The ftime function requires two include files: sys \ t;ypes.h and
sys \ timeb.h. The ftime function is declared in sys \ timeb.h. The utime
function also requires two include files: sys \ types.h and sys \ utime.h.
The utime function is declared in sys \ utime.h. The remainder of the
time functions are declared in the include file time.h.

When you want to use ftime or localtime to make adjustments for local
time, you must define an environment variable named TZ. See Section 3.2
on the global variables daylight, timezone, and tzname for a discussion
of the TZ variable; TZ is also described on the tzset reference page in
Part 2 of this manual.

The _strdate and _strtime routines return strings containing the
current date and time, respectively, in the MS-DOS date and time format
rather than in the XENIX-style formats.

82

Run-Time Routines by Category

4.16 Variable-Length Argument Lists

Routine

VB-arg

vB-end

VB-start

Use

Retrieves argument from list

Resets pointer

Sets pointer to beginning of argument list

The VB- arg, VB- end, and VB- start routines are macros that provide
a portable way to access the arguments to a function when the function
takes a variable number of arguments. Two versions of the macros are
available: the macros defined in the vararg.h include file, which are com­
patible with the UNIX System V definition, and the macros defined in
stdarg.h, which conform to the proposed ANSI C standard.

For more information on the differences between the two versions and for
an explanation of how to use the macros, see their descriptions in the ref­
erence section of this manual.

4.17 Miscellaneous

Routine

abs

assert

div

getenv

labs

Idiv

longjrnp

_Irotl

_Irotr

~akepath

perror

putenv

Use

Finds absolute value of integer

Tests for logic error

Divides in tegers

Gets value of environment variable

Finds absolute value of long integer

Divides long integers

Restores a saved stack environment

Shifts a long int item to the left

Shifts a long int item to the right

Merges path-name components into a single, full
path name

Prin ts error message

Adds or modifies value of environment variable

83

Microsort C Run-Time Library Rererence

rand

_rotl

_rotr

J)earchenv

setjmp

J)plitpath

srand

swab

Gets a pseudorandom number

Shifts an int item to the left

Shifts an int item to the right

Searches for a given file on specified paths

Saves a stack environment

Splits a path name into component pieces

Initializes pseudorandom series

Swaps bytes of data

The "miscellaneous" category covers a number of commonly used routines
that do not fit easily into any of the other categories. All routines except
assert, longjmp, and setjmp are declared in stdlib.h. The assert rou­
tine is a macro and is defined in assert.h. The setjmp.h and longjmp.h
functions are declared in setjmp.h.

The abs and labs functions return the absolute value of an int and a long
value, respectively. These two functions are defined in both the math.h
and stdlib.h include files.

The div and ldiv functions perform division of integers and long integers,
respectively. They are both declared in stdlib.h.

The assert macro is typically used to test for program logic errors; it
prints a message when a given "assertion" fails to hold true. Defining the
identifier NDEBUG to any value causes occurrences of assert to be re­
moved from the source file, thus allowing you to turn off assertion check­
ing without modifying the source file.

The getenv and putenv routines provide access to the environment table.
The global variable environ also points to the environment table, but it is
recommended that you use the getenv and putenv routines to access and
modify environment settings rather than accessing the environment table
directly.

The perror routine prints the system error message, along with an op­
tional user-supplied message, for the last system-level call that produced
an error. The perror routine is declared in the include files stdlib.h and
stdio.h. The error number is obtained from the errno variable. The sys­
tem message is taken from the sys_errlist array. The errno variable is
only guaranteed to be set upon error for those routines that explicitly
mention the errno variable in the "Return Value" section of the reference
pages in Part 2 of this manual.

84

Run-Time Routines by Category

The rand and srand functions initialize and generate a pseudorandom
sequence of integers.

All four of the bit-shifting routines (_IrotI, _Irotr, _rotl, and _rotr) are
declared in stdlib.h. They are used to shift bits of an interger or long
integer to the left or right.

The setjmp and Iongjmp functions save and restore a stack environment.
These routines let you execute a nonlocal goto.

The swab routine (also declared in stdlib.h) swaps bytes of binary data.
It is typically used to prepare data for transfer to a machine that uses a
different byte order. The ~akepath routine combines the elements of a
path name (drive, directory, file name, and extension) into a single "path­
name" file. The -splitpath routine breaks up a "path-name" file into its
component parts.

The -searchenv routine searches for a given file by examining a specified
environment variable, such as PATH.

85

CHAPTER

INCLUDE FILES
5.1 Introduction ... 89
5.2 assert.h ... 89
5.3 bios.h .. 90
5.4 conio.h .. 90
5.5 ctype.h .. 90
5.6 direct. h ... 91
5.7 dos.h ... 91
5.8 errn o. h _ 92
5.9 fcntl.h ... 93
5.10 float.h ... 93
5.11 graph.h ... 93
5.12 io.h ... 94
5.13 lirrlits.h ... 94
5.14 malloc.h .. 94
5.15 math.h .. 95
5.16 memory.h .. 95
5.17 process.h ... 96
5.18 search.h .. 96
5.19 setjmp.h .. 96
5.20 share.h .. 97
5.21 signal.h ... 97

CHAPTER

5.22 stdarg.h .. 97
5.23 stddef.h .. 97
5.24 stdio.h .. 98
5.25 stdlib.h ... 99
5.26 string.h ... 100
5.27 sys \ locking.h .. 100
5.28 sys\stat.h ... 100
5.29 sys\ timeb.h .. 101
5.30 sys\ types.h ... 101
5.31 sys\ utime.h .. 101
5.32 time.h ... 101
5.33 varargs.h ... 102

88

Include Files

5.1 Introduction

The include files provided with the run-time library contain macro and
constan t definitions, type definitions, and function declarations. Some rou­
tines require definitions and declarations from include files to work prop­
erly; for other routines, the inclusion of a file is optional. The description
of each include file in this chapter explains the contents of each include file
and lists the routines that use it.

A number of routines are declared in more than one include file. For
example, the buffer-manipulation functions memccpy, memchr,
memcmp, memcpy, memicmp, memset, and movedata are declared
in both memory.h and string.h. These multiple declarations ensure
agreement with the names of XENIX and UNIX include files, as well as
with the names of include files under the proposed ANSI standard for C.
Name agreement also preserves compatibility with programs written in
earlier versions of C and further increases the portability of the programs
you write in Microsoft C.

The include files were named and organized to meet the following
objectives:

• To maintain compatibility with the names of include files on
XENIX and UNIX systems, and with the ANSI standard for C

• To reflect the logical categories of run-time routines (for example,
placing declarations for all memory-allocation functions in one file,
malloc.h)

• To require inclusion of no more than the minimum number of files
to use a given rou tine

Occasionally these goals conflict. For example, the ftime function uses
the structure trpe timeb. The timeb structure type is defined in the
include file sys \ timeb.h on XENIX systems; to maintain compatibility,
the same include file is used on MS-DOS. To minimize the number of re­
quired include files when using ftime, the ftime function is declared in
sys \ timeb.h, even though most of the other time functions are declared
in time.h.

5.2 assert.h

The include file assert.h defines the assert macro. The assert.h file must
be included when assert is used.

89

Microsoft C Run .. Time Library Reference

The definition of assert is enclosed in an # ifndef preprocessor block. If
the identifier NDEBUG has not been defined (through a # define direc­
tive or on the compiler command line), the assert macro is defined to test
a given expression (the "assertion"). If the assertion is false, a message is
printed and the program is terminated.

If NDEBUG is defined, however, assert is defined as empty text. This
disables all program assertions by removing all occurrences of assert from
the source file. Therefore, you can suppress program assertions by defining
NDEBUG.

5.3 bios.h

The bios.h include file contains functions declarations and structure
definitions for the BIOS service routines, listed below:

_bios_disk
bios equiplist
bios keybrd

5.4 conio.h

bios memsize
bios printer
bios serialcom

bios timeofday
int86
int86x

The conio.h include file contains function declarations for all of the con­
sole and port I/0 routines, as listed below:

cgets
cprintf
cputs
cscanf

getch
getche
inp
inpw

5.5 ctype.h

kbhit
outp
outpw
putch

ungetch

The ctype.h include file defines macros and constants and declares a glo­
bal array used in character classification. The macros defined in ctype.h
are listed below:

90

Include Files

isalnum
isalpha
isascii

iscntrl
isdigit
isgraph

islower
isprint
ispunct

isspace
isupper
isxdigit

toascii
tolower
toupper

_tolower
_toupper

You must include ctype.h when using these macros or the macros will be
undefined.

The toupper and tolower macros are defined as conditional operations.
These macros evaluate their argument twice, and so produce unexpected
results for arguments with side effects. To overcome this problem, you can
remove the macro definitions of toupper and tolower and use the func­
tions of the same names; see Section 4.3, "Character Classification and
Conversion," for details. Declarations for the function versions of tolower
and toupper are given in stdlib.h.

In addition to macro definitions, the ctype.h include file contains the
following:

1. A set of manifest constants defined as bit masks. The bit masks
correspond to specific classification tests. For example, the con­
stants _ UPPER and _LOWER are defined to test for an upper­
case or lowercase letter, respectively.

2. A declaration of a global array, _ctype. The _ctype array is a
table of character-classification codes based on ASCII character
codes.

5.6 direct.h

The direct.h include file contains declarations for these functions:

chdir
getcwd
mkdir
rmdir

5.7 dos.h

The dos.h include file contains macro definitions, function declarations,
and type definitions for the MS-DOS interface functions.

91

Microsoft C Run-'lime Library Reference

The FP _ SEG and FP _ OFF macros are defined to get or set the seg­
ment and offset portions of a far pointer. You must include dos.h when
using these macros or they will be undefined.

The following functions are declared in dos.h:

bdos
chain intr
_disable
dos allocmem
_dos_close
_dos_creat
dos creatnew
dos findfirst
dos findnext
dos freemem

dos getdate
dos getdiskfree
dos getdrive
dos getfileattr
dos getftime
dos gettime
dos getvect
_dos_keep
_dos_open
_dos_read

dos setblock
dos setdate
dos setdrive
dos setfileattr
dos setftime
dos settime
dos setvect
dos write
dosexterr
_enable

~arderr
~ardresume
~ardretn
int86
int86x
intdos
intdosx
segread

The dos.h file also defines the WORDREGS and BYTEREGS struc­
ture types, used to define sets of word registers and byte registers, respec­
tively. These structure types are combined in the REGS union type. The
REGS union serves as a general-purpose register type, holding both regis­
ter structures at one time. The SREGS structure type defines four mem­
bers to hold the ES, CS, SS, and DS segment~register values.

The DOSERROR structure is defined to hold error values returned by
the MS-DOS system call Ox59 (available under MS-DOS Versions 3.0 and
later).

Note that WORDREGS, BYTEREGS, REGS, SREGS, and
DOSERROR are tags, not typedef names. (See the Microsoft C Lan­
guage Reference for a discussion of type definitions, tags, and typedef
names.)

5.8 errno.h

The errno.h include file defines the values used by system-level calls
to set the errno variable. The constants defined in errno.h are used by
the perror function to index the corresponding error message in the glo­
bal variable sys_ errlist.

The constants defined in errno.h are listed with the corresponding error
messages in Appendix A, "Error Messages."

92

Include Files

5.9 fcntl.h

The include file fcntl.h defines flags used in the open aIld sopen calls to
specify the type of operations for which the file is opened and to control
whether the file is interpreted in text or binary mode. This file should
always be included when open or sopen is used.

The function declarations for open and sopen are not in fcntl.h; instead,
they are given in the include file io.h.

5.10 float.h

The include file float.h contains definitions of constants that specify the
ranges of floating-point data types; for example, the maximum number of
digits for objects of type double (DBL_ DIG = 15), or the minimum
exponent for objects of type float (FLT_:MIN_EXP = -125).

The float.h file also contains function declarations for the math functions
_ clear87, _ control87, _ fpreset, and _ status87, as well as definitions
of constants used by these functions.

In addition, float.h defines floating-point-exception subcodes used with
SIGFPE to trap floating-point errors (see Section 5.21, "signal.h").

5.11 graph.h

The graph.h include file declares all the routines in the graphics library,
listed below:

_arc
_clearscreen
_displaycursor
_ellipse
JIoodfill
~etbkcolor
~etcolor
~etcurrentposition
~etfillmask
~etimage
~etlinesty Ie
~etlogcoord
~etphyscoord
~etpixel

~ettextcolor
~ettextposition
~etvideoconfig
_imagesize
_lineto
~oveto
_outtext
_pie
_putimage
Jectangle
Jemapallpalette
Jemappalette
--.select palette
--.setactivepage

--.setbkcolor
--.setcliprgn
--.setcolor
--.setfillmask
--.setlinesty Ie
--.setlogorg
--.setpixel
--.settextcolor
--.settext position
--.settextwindow
--.setvideomode
--.setviewport
--.setvis ual page
_wrapon

93

Microsoft C Run-Time Library Reference

It also defines several constants and structures used with the graphics rou­
tines. The manifest constants _ GBORDER and _ GFILLINTERIOR
are used in the control parameter of the _ ellipse, _ pie, and - rectangle
drawing routines. The xycoord structure stores position coordinates in
pixels while the rccoord structure stores position coordinates in character
rows and columns. The videoconfig structure stores information about
the graphics hardware environment.

5.12 io.h

The include file io.h contains function declarations for most of the file­
handling and low-level-I/O functions, as listed below:

access dup2 mktemp tell
chmod eof open umask
chsize filelength read unlink
close isatty rename write
creat locking setmode
dup lseek sopen

The exceptions are fstat and stat, which are declared in sys\stat.h.

5.13 limits.h

The include file limits.h contains definitions of constants that specify the
ranges of integer and character data types; for example\ the maximum
value for an object of type char (CHAR-MAX = 127).

5.14 malloc.h

The include file malloc.h contains function declarations for the memory­
allocation functions listed below:

alloca
calloc
_expand
Jfree
_fheapchk
Jheapset

Jheapwalk
Jmalloc
Jmsize
free
Jreect
halloc

1 Implemented as a macro.

94

Jieapchk1

Jieapset1

Jieapwalk1

hfree
malloc
~emavl

~emmax

_msize
_nfree
~heapchk
~heapset
~heapwalk

~malloc
~msize
realloc
sbrk
stackavail

Include Files

The malloc.h file also contains the type definition for the structure
_ heapinfo, as well as several manifest constants used by the heap func­
tions.

5.15 math.h

The include file math.h contains function declarations for all floating­
point math routines, plus the atof routine, as listed below:

abs bessel l fabs ldexp sin
acos cabs floor log sinh
asin ceil fmod loglO sqrt
atan cos frexp matherr tan
atan2 cosh hypot modf tanh
atof exp labs pow

The math.h include file also defines two structures, exception and
complex. The exception structure is used with the matherr function,
and the complex structure is used to declare the argument to the cabs
function.

The HUGE_ VAL value is returned on error from some math routines.
For compatibility with XENIX, HUGE is defined as the equivalent of
HUGE_ VAL; both are defined in math.h. HUGE and HUGE_ VAL
may be implemented either as manifest constants or as global variables
with double type and can be used interchangeably. The value of
HUGE_ VAL or HUGE must not be changed in a # define directive.
Throughout Part 2, "Reference," references to HUGE_ VAL are under­
stood to mean either HUGE or HUGE_ VAL.

The math.h file also defines manifest constants passed in the exception
structure when a math routine generates an error (for example,
DOMAIN, SING, EDOM, and ERANGE).

5.16 memory.h

The include file memory.h contains function declarations for the seven
buffer-manipulation routines listed below:

1 The bessel routine does not correspond to a single function but to six functions named jO,
jl, jn, yO, yl, and yn.

95

Microsoft C Run-Time Library Reference

memccpy
memchr
memcmp
memcpy
memicmp
memset
movedata

5.17 process.h

The include file process.h declares all process-control functions (listed
below) except for the signal function, which is declared in signa1.h:

abort execvp spawnlp
execl execvpe spawnlpe
execle exit spawnv
execlp _exit spawnve
execlpe getpid spawnvp
execv spawnl spawnvpe
execve spawnle system

The process.h include file also defines flags used in calls to spawn func­
tions to control execution of th~ child process. Whenever you use one of
the eight spawn functions, you must include process.h so the flags are
defined.

5.18 search.h

The include file search.h declares the functions bsearch, lsearch, Hind,
and qsort. '

5.19 setjrnp.h

The include file setjmp.h contains function declarations for the setjmp
and longjmp functions. It also defines the machine-dependent buffer,
jmp_ buf, used by the setjmp and longjmp functions to save and restore
the program state.

96

Include Files

5.20 share.h

The include file share.h defines flags used in the sopen function to set the
sharing mode of a file. This file should be included whenever sopen is
used. The function declaration for sopen is given in the file io.h. Note
that the sopen function should only be used under MS-DOS Versions 3.0
and later.

5.21 signal.h

The include file signal.h defines the values for the SIGABRT, SIGINT,
SIGFPE, SIGILL, SIGSEGV, and SIGTERM signals.

c 4.0 Dz'fference

Microsoft C, Version 4.0, doesn't recognize the SIGABRT, SIGILL,
and SIGSEGV signals.

The signal and raise functions are also declared in signal.h.

5.22 stdarg.h

The include file stdarg.h defines macros that allow you to access argu­
ments in functions with variable-length argument lists, such as vprintf.
These macros are defined to be machine independent, portable, and com­
patible with the developing ANSI standard for C. (Also see Section 5.31,
varargs.h.)

5.23 stddef.h

The include file stddef.h contains definitions of the commonly used vari­
ables and types listed below:

97

Microsoft C Run-Time Library Reference

Item

NULL

errno

ptrdiff_ t

size_ t

Description

The null pointer (also defined in stdio.h)

A global variable containing an error message
number (also defined in errno.h)

Synonym for the type (int) of the difference
between two pointers

Synonym for the type (unsigned int) of the
value returned by sizeof

5.24 stdio.h

The include file stdio.h contains definitions of constants, macros, and
types, along with function declarations for stream I/O functions. The
stream I/O functions are listed below:

bsearch
calloc
clearerr
fclose
fcloseall
fdonen
feofl

ferrorl

fflush
fgetc
fgetchar

fgetpos
fgets
fileno l

flushall
fopen
fprintf
fputc
fputchar
fputs
fread
freopen

fscanf
fseek
fsetpos
ftell
fwrite
getcl
getcharl
gets
getw
perror
printf

putcl
putcharl
puts
putw
qsort
remove
rename
rewind
rmtemp
scanf
setbuf

setvbuf
tempnam
tmpfile
tmpnam
ungetc
vfprintf
vprintf
vsprintf

The stdio.h file defines a number of constants; some of the more common
ones are listed below:

Item

BUFSIZ

_NFILE

Description

Buffers used in stream I/O are of size BUFSIZ by
default. This value is generally used to establish the size
of system-allocated buffers. It is also required when you
call setbuf to allocate your own buffers.

The _NFILE constant defines the number of open files
allowed at one time. The files stdin, stdout, stderr,
stdaux, and stdprn are always open, so you should
include them when calculating the number of files your
program opens.

I Implemented as a macro.

98

Include Files

EOF The EOF value is defined to be the value returned by
an I/0 routine when the end of the file (or in some
cases, an error) is encountered.

NULL The NULL value is the null-pointer value. It is defined
as 0 in small- and medium-model programs and as OL in
large-model programs.

You can use the above constants in your programs, but you should not
alter their values.

The stdio.h file also defines a number of flags used internally to control
stream operations.

The FILE structure type is defined in stdio.h. Stream routines use a
pointer to the FILE type to access a given stream. The'system uses the
information in the FIL~ structure to maintain the stream.

The FILE structures are stored as an array called _ iob, with one entry
per file. Therefore, each element of _ iob is a FILE structure correspond­
ing to a stream. When a stream is opened, it is assigned the address of an
entry in the _ iob array (a FILE pointer). Thereafter, the pointer is used
for references to the stream.

5.25 stdlib.h

The stdlib.h include file contains function declarations for the following
functions:

abort eevt ldiv perror srand
abs exit Jrotl putenv strtod
atexit _exit Jrotr qsort strtol
atof fcvt ltoa rand strtoul
atoi free JIlakepath realloc swab
atol gcvt malloc Jotl system
bseareh getenv max Jotr tolower
calloe itoa minsearchenv toupper
div labs onexitsplitpath ultoa

The tolower and toupper routines are functions in the run-time library,
but they are also implemented as macros in the include file ctype.h. The
declarations for tolower and toupper are enclosed in an # ifndef block;
they take effect only if the corresponding macro definitions in ctype.h
have been suppressed by removing the definitions of tolower and
toupper. For instructions on using these routines as macros or as func­
tions, see Section 4.3, "Character Classification and Conversion."

99

Microsort C Run-Time Library Rererence

The stdlib.h file also includes the definition of the type onexit_ t, as well
as declarations of the following global variables:

_doserrno
environ
errno
_fmode

_osmajor
_osminor
_osmode
_osversion

5.26 string.h

_psp
sys_ err list
sys_nerr

The string.h include file declares the string-manipulation functions, as
listed below:

memccpy movedata strdup strncpy strspn
memchr strcat strerror strnicmp strstr
memcmp strchr stricmp strnset strtok
memcpy strcmp strlen strpbrk strupr
memicmp strcmpi strlwr strrchr
memmove strcpy strncat strrev
memset strcspn strncmp strset

5.27 sys\locking.h

The locking.h include file (conventionally stored in a subdirectory named
sys) contains definitions of flags used in calls to locking. Whenever you
use the locking routine, you must include this file so that the locking flags
are defined.

The function declaration for locking is given in the file io.h. Note that
the locking function should be used only under MS-DOS Versions 3.0 and
later.

5.28 sys\stat.h

The stat.h include file (conventionally stored in a subdirectory named
sys) defines the structure type returned by the fstat and stat functions
and defines flags used to maintain file-status information. It also contains

100

Include Files

function declarations for the fstat and stat functions. Whenever you use
the fstat or stat functions, you must include this file so that the appropri­
ate structure type (named stat) is defined.

5.29 sys\ timeb.h

The include file timeb.h (conventionally stored in a subdirectory named
sys) defines the timeb structure type and declares the ftime function,
which uses the timeb structure type. Whenever you use the ftime func­
tion you must include timeb.h so that the structure type is defined.

5.30 sys\ types.h

The include file types.h (conventionally stored in a subdirectory named
sys) defines types used by system-level calls to return file-status and time
information. You must include this file whenever the sys\stat.h,
sys\ utime.h, or sys\ timeb.h file is included.

5.31 sys\ utime.h

The include file utime.h (conventionally stored in a subdirectory named
sys) defines the utimbuf structure type and declares the utime function,
which uses the utimbuf type. Whenever you use the utime function you
must include utime.h so that the structure type is defined.

5.32 time.h

The time.h include file declares the following time functions:

asctime
clock
ctime

difftime
gmtime
localtime

mktime
-.strdate
-.strtime

time
tzset

The ftime and utime functions are declared in sys \ timeb.h and
sys\ utime.h, respectively.

101

Microsoft C Run-Time Library Reference

The time.h file also defines both the tm structure, used by the asctime,
gmtime, and localtime functions, and the time_ t type, used by the
difftime function.

5.33 varargs.h

The include file varargs.h defines macros for accessing arguments in func­
tions with variable-length argument lists, such as vprintf. These macros
are defined to be machine independent, portable, and compatible with
UNIX System V. (See also Section 5.22 on stdarg.h.)

102

PART 2

EFERENCE

The second part of this manual is the reference
section. Each routine in the run-time library is
described here in alphabetical order. In some
cases, similar or related routines are clustered in
the same description, with differences noted
where appropriate.

Descriptions follow the format illustrated on the
opposite page. Below the Name of the routine,
the Summary shows an exact syntax model for it
and the Description outlines its actual effects.
The Return Value is often useful to test for error
conditions before using the results of a function
call. See Also lists similar or related routines.
The Example shows how the routine is used.

105

abort

• Summary

include <process.h>
include <stdlib.h>

void abort(void);

• Description

Required only for function declarations
Use either process.h or stdlib.h

The abort function prints the message

Abnormal program termination

to stderr, then calls raise(SIGABRT). The action taken in response to
the SIGABRT signal depends on what action has been defined for that
signal in a prior call to the signal function. The default SIGABRT action
is for the calling process to terminate with exit code 3, returning control
to the parent process or operating system.

c 4.0 DzjJerence

In Version 4.0 of the Microsoft C Run-Time Library, abort prints the
termination message and then terminates, without calling
raise(SIGABRT).

The. abort function does not flush stream buffers or do atexit/onexit pro­
cessmg.

• Return Value

By default, abort returns an exit code of 3 to the parent process or
operating system.

• See Also

exec functions, exit, _ exit, raise, signal, spawn functions

107

abort

• Example

#include <stdio.h>

main (argc, argv)
int argc;
char *argv[];
{
FILE *stream;
if ((stream = fopen (argv [argc-l] , "r"» == NULL)

{

}

fprintf (stderr,
"%s couldn't open file %s\n",argv[O],argv[argc-l]);

abort();
}

/* Note: the program name is stored in argv[O] only in
** DOS versions 3.0 and later; in versions prior to
** 3.0, argv[O] contains the string "c"
*/

Sample command line:

update employ.dat

Output:

C:\BIN\UPDATE.EXE couldn't open file employ.dat

Abnormal program termination

This program opens the file named on the command line for stream I/O.
If this attempt fails, the program writes an error message to stderr and
aborts.

108

• Summary

include <stdlib.h>

int abs(n);
int n;

• Description

abs

Required only for function declarations

Integer value

The abs function returns the absolute value of its integer argument n.

• Return Value

The abs function returns the absolute value of its argument. There is no
error return.

• See Also

cabs, fabs, labs

• Example

#include <stdlib.h>

main ()
{
int x = -4, y;

y = abs(x);
printf ("%d\t%d\n", x, y) ;

}

Output:

-4 4

This program computes and displays the absolute value of -4.

109

access

• Summary

include < io.h >

int access(path, mode);
char *path;
int mode;

• Description

Required only for function declarations

File or directory path name
Permission setting

With files, the access function determines whether or not the specified file
exists and can be accessed in mode. The possible mode values and their
meanings in the access call are as follows:

Value Meaning

00 Check for existence only

02 Check for write permission

04 Check for read permission

06 Check for read and write permission

With directories, access determines only whether the specified directory
exists; under MS-DOS, all directories have read and write access.

• Return Value

The access function returns the value 0 if the file has the given mode. A
return value of -1 indicates that the named file does not exist or is not
accessible in the given mode, and errno is?set to one of the following
values:

Value

EACCES

ENOENT

110

Meaning

Access denied: the file's permission setting does not
allow the specified access.

File or path name not found.

• See Also

chmod, fstat, open, stat

• Example

#include <io.h>
#include <fcntl.h>
#include <stdio.h>

int fh;

main 0
{

/* check for write permission:*/
if ((access ("data", 2» == -1)

{

}

}

perror("Data file not writable");
exit(l);

else
{

fh = open("data",O_WRONLY);
printf("Data file writable and opened for output");

}

access

This example uses access to check the file named data to see if writing is
allowed.

111

aeos

• Summary

include <math.h>

double acos(x);
double X;

• Description

Value whose arccosine is to be calculated

The acos function returns the arccosine of x in the range 0 to 7r. The value
of x must be between -1 and 1.

• Return Value

The acos function returns the arccosine result. If x is less than -1 or
greater than 1, acos sets errno to EDOM, prints a DOMAIN error
message to stderr, and returns O. Error handling can be modified with
the matherr routine.

• See Also

asin, atan, atan2, cos, matherr, sin, tan

• Example

#include <math.h>
#include <stdio.h>

extern int errno;

main ()
{
float x, y;

for (errno = EDOM; errno -- EDOM; y = acos(x»
{

}

printf ("Cosine = ");
scanf("%f", &x);
errno = 0;

printf("Arccosine of %f = %f\n",x,y);
}

112

acos

This program prompts for input until it gets a value in the range -1 to l.
Input values outside this range produce an error message. When a correct
value is entered, the program prints the arccosine of that value.

113

alloca

• Summary

include <malloc.h> Required only for function declarations

void *&lloca(s£ze);
sizEL t s£ze; Bytes to be allocated from stack

• Description

The alloca routine allocates size bytes from the program's stack. The allo­
cated space is automatically freed when the calling function is exited.

• Return Value

The alloca routine returns a char pointer to the allocated space, which is
guaranteed to be suitably aligned for storage of any type of object. To get
a pointer to a type other than char, use a type cast on the return value.
The return value is NULL if the space cannot be allocated.

• See Also

calloc, malloc, realloc

Warn£ng

The pointer value returned by alloca should never be passed as an
argumen t to free, nor should alloca be used in an expression that is
an argument to a function.

• Example

#include <malloc.h>

main ()
{
int *intarray;
intarray = (int *)alloca(lO*sizeof(int»;

}

This example calls alloca to allocate enough stack space for 10 integers.

114

_arc

• Summary

include <graph.h>

short far _ are (xl, yl, x2, y2, x3, y3, x4, y4)
short xl, yl; Upper-left corner of bounding rectangle
short x2, y2; Lower-right corner of bounding rectangle
short x3, y3; Start vector
short x4, y4; End vector

• Description

The _ arc function draws an elliptical arc. The center of the arc is the
center of the bounding rectangle defined by the logical points (xl, yl) and
(x2, y2). The arc starts at the point where it intersects the vector defined
by (x3, y3) and ends where it intersects the vector defined by (x4, Y4).

The arc is drawn using the current color, moving in a counterclockwise
direction. Since an arc does not define a closed area, it is not filled.

• Return Value

The _ arc function returns a nonzero value if the arc is successfully drawn;
otherwise, it returns O.

• See Also

- ellipse, _lineto, _ pie, _ rectangle, _ setcolor

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

_setvideomode(_MRES16COLOR);
_arc(80, 50, 240, 150, 0, 50, 240, 150);
while (!khhit(»; /* strike any key to clear screen */
_setvideomode (_DEFAULTMODE);

}

115

_arc

This program draws the arc shown in Figure R.1.

Figure R.l Output of _arc Program

116

asctime

• Summary

include <time.h>

char .asctime(time);
struct tm {

int tIlL sec;
int tIlL min;
int tIlL hour;
int tIlL mday;
int tIlL mon;
int tIlL year;
int tIlL wday;
int tIlL yday;
int tIlL isdst;
} tm .time;

• Description

Time/date structure:
Seconds after the minute (0-59)
Minutes after the hour (0-59)
Hours since midnight (0-23)
Day of the month (0-31)
Months since January (0-11)
Years since 1900
Days since Sunday (0-6)
Days since January 1 (0-365)
Daylight-saving-time flag

The asctime function converts a time stored as a structure to a char­
acter string. The time value is usually obtained from a call to gmtime or
localtime, both of which return a pointer to a tm structure, defined in
time.h. (See gmtime for a description of the tm structure fields.)

The string result produced by asctime contains exactly 26 characters and
has the form of the following example:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The new-line
character ('\n') and the null character ('\ 0') occupy the last two positions
of the string.

• Return Value

The asctime function returns a pointer to the character string result.
There is no error return.

117

asctime

• See Also

ctime, ftime, gmtime, localtime, time, tzset

Note

The asctime and ctime functions use a single statically allocated
buffer to hold the return string. Each call to one of these routines de­
stroys the result of the previous call.

• Example

#include <time.h>
#include <stdio.h>

struct tm *newtime;
time_t aclock;

main ()
{

time(&aclock); /* get time in seconds */

/* Convert time to struct tm: */

newtime = localtime(&aclock);
printf (tithe current date and time are %s\ntl I

/* Print local time as a string: */

asctime(newtime»;
}

This program places the system time in the long integer clock, trans­
lates it into the structure tID, and then converts it to string form for out­
put, using asctime.

118

asin

• Summary

include <math.h>

double asin(x);
double X;

• Description

Value whose arcsine is to be calculated

The asin function calculates the arcsine of x in the range -7r /2 to 7r /2.
The value of x must be between -1 and 1.

• Return Value

The asin function returns the arcsine result. If x is less than -lor greater
than 1, asin sets errno to EDOM, prints a DOMAIN error message to
stderr, and returns o.

Error handling can be modified by using the matherr routine.

• See Also

acos, atan, atan2, cos, matherr, sin, tan

119

.
aslD

• Example

#include <math.h>
#include <stdio.h>

extern int errno;

main ()
{

float x, y;
for (errno = EDaM; errno -- EDaM; y

{

}

printf("Sine = ");
scanf ("%f", &x);
errno = 0;

printf ("Arcsine of %f = %f\n", x, y) ;
}

asin(x»

This program prompts for input until the input is in the range -1 to 1. If
the input is outside this range, the program displays an error message.
When correct input is entered, the program prints the arcsine of the input
value.

120

assert

• Summary

include <assert.h>
include <stdio.h>

void assert (expression);

• Description

The assert routine prints a diagnostic message and calls the abort rou­
tine if expression is false (0). The diagnostic message has the form

Assertion failed: expression, file filename, line l~·nenumber

where filename is the name of the source file and linenumber is the line
number of the assertion that failed in the source file. No action is taken if
expression is true (nonzero).

c 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, assert doesn't
display expression in the diagnostic message.

The assert routine is typically used to identify program logic errors. The
given expression should be chosen so that it holds true only if the program
is operating as intended. After a program has been debugged, the special
"no debug" identifier NDEBUG can be used to remove assert calls from
the program. If NDEBUG is defined (by any value) with a /D command­
line option or with a # define directive, the C preprocessor removes all
assert calls from the program source.

The assert routine is implemented as a macro.

• Return Value

There is no return value.

121

assert

• See Also

abort, raise, signal

• Example

#include <stdio.h>
#include <assert.h>

analyze_string (string, length)
char *string;
int length;

{
assert(string != NULL);
assert(*string != '\0');
assert(length > 0);

/* Cannot be NULL */
/* Cannot be empty */
/* Length must be positive */

printf("Passed assertions.\n");
}

main 0
{

}

analyze_string (
analyze_string (

"abc" ,
""

3);
o);

In this program, the anal yze_str ing function uses the assert func­
tion to test several conditions related to str ing and length. If any of
the conditions fails, the program prints a message indicating what caused
the failure.

122

atan, atan2

• Summary

include <math.h>

double atan(x};

double atan2(y, x};
double x, y;

• Description

Calculate arctangent of x

Calculate arctangent of y/ x

The atan and atan2 functions calculate the arctangent of x and y/ x,
respectively: atan returns a value in the range -1f /2 to 1T /2; atan2
returns a value in the range -1f to 1T. The atan2 function uses the signs
of both arguments to determine the quadrant of the return value.

• Return Value

Both atan and atan2 return the arctangent result. If both arguments of
atan2 are 0, the function sets err no to EDOM, prints a DOMAIN error
message to stderr, and returns 0.

Error handling can be modified by using the matherr routine.

• See Also

acos, asin, cos, matherr, sin, tan

• Example

#include <math.h>
#include <stdio.h>

main 0
{

}

printf("%.7f\n",atan(l.O»:
printf("%.7f\n",atan2(-1.O,1.O):

This program calculates and displays the arctangent of 1 and -1.

123

atexit

• Summary

include <stdlib.h>

int atexit(func);
void (*!unc)(void);

• Description

Required only for function declarations

Function to be called

The atexit function is passed the address of a function (June) to be called
when the program terminates normally. Successive calls to atexit create a
register of functions that are executed "last in, first out." No more than 32
functions can be registered with atexit, and it returns the value NULL if
the number of functions exceeds 32. The functions passed to atexit cannot
take parameters.

• Return Value

The atexit function returns 0 if successful, or a nonzero value if not (e.g.,
there are already 32 exit functions defined).

• See Also

abort, exit, _ exit, onexit

124

atexit

• Example

This program establishes several functions to be executed at the conclu­
sion of the program. It also demonstrates how these functions are executed
last in, first out.

#include <stdlib.h>
#include <stdio.h>

main 0
{

}

int fnl(void), fn2(void), fn3(void), fn4(void);
atexi t (fnl) ;
atexit(fn2);
atexit(fn3);
atexit(fn4);
printf("This is executed first.\n");

int fnlO
{
printf("next.\n");

}

int fn20
{
printf("executed ");

}

int fn30
{
printf("is ");

}

int fn40
{
printf("This ");

}

Output:

This is executed first.
This is executed next.

This program pushes four functions onto the stack of functions to be exe­
cuted when atexit is called. When the program exits, these programs are
executed on a last-in, first-out basis.

125

atof, atol

• Summary

include <math.h>
include <stdlib.h>

double atof'(string);
const char *string;

include <stdlib.h>

int atoi(string);
long stole string);
const char *string;

• Description

Use either math.h or stdlib.h

Converts string to double
String to be converted

Required only for function declarations

Converts string to int
Converts string to long
String to be converted

These functions convert a character string to a double-precision floatin~­
point value (atof), an integer value (atoi), or a long integer value (atol).
The input strz"ng is a sequence of characters that can be interpreted as a
numerical value of the specified type. The function stops reading the input
string at the first character it cannot recognize as part of a number. This
character may be the null character (\ 0) terminating the string.

The atof function expects strz"ng to have the following form:

[whitespace][{ + I-}] [digits] [.digits] [{ diD I e IE} [sign] digits]

A whz"tespace consists of space and/or tab characters, which are ignored;
sz"gn is either + or -; and dz"gz"ts are one or more decimal digits. If no digits
appear before the decimal point, at least one must appear after the deci­
mal point. The decimal digits may be followed by an exponent, which con­
sists of an introductory letter (d, D, e, or E) and an optionally signed
decimal integer.

The atoi and atol functions do not recognize decimal points or exponents.
The string argument for these functions has the form

[whitespace] [sign] digits

where whz"tespace, sz"gn, and dz"gz"ts are exactly as described above for atof.

126

at of, atol

• Return Value

Each function returns the double, int, or long value produced by inter­
preting the input characters as a number. The return value is 0 (OL for
atol) if the input cannot be converted to a value of that type. The return
value is undefined in case of overflow.

• See Also

ecvt, fcvt, gcvt

• Example

#include <math.h>
#include <stdio.h>

extern long atol();
main 0

{
char *s; double x; int i; long 1;

s =" -2309.12E-15"; /* test of atof */
x = atof(s);
printf("%e\t",x);

s = "7.8912654773d210" /* test of atof */
x = atof(s);
printf("%e\t",x);

s =" -9885"; /* test of atoi */
i = atoi(s);
printf("%d\t",i);

s = "98854 dollars"; /* test of atol */
1 = atol(s);
printf("%ld\n",l);
}

Output:

-2.309120e-012 7.891265e+210 -9885 98854

This program shows how numbers stored as strings can be converted to
numerical values using the atof, atoi, and atol functions. Note that the
extern declaration is needed only if the include file stdlib.h is absent.

127

bdos

• Summary

include <dos.h>

int bdos(dosfn, dosdx, dosaQ;
int dosfn;
unsigned int dosdx;
unsigned int dosal;

• Description

Function number
DX register value·
AL register value

The bdos function invokes the :MS-DOS system call specified by dosfn
after placing the values specified by dosdx and dosal in the DX and AL
registers, respectively. The bdos function executes an INT 21H instruction
to invoke the system call. When the system call returns, bdos returns the
contents of the AX register.

The bdos function is intended to be used to invoke :MS-DOS system calls
that either take no arguments or only take arguments in the DX (DB,
DL) and/or AL registers.

• Return Value

The bdos function returns the value of the AX register after the system
call has completed.

• See Also

intdos, intdosx

Warning

128

This call should not be used to invoke system calls that indicate errors
by setting the carry flag. Since C programs do not have access to this
flag, the status of the return value cannot be determined. The intdos
function should be used in these cases.

• Example

#include <dos.h>
{
char *buffer = "Enter file name:$";

/* Call 9 prints a string terminated by "$" */
/* AL is not needed, so ° is used */

bdos(9, (unsigned)buffer,O);
}

bdos

This example calls ME-DOS function 9H (display string) to display a
prompt. The prompt is the string that buffer points to. This example
works correctly only in small- and medium-model programs.

129

•

•

bessel

Summary

include <math.h>

double jO(x);

double j1(x);

double jn(n, x);

double yO(x);

double yl(x);

double yn(n, x);

double x; Floating-point value
int n; Integer order

Description

The jO, jl, and jn routines return Bessel functions of the first kind-or­
ders 0, 1, and n, respectively.

The yO, yl, and yn routines return Bessel functions of the second kind­
orders 0, 1, and n, respectively. The argument x must be positive.

• Return Value

These functions return the result of a Bessel function of x.

For yO, yl, or yn, if x is negative, the routine sets errno to EDOM,
prints a DOMAIN error message to stderr, and returns -HUGE_ VAL.

Error handling can be modified by using the matherr rou tine.

• See Also

matherr

130

• Example

#include <math.h>
#include <stdio.h>

main ()
{

}

double x, y, z;

x = 2;
y = jO(x);
z = yn(3,x);
printf("y = %f and z = %f", y, z);

bessel

This program sets y to the Bessel function of the first kind, order 0, and
sets z to the Bessel function of the second kind, order n.

131

_ bios-disk

• Summary

include <bios.h>

unsigned _ bios- disk(serv£ce, d£sk£njo);
unsigned serv£ce; Disk function
struct diskinfo_ t { Disk parameters:

unsigned drive; Drive number
unsigned head; Head number
unsigned track; Track number
unsigned sector; Start sector number
unsigned nsectors; Number of sectors to read,

write, or compare
void far * butTer; Memory location to write

to, read from, or compare
} *d£sk£njo;

• Description

The _bios_ disk routine uses INT Ox13 to provide several disk-access func­
tions. The service parameter selects the function desired, while the diskinfo
structure provides the necessary parameters.

The service argument can be set to one of the following manifest con­
stants:

Constant

_ DISIL RESET

_DISILSTATUS

132

Function

Forces the disk controller to do a hard reset,
preparing for floppy-disk I/O. This is useful
after an error occurs in another operation,
such as a read. If this service is specified, the
diskinfo argument is ignored.

Obtains the status of the last disk operation.
Status is returned in the high-order bits of
the return value, as listed below:

_DISK-READ

Bits

Ox02**
Ox04**
Ox05**
Ox07**
Ox09**
OxOA**
OxlO**
Oxll**

Ox20**
Ox40**
Ox80**

OxAA**
OxBB**
OxCC**
OxEO**

_bios-disk

Meaning

Invalid request or a bad com­
mand

Address mark not found

Sector not found

Reset failed

Drive parameter activity failed

DMAoverrun

Bad sector flag detected

Data read (ECC) error

Corrected data read (ECC)
error

Controller failure

Seek error

Disk timed out or failed to
respond

Drive not ready

Undefined error

Write fault on drive

Status error

If this service is specified, the diskinfo argu­
ment is ignored.

Reads one or more disk sectors into memory.
This service uses all fields of the structure
that diskinfo points to, as defined in the Sum­
mary. If no error occurs, the function returns
o in the high-order byte and the number of
sectors read in the low-order byte. If there is
an error, the high-order byte will contain a
set of status flags, as defined under
_DISK-STATUS (above).

133

_ bios-disk

_ DISK- WRITE Writes data from memory to one or more disk
sectors. This service uses all fields of the
structure that diskinfo points to, as defined in
the Summary. If no error occurs, the function
returns 0 in the high-order byte and the
number of sectors written in the low-order
byte. If there is an error, the high-order byte
will contain a set of status flags, as defined
under _DISK-STATUS (above).

- DISK-VERIFY Checks the disk to be sure the specified sec­
tors exist and can be read. It also runs a CRC
(cyclic redundancy check) test. This service
uses all fields (except buffer) of the structure
that diskinfo points to, as defined in the Sum­
mary. If no error occurs, the function returns
o in the high-order byte and the number of
sectors compared in the low-order byte. If
there is an error, the high-order byte will con­
tain a set of status flags, as defined under
_DISK-STATUS (above).

_DISK-FORMAT Formats the track specified by diskinfo. The
head and track fields indicate the track to for­
mat. Only one track can be formatted in a
single call. The buffer field points to a set of
sector markers. The format of the markers
depends on the type of disk drive; see the
Technical Reference Manual for the IBM PC
to determine the marker format. There is no
return value .

• Example

#include <conio.h>
#include <stdio.h>
#include <bios.h>

134

_bios-disk

main ()
{

}

unsigned status = 0;
struct diskinfo_t disk_info;

disk_info.drive
disk_info.head
disk_info.track
disk_info. sector
disk_info.nsectors

= 0;
= 10;
= 1;
= 2;
= 8;

/* invalid head number */

status = _bios_disk (_DISK_VERIFY, &disk_info);
if (status == Ox400) {

}

printf ("return value: %x\n", status);
printf ("seek error\n");

printf ("hit return to try again with valid head number\n");
getchar 0;
disk_info.head = 0;
status = _bios_disk (_DISK_VERIFY, &disk_info);
if (status != Ox400) {

}

printf ("return value: %x\n", status);
printf ("no seek error\n");

This program first attempts to verify a disk by using an invalid disk head
number. Mter printing the return value error code, the program verifies
the disk by using a valid disk head code.

135

_ bios- equiplist

• Summary

include <bios.h>

unsigned _ bios- equiplist(void);

• Description

The _bios_equiplist routine uses INT Oxll to determine what hardware
and peripherals are currently installed on the machine.

• Return Value

The function returns a set of bits indicating what is installed, as defined
below:

Bits Meaning

o Any disk drive installed if true

2-3 System RAM in 4K blocks (16-64K)

4-5 Initial video mode

6-7 Disk drives installed (00 = drive 1, 01 = drive 2, etc.)

8 False (0) if and only if a DMA chip is installed

9-11 Number of RS232 serial ports

12 True (1) if and only if a game adapter is installed

13 True (1) if and only if a serial printer is installed

14-15 Number of printers installed

136

_ bios- equip list

• Example

#include <bios.h>
main ()

{
unsigned equipment;
unsigned diskettes;
equipment = _bios_equiplist();
if (equipment & 0001) /* check for diskette bit */

printf ("diskettes installed\n");
else

printf ("no diskettes installed\n");
}

This program checks for the presence of diskettes.

137

_ bios- keybrd

• Summary

include <bios.h>

unsigned _ bios-keybrd(service);
unsigned service;

• Description

Keyboard function desired

The _bios_ keybrd routine uses INT Ox16 to access the keyboard services.
The servz"ce argument can be any of the following manifest constants:

Constant

_KEYBRD_READ

_KEYBRD_READY

138

Meaning

Reads the next character read from
the keyboard. If no character has
been typed, the call will wait for
one. If the low-order byte of the
return value is nonzero, it contains
the ASCII value of the character
typed. The high-order byte contains
the keyboard scan code for the
character. See the Technz"cal Refer­
ence Manual for the IBM PC for a
list of keyboard scan codes.

Checks to see if a keystroke is wait­
ing to be read and, if so, reads it.
The return value is 0 if no key­
stroke is waiting, otherwise the
return value is the character wait­
ing to be read, in the same format
as the _KEYBRD_READ return.
The _ KEYBRD_ READY service
does not remove the waiting charac­
ter from the input buffer, as does
the _KEYBRD_READ service.

_ bios- keybrd

_KEYBRD_SHIFTSTATUS Returns the current shift-key
(SIllFT) status in the low-order byte
of the return value. Any combina­
tion of the following bits may be
set:

Bit Meaning if True

0 Right-most SIllFT key
pressed

1 Left-most SIllFT key
pressed

2 CTRL key pressed

3 ALT key pressed

4 SCROLL LOCK on

5 NUMLOCKon

6 CAPS LOCK on

7 In insert mode (INS)

• Example

#include <bios.h>
main 0

{
while «_bios_keybrd(_KEYBRD_SHIFTSTATUS) & 0001) != 1)

printf (ttUse right SHIFT key to stop this message\n");
printf ("right SHIFT key pressed\ntt);
}

This program prints a message on the screen until the right SIllFT key is
pressed.

139

_ bios- memsize

• Summary

include <bios.h>

unsigned _ bios-memsize(void);

• Description

The _biosmemsize routine uses INT Ox12 to determine the total amount
of memory available.

• Return Value

The routine returns the total amount of installed memory in lK blocks.
The maximum return value is 640, representing 640K of main memory.

• Example

#include <bios.h>
main 0

{
unsigned memory;
memory = _bios_memsize();
printf ("The amount of memory is: %dK\n", memory);
}

This program displays the amount of memory available.

140

_ bios- printer

• Summary

include <bios.h>

unsigned _ bios- printer(service, printer, data);
unsigned service; Printer function desired
unsigned printer; Target printer port
unsigned data; Output data

• Description

The _bios_ printer routine uses INT Ox17 to perform printer output ser­
vices. The printer argument specifies the affected printer, where 0 is LPT1,
1 is LPT2, and so on. The service argument can be any of the following
manifest constants:

Constant

_ PRINTER-WRITE

- PRINTER- INIT

-PRINTER-STATUS

Meaning

Sends the low-order byte of data to the
printer specified by the printer argu­
ment. The low-order byte of the return
value indicates the printer status after
the operation, as defined below:

Bit Meaning if True

0 Printer timed out

1 Not used

2 Not used

3 I/O error

4 Prin ter selected

5 Out of paper

6 Acknowledge

7 Printer not busy

Initializes the selected printer. The data
argument is ignored. The return value is
the low-order status byte defined above.

Returns the prin ter status in the low­
order status byte defined above.

141

_ bios- printer

• Example

#include <bios.h>
#include <conio.h>
#include <stdio.h>
#define LPTl 0
main ()

{

}

unsigned data = 36;
unsigned status;

printf ("place printer offline and press return\n");
getchar{); /* wait until key pressed */
status = _bios_printer (_PRINTER_STATUS, LPT1, data);
printf ("status with printer offline: %x\n\n", status);
printf ("press return to initialize printer\n");
getchar{); /* wait until key pressed */
status = _bios_printer (_PRINTER_INIT, LPT1, data);
printf ("status after printer initialized: %x\n", status);

This program checks the status of the printer attached to LPTI when it is
off line, then initializes the printer.

142

_ bios- serialcom

• Summary

include <bios.h>

unsigned _ bios- serialcom(serv£ce, ser£aL port, data);
unsigned serv£ce; Communications service
unsigned ser£aL port; Serial port to use
unsigned data; Port configuration bits

• Description

The _bios_ serialcom routine uses INT Ox14 to provide serial communi­
cations services. The seriaL port argument is set to 0 for COMl, to 1 for
COM2, and so on. The service argument can be set to one of the following
manifest constants:

Constant Service

_ COM- INIT Sets the port to the parameters specified in
the data argument

_ COM- SEND Transmits the data characters over the
selected serial port

_ COM- RECEIVE Accepts an input character from the selected
serial port

- COM- STATUS Returns the current status of the selected
serial port

The data argument is ignored if service is set to _ COM- RECEIVE or
_COM-STATUS. The data argument for _COM-INIT is created by
ORing together one or more of the following constants:

Constant Meaning

_COM-CHR7 7 data bits

_COM-CHR8 8 data bits

-COM-STOPl 1 stop bit

_COM-STOP2 2 stop bits

_COM-NOPARITY No parity

-COM-EVENPARITY Even parity

143

_ bios- serialcom

_ COM- ODDP ARITY Odd parity

_COM-IIO 110 baud

_COM-ISO 150 baud

_COM-300 300 baud

_COM-600 600 baud

_COM-1200 1200 baud

_COM-2400 2400 baud

_COM-4800 4800 baud

_COM-9600 9600 baud

The default value of data is 1 stop bit, no parity, and 110 baud.

Note

This function works only with IBM Personal Computers and true com­
patibles.

• Return Value

The function returns a 16-bit integer whose high-order byte contains
status bits. The meaning of the low-order byte varies, depending on the
servz"ce value. The high-order bits are as follows:

Bit Meaning if Set

15 Timed out

14 Transmission-shift register empty

13 Transmission-hold register empty

12 Break detected

11 Framing error

10 Parity error

9 Overrun error

8 Data ready

144

•

_ bios- serialcom

When service is _ COM- SEND, bit 15 will be set if data could not be
sent.

When service is _ COM- RECEIVE, the byte read will be returned in the
low-order bits if the call is successful. If an error occurs, at least one of the
high.:order bits will be set.

When service is _ COM-INIT or _ COM- STATUS, the low-order bits
are defined as follows:

Bit Meaning if Set

7 Receive-line signal detected

6 Ring indicator

5 Data-set ready

4 Clear to send

3 Change in receive-line signal detected

2 Trailing-edge ring indicator

1 Change in data-set ready status

0 Change in clear-to-send status

Example

#include <bios.h>
main ()

{
unsigned coml_status;
coml_status = _bios_serialcom(_COM_STATUS,O,O):
printf ("COMl status: %x\n",coml_status);
}

This program checks the status of serial port COMl.

145

_ bios- timeofday

• Summary

include <bios.h>

unsigned _ bios- timeofday(service, timeva/);
int service; Time function desired
long time-val; Clock count

• Description

The _bios_ timeofday routine uses INT Ox1A to get or set the current
system clock count. The serv£ce argument can be either of the following
manifest constants:

Constant

_ TIME_ GETCLOCK

_ TIME_ SETCLOCK

• Example

#include <bios.h>
main 0

{

Meaning

Copies the current value of the clock
count to the location that timeval points
to. If midnight has not passed since the
last time the system clock was read or
set, the function returns 0; otherwise, it
returns 1.

Sets the current value of the system
clock to the value in the location that
timeval points to. There is no return
value.

long i, begin_tick, end_tick;
_bios_timeofday (_TlME_GETCLOCK, &begin_tick);
printf ("beginning tick count: %lu\n", begin_tick);
for (i = 1; i<= 500000; i++)

_bios_timeofday (_TlME_GETCLOCK, &end_tick);
printf ("ending tick count: %lu\n", end_tick);
printf ("elapsed ticks: %lu\n", end_tick - begin_tick);
}

This program gets the current system clock count before and after a "do­
nothing" loop and displays the difference.

146

bsearch

• Summary

include <stdlib.h>
include <seareh.h>

For ANSI compatibility
Required only for function declarations

void *bseareh(key, base, num, tuidth, (compare)O);
eonst void *key; Object to search for
eonst void *base; Pointer to base of search data
size- t num, width; Number and width of elements
int (*compare)(eleml, elem2); compare function
eonst void *eleml, *elem2; Array elements to compare

• Description

The bsearch function performs a binary search of a sorted array of num
elements, each of width bytes in size. The base value is a pointer to the
base of the array to be searched, and key is the value being sought.

The compare argument is a pointer to a user-supplied routine that com­
pares two array elements and returns a value specifying their relationship.
The bsearch function will call the compare routine one or more times dur­
ing the search, passing pointers to two array elements on each call. The
routine must compare the elements, then return one of the following
values:

Value

Less than 0

o
Greater than 0

• Return Value

Meaning

element1 less than element2

elementi identical to element2

elementi greater than element2

The bsearch function returns a pointer to the first occurrence of key in
the array pointed to by base. If key is not found, the function returns
NULL.

147

bsearch

• See Also

lfind, lsearch, qsort

• Example

#include <search.h>
#include <string.h>
#include <stdio.h>

int qcompare 0 ;
int bcompare 0 ;

/* declare a function for qsort's compare */
/* declare a function for bsearch's compare */

main (argc, argv)
int argc;
char **argv;
{
char **result;
char *key = "PATH";
int i;
/* Sort using Quicksort algorithm: */
qsort«char *)argv,argc,sizeof(char *),qcompare);
for (i=O;i<argc;++i) /* Output sorted list */
printf("%s\n", argv[i]);
/* Find item that begins with "PATH" */
/* using a binary search algorithm: */

result = (char **)bsearch«char *)&key, (char *)argv, argc,
sizeof(char *), bcompare);

if (result)
printf("%s found\n", *result);

else
printf("PATH not found!\n");

}

int qcompare (argl, arg2)
char **argl, **arg2;
{ /* Compare all of both strings: */
return(strcmp(*argl,*arg2»;

}

int bcompare (argl, arg2)
char **argl, **arg2;
{ /* Compare to length of key: */
return(strncmp(*argl,*arg2,strlen(*argl»);
}

This program reads the command-line arguments, sorting them with
qsort, and then uses bsearch to find the parameter starting with PATH.

148

• Summary

include <math.h>

double cabs(z);
struct complex {

double X;
double y;
} z;

• Description

Real component
Imaginary component

cabs

The cabs function calculates the absolute value of a complex number,
which must be a structure of type complex. A call to cabs is equivalent
to the following:

sqrt(z.x*z.x + z.y*z.y)

• Return Value

On overflow, cabs calls matherr, returns HUGE_ VAL, and sets errno
toERANGE.

• See Also

abs, fabs, labs

• Example

#include <math.h>
#include <stdio.h>
main ()
{

}

struct complex number;
number.x = 3.0;
number.y = 4.0;
double d = cabs(number);
printf("The absolute value of 'number' is %f\n", d);

Using cabs, this program assigns the absolute value of number to d.

calloc

• Summary

include <stdlib.h>
include <malloe.h>

void .ealloe(n, size);
sizEL t n;
sizEL t size;

• Description

For ANSI compatibility
Required only for function declarations

Number of elements
Length in bytes of each element

The calloc function allocates storage space for an array of n elements,
each of length size bytes. Each element is initialized to o.

• Return Value

The calloc function returns a pointer to the allocated space. The storage
space pointed to by the return value is guaranteed to be suitably aligned
for storage of any type of object. To get a pointer to a type other than
void, use a type cast on the return value. The return value is NULL if
there is insufficient memory available, or if n or size is o.

c 4.0 Difference

In Version 4.0 of Microsoft C, calloc allocates a zero-length item (that
is, a header only) in the heap if size is o. The resulting pointer can be
passed to the realloc function to adjust the size at any time.

• SeeAlso

free, halloc, hfree, malloc, realloc

150

• Example

#include <stdio.h>
#include <malloc.h>

long *lalloc;

main ()
{

}

lalloc = (long *)calloc(40,sizeof(long»;

if (lalloc != NULL)
printf("Allocation OK\n");

else
printf("calloc failed\n");

calloe

This program uses calloc to allocate space for 40 long integers. It initial­
izes each element to O.

151

ceil

• Summary

include <math.h>

double ceil(x);
double X;

• Description

Floating-point value

The ceil function returns a double value representing the smallest integer
that is greater than or equal to x.

• Return Value

The ceil function returns the double result. There is no error return.

• See Also

floor, fmod

• Example

#include <stdio.h>
#include <math.h>

main ()
{

double y;

y = ceil (1.05);
printf("The ceil (1.05) is %f\n",y);

/* y is equal to 2.0 */

y = ceil(-1.05); /* y is equal to -1.0 */
printf("The ceil (-1.05) is %f\n",y);

}

In this program, the smallest value representing an integer that is greater
than or equal to the value passed to ceil is assigned to y.

152

• Summary

include <conio.h>

char *cgets(str);
char *str;

• Description

cgets

Required only for function declarations

Storage location for data

The cgets function reads a string of characters directly from the console
and stores the string and its length in the location pointed to by 8tr. The
8tr must be a pointer to a character array. The first element of the array,
8tr[0] , must contain the maximum length (in characters) of the string to be
read. The array must have enough elements to hold the string, a terminat­
ing null character ('\ 0'), and two additional bytes.

The cgets function continues to read characters until a carriage-return­
line-feed combination (CR-LF) is read, or the specified number of characters
is read. The string is stored starting at 8tr[2]. If a CR-LF combination is
read, it is replaced with a null character (\0') before being stored. The
cgets function then stores the actual length of the string in the second
array element, 8tr[I].

• Return Value

The cgets function returns a poin ter to the start of the string, which is at
8tr[2]. There is no error return.

• SeeAlso

getch, getche

153

cgets

• Example

#include <conio.h>
#include <stdio.h>

char buffer[82];
char *result;

main ()
{
buffer[O] = 80; /* Maximum number of characters */

printf("Input line of text, followed by carrage return:\n ");

result = cgets(buffer); /* Input a line of text */

printf("\nLine length %d\nText = %s\n", buffer[l], result);
}

/* "buffer[l]" contains the length;
** "result" points to the start of the string
*/

This program creates a buffer and initializes the first byte to the size of
the buffer - 2. Next, the program accepts an input string using cgets and
displays the size and text of that string.

154

_ chain_ intr

• Summary

include <dos.h>

void _ chain- intr(void (target)O);
interrupt far .target; Target interrupt routine

• Description

The _chain_ intr routine is used for chaining one interrupt handler to
another interrupt handler. When the target handler begins executing, the
stack and registers appear as though the target had been invoked directly
when the interrupt occurred. Since the ultimate return address for the
interrupt sequence is already on the stack, chaining subsequent handlers
rather than calling them individually keeps the stack correct for the subse­
quent handler's return.

• SeeAlso

dos getvect, _dos_ keep, _dos_ setvect

155

chdir

• Summary

include <direct.h> Required only for function declarations

int chdir{path);
char * path; Path name of new working directory

• Description

The chdir function changes the current working directory to the directory
specified by path. The path argument must refer to an existing directory.

This function can change the current working directory on any drive; it
cannot change the default drive. For example, if A:\ is the default drive
and BIN is the current working directory, the following call changes the
current working directory for drive C:

chdir(c:\temp) ;

In this case, you must first call the system function to change the current
default drive to C before you can change the current working directory to
that drive.

• Return Value

The chdir function returns a value of 0 if the working directory is success­
fully changed. A return value of -1 indicates an error; in this case errno is
set to ENOENT, indicating that the specified path name could not be
found.

• See Also

mkdir, rmdir, system

156

• Example

#include <direct.h>
#include <stdio.h>

main (argc, argv)
int argc:
char *argv[]:

{
int rtnval:

if (rtnval = chdir(argv[l]»
printf("Problem changing to directory %s",argv[l]);

else

chdir

printf("Change to directory %s was successful",argv[l]):
}

This program uses chdir to emulate the MS-DOS cd command.

157

ChIIlOd

• Summary

include <sys\ types.h>
include <sys\ stat.h>
include <io.h>

int chmod(path, pmode};
char *path;
int pmode;

• Description

Required only for function declarations

Path name of existing file
Permission setting for file

The chmod function changes the permission setting of the file specified by
path. The permission setting controls read and write access to the file.
The constant expression pmode contains one or both of the manifest con­
stants S_IWRITE and S_mEAD, defined in sys\stat.h. Any other
values for pmode are ignored. When both constants are given, they are
joined with the bitwise-OR operator (:). The meaning of the pmode argu­
ment is as follows:

Value Meaning

S_IWRITE Writing permitted

S_ mEAD Reading permitted

S_mEAD: S_IWRITE Reading and writing permitted

If write permission is not given, the file is made read only. Under MS-DOS,
all files are readable; it is not possible to give write-only permission. Thus
the modes S_ IWRITE and S_ mEAD: S_ IWRITE are equivalent.

• Return Value

The chmod function returns the value 0 if the permission setting is suc­
cessfully changed. A return value of -1 indicates an error; in this case,
errno is set to ENOENT, indicating that the specified file could not be
found.

158

• See Also

access, creat, fstat, open, stat

• Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

int result;
int savestderr;

main ()
{

}

/* make file read only:*/
result = chmod(ttdata tt , S_IREAD);
if (result == -1)

perror("File not found");
else

printf ("Mode changed successfullytt);

chmod

This program uses chmod to change the mode of the file data to read
only. It then displays a message indicating whether the mode was changed
successfully.

159

chsize

• Summary

include <io.h>

int chsize(handle, size);
int handle;
long size;

• Descri ption

Required only for function declarations

Handle referring to open file
New length of file in bytes

The chsize function extends or truncates the file associated with handle to
the length specified by size. The file must be open in a mode that permits
writing. Null characters ('\ 0') are appended if the file is extended. If the
file is truncated, all data from the end of the shortened file to the original
length of the file are lost.

• Return Value

The chsize function returns the value 0 if the file size is successfully
changed. A return value of -1 indicates an error, and errno is set to one
of the following values:

Value

EACCES

EBADF
ENOSPC

• See Also

close, creat, open

160

Meaning

Specified file is locked against access (MS-DOS
Versions 3.0 and later only).

Specified file is read only, or an invalid file handle.

No space left on device.

• Example

#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

#define MAXSIZE 32768L

int fh, result;

chsize

char buffer[BUFSIZ] = "Initialize the buffer to some value\n";

main ()
{

}

int i;
unsigned int nbytes = BUFSIZ;
/* Output data to the file: */
fh = open("data",O_RDWR:O_CREAT, S_IREAD:S_IWRITE);

for (i = 0; i < 50; i++)
result = write(fh, buffer, nbytes);

result = -1;
if (lseek (fh,OL, SEEK_END) > MAXSIZE) /* Make sure the file */

/* is longer than 32k */
/* before changing the size. */ result = chsize(fh,MAXSIZE);

if (result == 0)
printf ("Size successfully changed");

else
printf("Problem in changing the size");

This program opens the file named data and writes data to it. Then it
uses chsize to extend the size of data. Finally, it displays a message indi­
cating whether the file size was successfully extended.

161

_clear87

• Summary

include <float.h>

unsigned int _ clear87(void); Get and clear floating-point status word

• Description

The _clear87 function gets and clears the floating-point status word.
The floating-point status word is a combination of the 8087/80287 status
word and other conditions detected by the 8087 /80287 exception handler,
such as floating-point stack overflow and underflow.

• Return Value

The bits in the value returned indicate the floating-point status. See the
float.h include file for a complete definition of the bits returned by
_clear87.

Note

Many of the math library functions modify the 8087/80287 status
word, with unpredictable results. Return values from _ clear87 and
- status87 become more reliable as fewer floating-point operations are
performed between known states of the floating-point status word.

• See Also

- controI87, _ status87

162

• Example

#include <stdio.h>
#include <float.h>

double a = le-40,b:
float x,y:

main ()
{
printf("status = %.4x - clear\n",_clear87(»:
/* store into y is inexact and underflows: */
y = a:

_clear87

printf("status = %.4x - inexact, underflow\n",_clear87(»;

/* y is denormal: */
b = y:
printf("status = %.4x - denormal\n",_clear87(»:
}

This program creates various floating-point problems, then uses _ clear87
to report on these problems.

163

clearerr

• Summary

include <stdio.h>

void clearerr(stream};
FILE .stream;

• Description

Pointer to FILE structure

The clearerr function resets the error indicator and end-of-file indicator
for stream to o. Error indicators are not automatically cleared; once the
error indicator for a specified stream is set, operations on that stream con­
tinue to return an error value until clearerr or rewind is called.

• See Also

eo~ feo~ ferror, perror

• Example

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int c;

main ()
{

}

stream = fopen("data", "w"); /* Note that with "w" */
if (c = getc(stream» == EOF) /* there will be an error. */

{

}

if (ferror(stream»
{

}

fprintf (stderr, "Read error\n");
clearerr(stream);

This program sends data to a stream and checks to see whether an error
has occurred. If so, the program uses clearerr to clear the error.

164

_ clearscreen

• Summary

include <graph.h>

void far _ clearsereen(area);
short area; Target area

• Description

The _ clearscreen function erases the target area, filling it with the cur­
rent background color. The area parameter can be one of the following
manifest constants (defined in graph.h):

Constant

_ GCLEARSCREEN

-GVIEWPORT

_GWINDOW

• Return Value

There is no return value.

• SeeAlso

_getbkcolor, _setbkcolor

Action

Clears and fills the en tire screen

Clears and fills only within the current view
port

Clears and fills only within the current text
window

165

_ clearscreen

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

}

int xvar, yvar, loop = 0;
_setvideomode(_MRES16COLOR);
/* Make 16 rectangles */
for (loop = 0; loop < 32; loop += 2) {
_setcolor(loop % 16);
_rectangle (_GFILLINTERIOR, loop*10, 95, (loop+1) *10, 105);

}
while (!kbhit()) { /* Repeat until a character is typed */
_remappalette(loop++ % 4, rand (1) % 16);

}
_clearscreen(_GCLEARSCREEN);
_setvideomode (_DEFAULTMODE);

This program draws 16 separate rectangles, each of a different color. When
it receives a keystroke, it calls _ clearscreen and clears the screen.

166

clock

• Summary

include <time.h>

clock- t clock(void);

• Description

The clock function tells how much processor time has been used by the
calling process. The time in seconds is approximated by dividing the clock
return value by the value of the CLK- TCK macro.

• Return Value

The clock function returns the product of the time in seconds and the
value of the CLK- TCK macro. If the processor time is not available, the
function returns the value -1, cast as clock_ t.

• See Also

difftime, time

• Example

#include <stdio.h>
#include <time.h>

main 0
{
int goal, tm = 0;
clock_t clock(void);
printf("How many seconds do you want the program to run?: ");
scanf ("%d" , &goal) ;
do {
if «tm=clock 0) ! = (clock_t) -1)
printf("Processor time equals %d seconds\n", tm/CLK_TCK);

else {

}
}

printf("Processor time not available\n");
exit(-l);

while «tm/CLK_TCK) < goal);
}

This example prompts for how long the program is to run and then con­
tinuously displays the elapsed time for that period.

167

close

• Summary

include <io.h>

int close{handle);
int handle;

• Description

Required only for function declarations

Handle referring to open file

The close function closes the file associated with handle.

• Return Value

The close function returns 0 if the file was successfully closed. A return
value of -1 indicates an error, and errno is set to EBADF, indicating an
invalid file-handle argument.

• See Also

chsize, creat, dup, dup2, open, unlink

• Example

#include <stdio.h>
#include <io.h>
#include <fcntl.h>

main 0
{

}

int result, fh;

fh = open("data",O_RDONLY); /* Open the file */
result = close(fh); /* Now close it */
/* Report on results: */
if (result)

printf("Invalid file handle argument\n");
else

printf("File successfully closed\n");

This program uses open to open a file named data, then uses close to
close it.

168

• Summary

include <float.h>

unsigned int _ control87(new, mask);
unsigned int new;
unsigned int mask;

• Description

_contro187

Get floating-point control word
New control-word bit values
Mask for new control-word bits to set

The _ control87 function gets and sets the floating-point control word.
The floating-point control word allows the program to change the preci­
sion, rounding, and infinity modes in the floating-point-math package.
Floating-point exceptions can also be masked or unmasked using the
_ control87 function.

If the value for mask is equal to 0, then _ control87 gets the floating-point
control word. If mask is nonzero, then a new value for the control word is
set in the following manner: for any bit that is on (equal to 1) in mask, the
corresponding bit in new is used to update the control word. To put it
another way,

fpcntrl = ((fpcntrl &. "'mask) I (new &. mask»

where fpcntrl is the floating-point control word.

• Return Value

The bits in the value returned indicate the floating-point control state. See
the float.h include file for a complete definition of the bits returned by
_ control87.

• See Also

_clear87, _status87

169

_control87

• Example

#include <stdio.h>
#include <float.h>

double a = .1;

main ()
{

}

/* get control word: */
printf("control = %.4x\n", _contro187(0,0));
printf("a*a = .01 = %.15e\n",a*a);

/* set precision to 24 bits: */
_contro187(PC_24,MCW_PC);

printf("a*a = .01 (rounded to 24 bits)

/* restore to initial default: */
_contro187(CW_DEFAULT,Oxffff);

printf("a*a = .01 = %.15e\n",a*a):

This program uses _ control87 to output the control word, set the preci­
sion to 24 bits, and reset the status to the default.

170

cos, cosh

• Summary

include <math.h>

double cos(x); Calculates cosine of x

double cosh(x); Calculates hyperbolic cosine of x

double x; Radians

• Description

The cos and cosh functions return the cosine and hyperbolic cosine,
respectively, of x.

• Return Value

If x is large, a partial loss of significance in the result may occur in a cos
call, in which case the function generates a PLOSS error. If x is so large
that significance is completely lost, cos prints a TLOSS message to
stderr and returns o. In both cases, errno is set to ERANGE.

If the result is too large in a cosh call, the function returns HUGE_ VAL
and sets errno to ERANGE.

• See Also

acos, asin, atan, atan2, matherr, sin, sinh, tan, tanh

• Example

#define PI 3.14159265359
#include<math.h>
#include<stdio.h>

main 0
{

/* x = -1 */
/* y = 11.591953 */

double x = cos(PI);
double y = cosh(PI);
printf("The cos (PI) = %f and the cosh(PI) = %f\n",x,y);

}

This program displays the cosine and hyperbolic cosine of 7r.

171

cprintf

• Summary

include <conio.h> Required only for function declarations

int cprintf(format[, argument] ...);
char *format; Format control string

• Description

The cprintf function formats and prints a series of characters and values
directly to the console, using the putch function to output characters.
Each argument (if any) is converted and output according to the corre­
sponding format specification in format. The format has the same form
and function as the format argument for the printf function; see the
printf reference page for a description of the format and arguments.

• Return Value

The cprintf function returns the number of characters printed.

• See Also

fprintf, printf, sprintf, vprintf

Note

172

Unlike the fprintf, printf, and sprintf functions, cprintf does not
translate line-feed (LF) characters into carriage-return-line-feed (CR-LF)
combinations on output.

• Example

#include <conio.h>

int i = -16, j = 29;
unsigned int k = 511;

main 0
{

}

cprintf("i=%d, j=%#x, k=%u\n",i,j,k);
/* Output: i=-16, j=Ox1d, k=511 */

cprintf

This program prints the values of the variables i, j, and k to the con­
sole. (The cprintf function is similar to the printf function except that it
sends output to the console.)

173

cputs

• Summary

include <conio.h>

int cputs(strz"ng);
char *strz"ng;

• Description

Required only for function declarations

Output string

The cputs function writes the null-terminated string pointed to by str
directly to the console. Note that a carriage-return-line-feed (CR-LF) com­
bination is not automatically appended to the string after writing.

• Return Value

If successful, cputs returns a O. If the function fails, it returns a nonzero
value.

c 4.0 Difference

In Version 4.0 of Microsoft C, cputs has no return value.

• See Also

putch

• Example

#include <conio.h>

char *buffer = "Insert data disk in drive a: \r\n";

main ()
{
cputs (buffer) ;

}

This program displays on the console the prompt that bu f fer points to.

174

creat

• Summary

include <sys\ types.h>
include <sys\ stat.h >
include <io.h>

int creat(path, pmode);
char .path;
int pmode;

• Description

Required only for function declarations

Path name of new file
Permission setting

The creat function either creates a new file or opens and truncates an ex­
isting file. If the file specified by path does not exist, a new file is created
with the given permission setting and is opened for writing. If the file al­
ready exists and its permission setting allows writing, creat truncates the
file to length 0, destroying the previous contents, and opens it for writing.

The permission setting, pmode, applies to newly created files only. The
new file receives the specified permission setting after it is closed for the
first time. The integer expression pmode contains one or both of the mani­
fest constants SJWRITE and SJREAD, defined in sys\stat.h. When
both constants are given, they are joined with the bitwise-OR operator
(:). The meaning of the pmode argument is as follows:

Value

SJWRITE

SJREAD

SJREAD : SJWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read only. Under :ME-DOS
it is not possible to give write-only permission. Therefore, the modes
SJWRITE and SJREAD : SJWRITE are equivalent. Under :ME-DOS
Versions 3.0 and later, files opened using creat are always opened
in compatibility mode (see sopen).

The creat function applies the current file-permission mask to pmode
before setting the permissions (see umask).

175

creat

• Return Value

If successful, creat returns a handle for the created file. Otherwise, it
returns -1 and sets errno to one of the following constants:

Value

EACCES

EMFILE

ENOENT

Meaning

Path name specifies an existing read-only file or
specifies a directory instead of a file

No more handles available (too many open files)

Path name not found

• See Also

chmod, chsize, close, dup, dup2, open, sopen, umask

Note

The creat routine is provided primarily for compatibility with previ­
ous libraries. A call to open with O_CREAT and O_TRUNC in the
oflag argument is equivalent to creat and is preferable for new code.

• Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

main 0
{

}

int fh = creat("data",S_IREAD:S_IWRITE);
if (fh == -1)
perror("Couldn't create data file");

else
printf("Created data file.\n");

This program uses creat to create the file (or truncate the existing file)
named data and open it for writing.

176

cscanf

• Summary

include <conio.h> Required only for function declarations

int escanf'(format[, argument]. ..);
char .format; Format-control string

• Description

The cscanf function reads data directly from the console into the loca­
tions given by the arguments (if any), using the getche function to read
characters. Each argument must be a pointer to a variable with a type that
corresponds to a type specifier in format. The format controls the inter­
pretation of the input fields and has the same form and function as the
format argument for the scanf function; see the scanf reference page for
a description of format.

Note

While scanf normally echoes the input character, it will not do so if
the last call was to ungetch.

• Return Value

The cscanf function returns the number of fields that were successfully
converted and assigned. The return value does not include fields that were
read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

• See Also

fscanf, scanf, sscanf

177

cscanf

• Example

#include <conio.h>

int result;
char buffer[20];

main 0
{

}

cprintf("Please enter file name: ");

/* Read in user response; return # of matches: */
result = cscanf("%19s" ,buffer);

printf("\nNumber of correctly matched input"
"items = %d\n", result);

This program prompts for a file name and uses cscanf to read in the cor­
responding file. Then cscanf returns the number of items matched, and
the program displays that number.

178

• Summary

include <time.h>

char *ctime(tz"me);
const time- t * tz"me;

• Description

ctime

Required only for function declarations

Pointer to stored time

The ctime function converts a time stored as a time_ t value to a charac­
ter string. The time value is usually obtained from a call to time, which
returns the number of seconds elapsed since 00:00:00 Greenwich mean
time, January 1, 1970.

The string result produced by ctime contains exactly 26 characters and
has the form of the following example:

Wed Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The new-line
character ('\n') and the null character ('\ 0') occupy the last two positions
of the string.

• Return Value

The ctime function returns a pointer to the character string result. If time
represents a date before 1980, ctime returns NULL.

c 4.0 Dzfferences

MS-DOS does not understand dates prior to 1980. If time represents a
date before January 1, 1980, the ctime routine in Version 4.0 of the
Microsoft C Run-Time Library returns the character string representa­
tion of 00:00:00 January 1, 1980.

179

ctime

• See Also

asctime, ftime, gmtime, localtime, time

Note

The asctime and ctime functions use a single statically allocated
buffer for holding the return string. Each call to one of these routines
destroys the result of the previous call.

• Example

#include <time.h>
#include <stdio.h>

main 0
{
time(<ime);
printf("the time is %s\n",ctime(<ime»;

}

This program gets the current time in time_ t form, then uses ctime to
display the time in string form.

180

dieeetomsbin, dmsbintoieee

• Summary

include <math.h>

int dieeetomsbin(src8, dst8); IEEE double to MS binary double

int dmsbintoieee(src8, dst8); MS binary double to IEEE double

double *src8; Buffer containing value to convert

double *dst8; Buffer to store converted value

• Description

The dieeetomsbin routine converts a double-precision number in IEEE
(Institute of Electrical and Electronic Engineers) format to Microsoft
binary format. The dmsbintoieee routine converts a double-precision
number in Microsoft binary format to IEEE format.

These routines allow C programs (which store floating-point numbers in
the IEEE format) to use numeric data in random-access data files created
with those versions of Microsoft BASIC that store floating-point numbers
in Microsoft binary format, and vice versa.

The argument src8 is a pointer to the double value to be converted. The
result is stored at the location given by dst8.

• Return Value

These functions return 0 if the conversion is successful and 1 if the conver­
sion causes an overflow.

• See Also

fieeetomsbin, fmsbintoieee

Note

These routines do not handle IEEE NANs and infinities. IEEE denor­
mals are treated as 0 in the conversions.

181

difftime

• Summary

include <thne.h>

double difftime{ t£me2, t£me1);
time- t t£me2;
time_ t t£me1;

• Description

Required only for function declarations

Type time- t defined in time.h

The difftime function computes the difference time2 - time1.

• Return Value

The difftime function returns the elapsed time in seconds from timet to
time2 as a double-precision number.

• See Also

time

• Example

#include <time.h>

int mark[10000];

main 0
{
time_t start, finish;
register int i, loop, n, num, step;
printf("This program will take about 3 minutes"

"on an AT and 8 on a PC\n");
printf ("Working ... \n") ;
time(&start);
for (loop = 0; loop < 1000; ++loop)
for (num = O,n = 3; n < 10000; n += 2)
if (!mark [n]) { /* printf ("%d\t", n); */
step = 2*n;
for (i = 3*n; i < 10000; i += step)
mark[i] = -1;
++num;

}
time(&finish);

182

difftime

}

/* Prints average of 1000 loops through "sieve": */
printf ("\nProgram takes %f seconds to find %d primes. \n",

difftime (finish, start)/1000, num);

Output:

Program takes 0.482000 seconds to find 1228 primes.

This program calculates the amount of time needed to find the prime
numbers between 3 and 10,000. To display the prime numbers, delete
the outermost loop and the comment delimiters around the expression
printf ("%d\t", n) ;.

183

_disable

• Summary

include <dos.h>

void _ disable(void); Disables interrupts

• Description

The _disable routine disables interrupts by executing an 8086 eLI
machine instruction.

• See Also

_enable

184

_ displaycursor

• Summary

include <graph.h>

short far _ displaycursor(toggle);
short toggle; Cursor state

• Description

On entry into each graphic routine, the screen cursor is turned off. The
_displaycursor function determines whether or not the cursor is to be
turned back on when programs exit graphic routines. If toggle is set to
_ GCURSORON, the cursor will be restored on exit. If toggle is set to
_ GCURSOROFF, the cursor will be left off on exit.

• Return Value

The function returns the previous value of toggle. There is no error return.

• Example

#include <stdio.h>
#include <graph.h>

main ()

{

}

_setvideomode(_MRES4COLOR);
_settextposition(1, 1);
_displaycursor(_GCURSORON);
_outtext("Cursor on, hit <cr>");
for (;! kbhi to;);
getchar();
_settextposition(1, 1);
_displaycursor(_GCURSOROFF);
_outtext("Cursor off, hit <cr>");
for(;!kbhit(););
getchar();
_setvideomode(_DEFAULTMODE);

This program shows the effect of turning the cursor on and off in a graph­
ics mode.

185

div

• Summary

include <stdlib.h>

struct div_ t {
int quot;
int rem;
} dive numer, denom);

int numer;
int den om;

• Description

Quotient
Remainder

Numerator
Denominator

The div function divides numer by denom, computing the quotient and
the remainder. The sign of the quotient is the same as that of the mathe­
matical quotient. Its absolute value is the largest integer that is less than
the absolute value of the mathematical quotient. If the denominator is 0
the program will terminate with an error message.

• Return Value

The div function returns a structure of type div_ t, comprising both the
quotient and the remainder. The structure is defined in stdIib.h.

• See Also

div

186

• Example

#include <stdlib.h>
#include <math.h>

main (argc, argv)
int argc;
char **argv;

{

}

int x,y;
div_t diY_result;
x = atoi(argv[lJ);
y = atoi(argv[2J);
printf(ltx is %d, y is %d\nlt, x,y);
diy_result = div(x,y);
printf(ltThe quotient is %d, and the remainder is %d\n",

div_result.quot, div_result.rem);

div

The example above takes two integers as command-line arguments and
displays the results of the integer division. This program accepts two argu­
ments on the command line following the program name, then calls div to
divide the first argument by the second. Finally, it prints the structure
members quot and rem.

Assuming the executable file is named "tdiv," it might be typed:

tdiv 5 2

and it would output:

x is 5, Y is 2
The quotient is 2, and the remainder is 1

187

_ dos- allocmem

• Summary

include <dos.h>

unsigned _ dOB- allocmem(s£ze, segment);
unsigned s£ze; Block size to allocate
unsigned *segment; Segment descriptor return buffer

• Description

The _dos_ allocmem function allocates a block of memory sz'ze para­
graphs long. A paragraph is 16 bytes. Allocated blocks are always para­
graph aligned. The segment descriptor for the initial segment of the new
block is returned in the word that segment points to. If the request cannot
be satisfied, the maximum possible size (in paragraphs) is returned in this
word instead.

• Return Value

If successful, _dos_ allocmem returns o. Otherwise, it returns the 118-
DOS error code and sets errno to ENOMEM, indicating insufficient
memory or invalid arena (memory area) headers.

• See Also

alloca, calloc, _dos_ freemem, _dos_ setblock, halloc, malloc

188

• Example

#include <dos.h>

unsigned segment;

main 0
{

}

/*'Allocate 20 paragraphs */
if {_dos_allocmem (20, &segment) != 0)

printf ("allocation failed\n");
else

printf ("allocation successful\n");
if (_dos_freemem (segment) != 0)

printf ("free memory failed\n");
else

printf ("free memory successful\n");

_ dos_ allocmem

This program allocates and then frees 20 paragraphs of memory space.

189

_dos-close

• Summary

include < dos.h >

unsigned _ dOB- close(handle);
int handle; Target file handle

• Description

The _dos_ close function uses system call Ox3E to close the file indicated
by handle. The file's handle argument is returned by the call that created
or last opened the file.

• Return Value

The function returns 0 if successful. Otherwise, it returns the MS-DOS
error code and sets errno to EBADF, indicating an invalid file handle.

• See Also

creat, _dos_ creat, _dos_ creatnew, _dos_ open, _dos_ read,
dos write, dup, fclose, open

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

190

main ()
{

}

int fh;

/* open file with _dos_open function */
if (_dos_open ("datal It I O_RDONLY I &fh) ! = 0)

perror(ltopen failed on input file lt);
else

printf("open succeeded on input file\n lt);

/* close file with _dos_close function */
if (_dos_close(fh) != 0)

perror{ltclose failed");
else

printf(ltfile successfully closed\n lt);

_dos-close

This program uses the MS-DOS I/O operations to open and close a file.

191

_ dOB- creat, _doB- creatnew

• Summary

include < dos.h >

unsigned _ dOB- creat(path, attrt"bute, handle);

unsigned _ dOB- creatnew(path, attribute, handle);

char *path;
unsigned attribute;
int *handle;

File path name
File attributes
Handle return buffer

• Description

The _dos_ creat and _dos_ creatnew routines create a new file named
path, having the access attributes specified in the attribute word. The new
file's handle is copied into the buffer that handle points to. The file is
opened for both read and write access. If file sharing is installed, the file
is opened in compatibility mode.

The _dos_ creat routine uses system call Ox3C and the _dos_ creatnew
rou tine uses system call Ox5B. If the file already exists, _dos_ creat
will erase its contents and leave its attributes unchanged; however, the
dos creatnew routine will fail if the file already exists.

• Return Value

If successful, both routines return O. Otherwise, they return the MS-DOS
error code and set errno to one of the following values:

192

Constant Meaning

ENOENT Path or file not found

EW'ILE Too many open file handles

EACCES Access denied because the directory is full or, for
dos creat only, the file exists and cannot be
overwritten

EEXIST File already exists (_dos_ creatnew only)

_ dos- creat, _dos- creatnew

• Example

#include <dos.h>

main 0
{

}

int fhl, fh2 ;
if (_dos_creat ("data" ,_A_NORMAL, &fhl) != 0)
perror("Couldn't create data file");

else
printf("Created data file.\n");

/* if _dos_creat is successful, the
_dos_creatnew will fail since the file exists

*/
if (_dos_creatnew ("data" ,_A_RDONLY, &fh2) ! = 0)
perror("Couldn't create data file");

else
printf("Created data file.\n");

This program creates a file using the _ dos_ creat function. The program
cannot create a new file using the _ dos_ creatnew function because it
already exists.

193

_ dOB- findfirst, _doB- findnext

• Summary

include <dos.h>

unsigned _ dOB- findfirst(path, attributes, buller);

unsigned _ dOB- findnext(buller);

char *path;
unsigned attributes;
struct fineL t {

Target file name
Target attributes

File-information return structure:
char reserved [21] ;
char attrib;
unsigned wr _ time;
unsigned wr _ date;
long size;
char name[13];

} *bul/er;

Reserved for use by MS-DOS
Attribute byte for matched path
Time of last write to file
Date of last write to file
Length of file in bytes
Null-terminated name of matched
file/directory, without the path

• Description

The _dos_ findfirst routine uses system call Ox4E to return information
about the first instance of a file whose name and attributes match the path
and attrz'butes argumen ts. Information is returned in a find_ t structure,
defined in dos.h.

The path argument may use wildcards (* and ?). The attrz'butes argument
can be any of the following manifest constants:

194

Constant Meaning

_A-NORMAL Normal. File can be read or written without res­
triction.

_A-RDONL Y Read only. File cannot be opened for a "write,"
and a file with the same name cannot be created.

_A- HIDDEN Hidden file. Cannot be found by a directory search.

_A- SYSTEM System file. Cannot be 'found by a directory search.

_A- VOLID Volume ID. Only one file can have this attribute,
and it must be in the root directory.

_A-SUBDm

_A-ARCH

_ dos- findfirst, _dos- findnext

Subdirectory.

Archive. Set whenever the file is changed, and
cleared by the MS-DOS BACKUP command.

Multiple constants can be ORed together, using the vertical-bar (l) char­
acter.

The _dos_ findnext routine uses system call Ox4F to find the next name,
if any, that matches the path and attr£butes arguments specified in a prior
call to _dos_ findfirst. The buffer argument must point to a structure al­
ready initialized by a previous call to _dos_ findfirst. The contents of the
structure will be altered as described above if a match is found.

• Return Value

•

If successful, both functions return O. Otherwise, they return the MS-DOS
error code and set errno to ENOENT, indicating that the path could
not be matched.

Example

#include <dos.h>

main ()
{

}

struct find_t c_file;

/* find first .c file in current directory */
_dos_findfirst ("*.c", _A_NORMAL, &c_file);
printf ("Listing of .c files\n\n");
printf ("file %s is %d bytes long\n",c_file.name,

c_file.size);
/* find the rest of the .c files */
while (_dos_findnext(&c_file) == 0)

printf ("file %s is %d bytes long\n",c_file.name,
c_file.size);

This program finds and prints all files in the current directory with the . c
extension.

195

_ dOB- freemem

• Summary

include <dos.h>

unsigned _ dOB- freemem(segment);
unsigned segment; Block to be released

• Description

The _dos_ freemem function uses system call Ox49 to release a block of
memory previously allocated by _dos_ allocmem. The segment argument
is a value returned by a previous _dos_ allocmem or _dos_ setblock call.
The freed memory may no longer be used by the application program.

• Ret urn Value

If successful, _dos_ freemem returns o. Otherwise, it returns the MS­
DOS error code and sets errno to ENOMEM, indicating a bad segment
value (one that does not correspond to a segment returned by a previous
dos allocmem or _dos_ setblock call) or invalid arena headers.

• See Also

dos allocmem, _dos_setblock, ifree, free, hfree, nfree

• Example

#include <dos.h>

unsigned segment;

main 0

}

{
/* Allocate 20 paragraphs */
if {_dos_allocmem (20, &segment) != 0)

printf ("allocation failed\n");
else

printf ("allocation successful\n");
if (_dos_freemem (segment) != 0)

printf ("free memory failed\n");
else

printf ("free memory successful\n");

This program allocates and then frees 20 paragraphs of memory space.

196

_ dos_ getdate

• Summary

include <dos.h>

void _ dOL getdate(date);
struct dosda"te- t { Current date structure:

unsigned char day; 1-31
unsigned char month; 1-12
unsigned int year; 1980-2099
unsigned char dayofweek; 0-6 (0 = Sunday)
} *date;

• Description

The _dos_getdate routine uses system call Ox2A to obtain the current
system date. The date is returned in a dosdate_ t structure, defined in
dos.h.

• See Also

dos gettime, _dos_ setdate, _dos_ settime, gmtime, localtime,
mktime, ~trdate, ~trtime, time

• Example

#include <dos.h>

main ()
{

}

struct dosdate_t date;
struct dostime_t time;

/* get current date and time values */

_dos_getdate (&date);
_dos_gettime (&time);
printf("Today's date is %d-%d-%d\n",date.month,date.day,

date.year);
printf("The time is %d:%d\n",time.hour,time.minute);

This program gets and displays the current date and time values.

197

_ dOB- getdiskfree

• Summary

include < dos.h >

unsigned _ dos- getdiskfree(drive, diskspace);
unsigned drz've;
struct diskfree- t {

unsigned totaL clusters;
unsigned avaiL clusters;
unsigned sectors- per_cluster;
unsigned bytes- per_sector;
} ale dz'skspace;

• Description

The _dos_getdiskfree routine uses system call Ox36 to obtain informa­
tion on the disk drive specified by drive. The default drive is 0, drive A is
1, drive B is 2, and so on. Information is returned in the diskfree_ t struc­
ture that d£skspace poin ts to, defined in dos.h.

• Return Value

If successful, the function returns o. Otherwise, it returns a nonzero value
and sets errno to EINV AL, indicating an invalid drive was specified.

• See Also

dos getdrive, _dos_ setdrive

198

_ dos_ getdiskfree

• Example

#include <dos.h>

main 0
{

}

struct diskfree_t drive;

/* get information on default disk drive 0 */

_dos_getdiskfree (0, &drive);
printf("total clusters: %d\n",drive.total_clusters);
printf("available clusters: %d\n",drive.avail_clusters);
printf("sectors per cluster: %d\n",drive.sectors_per_cluster);
printf("bytes per sector: %d\n",drive.bytes_per_sector);

This program displays information about the default disk drive.

199

_ dOB- getdrive

• Summary

include < dos.h >

void _ dos_ getdrive{ dr£ve);
unsigned *dr£ve; Current-drive return buffer

• Description

The _dos_getdrive routine uses system call Ox19 to obtain the current
disk drive. The current drive is returned in the word that drive points to: 1
= drive A, 2 = drive B, and so on.

• See Also

dos getdiskfree, _dos_ setdrive

• Example

#include <dos.h>

main 0
{

}

unsigned drive;
unsigned number_of_drives;

/* print current default drive information */
_dos_getdrive (&drive);
printf("The current drive is: %c\n", 'A' + drive - 1);

/* set default drive to be drive A */
_dos_setdrive (1, &number_of_drives);

/* get new default drive information and
total number of drives in system */

_dos_getdrive (&drive);
printf (liThe current drive is: %c\n", 'A' + drive - 1);
printf ("number of disk drives: %d\n", number_of_drives);

This program prints the letter of the current drive, changes the default
drive to A, then returns the number of disk drives.

200

_ dos_ getfileattr

• Summary

include < dos.h >

unsigned _ dOB- getfileattr(path, attrz'bute);
char *path; Full path of target file/directory
unsigned *attrz'butes; Word to store attributes in

• Description

The _dos_ getfileattr routine uses system call Ox43 to obtain the current
attributes of the file or directory that path points to. The attributes are
copied to the low-order byte of the attributes word. Attributes are repre­
sented by manifest constants, as described below:

Constant

_A-NORMAL

_A-RDONLY

_A-HIDDEN

_A-SYSTEM

_A- VOLID

_A-SUBDffi

_A-ARCH

• Return Value

Meaning

Normal. File can be read or written without res­
triction.

Read only. File cannot be opened for a "write,"
and a file with the same name cannot be created.

Hidden file. Cannot be found by a directory search.

System file. Cannot be found by a directory search.

Volume ID. Only one file can have this attribute,
and it must be in the root directory.

Su bdirectory.

Archive. Set whenever the file is changed, or
cleared by the MS-DOS BACKUP command.

If successful, the function returns o. Otherwise, it returns the MS-DOS
error code and set errno to ENOENT, indicating that the target file or
directory could be found.

• SeeAlso

dos setfileattr

201

_ dos_ get:6.leattr

• Example

#include <dos.h>

main 0

}

{
unsigned attribute;
int fh;

/* create file as read only */
if (_dos_creat("data" ,_A_RDONLY, &fh) != 0)

perror("Couldn't create data file");
else

printf("Created data file.\n");

/* get and print file attribute */
_dos_getfileattr("data",&attribute);
printf ("attribute: %d\n", attribute);
if «attribute & _A_RDONLY) != 0)

printf("Read only file\n");
else

printf ("Not a read only file. \n") ;

/* reset file attribute to normal file */
_dos_setfileattr("data",_A_NORMAL);
_dos_getfileattr("data",&attribute);
printf ("attribute: %d\n", attribute);
if «attribute & _A_RDONLY) != 0)

printf("Read only file\n");
else

printf ("Not a read only file. \n") ;

This program creates a file with the specified attributes then prints this
information before changing the file attributes back to normal.

202

_ dos_ getftime

• Summary

include < dos.h >

unsigned _ dOL getrtime(handle, date, t£me);
int handle; Target file
unsigned * date; Date-return buffer
unsigned *t£me; Time-return buffer

• Description

•

The _dos_ getftime routine uses system call Ox57 to get the date and
time that the file identified by handle was last written. The date and time
are returned in the words that date and time, respectively, point to. The
values appear in the :MS-DOS date and time format, which is:

Time Bits Meaning

0-4 Seconds/2 (0-29)

5-10 Minutes (0-59)

11-15 Hours (0-23)

Date Bits Meaning

0-4 Day (1-31)

5-8 Month (1-12)

9-15 Year (1980-2099)

Return Value

If successful, the function returns O. Otherwise, it returns the :MS-DOS
error code and sets errno to EBADF, indicating that an invalid file han­
dle was passed.

• See Also

dos setftime

203

_ dOB- getftime

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

main ()
{

}

unsigned date;
unsigned time;
int fh;

/* open file with _dos_open function */
if (_dos_open ("dgftime.c",O_RDONLY, &:fh) != 0)

perror("open failed on input file");
else

printf("open succeeded on input file\n");

/* modify file date and time */
_dos_getftime (fh, &:date, &:time);
printf ("date and time read\n");
printf ("date field (hex): %x\n", date);
printf ("time field (hex): %x\n", time);

/* close file with _dos_close function */
if (_dos_close(fh) != 0)

perror("close failed");
else

printf("file successfully closed\n");

This program displays the date and time fields for a file.

204

• Summary

include <dos.h>

void _ dos- gettime(t£me);
struct dostimEL t { Curren t system time:

unsigned char hour; 0-23
unsigned char minute; 0-59
unsigned char second; 0-59
unsigned char hsecond; 1/100 second; 0-99
} *t£me;

• Description

_ dos_ gettime

The _dos_gettime routine uses system call Ox2C to obtain the current
system time. The time is returned in a dostime_ t structure, defined in
dos.h.

• See Also

dos getdate, _dos_ setdate, _dos_ settime

• Example

#include <dos.h>

main ()
{

}

struct dosdate_t date;
struct dostime_t time;

/* get current date and time values */

_dos_getdate (&date);
_dos_gettime (&time);
printf(ffToday's date is %d-%d-%d\nff,date.month,date.day,

date.year);
printf(ffThe time is %d:%d\nff,time.hour,time.minute);

This program displays the current date and time values.

205

_ dOB- getvect

• Summary

inCIll~ <dos.h>
"-~~~"

void (interrupt far *_ dOB- getvect(t"ntnum))();
unsigned t"ntnum; Target interrupt vector

• Description

The _dos_ getvect routine uses system call Ox35 to get the current value
of the interrupt vector specified by intnum.

• Return Value

The function returns a far pointer to the current handler, if any, for the
intnum interrupt.

• See Also

_ chain_ intr, _dos_ setvect

206

_dos_keep

• Summary

include < dos.h >

void _ dOB- keep(retcode, memsize);
unsigned retcode; Exit status code
unsigned mems£ze; Allocated resident memory (in 16-byte paragraphs)

• Description

The _dos_ keep routine installs terminate-and-stay-resident programs
(TSR's) in memory, using system call Ox31. It first exits the calling pro­
cess, leaving it in memory, and returns the low-order byte of retcode to the
parent of the calling process. Before returning execution to the parent pro­
cess, _dos_ keep sets the allocated memory for the now-resident process
to memsize paragraphs (a paragraph is 16 bytes). Any excess memory is
returned to the system.

• See Also

_ chain_ intr, _dos_ getvect, _dos_ setvect

207

_dos-open

• Summary

include < dos.h >

unsigned _ dOB- open(path, mode, handle);
char *path; Path to an existing file
unsigned mode; Permissions
int *handle; Handle return buffer

• Description

The _dos_ open routine uses system call Ox3D to open the existing file
that path points to. The mode argument specifies the file's access, shar­
ing, and inheritance modes by ORing together manifest constants from
the three groups shown below. At most, one access mode and one shar­
ing mode may be specified at a time.

Constant

O_RDONLY
O_WRONLY
O_RDWR
SILCOMPAT
SILDENYRW
SILDENYWR
SILDENYRD
SILDENYNONE
0_ NOINHERIT

Mode

Access
Access
Access
Sharing
Sharing
Sharing
Sharing
Sharing
Inheritance

Meaning

Read only
Write only
Both read and write
Compatibility
Deny reading and writing
Deny writing
Deny reading
Deny neither
File is not inherited
by the child process

• Return Value

If successful, the function returns o. Otherwise, it returns the MS-DOS
error code and sets errno to one of the following manifest constants:

208

Constant Meaning

EINV AL Sharing mode specified when file sharing not installed,
or access-mode value is invalid

ENOENT Path or file not found

_dos_open

Too many open file handles E:MFILE

EACCES Access denied (path specifies a directory or a volume ID,
or opening read-only for write access)

• SeeAlso

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlih.h>
#include <stdio.h>
#include <dos.h>

main ()
{

}

int fh;

/* open file with _dos_open function */
if (_dos_open (tfdataltf,O_RDONLY, &fh) != 0)

perror(tfopen failed on input file tf);
else

printf(tfopen succeeded on input file\n tf);

/* close file with _dos_close function */
if (_dos_close(fh) != 0)

perror(tfclose failed tf);
else

printf(tffile successfully closed\n tf);

This program uses the MS-DOS I/O operations to open and close a file.

209

_dos-read

• Summary

include < dos.h >

int _ dos- read(handle, buffer, count, bytes);
int handle; File to read
void far .buffer; Buffer to write to
unsigned count; Number of bytes to read
unsigned .bytes; Number of bytes actually read

• Description

The _dos_ read routine uses system call Ox3F to read count bytes of data
from the file specified by handle and copy it to the buffer that buffer points
to. The integer that bytes points to will show the number of bytes actually
read, which may be less than the number requested in count. If the number
of bytes actually read is 0, it means the routine tried to read at EOF.

• Return Value

If successful, the function returns O. Otherwise, it returns the :MS-DOS
error code and sets errno to one of the following constants:

Constant

EBADF
EACCES

• See Also

210

Meaning

Invalid file handle

Access denied (handle is not open for read access)

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

main ()
{

}

int fh;
char buffer[50];
unsigned number_read;

/* open file with _dos_open function */
if (_dos_open (ltdread.clt/O_RDONLY, &fh) != 0)

perror(ltopen failed on input file lt);
else

printf(ltopen succeeded on input file\n lt);

/* read data with _dos_read function */
_dos_read (fh, buffer , 501 &number_read);
printf (ltbuffer contents: %s\nlt I buffer);

/* close file with _dos_close function */
if (_dos_close(fh) != 0)

perror(ltclose failed lt);
else

printf(ltfile successfully closed\n");

_dos-read

This program uses the MS-DOS I/O operations to read the contents of a
file.

211

_ dOB- setblock

• Summary

include <dos.h>

unsigned _ dOB- setblock(size, segment, maxsize);
unsigned size; New segment size
unsigned segment; Target segment
unsigned *maxsize; Maximum size buffer

• Description

The _dos_ setblock routine changes the size of segment, previously allo­
cated by _dos_ allocmem, to sz"ze paragraphs, using system call Ox4A. If
the request canot be satisfied, the maximum possible segment size is cop­
ied to the buffer that maxsz"ze points to.

• Return Value

The function returns 0 if successful, or an :MS-DOS error code otherwise.

• Return Value

The function returns 0 if successful. If the call fails, it returns the :MS-DOS
error code and sets errno to ENOMEM, indicating a bad segment value
was passed (one that does not correspond to a segment returned from a
previous _dos_ allocmem call) or invalid arena headers.

• See Also

dos allocmem, _dos_ freemem, realloc

212

_ dos_ set block

• Example

#include <dos.h>

unsigned segment;
unsigned maxsize;

main ()
{

}

/* Allocate 20 paragraphs */
if (_dos_allocmem (20, &segment) != 0)

printf ("allocation failed\n");
else

printf ("allocation successful\n");

/* Increase allocation to 40 paragraphs */
if (_dos_setblock (40, segment, &maxsize) != 0)

printf ("allocation increase failed\n");
else

printf ("allocation increase successful\n");

/* free memory */
if (_dos_freemem (segment) != 0)

printf ("free memory failed\n");
else

printf ("free memory successful\n");

This program allocates 20 paragraphs of memory, increases the allocation
to 40 paragraphs and then frees the memory space.

213

_ dOB- setdate

• Summary

include < dos.h >

unsigned _ dos-setdate(date);
struct dosda"te- t {

unsigned char day;
unsigned char month;
unsigned int year;
unsigned char dayofweek;
} date;

• Description

New date:
1-31
1-12
1980-2099
0-6 (0 = Sunday)

The _dos_setdate routine uses system call Ox2B to set the current system
date. The date is stored in the dosdate_ t structure that date points to,
defined in dos.h.

• Return Value

If successful, the function returns o. Otherwise, it returns a nonzero value
and sets errno to EINV AL, indicating an invalid date was specified.

• See Also

dos gettime, _dos_ setdate, _dos_ settime, gmtime, localtime,
mktime,strdate,strtime, time

214

_ dos_ setdate

• Example

#include <dos.h>

main ()
{

struct dosdate_t date;
struct dostime_t time;

/* get current date and time values*/

_dos_getdate (&date);
_dos_gettime (&time);
printf(ItToday's date is %d-%d-%d\nlt,date.month,date.day,

date.year);
printf(ItThe time is %d:%d\nlt,time.hour,time.minute);
/* set year to 1999 and the hour to 11 */
date.year = 1999;
time.hour 11;

/* modify date and time structures */
_dos_setdate (&date);
_dos_settime (&time);

/* print new dates and times */
printf(ltThe new date is %d-%d-%d\n",date.month,date.day,

date.year);
printf(ItThe new time is %d:%d\nlt,time.hour,time.minute);

}

This program changes the time and date values and displays the new date
and time values.

215

_ dOB- setdrive

• Summary

include < dos.h>

void _ dOB-setdrive(drivenum, drives);
unsigned drivenum; New default drive
unsigned * drives; Total drives available

• Description

The _dos_ setdrive routine uses system call OxOE to set the current de­
fault drive to the dr£venum argument: 1 = drive A, 2 = drive B, and so on.
The
dr£ves argument indicates the total number of drives in the system. If this
value is 4, for example, it doesn't mean they are designated A, B, C, and
D; it only means that four drives are in the system.

There is no return value. If an invalid drive number is passed, the function
fails without indication. Use the _dos_ getdrive routine to verify whether
the desired drive has been set.

• See Also

dos getdiskfree, _dos_ getdrive

216

_ dos_ set drive

• Example

#include <dos.h>

main ()
{

unsigned drive;
unsigned number_of_drives:

/* print current default drive information */
_dos_getdrive (&drive);
printf("The current drive is: %c\n",'A' + drive - 1);

/* set default drive to be drive A */
_dos_setdrive (1, &number_of_drives);

/* get new default drive information and
total number of drives in system */

_dos_getdrive (&drive);
printf("The current drive is: %c\n", 'A' + drive - 1);
printf ("number of disk drives: %d\n", number_of_drives);

}

This program prints the letter of the current drive, changes the default
drive to A, then returns the number of disk drives.

217

_ dos- setfileattr

• Summary

include <dos.h>

unsigned _ dOL setfileattr(path, attributes);
char *path; Full path of target file/directory
unsigned attributes; New attributes

• Description

The _dos_setfileattr routine uses system call Ox43 to set the attributes
of the file or directory that path points to. The actual attributes are con­
tained in the low-order byte of the attrz'bute word. Attributes are repre­
sented by manifest constants, as described below:

Constant

_A-NORMAL

_A-RDONLY

_A-HIDDEN

_A-SYSTEM

_A- VOLID

_A-SUBDffi

_A-ARCH

Meaning

Normal. File can be read or written to without res­
triction.

Read only. File cannot be opened for a "write,"
and a file with the same name cannot be created.

Hidden file. Cannot be found by a directory search.

System file. Cannot be found by a directory search.

Volume ID. Only one file can have this attribute,
and it must be in the root directory.

Subdirectory.

Archive. Set whenever the file is changed, or
cleared by the MS-DOS BACKUP command.

• Return Value

The function returns 0 if successful. Otherwise, it returns the MS-DOS
error code and sets errno to one of the following:

218

Constant Meaning

ENOENT No file or directory matching the target was found.

EACCES Access denied; cannot change the volume ID or the su b­
directory.

_ dOB- setfileattr

• SeeAlso

dos getfileattr

• Example

#include <dos.h>

main ()
{

}

unsigned attribute;
int fh;

/* create file as read only */
if (_dos_creat("data" ,_~RDONLY, 6(fh) != 0)

perror("Couldn't create data file");
else

printf("Created data file.\n");

/* get and print file attribute */
_dos_getfileattr("data",6(attribute);
printf ("attribute: %d\n", attribute);
if «attribute 6(_A_RDONLY) != 0)

printf ("Read only file\n");
else

printf("Not a read only file.\n");

/* reset file attribute to normal file */
_dos_setfileattr("data",_A_NORMAL);
_dos_getfileattr("data",6(attribute);
printf ("attribute: %d\n", attribute);
if «attribute 6(_A_RDONLY) != 0)

printf ("Read only file\n");
else

printf("Not a read only file.\n");

This program creates a file with the specified attributes, then prints a mes­
sage describing these attributes, then changes the file attributes back to
normal.

219

_ dos- setftime

• Summary

include <dos.h>

unsigned _ dOB- setftime(handle, date, time);
int handle; Target file
unsigned date; Date of last write
unsigned time; Time of last write

• Description

The _dos_setftime routine uses system call Ox57 to set the date and time
at which the file identified by handle was last written to. Those values
appear in the MS-DOS date and time format, which is:

Time Bits

0-4

5-10

11-15

Date Bits

0-4

5-8

9-15

• Ret urn Value

Meaning

Seconds/2 (0-29)

Min utes (0-59)

Hours (0-23)

Meaning

Day (1-31)

Month (1-12)

Year (1980-2099)

If successful, the function returns O. Otherwise, it returns the MS-DOS
error code and sets errno to EBADF, indicating that an invalid file han­
dle was passed.

• See Also

dos getftime

220

_ dos- setftime

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

main ()
{

}

unsigned date = Ox421;
unsigned time = OxCOF;
int fh;

/* open file with _dos_open function */
if (_dos_open ("dsfilt.c",O_RDONLY, &fh) != 0)

perror("open failed on input file");
else

printf("open succeeded on input file\n");

/* modify file date and time */
_dos_setftime (fh, date, time);
printf ("date and time changed\n");

/* close file with _dos_close function */
if (_dos_close(fh) != 0)

perror("close failed"):
else

printf("file successfully closed\n");

This program changes the date and time fields for a file.

221

_ dOB- settime

• Summary

include <dos.h>

unsigned _ dOL settime(time);
struct dostime- t { New time:

unsigned char hour; 0-23
unsigned char minute; 0-59
unsigned char second; 0-59
unsigned char hsecond; Hundredths of a second; 0-99
} IIctime;

• Description

The _dos_ settime routine uses system call Ox2D to set the current time
to the value stored in the dostime- t structure that tz'me points to, as
defined in dos.h.

• Return Value

If successful, the function returns o. Otherwise, it returns a nonzero value
and sets errno to EINV AL, indicating an invalid time was specified.

• SeeAlso

dos getdate, _dos_ gettime, _dos_ setdate, gmtime, localtime,
mktime, Jtrdate, Jtrtime

222

_ do&- settime

• Example

#include <dos.h>

main 0
{

}

struct dosdate_t date;
struct dostime_t time;

/* get current date and time values */

_dos_getdate (&date);
_dos_gettime (&time);
printf("Today's date is %d-%d-%d\n",date.month,date.day,

date.year);
printf("The time is %d:%d\n",time.hour,time.minute);
/* set year to 1999 and the hour to 11 */
date.year = 1999;
time.hour 11;

/* modify date and time structures */
_dos_setdate (&date);
_dos_settime (&time);

/* print new dates and times */
printf("The new date is %d-%d-%d\n", date. month, date. day,

date.year);
printf("The new time is %d:%d\n",time.hour,time.minute);

This program changes the time and date values.

223

_ dOB- setvect

• Summary

include < dos.h >

void _ dOB- setvect(intnum, void(handler)O);
unsigned intnum; Target interrupt vector
interrupt far .handler; Interrupt handler to assign intnum to

• Description

The _dos_setvect routine uses system call Ox25 to set the current value
of the interrupt vector z'ntnum to the function that handler points to. Sub­
sequently, whenever the z'ntnum interrupt is generated, the handler routine
will be called. If handler is a C function, it must have been previously de­
clared with the interrupt attribute. Otherwise, you must make sure that
the function satisfies the requirements for an interrupt-handling routine.

• See Also

chain intr, _dos_ getvect, _dos_ keep

224

dos write

• Summary

include <dos.h>

unsigned _ dos- write(handle, buffer, count, bytes);
int handle; File to write to
void far *buffer; Buffer to write from
unsigned count; Number of bytes to write
unsigned * bytes; Number of bytes actually written

• Description

The _dos_ write routine uses system call Ox40 to write into the file that
handle references count bytes of data from the buffer to which buffer
points. The integer that bytes points to will be the number of bytes actu­
ally written, which may be less than the number requested.

• Return Value

If successful, the function returns o. Otherwise, it returns the MS-DOS
error code and sets errno to one of the following manifest constants:

Constant

EBADF
EACCES

• See Also

Meaning

Invalid file handle

Access denied (handle references a file not open for write
access)

225

_dos_write

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

char out_buffer [10J

main 0

Ithello lt ;

{
int fh;
char in_buffer[10J;
unsigned n_read, n_written;

/* open file with _dos_open function */
if (_dos_open (ltdata11t, O_RDWR, &fh) != 0)

perror(ltopen failed on input file tr);
else

printf(ltopen succeeded on input file\n lt);

/* write data with _dos_write function */
_dos_write (fh, out_buffer, 10, &n_written);
printf (ltnumber of characters written: %d\n lt , n_written);

}

/* close file with _dos_close function */
if (_dos_close(fh) != 0)

perror(ltclose failed lt);
else

printf(trfile successfully closed\ntr);

This program uses the MS-DOS I/0 operations to write information
to a file.

226

• Summary

include <dos.h>

int dosexterr (buffer);
struct DOSERROR {

int exterror; AX register contents
char class; BH register con ten ts
char action; BL register contents
char locus; CH register con ten ts
} *buffer;

• Description

dosexterr

The dosexterr function obtains the register values returned by the MS­
DOS system call Ox59 and stores the values in the structure that buffer
points to. This function is useful when making system calls under MS-DOS
versions 3.0 or later, which offer extended error handling.

The structure type DOSERROR is defined in dos.h. Giving a NULL
pointer argument causes dosexterr to return the value in AX without
filling in the structure fields. See the MS-DOS Programmer's Reference for
more information on the register contents.

• Return Value

The dosexterr function returns the value in the AX register (identical to
the value in the exterror structure field).

• SeeAlso

perror

227

dosexterr

Note

The dosexterr function should be used only under MS-DOS versions
3.0 or later .

• Example

#include <dos.h>
#include <fcntl.h>
#include <stdio.h>

struct DOSERROR doserror;
int fd;

main ()
{

}

if ((fd = open("test.dat", O_RDONLY» == -1)
{

}

dosexterr(&doserror);
printf("error=%d, class=%d, action=%d, locus=%d\n",

doserror.exterror, doserror.class, doserror.action,
doserror.locus);

else
printf("Open succeeded so no extended information printed");

This program tries to open the file test. dat. If the attempted open
operation fails, the program uses dosexterr to display extended error
information.

228

• Summary

include <io.h>

int dup(handle);
int handle;

dup,dup2

Required only for function declarations

Creates second handle for open file
Handle referring to open file

int dup2(handlel, hand/e2); Assigns handle2 to handlel's file

int handlel;
int handle2;

• Description

Handle referring to open file
Any handle value

The dup and dup2 functions cause a second file handle to be associated
with a currently open file. Operations on the file can be carried out using
either file handle, since all handles associated with a given file use the
same file pointer. The type of access allowed for the file is unaffected by
the creation of a new handle.

The dup function returns the next available file handle for the given file.
The dup2 function forces handle2 to refer to the same file as handle1. If
handle2 is associated with an open file at the time of the call, that file is
closed.

• Return Value

The dup function returns a new file handle. The dup2 function returns 0
to indicate success. Both functions return -1 if an error occurs and set
errno to one of the following values:

Value

EBADF
EMFILE

Meaning

Invalid file handle

No more file handles available (too many open
files)

229

dup,dup2

• See Also

close, creat, open

• Example

#include <io.h>
#include <stdlib.h>
#include <stdio.h>

int old;
FILE *new;

main 0
{

}

old = dup(l); /* "old" now refers to "stdout" */
/* Note: file handle 1 == "stdout" */

if (old == -1)
{

}

perror("dup(l) failure");
exit(l);

write (old, "This goes to stdout first\n" , 27);
if (new = fopen ("data", "w"» == NULL)

{
puts("Can't open file \"data\"\n");
exit(l);

}
/* stdout now refers to file "data" */

if (-1 == dup2(fileno(new) , 1»
{

}

perror("Can't dup2 stdout");
exit(l);

puts("This goes to file \"data\"\n");
fflush(stdout); /* Flush stdout stream buffer so

it goes to correct file */
fclose(new);
dup2(01d, 1); /* Restore original stdout */
puts("This goes to stdout");

This program uses the variable old to save the original stdout. It then
opens a new file named new and forces stdout to refer to it. Finally, it
restores stdout to its original state.

230

ecvt

• Summary

include <stdlib.h> Required only for function declarations

char *ecvt(value, count, dec, s£gn);
double value; Number to be converted
int count; Number of digits stored
int *dec; Stored decimal point position
int *s£gn; Sign of converted number

• Description

The ecvt function converts a floating-point number to a character string.
The value is the floating-point number to be converted. The ecvt function
stores up to count digits of value as a string and appends a null character
('\ 0'). If the number of digits in value exceeds count, the low-order digit is
rounded. If there are fewer than count digits, the string is padded with
zeros.

Only digits are stored in the string. The position of the decimal point and
the sign of value can be obtained from dec and sign after the call. The
argument dec points to an integer value giving the position of the decimal
point with respect to the beginning of the string. A ° or negative integer
value indicates that the decimal point lies to the left of the first digit. The
argument sign points to an integer indicating the sign of the converted
number. If the integer value is 0, the number is positive. Otherwise, the
number is negative.

• Return Value

The ecvt function returns a pointer to the string of digits. There is no
error return.

• See Also

atof, atoi, atol, fcvt, gcvt

231

ecvt

Note

The ecvt and fcvt functions use a single statically allocated buffer for
the conversion. Each call to one of these routines destroys the result
of the previous call .

• Example

#include <stdlib.h>

int decimal, sign;
char *buffer;
int precision = 10;

main ()

{
/* buffer will contain "3141592654"
** decimal = 1, sign = 0
*/

}

buffer = ecvt(3.1415926535,precision,&decimal,&sign);
printf("buffer= \"%s\", decimal = %d, sign = %d\n", \

buffer, decimal, sign);

This program uses ecvt to convert the constant 3.141592654 from a
floating-point number to a character string. It then displays the resulting
string.

232

_ellipse

• Summary

include <graph.h>

short far _ ellipse(control, xl, yl, x2, y2);
short control; Fill flag
short xl, yl; Upper-left corner of bounding rectangle
short x2, y2; Lower-right corner of bounding rectangle

• Description

The _ ellipse function draws an ellipse. The border is drawn in the current
color. The center of the ellipse is the center of the bounding rectangle de­
fined by the logical points (xl, yl) and (x2, y2).

The control argument can be one of the following manifest constants:

Constant Action

_ GFILLINTERIOR

_GBORDER
Fills the ellipse using the current fill mask

Does not fill the ellipse

If the bounding-rectangle arguments define a point or a vertical or hor­
izontalline (xl = x2 or yl = y2), no figure is drawn.

• Return Value

The - ellipse function returns a nonzero value if the ellipse is drawn suc­
cessfully; otherwise, it returns O.

• SeeAlso

_arc, _lineto, _pie, _rectangle, _setcolor, _setfillmask

233

_ellipse

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

}

_setvideomode(_MRES16COLOR);
_ellipse(_GFILLINTERIOR, 80, 50, 240, 150);
while (!kbhit(»; /* Strike any key to clear screen */
_setvideomode (_DEFAULTMODE);

This program draws the shape shown in FigureR.2.

Figure R.2 Output of _ellipse Program

234

_enable

• Summary

include <dos.h>

void _ enable(void}; Enables interrupts

• Description

The _enable routine enables interrupts by executing an 8086 STI machine
instruction.

• See Also

_disable

235

eof

• Summary

include <io.h>

int eof(handle);
int handle;

• Description

Required only for function declarations

Handle referring to open file

The eof function determines whether the end-of-file has been reached for
the file associated with handle.

• Return Value

The eof function returns the value 1 if the current position is end-of-file, 0
if it is not. A return value of -1 indicates an error; in this case, errno is
set to EBADF, indicating an invalid file handle.

• See Also

clearerr, feof, ferror, perror

• Example

#include <io.h>
#include <fcntl.h>

int fh, count;
char buf[lO];

main ()
{
int total = 0;

fh = open("data",O_RDONLY);

236

}

/* Cycle until end of file reached: */
while (! eof (fh»

{

/* Attempt to read in 10 bytes: */

}

if ((count = read(fh, buf, 10» == -1){
perror(ftRead error ft);
break;

}
total += count; /* Total up actual bytes read */

printf (ftNumber of bytes read = %d\n ft , total);

eof

This program opens a file named data and reads data from the file until
the end of the file is reached. It then uses the function named eo f to de­
termine when the end of the file was found. If the read function reports an
error, reading is terminated and the current total is reported.

237

execl - execvpe

• Summary

include <process.h> Required only for function declarations

int execl(path, argO, argl, ... argn, NULL);

int execle(path, argO, argl, ... argn, NULL, envp);

int execlp(path, argO, argl, ... argn, NULL);

int execlpe(path, argO, argl, ... argn, NULL, envp);

int execv(path, argv);

int execve(path, argv, envp);

int execvp(path, argv);

int execvpe(path, argv, envp);

char *path;
char *argO,*argl, ... *argn;
char *argv[];
char *envp[];

• Description

Path name of file to be executed
List of pointers to arguments
Array of pointers to arguments
Array of pointers to environment settings

The exec functions load and execute new child processes. When the call is
successful, the child process is placed in the memory previously occupied
by the calling process. Sufficient memory must be available for loading and
executing the child process.

All of the functions in this family use the same exec function; the letter(s)
at the end determine the specific variation:

Letter

p

1

238

Variation

Uses the PATH environment variable to find the file to be
executed

Lists command-line arguments separately

v

e

execl - execvpe

Passes to the child process an array of poin ters to
command-line arguments

Passes to the child process an array of pointers to environ­
men t argumen ts

The path argumen t specifies the file to be execu ted as the child process. It
can specify a full I?ath (from the root), a partial path (from the current
working directory), or just a file name. If path does not have a file-name
extension or does not end with a period (.), the exec function searches for
the file; if unsuccessful, it tries the extensIOn .COM, then .EXE. If path
has an extension, only that extension is used. If path ends with a period,
the exec calls search for path with no extension. The execlp, execlpe,
execvp, and execvpe routines search for path (using the same procedures)
in the directories specified by the PATH environment variable.

Arguments are passed to the new process by giving one or more pointers to
character strings as arguments in the exec call. These character strings
form the argument list for the child process. The combined length of the
strings forming the argument list for the new process must not exceed 128
bytes. The terminating null character ('\ 0') for each string is not included
in the count, but space characters (inserted automatically to separate the
arguments) are counted.

The argument pointers can be passed as separate arguments (execl,
execle, execlp, and execlpe) or as an array of pointers (execv, execve,
execvp, and execvpe). At least one argument, argO, must be passed to
the child process (which sees it as argv[O]). Usually, this argument is a
copy of the path argument. (A different value will not produce an error.)
Under versions of MS-DOS earlier than 3.0, the passed value of argO is not
available for use in the child process. However, under MS-DOS Version 3.0
and later, the path is available as argO.

The execl, execle, execlp, and execlpe calls are typically used when the
number of arguments is known in advance. The argument argO is usually a
pointer to path. The arguments arg1 through argn point to the character
strings forming the new argument list. A null pointer must follow argn to
mark the end of the argument list.

The execv, execve, execvp, and execvpe calls are useful when the num­
ber of arguments to the new process is variable. Pointers to the arguments
are passed as an array, ar~v. The argument argv[O] is usually a pointer to
path. The arguments argvlll through argv[n] point to the character strings
forming the new argument fist. The argument argv[n+l] must be a null
pointer to mark the end of the argument list.

239

execl - execvpe

Files that are open when an exec call is made remain open in the new pro­
cess. In the execl, execlp, execv, and execvp calls, the child process in­
herits the environment of the parent. The execle, execlpe, execve, and
execvpe calls allow the user to alter the environment for the child process
by passing a list of environment settings through the envp argument. The
argument envp is an array of character pointers, each element of which
(except for the final element) points to a null-terminated string defining an
environment variable. Such a string usually has the form

NAME= value

where N~ is the name of an environment variable and value is the
string value to which that variable is set. (Note that value is not enclosed
in double quotation marks.) The final element of the envp array should be
NULL. When envp itself is NULL, the child process inherits the environ­
ment settings of the parent process .

• Return Value

The exec functions do not normally return to the calling process. If an
exec function returns, an error has occurred and the return value is -1.
The errno variable is set to one of the following values:

240

Value

E2BIG

EACCES

EMFILE

ENOENT
ENOEXEC

ENOMEM

Meaning

The argument list exceeds 128 bytes or the space
required for the environment information exceeds
32K.

The specified file has a locking or sharing violation
(MS-DOS Versions 3.0 or later).

Too many files open (the specified file must be
opened to determine whether it is executable).

File or path name not found.

The specified file is not executable or has an
invalid executable-file format.

Not enough memory is available to execute the
child process; or the available memory has been
corrupted; or an invalid block exists, indicating
that the parent process was not allocated properly.

execl - execvpe

• See Also

abort, atexit, exit, _ exit, onexit, spawn functions, system

Note

The exec calls do not preserve the translation modes of open files. If
the child process must use files inherited from the parent, the setmode
routine should be used to set the translation mode of these files to the
desired mode.

Signal settings are not preserved in child processes created by calls to
exec routines. The signal settings are reset to the default in the child
process .

• Example

#include <stdio.h>
#include <process.h>

char *my_env[] = {

main (argc, argv)
int argc;
char *argv[];

{
char *args[4];
int result;

"THIS=environment will be",
"PASSED=to child.exe by the",
"EXECLE=and" ,
"EXECLPE=and" ,
"EXECVE=and" ,
"EXECVPE=functions" ,
NULL
};

args [0]
args [1]
args [2]
args [3]

"child"; /* Set up parameters to send */
= "execv??";
= "two";
= NULL;

241

execl - execvpe

}

switch (argv[lJ [OJ) /* Based on first letter of argument */
{

}

case '1':
execl ("child.exe","child ","execl","two",NULL);
break;

case '2':
execle ("child.exe","child","execle","two",NULL,my_env);
break;

case '3':
execlp ("child.exe","child","execlp","two",NULL);
break;

case '4':
execlpe{"child.exe","child","execlpe","two",NULL,my_env);
break;

case '5':
execv ("child.exe",args);
break;

case '6':
execve ("child.exe",args,my_env);
break;

case '7':
execvp ("child.exe",args);
break;

case '8':
execvpe ("child.exe", args,my_env);
break;

default:
pr int f ("Enter a number from 1 to 8 as a "

"command line parameter.");
exit{l);

printf{"Process was not spawned.\n");
printf("Program 'child' was not found.");

This program accepts a number in the range 1 through 8 from the com­
mand line. Based on the number it receives, it executes one of the eight
different procedures that spawn the process named child. For some of
these procedures, the child. exe file must be in the same directory; for
others, it need only be in the same path.

242

• Summary

include <process.h>
include <stdlib.h>

void exit(8tatu8};

• Description

exit, _exit

Required only for function declarations
Use either process.h or stdlib.h

Terminates after closing files

Terminates without flushing stream buffers

Exit status

The exit and _ exit functions terminate the calling process. The exit func­
tion first calls the functions registered by atexit and onexit, then flushes
all buffers and closes all open files before terminating the process. The
_exit function terminates the process without processing atexit or
onexit functions or flushing stream buffers. The status value is typically
set to 0 to indicate a normal exit and set to some other value to indicate
an error.

Although the exit and _ exit calls do not return a value, the low-order
byte of status is made available to the waiting parent process, if there is
one, after the calling process exits. The status value is available to the
MS-DOS batch command IF_ERRORLEVEL.

• Return Value

There is no return value.

• See Also

abort, atexit, exec functions, onexit, spawn functions, system

243

exit, _exit

• Example

#include <stdio.h>

main ()
{

}

FILE *stream;
char aChar;

stream = fopen ("data", "w+");
printf("About to exit ... \nFlush buffers for the");
printf(" file 'data'? (yin): ");
aChar = getch 0 ;
aChar = toupper(aChar);
fprintf(stream, "This will appear in \"data\" only if ");
fprintf (stream, "buffers are flushed. \n") ;
if (aChar == 'Y'){

}

printf("\nExiting and flushing buffers");
exit(O);

else{

}

printf("\nExiting, but buffers are not flushed");
_exit(O);

This program opens the file named data, then prompts the user to choose
how to close the file. Based on the user's choice, the program closes the file
using the exit function, which flushes buffers, or the _ exit function, which
does not.

244

exp

• Summary

include <math.h>

double exp(x);
double X;

• Description

Floating-point value

The exp function returns the exponential function of its floating-point
argument x.

• Return Value

The exp function returns eX. The function returns HUGE_ VAL on
overflow, and sets errno to ERANGE; on underflow, exp returns 0, but
does not set errno.

• See Also

log

• Example

#include <math.h>

main 0
{

double x/y;
x = 2.302585093:
y = exp(x);
printf (liThe exp (%f) = %f" I X, y) ;

}

This program displays the value of e2.302585093.

/* y = 40 */

245

_expand

• Summary

include <malloc.h>

void *_ expand(block, s£ze);
void *block;

size- t size;

• Description

Required only for function declarations

Pointer to previously allocated memory block

New size in bytes

The _ expand function changes the size of a previously allocated memory
block by attempting to expand or contract the block without moving its
location in the heap. The block argument points to the beginning of the
block. The s£ze argument gives the new size of the block, in bytes. The
c?ntents of the block are unchanged up to the shorter of the new and old
SIzes.

The block argument can also point to a block that has been freed, as long
as there has been no intervening call to calloc, _expand, halloc, malloe,
or realloc since the block was freed. If block points to a freed block, the
block remains free after the call to _ expand.

• Return Value

The _ expand function returns a void pointer to the reallocated memory
block. Unlike realloe, _ expand cannot move a block to change its size.
This means the block argument to _ expand is the same as the return
value if there is sufficient memory available to expand the block without
moving it.

The return value is NULL if there is insufficient memory available to ex­
pand the block to the given size without moving it. In this case, the item
block points to will have been expanded as much as possible in its current
location.

The storage space pointed to by the return value is guaranteed to be suit­
ably aligned for storage of any type of object. The new size of the item can
be checked with the _ msize function. To get a pointer to a type other
than char, use a type cast on the return value.

246

• See Also

calloc, free, halloc, malloc, _ msize, realloc

• Example

#include <stdio.h>
#include <malloc.h>

main ()
{

long *oldptr;
size_t newsize = 64000;

/* Get original memory: */
oldptr = (long *)malloc(10000*sizeof(long»;
printf("Size of memory block pointed to by oldptr

_msize(oldptr»;

/* Test whether _expand succeeded: */
if (_expand (oldptr,newsize) != NULL)

_expand

%u\n",

printf("Expand was able to increase block to %u\n",
_msize(oldptr»;

/* Otherwise _expand failed: */
else

printf("Expand was able to increase block to only %u\n",
_msize(oldptr»;

}

Sample output:

Size of memory block pointed to by oldptr = 40000
Expand was able to increase block to only 44718

This program allocates a block of memory for oldptr and uses _ msize
to display the size of that block. Next, it uses expand to expand the
amount of memory used by oldptr. Finally, it calls _ffisize again to
display the new amount of memory allocated to oldptr.

247

fabs

• Summary

include <math.h>

double fabs(x);
double X;

• Description

Floating-point value

The fabs function returns the absolute value of its floating-point argu­
ment.

• Return Value

The fabs function returns the absolute value of its argument. There is no
error return.

• See Also

abs, cabs, labs

• Example

#include <stdio.h>
#include <math.h>

main ()
{

double x,y;

x = -3.141593;
Y = fabs(x);
printf("The fabs(%f) is %f",x,y);

}

/* y = 3.141593 */

This program displays the absolute value of -3.141593.

248

• Summary

include <stdio.h>

int fclose(stream);
FILE .stream;

int fcloseall(void);

• Description

Closes an open stream
Target FILE structure

Closes all open streams

fclose, fcloseall

The fclose function closes the given stream. The fcloseall function closes
all open streams except stdin, stdout, stderr, stdaux, and stdprn. It
also closes any tempory files created by tmpfile. All buffers associated
with the stream are flushed prior to closing. System-allocated buffers are
released when the stream is closed. Buffers assigned by the user with set­
buf and setvbuf are not automatically released.

• Return Value

The fclose function returns 0 if the stream is successfully closed. The
fcloseall function returns the total number of streams closed. Both func­
tions return EOF to indicate an error.

• SeeAlso

close, fdopen, fHush, fopen, freopen

249

fclose, fcloseall

• Example

#include <stdio.h>

FILE *stream, *stream2;

main ()
{

}

int numclosed;

/* Two files are opened: */
stream = fopen("data", "r");
stream2 = fopen("data2","w+");

if (stream == NULL)
printf("The file data was not opened\n");

else
{

fclose(stream);
printf("The file 'data' closed\n");

}

/* All other files are closed: */
numclosed = fcloseall();

printf("The function fcloseall closed %u files\n", numclosed);

This program opens files named data and data2. It uses fclose to close
data and fcloseall to close all remaining files.

250

• Summary

include <stdlib.h>

char *fcvt(value, count, dec, sign);
double value;
int count;
int *dec;
int *sign;

• Description

fcvt

Required only for function declarations

Number to be converted
Number of digits after decimal point
Pointer to stored decimal-point position
Pointer to stored sign indicator

The fcvt function converts a floating-point number to a character string.
The value is the floating-point number to be converted. The fcvt function
stores the digits of value as a string and appends a null character ('\ 0').
The argument count specifies the number of digits to be stored after the
decimal point. Excess digits are rounded off to count places. If there are
fewer digits of precision than count, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and
the sign of value can be obtained after the call from dec and s£gn. The
argument dec points to an integer value giving the position of the deci­
mal point with respect to the beginning of the string. A zero or negative
integer value indicates that the decimal point lies to the left of the first
digit. The argument s£gn points to an integer indicating the sign of value.
The integer is set to 0 if value is positive and is set to a nonzero number if
value is negative.

• Return Value

The fcvt function returns a pointer to the string of digits. There is no
error return.

• See Also

ato~ atoi, atol, ecvt, gcvt

251

fevt

Note

The ecvt and fcvt functions use a single statically allocated buffer for
the conversion. Each call to one of these routines destroys the result of
the previous call .

• Example

#include <stdlib.h>

int decimal, sign;
char *buffer;
int precision = 10;

main 0
{
/* buffer to contain "31415926535", decimal = 1, sign = 0 */
buffer = fcvt(3.1415926535,precision,&decimal,&sign);
printf("buffer= \"%s\", decimal = %d, sign = %d\n", buffer,

decimal, sign);
}

This program converts the constant 3.1415926535 to a string and sets the
pointer *buffer to point to that string.

252

fdopen

• Summary

include <stdio.h>

FILE *rdopen(handle, type);
int handle; Handle referring to open file

Type of access permitted char *type;

• Description

The fdopen function associates an input/output stream with the file
identified by handle, thus allowing a file opened for "low-level" I/O to be
buffered and formatted. (See Section 4.7, "InJut and Output," for an
explanation of stream I/O and low-level I/O. The type character string
specifies the type of access requested for the Ie, as follows:

Type

"r"
"w"

"a"

"r+ "
"w+"

"a+"

Important

Description

Opens for reading (the file must exist).

Opens an empty file for writing. If the given file exists, its
contents are destroyed.

Opens for writing at the end of the file (appending);
creates the file first if it doesn't exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the
given file exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it
doesn't exist.

Use the "w" and "w+" modes with care, as they Can destroy exist­
ing files.

The specified type must be compatible with the access mode and/or shar­
ing modes with which the file was opened. It is the user's responsibility to
ensure that this compatibility is maintained.

253

fdopen

When a file is opened with "a" or "a+" type, all write operations take
place at the end of the file. Although the file pointer can be repositioned
using fseek or rewind, the file pointer is always moved back to the end of
the file before any write operation is carried out. Thus, existing data can­
not be overwritten.

When the "r+", "w+", or "a+" type is specified, both reading and
writing are allowed (the file is said to be open for "update"). However,
when switching from reading to writing or vice versa, there must be an
intervening fsetpos, fseek, or rewind operation. The current position
can be specified for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters can
be appended to the type string or inserted before the + character to
specify the translation mode for new lines. For example, r+b is the same
as rb+.

Mode

t

b

Meaning

Opens in text (translated) mode. Carriage-return-
line-feed (CR-LF) combinations are translated into a single
line feed (LF) on input; line-feed characters are translated to
carriage-return-line-feed combinations on output. Also,
CTRL+Z is interpreted as an end-of-file character on input. In
files opened for reading, or for reading and writing, the run­
time library checks for a CTRL+Z character and removes it, if
possible. This is done because using the fseek and ftell func­
tions to move within a file that ends with CTRL+Z may cause
fseek to behave improperly near the end of the file.

The t option is not part of the ANSI standard for open, but
is a Microsoft extension and should not be used where ANSI
portability is desired.

Open in binary (untranslated) mode; the above translations
are suppressed.

If t or b is not given in the type string, the translation mode is defined by
the default mode variable Jmode .

• Return Value

The fdopen function returns a pointer to the open stream. A null pointer
value indicates an error. .

254

• See Also

dup, dup2, fclose, fc lose all , fopen, freopen, open

• Example

#include <stdio.h>
#include <fcntl.h>

FILE *stream;
int fh;

main 0
{

fh = open("data",O_RDONLY);

/* Buffer associated with "fh": */
stream = fdopen(fh,"r");
if (stream == NULL)

printf("Error in fdopen attempt.\n");
else

fdopen

printf("Input buffer successfully associated with 'data''');
}

This program opens a file named data and uses fdopen to associate an
input stream with data.

255

feof

• Summary

include <stdio.h>

int feof'(stream);

FILE >fcstream;

• Description

Pointer to FILE structure

The feor routine (implemented as a macro) determines whether the end of
stream has been reached. Once end-of-file is reached, read operations re­
turn an end-of-file indicator until the stream is closed or rewind is called
against it.

• Return Value

The feor function returns a nonzero value after the first read operation
that attempts to read past the end of the file. It returns 0 if the curren t
position is not end-of-file. There is no error return.

• See Also

clearerr, eof, ferror, perror

• Example

#include <stdio.h>
#define BUF_SIZE 100

char string[BUF_SIZE];
FILE *stream;
main ()
{

}

stream = fopen("data", "r");
while (fgets(string,BUF_SIZE,stream»
printf ("%S", string) ;

if (feof(stream»
printf("EOF reached\n");

else
printf("Error reading stream\n");

This program uses fee f to indicate when it reaches the end of the file
data.

256

• Summary

include <stdio.h>

int ferror(stream};

FILE Ifcstream;

• Description

ferror

Pointer to FILE structure

The ferror routine (implemented as a macro) tests for a reading or writ­
ing error on stream. If an error has occurred, the error indicator for the
stream remains set until the stream is closed or rewound, or until clearerr
is called against it.

• Return Value

If no error has occurred on stream, ferror returns O. Otherwise, it returns
a nonzero value.

• See Also

clearerr, eof, feof, fopen, perror

• Example

#include <stdio.h>

FILE *stream;
char *string = "This should never be written";
main ()
{
stream = fopen("data", "r");
fprintf (stream, "%s\n", string) ;
if (ferror(stream» {
fprintf(stderr, "Write error\n");
clearerr(stream);

}
}

This program opens a file named data for reading and tries to write to it,
causing an error. The program uses ferror to detect the error, then clears
the error.

257

mush

• Summary

include <stdio.h>

int mush{stream);
FILE *stream;

• Description

Pointer to FILE structure

If stream is open for output, mush writes to the associated file the con­
tents of the buffer associated with the stream. If the stream is open for
input, mush clears the contents of the buffer. The mush function negates
the effect of any prior call to ungetc against stream.

The stream remains open after the call. The mush function has no effect
on an unbuffered stream.

• Return Value

The mush function returns the value 0 if the buffer was successfully
flushed. The value 0 is also returned in cases where the specified stream
has no buffer or is open for reading only. A return value of EOF indicates
an error.

• See Also

fclose, Hushall, setbuf

Note

258

Buffers are automatically flushed when they are full, when the stream
is closed, or when a program terminates normally without closing the
stream.

• Example

#include <stdio.h>
#include <process.h>

FILE *stream;
char buffer[BUFSIZ];

main ()
{
int result;

/* Redirect stdout to "data" */
stream = freopen("data", "w", stdout);

printf("This is the output of child:\n\n");

/* Now make sure printf() output goes to
** "data" before child's output does:
*/
result = fflush(stream);

mush

spawnl(P_WAIT, "child.exe", "child", "one", "two", NULL);

printf("--\nIt);

}

This program first redirects stdout to a file named data. It uses printf to
write to data, then uses mush to guarantee that the output from printf
is written before the output from the child process.

259

fgetc, fgetchar

• Summary

include <stdio.h>

int fgetc(stream);
FILE *stream;

int fgetchar(void);

• Description

Reads a character from stream
Pointer to FILE structure

Reads a character from stdin

The fgetc function reads a single character as an unsigned int character
converted to an int from the input stream at the current position. The
function then increases the associated file pointer (if any) to point to the
next character. The fgetchar function is equivalent to fgetc(stdin).

• Return Value

The fgetc and fgetchar functions return the character read. A return
value of EOF may indicate an error or end-of-file; however, the EOF
value is also a legitimate integer value, so feof or ferror should be used
to verify any error or end-of-file condition.

• See Also

fputc, fputchar, getc, getchar

Note

260

The fgetc and fgetchar routines are identical to getc and getchar,
bu t are functions, not macros.

• Example

#include <stdio.h>

FILE *stream;
char buffer[81];
int i;
int ch;

main 0
{

/* Open file to read line from: */
stream = fopen("fgetc.c", "r");

/* Read in first 80 characters and */
/* place them in "buffer": */

ch = fgetc(stream);

fgetc, fgetchar

for (i=O; (i < 80)&&(feof(stream)
buffer [i]=ch;

O)&&(ch != '\n');i++){

ch = fgetc(stream);
}

buffer[i] = '\0'; /* Add null to end string */
printf ("%s\n", buffer);

}

This program uses getc to read the first 80 input characters (or until the
end of input) and place them into a string named buffer.

261

fgetpos

• Summary

include <stdio.h>

int fgetpos(stream, pos);
FILE *stream; Target stream
fpos_ t *pos; Position indicator storage

• Description

The fgetpos function gets the current value of stream's file-position indi­
cator and stores it in the object that pos points to. The fsetpos function
can later use information stored in pos to reset stream's pointer to its posi­
tion at the time fgetpos was called.

Note

The pos value is stored in an internal format and is intended for use
only by the fgetpos and fsetpos functions.

• Return Value

If successful, the fgetpos function returns o. On failure, it returns a
nonzero value and sets errno to one of the following manifest constants
(defined in stdio.h):

Constant

EINVAL

EBADF

• See Also

fsetpos

262

Meaning

The stream value is invalid.

The specified stream is not a valid file handle or is not
accessible.

• Example

#include <stdio.h>

FILE *stream;
fpos_t *pos;
int val;
char list[lOOJ;

main ()
{

fgetpos

stream = fopen("filel","rb"); /* Open filel */

}

fread(list,sizeof(char),lOO,stream); /* Read some data */
if (fgetpos(stream,pos) != 0) /* Save current position */
perror(ltfgetpos error");

fread(list,sizeof(char),lOO,stream); /* Read some more */
if (fsetpos(stream,pos) != 0) /* Return to saved position */
perror(ltfsetpos error");

This program opens a file named fi leI and reads 100 characters. It then
calls fgetpos to find and save the file position pointer. After performing
another read, the program calls fsetpos to restore the file pointer to the
saved position.

263

fgets

• Summary

include <stdio.h>

char oIcfgets(str£ng, n, stream);
char oIcstr£ng;
int n;
FILE *stream;

• Description

Reads a string from stream
Storage location for data
Number of characters stored
Pointer to FILE structure

The fgets function reads a string from the input stream and stores it in
strz"ng. Characters are read from the current stream position up to and
including the first new-line character ('\n'), up to the end of the stream,
or until the number of characters read is equal to n -1, whichever comes
first. The result is stored in strz"ng, and a null character ('\ 0') is appended.
The new line, if read, is included in the string. If n is equal to 1, strz"ng is
empty (ltlt). The fgets function is similar to the gets function; however,
gets replaces the new-line character with NULL.

• Return Value

If successful, the fgets function returns strz"ng. It returns NULL to indi­
cate either an error or end-of-file condition. Use feof or ferror to deter­
mine whether an error occurred.

• See Also

fputs, gets, puts

• Example

#include <stdio.h>

FILE *stream;
char line[lOOJ, *result;
main 0
{
stream = fopen(ltfgets.c lt , Itr");
result = fgets(line,lOO,stream);
printf("%s", line);

}

This program uses fgets to display a line from a file on the screen.

264

fieeetomsbin, fmsbintoieee

• Summary

include <math.h>

int fieeetomsbin(src4, dst4); IEEE floating point to MS binary floating point

int fmsbintoieee(src4, dst4); MS binary floating point to IEEE floating point

• Description

The fieeetomsbin routine converts a single-precision floating-point num­
ber in IEEE (Institute of Electrical and Electronic Engineers) format to
Microsoft binary format. The fmsbintoieee routine converts a floating­
point number in Microsoft binary format to IEEE format.

These routines allow C programs (which store floating-point numbers in
the IEEE format) to use numeric data in random-access data files created
with Microsoft BASIC (which store floating-point numbers in the Micro­
soft binary format), and vice versa.

The argument src4 points to the float value to be converted. The result is
stored at the location given by dst4.

• Return Value

These functions return 0 if the conversion is successful, and 1 if the con­
version causes an overflow.

• See Also

dieeetoms bin, dms bintoieee

Note

These routines do not handle IEEE NANs and infinities. IEEE denor­
mals are treated as 0 in the conversions.

265

filelength

• Summary

include <io.h>

long filelength(handle);
int handle;

• Description

Required only for function declarations

Target file handle

The filelength function returns the length, in bytes, of target file handle.

• Return Value

The filelength function returns the file length in bytes. A return value of
-lL indicates an error, and an invalid handle sets errno to EBADF.

• See Also

chsize, fileno, fstat, stat

• Example

#include <io.h>
#include <stdio.h>

FILE *stream;
long length;

main ()
{

}

stream = fopen(tldatatl,tlrtl);
/* Get length or -lL if function fails: */
length = filelength(fileno(stream»;
if (length = -lL) /* I f function failed ... */

printf(tlfilelength failed tl);
else

printf(tlfile length is %ld\n tl , length);

This program opens a file named data, using filelength to determine its
length. If filelength fails, it returns -lL and the program displays a fail­
ure message. Otherwise, the program displays the length of data.

266

• Summary

include <stdio.h>

int fileno(stream);
FILE .stream;

• Description

fileno

Pointer to FILE structure

The fileno function returns the file handle currently associated with
stream. If more than one handle is associated with the stream, the return
value is the handle assigned when the stream was initially opened.

• Return Value

The file no function returns the file handle. There is no error return. The
result is undefined if stream does not specify an open file.

• See Also

fdopen, filelength, fopen, freopen

Note

The fileno routine is implemented as a macro.

• Example

#include <stdio.h>

main 0
{

}

int result = fileno(stderr);
printf(ltThe file handle for stderr

/* result is 2 */
is %d\n", result);

This program uses fileno to obtain the file handle of stderr.

267

_ floodfill

• Summary

short far _ floodfill(x, y, boundary);
short x, y; Start point
short boundary; Fills boundary color

• Description

The _floodfill function fills an area of the display using the current color
and fill mask. Filling starts at the logical point (x, y). If this point lies
inside the figure, the interior is filled; if outside the figure, the background
is filled. The point must be inside or outside the figure to be filled, not on
the figure boundary itself. Filling occurs in all directions, stopping at the
color of boundary.

• Return Value

The _ floodfill function returns a nonzero value if the fill is successful. It
returns 0 if the fill could not be completed, the starting point lies on the
boundary color, or the start point lies outside the clipping region.

• See Also

- getcolor, _ getfillmask, _ setfillmask, _ setcliprgn, _ setcolor

• Example

#include <stdio.h>
#include <malloc.h>
#include <graph.h>

char far *buffer;

main ()
{
int loop;
int xvar, yvar;
_setvideomode{_MRES16COLOR);
for (xvar = 163, loop = 0; xvar < 320; loop++, xvar += 3) {
_setcolor{loop % 16);

}

yvar = xvar * 5 / 8;
_rectangle {_GBORDER, 320-xvar, 200-yvar, xvar, yvar);
_setcolor{rand{l) % 16);
_floodfill{O, 0, loop % 16);

268

}

buffer = (char far *)malloc((unsigned int)
_imagesize(0, 0, 80, 50));

if (buffer == (char far *)NULL) {
exit (-1):

}
_getimage(O, 0, 80, 50, buffer):
_putimage(80, 50, buffer, _GXOR);
free((char *)buffer):
_setvideomode (_DEFAULTMODE):

_£loodfill

This program draws a series of nested rectangles in different colors, while
constantly changing the background color.

269

floor

• Summary

include <math.h>

double floor(x);
double X;

• Description

Floating-point value

The floor function returns a floating-point value representing the largest
integer that is less than or equal to x.

• Return Value

The floor function returns the floating-point result. There is no error
return.

• See Also

ceil, fmod

• Example

#include <math.h>

main 0
{

double y;
y = floor(2.8);
printf (liThe floor of 2.8 is %f\n", y) ;

/* y is 2.0 */

y = floor(-2.8);
printf("The floor of -2.8 is %f\n",y);

/* y is -3.0 */

}

This example displays the largest integers less than or equal to the
floating-point values 2.8 and -2.8.

270

flushall

• Summary

include <stdio.h>

int flushall(void);

• Description

The flushall function writes the contents of all buffers associated with
open output streams to their associated files. All buffers associated with
open input streams are cleared of their current contents; the next read
operation (if there is one) then reads new data from the input files into
the buffers.

All streams remain open after the call to flushall.

• Return Value

The flushall function returns the number of open streams (input and out­
put). There is no error return.

• See Also

mush

Note

Buffers are automatically flushed when they are full, when streams are
closed, or when a program terminates normally withou t closing
streams.

271

flushall

• Example

#include <stdio.h>

main ()
{
int numflushed;

numflushed = flushall();
printf("There were %d streams flushed\n", numflushed);

}

This program uses flushall to flush all buffers, including stdin, stdout,
and stderr, and prints the number of open streams.

272

fmod

• Summary

include <math.h>

double fmod(x, y);
double x, y; Floating-point values

• Description

The fmod function calculates the floating-point remainder lof (x, y) such
that x = iy + J, where i is an integer, Iha..'3 the same sign as x, and the ab­
solute value of lis less than the absolute value of y.

• Return Value

The fmod function returns the floating-point remainder. If y is 0, the
function returns o.

• See Also

ceil, fabs, Hoor

• Example

#include <math.h>

main ()
{

}

double x,y,z;

x = -10.0;
Y = 3.0;
z = fmod(x,y); /* z is -1.0 */
printf("fmod(%.2f, %.2f) is %fll,x,y,Z);

This program displays the floating-point remainder of -10/3.

273

fopen

• Summary

include <stdio.h>

FILE *fopen(p'ath, type);
const char * path; Path name of file
const char *type; Type of access permitted

• Description

The fopen function opens the file specified by path. The character string
type specifies the type of access requested for the file, as follows:

Type

"r"

"w"

"a"

"r+"

"w+"

" a+"

Description

Opens for reading. If r is the first character in type, and
the file does not exist or cannot be found, the fopen call
will fail.

Opens an empty file for writing. If the given file exists, its
contents are destroyed.

Opens for writing at the end of the file (appending);
creates the file first if it doesn't exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the
given file exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it
doesn't exist.

Note

Use the "w" and "w+" types with care, as they can destroy existing
files.

When a file is opened with the "a" or "a+" type, all write operations
occur at the end of the file. Although the file pointer can be repositioned
using fseek or rewind, the file pointer is always moved back to the end of
the file before any write operation is carried out. Thus, existing data can­
not be overwritten.

274

ropen

When the "r+", "w+", or "a+" type is specified, both reading and
writing are allowed (the file is said to be open for "update"). However,
when switching between reading and writing, there must be an intervening
fsetpos, fseek, or rewind operation. The current position can be specified
for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters can
be appended to type or inserted before the + character to specify the
translation mode for new lines. For example, r+b is the same as rb+.

Mode

t

Meaning

Open in text (translated) mode. In this mode, carriage­
return-line-feed (CR-LF) combinations are translated into sin­
gle line feeds (LF) on input and LF characters are translated
to CR-LF combinations on output. Also, CTRL+Z is interpreted
as an end-of-file character on input. In files opened for read­
ing or reading/writing, fopen checks for a CTRL+Z at the end
of the file and removes it, if possible. This is done because
using the fseek and ftell functions to move within a file that
ends with a CTRL+Z may cause fseek to behave improperly
near the end of the file.

The t option is not part of the ANSI standard for open, but
is a Microsoft extension and should not be used where ANSI
portability is desired.

b Open in binary (un translated) mode; the above translations
are suppressed.

If t or b is not given in type, the translation mode is defined by the
default-mode variable Jmode .

• Return Value

The fopen function returns a pointer to the open file. A null pointer value
indicates an error .

• See Also

fclose, fcloseall, fdopen, ferror, fileno, freopen, open, setmode

275

fopen

• Example

#include <stdio.h>

FILE *stream;

main 0
{

/* Attempt to open the file: */

}

if (stream = fopen("data",lfrlf)) == NULL)
printf(lfCould not open file\n lf);

else
printf (If File opened for reading\n");

Sample command line:

update employ.dat

Output:

C:\BIN\UPDATE.EXE couldn't open file employ.dat

This program uses fopen to open a file named data for input.

276

FP_OFF, FP_SEG

• Summary

include <dos.h>

unsigned FP_ OFF(addre88);

unsigned FP _ SEG(addre88);

char far * addres8; Long pointer to memory address

• Description

The FP _ OFF and FP _ SEG macros can be used to set or get the offset
and segment, respectively, of address. In small and medium memory mod­
els, the FP _ SEG and FP _ OFF macros only work if the far pointer
argument lies in the default data segment. If the far pointer is itself in a
far data segment, the macros will not work correctly.

• Return Value

The FP _ OFF macro returns an offset. The FP _ SEG macro returns a
segment address.

• See Also

segread

277

FP_OFF, FP_SEG

• Example

#include <dos.h>
#include <malloc.h>
#include <stdio.h>

char far *p;
unsigned int seg_val;
unsigned int off_val;

main ()
{

}

p = _fmalloc(lOO);
seg_val = FP_SEG(p);
off_val = FP_OFF(p);
printf("Segment is %d;

/* Points pointer at something */
/* Gets address pointed to */

Offset is %d\n", seg_val, off_val);

This program uses FP _ SEG and FP _ OFF to obtain the segment and
offset of the long pointer p.

278

_fpreset

• Summary

include <float.h>

void _ fpreset(void); Reinitializes floating-point-math package

• Description

The _ fpreset function reinitializes the floating-point-math package. This
function is usually used in conjunction with signal, system, or the exec
or spawn family.

If a program traps floating-point error signals (SIGFPE) with signal, it
can safely recover from floating-point errors by invoking _ fpreset and
using longjmp.

Note

On MS-DOS versions prior to 3.0, a child process executed by exec,
spawn, or system may affect the floating-point state of the parent
process if an 8087 or 80287 coprocessor is used. Therefore, if you are
using either coprocessor, the following precautions are
recommended:

• The exec, spawn, and system functions should not be called
during the evaluation of a floating-point expression.

• The _ fpreset function should be called after these routines
if there is a possibility of the child process performing any
floating-point operations.

• Return Value

There is no return value.

• See Also

exec functions, signal, spawn functions

279

_fpreset

• Example

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <float.h>

int fphandler 0 ;
jmp_buf mark;
double a = 1.0, b = 0.0, c;

main 0
{
/* Set up pointer to error handler: */
if (signal (SIGFPE, fphandler) -- (int (*) 0) -1)

abort();
if (setjmp(mark) == 0) /* Save stack environment */

{

}

/* Generate divide by zero error: */
c = alb;
printf("Should never get here\n");

printf ("Recovered from floating-point error\n");
}

int fphandler(sig,num)
int sig,num;

{

}

printf("signal = %d subcode = %d\n", sig, num);
/* Initialize floating-point package: */
_fpreset 0 ;
/* Restore environment; return -1: */
(mark, -1)

This program uses signal to set up a routine for handling floating-point
errors. This routine, fphandler, displays an error message and reinitial­
izes the floating-point-math package using _ fpreset.

280

• Summary

include <stdio.h>

int fprintf(stream, format[, argument] ...);
FILE *stream;
const char * format;

• Description

fprintf

Pointer to FILE structure
Format-control string

The fprintf function formats and prints a series of characters and values
to the output stream. Each argument (if any) is converted and output
according to the corresponding format specification in format.

The format is of the same form and function as the format argument for
the printf function; see the printf reference page for descriptions of for­
mat and argument.

• Return Value

The fprintf function returns the number of characters printed.

• See Also

cprintf, fscanf, printf, sprintf

281

fprintf

• Example

#include <stdio.h>
#include <process.h>

FILE *stream;
int i = 10;
double fp = 1.5;
char *s = "this is a string";
char c = '\n';

main 0
{

}

stream = fopen("results", "w");
fprintf(stream, "%s%c", s, c);
fprintf (stream, "%d\n", i) ;
fprintf (stream, "%f\n", fp);
fclose(stream);
system("type results");

/* Print 1.500000 */

This program uses fprintf to format various data and print them to the
file named resul ts. It then displays resul ts on the screen.

282

• Summary

include <stdio.h>

int fputc(c, stream);
int C;
FILE .stream;

int fputchar(c);
int C;

• Description

fputc, fputchar

Writes a character to stream
Character to be written
Pointer to FILE structure

Writes a character to stdout
Character to be written

The fputc function writes the single character c to the output stream at
the current position. The fputchar function is equivalent to fputc(c,
stdout).

• Return Value

The fputc and fputchar functions return the character written. A return
value of EOF may indicate an error; however, since the EOF value is also
a legitimate integer value, use ferror to verify an error condition.

Note

The fputc and fputchar routines are similar to putc and putchar,
but are functions, not macros.

• See Also

fgetc, fgetchar, putc, putchar

283

fputc, fputchar

• Example

#include <stdio.h>

FILE *stream;
char buffer[81];
int i;
int ch;

main ()
{

}

stream = stdout;

/* Demonstrate "fputc";
** Set up buffer:
*/
strcpy(buffer, "This is a test of fputc!!\n");
/* Print line to stream */
for (i = 0; (i < 81) &&

((ch = fputc (buffer [i] , stream» != EOF); i++);

/* Demonstrate "fputchar";
** Set up buffer:
*/
strcpy (buffer, "This is a test of fputchar!! ") ;

/* Print line to stream */
for (i = 0; (i < 81) &&

((ch = fputchar (buffer [i]» != EOF); i++);

This program uses fputc and fputchar to send a character array to
stdout.

284

• Summary

include <stdio.h>

int fputs(string, stream);
char *string;
FILE *stream;

• Description

Writes a string to stream
String to be output
Pointer to FILE structure

fputs

The fputs function copies str£ng to the output stream at the current posi­
tion. The terminating null character ('\ 0') is not copied.

• Return Value

The fputs function returns a 0 is successful. If the function fails, it returns
a nonzero value.

c 4.0 D£fference

In Microsoft eVersion 4.0, fputs returns the last character output or
an EOF to indicate an error.

• See Also

fgets, gets, puts

285

fputs

• Example

#include <stdio.h>

FILE *stream;

main ()
{
int result;

stream stdout;
result = fputs("Data files have been updated\n",stream);

}

This program uses fputs to write a single line to a stream.

286

• Summary

include <stdio.h>

size- t fread(buffer, sz'ze, count, stream);
void * buffer;
size- t sz'ze;
size- t count;
FILE *stream;

• Description

Storage location for data
Item size in bytes

fread

Maximum number of items to be read
Pointer to FILE structure

The fread function reads up to count items of s£ze bytes from the input
stream and stores them in buffer. The file pointer associated with stream
(if there is one) is increased by the number of bytes actually read.

If the given stream is opened in text mode, carriage-return-line-feed (CR­
LF) pairs are replaced with single line-feed (LF) characters. The replace­
ment has no effect on the file pointer or the return value.

The file-pointer position cannot be determined if an error occurs, nor can
the value of a partially-read item be determined.

• Return Value

The fread function returns the number of full items actually read, which
may be less than count if an error occurs or if the file end is encountered
before reaching count.

The feof or ferror function should be used to distinguish a read error
from an end-of-file condition. If size or count is 0, fread returns 0 and the
buffer contents are unchanged.

• See Also

fwrite, read

287

fread

• Example

#include <stdio.h>

FILE *stream;
long list[100];
int numread;
int numwritten;

main ()
{

}

/* Open file in "binary" mode: */
if ((stream = fopen ("data", "w+b"» != NULL)

{

}

/* Write 100 long integers to "stream": */
numwritten = fwrite((char *)list,sizeof(long),100,stream);
printf("Wrote %d items\n", numwritten);

else
printf("Problem opening the file");

fclose(stream);

if ((stream = fopen ("data", "r+b"» ! = NULL)
{

}

/* Attempt to read in 100 long ints: */
numread = fread((char *)list,sizeof(long),100,stream);
printf("Number of items read = %d\n", numread);

else
printf("Was not able to open the file");

This program opens a file named data. bin and writes 100 long integers
to the file. It then tries to open data. bin and read in 100 long integers.
If the attempt succeeds, the program displays the number of actual items
read.

288

• Summary

include <stdlib.h>
include <malloc.h>

void free(bUffer);
void'" buffer;

void _ tTree(buffer);
void far '" buffer;

void _ nfree(buffer);
void near '" buffer;

• Description

free, _ffree, _nfree

For ANSI compatibility (free only)
Required only for function declarations

Frees memory block
Allocated memory block

Frees block in far heap
Allocated memory block in far heap

Frees block in near heap
Allocated memory block in near heap

The free function deallocates a memory block. The argument buffer points
to a memory block previously allocated through a call to calloc, malloc,
or realloc. The number of bytes freed is the number of bytes specified
when the block was allocated (or reallocated, in the case of realloc). After
the call, the freed block is avaIlable for allocation.

A null pointer argument is ignored.

In large data models (compact- and large-model programs), free maps to
_ ffree. In small data models (small- and medium-model programs), free
maps to _ nfree.

The _ ffree function deallocates a memory block outside the default data
segment. The argument buffer points to a memory block previously allo­
cated through a call to _ fmalloc. The number of bytes freed is the num­
ber of bytes specified when the block was allocated. After the call, the
freed block is again available for allocation.

The _ nfree function deallocates a memory block. The argument buffer
points to a memory block previously allocated through a call to _ nmal­
loco The number of bytes freed is the number of bytes specified when the
block was allocated. After the call, the freed block is again available for
allocation.

289

• Return Value

There is no return value.

• See Also

calloc, _fmalloc, malloc, _nmalloc, realloc

Note

Attempting to free an invalid pointer may affect subsequent alloca­
tion and cause errors. An invalid pointer is one not allocated with the
appropriate call. Only blocks allocated with calloc, malloc, or realloc
can be freed with free, only blocks allocated with _ fmalloc can be
freed with _ fi'ree, and only blocks allocated with _ nmalloc can be
freed with _ nfree.

• Example

#include <malloc.h>
#include <stdio.h>

void *alloc;

main ()
{

}

/* If there is nothing to free ... */
if ((alloc = malloc(lOO» == NULL)

printf("Unable to allocate memory");
else

{
/* Free memory for the heap: */
free(alloc);
printf("100 bytes freed\n");

}

This program uses malloc to allocate a block of memory and then uses
free to free this block.

290

_ freect

• Summary

include <malloc.h> Required only for function declarations

unsigned int _ freect(s£ze);
sizEL t s£ze;

• Description

Item size in bytes

The _ freect function tells you how much memory is available for dynamic
memory allocation. It does so by returning the approximate number of
times your program can call malloc to allocate an item size bytes long in
the default data segment.

• Return Value

The _ freect function returns the number of calls as an unsigned integer.

• See Also

calloc, _ expand, malloc, _ memavl, _ msize, realloc

• Example

#include <malloc.h>

main 0
{ .

int i;

/* First report on the free space: */
printf("Approximate # of times program can call malloc\n");
printf (lito allocate a single integer %u\n",

}

_freect(sizeof(int»);

/* Allocate space for 1000 integers: */
for (i = 0; i < 1000; ++i)

malloc(sizeof(int»;

/* Report again on the free space: */
printf("Approximate # of times program can call malloc\n");
printf (lito allocate a single integer %u\n",

_freect(sizeof(int»);

291

_freect

Sample output:

Approximate # of times program can call malloc
to allocate a single integer = 15268

Approximate # of times program can call malloc
to allocate a single integer = 14266

This program determines how much free space is available for integers in
the default data segment. Then it allocates space for 1000 integers and
checks the space again using _ freect.

292

freopen

• Summary

include <stdio.h>

FILE *freopen{path, type, stream);
const char *path; Path name of new file

Type of access permitted
Pointer to FILE structure

const char * type;
FILE *stream;

• Description

The freopen function closes the file currently associated with stream and
reassigns stream to the file specified by path. The freopen function is typi­
cally used to redirect the preopened files stdin, stdout, stderr, stdaux,
and stdprn to files specified by the user. The new file associated with
stream is opened with type, which is a character string specifying the type
of access requested for the file, as follows:

Type

"r"

"w"

"a"

"r+"

"w+"

"a+"

Note

Description

Opens for reading. If r is the first character in the type
string and the file does not exist or cannot be found, the
freopen call will fail.

Opens an empty file for writing. If the given file exists, its
contents are destroyed.

Opens for writing at the end of the file (appending);
creates the file first if it doesn't exist.

Opens for both reading and writing. (The file must exist.)

Opens an empty file for both reading and writing. If the
given file exists, its contents are destroyed.

Opens for reading and appending; creates the file first if it
doesn't exist.

Use the "w" and "w+" types with care, as they can destroy existing
files.

293

freopen

When a file is opened with the "a" or "a+" types, all write operations
take place at the end of the file. Although the file pointer can be reposi­
tioned using fseek or rewind, the file pointer is always moved back to the
end of the file before any write operation is carried out. Thus, existing
data cannot be overwritten.

When the "r+", "w+", or "a+" type is specified, both reading and
writing are allowed (the file is said to be open for "update"). However,
when switching between reading and writing, there must be an intervening
fsetpos, fseek, or rewind operation. The current position can be specified
for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters may
be appended to the type string or inserted before the + character to
specify the translation mode for new lines. For example, r+b is the same
as rb+.

Mode

t

Meaning

Open in text (translated) mode; carriage-return-
line-feed combinations are translated into a single line feed
on input; line-feed characters are translated to carriage­
return-line-feed combinations on output. Also, CTRL+Z is
interpreted as an end-of-file character on input. In files
opened for reading, or writing and reading, the run-time
library checks for a CTRL+Z at the end of the file and removes
it, if possible. This is done because using the fseek and ftell
functions to move within a file may cause fseek to behave
improperly near the end of the file.

The t option is not part of the ANSI standard for freopen,
but is a Microsoft extension that should not be used where
ANSI portability is desired.

b Open in binary (untranslated) mode; the above translations
are suppressed.

If t or h is not given in the type string, the translation mode is defined by
the default mode variable Jmode .

• Return Value

The freopen function returns a pointer to the newly opened file. If an
error occurs, the original file is closed and the function returns a null
pointer value.

294

freopen

• See Also

fclose, fcloseall, fdopen, fileno, fopen, open, setmode

• Example

#include <stdio.h>
#include <process.h>

FILE *stream, *errstream;

main ()
{

}

/* Reassign Itstdout lt to Itdata21t: */
stream = freopen(ltdata21t, Itw lt , stdout);

/* If reassignment failed: */
if (stream == NULL)

fprintf (lterror on freopen\nlt);
else

{

}

fprintf(stream,ltThis will go to the file 'data2'\n lt);
fprintf(stream,It'stdout' successfully reassigned\n lt);
system(lttype data21t);

This program reassigns stdout to the file named data2 and writes a line
to that file.

295

frexp

• Summary

include <math.h>

double frexp{x, expptr);
double X;
int * expptr; ,

• Description

Floating-point value
Pointer to stored integer exponent

The frexp function breaks down the floating-point value (x) into a man­
tissa (m) and an exponent (n) such that the absolute value of m is greater
than or equal to 0.5 and less than 1.0, and x = m*2 n

. The integer exponent
n is stored at the location pointed to by expptr.

• Return Value

The frexp function returns the mantissa. If x is 0, the function returns 0
for both the mantissa and exponent. There is no error return.

• See Also

ldexp, modf

• Example

#include <math.h>

main 0
{
double x, y;
int n;
x = 16.4;
Y = frexp(x,&n); /* y is .5125 and n is 5 */
printf(lty = %f and n = %d" ,y,n);

}

This program calculates frexp (16. 4, &n) , then displays y and n.

296

fscanf

• Summary

include <stdio.h>

int fscani'(stream, format[, argument] ...);
FILE *stream; Pointer to FILE structure
const char * format; Format-control string

• Description

The fscanf function reads data from the current position of stream into
the locations given by arguments (if any). Each argument must be a pointer
to a variable with a type that corresponds to a type specifier in format.
The format controls the interpretation of the input fields and has the same
form and function as the format argument for the scanf function; see the
scanf reference page for a description of format.

• Return Value

The fscanf function returns the number of fields that were successfully
converted and assigned. The return value does not include fields that were
read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of a means that no fields were assigned.

• See Also

cscanf, fprintf, scanf, sscanf

2Q7

fscanf

• Example

#include <stdio.h>

FILE *stream;
long 1;
float fp;
char s[81];
char c;

int result;

main ()
{

}

stream = fopen("data", "w+");

/* Write data to the file: */
fprintf (stream, "%s %ld % f%c%c " , "a-string",

65000, ~.14159, 'x',EOF);

/* Set pointer to beginning of file: */
fseek(stream,O,SEEK_SET);

/* Read data back from file: */
resul t = fscanf (stream, "%s", s) ;
resul t fscanf (stream, "%ld", &1);
result = fscanf (stream, "%f", &fp);
resul t = fscanf (stream, "%c", &c);

/* Output data read: */
printf("%s\n", s);
printf ("%1d\n", 1);
printf ("%f\n", fp);
printf("%c\n", c);

This program first opens a file named data. It then uses fscanf to accept
various types of input data and printf to display these data on the screen.

298

fseek

• Summary

include <stdio.h>

int fseek(stream, offset, orz"gz"n);
FIT..,E ... stream;
long offset;
int orz"gz"n;

• Description

Pointer to FIT..,E structure
Number of bytes from orz"gin
Initial position

The fseek function moves the file pointer (if any) associated with stream
to a new location that is offset bytes from or£gz'n. The next operation on
the stream takes place at the new location. On a stream open for update,
the next operation can be either a read or a write.

The argument orz'g£n must be one of the following constants defined in
stdio.h:

Origin

SEEILSET
SEEILCUR

SEEILEND

Definition

Beginning of file

Current position of file pointer

End of file

The fseek function can be used to reposition the pointer anywhere in a
file. The pointer can also be positioned beyond the end of the file. How­
ever, an attempt to position the pointer in front of the beginning of the
file causes an error.

The fseek function clears the end-of-file indicator and negates the effect of
any prior ungetc calls against stream.

Note

When a file is opened for appending data, the current file position
is determined by the last I/0 operation, not where the next write
would occur. If no I/O operation has yet occurred on a file opened for
appending, the file position is the start of the file.

299

fseek

For streams opened in text mode, fseek has limited use because carriage­
return-line-feed translations can cause fseek to produce unexpected re­
sults. The only fseek operations guaranteed to work on streams opened in
text mode are the following:

• Seeking with an offset of 0 relative to any of the origin values

• Seeking from the beginning of the file with an offset value returned
from a call to ftell

• Ret urn Value

If successful, fseek returns o. Otherwise, it returns a nonzero value. On
devices incapable of seeking, the return value is undefined.

• See Also

ftell, lseek, rewind

• Example

#include <stdio.h>

FILE *stream;
main ()
{
char line[81J;
int result;
stream = fopen("data","w+");
fprintf (stream, "This is the first line in file 'data'. \n") ;
result = fseek(stream,OL,SEEK_SET); /* Position pointer */
if (result)
perror("Fseek failed");

else {
printf("File pointer is set to the beginning of file.\n");
fgets(line,80,stream);
printf ("%s" , line) ;

}
}

This program opens the file data and moves the pointer to the file's
beginning.

300

• Summary

include <stdia.h>

int fsetpas(stream, pos);
FILE *stream;
canst fpas- t *pos;

• Description

Target stream
Position-indicator storage

fsetpos

The fsetpos function sets the file-position indicator for stream to the
value of pos, which is obtained in a prior call to fgetpos against stream.

The function clears the end-of-file indicator and undoes any effects of the
ungetc function on stream. After calling fsetpos, the next operation on
stream may be either input or output.

• Return Value

If successful, the fsetpos function returns O. On failure, the function
returns a nonzero value and sets errno to one of the following manifest
constants (defined in stdio.h):

Constant

EINVAL

EBADF

• See Also

fgetpos

Meaning

An invalid stream value was passed.

The object that stream points to is not a valid file han­
dle, or the file is not accessible.

301

fsetpos

• Example

#include <stdi.o.h>

FILE *stream;
fpos_t *pos;
int val;
char list[lOO];

main 0
{

}

stream = fopen ("filel", "rb"); /* Open filel */
fread(list,sizeof(char),lOO,stream); /* Read some data */
if (fgetpos(stream,pos) != 0) /* Save current position */
perror("fgetpos error");

fread(list,sizeof(char),lOO,stream); /* Read some more */
if (fsetpos(stream,pos) != 0) /* Return to saved position */
perror("fsetpos error");

This program opens the file named filel and reads 100 characters. It
then uses fgetpos to find and save the file position pointer. After perform­
ing another read, the program calls fsetpos to restore the file pointer to
the saved position.

302

fstat

• Summary

include <sys\ types.h>
include <sys\ stat.h>

int fstat(handle, buffer);
int handle;
struct stat ole buffer;

• Description

Handle of open file
Pointer to structure to store results

The fstat function obtains information about the open file associated with
handle and stores it in the structure that buffer points to. The structure,
whose type stat is defined in sys \stat.h, contains the following fields:

Field

st_atime

st_ctime

st_dev

st_mode

st_mtime

st_nlink

st_rdev

st_size

Value

Time of last modification of file (same as
st_ mtime and st_ ctime).

Time of last modification of file (same as
st_ atime and st_ mtime).

Either the drive number of the disk containing the
file, or handle in the case of a device (same as
st_rdev).

Bit mask for file-mode information. S_IFCHR bit
set if handle refers to a device. S_ IFREG bit set
if handle refers to an ordinary file. User read/write
bits set according to the file's permission mode.

Time of last modification of file (same as
st_atime and st_ctime).

Always 1.

Either the drive number of the disk containing
the file, or handle in the case of a device (same as
st_dev).

Size of the file in bytes.

There are three additional fields in the stat structure type that do not
contain meaningful values under DOS.

303

fstat

• Return Value

The fstat function returns the value 0 if the file-status information is ob­
tained. A return value of -1 indicates an error; in this case, errno is set to
EBADF, indicating an invalid file handle.

• See Also

access, chmod, filelength, stat

Note

If handle'refers to a device, the size and time fields in the stat struc­
ture are not meaningful.

• Example

#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <io.h>

struct stat buf;
int fh, result;
char *buffer = "A line to output";

304

main ()
{

}

fh = open ("data", O_CREAT : O_WRONLY
write(fh,buffer,strlen(buffer»;

/* Get data associated with "fh": */

result = fstat(fh,&buf);

/* Check if statistics are valid: */
if (result != 0)

printf ("Bad file handle\n");

/* Output some of */
/* the statistics: */
else

{

}

printf("File size
printf ("Drive number
printf("Time modified

%ld\n",buf.st_size);
%d\n", buf. st_dev) ;
%s",ctime(&buf.st_atime»;

This program uses fstat tq report the size of a file named data.

fstat

305

ftell

• Summary

include <stdio.h>

long ftell(stream};
FILE *.stream;

• Description

Target FILE structure

The ftell function gets the current position of the file pointer (if any) asso­
ciated with stream. The position is expressed as an offset relative to the
beginning of the stream.

Note

When a file is opened for appending data, the current file position is
determined by the last I/O operation, not where the next write would
occur. For example, if a file is opened for an append and the last op­
eration was a read, the file position is the point where the next read
operation would start, not where the next write would start. If no I/O
operation has yet occurred on a file opened for appending, then the file
position is the beginning of the file.

• Return Value

The ftell function returns the current position. On error, the function
returns -1L and errno is set to one of the following constants, defined in
errno.h:

Constant

EBADF

EINVAL

Description

Bad file number. The stream argument is not a
valid file-handle value or does not refer to an open
file.

Invalid argument. An invalid stream argument was
passed to the function.

On devices incapable of seeking (such as terminals and printers), or when
stream does not refer to an open file, the return value is undefined.

306

ftell

• See Also

fgetpos, fseek, lseek, tell

Note

The value returned by ftell may not reflect the physical byte offset for
streams opened in text mode, since text mode causes carriage-return­
line-feed translation. Use ftell in conjunction with the fseek function
to remember and return to file locations correctly .

• Example

#include <stdio.h>

FILE *stream;
long position;
char list[lOO];

main ()
{

}

stream = fopen(ltdatalt,ltrb lt);
/* Move the pointer by reading data: */
fread(list,sizeof(char),lOO, stream);
/* Get position after read: */
position = ftell(stream);
printf(ltposition = %ld\nlt , position);

This program opens a file named data for reading and tries to read 100
characters. It then uses ftell to determine the position of the file pointer
and displays this position.

307

ftime

• Summary

include <sys\ types.h>
include <sys\ timeb.h>

void ftime(t£meptr);
struct timeb * timeptr;

• Description

Pointer to structure defined in sys\ timeb.h

The ftime function gets the current time and stores it in the structure
pointed to by tz'meptr. The timeb structure is defined in sys\ timeb.h. It
contains four fields, time, millitm, time zone , and dstfiag, which have
the following values:

Field

dstflag

millitm

time

timezone

• Return Value

Value

Nonzero if daylight saving time is currently in
effect for the local time zone. (See tzset for an
explanation of how daylight saving time is de­
termined.)

Fraction of a second in milliseconds.

The time in seconds since 00:00:00 Greenwich
mean time, January 1, 1970.

The difference in minutes, moving westward,
between Greenwich mean time and local time.
The value of timezone is set from the value of
the global variable timezone (see tzset) .

The ftime function gives values to the fields in the structure pointed to by
timeptr. It does not return a value.

• See Also

asctime, ctime, gmtime, localtime, time, tzset

308

• Example

#include <sys/types.h>
#include <sys/timeb.h>
#include <stdio.h>
#include <time.h>

main ()
{

}

struct timeb timebuffer;
char *timeline;

ftime(&timebuffer);
timeline = ctime(&(timebuffer.time»;

printf("The time is %.19s.%hu %s",timeline,
timebuffer.millitm, &timeline[20]);

Sample output:

The time is Wed Dec 04 17:58:29.420 1985

ftime

This program uses ftime to obtain the current time and then stores this
time in timebuffer.

309

fwrite

• Summary

include <stdio.h>

size- t fwrite(buffer, s£ze, count, stream);
const void *buffer; Pointer to data to be written
size- t s£ze; Item size in bytes
size- t count; Maximum number of items to be written
FILE *stream; Pointer to FILE structure

• Description

The fwrite function writes up to count items of length size from buffer to
the output stream. The file pointer associated with stream (if there is one)
is incremented by the number of bytes actually written.

If stream is opened in text mode, each carriage return is replaced with a
carriage-return-line-feed pair. The replacement has no effect on the return
value.

• Return Value

The fwrite function returns the number of full items actually written,
which may be less than count if an error occurs. Also, if an error occurs,
the file-position indicator cannot be determined.

• See Also

fread, write

310

fwrite

• Example

#include <stdio.h>

FILE *stream;
long list[100];
int numread;
int numwritten;

main 0
{
/* File opened in "binary" mode: */
if ((stream = fopen ("data.bin", "w+b"» != NULL) {

/* Write 100 long integers to "stream": */
numwritten = fwrite((char *)list,sizeof(long),100,stream);
printf("Wrote %d items\n", numwritten);

}

}
else

printf("Problem opening the file");
fclose(stream);
if ((stream = fopen ("data. bin", "r+b"» ! = NULL) {

/* Attempt to read in 100 long ints: */
numread = fread((char *)list,sizeof(long) ,100,stream);
printf("Number of items read = %d\n", numread);

}
else

printf(ltWas not able to open the file");

This program opens a file named data. bin and writes 100 long integers
to the file. The program then tries to open data. bin and read in 100
long integers. If the attempt succeeds, the program displays the number of
actual items read.

311

gcvt

• Summary

include <stdlib.h>

char *gcvt(value, digits, buffer);
double value;
int digits;
char * buffer;

• Description

Required only for function declarations

Value to be converted
Number of significant digits stored
Storage location for result

The gcvt function converts a floating-point value to a character string and
stores the string in buffer. The buffer should be large enough to accommo­
date the converted value plus a terminating null character ('\ 0'), which is
automatically appended. There is no provision for overflow.

The gcvt function attempts to produce digits significant digits in decimal
format. Failing that, it produces digits significant digits in exponential for­
mat. Trailing zeros may be suppressed in the conversion.

• Return Value

The gcvt function returns a pointer to the string of digits. There is no
error return.

• See Also

atof, atoi, atol, ecvt, fcvt

312

• Example

#include <stdlib.h>
#include <stdio.h>

char buffer[50];
int precision = 7;

main ()
{

}

gcvt(-3.1415e5,precision,buffer);
/* buffer now contains "-314150." */
printf ("buffer= \"%s\"\n", buffer);

This program converts -3 . 1415e5 to its string representation, then
displays this string.

gcvt

313

_ getbkcolor

• Summary

include <graph.h>

long far _ getbkcolor(void);

• Description

The _ getbkcolor function retrieves the pixel value of the current back­
ground color. The default is O.

• Return Value

The function returns the current background color value. There is no error
return.

• See Also

_ set bkcolor

• Example

#include <stdio.h>
#include <graph.h>

main ()
{
int loop;
_setvideomode(_MRES16COLOR);
for (loop = 0; loop < 20; loop++) {
/* Get the next background color */
_setbkcolor«_getbkcolor() + 1) % 16);

}
_setvideomode (_DEFAULTMODE);

}

This program repeatedly sets a new background color.

314

getc, getchar

• Summary

include <stdio.h>

int getc(stream);
FILE *stream;

int getchar(void);

• Description

Reads a character from stream
Pointer to FILE structure

Reads a character from stdin

The getc macro reads a single character from the current stream position
and increases the associated file pointer (if there is one) to point to the
next character. The getchar macro is identical to getc(stdin).

• Return Value

The getc and getchar macros return the character read. A return value
of EOF indicates an error or end-of-file condition. Use ferror or feof to
determine whether an error or end-of-file occurred.

• See Also

fgetc, fgetchar, getch, getche,putc, putchar, ungetc

Note

The getc and getchar routines are similar to fgetc and fgetchar,
respectively, but are macros, not functions.

315

getc, get char

• Example

#include <stdio.h>

FILE *stream;
char buffer[81];
int i, ch;

main ()
{

}

stream = fopen("getc.c", "r");

printf("Enter a line » ");

/* Read in single line from "stdin": */
for (i = 0; (i < 80) && ((ch = getchar(» != EOF)

&& (ch != '\n'); i++)

buffer[i] = ch;

/* Terminate string with null character: */
buffer[i] = '\0';
printf ("%s\n", buffer);

This program uses getchar to read a single line of input from stdin,
places this input in buffer, then terminates the string before printing
it to the screen.

316

getch, getche

• Summary

include <conio.h> Required only for function declarations

int getch(void); Reads character without echo

int getche(void); Reads character and echo

• Description

The getch function reads without echoing a single character from the con­
sole. The getche function reads a single character from the console and
echoes the character read. Neither function can be used to read CTRL+C.

When reading a function key or cursor-moving key, the getch and getche
functions must be called twice; the first call returns 0 or EOR and the
second call returns the actual key code.

• Return Value

The getch function returns the character read. There is no error return.

• See Also

cgets,getchar, ungetch

• Example

#include <conio.h>
#include <ctype.h>

int ch;
main ()
{

}

printf("Input whitespace characters, "
"followed by a non-whitespace character\n lt

);

do ch = getch();
while (isspace(ch»;
putch(ch);

This program reads characters from the keyboard, but does not echo them
until it reads the first non blank character.

317

_getcolor

• Summary

include <graph.h>

short far _ getcolor(void);

• Description

•

•

•

The _ getcolor function returns the pixel value of the current color. The
default is the highest legal value of the current palette.

Return Value

There is no error return.

See Also

_setcolor

Example

#include
#include

main ()
{

<stdio.h>
<graph.h>

int loop, loop1;
_setvideomode(_MRES16COLOR);
for (loop1 = 0; loop1 < 20; loop1++) { /* Get next color: */

_setcolor«_getcolor() + 1) % 16);

}

for (loop = 0; loop < 3200; loop++) {

}

/* set a random pixel normalized to be on screen */
_setpixel(rand(l) / 104, rand (1) / 164);

_setvideomode (_DEFAULTMODE);
}

This program assigns differen t colors to randomly selected pixels.

318

• Summary

include <graph.h>

struct xycoord {
short xcoord; x coordinate
short ycoord; y coordinate
} far _ getcurrentposition(void);

• Description

_ getcurrentposition

The _getcurrentposition function returns the logical coordinates of
the current graphics output position as an xycoord structure, defined in
graph.h.

The current position can be changed by the _arc and _moveto functions.

Only graphics output starts at the current position; it does not affect text
output, which begins at the current text position, a separate concept (see
..-settext position).

• Return Value

There is no error return.

• See Also

_moveto

319

_ getcurrentposition

• Example

#include <stdio.h>
#include <graph.h>

struct xycoord position;
char buffer[255 J;
main ()
{

}

int loop;
_setvideomode(_MRES16COLOR);
_moveto(rand(l) % 160 + 80, rand(l) % 100 + 50);
position = _getcurrentposition();
sprintf(buffer,"x=%d, y=%d",position.xcoord,position.ycoord);
_settextposition(position.xcoord / 8, position.ycoord / 8);
_outtext(buffer);
while (!kbhit(»; /* wait for key to reset */
_setvideomode (_DEFAULTMODE);

This program moves the current graphics output position to a random
point, calls _getcurrentposition to obtain the coordinates, and then
writes the coordinates to a buffer. It then sets the current text position to
those coordinates and outputs the coordinates to the screen, beginning at
the current position.

320

getcwd

• Summary

include < direct.h >

char *getcwd(path, n);
char *path;
int n;

• Description

Required only for function declarations

Storage location for path name
Maximum length of path name

The getcwd function gets the full path name of the current working direc­
tory and stores it at path. The integer argument n specifies the maximum
length for the path name. An error occurs if the length of the path name
(including the terminating null character) exceeds n.

The path argument can be NULL; a buffer of at least size n (more only if
necessary) will automatically be allocated using malloc to store the path
name. This buffer can later be freed by calling free and passing it the
getcwd return value (a pointer to the allocated buffer).

• Return Value

The getcwd function returns path. A NULL return value indicates an
error, and errno is set to one of the following values:

Value

ENOMEM

ERANGE

• See Also

chdir, mkdir, rmdir

Meaning

Insufficient memory to allocate n bytes (when a
NULL argument is given as path)

Path name longer than n characters

321

getcwd

• Example

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

main 0
{

}

char buffer[67J;

/* Get the current working directory: */
if (getcwd(buffer,66) == NULL)

perror("getcwd error");
else

printf ("%s" , buffer) ;

This program places the name of the current directory in the buffer
array, then displays the name of the current directory on the screen. Speci­
fying a length of 66 characters for bu f fer allows room for the longest
legal directory name plus two characters for the drive specification.

322

getenv

• Summary

include <stdlib.h> Required only for function declarations

char *getenv(varname);
const char *varname; Name of environment variable

• Description

The getenv function searches the list of environment variables for an en­
try corresponding to varname. Environment variables define the environ­
ment in which a process executes. (For example, the LID environment
variable defines the default search path for libraries to be linked with a
program.)

• Return Value

The getenv function returns a pointer to the environment table entry con­
taining the current string value of varname. The return value is NULL if
the given variable is not currently defined.

• See Also

putenv

Note

Environment-table entries must not be changed directly. If an entry
must be changed, use the putenv function. To modify the returned
value without affecting the environment table, use strdup or strcpy
to make a copy of the string.

The getenv and putenv functions use the global variable environ to
access the environment table. The putenv function may change the
value of environ, thus invalidating the envp argument to the main
function. Therefore, it's safer to use the environ variable to access the
environment table.

323

MHMRMhMli4Jl4Mci hiP. M1Jt!'-O -'iJ u...I.JI,fi!itil.ili,O , .R.% %MI"

getenv

• Example

#include <stdlib.h>
#include <stdio.h>

char *pathvar;

main ()
{

}

/* Get the value of the PATH environment
pathvar = getenv("PATH");
printf ("%s\n" I pathvar ? pathvar : "path

variable: */

variable not set");

This program uses getenv to retrieve the PATH environment variable
and then displays its value. If PATH=A: \BIN; B: \BIN is in the environ­
ment, pathvar points toA:\BIN;B:\BIN.1f there is no PATH envi­
ronment variable, pathvar is NULL.

324

_ getfillmask

• Summary

include <graph.h>

unsigned char far ale far _ getfillmask(mask);
unsigned char far ale mask; Mask array

• Description

Some graphics routines (_ floodfill, _ pie, _ ellipse, and _ rectangle) can
fill part or all of the screen with the current color or background color.
The filling can be controlled with the current fill mask.

The _getfillmask function returns the current fill mask. The mask is an
8-by-8 array of bits, where each bit represents a pixel. A 1 bit sets the
corresponding pixel to the current color, while a 0 bit leaves the pixel
unchanged. The mask is repeated over the en tire fill area. If no fill mask
is set, or mask is NULL, only the curren t color is used in fill operations.

• Return Value

If no mask is present, the function returns NULL.

• See Also

_ floodfill, _ setfillmask.

• Example

#include <stdio.h>
#include <graph.h>

unsigned char * (style [6 J) = { "xOOxOOxOOxOOxOOxOOxOOxOO",
"x20x08x20x08x20x08x20x08", "x98xc6x30x30x8cx4cx62x18",
"xe6x38xb2x9cxe6x38xb2x9c", I x fcxeex7axdexf6xbcxeex7a",
" x fexfexfexfexfexfexfexfe" };

char *oldstyle = "12345678"; /* place holder for old style */

325

_ getfillmask

main ()
{

}

int loop;
~setvideomode(_MRES4COLOR);
_getfillmask(oldstyle);
_setcolor(2);
/* draw an ellipse under the middle few rectangles */
/* in a different color */
_ellipse(_GFILLINTERIOR, 120, 75, 200, 125);
_setcolor(3);
for (loop = 0; loop < 6; loop++) {

}

/* make 6 rectangles, the first background color */
_setfillmask ((char far *) (style [loop]));
_rectangle(_GFILLINTERIOR,loop*40+5,90, (loop+1) *40,110);

_setfillmask(oldstyle); /* restore old style */
while (!kbhit()); /* Strike any key to continue */
_setvideomode (_DEFAULTMODE);

This program draws an ellipse overlaid with six rectangles, each with a
different fill mask.

326

_getimage

• Summary

include <graph.h>

void far _getimage(xl, yl, x2, y2, image);
short xl, yl; Upper-left corner of bounding rectangle
short x2, y2; Lower-right corner of bounding rectangle
char far *image; Storage buffer for screen image

• Description

The _ getimage function stores the screen image in the bounding rectan­
gle defined by the logical points (xl, yl) and (x2, y2) into the buffer that
image points to. The buffer must be large enough to hold the image. You
can determine the size by calling _ imagesize at run time, or by using the
formula described in the _ imagesize reference page.

• Return Value

No value is returned.

• See Also

_ imagesize, _ putimage

• Example

#include <stdio.h>
#include <malloc.h>
#include <graph.h>

char far *buffer;

327

_getimage

main 0
{

}

int loop;
int xvar, yvar;
_setvideomode(_MRES16COLOR);
for (xvar = 163, loop = 0; xvar < 320; loop++, xvar += 3) {
_setcolor(loop % 16);

}

yvar = xvar * 5 / 8;
_rectangle (_GBORDER, 320-xvar, 200-yvar, xvar, yvar);
_setcolor(rand(l) % 16);
_floodfill(O, 0, loop % 16);

buffer = (char far *)malloc((unsigned int)
_imagesize(0, 0, 80, 50));

if (buffer == (char far *)NULL) {
exit (-1);

}
_getimage(O, 0, 80, 50, buffer);
_putimage(80, 50, buffer, _GXOR);
free ((char *) buffer) ;
while (!kbhit()); /* Strike any key to continue */
_setvideomode (_DEFAULTMODE):

This program draws a rectangle and then calls _ getimage to store it in
memory.

328

_ getlinestyle

• Summary

include <graph.h>

unsigned short far _getlinestyle(void};

• Description

Some graphics routines (_lineto and _ rectangle) output straight lines to
the screen. The type of lme can be controlled with the current line-style
mask.

The ~etlinestyle function returns the current line-style-mask number.
The mask is a 16-bit array, where each bit represents a pixel in the line
being drawn. If the bit is 1, the corresponding pixel is set to the color of
the line (the current color). If the bit is 0, the corresponding pixel is left
unchanged. The mask is repeated over the length of the line. The default
mask is OxFFFF (a solid line).

• Return Value

If no mask has been set, ~etlinestyle returns the default mask.

• See Also

_lineto, _ pie, _ rectangle, _ setlinestyle

• Example

#include <stdio.h>
#include <graph.h>

short style[16] = {Oxl, Ox3, Ox7, Oxf, Oxlf, Ox3f, Ox7f, Oxff,
Oxlff, Ox3ff, Ox7ff, Oxfff, Oxlfff, Ox3fff, Ox7fff,
Oxffff};

329

_ getlinestyle

main ()
{

}

int xvar, yvar, loop, oldstyle;
_setvideomode(_MRES16COLOR);
oldstyle = _getlinestyle(); /* save the old style of line */
for (xvar = 0, loop = 0; xvar < 320; xvar += 3, loop++) {

}

_setcolor(loop % 16);
yvar = xvar * 5 / 8;
_setlinestyle(style[loop % 16]);
_rectangle(_GBORDER, 320 - xvar, 200 - yvar, xvar, yvar);

_setlinestyle(oldstyle);
_setvideomode (_DEFAULTMODE);

This program calls _ getlinestyle to preserve the current line style before
changing it for the subsequent rectangle output.

330

• Summary

include <graph.h>

struct xycoord {
short xcoord; x coordinate
short ycoord; y coordinate
} far _ getlogcoord(x, y);

short x, y; Physical point to translate

• Description

_ getlogcoord

The _ getlogcoord function translates the physical coordinates (x, y) to
logical coordinates and returns them in an xycoord structure, defined in
graph.h.

• Return Value

There is no error return.

• See Also

- getphyscoord, _ moveto

331

_ getlogcoord

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

}

struct xycoord xycoord;
int loop;
_setvideomode(_MRES16COLOR);
xycoord.xcoord = rand(l) % 320;
xycoord.ycoord = rand(l) % 200;
xycoord = _getphyscoord(xycoord.xcoord, xycoord.ycoord);
/* set the logical origin to a random place on the screen */
_setlogorg (xycoord. xcoord, xycoord.ycoord);
/* draw an ellipse around this random origin */
_ellipse (_GBORDER, -80, -50, 80, 50);
xycoord = _getlogcoord(O, 0);
_moveto(xycoord.xcoord, xycoord.ycoord);
xycoord= _getlogcoord(320, 200);
_lineto(xycoord.xcoord, xycoord.ycoord);
while (!kbhit()); /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls _ getphyscoord to find the physical coordinates of a
randomly selected logical point, to which it then redefines the logical ori­
gin. The program draws an ellipse around the logical origin. It then calls
_ getlogcoord to find the logical coordinates of the physical origin, moves
the current output position to the physical origin, calls _ getlogcoord
again to find the logical coordinates of another point, and finally draws a
straight line from the physical origin to that point.

332

• Summary

include <graph.h>

struct xycoord {
short xcoord; x coordinate
short ycoord; y coordinate
} far _ getphyscoord(x, y);

short x, y; Logical point to translate

• Description

_ getphyscoord

The _getphyscoord function translates the logical point (x, y) to phys­
ical coordinates, returning them in an xycoord structure, defined in
graph.h.

• Return Value

There is no error return.

• See Also

_ getlogcoord

333

_ getphyscoord

• Example

#include <stdio~h>
#include <graph.h>

main ()
{

}

struct xycoord xycoord;
int loop;
_setvideomode(_MRES16COLOR);
xycoord.xcoord = rand(l) % 320;
xycoord.ycoord = rand(l) % 200;
xycoord = _getphyscoord(xycoord.xcoord, xycoord.ycoord);
/* Set the logical origin to a random place on the screen: */
_setlogorg(xycoord.xcoord, xycoord.ycoord);
/* Draw an ellipse around this random origin: */
_ellipse (_GBORDER, -80, -50, 80, 50);
xycoord = _getlogcoord(O, 0);
_moveto(xycoord.xcoord, xycoord.ycoord);
xycoord = _getlogcoord(320, 200);
_lineto(xycoord.xcoord, xycoord.ycoord);
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls _ getphyscoord to find the physical coordinates of a
randomly selected logical point, to which it then redefines the logical ori­
gin. The program draws an ellipse around the logical origin. It then calls
_ getlogcoord to find the logical coordinates of the physical origin, moves
the current output position to the physical origin, calls _getlogcoord
again to find the logical coordinates of another point, and finally draws a
straight line from the physical origin to that point.

334

getpid

• Summary

include <process.h> Required only for function declarations

int getpid(void);

• Description

The getpid function returns an integer (the process ID) that uniquely
identifies the calling process.

• Return Value

The getpid function returns the process ID. There is no error return.

• See Also

mktemp

• Example

#include <process.h>
#include <string.h>
#include <stdio.h>

char filename [9] , pid[S];

main ()
{

}

strcpy(filename, "FILE");
strcat(filename, itoa(getpid(), pid,lO»;

/* Prints "FILExxxxx", where xxxxx */
/* is the process ID: */
printf("Filename is %s\n", filename);

This program uses getpid to obtain the process ID, then converts the pro­
cess ID to a string for output.

335

_getpixel

• Summary

include <graph.h>

short far _ getpixel(x, y);
short x, y; Pixel position

• Description

The ~etpixel function retrieves the pixel value at the logical point (x, y).
The range of possible pixel values and their color translation is determined
by the current video mode and palette, respectively.

• Return Value

If successful, the function returns the pixel value. If the function fails (for
example, the point lies outside of the clipping region), it returns -1.

• See Also

Jemapallpalette, Jemappalette,selectpalette,setpixel,
.....setvideomode

• Example

#include <stdio.h>
#include <graph.h>

main ()
{
int loop;
int xvar, yvar;
_setvideomode(_MRES16COLOR);
_rectangle (_GFILLINTERIOR, 80, 50, 240, 150);
for (loop = 0; loop < 8000L; loop++) {
/* Fill pixels at random, but only if they are already on */
if (_getpixel(xvar = rand(l) / 104, yvar = rand(1)/164» {
_setcolor(rand(l) % 16);

}
}

_setpixel(xvar, yvar);

_setvideomode (_DEFAULTMODE);
}

This program assigns differen t colors to randomly selected pixels.

336

• Summary

include <stdio.h>

char *gets(buffer);
char * buffer;

• Description

gets

Storage location for input string

The gets function reads a line from the standard input stream stdin and
stores it in buffer. The line consists of all characters up to and including
the first new-line character ('\ n '). The gets function then replaces the
new-line character with a null character ('\ 0') before returning the line.
In contrast, the fgets function retains the new-line character.

• Return Value

If successful, the gets function returns its argument. A null pointer indi­
cates an error or end-of-file condition. Use ferror or feof to determine
which one has occurred.

• See Also

fgets, fputs, puts

• Example

#include <stdio.h>

char line[lOO];
char *result;

main 0
{
printf("Input a string: ");
result = gets(line);
printf("The line entered was: %s\n", result);

}

This program uses gets to read a line of input from stdin.

337

. _ gettextcolor

• Summary

include <graph.h>

short far _ gettextcolor(void};

• Description

The ~ettextcolor function returns the pixel value of the current text
color. The default is the highest legal value of the current palette.

• Return Value

There is no error return.

• See Also

....select palette, ...settextcolor

• Example

#include <stdio.h>
#include <graph.h>

char buffer[255]:

338

_ gettextcolor

main ()
{

}

struet reeoord reoord;
int oldeolor;
/* Set text window to upper half of screen */
_settextwindow(l, 1, 14, 80);
_wrapon(_GWRAPOFF); /* turn wrapping off */
oldeolor = _gettexteolor(); /* save original color */
_settexteolor(oldeolor - 1);
_settextposition(1, 1);
_outtext("Upper Left corner");
reoord = _gettextposition();
reoord.row++;
sprintf(buffer, "Row=%d, Col=%d", reoord.row, reoord.eol);
_settextposition(reoord.row, reoord.eol);
_outtext(buffer);
_settextposition(15, 40);
_settexteolor(oldeolor); /* recover original color */
_outtext("This should be on last line; is out of the window");
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls ~ettextcolor to save the current text color before
manipulating the screen.

339

_ gettextposition

• Summary

include <graph.h>

struct rccoord {
short row; Row coordinate
short col; Column coordinate
} far _ gettextposition(void);

• Description

The -..gettextposition function returns the current text position as an
rccoord structure, defined in graph.h.

Text output begins at the current text position. Graphics output begins
at the current graphics output position, which is a separate position.

• Return Value

There is no error return.

• See Also

J;ettext position

340

_ gettextposition

• Example

#inelude <stdio.h>
#inelude <graph.h>

char buffer [255];

main ()
{

}

struet reeoord reoord;
int oldeolor;
/* Set text window to upper half of screen: */
_settextwindow(l, 1, 14, 80);
_wrapon(_GWRAPOFF); /* turn wrapping off */
oldeolor = _gettexteolor(); /* Save original color */
_settexteolor(oldeolor - 1);
_settextposition(1, 1);
_outtext("Upper Left eorner");
reoord = _gettextposition();
reoord.row++;
sprintf(buffer, "Row=%d, Col=%d", reoord.row, reoord.eol);
_settextposition(reoord.row, reoord.eol);
_outtext(buffer);
_settextposition(15, 40);
_settexteolor(oldeolor); /* Recover original color */
_outtext("This should be on last line; is out of the window");
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls _ gettextposition and assigns the return value to the
structure reoord. It increments the row position and prints the new coor­
dinates.

341

_ getvideoconfig

• Summary

include <graph.h>

struct videoconfig {
short num.xpixels;
short numypixels;
short numtextcols;

Number of pixels in x axis
Number of pixels in y axis
Number of text columns available

short numtextrows; Number of text rows available
short numcolors; Number of actual colors
short hitsperpixel; Number of bits representing a pixel
short numvideopages; Number of available video pages
} far * far _ getvideoconfig(config);

struct videoconfig far * config; Configuration information

• Descri ption

The _getvideoconfig function returns the current graphics environment
configuration in a videoconfig structure, defined in graph.h.

• Return Value

There is no error return.

• Example

#include <stdio.h>
#include <graph.h>

main 0
{

}

struct videoconfig config;
_setvideomode(_MRES16COLOR);
_getvideoconfig(&config);
/* Set logical origin to the center of the screen: */
_setlogorg(config.numxpixels/2-1, config.numypixels/2 - 1);
_moveto(-80, -50);
_lineto(80, 50);
_lineto(80, -50);
while (!kbhit(»; /* wait for key before restoring screen */
_setvideomode (_DEFAULTMODE);

This program calls _ getvideoconfig to determine the screen size (in pix­
els) of the current hardware configuration. It then sets the logical origin to
the center of the screen.

342

getw

• Summary

include <stdio.h>

int getw(stream);
F~E *stream;

• Description

Pointer to F~E structure

The getw function reads the next binary value of type int from stream
and increases the associated file pointer (if there is one) to point to the
next unread character. The getw function does not assume any special
alignment of items in the stream.

• Return Value

The getw function returns the integer value read. A return value of EOF
may indicate an error or end-of-file; however, the EOF value is also a legi­
timate integer value, so feof or ferror should be used to verify an end-of­
file or error condition.

• See Also

putw

Note

The getw function is provided primarily for compatibility with pre­
vious libraries. Note that portability problems may occur with getw
since the size of an int and the ordering of bytes within an int differ
across systems.

343

getw

• Example

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int i;

main 0
{

stream = fopen("data.bin", "rb");

/* Read a word from the stream: */
i = getw(stream);

/* If there is an error ... */
if (ferror(stream»

{

}

printf("getw failed\n");
clearerr(stream);

else
printf ("Word = %x\n", i);

}

This program uses getw to read a word from a stream, then performs an
error check.

344

gmtime

• Summary

include <time.h>

struct tm *gmtime(time);
const time- t *time; Pointer to stored time

• Description

The gmtime function converts the time value to a structure. The tz'me
argument represents the seconds elapsed since 00:00:00, January 1, 1970,
Greenwich mean time; this value is usually obtained from a call to time.

The gmtime function breaks down the time value and stores it in a struc­
ture of type tm, defined in time.h. The structure members are described
in the reference page for asctime. The structure result reflects Greenwich
mean time, not local time.

The fields of the structure type tm store the following values:

Field

tm_sec

tm_min

tm_hour

tm-mday

tm_mon

tm_year

tm_wday

tm_yday

tm_isdst

Value Stored

Seconds

Minutes

Hours (0-24)

Day of month (1-31)

Month (0-11; January = 0)

Year (current year minus 1900)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Always 0 for gmtime

MS-DOS does not understand dates prior to 1980. If time represents a date
prior to 1980, gmtime returns NULL.

345

gmtime

c 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, if time represents
a date before January 1, 1980, gmtime returns the structure represen­
tation of 00:00:00, January 1, 1980.

• Return Value

The gmtime function returns a pointer to the structure result. There is
no error return.

• See Also

asctime, ctime, ftime, localtime, time

Note

The gmtime and localtime functions use a single statically allocated
structure to hold the result. Each call to one of these routines destroys
the result of the previous call.

• Example

#include <time.h>
#include <stdio.h>
struct tm *newtime;
long ltime;

main ()
{
time(<ime);
/* Obtain Greenwich mean time: */
newtime = gmtime(<ime);
printf("Greenwich mean time is %s\n",asctime(newtime»;

}

This program uses gmtime to convert a long-integer representation of
Greenwich mean time to a structure named newtime, then uses asctime
to convert this structure to an output string.

346

halloc

• Summary

include <malloc.h> Required only for function declarations

void huge *halloc(n, s£ze);
long n; Number of elements
siZEL t s£ze; Length in bytes of each element

• Description

The halloc function allocates a huge array from-MS-DOS consisting of n
elements, each of which is sz'ze bytes long. Each element is initialized to O.
If the size of the array is greater than 128K (131,072 bytes), then the size
of an array element must be a power of 2.

• Return Value

The halloc function returns a void huge pointer to the allocated space,
guaranteed to be suitably aligned for storage of any type of object. To get
a pointer to a type other than void huge, use a type cast on the return
value. The return value is NULL if the request cannot be satisfied.

• See Also

calloc, free, hfree, malloc, realloc

• Example

#include <stdio.h>
#include <malloc.h>

main ()
{

}

long huge *lalloc;
lalloc = (long huge *)halloc(30000L,sizeof(long»;
if (lalloc == NULL)

printf(ltInsufficient memory available");
else

printf(ltMemory successfully allocated");

This program uses halloc to allocate space for 30,000 long integers.

347

_ harderr, _hardresume, _hardretn

• Summary

include <dos.h>

void _ harderr(void(Jptr)O);
far *fptr; New INT Ox24 handler

void _ hardresume(result);
int result; Handler return parameter

void _ hardretn(error);
int error; Error to return from

• Description

The .-harderr routine establishes the user-defined routine that fptr points
to as the handler for INT Ox24, which is invoked when a hardware error
occurs during the execution of an I/0 request (for example, attempting to
read from a floppy disk when the drive door isn't closed). See the MS-DOS
Programmer's Reference for more information on INT Ox24.

The harderr function doesn't directly install the handler that fptr points
to; instead, harderr installs a handler that calls the function that fptr
references. The handler calls the function with the following parameters:

handler(unsigned deverror, unsigned errcode, unsigned far *devhdr);

The deverror argument is the device error code and contains the AX regis­
ter value that MS-DOS passes to the INT Ox24 handler. The errcode argu­
ment is the DI register value that MS-DOS passes to the handler. The
low-order byte of errcode can be one of the following values:

348

Code

o
1

2

3

4

5

Meaning

Attempt to write to a write-protected disk

Unkown unit

Drive not ready

Unknown command

Cyclic-redundancy-check (CRC) error in data

Bad drive-request structure length

_harderr, Jtardresume, Jtardretn

6 Seek error

7 Unknown media type

8 Sector not found

9 Prin ter ou t of paper

A Write fault

B Read fault

C General failure

The devhdr argument is a far pointer to a device header that contains
descriptive information about the device on which the error occurred. The
user-defined handler must not change the information in the device-header
con trol block.

If the error occurred on a disk device, the high-order bit (bit 15) of the
deverror argument will be set to 0 and the deverror argument will indicate
the following:

Bits Meaning

15 Disk error if false (0).
14 Not used

13 "Ignore" response not allowed if false.

12 "Retry" response not allowed if false.

11 "Fail" response not allowed if false (MS-DOS changes "fail"
to "abort").

9-10 Code Location

00 MS-DOS

01 File Allocation Table (FAT)

1 0 Directory

11 Data area

8 Read error if false; write error if true

The low-order byte of deverror indicates the drive where the error occurred
(0 = drive A, 1 = drive B, etc.)

349

_harderr, JIardresume, JIardretn

If the error occurs on a device other than a disk drive, the high-order bit
(bit 15) of deverror will be 1. The attribute word located at offset 04 in the
device-header block will indicate the type of device which had the error. If
bit 15 of the attribute word is 0, the error is a bad memory image of the
File Allocation Table. If the bit is instead 1, the error occurred on a char­
acter device and bits 0-3 of the attribute word indicate the type of device:

Bit Meaning

3 Curren t clock device

2 Current null device

1 Current standard output

o Current standard input

The user-defined handler function can issue system calls Ox01 through
OxOC only, or Ox59. Thus, many of the standard C run-time functions
(such as stream I/O and low-level I/O) cannot be used in a hardware
error handler. Function Ox59 may be used to obtain further informa­
tion about the error that occurred.

If the handler returns, it can do so using any of these three methods:

1. By way of the return statement

2. By way of the _ hardresume function

3. By way of the _ hardretn function

If the handler returns by way of _ hardresume or a return statement,
the handler returns to MS-DOS. If the handler returns by way of _ har­
dretn, the handler bypasses MS-DOS and returns to the application at
the point just past the failing I/O function request.

The _ hardresume function should only be called from within the user­
defined hardware error handler function. This function allows the user to
return from the handler to MS-DOS, as will returning from the handler
using a return statement.

The result supplied to _ hardresume must be one of the following con­
stants:

350

_ harderr, Jtardresurne, Jtardretn

Constant Action

_HARDERILIGNORE Ignore the error

_HARDERILRETRY Retry the operation

_ HARDERILABORT Abort the program issuing INT Ox23

_ HARDERR- F ~ Fail the system call that is in progress
(this is not supported on MS-DOS 2.x)

The _ hardretn function allows the user-defined hardware error handler
to return directly to the application program rather than returning to
MS-DOS. The application resumes at the point just after the failing I/O
function request. The _ hardretn function should only be called from
within a user-defined hardware error handler function.

The error parameter of _ hardretn should be an MS-DOS error code, as
opposed to the XENIX-style error code that is available in errno. For
information about the MS-DOS error codes which may be returned by a
given MS-DOS function call, refer to the MS-DOS Programmer's Reference.

If the failing I/O function request is an INT Ox21 function greater than or
equal to function Ox38, then _ hardretn will return to the application
with the carry flag set and the AX register set to the _ hardretn error
parameter. If the failing INT Ox21 function request is less than function
Ox38 and the function can return an error, the AL register will be set to
OxFF on return to the application. If the failing INT Ox21 does not have a
way of returning an error condition (this is true of certain INT Ox21 func­
tions below Ox38), the error parameter of _ hardretn is not used and no
error code is returned to the application .

• See Also

chain intr, _dos_ getvect, _dos_ setvect

351

_ heapchk, _ fbeapchk, _ nheapchk

• Summary

include <malloe.h>

int _ heapehk(void); Runs consistency check on heap

int _fheapehk(void); Runs consistency check on far heap

int _ nheapehk(void); Runs consistency check on near heap

• Description

Along with the _ heapset and _ heapwalk routines, _ heapchk is pro­
vided as an aid in debugging heap-related problems in programs.

The _ heapchk routine does a minimal consistency check on the unallo­
cated memory space, or "heap." The consistency check determines whether
all the heap entries are within the bounds of the heap's current memory
allocation.

In large data models (compact- and large-model programs), _heapchk
maps to _ fheapchk. In small data models (small- and medium-model pro­
grams), _ heapchk maps to _ nheapchk. The _ fheapchk routine runs
the consistency check on the far heap, while _ nheapchk runs the con­
sistency check on the near heap.

• Return Value

All three routines return one of the following manifest constants (defined
in malIoc.h):

352

Constant

_HEAPOK

_HEAPE:MPTY

Meaning

The heap appears to be consistent.

The heap has not been initialized.

_ HEAPBADBEGIN The initial header information could not be
found.

_ HEAPBADNODE A bad node has been found, or the heap is
damaged.

_ heapchk, _ fheapchk, _ nheapchk

• See Also

_ heapset, _ heapwalk

• Example

#include <malloc~h>
#include <stdio.h>

main ()
{
int heapstatus();
char *p = malloc(lOO);
malloc(200);
malloc(300);
free(p);

heapstatus = _heapchk();
switch (heapstatus){
case _HEAPOK:

}
}

printf(tlOK heap is fine\n tl);
break;

case _HEAPEMPTY:
printf (tlOK - heap is empty\ntl);
break;

case _HEAPBADBEGIN:
printf (tlERROR - bad start of heap\n") ;
breal;

case _HEAPBADNODE:
printf(tlERROR - bad node in heap\ntl);
break;

This program checks the heap for consistency and prints an appropriate
message.

353

_ heapset, _ fheapset, _ nheapset

• Summary

include <malloc.h>

int _ heapset(jm);
unsigned int fill;

int _ tbeapset(jill);
unsigned int fill;

int _ nheapset(jill);
unsigned int fill;

• Description

Fills empty heap nodes
Fill character

Fills empty far heap nodes
Fill character

Fills empty near heap nodes
Fill character

Along with the _ heapchk and _ heapwalk routines, _ heapset is pro­
vided as an aid in debugging heap-related problems in programs.

The _ heapset routine first does a minimal-consistency check on the heap
(just as _ heapchk does) and then sets the heap's free entries with the fill
value. You can use this in debugging to see where the free nodes are lo­
cated in memory dumps of the heap, and also to show where data was
unintentionally written to memory that was freed.

In large data models (compact and large-model programs), _ heapset
maps to _ fheapset. In small data models (small and medium-model pro­
grams), _heapset maps to _nheapset. The _fheapset routine operates
on the far heap, while _ nheapset operates on the near heap.

• Return Values

All three routines return an int whose value is one of the following mani­
fest constants (defined in malloc.h):

354

Constant

_HEAPOK
_HEAPEMPTY
_ HEAPBADBEGIN

_HEAPBADNODE

Meaning

Heap appears to be consistent

Heap has not been initialized

The initial header information could not be
found or was invalid

A bad node was found, or the heap is dam­
aged

_heapset, _fheapset, _nheapset

• SeeAlso

_ heapchk, _ heapwalk

• Example

#include <malloc.h>
#include <stdio.h>

main 0
{
int heapstatus;
char *p = malloc(l); /* make sure heap is initialized */

heapstatus = _heapset('Z'); /* fill in free entries */
switch (heapstatus){

}
}

case _HEAPOK:
printf("OK heap is fine\n");
break;

case _HEAPEMPTY:
printf("OK - heap is empty\n");
break;

case _HEAPBADBEGIN:
printf ("ERROR - bad start of heap\n") ;
break;

case _HEAPBADNODE:
printf ("ERROR - bad node in heap\n");
break;

This program checks the heap and fills in free en tries with the character
'z'.

355

_ heapwalk, _ fheapwalk, _ nheapwalk

• Summary

include <malloc.h>

int _ heapwalk(entry);
struct _ heapinfo{

Get heap entry information
Structure to contain information about the
next heap entry

int far *_ pentry;
sizEL t _ size;
int _ useflag;
} *entry;

int _ fheapwalk(Jarentry);
struct _ heapinfo * farentry;

int _ nheapwalk(nearentry);
struct _ heapinfo *nearentry;

• Description

Heap entry pointer
Size of heap entry
Entry "in-use" flag

Get far heap entry information
Structure to contain information about the
next far heap entry

Get near heap entry information
Structure to contain information about the
next near heap entry

Like the _ heapchk and _ heapset routines, _ heapwalk is provided as
an aid in debugging heap-related problems in programs.

The _ heapwalk routine walks through the heap, one entry per call,
returning a pointer to a _ heapinfo structure that contains information
about the next heap entry. The structure is defined in malloc.h.

Calls to ~eapwalk, which return JIEAPOK, will set the _use f1 ag
field to either _FREEENTRY or _ USEDENTRY (both are constants
defined in malloc.h, as is the structure itself). To obtain this information
about the first entry in the heap, pass _heapwalk a pointer to a
_heapinfo structure whose _pentry field is NULL.

In large data models (compact- and large-model programs), _ heapwalk
maps to _ fheapwalk. In small data models (small- and medium-model
programs), _ heapwalk maps to _ nheapwalk. The _ fheapwalk routine
walks through the far heap entries, while the _ nheapwalk routine walks
through the near heap entries.

356

_heapwalk, _fheapwalk, _nheapwalk

• Return Value

All three routines return one of the following manifest constants (defined
in malloc.h):

Constant

_HEAPOK

_HEAPEl\1PTY

_HEAPBADPTR

Meaning

The heap is OK so far, and the _heapinfo
structure contains information about the next
entry.

The heap has not been initialized.

The _pentry field of the entry structure does
not contain a valid pointer into the heap.

- HEAP BAD BE GIN The initial header information was not found
or it was invalid.

- HEAP BAD NODE A bad node was found or the heap is dam­
aged.

_HEAPEND The end of the heap was reached successfully.

• See Also

- heapchk, _ heapset

• Example

#include <stdio.h>
#include <malloc.h>

main 0
{

}

char *p;
heapdump(); p = malloc(59);
heapdump(); free(p);
heapdump(); p = malloc(330);
heapdump();

357

_ heapwalk, _ fheapwalk, _ nheapwalk

heapdump ()
{
struct _heapinfo hinfo;
int heapstatus;

hinfoo_pentry = NULL;
while((heapstatus = _heapwalk(&hinfo» == _HEAPOK){

}

pr intf ("%6s block at roP 0 f size %4 ° 4X\n II ,

(hinfoo_useflag == _USEDENTRY ? "USED" : II FREE ") ,
hinfoo_pentry, hinfoo_size);

switch (heapstatus){
case _HEAPEMPTY:

}
}

printf("OK - empty heap\n\n");
break;

case _HEAPEND:
printf ("OK - end of heap\n\n") ;
break;

case _HEAPBADPTR:
printf("ERROR - bad pointer to heap\n\n");
break;

case _HEAPBADBEGIN:
printf ("ERROR - bad start of heap\n\n") ;
break;

case _HEAPBADNODE:
printf("ERROR - bad node in heap\n\n");
break;

Sample Output:

OK - empty heap

USED block at lD71:1174 of size 003C
FREE block at lD71:11B2 of size OE4C

OK - end of heap

FREE block at lD71:1174 of size 003C
FREE block at lD71:11B2 of size OE4C

OK - end of heap

FREE block at lD71:1174 of size 003C
USED block at lD71:11B2 of size Ol4A
FREE block at lD71:12FE of size ODOO

OK - end of heap

This l?rogram "walks" the heap, starting at the beginning (-pentry ==
NULL). It prints out each heap entry's use, location, and size, and also
prints out information about the overall state of the heap as soon as
- heapwalk returns a value other than _ HEAP OK.

358

hfree

• Summary

include <malloc.h> Required only for function declarations

void hfree{ buffer);
void huge *buffer; Pointer to allocated memory block

• Description

The hfree function deallocates a memory block; the freed memory is
returned to MS-DOS. The buffer argument points to a memory block pre­
viously allocated through a call to halIoe. The number of bytes freed is
the number of bytes specified when the block was allocated. After the call,
the freed block is available for allocation.

• Return Value

There is no return value.

• See Also

halIoe

Note

Attempting to free an invalid buffer (one not allocated with halIoe)
may affect su bsequen t allocation and cause errors.

359

hfree

• Example

#include <malloc.h>
#include <stdio.h>

main ()
{

}

void huge *alloe;

alloc = halloc(80000L,sizeof(char));

/* Test for valid pointer: */
if (alloc != NULL) { /* Free memory for the heap: */
hfree (alloe) ;
printf("Memory successfully allocated and deallocated");

}
else
printf("Insufficient memory available");

This program allocates space for 80,000 characters, initializes this space to
zeros, then uses hfree to deallocate the memory.

360

hypot

include <math.h>

double hypot(x,y);
double x, y;

• Description

Floating-point values

The hypot function calculates the length of the hypotenuse of a right tri­
angle, given the length of the two sides x and y. A call to hypot is equiva­
lent to the following:

sqrt(X*x + y*y);

• Return Value

The function returns the length of the hypotenuse. If an overflow results,
hypot returns HUGE_ VAL and sets errno to ERANGE.

• See Also

cabs

• Example

#include <math.h>
#include <stdio.h>

main ()
{

}

double x = 3.0;
double y = 4.0;
printf("Hypotenuse = %2.1f\n", hypot(x,y»;

This program prints the hypotenuse of a right triangle with sides of 3.0
and 4.0.

361

_imagesize

• Summary

include <graph.h>

long far _ imagesize(xl, yl, x2, y2);
short xl, yl; Upper-left corner of bounding rectangle
short x2, y2; Lower-right corner of bounding rectangle

• Description

The _ imagesize function returns the number of bytes needed to store the
image defined by the bounding rectangle, specified by the coordinates (xl,
yl) and (x2, y2). This size is determined by the following formula:

xwid abs(x1-x2) +1;
ywid = abs(y1-y2) +1;
size = 4+ ((long) ((xwid*bits-per-pixel+7)/8)*(10ng)ywid);

The bits-per-pixel value is returned from a call to _ getvideoconfig as the
bitsperpixel field.

• Return Value

The function returns the image's storage size in bytes. There is no error
return.

• See Also

_ getvideoconfig

362

. .
_lmageslze

• Example

#include <stdio.h>
#include <malloc.h>
#include <graph.h>

char far *buffer;

main 0
{
int loop;
int xvar, yvar;
_setvideomode(_MRES16COLOR):
for (xvar = 163, loop = 0: xvar < 320; loop++, xvar += 3) {
_setcolor(loop % 16):

}

}

yvar = xvar * 5 / 8;
_rectangle (_GBORDER, 320-xvar, 200-yvar, xvar, yvar);
_setcolor(rand(l) % 16);
_floodfill(O, 0, loop % 16);

buffer = (char far *)malloc((unsigned int)
_imagesize(0, 0, 80, 50));

if (buffer == (char far *)NULL) {
exit (-1);

}
_getimage(O, 0, 80, 50, buffer);
_putimage(80, 50, buffer, _GXOR);
free ((char *)buffer);
while (!kbhit(»; /* Strike any key to continue */
_setvideomode (_DEFAULTMODE);

This program draws a series of nested rectangles. It calls jmagesize to
determine how large a buffer it should allocate to store a portion of the
nested-rectangle drawing.

363

inp, inpw

• Summary

include <conio.h> Required only for function declarations

int inp(port); Reads a byte

unsigned inpw(port); Reads a word

unsigned port; Port number

• Description

The inp and inpw functions read a byte and a word, respectively, from
the specified input port. The input value can be any unsigned integer in
the range 0 - 65,535.

• Return Value

The functions return the byte or word read from port. There is no error
return.

• See Also

outp,outpw

• Example

#include <conio.h>
#include <stdio.h>

/* Read will be done on port #0: */
unsigned int port = 0;
char result;

main ()
{

}

/* Input a byte from the port: */
result = inp(port);
printf("The value from port #%d is %d\n", port, result);

This program reads a character from input port O.

364

• Summary

include < dos.h >

int int86(intno, inregs, outregs);
int intno;
union REGS *inregs;
union REGS *outregs;

• Description

Interrupt number
Register values on call
Register values on return

int86

The int86 function executes the 8086-processor-family interrupt specified
by the interrupt number intno. Before executing the interrupt, int86
copies the contents of inregs to the corresponding registers. After the
interrupt returns, the function copies the current register values to
outregs. It also copies the status of the system carry flag to the cflag field
in outregs. The inregs and outregs arguments are unions of type REGS.
The union type is defined in the include file dos.h.

The int86 function is used to invoke :MS-DOS interrupts directly.

• Return Value

The return value is the value in the AX register after the interrupt
returns. If the cflag field in outregs is nonzero, an error has occurred; in
such cases, the _ doserrno variable is also set to the corresponding error
code.

• See Also

bdos, intdos, intdosx, int86x

365

intS6

• Example

#define VIDEO_IO OxlO
#define SET_CRSR 1

#include <dos.h>
#include <stdio.h>

union REGS regs;

main ()
{
int top, bot;

/* Get new cursor size from user: */

}

printf ("Enter new cursor top and bottom: ");
scanf ("%d %d", &top, &bot);

/* Set up for cursor change call: */
regs.h.ah SET_CRSR;
regs.h.ch = top;
regs.h.cl = bot;

/* Execute interrupt: */
int86 (VIDEO_IO, ®s, ®s);

This program uses int86 to call the IBM-PC BIOS video service (INT 10H)
to change the size of the cursor.

The default values are as follows:

366

Configuration

Monochrome card

Color card

43-line EGA

Default Values

12, 13

6, 7

4, 5

int86x

• Summary

include <dos.h>

int int86x(£ntno, £nregs, outregs, segregs);
int £ntno; Interrupt number
union REGS {

struct WORDREGS {
unsigned int ax;
unsigned int hx;
unsigned int cx;
unsigned int dx;
unsigned int si;
unsigned int di;
unsigned int cflag;
} x; .

struct BYTEREGS {
unsigned char aI, ah;
unsigned char hI, hh;
unsigned char c1, ch;
unsigned char dl, dh;
} h;

} .£nregs;
union REGS .outregs;
struct SREGS {

unsigned int es;
unsigned int cs;
unsigned int SS;
unsigned int ds;
} .segregs;

• Description

Register values on call
Register values on return

Segment-register values on call

The int86x function executes the 8086-processor-family interrupt specified
by the interrupt number intno. Unlike the int86 function, int86x accepts
segment-register values in segregs, letting programs that use large-model
data segments or far pointers specify which segment or pointer should be
used during the system call.

Before executing the specified interrupt, int86x copies the contents of
inregs and segregs to the corresponding registers. Only the DS and ES

367

int86x

register values in segregs are used. Mter the interrupt returns, the function
copies the current register values to outregs, copies the current ES and DS
values to segregs, and restores DS. It also copies the status of the system
carry flag to the cflag field in outregs. The z'nregs and outregs arguments
are unions of type REGS. The segregs argument is a structure of type
SREGS. These types are defined in the include file dos.h.

The int86x function is used to directly invoke MS-DOS interrupts that
take an argument in the ES register, or that take a DS register value
different from the default data segment.

• Ret urn Value

The return value is the value in the AX register after the interrupt re­
turns. If the flag field in outregs is nonzero, an error has occurred; in such
cases, the doserrno variable is also set to the corresponding error code.

• See Also

bdos, FP _ SEG, intdos, intdosx, int86, segread

Note

Segment values for the segregs argument can be obtained by using
either the segread function or the FP _ SEG macro.

• Example

#include <signal.h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

#define SYSCALL Ox21 /* INT 21H invokes system calls */
#define CHANGE_ATTR Ox43 /* System call 43H */

/* actually changes attributes */

char far *filename = "int86x.c"; /* filename in 'far' */
/* data segment */

union REGS inregs, outregs;
struct SREGS segregs;
int result;

368

int86x

main ()
{
/*
** AH us system call number
** AL is function (get attributes)
** DS:DX points to file name
*/

inregs.h.ah = CHANGE_ATTR;
inregs.h.al = 0;
inregs.x.dx = FP_OFF(filename);
segregs.ds FP_SEG(filename);
result = int86x(SYSCALL, &inregs, &outregs, &segregs);
if (outregs.x.cflag)

{

}

printf("Can't get file attributes; error no. %d\n",
result);

exit(l);

else
printf("Attribs = %#x\n", outregs.x.cx);

}

In this program, int86x executes an INT 21H instruction to invoke MS­
DOS system call 43H (change file attributes). The program uses int86x
because the file, which is referenced with a tar pointer, may be in a seg­
ment other than the default data segment. Thus, the program must expli­
citly set the DS register with the SREGS structure.

369

intdos

• Summary

include < dos.h >

int intdos(inregs, outregs);
union REGS *inregs; Register values on call
union REGS *outregs; Register values on return

• Description

The intdos function invokes the MS-DOS system call specified by register
values defined in inregs and returns the effect of the system call in outregs.
The inregs and outregs arguments are unions of type REGS. The union
type is defined in the include file dos.h.

To invoke a system call, intdos executes an INT 21H instruction. Before
executing the instruction, the function copies the contents of inregs to the
corresponding registers. Mter the INT instruction returns, intdos copies
the current register values to outregs. It also copies the status of the sys­
tem carry flag to the cflag field in outregs. If this field is nonzero, the flag
was set by the system call and indicates an error condition.

The intdos function is used to invoke MS-DOS system calls that take
arguments in registers other than DX (DH/DL) and AL, or to invoke sys­
tem calls that indicate errors by setting the carry flag.

• Return Value

The intdos function returns the value of the AX register after the sys­
tem call is completed. If the cflag field in outregs is nonzero, an error has
occurred and _ doserrno is also set to the corresponding error code.

• See Also

bdos, intdosx

370

intdos

• Example

#include <dos.h>
#include <stdio.h>

union REGS inregs, outregs;

main ()
{

}

/* Setup for function call 2a hex: */
inregs.h.ah = Ox2a;

/* Get current date: */
intdos(&inregs,&outregs);
printf ("date is %d/%d/%d\n",

outregs.h.dh,outregs.h.dl,outregs.x.cx);

This program uses intdos to invoke MS-DOS system call 2AH (get the
current date).

371

intdosx

• Summary

include <dos.h>

int intdosx{ £nregs, outregs, segregs);
union REGS *£nregs;
union REGS *outregs;
struct SREGS *segregs;

• Description

Register values on call
Register values on return
Segment-register values on call

The intdosx function invokes the MS-DOS system call specified by regis­
ter values defined in inregs and returns the effect of the system call in
outregs. The REGS and SREGS unions are described in the reference
page for int86x. Unlike the intdos function, intdosx accepts segment­
register values in segregs, letting programs that use long-model data seg­
ments or far pointers specify which segment or pointer should be used dur­
ing the system call. The inregs and outregs arguments are unions of type
REGS. The segregs argument is a structure of type SREGS. These types
are defined in the include file dos.h.

To invoke a system call, intdosx executes an INT 21H instruction. Before
executing the instruction, the function copies the contents of inregs and
segregs to the corresponding registers. Only the DS and ES register values
in segregs are used. Mter the INT instruction returns, intdosx copies the
current register values to outregs and restores DS. It also copies the status
of the system carry flag to the cflag field in outregs. If this field is nonzero,
the flag was set by the system call and indicates an error condition.

The intdosx function is used to invoke MS-DOS system calls that take an
argument in the ES register, or that take a DS register value different
from the default data segment.

• Return Value

The intdosx function returns the value of the AX register after the sys­
tem call is completed. If the cflag field in outregs is nonzero, an error has
occurred; in such cases, _ doserrno is also set to the corresponding error
code.

372

intdosx

• See Also

bdos, FP _ SEG intdos, segread,

Note

Segment values for the segregs argument can be obtained by using
either the segread function or the FP _ SEG macro .

• Example

#include <dos.h>
#include <stdio.h>
#include <direct.h>

union REGS inregs, outregs;
struct SREGS segregs;
char buffer[51], buf2[51];
char far *dir = "\newdir";
char *resultl, result2;

/* Buffers for directory names */
/* Directory to create */

main ()
{
resultl = getcwd(buffer,50);
printf ("Current working directory is =%s\n", buffer);

mkdir(dir);
inregs.h.ah = Ox3b; /* Change directory function */
inregs.x.dx = FP_OFF(dir); /* File name offset */
segregs.ds = FP_SEG(dir); /* File name segment */
intdosx(&inregs,&outregs,&segregs);
resultl = getcwd(buf2,50);
printf ("Changed working directory is =%s\n", buf2);
result2 = chdir(buffer); /* Change back */
resultl = getcwd(buf2, 50);
printf("Changed to original working directory =%s\n", buf2);

}

First, this program gets and displays the name of the current directory
and creates a directory named \newdir on the current drive. Then it
invokes MS-DOS system call 3BH (change directory) using intdosx to
change the current working directory to \newdir. Finally, it restores
the original directory as the current working directory.

373

isaln urn - isascii

• Summary

include <ctype.h>

int isalnum{ c); Tests for alphanumeric ('A'-'Z', 'a'-'z', or '0'-'9')

int isalpha{ c); Tests for letter ('A'-'Z' or 'a'-'z')

int isascii{ c); Tests for ASCII character (Ox00-0x7F)

int c; Integer to be tested

• Description

The ctype routines listed above test a given integer value, returning a
nonzero value if the integer satisfies the test condition and a 0 value if it
does not. An ASCII-character-set environment is assumed.

The isascii routine produces meaningful results for all integer values.
However, the remaining routines produce a defined result only for integer
values corresponding to the ASCII character set (that is, only where
isascii holds true) or for the non-ASCII value EOF (defined in stdio.h).

• See Also

iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
isxdigit, toascii, tolower, toupper

Note

The ctype routines are implemented as macros.

374

• Example

#include <stdio.h>
#include <ctype.h>

main ()
{

}

int ch;
for (ch = 0; ch <= Ox7f; ch++)

{
printf("%#04x",ch);

}

printf ("%3s", isalnum (ch) ? "AN" "");
printf("%2s", isalpha (ch) ? "A" "");
printf("%3s",isascii(ch) ? "AS" "");

putchar ('\n') ;

isalnum - isascii

This program uses isalnum, isalpha, and isascii to test all characters
between OxO and Ox7F. It displays each character tested, followed by a
code indicating the character type: A for alpha characters, AN for alpha­
numeric characters, and AS for ASCII characters.

375

isatty

• Summary

include <io.h>

int isatty(handle);
int handle;

• Description

Required only for function declarations

Handle referring to device to be tested

The isatty function determines whether handle is associated with a char­
acter device (that is, a terminal, console, printer, or serial port).

• Return Value

The isatty function returns a nonzero value if the device is a character
device. Otherwise, the return value is o.

• Example

#include <stdio.h>
#include <io.h>

long lac;

main 0
{

}

int interactive;

interactive = isatty(fileno(stdout»;
printf("Is stdout redirected? %sO, interactive? "no"
/* if not a character device, get current position */
if (!interactive)
loc = tell(fileno(stdout»;

376

"yes");

isatty

This program checks to see whether stdout has been redirected to a file.
For example, if the program was invoked as

sample > output

then

isatty(fileno(stdout))

would return false because stdout is actually the file output. If the pro­
gram is invoked as

sample

however, then the call to isatty would return true, because stdout is still
directed to the screen.

377

iscntrl - isxdigit

• Summary

include < ctype.h >

int iscntrl(c);

int isdigit(c);

int isgraph(c);

int islower(c);

int isprint(c);

int ispunct(c);

int isspace(c);

int isupper(c);

int isxdigit(c);

int c;

• Description

Tests for control character (OxOO-Oxlf or Ox7f)

Tests for digit ('0'-'9')

Tests for printable character not including the space
character (Ox21-Ox7e)

Tests for lowercase ('a'-'z')

Tests for printable character (Ox20-0x7e)

Tests for punctuation character

Tests for white-space character (Ox09-OxOd or Ox20)

Tests for uppercase ('A'-'Z')

Tests for hexadecimal digit ('A'-'F','a'-'f',or '0'-'9')

Integer value to be tested

The ctype macros listed above test a given integer value and return a
nonzero value if the integer satisfies the test condition, and 0 if it does
not. An ASCII-character-set environment is assumed.

These routines produce a defined result only for integer values correspond­
ing to the ASCII character set (that is, only where isascii holds true) or
for the non-ASCII value EOF (defined in stdio.h).

• Return Value

All of these functions return a nonzero value if the tested character is in
the right category, and a 0 if not.

378

iscntrl- isxdigit

• See Also

isalnum, isalpha, isascii, toascii, tolower, toupper

Note

The ctype routines are implemented as macros .

• Example

#include <stdio.h>
#include <ctype.h>

main ()
{

}

int ch;
for (ch = 0; ch <= Ox7f; ch++)

{

}

printf("%2s",iscntrl(ch) ? "c"
printf("%2s", isdigit (ch) ? "D"
printf("%2s",isgraph(ch) ? "G"
printf("%2s",islower(ch) ? "L"
printf(" %c",isprint(ch) ? ch
printf("%3s", ispunct (ch) ? "PU"
printf("%2s", isspace (ch) ? "S"
printf("%3s", isprint (ch) ? "PR"
printf("%2s",isupper(ch) ? "U"
printf("%2s", isxdigit (ch) ? "X"

putchar ('\n') ;

"") ;
"") ;
" ") ;
"") ;
'\0');
"") ;
"") ;
" ") ;
"") ;
" ") ;

This program tests all characters between OxO and Ox7f, then displays each
character with any of the following character-type codes that apply:

Code Type

C Control

D Digit

G Graphics

L Lowercase

379

iscntrl- isxdigit

PR

S

PU

U

x

Printable

Space

Punctuation

Uppercase

Hexadecimal digit

The program prints all printable characters in the tested range.

380

itoa

• Summary

include <stdlib.h> Required only for function declarations

char ... itoa(value, string, radix);
int value;
char ... string;
int radix;

• Description

Number to be converted
String result
Base of value

The itoa function converts the digits of the given value to a null­
terminated character string and stores the result (up to 17 bytes) in
strz'ng. The radz'x argument specifies the base of value; it must be in the
range 2-36. If radz'x equals 10 and value is negative, the first character
of the stored string is the min us sign (-).

• Return Value

The itoa function returns a poin ter to strz'ng. There is no error return.

• See Also

ltoa, ultoa

• Example

#include <stdlib.h>
#include <stdio.h>

int radix = 8;
char buffer[20];
char *p;
main ()

{

}

p = itoa(-3445,buffer,radix);
printf ("buffer= \"%s\"\n", buffer

/* p
) ;

This program displays -3445 as a base-8 string.

"171213" */

381

kbhit

• Summary

include <conio.h> Required only for function declarations

int kbhit(void);

• Description

The kbhit function checks the console for a recent keystroke.

• Ret urn Value

The kbhit function returns a nonzero value if a key has been pressed. Oth­
erwise, it returns O.

• Example

main 0
{
pr intf ("waiting ... \n");

/* Loop until kbhit() reports a keystroke: */
while (!kbhit ());

printf ("key struck was '%c '\n", getch ());
}

This program loops until the user presses a key. If kbhit returns nonzero,
a keystroke is waiting in the buffer. The program can call getch or getche
to fetch the keystroke. If the program calls either function without first
checking kbhit, the program may pause while waiting for input.

382

labs

• Summary

include <stdlib.h>

long labs(n);
long n;

• Description

Required only for function declarations

Long integer value

The labs function produces the absolute value of its long-integer argu­
ment n.

• Return Value

The labs function returns the absolute value of its argument. There is no
error return.

• See Also

abs, cabs, fabs

• Example

#include <stdlib.h>
#include <stdio.h>

main ()
{

long x,y;

x = -41567L;
y = labs(x);
printf("The labs(%ld) = %ld",x,y);

}

This program uses labs to get and display the absolute value of -41,567.

383

ldexp

• Summary

include <math.h>

double ldexp(x, exp);
double X;
int exp;

• Description

Floating-point value
Integer exponent

The ldexp function calculates the value of x * 2exp
,

• Return Value

The ldexp function returns x * 2exp. If an overflow results, the function
returns ± HUGE_ VAL (depending on the sign of x) and sets errno to
ERANGE.

• See Also

frexp, modf

• Example

#include <math.h>

main ()
{

double x,y;
int p;
x = 1.5;
P = 5;
Y = ldexp(x,p);
printf (tiThe ldexp (%f, %d) =

}

/* Y
%ftl, x,p, y) ;

= 48.0 */

This program uses ldexp to calculate the value of 1.5 * 2 5,

384

• Summary

include <stdlib.h>

struct ldiv _ t {
long int quot;
long int rem;
} ldiv{ numer, denom};

long int numer;
long int den om;

• Description

Quotient
Remainder

Numerator
Denominator

ldiv

The ldiv function divides numer by denom, computing the quotient and
the remainder. The sign of the quotient is the same as that of the math­
ematical quotient. Its absolute value is the largest integer which is less
than the absolute value of the mathematical quotient. If the denominator
is a the program will terminate with an error message.

The ldiv function is similar to the div function, the difference being that
the arguments and the members of the returned structure are all of type
long into

• Return Value

The ldiv function returns a structure of type ldiv_ t, comprising both the
quotient and the remainder. The structure is defined in stdlib.h.

• See Also

div

385

ldiv

• Example

#include <stdlib.h>
#include <math.h>

main (argc, argv)
int argc;
char **argv;

{

}

long int x,y;
ldiv_t div_result;

x = atol(argv[lJ);
y = atol{argv[2]);
printf("x is %ld, y is %ld\n", x,y);

div_result = ldiv(x,y);
printf("The quotient is %ld, and the remainder is %ld\n",

div_result.quot, div_result.rem);

This program takes two long integers as command-line arguments and
displays the results of the integer division.

386

lfind, lsearch

• Summary

include <search.h> Required only for function declarations

char *lfind(key, base, num, width, (compare)O);

char *lsearch(key, base, num, width, (compare)O);

char *key;
char *base;
unsigned *num, width;
int (*compare)(e/eml, elem2);
const void *eleml, *elem2;

• Description

Object to search for
Pointer to base of search data
Number and width of elements
Pointer to compare function
Array elements to compare

The lsearch and Hind functions perform a linear search for the value key
in an array of num elements, each of w£dth bytes in size. (Unlike bsearch,
lsearch and lfind do not require the array to be sorted.) The argument
base is a po in ter to the base of the array to be searched.

If key is not found, lsearch adds it to the end. The lfind function
does not.

The argument compare is a pointer to a user-supplied routine that com­
pares two array elements and returns a value specifying their relationship.
Both lsearch and lfind call the compare routine one or more times during
the search, passing pointers to two array elements on each call. This rou­
tine must compare the elements, then return one of the following values:

Value

Nonzero

o

• Return Value

Meaning

elementi and element2 are different

elementi is identical to element2

If the key is found, both lsearch and lfind return a pointer to the array
element base that matches key. If the key is not found, lfind returns
NULL, and lsearch returns a pointer to a newly added item at the end
of the array.

387

lfind, lsearch

• See Also

bsearch

• Example

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare 0 ;

main (argc, argv)
int argc;
char **argv;

{
char **result;
char *key = "PATH";

/* must declare as a function */

result = (char **)lfind«char *)&key, (char *)argv, &argc,
sizeof(char *), compare);

}

if (result)
printf ("%s found\n", *resul t) ;

else
printf ("PATH not found!\n"):

int compare (argl, arg2)
char **argl, **arg2;

{
return(strncmp(*argl,*arg2,strlen(*argl))):

}

This program uses Hind to search for the key word PATH in the
command-line arguments. Unlike lsearch, lfind fails if the key word is
not found.

388

_lineto

• Summary

include <graph.h>

short far _ lineto(x, y);
short x, y; End point

• Description

The _lineto function draws a line from the current position up to and
including the logical point (x, y). The line is drawn using the current color
and line style. If no error occurs, _lineto sets the current position to the
logical point (x, y).

Note

If you use _ floodfill to fill in a closed figure drawn with _lineto calls,
the figure must be drawn with a solid line-style pattern.

• Return Value

The _lineto function returns a nonzero value if the line is drawn success­
fully; otherwise, it returns o.

• See Also

_ getcurrentposition, _ setlinestyle

389

_lineto

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

}

int loop;
_setvideomode(_MRES16COLOR);
_moveto(80, 50);
_lineto(240, 150);
_lineto(240, 50);
while (!kbhit()); /* Strike any key to continue */
_setvideomode (_DEFAULTMODE);

This program draws the figure shown in Figure R.3.

Figure R.3 Output of _lineto Program

a90

localtime

• Summary

include <time.h>

struct tm ... localtime(time);
time- t ... time;

• Description

Pointer to stored time

The localtime function converts a time stored as a long value to a struc­
ture. The long value time represents the seconds elapsed since 00:00:00,
January 1, 1970, Greenwich mean time; this value is usually obtained from
the time function.

The localtime function breaks down the time value, corrects for the local
time zone and daylight saving time if appropriate, and stores the corrected
time in a structure of type tm.

The fields of the structure type tm store the following values:

Field

tm_sec

tm_min

tm_hour

tm_mday

tm_mon

tm_year

tm_wday

tm_yday

tm_isdst

Value Stored

Seconds

Minutes

Hours (0-24)

Day of month (1-31)

Month (0-11; January = 0)

Year (current year min us 1900)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Nonzero if daylight saving time is in effect,
otherwise 0

The complete structure is shown in the reference page for asctime.

The localtime function makes corrections for the local time zone if the
user first sets the environment variable TZ. The value of TZ must be a
three-letter time zone name (such as PST), followed by a signed or un­
signed number giving the difference between Greenwich mean time and the
local time zone. The number may be followed by a three-letter daylight­
saving-time zone (such as PDT). The localtime function uses the differ­
ence between Greenwich mean time and local time to adjust the stored

391

localtime

time value. If a daylight-saving-time zone is present in the TZ setting,
localtime also corrects for daylight saving time. If TZ currently has no
value, the default value PST8PDT is used.

When TZ is set, three other environment variables, timezone, daylight,
and tzname, are automatically set as well. See the tzset function for a
description of these variables.

Note

The TZ variable is not part of the ANSI standard definition of local­
time, but is a Microsoft extension .

• Return Value

The localtime function returns a pointer to the structure result. :MS-DOS
doesn't understand dates prior to 1980. If time is prior to January 1, 1980,
the function returns NULL.

c 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, if time represents
a date before 1980, localtime returns the structure representation of
00:00:00 January 1, 1980 .

• See Also

asctime, ctime, ftime, gmtime, time, tzset

Note

392

The gmtime and localtime functions use a single statically allocated
buffer for the conversion. Each call to one of these routines destroys
the result of the previous call.

• Example

#include <stdio.h>
#include <time.h>

struct tm *newtime;
long ltime;

main ()
{
struct tm *newtime;
char * am-pm = "PM";
time_t long_time;

localtime

time(&long_time); /* Get time as long integer */
newtime = localtime(&long_time); /* Convert to local time */

if (newtime->tm_hour < 12)
am_pm = "AM";

if (newtime->tm_hour > 12)
newtime->tm_hour -=12;

/* Set up extension */

/* Convert from 24-hour */
/* to 12-hour clock */

printf("%.19s %s\n",asctime(newtime), am_pm);
}

Sample output:

Tue Dec 10 11:30:12 AM

This program uses time to get the current time and then uses localtime
to convert this time to a structure representing the local time. The pro­
gram converts the result from a 24-hour clock to a 12-hour clock and
determines the proper extension (AM or PM).

393

locking

• Summary

include <sys\ locking.h>
include <io.h> Required only for function declarations

int locking(handle, mode, nbyte};
int handle; File handle
int mode; File locking mode

Number of bytes to lock long nbyte;

• Description

The locking function locks or unlocks nbyte bytes of the file specified by
handle. Locking bytes in a file prevents subsequent reading and writing of
those bytes by other processes. Unlocking a file permits other processes to
read or write to previously locked bytes. All locking or unlocking begins at
the current position of the file pointer and proceeds for the next nbyte
bytes, or to the end of the file.

Important

Under MS-DOS Versions 3.0 and 3.1, the files locked by a parent pro­
cess may become unlocked when one of its children exits.

The argument mode specifies the locking action to be performed. It must
be one of the following manifest constants:

394

Constant

LILLOCK

Action

Locks the specified bytes. If the bytes cannot be
locked, tries again after 1 second. If, after 10
attempts, the bytes cannot be locked, returns an
error.

LILRLCK Same as LILLOCK.
LIL NBLCK Locks the specified bytes. If bytes cannot be

locked, returns an error.

LIL NBRLCK Same as LIL NBLCK.
LIL UNLCK Unlocks the specified bytes. (The bytes must have

been previously locked.)

locking

More than one region of a file can be locked, but no overlapping regions
are allowed. Furthermore, no more than one region can be unlocked at a
time.

When unlocking a file, the region of the file being unlocked must corre­
spond to a region that was previously locked. The locking function does
not merge adjacent regions, so if two locked regions are adjacent, each
region must be unlocked separately.

All locks should be removed before closing a file or exiting the program .

• Return Value

The locking function returns a if it is successful. A return value of-l
indicates failure, and errno is set to one of the following values:

Value

EACCES

EBADF

EDEADLOCK

EINVAL

• See Also

creat, open

Note

Meaning

Locking violation (file already locked or unlocked).

Invalid file handle.

Locking violation. This is returned when the
LK- LOCK or LK- RLCK flag is specified and
the file cannot be locked after 10 attempts.

An invalid argument was given to the function.

The locking function should be used only under :ME-DOS Versions 3.0
and later; it has no effect under earlier versions of MS-DOS.

395

locking

• Example

#include <io.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys\locking.h>
#include <stdlib.h>

extern unsigned char _osmajor;
int fh;
long pos;
char buffer[BUFSIZ];

main ()
{

}

int result;

/* save the current file pointer position,
** then lock a region from the beginning of
** the file to the saved file pointer
** position
*/

/* Open file: read 10 bytes: */
fh = open("data", O_RDONLY);
result = read(fh, buffer, 10) ;
if (_osmajor >= 3) { /* Check for DOS version >= 3.0 */

}

pos = tell{fh); /* Get current pointer position*/
/* Reset pointer to beginning of file: */
result = lseek(fh, aL, SEEK_SET);
/* Lock first portion of the file: */
if ((locking(fh, LK_NBLCK, pos» != -1) {

printf("Succesfully locked %d bytes\n", pos);
lseek(fh, OL, 0);
locking(fh, LK_UNLCK, pos);

}
else

perror("Locking failed");

else
printf("MS-DOS version must be 3, or higher.\n");

This program opens a file named data and reads the first 10 bytes from
the file. It then moves the file pointer back to the beginning of the file and
uses locking to lock the first 10 bytes of the file.

396

locking

Note that this program works correctly only if the following conditions are
met:

• The file named data exists.

• SHARE.COM or SHARE.EXE is installed.

• The program is run under 11S-DOS Version 3.0 or later.

397

log,loglO

• Summary

include <math.h>

double log(x); Calculates natural logarithm of x

double loglO(x); Calculates base-lO logarithm of x

double x; Floating-point value

• Description

The log and loglO functions calculate the natural logarithm and base-IO
logarithm of x, respectively.

• Return Value

The log and loglO functions return the logarithm result. If x is negative,
both functions print a DOMAIN error message to stderr, return the
value -HUGE_ VAL, and set errno to EDOM. If x is 0, both functions
print a SING error message to stderr, return the value -HUGE_ VAL,
and set errno to ERANGE.

c 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, both log and
loglO set errno to EDOM whether x was 0 or a negative value.

Error handling can be modified by using the matherr routine.

• See Also

exp, matherr, pow

398

log, logiO

• Example

#include <math.h>
#include <stdio.h>

main 0
{
double x = 1000.0, y;

y = log(x); /* y is 6.907755 */
printf("The log(%.2f) = %f\n",x,y);

y = log10(x); /* y is 3.0 */
printf("The log10(%.2f) = %f\n",x,y);

}

This program uses log and logiO to calculate the natural logarithm and
the base-IO logarithm of 1000, respectively.

399

longjrnp

• Summary

include <setjmp.h>

void longjmp(env, value);
jmp_ buf env;
int value;

• Description

Variable in which environment is stored
Value to be returned to setjmp call

The longjmp function restores a stack environment previously saved in
env by setjmp. The setjmp and longjmp functions provide a way to exe­
cute a nonlocal goto and are typically used to pass execution control to
error-handling or recovery code in a previously called routine without
using the normal calling or return conventions.

A call to setjmp causes the current stack environment to be saved in env.
A subsequent call to longjmp restores the saved environment and returns
control to the point immediately following the corresponding setjmp call.
Execution resumes as if value had just been returned by the setjmp call.
The values of all variables (except register variables) accessible to the rou­
tine receiving control contain the values they had when longjmp was
called. The values of register variables are unpredictable.

The longjmp function must be called before the function that called
setjmp returns. If longjmp is called after the function calling setjmp
returns, unpredictable program behavior will result.

The value returned by longjmp must be nonzero. If value is passed as 0,
the value 1 is substituted in the actual return.

• Return Value

There is no return value.

• See Also

setjmp

400

longjmp

Warning

The values of register variables in the routine calling setjmp may not
be restored to the proper values after a longjmp is executed .

• Example

#include <stdio.h>
#include <setjmp.h>

main ()
{

}

if (setjmp(mark) != 0) { /* Set the point to jump to */
printf("longjmp has been called\n");
recover();
exit(1);

}
printf("setjmp has been called\n");
pO:

pO
{ /* Routine to trigger an error */
int error = 0;
error = 1;
if (error ! = 0)

10ngjmp(mark,-1); /* Execute a long jump */
}

recover() /* Code goes here for recovery */
/* from the error */

program to ensure that data files */
corrupted */

{
/* Exit the
/* won't be
}

This program uses setjmp to save the stack environment and executes the
p function to simulate an error. It then uses longjmp to restore the stack
environment and resume execution immediately after the setjmp call. Be­
cause longjmp and setjmp return different values, a conditional expres­
sion in the program allows the program to call the recover function to
use additional error-recovery code.

401

_ IrotI, _lrotr

• Summary

include <stdlib.h>

unsigned long _lrotl(value, sM/t);

unsigned long _lrotr(value, shift);

unsigned long value;
int sM/t;

• Description

Rotates left

Rotates right

Value to be rotated
Number of bits to shift

The _Irotl and _Irotr functions rotate value by shift bits.

• Return Value

Both functions return the rotated value. There is no error return.

• See Also

_ rotl, _ rotr

• Example

#include <stdlib.h>

main ()
{

}

unsigned long val = OX01234567;
printf("_lrotl(val,4) = Ox%8.8lx\n", _lrotl(val,4»;
printf("_lrotr(val,16) = Ox%8.8lx\n", _lrotr(val,16»;

The output would look like this:

_lrotl(val,4) = Ox12345670
_lrotr(val,16) = Ox45670123

This program uses _lrotI and _lrotr with different shift values to rotate
the long integer value Ox1234567.

402

lseek

• Summary

include <io.h>
include <stdio.h>

long Iseek(handle, offset, origin);
int handle;
long offset;
int origin;

• Description

Required only for function declarations

Handle referring to open file
Number of bytes from origin
Initial position

The lseek function moves the file pointer (if any) associated with handle
to a new location that is offset bytes from or£g£n. The next operation on
the file occurs at the new location. The orz'gz'n must be one of the following
constants defined in stdio.h:

Origin

SEEK-SET

SEEK-CUR

SEEK-END

Definition

Beginning of file

Current position of file pointer

End of file

The lseek function can be used to reposition the pointer anywhere in a
file. The pointer can also be positioned beyond the end of the file. However
an attempt to position the pointer before the beginning of the file causes
an error.

• Return Value

The lseek function returns the offset, in bytes, of the new position from
the beginning of the file. A return value of -lL indicates an error, and
errno is set to one of the following values:

Value

EBADF
EINVAL

Meaning

Invalid file handle

Invalid value for orz'gz'n, or position specified by
offset is before the beginning of the file

403

lseek

On devices incapable of seeking (such as terminals and printers), the
return value is undefined .

• See Also

fseek, tell

• Example

#include <io.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>

int fh;
long pas; /* position of file pointer */
char buffer[lO];

main ()
{

}

fh = open("data",O_RDONLY);

/* Seek the beginning of the file: */
pos = lseek(fh,O,SEEK_SET);
if (pos == -lL)

perror("lseek to beginning failed");
else

printf("Position for beginning of file seek = %d\n", pos);

read(fh,buffer,lO);

/* Find current position: */
pos = lseek(fh,OL,SEEK_CUR);
if (pos == -lL)

/* Move file pointer a little */

perror("lseek to current position failed");
else

printf ("Position for current position seek = %d\n", pos);

/* Set the end of the file: */
pos = lseek(fh,OL,SEEK_END);
if (pos = -lL)

perror("lseek to end failed");
else

printf ("Position for end of file seek = %d\n", pos);

404

lseek

This program first opens a file named data. It then uses lseek to find the
beginning of the file, to find the current position in the file, and to find the
end of the file.

405

ltoa

• Summary

include <stdlib.h>

char *ltoa(value, string, radix);
long value;
char *string;
int radix;

• Description

Required only for function declarations

Number to be converted
String result
Base of value

The ltoa function converts the digits of value to a null-terminated charac­
ter string and stores the result (up to 33 bytes) in strz'ng. The radz'x argu­
ment specifies the base of value; it must be in the range 2-36. If radz'x
equals 10 and value is negative, the first character of the stored string is
the minus sign (-).

• Return Value

The ltoa function returns a pointer to strz'ng. There is no error return.

• See Also

itoa, ultoa

• Example

#include <stdlib.h>

int radix = 10:
char buffer[20]:
char *p:
main ()
{

p = Itoa(-344115L,buffer,radix): /* p
printf ("Buffer= \"%s\"\n", buffer):

}

"-344115" */

This program displays the long integer -344,115 as a base-l0 string.

406

• Summary

include <stdlib.h>

void _ makepath(path, drz've, d£r, /name, ext);

char *path;
char *drz've;
char *dz'r;
char */name;
char *ext;

• Description

Full path-name buffer
Drive letter
Directory path
File name
File extension

_rnakepath

The JDakepath routine creates a single path name, composed of a drive
letter, directory path, file name, and file-name extension. The path argu­
ment should point to an empty buffer large enough to hold the complete
path name. The constant _MAL PATH, defined in stdlib.h, specifies
the maximum size path that MS-DOS can handle. The other arguments
point to the following buffers containing the path-name elements:

Buffer Description

drz've The drz've argument contains a letter (A, B, etc.) correspond­
ing to the desired drive and an optional trailing colon. The
JDakepath routine will insert the colon automatically in
the composite path name if it is missing. If drz've is a null
character or an empty string, no drive letter and colon will
appear in the composite path string.

dz'r The dz'rectory argument contains the path of directories, not
including the drive designator or the actual file name. The
trailing slash is optional, and either forward slashes (/) or
backslashes (\) or both may be used in a single dz'r argument.
If a trailing slash (/ or \) is not specified, it will be inserted
automatically. If az'r is a null character or an empty string,
no slash is inserted in the composite path string.

fname The fname argument contains the base file name without any
extensions.

ext The ext argument contains the actual filename extension,
with or without a leading period (.). The JIlakepath rou­
tine will insert the period automatIcally if it doesn't appear
in ext. If ext is a null character or an empty string, no period
is inserted in the composite path string.

407

_makepath

There are no size limits on any of the above four fields. However, the com­
posite path should be no larger than the _MAL PATH constant; other­
wise, MS-DOS will not handle it correctly.

• Example

#include <dos.h>

main ()
{

}

char path_buffer [40];
char * drive [3];
char * dir [30];
char * fname [9];
char * ext [4];

_makepath (path_buffer, "c", "qc\\clibref\\", "makepath", "C");
printf ("path created with _makepath: %s\n\n", path_buffer);

_splitpath (path_buffer, drive, dir, fname, ext);
printf ("path extracted with _splitpath\n");
printf ("drive: %s\n", drive);
printf ("dir: %s\n", dir);
printf ("fname: %s\n", fname);
printf ("ext: %s\n", ext);

This program builds a file-name path from the specified components.

408

• Summary

include <stdlib.h>
include <Inalloc.h>

void * Inalloc(size);
sizEL t size;

void far *_ fInalloc(size);
sizEL t size;

void near *_ nmalloc(size);
sizEL t size;

• Description

malloc, _ fmalloc, _ nmalloc

For ANSI compatibility (malloc only)
Required only for function declarations

Allocates a memory block
Bytes to allocate

Allocates a memory block in the far heap
Bytes to allocate

Allocates a memory block in the near heap
Bytes to allocate

The malloc function allocates a memory block of at least s£ze bytes. (The
block may be larger than s£ze bytes because of space required for align­
ment and for maintenance information.)

If sz'ze is 0, malloc returns NULL.

c 4.0 Dz'fference

In Version 4.0 of the Microsoft C Run-Time Library, malloc allocates
a zero-length item (that is, a header only) in the heap if sz'ze is O. The
resulting pointer can be passed to the realloc function to adjust the
size at any time.

In large data models (compact- and large-model programs), malloc maps
to _fmalloc. In small data models (small- and medium-model programs),
malloc maps to _nmalloc.

The _ fmalloc function allocates a memory block of at least sz'ze bytes
outside the default data segment. (The block may be larger than s£ze bytes
because of space required for alignment.) The _ fmalloc function returns a
far pointer to void. The storage space pointed to by the return value is
guaranteed to be suitably aligned for storage of any type of object. To get
a pointer to a type other than char, use a type cast on the return value.

409

malloc, _ fmalloc, _ nmalloc

If sufficient memory is not available outside the default data segment,
_ fmalloe will retry allocating within the default data segment. If there is
still insufficient memory available, the return value is NULL.

The _ nmalloe function allocates a memory block of at least size bytes
inside the default data segment. (The block may be larger than size bytes
because of space required for alignment.)

• Return Value

The malloe function returns a void pointer to the allocated space, the
_ fmalloe function returns a far pointer to void, and the _ nmalloe func­
tion returns a near pointer to void.

The storage space pointed to by the return value is guaranteed to be suit­
ably aligned for storage of any type of object. To get a pointer to a type
other than void, use a type cast on the return value.

The _ malloe and _ nmalloe functions return NULL if there is insuf­
ficient memory available. If _ fmalloe does not find sufficient memory
available outside the default data segment, it will try reallocating inside
the default data segment. If there is still insufficient memory available,
_ fmalloe will return NULL.

• See Also

ealloe, _ ffree, _ fmalloe, free, malloe, _ nfree, _ nmalloe, realloe

• Example

#include <stdio.h>
#include <malloc.h>

int *intarray;

main 0
{

}

/* Allocate space for 20 integers: */
intarray = (int *)malloc(20*sizeof(int»;
if (intarray == NULL)

printf("Insufficient memory available\n");
else

printf("Memory space allocated for 20 integers.\n");

This program uses malloe to allocate space from the heap for 20 integers.

410

• Summary

include <math.h>

int matherr(x);
struct exception {

int type;
char *name;
double argl, arg2;
double retval;
} *X;

• Description

matherr

Math exception information:
Error type
Function where error originates
Values that caused the error
Return value

The matherr function processes errors generated by the functions of the
math library. The math functions call matherr whenever an error is de­
tected. The user can provide a different definition of the matherr function
to carry out special error handling.

When an error occurs in a math routine, matherr is called with a pointer
to an exception type structure (defined in math.h) as an argument. The
type specifies the type of math error. It will be one of the following values,
defined in math.h:

Value

DOMAIN

SING

OVERFLOW

PLOSS

TLOSS

UNDERFLOW

Meaning

Argumen t domain error

Argument singularity

Overflow range error

Partial loss of significance

Total loss of significance

Underflow range error

The structure member name is a pointer to a null-terminated string con­
taining the name of the function that caused the error. The structure
members argl and arg2 specify the values that caused the error. (If only
one argument is given, it is stored in arg1.)

The default return value for the given error is retval. If you change the
return value, remember that the return value must specify whether
an error actually occutred. If matherr returns 0, an error message is
displayed and errno is set to an appropriate error value. If matherr
returns a nonzero value, no error message is displayed and errno remains
unchanged.

411

matherr

• Return Value

The matherr function should return 0 to indicate an error, and nonzero
to indicate successful corrective action.

• See Also

acos, asin, atan, atan2, bessel, cabs, cos, cosh, exp, hypot, log, pow,
sin, sinh, sqrt, tan

• Example

#include <math.h>
#include <string.h>

main ()
{

}

printf("10g(-2)=%e, 10g10(-5)=%e, log (O)=%e\n",
log (- 2.0), 10g10 (-5), log (0)) ;

int matherr(x)
struct exception *x;

{

}

if (x->type == DOMAIN) { /* If domain error from "log": */
if (strcmp(x->name, "log") == 0) {
x->retval = 10g(-(x->arg1»;
return(l);

}
else
if (strcmp(x->name, "10g10") == 0) { /* If from "10g10": */
x->retval = 10g10(-(x->arg1»;

}
}

return(l);

return(O); /* Else use the default actions */

If any of the functions this program calls causes an error, the program
calls matherr. If the error resulted from a negative argument to log or
loglO (a domain error), the program returns the natural or base-lO loga­
rithm of the absolute value of the argument and suppresses the usual error
message.

412

• Summary

include <stdlib.h>

type max(a, b);
type a, b;

• Description

Values to compare

max

The max macro compares two values and returns the value of the larger
one. The data type can be any numerical data type, signed or unsigned.
The type must be the same for both arguments and the function declara­
tion for each call to max.

• Return Value

The macro returns the larger of the two arguments.

• See Also

min

• Example

#include <stdlib.h>
#include <stdio.h>

main () ;
int a = 10;
int b = 21;

printf("The larger of %d and %d is %d\n", a, b, (int) max (a, b»;

This program prints the larger of the two values, a and b.

413

_memavl

• Summary

include <malloc.h> Required only for function declarations

siZEL t _ memavl(void};

• Description

The _ memavl function returns the approximate size, in bytes, of the
memory available for dynamic memory allocation in the default data seg­
ment. This function can be used with ealIoe, malIoe, or realloe in the
small- and medium-memory models, and with _ nmalloe in all memory
models.

• Return Value

The _ memavl function returns the size in bytes as an unsigned integer.

• See Also

ealIoe, _freeet, malIoe, realIoe, staekavail

• Example

#inelude <malloe.h>

main ()
{

}

long *longptr;

printf ("Memory available before malloe = %u\n", _memavl (» ;
longptr = (long*)malloe{5000*sizeof{long»;
printf ("Memory available after malloe = %u\n", _memavl 0) ;

414

Sample output:

Memory available before malloe = 61383
Memory available after malloe = 40959

_memavl

This program uses _ memavl to determine the amount of available mem­
ory. It then uses malloc to allocate space for 5000 long integers and uses
_ memavl again to determine the new amount of available memory.

415

memccpy

• Summary

include <memory.h>
include <string.h>

void *memccpy(dest, src, c, cnt);
const void *dest;
const void *src;
int c;
unsigned cnt;

• Description

Required only for function declarations
Use either string.h or memory.h

Pointer to destination
Pointer to source
Last character to copy
Number of characters

The memccpy function copies 0 or more bytes of src to dest, copying up
to and including the first occurrence of the character c or until cnt bytes
have been copied, whichever comes first.

• Return Value

If the character c is copied, memccpy returns a pointer to the byte in dest
that immediately follows the character. If c is not copied, memccpy
returns NULL.

• See Also

memchr, memcmp, memcpy, memset

416

• Example

#include <memory.h>
#include <string.h>
#include <stdio.h>

char buffer[lOO], source[lOO] = "This is the II

II string to be transferred\n";
char *result;

main ()
{
result = memccpy(buffer, source, '\n',lOO);

if (result == NULL)

memccpy

printf("Memory has been copied, but no \\n was found");
else

printf("Memory has been copied, and a \\n was found");
}

This program uses memccpy to copy a string from source to buffer.
The copy proceeds until either 100 bytes have been copied or a new-line
character (\n) is encountered.

417

memchr

• Summary

include <memory.h>
include <string.h>

void *memchr(buf, c, count);
void *bu/;
size- t C;
unsigned count;

• Description

Required only for function declarations
Use either string.h or memory.h

Pointer to buffer
Character to copy
Number of characters

The memchr function looks for c in the first count bytes of buf It stops
when it finds c or after checking the first count bytes.

• Return Value

If successful, memchr returns a pointer to the first location of c in buf
Otherwise, it returns NULL.

• See Also

memccpy, memcmp, memcpy, memset

• Example

#include <memory.h>
#include <stdio.h>

char buffer[lOO];
char *result;
main 0

{

}

strcpy(buffer, "this is a test");
result = memchr(buffer, 'a',lOO);
if (result != NULL)

printf("Char. 'a' found at position %d\n", result-buffer+1);
else

printf("Char 'a' not found in first 100 bytes of buffer");

This program uses memchr to find the first occurrence of a in the buffer.

418

memcmp

• Summary

include <memory.h >
include <string.h>

int memcmp (bull, bul2, count);
const void .bull;
const void • bul2;
siZEL t count;

• Description

Required only for function declarations
Use either string.h or memory.h

First buffer
Second buffer
Number of characters

The memcmp function compares the first count bytes of bufl and buf2
and returns a value indicating their relationship, as follows:

Value

<0

=0

>0

Note

Meaning

bufl less than buf2

bufl identical to buf2

bufl greater than buf2

There is a seman tic difference between the function version of
memcmp and its intrinsic version. The function version supports
huge pointers in compact- and large-model programs, but the intrin­
sic version does not.

• Return Value

The memcmp function returns an integer value, as described above.

• See Also

memccpy, memchr, memcpy, memset

419

memcmp

• Example

#include <string.h>

char first[100], second[100];
int result;

main ()
{
strcpy(first, "12345678901234567890");
strcpy(second, "12345678901234567891");
result = memcmp(first,second,100);
printf("First is %s second.\n", result?

(result < 0 ? "less than" : "greater than") : "equal to");
}

This program uses memcmp to compare the strings named first and
second. If the first 100 bytes of the strings are equal, the program consid­
ers the strings to be equal.

420

• Summary

include <memory.h>
include <string.h>

void *memcpy(dest, src, count);
void *dest;
const void *src;
siz~ t count;

• Description

memcpy

Required only for function declarations
Use either string.h or memory.h

New buffer
Buffer to copy from
Number of characters to copy

The memcpy function copies count bytes of src to dest. If some regions of
src and dest overlap, memcpy does not ensure that the original src bytes
in the overlapping region are copied before being overwritten. Use mem­
move to handle overlapping regions.

c 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, memcpy does
ensure that overlapping regions are copied before being overwritten.

Note

There is a seman tic difference between the function version of
memcpy and its intrinsic version. The function version supports huge
pointers in compact- and large-model programs, but the intrinsic ver­
sion does not.

• Return Value

The memcpy function returns a pointer to dest.

421

memcpy

• See Also

memccpy, memchr, memcmp, memmove, memset

• Example

#include <memory.h>

char source[200], dest[200];
char *result;

main ()
{

}

strcpy{source, "This is the source to be moved. II);

strcpy (dest, " II);

/* Move 200 bytes from source to dest */
/* and return a pointer to dest: */
printf("source = %s\ndestination = %s\n\n", source, dest);
result = memcpy(dest, source,200);
printf("source = %s\ndestination = %s\nresult = %s\n",

source, dest, result);

This program uses memcpy to copy 200 bytes from source to dest and
returns a pointer to dest.

422

.
memlcmp

• Summary

include <memory.h>
include <string.h>

int memicmp (bufl, buf2, count);
void ... bufl;
void ... bu/2;
unsigned count;

• Description

Required only for function declarations
Use either string.h or memory.h

First buffer
Second buffer
Number of characters

The memicmp function compares the first count characters of bufl and
buf2 byte-by-byte, without regard to the case of letters in the two buffers;
that is, uppercase (capital) and lowercase letters are considered equivalent.
All uppercase letters in bufl and buf2 are converted to lowercase before the
comparison. The memicmp function returns a value indicating the rela­
tionship of bufl and buf2, as follows:

Value

<0

=0

>0

• Return Value

Meaning

buflless than buf2

bufl identical to buf2

bufl greater than buf2

The memicmp function returns an integer value, as described above.

• See Also

memccpy, memchr, memcmp, memcpy, memset

423

.
melIllcmp

• Example

#include <memory.h>
#include <stdio.h>
#include <string.h>

char first[lOO], second[lOO];
int result;

main ()
{
strcpy(first, "Those Who Will Not Learn from Historv"):
strcpy(second,"THOSE WHO WILL NOT LEARN FROM their mistakes");
/* Note that the 29th letter is right here ~ */

}

result = memicmp(first,second,29);
printf("%d\n",result);

Output:

o

/* result is 0 */

This program uses memicmp to compare the the first 29 letters of the
strings named first and second without regard to the case of the
letters.

424

_memmax

• Summary

include <stdlib.h> ANSI version
include <malloc.h> UNIX System V version

siZEL t _ memmax(void);

• Description

The _ memmax function returns the size (in bytes) of the largest contigu­
ous block of memory that can be allocated from the near heap. Calling
_ nmalloc{_ memmaxO) will succeed so long as _ memmax returns a
nonzero value.

• Return Values

The function returns the block size, if successful. Otherwise, it returns 0,
indicating that nothing more can be allocated from the near heap.

• See Also

malIoe, msize

• Example

#include <stddef.h>
#include <malloc.h>
#include <stdio.h>

main 0
{

}

size_t max = -IDemmax();
char near *p;

if (max) {
p = _nmalloc(max);
printf(p ? "max allocation succeeded\n" :

"max allocation failed - should not occur\n");
}
else
printf("near heap is already full\n");

This program attempts to allocate _ memmax bytes from the near heap.

425

memmove

• Summary

include <string.h>

void *memmove(dest, STC, count);

void *dest;
const void *STC;
size- t count;

• Description

Target object
Source object
Number of characters to copy

The memmove function copies count characters from src to dest. If some
regions of src and dest overlap, memmove ensures that the original src
bytes in the overlapping region are copied before being overwritten.

• Return Value

The memmove function returns the value of src.

• See Also

memccpy, memcpy

• Example

#include <stdio.h>
#include <string.h>

char Source[] "»»»»»»»««««««««";
char Target[] = "We will copy the stuff in here: "

"and will see if it correctly moves "
"the string in";

char *ToPrint;

main ()
{

}

printf ("Target Before: %s\n\n", Target);
ToPrint = memmove{&Target[32], Source, sizeof{Source»;
printf ("Target After: %s\n", Target);

426

memmove

Using memmove, the string Source is copied into Target. Note that
the sizeD f operator gives back the size of the string, including the end­
of-string character, effectively shortening Target.

427

memset

• Summary

include <memory.h>
include <string.h>

void *memset(dest, c, count);
void *dest;
int c;
size- t count;

• Description

Required only for function declarations
Use either string.h or memory.h

Pointer to destination
Character to set
Number of characters

The memset function sets the first count bytes of dest to the character c.
The normal function version of memset supports huge pointers in
compact- and large-model programs, but the intrinsic version does not.

• Return Value

The memset function returns a pointer to dest.

• See Also

memccpy, memchr, memcmp, memcpy

• Example

#include <memory.h>

char buffer[lOO];
main ()

{

}

char *result;
result = memset(buffer, 'X',20);
buffer[20] = '\0';
printf("Buffer = %S", buffer);

This program uses memset to set the first 20 bytes of buffer to X. It
then appends a null character ('\ 0') to the buffer and displays it.

428

• Summary

include <stdlib.h>

type mine a, b);
type a, b;

• Description

Values to compare

.
mIn

The min macro compares two values and returns the value of the smaller
one. The data type can be any numerical data type, signed or unsigned.
The type must be the same for both arguments and the function declara­
tion for each call to min.

• Return Value

The macro returns the smaller of the two arguments.

• See Also

max

• Example

#include <stdlib.h>
#include <stdio.h>

main 0;
int a = 10;
int b = 21;

printf (tiThe smaller of %d and %d is %d\n", a, b, (int) min (a, b»;

This program prints the smaller of the two values, a and b.

429

mkdir

• Summary

include <direct.h> Required only for.function declarations

int mkdir(path);
char *path; Path name for new directory

• Description

The mkdir function creates a new directory with the specified path. Only
one directory can be created at a time, so only Lhe last cornponent of path
can name a new directory.

• Return Value

The mkdir function returns the value 0 if the new directory was created.
A return value of -1 indicates an error, and errno is set to one of the fol­
lowing values:

Value

EACCES

ENOENT

• See Also

chdir, rmdir

430

Meaning

Directory not created. The given name is the name
of an existing file, directory, or device.

Path name not found.

mkdir

• Example

#include <direct.h>

main 0
{

}

int result;

/* "b:\tmp" could also be used in this call: */
result = mkdir("b:/tmp");
if (result == 0)

printf("Directory 'b:/tmp' was successfully created\n");
else

printf("Problem creating directory 'b:/tmp'\n");

/* "tmp\sub" could also be used: */
result = mkdir("tmp/sub");
if (result == 0)

printf("Directory 'tmp/sub' was successfully created\n");
else

printf("Problem creating directory 'tmp/sub'\n");

This program uses mkdir to create the directories b : \ tmp and tmp \sub.

431

mktemp

• Summary

include <io.h> Required only for function declarations

char oIemktemp(template);
char ole template; File-name pattern

• Description

The mktemp function creates a unique file name by modifying the given
template. The template argument has the form

bas eX:XX:X::X:X:

where base is the part of the new file name supplied by the user and the Xs
are placeholders for the part supplied by mktemp; mktemp preserves
base and replaces the six trailing X's with an alphanumeric character fol­
lowed by a five-digit value. The five-digit value is a unique number identi­
fying the calling process. The alphanumeric character is 0 ('0') the first
time rnktemp is called with a given template.

In subsequent calls from the same process with the same template,
mktemp checks to see if previously returned names have been used to
create files. If no file exists for a given name, mktemp returns that name.
If files exist for all previously returned names, mktemp creates a new
name by replacing the alphanumeric character in the name with the next
available lowercase letter. For example, if the first name returned is
t012345 and this name is used to create a file, the next name returned
will be ta12345. When creating new names, mktemp uses, in order, '0'
and then the lowercase letters 'a' to 'z'.

• Return Value

The mktemp function returns a pointer to the modified template. The
return value is NULL if the template argument is badly formed or no
more unique names can be created from the given template.

• See Also

fopen, getpid, open

432

mktemp

Note

The mktemp function generates unique file names but does not create
or open files .

• Example

#include <io.h>
#include <stdio.h>

char *template = "fnXXXXXX";
char *result;
char names[5J [9J;

main ()
{
int i;

for(i = 0; i < 5; i++) {
strcpy(names[iJ, template);
/* Attempt to find a unique file name: */
result = mktemp(names[iJ);
if (result == NULL)
printf("Problem creating the template");

else {
printf("Unique file name is %s\n", result);

fopen(result, "W");
}

}
}

The above program uses mktemp to create five unique file names. It
opens each file name to ensure that the next name is unique.

433

mktime

• Summary

include <time.h>

time- t mktime(timeptr);
struct tm * timeptr; Local time structure

• Description

The mktime function converts the local time into a calendar value. The
t£meptr argument points to a structure that contains the local time. The
structure is described in the reference page for asctime. The converted
time has the same encoding as the values returned by the time function.
The original values of the tm_ wday and tm_ yday components of the
timeptr structure are ignored, and the original values of the other com­
ponen ts are not restricted to their normal ranges.

If successful, mktime sets the values of tm_ wday and tID- yday
appropriately, and sets the other components to represent the specified
calendar time, but with their values forced to the normal ranges; the final
value of tm_ mday is not set until tm_ mon and tm_ year are deter­
mined.

Note

MS-DOS does not understand dates prior to 1980. If t£meptr references
a date before January 1, 1980, mktime returns -1.

• Return Values

The mktime function returns the specified calendar time encoded as a
value of type time_ t. If the calendar time cannot be represented, the
function returns the value -1 cast as type time- t.

• See Also

asctime, gmtime, localtime, time

434

• Example

#include <time.h>
#include <stdio.h>

struct tm when;
time_t now;
time_t result;
int days;

main ()
{

}

printf(tlHow many days to look ahead: tI);
scanf(tI%dtl , &days);

time(&now);
when = *localtime(&now);
when.tm_mday = when.tm_mday + days;
if ((result = mktime(&when» != (time_t)-l)
pr int f (tI\n%d days from now the time wi 11 be %s II ,

days, asctime(&when»;
else
perror("mktime failed tl);

mktime

The example above takes a number of days as input and returns the time,
the current date, and the specified number of days.

435

modf

• Summary

include <math.h>

double modf(x, £ntptr);
double X;
double *'intptr;

• Description

Floating-point value
Pointer to stored integer portion

The modf function breaks down the floating-point value x into fractional
and integer parts. The signed fractional portion of x is returned. The in­
teger portion is stored as a floating-point value at z'ntptr.

• Return Value

The modf function returns the signed fractional portion of x. There is no
error return.

• See Also

frexp, ldexp

• Example

#include <math.h>
#include <stdio.h>

main 0
{

}

double x,y,n;

x = -14.87654321; /* Divide x into its fractional */
y = rnodf(x,&n); /* and integer parts */

printf("The modf(%f,&n) = %f and n = %f", x, y, n);

This program uses modf to divide the floating-point value -14.87654321
into its fractional and integer parts.

436

movedata

• Summary

include <memory.h>
include <string.h>

Required only for function declarations
Use either string.h or memory.h

void movedata(srcseg, srco!!, destseg, desto//, nbytes);
unsigned int srcseg; Segment address of source
unsigned int srco//; Segment offset of source
unsigned int destseg; Segment address of destination
unsigned int desto//; Segment offset of destination
unsigned nbytes; Number of bytes

• Description

The movedata function copies nbytes bytes from the source address
specified by srcseg:srcoffto the destination address specified by
destseg: destoff.

The movedata function is used to move far data in small- or medium­
model programs where segment addresses of data are not implicitly
known. In large-model programs, the memcpy or memmove function
can be used since segment addresses are implicitly known.

• Return Value

There is no return value.

• See Also

FP_OFF, FP_SEG, memcpy, memmove, segread

437

movedata

Note

Segment values for the srcseg and destseg arguments can be obtained
by using either the segread function or the FP _ SEG macro.

The movedata function does not handle all cases of overlapping
moves correctly (overlapping moves occur when part of the destination
is the same memory area as part of the source). Overlapping moves are
handled correctly in the memmove function .

• Example

#include <memory.h>
#include <dos.h>
#include <malloc.h>

char far *src;
char far *dest;

main ()
{
src = _fmalloc(512);
dest = _fmalloc(S12);

movedata(FP_SEG(src), FP_OFF(src), FP_SEG(dest),
FP_OFF(dest), 512);

printf("The data have been moved\n");
}

This program uses movedata to move 512 bytes of data from src to
dest.

438

_moveto

• Summary

include <graph.h>

struct xycoord {
short xcoord; x coordinate
short ycoord; y coordinate
} far _ moveto(x, y);

short x, y; Target position

• Description

The _moveto function moves the current position to the logical point (x,
y). No drawing takes place.

• Return Value

The function returns the logical coordinates of the previous position as an
xycoord structure, defined in graph.h.

• See Also

_lineto

• Example

#include <graph.h>
main ()
{
int loop, outloop;
_setvideomode(_MRES16COLOR);
for (outloop = 0; outloop < 20; outloop++) {

}

for (loop = 0; loop < 320; loop += 7) {
_setcolor(loop % 16);
_moveto(loop / 2, 0);
_lineto(O, 199 - loop * 8/5);

}
_selectpalette(outloop % 5);

_setvideomode (_DEFAULTMODE);
}

This program draws random line segments of different colors, calling
-IDoveto to move between segments.

439

_ msize, _ fmsize, _ nmsize

• Summary

include <malloc.h>

siZEL t _msize(buffer);
void * buffer;

siZEL t _ fmsize(buffer);
void far * buffer;

size- t _ nmsize(buffcr);
void near * buffer;

• Description

Required only for function declarations

Returns memory block size
Pointer to memory block

Returns far-heap memory block size
Pointer to memory block

Returns near-heap memory block size
Pointer to memory block

The _ msize function returns the size, in bytes, of the memory block allo­
cated by a call to calloc, malloc, or realloc.

In large data models (compact- and large-model programs), _ msize maps
to _fmsize. In small data models (small- and medium-model programs),
_ msize maps to _ nmsize.

The _ fmsize function returns the size (in bytes) of the memory block allo­
cated by a call to _ fmalloc.

The _ nmsize function returns the size (in bytes) of the memory block
allocated by a call to _ nmalloc.

• Return Value

All three functions return the size (in bytes) as an unsigned integer.

• See Also

calloc, _ expand, _ fmalloc, malloc, _ nmalloc, realloc

440

_ msize, _ fmsize, _ nmsize

• Example

#include <stdio.h>
#include <malloc.h>

main ()
{

long *oldbuffer;
size_t newsize = 64000;
oldbuffer = (long *)malloc(10000*sizeof(long));

/* Get size of original memory: */
printf ("Size of memory block pointed to by oldbuffer %u\n",

_msize(oldbuffer));
if (_expand (oldbuffer,newsize) != NULL)
/* if _expand succeeded: */

printf("Expand was able to increase block to %u\n" ,
_msize(oldbuffer));

/* otherwise _expand failed: */
else

printf("Expand was able to increase block to only %u\n",
_msize(oldbuffer));

}

Sample output:

Size of memory block pointed to by oldbuffer = 40000
Expand was able to increase block to only 44718

This program allocates a block of memory for oldbuffer and then uses
_ msize to display the size of that block. Next, it uses expand to expand
the amount of memory used by oldbuffer and then calls _msize again
to display the new amount of memory allocated to oldbuffer.

441

onexit

• Summary

include <stdlib.h>

onexit_ t onexit(Junc);
onexit_ t Junc;

• Description

Required only for function declarations

Pointer type onexit_ t defined in stdlib.h

The onexit function is passed the address of a function (June) to be called
when the program terminates normally. Successive calls to onexit create a
register of functions that are executed "last-in, first-out." No more than
32 functions can be registered with onexit; onexit returns the value
NULL if the number of functions exceeds 32. The functions passed to
onexit cannot take parameters.

Note

The onexit function is not part of the ANSI definition but is instead a
Microsoft extension. The ANSI-standard atexit function does the same
thing onexit does and should be used instead of onexit where ANSI
portability is desired.

• Return Value

The onexit function returns a pointer to the function if successful, and
returns NULL if there is no space left to store the function pointer.

• See Also

exit

442

• Example

#include <stdlib.h>

main ()
{
int fnl (), fn2 (), fn3 (), fn4 ();

onexit(fnl);
onexit(fn2);
onexit(fn3);
onexit(fn4);
printf("This is executed first.\n");
}

int fnl (
{
printf ("next. \n") ;
}

int fn2 ()
{
printf("executed ");
}

int fn3 ()
{
printf("is ");
}

int fn4 ()
{
printf("This ");
}

Output:

This is executed first.
This is executed next.

onexit

443

open

• Summary

include <fcntl.h>
include <sys\ types.h>
include <sys\ stat.h>
include <io.h> Required only for function declarations

int open(path, of lag [, pmode]);
char *path; File path name
int of lag;
jnt pmode;

• Description

Type of operations allowed
Permission setting

The open function opens the file specified by path and prepares the file for
subsequent reading or writing, as defined by oflag. The argument oflag is
an integer expression formed by combining one or more of the following
manifest constants, defined in fcntl.h. When more than one manifest con­
stant is given, the constants are joined with the bitwise-OR operator (:).

Constant

O_APPEND

O_BINARY

O_CREAT

O_EXCL

O_RDONLY

444

Meaning

Repositions the file pointer to the end of the file
before every write operation.

Opens file in binary (untranslated) mode. (See
fopen for a description of binary mode.)

Creates and opens a new file for writing; this has
no effect if the file specified by path exists.

Returns an error value if the file specified by
path exists. Only applies when used with
O_CREAT.

Opens file for reading only; if this flag is given,
neither O_RDWR nor 0_ WRONLY can be
gIven.

Opens file for both reading and writing; if this
flag is given, neither 0_ RDONL Y nor
0_ WRONLY can be given.

O_TEXT

O_TRUNC

O_WRONLY

Note

open

Opens file in text (translated) mode. (See fopen for
a description of text mode.)

Opens and truncates an existing file to zero length;
the file must have write permission. The contents
of the file are destroyed.

Opens file for writing only; if this flag is given, nei­
ther O_RDONLY nor O_RDWR can be given.

Use the 0_ TRUNC flag with care, as it destroys the complete con­
tents of an existing file.

Either O_RDONLY, O_RDWR, or 0_ WRONLY must be given to
specify the access mode. The access mode does not default.

The pmode argument is required only when 0_ CREAT is specified. If the
file exists, pmode is ignored. Otherwise, pmode specifies the file's permis­
sion settings, which are set when the new file is close,d for the first time.
The pmode is an integer expression containing one or both of the manifest
constants S_IWRITE and S_ffiEAD, defined in sys\stat.h. When
both constants are given, they are joined with the bitwise-OR operator
(I). The meaning of the pmode argument is as follows:

Value Meaning

S_ IWRITE Writing permitted

S_ mEAD Reading permitted

S_mEAD: S_IWRITE Reading and writing permitted

If write permission is not given, the file is read only. Under :MS-DOS, all
files are readable; it is not possible to give write-only permission. Thus the
modes S_IWRITE and S_mEAD: S_IWRITE are equivalent.

445

open

Important

Under MS-DOS Versions 3.0 and later with SHARE installed, a bug
occurs when opening a new file with oflag set to
0_ CREAT : 0_ RDONL Y or 0_ CREAT : 0_ WRONL Y with
pmode set to S_ mEAD. In this case, the operating system will
prematurely close the file during system calls made within open.

To get around the problem, open the file with the pmode argument
set to S_ IWRITE. After closing the file, call chmod and change
the mode back to S_ffiEAD. Another work-around is to open
the file with pmode set to S_ mEAD and omode set to
O_CREAT:O_RDWR.

The open function applies the current file-permission mask to pmode
before setting the permissions (see umask).

• Return Value

The open function returns a file handle for the opened file. A return value
of -1 indicates an error, and errno is set to one of the following values:

Value

EACCES

EEXIST

EMFlLE

ENOENT

446

Meaning

Given path name is a directory; or an attempt was
made to open a read-only file for writing; or a shar­
ing violation occurred (the file's sharing mode does
not allow the specified operations).

The 0_ CREAT and 0_ EXCL flags are speci­
fied, but the named file already exists.

No more file handles available (too many open
files).

File or path name not found.

• See Also

access, chmod, close, creat, dup, dup2, fopen, sopen, umask

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

main 0
{

}

int fh1, fh2 ;

fh1 = open("data1",O_RDONLY);
if (fh1 == -1)

perror("open failed on input file");
else

printf("open succeeded on input file\n");

fh2 = open("data2",O_WRONLY:O_CREAT,S_IREAD:S_IWRITE);
if (fh2 = -1)

perror("open failed on output file");
else

printf("open succeded on output file\n");

open

This program uses open to open a file named datal for input and a file
named data2 for output.

447

outp,outpw

• Summary

include <conio.h>

int outp(port, byte);

unsigned outpw(port, wora);

unsigned port;
int byte;
unsigned word;

• Description

Required only for function declarations

Outputs a byte

Outputs a word

Port number
Output value
OlltpUt. value

The outp and outpw functions write a byte and a word, respectively, to
the specified output port. The port argument can be any unsigned integer
in the range 0 - 65,535; byte can be any integer in the range 0 - 255; and
word can be any value in the range 0 - 65,535.

• Return Value

The functions return the data output. There is no error return.

• See Also

inp, inpw

• Example

#include <conio.h>
#include <stdio.h>

int port, byte_val;

main ()
{

}

port = 1;
byte_val = 3;
outp(port,byte_val);
printf ("The value %d has been output to port %d",

byte_val, port);

This program uses outp to write the value 3 to output port 1.

448

_outtext

• Summary

include <graph.h>

void far _ outtext(text)
char far lie text; Text to be output

• Description

The _outtext function outputs the null-terminated string that text points
to. No formatting is provided, in contrast to the standard console I/0
library routines such as printf.

Text output begins at the current text position.

• Return Value

There is no return value.

• See Also

_ setactivepage, _ settextposition

• Example

#include <stdio.h>
#include <graph.h>

char buffer[255 J;

449

_outtext

main ()
{

}

struet reeoord reoord;
int oldeolor;
/* Set text window to upper half of screen: */
_settextwindow(l, 1, 14, 80);
_wrapon(_GWRAPOFF); /* Turn wrapping off */
oldeolor = _gettexteolor(); /* Save original color */
_settexteolor(oldeolor - 1);
_settextposition(1, 1);
_outtext("Upper Left eorner");
reoord = _gettextposition();
rcoord.row++;
sprintf(buffer, II Row=%d, Col=%d", reoord.row, reoord.eol);
_settextposition(reoord.row, reoord.eol);
_outtext(buffer);
_settextposition(15, 40);
_settexteolor(oldeolor); /* Recover original color */
_outtext("This should be on last line, it is out of window");
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls _outtext to print row and column coordinates at vari­
ous points on the screen.

450

• Summary

include <stdio.h>

void perror(strz"ng);
const char *strz"ng;

int errno;
int sys- nerr;
char *sys- errlist[sys- nerr];

• Description

perror

Required only for function declarations

User-supplied message

Error number
Number of system messages
Array of error messages

The perror function prints an error message to stderr. The string argu­
ment is printed first, followed by a colon, the system error message for the
last library call that produced the error, and a new-line character. If string
is a null pointer or a pointer to a null string, perror prints only the sys­
tem error message.

The actual error number is stored in the variable errno, which should be
declared at the external level. The system error messages are accessed
through the variable sys_ errlist, which is an array of messages ordered
by error number. The perror function prints the appropriate error mes­
sage by using the errno value as an index to sys_ errlist. The value of the
variable sys_ nerr is defined as the maximum number of elements in the
sys_ err list array.

To produce accurate results, perror should be called immediately after a
library routine returns with an error. Otherwise, the errno value may be
overwritten by subsequent calls.

• Return Value

The perror function returns no value.

• See Also

clearerr, ferror, strerror

451

perror

Note

Under MS-DOS, some of the errno values listed in errno.h are not
used. See Appendix A, "Error Messages," for a list of errno values
used on MS-DOS and the corresponding error messages. The perror
function prints an empty string for any errno value not used under
MS-DOS .

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

mp.in ()
{

}

int fhl, fh2;

fh1 = open(tl data1t1,O_RDONLY);
if (fh1 == -1)

perror (tlopen failed on input file tl);
else

printf(tlopen succeeded on input file\n tl);

fh2 = open(tl data2t1,O_WRONLYlO_CREAT,S_IREADlS_IWRITE);
if (fh2 == -1)

perror("open failed on output file tl);
else

printf(tlopen succeeded on output file\n tl);

This program opens a file named datal for input and a file named data2
for output. If either open operation fails, the program displays an error
message to indicate the failure.

452

. _pIe

• Summary

include <graph.h>

short far _ pie(control, xl, yl, x2, y2, x3, y3, x4, y4);
short xl, yl; Upper-left corner of bounding rectangle
short x2, y2; Lower-right corner of bounding rectangle
short x3, y3; Start vector
short x4, y4; End vector

• Description

The _pie function draws a pie-shaped wedge by drawing an elliptical arc
whose center and two endpoints are joined by lines. The center of the arc
is the center of the bounding rectangle specified by the logical points (xl, Yll and (x2, y2). The arc starts where it interects the vector defined by (x3,
y3 and ends where it in terects the vector (x4, Y4).

The wedge is drawn using the current color moving in a counterclockwise
direction. The control parameter can be one of the following manifest con­
stants:

Constant

_ GFILLINTERIOR

_GBORDER

• Return Value

Action

Fills the figure using the curren t color and
fill mask

Does not fill the figure

The function returns a nonzero value if the pie is drawn successfully; oth­
erwise, it returns o.

• See Also

_arc, _ellipse, --.getcolor, jineto, Jectangle, -..setcolor, -..setfillmask

453

. _pIe

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

_setvideomode(_MRES16COLOR);
_pie (_GFILLINTERIOR, 80, 50, 240, 150, 240, 12, 0, 150):
while (!kbhit(»; /* Strike any key to continue */
_setvideomode (_DEFAULTMODE);

}

This program draws the "pie" wedge shown in Figure R.4.

Figure R.4 Output of _pie Program

454

• Summary

include <math.h>

double pow(x, y);
double X;
double y;

• Description

Number to be raised
Power of X

The pow function computes x raised to the yth power.

• Return Value

pow

The pow function returns the value of xY. If x is not 0 and y is 0, pow
returns the value 1. If x is 0 and y is negative, pow sets err no to EDOM
and returns HUGE_ VAL. If both x and yare 0, or if x is negative and
y is not an integer, the function prints a DOMAIN error message to
stderr, sets errno to EDOM, and returns O. If an overflow results, the
function sets errno to ERANGE and returns ± HUGE_ VAL. No mes­
sage is printed on overflow or underflow.

The pow function does not recognize integral, floating-point values
greater than 2 64

, such as 1.0E100.

• See Also

exp, log, sqrt

• Example

#include <math.h>
#include <stdio.h>

main ()
{
double x = 2.0, y = 3.0, z;
z = pow(x,y);
pr int f ("The pow (% . 2 f, %. 2 f) =

}

/* z is B.O (2~3) */
%.2f",x,y,z);

This program uses pow to calculate the value of 2 3.

455

printf

• Summary

include <stdio.h>

int printf(format[, argument] ...);
const char *format;

• Description

Format control

The printf function formats and prints a series of characters and values to
the standard output stream, stdout. The format consists of ordinary char­
acters, escape sequences, and (if arguments follow format) format speci­
fications. Ordinary characters and escape sequences are simply copied to
stdout in order of their appearance. For example, the line

printf(ltLine one\n\t\tLine two\n lt);

produces the output

Line one
Line two

(For more information on escape sequences, see Section 2.2.4, "Escape
Sequences," in the Microsoft C Language Reference.)

If arguments follow the format, then the format must contain format
specifications that determine the output format for these arguments. For­
mat specifications, discussed below, always begin with a percent sign (%).

The format is read left to right. When the first format specification (if
any) is encountered, the value of the first argument after the format is
converted and output according to the format specification. The second
format specification causes the second argument to be converted and out­
put, and so on. If there are more arguments than there are format speci­
fications, the extra arguments are ignored. The results are undefined if
there are not enough arguments for all the format specifications.

A format specification has the following form:

%[flag.s~[width][.precision][{F I Nih III L}] type

456

printf

Each field of the format specification is a single character or a number sig­
nifying a particular format option. The type character, which appears
after the last optional format field, determines whether the associated
argument is interpreted as a character, a string, or a number (see Table
R.l). The simplest format specification contains only the percent sign and
a type character (for example, %5). The optional fields control other
aspects of the formatting, as follows:

Field Description

flags Justification of output and printing of signs, blanks,
decimal points, octal and hexadecimal prefixes (see Table
R.2).

width Minimum number of characters output.

precision Maximum number of characters printed for all or part of
the output field, or minimum number of digits printed for
integer values (see Table R.3).

F, N Prefixes that allow user to override default addressing con­
ventions of memory model being used, as shown below:

h, I, L

Prefix

F

N

Use

Used in small model to print value that
has been declared far

Used in medium, large, and huge models
for near value

F and N should be used only with the sand p type char­
acters, since they are relevant only to arguments that pass
pointers.

F and N are not part of the ANSI definition for printf,
but are instead Microsoft extensions that should not be
used if ANSI portability is desired.

Prefixes that determine size of argument expected, as
shown below:

Prefix

h

Use

Used as a prefix with the integer types d,
i, 0, x, and X to specify that the argu­
men t is short int, or with u to specify a
short unsigned int

457

printf

I

L

Used as a prefix with d, i, 0, x, and X
types to specify that the argument is long
int, or with u to specify a long unsigned
int; also used as a prefix with e, E, f, g,
and G types to specify a double, rather
than a float

Used as a prefix with e, E, f, g, and G
types to specify a long double

If a percent sign (%) is followed by a character that has no meaning as a
format field, the character is simply copied to stdout, For ex~,mplei to
print a percent-sign character, use %%.

Table R.l
Type Characters for printf

Character

d

u

0

x

X
f

e

E

458

Type

int
int
int
int
int
int
double

double

double

Output Format

Signed decimal integer
Signed decimal integer
Unsigned decimal integer
Unsigned octal integer
Unsigned hexadecimal integer, using "abcdef"

Unsigned hexadecimal integer, using "ABCDEF"
Signed value having the form [-1 dddd. dddd, where dddd
is one or more decimal digits. the number of digits
before the decimal point depends on the magnitude of
the number, and the number of digits after the decimal
point depends on the requested precision.

Signed value having the form [-] d. dddd e [s£gn] ddd,
where d is a single decimal digIt, dddd is one or more
decimal digits, ddd is exactly three decimal digits, and
s£gn is + or -.
Identical to the e format, except that E introduces the
exponent instead of e.

printf

Table R.1 (continued)

Character Type

g double

G double

c int
s String

n Pointer
to integer

p Far pointer
to void

Table R.2

Output Format

Signed value printed in for e format, whichever is
more compact for the given value and precision (see
below). The e format is used only when the exponent of
the value is less than -4 or greater than the precision
argument. Trailing zeros are truncated and the decimal
point appears only if one or more digits follow it.
Identical to the g format, except that G introduces the
exponent (where appropriate) instead of e.
Single character
Characters printed up to the first null character ('\ 0')
or until the precz'sz'on value is reached.
Number of characters successfully written so far to the
stream or buffer; this value is stored in the integer
whose address is given as the argument.
Prints the address pointed to by the argument in the
form xxxx:yyyy, where xxxx is the segment and yyyy is
the offset, and the digits x and yare uppercase hexa­
decimal digits; %Np prints only the offset of the
address, yyyy. Since %p expects a pointer to a far
value, pointer arguments to p must be cast to far in
small-model programs.

Flag Characters for printf

+

blank (' ')

Meaning

Left justify the result within the given
field width.

Prefix the output value with a sign (+
or -) if the output value is of a signed
type.

Prefix the output value with a blank if
the output value is signed and posi­
tive; the blank is ignored if both the
blank and + flags appear.

Default

Right justify

Sign appears only for
negative signed values
(-).
No blank

459

printf

Table R.2 (continued)

Meaning

When used with the 0, x, or X format,
the # flag prefixes any nonzero out­
put value with 0, Ox, or OX, respec­
tively.
When used with the e, E, or f format,
the # flag forces the output value to
contain a decimal point in all cases.
When used with the g or G format,
the # flag forces the output value to
contain a decimal point in all cases
and prevents the truncation of trailing
zeros.
Ignored when used with c, d, i, u, or s

Default

No blank

Decimal point appears
only if digits follow it.

Decimal point. appe3,rs
only if digits follow it.
Trailing zeros are
truncated.

1 More than one flag can appear in a format specification.

If the argument corresponding to a floating-point specifier is infinite,
indefinite, or not-a-number, the printf function gives the following out­
put:

Value

+ infinity

- infinity

Indefinite

Not-a-number

Output

1.# INFrandom-digits

-1.# INF random- digits

digit. # INDrandom-digits

digit. # NAN random-digits

The width argument is a non-negative decimal integer controlling the
minimum number of characters printed. If the number of characters in the
output value is less than the specified width, blanks are added to the left
or the right of the values (depending on whether the - flag is specified)
until the minimum width IS reached. If width is prefixed with a 0, zeros are
added until the minimum width is reached (not useful for left-justified
numbers).

The width specification never causes a value to be truncated; if the num­
ber of characters in the output value is greater than the specified width, or
width is not given, all characters of the value are printed lsubject to the
precision specification).

460

printf

The width specification may be an asterisk (*), in which case an int argu­
ment from the argument list supplies the value. The width argument must
precede the value being formatted in the argument list. A nonexistent or
small field width does not cause a truncation of a field; if the result of a
conversion is wider than the field width, the field expands to contain the
conversion result.

The precision specification is a non-negative decimal integer preceded by a
period (.), which specifies the number of characters to be printed, the
number of decimal places, or the number of significant digits (see Table
R.3). Unlike the width specification, the precision can cause truncation of
the output value, or rounding in the case of a floating-point value.

The precision specification may be an asterisk (*), in which case an int
argument from the argument list supplies the vafue. The precision argu­
ment must precede the value being formatted in the argument list.

The interpretation of the precision value, and the default when precision is
omitted, depend on the type, as shown in Table R.3.

Table R.3

How printf Precision Values Affect Type

Type

d

u
o
x
X

e
E

f

Meaning

The precision specifies the minimum
number of digits to be printed. If the
number of digits in the argument is less
than preC£s£on, the output value is
padded on the left with zeros. The value
is not truncated when the number of
digits exceeds precision.
The precision specifies the number of
digits to be printed after the decimal
point. The last printed digit is rounded.

The precision value specifies the number
of digits after the decimal point. If a
decimal point appears, at least one digit
appears before it. The value is rounded
to the appropriate number of digits.

Default

If preC£s£on is 0 or
omitted entirely, or if
the period (.) appears
without a number
following it, the pre­
cision is set to 1.

Default precision is 6; if
precision is 0 or the
period (.) appears with­
out a number following
it, no decimal point is
printed.
Default precision is 0;
if prec£s£on is explicitly
0, no decimal point
appears.

461

printf

Table R.3 (continued)

Type Meaning Default

g
G

c

s

The precision specifies the maximum
number of significant digits printed.
No effect
The precision specifies the maximum
number of characters to be printed.
Characters in excess of precision are not
printed.

All significant digits are
printed.
Character printed
Characters are printed
until a null character is
encountered.

• Return Value

The printf function returns the number of characters printed.

• See Also

fprintf, scanf, sprintf, vfprintf, vprintf, vsprintf

• Example

main() /* Format and print various data. */

462

{
char ch = 'h' I *string = "computer";
int count 234 , *ptr , hex = Ox10 , oct 010 , dec 10;
double fp 251.7366;

printf ("%d %+d %06d %X %x %o\n\n" I

count I count I count I count, count, count);
printf("1234567890123%n45678901234567890\n\n", Occount);
printf("Value of count should be 13; count = %d\n\n",

count);
printf ("%10c%5c\n\n" I chi ch) ;
printf("%25s\n%25.4s\n\n"/string, string);
printf ("%f %.2f %e %E\n\n" I fp, fp, fp, fp);
printf("%i %i %i\n\n", hex , oct, dec);
ptr = Occount;
printf ("%Np %P %Fp\n" I

ptr, (int far *) ptr, (int far *) ptr);
}

Output:

234 +234 000234 EA ea 352

123456789012345678901234567890

Value of count should be 13; count 13

h h

computer
comp

251.736600 251.74 2.517366e+002

16 8 10

127A 1328:127A 1328:127A

printf

2.517366E+002

This program uses printf to display various strings, numbers, characters,
and pointers with different formats.

463

putc, putchar

• Summary

include <stdio.h>

int putc(c, stream);
int c;
FILE *stream;

int putchar(c);
int c;

• Description

Writes a character to stream
Character to be written
Pointer to FILE structure

Writes a character to stdout
Character to be written

The putc routine writes the single character c to the output stream at the
current position. The putchar routine is identical to putc(c, stdout).

• Return Value

The putc and putchar routines return the character written. A return
value of EOF indicates an error, which could be caused by an attempt to
write to a read-only file, specifying an invalid stream pointer, or no space
left on the device. Since the EOF value is a legitimate integer value, the
ferror function should be used to verify that an error occurred.

• See Also

fputc,fputchar,getc,getchar

Note

464

The putc and putchar routines are identical to fputc and fputchar,
respectively, but are macros, not functions.

putc, put char

• Example

#include <stdio.h>

FILE *stream;
char buffer[81] = "This is the line of output\n";
int i, ch;

main 0
{

}

stream = stdout;

/* Write line to the stream: */
for (i = 0; (i < 81) &&
((ch = putc (buffer [i], stream» != EOF); i++);

/* Note that the body of the "for" statement is null, since the
** write operation is carried out in the test expression.
*/

This program uses putc to write buffer to a stream. If an error occurs,
the program will stop before writing the entire buffer.

465

putch

• Summary

include < conio.h >

int putch(c)
int c;

• Description

Required only for function declarations

Character to be output

The putch function writes the character c directly to the console.

• Return Value

The function returns c if successful, and EOF if not.

c 4.0 Difference

In Microsoft eVersion 4.0, putch returns an error code.

• See Also

cprintf, getch, getche

• Example

#include <conio.h>

mygetche ()
{

}

int ch = getch();
putch(ch);
return(ch);

main ()
{
char ch;

/* Get a character with no echo */
/* Send the character to the console */

while ((ch = mygetche(» != '\r');
}

This program acts like getche, using getch and putch.

466

putenv

• Summary

include <stdlib.h>

int putenv(envstring);
char *envstring;

• Description

Required only for function declarations

Environment-string definition

The putenv function adds new environment variables or modifies the
values of existing environment variables. Environment variables define the
environment in which a process executes (for example, the default search
path for libraries to be linked with a program).

The envstrz'ng argument must be a pointer to a string with the form

varname=strz'ng

where varname is the name of the environment variable to be added or
modified and strz'ng is the variable's value. If varname is already part of th(
environment, it is replaced by string; otherwise, the new string is added to
the environment. A variable can be set to an empty value by specifying an
empty strz'ng.

This function affects only the environment that is local to the currently
running process; it cannot be used to enter new items in the command­
level environment. When the currently running process terminates, the
environment reverts to the level of the parent process (in most cases, the
MS-DOS level). However, the environment affected by putenv is passed to
any child processes created by spawn or exec, and these child processes
set any new items added by putenv.

Never free a pointer to an environment entry because the environment
variable will point into freed space. A similar problem can occur if you
pass a pointer to a local variable to putenv, then exit the function in
which the variable is declared.

467

putenv

Note

Environment-table entries must not be changed directly. If an entry
must be changed, use putenv. To modify the returned value without
affecting the environment table, use strdup or strcpy to make a copy
of the string.

The getenv and putenv functions use the global variable environ to
access the environment table. The putenv function may change the
value of environ, thus invalidating the envp argument to the main
function. Therefore, it's safer to use the environ variable to access
the environment information.

• Return Value

•

•

The putenv function returns 0 if it is successful. A return value of -1 indi­
cates an error.

See Also

getenv

Example

#include <stdlib.h>
#include <stdio.h>
#include <process.h>

main ()
{

/* Attempt to change directory path: */
if (putenv ("PATH=a\bin;b:\tmp") == -1)

{

}

printf ("putenv failed -- out of memory") ;
exit(1);

else
printf{"'putenv' worked.\n");

}

468

putenv

This program uses putenv to change the value of the PATH variable in
the environment table.

469

_putimage

• Summary

include <graph.h>

void far _putimage(x, y, z"mage, actz"on);
short x, y; Position of upper-left corner of image
char far *z"mage; Stored image buffer
short actz"on; Interaction with existing screen image

• Description

The _putimage function transfers to the screen the image stored in the
buffer that z'mage points to, placing the image's upper-left corner at the
logical point (x, y). The actz'on argument defines the interaction between
the stored image and the one already on the screen. It may be anyone of
the following manifest constants (defined in graph.h):

Constant

_GAND

_GOR

_GPRESET

_GPSET

_GXOR

470

Meaning

Transfers the image over an existing image on the
screen. The resulting image is the logical-AND pro­
duct of the two images: points that had the same
color in both the existing image and the new one
will remain the same color, while points that have
differen t colors are ANDed together.

Superimposes the image onto an existing image.
The new image does not erase the previous screen
contents.

Transfers the data point-by-point onto the screen.
Each point has the inverse of the color attribute it
had when it was taken from the screen by _ getim­
age, producing a negative image.

Transfers the data point-by-point onto the screen.
Each point has the exact color attribute it had
when it was taken from the screen by _ getimage.

Causes the points on the screen to be inverted
where a point exists in the z'mage buffer. This be­
havior is exactly like that of the cursor: when an
image is put against a complex background twice,
the background is restored unchanged. This allows
you to move an object around without erasing the
background. The _ GXOR constant is a special
mode often used for animation.

_putimage

• Return Value

There is no return value.

• See Also

--.,get image

• Example

#include <stdio.h>
#include <malloc.h>
#include <graph.h>

char far *buffer;

main ()
{
int loop;
int xvar, yvar;
_setvideomode(_MRES16COLOR);
for (xvar = 163, loop = 0; xvar < 320; loop++, xvar += 3) {
_setcolor(loop % 16);

}

}

yvar = xvar * 5 / 8;
_rectangle (_GBORDER, 320-xvar, 200-yvar, xvar, yvar);
_setcolor(rand(l) % 16);
_floodfill(O, 0, loop % 16);

buffer = (char far *)malloc((unsigned int)
_imagesize(0, 0, 80, 50));

if (buffer == (char far *)NULL) {
exit (-1);

}
_getimage(O, 0, 80, 50, buffer);
_putimage(80, 50, buffer, _GXOR);
free «char *) buffer) ;
while (!kbhit(»; /* Strike any key to continue */
_setvideomode (_DEFAULTMODE);

This program draws a series of nested rectangles and stores a portion of
the image in memory. It then calls _putimage to display it again.

471

puts

• Summary

include <stdio.h>

int puts(str£ng);
const char *slrz"ng;

• Description

String to be output

The puts function writes str£ng to the standard output stream stdout,
replacing the string's terminating null character C\ 0') with a new-iille
character ('\n') in the output stream.

• Return Value

The puts function returns a 0 if successful. If the function fails, it returns
a nonzero value.

c 4.0 Difference

In Microsoft eVersion 4.0, puts returns the last character output or
an EOF to indicate an error.

• See Also

fputs, gets

• Example

#include <stdio.h>

int result;

main 0
{
/* Write a prompt to "stdout": */
result = puts {"Insert data disk and strike any key");

}

This program uses putc to write a string to stdout.

472

• Summary

include <stdio.h>

int putw(b£nint, stream};
int bin£nt;
FILE .stream;

• Description

Binary integer to be output
Pointer to FILE structure

putw

The putw function writes a binary value of type int to the current posi­
tion of the stream. The putw function does not affect the alignment of
items in the stream, nor does it assume any special alignment.

• Return Value

The putw function returns the value written. A return value of EOF may
indicate an error. Since EOF is also a legitimate integer value, ferror
should be used to verify an error.

• See Also

getw

Note

The putw function is provided primarily for compatibility with previ­
ous libraries. Note that portability problems may occur with putw,
since the size of an int and ordering of bytes within an int differ across
systems.

473

putw

• Example

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

main 0
{
stream = fopen ("data.bin", "wb");

if {putw {0345, stream) = EOF){
if (ferror(stream»{

}

}

printf ("putw failed");
clearerr{stream);

else

else

/* Write word to stream */
/* Make error check */

printf{ "\nputw wrote a word.\n");
}

This program uses putw to write a word to a stream and then performs an
error check.

474

qsort

• Summary

include <stdlib.h>
include <search.h>

For ANSI compatibility
Required only for function declarations

void qsort(base, num, w£dth, (compare)O);
void * base; Start of target array
size_ t num; Array size in elements
sizEL t w£dth; Element size in bytes
int (*compare)(eleml, elem2); compare function
const void *eleml, elem2; Array elements to compare

• Description

The qsort function implements a quick-sort algorithm to sort an array of
num elements, each of width bytes. The argument base is a pointer to the
base of the array to be sorted. The qsort function overwrites this array
with the sorted elements.

The argument compare is a pointer to a user-supplied routine that com­
pares two array elements and returns a value specifying their relationship.
The qsort function calls the compare routine one or more times during
the sort, passing pointers to two array elements on each call. The routine
must compare the elements, then return one of the following values:

Value

Less than 0

o
Greater than 0

Meaning

elementi less than element2

elementi equivalent to element2

elementi greater than element2

The sorted array is in increasing order, as defined by the compare func­
tion. To sort an array in decreasing order, reverse the sense of "greater
than" and "less than" in the compare function.

• Return Value

There is no return value.

475

qsort

• See Also

bsearch,lsearch

• Example

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare 0 ;

main (argc, argv)
int argc;
char **argv;

{
char **result;
int i;

/* must declare as a function */
/* for qsort's compare */

/* Eliminate argv[O] from sort: */
argv++ ;

}

argc-- ;
/* Sort remaining args using Quicksort algorithm: */
qsort«void *)argv, (size_t) argc, sizeof(char *),compare);

/* Output sorted list: */
for (i=O;i<argc;++i)

printf("%s\n", argv[i]);

int compare (argl, arg2)
char **argl, **arg2;

{

}

/* Compare all of both strings: */
return(strcmp(*argl,*arg2»;

This program reads the command-line parameters and uses qsort to sort
them. It then displays the sorted arguments.

476

.
raIse

• Summary

include <signal.h>

int raise(s£g);
int s£g; Signal to be raised

• Description

The raise function sends 8£g to the executing program. The default action
for 8£g will be taken unless a different action has been defined using the
signal routine.

The signal can be one of the following manifest constants:

Signal

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

Meaning

Abnormal termination. The default action
terminates the calling program with exit code
3.

Floating-point error. The default action ter­
minates the calling program.

Illegal instruction. This signal is not gener­
ated by MS-DOS, but is supported for ANSI
compatibility. The default action terminates
the calling program.

CTRL+C interrupt. The default action issues
INT 23H.

Illegal storage access. This signal is not gen­
erated by MS-DOS, but is supported for ANSI
compatibility. The default action terminates
the calling program.

Termination request sent to the program.
This signal is not generated by MS-DOS, but
is supported for ANSI compatibility. The
default action ignores it.

477

.
raIse

• Return Value

If successful, the raise function returns o. Otherwise, it returns a nonzero
value.

• See Also

abort, signal

• Example

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <process.h>

void handler 0 ;
float num 1.0;
float denom = 0.0;

main ()
{ /* Set so interrupt calls "handler" */

}

if (signal (SIGFPE, handler) == (int (*) 0) -1)
{

}

perror("Couldn't set SIGFPE");
abort 0 ;

if (denom == 0)
raise(SIGFPE);

else
printf("Result of division is %f", num/denom);

void handler 0 /* Function called at Floating */
{

}

/* Point Exception interrupt */
char ch;

printf("Inside Floating Point Exception Handler\n");
exit (0) ;

The above program uses raise to detect a division- by-zero error before the
error is actually executed; it also sends control to the routine defined by
signal.

478

rand

• Summary

include <stdlib.h> Required only for function declarations

int rand(void);

• Description

The rand function returns a pseudorandom integer in the range 0 -
32,767. The srand routine can be used to set a random starting point
before calling rand.

• Return Value

The rand function returns a pseudorandom number as described above.
There is no error return.

• See Also

srand

• Example

#include <stdlib.h>
#include <stdio.h>

main 0
{
int x;

for (x = 1; x <= 20; x++)
printf ("Iteration %d, rand=%d\n", x, rand (» ;

}

This program displays the first 20 random integers generated by rand.

479

read

• Summary

include <io.h> Required only for function declarations

int read(handle, buffer, count);
int handle; Handle referring to open file

Storage location for data
Maximum number of bytes

char ... buffer;
unsigned int count;

• Description

The read function attempts to read count bytes into buffer from the file
associated with handle. The read operation begins at the current position
of the file pointer (if any) associated with the given file. After the read
operation, the file pointer points to the next unread character.

• Return Value

The read function returns the number of bytes actually read, which may
be less than count if there are fewer than count bytes left in the file or if
the file was opened in text mode (see below). The return value a indicates
an attempt to read at end-of-file. The return value -1 indicates an error,
and err no is set to the following value:

Value

EBADF

Meaning

The given handle is invalid; or the file is not open
for reading; or the file is locked (:tvrs-DOS Versions
3.0 and later only).

If you are reading more than 32K (the maximum size for type int) from
a file, the return value should be of type unsigned into (See the example
that follows.) However, the maximum number of bytes that can be read
from a file is 65,534 at a time, since 65,535 (or OxFFFF) is indistinguish­
able from -1, and therefore would return an error.

If the file was opened in text mode, the return value may not correspond
to the number of bytes actually read. When text mode is in effect, each
carriage-return-line-feed pair is replaced with a single line-feed character.
Only the single line-feed character is counted in the return value. The
replacement does not affect the file pointer.

480

read

• See Also

creat, fread, open, write

Note

Under MS-DOS, when files are opened in text mode, a character is
treated as an end-of-file indicator. When the CTRL+Z is encountered,
the read terminates, and the next read returns a bytes. The file must
be closed to clear the end-of-file indicator.

• Example

#include <fcntl.h> /* Needed only for O_RDWR definition */
#include <io.h>
#include <stdio.h>

char buffer[60000];

main ()
{

}

int fh;
unsigned int nbytes = 60000, bytesread;

/* Open file for input: */
if «fh = open ("data", O_RDONLY» == -1)

{
perror("open failed on input file");
exit(l);

}

/* Read in input: */
if «bytesread = read(fh,buffer,nbytes» <= 0)

perror("Problem reading file");
else

printf("Read %u bytes from file\n", bytesread);

This program opens a file named data and tries to read 60,000 bytes from
that file using read. It then displays the actual number of bytes read from
data.

481

realloc

• Summary

include <stdlib.h>
include <malloc.h>

void >lerealloc(buffer, s£ze);
void >Ie buffer;
siZEL t size;

• Description

For ANSI compatibility
Required only for function declarations

Pointer to previously allocated memory block
New size in bytes

The realloc function changes the size of a previously allocated memory
block. The buffer argument points to the beginning of the block. If buffer is
NULL, realloc functions like malloc and allocates a new block of sz"ze
bytes. If buffer is not NULL, it should be a pointer returned by calloc,
malloc, or a prior call to realloc. The sz"ze argument gives the new size of
the block, in bytes. The contents of the block are unchanged up to the
shorter of the new and old sizes.

The buffer argument can also point to a block that has been freed, as long
as there has been no intervening call to calloc, malloc, or realloc since
the block was freed.

• Return Value

The realloc function returns a void pointer to the reallocated memory
block. The block may be moved when its size is changed; therefore, the
buffer argument to realloc is not necessarily the same as the return value.

The return value is NULL if size is 0 or if there is insufficient memory
available to expand the block to the given size. The original block is freed
when this occurs.

c 4.0 DziJerence

482

Under Version 4.0 of Microsoft 0, malloc allocates a zero-length item
(that is, a header only) in the heap if sz"ze is o. The resulting pointer
can be passed to the realloc function to adjust the size at any time.

realloc

The storage space pointed to by the return value is guaranteed to be suit­
ably aligned for storage of any type of object. To get a pointer to a type
other than void, use a type cast on the return value.

• See Also

calloc, free, malloc

• Example

#include <malloc.h>
#include <stdio.h>

char *alloc;

main ()
{

}

/* Get enough space for 50 characters: */
alloc = malloc(50*sizeof(char»;
printf("Block successfully allocated\n");

/* Reallocate block to hold 100 chars: */
if (alloc != NULL)

alloc = realloc(alloc,100*sizeof(char»;

if (alloc != NULL)
printf("Block is successfully reallocated\n");

else
printf("'realloc' failed--block was freed\n");

This program allocates enough space for 50 characters, then uses realloc
to expand this space so that it can hold 100 characters.

483

_rectangle

• Summary

include <graph.h>

short far _ rectangle(control, xl, yl, x2, y2);
short control; Fill flag
short xl, yl; Upper-left corner
short x2, y2; Lower-right corner

• Description

The _ rectangle function draws a rectangle with the current line style.
The logical points (xl, yl) and (x2, y2) are the diagonally opposed corners
of the rectangle. The control parameter can be one of the following mani­
fest constants:

Constant

_ GFaLINTERIOR

_GBORDER

Action

Fills the figure with the current color using
the current fill mask

Does not fill the rectangle

If the current fill mask is NULL, no mask is used. Instead, the rectangle is
filled with the current color.

Note

If you try to fill the rectangle with the _ floodfill function, the rectan­
gle must be bordered by a solid line-style pattern.

• Return Value

The function returns a nonzero value if the rectangle is drawn successfully,
or 0 otherwise.

• See Also

_ getcolor, _ getlinestyle, _ setcolor, _ setlinestyle

484

_rectangle

• Example

#include <stdio.h>
#include <graph.h>

main 0
{

}

_setvideomode(_MRES16COLOR):
_rectangle(_GBORDER, 80, SO, 240, 150);
while (!kbhit(»: /* Strike any key to continue */
_setvideomode (_DEFAULTMODE):

This program draws the rectangle shown in Figure R.5.

Figure R.5 Output of _rectangle Program

485

_ remapallpalette, _remappalette

• Summary

include <graph.h>

short far _ remap allp alette(colors):
long far *colors; Color number array

long far _ remappalette(pixel, color);
short pixel; Pixel value to reassign
long color; Color number to assign pixel to

• Description

The Jemapallpalette function remaps all of the available pixel values
simultaneously. The colors argument points to an array of color numbers.
The default array of color numbers is shown below:

No. Color No. Color

0 Black 8 Dark gray
1 Blue 9 Light blue
2 Green 10 Light green
3 Cyan 11 Light cyan
4 Red 12 Light red
5 Magenta 13 Ligh t magenta
6 Brown 14 Yellow
7 White 15 Bright white

The number of colors mapped depends on the number of colors supported
by the current video mode. A 16-color mode will map all the colors shown,
from 0 to 15. An eight-color mode will map only the colors from 0 to 7. A
four-color mode will use one of the standard palettes supported by the
EGA (see -..Selectpalette). A two-color mode will support the colors 0 and
7 (black and white).

For example, if colors is an eight-element array whose members are 1, 3, 5,
7,2,4, 6, and 8, these pixel values would be mapped to actual colors in an
eigh t-color video mode as shown below:

486

_ remapallpalette, yemappalette

Pixel Pixel
No. Color No. Color

1 Blue 5 Magenta
2 Green 6 Brown
3 Cyan 7 White
4 Red 8 Dark gray

In general, you are simply mapping a set of pixel value numbers to the
ordinal numbers recognized by the hardware. The colors array can be
larger than the number of colors supported by the current video mode;
only the first n colors are available, where n is the number of colors sup­
ported by the curren t video mode.

The Jemappalette function remaps one pixel value to color, which must
be a color number supported by the current video mode.

Both functions immediately affect the current display.

The VGA color graphics modes support a palette of 262,144 colors
(equivalent to 256K). Three bytes of data represent the intensities of red,
blue, and green. In each byte, the two high-order bits must be o. The
remaining six bits represent the intensity of blue, green, and red (reading
from high-order byte to low-order byte). For example, to make a low­
intensity white color, equal values of red, green, and blue are used. Thus,
the three-byte color number would be:

blue byte green byte red byte
00011111 00011111 00011111
high -------------------------------> low order

Because of the splitting of colors between bytes, the color numbers are not
continuous. Manifest constants for the default color numbers are supplied
to provide compatibility with EGA practice. The names of these constants
are listed below:

487

_ remapallpalette,remappalette

Number Constant Number

o _BLACK 8
1 _BLUE 9
2 _GREEN 10
3 _CYAN 11
4 _RED 12
5 _MAGENTA 13
6 _BROWN 14
7 _ WHITE 15

Note

Constant

_GRAY
_LIGHTBLUE
_LIGHTGREEN
_LIGHTCYAN
_LIGHTRED
_ LIGHTMAGENTA
_LIGHTYELLOW
_BRIGHTWHITE

Both the _remappalette and Jemapallpalette functions work in all
video modes, but only with an EGA or VGA.

• Return Value

If successful, Jemapallpalette returns 0 and Jemappalette returns the
previous color number of the pixel argument. If either function is inopera­
tive (that is, running under a configuration other than an EGA or VGA), it
returns -1.

• See Also

.-selectpalette, .-setvideomode

• Example

#include <stdio.h>
#include <graph.h>

int colorsarray[32];

488

_ remapallpalette, Jemappalette

main ()
{
int xvar, yvar, loop = 0;
int loop1;
_setvideomode(_MRES16COLOR);
/* make 16 rectangles */
for (loop = 0; loop < 32; loop += 2) {
_setcolor(loop % 16);
_rectangle(_GFILLINTERIOR,loop*10,9S, (loop+1)*lO,lOS);

}
/* Do this loop until a character is typed */
while (!kbhit()) {

for (loop = 0; loop < 100; loop++) {
colorsarray[loop % 32] = rand(l) % 16;

} /* change all colors eventually */
_remapallpalette ((char *) (& (colorsarray[O]») ;

}
_setvideomode (_DEFAULTMODE);

}

This program draws a series of different-colored overlapping rectangles,
while continuously changing the palette to random values.

489

remove

• Summary

include <io.h>
include <stdio.h>

int remove(path);
const char *path;

• Description

Required only for function declarations
Use either io.h or stdio.h

Path name of file to be removed

The remove function deietes the fiie specified by path.

• Return Value

The function returns 0 if the file is successfully deleted. Otherwise, it
returns -1 and sets errno to one of these values:

Value

EACCES

ENOENT

• See Also

close, unlink

• Example

#include <io.h>
#include <stdio.h>

main ()
{

Meaning

Path name specifies a directory or a read-only file

File or path name not found

int result = remove("data");
if (result == -1)

}

perror("Could not delete 'data'");
else
printf("'data' was successfully deleted\n");

This program uses remove to delete a file named data.

490

• Summary

include <io.h>
include <stdio.h>

rename

Required only for function declarations
Use either io.h or stdio.h

int rename(oldname, newname);
const char *oldname; Pointer to old name

Pointer to new name const char *newname;

• Description

The rename function renames the file or directory specified by oldname to
the name given by newname. The old name must be the path name of an
existing file or directory. The new name must not be the name of an exist­
ing file or directory.

The rename function can be used to move a file from one directory to
another by giving a different path name in the newname argument. How­
ever, files cannot be moved from one device to another (for example, from
drive A to drive B). Directories can only be renamed, not moved.

• Return Value

The rename function returns 0 if it is successful. On an error, it returns a
nonzero value and sets errno to one of the following values:

Value

EACCES

ENOENT
EXDEV

• See Also

creat,fopen, open

Meaning

File or directory specified by newname already
exists or could not be created (invalid path); or
oldname is a directory and newname specifies a
different path

File or path name specified by oldname not found

Attempt to move a file to a differen t device

491

rename

Note

Note that the order of arguments in rename is the reverse of their
order in versions of the Microsoft C Compiler prior to 4.0. This change
was made to conform to the proposed ANSI C standard .

• Example

#include <io.h>
#include <stdio.h>

main ()
{

}

int result;

/* Attempt to rename file: */
result = rename(ltinputlt,ltdata lt);

/* Check for errors: */
if (result != 0)

perror(ltWas not able to rename file lt);
else

printf(ltFile successfully renamedlt);

This program uses rename to rename a file named input to data. For
this operation to succeed, a file named input must exist and a file named
data must not exist.

492

• Summary

include <stdio.h>

void rewind(stream);
FILE *stream;

• Description

rewind

Pointer to FILE structure

The rewind function repositions the file pointer associated with stream to
the beginning of the file. A call to rewind is equivalen t to

(void) fseek(stream, OL, SEEK- SET);

except that rewind clears the end-of-file and error indicators for the
stream, and fseek does not; also, fseek returns a value that indicates
whether the pointer was successfully moved, but rewind does not return
any value.

• See Also

fseek, ftell

• Example

#include <stdio.h>

FILE *stream;
int datal, data2;

main ()
{

}

datal 1;
data2 -37:

stream = fopen("data","w+");
fprintf (stream, "%d %d", datal, data2) ;
rewind(stream);
fscanf(stream,"%d",&data1);
fscanf (stream, "%d", &data2) ;
printf("The values read back in are: %d and %d\n",

data1,data2);

493

rewind

This program first opens a file named data for input and output and
writes two integers to the file. Next, it uses rewind to reposition the file
pointer to the beginning of the file and reads the data back in.

494

rmdir

• Summary

include <direct.h> Required only for function declarations

int rmdir(path);
char lie path; Path name of directory to be removed

• Description

The rmdir function deletes the directory specified by path. The directory
must be empty, and it must not be the current working directory or the
root directory.

• Return Value

The rmdir function returns the value 0 if the directory is successfully
deleted. A return value of -1 indicates an error, and errno is set to one
of the following values:

Value

EACCES

ENOENT

• See Also

chdir, mkdir

Meaning

The given path name is not a directory; or the
directory is not empty; or the directory is the
current working directory or root directory.

Path name not found.

495

rmdir

• Example

#include <direct.h>
#include <stdio.h>

main ()
{

}

int result1, result2;

/* Remove "/sub1" from root directory: */
result1 = rmdir("/sub1");
if (result1 == -1)

perror("Unable to remove directory");
else

printf("Directory successfully removed");

/* Remove subdirectory " sub2" from */
/* the current working directory: */
result2 = rmdir("sub2");
if (result2 == -1)

perror("Unable to remove directory");
else

printf("Directory successfully removed");

This program uses rmdir to remove the subdirectory \sub1 from the
root directory and the subdirectory sub2 from the current working direc­
tory_

496

rmtmp

• Summary

include <stdio.h>

int rmtmp(void);

• Description

The rmtmp function is used to clean up all the temporary files in the
curren t directory. The function removes only those files created by
tmpfile and should be used only in the same directory in which the tem­
porary files were created.

• Return Value

The rmtmp function returns the number of temporary files closed and
deleted.

• See Also

flushall, tmpfile, tmpnam

• Example

#include <stdio.h>
FILE *stream;

main ()
{

}

int numdeleted;

/* Create a temporary file: */
if «stream = tmpfile(» == NULL)

perror("Could not open new temporary file");
/* Remove a temporary file: */
numdeleted = rmtmp();
printf("Number of closed files deleted in current II

"directory = %d\n", numdeleted);

This program creates a temporary file, then uses rmtmp to delete this file.

497

_ rotl, _rotr

• Summary

include <stdlib.h>

unsigned int _ rotl(value, sh~1t);

unsigned int _ rotr(value, shz1t);

unsigned int value;
int shz1t;

• Description

Rotate left

Rotate right

Value to be rotated
Number of bits to shift

The _ rotl and _ rotr functions rotate value by shzJt bits.

• Return Value

Both functions return the rotated value. There is no error return.

• See Also

_Irotl, _lrotr

• Example

#include <stdlib.h>

main ()
{

}

unsigned int val = Ox0123;
printf(tI_rotl(val,2) Ox%4.4x\n", _rotl(val,2»;
printf (tI_rotr (val,8) = Ox%4.4x\n", _rotr(val,8»;

The ou tpu t would look like this:

_rotl(val,2) = Ox048c
_rotr(val,8) = Ox2301

This program uses _ rotr and _ rotl with different shift values to rotate
the integer value Ox123.

498

• Summary

include <malloc.h>

void *sbrk(incr);
int incr;

• Description

sbrk

Required only for function declarations

Number of bytes added or subtracted

The sbrk function resets the break value for the calling process. The
break value is the address of the first byte of memory beyond the end of
the default data segment. The sbrk function adds £ncr bytes to the break
value; the size of the process' allocated memory is adjusted accordingly.
Note that £ncr may be negative, in which case the amount of allocated
space is decreased by £ncr bytes.

• Return Value

The sbrk function returns the previous break value. A return value of
(char *)-1 indicates an error, and errno is set to ENO~M, indicating
that insufficient memory was available.

• See Also

calloc, free, malloc, realloc

Important

In compact-, large-, and huge-model programs, sbrk fails and returns
(char *)-1. Use malloc for allocation requests in large-model pro­
grams.

499

sbrk

• Example

#include <malloc.h>
#include <stdio.h>

main ()
{
void *alloc;

alloe = sbrk(100); /* 100 bytes allocated on the heap */

if (alloc != (char *)-1)
{

}

printf(lt100 bytes of memory have been allocated\n lt);
printf(ltNow 40 bytes will be deallocated\n lt);

sbrk(-40); /* Deallocate 40 bytes */

else
perror(ltproblem allocating 100 bytes\n lt);

}

This program uses sbrk to allocate 100 bytes of memory and then to deal­
locate 40 bytes.

500

scanf

• Summary

include <stdio.h>

int scanf(format[, argument]. ..);
const char *format;

• Description

Format control

The scanf function reads data from the standard input stream stdin in­
to the locations given by argument. Each argument must be a pointer
to a variable with a type that corresponds to a type specifier in
format. The format controls the interpretation of the input fields. The
format can contain one or more of the following:

• White-space characters; blank (' '); tab ('\ t'); or new line ('\n').
A white-space character causes scanf to read, but not store, all
consecutive white-space characters in the input up to the next
non-white-space character. One white-space character in the
format matches any number (including 0) and combination of
white-space characters in the input.

• Non-white-space characters, except for the percent sign (%). A
non-white-space character causes scanf to read, but not store, a
matching non-white-space character. If the next character in stdin
does not match, scanf terminates.

• Format specifications, introduced by the percent sign (%). A for­
mat specification causes scanf to read and convert characters in
the input into values of a specified type. The value is assigned to
an argument in the argument list.

The format is read from left to right. Characters outside format speci­
fications are expected to match the sequence of characters in stdin; the
matched characters in stdin are scanned but not stored. If a character in
stdin conflicts with the format, scanf terminates. The conflicting charac­
ter is left in stdin as if it had not been read.

When the first format specification is encountered, the value of the first
input field is converted according to the format specification and stored in
the location specified by the first argument. The second format specifica­
tion causes the second input field to be converted and stored in the second
argument, and so on through the end of the format string.

501

scam

An input field is defined as all characters up to the first white-space char­
acter (space, tab, or new line), or up to the first character that cannot be
converted according to the format specification, or until the field width, if
specified, is reached, whichever comes first. If there are too many argu­
ments for the given format specifications, the extra arguments are evalu­
ated but ignored. The results are undefined if there are not enough argu­
ments for the given format specifications.

A format specification has the following form:

%[*][width][{F IN}][{h II}]type

Each field of the format specification is a single character or a number sig­
nifying a particular format option. The type character, which appears
after the last optional format field, determines whether the input field is
interpreted as a character, a string, or a number. The simplest format
specification contains only the percent sign and a type character (for exam­
ple, %s).

Each field of the format specification is discussed in detail below. If a per­
cent sign (%) is followed by a character that has no meaning as a format­
control character, that character and the following characters (up to the
next percent sign) are treated as an ordinary sequence of characters -
that is, a sequence of characters that must match the input. For example,
to specify that a percent-sign character is to be input, use %%.

An asterisk (*) following the percent sign suppresses assignment of the
next input field, which is interpreted as a field of the specified type. The
field is scanned but not stored.

The w£dth is a positive decimal integer controlling the maximum number
of characters to be read from stdin. No more than w£dth characters are
converted and stored at the corresponding argument. Fewer than w£dth
characters may be read if a white-space character (space, tab, or new line)
or a character that cannot be converted according to the given format
occurs before w£dth is reached.

The optional F and N prefixes allow the user to override the default ad­
dressing conventions of the memory model being used. F should be pre­
fixed to an argument pointing to a far object, while N should be prefixed
to an argument pointing to a near object. Note also that the F and N
prefixes are not part of the ANSI definition for scanf, but are instead
Microsoft extensions which should not be used when ANSI portability is
desired.

502

scanf

The optional prefix I indicates that the long version of the following type
is to be used, while the prefix h indicates that the short version is to be
used. The corresponding arQument should point to a long or double
object (with the I character) or a short object (with the h character). The
I and h modifiers can be used with the d, i, n, 0, x, and u type characters.
The I modifier can also be used with the e, f, and g type characters. The I
and h modifiers are ignored if specified for any other type.

The type characters and their meanings are described in Table R.4.

Table R.4

Type Characters for scanf

Character Type of Input Expected Type of Argument

d Decimal integer Poin ter to int
D Decimal integer Pointer to long
0 Octal integer Pointer to int
0 Octal integer Pointer to long
x Hexadecimal integerl Pointer to int
X Hexadecimal integerl ,2 Pointer to long

Decimal, hexadecimal, or octal Pointer to int
integer

I Decimal, hexadecimal, or octal
integer

Pointer to long

u Unsigned decimal integer Pointer to unsigned int
U Unsigned decimal integer Pointer to unsigned long
e,E Floating-point value consisting Pointer to float
f of an optional sign (+ or -), a
g,G series of one or more decimal

digits possibly containing a
decimal point, and an optional
exponent ("e" or "E") followed
by an optionally signed integer
value

503

scanf

Table R.4 (continued)

Character

c

s

n

p

Type of Input Expected

Character. White-space
characters that are ordinarily
skipped are read when c is
specified; to read the next non­
white-space character, use %ls.

String

No input read from stream or
buffer

Value in the form xxxx:yyyy,
where the digits x and yare
uppercase hexadecimal digits

Type of Argument

Pointer to char

Pointer to character array
large enough for input field
plus a terminating null
character C\ 0;), which is
automatically appended

Pointer to int, into which
is stored the number of
characters successfully read
from the stream or buffer
up to that point in the
current call to scanf

Pointer to far pointer to
void

1 Since the input for a %x or o/oX format specifier is always interpreted as a hexadecimal
number, the input should not include a leading Ox or OX. (If Ox or OX is included, the 0 is
interpreted as a hexadecimal input value.)

2 The X type is not part of the ANSI definition for scanf but is instead a Microsoft extension
and should not be used when ANSI portability is desired.

To read strings not delimited by space characters, a set of characters in
brackets (r J) can be substituted for the s (string) type character. The
correspondmg input field is read up to the first character that does not
appear in the bracketed character set. If the first character in the set is a
caret C"), the effect is reversed: the input field is read up to the first char­
acter that does appear in the rest of the character set.

To store a string without storing a terminating null character ('\ 0'), use
the specification %nc, where n is a decimal integer. In this case, the c type
character indicates that the argument is a pointer to a character array.
The next n characters are read from the input stream into the specified
location, and no null character ('\ 0') is appended. If n is not specified, the
default value for it is 1.

504

scanf

The scanf function scans each input field, character by character. It may
stop reading a particular input field before it reaches a space character for
a variety of reasons: the specified width has been reached; the next charac­
ter cannot be converted as specified; the next character conflicts with a
character in the control string that it is supposed to match; or the next
character fails to appear in a given character set. For whatever reason,
when scanf stops reading an input field, the next input field is considered
to begin at the first unread character. The conflicting character, if there
was one, is considered unread and is the first character of the next input
field or the first character in subsequent read operations on stdin.

• Return Value

The scanf function returns the number of fields that were successfully
converted and assigned. The return value does not include fields that were
read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

• See Also

fscanf, printf, sscanf, vfprintf, vprintf, vsprintf

• Examples

#include <stdio.h>

FILE *stream;
int i;
float fp;
char c, s[81J;

main ()
{

}

int result;

printf("Enter an integer, a floating point number, \n
a character and a string\n» ");
result = scanf ("%d %f %c %S", &i, &fp, &c, s);

printf("\nThe number of fields input is %d\n", result);
printf("The contents are: %d %f %c %s\n", i, fp, c, s);

505

scam

The example above uses scanf to read various types of data from stdin.

#include <stdio.h>

main ()
{
int numassigned, val:

printf("Enter hexadecimal or octal #, or 00 to quit:\n");
do

{
printf C!# = ..);

}

/* Input octal or hex value: */
numassigned = scanf("%i",&val);
printf ("Decimal # = %i \n" , val) ;

while (val && numassigned);
/* Loop ends if input value is 00 or */
/* "scanf" is unable to assign field */

}

Sample output:

Enter hexadecimal or octal #, or 00 to quit:
= Oxf
Decimal # 15
= 0100
Decimal # = 64
= 00
Decimal # = 0

The above example uses scanf to read hexadecimal and octal values. It
uses printf to convert these values to decimal and display them.

506

_searchenv

• Summary

include <stdlib.d>

void _searchenv(name, env_ var, path);
char *name; Name of file to search for
char *env_ var; Environment to search
char *path; Buffer to store complete path

• Description

The --.$earchenv rou tine searches for the target file in the specified
domain. The env_ var variable can be any environment variable which
specifies a list of directory paths, such as PATH, LID, INCLUDE, or
other user-defined variables. It will most often be PATH, which searches
for fname on all paths specified in the PATH variable.

The routine first searches for the file in the current working directory. If it
doesn't find the file, it next looks through the directories specified by the
environment variable.

If the target file is found in one of the directories, the newly created path
is copied into the buffer that path points to. You must ensure that there
is sufficient space for the constructed path name. If the target file is not
found, path will contain an empty null-terminated string.

• Example

#include <dos.h>

main ()
{

}

char path_buffer· [40];

/* search for file at root level */
_searchenv ("autoexec.bat", "PATH", path_buffer);
printf ("path: %s\n", path_buffer);

/* search for file in subdirectory */
_searchenv ("searchen.c", "PATH", path_buffer);
printf ("path: %s\n", path_buffer);

This program searches for the specified files.

507

segread

• Summary

include <dos.h>

void segread(segregs);
struct SREGS *segregs;

• Description

Segment-register values

The segread function fills the structure pointed to by segregs with the
current contents of the segment registers. The SREGS union is described
in the reference page for int86x. This function is intended to be used with
the intdosx and int86x functions to retrieve segment-register values for
later use.

• Return Value

There is no return value.

• See Also

FP _ SEG, intdosx, int86x,

• Example

#include <dos.h>
struct SREGS segregs;
unsigned int cs, ds, es, ss;

main 0
{

segread(&segregs); /* Read the segment register values */
cs = segregs.cs;
ds = segregs.ds;
es = segregs.es;
ss = segregs.ss;
printf("cs = %x, ds = %x, es = %x, ss = %x\n", cs, ds, es, ss);

}

This program uses segread to obtain the current values of the segment
registers, then displays these values.

508

_ selectpalette

• Summary

include <graph.h>

short far _selectpalette(number);
short number; Palette number

• Description

The .JJelectpalette function works only under the MRES4COLOR and
MRESNOCOLOR video modes. A palette consists of a selectable back­
ground color (Color 0) and three set colors. Under the :MRES4COLOR
mode the number argument selects one of the four predefined palettes
shown in Table R.S.

Table R.5

MRES4COLOR Palette Colors

Pixel Values
Palette
NUIllber Color 1 Color 2 Color 3

0 Green Red Brown

1 Cyan Magenta Light gray

2 Light green Light red Yellow
3 Light cyan Light magenta White

The MRESNOCOLOR video mode is used with black-and-white dis­
plays, producing palettes consisting of various shades of grey. It will also
produce color when used with a color display. The number of palettes
available depends upon whether a CGA or EGA hardware package is
employed. Under a CGA configuration, only the two palettes shown in
Table R.6 are available.

509

_ selectpalette

Table R.6
MRESNOCOLOR Mode
CGA Palette Colors

Pixel Values
Palette
Number Color 1 Color 2 Color 3

o Blue Red Light gray
1 Light blue Light red White

Under the EGA configuration, the three palettes shown in Table R.7 are
available in the MRESNOCOLOR video mode.

Table R.7
MRESNOCOLOR Mode
EGA Palette Colors

Pixel Values
Palette
Number Color 1 Color 2 Color 3

0 Green Red Brown
1 Light green Light red Yellow
2 Light cyan Light red Yellow

Note

510

With an EGA in MRESNOCOLOR video mode, Palette 3 is identi­
cal to Palette 1.

_ selectpalette

• Return Value

The function returns the value of the previous palette. There is no error
return.

• See Also

~etvideoconfig, ...setvideomode

• Example

#include <stdio.h>
#include <graph.h>

main 0
{
int loop, outloop;
_setvideomode(_MRES4COLOR);
for (outloop = 0; outloop < 20; outloop++) {

}

for (loop = 0; loop < 320; loop += 7) {
_setcolor(loop % 16);
_moveto(loop / 2, 0);
_lineto(O, 199 - loop * 8/5);

}
_selectpalette(outloop % 5);

_setvideomode (_DEFAULTMODE);
}

This program draws a series of line segments while continuously changing
the current palette.

511

_ setactivepage

• Summary

include <graph.h>

short far _ setactivepage(page);
short page; Memory page number

• Description

For hardware/mode configurations with enough memory to support
multiple-screen pages, Jetactivepage specifies the area in memQry where
graphics output is written. The page argument selects the current active
page. The default page number is o.
Screen animation is done by alternating the graphics pages displayed. Use
the Jetvisualpage function to display a completed graphics page while
executing graphics statements in another active page.

These functions can also be used to control text output if you use the text
functions _outtext, Jettextposition, ~ettextposition, Jettextcolor,
....gettextcolor, Jettextwindow, and _wrapon instead of the standard
C-Ianguage I/O functions. See Section 4.7.7, "Output Text."

Note

The eGA hardware configuration has only 16K of RAM available to
support multiple video pages, and only in the text mode. The EGA and
VGA configurations may be equipped with up to 256K of RAM for
multiple video pages in graphics mode.

• Return Value

If successful, the function returns the page number of the previous active
page. If the function fails, it returns a negative value.

• See Also

....gettextcolor, ~ettextposition, _outtext, Jettextcolor,
Jettextposition, Jettextwindow, Jetvideomode, Jetvisualpage,
_wrapon

512

_ setactivepage

• Example

#include <stdio.h>
#include <graph.h>

main ()
{
int loop = 0;
_setvideomode(_MRES16COLOR):
/* Repeat until a character is typed */
while (!kbhit()) {

}

/* alternate between page 0 and page 1 */
_setactivepage(loop & 1):
_setcolor(loop % 16):
_rectangle(_GFILLINTERIOR, 80,50, 240, 150):
_setvisualpage(loop++ & 1);

_setvideomode (_DEFAULTMODE);
}

This program creates an animated rectangle whose color changes between
screen alternations.

513

_ setbkcolor

• Summary

include <graph.h>

long far _ setbkcolor(color);
long color; Desired color value

• Description

The _ setbkcolor function sets the current background color to the pixel
value color.

Since the background color is Color 0, the _ remap palette function will
do the same thing that _ setbkcolor does. Unlike _ remappalette, how­
ever, _setbkcolor does not require an EGA or VGA environment. The
- setbkcolor function does not, affect anything already appearing on the
display (only the subsequent output), while in a graphics mode it immedi­
ately changes all background pixels.

• Return Value

This function returns the pixel value of the old background color. There is
no error return.

• See Also

_ getbkcolor, _ remappalette, _ selectpalette

514

• Example

#include <stdio.h>
#include <graph.h>

main 0
{
int loop;
_setvideomode(_MRES16COLOR);
for (loop = 0; loop < 20; loop++) {
/* Get the next background color */
_setbkcolor ((_getbkcolor () + 1) % 16);

}
_setvideomode (_DEFAULTMODE);

}

_ setbkcolor

This program steps through 20 different background colors.

515

setbuf

• Summary

include <stdio.h>

void setbuf{ stream, buffer);
FILE ... stream;
char ... buffer;

• Description

Pointer to FILE structure
User-allocated buffer

The setbuf function allows the user to control buffering for stream. The
argument stream must refer to an open file before it has been read or writ­
ten. If the buffer argument is NULL, the stream is unbuffered. If not, the
buffer must point to a character array of length BUFSIZ, where BUFSIZ
is the buffer size as defined in stdio.h. The user-specified buffer is used for
I/O buffering instead of the default system-allocated buffer for the given
stream.

The stderr and stdaux streams are unbuffered by default but may be
assigned buffers with setbuf.

• Return Value

There is no return value.

• See Also

fclose, mush, fopen

516

setbuf

• Example

#include <stdio.h>

char buf[BUFSIZ]:
FILE *streaml, *stream2:

main 0
{

}

streaml = fopen(tldataltl,"rtl):
stream2 = fopen(tl data2","w"):

/* "streaml tl uses user-assigned buffer: */
setbuf(streaml,buf):

/* "stream2 t1 is unbuffered */
setbuf(stream2,NULL):
printf("Buffering of the streams has been set tl):

This program first opens files named datal and data2. Then it uses
setbuf to give datal a user-assigned buffer and to change data2 so
that it has no buffer.

517

_ setcliprgn

• Summary

include <graph.h>

void far _ setcliprgn(xl, yl, x2, x2);
short xl, yl; Upper-left corner of clip region
short x2, y2; Lower-right corner of clip region

• Description

The _ setcliprgn function limits the display of subsequent graphics calls
to the part that fits within a particular area of the screen, known as the
"clipping region." The physical points (xl, yl) and (x2, y2) are the diago­
nally opposed sides of a rectangle that defines the clipping region. This
function does not change the logical-coordinate system. Rather, it merely
masks the screen.

Note

The _setcliprgn function affects graphics output only. To mask the
screen for text output, use the _settextwindow function.

• Return Value

There is no return value.

• See Also

- setviewport, _ settextwindow

518

_setcliprgn

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

}

_setvideomode(_MRES16COLOR);
_setcliprgn(0, 0, 200, 125);
_ellipse (_GFILLINTERIOR, 80, 50, 240, 200);
while (!kbhit(»; /* Strike any key to continue */
_setvideomode (_DEFAULTMODE);

This program draws an ellipse lying partly within a clipping region, as
shown in Figure R.B.

Figure R.6 Output of J3etcliprgn Program

519

_setcolor

• Summary

include <graph.h>

short far _ setcolor(color);
short color; Desired color number

• Description

The _ setcolor function sets the current color parameter to color. The
color parameter is masked so as to always be within range. All of the
drawing functions use the current color (_are, _ellipse, _floodfill,
_lineto, _pie, _rectangle, and J3etpixel).

The default color is the highest numbered color in the current palette.

• Return Value

There is no return value.

• See Also

_ &rc, _ ellipse, _ floodfill, _ getcolor, _lineto, _ pie, _ rectangle,
- selectpalette, _ setpixel

• Example

#include <stdio.h>
#include <graph.h>

main ()
{
int loop, loop1;
_setvideomode(_MRES16COLOR);
for (loop1 = 0; loop1 < 20; loop1++) { /* Get next color: */
_setcolor((_getcolor() + 1) % 16);
for (loop = 0; loop < 3200; loop++) {

}
}

/* Set a random pixel normalized to be on the screen */
_setpixel(rand(l) / 104, rand (1) / 164);

_setvideomode (_DEFAULTMODE);
}

This program assigns different colors to randomly selected pixels.

520

_ setfillmask

• Summary

include <graph.h>

void far _ setfillmask(mask);
unsigned char far * mask;

• Description

Mask array

The _setfillmask function sets the current fill mask. The mask is an
8-by-8 array of bits, where each bit represents a pixel. A 1 bit sets the
corresponding pixel to the current color, while a 0 bit leaves the pixel
unchanged. The mask is repeated over the entire fill area.

If no fill mask is set (mask is NULL-the default), only the current color
is used in fill operations.

• Return Value

There is no return value.

• See Also

_ floodfill, _ getfillmask

• Example

#include <stdio.h>
#include <graph.h>

unsigned char * (style [6]) = { "xOOxOOxOOxOOxOOxOOxOOxOO",
"x20x08x20x08x20x08x20x08", "x98xc6x30x30x8cx4cx62x18",
"xe6x38xb2x9cxe6x38xb2x9c", "xfcxeex7axdexf6xbcxeex7a",
"xfexfexfexfexfexfexfexfe" }:

char *oldstyle = tt1~345678tt: /* place holder for old style */

main ()
{
int loop:
_setvideomode(_MRES4COLOR);
_getfillmask(oldstyle):
_setcolor(2): /* draw an ellipse under the */
/* middle few rectangles in a different color */
_ellipse(_GFILLINTERIOR, 120, 75, 200, 125):

521

_ setfillmask

}

_setcolor(3):
for (loop = 0: loop < 6: loop++) {

}

/* make 6 rectangles, the first background color */
_setfillmask ((char far *) (style [loop J)):
_rectangle(_GFILLINTERIOR,loop*40+5,90, (loop+l)*40,110):

_setfillmask(oldstyle): /* restore old style */
while (!kbhit(»: /* Strike any key to continue */
_setvideomode (_DEFAULTMODE):

This program draws an ellipse overlaid with six rectangles, each with a
different fill mask, as shown in Figure R.7.

Figure R.7 Out put of _ setfillmask Program

522

• Summary

include <setjmp.h>

int setjmp(env);
jmp_ buf env;

• Description

setjmp

Variable in which environment is stored

The setjmp function saves a stack environment that can subsequently be
restored using longjmp. Used together this way, setjmp and longjmp
provide a way to execute a nonlocal goto. They are typically used to pass
execu tion control to error-handling or recovery code in a previously called
routine without using the normal calling or return conventions.

A call to setjmp causes the current stack environment to be saved in env.
A subsequent call to longjmp restores the saved environment and returns
control to the point just after the corres~onding setjmp call. The values
of all variables (except register variables) accessible to the routine receiv­
ing control contain the values they had when longjmp was called. The
values of register variables are unpredictable.

• Return Value

The setjmp function returns 0 after saving the stack environment. If
setjmp returns as a result of a longjmp call, it returns the value argu­
ment of longjmp, or, if the value argument of longjmp is 1, it returns o.
There is no error return.

• See Also

longjmp

Warning

The values of register variables in the routine calling setjrnp may not
be restored to the proper values after a longjmp call is executed.

523

setjmp

• Example

#include <stdio.h>
#include <setjmp.h>

jmp_buf mark;

main ()

p ()

{
if (setjmp(mark) != 0) {

printf("longjmp has been called\n");
recover();
exit(l);
}

printf("setjmp has been called\nlt
);

p() ;

}

{
int error 0;

if (error ! = 0)
longjmp(mark,-l);

}

recover ()
{
/* ensure that data files won't be corrupted by
** exiting the program.
*/

}

This program uses setjmp to save the stack environment and executes
the p function to simulate an error. It then uses longjmp to restore the
stack environment and resume execution immediately after the setjmp
call. Because longjmp and setjmp return different values, a conditional
expression in the program allows the program to call the recover func­
tion to use additional error-recovery code.

524

_ setlinestyle

• Summary

include <graph.h>

void far _ setlinestyle(mask};
unsigned short mask; Desired line-style mask

• Description

Some graphics routines (_lineto and _ rectangle) draw straight lines on
the screen. The type of hne is controlled by the current line-style mask.

The ...setlinestyle function selects the mask used for line drawing. The
mask is a 16-bit array, where each bit represents a pixel in the line being
drawn. If a bit is 1, the corresponding pixel is set to the color of the line
(the current color). If a bit is 0, the corresponding pixel is left unchanged.
The template is repeated for the entire length of the line. The default
mask is OxFFF (a solid line).

• See Also

--f;etlinesty Ie

• Example

#include <stdio.h>
#include <graph.h>

short style[l6] = {Oxl, Ox3, Ox7, Oxf, Oxlf, Ox3f, Ox7f, Oxff,
Oxlff, Ox3ff, Ox7ff, Oxfff, Oxlfff, Ox3fff, Ox7fff,
Oxffff};

525

_ setlinestyle

main ()
{

}

int xvar, yvar, loop, oldstyle:
_setvideomode(_MRES16COLOR);
oldstyle = _getlinestyle(); /* Save the old style of line */
for (xvar = 0, loop = 0; xvar < 320; xvar += 3, loop++) {

}

_setcolor(loop % 16);
yvar = xvar * 5 / 8;
_setlinestyle(style[loop % 16]);
_rectangle(_GBORDER, 320 - xvar, 200 - yvar, xvar, yvar):

_setlinestyle(oldstyle);
_setvideomode (_DEFAULTMODE):

This program calls J;etlinestyle to set a new line style for each of a series
of rectangles.

526

_setlogorg

• Summary

include <graph.h>

struct xycoord {
short xcoord; x coordinate
short ycoord; y coordinate
} far _setlogorg(x, y);

short x, y; New origin point

• Description

The _ setlogorg function moves the logical origin (0, 0) to the physical
point (x, y). All other logical points move the same direction and distance.

• Return Value

•
•

The function returns the physical coordinates of the previous logical origin
in an xycoord structure, defined in graph.h.

See Also

Example

#include <stdio.h>
#include <graph.h>

main 0
{

struct videoconfig config:
_setvideomode(_MRES16COLOR):
_getvideoconfig(&config);
/* Set logical origin to the center of the screen */
_setlogorg(config.numxpixels/2-1,config.numypixels/2-1);
_moveto(-80, -50);
_lineto(80, 50);
_lineto(80, -50);
while (Ikbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

}

This program callssetlogorg to pu t the logical origin in the center of the
screen.

527

setmode

• Summary

include <fcntl.h>
include <io.h> Required only for function declarations

int setmode(handle, mode);
int handle; File handle
int mode; New translation mode

• Description

The setmode function sets the translation mode of the file given by
handle to mode. The mode must be one of the following manifest con­
stants:

Constant

O_TEXT

O_BINARY

Meaning

Set text (translated) mode. Carriage-return-line­
feed combinations (CR-LF) are translated into a sin­
gle line feed (LF) on input. Line-feed characters are
translated into CR-LF combinations on output.

Set binary (untranslated) mode. The above trans­
lations are suppressed.

The setmode function is typically used to modify the default translation
mode of stdin, stdout, stderr, stdaux, and stdprn, but can be used on
any file.

• Return Value

If successful, setmode returns the previous translation mode. A return
value of -1 indicates an error, and errno is set to one of the following
values:

528

Value

EBADF
EINVAL

Meaning

Invalid file handle

Invalid mode argument (neither 0_ TEXT nor
O_BINARY)

setmode

• See Also

creat, fopen, open

• Example

#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int result:

main ()
{
/* Set "stdin" to have binary mode */
/* (Initially "stdin" is in text mode): */

}

result = setmode(fileno(stdin),O_BINARY):
if (resul t == -1) f

perror("Cannot set mode"):
else

printf("'stdin' successfully changed to binary mode");

This program uses setmode to change stdin from text mode to binary
mode.

529

_setpixel

• Summary

include <graph.h>

short far _ setpixel(x, y);
short x, y; Target pixel

• Description

The ~etpixel function sets the pixel at the logical point (x, y) to the
current color.

• Return Value

•

•

The function returns the previous value of the target pixel. If the function
fails (for example, the point lies outside of the clipping region), it will
return -1.

See Also

~etpixel

Example

#include <stdio.h>
#include <graph.h>

main 0
{
int loop;
int xvar, yvar;
_setvideomode(_MRES16COLOR);
_rectangle (_GFILLINTERIOR, 80, 50, 240, 150);
for (loop = 0; loop < 8000L; loop++) {
/* Fill pixels at random, but only if they are already on */
if (_getpixel(xvar=rand(l) / 104, yvar=rand{l) / 164» {
_setcolor{rand{l) % 16);

}
}

_setpixel{xvar, yvar);

_setvideomode (_DEFAULTMODE);
}

This program draws a rectangle and assigns different colors to randomly
selected pixels.

530

_ settextcolor

• Summary

include <graph.h>

short far _ settextcolor(p£xel);
short p£xel; Desired pixel value

• Description

The _ settextcolor function sets the current text color parameter to the
pixel value specified by pz"xel. The default text color is the same as the
maximum pixel value.

In text color mode, you can specify a pixel value in the range 0-31. The
colors in the range 0-15 are interpreted as normal; colors in the range
16-31 are the same as those in the range 0-15, but also have blinking text.
The normal color range is defined below:

No. Color No. Color

0 Black 8 Dark gray
1 Blue 9 Light blue
2 Green 10 Light green
3 Cyan 11 Light cyan
4 Red 12 Light red
5 Magenta 13 Ligh t magen ta
6 Brown 14 Yellow
7 White 15 Bright white

Note

Text colors are not restricted to the current palette, as are the current
color and current background color.

531

_ settextcolor

• Return Value

The function returns the pixel value of the previous text color. There is no
error return.

• See Also

_ gettextcolor

• Example

#include <stdio.h>
#include <graph.h>

char buffer[255];

main 0
{

}

struct rccoord rcoord;
int oldcolor;
/* Set text window to upper half of screen */
_settextwindow(l, 1, 14, 80);
_wrapon(_GWRAPOFF); /* Turn wrapping off */
oldcolor = _gettextcolor(); /* Save original color */
_settextcolor(oldcolor - 1);
_settextposition(1, 1);
_outtext("Upper Left corner");
rcoord = _gettextposition();
rcoord.row++;
sprintf(buffer, "Row=%d, Col=%d", rcoord.row, rcoord.col);
_settextposition(rcoord.row, rcoord.col);
_outtext(buffer);
_settextposition(15, 40);
_settextcolor(oldcolor); /* Recover original color */
_outtext("This should be on last line; is out of the window");
while (!kbhit(»; /* wait */
_setvideomode (_DEFAULTMODE);

This program calls ~ettextcolor to change from the default text color
prior to outputting text, and again at the end of the text output to restore
the previous color.

532

_ settextposition

• Summary

include <graph.h>

struct rccoord {
short row; Row coordinate
short col; Column coordinate
} far _ settextposition(row, column);

short row, column; New output start position

• Description

This function relocates the current text position to the display point (row,
column). Subsequent text output produced with the _outtext function (as
well as standard console I/O routines, such as printf) proceeds from that
point.

• Return Value

The function returns the previous text position in an rccoord structure,
defined in graph.h.

• See Also

- gettextposition, _ outtext

• Example

#include <stdio.h>
#include <graph.h>

char buffer[255];

533

_ settextposition

main 0
{

}

struet reeoord reoord;
int oldeolor;
/* Set text window to upper half of screen */
_settextwindow(1, 1, 14, 80);
_wrapon(_GWRAPOFF); /* Turn wrapping off */
oldeolor = _gettexteolor(); /* Save original color */
_settexteolor(oldeolor - 1);
_settextposition(1, 1);
_outtext("Upper Left corner");
reoord = _gettextposition();
rcoord.row++;
sprintf(buffer, "Row=%d, Col=%d", reoord.row, reoord.eol);
_settextposition(reoord.row, reoord.eol);
_outtext(buffer);
_settextposition(15, 40);
_settexteolor(oldeolor); /* Recover original color */
_outtext("This should be on last line; is out of the window");
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls JJettextposition several times to start text output in
different places on the screen.

534

• Summary

include <graph.h>

void far _settextwindow(rl, c1, r2, e2);
short rl, c1; Upper-left corner of window
short r2, e2; Lower-right corner of window

• Description

_ settextwindow

The _ settextwindow function specifies a window in row and column
coordinates where all the text output to the screen is displayed. The argu­
ments (rl, ell specify the upper-left corner of the window, and the argu­
ments (r2, e2 specify the lower-right corner of the window.

Text is output from the top of the window down. When the text window is
full, the uppermost line scrolls up out of it.

• Return Value

There is no return value.

• See Also

_outtext

• Example

#include <stdio.h>
#include <graph.h>

char buffer[255]:

535

_ settextwindow

main ()
{

}

struet reeoord reoord;
int oldeolor;
/* Set text window to upper half of screen */
_settextwindow{l, 1, 14, 80);
_wrapon(_GWRAPOFF); /* Turn wrapping off */
oldeolor = _gettexteolor(); /* Save original color */
_settexteolor(oldeolor - 1);
_settextposition(1, 1);
_outtext("Upper Left eorner");
reoord = _gettextposition();
rcoord.row++;
sprintf(buffer, II Row=%d, Col=%d", reoord.row, reoord.eol);
_settextposition(reoord.row, reoord.eol);
_outtext(buffer);
_settextposition(15, 40);
_settexteolor(oldeolor); /* Recover original color */
_outtext("This should be on last line; is out of the window");
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program creates a text window in the upper half of the screen, then
writes text to it.

536

setvbuf

• Summary

include <stdio.h>

int setvbuf(stream, buffer, type, size);
F~E *stream;
char *buffer;
int type;

size- t size;

• Description

Pointer to F~E structure
User-allocated buffer
Type of buffer:

_ IOFBF (full buffering)
_ IOLBF (line buffering)
_ IONBF (no buffer)

Size of buffer

The setvbuf function allows the user to control both buffering and buffer
size for stream. The stream must refer to an open file which has been read
or written to since being opened. The array that bufpoints to is used as
the buffer, unless it is NULL, in which case an automatically allocated
buffer size-bytes long is used. The type must be _IOLBF, _IOFBF, or
_IONBF. If type is _IOFBF or _IOLBF, then size is used as the size of
the buffer. If type is _IONBF, then the stream is unbuffered, and s£ze and
buf are ignored.

Type Meaning

_ IOFBF Full buffering; that is, buffer is used as the buffer and s£ze
is used as the size of the buffer. If buffer is NULL, an
automatically allocated buffer size bytes long is used.

_IOLBF Same as _IOFBF.

_ IONBF No buffer is used, regardless of buffer or size.

c 4.0 Dzfference

Under Version 4.0 of Microsoft C, no buffering occurs if buffer is
NULL.

537

setvbuf

The legal values for size are greater than 0 and less than the maximum
integer size.

• Return Value

The return value for setvbuf is 0 if successful, and nonzero if an illegal
type or buffer size is specified.

• See Also

setbuf, fclose, mush, fopen

• Example

#include <stdio.h>
char buf[l024];
EILE *streaml, *stream2;
int result;

main ()
{

}

streaml = fopen("datal","r");
stream2 = fopen("data2","w");
if (result = setvbuf(streaml, buf, _IOEBE, sizeof(buf» != 0)

printf(ltlncorrect type or size of bufferl\n lt);
else

printf("'streaml' now has a buffer of 1024 bytes\n");
if (setvbuf(stream2, NULL, _IONBE, 0) != 0)

printf(ltlncorrect type or size of bufferl\n lt);
else

printf(" 'stream2 , now has no buffer\n");

This program opens two streams named strearnl and strearn2. It then
uses setvbuf to give strearnl a user-defined buffer of 1024 bytes and
strearn2 no buffer at all.

538

_ setvideomode

• Summary

include <graph.h>

short far _setvideomode(mode);
short mode; Desired mode

• Description

The _ setvideomode function selects a screen mode appropriate for a par­
ticular hardware/display configuration. The mode argument can be one of
the manifest constan ts shown in Table R.8 (defined in graph.h).

Table R.8

Manifest Constants for Screen Mode

Mode Type! Size2 Colors3 Adapter4

_DEFAULTMODE Hardware default mode
_TEXTBW40 MIT 4Ox25 16 eGA
_TEXTC40 CIT 4Ox25 16 eGA
_TEXTBW80 MIT 8Ox25 16 eGA
_TEXTC80 CIT 8Ox25 16 eGA
_MRES4COLOR CIG 32Ox200 4 eGA
_MRESNOCOLOR MIG 32Ox200 4 eGA
_HRESBW MIG 64Ox200 2 eGA
_TEXTMONO MIT 8Ox25 1 MA
F~ MRES16COLOR CIG 32Ox200 16 EGA
_HRES16COLOR CIG 64Ox200 16 EGA
_ERESNOCOLOR MIT 640x350 1 EGA
_ERESCOLOR CIG 64Ox350 64 EGA
_ VRES2COLOR CIG 64Ox480 2 VGA
_ VRES16COLOR CIG 64Ox480 16 VGA
_ MRES256COLOR CIG 32Ox200 256 VGA

1 M indicates monochrome, C indicates color output, T indicates text, and G indicates
graphics generation.

2 For text modes, size is given in characters (columns x rows). For graphics modes, size is
given in pixels (horizontal x vertical).

3 For monochrome displays, the number of colors is the number of gray shades.

4 Adapters are the IBM (and compatible) Monochrome Adapter (MA), Color Graphics
Adapter (CGA), Enhanced Graphics Adapter (EGA), and Video Graphics Array (VGA).

539

_ setvideomode

Note

Only IBM hardware is described here, but display hardware that is
strictly compatible with IBM hardware should also work as described.

• Return Value

The function returns a nonzero value if the function is successful. If an
error is encountered (that is, the mode selected is not supported by the
current hardware configuration), the function returns o.

• See Also

~etvideoconfig

• Example

#include <stdio.h>
#include <graph.h>

main 0
{

}

struct videoconfig config;
_setvideomode(_MRES16COLOR);
_getvideoconfig(&config);
/* set logical origin to the center of the screen */
_setlogorg(config.numxpixels/2-1,config.numypixels/2-1);
_moveto(-80, -50);
_lineto(80, 50);
_lineto(80, -50);
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls .-Setvideomode to set the video mode
_MRES16COLOR (320 x 200 color graphics).

540

_ setviewport

• Summary

include <graph.h>

void far _setviewport(xl, yl, x2, y2);
short xl, yl; Upper-left corner of window
short x2, y2; Lower-right corner of window

• Description

The _ setviewport function defines a clipping region in exactly the same
manner as _ setcliprgn, and then sets the logical origin to the upper-left
corner of the region. The physical points (xl, yl) and (x2, y2) are the diag­
onally opposed corners of the rectangular clipping regIOn.

• Return Value

There is no return value.

• See Also

_ setlogorg, _ setcliprgn

• Example

#include <stdio.h>
#include <graph.h>

main ()
{

}

_setvideomode(_MRES16COLOR);
_setviewport(O, 0, 200, 125);
_ellipse (_GFILLINTERIOR, 80, 50, 240, 150);
/* wait for key before resetting screen */
while (!kbhit(»;
_setvideomode (_DEFAULTMODE);

This program sets the viewport in the upper-left quadrant of the screen,
then draws an ellipse lying partly outside the viewport.

541

_ setvisualpage

• Summary

include <graph.h>

short far _setvisualpage(page);
short page; Visual page number

• Description

For hardware configurations that include an EGA and enough memory to
support multiple-screen pages, the _setvisualpage function :selects the
current visual page. The page argument specifi~s the current visual page.
The default page number is O. '

• Return Value

The function returns the page number of the previous visual page. If the
function fails, it returns a negative value.

• See Also

- setactivepage, _ setvideomode

• Example

#include <stdio.h>
#include <graph.h>

main 0
{
int loop = 0;
_setvideomode(_MRES16COLOR);
while (!kbhit()) { /* Repeat until a character is typed */
/* alternate between page a and page 1 */

}

_setactivepage(loop & 1);
_setcolor(loop % 16);
_rectangle(_GFILLINTERIOR, 80, 50, 240, 150);
_setvisualpage(loop++ & 1);

_setvideomode (_DEFAULTMODE);
}

This program sets a visual page and an active page and displays them
alternately.

542

signal

• Summary

include <signal.h>

void (*signal(s£g, func(s£g[, subcode])))(s£g);
int sig; Signal to be mapped
void *funcO; Function to be executed on s£g
int subcode; Optional error subcode

• Description

The signal function allows a process to define the interrupt handler sig­
nals from the operating system.

The sig argument must be one of the manifest constants listed below
(defined in signal.h):

Signal

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

Meaning

Abnormal termination. The default action
terminates the calling program with exit code
3.

Floating-point error, such as overflow, divi­
sion by zero, or invalid operation. The default
action terminates the calling program.

Illegal instruction. This signal is not gener­
ated by :rv1S-DOS, but is supported for ANSI
compatibility. The default action terminates
the calling program.

CTRL+C interrupt. The default action issues
INT Ox23.

Illegal storage access. This signal is not gen­
erated by :rv1S-DOS, but is supported for ANSI
compatibility. The default action terminates
the calling program.

Termination request sent to the program.
This signal is not generated by :rv1S-DOS, but
is supported for ANSI compatibility. The
default action terminates the calling program.

543

signal

The june ar~ument must be one of the manifest constants SIG_DFL or
SIG_ IGN also defined in signal.h), or a symbolic or assembly-language
function ad ress. The action taken in response to the interrupt signal
depends on the value of june, as follows:

Table R.9

Function Arguments

Value

SIG_DFL

Function
address

Meaning

The default action is taken. If the calling process is terminated,
control returns to the MS-DOS command level; all files opened by
the process are closed, but buffers are not flushed.
The interrupt signal is ignored. This value should never be given
for SIGFPE, since the floating-point state of the process is left
undefined.
For SIGINT signals, the function pointed to by June is passed the
single argument SIGINT and executed. If the function returns,
the calling process resumes execution immediately following the
point where it received the interrupt signal. Before the specified
function is executed, the value of June is set to SIG_ DFL; the
next interrupt signal is treated as described above for SIG_ DFL,
unless an intervening call to signal specifies otherwise. This allows
the user to reset signals in the called function if desired.
For SIGFPE, the function pointed to by June is passed two
arguments (SIGFPE and an integer error subcode, FPE_ xxx),
then executed. (See the include file float.h for definitions of the
FPE_ xxx subcodes.) The second value is not part of the ANSI
standard; it is a Microsoft extension. The value of June is not
reset upon receiving the signal; to recover from floating-)?oint
exceptions, use setjmp in conjunction with longjmp. ~See the
example under _fpreset in this Reference.) If the functIOn
returns, the calling process resumes execution with the floating­
point state of the process left in an undefined state.

• Return Value

The signal function returns the previous value of junco A return value of
SIG_ ERR indicates an error, and errno is set to EINV AL, indicating
an invalid sig value.

544

signal

• See Also

abort, exec functions, exit, _ exit, _ fpreset, spawn functions

Note

Signal settings are not preserved in child processes created by calls to
exec or spawn routines. The signal settings are reset to the default in
the child process .

• Example

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <process.h>

int handler 0 ;

main 0
{
/* Set so that interrupt calls "handler": */
if (signal(SIGINT,handler) == (int(*) 0)-1) {

fprintf(stderr,"Couldn't set SIGINT");
abort 0 ;

}
for(;;)printf("Hit control C:\n");

}

int handler() /* Function called at as interrupt */
{

}

char ch;

/* Disallow ctrl-c during handler: */
signal (SIGINT, SIG_IGN);
printf("Terminate processing? ");
ch = getchO;
if ((ch == ' Y ,) :: (ch = ' Y , » exi t (0) ;
/* "signal" called here so next */
/* interrupt signal sends control */
/* to handler(), not to operating sys.: */
signal(SIGINT,handler);

545

signal

This program uses signal to set up the handler function as the routine
that is called to execute an operating-system interrupt. When the user
presses CTRL+C, handler is called to handle the interrupt.

546

sin, sinh

• Summary

include <math.h>

double sin(x}; Calculates sine of x

double sinh(x}; Calculates hyperbolic sine of x

double x; Angle in radians

• Description

The sin and sinh calls find the sine and hyperbolic sine of x, respectively.

• Return Value

The sin function returns the sine of x. If x is large, a partial loss of signifi­
cance in the result may occur, and sin generates a PLOSS error. If x is so
large that significance is completely lost, sin prints a TLOSS message to
stderr and returns o. In both cases, errno is set to ERANGE.

The sinh function returns the hyperbolic sine of x. If the result is too
large, sinh sets errno to ERANGE and returns ±HUGE_ VAL.

• See Also

acos, asin, atan, atan2, cos, cosh, tan, tanh

• Example

#include <math.h>
#include <stdio.h>

main ()
{

}

double pi = 3.1415926535;
double x = pi/2;
double y = sin(x); /* y is 1.0 */
printf("The sin(%f) = %f\n",x,y);
y = sinh(x); /* y is 2.301299 */
printf ("The sinh (%f) = %f\n", x, y) ;

This program displays the sine and hyperbolic sine of 1T /2.

547

sop en

• Summary

include <fcntl.h>
include <sys\ types.h>
include <sys\stat.h>
include <share.h>
include <io.h> Required only for function declarations

int sopen(path, of lag, shflag[, pmode]);
char *path; File path name
int of lag; Type of operations allowed
int shflag; Type of sharing allowed
int pmode; Permission setting

• Description

The sopen function opens the file specified by path and prepares the file
for subsequent shared reading or writing, as defined by oflag and shfla-g.
The integer expression oflag is formed by combining one or more of the fol­
lowing manifest constants, defined in fcntl.h. When more than one mani­
fest constant is given, the constants are joined with the OR operator (:).

Constant

O_APPEND

O_BINARY

O_CREAT

O_EXCL

O_RDONLY

O_RDWR

O_TEXT

548

Meaning

Repositions the file pointer to the end of the
file before every write operation.

Opens file in binary (un translated) mode. (See
fopen for a description of binary mode.)

Creates and opens a new file. This has no
effect if the file specified by path exists.

Returns an error value if the file specified by
path exists. This applies only when used with
O_CREAT.

Opens file for reading only. If this flag is
given, neither the 0_ RDWR flag nor the
0_ WRONL Y flag can be given.

Opens file for both reading and writing. If
this flag is given, neither 0_ RDONL Y nor
0_ WRONL Y can be given.

Opens file in text (translated) mode. (See
fopen for a description of text mode.)

O_TRUNC

O_WRONLY

Note

sopen

Opens and truncates an existing file to a
bytes. The file must have write permission;
the contents of the file are destroyed.

Opens file for writing only. If this flag is
given, neither O_RDONLY nor O_RD"WR
can be given.

0_ TRUNC destroys the entire contents of an existing file. Use it
with care.

The argument shflag is a constant expression consisting of one of the fol­
lowing manifest constants, defined in share.h. If SHARE.COM (or
SHARE.EXE for some versions of MS-DOS) is not installed, MS-boS
ignores the sharing mode. (See your system documentation for detailed
information about sharing modes.)

Constant

SILCOMPAT

SILDENYRW

SILDENYWR

SILDENYRD

SILDENYNO

Meaning

Sets compatibility mode

Denies read and write access to file

Denies write access to file

Denies read access to file

Permits read and write access

The pmode argument is required only when 0_ CREAT is specified. If
the file does not exist, pmode specifies the file's permission settings, which
are set when the new file is closed for the first time. Otherwise, the pmode
argument is ignored. The pmode argument is an integer expression that
contains one or both of the manifest constants S_IWRITE and
S_ffiEAD, defined in sys\stat.h. When both constants are given, they
are joined with the OR operator (:). The meaning of the pmode argument
is as follows:

549

sopen

Value Meaning

S_ IWRITE Writing permitted

S_ IREAD Reading permitted

S_ IREAD : S_ IWRITE Reading and writing permitted

If write permission is not given, the file is read only. Under MS-DOS, all
files are readable; it is not possible to give write-only permission. Thus the
modes S_IWRITE and S_IREAD : S_IWRITE are equivalent.

Important

Under MS-DOS Versions 3.0,3.1, and 3.2 with SHARE installed, a
problem occurs when opening a new file with sopen under the follow­
ing sets of conditions:

• With oflag set to 0_ CREAT : O_RDONL Y or
O_CREAT: WRONLY, pmodeset to S_IREAD, and
shflagset to SILCOMPAT

• With oflag set to any combination that includes O_FLAG,
pmode set to S_ IREAD, and shflag set to anything other than
SILCOMPAT

In either case, the operating system will prematurely close the file dur­
ing system calls made within sopen, or the system will generate a
sharing violation (INT 24H).

To avoid the problem, open the file with pmode set to S_ IWRITE.
After closing the file, call chmod and change the mode back to
S_ IREAD. Another way around the problem is to open the file with
pmodeset to S_IREAD, oflagset to O_CREAT: O_RDWR, and
shflag set to SIL COMP AT.

The sopen function applies the current file-permission mask to pmode
before setting the permissions (see umask).

550

sopen

• Return Value

The sopen function returns a file handle for the opened file. A return
value of -1 indicates an error, and errno is set to one of the following
values:

Value

EACCES

EEXIST

El\1FILE

ENOENT

• See Also

Meaning

Given path name is a directory; or the file is read
only but an open for writinp was attempted; or a
sharing violation occurred l the file's sharing mode
does not allow the specified operations; MS-DOS
Versions 3.0 and later only).

The O_CREAT and O_EXCL flags are speci­
fied, but the named file already exists.

No more file handles available (too many open
files). .

File or path name not found.

close, creat, fopen, open, umask

Note

The sopen function should be used only under MS-DOS Versions 3.0
and later. Under earlier versions of MS-DOS, the shflag argument is
ignored.

File-sharing modes will not work correctly for buffered files, so do not
use fdopen to associate a file opened for sharing (or locking) with a
stream.

551

sopen

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>

extern unsigned char _osmajor;
int fh;

main ()
{

}

/* Open for file sharing: */
if (_osmajor >= 3)

fh = sopen("sopen.c", O_RDWR

/* Just a regular open */
else

fh = open ("sopen.c", O_RDWR : O_BINARY);

if (fh == -1)
perror("Failure on an attempt to open the file\n");

else
printf("File opened successfully");

if (_osmajor >= 3)
printf("At least version 3.0, sopen used.\n");

else
printf("Pre version 3.0, open used.\n");

This program first checks the version of MS-DOS. If the version is 3.0 or
later, it uses sopen to open a file named sopen. c for sharing.

552

• Summary

include <stdio.h>
include <process.h>

int spawnl(modeJlag, path, argO, argl ... , argn,NULL);

int spawnle(modeJlag, path, argO, argl ... , argn,NULL, envp);

int spawnlp(modeJlag, path, argO, argl ... , argn,NULL);

int spawnlpe(modeJlag, path, argO, argl ... , argn,NULL, envp);

int spawnv(mode/lag, path, argv);

int spawnve(modeJlag, path, argv, envp);

int spawnvp(mode/lag, path, argv);

int spawnvpe(modeJlag, path, argv, envp);

int modeJlag;
char *path;
char *argO,*argl, ... ,*argn ;
char * argv[] ;

Execution mode for parent process
Path name of file to be executed
List of pointers to arguments
Array of pointers to arguments

spawn

char *envp[]; Array of pointers to environment settings

• Description

The spawn functions create and execute a new child process. Enough
memory must be available for loading and executing the child process. The
modeflag argument determines the action taken by the parent process
before and during the spawn.

All of the functions in this family use the same basic spawn function; the
letter(s) at the end of the function name specifies the particular variation:

Letter Variation

p Uses the PATH environment variable to find the file to be
executed

I Lists command-line arguments separately

553

spawn

v Passes the child process an array of pointers to command­
line arguments

e Passes the child process an array of pointers to environment
arguments

The following values for modeftag are defined in process.h:

Value Meaning

P _ WAIT Suspends parent process until execution of child
process is complete (synchronous spawn)

P _ NOWAIT Continues to execute parent process concurrently
with child process

P _ OVERLAY Overlays parent process with child, destroying the
parent (same effect as exec calls)

Only P _ WAIT and P _ OVERLAY may be used for modeftags. The
P _ NOW AIT value is reserved for future implementation. An error value
is returned if P_NOWAIT is used.

The path argument specifies the file to be executed as the child process.
The path can be a full path (from the root), a partial path (from the
current working directory), or just a file name. If path does not have a file­
name extension or end with a period (.), spawn will search for the file; if
unsuccessful, the extension .EXE is attempted. If path has an extension,
only that extension is used. If path ends with a period, the spawn calls
search for path with no extension. The spawnlp, spawnlpe, spawnvp,
and spawnvpe routines search for path (using the same procedures) in the
directories specified by the PATH environment variable.

Argumen ts are passed to the child process by giving one or more pointers
to character strings as arguments in the spawn call. These character
strings form the argument list for the child process. The combined length
of the strings forming the argument list for the child process must not
exceed 128 bytes. The terminating null character ('\ 0') for each string is
not included in the count, but space characters (inserted automatically to
separate the arguments) are included.

The argument pointers can be passed as separate arguments (spawnl,
spawnle, spawnlp, and spawnlpe) or as an array of pointers (spawnv,
spawnve, spawnvp, and spawnvpe). At least one argument, argO, must
be passed to the child process (which sees it as argv[O]). Usually, this argu­
ment is a copy of the path argument. (A different value will not produce an
error.) Under versions of MS-DOS earlier than 3.0, the passed value of argO
is not available for use in the child process. However, under MS-DOS ver­
sions 3.0 and later, the path is available as argO.

554

spawn

The spawnl, spawnle, spawnlp, and spawnlpe calls are typically used
in cases where the number of arguments is known in advance. The argO
argument is usually a pointer to path. The arguments argl through argn
are pointers to the character strings forming the new argument list. Fol­
lowing argn there must be a null argument list.

The spawnv, spawnve, spawnvp, and spawnvpe calls are useful when
the number of arguments to the child process is variable. Pointers to the
arguments are passed as an array, argv. The argument argv[O] is usually a
poin ter to path, and argv[l] through argv[n] are pointers to the character
strings forming the new argument list. The argument argv[n+l] must be a
null pointer to mark the end of the argument list.

Files that are open when a spawn call is made remain open in the child
process. In the spawnl, spawnlp, spawnv, and spawnvp calls, the child
process inherits the environment of the parent. The spawnle, spawnlpe,
spawnve, and spawnvpe calls allow the user to alter the environment for
the child process by passing a list of environment settings through the
envp argument. The argument envp is an array" of character pointers, each
element of which (except for the final element) points to a null-terminated
string defining an environment variable. Such a string usually has the form

name=value

where name is an environment variable and value is the string value to
which that variable is set. (Note that value is not enclosed in double
quotes.) The final element of the envp array should be NULL. When envp
itself is NULL, the child process inherits the environment settings of the
paren t process.

The spawn functions pass the child process all information about open
files, including the translation mode, through the ;C_ FILE_ INFO entry
in the environment that is passed. The C start-up code normally processes
this entry and then deletes it from the environment. However, if a spawn
function spawns a non-C process (such as CO:MMAND.COM), this entry
will remain in the environment. In this case, since the environment infor­
mation is passed in binary form, printing the environment will show
graphics characters in the definition string for this entry. It has no other
effect on normal operations .

• Return Value

The return value from a synchronous spawn (P _ WAIT specified for
modeflag) is the exit status of the child process.

555

spawn

The return value from an asynchronous spawn (P _ NOW AIT specified
for modeflag) is the process ID. To obtain the eXIt code for the spawned
process, you must call the wait or cwait function and specify the process
ID.

The exit status is 0 if the process terminated normally. The exit status can
be set to a nonzero value if the child process specifically calls the exit rou­
tine with a nonzero argument. If the child process does not set a positive
exit status, the positive exit status indicates an abnormal exit with an
abort call or an interrupt.

A return value of -1 indicates an error (the child process is not started). In
this case, errno is set to one of the following values:

Value

E2BIG

EINVAL

ENOENT

ENOEXEC

ENOMEM

Meaning

The argument list exceeds 128 bytes, or the space
required for the environment information exceeds
32K.

The modeflag argument is invalid.

The file or path name was not found.

The specified file is not executable or has an
invalid executable-file format.

Not enough memory is available to execute the
child process.

Note

Signal settings are not preserved in child processes created by calls to
spawn routines. The signal settings are reset to the default in the
child process.

• See Also

abort, atexit, exec functions, exit, _ exit, onexit, system

556

• Example

#include <stdio.h>
#include <process.h>

char *my_env[J = {

main (argc, argv)
int argc:
char *argv[J:

{
char *args[4J;
int result;

"THIS=environment will be",
"PASSED=to child.exe by the",
"SPAWNLE=and" ,
"SPAWNLPE=and" ,
"SPAWNVE=and" ,
"SPAWNVPE=functions" ,
NULL
};

spawn

args [OJ
args [lJ
args[2J
args [3J

= "child";
"spawn??" ;
"two";

/* Set up parameters to send */

= NULL;

switch (argv [lJ [OJ) /* Based on first letter of argument */
{
case '1':

spawnl

break;
case '2':

(P _WAIT, "child.exe", "child", "spawnl" ,
"two",NULL);

spawnle (P_WAIT, "child.exe", "child", "spawnle" ,
"two",NULL,my_env);

break;
case '3':

spawnlp (P_WAIT, "child.exe", "child", "spawnlp" ,
"two",NULL):

break;
case '4':

spawnlpe(P_WAIT, "child.exe","child","spawnlpe",
"two",NULL,my_env):

break;
case '5':

spawnv (P_OVERLAY, "child.exe",args);
break;
case '6':

spawnve (P_OVERLAY, "child.exe",args,my_env):
break;

557

spawn

}

case '7':
spawnvp (P_OVERLAY, "child.exe",args);

break;
case '8':

spawnvpe(P_OVERLAY, "child.exe",args,my_env);
break;
default:

printf("Enter a number from 1 to 8 as a command
line parameter.");
exit(O);

printf("\n\nReturned from SPAWN!\n");
}

This program accepts a number in the range 1 - 8 from the command line.
Based on the number it receives, it executes one of the eight different pro­
cedures that spawn the process named child. For some of these pro-
ced ures, the chi ld. exe file must be in the same directory; for others, it
must only be in the same path.

558

• Summary

include <stdlib.h>

void _ splitpath(path, drive, dir, /name, ext};

char *path;
char *drive;
char *dir;
char */name;
char *ext;

• Description

Full path-name buffer
Drive letter
Directory path
File name
File extension

_splitpath

The Jplitpath routine decomposes an existing path name into the four
components. The path argument should point to a buffer containing the
complete path name. The maximum size necessary for each buffer is
specified by the _MAX-DRIVE, _MAX-Dffi, _MAX-NAME, and
_ MAX- EXT manifest constants defined in stdlib.h. The other argu­
ments point to the following buffers used to store the path-name elements:

Buffer Description

drive Contains the drive letter followed by a colon (:) if a drive is
specified in path.

dir Contains the path of subdirectories, if any, including the
trailing slash. Forward slashes (/), backslashes (\), or both
may be present in path.

fname Contains the base file name without any extensions.

ext Contains the file-name extension, if any, including the lead­
ing period (.).

The return parameters will contain empty strings for any path-name com­
ponents not found in path.

559

_splitpath

• Example

#include <dos.h>

maine)
{

}

char path_buffer [40J;
char * drive [3J;
char * dir [30J;
char * fname [9J;
char * ext [4J;

_makepath (path_buffer, c, "qc\ \clibr~~ef\ \", "makepath", "e");
printf ("path created with _makepath: %s\n\n", path_buffer);

_splitpath (path_buffer, drive, dir, fname, ext);
printf ("path extracted with _splitpath\n");
printf ("drive: %s\n", drive);
printf ("dir: %s\n", dir);
printf ("fname: %s\n", fname);
printf ("ext: %s\n", ext);

This program builds a file-name path from the specified components, then
extracts the individual components.

560

sprintf

• Summary

include <stdio.h>

int sprintf(buffer, format[, argument] ...);
char *buffer; Storage location for output
const char *format; Format-control string

• Description

The sprintf function formats and stores a series of characters and values
in buffer. Each argument (if any) is converted and output according to the
corresponding format specification in the format. The format consists of
ordinary characters and has the same form and function as the format
argument for the printf function; see the printf reference page for a de­
scription of the format and arguments. A NULL is appended to the end of
the characters written but is not counted in the return value.

• Return Value

The sprintf function returns the number of characters stored in buffer,
not counting the terminating NULL.

• See Also

fprintf, printf, sscanf

• Example

#include <stdio.h>

char buffer[200];
int i, j;
double fp;
char *s = "computer";
char c;

561

sprintf

main ()
{

}

c = '1';
i = 35;
fp =l.7320S08;

/* Format and print various data: */
j = sprintf (buffer, "%s\n", s):
j += sprintf(buffer+j, "%c\n", c);
j += sprintf(buffer+j, "%d\n", i);
j += sprintf (buffer+j, "%f\n", fp):

printf("string:\n%s\ncharacter count = %d\n", buffer, j):

This program uses sprintf to format various data and place them in the
string named buffer.

562

• Summary

include <math.h>

double sqrt(x);
double x;

• Description

Non-negative floating-point value

The sqrt function calculates the square root of x.

• Return Value

sqrt

The sqrt function returns the square-root result. If x is negative, the func­
tion prints a DOMAIN error message to stderr, sets errno to EDOM,
and returns O.

Error handling can be modified by using the matherr routine.

• See Also

exp, log, matherr, pow

• Example

#include <math.h>
#include <stdio.h>

main 0
{
double x, y, z;

x = 1.0;
Y = 3.0;

if ((z = sqrt(x+y» == 0.0) /* Return of 0 means arg<O */
{ /* z is 2 */
if ((x+y) < 0.0)

perror("sqrt of a negative number");
}

else
printf ("The square root of %f = % f\n " , x+y, z);

}

This program uses sqrt to display the square root of 4.

563

srand

• Summary

include <stdlib.h>

void srand(seed);
unsigned seed;

• Description

Required only for function declarations

Seed for random-number generation

The srand function sets the starting point for generating a series of pseu­
dorandom integers. To reinitialize the generator, use 1 as the seed argu­
ment. Any other value for seed sets the generator to a random starting
point.

The rand function is used to retrieve the pseudorandom numbers gen­
erated. Calling rand before any call to srand will generate the same
sequence as calling srand with seed passed as 1.

• Return Value

There is no return value.

• See Also

rand

• Example

#include <stdlib.h>
#include <stdio.h>

main 0
{

}

int x, ranvals[20];

srand(17);
/* Initialize array and output values: */
for (x = 0; x < 20; ranvals[x++] = rand(»

printf("Iteration %d, ranvals[%d] =%d\n",x+l,x,
ranvals[x]);

564

srand

First, this program calls srand with a value other than 1 to randomize a
random-value sequence. Then it initializes an array named ranvals with
20 random values.

565

sscanf

• Summary

include <stdio.h>

int sscanf(buffer, /ormat[, argument] ...);
const char *buffer; Stored data
const char */ormat; Format-control string

• Description

The sscanf function reads data from buffer in to the locations given by
each argument. Every argument must be a pointer to a variable with a
type that corresponds to a type specifier in format. The format controls
the interpretation of the input fields and has the same form and function
as the format argument for the scanf function; see the scanf reference
page for a complete description of format.

• Return Value

The sscanf function returns the number of fields that were successfully
converted and assigned. The return yalue does not include fields that were
read but not assigned. I

~

The return value is EOF for an attempt to read at end-of-string. A return
value of 0 means that no fields were assigned.

• SeeAlso

fscanf, scanf, sprintf

566

• Example

#include <stdio.h>

char *tokenstring = "15 12 14 ... ";
int i;
float fp;
char s[81];
char c;

main ()
{
/* Input various data from tokenstring: */
sscanf(tokenstring, "%s", s);
sscanf (tokenstring, n%c", &c);
sscanf (tokenstring, "%d", &i);
sscanf (tokenstring, n%f", &fp);

sscanf

printf("string =%s\n", s);
printf("character =%c\n", c):
printf("integer =%d\n", i);

/* Output the data read */
/* s is 15 */
/* c is 1 */
/* i is 15 */

/* fp is 15.000000 */
printf ("floating point number =%f\n", fp);

}

This program uses sscanf to read data items from a string named
tokenstr ing, then displays them.

567

stackavail

• Summary

include <malloc.h> Required only for function declarations

size- t stackavail(void);

• Description

The stackavail function returns the approximate size in bytes of the
stack space available for dynamic memory allocation with alloca.

• Return Value

The stackavail function returns the size in bytes as an unsigned integer
value.

• See Also

alloca, freect, memavl

• Example

#include <malloc.h>

main ()

{

}

char *ptr;

printf(ftStack memory available before alloca = %u\n ft ,
stackavail(»;

ptr = alloca(1000*sizeof(char»;
printf(ftStack memory available after alloca = %u\n",

stackavail(»;

Sample output:

Stack memory available before alloca = 1682
Stack memory available after alloca = 678

This program uses stackavail to determine the amount of free space
available on the stack. It then allocates memory from the stack and calls
stackavail again to display the new amount of available free space.

568

stat

• Summary

include <sys\ types.h>
include <sys\stat.h>

int stat(path, buffer);
char *path; Path name of existing file
struct stat { Structure to store results:

dey _ t sL dey;
ino_ t sL ino;
unsigned short sL mode;
short sL nlink;
short st_ uid;
short sL gid;
dey _ t sL rdev;
off_ t sL size;
time- t st_ atime;
time- t sL mtime;
time- t sL ctime;
} *buffer;

• Description

The stat function obtains information about the file or directory specified
by path and stores it in the structure pointed to by buffer. The stat struc­
ture, defined in sys\stat.h, contains the following fields:

Field

st_mode

st_dey

st_rdey

st_nlink

Value

Bit mask for file-mode information. S_ IFDffi
bit set if path specifies a directory; S_ IFREG
bit set if path specifies an ordinary file. User
read/write bits set according to the file's permis­
sion mode; user execute bits set according to the
file-name extension.

Drive number of the disk containing the file
(same as st_dey).

Drive number of the disk containing the file
(same as st_ dey).

Always 1.

569

stat

st_size

st_atime

st_mtime

st_ctime

Size of the file in bytes.

Time of last modification of file (same as
st_ mtime and st_ ctime).

Time of last modification of file (same as
st_ atime and st_ ctime).

Time of last modification of file (same as
st_ atime and st_ mtime).

There are three additional fields in the stat structure type that do not
contain meaningful values under ~1S-DOS.

• Return Value

The stat function returns the value 0 if the file-status information is
obtained. A return value of -1 indicates an error, and errno is set to
ENOENT, indicating that the file name or path name can not be found.

• SeeAlso

access, fstat

Note

If path refers to a device, the size and time fields in the stat structure
are not meaningful.

• Example

#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

struct stat buf;
int fh, result;
char *buffer = "A line to output";

570

main 0
{

}

/* Get data associated with "data": */
result = stat("data",&buf);

/* Check if statistics are valid: */
if (result != 0)

perror("Problem getting information
/* Output some of the statistics: */
else

{

") ;

printf("File size
printf ("Drive number
printf ("Time modified

%ld\n",buf.st_size);
%d\n", buf. st_dev);
%s",ctime(&buf.st_atime»;

}

This program uses stat to report the size, drive number, and last
modification time for the file named data.

stat

571

_status87

• Summary

include <float.h>

unsigned int _status87(); Gets floating-point status word

• Description

The _ status87 function gets the floating-point status word. The
floating-point status word is a combination of the 8087/80287 status word
and other conditions detected by the 8087/80287 exception handler, such
as floating-point stack overflow and underflow.

• Return Value

The bits in the value returned indicate the floating-point status. See the
ftoat.h include file for a complete definition of the bits returned by
_status87.

Note

Many of the math library functions modify the 8087/80287 status
word, with unpredictable results. Return values from _ clear87 and
_status87 become more reliable as fewer floating-point operations are
performed between known states of the floating-point status word.

• SeeAlso

_ clear87, _ control87

572

_status87

• Example

#include <stdio.h>
#include <float.h>

double a = 1e-40, b;
float x, y;

main ()
{
printf("Status = %.4x - clear\n",_status87(»;

/* Store into y is inexact & underflows: */
y = a;
printf("Status = %.4x - inexact, underflow\n",_status870);

}

/* y is denormal: */
b = y;
printf("Status = %.4x - inexact underflow, denormal\n",

_status87 0) ;

/* Clear user 8087: */
_clear87 0 ;

This program creates various floating-point errors and then uses
_ status87 to display messages indicating these problems.

573

•

•

strcat - strdup

Summary

include <string.h>

char *strcat(stringl, string2);
char *strz"ngl;
const char *string2;

char *strchr(string, c);
const char *string;
int C;

int strcmp(stringl, string2);
const char *strz"ngl;
const char *strz"ng2;

int strcmpi(stringl, strz"ng2);
const char *stringl;
const char *strz"ng2;

char *strcpy(stringl, str£ng2);
char *stringl;
const char *str'ing2;

sizEL t strcspn(str£ngl, str'ing2);

const char *str'ingl;
const char *strz"ng2;

char *strdup(strz"ng);
const char *str'ing;

int stricmp(str£ngl, s tr£ng2);
const char *stringl;
const char *strz"ng2;

Description

Required only for function declarations

Appends string2 to stringl
Destination string
Source string

Searches for first occurrence of c in string
Source string
Character to be located

Compares strings

Compares strings without regard to case

Copies str£ng2 to str£ngl
Destination string
Source string

Finds first substring in strz"ngl
of characters not in string2
Source string
Character set

Duplicates str'ing
Source string

Compares strings without regard to case

The strcat, strchr, strcmp, strcmpi, strcpy, strcspn, strdup, and
stricmp functions operate on null-terminated strings. The string argu­
ments to these functions are expected to contain a null character ('\ 0')
marking the end of the string. No overflow checking is performed when
strings are copied or appended.

574

strcat - strdup

The strcat function appends string2 to stringl, terminates the resulting
string with a null character, and returns a pointer to the concatenated
string (stringl).

The strchr function returns a pointer to the first occurrence of c in string.
The character c may be the null character ('\ 0'); the terminating null
character of string is included in the search. The function returns NULL if
the character is not found.

The strcmp function compares stringl and string2lexicographically and
returns a value indicating their relationship, as follows:

Value

<0

=0

>0

Meaning

stringl less than string2

stringl identical to string2

strz"ngl greater than strz"ng2

The strcmpi and stricmp functions are case-insensitive versions of
strcmp. All alphabetic characters in the two arguments stringl and
strz"ng2 are converted to lowercase before the comparison, so stringl and
string2 are compared without regard to case.

The strcpy function copies string2, including the terminating null char­
acter, to the location specified by stringl, and returns stringl.

The strcspn function returns the index of the first character in strz"ngl
that belongs to the set of characters specified by string2. This value is
equivalent to the length of the initial substring of stringl that consists
entirely of characters not in string2. Terminating null characters are not
considered in the search. If stringl begins with a character from string2,
strcspn returns O.

The strdup function allocates storage space (with a call to malloc)
for a copy of string and returns a pointer to the storage space contain­
ing the copied string. The function returns NULL if storage cannot be
allocated.

Note

The strcmpi, stricmp, and strdup functions are not part of the
ANSI definition but are instead Microsoft extensions to it. They should
not be used where ANSI portability is desired.

575

strcat - strdup

• Return Value

The return values for these functions are described above.

• See Also

strncat, strncmp, strncpy, strnicmp, strrchr, strspn

• Example

#include <string.h>
#include <stdio.h>

char string[lOO] = "XYZabbc This is a string!";
char template[lOO] = "XYZabbc This is A STRING!";
char *newstring;
char *result;
int numresult;

main ()
{

/* Construct computer program
** using "strcpy" and "strcat"
*/

strcpy(string, "computer");
result = strcat(string, " program");
printf("Result = %s\n", result);

/* Find the first occurrence of 'a': */
result = strchr(string, 'a');
printf("String after an \"a\" is %s\n", result);

/* Compare one string against another */
/* and report whether less than, greater than */
/* or equal to: */
numresult = strcmp(string,template);
printf("\"%s\" is %s \"%s\"\n", string, numresult 7

(numresult > 0 7 "greater than" : "less than"
"equal to", template);

/* Compare string with regard to case */
numresult = strcmpi("hello", "HELLO");
printf("\"%s\" is %s \"%s\"\n", "hello", numresult 7

576

(numresult > 0 7 "greater than" : "less than"
"equal to", "HELLO");

strcat - strdup

}

/* Make a copy of a string */
printf("\"%s\" \"%s\\"\n", template, string);
result = strcpy(template,string);
printf("\"%s\" \"%s\"\n", template, string);

/* Search for a's, b's, or c's */
strcpy(string, "xyzabc");
numresult = strcspn(string,"abc");
printf("The location of the first a, b, or c is %d\n" ,

numresult);

/* Make newstring point to a duplicate of string: */
newstring = strdup(string);
printf("The new string is %s\n", newstring);

This program demonstrates the uses of the strcat, strchr, strcmp,
strcmpi, strcpy, strcspn, and strdup functions.

577

_strdate

• Summary

include <time.h>

char *_ strdate(date);
char *date; Current date

• Description

The _ strdate function copies the date to the buffer that date poin ts to,
formatted

mm/dd/yy

where mm is two digits representing the month, dd is two digits repre­
senting the day of the month, and yy is the last two digits of the year.
For example, the string

12/05/88

represents December 5, 1988.

The buffer must be at least nine bytes long.

• Return Value

There is no error return.

• See Also

asctime, ctime, gmtime, localtime, mktime, time, tzset

578

• Example

#include <time.h>

main ()
{
char buffer [9];

_strdate(buffer);
printf (liThe current date is %s \n", buffer);

}

This program prints the current date.

_strdate

579

strerror, _strerror

• Summary

include <string.h>

char *strerror(errnum);
int errnum;

char *_ strerror(s trin g);
char * 8 trin g;

int errno;
int sys_nerr;
char *sys- err list [sys_ nerr];

• Description

Required only for function declarations

ANSI version
Error number

Non-ANSI version
User-supplied message

Error number
Number of system messages
Array of error messages

The strerror function maps errnum to an error-message string, returning
a pointer to the string. The function itself does not actually print the mes­
sage; for that, you need to call an output function such as printf.

If string is passed as NULL, _ strerror returns a pointer to a string con­
taining the system error message for the last library call that produced an
error. The error-message string is terminated by the new-line character
('\n').

If string is not equal to NULL, then _ strerror returns a pointer to a
string containing, in order, your string message, a colon, a space, the sys­
tem error message for the last library call producing an error, and a new­
line character. Your string message can be a maximum of 94 bytes long.

Unlike perror, _strerror alone does not print any messages. To print
the message returned by _strerror to stderr, your program will need a
printf statement, as shown in the following lines:

if ((access ("datafile", 2» == -1)
printf(_strerror(NULL»;

The actual error number for _strerror is stored in the variable errno,
which should be declared at the external level. The system error messages
are accessed through the variable sys_ errlist, which is an array of mes­
sages ordered by error number. The _strerror function accesses the
appropriate error message by using the errno value as an index to
sys_ errlist. The value of the variable sys_ nerr is defined as the max­
imum number of elements in the sys_errlist array.

580

strerror,~trerror

To produce accurate results, _ strerror should be called immediately after
a library routine returns with an error. Otherwise, the errno value may be
overwritten by subsequent calls.

Note

The _strerror function under Microsoft eVersion 5.0 is identical to
the Version 4.0 strerror function. The name was altered to permit the
inclusion in Microsoft eVersion 5.0 of the ANSI-conforming strerror
function. The _ strerror function is not part of the ANSI definition,
but is instead a Microsoft extension to it, and should not be used
where portability is desired. For ANSI compatibility, use strerror
instead.

• Return Value

The strerror function returns a pointer to the error-message string. The
string can be overwritten by subsequent calls to strerror.

The _strerror function returns no value .

• SeeAlso

clearerr, ferror, perror

Note

Under MS-DOS, some of the errno values listed in errno.h are not
used. See Appendix A, "Error Messages," for a list of errno values
used on MS-DOS, and the corresponding error messages. The _ strer­
ror function prints an empty string for any errno value not used
under MS-DOS.

581

strerror,~trerror

• Example

#include <string.h>
#include <errno.h>
#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>

extern int errno;
int errnum;
int fh1, fh2 ;

main ()
{

errnum=O;
if «fh1=open ("XXXX", O_RDONLY» -1)
errnum=errno;

fh2=open ("yyyy", O_RDONLY) ;
/* Other code that may set the errno value.*/
if (errnum != 0)
printf(strerror(errnum»;

}

The program shown above tries to open files xxxx and yyyy. If an error
occurs opening xxxx, the variable errnum is set to the errno value
returned by open. Other code that may alter the errno value is then exe­
cuted. Later, the saved errno value in errnum is checked and, if nonzero,
an error message assigned to it by strerror is printed. If file xxxx does
not exist, the example will print the following message:

No such file or directory

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

main ()
{

nt fh1, fh2;

/* Since "XXXX" does not exist,
/* both open attempts will fail

fh1 = open ("XXXX", O_RDONLY);
if (fh1 == -1);

}

printf(_strerror("Open failed on input file "»;
fh2 = open ("XXXX", O_WRONLY:O_TRUNC, S_IREAD:S_IWRITE);
if (fh2 == -1)

printf(_strerror("Open failed on output file "»;

582

strerror,~trerror

This program tries to open files for input and output. If an error occurs,
the program uses _strerror to tag an error message onto the front of the
standard error message and then displays the entire error message.

583

strlen

• Summary

include <string.h> Required only for function declarations

siZEL t strlen(string);
char *string; Null-terminated string

• Description

The strlen funct.ion returns the length in bytes of string, not including the
terminating null character ('\ 0').

• Return Value

The strlen function returns the string length. There is no error return.

• Example

#include <string.h>
#include <stdio.h>

char *string = "some space";
size_t result;

main ()
{

}

result = strlen(string);
printf("The size of the string

/* result is 10 */
is %d", result);

This program uses strlen to determine the length of the string named
string.

584

strlwr

• Summary

include <string.h> Required only for function declarations

char *strlwr(string);
char *string; String to be converted

• Description

The strlwr function converts any uppercase letters in the given null­
terminated strz'ng to lowercase. Other characters are not affected.

• Return Value

The strlwr function returns a pointer to the converted string. There is no
error return.

• See Also

strupr

• Example

#include <string.h>
#include <stdio.h>

char string[lOO] = "This Was a Mixed-Case String", *copy;

main ()
{

}

copy = strlwr(strdup(string»;
printf("The result string is: %s",copy);

This program duplicates a string named string, then uses strlwr to
convert all uppercase letters in the copy to lowercase.

585

strncat - strnset

• Summary

include <string.h>

char *strncat(stringl, string2, n);
char *str'ingl;
const char *string2;
size- t n;

int strncmp(str'ingl, string2, n);
const ehar *stringl;
const char *string2;
size- t n;

int strnicmp(stringl, string2, n);

const char *stringl;
const char *string2;
size- t n;

char *strncpy(stringl, string2, n);
char *strz'ngl;
const char *string2;
size- t n;

char *strnset(string, c, n);
char * s trin g;
int c;
size- t n;

• Description

Required only for function declarations

Appends n characters of string2 to stringl
Destination string
Source string
Number of characters appended

Compares first n characters of strings

Number of characters compared

Compares first n characters of strings
without regard to case

Number of characters compared

Copies n characters of string2 to stringl
Destination string
Source string
Number of characters copied

Initializes first n characters of string
String to be initialized
Character setting
Number of characters set

The strncat, strncmp, strnicmp, strncpy, and strnset functions oper­
ate on, at most, the first n characters of null-terminated strings.

The strncat function appends, at most, the first n characters of str£ng2 to
str£ngl, terminates the resulting string with a null character ('\ 0'), and
returns a pointer to the concatenated string (stringl). If n is greater than
the length of str£ng2, the length of str£ng2 is used in place of n.

The strncmp function compares, at most, the first n characters of stringl
and string2lexicographically and returns a value indicating the relation­
ship between the substrings, as listed below:

586

strncat - strnset

Value

<0

=0

>0

Meaning

substringl less than substring2

substringl equivalent to substring2

substringl greater than substring2

The strnicmp function is a case-insensitive version of strncmp:
strnicmp converts all alphabetic characters in the two strings strz"ngl
and strz"ng2 to lowercase before comparing them. This action results in all
uppercase and lowercase forms of a letter being considered equivalent.

The strncpy function copies exactly n characters of string2 to strz"ngl and
returns string1. If n is less than the length of strz"ng2, a null character
('\ 0') is not appended automatically to the copied string. If n is greater
than the length of strz"ng2, the strz"ngl result is padded with null characters
('\ 0') up to length n.

Note

The behavior of strncpy is undefined if the address ranges of strz"ngl
and string2 overlap.

The strnset function sets, at most, the first n characters of string to the
character c and returns a pointer to the altered string. If n is greater than
the length of string, the length of string is used in place of n.

Note

The strnicmp and strnset functions are not part of the ANSI defi­
nition but are instead Microsoft extensions to it, and should not be
used where ANSI portability is desired.

587

strncat - strnset

• See Also

strcat,strcnnp, strcpy, strset

• Exannple

#include <string.h>
#include <stdio.h>

char string[100] = "XYZabbc This is a string!";
char copy[100] = "This is a different string";
char *result;
char suffix[100] = " this is even more string •• ";
int numresult;

main ()
{

/* Combine strings with no more than */
/* 100 characters of suffix: */

printf("String before = %s\n", string);
result = strncat(string,suffix,100);
printf("String after = %s\n", string);

}

/* Determine ordering of two strings */
/* but only consider first 7 chars: */
strcpy(string, "programming");
numresult = strncmp(string,"program",7);
printf("\"%s\" is %s \"%s\"\n", string,
numresult ? (numresult > 0 ?

"greater than" : "less than") : "equal to",
"program");

/* Copy at most 99 chars of "string" */
printf ("%s \"%s\"\n", copy, string);
result = strncpy(copy,string,99);
copy [99] = '\0'; /* Null terminate the result */
pr int f ("%s %s \n", copy, string);

/* Set not more than 4 characters of a */
/* string to be XIS: */
result = strnset("computer", 'x',4);
printf("%s\n", result); /* Result is now "xxxxuter". */

This program demonstrates the uses of the strncat, strncnnp, strnicnnp,
and strnset functions.

588

strpbrk

• Summary

include <string.h>

char *strpbrk(strt"ngl, string2);
const char *strt"ngl;
const char *string2;

• Description

Required only for function declarations

Finds any character from string2 in stringl
Source string
Character set

The strpbrk function finds the first occurrence in stringl of any character
from string2. The terminating null character ('\ 0') is not included in the
search.

• Return Value

The strpbrk function returns a pointer to the first occurrence of any
character from string2 in string1. A null pointer indicates that stringl
and string2 have no characters in common.

• See Also

strchr, strrchr

• Example

#include <string.h>
#include <stdio.h>

char string [100] "Find an 'a' or 'be in this string",*result;

main ()
{ /*

/*
result = strpbrk(string,
printf("The remainder of

starting at the first\n");

Return pointer to first */
'a' or 'be in "string" */
"ab");
the string

printf("'a' or 'be is: %s",result);
}

This program uses strpbrk to find the first occurrence of a or b in the
string named string.

589

strrchr

• Summary

include <string.h>

char *strrchr(string, c);
const char *string;
int c;

• Description

Required only for function declarations

Finds last occurrence of c in string
Searched string
Character to be located

The strrchr function finds the last occurrence of the character c in string.
The string's terminating null character ('\ 0') is included in the search.
(Use strchr to find the first occurrence of c in string.)

• Return Value

The strrchr function returns a pointer to the last occurrence of c in
string. A null pointer is returned if the given character is not found.

• See Also

strchr, strpbrk

• Example

#include <string.h>
#include <stdio.h>

char string[lOO] = "Find the last 'a' in this string", *result;

main ()
{

}

/* Return a pointer to the last: 'a' */
result = strrchr(string, 'a');
printf("The remainder of the string starting at the

first\n");
printf("'a' is: %s",result);

This program uses strrchr to find the last occurrence of a in the string
named string.

590

strrev

• Summary

include <string.h>

char *strrev(string);
char *string;

• Description

Required only for function declarations

String to be reversed

The strrev function reverses the order of the characters in string. The ter­
minating null character ('\ 0') remains in place.

• Return Value

The strrev function returns a pointer to the altered string. There is no
error return.

• See Also

strcpy, strset

• Example

#include <string.h>
#include <stdio.h>

char string[lOO];
int result;

main ()
{

}

printf("Input a string and I will tell \
you if it is a palindrome: ");
gets(string);
/* Reverse string and compare: */
result = strcmp(string,strrev(strdup(string»));

if (result == 0)
printf ("The string \"%s\" is a palindrome\n\n",

string);
else

printf ("The string \"%s\" is not a palindrome\n\n",
string);

591

strrev

This program checks an input string to see whether it is a palindrome:
that is, whether it reads the same forward and backward. The program
checks this by comparing a string named str ing with a copy of string
that has been reversed using strrev.

5~2

strset

• Summary

include <string.h>

char *strset(s trin g, c);
char * s trin g;
int C;

• Description

Required only for function declarations

String to be set
Character setting

The strset function sets all characters of strz"ng to c, except the terminat­
ing null character ('\ 0').

• Return Value

The strset function returns a pointer to the altered string. There is no
error return.

• See Also

strnset

• Example

#include <string.h>
#include <stdio.h>

char string[lOO] = "Fill the string with something" ,
*result;

main ()
{

}

printf("The string before 'strset' is used: \"%s\"\n",
string);

result = strset(string,' ');
printf("The string after 'strset' was used: \"%s\"\n",

result);

This program uses strset to fill the string named string with blanks.

593

strspn

• Summary

include <string.h>

siZEL t strspn(stringl, string2);
const char *stringl;
const char *string2;

• Description

Required only for function declarations

Searched string
Character set

The strspn function returns the index of the first character in stringl that
does not belong to the set of characters specified by string2. This value is
equivalent to the length of the initial substring of strinfJ..1 that consists
en tirely of characters from string2. The null character l'\ 0') terminating
string2 is not considered in the matching process. If stringl begins with a
character not in string2, strspn returns O.

• Return Value

The strspn function returns an integer value specifying the length of the
segment in stringl consisting entirely of characters in string2.

• See Also

strcspn

• Example

#include <string.h>
#include <stdio.h>

char *string = "cabbage";
int result;

main ()
{

}

result = strspn(string, "abc"); /* result = 5 */
printf("The string starting with \"abc\" is %d bytes long.",

result);

This program uses strspn to determine the length of the segment in the
string cabbage consisting of a's, b's, and c's.

594

strstr

• Summary

include <string.h> Required only for function declarations

char *strstr(stringl, string2);
const char *stringl;
const char *string2;

• Description

Searched string
String to search for

The strstr function returns a pointer to the first occurrence of string2 in
stringl.

• Return Value

The strstr function returns either a pointer to the first occurrence of
string2 in stringl, or NULL if it does not find string2 in string1.

• See Also

strcspn

• Example

#include <string.h>
#include <stdio.h>

main 0
{
char *stringl = "needle in a haystack";
char *string2 = "hay";

printf("%s\n", strstr(stringl,string2»;
}

Output:

haystack

This program uses strstr to return a pointer to the first location of hay
in the string stringl, then prints the remainder of the string.

595

_strtime

• Summary

include <time.h>

char *_ strtime(time);
char *time; Time string

• Description

The _ strtime function copies the current time in to the buffer that time
points to, formatted

hh:mm:ss

where hh is two digits representing the hour in 24-hour notation, mm is
two digits representing the minutes past the hour, and ss is two digits
representing seconds. For example, the string

18:23:44

represents 23 minutes and 44 seconds past 6 PM.

The buffer must be at least nine bytes long.

• Return Value

There is no error return.

• See Also

asctime, ctime, gmtime, localtime, mktime, time, tzset

596

• Example

#include <time.h>

main 0
{
char buffer [9];

_strtime(buffer);
printf(tfThe current time is %s \n tf , buffer);

}

This program prints the current time.

_strtime

597

strtod, strtol, strtoul

• Summary

include <stdlib.h>

double strtod(nptr, endptr);
const char *nptr;
char ** endptr;

long strtol(nptr, endptr, base);

const char *nptr;
char **endptr;
int base;

unsigned long int strtoul(nptr, endptr, base);

const char * nptr;
char ** endptr;
int base;

• Description

Converts string to double
String to convert
End of scan

Converts string to long
decimal integer
String to convert
End of scan
Number base to use

Converts string to
unsigned long decimal
String to convert
End of scan
Number base to use

The strtod, strtol, and strtoul functions convert a character string to a
double-precision value, a long-integer value, or an unsigned-long-integer
value, respectively. The input string is a sequence of characters that can
be interpreted as a numerical value of the specified type. These functions
stop reading the string at the first character they cannot recognize as part
of a number. This character may be the null ('\0') at the end of the string.
With strtol or strtoul this terminating character can also be the first
numeric character greater than or equal to base. If endptr is not the null
character, it points to the character that stopped the scan.

The strtod function expects nptr to point to a string with the following
form:

[whitespace] [sign][digits] [.digits] [{d I Die IE} [sign] digits]

The first character that doesn't fit this form stops the scan.

The strtol function expects nptr to point to a string with the following
form:

[whitespace] [sign] [0] [{ x I X}] [digits]

strtod, strtol, strtoul

The strtoul function expects nptr to point to a string having this form:

[wMtespace] [0] [{ x I X}] [d£gz'ts]

If base is between 2 and 36, then it is used as the base of the number. If
base is 0, the initial characters of the string pointed to by nptr are used to
determine the base: if the first character is 0 and the second character is a
digit '0' - '7', then the string is in terpreted as an octal in teger; if the first
character is '0' and the second character is 'x' or 'X', then the string is
interpreted as a hexadecimal integer; if the first character is '1' - '9', then
the string is interpreted as a decimal integer. The letters from 'a' through
'z' (or 'A' through 'Z') are assigned the values 10 - 35; only letters whose
assigned values are less than base are permitted .

• Return Value

The strtod function returns the value of the floating-point number, except
when the representation would cause an overflow, in which case it returns
±HUGE_ VAL. The function returns 0 if no conversion could be per­
formed or an underflow occurred.

The strtol function returns the value represented in the string, except
when the representation would cause an overflow, in which case it returns
LONG_ MAX or LONG_ ~N. The functions returns 0 if no conversion
could be performed.

The strtoul function returns the converted value, if any. If no conver­
sion can be performed, the function returns o. The function returns
ULONG_ MAX on overflow.

In all three functions errno is set to ERANGE if overflow or underflow
occurs .

• See Also

atof, atol

599

strtod, strtol, strtoul

• Example

#include <stdlib.h>
#include <stdio.h>

main ()

}

{
char * string, *stopstring;
double x;
long l;
unsigned long ul;
int bs;

string = "3.1415926This stopped it";
x = strtod(string,&stopstring); /* Convert the string */
printf("string = %s\n",string);
printf(" strtod = %f\n",x);
printf(" Stopped scan at %s\n\n", stopstring);

string = "-10110134932";
printf("string = %s\n",string);
/* Convert string using base 2, 4, & 8: */
for (bs = 2; bs <= 8; bs *= 2)

{

}

/* Convert the string: */
1 = strtol(string,&stopstring,bs);
printf(" strtol = %ld (base %d)\n", I, bs);
printf(" Stopped scan at %s\n\n", stopstring);

string = "10110134932";
printf("string = %s\n",string);
/* Convert string using base 2, 4, & 8: */
for (bs = 2; bs <= 8; bs *= 2)
{ /* Convert the string: */

}

ul = strtoul(string,&stopstring,bs);
printf(" strtol = %ld (base %d)\n", ul, bs);
printf(" Stopped scan at %s\n\n", stopstring);

600

Output:

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at 34932

strtol = 4423 (base 4)
Stopped scan at 4932

strtol = 2134108 (base 8)
Stopped scan at 932

strtod, strtol, strtoul

Strings are converted to numbers using the strtod and strtol func­
tions. This program uses strtod to convert a string to a double-precision
value; strtol to convert a string to an integer value; and strtoul to con­
vert a string to three long-integer values.

601

strtok

• Summary

include <string.h>

char *strtok(strz'ngl, strz'ng2);
char * s tr'';n gl;
const char *strz'ng2;

• Description

Required only for function declarations

Finds token in strz'ngl
String containing token{s)
Set of delimiter characters

The strtok function reads strz"ngl as a series of zero or more tokens and
str£ng2 as the set of characters serving as delimiters of the tokens in
str£ngl. The tokens in str£ngl may be separated by one or more of the del­
imiters from str£ng2. The tokens are broken out of str£ngl by a series of
calls to strtok.

In the first call to strtok for str£ngl, strtok searches for the first token
in str£ngl, skipping leading delimiters. A pointer to the first token is
returned.

To read the next token from str£ngl, call strtok with a NULL value for
the str£ngl argument. The NULL str£ngl argument causes strtok to
search for the next token in the previous token string. The set of delim­
iters may vary from call to call, so str£ng2 can take any value.

Note

Calls to strtok will modify str£ngl, since each time strtok is called it
inserts a NULL character ('\ 0') after the token in strz"ng1.

• Return Value

The first time strtok is called, it returns a pointer to the first token in
str£ng1. In later calls with the same token string, strtok returns a pointer
to the next token in the string. A null pointer is returned when there are
no more tokens. All tokens are null terminated.

602

• See Also

strcspn, strspn

• Example

#include <string.h>
#include <stdio.h>

char *string = "a string,of "tokens It;
char *token;

main ()
{

}

/* Establish string and get the first token: */
token = strtok(string, " ,It);
while (token != NULL)
/* While there are tokens in "string" */

{

}

printf ("The token is: %s\n", taken);

/* Get next token: */
token = strtok(NULL, " ,It);

strtok

In this program, a loop uses strtok to print all the tokens (separated by
commas or blanks) in the string named string.

603

strupr

• Summary

include <string.h>

char *strupr(string);
char *string;

• Description

Required only for function declarations

String to be capitalized

The strupr function converts any lowercase letters in strz'ng to uppercase.
Other characters are not affected.

Note

The strupr function is not part of the ANSI definition, but is instead a
Microsoft extension to it, and should not be used where ANSI portabil­
ity is desired.

• Return Value

The strupr function returns a pointer to the converted string. There is no
error return.

• See Also

strlwr

604

• Example

#include <string.h>
#include <stdio.h>

strupr

char string[lOO] = "This Was a Mixed-Case String", *copy;

main ()
{

}

copy = strupr(strdup(string»;
printf("The result string is: %S",copy);

This program duplicates a string named string and uses strupr to con­
vert all lowercase letters in the copy to uppercase.

605

swab

• Summary

include <stdlib.h> Required only for function declarations

void swab(source, destination, n);
char *source; Data to be copied and swapped
char *destination; Storage location for swapped data
int n; Number of bytes copied

• Description

The swab function copies n bytes from source, swaps each pair of adjacent
bytes, and stores the result at destination. The integer n should be an even
number to allow for swapping. The swab function is typically used to pre­
pare binary data for transfer to a machine that uses a different byte order.

• Return Value

There is no return value.

• See Also

fgetc, fputc

• Example

#define NBYTES 18

char from [NBYTES], to[NBYTES];

main 0
{
strcpy(from, "badcfehgjilknmporq");
strcpy (to, " ") ;
printf ("%s %s\n", from, to);

swab(from,to,NBYTES); /* to = "abcdefghijklmnopqr" */

printf ("%s %s\n", from, to);
}

This program uses swab to copy the string named from to the string
named to and swap each adjacent pair of bytes.

606

system

• Summary

include <stdlib.h>
include <process.h>

For ANSI compatibility
For UNIX System V compatibility

int system{ str£ng);
const char ... s tr£n g;

• Description

Include file required only for function declarations

Command to be executed

The system function passes string to the command interpreter and exe­
cutes the string as a MS-DOS command. The system function refers to
the COMSPEC and PATH environment variables to locate the MS-DOS
file CO:MMAND.COM, which is used to execute the string command.

If string is NULL, the function merely looks to see whether
CO:MMAND.COM is present.

C ..f. 0 Difference

Under Microsoft C, Version 4.0, system does not allow a null value for
string; it also returns an error.

• Return Value

If string is not NULL, the function returns the value 0 if stn;ng is success­
fully executed. A return value of -1 indicates an error, and errno is set to
one of the following values:

Value

E2BIG

ENOENT

ENOEXEC

Meaning

The argument list for the command exceeds 128
bytes, or the space required for the environment
information exceeds 32K.

CO:MMAND.COM cannot be found.

The CO:MMAND.COM file has an invalid for­
mat and is not executable.

607

system

ENOMEM Not enough memory is available to execute the
command; or the available memory has been cor­
rupted; or an invalid block exists, indicating that
the process making the call was not allocated
properly.

If strz"ng is NULL and if it finds CO:M::MAND.COM, the function re­
turns a nonzero value. If it does not find CO:M::MAND.COM, it returns 0
and sets errno to ENOENT .

• See Also

exec functions, exit, _ exit, spawn functions

• Example

#include <stdlib.h>

int result;

main ()
{

}

/* Place version number in "result. log": */
result = system("ver »result.log");
/* Type "result. log" to the screen: */
result = system("type result.log");

This program uses system to place the MS-DOS version number in a file
named resul t .log and then displays resul t. log on the screen.

608

tan, tanh

• Summary

include <math.h>

double tan(x); Calculates tangent of x

double tanh(x); Calculates hyperbolic tangent of x

double x; Angle in radians

• Description

The tan and tanh functions return the tangent and hyperbolic tangent of
x, respectively.

• Return Value

The tan function returns the tangent of x. If x is large, a partial loss of
significance in the result may occur, so tan sets errno to ERANGE and
generates a PLOSS error. If x is so large that significance is totally lost,
tan prints a TLOSS error message to stderr, sets err no to ERANGE,
and returns O.

There is no error return for tanh.

• See Also

acos, asin, atan, atan2, cos, cosh, sin, sinh

• Example

#include<math.h>
#include<stdio.h>

main ()
{
double pi = 3.1415926535;
double x = tan(pi/4); /* x is 1.0 */
double y = tanh(x); /* y is 0.761594 */
printf (liThe tan (%f) = % f\n II Ipi/4 , x) ;
printf (liThe tanh (%f) = %f\n" I x, y) ;

}

This program displays the tangent of 1f /4 and hyperbolic tangent of 1.0.

609

tell

• Summary

include <io.h>

long tell(handle);
int handle;

• Description

Required only for function declarations

Handle referring to open file

The tell function gets the current position of the file pointer (if any) asso­
ciated with handle. The position is expressed as the number of bytes from
the beginning of the file.

• Return Value

A return value of -IL indicates an error, and errno is set to EBADF to
indicate an invalid file-handle argument. On devices incapable of seeking,
the return value is undefined.

• See Also

ftell, lseek

• Example

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

int fh;
long position;
main 0
{

fh = open("data",O_RDONLY);
position = tell(fh); /* Position = ° */
printf ("position = %ld\n", position);
lseek(fh, -3L, SEEK_END);
position = tell (fh); /* Position = file length -3 */
printf("position = %ld\n", position);
lseek(fh, position, SEEK_SET); /* Put pointer back to */

} /* previous position */

This program uses tell to find the beginning and a position three bytes
from the end of the file named data.

610

• Summary

include <stdio.h>

char ... tmpnam(str£ng};

char "'str£ng;

char ... tempnam(d£r, pref£x};
char ... d£r;
char oil pref£x;

• Description

tempnam, tmpnam

Creates temporary file in directory
defined by P _ tmpdir
Pointer to temporary name

Creates temporary file in another directory
Target directory if TMP not defined
File-name prefix

The tmpnam function generates a temporary file name that can be used
as a temporary file. This name is stored in str£ng. If str£ng is NULL, then
tmpnam leaves the result in an internal static buffer. Thus, any subse­
quent calls will destroy this value. If str£ng is not NULL, it is assumed
to point to an array of at least L_ tmpnam bytes, where the value of
L_ tmpnam is defined in the stdio.h include file. The function will gen­
erate unique file names for up to T:MP _MAX calls.

The character string that tmpnam creates consists of the path prefix
defined by the P _ tmpdir entry in stdio.h, followed by a sequence con­
sisting of the digit characters '0' through '9'; the numerical value of
this string can range from 1 to 65,535. Changing the definitions of
L_ tmpnam or P _ tmpdir in stdio.h does not change the operation
oftmpnam.

The tempnam function allows the user to create a temporary file in an­
other directory. The prefix is the prefix to the file name. The tempnam
function uses malloc to allocate space for the file name; the user is respon­
sible for freeing this space when it is no longer needed. The tempnam
function looks for the file with the given name in the following directories,
listed in order of precedence:

Directory Used

Directory specified by T:MP

dir argument to tempnam

Conditions

T:MP environment variable is set,
and directory specified by T:MP
exists.

T:MP environment variable is not
set, or directory specified by T:MP
does not exist.

611

tempnam, tmpnam

P _ tmpdir in stdio.h

Current working directory

The dir argumen t is NULL, or dir
is name of nonexisten t directory.

P _ tmpdir does not exist.

If all this fails, tempnam returns the value NULL.

• Return Value

The tmpnam and tempnam functions both return a pointer to the name
generated, unless it is impossible to create this name j or the name is not
unique. If the name cannot be created or if it already exists, tmpnam and
tempnam return the value NULL.

• See Also

tmpfile

• Example

#include <stdio.h>

main 0
{

}

char *namel, *name2;

/* Create a temporary file name for */
/* the current working directory: */
if ((namel = tmpnam(NULL» != NULL)

printf("%s is safe to use as a temporary file.\n", namel);
else

printf("Cannot create a unique file name\n");

/* Create a temporary file name for */
/* directory "c:\tmp" with the prefix "stq": */
if ((name2 = tempnam ("c :\tmp", "stq"» != NULL)

printf("%s is safe to use as a temporary file.\n", name2);
else

printf("Cannot create a unique file name\n");

This program uses tempnam to create a file name that is unique to the
current working directory, then uses tempnam to create a file name that
is unique in c: \ tmp with a prefix of stq. This behavior assumes that the
TMP environment variable is not set.

612

time

• Summary

include <time.h>

time- t time(t£meptr);
time- t ... timeptr;

• Description

Required only for function declarations

Storage location for time

The time function returns the number of seconds elapsed since 00:00:00
Greenwich mean time (GMT), January 1, 1970, according to the system
clock. The system time is first adjusted according to the _ timezone sys­
tem variable, which is explained in the _ tzset reference page.

The return value is stored in the location given by timeptr. This parameter
may be NULL, in which case the return value is not stored.

• Return Value

The time function returns the time in elapsed seconds. There is no error
return.

• See Also

asctime, ftime, gmtime, localtime, tzset, utime

• Example

#include <time.h>
#include <stdio.h>

time_t Itime;

main ()
{

time(&'ltime);
printf("The time is %s\n",ctime(<ime»;

}

This program uses time to obtain the current time in time_ t format,
then displays this time.

613

tmpfile

• Summary

include <stdio.h>

FILE *tmpfile(void); Pointer to FILE structure

• Description

The tmpfile function creates a temporary file and returns a pointer to
that file. If the file cannot be opened, tmpfile returns a null pointer.

This temporary file is automatically deleted when the file is closed, when
the program terminates normally, or when rmtmp is called, assuming
that the current working directory does not change. The temporary file is
opened in w+b (binary read/write) mode.

c 4.0 Dzfference

The C 4.0 version of tmpfile opens the temporary file in the w+
mode, and the translation mode is set by the default mode variable
_fmode.

• Return value

If successful, the tmpfile function returns a stream pointer. Otherwise, it
returns a null pointer.

• See Also

rmtmp, tempnam, tmpnam

614

tmpfile

• Example

#include <stdio.h>

FILE *stream;
char tempstring[] = "String to be temporarily written";

main ()
{
if ((stream = tmpfile(» == NULL) /* Create temporary file */
perror("Could not open new temporary file");

}

else {

}

fprintf (stream, "%s", tempstring);
printf("Temporary file was created, "

"and \"tempstring\" was output");

rmtmp 0; /* Remove temporary file */

This program uses tmpfile to create a temporary file, then deletes this file.

615

•

•

toascii - _toupper

Summary

include <ctype.h>

int toascii(c); Converts c to ASCII character

int tolower(c); Converts c to lowercase if appropriate

int _ tolower(c); Converts c to lowercase

int toupper(c), Converts c to uppercase if appropriate

int _ toupper(c); Converts c to uppercase

int c; Character to be converted

Description

The toascii, tolower, _ tolower, toupper, and _ toupper macros con­
vert a single character as specified.

The toascii macro sets all but the low-order 7 bits of c to 0, so that the
converted value represents a character in the ASCII character set. If c
already represents an ASCII character, c is unchanged.

The tolower macro converts c to lowercase if c represents an uppercase
letter. Otherwise, c is unchanged. The _ tolower macro is a version of
tolower to be used only when c is known to be uppercase. The result of
_ tolower is undefined if c is not an uppercase letter.

The toupper macro converts c to uppercase if c represents a lowercase
letter. Otherwise, c is unchanged. The _ toupper macro is a version of
toupper to be used only when c is known to be lowercase. The result of
_ toupper is undefined if c is not a lowercase letter.

Note

616

The toascii, _ tolower, and _ toupper routines are not part of the
ANSI definition, but are instead Microsoft extensions to it, and should
not be used where ANSI portability is desired.

toascii - _toupper

• Return Value

The toascii, tolower, _ tolower, toupper, and _ toupper macros return
the possibly converted character c. There is no error return.

• See Also

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

Note

These routines are implemented as macros. However, tolower and
toupper are also implemented as functions because the macro versions
do not correctly handle arguments with side effects. The function ver­
sions can be used by removing the macro definitions through # undef
directives or by not including ctype.h. Function declarations of
tolower and toupper are given in stdlib.h.

• Example

#include <stdio.h>
#include <ctype.h>

int ch;

main 0
{

for (ch = 0; ch <= Ox7f; ch++) {
printf(It toupper =%#04x lt

, toupper(ch»;
printf(" tolower =%#04x", tolower(ch»;
if (islower(ch))
printf(" _toupper =%#04x", _toupper(ch»;

if (isupper(ch»
printf(" _tolower =%#04x", _tolower(ch»;

putchar ('\n') ;
}

}

This program uses toupper and to lower to analyze all characters
between OxO and Ox7F. It also applies _ toupper and _ tolower to any
code in this range for which these functions make sense.

617

tzset

• Summary

include <time.h>

void tzset(void);

int daylight;
long time zone ;
char *tzname[2]

• Description

Required only for function declarations

Daylight-saving-time flag
Difference in seconds from GMT
Three-letter time-zone strings

The tzset function uses the current setting of the environment variable
TZ to assign values to three global variables: daylight, timezone, and
tzname. These variables are used by the ftime and localtime functions
to make corrections from Greenwich Mean Time (GMT) to local time, and
by time to compute GMT from system time.

The value of the environment variable TZ must be a three-letter time­
zone name, such as PST, followed by an optionally signed number giving
the difference in hours between GMT and local time. The number may be
followed by a three-letter daylight-saving-time (DST) zone, such as PDT.
For example, "PST8PDT" represents a valid TZ value for the Pacific time
zone. If DST is never in effect, as is the case in certain states and localities,
TZ should be set without a DST zone.

The following values are assigned to the variables daylight, timezone,
and tzname when tzset is called:

Variable

time zone

daylight

tzname[O]

tzname[l]

618

Value

The difference in seconds between GMT and
local time

Nonzero value if a daylight-saving-time zone is
specified in the TZ setting; otherwise, 0

The string value of the three-letter time-zone
name from the TZ setting

The string value of the daylight-saving-time
zone, or an empty string if the daylight-saving­
time zone is omitted from the TZ setting

tzset

If TZ is not currently set, the default is PST8PDT, which corresponds to
the Pacific time zone. The default for daylight is 1; for timezone, 28800;
for tzname[O]' PST; and for tzname[l]' PDT.

If the DST zone is omitted from the TZ settings, the daylight variable
will be 0 and the ftime, gmtime, and localtime functions will return 0
for their DST flags.

Note

The tzset function is not part of the ANSI definition, but is instead a
Microsoft extension to it, and should not be used where ANSI portabil­
ity is desired.

• Return Value

There is no return value.

• See Also

asctime, ftime, gmtime, localtime, time

• Example

#include <time.h>
#include <stdio.h>

int daylight;
long timezone;
char *tzname[];

619

tzset

main ()
{
putenv("TZ=ESTS");
tzset () ;

}

/* daylight = 0 */
printf("daylight = %d\n", daylight);

/* timezone = 18000 */
printf("timezone = %ld\n", timezone);

/* tzname[O] = "EST" */
printf("tzname[O] = %s\n", tzname[OJ);

This program first sets up the time zone by placing the variable named
TZ=EST5 in the environment table. It then uses tzset to set the variables
named dayl ight, timezone, and tzname.

620

ultoa

• Summary

include <stdlib.h> Required only for function declarations

char *ultoa(value, str£ng, radix);
unsigned long value;
char * s tr£n g;
int radix;

• Description

Number to be converted
String result
Base of value

The ultoa function converts the digits of value to a null-terminated char­
acter string and stores the result (up to 33 bytes) in string. No overflow
checking is performed. The radix argument specifies the base of value; it
must be in the range 2-36.

• Return Value

The ultoa function returns a pointer to string. There is no error return.

• See Also

itoa,ltoa

• Example

#include <stdlib.h>

int radix = 16;
char buffer[40];
char *p;

main ()
{

p = ultoa(1344115000L,buffer,radix); /* p
printf ("buffer= \"%s\"\n", buffer);

"501d9138" */

}

This program converts the long integer 1,344,115,000 to a string and
displays that string.

621

umask

• Summary

include <sys\ types.h>
include <sys\ stat.h >
include <io.h> Required only for function declarations

int umask(pmode);
int pmode;

• Description

Default permission setting

The umask function sets the file-permission mask of the current process
to the mode specified by pmode. The file-permission mask is used to mod­
ify the permission setting of new files created by creat, open, or sopen. If
a bit in the mask is 1, the corresponding bit in the file's requested permis­
sion value is set to 0 (disallowed). If a bit in the mask is 0, the correspond­
ing bit is left unchanged. The permission setting for a new file is not set
until the file is closed for the first time.

The argument pmode is a constant expression containing one or both
of the manifest constants S_IWRITE and S_ffiEAD, defined in
sys\stat.h. When both constants are given, they are joined with the
bitwise-OR operator (:). The meaning of the pmode argument is as fol­
lows:

Value Meaning

Writing not allowed (file is read only)

Reading not allowed (file is write only)

For example, if the write bit is set in the mask, any new files will be read
only.

Note

622

Under :MS-DOS, all files are readable-it is not possible to give write­
only permission. Therefore, setting the read bit with umask has no
effect on the file's permissions.

umask

• Return Value

The umask function returns the previous value of pmode. There is no
error return.

• See Also

chmod, creat, mkdir, open

• Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

int oldmask;

main ()
{

}

/* Create read-only files: */
oldmask = umask(S_IWRITE);
printf("oldmask =%#x\n", oldmask);

This program uses umask to set the file-permission mask so that all
future files will be created as read-only files. It also displays the old mask.

623

ungetc

• Summary

include <stdio.h>

int ungetc(c, stream);
int C;
FILE *stream;

• Description

Character to be pushed
Pointer to FILE structure

The ungetc function pushes the character c back onto the input stream
and clears the end-of-file indicator. The stream must be open for reading.
A subsequent read operation on the stream starts with c. An attempt to
push EOF onto the stream using ungetc is ignored. The ungetc function
returns an error value if nothing has yet been read from stream or if c can­
not be pushed back.

Characters placed on the stream by ungetc may be erased if mush, fseek,
fsetpos, or rewind is called before the character is read from the stream.
The file-position indicator will have the same value it had before the char­
acters were pushed back. On a successful ungetc call against a text
stream, the file-position indicator is unspecified until all the pushed-back
characters are read or discarded. On each successful ungetc call against a
binary stream, the file-position indicator is stepped down; if its value was
o before a call, the value is undefined after the call.

• Return Value

The ungetc function returns the character argument c. The return value
EOF indicates a failure to push back the specified character.

• See Also

getc,getchar, putc,putchar

624

• Example

#include <stdio.h>
#include <ctype.h>

FILE *stream;
int ch;
int result = 0;

main ()
{

stream = stdin;
printf ("Input an integer: ");

/* Read in and convert number: */
while «ch = getc(stream)) != EOF && isdigit(ch))

result = result * 10 + ch - '0';

if (ch != EOF)
ungetc(ch,stream); /* Put non-digit back */

ungetc

printf("Number = %d\nNext character in stream = \"%c\"\n",
result, getc(stream));

}

This program first converts a character represen tation of an unsigned
integer to an integer. If the program encounters a character that is not a
digit, the program uses ungetc to replace it in the stream.

625

ungetch

• Summary

include <conio.h>

int ungetch{ c);
int C;

• Description

Required only for function declarations

Character to be pushed

The ungetch function pushes the character c back to the console, causing
c to be the next character read. The ungetch function faiis if it is called
more than once before the next read. The c argument may not be EOF.

• Return Value

The ungetch function returns the character c if it is successful. A return
value of EOF indicates an error.

• See Also

cscan~getch, getche

• Example

#include <conio.h>
#include <ctype.h>
#include <stdio.h>

char buffer[lOO];
int count = 0;
int ch;

626

ungetch

main ()
{

}

ch = getche();
while (isspace(ch)) /* skip preceding white space */

ch = getche();
while (count < 99) /* Gather token */

{
if (isspace(ch)) /* End of token */

}

break;

buffer [count++] = ch;
ch = getche();

ungetch(ch);
buffer[count] = '\0';

/* Put back delimiter */
/* Null terminate the token */

printf ("\ntoken = %s\n" I buffer);

In this program, tokens are read from the keyboard delimited by blanks
and new-line characters. When the program encounters a delimiter, it uses
ungetch to replace the delimiter in the keyboard buffer.

627

unlink

• Summary

include <io.h>
include <stdio.h>

int unlink(path);
const char III path;

• Description

Required only for function declarations
Use either io.h or stdio.h

Path name of file to be removed

The unlink function deletes the file specified by path.

• Return Value

If successful, unlink returns 0; otherwise, it returns -1 and sets errno to
one of the following constants:

Value

EACCES

ENOENT

• See Also

close, remove

• Example

#include <io.h>
#include <stdlih.h>
#include <stdio.h>

main 0
{

Meaning

Path name specifies a directory or a read-only file

File or path name not found

int result = unlink("tmpfile");
if (result == -1)

}

perror("Couldn't delete tmpfile");
else

printf ("Link succesfully removed 'tmpfile'. II);

This program uses unlink to delete a file named tmp fi Ie.

628

utime

• Summary

include <sys\ types.h>
include <sys\ utime.h>

int utime(path, times);
char ... path;
struct utimbuf ... times;

• Description

File path name
Pointer to stored time values

The utime function sets the modification time for the file specified by
path. The process must have write access to the file; otherwise, the time
cannot be changed.

Although the utimbuf structure contains a field for access time, under
MS-DOS only the modification time is set. If times is a null pointer, the
modification time is set to the current time. Otherwise, times must point
to a structure of type utimbuf, defined in sys \ utime.h. The modification
time is set from the modtime field in this structure.

• Return Value

The utime function returns the value 0 if the file-modification time was
changed. A return value of -1 indicates an error, and errno is set to one of
the following values:

Value

EACCES

EINVAL

EMFILE

ENOENT

• See Also

Meaning

Path name specifies directory or read-only file

Invalid argument; the tz"mes argument is invalid

Too many open files (the file must be opened to
change its modification time)

File or path name not found

asctime, ctime, fstat, ftime, gmtime, localtime, stat, time

629

utime

• Example

#include <stdio.h>
#include <stdlib.h>
#include <sys\types.h>
#include <sys\utime.h>

main 0
{

}

int savestderr;

if (utime(It/tmp/datalt,NULL) == -1)
perror(ltutime failed lt);

else
printf(ltFile time modified. It);

This program uses utime to set the file-modification time to the current
time.

630

• Summary

include <stdarg.h>
include <varargs.h>
include <stdio.h>

void v&.- start(arg-ptr);

void v&.- start(arg-ptr, prev-param);

type v&.- arg(arg-ptr, type);

void v&.- end(arg-ptr);

v&.-list arg-ptr;
type
prev-param

v&.-alist

v&.-dcl

• Description

va- arg - va- start

Required for ANSI compatibility
Required for UNIX V compatibility

Macro to set arg-ptr to beginning of list
of optional arguments (UNIX version
only)

Macro to set arg-ptr to beginning of list
of optional arguments (ANSI version
only)

Macro to retrieve current argument

Macro to reset arg-ptr

Pointer to list of arguments
Type of argument to be retrieved
Parameter preceding first optional
argument (ANSI version only)
Name of parameter to called function
(UNIX version only)
Declaration of V8.- alist (UNIX
version only)

The va- start, va- arg, and va- end macros provide a portable way to
access the arguments to a function when the function takes a variable
number of arguments. Two versions of the macros are available: the mac­
ros defined in stdarg.h conform to the proposed ANSI C standard, and
the macros defined in varargs.h are compatible with the UNIX System V
definition.

Both versions of the macros assume that the function takes a fixed number
of required arguments, followed by a variable number of optional argu­
ments. The required arguments are declared as ordinary parameters to the
function and can be accessed through the parameter names. The optional
arguments are accessed through the stdarg.h or varargs.h macros, which
set a pointer to the first optional argument in the argument list, retrieve
arguments from the list, and reset the pointer when argument processing
is completed.

631

va- arg - va- start

The proposed ANSI C standard macros, defined in stdarg.h, are used as
follows:

1. All required arguments to the function are declared as parameters
in the usual way. The V3- del macro is not used with the stdarg.h
macros.

2. The V3- start macro sets arg-ptr to the first optional argument in
the list of arguments passed to the function. The argument arg-ptr
must have v3-list type. The argument prev-param is the name of
the required parameter immediately preceding the first optional
argument in the argument list. If prev-param is declared with the
register storage class, the macro's behavior is undefined. The
va- start macro must be used before V3- arg is used for the first
time.

3. The V3- arg macro does the following:

• Retrieves a value of type from the location given by arg-ptr

• Increments arg-ptr to point to the next argument in the list,
using the size of type to determine where the next argument
starts

The V3- arg macro can be used any number of times within the
function to retrieve arguments from the list.

4. After all arguments have been retrieved, v3-end resets the pointer
to NULL.

The UNIX System V macros, defined in varargs.h, operate in a slightly
different manner, as follows:

632

1. Any required arguments to the function can be declared as parame­
ters in the usual way.

2. The last (or only) parameter to the function represents the list of
optional arguments. This parameter must be named va- alist (not
to be confused with v3-list, which is defined as the type of
v3-alist).

va-arg - va- start

3. The va- del macro appears after the function definition and before
the opening left brace of the function. This macro is defined as a
complete declaration of the va- alist parameter, including the ter­
minating semicolon; therefore, no semicolon should follow va- del.

4. Within the function, the va- start macro sets arg-ptr to the begin­
ning of the list of optional arguments passed to the function. The
va- start macro must be used before va- arg is used for the first
time. The argument arg-ptr must have va-list type.

5. The va- arg macro does the following:

• Retrieves a value of type from the location given by arg-ptr

• Increments arg-ptr to point to the next argument in the list,
using the size of type to determine where the next argument
starts

The va- arg macro can be used any number of times within the
function to retrieve the arguments from the list.

6. After all arguments have been retrieved, va- end resets the pointer
to NULL.

• Return Value

The va-arg macro returns the current argument; va-start and va-end
do not return values.

• SeeAlso

vfprintf, vprintf, vsprintf

• Examples

#include <stdio.h>
#include <stdarg.h>

main 0
{

}

int n:
n = average(2, 3, 4, -1):
printf ("Average is: %d\n", n) :
n = average(S, 7, 9, 11, -1):
printf ("Average is: %d\n", n) :

/* Call with 4 arguments */
/* -1 terminates the list */
/* Call with 5 arguments */

/* -1 terminates the list */

633

va- arg - va- start

average (first, ...)
int first;
{
int i = 0, count = 0, sum = 0;
va_list arg_marker;
va_start (arg_marker, first);
if (first != -1)

sum = first;
else
return(O);

count++;
for (; (i = va_arg(arg_marker,int» >= 0; sum+=i, count++)
return (sum/count);

}

The example above demonstrates how to pass a variable number of argu­
ments using the ANSI eversion.

#include <stdio.h>
#include <varargs.h>

main ()
{

}

int n;
n = average(2, 3, 4, -1):
printf ("Average is: %d\n", n) ;
n = average(S, 7, 9, 11, -1);
printf ("Average is: %d\n", n) ;

average (va_alist)
va_del
{
int i = 0, count = 0, sum = 0;
va_list arg_marker;
va_start(arg_marker);

/* Call with 4 arguments */
/* -1 terminates the list */
/* Call with S arguments */

/* -1 terminates the list */

for (; (i = va_arg(arg_marker,int» >= 0; sum+=i, count++)
return(count ?(sum/count) : count);

}

The second example, above, shows the first example rewritten for compati­
bility with the UNIX System V version.

634

• Summary

include <stdio.h>
include <varargs.h>

include <stdarg.h>

int vfprintf(stream, format, argptr);

int vprintf(format, argptr);

int vsprintf(buffer, format, argptr);

FILE *stream;
char * buffer;
const char *format;
v&.-list argptr;

• Description

vfprintf - vsprintf

Required for compatibility with
UN1X System V
Required for compatibility with
proposed ANSI C standard

Pointer to FILE structure
Storage location for output
Format control
Pointer to list of arguments

The vfprintf, vprintf, and vsprintf functions format and output data
to stream, the standard output, or buffer, respectively. These functions
are similar to their counterparts fprintf, printf, and sprintf, but each
accepts a pointer to a list of arguments instead of an argument list.

The format has the same form and function as the format argument for the
printf function; see the printf reference page for a description of format.

The argptr parameter has type va-list, which is defined in varargs.h and
stdarg.h. The argptr parameter points to a list of arguments that are con­
verted and output according to the corresponding format specifications in
the format.

• Return Value

The vprintf and vsprintf return value is the number of characters writ­
ten, not counting the terminating null character. If successful, the
vfprintf return value is the number of characters written. If an output
error occurs, it is a negative value.

635

vfprintf - vsprintf

• See Also

fprintf, printf, sprintf, va- arg, va- end, va- start

• Examples

#include <stdio.h>
#include <varargs.h>

main ()
{

}

int line = 1;
char *filename = "EXAMPLE";

/* Call "error" with a format */
/* string and two parameters */
error ("Error: line %d, file filename);

/* Call "error" with just a */
/* format string. */
error("Syntax error\n");

error (va_alist)
va_del

{

}

char *fmt;
va_list arg_ptr;

/* "arg_ptr" points to format string */
va_start(arg_ptr);

/* "arg,..-ptr" points to first argument */
fmt = va_arg(arg_ptr, char *);
vprintf(fmt, arg_ptr);
va_end(arg-ptr);

Output:

Error: line 1, file EXAMPLE
Syntax error

The first example, above, conforms to the UNIX System V standard. It
uses vprintf to set up an error routine that takes a variable number of
arguments and displays the appropriate error messages.

636

vfprintf - vsprintf

#include <stdio.h>
#include <stdarg.h>

main ()
{
int line = 1;
char *filename = "EXAMPLE";
/* Call "error" with a format */
/* string and two parameters */
error ("Error: line %d, file %s\n", line, filename);

/* Call "error" with just */
/* a format string. */
error ("Syntax error\n");

}

error (fmt)
char *fmt;

{

}

va_list arg_ptr;
va_start (arg_ptr, fmt);

vprintf(fmt, arg_ptr);
va_end(arg_ptr);

Output:

Error: line 1, file EXAMPLE
Syntax error

/* "arg_ptr" points to */
/*format string */

The second example, above, shows the first example rewritten to conform
to the ANSI C standard.

637

_wrapon

• Summary

include <graph.h>

short far _ wrapon(optz"on);
short optz"on; Wrap condition

• Description

The _ wrapon function controls whether text wraps to a new line or is
simply clipped when the text output reaches the edge of the defined text
window. The option argument can be one of the following manifest con­
stants:

Constant Meaning

_ GWRAPOFF Truncates lines at window border

_ GWRAPON Wraps lines at window border

• Return Value

The function returns the previous value of switch. There is no error return.

• See Also

_ settextwindow

• Example

#include <stdio.h>
#include <graph.h>

char buffer[255]:

638

_wrapon

main ()
{

}

struet reeoord reoord;
int oldeolor;
/* Set text window to upper half of screen */
_settextwindow(1, 1, 14, 80);
_wrapon(_GWRAPOFF); /* Turn wrapping off */
oldeolor = _gettexteolor(); /* Save original color */
_settexteolor(oldcolor - 1);
_settextposition(1, 1);
_outtext(flUpper Left eorner fl);
reoord = _gettextposition();
reoord.row++;
sprintf(buffer, "Row=%d, Col=%d fl , reoord.row, reoord.eol);
_settextposition(reoord.row, reoord.eol);
_outtext(buffer);
_settextposition(15, 40);
_settexteolor(oldcolor); /* Recover original color */
_outtext(flThis should be on the last line, it is out of the window fl);
while (!kbhit(»; /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE);

This program calls _wrapon to disable line wrapping.

639

write

• Summary

include <io.h> Required only for function declarations

int write(handle, buffer, count);
int handle; Handle referring to open file

Data to be written char * buffer;
unsigned int count; Number of bytes

• Description

The write function writes count bytes from buffer into the file associated
with handle. The write operation begins at the current position of the file
pointer (if any) associated with the given file. If the file is open for append­
ing, the operation begins at the current end of the file. After the write op­
eration, the file pointer (if any) is increased by the number of bytes actu­
ally written.

• Return Value

The write function returns the number of bytes actually written. The
return value may be positive but less than count (for example, when write
runs out of disk space before count bytes are written).

A return value of -1 indicates an error. In this case, err no is set to one of
the following values:

Value

EBADF
ENOSPC

Meaning

Invalid file handle or file not opened for writing

No space left on device

If you are writing more than 32K (the maximum size for type int) to a file,
the return value should be of type unsigned into (See the exampfe that
follows.) However, the maximum number of bytes that can be written to
a file at one time is 65,534, since 65,535 (or OxFFFF) is indistinguishable
from -1, and so would return an error.

If the file is opened in text mode, each line-feed character is replaced with
a carriage-return-line-feed pair in the output. The replacement does not
affect the return value.

640

write

• See Also

fwrite, open, read

Note

When writing writes to files opened in text mode, the write function
treats a CTRL+Z character as the logical end-of-file. When writing to a
device, write treats a CTRL+Z character in the buffer as an output ter­
minator .

• Example

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

char buffer[6000] = "This is a test of 'write' function";

main 0
{

}

int fh;
unsigned int nbytes = 60000, byteswritten;

if ((fh = open("c:/data/conf.dat",O_WRONLY» -- -1)
{
perror("Open failed on output file");
exit(l);

}

if (byteswritten = write(fh, buffer, nbytes» == -1)
perror(ff");

else
printf("Wrote %u bytes to file\n", byteswritten);

This program opens a file for output and uses write to write 60,000 bytes
to the file.

641

ApPENDIXES

A Error Messages .. 645

B Common Li braries .. 651

643

Table A.1 (continued)

ENOENT No such file or
directory

ApPENDIXB
C aMMON LIBRARIES

B.1 Introduction .. 653
B.2 Run-Time Routines ... 653

B.2.1 Routines Common to MS-DOS and XENIX 653
B.2.2 Routines Common

to MS-DOS and UNIX System V 654
B.2.3 Routines Specific to MS-DOS 655
B.2.4 ANSI Library .. 656

B.3 Global Variables .. 657
B.3.1 Variables Common

to MS-DOS and XENIX 657
B.3.2 Variables Common

to MS-DOS and UNIX System V 658
B.3.3 Variables Specific to MS-DOS 658

B.4 Include Files .. 658
BA.1 Include Files Common to MS-DOS and XENIX 658
BA.2 Include Files Common

to MS-DOS and UNIX System V 659
BA.3 Include Files Specific to MS-DOS 659
BAA ANSI Include Files .. 659

B.5 Differences Between Routines
Common to MS-DOS and XENIX 660
B.5.1 abort ... 660
B.5.2 access .. 660
B.5.3 chdir .. 660
B.5.4 chmod .. 661
B.5.5 creat .. 661
B.5.6 exec ... 661
B.5.7 fopen, freopen .. 662
B.5.8 fread .. 663
B.5.9 fseek .. 663
B.5.10 fstat .. 663
B.5.11 ftell ... 664
B.5.12 ftime .. 664

651

B.5.13 fwrite ... 664
B.5.14 getpid .. 665
B.5.15 locking ... 665
B.5.16 log, log10 ... 665
B.5.17 lseek .. 665
B.5.18 open .. 666
B.5.19 read ... 666
B.5.20 signal ... 666
B.5.21 stat .. 667
B.5.22 system ... 667
B.5.23 umask .. 668
B.5.24 unlink .. 668
B.5.25 utime ... 668
B.5.26 write .. 668

652

Common Libraries

B.l Introduction

This appendix lists and describes routines from the Microsoft C Run-Time
Library for MS-DOS that operate compatibly with C library routines on
XENIX systems. The routines provide an identical interface to a set of
operations useful on both XENIX and MS-DOS.

The XENIX and MS-DOS common library routines operate compatibly
with UNIX library routines as well. In addition, the Microsoft C Run-Time
Library for MS-DOS contains several routines that are compatible with
UNIX System V routines but that are not currently implemented on
XENIX.

With the exception of error returns, the math functions in the Microsoft C
Run-Time Library for MS-DOS operate compatibly with the XENIX rou­
tines of the same names. Error returns for most math routines in the MS­
DOS library have been upgraded for compatibility with UNIX System V
math-error handling.

B.2 Run-Time Routines

The sections below list routines from the MS-DOS C library that are com­
patible with XENIX and UNIX System V routines. Routines specific to the
MS-DOS environment are also listed.

B.2.1 Routines Common to MS-DOS and XENIX

The following is a list of the routines common to MS-DOS and XENIX:

abort!
abs
access!
acos2

asctime
asin2

assert
atan2
atan22
atof
atoi
atol
besse13

bsearch
cabs
calloc

ceil
chdirl

chmod2

chsize
clearerr
close
cos2

cosh2

creatl

ctime
difftime
dup
dup2
ecvt
execll

execlel

execlp'l

execvl

execvel
execvpl
execvpel

exit
exp
fabs
fclose
fcvt
fdopen
feof
ferror
mush
fgetc
fgets

fileno
floor
fmod
fopenl
fprintf
fputc
fputs
freadl

free
freopen l

frexp
fscanf
fseekl

fstat l

ftelll

ftimel

fwrite l

gcvt
getchar
getcwd
getenv
getpidl

gets
getw
gmtime
hypot
isalnum
isalpha
isascii
iscntrl
isdigit
isgraph

653

Microsoft C Run-Time Library Reference

islower
isprint
ispunct
isspace
isupper
isxdi~it
ldexp
Hind
localtime
locking l

log4
logl04
longjmp
lsearch
lseek l

malloc
mktemp

modf
onexit
perror
pow2

printf
putc
putchar
putenv
puts
putw
qsort
rand
read!
realloc
rewind
rmtmp
sbrk

scanf
setbuf
setjmp
setvbuf
signal!
sin2

sinh2

sprintf
sqrt2

srand
sscanf
stat!
strcat
strchr
strcmp
strcpy
strcspn

B.2.2 Routines Common

strdup
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtod
strtok
strtol
swab
system!
tan2

tanh2

tempnam
time

to MS-DOS and UNIX System V

tmpfile
tmpnam
toascii
tolower
_tolower
toupper
_ toupper
tzset
umask!
ungetc
unlink2

utime!
vfprintf
______ ! __ . ..L l!*
V pr1l1lJl

vsprintf
write!

The XENIX-compatible routines listed in the previous section are also
compatible with the routines of the same names in UNIX System Ven­
vironments. In addition, the following :MS-DOS routines are compatible
with UNIX System V routines by the same name. These routines are not
implemented on XENIX.

alloca
matherr
memccpy

memchr
memcmp
memcpy

memicmp
memset
putenv

Note that most of the math functions in the :MS-DOS library implement
error handling in the same manner as the UNIX System V rou tines of the
same name. The math routines in the list of common routines for :MS-DOS
and XENIX (see Section B.2.1) that implement System V-style error han­
dling are footnoted.

1 Operates differently or has different meaning under MS-DOS than under XENIX. The
differences are detailed in Section B.S.

2 Implements UNIX System V-style error returns.

3 The bessel routine does not correspond to a single function, but to six functions named jO
jl, jn, yO, yl, and yn. They all implement Unix System V-style error returns. '

4 Implements ANSI-compatible errno return values.

654

Common Libraries

B.2.3 Routines Specific to MS-DOS

The routines listed below are available only in the MS-DOS C library. Pro­
grammers who are writing code to be ported to XENIX systems should
avoid using these routines.

_arc
bdos
_ bios_disk
_ bios_ equiplist
_ bios_ key brd
_ bios_ memsize
_ bios_ printer
_ bios_ serialcom
_ bios_ timeofday
cgets
_ chain_ intr
_clear87
_ clearscreen
_control87
cprintf
cscanf
dieeetoms bin
_disable
_ displaycursor
dmsbintoieee
_ dos_ allocmem
_dos_close
_dos_creat
_ dos_ creatnew
_ dos_ findfirst
_ dos_ find next
_ dos_ freemem
_ dos_ getdate
_ dos_ getdiskfree
- dos_ getdrive
_ dos_ getfileattr
_ dos_ getftime
_ dos_ get time
- dos_ getvect

_dos_keep
_dos_open
_dos_read
_ dos_ set block
_ dos_ setdate
_ dos_ setdrive
_ dos_ setfileattr
_ dos_ setftime
_ dos_ settime
_ dos_ setvect
dos write
_dosexterr
_ellipse
_enable
eof
_exit
fcloseall
_ffree
fgetchar
_fheapchk
_fheapset
_fheapwalk
fieeetomsbin
filelength
_floodfill
flushall
_fmalloc
fmsbintoieee
_fmsize
FP_OFF
FP_SEG
_fpreset
fputchar
_freect

_ getbkcolor
getch
getche
_getcolor
_ getcursorposition
_ getfillmask
_getimage
_ getlinesty Ie·
_ getlogcoord
_ getphyscoord
_getpixel
_ gettextcolor
_ gettext position
_ getvideoconfig
halloc
_harderr
_ hardresume
_hardretn
_heapchk
_heapset
_heapwalk
hfree
_imagesize
inp
inpw
int86
int86x
intdos
intdosx
isatty
itoa
kbhit
labs
_lineto

655

Microsoft C Run-Time Library Reference

_Irotl
_lrotr
ltoa
_makepath
max
_memavl
min
mkdir
movedata
_moveto
_msize
_nfree
_nheapchk
_nheapset
_nheapwalk
_nmalloc
_nmsize
outp
outpw
_outtext
_pie
putch
_putimage
_rectangle
_ remapallpalette
_ remappalette

remove
rename
rmdir
_rotl
_rotr
_searchenv
segread
_ select palette
_ setactivepage
_ set bkcolor
_ setcliprgn
_setcolor
_ setfillmask
_ setlinestyle
_setlogorg
setmode
_setpixel
_ settextcolor
_ settextposition
_ settextwindow
_ setvideomode
_ setviewport
_ setvisualpage
sopen
spawnl
spawnle

B.2.4 ANSI Library

spawnlp
spawnlpe
spawnv
spawnve
spawnvp
spawnvpe
_splitpath
stackavail
_status
strcmpi
_strdate
strlwr
strncmpi
strnicmp
strnset
strrev
strset
strstr
_strtime
strupr
tell
ultoa
ungetch
_wrapon

The Microsoft C Run-Time Library includes routines that conform to the
Draft Proposed ANSI Standard (ANSI). These routines are listed below.
Programs which must strictly adhere to ANSI should use only these rou­
tines.

abort clearerr fgetpos ftell isspace
abs clock fgets fwrite isupper
acos cos floor getc isxdigit
asctime cosh fmod getchar labs
asin ctime fopen getenv Idexp
assert difftime fprintf gets ldiv
atan div fputc gmtime localtime
atan2 exit fputs isalnum log
atexit exp fread isalpha loglO
atof fabs free iscntrl longjmp
atoi fclose freopen isdigit malloc
atol feof frexp isgraph memchr
bsearch ferror fscanf islower memcmp
calloc mush fseek isprint memcpy
ceil fgetc fsetpos ispunct memmove

656

Common Libraries

memset realloc sqrt strncpy tanh
mktime remove srand strpbrk tempnam
IDOdf rename sscanf strrchr tmpfile
perror rewind strcat strspn to lower
pow scanf strchr strstr toupper
printf setbuf strcmp _strtime ungetc
putc setjmp strcpy strtod va-arg
putchar setvbuf strcspn strtok va-end
puts signal strerror strtol va-start
qsort sin strlen strtoul vfprintf
raise sinh strncat system vprintf
rand sprintf strncmp tan vsprintf

B.3 Global Variables

The sections below list global variables used in the MS-DOS C library that
are also used in XENlX and UNlX environments. The variables specific to
the MS-DOS environment are also listed.

B.3.1 Variables Common
to MS-DOS and XENlX

The following is a list of global variables used in the run-time library and
available in both the MS-DOS and XENlX environments:

daylight
environ
errno
sys_errlist
sys~err

timezone
tzname

Note

Not all values of errno available on XENlX are used by the MS-DOS
run-time library.

657

Microsoft C Run-Time Library Reference

B.3.2 Variables Common
to MS-DOS and UNIX System V

The XENIX-compatible global variables listed in the Section B.3.1 are also
available in UNIX System V environments. There are no additional vari­
ables common to MS-DOS and UNIX System V.

B.3.3 Variables Specific to MS-DOS

The following global variables are available only in the MS-DOS C library.
Programmers who are writing code to be ported to XENIX systems should
avoid using these variables.

_doserrno
Jmode
_osmajor
_osminor
_psp

B.4 Include Files

Structure definitions, return value types, and manifest constants used in
the descriptions of some of the common routines may vary from environ­
ment to environment and are therefore fully defined in a set of include files
for each environment. Include files provided with the MS-DOS C library
are compatible with include files of the same name on XENIX and UNIX
systems. Some additional include files are compatible with include files of
the same name in UNIX System V environ men ts.

Sections B.4.1 and B.4.2 list the MS-DOS include files that are compatible
with XENIX and UNIX System V. The include files that apply only to
1v1S-DOS environments are listed in Section B.4.3.

B.4.1 Include Files Common to MS-DOS and XENIX

The following MS-DOS include files are compatible with the XENIX (and
UNIX) include files of the same name:

asserth
ctypeh
errnoh
fcntlh
mathh

658

setjmph
signalh
stdioh
sys \ lockingh
sys\stath

sys\timebh
sys\typesh
timeh

Common Libraries

B.4.2 Include Files Common
to MS-DOS and UNIX System V

The XENIX-compatible include files listed in Section B.4.1 are also com­
patible with the include files of the same names in UNIX System V
environments. In addition, the names of the following MS-DOS include
files correspond to UNIX System V include files; however, the 11S-DOS
include files may not contain all the constants and types defined in the
corresponding UNIX System V include files.

malloc.h
memory.h
search.h
string.h
varargs.h

B.4.3 Include Files Specific to MS-DOS

The following include files are used only in 11S-DOS environments and do
not have counterparts on XENIX and UNIX systems:

conio.h
direct.h
dos.h
graph.h

io.h
process.h
share.h
stdarg.h

stdlib.h
sys \ utime.h

B.4.4 ANSI Include Files

The include files necessary to use the ANSI run-time library are listed
below:

assert.h
ctype.h
fioat.h
limits.h

math.h
setjmp.h
signal.h
stdarg.h

stdio.h
stdlib.h
string.h
time.h

659

Microsoft C Run-Time Library Reference

B.5 Differences Between Routines
Common to MS-DOS and XENIX

Sections B.5.1 - B.5.26 explain how the :tv1S-DOS routines in the common
library for XENIX and :tv1S-DOS differ from their XENIX counterparts.
These descriptions are intended to be used in conjunction with the more
detailed descriptions of :tv1S-DOS functions provided in the reference sec­
tion (Part 2 of this manual) and with the descriptions of the XENIX rou­
tines in the appropriate xENIX manual.

B.5.1 abort

The MS-DOS version of the abort rou tine terminates the process by a call
to raise(SIG_ABRT). Control is returned to the parent (calling) process
with an exit status of 3 and the following message is printed to standard
error:

Abnormal program termination

No core dump occurs on :tv1S-DOS.

B.5.2 access

The access routine checks the access to a given file. Under :tv1S-DOS, the
real and effective user IDs are nonexistent. The permission (access) setting
can be any combination of the following values:

Value

04

02

00

Meaning

Read

Write

Check for existence

The "Execute" access mode (01) is not implemented.

In case of error, only the EACCES and ENOENT values may be
returned for err no on :tv1S-DOS.

B.5.3 chdir

In case of error, only the ENOENT value may be returned for errno on
MS-DOS.

660

Common Libraries

B.5.4 chmod

The chmod routine can set the "owner" access permissions for a given file,
but all other permission settings are ignored. The mode argument can be
anyone of the constant expressions shown in the left-most column below;
the equivalent XENIX value is shown in the right-most column:

Constant EX2ression Meaning XENIXValue

SJREAD Read by owner 0400

SJWRITE Write by owner 0200

SJREAD : SJWRITE Read and write by 0000
owner

The SJREAD and SJWRITE constants are defined in the sys \stat.h
include file. Note that the OR operator (:) is used to combine these con­
stants to form read and write permission.

If write permission is not given, the file is treated as a read-only file. Giv­
ing write-only permission is allowed, but has no effect; under MS-DOS, all
files are readable.

In case of error, only the ENOENT value may be returned for errno on
MS-DOS.

B.5.5 creat

The creat routine creates a new file or prepares an existing file for writing.
If the file is created successfully, the access permissions are set as defined
by the mode argument. Only "owner" permissions are allowed (see chmod
above).

In case of error, only the EACCES, EMFILE, and ENOENT values
may be returned for errno on MS-DOS.

Use of the open routine is preferred over creat when creating or opening
files in both MS-DOS and XENIX environments.

B.5.6 exec

The MS-DOS versions of the execl, execle, execlp, execlpe, execv,
execve, execvpe, and execvp routines overlay the calling process, as in
the XENIX environment. If there is not enough memory for the new pro­
cess, the exec routine fails and returns to the calling process. Otherwise,
the new process begins execution.

661

Microsort C Run-Time Library Reference

Under MS-DOS, the exec routines do not perform the following functions:

• Use the close-on-exec flag to determine open files for the new
process.

• Disable profiling for the new process (profiling is not available
under MS-DOS).

• Pass signal settings to the child process. Under MS-DOS, all signals
(including signals set to be ignored) are reset to the default in the
child process.

The combined size of all arguments (including the program name) in an
exec routine under MS-DOS must not exceed 128 bytes.

In case of error, the E2BIG, EACCES, ENOENT, ENOEXEC, and
ENOMEM values may be returned for errno on MS-DOS. In addition,
the EMFILE value may be used; under MS-DOS, the file must be opened
to determine whether it is executable.

B.5.7 fopen, freopen

The MS-DOS versions of the fopen and freopen routines open stream files
just as they do in the XENIX environment. However, under MS-DOS the
following additional values for the type string are available:

Value

t

b

Meaning

Opens the file in text mode. Opening a file in this mode
causes translation of carriage-return-line-feed (CR-LF)
character combinations into a single line feed (LF) on
input. Similarly, on output, line feeds are translated into
CR-LF combinations.

Opens the file in binary mode. This mode suppresses
translation.

See the MS-DOS reference pages (in Part 2 of this manual) for the fopen
and freopen routines to obtain more information on the default mode
setting.

The MS-DOS and XENIX versions of these routines also differ in their
interpretation of append mode (a or a+). When append mode is specified
in the MS-DOS version of fopen or freopen, the file pointer is reposi­
tioned at the end of the file prior to write operations. Thus all write opera­
tions take place at the end of the file.

662

Common Libraries

In the XENIX versions, all write operations take place at the current posi­
tion of the file pointer. In append mode, the file pointer is initially posi­
tioned at the end of the file, but if the file pointer is later repositioned,
write operations take place at the new position rather than at the end of
the file.

B.5.8 fread

The MS-DOS fread routine uses the low-level read function to carry out
read operations. If the file has been opened in text mode, read replaces
each CR-LF pair read from the file with a single LF character. The number
of bytes returned is the number of bytes remaining after the CR-LF pairs
have been replaced. Thus the return value may not always correspond to
the actual number of bytes read. This is considered normal and has no
implications for detecting the end of the file.

B.5.9 fseek

Both the MS-DOS and XENIX versions of the fseek routine move the file
pointer to the given position. However, for streams opened in text mode,
the MS-DOS version of fseek has limited use because CR-LF translations
can cause fseek to produce unexpected results. Only two fseek operations
are guaranteed to work on streams opened in text mode: seeking with an
offset of 0 relative to any of the origin values, and seeking from the begin­
ning of the file with an offset value returned from a call to ftell.

B.5.10 fstat

MS-DOS does not make as much information available for file handles as it
does for full path names; thus the MS-DOS version of fstat returns less
useful information than does the stat routine. The MS-DOS fstat routine
can detect device files, but it must not be used with directories.

The structure returned by fstat con tains the following members:

Member Meaning

Time of last modification of file (same as
stJlltime and st_ctime).

Time of last modification of file (same as st_atime
and st_mtime).

Either the drive number of the disk containing the
file, or the file handle in the case of a device (same
as stJdev).

663

Microsoft C Run-Time Library Reference

st-.,gid

stjno

stJIlode

stJIltime

stJllink

stJ'dev

Not used.

Not used.

User read and write bits reflect the file's permission
setting. The SJFCHR bit is set for a device;
otherwise, the S-..WREG bit is set.

Time of last modification of file (same as st_atime
and st_ctime).

Always 1.

Either the drive number of the disk containing the
file, or the file handle in the case of a device (same
'as st_dev).

Size, in bytes, of the file.

Not used.

In case of error, only the EBADF value may be returned for errno on
MS-DOS.

B.5.11 fteU

Both the MS-DOS and XENIX versions of the ftell routine get the current
file-pointer position. In MS-DOS, however, for streams opened in text
mode, the value returned by ftell may not reflect the physical byte offset,
since text mode causes CR-LF translation. The ftell routine can be used in
conjunction with the fseek routine to remember and return to file loca­
tions correctly. If you want the actual offset to a file position, open the
stream in binary mode and perform type conversions as necessary.

B.5.12 ftime

Unlike the system time on XENIX systems, the MS-DOS system time does
not include the concept of a default time zone. Instead, ftime uses the
value of an MS-DOS environment variable named TZ to determine the
time zone. The user can set the default time zone by setting the TZ vari­
able. If TZ is not explicitly set, the default time zone corresponds to the
Pacific time zone. See the reference page for tzset in Part 2 of this manual
for details on the TZ variable.

B.5.13 fwrite

The MS-DOS fwrite routine uses the low-level write function to carry out
write operations. If the file is opened in text mode, every line-feed (LF)
character in the output is replaced by a carriage-return-line-feed (CR-LF)
pair before being written. This does not affect the return value.

664

Common Libraries

B.5.I4 getpid

The getpid routine returns a process-unique number. Although the
number may be used to uniquely identify the process, it does not have the
same meaning as the process identification returned by getpid in the
XENIX environment.

B.5.I5 locking

The MS-DOS and XENIX versions of the locking routine differ in several
respects, as listed below:

• On MS-DOS, it is not possible to lock a file only against write
access; locking a region of a file prevents both reading and writing
in that region. Thus, setting LK.-RLCK in the locking call is
equivalent to setting LK~OCK, and setting LK~BRLCK is
equivalent to setting LK-NBLCK.

• On MS-DOS, specifying LILLOCK-or L~LCK will not cause
a program to wait until the specified region of a file is unlocked.
Instead, up to ten attempts are made to lock the file (one attempt
per second). If the lock is still unsuccessful after 10 seconds, the
locking function returns an error value.

On XENIX, if the first attempt at locking fails, the locking process
"sleeps" (suspends execution) and periodically "wakes" to attempt
the lock again. There is no limit on the number of attempts, and
the process can continue indefinitely.

• On MS-DOS, locking of overlapping regions of a file is not allowed.

• On MS-DOS, if more than one region of a file is locked, only one
region can be unlocked at a time, and the region must correspond
to a region that was previously locked. You cannot unlock more
than one region at a time, even if the regions are adjacent.

B.5.I6 log,loglO

Passing a 0 to log or loglO sets the errno variable to EDOM on XENIX,
instead of setting it to ERANGE as it does on MS-DOS.

B.5.I7 lseek

In case of error, only the EBADF and EINV AL values may be returned
for errno on MS-DOS.

665

Microsoft C Run-Time Library Reference

B.5.18 open

Both the MS-DOS and XENIX versions of the open routine open a file
by its handle. However, with MS-DOS, two additional ojlag values
(OJUNARY and O_TEXT) are available and the O~DELAY and
O_SYNCW values are not available.

The O....BINARY flag causes the file to be opened in binary mode, regard­
less of the default mode setting. Similarly, the O_TEXT flag causes the
file to be opened in text mode.

In case of error, only the EACCES, EEXIST, El\1FILE, and ENOENT
values may be used for errno on MS-DOS.

B.5.19 read

Both the MS-DOS and XENIX versions of the read routine read characters
from the file given by a file handle. However, if the file has been opened in
text mode, the MS-DOS version of read replaces each CR-LF pair read from
the file with a single LF character. The number of bytes returned is the
number of bytes remaining after the CR-LF pairs have been replaced. Thus,
the return value may not always correspond to the actual number of bytes
read. This is considered normal and has no implications for detecting an
end-of-file condition.

In case of error, only the EBADF value may be used for errno on
MS-DOS.

B.5.20 signal

The MS-DOS version of the signal routine can only handle the SIGINT,
SIGFPE, SIGABRT, SIGILL, and SIGSEGV signals. In MS-DOS,
SIGINT is defined to be INT 23H (the signal), SIGFPE corresponds to
floating-point exceptions that are not masked, SIGABRT is the default
abort handler, and SIGILL and SIGSEGV are undefined, but provided
for ANSI compatibility.

On MS-DOS, child processes executed through the exec or spawn routines
do not inherit the signal settings of the parent process. All signal settings
(including signals set to be ignored) are reset to the default settings in the
child process.

The MS-DOS version of signal uses only EINV AL for errno.

666

Common Libraries

B.5.21 stat

The stat routine returns a structure defining the current status of the
given file or directory. The structure members returned by stat have the
following names and meanings on MS-DOS:

Value

st~id

stjno

stJIlode

stJlltime

st-Dlink

stJdev

Meaning

Time of last modification of file (same as
stJlltime and st_ctime).

Time of last modification of file (same as st_atime
and stJlltime).

Drive number of the disk containing the file (same
as stJdev).

Not used.

Not used.

User read and write bits reflect the file's permission
setting. The SJFDIR bit is set for a device; other­
wise, the SJFREG bit is set.

Time of last modification of file (same as st_atime
and st_ctime).

Always 1.

Drive number of the disk containing the file (same
as st_dev).

Size, in bytes, of the file.

Not used.

In case of error, only the ENOENT value may be returned for errno on
MS-DOS.

B.5.22 system

The system routine passes the given string to the operating system for
execution. For MS-DOS to execute this string, the full path name of the
directory containing it must be assigned to the environment variable. If
the string is a NULL, the system searches for COMMAND.COM.

The system call returns an error if the string cannot be found using these
variables. Where a null pointer is passed, it sets errno to ENOENT and
returns a if it cannot find COMMAND.COM, and 1 if it can. In case of
error, only the E2BIG, ENOENT, ENOEXEC, and ENOMEM values
may be returned for errno on MS-DOS.

667

Microsoft C Run-Time Library Reference

B.5.23 umask

The umask routine can set a mask for "owner" read and write access per­
missions only. All other permissions are ignored. (See the discussion of the
access routine above for details.)

B.5.24 unlink

The :MS-DOS version of the unlink routine always deletes the given file.
Since MS-DOS does not implement multiple "links" to the same file,
unlinking a file is the same as deleting it.

In case of error, only the EACCES and ENOENT values may be
returned for errno on MS-DOS.

B.5.25 utime

The MS-DOS utime routine sets the file modification time only; MS-DOS
does not maintain a separate access time.

In case of error, the EACCES and ENOENT values may be returned for
errno on MS-DOS. In addition, the EMFILE value may be used; under
MS-DOS, the file must be opened to set the modification time.

B.5.26 write

Both the MS-DOS and XENIX versions of the write routine write a
specified number of characters to the file named by the given file handle.
However, in the MS-DOS version, if the file has been opened in text mode,
every line-feed (LF) character in the output is replaced by a carriage­
return-line-feed (CR-LF) pair before being written. This does not affect the
return value.

In case of error, only the EBADF and ENOSPC values may be returned
for errno on MS-DOS.

668

\ (backslash)
escape character, used as, 23
p'ath-name delimiter, used as, 23

/ tforward slash), path-name delimiter,
used as, 23

abort
described, 72, 107
signal handler, SIGABRT, 477, 543
XENIX version, differences from, 660

abs, 83, 109
Absolute value

abs, 83, 109
cabs, 149
fabs, 248
labs, 83, 383

access
described, 47, 110
XENIX version, differences from, 660

Access mode, 253, 274, 293
acos

described, 67, 112
floating-point support, 27

alloca, 69, 114
Allocation. See Memory allocation
_ amblksiz variable, 33
ANSI

include files, 659
run-time library, 656

Appending
constants, 444, 548
streams, 254, 274, 293

Arc
cosine function, 112
sine function, 119
tangent function, 123

_ arc, 53, 115
argO, :MS-DOS considerations, 26
Argument lists, variable, 631, 635
Argument type

checking, 8, 20
lists, 20

Arguments
macros, with side effects, 17
notational conventions, 10
singularity, 411
variable number, 20
variable-length number, 83, 631, 635

argv[O], :MS-DOS considerations, 26

as~time, 81, 117
asm

INDEX

described, 67, 119
floating-point support, 27

assert, 83, 121
assert.h, 84, 89
Assertions, 121
at an

described, 67, 123
floating-point support, 27

at an 2
described, 67, 123
floating-point support, 27

atexit, 72, 124
atof

described, 46, 126
floating-point support, 27

atoi, 46, 126
atol, 46, 126

Backslash (\)
escape character, used as, 23
path-name delimiter, used as, 23

bdos, 78, 128
Bessel functions

described, 67, 130
floating-point support, 27

Binary
format, conversion to IEEE

dou ble precision, 181
floating point, 265

int
reading, 343
writing, 473

mode
fdopen, 254
fopen, 275
freopen, 293, 294
open, 444
setmode, 528
sopen, 24, 35, 548

search, 147, 387
BINMODE.OBJ, 25, 35
BIOS interface routines

_ bios_ disk, 78, 132
_ bios_ equiplist, 78, 136
_ bios_ keybrd, 78, 138
_ bios_ memsize, 78, 140
_ bios_ printer, 78, 141

669

Index

BIOS interface routines (contz"nued)
_ bios_serialcom, 78, 143
_ bios_ timeofday, 78, 146

bios.h,90
Bit shifting

described, 85
_lrotl,83
_lrotr,83
_rotl,84
_rotr,84

Bold type, use of, 10
Bold uppercase, use of, 10
Break value, 499
bsearch, 76, 147
Buffer manipulation

include file, 44
memccpy, 43, 416
memchr, 43, 418
memcrnp, 43, 419
memcpy, 43, 421
memicmp, 43, 423
memmove, 43,426
memset, 43, 428
movedata, 43, 437

Buffering
described, 56
preopened streams, 61
using, 61

Buffers
assigning, 516
comparing, 419,423
copying, 416,421,437
flushin~ 61, 258, 271
searching, 418
setting characters in, 428

BUFSIZ constant, 59, 98
Byte order, swapping, 606
BYTEREGS type, 92

cabs
described, 67, 149
floating-point support, 27

calloc, 69,150
Oarriage-return-line-feed translation.

See Binary mode; Text mode
Oarry flag

bdos, 128
int86, 365
int86x, 367
intdos, 370
in tdosx, 372

Oase sensitivity
o language, 22
MS-DOS, 22
XENIX,22

670

ceil
described, 67, 152
floating-point support, 27

Oeiling function, 152
;0_ FILE- INFO, 555
cgets, 65, 153
_chain_intr, 78, 81, 155

include files, 45
isalnum, 44, 374
isalpha, 374
isascii, 374
iscntrl, 378
isdigit, 378
isgraph, 44, 378
islower, 44, 378
isprint, 44, 378
ispunct, 44, 378
isspace, 44, 378
isupper, 44, 378
isxdigit, 44, 378
toascii, 44, 616
_ tolower, 44, 616
tolower, 44, 616
_ toupper, 44, 616
toupper, 44, 616

Oharacters
conversion to

ASOII, 616
lowercase, 616
uppercase, 616

device, 376
reading

console, from, 317
fgetc and fgetchar, 260
getc and getchar, 315
port, from, 364
read, 480

ungetting, 624, 626
writing

console, to, 466
fputc and fputchar, 283
port, to, 448
putc and putchar, 464
write function, 640

chdir
described, 46, 156
XENIX version, differences from, 660

Ohild process
exec, 238
floating-point state of parent, effects

on,279
signal settings, 241, 553
spawn, 553
translation mode, 241, 553

chmod
described, 47, 158

chmod (contt"nuedj
XENtx: version, differences from, 661

chsize, 47, 160
_ clear87, 67, 162
clearerr, 21, 57, 164
Clearing end-of-file, streams, 164
Clearing errors, 164
_ clearscreen, 53, 165
clock, 81, 167
clock_ t type, 37
close, 62, 168
Common library

common routines, listed, 653, 654,
658

global variables, 657
include files, 658
run-time routine, differences, 660

Comparison
max macro, 413
min macro, 429

Compatibility
differences, listed, 660
global variables, 657
include files, 658
math routines, 653
mode, 549
run-time routines, 653
UNIX and XENIX, 653, 658

complex type, 37, 95
conio.h, 66, 90
Console, un getting characters from,

626
_ control87, 67, 169
Conventions, notational, 10
Conversion

characters to
ASCII, 616
lowercase, 616
uppercase, 616

floating-point numbers to
integers and fractions, 436
strings, 231, 251, 312

IEEE double to MS binary double,
181

IEEE floating point to MS binary
floating point, 265

integers to strings, 381
long integers to strings, 406, 621
MS binary double to IEEE double,

181
MS binary floating point to IEEE

floating point, 265
strings to

floating-point values, 126
lowercase, 585
uppercase, 604

cos
described, 67, 171
floating-point support, 27

cosh
described, 67, 171
floating-point support, 27

Cosine, 171
cprintf

Index

See also printf
argument-type-checking limitations,

20
described, 65, 172

cputs, 65, 174
creat

described, 62,175
XENIX version, differences from, 661

CR-LF translation. See Binary mode;
Text mode

cscanf
See also scanf
argument-type-checking limitations,

20
described, 65, 177

ctime, 82, 179
ctype routines, 374, 378
_ ctype variable, 91
ctype.h, 45, 90

Data conversion
See also Conversion
atof, 46, 126
atoi, 46, 126
atol, 46, 126
ecvt, 46, 231
fcvt, 46, 251
gcvt, 46, 312
include files, 46
itoa, 46, 381
ltoa, 46, 406
strtod, 46, 5{)8
strtol, 46, 598
strtoul, 46, 598
ultoa, 46, 621

Data items
reading, 287
writing, 310

Data type limits, 94
Date routines. See Time routines
daylight variable, 34, 618
Deallocating memory, 289, 359
Declarations, function. See Function

declarations
Default translation mode

changing, 25
child process, used in, 241, 553

671

Index

Default translation mode (contz"nued)
_fmode,35
_fopen, 275
0_ TEXT, 445
overriding, 25
setmode, 528
sopen, 548
using, 24

Delimiters for path-name components.
See Path names

dieeetomsbin, 67, 181
Differences from MS C 4.0

abort, 107
assert, 121
calloc, 150
cputs, 174
ctime, 179
fputs, 285
gmtime, 346
include files, 97
local time, 392
log and logl0, 398
malloc, 409
memcpy, 421
putch, 466
puts, 472
realloc, 482
setvbuf, 537
system, 607
tmpfile, 614

difftime, 82, 182
direct.h, 46, 91
Directories

changing, 156
creating, 430
current working directory, getting,

321
deleting, 495
renaming, 491

Directory control
chdir, 46, 156
chmod, 158
getcwd, 46, 321
include files, 46
mkdir, 46, 430
remove, 490
rmdir,46
unlink, 628

Directory names, notational
conventions, 10

_ disable, 78, 81, 184
diskfree_ t structure, 37
diskinfo_ t structure, 37
_ displaycursor, 49, 185
div, 83,186

672

Division
div, 83, 186
ldiv, 83, 385

div_ t type, 37
dmsbintoieee, 67, 181
DOMAIN, 411, 650
DOS. See MS-DOS
_ dos_ allocmem, 78, 188
_ dos_ close, 78, 190
_ dos_ creat, 78, 192
_ dos_ creatnew, 79, 192
dosdate_ t structure, 37
_ doserrno variable, 35
DOSERROR type, 37, 92, 227
dosexterr

described, 80, 227
MS-DOS considerations, 26

_ dos_ findfirst, 79, 194
_ dos_ findnext, 79, 194
_ dos_ freemem, 79, 196
_ dos_ getdate, 79, 197
_ dos_ getdiskfree, 79, 198
_ dos_ getdrive, 79, 200
_ dos_ getfileattr, 79, 201
_ dos_ getftime, 79, 203
_ dos_ gettime, 79, 205
_ dos_ getvect, 79, 206
dos.h, 80, 91
_dos_keep, 79, 207
_ dos_ open, 79, 208
_ dos_ read, 79, 210
_ dos_ setblock, 79, 212
_ dos_setdate, 79, 214
_ dos_ setdrive, 79, 216
_dos_setfileattr, 79, 218
_ dos_ setftime, 79, 220
_ dos_ settime, 79, 222
_ dos_ setvect, 80, 224
dostime_ t structure, 37
_ dos_ write, 80, 225
Double brackets, use of, 11
dup

described, 62, 229
MS-DOS considerations, 26

dup2
described, 62, 229
MS-DOS considerations, 26

Dynamic allocation. See Memory
allocation

E2BIG, 558, 648
EACCES, 648
EBADF, 643, 648
ecvt, 46, 231
EDEADLOCK, 648

EDOM, 648
EEXIST, 648
EINVAL, 558, 649
_ ellipse, 53, 233
Ellipsis dots, use of, 11
Th1FILE, 649
_ enable, 80, 81, 235
End-of-file

condition, 22
low-level I/O, 236
stream 1/6

clearing, 164, 493
described, 256

ENOENT, 558,649
ENOEXEC, 558, 649
ENOMEM, 558, 649
ENOSPC, 643, 649
environ variable, 36, 323, 467, 468
Environment table

described, 36, 84
getenv, 323
putenv, 467

Environment variables
getenv, 323
names, notational conventions, 10
putenv, 467

eof, 22, 62, 236
EOF constant, 59, 99
ERANGE, 649
errno variable

described, 21, 35, 98
errno.h, with, 92
error numbers, 84, 451, 580
I/O routines, 65
using, 21
values, 647

errno.h, 92, 647
Errors

handling
logic errors, 121
MS-DOS error codes, 35
MS-DOS system calls, 227
p error , 451
providing for, 21
stream operations, 21
_ strerror, 580
strerror, 580

indicator
described, 62, 164
ferror, with, 21, 257

messages
errno, with, 647
user supplied, 451, 580

returns, 21
Euclidean distance, 361
exception type, 38, 95, 411

EXDEV, 649
exec family

described, 72, 238

Index

exec routines, differences between, 74
MS-DOS considerations, 26
path-name delimiters, 23
XENIX version, differences from, 661

execl
See also exec family
argument-type-checking limitations,

20
described, 72, 238
XENIX version, differences from, 661

execle
See also exec family
argument-type-checking limitations,

20
described, 72, 238
XENIX version, differences from, 661

execlp
See also exec family
argument-type-checking limitations,

20
described, 73, 238
XENIX version, differences from, 661

execlpe
argument-type-checking limitations,

20
described, 73, 238

Executing programs from within
programs, 238, 553

execv
See also exec family
described, 73, 238
XENIX version, differences from, 661

execve
See also exec family
described, 73, 238
XENIX version, differences from, 661

execvp
See also exec family
described, 73, 238
XENIX version, differences from, 661

execvpe, described, 73, 238
_ exit, 73, 243
exit, 73, 243
Exiting processes, 243
exp

described, 67, 245
floating-point support, 27

_ expand, 69, 246
Exponential functions

exp, 245
frexp, 296
ldexp, 384
log, 398

673

Index

Exponential functions (contz'nued)
log10, 398
pow, 455
sqrt,563

fabs
described, 67, 248
floating-point support, 27

Far pointers, 277
fclose, 57, 249
fcloseall, 57, 249
fcntl.h, 93
fcvt, 46, 251
fdopen, 57, 253
feof, 22, 57, 256
ferror, 21, 57, 257
mush, 57, 258
_ ffree, 69, 289
fgetc, 57, 260
fgetchar, 57, 260
fgetpos, 57, 262
fgets, 57, 264
_fheapchk, 69, 352
_ fheapset, 69, 354
_ fheapwalk, 69, 356
fieeetornsbin, 67, 265
FILE

pointer, 56, 59
structure, 59
type, 38, 99

File handles
duplication, 229
functions, 63
predefined, 63
stream, used with, 267

File handling
access, 47, 110
chmod,47
chsize, 47, 160
filelength, 47, 266
fstat, 47, 303
include files, 47
isatty, 47, 376
locking, 47, 394
mktemp, 47, 432
remove, 47
rename, 47, 491
setmode, 47, 528
stat, 47, 569
umask, 47, 622
unlink, 47

File names, notational conventions, 10
File permission mask. See Permission

setting

674

File pointers
defined, 62
positioning

fgetpos, 262
fseek, 299
fsetpos, 301
ftell,306
lseek, 403
read and write operations, 65
rewind, 493
tell, 610

File status information, 303, 569
filelength, 47, 266
File-name conventions, 22
fileno, 57, 64, 267
Files

changing size of, 160
closing, 65, 168
creating, 175, 444, 548
deleting, 490, 628
length, determining, 266
locking, 394
modification time, setting of, 629
opening

creat, 175
input and ouput, preparing for, 63
open, 444
sopen, 548

reading characters from, 480
renaming, 491
status information, 303, 569
temporary, 432
writing characters to, 640

find_ t structure, 38
float.h,93
Floating point

control word, getting and setting,
169

errors, recovery from, 279
exceptions, 93, 477, 543
math package

_ clear87, 162
_ control87, 169
_ fpreset, 279
reinitialization, 279
_status87, 572

not loaded, 28
numbers, conversion to strings, 231,

251, 312
ranges, 93
status word, 162, 572
support, 27

_ floodfill, 53, 268
floor

described, 67, 270
floating-point support, 27

flushall, 57, 271
Flushing buffers, 61, 258, 271
_ fmalloc, 69, 409
fmod

described, 67, 273
floating-point support, 27

_ fmode variable, 25, 35
fmsbintoieee, 67, 265
_ fmsize, 69,440
fopen

default translation mode
changing, 25
overriding, 25

described, 57, 274
XENIX version, differences from, 662

Formatted I/O
cprintf, 172
cscanf, 177
fprintf, 281
fscanf, 297
printf, 456
scanf, 501
sprintf, 561
sscanf, 566
vfprintf, vprintf, and vsprintf, 635

Forward slash (I), path-name
delimiter, used as, 23

FP _ OFF, 80, 277
fpos_ t type, 38
_ fpreset, 67, 279
fprintf

See also printf
argumen t-type-checking limitations,

20
described, 58, 281

FP_SEG, 80, 277
fputc, 58, 283
fputchar, 58, 283
fputs, 58, 285, 472
fread

described, 58, 287
XENIX version, differences from, 57,

663
free, 69, 289
_ freect, 69, 291
Freeing memory blocks, 289, 359
freopen

described, 58, 293
XENIX version, differences from, 662

frexp
described, 67, 296
floating-point support, 27

fscanf
See also scanf
argument-type-checking limitations,

20

fscanf (continued)
described, 58, 297

fseek
described, 58, 299

Index

XENIX version, differences from, 663
fsetpos, 58, 301
fstat

described, 47, 303
XENIX version, differences from, 663

ftell
described, 58, 306
XENIX version, differences from, 664

ftime
described, 82, 308
XENIX version, differences from, 664

Function declarations, 20
Functions, advantages over macros, 16
fwrite

described, 58, 310
XENIX version, differences from, 664

_ GBORDER, 94
gcvt, 46, 312
_ getbkcolor, 52, 314
getc, 58, 315
getch, 65, 317
getchar, 58, 315
getche, 65, 317
_ getcolor, 52, 318
_ getcurrentposition, 53, 319
getcwd, 46, 321
getenv, 83, 323
_ getfillmask, 52, 325
_ getimage, 55, 327
_ getlinestyle, 52, 329
_ getlogcoord, 49,331
_ getphyscoord, 49, 333
getpid

described, 73, 335
XENIX version, differences from, 665

_ getpixel, 53, 336
gets, 58, 337
_ gettextcolor, 54, 338
_ gettextposition, 54, 340
_ getvideoconfig, 49, 342
getw, 58, 343
_ GFILLINTERIOR, 94
Global variables

accessing, 33
_ amblksiz, 33
common library, used in, 657
daylight, 34,618
_ doserrno, 35
environ, 36, 323, 467, 468

675

'i Index 'r----------------
i

Global variables (cont£nued)
errno

described, 35, 92
error codes, 647
perror, 451
strerror, 580

_fmode,35
_osmajor,36
_ osminor, 36
_ osversion, 36
_psp,36
sys_ errlist

declared, 92
described, 35
perror, 451
strerror, 580

sys_ nerr, 35,451, 580
timezone, 34, 618
tzname, 34, 621

gmtime, 82, 345
Goto, nonlocal, 85, 400, 523
graph.h,93
Graphics

_ clearscreen, 165
color selection

_ getbkcolor, 52
_ remapallpalette, 51
_ remappalette, 51
_ selectpalette, 51
_setbkcolor, 52, 514

configuration
_ displaycursor, 49
_ getvideoconfig, 49
_ setactivepage, 49
_ setvideomode, 49, 539
_ setvisualpage, 49, 542

coordinates
_ getlogcoord, 49
_ getphyscoord, 49
_ setcliprgn, 49, 518
_ setlogorg, 49, 527
_ setviewport, 49, 541

_ displaycursor, 185
_ getbkcolor, 314
_ getcolor, 318
_ getcurrentposition, 319
_ getfillmask, 325
_ getimage, 327
_ getlinestyle, 329
_ getlogcoord, 331
_ getphyscoord, 333
_ getpixel, 336
_ gettextcolor, 338
_ gettextposition, 340
_ getvideoconfig, 342

676

Graphics (contt"nued)
image transfer

_ getimage, 55
_ imagesize, 55
_ putimage, 55

_ imagesize, 362
library, 48
logical coordinates, 49
output

_ arc, 53, 115
_ clearscreen, 53
_ ellipse, 53, 233
_ fioodfill, 53, 268
_ getcurrentposition, 53
_ getpixel, 53
_ iineto, 53, 389
_ moveto, 53, 439
_ pie, 53
_ rectangle, 53, 484
_ setpixel, 53

_ outtext, 449
parameters

_ getcolor, 52
_ getfillmask, 52
_ getlinestyle, 52
_ setcolor, 52, 522
_ setfillmask, 52, 520
_ setlinestyle, 52, 525

physical coordinates, 49
_pie, 453
_ putimage, 470
_ remapallpalette, 486
_ remap palette, 486
_ selectpalette, 509
_ setactivepage, 512
_ setpixel, 530
_ settextcolor, 531
_ settextposition, 533
text support

_ gettextcolor, 54
_ gettextposition, 54
_outtext,54
_ settextcolor, 55
_ settextwindow, 55, 535
_ wrapon, 55, 638

Greenwich mean time, 82, 345

halloc, 69, 347
Handle. See File handles
_ harderr, 80, 348
_ hardresume, 80, 348
_ hardretn, 80, 348
Heap consistency check

_ fheapchk, 352
_ heapchk, 352

Heap consistency check (continued)
_ nheapchk, 352

_ heapchk, 69, 352
_ heapset, 69, 354
_ heapwalk, 69, 356
hfree, 69, 359
HUGE, 95
Huge arrays, used in library functions,

28
Huge pointers, used in library

functions, 28
HUGE- VAL, 95
Hyperbolic

cosine, 171
sine, 549
tangent, 609

hypot
described, 68, 361
floating-point support, 27

Hypotenuse, 361

Identifiers, notational conventions, 10
IEEE, converting to Microsoft binary

double precision, 181
floating point, 265

_ imagesize, 55, 362
Include files

assert.h, 89
bios.h,90
buffer manipulation routines, used

with, 44
character classification and

conversion, 45
common library, used in, 658
conio.h,90
console and port I/O, 66
ctype.h,90
data conversion, 46
direct.h, 91
directory control, 46
dos.h,91
errno.h, 92
fcntl.h, 93
file handling, 47
float.h, 93
graph.h,93
io.h,94
limits.h, 94
low-level I/O, 63
malloc.h, 94
math routines, 68
math.h,95
memory allocation, 70
memory.h, 95
miscellaneous routines, 84

Include files (continued)
MS-DOS interface routines, 78
naming conventions, 8
notational conventions, 10
process control, 74
process.h, 96
processor calls, 81
search.h, 96
searching and sorting, 76
setjmp.h, 96
share.h,97
signal.h, 97
stdarg.h, 97
stddef.h, 97
stdio.h,98
stdlib.h, 99
stream I/0, 59
string manipulation, 77
string.h, 100
sys\ locking.h, 100
sys\ stat.h, 100
sys\ timeb.h, 101
sys\ types.h, 101
sys\ utime.h, 101
time routines, 82
time.h, 101
varargs.h, 102

inp, 65,364
Input and output. See I/O
inpw, 65, 66, 364
int86, 80, 365
int86x, 80, 367
intdos, 80, 370
intdosx, 80, 372
Integers

conversion to strings, 381

Index

long, conversion to strings, 406, 621
Interrupt signals, 543
Interrupts. See MS-DOS interrupts
I/O

buffered, 56
console and port

cgets, 65, 153
cprintf, 65, 172
cputs, 65, 174
cscanf, 65, 177
described, 56
getch, 65, 317
getche, 65, 317
include files, 66
inp, 65,364
inpw, 65, 364
kbhit, 65, 383
outp, 66, 448
outpw, 66, 448
putch, 66, 466

677

Index

I/0 (contz"nued)
console and port (contz"nued)

ungetch, 66, 626
low level

close, 62, 168
creat, 62, 175
described, 57
dup, 62, 229
dup2, 62,229
eof, 62,236
errno, use of, 22
error handling, 22, 65
include files, 63
lseek, 62, 403
open, 63,444
read, 63, 480
sopen, 63, 548
tell, 63, 610
write, 63, 640

stream, 56, 57
_ iob array, 99
io.h, 47,63, 94
isalnum, 44, 374
isalpha, 374
isascii, 374
isatty, 47, 376
iscntrl, 378
isdigit, 44, 378
isgraph, 44, 378
islower, 44, 378
isprint, 44, 378
ispunct, 44, 378
isspace, 44, 378
isupper, 44, 378
isxdigit, 44, 378
Italics, use of, 10
itoa, 46,381, 621

jO. See Bessel functions
j1. See Bessel functions
jmp_ buf type, 38
jn. See Bessel functions

kbhit, 65, 382
Key sequences, notational conventions,

12
Keystroke, testing for, 382
Keywords, notational conventions, 10

labs, 83, 383
ldexp

described, 68, 385
floating-point support, 27

678

ldiv, 83, 385
ldiv_ t type, 37
Length

files, 266
strings, 584

lfind, 76, 387
limits.h, 94
Lines

reading, 264, 337
writing, 472

_lineto, 53, 389
Local time corrections, 34, 391, 618
localtime, 82, 391
locking

described, 47, 394
?vIS-DOS considerations, 26
XENIX version, differences from, 665

locking.h. See sys\ locking.h
log. See Logarithmic functions
logl0. See Logarithmic functions
Logarithmic functions

log
described, 68, 398
floating-point support, 27
XENIX version, differences from,

665
log10

described, 68, 398
floating-point support, 27
XENIX version, differences from,

665
Long integers, conversion to strings,

406
Long pointers, 277
longj mp, 83, 400
_lrotl, 83, 402
_lrotr, 83, 402
lsearch, 76, 387
lseek

described, 62, 403
XENIX version, differences from, 665

ltoa, 46, 406

Macros
advantages over functions, 16
arguments with side effects, 17, 45
notational conventions, 10
restrictions on use, 16

_ makepath, 83, 85, 407
malIoc, 69, 409
malIoe.h, 70, 94
Manifest constants, notational

conventions, 10
Mask. See Permission setting
Math errors, 650

matherr, 21, 68, 411
math.h, 46, 68, 95
max, 413
_ memavl, 69, 414
memccpy, 43, 416
memchr, 43, 418
memcmp, 43, 419
memcpy, 43, 421
memicmp, 43, 423
_ memmax, 69, 425
memmove, 43, 426
Memory allocation

alloca, 69
_ amblksiz, 33
available memory, determination of,

291
calloc, 69, 150
_ expand, 69, 246
_ ffree, 69, 289
_fheapchk, 69, 352
_ fheapset, 69, 354
_ fheapwalk, 69, 356
_ fmalloc, 69, 409
_ fmsize, 69, 440
free, 69, 289
_ freect, 69, 291
halloc, 69, 347
_ heapchk, 69, 352
_ heapset, 69,354
_ heapwalk, 69, 356
hfree, 69, 359
include files, 70
malloc, 69, 409
_ memavl, 69, 414
_ memmax, 69, 425
_ msize, 69, 440
_ nfree, 70, 289
_ nheapchk, 70, 352
_ nheapset, 70, 354
_ nheapwalk, 70, 356
_ nmalloc, 70, 409
_ nmsize, 70, 440
realloc, 70, 482
sbrk, 70, 699
stackavail, 70, 568

Memory models, huge arrays and huge
pointers, used with, 28

memory.h, 44, 95
memset, 43, 428
min, 429
Miscellaneous routines

div, 186
ldiv, 385

mkdir, 46, 430
mktemp, 47, 432
mktime, 82, 434

modf
described, 68, 436
floating-point support, 27

Modification time, 639
movedata, 43, 437
_ moveto, 53, 439
MS-DOS

Index

commands, execution of from within
programs, 607

considerations
error codes, 35
functions, using, 26
version number, detection of, 36

interface routines
bdos, 78, 128
_ bios_ disk, 132
_ bios_ equiplist, 136
_ bios_ keybrd, 138
_ bios_ memsize, 140
_ bios_ printer, 141
_ bios_ timeofday, 146
_ chain_ intr, 78, 155
_ disable, 78, 184
_ dos_ allocmem, 78, 188
_ dos_ close, 78, 190
_ dos_ creat, 78, 192
_ dos_ creatnew, 79, 192
dosexterr, 80,227
_ dos_ findfirst, 79
_ dos_ findnext, 79, 194
_dos_freemem, 79,196
_ dos_ getdate, 79, 197
_ dos_ getdiskfree, 79, 198
_ dos_ getdrive, 79, 200
_ dos_ getfileattr, 79, 201
_ dos_ getftime, 79, 203
_ dos_ gettime, 79, 205
_ dos_ getvect, 79, 206
_ dos_ keep, 79, 207
_ dos_ open, 79, 208
_ dos_ read, 79, 210
_ dos_ setblock, 79, 212
_ dos_ setdate, 79, 214
_ dos_ setdrive, 79, 216
_ dos_ setfileattr, 79, 218
_ dos_ setftime, 79, 220
_ dos_ settime, 80, 222
_ dos_ setvect, 80, 224
_ dos_ write, 80, 225
_ enable, 80, 235
FP_OFF,80
FP_SEG,80
_ harderr, 80
_ hardresume, 80
_ hardretn, 80
include files, 78

679

Index

MS-DOS (cont£nued)
interface routines (continued)

int86, 80, 365
int86x, 80, 367
intdos, 80, 370
intdosx, 80, 372
segread, 80, 508

interrupts
invoking, 365, 367
SIGINT, 477, 543

specific routines, 655
system calls

_ bios_ serialcom, 143
error handling, 227
_ harderr, 348
_ hardresume, 348
_ hardretn, 348
invoking, 128, 370, 372

version number, 36
_ msize, 69, 440

NDEBUG, 84, 90, 121
_ NFILE constant, 98
_ nfree, 70, 289
_ nheapchk, 70, 352
_ nheapset, 70, 354
_ nheapwalk, 70, 356
_ nmalloc, 70, 409
_ nmsize, 70, 440
Nonlocal goto, 85, 400, 523
Notational conventions, 10
NULL constant, 98, 99
Null pointer, 59, 99

0_ BINARY, 25, 35
oflag. See Open flag
onexit, 73, 442
open

argurnent-type-checking limitations,
20

default translation mode
changing, 25
overriding, 25

described, 63, 444
XENIX version, differences from, 666

Open flag, 444, 548
Optional arguments, notational

conventions, 11
- osmajor variable, 26, 36
_ osminor variable, 26, 36
- osversion variable, 36
0_ TEXT, 25
outp, 66, 448
Output. See I/O

680

outpw, 66, 448
_ outtext, 54, 449
OVERFLOW, 411, 650
Overlapping moves, 421
Overlay of parent process, 554

Parameters, variable-length number,
83,631,635

Parent process
described, 238, 553
overlay, 554
suspension, 554

Path names
conventions, 22
delimiters, 22, 23
notational conventions, 10

Permission setting
access, 110
changing, 158
described, 175
mask, 622
open, 444
sopen, 548
umask, 622

perror, 21, 83, 451
_ pie, 53, 453
PLOSS, 411, 650
Port I/O. See I/O, console and port
Portability, 22

See also Compatibility
Positioning file pointer

fgetpos, 262
fseek, 299
fsetpos, 301
ftell, 306
lseek, 403
rewind, 493
tell, 610

pow
described, 68, 455
floating-point support, 27

Predefined
handles, 63
stream pointers, 59
types. See Standard types

printf
argument-type-checking limitations,

20
described, 58, 456
family, floating-point support, 27

Printing. See Write operations
Process

defined, 73
ID,335

Process control
abort, 72, 107
atexit, 72, 124
exec family, 73
execl, 72, 238
execle, 73, 238
execlp, 73, 238
execlpe, 72, 238
execv, 73, 238
execve, 73, 238
execvp, 73, 238
execvpe, 73, 238
_ exit, 73, 243
exit, 73,243
getpid, 73, 335
include files, 74
onexit, 73, 442
raise, 73, 477
signal, 73, 543
spawn family, 73
spawnl, 73, 553
spawnle, 73, 553
spawnlp, 73, 553
spawnlpe, 73, 553
spawnv, 73, 553
spawnve, 73, 553
spawnvp, 73, 553
spawnvpe, 73, 553
system, 73, 607

process.h, 74, 96
Processor calls, include files, 81
Program segment prefix, 37
Programming examples, notational

conventions, 10
Pseudorandom integers, 479, 564
_ psp, 36
PSP. See Program segment prefix
ptrdiff_ t, 98
putc, 58, 464
putch, 66, 466
putchar, 58, 464
putenv, 83, 467
_ putimage, 58, 470
puts, 58
putw, 58,473

qsort, 76, 475
Quick sort, 475

raise, 73, 477
rand, 84, 479
Random access

fgetpos, 262
fseek, 299

Index

Random access (cont£nued)
fsetpos, 301
ftell, 306
lseek, 403
rewind, 493
tell, 610

Random number
generator, 479, 564
rand routine, 84
srand routine, 84

rccoord type, 38, 94
read

described, 63,480
end-of-file condition, 22
XENIX version, differences from, 666

Read access. See Permission setting
Read operations

binary int value from stream, 343
characters from

file, 480
stdin, 260, 315
stream, 260, 315

data items from stream, 287
formatted

cscanf, 177
fscanf, 297
scanf, 501
sscanf, 566

from console
cgets, 153
checking for keystroke, 382
cscanf, 177
getch, 317

from port, 364
line from

stdin, 337
stream, 264

realloc, 70,482
Reallocation

_ expand, 246
realloc, 482

_ rectangle, 53, 484
Redirection, 60, 64, 293
Register, segment. See Segment

registers, obtaining values
REGS type, 38, 92
Remainder function, 273
_ remapallpalette, 51,486
_ remappalette, 51, 486
remove, 47, 490
rename, 47, 491
Return value on error. See Errors
Reversing strings, 591
rewind, 58, 493
rmdir, 46, 495
rmtmp, 58, 497

681

Index

_ rotl, 84, 498
_ rotr, 84, 498
Routines

absolute value
abs, 83
labs, 83

argument lists, variable length
va- arg, 83, 631
va-del, 636
va-end, 83, 631
va- start, 83, 631
vfprintf, 635
vprintf, 635
vsprintf, 635

category, by, 43
division

div, 83
ldiv, 83

math

682

acos, 67, 112
asin, 67, 119
atan, 67, 123
atan2, 67, 123
bessel, 67, 130
cabs, 67
ceil, 67, 152
_ clear87, 67
_ control87, 67
cos, 67, 171
cosh, 67, 171
dieeetomsbin,67
dmsbintoieee, 67
errno, use of, 21
error handling, 7, 21, 68
exp, 67, 245
fabs, 67, 248
fieeetomsbin, 67
floor, 67, 270
fmod, 67, 273
fmsbintoieee, 67
_ fpreset, 67
frexp, 67, 296
hypot, 68, 361
include files, 68
ldexp, 68, 384
log, 68, 398
logl0, 68, 398
matherr, 68, 411
modf, 68, 436
pow, 68,455
sin, 68, 547
sinh, 68, 547
sqrt, 68, 563
_ status87, 68
tan, 68, 609
tanh, 68,609

Routines (continued)
miscellaneous

abs, 83
assert, 83, 121
div, 83
getenv, 83, 323
include files, 84
labs, 83
Idiv,83
longjmp, 83,400
_lrotl, 83
_lrotr,83
_ makepath, 83
perror, 83, 451
putenv j 83) 467
rand, 84, 479
_rotl,84
_rotr,84
_ searchenv, 84
setjmp, 84, 523
_ splitpath, 84
srand, 84, 564
_ strerror, 580
strerror, 580
swab, 84, 606

MS-DOS specific, 655
random number

rand, 84
srand,84

shift bits
_lrotl, 83
_lrotr,83
_ rotl, 83
_ rotr, 83

sbrk, 70, 499
scanf

argumen t-type-checking limitations,
20

described, 58, 501
family, 28
type characters, 503

Scanning. See Read operations
_searchenv, 84, 85, 507
search.h, 76, 96
Searching and sorting

bsearch, 76, 147
include files, 76
lfind, 76, 387
lsearch, 76, 387
qsort, 76, 475

seed, 564
Segment registers, obtaining values,

508
segread, 80, 508

_ selectpalette, 51, 509
_ setactivepage, 49, 512
_ setbkcolor, 52, 514
setbuf, 58, 61, 516
_ setcliprgn, 49, 518
_ setcolor, 52, 520
_ setfillmask, 52, 521
setjmp, 84, 523
setjmp.h, 84, 96
_ setlinestyle, 52, 525
_ setlogorg, 49, 527
setmode, 25, 47, 528
_ setpixel, 53, 530
_ set textcolor, 55, 531
_ settextposition, 533
_ settextwindow, 55, 535
setvbuf, 58, 61
_ setvideomode, 49, 539
_ setviewport, 49, 541
_ setvisualpage, 49, 542
share.h,97
Side effects in macro arguments, 17, 45
SIGABRT, 478, 543
SIGFPE, 93, 478, 543
SIGILL, 478, 543
SIGINT, 478, 543
signal

described, 73, 545
XENIX version, differences from, 666

Signal
raise, 477
settings, child process, 241, 553

signal.h, 74, 97
SIGSEGV, 477,543
SIGTERM, 477, 543
sin

described, 68, 547
floating-point support, 27

Sine, 547
SING, 411, 650
sinh

described, 68, 547
floating-point support, 27

size_ t type, 38, 97
Small capitals, use of, 12
sopen

argument-type-checking limitations,
20

described, 63, 550
MS-DOS considerations, 26

Sorting. See Searching and sorting
spawn family

described, 73, 553
MS-DOS considerations, 26
path-name delimiters, 23
spawn routines, differences between,

74

Index

spawnl
See also spawn family
argument-type-checking limitations,

20
described, 73, 553

spawnle
See also spawn family
argumen t-type-checking limitations,

20
described, 73, 553

spawnlp
See also spawn family
argument-type-checking limitations,

20
described, 73, 555

spawnlpe
argumen t-type-checking limitations,

20
described, 73, 553

spawnv, 73, 553
See also spawn family

spawnve, 73, 553
See also spawn family

spawnvp, 73, 553
See also spawn family

spawnvpe, 73, 553
_ splitpath, 84, 85, 559
sprintf

See also printf family, floating-point
support

argument-type-checking limitations,
20

described, 58, 563
sqrt

described, 68, 563
floating-point support, 27

Square-root function, 563
srand, 84, 564
SREGS type, 38, 92
sscanf

See also scanf
argumen t- type-checking limitations,

20
described, 566

Stack checking, 19
Stack environment

restoring, 400
saving, 523

stackavail, 70, 568
Standard auxiliary. See stdaux
Standard error. See stderr
Standard input. See stdin
Standard output. See stdout
Standard print. See stdprn
Standard types

clock_ t, 37

683

Index

Standard types (cont£nued)
complex, 37, 95
diskfree_ t, 37
diskinfo_ t, 37
div_ t, 37
dosdate_ t, 37
DOSERROR, 37, 92, 227
dostirne_ t, 37
exceptions, 38, 95, 411
FILE, 38,99
find_t,38
fpos_ t, 38
jmp_ buf, 38
ldiv_ t, 37
listed, 37
rccoord, 38
REGS, 38, 92
size_ t, 38
SREGS, 38, 92
stat. See stat type
timeb, 39, 308
time_ t, 39, 182
tm, 39, 102, 345
utimbuf, 39, 101, 629
va-list, 39
videoconfig, 39
xycoord, 39

stat
described, 47, 569
XENIX version, differences from, 667

stat type
declaration, 100
described, 39
fstat, 303
stat, 569

stat.h. See sys\ stat.h
_ status87, 68, 572
stdarg.h, 97
stdaux

buffering, 61
default translation mode, overriding,

25
described, 60
file handle, 64
translation mode, changing, 528

stddef.h, 97
stderr

buffering, 61
default translation mode, overriding,

25
described, 60
file handle, 64
translation mode, changing, 528

stdin
buffering, 61
default translation mode, overriding,

25

684

stdin (contt"nued)
described, 60
file handle, 64
translation mode, changing, 528

stdio.h, 59, 98
stdlib.h, 45, 84, 99
stdout

buffering, 61
default translation mode, overriding,

25
described, 60
file handle, 64
translation mode, changing, 528

stdprn
buffering, 61
default translation mode, overriding,

25
described, 60
file handle, 64
translation mode, changing, 528

strcat, 76, 574
strchr, 76, 574
strcmp, 76, 574
strcmpi, 76, 574
strcpy, 76, 574
strcspn, 76, 574
_ strdate, 82, 578
strdup, 76, 574
Stream I/O

See a/so I/O, console and port
buffering, 61
clearerr, 57, 164
described, 56, 57
error handling, 21, 62
fclose, 57, 249
fcloseall, 57, 249
fdopen, 57,253
feof, 57, 256
ferror, 57, 257
fRush, 57, 258
fgetc, 57, 260
fgetchar, 57, 260
fgetpos, 57, 262
fgets, 57, 264
fileno, 57, 267
ftushall, 57, 271
fop en , 57, 274
fprintf, 58, 281
fputc, 58, 283
fputchar, 58, 283
fputs, 58, 285, 472
fread, 58, 287
freopen, 58, 293
fscanf, 58, 297
fseek, 58, 299
fsetpos, 58, 301

Stream I/O (continued)
ftell, 58, 306
fwrite, 58, 310
getc, 58, 315
getchar, 58, 315
gets, 58, 337
getw, 58, 343
include files, 59
printf, 58, 456
putc, 58, 464
putchar, 58, 464
puts, 58
putw, 58, 473
rewind, 58, 493
rmtmp, 58
scanf, 58, 501
setbuf, 58, 516
setvbuf,58
sprintf, 58, 561
sscanf, 58, 566
tempnam,58
tmpfile,58
tmpnam,58
ungetc, 58, 624
vfprintf, 58, 635
vprintf, 58, 635
vsprintf, 58, 635

Stream pointer, 56
Streams

appending, 254, 274,293
buffering, 516
clearing errors, 164
closing, 61, 249
file handles for, 267
file pointer position

fgetpos, 262
fseek, 299
fsetpos, 301
ftell, 306
rewind, 493

formatted I/O
printf, 456
scanf, 501
sprintf, 561
sscanf, 566
stream, 281, 297
vprintf, 635

opening, 59, 253, 274
reading

binary int value, 343
characters, 260, 315
data items, 287
lines, 264, 337

reopening, 293
rewinding, 493
stdaux,59

Streams (continued)
stderr,59
stdin, 59
stdout, 59
stdprn, 59
translation mode

fdopen, 254
fopen, 275
freopen, 293, 294

un getting characters, 624
writing

binary int value, 473
characters, 283, 464
data items, 310
lines, 472
strings, 285

_ strerror, 580
strerror, 21, 76, 580
stricmp, 76, 574
String manipulation

include files, 77
strcat, 76, 574
strchr, 76, 574
strcmp, 76, 574
strcmpi, 76, 574
strcpy, 76, 574
strcspn, 76, 574
strdup, 76, 574
strerror, 76
stricmp, 76, 574
strlen, 76, 584
strlwr, 76, 585
strncat, 76, 586
strncmp, 77, 586
strncpy, 77, 586
strnicmp, 77, 586
strnset, 77, 586
strpbrk, 77, 589
strrchr, 77, 590
strrev, 77, 591
strset, 77, 593
strspn, 77, 594
strstr, 77, 595
strtok, 77, 602
strupr, 77, 604

string.h, 77, 100
Strings

comparing, 574, 586
concatenating, 575, 586
conversion to

floating-point values, 126
lowercase, 585
uppercase, 604

copying, 574, 586
described, 24
initialization, 586, 593

Index

685

Index

Strings (continued)
length of, 584
reading from console, 153
reversing, 591
searching

strcat, 574
strpbrk, 589
strrchr, 590
strspn, 594
strstr, 595
strtok, 602

writing, 285
writing to console, 172, 174

strlen, 76, 584
strlwr, 76, 585
strncat, 76, 586
strncmp, 77, 586
strncpy, 77, 586
strnicmp, 77, 586
strnset, 77, 586
strpbrk, 77, 589
strrchr, 77, 590
strrev, 77, 591
strset, 77, 593
strspn, 77, 594
strstr, 77, 595
_ strtime, 82, 596
strtod, 46, 598
strtok, 77, 602
strtol, 46, 598
strtoul, 46, 598
strupr, 77, 598
Subdirectory conventions, 22
swab, 84, 606
Syntax conventions. See Notational

conventions
sys subdirectory, 22
sys\ locking.h, 100
sys_ errlist

constants, errno.h, 92
described, 35
system error messages, 451, 580

sys\ stat.h, 47, 100
sys\ timeb.h, 82, 101
sys\ types.h, 82, 101
sys\ utime.h, 82, 101
sys_ nerr, 35, 451, 580
system

described, 73, 607
path-name delimiters, 24
XENIX version, differences from, 72,

667
System calls. See MS-DOS system calls
System time. See Time

686

tan
described, 68, 609
floating-point support, 27

Tangent, 609
tanh

described, 68, 609
floating-point support, 27

tell, 63, 610
tempnam, 58, 611
Terminal capabilities, 376
Text mode

described, 24, 35, 445
setmode, 528
sopen,548
stream I/O, 254, 275, 294

Time
conversion from

long integer to string, 179
long integer to structure, 391
structure to string, 117

global variables, setting, 618
local time, correcting for, 391
obtaining, 308, 613
routines

asctime, 81, 117
clock, 81, 167
ctime, 82, 179
difftime, 82, 182
ftime, 82, 308
gmtime, 82, 345
include files, 82
localtime, 82, 392
mktime, 82, 436
_ strdate, 82
_ strtime, 82
time, 82, 613
tzset, 82, 618
utime, 82, 629

time differences, computing, 182
time, 82, 613
timeb type, 39, 308
timeb.h. See sys\ timeb.h
time.h, 82, 101
time_ t type, 39, 182
timezone variable, 34, 618
TLOSS, 411, 650
tm type, 39, 102, 345
tmpfile, 58, 614
tmpnam, 58, 611
toascii, 44, 616
Tokens, finding in strings, 602
_ tolower, 44, 616
tolower

described, 44, 616
function version, use of, 45
side effects, 45

_ toupper, 44, 616
toupper

described, 44, 616
function version, use of, 45
side effects, 45

Translation mode. See Binary mode;
Text mode

Trigonometric functions
acos, 112
asin, 119
atan, 123
atan2,123
cos, 171
cosh, 171
hypot, 361
sin, 547
sinh, 547
tan, 609
tanh, 609

Type checking, arguments. See
Argument type checking

types.h. See sys\ types.h
TZ environment variable

default value, 34
described, 34
localtime, 391
tzset, 618

tzname variable, 34, 618
tzset, 82, 618

ultoa, 46, 621
umask

described, 47, 622
XENlX version, differences from, 668

UNDERFLOW, 411, 650
ungetc, 58, 624
ungetch, 66, 626
UNIX operating system, 653, 658
unlink

described, 47, 628
XENlX version, differences from, 668

Update, 274, 294
utimbuf type, 39, 101, 629
utime

described, 82, 629
XENIX version, differences from, 668

utime.h. See sys\ utime.h

V3..- arg, 83, 631
V3..- end, 83, 631
v3..-list type, 39
varargs.h, 102
Variable, global. See Global variables
V3..- start, 83, 631

Index

Version number (MS-DOS), 36
vfprintf, 59, 635
videoconfig type, 39, 94
vprintf, 59, 635
vsprintf, 59, 635

Word. See Binary int
WORDREGS type, 92
_ wrapon, 55, 638
write

described, 63, 640
XENlX version, differences from, 668

Write access. See Permission setting
Write operations

binary int value to stream, 473
character to

console, 626
file, 640
stdout, 284, 464
stream, 283, 464, 624

data items from stream, 310
formatted

cprintf, 172
printf, 456
sprintf, 561
stream I/O, 281
vprintf, 635

line to stream, 472
string to stream, 285

Write operations to
console, 172, 174,466
port, 448

XENlX operating system, 653, 658
xycoord type, 39, 94

yO. See Bessel functions
yl. See Bessel functions
yn. See Bessel functions

687

Microsoft Corporation
16011 NE 36th Way
Box 97017
Redmond, WA 98073-9717

0787 Part No. 00005

