. Run-Time Library Reference

Microsoft. QuickC.

Add Watch. ..

Microsoft.

ICROSOK T

FOR THE MS-DOSe OPERATING SYSTEM

RUN-TIME LIBRARY REFERENCE

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, mcll:xdmg photocopying and recording, for
any purpose other than the purchaser’s personal use without the written permis-
sion of Microsoft Corporation.

Ipyi]nﬁ ht Microsoft Cor ratlon, 1984-1987. All rights reserved. Simultaneously
pub in the U.S. and Canada.

Microsofte , MS-DOSe, CodeViews , and XENIXe are registered trademarks and QuickCm is
a trademark of Microsoft Corporatlon

IBMe is a registered trademark of the International Business Machines Corporation.
UNIXe is a registered trademark of AT&T Bell Laboratories.
Document No. 410840017-500-R04-0887

Part 1 & Overview
1 Introduction.........iennns 5
1.1 About the C LIbrary ...cccccceeeeeecvinveeernceneereereninneneeeen. 7
1.2 About This Manual.......ccoeeiereiiriiiiiiiriireceeececcecieraaene 8
1.3 Notational Conventions.......cccccceeerereenneerrenecreeeeaenes 10
2 Using C Library Routines............. 13
2.1 Introduction......ccccccreeeererniieereiirniireneeieeneeeeeesennens 15
2.2 Identifying Functions and Macros........cccccceeeeeennncee 15
2.3 Including Files ...cccoveierveieennueiiinnreeennnieecennreeecesnnnenns 17
2.4 Declaring Functions.......coccceeeeiecrvvereerrnnneeeeeessesnnnenee 18
2.5 Stack Checking on Entry.....cccceeevvvveeeiinnveneeeerenninnne 19
2.6 Argument-Type ChecKing.....cc.cevvruvreeervveeeeeeeecorunenee 20
2.7 Error Handling......cccveeeeemeerecvneerrereennvneeeessnnecnennns 21
2.8 File Names and Path Names.......cocvvevereervvreeeereeennnns 22
2.9 Binary and Text Modes.....ccceeevermrvrrerereereeereerinnnenenne 24
2.10 MS-DOS Considerations.......ccceeeerrervvrececcrvreeeeeserennns 26
2.11 Floating-Point Support.......ccceeeeevvvverereriereeeeeeernnnnns 27
2.12 Using Huge Arrays

Witthibrary Functions......cccceveeeevmeeeeccrenneeeeccennenee 28

iii

(CONTENTS

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

iv

Global Variables

and Standard Types......cccomremrrrees 31
INtroduction......ueeeeeeeeeeeiereenrrninnrreeeeeneeeneesereeeesnennns 33
—AMDIKSIZ eeeeiieieieerre e, 33
daylight, timezone, tzname........cccccceeveeeeeevvvnnnnnnnn. 34
—doserrno, errno, sys—..errlist, sys_nerr.........ccuuu..... 35
FNOAE i 35
— 0SMAJOT, — OSMINOT, — OSVETSION ..eevvvreeeeereereerreeenens 36
ENVITOIL, — PSPuvreerrrrrrnnssnnccsesransarsssssssserssnsnssssssssassrens 36
Standard TYPeS ..ccccveeeeeeerrrreereninieieeenerereeeeseeseesennns 37
Run-Time Routines by Category...41
INtroduction......cocvveveeeeeeeieieriiniiiireeeeeeeeeeeeseeeeeeeee e 43
Buffer Manipulationcccoeveverrvvveeiniveeenecneceenennnnee. 43
Character Classification and Conversion.................. 44
Data ConVerSionccccvvveeeererereereesserneecesssoravenveneens 46
Directory Control........cccvveeeeririineeeirenieeeeeeeeneeseeennnns 46
File HANAING ...evvveeeeerernrrereierinneeeneriieeeeeecesssnnnnnnees 47
GTaphics ceccovveeeereernrrneeeierinireeeeessineereessnseeeeeeeseesaanns 48
4.7.1 Using Graphics FunctionS......ccceceveeeereevennennnnnn. 48
4.7.2 CONMGUTE ceereerrreeerrreereenneeceerseerereeseenseresecssnnes 49
4.7.3 Set CoOTdINates .oeeererrnrererrrrnerseeersereceernnernsnnns 49
4.7.4 Set Palette cecvuuveeerreereeereeenneseerreenessernncssananes ol
4.7.5 Set AttribUbes..cceeerreerereerrereriiereerenneeeereneeennnnes 92
4.7.6 Output Images «ceceeeeerennrereereeeernernennnoeeeennennnns 53
4.7.7 OULPUL TeXberrrrreerrrrnrereererurrnrereerenneseersensennnnes 54
4.7.8 Transfer IMages...ccccervrnererreeereereeerevnncceernnnnnnns 5

4.8 Input and Output ..cccceevuvvereererrnnevercineieciniciiieeenene. o6
4.8.1 Stream Routines....ccccceeeveeevvecevnecerenes eerenrenee o7
4.8.1.1 Opening a Stream .ceeecevereeerereneesceoracacnes 09

4.8.1.2 Predefined Stream Pointers:
stdin, stdout, stderr, stdaux, stdpran......... o9
4.8.1.3 Controlling Stream Buffering......c.cceeueeees. 61
4.8.1.4 Closing StreamsS.ceceeescessssecsssssonrsssnssssene 61
4.8.1.5 Reading and Writing Data..cccceeveverennnnns 61
4.8.1.6 Detecting Errors........ ceeeronee ceceserserasnsnes 62
4.8.2 Low-Level ROULINES..ccvetrrrevererecerereeerranenaronaanee 62
4.8.2.1 Opening a File..cciiciiiiiiiciniciciierercioecanns 63
4.8.2.2 Predefined Handles...coceuvuiniirircecearenanns 63
4.8.2.3 Reading and Writing Data .c.ccceveerercrennnnns 65
4.82.4 Closing Files.cocveeeieiaiuiiiiniiiiniiicnniienaeas 65
4.8.3 Console and Port I/O...cocevureeerririnneneecrininnnns 65
4.9 Math.oiiiiiieeeeeeeeeeeeeerer e 67
4.10 Memory Allocation......cccceveeeerereeeeeieeeeeeereeeeeeeenseeennees 69
4.11 Process Control.......ccccvveeeeerreecnnerecsnneeescsreeeeensneneens 72
4.12 Searching and Sorting.......ccccceeceeeeeriveeeccnrneeeenveeeens 76
4.13 String Manipulation.......ccccceeeeveeeeresveeneeeececrenieeennens 76
4.14 System Callsccceeeereiirrrereiniiiieeeeeniieeeeeereereieseeenn 78
4.14.1 BIOS Interface..cccceernrereererennereerervnaseesnnsroneanes 78
4.14.2 MS-DOS Interface...cccecvrrrrrvenenecereeerevnnonsronaaens 78
415 TIME coeirviiiieriiieieeereirrreeeeesrreeeeessrereeeesessnsnsaeeenanes 81
4.16 Variable-Length Argument Lists.......cccovvvvvvereereeenen. 83
4.17 Miscellaneous........cc....... reteersneeesssraesesnnaaens veverenesns 83
5 Include Files.... e, 87
9.1 INtroduction.......cccevveeeereveeinereeeniiieeciineeeenerieeennns 89
5.2 assert.h.eeceeevrnnnnenn. rresetesesessssttsessssrnttasaesasnnnnasasnsnes 89
9.3 DIOSH ceeriiiiiiiirecetecccrte e e e e e 90
9.4 CONION ceviiiiiiiireriieieereeeeccrrreeeeeecreeeeeeeneaens ceereenness90
5.0 ctypeh..ocerirennnnn. teueseseressssesssreiersrrrrnenensnnnnnnstrasaasas 90

(CONTENTS

5.10
95.11
9.12
5.13
5.14
9.15
5.16
0.17
5.18
5.19
0.20
9.21
9.22
9.23
9.24
.29
5.26
0.27
9.28
9.29
5.30
9.31
9.32
9.33

.
6 11 e 1 P 1 R ORRRPPRITRR 91
dos.heeveeennnnns eeeee e ettt tsnestenetenettnnssasesasetenesensnensnnns 91
<3 110 1 1 WU RRURPRROPRRRPRURPPRRRRN ¢)/
TLOAL N teveiieeeiinieieiernresessrnsersssossssessesssssosasssssonnssnsessans 93

IMIES. Nterieriiieiiiuecieirieirireietuerteneesneeenernessrsennesnnnees 94
malloc.h ssescccces PPN 94

memory.h veseeererece sessssssseceres tevecctaracesernenns 95
pI'OCGSSh 96
S1S%:1 ¢ 1 1Y 1 U UURURUURUURUURRUINN ¢ |)

SIENALN coieerrieeeiereceere e e 97
1100 E27 ¢ 1 TR O U PO UUUUNRURURPRUPRURRRURRL ¢ 1
StAdef heeiceiniiiiiiiiiniciiinrircneeeenreeeceeeeeenenne 97
stdio.h....... reteeesereeeeenaaesesnaesesananns creeenerereraeeesertenas 98
stdlib.h.eeeeeerereeeeenennnes cesreenenteeesessssesssssnnrensennennsensessdD
string.h.......... creeeseeeeteeesssesesssssanetaastasesasesssessssssassans 100
SYS\10CKING.h .ottt 100
sys\stat.h......c.c..... verenenen vererenerenesesnsnesesesaenencnenesss 100
SYS\timeb.h..evvevvriceiieneieieiniecrenienenniensnenseenenn. 101
sys\types.h treereeessersessersessreeraeesrensteenaeeerrans 101
SYS\UtIME.hececeonrriiiiccicrcrrieeceiciereneneneeenenenen. 101
time. e cveeeessnnaeeesesnaanes 101
VATATES. N eerrirreeierrriirereerecrinreeesennneeeeeeesssnnnrreeeeesenas 102

Part 2 > Reference

221 070) o FE R 107 _clearscreen........uuue....... 165
ADS e 109 clock coouvevereriiiiieeniienens 167
ACCESS eererrrnrerernnrereeerrnnnns 110 CloSe.uieenreiiieneeeeerrinnrenn. 168
ACOS.eevrererererrerrrrrrsssnsessens 112 _control87cccevvvevennnne. 169
alloCa .evvereeeeeririereenrnneen 114 oS, coShuuueierrernrnreeeenannns 171
—ATC.evvereeensensssosssossonnsnone 115 cprintf...iiiiiiiiiiininnnenn. 172
asctime....ceeereeerecrnnennenens 117 cputsS.ccccereveeeececiereeennnne. 174
ASIN veverreernirernrernenersnennees 119 creat..ccvcveenecerencernnennnnen. 175
ASSEIT vevvrrerrererenrnrerrennnnens 121 cseanf...vvvvinnneeeiervennnnnne. 177
atan, atan2..........cccuuuenee. 123 ctime.cuveeeeieererererenennnnnn. 179
ALEXA cevveeereerrnrirnnneeneenes 124 dieeetomsbin,

atof, atolccccvvveeennnnen. 126 dmsbintoieee.................. 181
070 [0 S 128 difftime ..eevveveerevveveennnenes 182
DESSEl veveeeerreireereeeeiaeeens 130 —disable....cccceeeurureennnnne. 184
—bios_diskccceeeuruennnne. 132 _displaycursor............... 185
— bios_ equiplist.............. 136 diveeeeeorveeeriieeeenineeennnen. 186
—bios_keybrd................ 138 _dos_allocmem............. 188
—bios_ memsize.............. 140 _dos_closecuuuu...... 190
—bios_printer 141 _—dos—creat,
_bios_serialcom............ 143 —dos—creatnew.............. 192
—bios_timeofday 146 —dos_findfirst,
bSEATCh.cveeeereeeeereereeenene 147 —dos_findnext............... 194
CADS cererrerrerreeeerrrs 149 —dos_freemem............... 196
CalloC...ouereenererceeereennens 150 —dos_getdate................ 197
S| R 152 —dos_getdiskfree........... 198
CEESurerrrrerrereereaeresseseanans 153 —dos_getdrive............... 200
_chain_intr......oeveeunee 155 —dos_getfileattr 201
0 1Ye 11 156 —dos_getftime............... 203
chmodceveeeeeenrineecncncnns 158 —dos_gettime................ 205
ChSIZE ceveeeeeereeeeeeseeereesnans 160 —dos_getvect................. 206
—clear87.....ueeeieienneennnnn. 162 —dos_keep.......coeueaen. 207
Clearerr...ueviiiriineeenes 164 —dos_open ... 208

vil

(CONTENTS

—dos_read...ccceeeveuuunenenne 210 fileno....ccceeeverrrncennnneannens 267
—dos_setblock............... 212 _floodfillccceeeeununnnnnnn. 268
—dos_setdate......c.cuceeen.. 214 floOr ceeverreeeeeeecenanennn. 270
—dos_setdrive.....c.ceee... 216 flushall .cccceeernnnnnnrnnnnnaneen. 271
—dos_setfileattr............. 218 fmod .ccoovvveeervnereeccnneennn. 273
—dos_setftime............... 220 fopen....ccceeeeerrerrcnnnneennenn 274
—dos_settime................. 222 FP_OFF, FP_SEG 277
—dos_setvect.......cccuuu.... 224 _fpPreset....ueeeeeeccrceneneenen. 279
—dos_write....cccoeruureeennn. 225 fprintf....cceeeeeeeecinnenennen. 281
dOSEXLEIT cevererrennnnrervvnnnns 227 fputc, fputchar............... 283
dup, dup2......ccceeeeeeeeennne 229 fputs .cccevveeeeereceiicnenennen. 285
€V urerreeeerererarneeeeeasannnne 231 fread ...ccocvveeeeeeecrvenenennnn. 287
—ellipse.iueeeiiiieiieieianannnnen 233 free, _ffree, _nfree......... 289
—enable....ieeeeicerinnenne 235 _freect...cccceeeeeeecicnnenennn. 291
€0 e rreeeiieeeerreecccrnnennnnnennes 236 freopen.....ccccceeeeeeeeeeeneen. 293
execl — execvpe.......cueeene. 238 fTEXP ceeerrrrerecrrnneirernnneenes 296
eXit, —€Xit . eeerrererreererenanns 243 fscanf......cccoeeeveiiiiinnnns 297
EXP eeeerrrrreeeesaessnnnreneesssoes 245 fseeKuuiiiirrrrrrneereereeennnnnn. 299
—€XPANd..eeeeeeeereeeeeeereranns 246 fSetPos....ccieeeeeeeecrerrennnns 301
fabs . ciiiiieeeeeirrrrnreeneeaene 248 fstab..ceeieeiieiiiciceinnnns 303
fclose, fcloseall 249 ftell covevrvvreerieneceicnann. 306
fevt oo, rveeeeerenenanee 251 ftime..cccoeevernreeeenccrcnnnen. 308
fdoOPen..ccceeererirurnrrnennenene 253 fWrite evevvereereeneirenne, 310
1570) UUUNURURUOURIOUPRURRRRRIN 206 GCVh.wiiiieiieieeernenereeeeen 312
153 (o) RO 207 _getbkcolor 314
fHush .ccoovnnneeiennneiinnnnnnn. 208 gete, geteharoceauneee... 315
fgete, fgetchar......uueeee.... 260 getch, getche........uuuuunen. 317
fEEtPOS ceveeeereecrrneeneeenenns 262 _getcolorceveeeeinnnnnnn. 318
fEEtS ireiereerreecrrnnnrrennens 264 _getcurrentposition....... 319
fieeetomsbin, geteWd .evveerereiiiiniennnee. 321
fmsbintoieee......ccccuerennen. 260 getenv...ccvvceereiviveeennnen. 323
filelength.....cccccceveuuennnnnn. 266 _getfillmask........cecuennene 325

viii

—getimage.....cooevvvuneeenens 327 i

—getlinestyle......cccoeuunns 329 iflgﬁlt gg%
—getlogcoord.................. 331 labs 383
—getphyscoord................ 333 1AEXD.oorrorroeeemeereeeeeee 3
B oo Y
_e%(;tplxel ggg lﬁlr}d, 156arCh oo 387
S geiextiolor 338 Tocaltime L 301
—gettextposition 340 10CKING orrrroooooosrossosoreons ggl
~tvidooconfiz .. P4 10 94
e ICOOTOMIg A 8y 10810.c.cveviiiininnnnnn 398
e b olng] 1111 JRURURRN 400
halloc 347 l_se1;3(1)<tl’ IOt o 402
" harderr. - hardresum(.e. . TS 403
_hardretnoovneno....348 maketh °°°°°°°°°°°°°°°°°° 406
" heapchk, - fheapohk - ¢ path .oceeveerennnnenees 407
_ nheapchi< ’...352 na 00]’1 —fmalloc,

“hoapeet, - Thenmact - nItlllla OC.urrveerirrersrneesenens 409
—nheapset................ 354 m:x BT s ﬂé
~hoapmalk. — fhrenma Tt A e
_nheapwalk apwalk, 356 B 3175310 7: 4 OO 414
NITEC. eeeeneeeeeeererereesseneneans 359 IOEIMACEPY wesvensermasenmaseeness 416
BYDOL, crrmeeeeeeeeeere 361 MEMCHT uveeeieerrrrnerrnnnnnnnn. 418
IMABOSZO e 369 MEMCINP eeveereeeerneneeneanen 419
NP, INPW.erreeerrreererenvennnee 364 MOEIAEPY eveseenserensensseeess 421
U6 ovvreor oo R 123
T 367 memmove. T a2
INEAOS . ceeeeeereirreerneeeenes 370 TACIATOVE eesemsensessensaens 426
INEAOSK eveveeerrveereerveeeene 372 nmueIIIHS Chucennnsssssssssssssres 428
salnum - tsased TP 429
1SAEY..coveerereerenrernerennanns g% Ekkg;np """"""""""""""" 430
s U S 01 1) S 432
isentrl — isxdigit 378 mMKtIME.eveereeeereereerrennn. 4%4

ix

(CONTENTS

oooooooooooooooooooooooooooooo

movedata
—moveto
—1msize, —fmsize,

ooooooooooooooooooooooooo

ooooooooooooooooooooooo

oooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooo

outp, outpw
—outtext

ooooooooooooooooooooooooooooo

ooooooooooooooooooo

oooooooooooooooooooooooo

ooooooooooooooooooooooooooooooo
................................
.............................
.................
ooooooooooooooooooooooooooooo
............................
.....................
................................

oooooooooooooooooooooooooooooo
...............................
...............................
ooooooooooooooooooooooooooooooo
................................
............................

oooooooooooooooooooooo

—remapallpalette,
—remapp

ooooooooooooooooooooooooooo

ooooooooooooooo

ooooooooooooooooooooooooooo

oooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooo

—Totl, —TOtT .eevrerrnnnaneeen. 498
SBrK.ueeiiieeiiiieieieciieaes 499
Seanf ...ceeveeiiiiieieninennnnnns 001
—Searchenyocoveeeenee. 507
segread.....cceerevvevnneeeeennnns 208
—selectpalette 009
—setactivepage............... 912
—setbkeolor.........ceeeeen.. 514
setbuf......ceeeieeerrreneeeeennns 516
—setcliprgh...ceceecneeenenn. 018
—8etColor..uuuniirenrenerevennn. 920
—setfillmaskcceeeeen.. 521
(1711110 JOUOUUOUROUORRRN 023
—setlinestylecee...... 525
—Setlogorg.....ceeeeeeeeennnn. 927
setmode.....eeeereerrreeerennann. 528
—setpiXel...coveeeeerirreenneen. 530
—settextcolor.................. o031
—settextposition............. 933
—settextwindow 535
setvbuf......ccoeeeeeirnnennnnnn, 037
—setvideomode............... 039
—setviewport.......eeeeeenee.. 941
—setvisualpage............... 542
SINAL ..vverereeeereriireeeenanns 043
sin, Sinh.....cooveevinnneennnnns 047
5707015 | FOURRRROROON 948
SPAWIL.eeeeeeeeeereerenvvvennernns 953
—splitpath.....cccceevveeenn.. 559
sprintf.....cccoeveeeenrinnnnnnnns 061
SATD wevevreeereeeeeeeseenarensrnnns 063

ooooooooooooooooooooooooooooo
.......................

oooooooooooooooooooooooooooooooo

—status®7
streat — strdup
—strdate
strerror, —strerror

ooooooooooooooooooooooo
ooooooooooooooo

ooooooooooooooooooooooooo

..............................
.............................
strneat — strnset
...........................
............................
.............................
..............................
.............................

SUSE v
strtod, strtol, strtoul

ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

SWAD.evveeeeriecireeerene e 606
SYSEEM..cceieeeivrereeeeeeeranees 607
tan, tanh....ccoccveeerenneen. 609
tell e 610
tempnam, tmpnam......... 611
TIME .eererirreneaanerinraeneienn 613
tmpfile ooooveeriiiiiiiiiiianes 614
toascii — —toupper.......... 616
1771 rHOUOUOUORROUOOUPRRRRRRRPRPPRt 618
171 1703: AOOUOOURRRR ORI 621
UMASK «eveevereerninneeneenrnnns 622
UNEZELC cevvveenncrieeriraannnenen. 624
ungetch....oeeeeneeeiinninenens 626
unlink cooccvveeeniiineeiinnneen. 628
ULIME wevvveiiaeriennnineenene, 629
va_arg — va_start 631
vfprintf — vsprintf 635
— WEAPON «eevvvrerannereenrneees 638
WIIHE wevvveiininineniiiiinnnnrannns 640

xi

(CONTENTS

2
Appendixes
A Error Messages......onmrinnrenneroneenn.
W B 5017 16 L0 61 T) ¢ WU UR PR
A2 IO VAlUCS . .cvvveeeeeeveeieteeeteeeeeeteeeenseeeeeneessnecenes
A3 Math EITOTS covuvveirtiiiiniieeieeeeieeeeneereneeerneeesensnnes
B Common Libraries....eeen..
B.l INtroduction...occeeeeeunereeeieeeerereeenreresieeencersnerscesnsnnns
B.2 Run-Time ROUtINES....ccooevviireiirmnerreerrnieienerensrenennes
B.2.1 Routines Common to MS-DOS and XENIX....
B.2.2 Routines Common
to MS-DOS and UNIX System V .cccveuiiecencannns
B.2.3 Routines Specific to MS-DOScevvueeevrrncecnnnne
B.2.4 ANSI Library..ccccceceeceeserceecssssecsocsroseosessnsesees
B.3 Global Variables.....ccoovvueeeeerereeiereereueeeereeieeseenenee.
B.3.1 Variables Common
to MS-DOS and XENIX...veteererereeeeeereeeceencnns
B.3.2 Variables Common
to MS-DOS and UNIX System V ..ccceceeiecnnnnans
B.3.3 Variables Specific to MS-DOSccceeuiveerenennns
B4 INCIUAE FIleS.cuuuuiiitteiiiticeeeeeineeeeeeeneceeeeeanesesennens
B.4.1 Include Files Common
t0 MS-DOS and XENIX..eeeeeeeeeeereerereerercosonnes
B.4.2 Include Files Common
to MS-DOS and UNIX System V ..ccceeerenruennnes
B.4.3 Include Files Specific to MS-DOScccevveueeees
B.4.4 ANSI Include FileS.ccveeeereerieceeiesseesseensercnsens
B.5 Differences Between Routines
Common to MS-DOS and XENIXcoveeeeernrnierennene
5 330 SRR Y Yo) o A
BL5.2 ACCESS.eieiinrererrrierrerererenrestesesrorersrsnsnscasessens
5390) 1 Vs 1 S
B.5.4 Chmod.uciiecieiiiiieiniieiecerinronercreseesscesescnscscssees
BlB.D CTeAL cveveverieirereierenseraseesersesssssssssesssscnsssssonnns
BlB.B X EC civeiereirereniirieitrarirtetrorresrsecnsrensnssrsnseronsnen

xii

B.5.7 fOPen, fTEOPEI vevererererervenererenssserserseseserarereens 662
B.5.8 fTead.ccceuieeeereieieiriererrerscernersserrersessessessnnes 663
B.5.9 fSEEK euiruirriirrereerenierersserseressrsecasensssssesnssssones 663
B.5.10 fStat..ccererrrerrnernnennns eerreerneernnenes erererreertneranns 663
B.5. 11 Ftell coveeeeruuniiereeenneeeresnreseeeerenseeeresssnnesesnsnsnons 664
B.5.12 ftime........ terrerrsennernserrernnennes tererererersnernrenanes 664
B.5.13 fWIite.ereurerrerreeeneenerneennes eerererreeeneernns rerenes 664
B.5.14 getPid cevvreerreeeeeeeeeeeseerrnnneereeeeesesessssssssssssnnes 665
B.5.15 locking...ce.cevueenneee eereerteestaeeeranernnstasssasasarenne 665
B.5.16 108, I0Z10 wuuierrrnnnieerrrnreereerunneneresrseeeessnnenes 665
B.5.17 lseek........ teeteeertsernreernrerentranernrenrroennsranones 665
B.5.18 OPEIN cervrrrerrnnereenneceeneeerennecsesneesrnnsessesssoranases 666
B.5.19 read......... teeeseerenserenreeerntreerrrnerrresennersarnrrnns 666
B.5.20 SigNal.cciuiiiiierreiiieenniiiieneereenneeeenanens cereerees 666
B.5.21 St8buuuceeeeireerrunnreereeereerrerrnnnnseeeeeesesnnnsesesaeaaes 667
B.5.22 system teerereeeereeseertrsserernaserrssrassserrnnns 667
B.5.23 UMASK eeuureerrrererrierenserrneneeersocessecerssoessncneens 668
B.5.24 UDIDK.trttiiiiuiiriiietieieiireriertereneeereesesneseesens 668
B.5.25 ULIINE cevunrrrireierieererrereerrserssrsesssersesssessesnenns 668
B.5.26 write...ccevuene.. eerereseerasrnsensnnans creererenes ceevreanen 668
IAEX e 669

xiii

(CONTENTS

b

¢ Iigures

Figure 4.1
Figure 4.2
Figure 4.3
Figure R.1
Figure R.2
Figure R.3
Figure R.4
Figure R.5
Figure R.6
Figure R.7

xiv

The Physical Screen........ccooevvuveereeeccconnnnnnen. 00
The Logical Screen.........ceeveeeveeeeiiviiiicinnnneen. 51
Bounding Rectangle........cccooeeeeieiiieieanninnnnnnnn, 54
Output of —are Program......ccccecevvvvveveeennen. 116
Output of _ellipse Program..........ccccevnne... 234
Output of _lineto Program........c.ccccceeeeeeeen. 390
Output of _ pie Program......cccccceevveeererrannnnn 454
Output of _rectangle Program................... 485
Output of _seteliprgn Program.................. 519
Output of _setfillmask Program................. 522

"Tables
Table 4.1 Forms of the spawn and exec Routines.......... 75
Table R.1 Type Characters for printf.....ccccceveeeerennnaces 458
Table R.2 Flag Characters for printf.........cccccceeerenneee. 459
Table R.3 How printf Precision Values Affect Type......461
Table R.4 Type Characters for scanf.......cccccovvvveeerennnes 503
Table R.5 MRES4COLOR Palette Colors........ccceeeeuenee. 509
Table R.6 MRESNOCOLOR Mode

CGA Palette Colorsvueeeenureeervureeecrneeennnnee. 510
Table R.7 MRESNOCOLOR Mode

EGA Palette Colors....uueeeieieieieinnrnneeeeeneieenn. 510
Table R.8 Manifest Constants for Screen Mode............ 539
Table R.9 Function Argumentsccccoovuveevrrevnneeeerinnnns 544
Table A.1 errno Values and Their Meanings................. 648

XV

() VERVIEW

PART 1

The first part of this manual provides infor-
mation common to all of the run-time library
functions.

Here you’ll find descriptions of the common
attributes of the run-time library, definitions for
global variables, data types, and include files,
and useful background information on the
different categories of run-time routines.

INTRODUCTION
1.1 About the CLIbrary...cccccoeeevviireeceieniiiiiiiiiiinininenns 7
1.2 About This Manualccceevevrriviiiiiiieiiiiiierreeeeeneeieens 8

1.3 Notational ConventionS....ccoeeeevveeeerrreeerreerserersennes 10

Introduction

1.1 About the C Library

The Microsofte C Run-Time Library is a set of more than 200 predefined
functions and macros designed for use in C programs. The run-time library
makes programming easier by providing the following:

1. An interface to operating-system functions (such as opening and
closing files)

2. Fast and efficient functions to perform common programming tasks
(such as string manipulation), sparing the programmer the time
and effort needed to write such functions

The run-time library is especially important in C programming because C
programmers rely on the library for basic functions not provided by the
language. These functions include, among others, input and output, stor-
age allocation, and process control.

The functions in the Microsoft C Run-Time Library have been designed to
maintain maximum compatibility between MS-DOSe and XENIXe or
UNIXw systems. Throughout this manual, references to XENIX systems
encompass UNIX and other UNIX-like systems as well.

Most of the functions in the C run-time library for MS-DOS operate com-
patibly with functions having the same names in the C run-time library for
XENIX operating systems. If you are interested in portability, see Appen-
dix B, “Common Libraries.” This appendix lists the functions of the run-
time library that are specific to MS-DOS and describes differences (if any)
1l\)/%v1v§60118 the operation of functions with the same names on XENIX and

For additional compatibility, the math functions of the Microsoft C Run-
Time Library have been extended to provide exception handling in the
same manner as UNIX System V math functions.

The library is also designed for compatibility with the Draft Proposed
American National Standard—Programming Language C (ANSI C), except
for the internationalization functions. The functions that conform to the
ANSI C standard are also listed in Appendix B.

For programmers who are interested in taking advantage of the specific
features of MS-DOS, the library includes MS-DOS interface functions.

Microsoft C Run-Time Library Reference

These functions allow MS-DOS system calls and interrupts to be invoked
from a C program. The library also contains console input and output
functions to allow efficient reading and writing from the user’s console.

To take advantage of the compiler’s type-checking capabilities, the include
files that accompany the run-time library have been expanded. In addition
to the definitions and declarations required by library functions and mac-
ros, the include files now contain function declarations with argument-
type lists. The argument-type lists enable type checking for calls to library
functions. This feature can be extremely helpful in detecting subtle pro-
gram errors resulting from type mismatches between actual and formal
arguments to a function.

To provide argument-type lists for all run-time functions, several new
include files have been added to the list of standard include files for the C
run-time library. The names of the new include files have been chosen to
maintain as much compatibility as possible with the proposed ANSI Stan-
dard for C and with XENIX and UNIX names.

1.2 About This Manual

The Microsoft C Run- Time Library Reference describes the contents of the
Microsoft C Run-Time Library. The manual assumes that you are familiar
with the C language and with MS-DOS. It also assumes that you know
how to compile and link C programs on your MS-DOS system and that
you can set up a compiler and linker environment using environment vari-
ables. If you have questions about compiling, linking, or setting up an
environment, see your compiler guide. If you have questions about the C
language, see the Microsoft C Language Reference.

Note

Since MS-DOS and PC-DOS are essentially the same operating system,
this manual uses the term MS-DOS to refer to both systems, except in
those cases where the distinction is significant.

This manual has two major parts. Part 1, “Overview,” gives an introduc-
tion to the C run-time library. It discusses general rules that apply to the
run-time library as a whole and summarizes the elements of the run-time
library.

Introduction

Part 2, “Reference,” gives descriptions of the run-time routines in alpha-
betical order for quick reference. Once you have familiarized yourself with
the library rules and procedures, you will likely use Part 2 of this manual
most often.

The remaining chapters of Part 1 are as follows:

Chapter 2, “Using C Library Routines,” gives general rules for under-
standing and using C library routines and mentions special considerations
that apply to certain routines. It is recommended that you read this
chapter before using the run-time library; you may also want to turn to
Chapter 2 when you have questions about library procedures.

Chapter 3, “Global Variables and Standard Types,” describes variables
and types that are declared and defined in the run-time library and used
by the library routines. This chapter also provides a cross-reference to the
include file that defines or declares these variables and types. You may find
them useful in your own routines. They are also described in the reference
pages for the routines that use them.

Chapter 4, “Run-Time Routines by Category,” breaks down the run-time
library routines by category, lists the routines that fall into each category,
and discusses considerations that apply to each category as a whole. The
chapter complements the reference section, making it easy to locate rou-
tines by task. Once you decide on the routines you want, simply turn to
the appropriate reference pages in Part 2 for a detailed description.

Chapter 5, “Include Files,” summarizes the contents of each include file
provided with the run-time library.

The appendixes at the back of the binder provide more detailed informa-
tion about error messages and about XENIX-compatible routines. Appen-
dix A, “Error Messages,” describes the error values and messages that can
appear when using library routines. Appendix B, “Common Libraries,”
lists routines of the MS-DOS C library that operate compatibly both with
routines of the same name on XENIX and UNIX systems and with routines
that conform to the Draft Proposed American National Standard—
Programming Language C. Appendix B also describes differences (if any)
between the DOS and XENIX versions of the routines and discusses com-
mon global variables and include files.

The remainder of this chapter describes the notational conventions used
throughout the manual.

Microsoft C Run-Time Library Reference

1.3 Notational Conventions

The following notational conventions are used throughout this manual:

10

Convention

Meaning

keywords,
routines,
include files

ENVIRONMENT
VARIABLES,
MS-DOS
COMMANDS

placeholders

Examples

C keywords, such as double and char, are set
in bold type to distinguish them from ordinary
identifiers and text. Within discussions of syn-
tax, bold type indicates that the text must be

entered exactly as shown. '

The names of run-time library routines, include
files, global variables, standard types, constants,
and identifiers used by the C library are also set
in this font to emphasize that these names are
reserved by the run-time library. For example,
the routine name strcpy appears in this font; so
does the include file stdio.h.

Bold capital letters are used for the names of
environment variables (such as TZ and PATH)
and MS-DOS commands (such as SET and
PATH). However, on MS-DOS you are not re-
quired to use capital letters for these variables
and commands.

Italics are used for the names of arguments to
library routines. In an actual program, a specific
name or value replaces the italicized argument
name. For example, in

double atof(string);

the argument string is italicized to indicate that
this is the general form for the atof routine. In
an actual program, the user supplies a particu-
lar argument for the placeholder string.

Occasionally, italics are used to emphasize par-
ticular words in the text.

Programming examples are displayed in a spe-
cial typeface to resemble the output on your
screen or the output of commonly used com-
puter printers. Program fragments and variables
quoted within regular text also appear in this
format, as do error messages.

User input

Missing

code

Repeating
elements ...

[optional items]

Arrays []
Subscripts | |

Introduction

Some examples show both program output and
user input; in these cases, input is shown in a
darker font. In the following example, .5 is
entered by the user in response to the prompt
Cosine value =:

Cosine value = .5
Arc cosine of 0.500000 = 1.047198

Vertical ellipsis dots are used in program ex-
amples to indicate that a portion of the program
is omitted. For instance, in the following ex-
cerpt, the ellipsis dots between the two state-
ments indicate that intervening program lines
occur but are not shown:

int x, y:

.

y = abs(x):

Horizontal ellipsis dots following an item indi-
cate that more items having the same form may
appear. For instance,

= { eapression [,eapression]...}

indicates that more expressions, separated b
commas, may appear between the braces ({ g’)

Double brackets enclose optional arguments in
the specification for each library routine. For
example, in

int open(path, oflag], pmode]);

the double brackets around pmode indicate that
this argument is optional and that, when given,
pmode must be separated from the previous
argument by a comma.

Single brackets appear in syntax descriptions
and examples containing arrays and subscript
expressions. The C language also uses brackets
for array declarations and subscript expressions.
To illustrate,

char *args([4]:

is an example showing the declaration of a four-
element array; the brackets around 4 are a
required part of the C language.

11

Microsoft C Run-Time Library Reference

12

“Defined terms”

KEY+KEY

Quotation marks set off terms defined in the
text. For example, the term “token” appears in
quotation marks when it is defined.

Some C constructs, such as strings, require quo-
tation marks. Quotation marks required by the
language have the form " ' rather than “”.
For example,

abc

is a, C string.

Small capital letters are used for the names of
keys and key sequences, such as CTRL+C.

USING C LLIBRARY ROUTINES

2.1
2.2
2.3
24
2.9
2.6
2.7
2.8
2.9
2.10
2.11
2.12

INtroductioneeeeeeeeeeveeeiicirnneeeecernreeeeeeeeerreaens 15
Identifying Functions and Macrosccceeeeevvvenne. 15
Including Files ..uuveeeeeevniieeeiniieeeccccrreeeeeeeennennn, 17
Declaring Functions.........eeeeeeeeevoveereneeeeeeeeeeenennnens 18
Stack Checking on Entry...ccceeeveeeeevieecnienecnnnnnen. 19
Argument-Type ChecKing......ceeeeevveeeeeeeerrveveeeennnne 20
Error HAndling......cceeeeeeevieeieiciiiereececiereeeeeennenn 21
File Names and Path Names........cccccceeevveeeecrnnnnne. 22
Binary and Text Modeseeeeeevveeeeevenvrneeeeeennnen. 24
MS-DOS Considerationsccceeeevvreeervveeeesrnneennns 26
Floating-Point Support.......cccceveeevvveeeevveeeensnnennns 27
Using Huge Arrays

Witthibrary FunctionsS.....ccooveeeeeecveeeeeeccenneennanan, 28

Using C Library Routines

2.1 Introduction

To use a C library routine, simply call it in your program, just as if the
routine were defined in your program. The C library functions are stored
in compiled form in the library files that accompany your C compiler
software. :

At link time, your program must be linked with the appropriate C library
file or files to resolve the references to the library functions and provide
the code for the called library functions. The procedures for linking with
the C library are discussed in detail in Chapter 4 of the Microsoft C
Optimizing Compiler User’s Guide.

In most cases you must prepare for the call to the run-time library func-
tion by performing one or both of the following steps:

1. Include a given file in your program. Many routines require defini-
tions and declarations that are provided by an include file.

2. Provide declarations for library functions that return values of any
type but int. The compiler expects all functions to have int return
type unless declared otherwise. You can provide these declarations
by including the C library file containing the declarations or by
explicitly declaring the functions within your program.

These are the minimum steps required; you may also want to take other
steps, such as enabling type checking for the arguments in function calls.

The remainder of this chapter discusses the preparation procedures for
using run-time library routines and special rules (such as file-name and
path-name conventions) that may apply to some routines.

2.2 Identifying Functions and Macros

The words “function” and “routine” are used interchangeably throughout
this manual, and in fact most of the routines in the C run-time library are
C functions; that is, they consist of compiled C statements. However, some
routines are implemented as “macros.” A macro is an identifier defined
with the C preprocessor directive # define to represent a value or expres-

~ sion. Like a function, a macro can be defined to take zero or more argu-
ments, which replace formal parameters in the macro definition. Defining
and using macros are discussed in detail in Chapter 8 of the Microsoft C
Language Reference.

15

Microsoft C Run-Time Library Reference

The macros defined in the C run-time library behave like functions: they
take arguments and return values, and they are invoked in a similar
manner. The major advantage of using macros is faster execution time;
their definitions are expanded (replaced by their definitions) in the prepro-
cessing stage, eliminating the overhead required for a function call. How-
ever, because macros are expanded before compilation, they can increase
the size of a program, particularly when the macro appears several times
in the program. Unlike a function, which is defined only once regardless of
how many times it is called, each occurrence of a macro is expanded. Func-
tions and macros thus offer a trade-off between speed and size. In several
cases, the C library allows you to choose by providing both macro and
function versions of the same library routine.

Some important differences between functions and macros are described in
the following list:

1. Some macros may treat arguments with side effects incorrectly
when the macro is defined so that arguments are evaluated more
than once. See the example that follows this list.

2. A macro identifier does not have the same properties as a function
identifier. In particular, a macro identifier does not evaluate to an
address, as a function identifier does. You cannot, therefore, use a
macro identifier in contexts requiring a pointer. For instance, if
you give a macro identifier as an argument in a function call, the
value represented by the macro is passed; if you give a function
identifier as an argument in a function call, the address of the func-
tion is passed.

3. Since macros are not functions, they cannot be declared, nor can
pointers to macro identifiers be declared. Thus, type checking can-
not be performed on macro arguments. The compiler does, how-
ever, detect cases where the wrong number of arguments is
specified for the macro.

4. The library routines implemented as macros are defined through
preprocessor directives in the library include files. To use a library
macro, you must include the appropriate file, or the macro will be
undefined.

The routines that are implemented as macros are noted in the reference
section of this manual. You can examine particular macro definitions in
the corresponding include file to determine whether arguments with side
effects will cause problems.

16

Using C Library Routines

® Example

#include <ctype.h>

int a = 'm';
a = toupper (at+t):

This example uses the toupper routine from the standard C library. The
toupper routine is implemented as a macro; its definition in ctype.h is as
follows:

#define toupper (c¢) ((islower(c)) ? _toupper(c) : (c))

The definition uses the conditional operator (? :). In the conditional ex-
pression, the argument c is evaluated twice: once to determine whether or
not it is lowercase, and once to return the appropriate result. This causes
the argument a++ to be evaluated twice, thus increasing a twice rather
than once. As a result, the value operated on by islower differs from the
value operated on by —toupper.

Not all macros have this effect; you can determine whether a macro will
handle side effects properly by examining the macro definition before
using 1t.

2.3 Including Files

Many run-time routines use macros, constants, and types that are defined
in separate include files. To use these routines, you must incorporate the
specified file (using the preprocessor directive # include) into the source
file being compiled.

The contents of each include file are different, depending on the needs of
specific run-time routines. However, in general, include files contain combi-
nations of the following:

e Definitions of manifest constants

For example, the constant BUFSIZ, which determines the
hardware-dependent size of buffers for buffered input and output
operations, is defined in stdio.h.

17

Microsoft C Run-Time Library Reference

e Definitions of types

Some run-time routines take data structures as arguments or re-
turn values with structure types. Include files set up the required
structure definitions. For example, most stream input and output
operations use pointers to a structure of type FILE, defined in
stdio.h.

e Two sets of function declarations

The first set of declarations gives return types and argument-type
lists for run-time functions; the second set declares only the return
type. Declaring the return type is required for any function that
returns a value with type other than int. (See Section 2.4, “Declar-
ing Functions.”) The presence of an argument-type list enables
type checking for the arguments in a function call. See Section 2.6,
“Argument-Type Checking,” for a discussion of this option.

e Macro definitions

Some routines in the run-time library are implemented as macros.
The definitions for these macros are contained in the include files.
To use one of these macros, you must include the appropriate file.

The include file or files needed by each routine can be found in the refer-
ence section of this manual.

2.4 Declaring Functions

Whenever you call a library function that returns any type of value but an
int, you should make sure that the function is declared before it is called.
The easiest way to do this is to include the file containing declarations for
that function, causing the appropriate declarations to be placed in your
program.

Two sets of function declarations are provided in each include file. The
first set declares both the return type and the argument-type list for the
function. This set is included only when you enable argument-type check-
ing, as described in Section 2.6. Use of the type-checking feature is highly
recommended, since type mismatches between a function’s arguments and
formal parameters can cause serious and possibly hard-to-detect errors.

The second set of function declarations declares only the return type. This
set is included when argument type checking is not enabled.

Your program can contain more than one declaration of the same function
as long as the declarations are compatible. This is an important feature to

18

Using C Library Routines

remember if you have older programs whose function declarations do not
contain argument-type lists. For instance, if your program contains the
declaration

char #*calloc():

you can also include the following declaration:

char #*calloc (unsigned, unsigned):;

Although the two declarations are not identical, they are compatible, so
no conflict occurs.

If you wish, you can provide your own function declarations instead of
using the declarations in the library include files. However, you should
consult the declarations in the include files to make sure that your decla-
rations are correct.

2.5 Stack Checking on Entry

Stack checking means that, on entry to a routine, the stack is first checked
to determine whether or not there is room for the local variables used by
that routine. If there is, space is allocated by adjusting the stack pointer.
Otherwise, a “stack overflow” run-time error occurs. If stack checking is
disabled, the compiler assumes there is enough stack space. If in fact there
is not sufficient space on the stack, you may overwrite memory locations in
the data segment and receive no warning.

Typically, only functions with large local variable requirements (more than
about 150 bytes) have stack checking enabled, since there is enough free
space between the stack and data segments to handle functions with
smaller requirements. If the function is called many times, stack checking
will slow down execution slightly.

The following library functions have stack checking enabled:
execvp sprintf sscanf
execvpe vprintf spawnvp

printf scanf spawnvpe
fprintf fscanf system

19

Microsoft C Run-Time Library Reference

2.6 Argument-Type Checking

Microsoft C offers a type-checking feature for the arguments in a function
call. Type checking is performed whenever an argument-type list is present
in a function declaration and the declaration appears before the definition
or use of the function in a program. The form of the argument-type list
and the type-checking method are discussed in full in Chapter 7 of the
Microsoft C Language Reference.

For functions that you write yourself, you are responsible for setting up
argument-type lists to invoke type checking. You can also use the /Zg
command-line option to cause the compiler to generate a list of function
declarations for all functions defined in a particular source file; the list can
then be incorporated into your program. See your compiler guide for
details on using the /Zg option.

For functions in the C run-time library, type checking is always enabled.
Only limited type checking can be performed on functions that take a
variable number of arguments. The following run-time functions are
affected by this limitation:

e In calls to cprintf, cscanf, printf, and scanf, type checking is
performed only on the first argument: the format string.

e In calls to fprintf, fscanf, sprintf, and sscanf, type checking is
performed on the first two arguments: the file or buffer and the for-
mat string.

o In calls to open, only the first two arguments are type checked: the
path name and the open flag.

e In calls to sopen, the first three arguments are type checked: the
path name, the open flag, and sharing mode.

o In calls to execl, execle, execlp, and execlpe, type checking is
performed on the first two arguments: the path name and the first
argument pointer.

e In calls to spawnl, spawnle, spawnlp, and spawnlpe, type
checking is performed on the first three arguments: the mode flag,
the path name, and the first argument pointer.

20

Using C Library Routines

2.7 Error Handling

When calling a function, it is a good idea to provide for detection and han-
dling of error returns, if any. Otherwise, your program may produce unex-
pected results.

For run-time library functions, you can determine the expected return
value from the return-value discussion on each library page. In some cases
no established error return exists for a function. This usually occurs when
the range of legal return values makes it impossible to return a unique
error value.

The description of some functions in Part 2 indicates that when an error
occurs, a global variable named errno is set to a value indicating the type
of error. Note that you cannot depend on errno being set unless the de-
scription of the function explicitly mentions the errno variable.

When using functions that set errno, you can test the errno values
against the error values defined in errno.h, or you can use the perror or
strerror functions. If you want to print the system error message to stan-
dard error (stderr), use perror; if you want to store the error message in
a string for later use in your program, use strerror. For a list of errno
values and the associated error messages, see Appendix A, “Error Mes-
sages.”

When you use errno, perror, and strerror, remember that the value of

errno reflects the error value for the last call that set errno. To prevent
misleading results, you should always test the return value before access-
ing errno, to verify that an error actually occurred. Once you determine

that an error has occurred, use errno or perror immediately. Otherwise,
the value of errno may be changed by intervening calls.

The math functions set errno upon error in the manner described on the
reference page for each math function in Part 2. Math functions handle
errors by invoking a function named matherr. You can choose to handle
math errors differently by writing your own error function and naming it
matherr. When you provide your own matherr function, that function
is used in place of the run-time library version. You must follow certain
rules when writing your own matherr function, as outlined in the refer-
ence section.

You can check for errors in stream operations by calling the ferror func-
tion. The ferror function detects whether the error indicator has been set
for a given stream. When the stream is closed or rewound, the error indi-
cator 1s cleared automatically; or you can reset it by calling the clearerr
function.

21

Microsoft C Run-Time Library Reference

Errors in low-level input and output operations cause errno to be set.

The feof function tests for end-of-file on a given stream. An end-of-file
condition in low-level input and output can be detected with the eof func-
tion or when a read operation returns O as the number of bytes read.

2.8 File Names and Path Names

Many functions in the run-time library accept strings representing path
names and file names as arguments. The functions process the arguments
and pass them to the operating system, which is ultimately responsible for
creating and maintaining files and directories. Thus, it is important to
keep in mind not only the C conventions for strings, but also the operating

system rules for file names and path names and the differences between
MS-DOS and XENIX rules. There are three considerations:

1. Case sensitivity
2. Subdirectory conventions
3. Delimiters for path-name components

The Clanguage is case sensitive, meaning that it distinguishes between
uppercase and lowercase letters. The MS-DOS operating system is not case
sensitive. When accessing files and directories on MS-DOS, you cannot use
case differences to distinguish between identical names. For example, the
names “FILEA” and “fileA” are equivalent and refer to the same file.

Portability considerations may also affect how you choose file names and
path names. For instance, if you plan to port your code to a XENIX sys-
tem, you should take the XENIX naming conventions into account. Unlike
MS-DOS, XENIX is case sensitive. Thus, the following two directives are
equivalent on MS-DOS but not on XENIX:

#include <STDIO.H>
#include <stdio.h>

To produce portable code, you should use the name that works correctly
on XENIX| since either case works on MS-DOS.

The convention of storing some include files in a subdirectory named sys is
also a XENIX convention. The convention is adopted in this manual,
which includes the sys subdirectory in the specification for the appropriate

22

Using C Library Routines

include files. If you’re not concerned with portability, you can disregard
this convention and set up your include files accordingly. If you are con-
cerned with portability, using the sys subdirectory can make portability
between XENIX and MS-DOS easier.

The MS-DOS and XENIX operating systems differ in the handling of path-
name delimiters. XENIX uses the forward slash (/) to delimit the com-
ponents of path names, while MS-DOS ordinarily uses the backslash (\)
However, MS-DOS recognizes the forward slash as a delimiter in situations
where a path name is expected. Thus, you may use either a backslash or a
forward slash in MS-DOS path names within C programs, as long as the
context is unambiguous and a path name is clearly expected.

Note

In C strings, the backslash is an escape character. It signals that a spe-
cial escape sequence follows. If an ordinary character follows the back-
slash, the backslash is disregarded and the character is printed. Thus,
the sequence “\\” is required to produce a single backslash in a C
string. (See Chapter 2 of the Microsoft C Language Reference for a full
discussion of escape sequences.)

For most of the functions in the run-time library, you may use either a for-
ward slash or a backward slash as a delimiter whenever a path-name argu-
ment is required. If you are concerned with portability to XENIX, you
should use the forward slash.

However, the exceptions to the rule are important. The following functions
accept string arguments that are not known in advance to be path names
(they may be path names, but are not required to be). In these cases, the
arguments are treated as C strings, and the following special rules apply:

o In the exec and spawn families of functions, you pass the name of
a program to be executed as a child process and then pass strings
representing arguments to the child process. The path name of the
program to be executed as the child process can use either forward
slashes or backslashes as delimiters, since a path-name argument is
expected. However, it is recommended that you use backslashes in
any path-name arguments to the child process, since the program
being executed as the child process may simply expect a string
argument that is not necessarily a path name.

23

Microsoft C Run-Time Library Reference

e In the system call, you pass a command to be executed by MS-
DOS; this command may or may not include a path name.

In these cases, only the backslash (\) separator should be used as a path-
name delimiter. The forward slash (/) will not be recognized.

When you want to pass a path-name argument to the child process in an
exec or spawn call, or when you use a path name in a system call, you

must use the double-backslash sequence (\\) to represent a single path-

name delimiter.

® Examples
result = system("DIR B:\\TOP\\DOWN") ;

In the example above, double backslashes must be used in the call to sys-
tem to represent the path name B:\TOP\DOWN. Note that not all calls to
system use a path name; for example,

result = system("DIR"):
does not contain a path name.
spawnl (P_WAIT, "bin/show", "show", "sub", "bin\\tell"., NULL):

In the above example, the spawnl function is used to execute the file
named show.exe in the bin subdirectory. Since a path name is expected
as the second argument, the forward slash can be used. (A double
backslash would also be acceptable.) The first two arguments passed to
show.exe are the strings show and sub. The third argument is a string
representing a path name. Since this argument does not require a path
name, the sequence \\\ must be used to represent a single backslash
between bin and tell.

2.9 Binary and Text Modes

Most C programs use one or more data files for input and output. Under
MS-DOS, data files are ordinarily processed in “text mode.” In text mode,
carriage-return-line-feed combinations are translated into a single line-
feed character on input. Line-feed characters are translated to carriage-
return-line-feed combinations on output.

24

Using C Library Routines

In some cases you may want to process files without making these trans-
lations. In binary mode, carriage-return—line-feed translations are
suppressed.

You can control the translation mode for program files in the following
ways:

e To process a few selected files in binary mode, while retaining the
default text mode for most files, you can specify binary mode when
you open the selected files. The fopen function opens a file in
binary mode when the letter b is specified in the access type string
for the file. If you use the open function, you can specify the
O_BINARY flag in the oflag argument to cause the file to be
opened in binary mode. For more information, see the reference
pages for these functions in the reference section of this manual.

e To process most or all files in binary mode, you can change the
default mode to binary. The global variable — fmode controls the
default translation mode. When _ fmode is set to O_ BINARY,
the default mode is binary, except for stdaux and stdprn, which
are opened in binary mode by default. The initial setting of
—fmode is text, by default.

You can change the value of —fmode in one of two ways. First,
you can link with the file BINMODE.OBJ (supplied with your
compiler software). Linking with BINMODE.OBJ changes the
initial setting of — fmode to O_ BINARY, causing all files except
stdin, stdout, and stderr to be opened in binary mode. This
option is described in Chapter 3 of the Microsoft C Optimizing
Compiler User’s Guide.

Second, you can change the value of _fmode directly by setting it
to O_BINARY in your program. This has the same effect as link-
ing with BINMODE.OBJ.

You can still override the default mode (now binary) for particular
files by opening them in text mode. The fopen function opens a file
in text mode when the letter t is specified in the access type string
for the file. If you use the open function, you can specify the

O_ TEXT flag in the oflag argument to cause the file to be opened
in text mode. For more information, see the reference pages for
these functions in Part 2.

o The stdin, stdout, and stderr streams are opened in text mode by
default; stdaux and stdprn are opened in binary mode. To process
stdin, stdout, or stderr in binary mode instead, or to process
stdaux or stdprn in text mode, use the setmode function. This

25

Microsoft C Run-Time Library Reference

2.10

function can also be used to change the mode of a file after it has
been opened. The setmode function takes two arguments, a file
handle and a translation-mode argument, and sets the mode of the
file accordingly.

MS-DOS Considerations

The use of some functions in the run-time library is affected by the version
of MS-DOS you are using. These functions are listed and described below:

Function

dosexterr
locking
sopen

dup
dup2

exec
spawn

Restrictions

These three functions are effective only on MS-DOS Ver-
sions 3.0 and later. The sopen function opens a file with
file-sharing attributes; this function should be used instead
of open when you want a file to have such attributes. The
locking function locks all or part of a file from access by
other users. The dosexterr function provides error hand-
ling for system call 59H (Get Extended Error) in MS-DOS
Versions 3.0 and later.

In certain cases, using the dup and dup2 functions on ver-
sions of MS-DOS earlier than 3.0 may cause unexpected
results. When you use dup or dup2 to create a duplicate
file handle for stdin, stdout, stderr, stdaux, or stdprn
under versions of MS-DOS earlier than 3.0, calling the
close function with either handle causes errors in later I/O
operations that use the other handle. Under MS-DOS Ver-
sions 3.0 and later, the close function is handled correctly
and does not cause later errors.

When using the exec and spawn families of functions
under versions of MS-DOS earlier than 3.0, the value of the
arg0 argument (or argv[0] to the child process) is not avail-
able to the user; the character “C” is stored in that posi-
tion instead. Under MS-DOS Versions 3.0 and later, the
complete command path is stored in arg0.

To write programs that will run on all versions of MS-DOS, you can use
the _osmajor and — osminor variables (discussed in Chapter 3, “Global
Variables and Standard Types”). These variables allow you to ascertain
the current operating-system version number and take the appropriate
action based on the result of the test.

26

Using C Library Routines

B Example

unsigned char _osmajor;

.

if (_osmajor < 3)
open ("TEST.DAT", O_RDWR):
else
sopen ("TEST.DAT", O_RDWR, SH_DENYWR) :

In the above example, the global variable — osmajor is tested to determine

whether the file TEST.DAT should be opened using the open function
under versions of MS-DOS earlier than 3.0) or the sopen function (MS-
OS Versions 3.0 and later).

2.11 Floating-Point Support

The math functions supplied in the C run-time library require floating-
point support to perform calculations with real numbers. This support can
be provided by the floating-point libraries that accompany your compiler
software or by an 8087 or 80287 coprocessor. (For information on selecting
and using a floating-point library with your program, see your compiler
guide. The names of the functions that require floating-point support are
listed below:

acos _clear87! exp frexp sin

asin _control87! fabs gevt sinh

atan cos fevt hypot sqrt

atan2 cosh fieeetomsbin ldexp _status87!
atof dieeetomsbin floor log strtod
bessel? difftime fmod log10 tan

cabs dmsbintoieee fmsbintoieee modf tanh

ceil ecvt _fpreset pow

In addition, the printf family of functions (cprintf, fprintf, printf,
sprintf, vfprintf, vprintf, and vsprintf) requires support for floating-
point input and output if used to print floating-point values.

The C compiler tries to detect whether floating-point values are used in a
program so that supporting functions are loaded only if required. This
behavior saves a considerable amount of space for programs that do not
require floating-point support.

! Not available with the /FPa compiler option

2 The bessel function does not correspond to a single function, but to six functions named
jO, j1, jn, y0, y1, and yn.

27

Microsoft C Run-Time Library Reference

When you use a floating-point type character in the format string for a
printf or scanf call (cprintf, fprintf, printf, sprintf, vfprintf, vprintf,
vsprintf, cscanf, fscanf, scanf, or sscanf), make sure that you specify
floating-point values or pointers to floating-point values in the argument
list to correspond to any floating-point type characters in the format
string. The presence of floating-point arguments allows the compiler to
detect floating-point values. If a floating-point type character is used to
print an integer argument, for example, floating-point values will not be
detected because the compiler does not actually read the format string
used in the printf and scanf functions. For instance, the following pro-
gram produces an error at run time:

main() /* THIS EXAMPLE PRODUCES AN ERROR #*/
{

long £ = 10L:
}printf("%f", f):

In the preceding example, the functions for floating-point I/O are not
loaded for the following reasons:

e No floating-point arguments are given in the call to printf.

o No floating-point values are used anywhere else in the program.
As a result, the following error occurs:
Floating point not loaded
The following is a corrected version of the above call to printf:

main() /* THIS EXAMPLE WORKS JUST FINE x*/
{

long £ = 10L;

printf ("%f", (double) f):

}

This version corrects the error by casting the long integer value to dou-
ble.

2.12 Using Huge Arrays
with Library Functions

In programs that use small, compact, medium, and large memory models,
Microsoft C allows you to use arrays exceeding the 64K (kilobyte) limit of
physical memory in these models by explicitly declaring the arrays as

28

Using C Library Routines

huge. (See your compiler guide for a complete discussion of memory
models and the near, far, and huge keywords.)l However, you cannot gen-
erally pass huge data items as arguments to C library functions. In the
case of small and medium models, where the default size of a data pointer
is near (16 bits), the only routines that accept huge pointers are halloc
and hfree. In the compact-model library used by compact-model pro-
grams, and in the large-model library used by both large-model and huge-
model programs, only the functions listed below use argument arithmetic
that works with huge items:

bsearch halloc Isearch memcmp memset
fread hfree memccpy memcpy gsort
fwrite Ifind memchr memicmp

With this set of functions, you can read from, write to, search, sort, copy,
initialize, compare, or dynamically allocate and free huge arrays; a huge
array can be passed without difficulty to any of these functions in a
compact-, large-, or huge-model program.

There is a semantic difference between the function and intrinsic versions
of the memset, memcpy, and memcmp library routines. The function
versions of these routines support huge pointers in compact and large
model, but the intrinsic versions do not support huge pointers.

29

(GLOBAL VARIABLES
AND STANDARD TYPES

3.1 INtroductioncccceiieeeeeeerereeiecricssssseennerenennanienees 33
3.2 —ambIKSIZceiiieeeiieeieeeere e 33
3.3 daylight, timezone, tzname.........oooueeereieeeeeriiiarnnnes 34
3.4 _doserrno, errno, sys— errlist, sys_nerr.................. 35
3.5 —fMOAE.cuuieiiiirriectreerceeercre ettt e 35
3.6 _o0Smajor, — OSMINOT, — OSVETSIONcevereeereeeeererannes 36

3.7 ENVITOI, — PSP ceeeeerreeeeeereeeeeaecossssssssssssssossssossessrssses 36
3.8 Standard TYPeS ...ccccecevurerecrsneercrsnneerssisnnnereeninnes 37

Global Variables and Standard Types

3.1 Introduction

The C run-time library contains definitions for a number of variables and
types used by library routines. You can access these variables and types by
including in your program the files in which they are declared or by giving
appropriate declarations in your program, as shown in the following sec-
tions.

3.2 _amblksiz

unsigned _ amblksiz;

The — amblksiz variable can be used to control the amount of memory
space in the heap that is used by C for dynamic memory allocation. This
variable is declared in the include file malloc.h.

The first time your program calls one of the dynamic-memory-allocation
functions, such as calloc or malloc, it asks the operating system for an
initial amount of heap space that is typically much larger than the amount
of memory requested by calloc or malloc. This amount is indicated by
—amblksiz, whose default value is 8K (8192 bytes). Subsequent memory
allocations are allotted from this 8K of memory, resulting in fewer calls to
the operating system when many relatively small items are being allo-
cated. C calls the operating system again only if the amount of memory
used by dynamic memory allocations exceeds the currently allocated space.

If the requested size in your C program is greater than _ amblksiz, mul-
tiple blocks, each of size — amblksiz, are allocated until the request is sat-
isfied; since the amount of heap space allocated is more than the amount
requested, subsequent allocations can cause fragmentation of heap space.
You can control this fragmentation by using — amblksiz to change the
default “memory chunk” to whatever value you like, as in the following
example:

_amblksiz = 2000;

Since the heap allocator always rounds the MS-DOS request to the nearest
power of two greater than or equal to — amblksiz, the preceding state-

ment causes the heap allocator to reserve memory in the heap in multiples
of 2K (2048 bytes).

Note that adjusting the value of _amblksiz affects only far-heap alloca-
tion (for example, standard malloc calls in compact, large, and huge
memory models and _ fmalloc calls in small and medium memory models).
Adjduslting this value has no effect on halloc or —nmalloe¢ in any memory
model.

33

Microsoft C Run-Time Library Reference

3.3 daylight, timezone, tzname

int daylight;
long timezone;
char *tznamef2];

The daylight, timezone, and tzname variables are used by several of the
time and date functions to make local-time adjustments and are declared
in the include file time.h. The values of the variables are determined by
the setting of an environment variable named TZ.

You can control local-time adjustments by setting the TZ environment
variable. The value of the environment variable TZ must be a three-letter
time zone, followed by a possibly signed number giving the difference in
hours between Greenwich mean time and local time. The number is posi-
tive moving west from Greenwich, negative moving east. The number may
be followed by a three-letter daylight-saving-time (DST) zone. For exam-
ple, the command

SET TZ=ESTSEDT

specifies that the local time zone is EST (Eastern standard time), that

local time is five hours earlier than Greenwich mean time, and that EDT is
the name of the time zone when daylight saving time is in effect. Omitting
the DST zone, as shown below, means that daylight time is never in effect:

SET TZ=ESTS

When you call the ftime or localtime function, the values of the three
variables daylight, timezone, and tzname are determined from the TZ
setting. The daylight variable is given a nonzero value if a DST zone is
present in the TZ setting; otherwise, daylight is 0. The timezone vari-
able is assigned the difference in seconds (calculated by converting the
hours given in the TZ setting) between Greenwich mean time and local
time. The first element of the tzname variable is the string value of the
three-letter time zone from the TZ setting; the second element is the
string value of the DST zone. If the DST zone is omitted from the TZ set-
ting, tzname[1] is an empty string.

If you do not explicitly assign a value to TZ before calling ftime or
localtime, thé following default setting is used:

PST8PDT
The ftime and localtime functions call another function, tzset, to assign
values to the three global variables from the TZ setting. You can also call

tzset directly if you like; see the tzset reference page in Part 2 of this
manual for details.

34

Global Variables and Standard Types

3.4 _doserrno, errno, sys_errlist, sys_nerr

int _doserrno;

int errno;

char #sys_errlist[];
int sys_nerr;

The errno, sys_errlist, and sys_nerr variables are used by the perror
function to print error information and are declared in the include file
stdlib.h. When an error occurs in a system-level call, the errno variable
is set to an integer value to reflect the type of error. The perror function
uses the errno value to look up gindex) the corresponding error message
in the sys_errlist table. The value of the sys_nerr variable is defined
as the number of elements in the sys_errlist array. For a listing of the
errno values and the corresponding error messages, see Appendix A,
“Error Messages.”

The errno values on MS-DOS are a subset of the values for errno on
XENIX systems. Therefore, the value assigned to errno in case of error
does not necessarily correspond to the actual error code returned by an
MS-DOS system call. Instead, the actual MS-DOS error codes are mapped
onto the perror values. If you want to access the actual MS-DOS error
code, use the — doserrno variable. When an error occurs in a system call,
the — doserrno variable is assigned the actual error code returned by the
corresponding MS-DOS system call.

In general, you should use — doserrno only for error detection in opera-
tions involving input and output, since the errno values for input and
output errors have MS-DOS error-code equivalents. Not all of the error
values available for errno have exact MS-DOS error-code equivalents,

and some may have no equivalents, causing the value of _ doserrno to
be undefined.

3.6 _fmode

int _fmode;

The — fmode variable controls the default file-translation mode. It is
declared in stdlib.h. By default, the value of _fmode is O, causing files
to be translated in text mode (unless specifically opened or set to binary
mode). When _ fmode is set to O_ BINARY, the default mode is binary.
You can set — fmode to O_ BINARY by linking with BINMODE.OBJ
or by assigning it the value O BINARY. See Section 2.9, “Binary and
Text Modes,” for a discussion of file-translation modes and the use of the
—fmode variable.

35

Microsoft C Run-Time Library Reference

3.6 _osmajor, — osminor, _ osversion

unsigned char _osmajor;
unsigned char _osminor;
unsigned — osversion

The —osmajor and — osminor variables specify the version number of
MS-DOS currently in use. They are declared in stdlib.h. The _osversion
variable provides the complete version number. It is declared in dos.h.

. The —_osmajor variable holds the “major” version number and the
—osminor variable stores the “minor” version number. For example,
under MS-DOS Version 3.20, _osmajor is 3 and — osminor is 20.

These variables are useful when you want a program to run on different
versions of MS-DOS. For example, you can test the — osmajor variable
before making a call to sopen,; if the major version number is earlier (less)
than 3, open should be used instead of sopen.

3.7 environ, _ psp

char *environ| ;
unsigned int _ psp;

The environ and — psp variables provide access to memory areas contain-
ing process-specific information. Both variables are declared in the include
file stdlib.h.

The environ variable is an array of pointers to the strings that constitute
the process environment. The environment consists of one or more entries
of the form

name= string

where name is the name of an environment variable and string is the value
of that variable. The string may be empty. The initial environment set-
tings are taken from the MS-DOS environment at the time of program exe-
cution.

The getenv and putenv routines use the environ variable to access and
modify the environment table. When putenv is called to add or delete
environment settings, the environment table changes size, and its location
in memory may also change, depending on the program’s memory require-
ments. The environ variable is adjusted in these cases and will always
point to the correct table location.

36

Global Variables and Standard Types

The — psp variable contains the segment address of the program segment
prefix (PSP) for the process. The PSP contains execution information
about the process, such as a copy of the command line that invoked the
process and the return address on process termination or interrupt. The

— psp variable can be used to form a long pointer to the PSP, where _ psp
is the segment value and 0 is the offset value.

3.8 Standard Types

A number of run-time library routines use values whose types are defined
in include files. These types are listed and described as follows, and the
include file that defines each type is given. For a list of the actual type

definitions, see the description of the appropriate include file in Chapter 5,
“Include Files.”

Standard Type Description

clock_t The clock_t type, defined in time.h, stores
time values and is used by the clock function.

complex The complex structure, defined in math.h,
stores the real and imaginary parts of complex
numbers and is used by the cabs function.

diskfree_t The diskfree_t structure, defined in dos.h,
stores disk information used by the
dos getdiskfree routine.

diskinfo_t The diskinfo_t structure, defined in bios.h,
records information about disk drives returned
by the _bios_ disk routine.

div_t, ldiv_t The div—t and ldiv_t structures, defined in
stdlib.h, store the values returned by the div
and ldiv functions, respectively.

dosdate_t The dosdate—_t structure, defined in dos.h,
records the current system date used in the
_dos_getdate and _dos_setdate routines.

dostime_t The dostime_t structure, defined in dos.h,
records the current system time used in the
—dos_gettime and _dos_settime routines.

DOSERROR The DOSERROR structure, defined in dos.h,
stores values returned by the MS-DOS system
call 59H (available under MS-DOS Versions 3.0
and later).

37

Microsoft C Run-Time Library Reference

38

exception

FILE

find_.t

fpos_t

jmp—buf

onexit-t

rccoord

REGS

size_t

sig_atomic_t

SREGS

The exception structure, defined in math.h,
stores error information for math routines and
is used by the matherr routine.

The FILE structure, defined in stdio.h, is the
structure used in all stream input and output
operations. The fields of the FILE structure
store information about the current state of the
stream.

The find_t structure, defined in dos.h, stores
file-attribute information returned by the
dos findfirst and _dos_ findnext routines.

The fgetpos and fsetpos functions use the
fpos_t object type, defined in stdio.h, to re-
cord all the information necessary to uniquely
specify every position within the file.

The jmp_buf type, defined in setjmp.h, is
an array type rather than a structure type.

It defines the buffer used by the setjmp and
longjmp routines to save and restore the pro-
gram environment.

The onexit routine is declared as an onexit_t
pointer type, which is defined in stdlib.h.

The rccoord structure, defined in graph.h, is
used in the graphics library to store the row and
column coordinates of the current text output
position in the display.

The REGS union, defined in dos.h, stores
byte and word register values to be passed to
and returned from calls to the MS-DOS inter-
face functions.

The size_t type, defined in stddef.h and sev-
eral other include files, is the unsigned integral
result of the sizeof operator.

The sig_ atomic_t type, defined in signal.h,
is the integral type of an object that can be
modified as an atomic entity, even in the pres-
ence of asynchronous interrupts. It is used in
conjunction with the signal routine.

The SREGS structure, defined in dos.h, stores
the values of the ES, CS, SS, and DS registers.
This structure is used by the MS-DOS interface
functions that require segment register values
(int86x, intdosx, and segread).

stat

time_t

timeb

tm

utimbuf

va.. list

videoconfig

xycoord

Global Variables and Standard Types

The stat structure, defined in sys\stat.h, con-
tains file-status information returned by the
stat and fstat routines.

The time_t type, defined in time.h, represents
time values in the mktime and time routines.

The timeb structure, defined in sys\timeb.h,
is used by the ftime routine to store the current
system time in a broken-down format.

The tm structure, defined in time.h, is used by
the asctime, gmtime, and localtime functions
to store and retrieve time information.

The utimbuf structure, defined in
sys\utime.h, stores file access and modification
times used by the utime function to change
file-modification dates.

The va_list array type, defined in stdarg.h, is
used to hold information needed by the va_arg
macro and the va_end routine. The called func-
tion declares a variable of type va_list, which
may be passed as an argument to another func-
tion.

The videoconfig graphics-library structure is
defined in graph.h. It stores configuration infor-
mation about the hardware graphics environ-
ment.

The xycoord structure, defined in graph.h, is
used in the graphics library to store pixel coordi-
nates.

39

('HAPTER

RUN-TIME ROUTINES
BY CATEGORY

4

4.1 Introductioncccceeveeeeeeeeiveeeeereereeeeeernrereeeerennns 43
4.2 Buffer Manipulation........cccoevueerveeinieeinneennnennnnnne. 43
4.3 Character Classification and Conversion 44
4.4 Data COnversioncccceeeeeererveeeereerinreeeseseneeesecnns 46
4.5 Directory Controlcoeeeevvvreeeeeenrereeecineneeeeeenns 46
4.6 File Handling....occcoeevvveereiiieeecereccnveeceneeeecnenens 47
4.7 Graphics..ccccceeervererrueeenirivieiennereenseeeesneeeesssneeenns 48
4.7.1 Using Graphics Functions tererrnreernrenens 48
4.7.2 CONMGUIE.cevrrererrrurreerrurererrrrreieeeerrrenseseessons 49
4.7.3 Set CoordinateS..eeeereuueeeererrruseeeerereneneernnnes 49
4.7.4 Set Palette...covvrrrvrrvrcneereeeererenireninnnnrennenn. ol
4.7.5 Set AtEriDULES covveereeeeeeerreeeereererenrnnrieraenenn. 92
4.7.6 Output Images.....ecvvuvenene teeererrerereseerrnnnanans 93
4.7.7 Output TeXb ceeeerrnrreerruneeererenneeeeeerereneeeeennens o4
4.7.8 Transfer ImMages....ccvveeerrrnrerrenieerereneerenernnens 00
4.8 Input and OQutputb....cc.eeeevvveeccrreeereeceeeeeeeeeeeenn, 56
4.8.1 Stream RoUbINeS.....cevveeeereereveirererrevneeerernenn o7
4.8.1.1 Opening a Stream .vieeveecerercnsncecnnanens 99

4.8.1.2 Predefined Stream Pointers:
stdin, stdout, stderr, stdaux, stdprn 99
4.8.1.3 Controlling Stream Buffering 61
4.8.1.4 Closing Streams .c.ceeeeeececserecncecacecncans 61
4.8.1.5 Reading and Writing Data....cocuueenrnnnn. 61

4.8.1.6 Detecting Errors...ccececececinrececececarannne 62

CHAPTER

4.9

4.10
4.11
4.12
4.13
4.14

4.15
4.16
4.17

42

4.8.2 Low-Level ROULINES veeeerrvvencrenneeerereneennennenn.02
4.8.2.1 Opening a File ccvevvvierininieinnininininnannn, 63
4.8.2.2 Predefined Handles ...ccvvvucniencnennens. ...03
4.8.2.3 Reading and Writing Data...c.coevuvuennnns 65
4.8.2.4 Closing Files...cccveieiiieaiiennen. ceerrersacns 65

4.8.3 Console and Port I/O «ocoovvviiiiiiiiiiiiiincciannns. 65

Math.ccooorvriieeiiecceeeeeeeeeeeee, rerrreneeeneressananns .67

Memory Allocationcccceeveeeeeveeeeennne eveererrar———— 69

Process Control........cocoeeeviveecieeeecneeeennnen. vrvrreeennnn 12

Searching and Sorting............ cereeeereeeerenrrnraraaaaaas 76

String Manipulationcccevvvveevevvneerennnnes RO {

System CallS....ueeeeeveerevereeerereecenrennee. cerereeeeeeas 78

4.14.1 BIOS INterface ccccueeeereernrereerenrereverereeneeennnnns 78

4.14.2 MS-DOS Interfacececvrrerverrerueannenne. eeend 8

TIMe . ccovreerernriieeectreeceeecenree. cevensrrenanaanaas ver.81

Variable-Length Argument ListS.ueveeeeiernnereeiennnn. 83

Miscellaneous.........ccceeeveererveeeciereeccrneeennnee. 83

Run-Time Routines by Category

4.1 Introduction

This chapter describes the major categories of routines included in the C

run-time libraries. The discussions of these categories are intended to give
a brief overview of the capabilities of the run-time library. For a complete
description of the syntax and use of each routine, see Part 2, “Reference.”

4.2 Buffer Manipulation

Routine Use

memeccpy Copies characters from one buffer to another, until
a given character or a given number of characters
has been copied

memchr Returns a pointer to the first occurrence, within a
specified number of characters, of a given charac-
ter in the buffer

memcmp Compares a specified number of characters from
two buffers
memicmp Compares a specified number of characters from

two buffers without regard to the case of the
letters (uppercase and lowercase treated as
equivalent

memmove Copies a specified number of characters from one
buffer to another

memcpy Copies a specified number of characters from one
buffer to another

memset Uses a given character to initialize a specified
number of bytes in the buffer

movedata Copies a specified number of characters from one
buffer to another, even when buffers are in different
segments

The buffer-manipulation routines are useful for working with areas of
memory on a character-by-character basis. Buffers are arrays of characters
(bytes). However, unlike strings, they are not usually terminated

with a null character (°\ 0°). Therefore, the buffer-manipulation routines
always take a length or count argument.

43

Microsoft C Run-Time Library Reference

When the source and target areas overlap, only the memmove function is
guaranteed to properly copy the full source.

Function declarations for the buffer-manipulation routines are given in the
include files memory.h and string.h.

4.3 Character Classification and Conversion

Routine Use

isalnum Tests for alphanumeric character

isalpha Tests for alphabetic character

isascii Tests for ASCII character

iscntrl Tests for control character

isdigit Tests for decimal digit

isgraph Tests for printable character except space

islower Tests for lowercase character

isprint Tests for printable character

ispunct Tests for punctuation character

isspace Tests for white-space character

isupper Tests for uppercase character

isxdigit Tests for hexadecimal digit

toascii Converts character to ASCII code

tolower Tests character and converts to lowercase if
uppercase

—tolower Converts character to lowercase (unconditional)

toupper Tests character and converts to uppercase if
lowercase

—toupper Converts character to uppercase (unconditional)

The character classification and conversion routines let you test individual
characters in a variety of ways and convert between uppercase and lower-
case characters. The classification routines identify characters by finding

44

Run-Time Routines by Category

them in a table of classification codes; using these routines to classify char-
acters is generally faster than writing a test expression such as the follow-
ing:

if ((c >= 0) || c <= 0x7f))

The tolower and toupper routines are implemented both as functions
and as macros; the remainder of the routines in this category are imple-
mented only as macros. All of the macros are defined in ctype.h; this file
must be included to use these macros.

The tolower and toupper macros evaluate their argument twice and
therefore cause arguments with side effects to give incorrect results. For
this reason, you may want to use the function versions of these routines
instead.

The macro versions of tolower and toupper are used by default when
you include ctype.h. To use the function versions instead, you must

give # undef preprocessor directives for tolower and toupper after the
#include directive for ctype.h but before you call the routines. This pro-
cedure removes the macro definitions and causes occurrences of tolower
and toupper to be treated as function calls to the tolower and toupper
library functions.

If you want to use the function versions of toupper and tolower and you
do not use any of the other character-classification macros in your pro-
gram, you can simply omit the ctype.h include file. In this case no macro
deﬁnitigns are present for tolower and toupper, so the function versions
are used.

Function declarations for the tolower and toupper functions are given
in the include file stdlib.h instead of ctype.h to avoid conflict with the
macro definitions. When you want to use tolower and toupper as func-
tions and include the declarations from stdlib.h, you must follow this
sequence:

1. Include etype.h if it is required for other macro definitions.

2. If you include etype.h, give #undef directives for tolower and
toupper.

3. Include stdlib.h.

The declarations of tolower and toupper in stdlib.h are enclosed in
an #ifndef block and are processed only if the corresponding identifier
(toupper or tolower) is not defined.

45

Microsoft C Run-Time Library Reference

4.4 Data Conversion

Routine Use

atof Converts string to float

atoi Converts string to int

atol Converts string to long

ecvt Converts double to string

fevt Converts double to string

gevt Converts double to string

itoa Converts int to string

ltoa Converts long to string

strtod Converts string to double

strtol Converts string to a long integer
strtoul Converts string to an unsigned long integer
ultoa Converts unsigned long to string

The data-conversion routines convert numbers to strings of ASCII charac-
ters and vice versa. These routines are implemented as functions; all are
declared in the include file stdlib.h. The atof function, which converts a
string to a floating-point value, is also declared in math.h.

4.5 Directory Control

Routine Use

chdir Changes current working directory
getewd Gets current working directory
mkdir Makes a new directory

rmdir Removes a directory

The directory-control routines let you access, modify, and obtain infor-
mation about the directory structure from within your program. With
them, you can get the current working directory, change directories, and
add or remove directories.

The directory routines are functions and are declared in the include file

direct.h.

46

Run-Time Routines by Category

4.6 File Handling

Routine Use

access Checks file-permission setting

chmod Changes file-permission setting

chsize Changes file size

filelength Checks file length

fstat Gets file-status information

isatty Checks for character device

locking Locks areas of file (available with MS-DOS Ver-
sions 3.0 and later)

mktemp Creates unique file name

remove Deletes file

rename Renames file

setmode Sets file-translation mode

stat Gets file-status information on named file

umask Sets default-permission mask

unlink Deletes file

The file-handling routines work on a file designated by a path name, or by
a “file handle”: a file-management structure returned by the operating sys-
tem when a file is created or opened. The file-handling routines modify

or give information about the designated file. All of these routines except
fstat and stat are declared in the include file io.h. The fstat and stat
functions are declared in sys\stat.h. The remove and rename functions
are also declared in stdio.h.

The access, chmod, remove, rehame, stat, and unlink routines
operate on files specified by a path name or file name.

The chsize, filelength, isatty, locking, setmode, and fstat routines
work with files designated by a file handle.

The locking routine works only under MS-DOS Versions 3.0 and later.
The mktemp and umask routines have slightly different functions than

the above routines. The mktemp routine creates a unique file name. Pro-
grams can use mktemp to create unique file names that do not conflict

47

Microsoft C Run-Time Library Reference

with the names of existing files. The umask routine sets the default per-
mission mask for any new files created in a program. The mask may over-
ride the permission setting given in the open or creat call for the new file.

4.7 Graphics

The Microsoft C run-time library includes a graphics library which can be
called from Microsoft C as well as from other Microsoft languages that
support the C calling conventions. The graphics package supports the IBM
(and compatible) Enhanced Graphics Adapter (EGA), Color Graphics
Adapter (CGA), and certain operating modes of the Video Graphics Array
(VGA) hardware configurations.

4.7.1 Using Graphics Functions

The graphics routines are a large-model library that must be explicitly
linked. All graphics functions are declared in the include file graph.h. The
library can be divided into the seven categories listed below, corresponding
t(l)) the different tasks involved with creating and manipulating graphic
objects:

Task Description

Configure Selects the proper display mode for the hardware
and establishes memory areas for writing and dis-
playing images

Set coordinates Specifies the logical origin and the active display
area within the screen

Set palette Specifies a palette mapping

Set attributes Specifies background and foreground colors and
mask and line styles

Output images Draws and fills figures on the screen

Output text Writes text to the screen

Transfer images Stores images in memory and retrieves them

The following sections explain each of these tasks.

48

Run-Time Routines by Category

4.7.2 Configure

Routine Use

~displaycursor Determines whether the cursor will be left on or off
on exit from graphics routines

—getvideoconfig Obtains status of current graphics environment
—setactivepage Sets memory area for writing images
—setvideomode Selects screen display mode
—setvisualpage Sets memory area for displaying images

The _displaycursor routine determines whether or not the cursor will

be restored on exit from graphics routines. The setting of this routine
remains in effect until the routine is called again to change it.

The _setvideomode function selects an operating mode for the display
hardware.

The _setactivepage and _setvisualpage functions define memory re-
gions for storing the working page and the displayed page, respectively, in
configurations which support multiple video pages.

The _getvideoconfig function returns a structure containing information

about the hardware environment. Several of the other graphics routines
use this information.

4.7.3 Set Coordinates

Routine Use

—getlogcoord Converts physical coordinates to logical coordi-
nates

—getphyscoord Converts logical coordinates to physical coordi-
nates

—setcliprgn Limits graphic output to part of the screen

—setlogorg Positions the logical origin

—setviewport Limits graphic output and positions the logical ori-

gin within a limited area
The Microsoft C graphics functions recognize two sets of coordinates:

1. Fixed physical coordinates determined by the hardware and display
configuration of the user’s environment

2. Logical coordinates defined by the application

49

Microsoft C Run-Time Library Reference

The functions in this category alter the logical coordinate system and
translate logical coordinates to physical coordinates and vice versa.

The default logical coordinate system is identical to the physical one. The
physical origin (0, 0) is always in the upper-left corner of the display. The
x axis extends in the positive direction left to right, while the y axis ex-
tends in the positive direction top to bottom. These characteristics are
shown in Figure 4.1.

\ increasing x values
Physical Origin (0,0)

increasing y values

Figure 4.1 The Physical Screen

The dimensions of the x and y axes depend upon the hardware display
configuration and the selected mode. These values are accessible at
run time by examining the numxpixels and numypixels fields of the
videoconfig structure returned by — getvideoconfig,.

The origin can be moved to a new position relative to the physical origin

with the _setlogorg function. This function also remaps the pixel coordi-
nates with new logical coordinates, as shown in Figure 4.2.

50

Run-Time Routines by Category

Physical (0,0)
Logical (-320, -175)

Physical (320, 175)
Logical (0,0)
)

Physical (640, 350)
Logical (320, 175)

Figure 4.2 The Logical Screen

The physical coordinates of any logical point can be determined with the
—getphyscoord function, and the logical coordinates of any physical
point can be determined with the — getlogcoord function.

The _setcliprgn function defines a restricted active display area on the
screen. The _setviewport function does the same thing and also resets
the logical origin to the upper-left corner of the restricted active display
area.

There is no scaling or built-in axis translation. However, you can do axis

translation by redefining the provided interface using C macros to flip the
signs of the coordinates.

4.7.4 Set Palette

Routine Use

—remapallpalette Assigns colors to all pixel values
—remappalette Assigns colors to selected pixel values
—selectpalette Selects a predefined palette

51

Microsoft C Run-Time Library Reference

In a graphics mode, a screen pixel can be represented as a one-, two-, or
four-bit value, depending upon the particular mode. The representation
is called the “pixel value.” The range of pixel values can be derived from
the bitsperpixel field in the videoconfig structure returned by
—getvideoconfig.

Each color that can be displayed is represented by a unique ordinal value.

To bind a color ordinal with each pixel value, the graphics library uses the
concept of a “palette.” A palette is simply a mapping of the actual display
colors to the legal pixel values.

Most video modes support only one palette, but the medium-resolution
graphics modes, - MRES4COLOR and - MRESNOCOLOR, support a
number of palettes. In these modes, the palette consists of a background
color and three other colors. The — selectpalette function selects a palette
from among the available palettes. All functions that require a color pa-
rameter expect to be passed a pixel value.

In addition, the EGA hardware provides the capability of remapping a
palette, allowing any available color to be mapped to any pixel value. Two
graphics functions allow the EGA configuration to provide this

capability: the _remappalette function remaps one pixel value; the
—remapallpalette function remaps the entire palette. These two func-
tions are the only ones that recognize actual color ordinals defined by the
display adapter.

Many graphics functions operate only under certain hardware configura-

tions or in certain graphics modes. These functions return a negative value
if they are called in an invalid hardware environment.

4.7.5 Set Attributes

Routine Use
—getbkcolor Reports the current background color
—getcolor Obtains the current color

—getlinestyle Obtains the current line style
—getfillmask Obtains the current fill mask

—setbkcolor Sets the current background color
—setcolor Sets the current color
—setfillmask Sets the current fill mask
—setlinestyle Sets the current line style

52

Run-Time Routines by Category

The output functions (described in Section 4.7.6, “Ouput Images”) do not
specify color or line-style information. Instead, they rely on a set of cur-
rent “attributes” which are set independently by the functions listed
above.

The —getcolor and _setcolor functions deal with the “current color”
attribute, which is used by the _floodfill function, as well as the closed-
figure output functions. Similarly, the — getbkcolor and —setbkcolor
functions deal with the “current background color” attribute, employed
by the — clearscreen function.

The —getfillmask and _setfillmask functions pertain to the “current

fill mask” attribute. The mask is an 8-by-8-bit template array, with each
bit representing a pixel. If a bit is O, the pixel in memory is left untouched:
the mask is transparent to that pixel. If a bit is 1, the pixel is assigned the
current color value. The template is repeated over the entire fill area.

The —getlinestyle and _setlinestyle functions pertain to the “current
line style” attribute. The line style is determined by a 16-bit template
buffer, with each bit corresponding to a pixel. If a bit is 0, the pixel is set
to the current background color. If a bit is 1, the pixel is set to the current
color. The template is repeated for the length of the line.

4.7.6 Output Images

Routine Use

—arc Draws an arc

—~clearscreen Erases the screen and fills it with the
current background color

—ellipse Draws an ellipse

—floodfill Fills an area of the screen with the current

—getcurrentposition

color

Obtains the logical coordinates of the
current graphic-output position

_getpixel Obtains a pixel’s value

—lineto Draws a line from the current graphic out-
put position to a specified point

—moveto Moves the current graphic-output position
to a specified point

— pie Draws a pie-slice-shaped figure

—rectangle Draws a rectangle

—setpixel Sets a pixel’s value

53

Microsoft C Run-Time Library Reference

These functions assume the presence of current line-style, fill-mask,
background-color, and foreground-color attributes to specify their asso-
- clated parameters. You must write separate calls to select a particular
line style, mask, background color, or foreground color. Subsequent out-
put routines employ these parameters.

Circular figures, such as arcs and ellipses, are centered within a “bound-
ing rectangle,” specified by two points that define the diagonally opposed
corners of the rectangle. The center of the rectangle becomes the center of
the figure, and the rectangle’s borders determine the size of the figure. Fig-
ure 4.3 shows start and end vectors and a bounding rectangle.

(x3,y3)
¢
(x1,y1)

‘=
| A
(x4,y4) N
e)

| AN it

~
~ Pid |
| ~ -

Figure 4.3 Bounding Rectangle

4.7.7 Output Text

Routine Use

—displaycursor Sets the cursor “on” or “off” on exit from a graph-
1cs routine

— gettextcolor Obtains the current text color
—gettextposition Obtains the current text-output position
—outtext Outputs text to the screen at the current position

54

Run-Time Routines by Category

—settextposition Relocates the current text position
—settextcolor Sets the current text color
—settextwindow Sets the current text-display window

— wrapon Enables or disables line wrap

These routines provide text output in both graphics and text modes. Un-
like the standard console I/O library routines, these functions recognize
window boundaries and should be used in windowing applications.

No formatting capability is provided. If you want to output integer or
floating-point values, you must convert the values into a string variable
before calling these routines.

All screen positions are specified as character-row and -column coordi-
nates.

The —settextwindow routine is analogous to the _setcliprgn routine,
except that it restricts only the text display area for the — outtext rou-
tine (it doesn’t affect the standard console I/O library routines, such as
—printf). The _ outtext routine displays a zero-terminated string on the
screen. Text has a color attribute you can obtain with _ gettextcolor
and set with _settextcolor. There is also a text-position attribute, which
is the current character row and column position where the next text
character will be output. This attribute can be obtained and set with the
- gettextposition and _settextposition functions, respectively.

The — wrapon function turns on or off line-wrapping of text output. “Line
wrapping” refers to breaking a line of text and starting a new one when
output encounters a window boundary. Without line-wrap, lines are trun-
cated at the window boundary.

4.7.8 Transfer Images

Routine Use

—getimage Stores a screen image in memory

—imagesize Returns image size in bytes

—putimage Retrieves an image from memory and displays it

These functions transfer screen images between memory and the display,
using a buffer allocated by the application. The _imagesize function
returns the size in bytes of the buffer needed to store a given image.

55

Microsoft C Run-Time Library Reference

4.8 Input and Output

_The input and output routines of the standard C library allow you to read
and write data to and from files and devices. In C, there are no predefined
file structures; all data are treated as sequences of bytes. The following
three types of input and output (I/O) functions are available:

1. Stream I/O
2. Low-level I/O ‘
3. Console and port I/O

The “stream” functions treat a data file or data item as a stream of indivi-
dual characters. By choosing among the many stream functions available,
you can process data in different sizes and formats, from single characters
to large data structures.

When a file is opened for I/O using the stream functions, the opened file is
associated with a structure of type FILE (defined in stdio.h) containing
basic information about the file. A pointer to the FILE structure is re-
turned when the stream is opened. Subsequent operations use this pointer
(also called the “stream pointer,” or just “stream”) to refer to the file.

The stream functions provide for buffered, formatted, or unformatted
input and output. When a stream is buffered, data that is read from or
written to the stream is collected in an intermediate storage location
called a buffer. In write operations, the output buffer’s contents are writ-
ten to the appropriate final location when the buffer is full, the stream

is closed, or the program terminates normally. The buffer is said to be
“flushed” when this occurs. In read operations, a block of data is placed
in the input buffer and data are read from the buffer; when the input
buffer is empty, the next block of data is transferred into the buffer.

Buffering produces efficient I/O because the system can transfer a large
block of data in a single operation rather than performing an I/O opera-
tion each time a data item is read from or written to a stream. However,
if a program terminates abnormally, output buffers may not be flushed,
resulting in loss of data.

The console and port I/O routines can be considered an extension of the
stream routines. They allow you to read or write to a console (terminal) or
an input/output port (such as a printer port). The port I/O routines sim-
ply read and write data in bytes. Some additional options are available
with console I/O routines. For example, you can detect whether a charac-
ter has been typed at the console. You can also choose between echoing
characters to the screen as they are read, or reading characters without
echoing.

56

Run-Time Routines by Category

The “low-level” input and output routines do not perform buffering and
formatting; rather, they invoke the operating system’s input and output
capabilities directly. These routines let you access files and peripheral dev-
ices at a more basic level than the stream functions.

When a file is opened with a low-level routine, a file “handle” is associated
with the opened file. This handle is an integer value that is used to refer to
the file in subsequent operations.

Warning

Stream routines and low-level routines are generally incompatible, so
either stream or low-level functions should be used consistently on a
given file. Since stream functions are buffered and low-level functions
are not, attempting to access the same file or device by two different
methods causes confusion and may result in the loss of data in buffers.

4.8.1 Stream Routines

Routine Use

clearerr Clears the error indicator for a stream

fclose Closes a stream

fcloseall Closes all open streams

fdopen Opens a stream using its handle

feof Tests for end-of-file on a stream

ferror Tests for error on a stream

fllush Flushes a stream

fgete Reads a character from a stream (function version)
fgetchar Reads a character from stdin (function version)
fgetpos Gets the position indicator of a stream

fgets Reads a string from a stream

fileno Gets file handle associated with a stream
flushall Flushes all streams

fopen Opens a stream

57

Microsoft C Run-Time Library Reference

fprintf Writes formatted data to a stream

fputc Writes a character to a stream (function version)
fputchar Writes a character to stdout (function version)
fputs Writes a string to a stream

fread Reads unformatted data from a stream

freopen Reassigns a FILE pointer

fscanf Reads formatted data from a stream

fseek Repositions FILE pointer to given location
fsetpos Sets the position indicator of a stream

ftell Gets current FILE pointer position

fwrite Writes unformatted data items to a stream

getc Reads a character from a stream (macro version)
getchar Reads a character from stdin (macro version)
gets Reads a line from stdin

getw Reads a binary int item from stream

printf Writes formatted data to stdout

putc Writes a character to a stream (macro version)
putchar Writes a character to stdout (macro version)
puts Writes a line to a stream

putw Writes a binary int item to a stream

rewind Repositions FILE pointer to beginning of a stream
rmtmp Removes temporary files created by tmpfile
scanf Reads formatted data from stdin

setbuf Controls stream buffering

setvbuf Controls stream buffering and buffer size
sprintf Writes formatted data to string

sscanf Reads formatted data from string

tempnam Generates a temporary file name in given directory
tmpfile Creates a temporary file

tmpnam Generates a temporary file name

58

Run-Time Routines by Category

ungetc Places a character in the buffer
viprintf Writes formatted data to a stream
vprintf Writes formatted data to stdout
vsprintf Writes formatted data to a string

To use the stream functions you must include the file stdio.h in your pro-

gram. This file defines constants, types, and structures used in the stream

functions, and contains function declarations and macro definitions for the
stream routines.

Some of the constants defined in stdio.h may be useful in your program.
The manifest constant EOF is defined to be the value returned at end-of-
file. NULL is the null pointer. FILE is the structure that maintains infor-
mation about a stream. BUFSIZ defines the default size of stream buffers,
in bytes.

4.8.1.1 Opening a Stream

A stream must be opened using the fdopen, fopen, or freopen function
before input and output can be performed on that stream. When opening a
stream, the named stream can be opened for reading, writing, or both, and
can be opened either in text or in binary mode.

The fdopen, fopen, and freopen functions return a FILE pointer, which
is used to refer to the stream. When you call one of these functions, assign
the return value to a FILE pointer variable and use that variable to refer
to the opened stream. For example, if your program contains the line

infile = fopen ("test.dat", "r"):

you can use the FILE pointer variable infile to refer to the stream.

4.8.1.2 Predefined Stream Pointers:
stdin, stdout, stderr, stdaux, stdprn

When a program begins execution, five streams are automatically opened.
These streams are the standard input, standard output, standard error,
standard auxiliary, and standard print. By default, the standard input,
standard output, and standard error refer to the user’s console. This
means that whenever a program expects input from the “standard input,”
it receives that input from the console. Similarly, a program that writes to
the “standard output” prints its data to the console. Error messages gen-
erated by the library routines are sent to the “standard error,” meaning
that error messages appear on the user’s console.

59

Microsoft C Run-Time Library Reference

The assignment of the “standard auxiliary” and “standard print” streams
depends on the machine configuration; these streams usually refer to an
auxiliary port and a printer, respectively, but they might not be set up on
a particular system. Be sure to check your machine configuration before
using these streams.

You can refer to the five standard system streams by using the following
predefined file handles:

Handle Stream

stdin Standard input
stdout Standard output
stderr Standard error
stdaux Standard auxiliary

stdprn Standard print

You can use these pointers in any function that requires a stream pointer
as an argument. Some functions, such as getchar and putchar, are
designed to use stdin or stdout automatically. The pointers stdin,
stdout, stderr, stdaux, and stdprn are constants, not variables; do not
try to assign them a new stream pointer value.

You can use the MS-DOS redirection symbols (<, >, or > >) or the
pipe symbol (|) to redefine the standard input and standard output for

a particular program. (See your operating-system manual for a complete
discussion of redirection and pipes.) For example, if you execute a program
and redirect its output to a file named results, the program writes to
the results file each time the standard output is specified in a write
operation. Note that you don’t change the program when you redirect

the output. You simply change the file associated with stdout for a single
execution of the program.

You can redefine stdin, stdout, stderr, stdaux, or stdprn so that it
refers to a disk file or to a device. The freopen routine is used for this
purpose. For a description of this option, see the freopen description in
the reference section of this manual.

Important

At the MS-DOS command level, stderr (standard error) cannot be
redirected.

60

Run-Time Routines by Category

4.8.1.3 Controlling Stream Buffering

Files opened using the stream functions are buffered by default, except for
the preopened streams stdin, stdout, stderr, stdaux, and stdprn. The
stderr and stdaux streams are unbuffered by default, unless they are used
in one of the printf or scanf family of functions, in which case they are
assigned a temporary buffer. These two streams can also be buffered with
setbuf or setvbuf. The stdin, stdout, and stdprn streams are buffered;
each buffer is flushed whenever it is full, or whenever the function causing
I/O terminates.

By using the setbuf or setvbuf functions, you can cause a stream to be
unbuffered, or you can associate a buffer with an unbuffered stream.
Buffers allocated by the system are not accessible to the user, but buffers
allocated with setbuf or setvbuf are named by the user and can be mani-
pulated as if they were variables. Buffers can be any size: if you use set-
buf, this size is set by the manifest constant BUFSIZ in stdio.h; if you
use setvbuf, you can set the size of the buffer yourself. (See setbuf and
setvbuf in the reference section of this manual.)

Buffers are automatically flushed when they are full, when the associated
file is closed, or when a program terminates normally. You can flush
buffers at other times by using the fllush and flushall routines. The flush
routine flushes a single specified stream, while flushall flushes all streams
that are open and buffered.

4.8.1.4 Closing Streams

The fclose and fcloseall functions close a stream or streams. The fclose
routine closes a single specified stream; fcloseall closes all open streams
except stdin, stdout, stderr, stdaux, and stdprn. If your program does
not explicitly close a stream, the stream is automatically closed when the
program terminates. However, it is a good practice to close a stream when
finli§h§d (\ilvith it, as the number of streams that can be open at a given time
1s hmited.

4.8.1.5 Reading and Writing Data

The stream functions allow you to transfer data in a variety of ways. You
can read and write binary data (a sequence of bytes), or specify reading
and writing by characters, lines, or more complicated formats. A list at
the beginning of this section summarizes the stream functions for reading
and writing data; for a full description of each function, see the reference
section of this manual.

61

Microsoft C Run-Time Library Reference

Reading and writing operations on streams always begin at the current
position of the stream, known as the “file pointer” for the stream. The

file pointer is changed to reflect the new position after a read or write
operation takes place. For example, if you read a single character from a
stream, the file pointer is increased by one byte so that the next operation
begins with the first unread character. If a stream is opened for appending,
the file pointer is automatically positioned at the end of the file before
each write operation. ‘

The feof macro detects an end-of-file condition on a stream. Once the.
end-of-file indicator is set, it remains set until the file is closed, or until
clearerr or rewind is called.

You can position the file pointer anywhere in a file by using the fseek
function. The next operation occurs at the position you specified. The
rewind function positions the file pointer at the beginning of the file. Use
the ftell function to determine the current position of the file pointer.

Streams associated with a device (such as a console) do not have file
pointers. Data coming from or going to a console cannot be accessed ran-
domly. Routines that set or get the file-pointer position (such as fseek,
fgetpos, fsetpos, ftell, or rewind) have undefined results if used on a
stream associated with a device.

4.8.1.86 Detecting Errors

When an error occurs in a stream operation, an error indicator for the
stream is set. You can use the ferror macro to test the error indicator and
determine whether an error has occurred. Once an error has occurred, the
error indicator for the stream remains set until the stream is closed, or un-
til you explicitly clear the error indicator by calling clearerr or rewind.

4.8.2 Low-Level Routines

Routine Use

close Closes a file

creat Creates a file

dup Creates a second handle for a file

dup2 Reassigns a handle to a file

eof Tests for end-of-file

Iseek Repositions file pointer to a given location

62

Run-Time Routines by Category

open Opens a file

read Reads data from a file

sopen Opens a file for file sharing

tell Gets current file-pointer position
write Writes data to a file

Low-level input and output calls do not buffer or format data. Files
opened by low-level calls are referenced by a “file handle,” an integer
value used by the operating system to refer to the file. The open function
is used to open files; on MS-DOS Versions 3.0 and later, sopen can be
used to open a file with file-sharing attributes.

Low-level functions, unlike the stream functions, do not require the
include file stdio.h. However, some common constants are defined in
stdio.h; for example, the end-of-file indicator, EOF, may be useful. If
your program requires these constants, you must include stdio.h.

Declarations for the low-level functions are given in the include file io.h.

4.8.2.1 Opening a File

A file must be opened with the open, sopen, or creat function before
input and output with the low-level functions can be performed on that
file. The file can be opened for reading, writing, or both, and opened in
either text or binary mode. The include file fcntl.h must be included when
opening a file, as it contains definitions for flags used in open. In some
cases the files sys\types.h and sys\stat.h must also be included; for
more information see the reference page for open in the reference section
of this manual.

These functions return a file handle, to be used to refer to the file in later
operations. When you call one of these functions, assign the return value
to an integer variable and use that variable to refer to the opened file.

4.8.2.2 Predefined Handles

When a program begins execution, five file handles, corresponding to the
standard input, standard output, standard error, standard auxiliary, and
standard print, are already assigned. By using the following predefined
handles, a program can call low-level functions to access the standard
input, standard output, standard error, standard auxiliary, and standard
print streams (described with the stream functions in Section 4.8.1.2):

63

Microsoft C Run-Time Library Reference

Stream Handle

stdin 0
stdout 1
stderr 2
stdaux 3
stdprn 4

You can use these file handles in your program without previously opening
the associated files. They are automatically opened when the program
begins, as shown by the output from the following short program, which
uses the fileno function to print the file-handle values assigned to the
standard input, standard output, standard error, standard auxiliary, and
standard print streams:

#include <stdio.h>
main()

printf ("stdin: Y%d\n",fileno(stdin)):
printf ("stdout: %d\n", fileno (stdout)):
printf ("stderr: %d\n", fileno (stderr)):
printf ("stdaux: %d\n", fileno (stdaux)):
printf ("stdprn: %d\n", fileno (stdprn))
}

.
.

Output:

stdin:

stdout:
stderr:
stdaux:
stdprn:

dhwdorEO

As with the stream functions, you can use redirection and pipe symbols
when you execute your program to redirect the standard input and stan-
dard output. The dup and dup2 functions allow you to assign multiple
handles for the same file; these functions are typically used to associate
the predefined file handles with different files.

Important

At the MS-DOS command level, stderr (standard error) cannot be
redirected.

64

Run-Time Routines by Category

4.8.2.3 Reading and Writing Data

Two basic functions, read and write, perform input and output. As with
the stream functions, reading and writing operations always begin at the
current position in the file. The current position is updated each time a
read or write operation occurs.

The eof routine can be used to test for an end-of-file condition. Low-level
I/O routines set the errno variable when an error occurs. This means that
you can use the perror function to print information about I/O errors, or
the strerror function to store this error information in a string.

You can position the file pointer anywhere in a file by using the lseek
function; the next operation occurs at the position you specified. Use the
tell function to determine the current position of the file pointer.

Devices (such as the console) do not have file pointers. The lseek and tell
g‘outines have undefined results if used on a handle associated with a dev-
ice.

4.8.2.4 Closing Files

The close function closes an open file. Open files are automatically closed
when a program terminates. However, it is good practice to close a file
when finished with it, as the number of files that can be open at a given
time is limited.

4.8.3 Console and Port I/O

Routine Use

cgets Reads a string from the console

cprintf Writes formatted data to the console

cputs Writes a string to the console

cscanf Reads formatted data from the console

getch Reads a character from the console

getche Reads a character from the console and echoes it
inp Reads one byte from the specified 1/O port

inpw Reads a two-byte word from the specified 1/O port
kbhit Checks for a keystroke at the console

65

Microsoft C Run-Time Library Reference

outp Writes one byte to the specified 1/O port

outpw Writes a two-byte word to the specified /O port
putch Writes a character to the console

ungetch “Ungets” the last character read from the console

so that it becomes the next character read

The console and port I/O routines are implemented as functions and are
declared in the include file conio.h. These functions perform reading and
writing operations on your console or on the specified port. The cgets,
cscanf, getch, getche, and kbhit routines take input from the console,
while cprintf, cputs, putch, and ungetch write to the console. The input
or output of these functions can be redirected. (Redirection occurs at the
operating-system level; the library itself has no control over it.)

The console or port does not have to be opened or closed before 1/O is
performed, so there are no open or close routines in this category. The
port I/O routines inp and outp read or write one byte at a time from
the specified port. The routines inpw and outpw read or write two-byte
words, respectively.

The console I/O routines allow reading and writing of strings (cgets and
cputs), formatted data (cscanf and cprintf), and characters. Several
options are available when reading and writing characters.

The putch routine writes a single character to the console. The getch and
getche routines read a single character from the console; getche echoes
the character back to the console, while getch does not. The ungetch
routine “ungets” the last character read; the next read operation on the
console begins with the “ungotten” character.

The kbhit routine determines whether a key has been struck at the con-
sole. This routine allows you to test for keyboard input before you
attempt to read from the console.

Notes

The console 1/O routines use the corresponding MS-DOS system calls
to read and write characters. Since these routines are not compatible
with stream or low-level library routines, console routines should not
be used with them.

66

4.9 Math

Run-Time Routines by Category

Routine Use

acos Calculates arc cosine

asin Calculates arc sine

atan Calculates arc tangent

atan2 Calculates arc tangent

bessel Calculates Bessel functions

cabs Finds absolute value of a complex number

ceil Finds integer ceiling

—clear87? Gets and clears floating-point status word

—control872 Gets old floating-point control word and
sets new control-word value

cos Calculates cosine

cosh Calculates hyperbolic cosine

dieeetomsbin Converts IEEE double-precision number to
Microsoft binary format

dmsbintoieee Converts Microsoft binary double-precision
number to IEEE format

exp Calculates exponential function

fabs Finds absolute value

fieeetomsbin Converts IEEE single-precision number to
Microsoft binary format

floor Finds largest integer less than or equal to
argument

fmod Finds floating-point remainder

fmsbintoieee Converts Microsoft binary single-precision
number to IEEE format

—fpreset Reinitializes the floating-point-math
package

frexp Calculates an exponential value

87

Microsoft C Run-Time Library Reference

hypot Calculates hypotenuse of right triangle

ldexp Calculates argument times 2%

log Calculates natural logarithm

logl0 Calculates base-10 logarithm

matherr Handles math errors

modf Breaks down argument into integer and
fractional parts

pow Calculates a value raised to a power

sin Calculates sine

sinh Calculates hyperbolic sine

sqrt Finds square root

_ status872 Gets the floating-point status word

tan Calculates tangent

tanh Calculates hyperbolic tangent

The math routines allow you to perform common mathematical calcula-
tions. All math routines work with floating-point values and therefore
require floating-point support (see Section 2.11, “Floating-Point Sup-
port”). Function declarations for the math routines are given in the
include file math.h, with the exception of —clear87, _ control87,
—fpreset, and —status87, whose definitions are given in the float.h
include file.

The matherr routine is invoked by the math functions when errors occur.
This routine is defined in the library, but can be redefined by the user if

“different error-handling procedures are desired. The user-defined matherr
function, if given, must conform to the specifications given on the math-
err reference page in Part 2 of this manual.

You are not required to supply a definition for matherr. If no definition is
present, the default error returns for each routine are used. See the refer-
ence page for each routine in Part 2 of this manual for a description of
that routine’s error returns.

1 The, bessel routine does not correspond to a single function, but to six functions named jO,
1, jn, y0, y1, and yn.

2 Not available with the /FPa compiler option

68

Run-Time Routines by Category

4.10 Memory Allocation

Routine Use

alloca Allocates a block of memory from the program’s
stack

calloc Allocates storage for array

—expand Reallocates block of memory without moving its
location

—ffree Frees a block allocated by — fmalloc

—fheapchk Checks the memory space outside the default data
segment (far heap) for consistency

—fheapset Fills the free far heap entries with a specified value

—fheapwalk Walks through the far heap, one entry at a time,
and returns information about each far heap entry

—fmalloc Allocates a block of memory outside the far heap
and returns a far pointer

free Frees a block allocated with calloc, malloc, or
realloc

_freect Returns approximate number of items of given size
that could be allocated

—fmsize Returns size of memory block pointed to by far
pointer

halloc Allocates storage for huge array

—heapchk Checks the heap for consistency

—heapset Fills the free heap entries with a specified value

—heapwalk Walks through the heap, one entry at a time, and
returns information about each heap entry

hfree Frees a block allocated by halloe

malloc Allocates a block

—memavl Returns approximate number of bytes available in
memory for allocation

—memmax Returns size of largest contiguous free space in the
near heap

—msize Returns size of block allocated by calloc, malloc,

or realloc

69

Microsoft C Run-Time Library Reference

—nfree Frees a block allocated by — nmalloc

—nheapchk Checks the near heap (default data segment) for
consistency

—nheapset Fills the free near heap entries with a specified
value

—nheapwalk Walks through the near heap, one entry at a time,
and returns information about each near heap
entry

—nmalloc Allocates a block of memory in default data seg-
ment, returns a near pointer

—nmsize Returns size of memory block pointed to by near
pointer

realloc Reallocates a block

sbrk Resets break value

stackavail Returns size of stack space available for allocation

with alloca

The memory-allocation routines allow you to allocate, free, and reallocate
blocks of memory. They are declared in the include file malloc.h.

When a program written in Microsoft C is loaded for execution, it first
shrinks i1ts MS-DOS-allocated memory to fit within a single 64K data seg-
ment. This is true even though the program header indicates that all of
memory is allocated for the program. The extent to which the program’s
memory allocation is reduced can be altered with the /CPARMAXAL-
LOC linker option, described in your compiler guide.

The calloc and malloc routines allocate memory blocks. The malloe
routine allocates a given number of bytes, while calloc allocates and ini-
tializes to 0 an array with elements of a given size. In small data models
(small- and medium-model programs), malloe maps to (gis defined as)
—nmalloc, and free maps to — nfree. In large data models (compact-
and ?rge-model programs), malloc maps to — fmalloc, and free maps
to —firee.

The halloc routine performs essentially the same function as calloe, with
the difference that halloc can be used to allocate space for huge arrays
those exceeding 64K in size). Arrays greater than 64K allocated with
alloc must satisfy the requirements for huge arrays discussed in your
compiler user’s guide.

When _nmalloc is called, it allocates from the default data segment
(“near heap”), and — nfree releases memory back to the near heap. The

70

Run-Time Routines by Category

first time — fmalloc is called, it allocates an additional segment from
MS-DOS, then returns to the calling program a pointer to the requested
amount of memory. It performs heap management on the rest of the seg-
ment for subsequent calls until that segment has been completely allo-
cated, then gets another segment from MS-DOS, and so on. The _ ffree
function returns allocated memory to the heap block it came from,
without releasing it back to MS-DOS. If - fmalloc runs out of MS-DOS
memory to allocate, it will attempt to allocate from the near heap as a
last resort.

The halloc and hfree routines differ from — nmalloc/_nfree and
—fmalloc/_nfree in that the halloc and hfree allocate and free memory
directly from MS-DOS, instead of in the near or far heap space. The hal-
loc function does not do heap management on the MS-DOS memory space.
When hfree is called, it simply returns memory back to MS-DOS.

The — nmalloc function is fastest and should be used in small-model pro-
grams where total memory allocation is less than 64K. The exact amount
of memory available for near heap allocations depends on how much of the
default data segment is used by the stack, program data, and run-time
data. The — fmalloc function is slower. It should be used when total
memory allocation requirements are too large to use —nmalloc, but no
single data object is greater than 64K.

The halloc function is the slowest of all because it allocates from MS-DOS
for every request; however, it is useful in two cases:

e When you want data objects larger than 64K

e When you want to make sure you can free allocated memory back
to MS-DOS for subsequent calls to the spawn functions

The realloc and —expand routines change the size of an allocated block.
The —expand function always attempts to change the size of an allocated
block without moving its heap location; it expands the size of the block to
the size requested, or as much as the current location will allow, whichever
is smaller. In contrast, realloc changes the location in the heap if there is
not enough room.

The halloc routine returns a huge pointer to a char item, — fmalloc
returns a far pointer to a char item, and — nmalloc returns a near pointer
to a char item; all other allocation routines return a char pointer. The
spaces to which these routines point satisfy the alignment requirements for
any type of object. When allocating items of types other than char, use a
type cast on the return value.

The —freect and — memavl routines tell you how much memory is avail-
able for dynamic memory allocation in the default data segment. The

71

Microsoft C Run-Time Library Reference

—freect routine returns the approximate number of items of a given size
that can be allocated, while — memavl returns the total number of bytes
available for allocation requests.

The — msize function returns the size of a memory block allocated by a
call to calloc, — expand, malloc, or realloc. The functions — fmsize and
—nmsize return the size of a memory block allocated by a call to
—fmalloc or — nmalloc, respectively.

The sbrk routine is a lower-level memory-allocation routine. It increases
the program’s break value (the address of the first location beyond the end
of the default data segment), allowing the program to take advantage of
available unallocated memory.

Warning

In general, a program that uses the sbrk routine should not use

the other memory-allocation routines, although their use is not
prohibited. In particular, using sbrk to decrease the break value may
cause unpredictable results from subsequent calls to the other
memory-allocation routines.

The preceding routines all allocate memory dynamically from the heap.
Microsoft C also provides two memory functions, alloca and stackavail,
for allocating space from the stack and determining the amount of avail-
able stack space. The alloca routine allocates the requested number of
bytes from the stack, which are freed when control returns from the func-
tion calling alloca. The stackavail routine lets your program know how
much memory (in bytes) is available on the stack.

4.11 Process Control

Routine Use

abort Aborts a process

atexit Executes functions at program termination
execl Executes child process with argument list
execle - Executes child process with argument list and

given environment

72

execlp
execlpe

€xecv

execve
execvp
execvpe

exit
—exit
getpid
onexit
raise
signal
spawnl
spawnle

spawnlp
spawnlpe

spawnv

spawnve
spawnvp
spawnvpe

system

Run-Time Routines by Category

Executes child process using PATH variable and
argument list

Executes child process using PATH variable,
given environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and
argument array

Executes child process using PATH variable,
given environment, and argument array

Terminates process

Terminates process without flushing buffers
Gets process ID number

Executes functions at program termination
Sends a signal to the calling process
Handles an interrupt signal

Executes child process with argument list

Executes child process with argument list and
given environment

Executes child process using PATH variable and
argument list

Executes child process using PATH variable,
given environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and
argument array

Executes child process using PATH variable,
given environment, and argument array

Executes an MS-DOS command

The term “process” refers to a program being executed by the operating
system. A process consists of the program’s code and data, plus informa-
tion pertaining to the status of the process, such as the number of open

73

Microsoft C Run-Time Library Reference

files. Whenever you execute a program at the MS-DOS level, you start a
process. In addition, you can start, stop, and manage processes from
within a program by using the process-control routines.

The process-control routines allow you to do the following:

Identify a process by a unique number (getpid)

Terminate a process (abort, exit, and — exit)

Call a new function when a process terminates (atexit, onexit)
Handle an interrupt signal (signal)

Send a signal to a process (raise)

A S o e

Start a new process (the exec and spawn families of routines, plus
the system routine)

All process-control functions except signal are declared in the include file
process.h. The signal function is declared in signal.h. The abort, exit,
and system functions are also declared in the stdlib.h include file.

The abort and _ exit functions perform an immediate exit without flush-
ing stream buffers. The exit call performs an exit after flushing stream
buffers.

The atexit and onexit functions both create a list of functions to be exe-
cuted when the calling program exits; the only difference between the two
is that atexit is part of the draft proposed ANSI standard. The onexit
function is retained for compatibility with previous versions of Microsoft

C.

The system call executes a given MS-DOS command. The exec and
spawn routines start a new process, called the “child” process. The
difference between the exec and spawn routines is that the spawn rou-
tines are capable of returning control from the child process to its caller
(the “parent” process). Both the parent process and the child process are
present in memory (unless P OVERLAY is specified).

In the exec routines, the child process overlays the parent process, so
returning control to the parent process is impossible (unless an error
occurs when attempting to start execution of the child process).

There are eight forms each of the spawn and exec routines. The differ-
ences between the forms are summarized in Table 4.1. The function names
are given in the first column. The second column specifies whether the cur-
rent PATH setting is used to locate the file to be executed as the child
process.

74

Run-Time Routines by Category

The third column describes the method for passing arguments to the child
process. Passing an argument list means that the arguments to the child
process are listed as separate arguments in the exec or spawn call; pass-
ing an argument array means that the arguments are stored in an array,
and a pointer to the array is passed to the child process. The argument-list
method is typically used when the number of arguments is constant or is
known at compile time, while the argument-array method is useful when
the number of arguments must be determined at run time.

The last column specifies whether the child process inherits the environ-
ment settings of its parent or whether a table of environment settings can
be passed to set up a different environment for the child process.

Table 4.1
Forms of the spawn and exec Routines
Use of Argument-Passing

Routines PATH Setting Convention Environment

execl, Do not use Argument list Inherited from parent

spawnl PATH

execle, Do not use Argument list Pointer to environ-

spawnle PATH ment table for child
process passed as last
argument

execlp, Use PATH Argument list Inherited from parent

spawnlp

execlpe, Use PATH Argument list Pointer to environ-

spawnlpe ment table for child
process passed as last
argument

execv, Do not use Argument array Inherited from parent

spawnv PATH

execve, Do not use Argument array Pointer to environ-

spawnve PATH ment table for child
process passed as last
argument

execvp, Use PATH Argument array Inherited from parent

spawnvp

execvpe, Use PATH Argument array Pointer to environ-

spawnvpe ment table for child
process passed as last
argument

75

Microsoft C Run-Time Library Reference

4.12 Searching and Sorting
Routine Use
bsearch Performs binary search
Ifind Performs linear search for given value
Isearch Performs linear search for given value, which is
added to array if not found
gsort Performs quick sort
The bsearch, lfind, Isearch, and gsort functions provide helpful binary-

search, linear-search, and quick-sort utilities. They are declared in the

include file search.h.

4.13 String Manipulation

Routine Use

streat Appends a string

strchr Finds first occurrence of a given character in string

stremp Compares two strings

strempi Compares two strings without regard to case (
indicates that this function is case insensitive)

strepy Copies one string to another

strespn Finds first occurrence of a character from given
character set in string

strdup Duplicates string

strerror Saves system-error message and optional user-error
message in string

stricmp Compares two strings without regard to case
(identical to strempi)

strlen Finds length of string |

strlwr Converts string to lowercase

strncat Appends characters of string

76

strncmp
strncpy

strnicmp

strnset
strpbrk

strrchr
strrev
strset

strspn
strstr

strtok

strupr

Run-Time Routines by Category

Compares characters of two strings
Copies characters of one string to another

Compares characters of two strings without regard
to case (“i” indicates that this function is case
insensitive)

Sets characters of string to given character

Finds first occurrence of character from one string
in another

Finds last occurrence of given character in string
Reverses string
Sets all characters of string to given character

Finds first substring from given character set in
string

Finds first occurrence of given string in another
string

Finds next token in string
Converts string to uppercase

The string functions are declared in the include file string.h. A wide
variety of string functions is available in the run-time library. With these
functions, you can do the following:

e Perform string comparisons

e Search for strings, individual characters, or characters from a

given set
e Copy strings

e Convert strings to a different case

e Set characters of the string to a given character

e Reverse the characters of strings

e Break strings into tokens

e Store error messages in a string

All string functions work on null-terminated character strings. When
working with character arrays that do not end with a null character, you
can use the buffer-manipulation routines, described earlier in this chapter.

77

Microsoft C Run-Time Library Reference

4.14 System Calls

The following routines give access to BIOS (Basic Input/Output System)
interrupts and MS-DOS system calls.

4,14.1 BIOS Interface

Routine

Use

_bios_disk

bios equiplist

_bios_keybrd
_bios_memsize
bios printer
_bios_serialcom

_bios_timeofday

Issues service requests for both hard and

floppy disks, using INT 0x13

Performs an equipment check, using INT 0x11

Provides access to keyboard services, using
INT 0x16

Obtains information about available memory,
using INT 0x12

Performs printer output services, using INT
0x17

Performs serial communications tasks, using
INT 0x14

Provides access to system clock, using INT
Ox1A

The functions in this category provide direct access to the BIOS interrupt
services. They are all declared 1n bios.h.

4.14.2 MS-DOS Interface

78

Routine

Use

bdos

_chain_intr
_disable

_dos_allocmem

_dos_close

dos creat

Invokes MS-DOS system call; uses only DX
and AL registers

Chains one interrupt handler to another
Disables interrupts

Allocates a block of memory, using MS-DOS
system call 0x48

Closes a file, using MS-DOS system call 0x3E

Creates a new file and erases any existing file
having the same name, using MS-DOS system
call 0x3C

dos creatnew

—dos_ findfirst
_dos_findnext
_dos_freemem
_dos_getdate
_dos_getdiskfree
dos_getdrive
—dos_getfileattr
_dos_getftime
dos gettime
—dos_getvect
_dos_keep
_dos_open

_dos_read

—dos_setblock
—dos_setdate
—dos_setdrive
_dos_setfileattr

_dos_setftime

Run-Time Routines by Category

Creates a new file and returns an error if a file
having the same name exists, using MS-DOS
system call 0x5B

Finds first occurrence of a given file, using

MS-DOS system call 0x4E

Finds subsequent occurrences of a given file,
using MS-DOS system call Ox4F

Frees a block of memory, using MS-DOS sys-
tem call Ox49

Gets the system date, using MS-DOS system
call 0x2A

Gets information on a disk drive, using MS-
DOS system call 0x36

Gets the current default drive, using MS-DOS
system call 0x19

Gets current attributes of a file or directory,
using MS-DOS system call 0x43

Gets the date and time a file was last written,
using MS-DOS system call 0x57

Gets the current system time, using MS-DOS
system call 0x2C

Gets the current value of a specified interrupt
vector, using MS-DOS system call 0x35

Installs terminate-and-stay-resident (TSR)
programs using MS-DOS system call 0x31

Opens an existing file, using MS-DOS system
call 0x3D

Reads a file, using MS-DOS system call O0x3F

Changes the size of a previously allocated
block, using MS-DOS system call Ox4A

Sets the current system date, using MS-DOS
system call 0x2B

Sets the default disk drive, using MS-DOS
system call OxOE

Sets the current attributes of a file, using
MS-DOS system call 0x43

Sets the date and time that the specified file
was last written, using MS-DOS system call
0x57

79

Microsoft C Run-Time Library Reference

_dos_settime

_dos_setvect

dos write

Sets the system time, using MS-DOS system
call 0x2D

Sets the current value of the specified inter-
rupt vector, using MS-DOS system call 0x25

Sends output to a file, using MS-DOS system
call 0x40

dosexterr Obtains register values from MS-DOS system
call 0x59

_enable Enables interrupts

FP_OFF Returns offset portion of a far pointer

FP_SEG Returns segment portion of a far pointer

_harderr Establishes a hardware error handler

_hardresume Returns to MS-DOS after a hardware error

_hardretn Returns to the application after a hardware
error

int86 Invokes MS-DOS interrupts

int86x Invokes MS-DOS interrupts with segment
register values

intdos Invokes MS-DOS system call using registers
other than DX and AL

intdosx Invokes MS-DOS system call using registers
other than DX and AL with segment register
values

“segread Returns current values of segment registers

These routines are implemented as functions and declared in dos.h.

The _harderr routine is used to define a hardware-error interrupt
handler. The _hardresume and _hardretn routines are used within a
hardware error handler to define the return from the error.

The dosexterr function obtains and stores the register values returned by
MS-DOS system call 0x59 (extended error handling). This function is pro-
vided for use with MS-DOS versions 3.0 and later.

The bdos routine is useful for invoking MS-DOS calls that use either or
both of the DX (DH/DL) and AL registers for arguments. However, bdos
should not be used to invoke system calls that return an error code in AX
if the carry flag is set; since the program cannot detect whether the carry
flag is set, it cannot determine whether the value in AX is a legitimate
value or an error value. In this case, the intdos routine should be

80

Run-Time Routines by Category

used instead, since it allows the program to detect whether the carry flag
is set. The intdos routine can also be used to invoke MS-DOS calls that
use registers other than DX and AL.

The intdosx routine is similar to the intdos routine, but is used when
ES is required by the system call, when DS must contain a value other
than the default data segment (for instance, when a far pointer is used),
or when making the system call in a large-model program. When calling
iﬁtdo?lx, give an argument that specifies the segment values to be used in
the call.

The int86 routine can be used to invoke MS-DOS interrupts. The int86x
routine is similar, but, like the intdosx routine, is designed to work with
large-model programs and far items, as described in the preceding para-
graph for intdosx.

The FP_ OFF and FP_SEG routines allow easy access to the segment
and offset portions of a far pointer value. FP_ OFF and FP_SEG are
implemented as macros and defined in dos.h.

The segread routine returns the current values of the segment registers.
This routine is typically used with the intdosx and int86x routines to
obtain the correct segment values.

The _chain_int routine is useful for chaining interrupt handlers together.
The _enable routine enables interrupts, while the _disable routine dis-
ables interrupts.

The routines prefixed with _dos_ are all direct system interfaces that use
the system calls noted above. More detailed information on these system
calls can be found in the MS-DOS Programmer’s Reference.

Note

Do not use the MS-DOS interface I/O routines in conjunction with the
console, low-level, or stream I/O routines.

4.15 Time
Routine Use
asctime Converts time from structure to character string
clock Returns the elapsed CPU time for a process

81

Microsoft C Run-Time Library Reference

ctime Converts time from long integer to character
string

difftime Computes the difference between two times

ftime Gets current system time as structure

gmtime Converts time from integer to structure

localtime Converts time from integer to structure with local
correction

mktime Converts time to a calendar value

_strdate Returns the current system date as a string

_strtime Returns the current system time as a string

time Gets current system time as long integer

tzset Sets external time variables from environment

time variable

utime Sets file-modification time

The time functions allow you to obtain the current time, then convert and
store it according to your particular needs. The current time is always
taken from the system time. The time and ftime functions return the
current time as the number of seconds elapsed since Greenwich mean time,
January 1, 1970. This value can be converted, adjusted, and stored in a
variety of ways, using the asctime, ctime, gmtime, localtime, and
mktime functions. The utime function sets the modification time for a
specified file, using either the current time or a time value stored in a
structure.

The clock function returns the elapsed CPU time for the calling process.

The ftime function requires two include files: sys\types.h and
sys\timeb.h. The ftime function is declared in sys\timeb.h. The utime
function also requires two include files: sys\types.h and sys\utime.h.
The utime function is declared in sys\utime.h. The remainder of the
time functions are declared in the include file time.h.

When you want to use ftime or localtime to make adjustments for local
time, you must define an environment variable named TZ. See Section 3.2
on the global variables daylight, timezone, and tzname for a discussion
of the TZ variable; TZ is also described on the tzset reference page in
Part 2 of this manual.

The _strdate and _strtime routines return strings containing the

current date and time, respectively, in the MS-DOS date and time format
rather than in the XENIX-style formats.

82

Run-Time Routines by Category

4.16 Variable-Length Argument Lists

Routine Use

va_arg Retrieves argument from list

va—end Resets pointer

va_start Sets pointer to beginning of argument list

The va_arg, va_end, and va_start routines are macros that provide

a portable way to access the arguments to a function when the function
takes a variable number of arguments. Two versions of the macros are
available: the macros defined in the vararg.h include file, which are com-
patible with the UNIX System V definition, and the macros defined in
stdarg.h, which conform to the proposed ANSI C standard.

For more information on the differences between the two versions and for
an explanation of how to use the macros, see their descriptions in the ref-
erence section of this manual.

4.17 Miscellaneous

Routine Use

abs Finds absolute value of integer

assert Tests for logic error

div Divides integers

getenv Gets value of environment variable

labs Finds absolute value of long integer

1div Divides long integers

longjmp Restores a saved stack environment

—Irotl Shifts a long int item to the left

_lIrotr Shifts a long int item to the right

_makepath Merges path-name components into a single, full
path name

perror Prints error message

putenv Adds or modifies value of environment variable

83

Microsoft C Run-Time Library Reference

rand Gets a pseudorandom number

—rotl Shifts an int item to the left

—rotr Shifts an int item to the right
_searchenv Searches for a given file on specified paths
setjmp Saves a stack environment

_splitpath Splits a path name into component pieces
srand Initializes pseudorandom series

swab Swaps bytes of data

The “miscellaneous” category covers a number of commonly used routines
that do not fit easily into any of the other categories. All routines except
assert, longjmp, and setjmp are declared in stdlib.h. The assert rou-
tine is a macro and is defined in assert.h. The setjmp.h and longjmp.h
functions are declared in setjmp.h.

The abs and labs functions return the absolute value of an int and a long
value, respectively. These two functions are defined in both the math.h
and stdlib.h include files.

The div and 1div functions perform division of integers and long integers,
respectively. They are both declared in stdlib.h.

The assert macro is typically used to test for program logic errors; it
prints a message when a given “assertion” fails to hold true. Defining the
identifier NDEBUG to any value causes occurrences of assert to be re-
moved from the source file, thus allowing you to turn off assertion check-
ing without modifying the source file.

The getenv and putenv routines provide access to the environment table.

The global variable environ also points to the environment table, but it is

recommended that you use the getenv and putenv routines to access and

iandif{ environment settings rather than accessing the environment table
irectly.

The perror routine prints the system error message, along with an op-
tional user-supplied message, for the last system-level call that produced
an error. The perror routine is declared in the include files stdlib.h and
stdio.h. The error number is obtained from the errno variable. The sys-
tem message is taken from the sys_errlist array. The errno variable is
only guaranteed to be set upon error for those routines that explicitly
mention the errno variable in the “Return Value” section of the reference
pages in Part 2 of this manual.

84

Run-Time Routines by Category

The rand and srand functions initialize and generate a pseudorandom
sequence of integers.

All four of the bit-shifting routines (—Irotl, _lrotr, _rotl, and _rotr) are
declared in stdlib.h. They are used to shift bits of an interger or long
integer to the left or right.

The setjmp and longjmp functions save and restore a stack environment.
These routines let you execute a nonlocal goto.

The swab routine (also declared in stdlib.hl) swaps bytes of binary data.
It is typically used to prepare data for transter to a machine that uses a
different byte order. The _makepath routine combines the elements of a
path name (drive, directory, file name, and extension) into a single “path-
name” file. The _splitpath routine breaks up a “path-name” file into its
component parts.

The _searchenv routine searches for a given file by examining a specified
environment variable, such as PATH.

85

INCIUDE FILES

0.1
9.2
5.3
5.4
9.9
9.6
5.7
2.8
9.9
5.10
9.11
09.12
5.13
.14
9.15
5.16
.17
.18
5.19
.20
9.21

INtrOdUCTION ovvvivveiiririnirenerinerenerreresnnerenssensesesc B9

blOSOIIoo-ooooo-Oooo0000000000¢0~o-0-00000000¢000000000000oo00000000000-0~090
.
Conlo.hu......................noo....u...-.....nu..un.....u......90

6 [0 = 1 W URURRPPRRTRRRRRRRRRRRRRS ¢ | |
1514 ¢ 1100 1 DO OSSP 92
{63117 N 1 DO rreeeens SRS ¢
float.h cecvvievirieieiiirteiirrrererrerrreeeeee . 93
graph.h.ocoovviiieiiniiniiniennn, vereeeeeneenn vereeeeeeernreeenanans 93
(o X 1 WO PPUPRRRPRRRL ¢
110 1117 | EOOUOOO U ¢ 7|
malloc.h.................. veeeees SO OUUPRPRRURRRRRN ¢
MEMOTY . Nttrriiiiriiiieieiiieeeeneeeieneeeeeeeeeeeeeeneeereeeeeeerees 95
PrOCESS.Naeeniiiiireciriecrreccnrecsnreeereeeerreeeeee. 98
SEATChLN wevvereeeeeeeeecc ver96

CHAPTER

9.22
5.23
5.24
5.25
5.26
5.27
5.28
9.29
5.30
9.31
9.32
9.33

88

SUAATE N ceeeeerireeeiccreeecerrieeeeceeccrsnnneessssssneneeneen 97

5176 1 [0 3 1 OO OPPUUPUUPUUPOPUUPPUPPPPRR ¢
SyS\10cKing.h c.c.cvevvveerviivcncrninvcnniicncnninnenenenne.. 100
sys\stat.h ..coeeenennne. veeeereesrrensnsessessensessasassnesanss 100
SYS\tImeb.h e 101
sys\types.h....cccceuce. reeereerseeaerrenaeeresraetaeraennns 101
sys\utime.h ...cccocovveveninrecncninrcrcnineeccennnneenee. 101
BIME. evveiieiiieiieeerreeccreecernieee e csrneeeeeeeenn 101
VArargs.Ne.eeeeeeeeiiieeieccrieeereecccnnnnneeeseennnneeeeeen. 102

Include Files

5.1 Introduction

The include files provided with the run-time library contain macro and
constant definitions, type definitions, and function declarations. Some rou-
tines require definitions and declarations from include files to work prop-
erly; for other routines, the inclusion of a file is optional. The description
of each include file in this chapter explains the contents of each include file
and lists the routines that use it.

A number of routines are declared in more than one include file. For
example, the buffer-manipulation functions memcecpy, memchr,
memcmp, memcpy, memicmp, memset, and movedata are declared
in both memory.h and string.h. These multiple declarations ensure
agreement with the names of XENIX and UNIX include files, as well as
with the names of include files under the proposed ANSI standard for C.
Name agreement also preserves compatibility with programs written in
earlier versions of C and further increases the portability of the programs
you write in Microsoft C.

The include files were named and organized to meet the following
objectives:

e To maintain compatibility with the names of include files on
XENIX and UNIX systems, and with the ANSI standard for C

e To reflect the logical categories of run-time routines (for example,
placing declarations for all memory-allocation functions in one file,
malloc.h)

e To require inclusion of no more than the minimum number of files
to use a given routine

Occasionally these goals conflict. For example, the ftime function uses
the structure type timeb. The timeb structure type is defined in the
include file sys\ timeb.h on XENIX systems; to maintain compatibility,
the same include file is used on MS-DOS. To minimize the number of re-
quired include files when using ftime, the ftime function is declared in
sys\tim}tleb.h, even though most of the other time functions are declared
in time.h.

5.2 assert.h

The include file assert.h defines the assert macro. The assert.h file must
be included when assert is used.

89

Microsoft C Run-Time Library Reference

The definition of assert is enclosed in an # ifndef preprocessor block. If
the identifier NDEBUG has not been defined (through a #define direc-
tive or on the compiler command linel), the assert macro is defined to test
a given expression (the “assertion”). If the assertion is false, a message is
printed and the program is terminated.

If NDEBUG is defined, however, assert is defined as empty text. This
disables all program assertions by removing all occurrences of assert from

the source file. Therefore, you can suppress program assertions by defining
NDEBUG.

5.3 bios.h

The bios.h include file contains functions declarations and structure
definitions for the BIOS service routines, listed below:

_bios_disk _bios__ memsize _bios_timeofday
_bios_equiplist _bios_ printer int86
_bios_keybrd _bios_serialcom int86x

5.4 conio.h

The conio.h include file contains function declarations for all of the con-
sole and port I/O routines, as listed below:

cgets getch kbhit ungetch
cprintf getche outp

cputs inp outpw

cscanf inpw putch

5.5 ctype.h

The ctype.h include file defines macros and constants and declares a glo-
bal array used in character classification. The macros defined in ctype.h
are listed below:

90

Include Files

isalnum iscntrl islower isspace toascii —tolower
isalpha isdigit isprint isupper tolower —toupper
isascii isgraph ispunct isxdigit toupper

You must include ctype.h when using these macros or the macros will be
undefined.

The toupper and tolower macros are defined as conditional operations.
These macros evaluate their argument twice, and so produce unexpected
results for arguments with side effects. To overcome this problem, you can
remove the macro definitions of toupper and tolower and use the func-
tions of the same names; see Section 4.3, “Character Classification and
Conversion,” for details. Declarations for the function versions of tolower
and toupper are given in stdlib.h.

In addition to macro definitions, the ctype.h include file contains the
following:

1. A set of manifest constants defined as bit masks. The bit masks

correspond to specific classification tests. For example, the con-
stants - UPPER and -LOWER are defined to test for an upper-
case or lowercase letter, respectively.

2. A declaration of a global array, —ctype. The _ctype array is a
table of character-classification codes based on ASCII character
codes.

5.6 direct.h

The direct.h include file contains declarations for these functions:
chdir
getewd

mkdir
rmdir

5.7 dos.h

The dos.h include file contains macro definitions, function declarations,
and type definitions for the MS-DOS interface functions.

91

Microsoft C Run-Time Library Reference

The FP_.SEG and FP_ OFF macros are defined to get or set the seg-
ment and offset portions of a far pointer. You must include dos.h when
using these macros or they will be undefined.

The following functions are declared in dos.h:

bdos _dos_getdate —dos_setblock _harderr
—chain_intr _dos_getdiskfree - _dos_setdate ~hardresume
_disable —dos_getdrive _dos_setdrive _hardretn
_dos_allocmem _dos_getfileattr _dos_setfileattr int86
_dos_close _dos_getftime _dos_setftime int86x
_dos_creat —dos_gettime _dos_settime intdos
dos_creatnew _dos_getvect _dos_setvect intdosx
_dos_findfirst —dos_keep —dos_ write segread
—dos_findnext _dos_open dosexterr

_dos_freemem _dos_read _enable

The dos.h file also defines the WORDREGS and BYTEREGS struc-
ture types, used to define sets of word registers and byte registers, respec-
tively. These structure types are combined in the REGS union type. The
REGS union serves as a general-purpose register type, holding both regis-
ter structures at one time. The SREGS structure type defines four mem-
bers to hold the ES, CS, SS, and DS segment-register values.

The DOSERROR structure is defined to hold error values returned by
the I\)/IS-DOS system call 0x59 (available under MS-DOS Versions 3.0 and
later).

Note that WORDREGS, BYTEREGS, REGS, SREGS, and
DOSERROR are tags, not typedef names. (See the Microsoft C' Lan-
guage 1§’eference for a discussion of type definitions, tags, and typedef
names.

5.8 errno.h

The errno.h include file defines the values used by system-level calls

to set the errno variable. The constants defined in errno.h are used by
the perror function to index the corresponding error message in the glo-
bal variable sys_ errlist.

The constants defined in errno.h are listed with the corresponding error
messages in Appendix A, “Error Messages.”

92

Include Files

5.9 fentl.h

The include file fentl.h defines flags used in the open and sopen calls to
specify the type of operations for which the file is opened and to control
whether the file is interpreted in text or binary mode. This file should
always be included when open or sopen is used.

The function declarations for open and sopen are not in fentl.h; instead,
they are given in the include file io.h.

5.10 float.h

The include file float.h contains definitions of constants that specify the
ranges of floating-point data types; for example, the maximum number of
digits for objects of type double (DBL_DIG = 152, or the minimum
exponent for objects of type float (FLT_MIN_ = -125).

The float.h file also contains function declarations for the math functions
—clear87, _control87, _fpreset, and _status87, as well as definitions

of constants used by these functions.

In addition, float.h defines floating-point-exception subcodes used with
SIGFPE to trap floating-point errors (see Section 5.21, “signal.h”).

5.11 graph.h

The graph.h include file declares all the routines in the graphics library,

listed below:

_arc _gettextcolor _setbkcolor
_clearscreen _gettextposition _setcliprgn
_displaycursor _getvideoconfig _setcolor
_ellipse _imagesize _setfillmask
_floodfill _lineto _setlinestyle
_getbkcolor —moveto _setlogorg
—getcolor —outtext _setpixel
_getcurrentposition _pie _settextcolor
_getfillmask _putimage _settextposition
_getimage _rectangle _settextwindow
_getlinestyle _remapallpalette _setvideomode
_getlogcoord _remappalette _setviewport
—getphyscoord _selectpalette _setvisualpage
_getpixel _setactivepage _wrapon

93

Microsoft C Run-Time Library Reference

It also defines several constants and structures used with the graphics rou-
tines. The manifest constants - GBORDER and - GFILLINTERIOR
are used in the control parameter of the —ellipse, — pie, and —_rectangle
drawing routines. The xycoord structure stores position coordinates in
pixels while the rccoord structure stores position coordinates in character
rows and columns. The videoconfig structure stores information about
the graphics hardware environment.

5.12 io.h

The include file io.h contains function declarations for most of the file-
handling and low-level-I/O functions, as listed below:

access dup2 mktemp tell
chmod eof open umask
chsize filelength read unlink
close isatty rename write
creat locking setmode

dup Iseek sopen

The exceptions are fstat and stat, which are declared in sys\stat.h.

5.13 limits.h

The include file limits.h contains definitions of constants that specify the
ranges of integer and character data types; for example, the maximum
value for an object of type char (CHAR_MAX = 1273.

5.14 malloc.h

The include file malloc.h contains function declarations for the memory-
allocation functions listed below:

alloca _fheapwalk _heapchk! —_memimax —nmalloc
calloc _fmalloc _heapset _msize _nmsize
—expand _fmsize _heapwalk! _nfree realloc
_firee free hfree _nheapchk sbrk
_fheapchk _freect malloc _nheapset stackavail
_fheapset halloc —memavl _nheapwalk

1 Implemented as a macro.

94

Include Files

The malloc.h file also contains the type definition for the structure
—heapinfo, as well as several manifest constants used by the heap func-
tions.

5.15 math.h

The include file math.h contains function declarations for all floating-
point math routines, plus the atof routine, as listed below:

abs bessel! fabs ldexp sin
acos cabs floor log sinh
asin ceil fmod log10 sqrt
atan cos frexp matherr tan
atan2 cosh hypot modf tanh
atof exp labs pow

The math.h include file also defines two structures, exception and
complex. The exception structure is used with the matherr function,
and the complex structure is used to declare the argument to the cabs
function.

The HUGE_ VAL value is returned on error from some math routines.
For compatibility with XENIX, HUGE is defined as the equivalent of
HUGE_VAL,; both are defined in math.h. HUGE and HUGE_ VAL
may be implemented either as manifest constants or as global variables
with double type and can be used interchangeably. The value of
HUGE_ VAL or HUGE must not be changed in a # define directive.
Throughout Part 2, “Reference,” references to HUGE_ VAL are under-
stood to mean either HUGE or HUGE_VAL.

The math.h file also defines manifest constants passed in the exception

structure when a math routine generates an error (for example,
DOMAIN, SING, EDOM, and ERANGE).

5.16 memory.h

The include file memory.h contains function declarations for the seven
buffer-manipulation routines listed below:

1 The bessel routine does not correspond to a single function but to six functions named jO,
i1, jn, y0, y1, and yn.

95

Microsoft C Run-Time Library Reference

memecepy
memechr
memcmp
memcpy
memicmp
memset
movedata

5.17 process.h

The include file process.h declares all process-control functions glisted
below) except for the signal function, which is declared in signal.h:

abort execvp spawnlp
execl execvpe spawnlpe
execle exit spawnv
execlp —exit spawnve
execlpe getpid spawnvp
execv spawnl spawnvpe
execve spawnle system

The process.h include file also defines flags used in calls to spawn func-
tions to control execution of the child process. Whenever you use one of

the eight spawn functions, you must include process.h so the flags are

defined.

5.18 search.h

The include file search.h declares the functions bsearch, Isearch, lfind,
and gsort. '

5.19 setjmp.h

The include file setjmp.h contains function declarations for the setjmp
and longjmp functions. It also defines the machine-dependent buffer,
jmp_buf, used by the setjmp and longjmp functions to save and restore
the program state.

96

Include Files

5.20 share.h

The include file share.h defines flags used in the sopen function to set the
sharing mode of a file. This file should be included whenever sopen is
used. The function declaration for sopen is given in the file io.h. Note
thztlthe sopen function should only be used under MS-DOS Versions 3.0
and later.

5.21 signal.h

The include file signal.h defines the values for the SIGABRT, SIGINT,
SIGFPE, SIGILL, SIGSEGYV, and SIGTERM signals.

C 4.0 Difference

Microsoft C, Version 4.0, doesn’t recognize the SIGABRT, SIGILL,
and SIGSEGYV signals.

The signal and raise functions are also declared in signal.h.

5.22 stdarg.h

The include file stdarg.h defines macros that allow you to access argu-

ments in functions with variable-length argument lists, such as vprintf.
These macros are defined to be machine independent, portable, and com-
patible with the developing ANSI standard for C. (Also see Section 5.31,

varargs.h.)

5.23 stddef.h

The include file stddef.h contains definitions of the commonly used vari-
ables and types listed below:

97

Microsoft C Run-Time Library Reference

Item Description

NULL The null pointer (also defined in stdio.h)

errno A global variable containing an error message
number (also defined in errno.h)

ptrdiff_t Synonym for the type (int) of the difference

between two pointers

size_t Synonym for the type (unsigned int) of the
value returned by sizeof

5.24 stdio.h

The include file stdio.h contains definitions of constants, macros, and
types, along with function declarations for stream I/O functions. The
stream I/O functions are listed below:

bsearch fgetpos fscanf putc! setvbuf
calloc fgets fseek putchar! tempnam
clearerr fileno! fsetpos puts tmpfile
fclose flushall ftell putw tmpnam
fcloseall fopen fwrite gsort ungetc
fdopen fprintf gete! remove vfprintf
feof! fpute getchar! rename vprintf
ferror fputchar gets rewind vsprintf
fllush fputs getw rmtemp

fgetc fread perror scanf

fgetchar freopen printf setbuf

The stdio.h file defines a number of constants; some of the more common
ones are listed below:

Item Description

BUFSIZ Buffers used in stream I/O are of size BUFSIZ by
default. This value is generally used to establish the size
of system-allocated buffers. It is also required when you
call setbuf to allocate your own buffers.

-NFILE The - NFILE constant defines the number of open files
allowed at one time. The files stdin, stdout, stderr,
stdaux, and stdprn are always open, so you should
include them when calculating the number of files your
program opens.

1 Implemented as a macro.

98

Include Files

EOF The EOF value is defined to be the value returned by
an I/O routine when the end of the file (or in some
cases, an error) is encountered.

NULL The NULL value is the null-pointer value. It is defined
as 0 in small- and medium-model programs and as OL in
large-model programs.

You can use the above constants in your programs, but you should not
alter their values.

The stdio.h file also defines a number of flags used internally to control
stream operations.

The FILE structure type is defined in stdio.h. Stream routines use a
pointer to the FILE type to access a given stream. The system uses the
information in the FILK structure to maintain the stream.

The FILE structures are stored as an array called —iob, with one entry
per file. Therefore, each element of —iob is a FILE structure correspond-
ing to a stream. When a stream is opened, it is assigned the address of an
entry in the _iob array (a FILE pointer). Thereafter, the pointer is used
for references to the stream.

5.25 stdlib.h

The stdlib.h include file contains function declarations for the following
functions:

abort ecvt 1div perror srand
abs exit _Irotl putenv strtod
atexit _exit _Irotr gsort strtol
atof fevt Itoa rand strtoul
atoi free _makepath realloc swab
atol gevt malloc _rotl system
bsearch getenv max _rotr tolower
calloc itoa min _searchenv toupper
div labs onexit _splitpath ultoa

The tolower and toupper routines are functions in the run-time library,
but they are also implemented as macros in the include file ctype.h. The
declarations for tolower and toupper are enclosed in an # ifndef block;
they take effect only if the corresponding macro definitions in ctype.h
have been suppressed by removing the definitions of tolower and
toupper. For instructions on using these routines as macros or as func-
tions, see Section 4.3, “Character Classification and Conversion.”

99

Microsoft C Run-Time Library Reference

The stdlib.h file also includes the definition of the type onexit_t, as well
as declarations of the following global variables:

_doserrno _osmajor _psp
environ _osminor sys_errlist
errno _osmode sys_nerr
_fmode _osversion

5.26 string.h

The string.h include file declares the string-manipulation functions, as
listed below:

memccpy movedata strdup strncpy strspn
memchr strcat strerror strnicmp strstr
mememp strchr stricmp strnset strtok
memcpy strcmp strlen strpbrk strupr
memicmp strempi striwr strrchr

memmove strcpy strncat strrev

memset strespn strncmp strset

5.27 sys\locking.h

The locking.h include file (conventionally stored in a subdirectory named
sys) contains definitions of flags used in calls to locking. Whenever you
use the locking routine, you must include this file so that the locking flags
are defined.

The function declaration for locking is given in the file io.h. Note that

fhe locking function should be used only under MS-DOS Versions 3.0 and
ater.

5.28 sys\stat.h

The stat.h include file (conventionally stored in a subdirectory named
sys) defines the structure type returned by the fstat and stat functions
and defines flags used to maintain file-status information. It also contains

100

Include Files

function declarations for the fstat and stat functions. Whenever you use
the fstat or stat functions, you must include this file so that the appropri-
ate structure type (named stat) is defined.

5.29 sys\timeb.h

The include file timeb.h (conventionally stored in a subdirectory named
sys) defines the timeb structure type and declares the ftime function,
which uses the timeb structure type. Whenever you use the ftime func-
tion you must include timeb.h so that the structure type is defined.

5.30 sys\types.h

The include file types.h (conventionally stored in a subdirectory named
sys) defines types used by system-level calls to return file-status and time
information. You must include this file whenever the sys\stat.h,
sys\utime.h, or sys\timeb.h file is included.

5.31 sys\utime.h

The include file utime.h (conventionally stored in a subdirectory named

sys) defines the utimbuf structure type and declares the utime function,
which uses the utimbuf type. Whenever you use the utime function you
must include utime.h so that the structure type is defined.

5.32 time.h

The time.h include file declares the following time functions:

asctime difftime mktime time
clock gmtime _strdate tzset
ctime localtime _strtime

The ftime and utime functions are declared in sys\timeb.h and
sys\utime.h, respectively.

101

Microsoft C Run-Time Library Reference

The time.h file also defines both the tm structure, used by the asctime,
gmtime, and localtime functions, and the time_t type, used by the
difftime function.

5.33 varargs.h

The include file varargs.h defines macros for accessing arguments in func-
tions with variable-length argument lists, such as vprintf. These macros
are defined to be machine independent, portable, and compatible with
UNIX System V. (See also Section 5.22 on stdarg.h.)

102

R EFERENCE

PART?2

<> R EFERENCE

The second part of this manual is the reference
section. Each routine in the run-time library is
described here in alphabetical order. In some
cases, similar or related routines are clustered in
the same description, with differences noted
where appropriate.

Descriptions follow the format illustrated on the
opposite page. Below the Name of the routine,
the Summary shows an exact syntax model for it
and the Description outlines its actual effects.
The Return Value is often useful to test for error
conditions before using the results of a function
call. See Also lists similar or related routines.
The Example shows how the routine is used.

105

N Summary

include <process.h> Required only for function declarations
include <stdlib.h> Use either process.h or stdlib.h
void abort(void);

B Description
The abort function prints the message

Abnormal program termination

to stderr, then calls raise(SIGABRT). The action taken in response to
the SIGABRT signal depends on what action has been defined for that
signal in a prior call to the signal function. The default SIGABRT action
is for the calling process to terminate with exit code 3, returning control
to the parent process or operating system.

C 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, abort prints the
termination message and then terminates, without calling
raise(SIGABRT).

The abort function does not flush stream buffers or do atexit/onexit pro-
cessing.

M Return Value

By default, abort returns an exit code of 3 to the parent process or
operating system. ,

B See Also

exec functions, exit, — exit, raise, signal, spawn functions

107

abort

Example

#include <stdio.h>
main (argc, argv)
int argc:

char *argv([]:

FILE #*stream:;
if ((stream = fopen (argv[argc-1],"r")) == NULL)
{
fprintf (stderr,
"%s couldn't open file %s\n",argv[0],argv[argc-1]):
abort () ;
}

}

/* Note: the program name is stored in argv([0] only in
*%x DOS versions 3.0 and later; in versions prior to
** 3.0, argv[0] contains the string "C"

*/

Sample command line:
update employ.dat
Output:

C:\BIN\UPDATE.EXE couldn't open file employ.dat

Abnormal program termination

This program opens the file named on the command line for stream I/O.
If this attempt fails, the program writes an error message to stderr and
aborts.

108

abs

Summary

include <stdlib.h> Required only for function declarations
int abs(n);

int n; ‘ Integer value

Description

The abs function returns the absolute value of its integer argument n.

Return Value

The abs function returns the absolute value of its argument. There is no
error return.

See Also
cabs, fabs, labs

Example

#include <stdlib.h>
main ()
int x = -4, y:

y = abs (x):
printf ("%d\t%d\n",x,y):
}

Output:
-4 4

This program computes and displays the absolute value of —4.

109

access

Summary

include <io.h> Required only for function declarations

int access(path, mode);

char *path; File or directory path name
int mode; Permission setting
Description

With files, the access function determines whether or not the specified file
exists and can be accessed in mode. The possible mode values and their
meanings in the access call are as follows:

Value Meaning

00 Check for existence only

02 Check for write permission

04 Check for read permission

06 Check for read and write permission

With directories, access determines only whether the specified directory
exists; under MS-DOS, all directories have read and write access.

Return Value

The access function returns the value 0 if the file has the given mode. A
return value of -1 indicates that the named file does not exist or is not
accessible in the given mode, and errno is’set to one of the following
values:

Value Meaning

EACCES Access denied: the file’s permission setting does not
allow the specified access.

ENOENT File or path name not found.

110

acCcCess

B See Also

chmod, fstat, open, stat

¥ Example

#include <io.h>
#include <fentl.h>
#include <stdio.h>
int fh;

main ()

/* check for write permission:x/

if ((access("data", 2)) == -1)
perror ("Data file not writable"):
exit (1):

else

fh = open ("data", O_WRONLY) ;
printf("Data file writable and opened for output"):;

by

This example uses access to check the file named data to see if writing is
allowed.

111

acos

Summary

include <math.h>

double acos(z);
double z; Value whose arccosine is to be calculated

Description

The acos function returns the arccosine of zin the range 0 to m. The value
of z must be between —1 and 1.

Return Value

The acos function returns the arccosine result. If z is less than ~1 or
greater than 1, acos sets errno to EDOM, prints a DOMAIN error
message to stderr, and returns 0. Error handling can be modified with
the matherr routine.

See Also

asin, atan, atan2, cos, matherr, sin, tan

Example

#include <math.h>
#include <stdio.h>

extern int errno:
main ()
float x, y:
for (errno = EDOM; errno == EDOM; y = acos (x))
printf ("Cosine = ");
scanf ("%f", &x):

errno = 0O;

}
printf ("Arccosine of %f = %f\n".x.y):

112

acos

This program prompts for input until it gets a value in the range -1 to 1.
Input values outside this range produce an error message. When a correct
value is entered, the program prints the arccosine of that value.

113

alloca

Summary

include <malloe.h> Required only for function declarations

void *alloca(size);

size_t size; Bytes to be allocated from stack

Description

The alloca routine allocates size bytes from the program’s stack. The allo-
cated space is automatically freed when the calling function is exited.
Return Value

The alloca routine returns a char pointer to the allocated space, which is
guaranteed to be suitably aligned for storage of any type of object. To get
a pointer to a type other than char, use a type cast on the return value.
The return value is NULL if the space cannot be allocated.

See Also

calloc, malloc, realloc

Warning

The pointer value returned by alloca should never be passed as an
argument to free, nor should alloca be used in an expression that is
an argument to a function.

Example

#include <malloc.h>
main ()

int *intarray:
intarray = (int *)alloca{1Oxsizeof (int)):

This example calls alloca to allocate enough stack space for 10 integers.

114

— arc

Summary

include <<graph.h>

short far _arc (21, y1, 22, y2, 28, y3, 24, y4)

short z1, y1; Upper-left corner of bounding rectangle
short z2, y2; Lower-right corner of bounding rectangle
short z3, y3 Start vector

short =4, y4; End vector

Description

The —arc function draws an elliptical arc. The center of the arc is the
center of the bounding rectangle defined by the logical points (21, y1) and
(22, y2). The arc starts at the point where 1t intersects the vector defined
by (28, y8) and ends where it intersects the vector defined by (24, y4).

The arc is drawn using the current color, moving in a counterclockwise
direction. Since an arc does not define a closed area, it is not filled.

Return Value

The —arc function returns a nonzero value if the arc is successfully drawn;
otherwise, it returns O.

See Also

—ellipse, _lineto, — pie, —_rectangle, _setcolor

Example

#include <stdio.h>
#include <graph.h>

main ()

_setvideomode (_MRES16COLOR) ;
_arc(80, 50, 240, 150, O, 50, 240, 150):
while (!kbhit()): /* strike any key to clear screen */
_setvideomode (_DEFAULTMODE) ;
}

115

—arc

This program draws the arc shown in Figure R.1.

/’ﬁ

Figure R.1 Output of _arc Program

116

asctime

B Summary

#include <time.h>

char *asctime(time);

struct tm { Time/date structure:
int tm_ sec; Seconds after the minute (0-59)
int tm_ min; Minutes after the hour (0-59)
int tm_ hour; Hours since midnight (0-23)
int tm_ mday; Day of the month (0-31)
int tm_ mon; Months since January (0-11)
int tm_ year; Years since 1900
int tm_ wday; Days since Sunday (0-6)
int tm_yday; Days since January 1 (0-365)
int tm_ isdst; Daylight-saving-time flag

} tm *time;

B Description
The asctime function converts a time stored as a structure to a char-
acter string. The time value is usually obtained from a call to gmtime or
localtime, both of which return a pointer to a tm structure, defined in
time.h. (See gmtime for a description of the tm structure fields.)

The string result produced by asctime contains exactly 26 characters and
has the form of the following example:

Wed Jan 02 02:03:55 1980\n\0
A 24-hour clock is used. All fields have a constant width. The new-line
character (*\n’) and the null character (*\ 0°) occupy the last two positions
of the string,.

B Return Value

The asctime function returns a pointer to the character string result.
There is no error return.

117

asctime

See Also

ctime, ftime, gmtime, localtime, time, tzset

Note

The asctime and ctime functions use a single statically allocated
buffer to hold the return string. Each call to one of these routines de-
stroys the result of the previous call.

Example

#include <time.h>
#include <stdio.h>

struct tm *newtime;
time_t aclock:

main ()
time (&aclock) ; /* get time in seconds x/
/* Convert time to struct tm: #*/

newtime = localtime (&aclock) ;
printf ("the current date and time are %s\n",

/* Print local time as a string: x/

asctime (newtime)) ;

This program places the system time in the long integer clock, trans-
lates it into the structure tm, and then converts it to string form for out-
put, using asctime.

118

asin

Summary

include <math.h>

double asin(z);

double z; Value whose arcsine is to be calculated
Description

The asin function calculates the arcsine of z in the range -7 /2 to 7 /2.
The value of z must be between —1 and 1.

Return Value

The asin function returns the arcsine result. If z is less than -1 or greater
than 1, asin sets errno to EDOM, prints a DOMAIN error message to
stderr, and returns 0.

Error handling can be modified by using the matherr routine.

See Also

acos, atan, atan2, cos, matherr, sin, tan

119

asin

Example

#include <math.h>
#include <stdio.h>

extern int errno;
main ()

float x, y:
for (errno = EDOM: errno == EDOM; y = asin(x))

printf ("Sine = "):
scanf ("%f", &x):
errno = O;

}
printf ("Arcsine of %f = %f\n".,x.y):
This program prompts for input until the input is in the range -1 to 1. If
the input is outside this range, the program displays an error message.

When correct input is entered, the program prints the arcsine of the input
value. :

120

assert

B Summary

include <assert.h>
include <stdio.h>

void assert(ezpression);

B Description

The assert routine prints a diagnostic message and calls the abort rou-
tine if expression is false (0). The diagnostic message has the form

Assertion failed: expression, file filename, line linenumber
where filename is the name of the source file and linenumber is the line

number of the assertion that failed in the source file. No action is taken if
expression is true (nonzero).

C 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, assert doesn’t
display ezxpression in the diagnostic message.

The assert routine is typically used to identify program logic errors. The
given expression should be chosen so that it holds true only if the program
1s operating as intended. After a program has been debugged, the special
“no debug” identifier NDEBUG can be used to remove assert calls from
the program. If NDEBUG is defined (by any value) with a /D command-
line option or with a #define directive, the C preprocessor removes all
assert calls from the program source.

The assert routine is implemented as a macro.

H Return Value

There is no return value.

121

assert

See Also

abort, raise, signal

¥ Example

#include <stdio.h>
#include <assert.h>

analyze_string (string, length)
char *string:;

int length:
assert (string != NULL): /* Cannot be NULL x/
assert (*string != '\0'): /* Cannot be empty x/
assert(length > 0O): /* Length must be positive #*/

printf("Passed assertions.\n"):

main ()

analyze_string("abc", 3):
analyze_string("", 0):

In this program, the analyze_string function uses the assert func-
tion to test several conditions related to string and length. If any of
the conditions fails, the program prints a message indicating what caused
the failure.

122

atan, atan2

Summary

include <math.h>

double atan(z); Calculate arctangent of z
double atan2(y, z); Calculate arctangent of y/z
double z, y;

Description

The atan and atan2 functions calculate the arctangent of z and y/z,
respectively: atan returns a value in the range -7 /2 to m/2; atan2
returns a value in the range -7 to 7. The atan2 function uses the signs
of both arguments to determine the quadrant of the return value.

Return Value

Both atan and atan2 return the arctangent result. If both arguments of
atan2 are 0, the function sets errno to EDOM, prints a DOMAIN error
message to stderr, and returns O.

Error handling can be modified by using the matherr routine.

See Also

acos, asin, cos, matherr, sin, tan

Example

#include <math.h>
#include <stdio.h>

main ()

printf ("%.7f\n",atan (1.0)): /* /4 x/
printf ("%.7f\n",atan2(-1.0,1.0); /* -®/4 x/

This program calculates and displays the arctangent of 1 and —1.

123

atexit

Summary

include <<stdlib.h> Required only for function declarations

int atexit(func);
void (*func)(void); Function to be called

Description

The atexit function is passed the address of a function (func) to be called
when the program terminates normally. Successive calls to atexit create a
register of functions that are executed “last in, first out.” No more than 32
functions can be registered with atexit, and it returns the value NULL if
the number of functions exceeds 32. The functions passed to atexit cannot
take parameters.

Return Value

The atexit function returns 0 if successful, or a nonzero value if not (e.g.,
there are already 32 exit functions defined).

See Also

abort, exit, _exit, onexit

124

atexit

® Example

This program establishes several functions to be executed at the conclu-
sion of the program. It also demonstrates how these functions are executed
last in, first out.

#include <stdlib.h>
#include <stdio.h>

main ()
int fnl(void), fn2(void), fn3(void), fn4(void):
atexit (fnl);
atexit (fn2);
atexit (fn3):
atexit (fn4) ;

printf ("This is executed first.\n"):
}

int fnl ()

printf ("next.\n"):

int fn2()

printf ("executed ")

int fn3()

printf("is ")

int fn4()

printf ("This ");

Output:

This is executed first.
This is executed next.

This program pushes four functions onto the stack of functions to be exe-

cuted when atexit is called. When the program exits, these programs are
executed on a last-in, first-out basis.

125

atof, atol

Summary

include <math.h> '
include <stdlib.h> Use either math.h or stdlib.h

double atof(string); Converts string to double

const char *string; String to be converted

include <stdlib.h> Required only for function declarations
int atoi(string); Converts string to int

long atol(string); Converts string to long

const char *string; String to be converted

Description

These functions convert a character string to a double-precision floating-
point value (atof), an integer value (atoi), or a long integer value (atol).
The input string is a sequence of characters that can be interpreted as a
numerical value of the specified type. The function stops reading the input
string at the first character it cannot recognize as part of a number. This
character may be the null character (\0) terminating the string.

The atof function expects string to have the following form:

[whitespace] [{ + | —} | [digits] . digits] [{d | D | e | E} [sign] digits]

A whitespace consists of space and/or tab characters, which are ignored;
sign is either + or —; and digits are one or more decimal digits. If no digits
appear before the decimal point, at least one must appear after the deci-
mal point. The decimal digits may be followed by an exponent, which con-
sists of an introductory letter (d, D, e, or E) and an optionally signed
decimal integer.

The atoi and atol functions do not recognize decimal points or exponents.
The string argument for these functions has the form

[whitespace][sign] digits

where whitespace, sign, and digits are exactly as described above for atof.

126

atof, atol

® Return Value
Each function returns the double, int, or long value produced by inter-
preting the input characters as a number. The return value is O (OL for
atol) if the input cannot be converted to a value of that type. The return
value is undefined in case of overflow.

B See Also

ecvt, fevt, gevt

®E Example

#include <math.h>
#include <stdio.h>

extern long atol():

main ()
{
char *s; double x; int i; long 1;
s =" -2309.12E-15"; /* test of atof x/
= atof(s):

prlntf("ye\t" x);

s "7.8912654773d210" /* test of atof */
X atof (s);
printf ("%e\t",x)

s =" -9885"; /* test of atoi x/
i = atoi(s):

prlntf("7d\t",l)

s = "98854 dollars": /* test of atol x/
1l = atol(s):

printf ("%1d\n",1):
}

Output:
-2.309120e-012 7.891265e+210 -9885 98854
This program shows how numbers stored as strings can be converted to

numerical values using the atof, atoi, and atol functions. Note that the
extern declaration is needed only if the include file stdlib.h is absent.

127

bdos

Summary

include <dos.h>

int bdos(dosfn, dosdz, dosal);

int dosfn; Function number
unsigned int dosdz; DX register value
unsigned int dosal; AL register value

M Description

The bdos function invokes the MS-DOS system call specified by dosfn
after placing the values specified by dosdz and dosal in the DX and AL
registers, respectively. The bdos function executes an INT 21H instruction
to invoke the system call. When the system call returns, bdos returns the
contents of the AX register.

The bdos function is intended to be used to invoke MS-DOS system calls
that either take no arguments or only take arguments in the DX (DH,
DL) and/or AL registers.

B Return Value
The bdos function returns the value of the AX register after the system
call has completed.

B See Also

intdos, intdosx

Warning

This call should not be used to invoke system calls that indicate errors
by setting the carry flag. Since C programs do not have access to this
flag, the status of the return value cannot be determined. The intdos
function should be used in these cases.

128

bdos

® Example

#include <dos.h>
char *buffer = "Enter file name:$":

/* Call 9 prints a string terminated by "$" x/
/* AL is not needed, so O is used x/

bdos (9, (unsigned)buffer,O):
}

This example calls MS-DOS function 9H (display string) to display a
prompt. The prompt is the string that buf fer points to. This example
works correctly only in small- and medium-model programs.

129

bessel

Summary

include <math.h>
double jO(z);

double j1(z);

double jn(n, z);
double yO(z);

double y1(z);

double yn(n, z);

double z; Floating-point value
int n; Integer order
Description

The jO, j1, and jn routines return Bessel functions of the first kind—or-
ders 0, 1, and n, respectively.

The y0, y1, and yn routines return Bessel functions of the second kind—
orders 0, 1, and n, respectively. The argument x must be positive.

Return Value
These functions return the result of a Bessel function of z.

For y0, y1, or yn, if z is negative, the routine sets errno to EDOM,
prints a DOMAIN error message to stderr, and returns -HUGE_VAL.

Error handling can be modified by using the matherr routine.

See Also

matherr

130

bessel

® Example

#include <math.h>
#include <stdio.h>

main ()

double x, y, z:

X = 2;
y = jO(x):
= yn(3,x):

z
printf("y = %f and z = %f", y. z):

This program sets y to the Bessel function of the first kind, order 0, and
sets z to the Bessel function of the second kind, order n.

131

—bios_disk

Summary

include <bios.h>

unsigned _ bios_ disk(service, diskinfo);

unsigned service; Disk function

struct diskinfo_ t { Disk parameters:
unsigned drive; Drive number
unsigned head; Head number
unsigned track; Track number
unsigned sector; Start sector number
unsigned nsectors; Number of sectors to read,

write, or compare

void far *buffer; Memory location to write

to, read from, or compare
} *diskinfo;
Description
The _bios_ disk routine uses INT 0x13 to provide several disk-access func-
tions. The service parameter selects the function desired, while the diskinfo

structure provides the necessary parameters.

The service argument can be set to one of the following manifest con-
stants:

Constant Function

—DISK_RESET Forces the disk controller to do a hard reset,
preparing for floppy-disk I/O. This is useful
after an error occurs in another operation,
such as a read. If this service is specified, the
diskinfo argument is ignored.

-DISK_STATUS Obtains the status of the last disk operation.
Status is returned in the high-order bits of
the return value, as listed below:

132

—bios_disk

-DISK_READ

Bits Meaning

0x01 ** Invalid request or a bad com-
mand

0x02%* Address mark not found

0x04 %% Sector not found

0x05%* Reset failed

0x07 %% Drive parameter activity failed

0x09** DMA overrun

Ox0A ** Bad sector flag detected

0x10%* Data read (ECC) error

0x11%x* Corrected data read (ECC)
error

0x20%* Controller failure

0x40%* Seek error

0x80+x* Disk timed out or failed to
respond

OxAAx*x Drive not ready

0xBBx** Undefined error

0xCCsxx Write fault on drive

OxEQx** Status error

If this service is specified, the diskinfo argu-
ment is ignored.

Reads one or more disk sectors into memory.
This service uses all fields of the structure
that diskinfo points to, as defined in the Sum-
mary. If no error occurs, the function returns
0 in the high-order byte and the number of
sectors read in the low-order byte. If there is
an error, the high-order byte will contain a
set of status flags, as defined under
—DISK_STATUS (above).

133

—bios_disk

~DISK_WRITE Writes data from memory to one or more disk
sectors. This service uses all fields of the
structure that diskinfo points to, as defined in
the Summary. If no error occurs, the function
returns O in the high-order byte and the
number of sectors written in the low-order
byte. If there.is an error, the high-order byte
will contain a set of status flags, as defined
under — DISK_STATUS (above).

~-DISK_VERIFY Checks the disk to be sure the specified sec-
tors exist and can be read. It also runs a CRC
(cyclic redundancy check) test. This service
uses all fields (except buffer) of the structure
that diskinfo points to, as defined in the Sum-
mary. If no error occurs, the function returns
0 in the high-order byte and the number of
sectors compared in the low-order byte. If
there is an error, the high-order byte will con-

tain a set of status flags, as defined under
- DISK_STATUS (above).

-DISK_FORMAT Formats the track specified by diskinfo. The
head and track fields indicate the track to for-
mat. Only one track can be formatted in a
single call. The buffer field points to a set of
sector markers. The format of the markers
depends on the type of disk drive; see the
Technical Reference Manual for the IBM PC
to determine the marker format. There is no
return value.

N Example

#include <conio.h>
#include <stdio.h>
#include <bios.h>

134

—bios_disk

main ()

unsigned status = O;
struct diskinfo_t disk_info;

disk_info.drive

disk_info.head = 10; /* invalid head number x/
disk_info.track = 1:
disk_info.sector = 2
disk_info.nsectors = 8:

status = _bios_disk (_DISK_VERIFY, &disk_info):
if (status == 0x400) {
printf ("return value: %x\n", status):
printf ("seek error\n"):

printf ("hit return to try again with valid head number\n"):;
getchar ():
disk_info.head = O;
status = _bios_disk (_DISK_VERIFY, &disk_info):
if (status != 0x400) {
printf ("return value: %x\n", status):
printf ("no seek error\n"):

}

This program first attempts to verify a disk by using an invalid disk head
number. After printing the return value error code, the program verifies
the disk by using a valid disk head code.

135

— bios_ equiplist

Summary

include <bios.h>

unsigned _ bios_ equiplist(void);

® Description
The _bios_ equiplist routine uses INT 0x11 to determine what hardware
and peripherals are currently installed on the machine.

® Return Value

The function returns a set of bits indicating what is installed, as defined
below:

Bits Meaning

0 Any disk drive installed if true

2-3 System RAM in 4K blocks (16-64K)

4-5 Initial video mode

6-7 Disk drives installed (00 = drive 1, 01 = drive 2, etc.)
8 False (0) if and only if a DMA chip is installed

9-11 Number of RS232 serial ports

12 True (1) if and only if a game adapter is installed

13 True (1) if and only if a serial printer is installed

14-15 Number of printers installed

136

—bios_ equiplist

H Example

#include <bios.h>
main ()

unsigned equipment:

unsigned diskettes:

equipment = _bios_equiplist():

if (equipment & 0OO0O01) /* check for diskette bit x/
printf ("diskettes installed\n"):

else
printf ("no diskettes installed\n"):

This program checks for the presence of diskettes.

137

— bios_keybrd

Summary

include <bios.h>

unsigned _ bios_ keybrd(service);

unsigned service; Keyboard function desired
B Description

The _bios_keybrd routine uses INT 0x16 to access the keyboard services.
The service argument can be any of the following manifest constants:

Constant Meaning

- KEYBRD_READ Reads the next character read from
the keyboard. If no character has
been typed, the call will wait for
one. If the low-order byte of the
return value is nonzero, it contains
the ASCII value of the character
typed. The high-order byte contains
the keyboard scan code for the
character. See the Technical Refer-
ence Manual for the IBM PC for a
list of keyboard scan codes.

- KEYBRD_READY Checks to see if a keystroke is wait-
ing to be read and, if so, reads it.
The return value is 0 if no key-
stroke is waiting, otherwise the
return value is the character wait-
ing to be read, in the same format
as the _KEYBRD_READ return.
The —_KEYBRD_READY service
does not remove the waiting charac-
ter from the input buffer, as does

the . KEYBRD_READ service.

138

—bios_keybrd

~KEYBRD_SHIFTSTATUS Returns the current shift-key
(SHIFT) status in the low-order byte
of the return value. Any combina-
tion of the following bits may be

set:
Bit Meaning if True
0 Right-most SHIFT key
pressed
1 Left-most SHIFT key
pressed
2 CTRL key pressed
3 ALT key pressed
4 SCROLL LOCK on
5 NUM LOCK on
6 CAPS LOCK on
7 In insert mode (INS)
® Example
#include <bios.h>
main ()
{
while ((_bios_keybrd (_KEYBRD_SHIFTSTATUS) & 0001) != 1)

printf ("Use right SHIFT key to stop this message\n"):
printf ("right SHIFT key pressed\n"):
}

This program prints a message on the screen until the right SHIFT key is
pressed.

139

— bios_ memsize

Summary

include <bios.h>

unsigned _ bios_ memsize(void);

Description

The _biosmemsize routine uses INT 0x12 to determine the total amount
of memory available.

Return Value

The routine returns the total amount of installed memory in 1K blocks.
The maximum return value is 640, representing 640K of main memory.
Example

#include <bios.h>
main ()

unsigned memory:
memory = _bios_memsize():
printf ("The amount of memory is: %dK\n", memory):

This program displays the amount of memory available.

140

— bios_ printer

H Summary

include <bios.h>

unsigned _ bios_ printer(service, printer, data);

unsigned service; Printer function desired
unsigned printer; Target printer port
unsigned data; Output data

H Description

The _bios_ printer routine uses INT 0x17 to perform printer output ser-
vices. The printer argument specifies the affected printer, where 0 1s LPT1,
1 is LPT2, and so on. The service argument can be any of the following
manifest constants:

Constant Meaning

—PRINTER_WRITE Sends the low-order byte of data to the
printer specified by the printer argu-
ment. The low-order byte of the return
value indicates the printer status after
the operation, as defined below:

Bit Meaning if True

Printer timed out
Not used

Not used

1/O error

Printer selected
Out of paper
Acknowledge

N U R W NN = O

Printer not busy

- PRINTER_INIT Initializes the selected printer. The data
argument is ignored. The return value is
the low-order status byte defined above.

—PRINTER_STATUS Returns the printer status in the low-
order status byte defined above.

141

—bios_. printer

Example

#include <bios.h>
#include <conio.h>
#include <stdio.h>
#define LPT1 O
main ()
{
unsigned data = 36;
unsigned status:

printf ("place printer offline and press return\n"):
getchar () ; /* wait until key pressed x/

status = _bios_printer (_PRINTER_STATUS, LPT1l, data):
printf ("status with printer offline: %x\n\n", status):
printf ("press return to initialize printer\n"):

getchar () : /* wait until key pressed i/

status = _bios_printer (_PRINTER_INIT, LPT1, data):
printf ("status after printer initialized: ¥%x\n". status):

}

This program checks the status of the printer attached to LPT1 when it is
off line, then initializes the printer.

142

— bios_serialcom

® Summary

include <<bios.h>

unsigned _ bios_ serialcom(service, serial_ port, data);

unsigned service; Communications service
unsigned serial_ port; Serial port to use
unsigned data; Port configuration bits

B Description

The _bios_serialcom routine uses INT 0x14 to provide serial communi-
cations services. The serial_ port argument is set to 0 for COM1, to 1 for
COM2, and so on. The service argument can be set to one of the following
manifest constants:

Constant Service

-~ COM_INIT Sets the port to the parameters specified in
the data argument

- COM_SEND Transmits the data characters over the

selected serial port

—COM_RECEIVE Accepts an input character from the selected
serial port

- COM_STATUS Returns the current status of the selected

serial port

The data argument is ignored if service is set to - COM_RECEIVE or
—COM_STATUS. The data argument for - COM_INIT is created by
ORing together one or more of the following constants:

Constant Meaning
- COM_CHR7 7 data bits
- COM_CHRS 8 data bits
- COM_STOP1 1 stop bit
-COM_STOP2 2 stop bits

- COM_NOPARITY No parity
- COM_EVENPARITY Even parity

143

—bios_serialcom

- COM_ODDPARITY Odd parity

-COM_110 110 baud
- COM_150 150 baud
- COM_300 300 baud
- COM_600 600 baud
- COM-1200 1200 baud
- COM_2400 2400 baud
- COM_4800 4800 baud
- COM-9600 9600 baud

The default value of data is 1 stop bit, no parity, and 110 baud.

Note

This function works only with IBM Personal Computers and true com-
patibles.

W Return Value

The function returns a 16-bit integer whose high-order byte contains
status bits. The meaning of the low-order byte varies, depending on the
service value. The high-order bits are as follows:

Bit Meaning if Set
15 Timed out
14 Transmission-shift register empty
13 Transmission-hold register empty
12 Break detected
11 Framing error
10 Parity error
9 Overrun error
Data ready

144

—bios_serialcom

When service is - COM_SEND, bit 15 will be set if data could not be
sent.

When service is - COM_RECEIVE, the byte read will be returned in the
low-order bits if the call is successful. If an error occurs, at least one of the
high-order bits will be set.

When service is — COM_INIT or . COM_STATUS, the low-order bits
are defined as follows:

Bit Meaning if Set

Receive-line signal detected

Ring indicator

Data-set ready

Clear to send

Change in receive-line signal detected
Trailing-edge ring indicator

Change in data-set ready status

S = N W s Ut

Change in clear-to-send status

Example

#include <bios.h>
main ()

unsigned coml_status:
coml_status = _bios_serialcom(_COM_STATUS,O,O0):
printf ("COMl status: Yx\n",6coml_status):

This program checks the status of serial port COM1.

145

— bios_ timeofday

Summary

include <bios.h>

unsigned _ bios_ timeofday(service, timeval);
int service; Time function desired
long timeval; Clock count

B Description
The _bios_timeofday routine uses INT Ox1A to get or set the current
system clock count. The service argument can be either of the following

manifest constants:

Constant Meaning

- TIME_GETCLOCK Copies the current value of the clock
count to the location that timeval points
to. If midnight has not passed since the
last time the system clock was read or
set, the function returns 0; otherwise, it
returns 1.

- TIME_SETCLOCK Sets the current value of the system
clock to the value in the location that
timeval points to. There is no return
value.

B Example

#include <bios.h>
main ()

long i, begin_tick, end_tick:

_bios_timeofday (_TIME_GETCLOCK, &begin_tick):
printf ("beginning tick count: %lu\n", begin_tick);
for (1 = 1; i<= 500000; i++)

_bios_timeofday (_TIME_GETCLOCK, &end_tick):

printf ("ending tick count: %lu\n", end_tick):
printf ("elapsed ticks: %lu\n", end_tick - begin_tick):

This program gets the current system clock count before and after a “do-
nothing” loop and displays the difference.

146

bsearch

B Summary

include <stdlib.h> For ANSI compatibility
include <search.h> Required only for function declarations

void *bsearch(key, base, num, width, (compare)());

const void *key; Object to search for

const void *base; Pointer to base of search data
size_ t num, width; Number and width of elements
int (*compare)(eleml, elem?); compare function

const void *eleml1, *elem?; Array elements to compare

B Description

The bsearch function performs a binary search of a sorted array of num
elements, each of width bytes in size. The base value is a pointer to the
base of the array to be searched, and key is the value being sought.

The compare argument is a pointer to a user-supplied routine that com-
pares two array elements and returns a value specifying their relationship.
The bsearch function will call the compare routine one or more times dur-
ing the search, passing pointers to two array elements on each call. The
routine must compare the elements, then return one of the following

values:
Value Meaning
Less than O element1 less than element?
0 elementl identical to element?2
Greater than 0 elementl greater than element?

B Return Value

The bsearch function returns a pointer to the first occurrence of key in
the array pointed to by base. If key is not found, the function returns

NULL.

147

bsearch

See Also
lfind, Isearch, gsort

Example

#include <search.h>
#include <string.h>
#include <stdio.h>

int qcompare(): /* declare a function for gsort's compare x/
int bcompare(): /* declare a function for bsearch's compare */

main (argc, argv)
int arge:
char x*argv:;
{
char **result:;
char *key = "PATH";
int 1i:
/* Sort using Quicksort algorithm: x*/
gsort ((char *)argv,argc,sizeof (char *),qcompare):
for (i=0;i<argc;++i) /* Output sorted list */
printf ("%s\n", argv[i]):
/* Find item that begins with "PATH" #/
/* using a binary search algorithm: */
result = (char #*+)bsearch((char #*)&key, (char *)argv, argc,
sizeof (char), bcompare):
if (result)
printf ("%s found\n", #result):
else
printf ("PATH not found!\n"):

int gcompare (argl, arg2)
char #**argl, **arg2;

/* Compare all of both strings: #*/
return (strcmp (*argl, *arg2)) ;

int bcompare (argl, arg2)
char **xargl, **arg2;

/* Compare to length of key: */
return (strncmp (*argl, *arg2, strlen(*xargl))):;

}

This program reads the command-line arguments, sorting them with
gsort, and then uses bsearch to find the parameter starting with PATH.

148

cabs

Summary

include <math.h>

double cabs(z);

struct complex {
double z; Real component
double y; Imaginary component

} 5

Description

The cabs function calculates the absolute value of a complex number,
which must be a structure of type complex. A call to cabs is equivalent
to the following:

sqrt(z.axz.x + 2y*2.y)

Return Value

On overflow, cabs calls matherr, returns HUGE_ VAL, and sets errno
to ERANGE.

See Also
abs, fabs, labs

Example

#include <math.h>
#include <stdio.h>
main ()

struct complex number;

number .x = 3.0;

number.y = 4.0;

double d = cabs (number) ;

printf ("The absolute value of ‘number' is %f\n", d):

¥

Using cabs, this program assigns the absolute value of number to d.

149

calloc

Summary
include <stdlib.h> For ANSI compatibility
include <malloc.h> Required only for function declarations

void *calloc(n, size);

size_t n; Number of elements
size_t size; Length in bytes of each element
Description

The calloc function allocates storage space for an array of n elements,
each of length size bytes. Each element is initialized to 0.

Return Value

The calloe function returns a pointer to the allocated space. The storage
space pointed to by the return value is guaranteed to be suitably aligned
for storage of any type of object. To get a pointer to a type other than
void, use a type cast on the return value. The return value is NULL if
there is insufficient memory available, or if n or size is 0.

C 4.0 Difference

In Version 4.0 of Microsoft C, calloc allocates a zero-length item (that
is, a header only) in the heap if size is 0. The resulting pointer can be
passed to the realloc function to adjust the size at any time.

See Also

free, halloc, hfree, malloc, realloc

150

calloc

® Example

#include <stdio.h>
#include <malloc.h>

long #*lalloc;

main ()
lalloc = (long *)calloc (40,sizeof (long)):

if (lalloc != NULL)

printf("Allocation OK\n"):
else

printf("calloc failed\n"):

This program uses calloc to allocate space for 40 long integers. It initial-
izes each element to 0.

151

ceil

Summary

include <math.h>

double ceil(z);

double z; Floating-point value

Description

The ceil function returns a double value representing the smallest integer
that is greater than or equal to 2.

Return Value

The ceil function returns the double result. There is no error return.

See Also

floor, fmod

Example

#include <stdio.h>
#include <math.h>

main ()
double y: /* y is equal to 2.0 #/

y = ceil (1.05);
printf ("The ceil(1.05) is %f\n".y):

Yy = ceil (-1.05): /* Yy is equal to -1.0 x/
printf ("The ceil (-1.05) is %f\n".y):

In this program, the smallest value representing an integer that is greater
than or equal to the value passed to ceil is assigned to y.

152

cgets

B Summary

include <<conio.h> Required only for function declarations

char *cgets(str);
char *str; Storage location for data

B Description

The cgets function reads a string of characters directly from the console
and stores the string and its length in the location pointed to by str. The
str must be a pointer to a character array. The first element of the array,
str[0], must contain the maximum length (in characters) of the string to be
read. The array must have enough elements to hold the string, a terminat-
ing null character (’\ 0’), and two additional bytes.

The cgets function continues to read characters until a carriage-return—
line-feed combination (CR-LF) is read, or the specified number of characters
is read. The string is stored starting at str[2]. If a CR-LF combination is
read, it is replaced with a null character (*\ 0°) before being stored. The
cgets function then stores the actual length of the string in the second
array element, sér[1].

B Return Value
The cgets function returns a pointer to the start of the string, which is at
str[2]. There is no error return.

B See Also

getch, getche

153

cgets

Example

#include <conio.h>
#include <stdio.h>

char buffer [82]:
char *result:

main ()
buffer [0] = 80; /% Maximum number of characters x/
printf ("Input line of text, followed by carrage return:\n "):
result = cgets(buffer): /* Input a line of text x/
}printf("\nLine length = %d\nText = ¥%s\n", buffer[l], result):

/* "buffer[1]" contains the length:

:; "result" points to the start of the string

This program creates a buffer and initializes the first byte to the size of
the buflfer — 2. Next, the program accepts an input string using cgets and
displays the size and text of that string.

154

—chain_intr

B Summary

include <dos.h>

void — chain_intr(void (target)());
interrupt far *target; Target interrupt routine

B Description

The _chain_ intr routine is used for chaining one interrupt handler to
another interrupt handler. When the target handler begins executing, the
stack and registers appear as though the target had been invoked directly
when the interrupt occurred. Since the ultimate return address for the
interrupt sequence is already on the stack, chaining subsequent handlers
rather than calling them individually keeps the stack correct for the subse-
quent handler’s return.

B See Also

_dos_getvect, _dos_keep, _dos_setvect

155

chdir

Summary

include <<direct.h> Required only for function declarations

int chdir(path);
char *path; Path name of new working directory
Description

The chdir function changes the current working directory to the directory
specified by path. The path argument must refer to an existing directory.

This function can change the current working directory on any drive; it
cannot change the default drive. For example, if A:\ is the default drive
and BIN is the current working directory, the following call changes the
current working directory for drive C:

chdir (c:\temp) ;

In this case, you must first call the system function to change the current
default drive to C before you can change the current working directory to
that drive.

Return Value

The chdir function returns a value of 0 if the working directory is success-
fully changed. A return value of -1 indicates an error; in this case errno is
set to ENOENT, indicating that the specified path name could not be
found.

See Also

mkdir, rmdir, system

156

chdir

B Example

#include <direct.h>
#include <stdio.h>

main (argc, argv)
int argc:
char *argv([]:

int rtnval;
if (rtnval = chdir (argv[1]))
printf ("Problem changing to directory ¥%s".argv[1l]):

else
printf ("Change to directory ¥%s was successful"”,argv[1l]):

This program uses chdir to emulate the MS-DOS ¢d command.

157

chmod

Summary

include <sys\ types.h>
include <sys\stat.h>
include <io.h> Required only for function declarations

int chmod(path, pmode);

char *path; Path name of existing file
int pmode; Permission setting for file
Description

The chmod function changes the permission setting of the file specified by
path. The permission setting controls read and write access to the file.
The constant expression pmode contains one or both of the manifest con-
stants S_IWRITE and S_IREAD, defined in sys\stat.h. Any other
values for pmode are ignored. When both constants are given, they are
joined with the bitwise-OR operator (}). The meaning of the pmode argu-
ment is as follows:

Value Meaning
S_IWRITE Writing permitted
S_IREAD Reading permitted

S_IREAD ! S_.IWRITE Reading and writing permitted

If write permission is not given, the file is made read only. Under MS-DOS,
all files are readable; it is not possible to give write-only permission. Thus
the modes S_IWRITE and S_TREAD ! S_TWRITE are equivalent.

Return Value

The chmod function returns the value O if the permission setting is suc-
cessfully changed. A return value of -1 indicates an error; in this case,
errno is set to ENOENT, indicating that the specified file could not be
found.

158

chmod

M See Also

access, creat, fstat, open, stat

B Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>

int result:
int savestderr;

main ()

/* make file read only:#
result = chmod("data", S_IREAD):

if (result == -1)
perror ("File not found");
else

printf ("Mode changed successfully"):

This program uses chmod to change the mode of the file data to read
only. It then displays a message indicating whether the mode was changed
successfully.

159

chsize

H Summary

include <io.h> Required only for function declarations

int chsize(handle, size);
int handle; Handle referring to open file
long size; New length of file in bytes

® Description

The chsize function extends or truncates the file associated with handle to
the length specified by size. The file must be open in a mode that permits
writing. Null characters (°\ 0°) are appended if the file is extended. If the
file is truncated, all data from the end of the shortened file to the original
length of the file are lost.

®H Return Value

The chsize function returns the value O if the file size is successfully
changed. A return value of -1 indicates an error, and errno is set to one
of the following values:

Value Meaning
EACCES Specified file is locked against access (MS-DOS
Versions 3.0 and later only).
EBADF Specified file is read only, or an invalid file handle.
ENOSPC No space left on device.
B See Also

close, creat, open

160

chsize

® Example

#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

#define MAXSIZE 32768L

int fh, result:;
char buffer [BUFSIZ] = "Initialize the buffer to some value\n":

main ()

int i:

unsigned int nbytes = BUFSIZ:;

/* Output data to the file: x/

fh = open("data",O_RDWR|O_CREAT, S_IREAD|S_IWRITE):

for (i = 0; i < 50; i++)

result = write(fh, buffer, nbytes):

result = -1;

if (lseek(fh,OL,SEEK_END) > MAXSIZE) /+ Make sure the file +/

/* is longer than 32k */

result = chsize(fh,MAXSIZE): /* before changing the size. */
if (result ==

printf ("Size successfully changed"):;
else

printf ("Problem in changing the size"):

This program opens the file named data and writes data to it. Then it
uses chsize to extend the size of data. Finally, it displays a message indi-
cating whether the file size was successfully extended.

161

—clear87

Summary

include <float.h>

unsigned int _ clear87(void); Get and clear floating-point status word

Description

The _clear87 function gets and clears the floating-point status word.
The floating-point status word is a combination of the 8087 /80287 status
word and other conditions detected by the 8087 /80287 exception handler,
such as floating-point stack overflow and underflow.

Return Value

The bits in the value returned indicate the floating-point status. See the
Hloat.h include file for a complete definition of the bits returned by
—~clear87.

Note

Many of the math library functions modify the 8087 /80287 status
word, with unpredictable results. Return values from — clear87 and
—status87 become more reliable as fewer floating-point operations are
performed between known states of the floating-point status word.

See Also
—control87, _status87

162

—clear87

B Example

#include <stdio.h>
#include <float.h>

double a = le-40,b;
float x.y:

main ()
{
printf ("status = %.4x - clear\n",_clear87()):
/* store into y is inexact and underflows: x/
Yy = a;
printf ("status = %.4x - inexact, underflow\n",_clear87(}):
/* y is denormal: */
b =y:
printf ("status = %.4x - denormal\n",_clear87()):

This program creates various floating-point problems, then uses — clear87
to report on these problems.

163

clearerr

® Summary

include <stdio.h>

void clearerr(stream);
FILE =stream; Pointer to FILE structure

® Description
The clearerr function resets the error indicator and end-of-file indicator
for stream to 0. Error indicators are not automatically cleared; once the

error indicator for a specified stream is set, operations on that stream con-
tinue to return an error value until clearerr or rewind is called.

B See Also

eof, feof, ferror, perror

B Example

#include <stdio.h>
#include <stdlib.h>

FILE #stream;

int c:

main ()
stream = fopen ("data", "w"); /* Note that with "w" */
if ((c = getc(stream)) == EOF) /* there will be an error. #*/

if (ferror (stream))

fprintf (stderr, "Read error\n"):
clearerr (stream) ;

}
}
X

This program sends data to a stream and checks to see whether an error
has occurred. If so, the program uses clearerr to clear the error.

164

—clearscreen

® Summary

include <graph.h>

void far _ clearscreen(area);

short area; Target area

B Description

The _ clearscreen function erases the target area, filling it with the cur-
rent background color. The area parameter can be one of the following
manifest constants (defined in graph.h):

Constant Action

-~ GCLEARSCREEN Clears and fills the entire screen

-GVIEWPORT Clears and fills only within the current view
port

- GWINDOW Clears and fills only within the current text

B Return Value

There is no return value.

H See Also
—getbkcolor, _setbkcolor

window

165

—clearscreen

B Example

#include <stdio.h>
#include <graph.h>

main ()

int xvar, yvar, loop = O:

_setvideomode (_MRES16COLOR) :

/* Make 16 rectangles x/

for (loop = O:; loop < 32; loop += 2) {

_setcolor(loop % 16):

_rectangle (_GFILLINTERIOR, loop*10, 95, (loop+l)x10, 105);

while (!kbhit()) { /* Repeat until a character is typed */
_remappalette(loop++ % 4, rand(l) % .16):

_clearscreen(_GCLEARSCREEN):
_setvideomode (_DEFAULTMODE) ;
}

This program draws 16 separate rectangles, each of a different color. When
it receives a keystroke, it calls — clearsereen and clears the screen.

166

clock

Summary

include <time.h>

clock_t clock(void);

Description
The clock function tells how much processor time has been used by the

calling process. The time in seconds is approximated by dividing the clock
return value by the value of the CLK_ TCK macro.

Return Value

The clock function returns the product of the time in seconds and the
value of the CLK_ TCK macro. If the processor time is not available, the
function returns the value -1, cast as clock_t.

See Also

difftime, time

Example

#include <stdio.h>
#include <time.h>

main ()

int goal, tm = O;
clock_t clock(void):

printf ("How many seconds do you want the program to run?: "):
scanf ("%d", &goal) ;
do {

if ((tm=clock()) != (clock_t)-1)

printf ("Processor time equals 9%d seconds\n", tm/CLK_TCK) ;
else {

printf ("Processor time not available\n");

exit(-1):

while ((tm/CLK_TCK) < goal):

This example prompts for how long the program is to run and then con-
tinuously displays the elapsed time for that period.

167

close

Summary

include <io.h> Required only for function declarations

int close(handle);
int handle; Handle referring to open file

Description

The close function closes the file associated with handle.

Return Value

The close function returns O if the file was successfully closed. A return
value of —1 indicates an error, and errno is set to EBADF, indicating an
invalid file-handle argument.

See Also

chsize, creat, dup, dup2, open, unlink

Example

#include <stdio.h>
#include <io.h>
#include <fcntl.h>

main ()
int result, fh:

fh = open("data",O_RDONLY); /* Open the file */
result = close(fh): /* Now close it =/
/* Report on results: */
if (result)

printf ("Invalid file handle argument\n");
else

printf("File successfully closed\n"):

This program uses open to open a file named data, then uses close to
close 1t.

168

—control87

@ Summary

include <float.h>

unsigned int _ control87(new, mask); Get floating-point control word
unsigned int new; New control-word bit values
unsigned int mask; Mask for new control-word bits to set

B Description

The — control87 function gets and sets the floating-point control word.
The floating-point control word allows the program to change the preci-
sion, rounding, and infinity modes in the floating-point-math package.
Floating-point exceptions can also be masked or unmasked using the
—control87 function.

If the value for mask is equal to 0, then _ control87 gets the floating-point
control word. If mask is nonzero, then a new value for the control word is
set in the following manner: for any bit that is on (equal to 1) in mask, the
corresponding bit in new is used to update the control word. To put it
another way,

fpentrl = ((fpentrl & “mask) | (new & mask))

where fpcntrl is the floating-point control word.

B Return Value

The bits in the value returned indicate the floating-point control state. See
the float.h include file for a complete definition of the bits returned by
—control87.

B See Also
—clear87, _status87

1689

—control87

E Example

#include <stdio.h>
#include <float.h>

double a = .1;

main ()

/* get control word: x/
printf ("control = %.4x\n", _control87(0,0)):
printf ("axa = .01 = %.15e\n", ax*a):

/* set precision to 24 bits: x/
_control87 (PC_24,MCW_PC) ;

printf("a*a = .01 (rounded to 24 bits) = %.15e\n", axa):

/* restore to initial default: x/
_control87 (CW_DEFAULT,Oxffff) :

printf ("a*a = .01 = ¥%.15e\n",axa):

This program uses — control87 to output the control word, set the preci-
sion to 24 bits, and reset the status to the default.

170

cos, cosh

Summary

include <math.h>

double cos(z); Calculates cosine of «

double cosh(z); Calculates hyperbolic cosine of z
double z; Radians

Description

The cos and cosh functions return the cosine and hyperbolic cosine,
respectively, of z.

Return Value

If zis large, a partial loss of significance in the result may occur in a cos
call, in which case the function generates a PLOSS error. If zis so large
that significance is completely lost, cos prints a TLOSS message to
stderr and returns 0. In both cases, errno is set to ERANGE.

If the result is too large in a cosh call, the function returns HUGE_VAL
and sets errno to ERANGE.

See Also

acos, asin, atan, atan2, matherr, sin, sinh, tan, tanh

Example

#define PI 3.14159265359
#include<math.h>
#include<stdio.h>

main ()
double x = cos(PI): /* x = -1 %/
double y = cosh(PI): /* = 11.591953 */

Y
printf ("The cos(PI) = Y%f and the cosh(PI) = %f\n".x,y):

This program displays the cosine and hyperbolic cosine of 7.

171

cprintf

¥ Summary

include <conio.h> Required only for function declarations

int cprintf(format[, argument]...);
char *format; Format control string

B Description
The cprintf function formats and prints a series of characters and values
directly to the console, using the putch function to output characters.
Each argument (if any) is converted and output according to the corre-
sponding format specification in format. The format has the same form
and function as the format argument for the printf function; see the
printf reference page for a description of the format and arguments.

B Return Value

The cprintf function returns the number of characters printed.

B See Also

fprintf, printf, sprintf, vprintf

Note

Unlike the fprintf, printf, and sprintf functions, cprintf does not
translate line-feed (LF) characters into carriage-return-line-feed (CR-LF)
combinations on output.

172

cprintf

B Example

#include <conio.h>

int 1 = -16, j = 29;
unsigned int k = 511:

main ()

cprintf ("i=%d, j=%#x, k=%u\n".i,j.k):
/* Output: 1i=-16, j=0Oxld, k=511 */

}

This program prints the values of the variables i, j, and k to the con-
sole. (The eprintf function is similar to the printf function except that it
sends output to the console.)

173

cputs

Summary

#include <conio.h> Required only for function declarations

int cputs(string);

char *string; Output string

Description

The cputs function writes the null-terminated string pointed to by str
directly to the console. Note that a carriage-return-line-feed (CR-LF) com-
bination is not automatically appended to the string after writing.

Return Value

If successful, cputs returns a 0. If the function fails, it returns a nonzero
value.

C 4.0 Difference
In Version 4.0 of Microsoft C, eputs has no return value.

See Also

putch

Example

#include <conio.h>
char sbuffer = "Insert data disk in drive a: \r\n":
main ()

cputs (buffer) ;

This program displays on the console the prompt that buffer points to.

174

creat

¥ Summary

include <<sys\types.h>
include < sys\ stat.h>
include <io.h> Required only for function declarations

int creat(path, pmode);
char *path; Path name of new file
int pmode; Permission setting

B Description

The creat function either creates a new file or opens and truncates an ex-
isting file. If the file specified by path does not exist, a new file is created
with the given permission setting and is opened for writing. If the file al-
ready exists and its permission setting allows writing, creat truncates the
file to length 0, destroying the previous contents, and opens it for writing.

The permission setting, pmode, applies to newly created files only. The
new file receives the specified permission setting after it is closed for the
first time. The integer expression pmode contains one or both of the mani-
fest constants S_IWRITE and S_IREAD, defined in sys\stat.h. When
both constants are given, they are joined with the bitwise-OR operator
(1)- The meaning of the pmode argument is as follows:

Value Meaning

S_IWRITE Writing permitted

S_IREAD Reading permitted

S_IREAD ! S_IWRITE Reading and writing permitted

If write permission is not given, the file is read only. Under MS-DOS

it is not possible to give write-only permission. Therefore, the modes
S_IWRITE and S_IREAD ! S_IWRITE are equivalent. Under MS-DOS
Versions 3.0 and later, files opened using creat are always opened

in compatibility mode (see sopen).

The creat function applies the current file-permission mask to pmode
before setting the permissions (see umask).

175

creat

Return Value

If successful, creat returns a handle for the created file. Otherwise, it
returns —1 and sets errno to one of the following constants:

Value Meaning

EACCES Path name specifies an existing read-only file or
specifies a directory instead of a file

EMFILE No more handles available (too many open files)

ENOENT Path name not found

See Also

chmod, chsize, close, dup, dup2, open, sopen, umask

Note

The creat routine is provided primarily for compatibility with previ-
ous libraries. A call to open with O_CREAT and O_TRUNC in the
oflag argument is equivalent to creat and is preferable for new code.

Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

main ()

int fh = creat("data",S_IREAD|S_IWRITE):

if (fh == -1)
perror ("Couldn't create data file"):
else

printf ("Created data file.\n"):

This program uses creat to create the file (or truncate the existing file)
named data and open it for writing.

176

cscanf

B Summary

include <conio.h> Required only for function declarations

int cscanf(format|, argument]...);
char *format; Format-control string

B Description

The escanf function reads data directly from the console into the loca-
tions given by the arguments (if any), using the getche function to read
characters. Each argument must be a pointer to a variable with a type that
corresponds to a type specifier in format. The format controls the inter-
pretation of the input fields and has the same form and function as the
format argument for the scanf function; see the scanf reference page for

a description of format.

Note

While scanf normally echoes the input character, it will not do so if
the last call was to ungetch.

B Return Value
The escanf function returns the number of fields that were successfully
converted and assigned. The return value does not include fields that were
read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

B See Also

fscanf, scanf, sscanf

177

cscanf

® Example

#include <conio.h>

int result:
char buffer[20];

main ()
cprintf ("Please enter file name: "):

/* Read in user response; return # of matches: x/
result = cscanf ("%19s",buffer):

printf ("\nNumber of correctly matched input "

"items = %d\n"., result):
}

This program prompts for a file name and uses cscanf to read in the cor-
responding file. Then ecscanf returns the number of items matched, and
the program displays that number.

178

ctime

B Summary

include <time.h> Required only for function declarations

char *ctime(time);
const time_t *time; Pointer to stored time

B Description

The ctime function converts a time stored as a time_t value to a charac-
ter string. The time value is usually obtained from a call to time, which
returns the number of seconds elapsed since 00:00:00 Greenwich mean
time, January 1, 1970.

The string result produced by ctime contains exactly 26 characters and
has the form of the following example:

Wed Jan 02 02:03:55 1980\n\0O

A 24-hour clock is used. All fields have a constant width. The new-line
character (*\n’) and the null character (*\0’) occupy the last two positions
of the string.

B Return Value

The ctime function returns a pointer to the character string result. If time
represents a date before 1980, ctime returns NULL.

C 4.0 Differences

MS-DOS does not understand dates prior to 1980. If time represents a
date before January 1, 1980, the ctime routine in Version 4.0 of the
Microsoft C Run-Time Library returns the character string representa-
tion of 00:00:00 January 1, 1980.

179

ctime

See Also

asctime, ftime, gmtime, localtime, time

Note

The asctime and ctime functions use a single statically allocated
buffer for holding the return string. Each call to one of these routines
destroys the result of the previous call.

Example

#include <time.h>
#include <stdio.h>

time_t ltime;
main ()
time (<ime) :

printf ("the time is ¥s\n",ctime (<ime)):

This program gets the current time in time_t form, then uses ctime to
display the time in string form.

180

dieeetomsbin, dmsbintoieee

B Summary

include <math.h>

int dieeetomsbin(src8, dst8); IEEE double to MS binary double
int dmsbintoieee(src8, dst8); MS binary double to IEEE double
double *src8; Buffer containing value to convert
double *dst8; Buffer to store converted value

B Description

The dieeetomsbin routine converts a double-precision number in IEEE
(Institute of Electrical and Electronic Engineers) format to Microsoft
binary format. The dmsbintoieee routine converts a double-precision
number in Microsoft binary format to IEEE format.

These routines allow C programs (which store floating-point numbers in
the IEEE format) to use numeric data in random-access data files created
with those versions of Microsoft BASIC that store floating-point numbers
in Microsoft binary format, and vice versa.

The argument src8 is a pointer to the double value to be converted. The
result is stored at the location given by dst8.

B Return Value

These functions return O if the conversion is successful and 1 if the conver-
sion causes an overflow.

B See Also

fieeetomsbin, fmsbintoieee

Note

These routines do not handle IEEE NANSs and infinities. IEEE denor-
mals are treated as O in the conversions.

181

difftime

B Summary

include <time.h> Required only for function declarations

double difftime(time?2, timel);
time_t time?2; Type time_t defined in time.h
time_ t timel;

H Description

The difftime function computes the difference time2 — timel.

M Return Value

The difftime function returns the elapsed time in seconds from timel to
time2 as a double-precision number.

® See Also

time

@ Example

#include <time.h>
int mark[10000]:

main ()

{

time_t start, finish:

register int i, loop, n, num, step:;

printf ("This program will take about 3 minutes "

"on an AT and 8 on a PC\n"):

printf ("Working...\n"):;

time (&start)

for (loop = 0: loop < 1000:; ++loop)

for (num = O,n = 3; n < 10000; n += 2)

if (!mark[n]){ /* printf ("%dA\t".n); */
step = 2#n:

for (i = 3*n; i < 10000; i += step)
mark[i] = -1;

++num;

}
time (&finish) ;

182

difftime

/* Prints average of 1000 loops through "sieve": %/

printf ("\nProgram takes %f seconds to find %d primes.\n",
difftime (finish, start) /1000, num):

}

Output:
Program takes 0.482000 seconds to find 1228 primes.
This program calculates the amount of time needed to find the prime

numbers between 3 and 10,000. To display the prime numbers, delete
the outermost loop and the comment delimiters around the expression

printf ("%d\t".n):.

183

_disable

B Summary

include <dos.h>

void _ disable(void); Disables interrupts

B Description

The _disable routine disables interrupts by executing an 8086 CLI
machine instruction.

m See Also

—enable

184

—displaycursor

Summary

include <graph.h>

short far _ displaycursor(toggle);
short toggle; Cursor state

Description

On entry into each graphic routine, the screen cursor is turned off. The
—displaycursor function determines whether or not the cursor is to be
turned back on when programs exit graphic routines. If foggle is set to
— GCURSORON, the cursor will be restored on exit. If toggle is set to
— GCURSOROFF, the cursor will be left off on exit.

Return Value

The function returns the previous value of toggle. There is no error return.

Example

#include <stdio.h>
#include <graph.h>

main ()

_setvideomode (_MRES4COLOR) ;
_settextposition(1, 1):
_displaycursor (_GCURSORON):
—outtext ("Cursor on, hit <cr>"):
for(:;!kbhit():):

getchar ()

_settextposition(1, 1):
_displaycursor (_GCURSOROEF) :
_outtext ("Cursor off, hit <cr>"):
for(:!kbhit():):

getchar () :

_setvideomode (_DEFAULTMODE) :

b

This program shows the effect of turning the cursor on and off in a graph-
ics mode.

185

div

Summary

include <<stdlib.h>

struct div_t {

int quot; Quotient

int rem; Remainder

} div(numer, denom);
int numer; Numerator
int denom; Denominator
Description

The div function divides numer by denom, computing the quotient and
the remainder. The sign of the quotient is the same as that of the mathe-
matical quotient. Its absolute value is the largest integer that is less than
the absolute value of the mathematical quotient. If the denominator is O
the program will terminate with an error message.

Return Value

The div function returns a structure of type div_t, comprising both the
quotient and the remainder. The structure is defined in stdlib.h.

See Also
div

186

div

B Example

#include <stdlib.h>
#include <math.h>

main (argc, argv)
int argc:
char x*xargv;

{

int x,y:

div_t div_result;

x = atoi (argv[1l]):

y = atoi(argv[2]):

printf ("x is yd., y is %d\n". x.y):

div_result = div(x.y):

printf ("The quotient is Y%d, and the remainder is %d\n",

div_result.quot, div_result.rem):
}

The example above takes two integers as command-line arguments and
displays the results of the integer division. This program accepts two argu-
ments on the command line following the program name, then calls div to
divide the first argument by the second. Finally, it prints the structure
members quot and rem.

Assuming the executable file is named “tdiv,” it might be typed:
tdiv 5 2
and it would output:

x is 5, y is 2
The quotient is 2, and the remainder is 1

187

—dos_ allocmem

Summary

include <dos.h>

unsigned _ dos_ allocmem(size, segment);

unsigned size; Block size to allocate
unsigned *segment; - Segment descriptor return buffer
Description

The _dos_ allocmem function allocates a block of memory size para-
graphs long. A paragraph is 16 bytes. Allocated blocks are always para-
graph aligned. The segment descriptor for the initial segment of the new
block is returned in the word that segment points to. If the request cannot
be satisfied, the maximum possible size (in paragraphs) is returned in this
word instead.

Return Value

If successful, _dos_allocnem returns 0. Otherwise, it returns the MS-
DOS error code and sets errno to ENOMEM, indicating insufficient
memory or invalid arena (memory area) headers.

See Also

alloca, calloc, _dos_ freemem, _dos_setblock, halloc, malloc

188

—dos_allocmem

B Example

#include <dos.h>

unsigned segment:

main ()

{
/* Allocate 20 paragraphs #/

if (_dos_allocmem (20, &segment) != 0)
printf ("allocation failed\n"):
else
printf ("allocation successful\n"):;
if (_dos_freemem (segment) != O
printf ("free memory failed\n"):
else

printf ("free memory successful\n"):

This program allocates and then frees 20 paragraphs of memory space.

189

—dos_ close

Summary

include <dos.h>

unsigned _ dos_ close(handle);
int handle; Target file handle

Description

The _dos_ close function uses system call 0x3E to close the file indicated
by handle. The file’s handle argument is returned by the call that created
or last opened the file.

Return Value

The function returns O if successful. Otherwise, it returns the MS-DOS
error code and sets errno to EBADF indicating an invalid file handle.

See Also

creat, _dos_creat, _dos_creatnew, _dos_open, _dos_read,
dos write, dup, fclose, open

Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

190

—dos_close

main ()
int fh;

/* open file with _dos_open function x/
if (_dos_open ("datal",O_RDONLY, &fh) != 0)
perror ("open failed on input file"):
else
printf ("open succeeded on input file\n"):

/* close file with _dos_close function x/

if (_dos_close(fh) != 0)
perror ("close failed"):
else

printf("file successfully closed\n"):

This program uses the MS-DOS /O operations to open and close a file.

191

—dos_ creat, _dos_ creatnew

Summary

include <<dos.h>
unsigned _ dos_ creat(path, attribute, handle);

unsigned _ dos_ creatnew(path, attribute, handle);

char *path; File path name
unsigned attribute; File attributes

int *handle; Handle return buffer
Description

The _dos_creat and _dos_ creatnew routines create a new file named
path, having the access attributes specified in the attribute word. The new
file’s handle is copied into the buffer that handle points to. The file is
opened for both read and write access. If file sharing is installed, the file
is opened in compatibility mode.

The _dos_ creat routine uses system call 0x3C and the _dos— creatnew
routine uses system call Ox5B. If the file already exists, _dos_ creat

will erase its contents and leave its attributes unchanged; however, the
dos. creatnew routine will fail if the file already exists.

Return Value

If successful, both routines return 0. Otherwise, they return the MS-DOS
error code and set errno to one of the following values:

Constant Meaning

ENOENT Path or file not found
EMFILE Too many open file handles

EACCES Access denied because the directory is full or, for
_dos_creat only, the file exists and cannot be
overwritten

EEXIST File already exists (_dos_ creatnew only)

192

—dos_ creat, _dos_ creatnew

® Example

#include <dos.h>

main ()
int fhl, fh2;
if (_dos_creat("data",_A_NORMAL, &fhl) != O)
perror ("Couldn't create data file"):
else

printf ("Created data file.\n"):
/* if _dos_creat is successful, the
_dos_creatnew will fail since the file exists

*/

if (_dos_creatnew ("data",_A_RDONLY, &fh2) != 0)
perror ("Couldn't create data file"):

else

printf ("Created data file.\n"):

}

This program creates a file using the — dos_ creat function. The program
cannot create a new file using the _ dos_ creatnew function because it
already exists.

193

—dos_ findfirst, _dos_ findnext

Summary

include <dos.h>
unsigned — dos_ findfirst(path, attributes, buffer);

unsigned _ dos_ findnext(buffer);

char *path; Target file name

unsigned attributes; Target attributes

struct find_t { File-information return structure:
char reserved|21]; Reserved for use by MS-DOS
char attrib; Attribute byte for matched path
unsigned wr_ time; Time of last write to file
unsigned wr_ date; Date of last write to file
long size; Length of file in bytes
char name[13]; Null-terminated name of matched

file/directory, without the path
} ®buffer;

Description

The _dos_findfirst routine uses system call 0x4E to return information
about the first instance of a file whose name and attributes match the path
and attributes arguments. Information is returned in a find—t structure,

defined in dos.h.

The path argument may use wildcards (* and ?). The attributes argument
can be any of the following manifest constants:

Constant Meaning

_A_NORMAIL Normal. File can be read or written without res-
triction.

—A_RDONLY Read only. File cannot be opened for a “write,”
and a file with the same name cannot be created.

-A_HIDDEN Hidden file. Cannot be found by a directory search.
—A_SYSTEM System file. Cannot be found by a directory search.

- A_VOLID Volume ID. Only one file can have this attribute,
and it must be in the root directory.

194

—dos_findfirst, _dos_ findnext

- A_SUBDIR Subdirectory.

~-A_ARCH Archive. Set whenever the file is changed, and
cleared by the MS-DOS BACKUP command.

Multiple constants can be ORed together, using the vertical-bar () char-
acter.

The _dos_ findnext routine uses system call 0x4F to find the next name,

if any, that matches the path and attributes arguments specified in a prior
call to _dos_ findfirst. The buffer argument must point to a structure al-

ready initialized by a previous call to _dos_findfirst. The contents of the
structure will be altered as described above if a match is found.

Return Value

If successful, both functions return 0. Otherwise, they return the MS-DOS
error code and set errno to ENOENT, indicating that the path could
not be matched.

Example

#include <dos.h>
main ()
struct find_t c_file;

/* find first .c file in current directory #*/
_dos_findfirst ("+.c", _A_NORMAL, &c_file):
printf ("Listing of .c files\n\n"):
printf ("file %s is %d bytes long\n",c_file.name,
c_file.size);
/* find the rest of the .c files x/
while (_dos_findnext (&c_file) == 0)
printf ("file Y%s is ¥%d bytes long\n",c_file.name,
c_file.size):

}

This program finds and prints all files in the current directory with the .c
extension.

195

—dos_ freemem

Summary

include <<dos.h>

unsigned _dos_freemem(segment);
unsigned segment; Block to be released

Description

The _dos_freemem function uses system call 0x49 to release a block of
memory previously allocated by _dos_ allocmem. The segment argument
is a value returned by a previous _dos_— allocmem or _dos_setblock call.
The freed memory may no longer be used by the application program.
Return Value

If successful, _dos_ freemem returns 0. Otherwise, it returns the MS-
DOS error code and sets errno to ENOMEM, indicating a bad segment
value (one that does not correspond to a segment returned by a previous
_dos_allocmem or _dos—setblock call) or invalid arena headers.

See Also

_dos_allocmem, _dos_setblock, firee, free, hfree, nfree

Example

#include <dos.h>
unsigned segment:
main ()

/* Allocate 20 paragraphs */

if (_dos_allocmem (20, &segment) != O)
printf ("allocation failed\n"):
else
printf ("allocation successful\n"):
if (_dos_freemem (segment) != 0)
printf ("free memory failed\n"):
else

printf ("free memory successful\n"):

This program allocates and then frees 20 paragraphs of memory space.

196

—dos_getdate

B Summary

#include <dos.h>

void _ dos_ getdate(date);

struct dosdate_t { Current date structure:
unsigned char day; 1-31
unsigned char month; 1-12
unsigned int year; 1980-2099
unsigned char dayofweek; 0-6 (0 = Sunday)
} *date;

B Description

The _dos_getdate routine uses system call 0x2A to obtain the current
system date. The date is returned in a dosdate_t structure, defined in
dos.h.

B See Also

—dos_gettime, _dos_setdate, _dos_settime, gmtime, localtime,
mktime, _strdate, _strtime, time

B Example

#include <dos.h>
main ()

struct dosdate_t date;
struct dostime_t time;

/* get current date and time values */

_dos_getdate (&date)

_dos_gettime (&time):;

printf ("Today's date is Yd-%d-%d\n",date.month,date.day,

date.year):
printf ("The time is %d:%d\n".time.hour, time.minute) :

This program gets and displays the current date and time values.

197

— dos_ getdiskfree

Summary

include <dos.h>

unsigned _ dos_ getdiskfree(drive, diskspace);
unsigned drive;
struct diskfree_t {
unsigned total_ clusters;
unsigned avail_ clusters;
unsigned sectors_ per— cluster;
unsigned bytes_ per_ sector;
} #diskspace;

Description
The _dos_getdiskfree routine uses system call 0x36 to obtain informa-
tion on the disk drive specified by drive. The default drive is O, drive A is

1, drive B is 2, and so on. Information is returned in the diskfree_t struc-
ture that diskspace points to, defined in dos.h.

Return Value

If successful, the function returns 0. Otherwise, it returns a nonzero value
and sets errno to EINVAL, indicating an invalid drive was specified.

See Also

_dos_getdrive, _dos_setdrive

198

—dos_getdiskfree

Example

#include <dos.h>

main ()

struct diskfree_t drive:;

/* get information on default disk drive O */

_dos_getdiskfree (0, &drive):

printf ("total clusters: %d\n",drive.total_clusters):

printf ("available clusters: %d\n",drive.avail_clusters):
printf ("sectors per cluster: %d\n",drive.sectors_per_cluster):
printf ("bytes per sector: %d\n",drive.bytes_per_sector) :

This program displays information about the default disk drive.

199

—dos_getdrive

H Summary

include <dos.h>

void _ dos_ getdrive(drive);
unsigned *drive; Current-drive return buffer

B Description

The _dos_getdrive routine uses system call 0x19 to obtain the current
disk drive. The current drive is returned in the word that drive points to: 1
= drive A, 2 = drive B, and so on.

B See Also

_dos_getdiskfree, _dos_setdrive

® Example

#include <dos.h>
main ()

unsigned drive;
unsigned number_of_drives:;

/* print current default drive information */
_dos_getdrive (&drive):
printf ("The current drive is: %c\n",'A' + drive - 1):

/* set default drive to be drive A +/
_dos_setdrive (1, &number_of_drives)

/* get new default drive information and
total number of drives in system */
_dos_getdrive (&drive):;
printf ("The current drive is: %c\n",'A' + drive - 1);
printf ("number of disk drives: %d\n", number_of_drives):

This program prints the letter of the current drive, changes the default
drive to A, then returns the number of disk drives.

200

—dos_ getfileattr

H Summary

include <dos.h>

unsigned _ dos_ getfileattr(path, atiribute);
char *path; Full path of target file/directory
unsigned *attributes; Word to store attributes in

B Description

The _dos_ getfileattr routine uses system call 0x43 to obtain the current
attributes of the file or directory that path points to. The attributes are
copied to the low-order byte of the attributes word. Attributes are repre-
sented by manifest constants, as described below:

Constant Meaning

~A_NORMAL Normal. File can be read or written without res-
triction.

—A_RDONLY Read only. File cannot be opened for a “write,”
and a file with the same name cannot be created.

—-A_HIDDEN Hidden file. Cannot be found by a directory search.
~A_SYSTEM System file. Cannot be found by a directory search.

-A_VOLID Volume ID. Only one file can have this attribute,
and it must be in the root directory.

-A_SUBDIR Subdirectory.

—_A_ARCH Archive. Set whenever the file is changed, or
cleared by the MS-DOS BACKUP command.

B Return Value
If successful, the function returns 0. Otherwise, it returns the MS-DOS

error code and set errno to ENOENT, indicating that the target file or
directory could be found.

B See Also

_dos_setfileattr

201

—dos_getfileattr

Example

#include <dos.h>
main ()

unsigned attribute;
int fh;

/* create file as read only #*/
if (_dos_creat ("data",_A_RDONLY, &fh) != 0)
perror ("Couldn't create data file"):
else
printf ("Created data file.\n"):

/* get and print file attribute */
_dos_getfileattr ("data", &attribute):
printf ("attribute: %d\n"., attribute)
if ((attribute & _A_RDONLY) != 0)
printf ("Read only file\n"):
else
printf ("Not a read only file.\n"):

/* reset file attribute to normal file x/
_dos_setfileattr ("data",_A_NORMAL) ;
_dos_getfileattr ("data", &attribute) :
printf ("attribute: %d\n", attribute):
if ((attribute & _A_RDONLY) = 0)

printf ("Read only file\n"):
else

printf ("Not a read only file.\n"):

}

This program creates a file with the specified attributes then prints this
information before changing the file attributes back to normal.

202

— dos_ getftime

B Summary

include <dos.h>

unsigned _ dos_ getftime(handle, date, time);

int handle; Target file
unsigned *date; Date-return buffer
unsigned *t{ime; Time-return buffer

B Description

The _dos_ getftime routine uses system call 0x57 to get the date and
time that the file identified by handle was last written. The date and time
are returned in the words that date and time, respectively, point to. The
values appear in the MS-DOS date and time format, which is:

Time Bits Meaning

0-4 Seconds/2 (0-29)
5-10 Minutes (0-59)
11-15 Hours (0-23)

Date Bits Meaning

0-4 Day (1-31)
5-8 Month (1-12)
9-15 Year (1980-2099)

B Return Value

If successful, the function returns 0. Otherwise, it returns the MS-DOS
error code and sets errno to EBADF, indicating that an invalid file han-
dle was passed.

B See Also

_dos_setftime

203 -

—dos_getftime

B Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

N #include <dos.h>

main ()

{

unsigned date:
unsigned time:
int fh;

/* open file with _dos_open function x/

if (_dos_open("dgftime.c",O0_RDONLY, &fh) != 0)
perror ("open failed on input file"):

else
printf ("open succeeded on input file\n"):

/* modify file date and time */
_dos_getftime (fh, &date, &time):
printf ("date and time read\n"):

printf ("date field (hex): %x\n", date):
printf ("time field (hex): %x\n", time):

/* close file with _dos_close function #/

if (_dos_close(fh) != 0)
perror ("close failed"):
else

printf("file successfully closed\n"):

This program displays the date and time fields for a file.

204

—dos_gettime

® Summary

include <dos.h>

void _ dos_ gettime(time);

struct dostime_t { Current system time:
unsigned char hour; 0-23
unsigned char minute; 0-59
unsigned char second; 0-59
unsigned char hsecond; 1/100 second; 0-99
} #time;

M Description

The _dos_gettime routine uses system call 0x2C to obtain the current
system time. The time is returned in a dostime_t structure, defined in
dos.h.

B See Also

_dos_getdate, _dos_setdate, _dos_settime

B Example

#include <dos.h>
main ()

struct dosdate_t date;
struct dostime_t time;

/* get current date and time values */

_dos_getdate (&date):

_dos_gettime (&time)

printf ("Today's date is Y%d-%d-%d\n",date.month,date.day,

date.year) ;
printf ("The time is %d:%d\n",time.hour, time.minute) ;

This program displays the current date and time values.

205

—dos_getvect

® Summary
in\c‘liiég< dos.h>

void (interrupt far *_ dos_ getvect(intnum))();
unsigned intnum; Target interrupt vector

B Description

The _dos_getvect routine uses system call 0x35 to get the current value
of the interrupt vector specified by intnum.

® Return Value

The function returns a far pointer to the current handler, if any, for the
intnum interrupt.

B See Also

—chain_ intr, _dos_setvect

208

—dos_keep

B Summary

include <dos.h>

void _ dos_keep(retcode, memsize);
unsigned retcode; Exit status code
unsigned memsize; Allocated resident memory (in 16-byte paragraphs)

B Description

The _dos_ keep routine installs terminate-and-stay-resident programs
(TSR’s) in memory, using system call 0x31. It first exits the calling pro-
cess, leaving it in memory, and returns the low-order byte of retcode to the
parent of the calling process. Before returning execution to the parent pro-
cess, _dos_keep sets the allocated memory for the now-resident process
to memsize paragraphs (a paragraph is 16 bytes). Any excess memory is
returned to the system.

B See Also

—chain_intr, _dos_getvect, _dos_setvect

207

—dos_open

® Summary

include <dos.h>

unsigned _ dos_open(path, mode, handle);

char *path; Path to an existing file
unsigned mode; Permissions
int *handle; Handle return buffer

B Description

The _dos— open routine uses system call 0x3D to open the existing file
that path points to. The mode argument specifies the file’s access, shar-
ing, and inheritance modes by ORing together manifest constants from
the three groups shown below. At most, one access mode and one shar-
ing mode may be specified at a time.

Constant Mode Meaning

O-RDONLY Access Read only
O_WRONLY Access Write only

O_RDWR Access Both read and write
SH_COMPAT Sharing Compatibility
SH_DENYRW Sharing Deny reading and writing
SH_DENYWR Sharing Deny writing
SH_DENYRD Sharing Deny reading
SH_DENYNONE Sharing Deny neither

O_NOINHERIT Inheritance File is not inherited
by the child process

B Return Value

If successful, the function returns 0. Otherwise, it returns the MS-DOS
error code and sets errno to one of the following manifest constants:

Constant Meaning

EINVAL Sharing mode specified when file sharing not installed,
or access-mode value is invalid

ENOENT Path or file not found

208

—dos_open

EMFILE Too many open file handles

EACCES Access denied (path specifies a directory or a volume ID,
or opening read-only for write access)

B See Also

_dos_close, _dos_read, _dos_ write

B Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

main ()
int fh;

/* open file with _dos_open function #/

if (_dos_open("datal",O_RDONLY, &fh) t= 0)
perror ("open failed on input file"):

else
printf ("open succeeded on input file\n"):

/* close file with _dos_close function #*/
if (_dos_close(fh) != 0)

perror ("close failed"):
else

printf("file successfully closed\n"):

This program uses the MS-DOS I/O operations to open and close a file.

209

—dos_read

Summary

include <dos.h>

int _ dos_read(handle, buffer, count, bytes);

int handle; File to read

void far *buffer; Buffer to write to

unsigned count; Number of bytes to read
unsigned *bytes; Number of bytes actually read
Description

The _dos_read routine uses system call 0x3F to read count bytes of data

from the file specified by handle and copy it to the buffer that buffer points
to. The integer that bytes points to will show the number of bytes actually
read, which may be less than the number requested in count. If the number
of bytes actually read is 0, it means the routine tried to read at EOF.

Return Value

If successful, the function returns 0. Otherwise, it returns the MS-DOS
error code and sets errno to one of the following constants:

Constant Meaning

EBADF Invalid file handle
EACCES Access denied (handle is not open for read access)

See Also

_dos_close, _dos_open, _dos_ write

210

—dos_read

B Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

main ()

int fh;
char buffer [50];
unsigned number_read;

/* open file with _dos_open function #/

if (_dos_open("dread.c",0_RDONLY, &fh) != 0)
perror ("open failed on input file"):

else
printf ("open succeeded on input file\n"):

/* read data with _dos_read function %/
_dos_read (fh, buffer, 50, &number_read)
printf ("buffer contents: %s\n", buffer):

/* close file with _dos_close function */

if (_dos_close(fh) != 0)
perror ("close failed"):
else

printf ("file successfully closed\n"):

’é‘lhis program uses the MS-DOS I/O operations to read the contents of a
e.

211

— dos_setblock

® Summary

#include <dos.h>

unsigned _ dos_ setblock(size, segment, mazsize);

unsigned size; New segment size
unsigned segment; Target segment
unsigned *mazsize; Maximum size buffer

B Description
The _dos_setblock routine changes the size of segment, previously allo-
cated by _dos_ allocmem, to size paragraphs, using system call Ox4A. If
the request canot be satisfied, the maximum possible segment size s cop-
ied to the buffer that maxsize points to.

B Return Value

The function returns O if successful, or an MS-DOS error code otherwise.

® Return Value
The function returns O if successful. If the call fails, it returns the MS-DOS
error code and sets errno to ENOMEM, indicating a bad segment value

was passed (one that does not correspond to a segment returned from a
previous _dos_ allocmem call) or invalid arena headers.

H See Also

_dos_allocmem, _dos_ freemem, realloc

212

—dos_setblock

B Example

#include <dos.h>

unsigned segment:;
unsigned maxsize:;

main ()

/* Allocate 20 paragraphs */
if (_dos_allocmem (20, &segment) != O)
printf ("allocation failed\n"):
else
printf ("allocation successful\n"):

/* Increase allocation to 40 paragraphs */

if (_dos_setblock (40, segment, &maxsize) != 0)
printf ("allocation increase failed\n"):
else

printf ("allocation increase successful\n"):

/* free memory x/

if (_dos_freemem (segment) != 0)
printf ("free memory failed\n"):
else

printf ("free memory successful\n"):

This program allocates 20 paragraphs of memory, increases the allocation
to 40 paragraphs and then frees the memory space.

213

—dos_setdate

Summary

include <dos.h>

unsigned _ dos_ setdate(date);

struct dosdate_t { New date:
unsigned char day; 1-31
unsigned char month; 1-12
unsigned int year; 1980-2099
unsigned char dayofweek; 0-6 (0 = Sunday)
} date;

Description

The _dos_setdate routine uses system call 0x2B to set the current system
date. The date is stored in the dosdate_t structure that date points to,
defined in dos.h.

Return Value

If successful, the function returns 0. Otherwise, it returns a nonzero value
and sets errno to EINVAL, indicating an invalid date was specified.

See Also

_dos_gettime, _dos_setdate, _dos_settime, gmtime, localtime,
mktime, _strdate, _strtime, time

214

—dos_setdate

® Example

#include <dos.h>

main ()

struct dosdate_t date;
struct dostime_t time:;

/* get current date and time values */

_dos_getdate (&date):

_dos_gettime (&time):

printf ("Today's date is %d-%d-%d\n",date.month, date.day,
date.year) ;

printf ("The time is %d:%d\n", time.hour, time.minute) ;

/* set year to 1999 and the hour to 11 x/

date.year = 1999;

time.hour = 11;

/* modify date and time structures x/
_dos_setdate (&date);
_dos_settime (&time)

/* print new dates and times x/

printf ("The new date is %d-%d-%d\n",date.month, date.day,
date.year) ;

printf ("The new time is %d:%d\n", time.hour,time.minute);

This program changes the time and date values and displays the new date
and time values.

215

—dos_setdrive

Summary

include <dos.h>

void _ dos_setdrive(drivenum, drives);

unsigned drivenum; New default drive
unsigned *drives; Total drives available
Description

The _dos_setdrive routine uses system call OxOE to set the current de-
fault drive to the drivenum argument: 1 = drive A, 2 = drive B, and so on.
The

drives argument indicates the total number of drives in the system. If this
value is 4, for example, it doesn’t mean they are designated A, B, C, and
D; it only means that four drives are in the system.

There is no return value. If an invalid drive number is passed, the function
fails without indication. Use the _dos—_ getdrive routine to verify whether
the desired drive has been set.

See Also

_dos_getdiskfree, _dos_ getdrive

216

—dos_setdrive

Example

#include <dos.h>
main ()

unsigned drive;
unsigned number_of_drives:

/* print current default drive information */
_dos_getdrive (&drive):
printf ("The current drive is: %c\n",'A' + drive - 1):

/* set default drive to be drive A x/
_dos_setdrive (1, &number_of_drives) ;

/* get new default drive information and
total number of drives in system x/
_dos_getdrive (&drive):;
printf ("The current drive is: %c\n",'A' + drive - 1):
printf ("number of disk drives: %d\n", number_of_drives):

This program prints the letter of the current drive, changes the default
drive to A, then returns the number of disk drives.

217

—dos_setfileattr

B Summary

include <dos.h>

unsigned _ dos_ setfileattr(path, attributes);
char *path; Full path of target file/directory
unsigned attributes; New attributes

B Description

The _dos_setfileattr routine uses system call 0x43 to set the attributes
of the file or directory that path points to. The actual attributes are con-
tained in the low-order byte of the attribute word. Attributes are repre-
sented by manifest constants, as described below:

Constant Meaning

~A_NORMAL Normal. File can be read or written to without res-
triction.

—A_RDONLY Read only. File cannot be opened for a “write,”
and a file with the same name cannot be created.

—A_HIDDEN Hidden file. Cannot be found by a directory search.
—~A_SYSTEM System file. Cannot be found by a directory search.

—-A_VOLID Volume ID. Only one file can have this attribute,
and it must be in the root directory.

—A_SUBDIR Subdirectory.
-A_ARCH Archive. Set whenever the file is changed, or

cleared by the MS-DOS BACKUP command.
H Return Value

The function returns 0 if successful. Otherwise, it returns the MS-DOS
error code and sets errno to one of the following:

Constant Meaning

ENOENT No file or directory matching the target was found.

EACCES Access denied; cannot change the volume ID or the sub-
directory.

218

—dos_setfileattr

B See Also

_dos_getfileattr

B Example

#include <dos.h>

main ()

}

unsigned attribute:
int fh;

/* create file as read only #*/
if (_dos_creat("data",_A_RDONLY, &fh) != 0O)
perror ("Couldn't create data file"):
else
printf ("Created data file.\n"):

/* get and print file attribute x/
_dos_getfileattr ("data", &attribute) :
printf ("attribute: %d\n", attribute):
if ((attribute & _A_RDONLY) t!= 0)
printf ("Read only file\n"):
else
printf ("Not a read only file.\n"):

/* reset file attribute to normal file x/
_dos_setfileattr ("data", _A_NORMAL) ;
_dos_getfileattr ("data", &attribute) ;
printf ("attribute: %d\n", attribute):

if ((attribute & _A_RDONLY) != 0)
printf ("Read only file\n"):
else

printf ("Not a read only file.\n"):

This program creates a file with the specified attributes, then prints a mes-
sage describing these attributes, then changes the file attributes back to
normal.

219

—dos_setftime

Summary

include <dos.h>

unsigned _ dos_setftime(handle, date, time);

int handle; Target file
unsigned date; Date of last write
unsigned time; Time of last write
Description

The _dos_setftime routine uses system call 0x57 to set the date and time
at which the file identified by handle was last written to. Those values
appear in the MS-DOS date and time format, which is:

Time Bits Meaning

0-4 Seconds/2 (0-29)
5-10 Minutes (0-59)
11-15 Hours (0-23)

Date Bits Meaning

0-4 Day (1-31)

5-8 Month (1-12)

9-15 Year (1980-2099)
Return Value

If successful, the function returns 0. Otherwise, it returns the MS-DOS
error code and sets errno to EBADF, indicating that an invalid file han-
dle was passed.

See Also
_dos_getftime

220

—_dos_setftime

B Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

main ()

unsigned date
unsigned time
int fh;

Ox421;
OxCOE ;

(||

/* open file with _dos_open function x/

if (_dos_open("dsfilt.c",O0_RDONLY, &fh) != 0)
perror ("open failed on input file"):

else
printf ("open succeeded on input file\n"):

/* modify file date and time x/
_dos_setftime (fh, date, time):
printf ("date and time changed\n"):

/* close file with _dos_close function */
if (_dos_close(fh) != 0)

perror ("close failed"):;
else

printf("file successfully closed\n"):;

This program changes the date and time fields for a file.

221

—dos_settime

Summary

include <dos.h>

unsigned _ dos_ settime(time);
struct dostime_t { New time:
unsigned char hour; 0-23
unsigned char minute; 0-59
unsigned char second; 0-59
unsigned char hsecond; Hundredths of a second; 0-99
} *time;

Description

The _dos_settime routine uses system call 0x2D to set the current time
to the value stored in the dostime—_t structure that time points to, as
defined in dos.h.

Return Value

If successful, the function returns 0. Otherwise, it returns a nonzero value
and sets errno to EINVAL, indicating an invalid time was specified.

See Also

—dos_getdate, _dos_gettime, _dos_setdate, gmtime, localtime,
mktime, _strdate, _strtime

222

—dos_settime

B Example

#include <dos.h>

main ()

struct dosdate_t date;
struct dostime_t time;

/* get current date and time values */

_dos_getdate (&date):

_dos_gettime (&time):

printf ("Today's date is %d-%d-%d\n",date.month, date.day,
date.year)

printf ("The time is %d:%d\n".time.hour, time.minute) ;

/* set year to 1999 and the hour to 11 */

date.year = 1999;

time.hour = 11;

/* modify date and time structures */
_dos_setdate (&date):
_dos_settime (&time):

/* print new dates and times x/
printf ("The new date is %d-%d-%d\n",date.month, date.day,

date.year) ;
printf ("The new time is %d:%d\n", time.hour, time.minute)

This program changes the time and date values.

223

—dos_setvect

Summary

include <dos.h>

void _ dos_ setvect(intnum, void(handler)());
unsigned intnum; Target interrupt vector
interrupt far #handler; Interrupt handler to assign intnum to

Description

The _dos_setvect routine uses system call 0x25 to set the current value
of the interrupt vector intnum to the function that handler points to. Sub-
sequently, whenever the intnum interrupt is generated, the handler routine
will be called. If handler is a C function, it must have been previously de-

clared with the interrupt attribute. Otherwise, you must make sure that
the function satisfies the requirements for an interrupt-handling routine.

See Also

_chain_intr, _dos_ getvect, _dos_keep

224

—dos_ write

B Summary

include <dos.h>

unsigned _ dos_ write(handle, buffer, count, bytes);

int handle; File to write to
void far *buffer; Buffer to write from
unsigned count; Number of bytes to write

unsigned *bytes; Number of bytes actually written

B Description

The _dos_ write routine uses system call 0x40 to write into the file that
handle references count bytes of data from the buffer to which buffer
points. The integer that bytes points to will be the number of bytes actu-
ally written, which may be less than the number requested.

B Return Value

If successful, the function returns 0. Otherwise, it returns the MS-DOS
error code and sets errno to one of the following manifest constants:

Constant Meaning

EBADF Invalid file handle

EACCES Access denied (handle references a file not open for write
access)

B See Also

—dos_close, _dos_open, _dos_read

225

—dos_write

B Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

char out_buffer [10] = "hello";

main ()
{
int fh:
char in_buffer[10];
unsigned n_read, n_written:;

/* open file with _dos_open function %/

if (_dos_open ("datal",O_RDWR, &fh) != O)
perror ("open failed on input file"):

else
printf ("open succeeded on input file\n"):

/* write data with _dos_write function #/
_dos_write (fh, out_buffer, 10, &n_written):
printf ("number of characters written: %d\n", n_written):

/* close file with _dos_close function x/
if (_dos_close(fh) != 0)

perror ("close failed"):
else

printf ("file successfully closed\n"):

Thisﬁplrogram uses the MS-DOS 1/O operations to write information
to a file.

226

dosexterr

® Summary

include <dos.h>

int dosexterr (buffer);

struct DOSERROR {
int exterror; AX register contents
char class; BH register contents
char action; BL register contents
char locus; CH register contents

} wbuffer;

B Description
The dosexterr function obtains the register values returned by the MS-
DOS system call 0x59 and stores the values in the structure that buffer

points to. This function is useful when making system calls under MS-DOS
versions 3.0 or later, which offer extended error handling.

The structure type DOSERROR is defined in dos.h. Giving a NULL
pointer argument causes dosexterr to return the value in AX without
filling in the structure fields. See the MS-DOS Programmer’s Reference for
more information on the register contents.

M Return Value

The dosexterr function returns the value in the AX register (identical to
the value in the exterror structure field).

B See Also

perror

227

dosexterr

Note

The dosexterr function should be used only under MS-DOS versions
3.0 or later.

B Example

#include <dos.h>
#include <fcntl.h>
#include <stdio.h>

struct DOSERROR doserror:
int fd4d:

main ()
{
if ((fd = open("test.dat", O_RDONLY)) == -1)

dosexterr (&doserror)

printf ("error=%d, class=9%d, action=%d, locus=%d\n",
doserror.exterror, doserror.class, doserror.action,
doserror.locus) ;

}
else
printf ("Open succeeded so no extended information printed");

This program tries to open the file test.dat. If the attempted open
operation fails, the program uses dosexterr to display extended error
information.

228

dup, dup2

B Summary

include <io.h> Required only for function declarations
int dup(handle); Creates second handle for open file

int handle; Handle referring to open file

int dup2(handlel, handle?); Assigns handle2 to handlel’s file

int handlel; Handle referring to open file

int handle?; Any handle value

B Description

The dup and dup2 functions cause a second file handle to be associated
with a currently open file. Operations on the file can be carried out using
either file handle, since all handles associated with a given file use the
same file pointer. The type of access allowed for the file is unaffected by
the creation of a new handle.

The dup function returns the next available file handle for the given file.
The dup?2 function forces handle2 to refer to the same file as handlel. If
hland(lie,e 1s associated with an open file at the time of the call, that file is
closed.

® Return Value
The dup function returns a new file handle. The dup2 function returns 0

to indicate success. Both functions return —1 if an error occurs and set
errno to one of the following values:

Value Meaning

EBADF Invalid file handle

EMFILE No I)nore file handles available (too many open
files

229

dup, dup2

B See Also

close, creat, open

Example

#include <io.h>
#include <stdlib.h>
#include <stdio.h>

int old:;
FILE #new;
main ()
old = dup(1): /* "old" now refers to "stdout" x/
/* Note: file handle 1 == "stdout" x/
if (old == -1)

perror ("dup (1) failure"):
exit (1) :

write (old, "This goes to stdout first\n", 27):
if ((new = fopen("data", "w")) == NULL)

puts ("Can't open file \"data\"\n"):
exit (1)

/* stdout now refers to file "data" x*/
if (-1 == dup2(fileno(new), 1))

perror ("Can't dup2 stdout"):
exit (1) ;

puts("This goes to file \"data\"\n"):

fflush (stdout) ; /* Flush stdout stream buffer so
it goes to correct file x/

fclose (new) ;

dup2(old, 1): /* Restore original stdout */

puts("This goes to stdout"):

This program uses the variable old to save the original stdout. It then
opens a new file named new and forces stdout to refer to it. Finally, it
restores stdout to its original state.

230

ecvt

8 Summary

include <stdlib.h> Required only for function declarations
char *ecvt(value, count, dec, sign);

double value; Number to be converted

int count; Number of digits stored

int *dec; Stored decimal point position

int *sign; Sign of converted number

B Description

The ecvt function converts a floating-point number to a character string.
The value is the floating-point number to be converted. The ecvt function
stores up to count digits of value as a string and appends a null character
(’\0°). If the number of digits in value exceeds count, the low-order digit is
rounded. - If there are fewer than count digits, the string is padded with
Z€eros.

Only digits are stored in the string. The position of the decimal point and
the sign of value can be obtained from dec and sign after the call. The
argument dec points to an integer value giving the position of the decimal
point with respect to the beginning of the string. A O or negative integer
value indicates that the decimal point lies to the left of the first digit. The
argument sign points to an integer indicating the sign of the converted
number. If the integer value is O, the number is positive. Otherwise, the
number is negative.

B Return Value

The ecvt function returns a pointer to the string of digits. There is no
error return.

B See Also

atof, atoi, atol, fevt, gevt

231

ecvt

Note

The ecvt and fevt functions use a single statically allocated buffer for
the conversion. Each call to one of these routines destroys the result
of the previous call.

Example

#include <stdlib.h>

int decimal, sign;
char tbuffer;
int precision = 10;

main ()

{

/* buffer will contain "3141592654"

** decimal = 1, sign = O

*/

buffer = ecvt(3.1415926535,precision, &decimal, &sign) ;

printf ("buffer= \"%s\", decimal = %d, sign = %d\n", \
buffer, decimal, sign):

}

This program uses ecvt to convert the constant 3.141592654 from a
floating-point number to a character string. It then displays the resulting
string.

232

—ellipse

N Summary

include <graph.h>

short far _ ellipse(control, z1, y1, 22, y2);

short control; Fill flag
short z1, y1; Upper-left corner of bounding rectangle
short z2, y2; Lower-right corner of bounding rectangle

¥ Description
The _ellipse function draws an ellipse. The border is drawn in the current
color. The center of the ellipse is the center of the bounding rectangle de-
fined by the logical points (21, y1) and (22, y2).
The control argument can be one of the following manifest constants:

Constant | Action

.~ GFILLINTERIOR Fills the ellipse using the current fill mask
- GBORDER Does not fill the ellipse

‘If the bounding-rectangle arguments define a point or a vertical or hor-
izontal line (z1 = 22 or yI = y2), no figure is drawn.

- B Return Value

The _ellipse function returns a nonzero value if the ellipse is drawn suc-
cessfully; otherwise, it returns 0.

M See Also

—arc, - lineto, _ pie, _rectangle, _setcolor, —setfillmask

233

—ellipse

® Example

#include <stdio.h>
#include <graph.h>

main ()

{

_setvideomode (MRESlGCOLOR)

_ellipse(_GFILLINTERIOR, 80, 50 240, 150);
while (tkbhit()): /* Strike any key to clear screen #*/
_setvideomode (_DEFAULTMODE) ; . ;

}
This program draws the shape shown in Figure ‘R.2.

-

Figure R.2 Output of _ellipse Program

234

—enable

N Summary

include <<dos.h>

void _ enable(void); Enables interrupts

B Description

The _enable routine enables interrupts by executing an 8086 STI machine
instruction.

H See Also
—disable

235

eof

®E Summary

include <io.h> Required only for function declarations

int eof(handle);
int handle; Handle referring to open file

® Description
The eof function determines whether the end-of-file has been reached for
the file associated with handle.

B Return Value
The eof function returns the value 1 if the current position is end-of-file, O
if it is not. A return value of —1 indicates an error; in this case, errno is
set to EBADF', indicating an invalid file handle.

B See Also

clearerr, feof, ferror, perror

B Example

#include <io.h>
#include <fcntl.h>

int fh, count:;
char buf[10]:

main ()
int total = O;

fh = open ("data", O_RDONLY) :

236

eof

/* Cycle until end of file reached: */
while (!eof (fh))
{

/* Attempt to read in 10 bytes: x/

if ((count = read(fh, buf, 10)) == -1){
perror ("Read error"):
break:;
total += count:; /* Total up actual bytes read */

}
printf ("Number of bytes read = %d\n", total):

This program opens a file named data and reads data from the file until
the end of the file is reached. It then uses the function named eof to de-
termine when the end of the file was found. If the read function reports an
error, reading is terminated and the current total is reported.

237

execl — execvpe

Summary

include <process.h>

Required only for function declarations

int execl(path, arg0, argl,... argn, NULL);

int execle(path, arg0, argl,... argn, NULL, envp);

int execlp(path, arg0, argl,... argn, NULL);

int execlpe(path, arg0, argl,... argny NULL, envp);

int execv(path, argv);

int execve(path, argv, envp);
int execvp(path, argv);

int execvpe(path, argo, envp);
char *path;

char *arg0,*argl,... *argn;

char *argy| |;
char *envp| |;

Description

Path name of file to be executed

List of pointers to arguments

Array of pointers to arguments

Array of pointers to environment settings

The exec functions load and execute new child processes. When the call is
successful, the child process is placed in the memory previously occupied
by the calling process. Sufficient memory must be available for loading and

executing the child process.

All of the functions in this family use the same exec function; the letter(s)
at the end determine the specific variation:

Letter Variation

P Uses the PATH environment variable to find the file to be
executed '

1 Lists command-line arguments separately

238

execl — execvpe

v Passes to the child process an array of pointers to
command-line arguments

e Passes to the child process an array of pointers to environ-
ment arguments

The path argument specifies the file to be executed as the child process. It
can specify a full path (from the root), a partial path (from the current
working directory), or just a file name. If path does not have a file-name
extension or does not end with a period (.), the exec function searches for
the file; if unsuccessful, it tries the extension .COM, then .EXE. If path
has an extension, only that extension is used. If path ends with a period,
the exec calls search for path with no extension. The execlp, execlpe,
execvp, and execvpe routines search for path (using the same procedures)
in the directories specified by the PATH environment variable.

Arguments are passed to the new process by giving one or more pointers to
character strings as arguments in the exec call. These character strings
form the argument list for the child process. The combined length of the
strings forming the argument list for the new process must not exceed 128
bytes. The terminating null character (*\ 0’) for each string is not included
in the count, but space characters (inserted automatically to separate the
arguments) are counted.

The argument pointers can be passed as separate arguments (execl,
execle, execlp, and execlpe) or as an array of pointers (execv, execve,
execvp, and execvpe). At least one argument, arg0, must be passed to
the child process (which sees it as argv[0]). Usually, this argument is a
copy of the path argument. (A different value will not produce an error.)
Under versions of MS-DOS earlier than 3.0, the passed value of arg0 is not
available for use in the child process. However, under MS-DOS Version 3.0
and later, the path is available as arg0.

The execl, execle, execlp, and execlpe calls are typically used when the
number of arguments is known in advance. The argument arg0 is usually a
pointer to path. The arguments argl through argn point to the character
strings forming the new argument list. A null pointer must follow argn to
mark the end of the argument list.

The execv, execve, execvp, and execvpe calls are useful when the num-
ber of arguments to the new process is variable. Pointers to the arguments
are passed as an array, argv. The argument argv[0] is usually a pointer to
path. The arguments argvflg through argv[n] point to the character strings
forming the new argument list. The argument argv[n+1] must be a null
pointer to mark the end of the argument list.

239

execl — execvpe

Files that are open when an exec call is made remain open in the new pro-
cess. In the execl, execlp, execv, and execvp calls, the child process in-
herits the environment of the parent. The execle, execlpe, execve, and
execvpe calls allow the user to alter the environment for the child process
by passing a list of environment settings through the envp argument. The
argument envp is an array of character pointers, each element of which
(except for the final element) points to a null-terminated string defining an
environment variable. Such a string usually has the form

NAME= value

where NAME is the name of an environment variable and value is the
string value to which that variable is set. (Note that value is not enclosed
in double quotation marks.) The final element of the envp array should be
NULL. When envp itself is NULL, the child process inherits the environ-

ment settings of the parent process.
Return Value
The exec functions do not normally return to the calling process. If an

exec function returns, an error has occurred and the return value is ~1.
The errno variable is set to one of the following values:

Value Meaning

E2BIG The argument list exceeds 128 bytes or the space
required for the environment information exceeds
32K.

EACCES The specified file has a locking or sharing violation
(MS-DOS Versions 3.0 or later).

EMFILE Too many files open (the specified file must be
opened to determine whether it is executable).

ENOENT File or path name not found.

ENOEXEC The specified file is not executable or has an
invalid executable-file format.

ENOMEM Not enough memory is available to execute the

child process; or the available memory has been
corrupted; or an invalid block exists, indicating
that the parent process was not allocated properly.

240

execl — execvpe

B See Also

abort, atexit, exit, _exit, onexit, spawn functions, system

Note

The exec calls do not preserve the translation modes of open files. If
the child process must use files inherited from the parent, the setmode
routine should be used to set the translation mode of these files to the
desired mode.

Signal settings are not preserved in child processes created by calls to
exec routines. The signal settings are reset to the default in the child
process.

®E Example

#include <stdio.h>
#include <process.h>

char *my_env{[] = {
"THIS=environment will be",
"PASSED=to child.exe by the",

"EXECLE=and",
"EXECLPE=and",
"EXECVE=and",
"EXECVPE=functions",
NULL
}:
main (argc, argv)
int argc:
char *argv[]:
{
char *args([4]:
int result:
argsEg% = :child:;" /* Set up parameters to send */
args = "execv??":
args[2] = "two";
args[3] = NULL:;

241

execl — execvpe

switch (argv[1][0]) /* Based on first letter of argument x*/
{

case 'l':
execl ("child.exe","child ", "execl","two",6 NULL):
break:;

case '2':
execle ("child.exe", "child", "execle", "two", NULL,my_env) :
break:

case '3':
execlp ("child.exe",'"child", "execlp", "two",K6 NULL):
break:

case '4':
execlpe ("child.exe", "child", "execlpe", "two" , NULL, my_env) ;
break:;

case 'S
execv ("child.exe",args):
break:

case '6':
execve ("child.exe", args,my_env)
break:

case '7'
execvp ("child.exe", args)
break:

case '8':
execvpe ("child.exe", args,my_env)
break:;

default:
printf ("Enter a number from 1 to 8 as a

"command line parameter."):

exit(1):

e

~e

e

printf ("Process was not spawned.\n"):
printf ("Program 'child' was not found."):

This program accepts a number in the range 1 through 8 from the com-
mand line. Based on the number it receives, it executes one of the eight
different procedures that spawn the process named child. For some of
these procedures, the child.exe file must be in the same directory; for
others, it need only be in the same path.

242

exit, _exit

¥ Summary

include <process.h> Required only for function declarations

include <stdlib.h> Use either process.h or stdlib.h

void exit(status); Terminates after closing files

void _ exit(status); Terminates without flushing stream buffers
int status; Exit status

B Description

The exit and — exit functions terminate the calling process. The exit func-
tion first calls the functions registered by atexit and onexit, then flushes
all buffers and closes all open files before terminating the process. The
—exit function terminates the process without processing atexit or
onexit functions or flushing stream buffers. The status value is typically
set to O to indicate a normal exit and set to some other value to indicate
an error.

Although the exit and — exit calls do not return a value, the low-order
byte of statusis made available to the waiting parent process, if there is
one, after the calling process exits. The status value is available to the

MS-DOS batch command IF_ ERRORLEVEL.

B Return Value

There is no return value.

B See Also

abort, atexit, exec functions, onexit, spawn functions, system

243

exit, _exit

Example

#include <stdio.h>
main ()

FILE *stream;
char aChar:

stream = fopen ("data", "w+"):

printf ("About to exit...\nFlush buffers for the");
printf (" file 'data'? (y/n): "):

aChar = getch();

aChar = toupper (aChar) ;

fprintf (stream, "This will appear in \"data\" only if "):
fprintf (stream, "buffers are flushed.\n"):

if (aChar == 'Y'){
printf ("\nExiting and flushing buffers"):
exit (0):
else{
printf ("\nExiting, but buffers are not flushed"):
_exit (0):
}

This program opens the file named data, then prompts the user to choose
how to close the file. Based on the user’s choice, the program closes the file
using the exit function, which flushes buffers, or the — exit function, which
does not.

244

exp

Summary

#include <math.h>

double exp(z);
double z; Floating-point value

Description

The exp function returns the exponential function of its floating-point
argument z.

Return Value

The exp function returns e®. The function returns HUGE_ VAL on
overflow, and sets errno to ERANGE; on underflow, exp returns 0, but
does not set errno.

See Also

log

Example

#include <math.h>
main ()

double x,y:
x = 2.302585093;

y = exp(x): /xy =40 +/
printf ("The exp (%f) = %f".x.y):

This program displays the value of 2302585093

245

— expand

Summary

include <malloc.h> Required only for function declarations

void *_expand(block, size);

void *block; Pointer to previously allocated memory block
size_t size; New size in bytes
Description

The — expand function changes the size of a previously allocated memory
block by attempting to expand or contract the block without moving its
location in the heap. The block argument points to the beginning of the
block. The size argument gives the new size of the block, in bytes. The
contents of the block are unchanged up to the shorter of the new and old
sizes.

The block argument can also point to a block that has been freed, as long
as there has been no intervening call to calloc, — expand, halloc, malloc,
or realloc since the block was freed. If block points to a freed block, the
block remains free after the call to —expand.

Return Value

The —expand function returns a void pointer to the reallocated memory
block. Unlike realloc, — expand cannot move a block to change its size.
This means the block argument to —expand is the same as the return
value if there is sufficient memory available to expand the block without
moving it.

The return value is NULL if there is insufficient memory available to ex-
pand the block to the given size without moving it. In this case, the item
block points to will have been expanded as much as possible in its current
location.

The storage space pointed to by the return value is guaranteed to be suit-
ably aligned for storage of any type of object. The new size of the item can
be checked with the _msize function. To get a pointer to a type other
than char, use a type cast on the return value.

246

—expand

W See Also

calloc, free, halloc, malloc, . msize, realloc

® Example

#include <stdio.h>
#include <malloc.h>

main ()

long *oldptr:
size_t newsize = 64000;

/* Get original memory: x*/

oldptr = (long *)malloc (10000*sizeof (long)):

printf ("Size of memory block pointed to by oldptr = %u\n",
_msize (oldptr)):

/* Test whether _expand succeeded: x/
if (_expand(oldptr,newsize) != NULL)
printf ("Expand was able to increase block to %u\n",
_msize (oldptr)):

/* Otherwise _expand failed: x*/
else
printf ("Expand was able to increase block to only %u\n",
_msize (oldptr)):

}
Sample output:

Size of memory block pointed to by oldptr = 40000
Expand was able to increase block to only 44718

This program allocates a block of memory for oldptr and uses — msize
to display the size of that block. Next, it uses expand to expand the
amount of memory used by oldptr. Finally, it calls — msize again to
display the new amount of memory allocated to oldptr.

247

fabs

Summary

include <math.h>

double fabs(z);

double z; Floating-point value

Description

The fabs function returns the absolute value of its floating-point argu-
ment.

Return Value

The fabs function returns the absolute value of its argument. There is no
error return.

See Also

abs, cabs, labs

Example

#include <stdio.h>
#include <math.h>

main ()

double x,y:

-3.141593;
y = fabs (x): /% y = 3.141593 x/
printf ("The fabs (%f) is %f".x.y):

X

This program displays the absolute value of -3.141593.

248

fclose, fcloseall

B Summary

include <stdio.h>

int fclose(stream); Closes an open stream
FILE #stream; Target FILE structure
int fcloseall(void); Closes all open streams

B Description

The fclose function closes the given stream. The fcloseall function closes
all open streams except stdin, stdout, stderr, stdaux, and stdprn. It
also closes any tempory files created by tmpfile. All buffers associated
with the stream are flushed prior to closing. System-allocated buffers are
released when the stream is closed. Buffers assigned by the user with set-
buf and setvbuf are not automatically released.

B Return Value

The fclose function returns O if the stream is successfully closed. The
fcloseall function returns the total number of streams closed. Both func-
tions return EOF to indicate an error.

B See Also

close, fdopen, fllush, fopen, freopen

249

fclose, fcloseall

® Example

#include <stdio.h>
FILE *stream, #*stream2;
main ()

int numclosed;

/* Two files are opened: x/
stream = fopen("data", "r"

stream2 = fopen ("data2", "w+")

e

~e

if (stream == NULL)

printf ("The file data was not opened\n"):
else

fclose (stream) ;

printf ("The file 'data' closed\n"):
/* All other files are closed: */
numclosed = fcloseall():

printf ("The function fcloseall closed %u files\n", numclosed);

This program opens files named data and data2. It uses fclose to close
data and fcloseall to close all remaining files.

250

fevt

Summary

include <stdlib.h> Required only for function declarations
char *fevt(value, count, dec, sign);

double value; Number to be converted

int count; Number of digits after decimal point
int *dec; Pointer to stored decimal-point position
int *sign; Pointer to stored sign indicator
Description

The fevt function converts a floating-point number to a character string.
The value is the floating-point number to be converted. The fevt function
stores the digits of value as a string and appends a null character (*\ 0’).
The argument count specifies the number of digits to be stored after the
decimal point. Excess digits are rounded off to count places. If there are
fewer digits of precision than count, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and
the sign of value can be obtained after the call from dec and sign. The
argument dec points to an integer value giving the position of the deci-
mal point with respect to the beginning of the string. A zero or negative
integer value indicates that the decimal point lies to the left of the first
digit. The argument sign points to an integer indicating the sign of value.
The integer is set to O if value is positive and is set to a nonzero number if
value is negative.

Return Value

The fevt function returns a pointer to the string of digits. There is no
error return.

See Also

atof, atoi, atol, ecvt, gevt

251

fevt

Note

The ecvt and fevt functions use a single statically allocated buffer for
the conversion. Each call to one of these routines destroys the result of
the previous call.

Example

#include <stdlib.h>

int decimal, sign:
char *buffer:;
int precision = 10:

main ()
/* buffer to contain "31415926535", decimal = 1, sign = 0 %/
buffer = fcvt(3.1415926535,precision, &decimal, &sign):

printf ("buffer= \"%s\"., decimal = %d, sign = %d\n", buffer,
decimal, sign):
}

This program converts the constant 3.1415926535 to a string and sets the
pointer *buffer to point to that string.

252

fdopen

B Summary

include <stdio.h>
FILE *fdopen(handle, type);

int handle; Handle referring to open file
char *type; Type of access permitted

B Description

The fdopen function associates an input/output stream with the file
identified by handle, thus allowing a file opened for “low-level” 1/O to be
buffered and formatted. (See Section 4.7, “Input and Output,” for an
explanation of stream I/O and low-level I/O.E The type character string

specifies the type of access requested for the file, as follows:

Type Description

"r" Opens for reading (the file must exist).

"w'" Opens an empty file for writing. If the given file exists, its
contents are destroyed.

"a" Opens for writing at the end of the file (appending);
creates the file first if it doesn’t exist.

"r4" Opens for both reading and writing. (The file must exist.)

w4 Opens an empty file for both reading and writing. If the

given file exists, its contents are destroyed.

"a4" Opens for reading and appending; creates the file first if it
doesn’t exist.

Important

Use the "w' and "w-" modes with care, as they can destroy exist-
ing files.

The specified type must be compatible with the access mode and/or shar-
ing modes with which the file was opened. It is the user’s responsibility to
ensure that this compatibility is maintained.

253

fdopen

When a file is opened with "a' or "a-" type, all write operations take
place at the end of the file. Although the file pointer can be repositioned
using fseek or rewind, the file pointer is always moved back to the end of
the file before any write operation is carried out. Thus, existing data can-
not be overwritten.

When the "r+", "w+", or "a+" type is specified, both reading and
writing are allowed (the file is said to be open for “update”). However,
when switching from reading to writing or vice versa, there must be an
intervening fsetpos, fseek, or rewind operation. The current position
can be specified for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters can
be appended to the type string or inserted before the + character to
specify the translation mode for new lines. For example, r+b is the same
as rb+.

Mode Meaning

t Opens in text (translated) mode. Carriage-return—
line-feed (CR-LF) combinations are translated into a single
line feed (LF) on input; line-feed characters are translated to
carriage-return-line-feed combinations on output. Also,
CTRI+Z is interpreted as an end-of-file character on input. In
files opened for reading, or for reading and writing, the run-
time library checks for a CTRL+Z character and removes it, if
possible. This is done because using the fseek and ftell func-
tions to move within a file that ends with CTRL+Z may cause
fseek to behave improperly near the end of the file.

The t option is not part of the ANSI standard for open, but
is a Microsoft extension and should not be used where ANSI
portability is desired.

b Open in binary (untranslated) mode; the above translations
are suppressed.

If t or b is not given in the fype string, the translation mode is defined by
the default mode variable _fmode.

Return Value

The fdopen function returns a pointer to the open stream. A null pointer
value indicates an error. :

2564

fdopen

®m See Also

dup, dup2, fclose, fcloseall, fopen, freopen, open

H Example

#include <stdio.h>
#include <fcntl.h>

FILE *stream;
int fh;

main ()
{
fh = open ("data", O_RDONLY) :

/* Buffer associated with "fh": */
stream = fdopen (fh,"r"):
if (stream == NULL)

printf("Error in fdopen attempt.\n"):

else
printf("Input buffer successfully associated with 'data'"):

This program opens a file named data and uses fdopen to associate an
input stream with data.

255

feof

B Summary

include <<stdio.h>

int feof(stream);
FILE *stream; Pointer to FILE structure

Description

The feof routine (implemented as a macro) determines whether the end of
stream has been reached. Once end-of-file is reached, read operations re-
turn an end-of-file indicator until the stream is closed or rewind is called
against it.

B Return Value

The feof function returns a nonzero value after the first read operation
that attempts to read past the end of the file. It returns O if the current
position is not end-of-file. There is no error return.

B See Also

clearerr, eof, ferror, perror

® Example

#include <stdio.h>
#define BUF_SIZE 100

char string[BUF_SIZE]:
FILE *stream:
main ()
{
stream = fopen ("data", "r"):
while (fgets(strlng,BUF SIZE, stream))
printf ("%s",string):
if (feof (stream))
printf ("EOF reached\n"):
else
printf ("Error reading stream\n"):

This program uses feof to indicate when it reaches the end of the file
data.

256

ferror

Summary

include <stdio.h>

int ferror(stream);
FILE *stream; Pointer to FILE structure

Description

The ferror routine (implemented as a macro) tests for a reading or writ-
ing error on stream. If an error has occurred, the error indicator for the
stream remains set until the stream is closed or rewound, or until clearerr
is called against it.

Return Value

If no error has occurred on stream, ferror returns 0. Otherwise, it returns
a nonzero value.

See Also

clearerr, eof, feof, fopen, perror

Example

#include <stdio.h>

FILE #*stream;

char #*string = "This should never be written";
main ()
stream = fopen ("data", "r"):;

fprintf (stream, "%s\n", string):

if (ferror (stream)) {
fprintf (stderr, "Write error\n"):
clearerr (stream)

3
}

This program opens a file named data for reading and tries to write to it,
causing an error. The program uses ferror to detect the error, then clears
the error.

257

fllush

Summary

include <stdio.h>

int fflush(stream);
FILE *stream; Pointer to FILE structure

Description

If stream is open for output, fllush writes to the associated file the con-
tents of the buffer associated with the stream. If the stream is open for
input, fllush clears the contents of the buffer. The flush function negates
the effect of any prior call to ungetc against stream.

The stream remains open after the call. The fiush function has no effect
on an unbuffered stream.

Return Value

The fllush function returns the value 0 if the buffer was successfully
flushed. The value 0 is also returned in cases where the specified stream
has no buffer or is open for reading only. A return value of EOF indicates
an error.

See Also
fclose, flushall, setbuf

Note

Buffers are automatically flushed when they are full, when the stream
is closed, or when a program terminates normally without closing the
stream.

258

fllush

® Example

#include <stdio.h>
#include <process.h>

FILE #*stream;
char buffer [BUESIZ]:

main ()

int result:

/* Redirect stdout to "data" x/
stream = freopen ("data", "w", stdout):

printf ("This is the output of child:\n\n"):

/* Now make sure printf() output goes to

** "data" before child's output does:

:ésult = fflush(strean) ;

spawnl (P_WAIT, "child.exe", "child", "one", "two", NULL):
printf("-----------mm e e e \n"):

}

This program first redirects stdout to a file named data. It uses printf to
write to data, then uses fllush to guarantee that the output from printf
is written before the output from the child process.

259

fgetc, fgetchar

Summary

include <stdio.h>

int fgete(stream); Reads a character from stream
FILE #stream; Pointer to FILE structure

int fgetchar(void); Reads a character from stdin
Description

The fgete function reads a single character as an unsigned int character
converted to an int from the input stream at the current position. The
function then increases the associated file pointer (if any) to point to the
next character. The fgetchar function is equivalent to fgete(stdin).

Return Value
The fgete and fgetchar functions return the character read. A return
value of EOF may indicate an error or end-of-file; however, the EOF

value is also a legitimate integer value, so feof or ferror should be used
to verify any error or end-of-file condition.

See Also

fputc, fputchar, getc, getchar

Note

The fgetc and fgetchar routines are identical to getc and getchar,
but are functions, not macros.

260

fgetc, fgetchar

B Example

#include <stdio.h>

FILE *stream:;
char buffer[81]:
int i;

int ch;

main ()

/* Open file to read line from: #*/
stream = fopen ("fgetc.c", "r"):

/* Read in first 80 characters and x/
/* place them in "buffer": x/

ch = fgetc(stream) :

for (i=0: (1 < 80)&&(feof (stream) == 0)&&(ch != '\n'):i++){
buffer [i]=ch;
ch = fgetc(stream) ;

buffer[i] = '\O':; /* Add null to end string x/
printf("%s\n", buffer):

This program uses getc to read the first 80 input characters (or until the
end of input) and place them into a string named buf fer.

261

fgetpos

Summary

include <<stdio.h>

int fgetpos(stream, pos);

FILE *stream; Target stream
fpos_+t *pos; Position indicator storage
Description

The fgetpos function gets the current value of stream’s file-position indi-
cator and stores it in the object that pos points to. The fsetpos function
can later use information stored in pos to reset stream’s pointer to its posi-
tion at the time fgetpos was called.

Note

The pos value is stored in an internal format and is intended for use
only by the fgetpos and fsetpos functions.

Return Value

If successful, the fgetpos function returns 0. On failure, it returns a
nonzero value and sets errno to one of the following manifest constants

(defined in stdio.h):

Constant Meaning

EINVAL The stream value is invalid.

EBADF The specified stream is not a valid file handle or is not
accessible.

See Also

fsetpos

262

fgetpos

® Example

#include <stdio.h>

FILE xstream:;
fpos_t #*pos:
int val:

char 1list[100]:;

main ()
stream = fopen("filel",6 "rb"): /* Open filel =/
fread(list,sizeof (char), 100, stream) ; /* Read some data x/
if (fgetpos (stream,pos) != 0) /* Save current position */
perror ("fgetpos error'):;
fread(list, sizeof (char), 100, stream) ; /* Read some more x/
if (fsetpos (stream,pos) != 0) /* Return to saved position x/

perror ("fsetpos error"):

This program opens a file named filel and reads 100 characters. It then
calls fgetpos to find and save the file position pointer. After performing
another read, the program calls fsetpos to restore the file pointer to the
saved position.

263

fgets

Summary

include <stdio.h>

char *fgets(string, n, stream); Reads a string from stream
char *string; Storage location for data
int n; Number of characters stored
FILE *stream; Pointer to FILE structure
Description

The fgets function reads a string from the input stream and stores it in
string. Characters are read from the current stream position up to and
including the first new-line character (*\n’}, up to the end of the stream,
or until the number of characters read is equal to n -1, whichever comes
first. The result is stored in string, and a null character (*\0’) is appended.
The new line, if read, is included in the string. If nis equal to 1, string is
empty (""). The fgets function is similar to the gets function; however,
gets replaces the new-line character with NULL.

Return Value

If successful, the fgets function returns string. It returns NULL to indi-
cate either an error or end-of-file condition. Use feof or ferror to deter-
mine whether an error occurred.

See Also

fputs, gets, puts

Example

#include <stdio.h>

FILE #*stream:
char 1ine[100], #*result:
main ()
{
stream = fopen ("fgets.c", "r");
result = fgets(line, 100, streamn) ;
printf ("%s"., line):

This program uses fgets to display a line from a file on the screen.

264

fieeetomsbin, fmsbintoieee

® Summary

include <math.h>
int fieeetomsbin(src4, dstf); IEEE floating point to MS binary floating point
int fmsbintoieee(src4, dst4); MS binary floating point to IEEE floating point

float *src4, *dst};

B Description

The fieeetomsbin routine converts a single-precision floating-point num-
ber in IEEE (Institute of Electrical and Electronic Engineers) format to
Microsoft binary format. The fmsbintoieee routine converts a floating-
point number in Microsoft binary format to IEEE format.

These routines allow C programs (which store floating-point numbers in
the IEEE format) to use numeric data in random-access data files created
with Microsoft BASIC (which store floating-point numbers in the Micro-
soft binary format), and vice versa.
The argument src4 points to the float value to be converted. The result is
stored at the location given by dst4.

E Return Value
These functions return O if the conversion is successful, and 1 if the con-
version causes an overflow.

B See Also

dieeetomsbin, dmsbintoieee

Note

These routines do not handle IEEE NANs and infinities. IEEE denor-
mals are treated as O in the conversions.

265

filelength

¥ Summary

include <io.h> Required only for function declarations
long filelength(handle);

int handle; Target file handle

Description

The filelength function returns the length, in bytes, of target file handle.

B Return Value

The filelength function returns the file length in bytes. A return value of
—1L indicates an error, and an invalid handle sets errno to EBADF".

B See Also

chsize, fileno, fstat, stat

B Example

#include <io.h>
#include <stdio.h>

FILE #*stream:;
long length;

main ()

stream = fopen ("data","r"):

/* Get length or -1L if function fails: */

length = filelength(fileno (stream)) ;

if (length == -1L) /* If function failed... */
printf ("filelength failed"):

else
printf("file length is %1d\n", length):

This program opens a file named data, using filelength to determine its
length. If filelength fails, it returns —1L and the program displays a fail-
ure message. Otherwise, the program displays the length of data.

266

fileno

Summary

include <stdio.h>

int fileno(stream);
FILE *stream; Pointer to FILE structure

Description
The fileno function returns the file handle currently associated with

stream. If more than one handle is associated with the stream, the return
value is the handle assigned when the stream was initially opened.

Return Value

The fileno function returns the file handle. There is no error return. The
result is undefined if stream does not specify an open file.

See Also
fdopen, filelength, fopen, freopen

Note
The fileno routine is implemented as a macro.

Example

#include <stdio.h>
main ()

int result = fileno (stderr): /* result is 2 x/
printf ("The file handle for stderr is %d\n", result):

This program uses fileno to obtain the file handle of stderr.

2687

— floodfill

® Summary

short far _ floodfill(z, y, boundary);
short z, y; Start point
short boundary; Fills boundary color

B Description

The —floodfill function fills an area of the display using the current color
and fill mask. Filling starts at the logical point (z, y). If this point lies
inside the figure, the interior is filled; if outside the figure, the background
is filled. The point must be inside or outside the figure to be filled, not on
the figure boundary itself. Filling occurs in all directions, stopping at the
color of boundary.

B Return Value

The _floodfill function returns a nonzero value if the fill is successful. It
returns O if the fill could not be completed, the starting point lies on the
boundary color, or the start point lies outside the clipping region.

B See Also

—getcolor, — getfillmask, _setfillmask, _setcliprgn, _setcolor

m Example

#include <stdio.h>
#include <malloc.h>
#include <graph.h>

char far *buffer:
main ()

int loop:

int xvar, yvar:;

_setvideomode (_MRES16COLOR) ;

for (xvar = 163, loop = 0; xvar < 320; loop++, xvar += 3) {
setcolor(loop % 16):

yvar = xvar * 5
rectangle (GBORDER 320-xvar, 200-yvar, xvar, yvar):
_setcolor(rand (1) % 16):

_floodfill (O, O, loop % 16):

}

268

—floodfill

buffer = (char far #*)malloc((unsigned int)
_imagesize(O, O, 80, 50)):
if (buffer == (char far *)NULL) {
exit(-1):

_getimage (O, O, 80, 50, buffer):
_putimage(80, 50, buffer, _GXOR):
free ((char *)buffer):
_setvideomode (_DEFAULTMODE) :

}

This program draws a series of nested rectangles in different colors, while
constantly changing the background color.

289

floor

N Summary

include <math.h>

double floor(z);
double z; Floating-point value

Description

The floor function returns a floating-point value representing the largest
integer that is less than or equal to z.

B Return Value
The floor function returns the floating-point result. There is no error
return.

B See Also

ceil, fmod

B Example

#include <math.h>

main ()
double y:
y = floor (2.8): /* y is 2.0 *x/
printf ("The floor of 2.8 is %f\n",y):
y = floor (-2.8): /* y is -3.0 x/
printf("The floor of -2.8 is %f\n",y):

This example displays the largest integers less than or equal to the
floating-point values 2.8 and -2.8.

270

flushall

® Summary

include <stdio.h>

int flushall(void);

B Description

The flushall function writes the contents of all buffers associated with
open output streams to their associated files. All buffers associated with
open input streams are cleared of their current contents; the next read
operation (if there is one) then reads new data from the input files into
the buffers.

All streams remain open after the call to flushall.

B Return Value

The flushall function returns the number of open streams (input and out-
put). There is no error return.

B See Also
fHush

Note

Buffers are automatically flushed when they are full, when streams are
closed, or when a program terminates normally without closing
streams.

271

flushall

B Example

#include <stdio.h>
main ()
int numflushed;

numflushed = flushall():
printf ("There were %d streams flushed\n", numflushed);

This program uses flushall to flush all buffers, including stdin, stdout,
and stderr, and prints the number of open streams.

272

fmod

Summary

include <math.h>

double fmod(z, y);

double z, y; Floating-point values

Description

The fmod function calculates the floating-point remainder fof (2, y) such
that z = dy + f, where ¢is an integer, fhas the same sign as z, and the ab-
solute value of fis less than the absolute value of y.

Return Value

The fmod function returns the floating-point remainder. If y is O, the
function returns 0.

See Also

ceil, fabs, floor

Example
#include <math.h>
main ()

double x,y.,z:

x = -10.0;
y = 3.0;
= fmod(x,y), /* z is -1.0 */

prlntf("fmod(/ 2f, %.2f) is Y4f".x.y.z):

This program displays the floating-point remainder of -10/3.

273

fopen

Summary

include <stdio.h>

FILE *fopen(path, type);

const char *path; Path name of file
const char *type; Type of access permitted
Description

The fopen function opens the file specified by path. The character string
type specifies the type of access requested for the file, as follows:

Type Description

"p" Opens for reading. If r is the first character in fype, and
the file does not exist or cannot be found, the fopen call
will fail.

"w'" Opens an empty file for writing. If the given file exists, its

contents are destroyed.

1t

a Opens for writing at the end of the file (appending);
creates the file first if it doesn’t exist.

"r4" Opens for both reading and writing. (The file must exist.)

"w+" Opens an empty file for both reading and writing. If the
given file exists, its contents are destroyed.

"a" Opens for reading and appending; creates the file first if it
doesn’t exist.

Note

Use the "w' and "w+" types with care, as they can destroy existing
files.

When a file is opened with the "a' or "a+" type, all write operations
occur at the end of the file. Although the file pointer can be repositioned
using fseek or rewind, the file pointer is always moved back to the end of
the file before any write operation is carried out. Thus, existing data can-
not be overwritten.

274

fopen

When the "r+", "w+" or "a4" type is specified, both reading and
writing are allowed (the file is said to be open for “update”). However,
when switching between reading and writing, there must be an intervening
fsetpos, fseek, or rewind operation. The current position can be specified
for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters can
be appended to type or inserted before the + character to specify the
translation mode for new lines. For example, r+b is the same as rb+.

Mode Meaning

t Open in text (translated) mode. In this mode, carriage-
return-line-feed (CR-LF) combinations are translated into sin-
gle line feeds (LF) on input and LF characters are translated
to CR-LF combinations on output. Also, CTRL+Z is interpreted
as an end-of-file character on input. In files opened for read-
ing or reading/writing, fopen checks for a CTRL+Z at the end
of the file and removes it, if possible. This is done because
using the fseek and ftell functions to move within a file that
ends with a CTRL+Z may cause fseek to behave improperly
near the end of the file.

The t option is not part of the ANSI standard for open, but
is a Microsoft extension and should not be used where ANSI
portability is desired.

b Open in binary (untranslated) mode; the above translations
are suppressed.

If t or b is not given in type, the translation mode is defined by the
default-mode variable _fmode.

Return Value

The fopen function returns a pointer to the open file. A null pointer value
indicates an error.

See Also

fclose, fcloseall, fdopen, ferror, fileno, freopen, open, setmode

275

fopen

m Example

#include <stdio.h>
FILE #*stream;

main ()

/* Attempt to open the file: x/

if ((stream = fopen ("data",6"r")) == NULL)
printf ("Could not open file\n"):
else

printf("File opened for reading\n"):

Sample command line:

update employ.dat

Output:

C:\BIN\UPDATE.EXE couldn't open file employ.dat

This program uses fopen to open a file named data for input.

276

FP_OFF, FP_SEG

® Summary

include <dos.h>
unsigned FP_ OFF(address);
unsigned FP_ SEG(address);

char far *address; Long pointer to memory address

B Description
The FP_OFF and FP_SEG macros can be used to set or get the offset
and segment, respectively, of address. In small and medium memory mod-
els, the FP_SEG and FP_ OFF macros only work if the far pointer
argument lies in the default data segment. If the far pointer is itself in a
far data segment, the macros will not work correctly.

B Return Value
The FP_ OFF macro returns an offset. The FP_SEG macro returns a
segment address.

B See Also

segread

277

FP_OFF, FP_SEG

B Example

#include <dos.h>
#include <malloc.h>
#include <stdio.h>

char far *p:;
unsigned int seg_val:
unsigned int off_val:

main ()
p = _fmalloc (100) : /* Points pointer at something =*/
seg_val = FP_SEG(p): /* Gets address pointed to */

off_val = FP_OEF (p) :
printf ("Segment is Yd; Offset is %d\n". seg_val, off_val):

This program uses FP_SEG and FP_ OFF to obtain the segment and
offset of the long pointer p.

278

—fpreset

¥ Summary

include <float.h>

void _ fpreset(void); Reinitializes floating-point-math package

B Description

The — fpreset function reinitializes the floating-point-math package. This
function is usually used in conjunction with signal, system, or the exec
or spawn family.

If a program traps floating-point error signals (SIGFPE) with signal, it
can safely recover from floating-point errors by invoking — fpreset and
using longjmp.

Note

On MS-DOS versions prior to 3.0, a child process executed by exec,
spawn, or system may affect the floating-point state of the parent
process if an 8087 or 80287 coprocessor is used. Therefore, if you are
using either coprocessor, the following precautions are
recommended:

o The exec, spawn, and system functions should not be called
during the evaluation of a floating-point expression.

o The _fpreset function should be called after these routines
if there is a possibility of the child process performing any
floating-point operations.

B Return Value

There 1s no return value.

B See Also

exec functions, signal, spawn functions

279

—fpreset

® Example

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <float.h>

int fphandler():
Jjmp_buf mark:;
double a = 1.0, b = 0.0, c;

main ()

/* Set up pointer to error handler: x/

if (signal (SIGFPE, fphandler) == (int(x) ())-1)
abort () :
if (setjmp (mark) == 0) /* Save stack environment */

/* Generate divide by zero error: */

c = a/b;
printf ("Should never get here\n"):

printf ("Recovered from floating-point error\n"):

int fphandler (sig,num)
int sig,num;

printf ("signal = %d subcode = %d\n", sig, num):
/* Initialize floating-point package: x/
_fpreset():

/* Restore environment:; return -1: */

(mark, -1)

This program uses signal to set up a routine for handling floating-point
errors. This routine, fphandler, displays an error message and reinitial-
izes the floating-point-math package using — fpreset.

280

fprintf

N Summary

include <stdio.h>

int fprintf(stream, format[, argument]...);
FILE *stream; Pointer to FILE structure
const char *format; Format-control string

B Description

The fprintf function formats and prints a series of characters and values
to the output stream. Each argument (if any) is converted and output
according to the corresponding format specification in format.

The format is of the same form and function as the format argument for
the printf function; see the printf reference page for descriptions of for-
mat and argument.

B Return Value

The fprintf function returns the number of characters printed.

B See Also

cprintf, fscanf, printf, sprintf

281

fprintf

® Example

#include <stdio.h>
#include <process.h>

FILE xstream:;

int 1 = 10;
double fp = 1.5;
char #*s = "this is a string";
char ¢ = '\n':
main ()
stream = fopen ("results", "w"):

fprintf (stream, "%s%c"., s, c);

fprintf (stream, "%d\n",1i):

fprintf (stream, "%f\n", fp): /* Print 1.500000 x/
fclose (stream) :

systen ("type results");

}

This program uses fprintf to format various data and print them to the
file named results. It then displays results on the screen.

282

fputc, fputchar

® Summary

include <stdio.h>

int fputc(e, stream); Writes a character to stream
int ¢; Character to be written
FILE =stream; Pointer to FILE structure
int fputchar(c); Writes a character to stdout
int c; Character to be written

B Description

The fpute function writes the single character ¢ to the output stream at
the current position. The fputchar function is equivalent to fpute(c,
stdout).

B® Return Value

The fputc and fputchar functions return the character written. A return
value of EOF may indicate an error; however, since the EOF value is also
a legitimate integer value, use ferror to verify an error condition.

Note

The fputc and fputchar routines are similar to pute and putchar,
but are functions, not macros.

B See Also

fgete, fgetchar, pute, putchar

283

fputc, fputchar

® Example

#include <stdio.h>
FILE *stream;

char buffer [81]:
int i;

int ch;

main ()

stream = stdout:

/* Demonstrate "fputc":
** Set up buffer:
4
strcpy (buffer, "This is a test of fputc!!\n"):
/* Print line to stream */
for (1 =0; (1< 81) &&
((ch = fputc (buffer[i], stream)) != EOF); i++):

/* Demonstrate "fputchar":

*x Set up buffer:

*/

strcpy (buffer, "This is a test of fputchar!!"):
/* Print line to stream x/

for (1 =0; (1i<8l) &
((ch = fputchar (buffer[i])) != EOF):; i++):

This program uses fputc and fputchar to send a character array to
stdout.

284

fputs

B Summary

include <stdio.h>
int fputs(string, stream); Writes a string to stream

char *string; String to be output
FILE =stream; Pointer to FILE structure

B Description

The fputs function copies string to the output siream at the current posi-
tion. The terminating null character (*\0’) is not copied.
B Return Value

The fputs function returns a O is successful. If the function fails, it returns
a nonzero value.

C 4.0 Difference

In Microsoft C Version 4.0, fputs returns the last character output or
an EOF to indicate an error.

H See Also
fgets, gets, puts

285

fputs

Example

#include <stdio.h>

FILE *stream:

main ()

{

int result:;

strean
result

}

stdout:;
fputs ("Data files have been updated\n", stream):

This program uses fputs to write a single line to a stream.

286

fread

H Summary

include <stdio.h>

size_t fread(buffer, size, count, stream);

void *buffer; Storage location for data

size_t size; Item size in bytes

size_t count; Maximum number of items to be read
FILE *stream; Pointer to FILE structure

B Description
The fread function reads up to count items of size bytes from the input
stream and stores them in buffer. The file pointer associated with stream
(if there is one) is increased by the number of bytes actually read.
If the given stream is opened in text mode, carriage-return-line-feed (CR-
LF) pairs are replaced with single line-feed (LF) characters. The replace-
ment has no effect on the file pointer or the return value.
The file-pointer position cannot be determined if an error occurs, nor can
the value of a partially-read item be determined.

B Return Value
The fread function returns the number of full items actually read, which
may be less than count if an error occurs or if the file end is encountered
before reaching count.
The feof or ferror function should be used to distinguish a read error
from an end-of-file condition. If size or count is O, fread returns O and the
buffer contents are unchanged.

m See Also

fwrite, read

287

fread

Example

#include <stdio.h>

FILE #*stream;
long list[100]:
int numread;
int numwritten:;

main ()

/* Open file in "binary" mode: */
if ((stream = fopen ("data", "w+b")) != NULL)
{

/* Write 100 long integers to "stream": */
numwritten = fwrite((char #*)list,sizeof(long), 100, stream)
printf("Wrote %d items\n", numwritten):

else
printf ("Problem opening the file"):

fclose (streamn) ;

if ((stream = fopen ("data", "r+b")) != NULL)

{
/* Attempt to read in 100 long ints: */
numread = fread((char x)list,sizeof (long),1l00,strean):
printf ("Number of items read = %d\n", numread):

else
printf ("Was not able to open the file"):

This program opens a file named data.bin and writes 100 long integers
to the file. It then tries to open data.bin and read in 100 long integers.

If the attempt succeeds, the program displays the number of actual items
read.

288

free, _ffree, _nfree

B Summary

#include <stdlib.h> For ANSI compatibility (free only)
include <malloc.h> Required only for function declarations

void free(buffer); Frees memory block

void *buffer; Allocated memory block

void _ ffree(buffer); Frees block in far heap

void far *buffer; Allocated memory block in far heap
void _ nfree(buffer); Frees block in near heap

void near *buffer; Allocated memory block in near heap

B Description

The free function deallocates a memory block. The argument buffer points
to a memory block previously allocated through a call to calloc, malloc,
or realloc. The number of bytes freed is the number of bytes specified
when the block was allocated (or reallocated, in the case of realloc). After
the call, the freed block is available for allocation.

A null pointer argument is ignored.

In large data models (compact- and large-model programs), free maps to
—ffree. In small data models (small- and medium-model programs), free
maps to —nfree.

The — ffree function deallocates a memory block outside the default data
segment. The argument buffer points to a memory block previously allo-
cated through a call to —fmalloc. The number of bytes freed is the num-
ber of bytes specified when the block was allocated. After the call, the
freed block is again available for allocation.

The — nfree function deallocates a memory block. The argument buffer
points to a memory block previously allocated through a call to — nmal-
loc. The number of bytes freed is the number of bytes specified when the
bﬁack was allocated. After the call, the freed block is again available for
allocation.

289

free, _ffree, _nfree

B Return Value

There is no return value.

B See Also

calloc, _fmalloc, malloc, —nmalloc, realloc

Note

Attempting to free an invalid pointer may affect subsequent alloca-
tion and cause errors. An invalid pointer is one not allocated with the
appropriate call. Only blocks allocated with calloc, malloc, or realloc
can be freed with free, only blocks allocated with —fmalloc can be
freed with _ffree, and only blocks allocated with —nmalloc can be
freed with —nfree.

B Example

#include <malloc.h>
#include <stdio.h>

void =#alloc:
main ()

/* If there is nothing to free... %/
if ((alloc = malloc (100)) == NULL)

printf ("Unable to allocate memory"):
else

/* Free memory for the heap: x/
free (alloc) ;
printf ("100 bytes freed\n"):
}
}

This program uses malloc to allocate a block of memory and then uses
free to free this block.

290

_freect

Summary

include <malloc.h> Required only for function declarations

unsigned int _ freect(size);
size_t size; Item size in bytes

Description

The - freect function tells you how much memory is available for dynamic
memory allocation. It does so by returning the approximate number of
times your program can call malloe to allocate an item size bytes long in
the default data segment.

Return Value

The —freect function returns the number of calls as an unsigned integer.

See Also

calloc, — expand, malloc, - memavl, —msize, realloc

Example

#include <malloc.h>
main ()
int i;

/* First report on the free space: #*/
printf ("Approximate # of times program can call malloc\n"):
printf("to allocate a single integer = %u\n",

_freect (sizeof (int))):

/* Allocate space for 1000 integers: x/
for (i = 0; i < 1000; ++1i)
malloc (sizeof (int)):

/* Report again on the free space: %/
printf ("Approximate # of times program can call malloc\n"):
printf ("to allocate a single integer = %u\n",
_freect (sizeof (int))):
}

291

_freect

Sample output:

Approximate
to allocate

Approximate
to allocate

of times program can call malloc
single integer = 15268

of times program can call malloc
single integer = 14266

This program determines how much free space is available for integers in
the default data segment. Then it allocates space for 1000 integers and
checks the space again using _ freect.

292

freopen

B Summary

include <stdio.h>

FILE *freopen(path, type, stream);

const char *path; Path name of new file
const char *type; Type of access permitted
FILE #stream; Pointer to FILE structure

B Description

The freopen function closes the file currently associated with stream and
reassigns stream to the file specified by path. The freopen function is typi-
cally used to redirect the preopened files stdin, stdout, stderr, stdaux,
and stdprn to files specified by the user. The new file associated with
stream is opened with fype, which is a character string specifying the type
of access requested for the file, as follows:

Type Description

"o 1

r Opens for reading. If r is the first character in the type
string and the file does not exist or cannot be found, the
freopen call will fail.

w Opens an empty file for writing. If the given file exists, its

contents are destroyed.

"a" Opens for writing at the end of the file (appending);
creates the file first if it doesn’t exist.

"r4" Opens for both reading and writing. (The file must exist.)

"w4" Opens an empty file for both reading and writing. If the
given file exists, its contents are destroyed.

"a4" Opens for reading and appending; creates the file first if it
doesn’t exist.

Note
Use the "w" and "w+'" types with care, as they can destroy existing
files.

293

freopen

When a file is opened with the "a'" or "a-'" types, all write operations
take place at the end of the file. Although the file pointer can be reposi-
tioned using fseek or rewind, the file pointer is always moved back to the
end of the file before any write operation is carried out. Thus, existing
data cannot be overwritten.

When the "r+", "w+", or "a+" type is specified, both reading and
writing are allowed (the file is said to be open for “update”). However,
when switching between reading and writing, there must be an intervening
fsetpos, fseek, or rewind operation. The current position can be specified
for the fsetpos or fseek operation, if desired.

In addition to the values listed above, one of the following characters may
be appended to the type string or inserted before the + character to
specify the translation mode for new lines. For example, r+b is the same
as rb+.

Mode Meaning

t Open in text (translated) mode; carriage-return—
line-feed combinations are translated into a single line feed
on input; line-feed characters are translated to carriage-
return—line-feed combinations on output. Also, CTRL+Z is
interpreted as an end-of-file character on input. In files
opened for reading, or writing and reading, the run-time
library checks for a CTRL+Z at the end of the file and removes
it, if possible. This is done because using the fseek and ftell
functions to move within a file may cause fseek to behave
improperly near the end of the file.

The t option is not part of the ANSI standard for freopen,
but is a Microsoft extension that should not be used where
ANSI portability is desired.

b Open in binary (untranslated) mode; the above translations
are suppressed.

If t or b is not given in the type string, the translation mode is defined by
the default mode variable _fmode.

Return Value

The freopen function returns a pointer to the newly opened file. If an
error occurs, the original file is closed and the function returns a null
pointer value.

294

freopen

M See Also

fclose, fcloseall, fdopen, fileno, fopen, open, setmode

B Example

#include <stdio.h>
#include <process.h>

FILE *stream, *errstream;

main ()

/* Reassign "stdout" to "data2": x/
" ”

stream = freopen ("data2", "w", stdout):

/* If reassignment failed: x/
if (stream == NULL)
fprintf ("error on freopen\n"):
else

fprintf (stream, "This will go to the file 'data2'\n"):
fprintf (stream, " 'stdout' successfully reassigned\n"):
system ("type data2"):;
}
}

This program reassigns stdout to the file named data2 and writes a line
to that file.

295

frexp

Summary

include <math.h>

double frexp(z, expptr);

double z; Floating-point value
int *expptr; Pointer to stored integer exponent
Description

The frexp function breaks down the floating-point value (z) into a man-
tissa (m) and an exponent (n) such that the absolute value of m is greater
than or equal to 0.5 and less than 1.0, and x = m*2". The integer exponent
n is stored at the location pointed to by expptr.

Return Value

The frexp function returns the mantissa. If zis 0, the function returns O
for both the mantissa and exponent. There is no error return.

See Also

ldexp, modf

Example

#include <math.h>
main ()

double x, y:

int n:
x = 16.4;
y = frexp (x,é&n); /* y is .5125 and n is 5 */

printf("y = %f and n = %d".y.n):
}

This program calculates frexp (16.4, &n), then displays y and n.

296

fscanf

® Summary

include <stdio.h>
int fscanf(stream, format[, argument]...);

FILE #*stream; Pointer to FILE structure
const char *format; Format-control string

B Description

The fscanf function reads data from the current position of stream into
the locations given by arguments (if any). Each argument must be a pointer
to a variable with a type that corresponds to a type specifier in format.
The format controls the interpretation of the input fields and has the same
form and function as the format argument for the scanf function; see the
scanf reference page for a description of format.

B Return Value
The fscanf function returns the number of fields that were successfully
converted and assigned. The return value does not include fields that were
read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

H See Also

cscanf, fprintf, scanf, sscanf

297

fscanf

N Example

#include <stdio.h>

FILE *stream:;
long 1;

float fp:
char s{[81]:
char c;

int result:;

main ()
stream = fopen("data", "w+"):
/* Write data to the file: =/
fprintf (stream, "¥%s %14 %f%c%c"."a-string",
65000, 3.14159, 'x',ECF):;

/* Set pointer to beginning of file: #/
fseek (stream, O, SEEK_SET) ;

/* Read data back from file: x/

result = fscanf (stream, "¥%s".,s ;
result = fscanf (stream, "%1d", &l1):
result = fscanf (stream, "%f", &fp):
result = fscanf (stream, "%c", &c)

/* Output data read: */
printf ("%s\n", s):
printf ("%1d\n", 1):
printf ("%f\n", fp):
printf ("%c\n", c):

This program first opens a file named data. It then uses fscanf to accept
various types of input data and printf to display these data on the screen.

298

fseek

H Summary

include <stdio.h>

int fseek(stream, offset, origin);

FILE *stream; Pointer to FILE structure
long offset; Number of bytes from origin
int origing Initial position

B Description

The fseek function moves the file pointer (if any) associated with stream
to a new location that is offsef bytes from origin. The next operation on
the stream takes place at the new location. On a stream open for update,
the next operation can be either a read or a write.

The argument origin must be one of the following constants defined in
stdio.h:

Origin Definition

SEEK_SET Beginning of file
SEEK_CUR Current position of file pointer
SEEK_END End of file

The fseek function can be used to reposition the pointer anywhere in a
file. The pointer can also be positioned beyond the end of the file. How-
ever, an attempt to position the pointer in front of the beginning of the
file causes an error.

The fseek function clears the end-of-file indicator and negates the effect of
any prior ungetc calls against stream.

Note

When a file is opened for appending data, the current file position

is determined by the last I/O operation, not where the next write
would occur. If no I/O operation has yet occurred on a file opened for
appending, the file position is the start of the file.

299

fseek

For streams opened in text mode, fseek has limited use because carriage-
return—line-feed translations can cause fseek to produce unexpected re-
sults. The only fseek operations guaranteed to work on streams opened in
text mode are the following:

o Seeking with an offset of 0 relative to any of the origin values

e Seeking from the beginning of the file with an offset value returned
from a call to ftell

Return Value

If successful, fseek returns 0. Otherwise, it returns a nonzero value. On
devices incapable of seeking, the return value is undefined.

B See Also

ftell, Iseek, rewind

E Example

#include <stdio.h>

FILE *stream:
main ()

char line[81]:
int result:;
stream = fopen ("data", "w+"):
fprintf (stream,"This is the first line in file 'data'.\n"):
result = fseek(stream, OL,SEEK_SET): /* Position pointer +/
if (result)

perror ("Eseek failed"):
else {

printf("File pointer is set to the beginning of file.\n"):
fgets (line, 80, stream) ;

printf ("¥%s",.line);

}

This program opens the file data and moves the pointer to the file’s
beginning.

300

fsetpos

B Summary

include <stdio.h>
int fsetpos(stream, pos);

FILE *stream; Target stream
const fpos_t *pos; Position-indicator storage

B Description

The fsetpos function sets the file-position indicator for stream to the
value of pos, which is obtained in a prior call to fgetpos against stream.

The function clears the end-of-file indicator and undoes any effects of the
ungetc function on stream. After calling fsetpos, the next operation on
stream may be either input or output.

B Return Value
If successful, the fsetpos function returns 0. On failure, the function
returns a nonzero value and sets errno to one of the following manifest

constants (defined in stdio.h):

Constant Meaning

EINVAL An invalid stream value was passed.

EBADF The object that stream points to is not a valid file han-
dle, or the file is not accessible.

B See Also

fgetpos

301

fsetpos

Example

#include <stdio.h>

FILE #*stream;
fpos_t #pos:
int val;

char list[100]:

main ()

{
stream = fopen("filel", "rb"): /* Open filel
fread (list, sizeof (char),b 100, stream) : /* Read some data
if (fgetpos (stream,pos) != 0) /* Save current position
perror ("fgetpos error"):
fread (list, sizeof (char),b 100, stream) ; /* Read some more
if (fsetpos (stream,pos) != 0) /* Return to saved position

perror ("fsetpos error");

This program opens the file named filel and reads 100 characters. [t
then uses fgetpos to find and save the file position pointer. After perform-
ing another read, the program calls fsetpos to restore the file pointer to
the saved position.

302

fstat

B Summary

include <sys\ types.h>
include <lsys\ stat.h>

int fstat(handle, buffer);

int handle; Handle of open file
struct stat *buffer; Pointer to structure to store results

B Description

The fstat function obtains information about the open file associated with
handle and stores it in the structure that buffer points to. The structure,
whose type stat is defined in sys\stat.h, contains the following fields:

Field Value

st—atime Time of last modification of file (same as
st_mtime and st_ctime).

st_ ctime Time of last modification of file (same as
st_atime and st_ mtime).

st_dev Either the drive number of the disk containing the
file, or handle in the case of a device (same as
st_rdev).

st—mode Bit mask for file-mode information. S_IFCHR bit

set if handle refers to a device. S_LIFREG bit set
if handle refers to an ordinary file. User read/write
bits set according to the file’s permission mode.

st_mtime Time of last modification of file (same as
st atime and st—ctime).

st nlink Always 1.

st_rdev Either the drive number of the disk containing
the file, or handle in the case of a device (same as
st_dev).

st_size Size of the file in bytes.

There are three additional fields in the stat structure type that do not
contain meaningful values under DOS.

303

fstat

Return Value

The fstat function returns the value 0 if the file-status information is ob-
tained. A return value of —1 indicates an error; in this case, errno is set to
EBADF, indicating an invalid file handle.

See Also

access, chmod, filelength, stat

Note

If handlerefers to a device, the size and time fields in the stat struc-
ture are not meaningful.

Example

#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <io.h>

struct stat buf;

int fh, result:;
char *buffer = "A line to output";

304

fstat

main ()

fh = open ("data", O_CREAT ! O_WRONLY ! O_TRUNC):
write (fh,buffer, strlen(buffer)):

/* Get data associated with "fh": x/
result = fstat (fh,&buf);
/* Check if statistics are valid: */

if (result != 0)
printf ("Bad file handle\n"):

/* Output some of */
/* the statistics: x/
else

printf ("File size : %1d\n".buf.st_size);
printf ("Drive number : %d\n",buf.st_dev):
printf ("Time modified : Ys", ctime (&buf.st_atime)):

}
}

This program uses fstat to report the size of a file named data.

3056

ftell

Summary

include <<stdio.h>

long ftell(stream);
FILE *stream; Target FILE structure

Description
The ftell function gets the current position of the file pointer (if any) asso-

ciated with stream. The position is expressed as an offset relative to the
beginning of the stream.

Note

When a file is opened for appending data, the current file position is
determined by the last I/O operation, not where the next write would
occur. For example, if a file is opened for an append and the last op-
eration was a read, the file position is the point where the next read
operation would start, not where the next write would start. If no I/O
operation has yet occurred on a file opened for appending, then the file
position is the beginning of the file.

Return Value

The ftell function returns the current position. On error, the function
returns -1L and errno is set to one of the following constants, defined in
errno.h:

Constant Description

EBADF Bad file number. The stream argument is not a
valid file-handle value or does not refer to an open
file.

EINVAL Invalid argument. An invalid stream argument was

passed to the function.

On devices incapable of seeking (such as terminals and printers), or when
stream does not refer to an open file, the return value is undefined.

306

ftell

B See Also
fgetpos, fseek, Iseek, tell

Note

The value returned by ftell may not reflect the physical byte offset for
streams opened in text mode, since text mode causes carriage-return—
line-feed translation. Use ftell in conjunction with the fseek function
to remember and return to file locations correctly.

B Example

#include <stdio.h>

FILE *stream:
long position;
char 1list[100]:

main ()

stream = fopen ("data","rb");

/* Move the pointer by reading data: #*/
fread(list, sizeof (char), 100, stream):
/* Get position after read: */
position = ftell (stream):

printf ("position = %1d\n", position);

This program opens a file named data for reading and tries to read 100
characters. It then uses ftell to determine the position of the file pointer
and displays this position.

307

ftime

Summary

#include <sys\ types.h>
include <<sys\ timeb.h>

void ftime(timeptr);
struct timeb *timepir; Pointer to structure defined in sys\ timeb.h

Description

The ftime function gets the current time and stores it in the structure
pointed to by timeptr. The timeb structure is defined in sys\timeb.h. It
contains four fields, time, millitm, timezone, and dstflag, which have
the following values:

Field Value

dstflag Nonzero if daylight saving time is currently in
effect for the local time zone. (See tzset for an
explanation of how daylight saving time is de-

termined.)
millitm Fraction of a second in milliseconds.
time The time in seconds since 00:00:00 Greenwich

mean time, January 1, 1970.

timezone The difference in minutes, moving westward,
between Greenwich mean time and local time.
The value of timezone is set from the value of
the global variable timezone (see tzset).

B Return Value

The ftime function gives values to the fields in the structure pointed to by
timeptr. It does not return a value.

See Also

asctime, ctime, gmtime, localtime, time, tzset

308

ftime

® Example

#include <sys/types.h>
#include <sys/timeb.h>
#include <stdio.h>
#include <time.h>

main ()

struct timeb timebuffer:
char *timeline;

ftime (&timebuffer) ;
timeline = ctime (& (timebuffer.time)):

printf ("The time is ¥%.19s.%hu %s",timeline,
timebuffer.millitm, &timeline[20]):
}

Sample output:

The time is Wed Dec 04 17:58:29.420 1985

This program uses ftime to obtain the current time and then stores this
time In timebuffer.

309

fwrite

Summary

include <stdio.h>

size_t fwrite(buffer, size, count, stream);

const void *buffer; Pointer to data to be written

size_t size; Item size in bytes

size_t count; Maximum number of items to be written
FILE *siream; Pointer to FILE structure
Description

The fwrite function writes up to count items of length size from buffer to
the output stream. The file pointer associated with stream (if there 1s one)
is incremented by the number of bytes actually written.

If stream is opened in text mode, each carriage return is replaced with a
carriage-return—line-feed pair. The replacement has no effect on the return
value.

Return Value

The fwrite function returns the number of full items actually written,
which may be less than count if an error occurs. Also, if an error occurs,
the file-position indicator cannot be determined.

See Also

fread, write

310

fwrite

® Example

#include <stdio.h>

FILE *stream;
long 1list[100];
int numread:
int numwritten;

main ()

/* File opened in "binary" mode: +*/

if ((stream = fopen("data.bin", "wt+b")) != NULL) {
/* Write 100 long integers to "stream": */
numwritten = fwrite((char x*)list,sizeof(long),100, stream):
printf("Wrote %d items\n", numwritten):

else
printf ("Problem opening the file");
fclose (stream)
if ((stream = fopen("data.bin", "r+b")) != NULL) {
/* Attempt to read in 100 long ints: x/
numread = fread((char x)list,sizeof(long),100, stream):
printf ("Number of items read = %d\n", numread):

else
printf ("Was not able to open the file"):

This program opens a file named data.bin and writes 100 long integers
to the file. The program then tries to open data.bin and read in 100
long integers. If the attempt succeeds, the program displays the number of
actual items read.

311

gevt

Summary

include <<stdlib.h> Required only for function declarations
char *gevt(value, digits, buffer);

double value; Value to be converted

int digits; Number of significant digits stored
char *buffer; Storage location for result
Description

The gevt function converts a floating-point value to a character string and
stores the string in buffer. The buffer should be large enough to accommo-
date the converted value plus a terminating null character (’\0°), which is
automatically appended. There is no provision for overflow.

The gevt function attempts to produce digits significant digits in decimal
format. Failing that, it produces dig:ts significant digits in exponential for-
mat. Trailing zeros may be suppressed in the conversion.

Return Value

The gevt function returns a pointer to the string of digits. There is no
error return.

See Also

atof, atoi, atol, ecvt, fevt

312

gevt

B Example

#include <stdlib.h>
#include <stdio.h>

char buffer [50];
int precision = 7;

main ()
gcvt (-3.1415e5,precision,buffer) ;

/* buffer now contains "-314150." x/
printf ("buffer= \"%s\"\n". buffer):

This program converts -3.1415e5 to its string representation, then
displays this string.

313

— getbkcolor

Summary

include <graph.h>

long far _ getbkcolor(void);

Description

The — getbkcolor function retrieves the pixel value of the current back-
ground color. The default is 0.

Return Value

The function returns the current background color value. There is no error
return.

See Also

—setbkcolor

Example

#include <stdio.h>
#include <graph.h>

main ()
int loop:
_setvideomode (_MRES16COLOR) ;
for (loop = 0; loop < 20; loop++) {
/* Get the next background color x/
_setbkcolor ((_getbkcolor() + 1) % 16):

_setvideomode (_DEFAULTMODE) :
bs

This program repeatedly sets a new background color.

314

getc, getchar

® Summary

include <<stdio.h>

int getc(stream); Reads a character from stream
FILE *stream; Pointer to FILE structure
int getchar(void); Reads a character from stdin

B Description

The getc macro reads a single character from the current stream position
and increases the associated file pointer (if there is one) to point to the
next character. The getchar macro is identical to getc(stdin).

B Return Value
The getc and getchar macros return the character read. A return value

of EOF indicates an error or end-of-file condition. Use ferror or feof to
determine whether an error or end-of-file occurred.

H See Also
fgetc, fgetchar, getch, getche, putc, putchar, ungetc

Note

The getc and getchar routines are similar to fgetc and fgetchar,
respectively, but are macros, not functions.

315

getc, getchar

®m Example

#include <stdio.h>
FILE *stream:
char buffer[81]:
int i, ch;
main ()

stream = fopen("getc.c", "r"):

printf ("Enter a line >> ");

/* Read in single line from "stdin": x/
for (1 = 0; (i < 80) && ((ch = getchar()) != EOF)
&& (ch !'= '\n'):; i++)

buffer[i] = ch:

/* Terminate string with null character: */
buffer[i] = '\0';
printf ("%s\n", buffer):

This program uses getchar to read a single line of input from stdin,
places this input in buf fer, then terminates the string before printing
it to the screen.

316

getch, getche

Summary

include <conio.h> Required only for function declarations

int getch(void); Reads character without echo
int getche(void); Reads character and echo
Description

The getch function reads without echoing a single character from the con-
sole. The getche function reads a single character from the console and
echoes the character read. Neither function can be used to read CTRL4C.

When reading a function key or cursor-moving key, the getch and getche
functions must be called twice; the first call returns 0 or EOH and the
second call returns the actual key code.

Return Value

The getch function returns the character read. There is no error return.

See Also

cgets, getchar, ungetch

Example

#include <conio.h>
#include <ctype.h>

int ch;
main ()
printf ("Input whitespace characters, "
"followed by a non-whitespace character\n"):
do ch = getch():
while (isspace(ch)):
putch(ch) ;

This program reads characters from the keyboard, but does not echo them
until it reads the first nonblank character.

317

— getcolor

® Summary

include <graph.h>

short far _ getcolor(void);

B Description

The _getcolor function returns the pixel value of the current color. The
default is the highest legal value of the current palette.

H Return Value

There is no error return.

See Also

—setcolor

® Example

#include <stdio.h>
#include <graph.h>

main ()

int loop, loopl:
_setvideomode (_MRES16COLOR) ;
for (loopl = O; loopl < 20: loopl++) { /* Get next color: */
_setcolor ((_getcolor() + 1) % 16):
for (loop = O: loop < 3200; loopt++) {
/* set a random pixel normalized to be on screen */
_setpixel(rand(l) / 104, rand(l) / 164):

}
_setvideomode (_DEFAULTMODE) ;
}

This program assigns different colors to randomly selected pixels.

318

— getcurrentposition

® Summary

include <graph.h>

struct xycoord {
short xcoord; x coordinate
short ycoord; y coordinate
} far _ getcurrentposition(void);

B Description
The — getcurrentposition function returns the logical coordinates of

the current graphics output position as an xycoord structure, defined in
graph.h.

The current position can be changed by the _arc and _moveto functions.

Only graphics output starts at the current position; it does not affect text
output, which begins at the current text position, a separate concept (see
_settextposition).

B Return Value

There is no error return.

B See Also

-~ moveto

319

—getcurrentposition

® Example

#include <stdio.h>
#include <graph.h>

struct xycoord position:
char buffer[255]

main ()

int loop:

_setvideomode (_MRES16COLOR) ;

_moveto(rand(l) ¥ 160 + 80, rand(l) % 100 + 50):

position = _getcurrentposition():

sprintf (buffer, "x=%d, y=%d",position.xcoord,position.ycoord);
_settextposition(position.xcoord / 8, position.ycoord / 8):
_outtext (buffer):

while (!kbhit()):; /* wait for key to reset */

_setvideomode (_DEFAULTMODE) ;

}

This program moves the current graphics output position to a random
point, calls — getcurrentposition to obtain the coordinates, and then
writes the coordinates to a buffer. It then sets the current text position to
those coordinates and outputs the coordinates to the screen, beginning at
the current position.

320

getcwd

B Summary

#include <direct.h™> Required only for function declarations

char *getcwd(path, n);
char *path; Storage location for path name
int n; Maximum length of path name

® Description

The getcwd function gets the full path name of the current working direc-
tory and stores it at path. The integer argument n specifies the maximum
length for the path name. An error occurs if the length of the path name
(including the terminating null character) exceeds n.

The path argument can be NULL; a buffer of at least size n (more only if
necessary) will automatically be allocated using malloc to store the path
name. This buffer can later be freed by calling free and passing it the
getcwd return value (a pointer to the allocated buffer).

B Return Value

The getewd function returns path. A NULL return value indicates an
error, and errno is set to one of the following values:

Value Meaning
ENOMEM Insufficient memory to allocate n bytes (when a
NULL argument is given as path)
ERANGE Path name longer than n characters
B See Also

chdir, mkdir, rmdir

321

getcwd

8 Example

#include <direct.h>
#include <stdlib.h>
#include <stdio.h>
main ()

char buffer [67]:

/* Get the current working directory: #*/

if (getcwd (buffer,66) == NULL)
perror ("getcwd error"):
else

printf ("Ys",buffer)

This program places the name of the current directory in the buffer
array, then displays the name of the current directory on the screen. Speci-
fying a length of 66 characters for buf fer allows room for the longest
legal directory name plus two characters for the drive specification.

322

getenv

Summary

include <stdlib.h>> Required only for function declarations

char *getenv(varname);
const char ®varname; Name of environment variable

Description

The getenv function searches the list of environment variables for an en-
try corresponding to varname. Environment variables define the environ-
ment in which a process executes. (For example, the LIB environment
variable defines the default search path for libraries to be linked with a
program.)

Return Value

The getenv function returns a pointer to the environment table entry con-

taining the current string value of varname. The return value is NULL if
the given variable is not currently defined.

See Also

putenv

Note

Environment-table entries must not be changed directly. If an entry
must be changed, use the putenv function. To modify the returned
value without affecting the environment table, use strdup or strepy
to make a copy of the string.

The getenv and putenv functions use the global variable environ to
access the environment table. The putenv function may change the
value of environ, thus invalidating the envp argument to the main
function. Therefore, it’s safer to use the environ variable to access the
environment table.

323

getenv

Example

#include <stdlib.h>
#include <stdio.h>

char #*pathvar:
main ()
/* Get the value of the PATH environment variable: */

pathvar = getenv ("PATH") ;
printf ("%s\n", pathvar ? pathvar : "path variable not set"):

This program uses getenv to retrieve the PATH environment variable

and then displays its value. If PATH=A:\BIN;B:\BIN is in the environ-
ment, pathvar points to A:\BIN;B:\BIN. If there is no PATH envi-

ronment variable, pathvar is NULL.

324

— getfillmask

Summary

include <graph.h>

unsigned char far * far _ getfillmask(mask);
unsigned char far *mask; Mask array

Description

Some graphics routines (— floodfill, _ pie, _ellipse, and _rectangle) can
fill part or all of the screen with the current color or background color.
The filling can be controlled with the current fill mask.

The _ getfillmask function returns the current fill mask. The mask is an
8-by-8 array of bits, where each bit represents a pixel. A 1 bit sets the
corresponding pixel to the current color, while a O bit leaves the pixel
unchanged. The mask is repeated over the entire fill area. If no fill mask
is set, or mask is NULL, only the current color is used in fill operations.

Return Value

If no mask is present, the function returns NULL.

See Also
—floodfil]l, _setfillmask.

Example

#include <stdio.h>
#include <graph.h>

unsigned char #*(style[6]) = { "x00x00x00x00x00x00x00x00",
"x20x08x20x08x20x08x20x08", "x98xcb6x30x30x8cx4cx62x18",
"xebx38xb2x9cxebx38xb2x9c", "xfcxeex7axdexf6xbcxeex7a",
"xfexfexfexfexfexfexfexfe" };

char *oldstyle = "12345678"; /* place holder for old style #/

325

—getfillmask

main ()
{
int loop:
_setvideomode (_MRES4COLOR) ;
~getfillmask(oldstyle):
_setcolor(2):
/* draw an ellipse under the middle few rectangles */
/* in a different color #*/
_ellipse(_GFILLINTERIOR, 120, 75, 200, 125):
_setcolor(3):
for (loop = O: loop < 6: loop++) {
/* make 6 rectangles, the first background color */
_setfillmask((char far *) (style[loop])):
_rectangle (_GFILLINTERIOR, loop*40+5, 90, (loop+1l) *40,110) :

_setfillmask(oldstyle): /* restore old style x/
while(!kbhit()):; /* Strike any key to continue */
_setvideomode (_DEFAULTMODE) :

}

This program draws an ellipse overlaid with six rectangles, each with a
different fill mask.

326

—getimage

Summary

include <graph.h>

void far _getimage(z1, y1, 22, y2, tmage);

short z1, y1; Upper-left corner of bounding rectangle
short z2, y2; Lower-right corner of bounding rectangle
char far *image; Storage buffer for screen image

Description

The — getimage function stores the screen image in the bounding rectan-
gle defined by the logical points (21, y1) and (22, y2) into the buffer that
tmage points to. The buffer must be large enough to hold the image. You
can determine the size by calling — imagesize at run time, or by using the
formula described in the — imagesize reference page.

Return Value

No value is returned.

See Also

—imagesize, _ putimage

Example

#include <stdio.h>
#include <malloc.h>
#include <graph.h>

char far *buffer:

327

—getimage

main ()

int loop:;
int xvar, yvar:
_setvideomode (_MRES16COLOR) ;
for (xvar = 163, loop = O; xvar < 320; loopt+, xvar += 3) {
_setcolor (loop ¥% 16):
yvar = xvar * 5 / 8;
_rectangle (_GBORDER, 320-xvar, 200-yvar, Xvar, yvar):
_setcolor (rand (1) % 16):
_floodfill (0, O, loop % 16):

buffer = (char far #*)malloc((unsigned int)
_imagesize(O, O, 80, 50)):
if (buffer == (char far #*)NULL) {
exit(-1):

—getimage (0, O, 80, 50, buffer):

_putimage(80, 50, buffer, _GXOR):

free ((char x*)buffer):;

while (!'kbhit()):; /* Strike any key to continue x/
_setvideomode (_DEFAULTMODE) :

}

This program draws a rectangle and then calls — getimage to store it in
memory.

328

—getlinestyle

Summary

include <graph.h>

unsigned short far _ getlinestyle(void);

Description

Some graphics routines (— lineto and —rectangle) output straight lines to
the screen. The type of line can be controlled with the current line-style
mask.

The _getlinestyle function returns the current line-style-mask number.
The mask is a 16-bit array, where each bit represents a pixel in the line
being drawn. If the bit is 1, the corresponding pixel is set to the color of
the line (the current color). If the bit is 0, the corresponding pixel is left

unchanged. The mask is repeated over the length of the line. The default
mask is OXFFFF (a solid line).

Return Value

If no mask has been set, _getlinestyle returns the default mask.

See Also

—lineto, _pie, _rectangle, _ setlinestyle‘

Example

#include <stdio.h>
#include <graph.h>

short style[l16] = {Ox1l, Ox3, Ox7, Oxf, Ox1lf, Ox3f, Ox7f, Oxff,

Ox1ff, Ox3ff, Ox7ff, Oxfff, Ox1fff, Ox3fff, Ox7fff,
Oxffff}:

329

—getlinestyle

main ()
{
int xvar, yvar, loop, oldstyle;
_setvideomode (_LMRES16COLOR) ;
oldstyle = _getlinestyle(): /* save the old style of line */
for (xvar = 0, loop = 0; xvar < 320; xvar += 3, loop++) {
_setcolor(loop ¥% 16):
yvar = xvar * 5 / 8;
_setlinestyle(style[loop % 16]):
_rectangle(_GBORDER, 320 - xvar, 200 - yvar, xvar, yvar):

_setlinestyle (oldstyle) ;

_setvideomode (_DEFAULTMODE) :
}

This program calls — getlinestyle to preserve the current line style before
changing it for the subsequent rectangle output.

330

—getlogcoord

B Summary

include <graph.h>

struet xycoord {
short xcoord; x coordinate
short ycoord; y coordinate
} far _ getlogcoord(z, y);
short z, y; Physical point to translate

B Description
The _ getlogcoord function translates the physical coordinates (2, y) to

logical coordinates and returns them in an xycoord structure, defined in
graph.h.

B Return Value

There is no error return.

H See Also

—getphyscoord, —_ moveto

331

—getlogcoord

Example

#include <stdio.h>
#include <graph.h>

main ()

struct xycoord xycoord:

int loop:

_setvideomode (_MRES16COLOR) ;

xycoord.xcoord = rand(l) % 320;

xycoord.ycoord = rand(l) % 200:

xycoord = _getphyscoord (xycoord.xcoord, xycoord.ycoord):

/* set the logical origin to a random place on the screen */
_setlogorg(xycoord.xcoord, xycoord.ycoord) :;

/* draw an ellipse around this random origin */

_ellipse (_GBORDER, -80, -50, 80, 50):

xycoord = _getlogcoord (0, 0O):

_moveto (xycoord.xcoord, xycoord.ycoord)

xycoord = _getlogcoord(320, 200):

_lineto (xycoord.xcoord, xycoord.ycoord)

while (!kbhit()): /* wait for key before resetting screen */
_setvideomode (_DEFAULTMODE) :

}

This program calls _ getphyscoord to find the physical coordinates of a
randomly selected logical point, to which it then redefines the logical ori-
gin. The program draws an ellipse around the logical origin. It then calls
—getlogeoord to find the logical coordinates of the physical origin, moves
the current output position to the physical origin, calls _ getlogcoord
again to find the logical coordinates of another point, and finally draws a
straight line from the physical origin to that point.

332

—getphyscoord

B Summary

include <graph.h>

struct xycoord {
short xcoord; x coordinate
short ycoord; 7y coordinate
} far _ getphyscoord(z, y);
short z, y; Logical point to translate

B Description
The _ getphyscoord function translates the logical point (z, ¥) to phys-

ical coordinates, returning them in an xycoord structure, defined in
graph.h.

B Return Value

There is no error return.

B See Also

—getlogcoord

333

—getphyscoord

Example

#include <stdio.h>
#include <graph.h>

main ()

{

struct xycoord xycoord;

int loop:

_setvideomode (_MRES16COLCR) ;

xycoord.xcoord = rand (1) % 320:

xycoord.ycoord = rand (1) % 200;

xycoord = _getphyscoord (xycoord.xcoord, xycoord.ycoord) ;

/* Set the logical origin to a random place on the screen: x/
_setlogorg(xycoord.xcoord, xycoord.ycoord):

/* Draw an ellipse around this random origin: */

_ellipse (_GBORDER, -80, -50, 80, 50):;

xycoord = _getlogcoord (0, O):

_moveto (xycoord.xcoord, xycoord.ycoord):

xycoord = _getlogcoord(320, 200):

_lineto (xycoord.xcoord, xycoord.ycoord):

while (!kbhit()): /* wait for key before resetting screen x/
_setvideomode (_DEFAULTMODE) :

¥

This program calls — getphyscoord to find the physical coordinates of a
randomly selected logical point, to which it then redefines the logical ori-
gin. The program draws an ellipse around the logical origin. It then calls
—getlogcoord to find the logical coordinates of the physical origin, moves
the current output position to the physical origin, calls — getlogcoord
again to find the logical coordinates of another point, and finally draws a
straight line from the physical origin to that point.

334

getpid

Summary

include <process.h> Required only for function declarations

int getpid(void);

Description

The getpid function returns an integer (the process ID) that uniquely
identifies the calling process.

Return Value

The getpid function returns the process ID. There is no error return.

See Also

mktemp

Example

#include <process.h>
#include <string.h>
#include <stdio.h>

char filename[9], pid[5]:
main ()

strepy (filename, "FILE"):
strcat (filename, itoa(getpid()., pid,10)):

/* Prints "FILExxxxx", where xxxxx #*/
/* is the process ID: x/
printf ("Filename is ¥%s\n", filename):;

This program uses getpid to obtain the process ID, then converts the pro-

cess ID to a string for output.

335

— getpixel

B Summary

include <graph.h>
short far _ getpixel(z, y);
short z, y; Pixel position
M Description
The _getpixel function retrieves the pixel value at the logical point (z, y).

The range of possible pixel values and their color translation is determined
by the current video mode and palette, respectively.

Return Value

If successful, the function returns the pixel value. If the function fails (for
example, the point lies outside of the clipping region), it returns —1.

B See Also

_remapallpalette, _remappalette, _selectpalette, _setpixel,
_setvideomode

® Example

#include <stdio.h>
#include <graph.h>

main ()

int loop:
int xvar, yvar:;
_setvideomode (_MRES16COLOR) ;
_rectangle (_GFILLINTERIOR, 80, 50, 240, 150):
for (loop = O:; loop < 8000L; loop++) {
/* Fill pixels at random, but only if they are already on x/
if (_getpixel (xvar = rand(l) / 104, yvar = rand(1l)/164)) {
_setcolor (rand (1) % 16):
_setpixel (xvar, yvar):

_setvideomode (_DEFAULTMODE) ;
}

This program assigns different colors to randomly selected pixels.

336

gets

Summary

include <stdio.h>

char =gets(buffer);
char *buffer; Storage location for input string

Description

The gets function reads a line from the standard input stream stdin and
stores it in buffer. The line consists of all characters up to and including
the first new-line character (\n’). The gets function then replaces the
new-line character with a null character (’\ 0’) before returning the line.
In contrast, the fgets function retains the new-line character.

Return Value

If successful, the gets function returns its argument. A null pointer indi-
cates an error or end-of-file condition. Use ferror or feof to determine
which one has occurred.

See Also

fgets, fputs, puts

Example

#include <stdio.h>

char 1ine[100]:
char *result;

main ()
printf ("Input a string: “);

result = gets(line):
printf ("The line entered was: ¥%s\n", result):

This program uses gets to read a line of input from stdin.

337

_ gettextcolor

¥ Summary

include <graph.h>

short far _ gettextcolor(void);

B Description

The _gettextcolor function returns the pixel value of the current text
color. The default is the highest legal value of the current palette.

H Return Value

There 1s no error return.

See Also

_selectpalette, _settextcolor

N Example

#include <stdio.h>
#include <graph.h>

char buffer[255]

338

—gettextcolor

main ()

struct rccoord rcoord:

int oldcolor:

/* Set text window to upper half of screen x*/
_settextwindow (1, 1, 14, 80);

_wrapon (_GWRAPOFF) ; /* turn wrapping off */

oldcolor = _gettextcolor(): /* save original color x*/
_settextcolor (oldcolor - 1);

_settextposition(1, 1);

_outtext ("Upper Left corner"):;

rcoord = _gettextposition();

rcoord.row++;

sprintf (buffer, "Row=%d, Col=%d", rcoord.row, rcoord.col):
_settextposition(rcoord.row, rcoord.col):

_outtext (buffer):

_settextposition(15, 40):

_settextcolor (oldcolor): /* recover original color x*/
_outtext ("This should be on last line:; is out of the window"):
while (!kbhit()): /* wait for key before resetting screen #*/
_setvideomode (_DEFAULTMODE) :

b

This program calls _gettextcolor to save the current text color before
manipulating the screen.

339

— gettextposition

B Summary

#include <graph.h>

struct recoord {
short row; Row coordinate
short col; Column coordinate
} far _ gettextposition(void);

B Description

The _gettextposition function returns the current text position as an
rccoord structure, defined in graph.h.

Text output begins at the current text position. Graphics output begins
at the current graphics output position, which is a separate position.

M Return Value

There is no error return.

B See Also

_settextposition

340

—gettextposition

B Example

#include <stdio.h>
#include <graph.h>

char buffer[255]:
main ()

struct rccoord rcoord:

int oldcolor:

/* Set text window to upper half of screen: x/
_settextwindow (1, 1, 14, 80):

_wrapon (_GWRAPOEF) ; /* turn wrapping off */

oldcolor = _gettextcolor(): /* Save original color */
_settextcolor(oldcolor - 1):

_settextposition(1, 1):

_outtext ("Upper Left corner");

rcoord = _gettextposition():

rcoord.row+t+;

sprintf (buffer, "Row=%d, Col=%d", rcoord.row, rcoord.col):
_settextposition(rcoord.row, rcoord.col):

_outtext (buffer):

_settextposition(15, 40):

_settextcolor (oldcolor): /* Recover original color x/
—outtext ("This should be on last line; is out of the window"):
while (!kbhit()): /* wait for key before resetting screen x*/
_setvideomode (_DEFAULTMODE) :

}

This program calls _ gettextposition and assigns the return value to the
structure rcoord. It increments the row position and prints the new coor-
dinates.

341

—getvideoconfig

Summary

include <graph.h>

struct videoconfig {

short numxpixels; Number of pixels in z axis

short numypixels; Number of pixels in y axis

short numtextcols; Number of text columns available
short numtextrows; Number of text rows available

short numcolors; Number of actual colors

short bitsperpixel; Number of bits representing a pixel
short numvideopages; Number of available video pages

} far = far _ getvideoconfig(config);
struct videoconfig far *config; Configuration information

Description

The — getvideoconfig function returns the current graphics environment
configuration in a videoconfig structure, defined in graph.h.

Return Value

There is no error return.

Example

#include <stdio.h>
#include <graph.h>

main ()

struct videoconfig config;

_setvideomode (_MRES16COLOR) ;

_getvideoconfig(&config):

/* Set logical origin to the center of the screen: x/
-setlogorg(config.numxpixels/2-1, config.numypixels/2 - 1):
_moveto(-80, -50):

_lineto(80, 50):

_lineto(80, -50):

while (!kbhit()): /* wait for key before restoring screen #*/
_setvideomode (_DEFAULTMODE) ;

}

This program calls — getvideoconfig to determine the screen size (in pix-
els) of the current hardware configuration. It then sets the logical origin to
the center of the screen.

342

getw

Summary

include <<stdio.h>

int getw(stream);
FILE #stream; Pointer to FILE structure

Description

The getw function reads the next binary value of type int from stream
and increases the associated file pointer (if there is one) to point to the
next unread character. The getw function does not assume any special
alignment of items in the stream.

Return Value

The getw function returns the integer value read. A return value of EOF
may indicate an error or end-of-file; however, the EOF value is also a legi-

timate integer value, so feof or ferror should be used to verify an end-of-
file or error condition.

See Also

putw

Note

The getw function is provided primarily for compatibility with pre-
vious libraries. Note that portability problems may occur with getw
since the size of an int and the ordering of bytes within an int differ
across systems.

343

getw

® Example

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int i;
main ()

stream = fopen ("data.bin", "rb"):

/* Read a word from the stream: */
i = getw(stream):

/* If there is an error... */
if (ferror (stream))

printf ("getw failed\n"):
clearerr (stream) ;

:

else
printf ("Word = %x\n", 1i):

This program uses getw to read a word from a stream, then performs an
error check.

344

gmtime

B Summary

include <time.h>

struct tm *gmtime(time);
const time_t *{ime; Pointer to stored time

B Description

The gmtime function converts the time value to a structure. The time
argument represents the seconds elapsed since 00:00:00, January 1, 1970,
Greenwich mean time; this value is usually obtained from a call to time.

The gmtime function breaks down the téme value and stores it in a struc-
ture of type tm, defined in time.h. The structure members are described
in the reference page for asctime. The structure result reflects Greenwich
mean time, not local time.

The fields of the structure type tm store the following values:

Field Value Stored

tm_sec Seconds

tm_ min Minutes

tm_hour Hours (0-24)

tm_mday Day of month (1-31)

tm_ mon Month (0-11; January = 0)
tm..year Year (current year minus 1900)
tm_wday Day of week (0-6; Sunday = 0)
tm_yday Day of year (0-365; January 1 = 0)
tm_ isdst Always 0 for gmtime

MS-DOS does not understand dates prior to 1980. If ¢ime represents a date
prior to 1980, gmtime returns NULL.

345

gmtime

C 4.0 Difference

In Version 4.0 of the Microsoft C Run-Time Library, if téme represents
a date before January 1, 1980, gmtime returns the structure represen-
tation of 00:00:00, January 1, 1980.

Return Value

The gmtime function returns a pointer to the structure result. There is
no error return.

See Also

asctime, ctime, ftime, localtime, time

Note

The gmtime and localtime functions use a single statically allocated
structure to hold the result. Each call to one of these routines destroys
the result of the previous call.

Example

#include <time.h>
#include <stdio.h>
struct tm *newtime;
long ltime;

main ()

time (&1ltime) :

/* Obtain CGreenwich mean time: x/

newtime = gmtime (<ime) ;

printf ("Greenwich mean time is %s\n",asctime (newtime)):

This program uses gmtime to convert a long-integer representation of
Greenwich mean time to a structure named newtime, then uses asctime
to convert this structure to an output string.

346

halloc

Summary

include <malloc.h> Required only for function declarations

void huge *halloc(n, size);

long n; Number of elements
size_t size; Length in bytes of each element
Description

The halloe function allocates a huge array from MS-DOS consisting of n
elements, each of which is size bytes long. Each element is initialized to O.
If the size of the array is greater than 128K (131,072 bytes), then the size
of an array element must be a power of 2.

Return Value

The halloce function returns a void huge pointer to the allocated space,
guaranteed to be suitably aligned for storage of any type of object. To get
a pointer to a type other than void huge, use a type cast on the return
value. The return value is NULL if the request cannot be satisfied.

See Also

calloc, free, hfree, malloc, realloc

Example

#include <stdio.h>
#include <malloc.h>

main ()

long huge *lalloc:
lalloc = (long huge #*)halloc (30000L, sizeof (long)):
if (lalloc == NULL)
printf ("Insufficient memory available"):
else
printf ("Memory successfully allocated"):

This program uses halloc to allocate space for 30,000 long integers.

347

—harderr, _hardresume, _hardretn

Summary

include <<dos.h>

void _ harderr(void(fpir)());
far *fptr; New INT 0x24 handler

void _ hardresume(result);
int result; Handler return parameter

void — hardretn(error);
int error; Error to return from

Description

The _harderr routine establishes the user-defined routine that fptr points
to as the handler for INT 0x24, which is invoked when a hardware error
occurs during the execution of an I/O request (for example, attempting to
read from a floppy disk when the drive door isn’t closed). See the MS-DOS
Programmer’s Reference for more information on INT 0x24.

The harderr function doesn’t directly install the handler that fptr points
to; instead, harderr installs a handler that calls the function that fptr
references. The handler calls the function with the following parameters:

handler(unsigned deverror, unsigned errcode, unsigned far *devhdr);

The deverror argument is the device error code and contains the AX regis-
ter value that MS-DOS passes to the INT 0x24 handler. The errcode argu-
ment is the DI register value that MS-DOS passes to the handler. The
low-order byte of errcode can be one of the following values:

Code Meaning

Attempt to write to a write-protected disk
Unkown unit

Drive not ready

Unknown command

Cyclic-redundancy-check (CRC) error in data

Gl i W N = O

Bad drive-request structure length

348

—harderr, _hardresume, _hardretn

QWH>© oo

Seek error

Unknown media type
Sector not found
Printer out of paper
Write fault

Read fault

General failure

The devhdr argument is a far pointer to a device header that contains
descriptive information about the device on which the error occurred. The
user-defined handler must not change the information in the device-header
control block.

If the error occurred on a disk device, the high-order bit (bit 15) of the
deverror argument will be set to 0 and the deverror argument will indicate
the following:

Bits Meaning
15 Disk error if false (0).
14 Not used
13 “Ignore” response not allowed if false.
12 “Retry” response not allowed if false.
11 “Fail” response not allowed if false (MS-DOS changes “fail”
to “abort”).
9-10 Code Location
00 MS-DOS
01 File Allocation Table (FAT)
10 Directory
11 Data area
8 Read error if false; write error if true

The low-order byte of deverror indicates the drive where the error occurred
(0 = drive A, 1 = drive B, etc.)

349

—harderr, _hardresume, _hardretn

If the error occurs on a device other than a disk drive, the high-order bit
(bit 15) of deverror will be 1. The attribute word located at offset 04 in the
device-header block will indicate the type of device which had the error. If
bit 15 of the attribute word is 0, the error is a bad memory image of the
File Allocation Table. If the bit is instead 1, the error occurred on a char-
acter device and bits 0-3 of the attribute word indicate the type of device:

Bit Meaning

3 Current clock device

2 Current null device

1 Current standard output
0 Current standard input

The user-defined handler function can issue system calls 0x01 through
0x0C only, or 0x59. Thus, many of the standard C run-time functions
(such as stream I/O and low-level I/O) cannot be used in a hardware
error handler. Function 0x59 may be used to obtain further informa-
tion about the error that occurred.

If the handler returns, it can do so using any of these three methods:

1. By way of the return statement
2. By way of the —_hardresume function
3. By way of the —_hardretn function

If the handler returns by way of _hardresume or a return statement,
the handler returns to MS-DOS. If the handler returns by way of _ har-
dretn, the handler bypasses MS-DOS and returns to the application at
the point just past the failing I/O function request.

The — hardresume function should only be called from within the user-
defined hardware error handler function. This function allows the user to
return from the handler to MS-DOS, as will returning from the handler
using a return statement.

The result supplied to — hardresume must be one of the following con-
stants:

350

—harderr, _hardresume, _hardretn

Constant Action

-HARDERR_IGNORE Ignore the error
—-HARDERR_RETRY Retry the operation
—HARDERR_ABORT Abort the program issuing INT 0x23

—-HARDERR_FAIL Fail the system call that is in progress
(this is not supported on MS-DOS 2.z)

The — hardretn function allows the user-defined hardware error handler
to return directly to the application program rather than returning to
MS-DOS. The application resumes at the point just after the failing I/O
function request. The _hardretn function should only be called from
within a user-defined hardware error handler function.

The error parameter of . hardretn should be an MS-DOS error code, as
opposed to the XENIX-style error code that is available in errno. For
information about the MS-DOS error codes which may be returned by a
given MS-DOS function call, refer to the MS-DOS Programmer’s Reference.

If the failing I/O function request is an INT 0x21 function greater than or
equal to function 0x38, then — hardretn will return to the application
with the carry flag set and the AX register set to the . hardretn error
parameter. If the failing INT 0x21 function request is less than function
0x38 and the function can return an error, the AL register will be set to
OxFF on return to the application. If the failing INT 0x21 does not have a
way of returning an error condition (this is true of certain INT 0x21 func-
tions below 0x38), the error parameter of —hardretn is not used and no
error code is returned to the application.

See Also

—chain._ intr, _dos_getvect, _dos_setvect

351

—heapchk, _fheapchk, _ nheapchk

Summary

include <<malloc.h>

int — heapchk(void); Runs consistency check on heap

int _ fheapchk(void); Runs consistency check on far heap
int _nheapchk(void); Runs consistency check on near heap
Description

Along with the —heapset and — heapwalk routines, — heapchk is pro-
vided as an aid in debugging heap-related problems in programs.

The _heapchk routine does a minimal consistency check on the unallo-
cated memory space, or “heap.” The consistency check determines whether
all the heap entries are within the bounds of the heap’s current memory
allocation.

In large data models (compact- and large-model programs), — heapchk
maps to —fheapchk. In small data models (small- and medium-model pro-
grams), — heapchk maps to — nheapchk. The —fheapchk routine runs
the consistency check on the far heap, while —nheapchk runs the con-
sistency check on the near heap.

Return Value

All three routines return one of the following manifest constants (defined
in malloc.h):

Constant Meaning

-HEAPOK The heap appears to be consistent.
~-HEAPEMPTY The heap has not been initialized.

~-HEAPBADBEGIN The initial header information could not be
found.

~-HEAPBADNODE A bad node has been found, or the heap is
damaged.

352

—heapchk, _fheapchk, _nheapchk

B See Also
—heapset, _heapwalk

® Example

#include <malloc.h>
#include <stdio.h>

main ()

int heapstatus():

char *p = malloc (100) :
malloc (200) ;

malloc (300) ;

free(p) :

heapstatus = _heapchk () :
switch (heapstatus) {
case _HEAPOK:
printf ("OK - heap is fine\n"):
break;
case _HEAPEMPTY:
printf ("OK - heap is empty\n"):
break:;
case _HEAPBADBEGIN:
printf ("ERROR - bad start of heap\n"):
breal;
case _HEAPBADNODE:
printf ("ERROR - bad node in heap\n"):
break:;

}
}

This program checks the heap for consistency and prints an appropriate
message.

353

— heapset, _ fheapset, _ nheapset

Summary

include <malloc.h>

int _ heapset(fill); Fills empty heap nodes
unsigned int fill; Fill character

int _ fheapset(fill); Fills empty far heap nodes
unsigned int fill; Fill character

int _ nheapset(fill); Fills empty near heap nodes
unsigned int fill; Fill character
Description

Along with the _heapchk and — heapwalk routines, — heapset is pro-
vided as an aid in debugging heap-related problems in programs.

The — heapset routine first does a minimal-consistency check on the heap
(just as — heapchk does) and then sets the heap’s free entries with the fill
value. You can use this in debugging to see where the free nodes are lo-
cated in memory dumps of the heap, and also to show where data was
unintentionally written to memory that was freed.

In large data models (compact and large-model programs), — heapset
maps to — fheapset. In small data models (small and medium-model pro-

grams), — heapset maps to —nheapset. The _ fheapset routine operates
on the far heap, while — nheapset operates on the near heap.

Return Values

All three routines return an int whose value is one of the following mani-
fest constants (defined in malloc.h):

Constant Meaning

-HEAPOK | Heap appears to be consistent
_HEAPEMPTY Heap has not been initialized

—~HEAPBADBEGIN The initial header information could not be
found or was invalid

—~HEAPBADNODE A bad node was found, or the heap is dam-
aged

354

—heapset, _fheapset, _nheapset

See Also
—heapchk, _heapwalk

Example

#include <malloc.h>
#include <stdio.h>

main ()

int heapstatus:

char *p = malloc(l): /* make sure heap is initialized x/
heapstatus = _heapset('Z'); /* £fill in free entries x/

switch (heapstatus) {

case _HEAPOK:
printf ("OK - heap is fine\n"):
break:;

case _HEAPEMPTY:
printf ("OK - heap is empty\n"):
break:;

case _HEAPBADBEGIN:
printf ("ERROR - bad start of heap\n"):
break;

case _HEAPBADNODE :
printf ("ERROR - bad node in heap\n"):
break:

)
bg

This program checks the heap and fills in free entries with the character
AR

355

_heapwalk, _ fheapwalk, _nheapwalk

Summary

include <malloc.h>

int _ heapwalk(entry); Get heap entry information
struct _ heapinfo{ Structure to contain information about the
next heap entry
int far *_ pentry; Heap entry pointer
size_t _size; Size of heap entry
int _ useflag; Entry “in-use” flag
} ®entry;
int _ fheapwalk(farentry); Get far heap entry information
struct _ heapinfo *farentry; Structure to contain information about the

next far heap entry

int _nheapwalk(nearentry); Get near heap entry information
struct _heapinfo *nearentry; Structure to contain information about the
next near heap entry

Description

Like the — heapchk and _heapset routines, — heapwalk is provided as
an aid in debugging heap-related problems in programs.

The —heapwalk routine walks through the heap, one entry per call,
returning a pointer to a — heapinfo structure that contains information
about the next heap entry. The structure is defined in malloc.h.

Calls to _heapwalk, which return _HEAPOK will set the _useflag
field to either _.FREEENTRY or - USEDENTRY (both are constants
defined in malloc.h, as is the structure itself). To obtain this information
about the first entry in the heap, pass _heapwalk a pointer to a
_heapinfo structure whose _pentry field is NULL.

In large data models (compact- and large-model programs), — heapwalk
maps to —fheapwalk. In small data models (small- and medium-mode!
programs), — heapwalk maps to — nheapwalk. The — fheapwalk routine
walks through the far heap entries, while the —_ nheapwalk routine walks
through the near heap entries.

356

—heapwalk, _fheapwalk, _nheapwalk

B Return Value

All three routines return one of the following manifest constants (defined

in malloc.h):

Constant Meaning

-HEAPOK The heap is OK so far, and the _heapinfo
structure contains information about the next
entry.

-HEAPEMPTY The heap has not been initialized.

-HEAPBADPTR The _pentry field of the entry structure does
not contain a valid pointer into the heap.

—-HEAPBADBEGIN The initial header information was not found
or it was invalid.

~-HEAPBADNODE A bad node was found or the heap is dam-
aged.

-HEAPEND The end of the heap was reached successfully.

B See Also

—heapchk, _heapset

B Example

#include <stdio.h>
#include <malloc.h>

main ()
char #p;
heapdump () ; p = malloc(59):
heapdump () ; free(p):
heapdump () ; p = malloc(330):
heapdump () :

+

357

—heapwalk, _fheapwalk, _nheapwalk

heapdump ()
{

struct _heapinfo hinfo:
int heapstatus:

hinfo._pentry = NULL:

while ((heapstatus = _heapwalk (&hinfo)) == _HEAPOK) {
printf ("%6s block at Yp of size %4.4X\n",
(hinfo._useflag == _USEDENTRY ? "USED" : "FREE"),

hinfo._pentry, hinfo._size):

}

switch (heapstatus) {

case _HEAPEMPTY:
printf ("OK - empty heap\n\n"):
break:

case _HEAPEND:
printf ("OK - end of heap\n\n"):
break:;

case _HEAPBADPTR:
printf ("ERROR - bad pointer to heap\n\n"):
break;

case _HEAPBADBEGIN:
printf ("ERROR - bad start of heap\n\n"):
break:;

case _HEAPBADNODE:
printf ("ERROR - bad node in heap\n\n"):
break:

}

}

Sample Output:

OK - empty heap

USED block at 1D71:1174 of size 003C
FREE block at 1D71:11B2 of size OE4C
OK - end of heap

FREE block at 1D71:1174 of size 003C
FREE block at 1D71:11B2 of size OE4C
OK - end of heap

FREE block at 1D71:1174 of size 003C

USED block at 1D71:11B2 of size 0Ol4A

FREE block at 1D71:12FE of size ODOO
OK - end of heap

This program “walks” the heap, starting at the beginning (_pentry ==
NULL). [t prints out each heap entry’s use, location, and size, and also
prints out information about the overall state of the heap as soon as
—heapwalk returns a value other than - HEAPOK.

358

hfree

Summary

include <malloc.h> Required only for function declarations

void hfree(buffer);

void huge *buffer; Pointer to allocated memory block

Description

The hfree function deallocates a memory block; the freed memory is
returned to MS-DOS. The buffer argument points to a memory block pre-
viously allocated through a call to halloc. The number of bytes freed is
the number of bytes specified when the block was allocated. After the call,
the freed block is available for allocation.

Return Value

There 1s no return value.

See Also
halloc

Note

Attempting to free an invalid buffer (one not allocated with halloc)
may affect subsequent allocation and cause errors.

359

hfree

® Example

#include <malloc.h>
#include <stdio.h>

main ()
void huge *alloc:
alloc = halloc (80000L, sizeof (char)):
/* Test for valid pointer: */
if (alloc != NULL){ /* EFree memory for the heap: %/
hfree (alloc):

printf ("Memory successfully allocated and deallocated"):

else
printf ("Insufficient memory available"):

This program allocates space for 80,000 characters, mltlahzes this space to
zeros, then uses hfree to deallocate the mermory.

360

hypot

Summary

include <math.h>

double hypot(z,y);

double z, y; Floating-point values

Description

The hypot function calculates the length of the hypotenuse of a right tri-

angle, given the length of the two sides z and y. A call to hypot is equiva-
lent to the following:

sqrt(okz + y*y);

Return Value

The function returns the length of the hypotenuse. If an overflow results,
hypot returns HUGE_ VAL and sets errno to ERANGE.

See Also

cabs

Example

#include <math.h>
#include <stdio.h>

main ()
double x = 3.0;

double y 4.0;
printf ("Hypotenuse = %2.1f\n", hypot (x.vy)):

This program prints the hypotenuse of a right triangle with sides of 3.0
and 4.0.

361

— imagesize

Summary

include <graph.h>

long far _ imagesize(z1, y1, 22, y2);
short 21, y1; Upper-left corner of bounding rectangle
short 22, y2; Lower-right corner of bounding rectangle

Description
The — imagesize function returns the number of bytes needed to store the

image defined by the bounding rectangle, specified by the coordinates (zZ,
y1) and (22, y2). This size is determined by the following formula:

xwid = abs(x1-x2)+1;
ywid = abs (yl-y2)+1:
size = 4+ ((long) ((xwid+bits-per-pixel+7)/8) * (long)ywid) :

The bits-per-pixel value is returned from a call to — getvideoconfig as the
bitsperpixel field.

Return Value

The function returns the image’s storage size in bytes. There is no error
return.

See Also

—getvideoconfig

362

—imagesize

B Example

#include <stdio.h>
#include <malloc.h>
#include <graph.h>

char far sbuffer:
main ()

int loop:

int xvar, yvar:

_setvideomode (_MRES16COLOR) ;

for (xvar = 163, loop = 0; xvar < 320; loop+*+, xvar += 3) {
_setcolor (loop % 16):

yvar = xvar * 5 / 8;:
_rectangle (_GBORDER, 320-xvar, 200-yvar, xvar, yvar):
_setcolor (rand (1) % 16):

_floodfill (O, O, loop % 16):

buffer = (char far *)malloc((unsigned int)
_imagesize(O, O, 80, 50)):
if (buffer == (char far *)NULL) {
exit(-1):

_getimage (O, O, 80, 50, buffer):

_putimage(80, 50, buffer, _GXOR):

free((char #*)buffer):

while (!kbhit()): /* Strike any key to continue #*/
_setvideomode (_DEEFAULTMODE) :
}

This program draws a series of nested rectangles. It calls _imagesize to
determine how large a buffer it should allocate to store a portion of the
nested-rectangle drawing.

363

inp, inpw

Summary

include <conio.h> Required only for function declarations

int inp(port); Reads a byte
unsigned inpw(port); Reads a word
unsigned port; Port number
Description

The inp and inpw functions read a byte and a word, respectively, from
the specified input port. The input value can be any unsigned integer in
the range 0 — 65,535.

Return Value

The functions return the byte or word read from port. There is no error
return.

See Also

outp, outpw

Example

#include <conio.h>
#include <stdio.h>

/* Read will be done on port #0: x/
unsigned int port = O;
char result:
main ()
/* Input a byte from the port: */

result = inp (port):
printf ("The value from port #%d is %d\n", port, result):

This program reads a character from input port O.

364

int86

B Summary

include <dos.h>

int int86(intno, inregs, outregs);

int intno; Interrupt number
union REGS *inregs; Register values on call
union REGS *outregs; Register values on return

B Description

The int86 function executes the 8086-processor-family interrupt specified
by the interrupt number intno. Before executing the interrupt, int86
copies the contents of inregs to the corresponding registers. After the
interrupt returns, the function copies the current register values to
outregs. It also copies the status of the system carry flag to the cflag field
in outregs. The inregs and outregs arguments are unions of type REGS.
The union type is defined in the include file dos.h.

The int86 function is used to invoke MS-DOS interrupts directly.

B Return Value
The return value is the value in the AX register after the interrupt
returns. If the cflag field in outregs is nonzero, an error has occurred; in
such cases, the _ doserrno variable is also set to the corresponding error
code.

H See Also

bdos, intdos, intdosx, int86x

365

int86

® Example

#define VIDEO_IO O0x10
#define SET_CRSR 1

#include <dos.h>
#include <stdio.h>

union REGS regs:
main ()
int top. bot;
/* Get new cursor size from user: */
printf ("Enter new cursor top and bottom: ")

scanf ("%d %d", &top, &bot);

/* Set up for cursor change call: i/

regs.h.ah = SET_CRSR:
regs.h.ch = top:
regs.h.cl = bot:

/* Execute interrupt: #/
int86 (VIDEO_IO, ®s, ®s):
+

This program uses int886 to call the IBM-PC BIOS video service (INT 10H)
to change the size of the cursor.

The default values are as follows:

Configuration Default Values
Monochrome card 12,13

Color card 6,7

43-line EGA 4,5

366

int86x

® Summary

include <dos.h>

int int86x(intno, inregs, outregs, segregs);
int ntno; Interrupt number
union REGS {
struct WORDREGS {
unsigned int ax;
unsigned int bx;
unsigned int cx;
unsigned int dx;
unsigned int si;
unsigned