32/S COMPUTER
REFERENCE MANUAL

PHMW(@ Microdata m

$10.00

32/S COMPUTER
REFERENCE MANUAL

RM 20003250
&
RM 20003250-1

JANUARY 1975

®
© 1976 Microdata Corporation : H
® Registered Trademark of Microdata Corporation MlcrOdata Corporatlon
Printed in U.S.A. 17481 Red Hill Avenue, Irvine, California 92714
98800 76 1018A Post Office Box 19501, Irvine, California 92713

Telephone: 714/540-6730 - TWX: 910-595-1764

FOREWORD

This manual describes the 32/S1, an extended capability version of the basic 32/S computer. All
programs that run on the 32/S, and I/0 controllers which interface to the 32/S, will also run on

the 32/51.
The 32/S1 features that are not provided in the 32/S are:
1. three of the doubleword arithmetic instructions:
DMUL - Doubleword Integer Multiply

DDIV - Doubleword Integer Divide
DMOD - Doubleword Modulo

2. floating point instructions, including arithmetic, and miscellaneous utility instructions:
FADD - Floating Point Add
FSUB - Floating Point Subtract
FMUL - Floating Point Multiply
FDIV - Floating Point Divide
FABS - Floating Point Absolute Value
FEQ - Floating Point Equal Comparison
FGE - Floating Point Greater Than or Equal Comparison
FGT -~ Floating Point Greater Than Comparison
FLE - Floating Point Less Than or Equal Comparison
FLT - Floating Point Less Than Comparison
FNE - Floating Point Not Equal Comparison
STT - Store Tripleword
LTW - Load Tripleword
LTL - Load Tripleword Literal
FLOT - Float an Integer
FIX - Fix a Floating Point Number
FMAX - Floating Point Maximum Value
FMIN - Floating Point Minimum Value

FSGN Floating Point Sign Value

(L field value of 3 in Load Address instruction which specifies a
tripleword index.)

3. string manipulation instructions:
MOV - Move String Within Stack
MVP - Move String from Procedure to Stack
MVA - Move String Absolute
SLT - String Compare Less Than
SLE - String Compare Less Than or Equal
SEQ - String Compare Equal
SNE - String Compare Not Equal
SGE - String Compare Greater Than or Equal
SGT - String Compare Greater Than
4. maximum, minimum, and sign value instructions:
MAX - Maximum Value
MIN - Minimum Value
DMAX - Doubleword Maximum Value
DMIN - Doubleword Minimum Value
SGN - Sign Value
DSGN - Doubleword Sign Value

5. memory reference swap instruction:

SWAP - Swap Word in Stack with Memory
6. internal interrupt numbers:

9, argument 1 - Stack Overflow

9, argument 2 - Stack Underflow

9, argument 4 - SB/SL Violation
9, argument 7 - Store Into Program Segment Violation

Additionally, the bits of the external interrupt mask in the Program Status Register are redefined
as follows:

Bit Position 32/8 32/81
4 operator interrupt operator interrupt
external interrupt line 0 P P
5 timer interrupt timer interrupt
external interrupt line 1 P
6 external interrupt line 2 external interrupt line 0
7 external interrupt line 3 external interrupt line 1

These same redefinitions apply to the corresponding bit positions of the external interrupt mask
within the Interrupt Vector Table entries and within Marks. Note that external interrupt lines 2 and 3
still exist in the 32/S1, but cannot be disabled.

TABLE OF CONTENTS

Section Topic_

1 INTRODUCTION
The 32/S Computer, 3200 Microprocessor, & MPL 1.1
32/S Specifications - General 1.2
32/S Specifications - Mechanical & Power 1.3
System Hardware 1.4
The Push-Down Stack Concept 1.5
Conventions Used in This Manual 1.6

2 ORGANIZATION
Monobus Organization 2.1
Program Segment 2.2
Program Library, PLIB 2.3
Transfer Between Program Segments 2.4
Data Stack 2.5
Stack Head Registers 2.6
Data Stack Mark 2.7
Mark Formats 2.8
AMark Formats (Continued) 2.9
Data Stack Environments & MPL Program Structure 2.10
The Delta LEX-Level Concept 2.11
Data Stack Transformations - Begin Block Execution 2.12
Data Stack Transformations - Procedure Block Execution 2.13
Inactive Data Stack 2.14
Reserved Memory Locations 2.15
Program Status Register 2.16
Status Bits External to the PSR 2.17

3 INTERRUPTS
Interrupt Architecture
Interrupt Vector Table
Interrupt Definitions
Interrupt Processing Sequence

Data Stack as Process Interrupt

W W W W w W
= T2 TR S B S

Data Stack as Process Interrupt (Continued)

ii

Section

4

5

iii

TABLE OF CONTENTS (Continued)

INPUT/OUTPUT

Types of 1/O

Device Register Block

Controller Response Word

Controller Interrupt Operations

Concurrent 1/0 Control Block

Concurrent 1/0 Sequence

Status Word Format, Device Register Block
Order Byte Format, Device Register Block
Mode Byte Format, Device Register Block
Input Controller States

Output Controller States

1/0 for the Maintenance Front Panel

DATA

Data Format Lengths

Numeric and Logical Data Formats

MEMORY REFERENCE INSTRUCTIONS

Memory Reference Instructions - Introduction
Addressing Modes

Store Instructions

Load Instructions

Memory Reference Arithmetic Instructions

Memory Reference Swap Instruction

Topic

4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.11

4.12

5.1

5.2

TABLE OF CONTENTS (Continued)

Section Topic
7 STACK OPERATE INSTRUCTIONS
Stack Operate Instructioné - Introduction 7.1
Arithmetic Instructions, Word Operand 7.2
Arithmetic Instructions, Doubleword Operand 7.3
Arithmetic Instructions, Floating Point Operand 7.4
Maximum, Minimum and Sign Value Instructions 7.5
Logical Instructions 7.6
Comparison Instructions 7.7
Shift Instructions 7.8
Load Literal & Enter Configuration Switch Instructions 7.9
Stock Modify Instruction 7.10
Field Descriptor Generation Instruction 7.11
Bit Array Instructions 7.12
8 BRANCH INSTRUCTIONS
Branch Instructions - Introduction 8.1
Simple Branch Instructions 8.2
Case Branch Instructions 8.3
DO Loop Initialize & Branch Instruction 8.4
DO Loop Step, Branch Backward & Branch Long Instructions 8.5
9 CONTROL INSTRUCTIONS
Begin Block Entry & Begin Block Exit Instructions 9.1
Mark Stack for Procedure Call Instruction 9.2
Procedure Call Instruction 9.3
Procedure Block Exit Instruction 9.4

Interrupt Procedure Exit Instruction 9.5

iv

TABLE OF CONTENTS - (Continued)

Section

9 MEMORY REFERENCE INSTRUCTIONS (cont'd)

Resume Task in Another Stack Instruction
Wait for an Interrupt Instruction
Supervisor Call Instruction

Load Address Instruction

GOTO Instruction

Miscellaneous Control Instructions

Initiate Microprogrammed Procedure Instruction

10 STRING INSTRUCTIONS

String Descriptors and Instructions

String Instructions

11 CONTROL MEMORY

Control Memory

12 FRONT PANEL
Maintenance & Basic Front Panels
Key Lock, Load & Interrupt Buttons
Display Selectors
Control Switches
Status Indicators

Initial Program Load, IPL

13 POWER
Power Requirements

Power Fail & Restart

Topic

9.6
9.7
9.8
9.9

9.10

9.12

10.1

10.2

11.1

12.1
12,2
12.3
12.4
12.5

12.6

13.1

13.2

TABLE OF CONTENTS (Continued)

Appendix Topic

A 1/0 DEVICE CONTROLLERS

Serial Input, MPI/O Controller A-l
Serial Output, MPI/O Controller A-2
Paper Tape Reader, MPI/O Controller A-3
Paper Tape Punch, MPI/O Controller A-4
Card Reader, MPI/O Controller A-5
Line Printer, MPI/O Controller A-6
Disc Controller A-T7
Disc Controller (Continued) A-8
Magnetic Tape Controller A-9
Magnetic Tape Controller (Continued) A-10

B INDEX AND TABLES

Index to Registers and Formats B-1
Index to Instructions B-2
Index to Instructions (Continued) B-3
Instruction Op Code Table B-4

1 Introduction

1.1 THE 32/S COMPUTER, 3200 MICROPROCESSOR, & MPL

The Microdata 32/S Computer is a new concept in general purpose minicomputer design. The 32/S is
microprogrammed on the state-of-the-art computer hardware of the Microdata 3200 Microprocessor.
Its unique architecture makes it feasible to reduce programming costs by doing all programming in a
high-level language, the system-oriented Microdata Programming Language (MPL).

The Microdata 32/S is a push-down stack architecture computer implemented via firmware on the
microprogrammable Microdata 3200. Its architecture was designed in conjunction with the design of
the Microdata Programming Language, MPL, a high-level programming language. MPL provides the
user with all of the time and cost-saving benefits of high-level language programming, while providing
all the capabilities required by systems programmers. The code produced by the MPL compiler for
the 32/S is as efficient as the machine code which can be obtained with assembly language programming
on a conventional architecture computer.

The 3200 Microprocessor

The 3200 Microprocessor is a 16-bit machine with 4K to 128K words of 300 nanosecond MOS main
memory, addressable to the byte level, It is microprogrammed with a bipolar 32-bit control memory
which is expandable to 4K words, and which operates with a 135 nanosecond cycle time. Software
level (32/8) instruction look-ahead logic and top-of-stack registers are provided in hardware to
maximize speed.

The 3200 utilizes a common bus, the Monobus, for accessing all main memory modules and I/0 device
controllers. Memories and controllers of various speeds may be mixed on the asynchronous Monobus
and uniformly accessed with standard memory reference instructions. Overlapped bus requesting and
data transferring permits very high-speed data transfers.

Input/output can be byte or word oriented under program control, or block-oriented under either
computer control ("'concurrent I/0") or controller hardware control (direct memory access). Four
external interrupt lines establish the relative priorities of groups of I/0O device controllers. Relative
priority among the controllers on each line is established by their positions along the Monobus. Each
1/0 device controller may be manually assigned to a specific address and interrupt line. A unique
interrupt processing procedure and environment may be specified for each I/O device address.

The 32/S Computer

The 32/S computer is organized around an operational data push-down stack. The last-in/first-out
properties of the stack eliminate the necessity to allocate processing registers, store and retrieve
temporary data, or assign memory locations for temporary data and parameters.

The 32/8 instructions were designed with the requirements in mind of the MPL compiler (and other
compilers). Special instructions are included to operate on data in the stack, establish and switch
operating environments, switch between multiple user stacks, and handle a variety of data types. In
addition, user specified instructions can be implemented in the 3200 firmware and accessed through
MPL without the need to modify the compiler.

The 32/S main memory is allocated into separate data stack areas for each user.and one or more
program segment areas. All memory references are specified relative to individual stack and
program base registers; therefore, both stacks and program segments may be loaded and
dynamically relocated within available memory. A reference to a program segment absent from
main memory can be made to cause an executive interrupt for the purpose of loading the missing
segment.

The maintenance front panel of the 32/S is specially designed to permit the user/programmer to monitor
the operation of the computer, to interrogate various software level registers and relocatable memory
locations, or to inspect actual microlevel registers and buses. Switches are provided for breakpoint
address, control memory instruction, and selection of address and data displays. A keyswitch provides
. the basic run/stop/off and panel lockout control. It also provides a standby power position to maintain
information in the MOS main memory. A manual interrupt button and an initial program load button

are also provided. A simpler, less-expensive, basic front panel, which provides the keyswitch, load,
and interrupt buttons is provided for actual system installations.

MPL

MPL is a block structured high-level language based upon PL/I. MPL programs are written in the form
of statements which are organized into PROCEDURE blocks and BEGIN blocks. The types of statements
include : assignment, CALL, DO, DECLARE, END, GO TO, IF-THEN-ELSE, BEGIN, PROCEDURE.
REPEAT and RETURN. The blocks of statements may either be separate or nested one within another.
Data is declared and described with attributes within the block of statements which references it. Such
data declared within a block is available to all blocks nested within that block. Depending upon where
within nested blocks the data is declared, the storage space for this data may be assigned either statically
or dynamically. The data may be either scalar or arrays.

I/0 is handled in MPL by assigning variable labels to the registers of the I/O device controller on the
Monobus, and then accessing these registers by name, in the same way as any other variable. Facilities
are provided to enable the programmer to write interrupt routines to service the interrupts generated

by I/O device controllers.

Note that, although MPL is a high-level language which looks very similar to other high-level languages
(such as PL/I and Fortran), MPL is not a machine independent language. It is very specifically a
system -oriented language for the 32/S computer which serves as a replacement for the conventional
lower level assembly language used on other minicomputers.

The relationship of the 3200 microprocessor, the 32/S computer, and the MPL machine are summarized
in Figure A. This manual presents the 32/S computer. The Microdata 3200 Reference Manual and the
Microdata Programming Language Reference Manual are available as separate documents.

SYSTEM LOGICAL MACHINE PROGRAMMING METHOD
1200 MICROPROGRAMMABLE MICRO INSTRUCTION (32 BITS)
MACHINE [cs]erJeo]cr]S cc] ce] ca]
MACRO INSTRUCTION
32/S 3200 + 32/S FIRMWARE (VARIABLE LENGTH)
MPL + MPL COMPILE MPL STATEMENTS
MACHINE 32/S + MPL COMPILER X - A+ (B/C)

Figure A. The 3200, 32/S, MPL Heirarchy.

1.1

MOS Memory
) Expandable to 256K bytes (128K words)

8K and 16K byte (4K and 8K word) plug-in modules.
Parity (1 bit per byte) option.
Speed:

350 nsec access time.
450 nsec read cycle time
350 nsec write cycle time

Real-Time Clock

° AC line frequency (100/120 Hz).

° Custom frequency crystal-controlled option.
Initial Program Load:

° Initiated with front panel button.

° Load from any specified device.

Power Fail Detect and Automatic Restart

Speed:
° 135 nanosecond clock.

° Instruction execution time variable from 400 nanoseconds
(depending upon instruction prefetch, push-down stack state, and
instruction type).

° Maximum DMA-memory transfer rate of 500 nanoseconds per 16-bit word.
° CPU-memory transfer rate of 800 nanoseconds per 16-bit word.
° Monobus control access time dependent upon priority of Monobus requestor,

whether a Monobus operation is in progress, whether a request for a next
Monobus operation has been granted, and whether a memory refresh cycle
is outstanding. (See I/O Interface Manual.)

Figure A. 32/S Computer, Table-Top Version.

1.2

° Automatic transfer from AC power to battery pack (when pack is available)
upon loss of AC line. Battery pack maintains data in MOS memory while
CPU power-fails down. CPU operation is reinitiated and battery is switched
off when AC power is resupplied.

° Provision made in design of backplane to supply additional +5V current from
a secondary rack mounted power supply in systems that require more than
35 Amps. When this option is installed, the last seven slots, not including
the power supply slot at the rear, are powered from the remote power supply.
Both power supplies are slaved to operate together upon loss of AC line and
return of AC line.

Environment:

° 0°C to 50°C.

Figure A. 32/S Computer, Cover Off.

1.3

1 Introduction

1.2 32/S SPECIFICATIONS - GENERAL

The Microdata 32/S is a 16-bit, 135 nanosecond clock, 350-450 nanosecond MOS memory cycle,
push-down stack architecture computer. It provides an addressing range of up to 256K bytes on
a common I/O-memory Monobus.

Push-Down Stack Architecture:

Push-down stack replaces conventional multiple accumulator/index registers.

Hardware registers provided for top five levels of stack.

Stack continued in main memory to a maximum depth of 32K words.

Specialized instructions provided to create mark entries within the stack

to delineate PROCEDURE and BEGIN block working areas within the stack

and to roll back these working areas or environments when blocks are exited.

] Instructions which reference memory are provided with addressing modes
which correlate with data defined locally within a block's environment and
data located within the environment of a sequence of nested blocks.

Monobus Architecture:

® Common Monobus interface to both memory and I/0 device controllers.
® Asynchronous control of Monobus, permitting interface to different speed
memories and controllers.
[} 16-bit data.
° 18-bit address (addressing to byte level).
° Overlapped Monobus request-for-control and transfer operations.
Data:
) 16-bit paths within CPU and on Monobus
) Specialized instructions available to access/store byte, word, doubleword,
tripleword and variable bit fields within a word.
® 16-bit and 32-bit binary integer arithmetic and floating point arithmetic.
Memory Referencing:
e Program segments relocatable (all program references relative to
hardware Program Base Register).
° Data stack areas relocatable (all data stack references relative to
hardware Stack Base Register).
) Virtual memory (any call to new program segment references a Program

Library for the location of the segment; an internal interrupt will be
caused if the Program Library entry is flagged).

Instruction Set:

° Variable length instruction format.
) Automatic 16-bit instruction prefetch logic.
) 151 instruction types:

15 which transfer data to/from the top of the stack.
88 which operate on data in the top of the stack.
9 which manipulate character strings.
17 branch.
22 control.

1/0 Architecture:

° Software programmed transfers.
° Concurrent block transfers controlled by CPU hardware.
° Direct memory access (DMA) block transfers controlled by

1/0 controller hardware.

Interrupt Architecture:

© Enable/disable within I/0O device controllers.

) Four external interrupt lines
Two maskable in Program Status Register. -
Daisy-chain priority along each line.

© Unique interrupt vector for each type of internal interrupt and

for each 1/0 device controller.
® Arm/disarm bit per interrupt vector.

1 Instruction

1.3 32/S SPECIFICATIONS - MECHANICAL & POWER

The 32/S chassis provides 15 card slots, an integral power supply, and integral cooling. In its
rack mount version it is 21 inches deep and 10.5 inches high. An optional battery pack maintains
data storage in the MOS memory in the event of power failure.

Front Panel:
° Maintenance front panel
° Basic front panel

Chassis Dimensions:

° Desk top configuration: 10.5 inches high; 19 inches wide; 22.75 inches deep

. Rack mount configuration: 10.5 inches high; 17.75 inches wide; 21 inches deep
(from rack mounting rails)

Mechanical Design:

° Monobus and other processor buses provided in multilayer backplane along
bottom of chassis

° 15 card slots provided (plus specialized card slot for power supply)
3 card slots for the processor (including 32/S microprogram control memory)

1 card slot for maintenance front panel logic board (if maintenance front
panel is used)

1 card slot for each 16K byte MOS memory module

1 card slot for each I/0 device controller (except disc controller which
requires 2 slots)

° The front panel may be removed from the front of the enclosure to gain access
to the front card slot. Any card may be placed in this slot, thus eliminating the
necessity for card extenders when performing maintenance.

° 4 high-power cooling fans provide cross-ventilation for cards and power supply
at all times.

. Channel for 1/0 device cables available along the upper half of each side of cards.

. Card size is 9" x 14",

° Optional expansion chassis available for additional MOS memory modules and/or
I/0 controllers.

Power:
° 115/230 VAC + 10%, less than 500W for average configuration.
° Standard integral power supply provides the following power:

35 Amps at +5V
6 Amps at +5.3V (used in MOS memory modules)
3 Amps at -12V
3 Amps at +12V
4 Amps at +21V (used in MOS memory modules)

° Optional Gel Cel battery pack available to supply power to maintain information
in MOS memory.

1 Introduction

1.4 SYSTEM HARDWARE

The 32/S computer is implemented with standard and optional printed circuit board modules which
may be plugged into any one of 15 available slots in a printed circuit board backplane.

The modular basis of the 32/S computer is the 9" x 14" printed circuit board module. A 14" edge
plugs into a pair of 50-pin connectors in a multi-layer printed circuit board backplane. For 1/0
device controller modules, connectors for I/O cables are attached to the upper half of either of the
9" sides. The printed circuit board backplane contains the wiring for the Monobus, for control
memory buses, and for CPU busés. Every signal is available at the same pin position of each of
the 15 available card slots within the chassis. This permits any module to be placed in any position
within the chassis. Since the front panel can be snapped off and hung to one side, leaving the
printed circuit module in the first slot accessible from the front, this means that any printed
circuit module can be serviced without the use of an extender board by simply plugging it into the
first slot.

CPU and Front Panel

The 32/S CPU itself, with the 32/S firmware, is contained on three printed circuit board modules:

the Monobus interface board, the data board, and the processor control board. The read-only memory
IC's for the firmware are contained on the processor control board. These boards are discussed in
the Microdata 3200 Reference Manual.

When a maintenance front panel is used it must be interfaced to the Monobus via the maintenance
panel logic board. The maintenance logic board is not required when the simpler basic front panel
is used.

Memo

The MOS main memory is implemented in 8K by 16-bit modules. Each module is a standard size
printed circuit board assembly which contains 8K bytes (4K words) of memory on the main printed
circuit board, and an additional 8K bytes of memory on a piggyback printed circuit board which is
bolted down to the main board. An optional 8K byte module is provided by not attaching the piggyback
board. The parity option is implemented with an additional bit per byte of storage in the module;
corresponding optional logic is provided in the CPU. Up to 16 modules may be logically placed on
the 32/S Monobus.

Each memory module contains a 4-bit selector switch to permit it to be manually set to respond to
desired 16K-byte address bank. The memory module contains its own control logic, including that
required for automatic refresh in response from signals supplied by the power supply. A block of
32 addresses in each of the 128 1K MOS memory IC's are refreshed simultaneously every 30 micro-
seconds during normal computer operation. This operation takes 300 nanoseconds and has priority
over data transfer operations. To reduce battery drain during standby, all addresses are refreshed
in a burst at an interval ranging from every 2 milliseconds at 25°C to every 1 millisecond at 50° C.

1/0 Device Controllers

A multi-purpose I/0 controller, the MPI/O controller, provides interfaces to a variety of low-speed
1/0 devices. The MPI/O controller contains four device interface channels. These are a serial
input channel, a serial output channel, an 8- or 12-bit parallel input channel, and an 8-bit parallel
output channel. The serial input and serial output channels may be used for a 20-mil current loop
teletype interface or for RS-232 devices such as modems and CRT's. The baud rate on the serial
channels may be set to any standard rate in the range between 110 baud and 9600 baud. The

parallel input channel may be used with a punched card reader or a paper tape reader. The parallel
output channel may be used with a line printer or with a paper tape punch. Both serial and parallel
channels communicate with the 32/S via both programmed I/0 and concurrent 1/0.

The disc controller is a two-board device controller option. It provides an interface to up to four
Microdata disc files. These disc files contain one fixed disc and one removable cartridge and may
be either 5 megabyte or 10 megabyte units.

The magnetic tape controller option provides an interface to up to two industry-standard magnetic
tape formatters. Each of these formatters can control up to four magnetic tape units. These tape
units may be various mixtures of NRZI and phase-encoded and may operate at speeds of 12.5 to 120
inches per second with densities ranging from 200 to 1600 characters per inch.

The communications controllers provide multi-channel interfaces for TTY, CRT, and modems. One
model of asynchronous communications controller provides parallel modem control lines along

with the serial data line for each channel. Baud rates are programmable in this unit. The other
asynchronous communications controller is a simpler unit which provides an interface only to current
loop or RS-232 devices. A third communications controller provides a bisync interface to synchronous

modems.

Additional custom design controllers can be supplied either by Microdata or implemented by users.
Design information is provided in the Microdata 3200 Interface Manual.

Control Memory

The control memory contained in the processor control board can be expanded with an additional read-
only control memory expansion board. This board can be used to expand the 32/S firmware to a total
read-only memory capacity of up to 4K words. For developmental purposes, writable control memory
boards are available. These provide the control memory function in bipolar read/write memory IC's
and can be loaded by the 32/S computer from main memory or from an I/0 device and then used to
control the 32/S computer.

Expansion Chassis

A bus coupler board is used to bring the Monobus out of the chassis to an optional expansion chassis.
Memory and I1/0 device controllers may be placed in the expansion chassis.

Figure A indicates the type of printed circuit modules which are available as both standard and optional
items. It also indicates the interconnection, within the printed circuit board backplane, between these
models.

BACKPLANE MODULES
lan N o N
é—— MAINTENANCE PANEL
MONOBUS INTERFACE PROCESSOR
PROCESSOR DATA WITH 32/S
FIRMWARE
PROCESSOR CONTROL
[72]
" @ @— 8K x 16 MOS MEMORY UPTO 16
& 2 @ ¢ MODULES WITH
a SE %0__ 8K x 16 MOS MEMORY EXPANSION CHASSIS
o}
5 Eg Z6—— 1/0 DEVICE CONTROLLER
oul =
= @—— 1/0 DEVICE CONTROLLER
READ-ONLY CONTROL MEMORY EXPANSION
p—— WRITABLE CONTROL MEMORY
®—— BUS COUPLER

Figure A. 32/S System.

1.4

1 Introduction

1.5 THE PUSH-DOWN STACK CONCEPT

The compilation of high-level languages, particularly block-structured languages with expressions, is
most easily performed for a machine with a push-down stack architecture.

The reason the 32/S can be efficiently programmed in a high-level block-structured language such as
MPL is that translation to machine language is simpler for machines with a "push-down stack"
architecture than for machines with fixed operational registers. This architectural concept has been
successfully proven in large-scale processors. And since non-block structured languages, such as
FORTRAN, are degenerate examples of block structured languages the availability of a minicomputer
with a stack architecture makes it easier to obtain a compiler for most high-level languages.

1t is difficult for a compiler to generate efficient programs for a conventional multiregister architecture.
The human programmer, shuttling data from register to register in a minicomputer of conventional
design, can visualize what is going on with more perception than can a compiler. Therefore the compiler
is likely to use the registers in a very constrained way, with many needless transfers to and from the
main memory. The push-down stack architecture, on the other hand, provides the facilities which a
compiler can use extremely efficiently.

Conceptually, a push-down stack is a set of memory locations, of which only the most recently used
one is accessible. Data is loaded or "pushed" into the stack through this one register; when additional
data is loaded, previously loaded data moves sequentially ""down' from one register to the next in the
set (Figure A). Data is retrieved or "popped' from the same register used for loading; each such
retrieval causes other data to move "up" sequentially from other registers. All data is retrieved in
the reverse order from that in which it was loaded, so that the push-down stack is sometimes called

a "last-in-first-out" (LIFO) buffer.

No actual push-down stack works like the conceptual model described above. Instead, in the simplest
configuration, a set of successive locations in the computer's main memory is set aside for use as a
stack. Data does not actually move from location to location during a push or a pop. Instead, the
address of the location which is currently the top of the stack is stored in a stack pointer which can be
incremented or decremented by 1 to effect the push and the pop. (Figure B).

To obtain a significantly faster operating stack, the 32/S uses five high-speed hardware registers with
a separate pointer for these stack head registers, and a stack pointer and main memory locations for
the lower portion. The highest register is tied directly to one input of the computer's arithmetic unit.
Since most of the traffic in and out of the stack involves only the top few locations, the hardware
registers reduce the number of accesses to the main memory and speed up the system's operation.

In a push-down stack architecture, the instructions that concern the stack automatically transfer data
as needed between the hardware register portion of the stack and its extension in the main memory,

so that this division is transparent to the user. Thus, a push into the register stack when it is already
full is automatically preceded by a transfer of the word in the bottom hardware register into the main
memory. But, for maximum performance, the reverse is not necessarily true. A pop from the stack
is not accompanied by a transfer from the main memory stack; the pointer to the stack head registers
is decremented if the top of the stack is in these registers, and the stack pointer (to main memory) is
decremented if these registers are all empty. Data is moved from main memory to the stack head
registers only if a stack operation (e.g., ADD) requires operands which are in the main memory.

The simplest example of stack usage is the evaluation of an arithmetic expression. Working in a
high-level language, a programmer writes an expression such as:

(A - B)/ (C+D)

The compiler translates this into the format known as ''reverse Polish notation, " after Jan Lukasiewicz,
a Polish logician:

AB-CD+/

This notation eliminates parentheses because each mathematical operator refers not to the two
operands between which it stands, but to the two operands preceding it. Carrying out the computation
after translation is simple because the computer can perform each mathematical operation as it
encounters the operators, without backing up to see what went before, or waiting to see what comes

next.

To evaluate an expression in Polish notation, a compiler produces a LOAD instruction (a "push") for
each variable and a mathematical instruction (such as ADD) for each operator in the expression.
Mathematical instructions operate on the top one or two items in the stack and replace them with the
result. This sequence is illustrated in Figure C.

1 2 3 5 1 2 3 4 5
N A R
C N A N N
C N C N N +» N N
- A A |+» A +=A+B
» B
®
PUSH PUSH POP POP PUSH PUSH PUSH POP POP PUSH
A B B A A+B A B B A A+B
— POINTER TO TOP OF STACK
Figure A. Push-Down Stack Concept. Figure B. Push-Down Stack Implementation in a Memory.
1 2 3 4 5 6 7
- A A |= A-B A-B A-B A-8 | = (ABY
E B > C C -+ C+D
> D
PUSH PUSH SUBTRACT PUSH PUSH ADD DIVIDE
A B - [of D + /
EXPRESSION EVALUATED: (A -B)/(C+D)
— POINTER TO TOP OF STACK

Figure C. Expression Evaluation in a Push-Down Stack.

1.5

1 Introduction

1.6 CONVENTIONS USED IN THIS MANUAL

This manual is written in a modular format with each pair of facing pages presenting a single
topic. Ideas are explained as much as possible with easy to visualize and easy to recall drawings. -

The approach taken in this manual differs greatly from the typical technical manual. Here each
pair of facing pages discusses an individual topic. Generally the left hand page is devoted to

text and the right hand page to figures referred to by that text. At the head of the text page there
are a pair of titles, the first one being the section and the second one being the topic. Immediately
below these titles is a brief summary of the material covered in that topic. The advantage of this
format will become readily apparent to the reader as he begins to use the manual. First of all,

the figures referred to in the text are always conveniently right in front of the reader at the point
where the reference is made. Secondly, there is a psychological advantage to the reader in
knowing that, when he has completed reading a topic and goes to turn the page, he is done with one
idea and ready to encounter a new idea.

The figures used in this manual are mostly drawings of Monobus maps with the contents of Monobus
locations being shown and the addresses of particular Monobus locations being indicated. The
Monobus locations include main memory and 1/O device controller registers. Certain conventions
are followed throughout this manual to simplify these drawings and thereby enable the reader to
concentrate on the concepts rather than upon unnecessary detail.

The Monobus map is always shown as a rectangle which indicates a range of Monobus locations.

(See Figure A). In these drawings Monobus address always increases as one moves downward on
the page. The Monobus map is shown as a succession of 16~-bit word locations. Often the individual
word locations are drawn in when this is needed to explain an idea.

The 32/S Monobus provides a 16-bit data path and 18 address lines. The data transferred, however,
may be specified (by control lines) to be either a 16-bit word or an 8-bit byte. In a byte transfer

the least significant address bit specifies the least significant byte (bit = 1) or the most significant
byte (bit = 0) of the 16-bit data path. In a word transfer the least significant address bit is ignored
by the hardware. However, by convention, the 32/S firmware uses a least significant address bit

of zero when executing a word transfer. Addresses of Monobus word locations and of most significant
byte locations are therefore both even number, while those for least significant bytes are odd.

Most of the addresses shown in the figures of this manual are word level addresses. For example,
the SB register is an 18-bit register which contains the base of the current pushdown stack in main
memory. (The contents of the SB register are always a multiple of 4 because, by definition, the
stack is a succession of word locations beginning at an even word address.)

Addresses are shown for Monobus locations in the manner illustrated in Figure B. The (1) portion
of this figure illustrates a detailed representation. SB is shown pointing at a word location on the
Monobus. This indicates that the contents of the SB register contain the address of that word
location. The other Monobus location is shown relative to the location pointed to by SB. The
relative displacement of the second location from the first one is contained in the EP register.

To simplify the drawing, the actual registers are not shown. Instead their names are used with
arrows as shown in the (2) portion of Figure B.

In order to further simplify the drawings, as the reader becomes more familiar with the definitions
of the main registers, the arrows used in pointing at Monobus locations and in showing relative
displacements are replaced by simply putting the register name with a colon in front of the Monobus
location. This is shown in the (3) portion of Figure B.

Finally, hexadecimal numbers are differentiated from decimal numbers by enclosing them in
quotation marks, e.g., '"0A51", is a hexadecimal number.

MAIN MEMORY

BYTE BYTE %
WORD

INCREASING
MEMORY
ADDRESSES

|—— 16 BITS ——|

Figure A. Memory Drawing Conventions.

MEMORY

MEMORY MEMORY

SB T SB:

SB REGISTER

le— 18BITSs —=] EP:

}e— 16 B1TS—]

(1) (2) (3)

Figure B. Memory Address Drawing Conventions.

1.6

2 Organization

2.1 MONOBUS ORGANIZATION

The Monobus provides an addressing range of 256K bytes. Main memory is divided into program
segments and data stacks, with active program segment and data stack areas specified by a set of -
seven 18-bit and 16-bit registers. 1/O device controllers and control memory are assigned to
Monobus addresses in ranges above those used by main memory.

The Monobus has an addreési.ng range of 256K bytes. Modules on the Monobus include main
memory, 1/0 device controllers, and control memory. See Figure A.

The Monocbus addressing range is divided into four 64K-byte banks. This division into banks
results from the fact that all address arithmetic is performed on the least-significant 16 bits of
the 18-bit byte-level Monobus addresses. No carry from this 16-bit arithmetic is propogated

into the most significant 2-bit field of the Monobus addresses. Therefore, addresses which should
cross into the next bank when incremented or when increased by a displacement or index will
instead wraparound to the beginning of the same bank.

Main memory is provided in 16K and 8K byte modules. Each module has a 4-bit switch to select
the 16K range of Monobus addresses for that module. To obtain a contiguous memory, modules
would be assigned sequential 16K ranges starting at Monobus address 0. Because of the relocatable
features of the 32/S, it is possible to run programs with a non-contiguous address space.

The control memory interfaces with the CPU for control purposes via the control memory bus.
However, in addition, control memory provided on an optional read-only control memory board
can be read via the Monobus, and control memory provided in optional writable control memory
modules can be read or written via the Monobus.

Control memory is addressable on the Monobus starting at byte location 1"38000" (224K).
Addresses correlate with addresses of the control memory on the control memory address bus.
(See topic 10.1).

1/0 device controllers are assigned eight-word blocks of Monobus addresses, referred to as
"Device Register Blocks." A multi-channel controller, such as the MPI/O, has a Device
Register Block for each device it controls.

Standard Microdata controllers are wired for Monobus addresses within the block starting at
byte location "3C000" (240K). A switch is provided on each controller to select one of 1024
"device numbers" for each device register block associated with the controller. (See topic 4.2.)

Within main memory, the first 16 word locations are reserved. (See topic 2. 15). In addition,
up to 512 words beginning at location 16 are reserved for the program library, PLIB, a table of
pointers to program segments. (See topic 2.3).

The remainder of main memory, above PLIB, is assigned, by the loader program and/or the
software operating system, to program segments and data stacks. Program segments and
data stacks may be of any length and may be positioned within memory in any sequence.
However, each program segment and each data stack must be wholly contained within a 64K
byte bank. At any time one program segment and one data stack are active.

Three registers define the active program segment: the Program Base, PB, specifies the base

address of the segment; the Program Pointer, PP, specifies the address of the 32/S instruction

to be executed, relative to PB; the Program Length, PL, specifies the size of the segment. The
program segment is discussed in the next topic.

Four registers define the active data stack: the Stack Base, SB, specifies the base address of
the stack; the Environmental Pointer, EP, specifies the location, relative to SB, of the "Mark"
entry in the stack which identifies the beginning of the current "environment'" in the stack; the
Stack Pointer, SP, specifies the location, relative to SB, of the top of the stack in main memory.
The Stack Length, SL, specifies the maximum size allocated to the stack. The data stack is
discussed in a sequence of topics starting with topic 2.5.

BYTES
0

RESERVED LOCATIONS — 16 WORDS

PLIB — PROGRAM LIBRARY
INDEX TABLE TO PROGRAM SEGMENTS
UP TO 256 SEGMENTS

e T
PROGRAM PP
SEGMENT ACTIVE
“10000"" PL —-L— PROGRAM
(64K) SEGMENT
DATA
STACK
BANK
PROGRAM
SEGMENT
SB I
DATA EP
“20000" STACK
(128K) sP { ACTIVE
] DATA
\ UNASSIGNED SL | STACK

30000"

(192K)

“38000"

(224K) I CONTROL MEMORY

| I 4K 32.BIT LOCATIONS

“3C000" |- — — — — o

(240K) | | 1/0 DEVICE CONTROLLER REGISTERS
1K 8-WORD DEVICE REGISTER BLOCKS

40000 - — — — —

(256K)

Figure A. Monobus Organization.

2.1

2 Organization

2.2 PROGRAM SEGMENT

The program segment contains the code generated for one or more MPL procedures, literal data
and constant data, and an indirect address table to entry points within this procedure code. The
program segment is specified by the three registers: Program Base (PB), Program Length (PL),
and Program Pointer (PP).

The program segment contains the code corresponding to one or more MPL procedures. The
number of external procedures contained in a segment is determined at program load time. The
program segment is divided into a procedure section and a Program Reference Table, PRT. The
procedure section contains the 32/S instructions, literal scalar data, and constant arrays. The
PRT is an indirect address table to entry points within the procedure section. See Figure A,

The active program segment is defined by three registers:

PB Program Base 18 bits

This register points to the first word of the program segment; its least significant
two bits are always zero.

PL Program Length 16 bits

This register points to the last word of the program segment relative to PB; its
least significant two bits are always 10,.

PP Program Pointer 16 bits

This register points to the next byte of 32/S instruction to be executed relative to PB.
The Program Reference Table, PRT, contains up to 256 16-bit addresses. Each address specifies
the Program Base (PB) - relative location of the entry point for a procedure. Entries are made
only for those procedures in the program segment which may be called by programs in another
program segment. When a procedure is called (from a remote program segment), the PRT entry
becomes the initial value of the Program Pointer (PP).

Entry addresses within the PRT are specified by a word-level index, PRTN:

Address of PRT entry address location = PB + PL - 2 * PRTN
The program segment may be of any length up to 64K bytes and may be positioned anywhere within
main memory except that:

1. The segment may not cross the boundaries of a 65K byte memory bank;

2. The segment length is always a multiple of four bytes;

3. The segment always begins at an even doubleword address.

MEMORY

PROGRAM

BASE

(PB)
PROGRAM
LENGTH
(PL)

PROGRAM
POINTER <
(PP)

.

NEXT INSTRUCTION

I\G

ENTRY ADDRESS g

2 +PRTN

PROCEDURES

SECTION:
INSTRUCTIONS,
LITERAL SCALAR DATA,
CONSTANT ARRAYS

PROGRAM

REFERENCE

TABLE (PRT):
ENTRY ADDRESSES OF
PROCEDURES WITHIN
THIS SEGMENT WHICH
ARE REFERENCED BY
ANOTHER SEGMENT

Figure A. Program Segment Format.

2.2

2 Organization

2.3 PROGRAM LIBRARY, PLIB

The PLIB provides program segment specifications which are automatically used when code in one
program segment calls code in another program segment.

The Program Library, PLIB, is a table of pointers and other information which specifies all defined
program segments. The PLIB starts at location ''20" and provides a 2-word descriptor for up to
256 program segments. The entries in PLIB are generated by the loader and are used by the
processor to invoke a new active program segment when a CALL, EXIT, or RESM instruction or

an interrupt specifies to do so (see next topic).

The descriptor format is shown in Figure A. The first word of the descriptor is the value of Program
Base, PB, to be used with that program segment. Specifically, it contains the most significant 16-bits
of the 18-bit PB value. The lower two bits of the PB value are assumed to be zeroes; therefore, a
program segment can only start on even doubleword boundaries. The second word of the descriptor
contains a specification of the Program Length, PL, to be used with that program segment, a trace
bit, T, and an attention bit, A.

The most significant 14-bits of the PL value are contained in the most significant 14-bits of the second
word of the descriptor. The least significant 2-bits of the PL value are assumed to be 10y; therefore,

the program segment must be an integral number of doublewords in length.

The trace bit (bit 1 of the second word of the descriptor), indicates whether a trace interrupt is to be
generated after execution of each 32/S instruction when this program segment is active. Specifically:

T =0: no trace interrupt

T=1: trace interrupt to be generated
The attention bit (bit 0 of the second word of the descriptor), indicates whether a PLIB attention
interrupt is to be generated when the PLIB entry is accessed in the process of activating a new program
segment (see next topic). Specifically:

A=0: no attention interrupt

A=1: attention interrupt to be generated

The attention bit set interrupt may be used by systems software as an indication that the program
segment is absent from main memory, and that it must be read in from a back-up disc memory.

The two-word PLIB entries are specified by a double-word index, PLIBN, forward from byte location
120", An index of PLIBN = 0 specifies the first entry, which begins in memory address ''20".
Specifically:

Address of first word of PLIB entry = ''20" + PLIBN * 4.

PROGRAM BASE (PB) / 4

PROGRAM LENGTH (PL) /4

TRACE

ATTENTION

Figure A. Descriptor in Program Library (PLIB).

2.3

2 Organization

2.4 TRANSFER BETWEEN PROGRAM SEGMENTS

A new program segment is activated when the CALL or EXIT instruction being executed in the
currently active program segment specifies a branch to code in another program segment.
PLIB is used to locate and obtain the appropriate parameters for the new program segment.

When the procedure being executed in one program segment invokes a procedure which is in
another program segment the control is switched to the new segment. PLIB is used in this
process. The process is explained here with the aid of Figure A. Since the explanation
involves a concept of the data stack and Mark entries in that data stack, the reader should
expect to reread this topic after he has become familiar with these concepts from reading the
following topics.

The 32/S code generated for a CALL statement in MPL consists of:

1. A MARK instruction to mark the start of the environment for execution
of a new procedure in the data stack.

2. A sequence of instructions to push arguments for the called procedure
into the stack on top of this Mark.

3. A CALL instruction to complete the Mark and to transfer control to the
code for the new procedure.

If the called procedure is in a new program segment the MARK instruction will contain a PLIBN
and PRTN entry. The PLIBN provides the entry point for the descriptor for the new program
segment in PLIB. The PRTN is an index into the PRT of the new segment to obtain the entry
pointer for the called procedure. The concluding CALL instruction then will obtain new PB and
PL values from the descriptor in PLIB and will obtain a new PP value from the PRT of the new
program segment. A Z bit value of 1 is used in both the MARK instruction and in a Mark entry
to specify a change in program segments.

The A bit in the descriptor may specify that the called procedure cannot be executed. In this case,
the called procedure is invoked and then immediately interrupted.

In more detail, the sequence is as follows:

1. The MARK instruction contains a bit (Z) which indicates if the called
procedure is in a different program segment. If Z =1, this instruction
provides PLIBN and PRTN values for the called procedure. The MARK
instruction begins the construction of a new Mark entry in the data stack
and deposits Z, PLIBN, and PRTN in this mark. (fZ = 0, the called
procedure is within the currently active segment, and the MARK
instruction contains its entry address.)

2. Subsequent instructions push arguments for the called procedure on to
the top of the stack, on top of the Mark whose construction was initiated
by the MARK instruction.

3. The CALL instruction checks the value Z left for it by the MARK instruction
in the Mark under construction in the data stack. If Z = 1, then the CALL
instruction extracts the PLIBN value and uses it as an index into PLIB to
obtain the descriptor for the new program segment. (If Z = 0, the CALL
instruction extracts the entry address and loads it into PP.)

4. The CALL instruction extracts the PB and PL values from the descriptor
and stores them into the PB and PL registers.

5. The CALL instruction then stores the current PLIBN (which it obtains from
the Program Status Register) and the current PP value into the Mark being
created in the stack.

6. At this point, the Mark being created in the stack has been completed and the
CALL instruction adjusts the Environmental Pointer, EP, to point to this
Mark.

7. The CALL instruction then tests the A bit in the program descriptor. An A
value of 1 indicates that the called procedure cannot be invoked; for example, it
could mean that the called program segment is absent from memory.

If A is a 1, an attention interrupt is generated. An Interrupt Mark is pushed
into the stack. This Mark contains the PRTN and PLIBN values for the called
procedure; the Z bit is a 1 to indicate that the Mark's PP/PRTN entry is a
PRTN value. The PLIBN of the called procedure is also pushed into the
stack as an argument for the interrupt procedure. The process is then
complete.

8. If A is a 0, the CALL instruction then tests the T bit in the program descriptor.
If T is a 1, the internal trace status bit is set.

9. The CALL instruction then uses the PRTN value for the called procedure to

index into the PRT of the new segment. It extracts the entry pointer from
this PRT and loads it into the PP,

PROGRAM PROGRAM
SEGMENT, SEGMENT,
CALLING CALLED
PROCEDURE PLIB PROCEDURE
“00020"":
4*PLIBN - [ENTRY INSTR|
PL g [T|A
< < < < < <
MARK-CALL o
:| INSTRUCTION
SEQUENCE
ENTRY
ADDRESS *]
2* PRTN

Figure A. Calling a Procedure in a Remote Program Segment.

2.4

2 Organization

2.5 DATA STACK

The data stack is the area of memory allocated for an individual machine user's data. Itis a
push-down stack which is specified by four registers; Stack Base (SB), Stack Length (SL),
Environmental Pointer (EP), and Stack Pointer (SP). To gain a significant speed advantage, five
hardware registers are provided as a dynamic head to the stack.

The data stack is the area of main memory allocated for the variable data belonging to an individual
machine user. It is manipulated as a push-down stack, with tive hardware '"'stack head'' registers
provided for use as the head, or top locations in the stack. There may be any number of data
stacks allocated within main memory, but only one of these stacks is active at any given time.

This topic defines the active stack format. (See topic 2.14 for the format of an inactive stack.)

See Figure A.

Within the data stack, four-word entries call "Marks' are installed that delineate the location in
the data stack where a new PROCEDURE block or BEGIN block began to use the data stack. (See
topic 2.7.)

The top five word locations in the data stack are called TOS (top of stack) registers. Specifically:

TOS: top of stack

TOS1: location one level below top of stack
TOS2: location two levels below top of stack
TOS3: location three levels below top of stack
TOS4: location four levels below top of stack

These names are used whether the particular TOS location exists in one of the stack head

registers or exists in main memory. The TOS locations shift between main memory and the

stack head registers dynamically as a program executes. The figure shows a typical situation

in which the three topmost locations are in the hardware registers.

The active data stack is defined by four registers:

SB Stack Base 18 bits
This register points to the first word of the data stack.

SL Stack Length 16 bits
This register points to the last word in the data stack, relative to SB.

SP Stack Pointer 16 bits

This register points at the top location of the data stack within main
memory, relative to SB.

EP Environmental Pointer 16 bits

This register points to the first word of the latest Mark within the data
stack, relative to SB.

Since the data stack is word-oriented, the least significant bit of these registers is always a 0.

A data stack may be any length up to 64K and may be stored anywhere within main memory except
that:

The data stack must be wholly located within a 64K memory bank.

NOTE: The process of reading the contents of SP, either via the front panel or via software
debugging programs, always causes the contents of any active stack head registers to be placed

into main memory and adjusts SP accordingly.

MEMORY
STACK >
BASE
(SB)
POINTER <> <
(EP)
STACK — MARK
POINTER
(SP)
STACK HEAD REGISTERS
TOS 4 (EMPTY)
TOS 3 (EMPTY)
TOS 2
STACK
LENGTH I o T
(SL) TOS

Figure A. Data Stack Format.

2.5

2 Organization

2.6 STACK HEAD REGISTERS

The stack head registers provide up to five levels of the top of the data stack and are automatically
allocated to minimize the number of accesses to main memory in data stack operations.

The data stack head registers consist of five high-speed registers. The number of active stack
head registers is variable. Hardware logic maintains a record of which stack head registers are
empty and which one (if any) is the current top of the stack, so that data can be pushed into the
stack or popped from the stack without transferring between registers. Most data stack operations
as a result, actually can be performed within the 135 nanosecond clock time.

The processor operates in such a way as to use the stack head registers to minimize accesses to
main memory. When data is pushed into the data stack it goes into stack head registers rather
than into main memory - as long as there are any empty stack head registers. If the stack head
registers are filled, or become filled during the push operation, the deepest entry in the registers
overflows into main memory. Both situations are illustrated in Figure A. Note that the Stack
Pointer, SP, always points to the highest stack location in main memory.

During the operation of popping data from the data stack, the processor pops data from the stack
head registers without accessing main memory as long as sufficient data is available within the
stack head registers. Data is not moved from main memory into the stack head registers during
a pop operation. A pop operation occurring with the stack head empty simply causes the contents
of the SP register to be decremented. No data is moved. See Figure B.

Note again that SP, the Stack Pointer, always points to the topmost location of the data stack
within main memory.

NOTE: The process of viewing the contents of the Stack Pointer, SP, from the front panel
automatically causes the contents of the stack head registers to be placed into main memory.
This means that any attempt to see the data in the top of the data stack, by requesting a display
of the location specified by the Stack Pointer, will automatically empty the stack head registers
into memory, and therefore displays the actual top of the data stack. The programmer can
normally ignore the five stack head registers and can visualize the stack as residing entirely
in main memory.

MEMORY MEMORY
STACK HD.
REGISTERS
STACK HD.
— REGISTERS
s A - D J> e[A -
B B
C C
TOS: D D
TOS: E
EMPTY STACK HEAD REGISTERS INITIALLY
MEMORY MEMORY
STACK HD.
SP: A REGISTER A
_ __REG S STACK HD.
B B o REGISTERS
c > > c
D D
E E
TOS: F F
TOS: G
ALL STACK HEAD REGISTERS FILLED INITIALLY
Figure A. Push Stack Operation.
STACK HD.
MEMORY MEMORY REGISTERS
STACK HD.
REGISTERS -
sl A L= D > SP: A | [=
B B
C TOS: C
TOS: D
STACK HD.
FILLED STACK HEAD REGISTERS INITIALLY REGISTERS
STACK HD.
MEMORY REGISTERS MEMORY -
A —_— > TOS: SP: A —_
TOS: SP: B -

ALL STACK HEAD REGISTERS EMPTY INITIALLY

Figure B. Pop Stack Operation.

2.6

2 Organization

2.7 DATA STACK MARK

Four-word entries in the data stack, called Marks, delineate the stack environments which are
local to each PROCEDURE or BEGIN block. They contain the information required to restore the
data stack and program segment environment of the block previously being executed, and the
information needed to access data local to an outer block.

As the code corresponding to an MPL PROCEDURE or BEGIN block is entered, the data stack is
marked by a four-word entry called a Mark. This establishes the local reference point in the
stack for the currently executing block and minimizes, thereby, the number of bits required for
addressing data variables. As a block is exited the Mark is removed and the data stack is
"rolled back'' to the point preceding the Mark for that block. The first word of the latest Mark,
installed when the current block was entered, is pointed to by the Environmental Pointer, EP,
The area following a Mark, up to any subsequent Mark, is defined as the environment of that
block. Figure A illustrates the data stack at a point within execution of an MPL program.

The first Mark (closest to the Stack Base) is for the MAIN PROCEDURE block of the

program. The last Mark is for the block currently being executed. It is followed by the procedure
arguments which were passed to the current block when it was entered, and the local variables
which are being used by the currently executing block. The portion of the stack between the last
Mark and the location specified by the Stack Pointer is the current environment.

Between the first and the current Marks are the Marks created for those blocks which have been
entered but which have not been exited in the course of reaching the block currently being executed.

The general form of the Mark is illustrated in Figure A. The first two words of the Mark contain
links, or pointers, to the Marks which delineate the start of preceding environments. These are
used to access data local to a containing block and are used to unroll the stack as the current
block is exited. The second two words contain the Program Pointer, Program Library Number
and program status at the time that the block was entered. This information is required to
return control to the calling, containing, or interrupted block, when this block is exited.

The Static Link, SLINK, points to the Mark of the next outermost block. Specifically, SLINK is

the SB-relative address of the first word of the Mark for the next outermost MPL block. Note

that the next outermost block is not necessarily the one in which the program was executing when
the current block was entered. The 'linked list" of SLINK entries within the Marks is used to
access data which was declared in a block containing the current block. (See topics 2.10 and 2.11.)

The Dynamic Link, DLINK, points to the Mark of the block which was being executed when the
current block was entered. Specifically, DLINK is the SB-relative address of the first word of
the immediately preceding Mark, DLINK is used to roll back the data stack to the environment
of the calling or containing block when the current block is exited.

MEMORY

SB:

STATIC AND
EXTERNAL DATA

MARK

MAIN
PROCEDURE
ENVIRONMENT

MARK

INTERMEDIATE
ENVIRONMENT

SLINK

MARK

INTERMEDIATE
ENVIRONMENT

A MARK [4

L

PROCEDURE
ARGUMENTS
——————— STACK HEAD REGISTERS
LOCAL -]
| VARIABLES -
SP: - -
UNUSED
SL:

MARK

SLINK (STATIC LINK)

DLINK (DYNAMIC LINK)

RETURN PP

RETURN PLIBN, PSR

Figure A. Mark: Role in Data Stack and General Format.

2.7

2 Organization

2.8 MARK FORMATS

Formats are defined for the three types of Marks, Procedure, Begin, and Interrupt.

There are three types of Marks:

Procedure Mark: created when a PROCEDURE block is entered;
Begin Block Mark: created when a BEGIN block is entered;
Interrupt Mark: created when the program being executed is interrupted.

Procedure Mark

The Procedure Mark is created whenever a new PROCEDURE block is entered, either as a result
of executing an MPL CALL statement or as a result of encountering an MPL function. It is
removed when the execution of the PROCEDURE block is completed and control is returned to

the calling PROCEDURE or BEGIN block.

The first two words are the standard SLINK and DLINK entries. The last two words are the
Program Pointer and Program Status Register values to be used when control is returned to the
calling PROCEDURE or BEGIN block. Specifically:

SLINK Static Link word 0

This word is the SB-relative address of first word of the Mark for the next
outermost PROCEDURE or BEGIN block.

DLINK Dynamic Link word 1

This word is the SB~relative address of first word of the Mark for the calling
PROCEDURE or BEGIN block.

PP Program Pointer word 2

This word is the Program Pointer value to be used for the next instruction to be
executed upon return of control to the calling PROCEDURE or BEGIN block.

PLIBN Program Library Number word 3, bits 15-8

This field is the index into PLIB for the calling PROCEDURE or BEGIN block.
Upon exiting the current PROCEDURE, this PLIBN is used to retrieve the calling
program segment (if it is remote) and is installed as the PLIBN field of the
Program Status Register.

(o] Overflow word 3, bit 2

This bit is the overflow bit of the Program Status Register at the time when the
procedure (for which the Mark was created) was entered. Upon exiting the
current procedure, the current Program Status Register overflow bit is ORed
with the Mark's O bit and the resultant becomes the new overflow bit value in the
Program Status Register (PSR). The effect is that if the PSR overflow was set
either prior to entering the procedure, or during execution of the procedure,

it will be set upon return to the calling block.

R Return word 3, bits 1, 0

This field is the number of words to be returned by the called procedure. At the
point when the Mark is to be removed, the R words in the top of the stack are saved;
the Mark is then removed and the R words are reinstalled in the top of the stack.

NOTE: A special form of the Procedure Block is defined for the MAIN PROCEDURE of an
MPL program. It has a SLINK value of "0000" and a DLINK value of "FFFF".

Begin Mark

The Begin Mark is created whenever a BEGIN block is entered. It is removed when execution
of the BEGIN block is completed.

The first word is the standard SLINK entry. The second word is a variation on the standard
DLINK entry. The last two words are not filled in. (The return values of the Program Pointer,
PLIBN, and Program Status Register which normally go into these two words are not needed
because a BEGIN block is in-line code). Specifically:

SLINK Statie Link word 0

This word is the SB-relative address of the first word of the Mark for the
next outermost PROCEDURE or BEGIN block.

DLINK Dynamic Link word 1

1f the DLINK of the immediately preceding Mark is odd-valued, this word is
a copy of that DLINK; otherwise this word is the SLINK value (for this Mark)
plus 1.

The DLINK entry is designed to facilitate the processor's task of removing a sequence of

one or more Begin Marks if execution of an outer PROCEDURE block terminates before
execution of the BEGIN blocks is completed. DIINK and SLINK entries for Procedure Marks,
and SLINK entries for Begin Marks are word addresses and are therefore even-valued. The
DLINK entries in Begin Marks, however, are odd-valued and therefore identify these Marks.
Furthermore, the DLINK entry of a Begin Mark specifies the address of the next outer
Procedure Mark.

PROCEDURE MARK: BEGIN MARK: INTERRUPT MARK:
SLINK SLINK 10000"
DLINK DLINK DLINK
PP - PP/PRTN
peN | — o R — puen | mask [clolx]z
|15 8| [2]1]0f |15 0| |18 8|7 4|3l2]1]o]

Figure A. Mark Formats.

2.8

2 Organization

2.9 MARK FORMATS (Continued)

Formats are defined for the three types of Marks, Procedure, Begin, and Interrupt.

Interrupt Mark

The Interrupt Mark is created when an interrupt has been honored; the Interrupt Vector Table
has been accessed (see topics 3.1 and 3.2), and processing of the interrupt procedure is to
begin. It is removed after execution of the interrupt procedure is completed.

The standard SLINK entry, normally the first word, has no meaning since there is no next
outer block (in the interrupted program segment) for the interrupt PROCEDURE block. The
second word, however, is the standard DLINK entry which points to the Mark of the interrupted
block. The last two words normally are the Program Pointer and Program Status Register
values to be used when control is returned to the interrupted block. An exception to this is
when the interrupt is generated as a result of a call to a procedure in a remote program
segment which cannot be executed because the PLIB entry for that remote program segment
has its attention bit (A) set. In this latter case, the third word contains the PRTN value for
the desired entry point into the called procedure. (This transfer between program segments

is discussed in topic 2.4.) Specifically:

SLINK Static Link) word 0
This word is set to "'0000'", identifying this as an Interrupt Mark.
DLINK Dynamic Link word 1

This word is the SB-relative address for the first word of the Mark
for the interrupted block.

PP/ Program Pointer/Program Reference Table Number word 2
PRTN
If Z = 0, this word is the Program Pointer value to be used for the next
instruction to be executed upon return of control to the interrupted block.
If Z = 1, this word is the PRTN value to enter the called procedure after
the attention interrupt has been processed.

PLIBN Program Library Number word 3, bits 15-8

This field is the index into PLIB for the interrupted block. Upon returning
control to the interrupted procedure, this PLIBN is used to retrieve the
interrupted program segment, and is installed as the PLIBN field of the
Program Status Register.

MASK Interrupt Mask word 3, bits 74
This field is the interrupt mask for the interrupted block. Upon returning

control to the interrupted procedure, this interrupt mask is installed as the
interrupt mask field of the Program Status Register.

Carry word 3, bit 3

This bit is the carry bit of the Program Status Register at the time the block was
interrupted. Upon returning control to the interrupted procedure this C bit is
installed as the carry bit in the Program Status Register.

Overflow word 3, bit 2

This bit is the overflow bit of the Program Status Register at the time the block
was interrupted. Upon returning control to the interrupted procedure this bit is
installed as the overflow bit in the Program Status Register.

Mode word 3, bit 1

This bit is the normal/executive mode bit of the Program Status Register at the
time the block was interrupted. Upon returning control to the interrupted
procedure, this X bit is ANDed with the X bit in the current PSR. This ANDing
operation prevents an interrupt procedure running in the normal mode from
returning control to a previous environment in executive mode.

word 3, bit 0

This bit specifies the meaning of the third word. If Z =1, the interrupt was
caused by a set attention bit in a PLIB entry when a procedure in a remote program
segment was called; the third word is then the PRTN for that called procedure.

If Z = 0, the interrupt is due to any one of the other types of interrupts and the
third word is then the Program Pointer value to use when control is returned to

the interrupted procedure.

PROCEDURE MARK: BEGIN MARK: INTERRUPT MARK:
SLINK SLINK “0000"
DLINK DLINK DLINK
PP — PP/PRTN
BN | — o[R - pLiBN | mask[clolx|z
s 8| 12110} |15 o| |15 8|7 4j3|2|1]o|

Figure A. Mark Formats.

2.9

2 Organization

2.10 DATA STACK ENVIRONMENTS & MPL PROGRAM STRUCTURE

This topic states the relationship between the structure of an MPL program and the environments,
delineated by Marks, within a data stack.

MPL programs are statically structured of PROCEDURE and BEGIN blocks, with block within
block, and with block following block. MPL programs are dynamically executed in a sequence
determined not only by the static structure, but also by the CALL statements which jump the
control from inside one block to the beginning of a block external to the one containing the
statement. As program execution progresses, the data stack is marked off into environments
by the Mark entries. The SLINK and DLINK entries in these Marks link these environments
on the basis of their static and their dynamic relationships.

Figure A illustrates an example of an MPL program and the data stack at a point in time during
execution of that program. The MPL program consists of a MAIN PROCEDURE A which contains
a BEGIN block B and a PROCEDURE block D. Blocks B and D each contain BEGIN blocks.
PROCEDURE D is called from inside BEGIN block C. The dynamic sequence of execution of

the blocks is shown below the MPL program.

The data stack is shown during the time that code for BEGIN block E is being exeeuted. The
SLINK and DLINK entries are shown in each Mark. The Environmental Pointer, EP, values,
which were current at the time each Mark was the latest one in the stack, are shown at the base
of each Mark.

The first Mark is for the MAIN PROCEDURE. It is a special case of the Procedure Mark,
containing a '"0000" SLINK and an "FFFF'' DLINK.

SB:
MPL PROGRAM STATIC
A: MAIN PROCEDURE; DATA
EPA: ©70000""
“FFFF "
B: BEGIN;
C: BEGIN; LOCAL
A
CALL;D;
EPB: EP 5
“FFFF'
END C;
END B;
LOCAL
B
D: PROCEDURE;
EPC: EPB
CFFFF"
E: BEGIN;
§ LOgAL %
END E; < z
[=] %]
EPp: EPA
n EPc
END D;
LOCAL
D
END A;
EPg: EPp
Lo EPp + 1
LOCAL E
DYNAMIC SEQUENCE OF PROGRAM EXECUTION: SP:
A->B »C D +E »D »C +»B—+»A
SL:
DATA STACK SHOWN AT

Figure A. Relationship Between MPL Program Structure and Data Stack Environments.

2.10

2 Organization

2.11 THE DELTA LEX-LEVEL CONCEPT

The Delta Lex-Level, DLEX, is a number which specifies the static relationship between blocks
in the MPL program. The concept is introduced to simplify the explanation of various 32/S
operations.

The Delta Lex-Level, DLEX, is an abbreviation for the difference in lexographical levels.
Figure A shows an MPL program graphically. The DLEX parameter between CALL statements
and the procedure which they call is shown to the right of each CALL.

From the examples shown in Figure A, it can be seen that:

DLEX = 0: a call to a procedure which is declared at the same level as the CALL
statement; the contents of the called PROCEDURE block itself is
therefore one level down, a ''son."

DLEX =1: a call to a procedure which is declared at one level outside the CALL
statement; the contents of the called PROCEDURE block itself is
therefore at the same level, a 'brother."

DLEX = 2: a call to a procedure which is declared two levels above the CALL
statement; the contents of the called PROCEDURE block itself is
therefore one level above, a "father' (C PROCEDURE), or an '"uncle"
(B PROCEDURE).

Up to 16 levels of DLEX may be used. (The limitation is the size of the DLEX field in the
MARK and LADR instructions.)

Figure A also illustrates two illegal CALL statements; a call to PROCEDURE D and a call

to PROCEDURE F, both from PROCEDURE A. These CALL statements are illegal because
the names 'D' and 'E' are not known in PROCEDURE A. See the MPL reference manual for
an explanation of naming scope.

A: PROCEDURE

DECLARE B PROCEDURE,
C PROCEDURE;

C: PROCEDURE

DECLARE D PROCEDURE,
E PROCEDURE;

E: PROCEDURE

DECLARE F PROCEDURE,
G PROCEDURE:

CALLF <1r ¢ ALEX=0(SON)

ﬁﬁtﬁ E] < X ALEX =1 (BROTHER)

Sﬁtt 2] < { ALEX = 2 (UNCLE, FATHER)

CALLD < (GRANDSON)

ILLEGAL
< (GREAT-GRANDSON)

CALLF

YANIPAN

Figure A. Delta Lex Level (ALEX) Concept.

2,11

2 Organization

2.12 DATA STACK TRANSFORMATIONS - BEGIN BLOCK EXECUTION

The BEGIN and END statements compile into the BENT and EXIT instructions which create and
remove, respectively, the BEGIN mark in the data stack.

Figure A shows the sequence of states of the data stack as a BEGIN block is initiated, executed,
and exited.

The data stack immediately before execution of the BEGIN block is shown in the upper left. (Two
top entries, TOS and TOS1, are shown in the stack head registers as a typical situation.)

The BEGIN statement compiles into a Begin Entry, BENT, instruction (see topic 9.1). The
BENT pushes the contents of active stack head registers into the stack in main memory. Itthen
creates the BEGIN Mark and adjusts the EP and SP pointers.

Execution of the BEGIN block code then uses the data stack environment above the latest, Begin,
Mark. A typical data stack at the completion of execution of the BEGIN block code is shown in the
lower right of the figure.

The END statement for a BEGIN block compiles into a Begin Exit, BXIT, instruction (see topic
9.1). The BXIT '"rolls back'' the data stack to the environment immediately preceding the latest,
Begin, Mark. It does this by adjusting the EP to the base of the previous Mark (using SLINK)
and adjusting the SP to the location preceding the base of the removed Begin Mark.

Note that, since a BEGIN block returns no values to the preceding environment, all data in the
stack above the removed Begin Mark is lost.

MEMORY

EP:
LATEST
MARK
<o <o STACK HD.
REGISTERS
SP: A o
B
[+
EP:
LATEST
MARK
S S
A
B
SP: C —

SLINK:
PREVIOUS
MARK
o o
LATEST
A MARK
B
C
EP: SLINK
DLINK
SP: — o
SLINK:
PREVIOUS
MARK
A
B
C
EP: SLINK
DLINK LATEST
= MARK
SP: [5) _—
3
F

Figure A. Data Stack as Enter, Execute and Exit Begin Block.

2.12

2 Organization

2.13 DATA STACK TRANSFORMATIONS - PROCEDURE BLOCK EXECUTION

The PROCEDURE statement compiles into MARK and CALL instructions which create the
Procedure Mark and the END and RETURN statements compile into an EXIT instruction which
removes the Procedure Mark.

Figure A shows the sequence of states of the data stack as a PROCEDURE block is initiated,
executed, and exited.

The data stack, immediately before execution of the PROCEDURE block, is shown in the upper
left, (Two top entries, TOS and TOS1, are shown in the stack head registers as a typical
situation.)

The PROCEDURE statement compiles into a MARK instruction, followed by code which pushes
arguments into the stack, followed by the CALL instruction, The MARK instruction pushes

the contents of the active stack head registers into the stack in main memory. It then initiates
the creation of the Procedure Mark. The Stack Pointer, SP, advances accordingly during this
operation, but, since the Procedure Mark is not yet completed, the Environmental Pointer, EP,
still points to the same latest active Mark. (See topic 9.2)

32/S code following the MARK instruction pushes the arguments for the called procedure
into the data stack. The data stack then looks typically as shown in the upper right of the figure.

The CALL instruction then completes the Procedure Mark and adjusts the Environmental Pointer,
EP, to (and thus to activate) this Mark. (See topic 9.3.) The data stack then looks typically as
shown in the lower right of the figure.

The called procedure then is executed, resulting in a data stack which looks typically as
shown in the middle lower portion of the figure.

The END and RETURN statements compile into an EXIT instruction which "rolls back' the data
stack to the environment immediately preceding the Procedure Mark. (See topic 9.4.) It does
this by adjusting the Environmental Pointer, EP, (using DLINK) to point to (and thus activate)
the previous Mark in the data stack.

The removed Procedure Mark contains the parameter R, the number of data words to be
returned to the previous environment. The EXIT instruction saves the topmost R data words
by leaving them in the stack head registers. It eliminates other data belonging to the exited
procedure by adjusting the Stack Pointer, SP, to the location immediately preceding the
removed Procedure Mark.

MEMORY
EP: EP: EP:
LATEST LATEST MARK |
REMARK MARK
GENERATE €>
ARGUMENTS
< S STACKWD S Y)
REGISTERS MARK
UNDER
sp: ~ yy CONSTRUCTION
B B
C C
NEW SLINK NEW SLINK
(EP) (EP) MARK
DESTINATION pestinamion| f UNDER
sp:[orex.zr])_ DLEX, Z, R CONSTRUCTION
D
E
F
G
H
SP: | _
J
K
EP: DLINK: .
LATEST PREVIOUS DLINK: PREVIOUS
MARK MARK MARK
S o SR T T
GENERATE
RETURN
VALUES
SP: -
L EP: SLINK EP:[sLinK
M DLINK LATEST DLINK LATEST
N PP MARK PP MARK
PLIBN, O, R PLIBN, O, R
D D
E
E
F
£ F
= G
s H
3 [
= J
SP: L _ SP: K -
™M
N
le——— EXECUTING CALLED |
PROCEDURE -1

Figure A. Data Stack as Call, Execute, and Exit Procedure.

2,13

2 Organization

2.14 INACTIVE DATA STACK

Inactive data stacks are "capped off" by an Interrupt Mark and cataloged in a Stack Descriptor table
which is maintained by system software.

At any given time, only one data stack in memory is active. All other data stacks are defined as
inactive. The format of an inactive data stack is shown in Figure A.

The base location and length of each inactive stack is maintained, by system software, as a two-
word descriptor. When an inactive data stack is activated the first word of this descriptor is loaded
in the Stack Base, SB, register and the second word is loaded in the Stack Length, SL, register.

The Stack Pointer, SP, value for the data stack, at the time when it was made inactive, was stored
in the first word of the stack. When an inactive data stack is activated this SP value is loaded into
the Stack Pointer register.

The top of the inactive data stack contains an Interrupt Mark. This Mark is usually created by an
interrupt which caused the data stack to become inactive (and simultaneously activated another stack).

STACK DESCRIPTOR
(MEMORY)

SB/4

SL

i
N

INACTIVE STACK

(MEMORY)
SP (INACTIVE) —
< $
DLINK:
< <
DLINK
PP
PLIBN | MASK |c]o]x[z
15 8|7 43210
< <

PREVIOUS
MARK

LATEST
MARK
(INTERRUPT
MARK)

Figure A. Inactive Data Stack Format.

2.14

2 Organization

2.15 RESERVED MEMORY LOCATIONS

The first 32 locations of main memory are reserved for special purposes. The following
locations are reserved for the variable-length Program Library, PLIB.

The processor utilizes the first 18 byte locations to store pointers and other information.
The next 14 bytes are reserved for a second 82/S processor. The Program Library, PLIB,
begins in the next location. . The reserved memory locations are defined in Figure A.

Interrupt Stack Base Address location: ""00"

This word is the upper 16 bits of the 18 bit base address of the interrupt
stack. The low order two bits of the address are zeroes. The contents
of this location are transferred to the SB register when the interrupt stack
is activated.

Interrupt Stack Length location: ''02"
This word is the length of interrupt stack (number of bytes).
Timer locations: ''04" and "'06"

These two words are a 32 bit counter which is incremented by the
processor real-time clock. A carry out of the most significant bit
in location "'04" causes a timer overflow interrupt (see topic 3.3).

Base Address of Concurrent I/0 Control Block Table location: ''08"

This word is the upper 16 bits of the 18 bit base address of the
CIOCB table. The low order bits of the address are always zeroes.

Base Address of Interrupt Vector Table location: "0A"

This word is the upper 16 bits of the 18 bit base address of the
Interrupt Vector Table. The low order two bits of the address are
always zeroes.

Maximum Number of Devices location: ""OE"

This word is the value used to verify a device number when an
external input/output interrupt occurs. A device number less
than this value will be processed as a normal external interrupt.
A device number greater than or equal to this value will cause a
maximum device number exceeded interrupt. (See topic 3.3.)
Note that this value is the maximum legal device number plus one.

Number of Entries in Concurrent I/0 Control Block Table Location: 10"

This word is the actual number of entries contained in the CIOCB
table and is used to verify that the device requesting service has a
CIOCB to control it. An illegal device number will cause the process
to immediately halt to indicate a fatal error condition (see topic 3.3.)

LOCATION

DECIMAL HEXIDECIMAL DESCRIPTION
0 00 INTERRUPT STACK BASE ADDRESS / 4
2 02 INTERRUPT STACK LENGTH
a 04 TIMER (UPPER 16 BITS)
6 06 TIMER (LOWER 16 BITS)
8 08 CONCURRENT 1/0 CONTROL BLOCK BASE ADDRESS / 4
10 0A INTERRUPT VECTOR TABLE BASE ADDRESS / 4
12 oc RESERVED
14 0F MAXIMUM 1/0 DEVICE NUMBER, PLUS ONE
16 10 NUMBER OF ENTRIES IN CONCURRENT 1/0 CONTROL BLOCK
18 12 A
20 14
22 16
2 18 L RESERVED
2% 1A
28 1c
30 1€)
32 20 FIRST ENTRY IN PROGRAM LIBRARY (PLIB)

Figure A. Reserved Memory Locations.

2

2.16

Organization

PROGRAM STATUS REGISTER

The Program Status Register, PSR, maintains the status of the currently executing program. It
consists of 16-bits of status which may be interrogated from the Maintenance Panel.

The status of the currently executing program is recorded in 19 bits. The Program Status Register,
PSR, as shown on the Maintenance Panel, contains 16 bits of information, organized as shown in
Figure A. The three remaining status bits are external to the PSR (see topic 2.17).

The definitions of the Program Status Register fields are as follows:

PLIBN

MASK

Program Library Number bits: 15-8

This field is the index into the Program Library, PLIB, for the currently executing
program segment.

Interrupt Mask bits: 7-4
This field is the enable/disable mask for the four external interrupt lines. This
mask specifies which of these four lines are to have external interrupt requests

acknowledged. This field may be modified under software control by executing an
XIM instruction (see topic 9.11).

The definition of these bits is:

bit = 1: interrupt enabled

bit = 0: interrupt disabled

The bit positions are defined as:

bit +: operator interrupt

bit 5: timer interrupt

bit 6: external interrupt line 0

bit 7: external interrupt line 1

Carry bit: 3

This field is the carry status. It is set, or reset, as a result of execution of various
32/S instructions and tested by the TCAR instruction (see topic 9.11).
Specifically:

C=1: carry set
C =0: carry reset
Overflow bit: 2

This field is the overflow status. It is set as a result of execution of various 32/S
instructions and tested and reset by the TOVF instruction (see topic 9.11).
Specifically:

O0=1: overflow set

O = 0: overflow reset

Mode bit: 1

This field specifies whether the program is running in executive or normal mode.
It is set, or reset, by RESM, IXIT instructions, a restart, or an interrupt.
Specifically:

X=1: executive mode

X =0: normal mode
The executive mode permits execution of privileged instructions (PNOP, XIM,
MICR, and RESM) and use of the absolute memory addressing mode; neither

is permitted in the normal mode. Certain protect checks are not made in Executive
mode.

Wait State bit: 0

This field specifies whether the program is in the wait mode or in the running
mode. It is set by a WAIT instruction and reset by an interrupt. Specifically:

W =1: wait state

W =0: non-wait state

In the wait mode, instructions are not executed, but the timer and concurrent
1/0 operate.

8|7 alal2]|1]o]l
PLIBN MASK clo|x|w
| L WAIT STATE
PLIBN OF 1: WAIT
CURRENT 0: NOT WAIT
PROGRAM
SEGMENT MODE
1: EXECUTIVE
0: NORMAL
OVERFLOW STATUS
EXTERNAL INTERRUPT MASK =~ —— 1: %ET
BIT4: OPERATOR INTERRUPT 0: RESET
BITS5: TIMER INTERRUPT CARRY STATUS
BIT6: EXT.INT.LINEO 1: SET
0: RESET

BIT7: EXT.INT.LINE1

1: INTERRUPT ENABLED
0: INTERRUPT DISABLED

Figure A. Program Status Register (PSR) as Displayed on Maintenance Front Panel.

2,16

2,17

Organization

STATUS BITS EXTERNAL TO THE PSR

The processor utilizes three status bits which are external to the Program Status Register.

Three status bits are stored external to the Program Status Register, and are not accessible
from the front panel. Specifically:

T

PI

ISA

Trace 1 bit

This bit specifies whether or not an internal trace interrupt is to be generated
after execution of each instruction. It is set by activating a procedure segment
whose PLIB trace bit is set. The trace status is reset when the trace interrupt
occurs. Specifically:

T =1: generate internal trace interrupt after execution of next
32/8S instruction.

T = 0: do not generate trace interrupts.

Postpone Interrupt 1 bit
This bit specifies whether or not all external and internal interrupts are

to be disabled until after execution of the next 32/S instruction. It is set

when a traceable segment is activated and when an XIM instruction is
executed and is reset by any 32/S instruction execution. Specifically:

PI=1: disable all interrupts until after execution of next 32/S
instruction.
PI = 0: do not disable all interrupts.
Interrupt Stack Active 1 bit

This bit specifies whether or not the currently active data stack is the
interrupt stack. It is set by an interrupt to the Interrupt Stack and by
a restart. Itis reset by a RESM instruction. Specifically:

ISA =1: current stack is the interrupt stack.

ISA = 0: current stack is not the interrupt stack.

.17

3 Interrupts

3.1 INTERRUPT ARCHITECTURE

The 32/S provides both internal and external interrupt facilities. The latter include four external
interrupt lines for use by 1/0 device controllers. An interrupt mask enables/disables interrupts on
two of these lines, the operator interrupt and the timer overflow interrupt. A unique interrupt
vector is provided for each interrupt source, including each unique device number. Each interrupt
vector provides an armed/disarmed state bit.

Interrupts are divided into two classes: internal and external. Internal interrupts are generated as
a result of executing certain 32/S instructions (e.g., Supervisor Call). External interrupts are
generated by events other than instruction execution.

External interrupts generated by 1/0 device controllers are assigned to one of four external interrupt
lines (by logic within the controller). The operator interrupt button, timer overflow, power fail and
maximum device number exceeded are unique external interrupt sources.

Internal interrupts are always enabled.

External interrupts generated by a standard I/O device controller can be enabled or disabled within
the controller by setting mode bits within the controller. In addition, two of the external interrupt
lines (line 0 and 1) can be individually enabled or disabled by two corresponding mask bits within
the Program Status Register. The other two external interrupt lines are always enabled.

A unique interrupt vector number is associated with each source of internal interrupt and each source
of external interrupt, including each I/O device controller number. The interrupt vector number
indexes into an Interrupt Vector Table. The entries in this table specify the interrupt procedure, and
the stack environment and Program Status Register to be used with that procedure.

The Interrupt Vector Table entry includes a bit which specifies whether the interrupt is armed or
disarmed. The interrupt procedure is only invoked if the interrupt is armed. The interrupt is
disregarded if it is disarmed.

The request for an internal interrupt arises as a result of a 32/S instruction execution. If the Interrupt
Vector Table entry specifies the interrupt to be armed, the instruction execution sequence concludes
with the set up of the environment for processing of the interrupt. The interrupt is then processed.

The requests for external interrupts arise asynchronously with 32/S instruction execution. External
interrupts are serviced between instruction executions. Each external interrupt source has an assigned
priority. If more than one enabled pending interrupt exists at the conclusion of an instruction execution
the highest priority one is honored. External interrupt priorities are specified in topic 3.4.

If the Interrupt Vector Table entry for an honored interrupt is armed the processor sets up the
environment for processing the interrupt. The interrupt is then processed. If it is disarmed and one
or more other external interrupts are pending, the next highest priority armed interrupt is then
honored. Ifitis disarmed and no other external interrupt requests are pending, processing continues
with the next 82/S instruction in sequence.

INTERRUPTS

I

EXTERNAL INTERNAL
/0 DEVICE CONTROLLERS POWER 12 TYPES
OPERATOR INTERRUPT FAIL

TIMER OVERFLOW

4 EXTERNAL
INTERRUPT LINES

DAISY CHAIN PRIORITY

INDIVIDUAL ENABLE/DISABLE CANNOT DISABLE
FOR TWO LINES

I

UNIQUE INTERRUPT VECTOR
FOR EACH INTERRUPT TYPE
AND FOR EACH 1/0 DEVICE
NUMBER

INDIVIDUAL ARM/DISARM FOR
EACH UNIQUE INTERRUPT VECTOR

INTERRUPT VECTOR SPECIFIES:
INTERRUPT PROCEDURE,
PSR VALUES
CURRENT/INTERRUPT STACK
NORMAL/EXECURIVE MODE

Figure A. Interrupt Architecture.

3 Interrupts

3.2 INTERRUPT VECTOR TABLE

Each type of internal interrupt, each device number associated with an external interrupt, the operator
interrupt, and the timer overflow, specify a unique interrupt vector. This vector specifies whether
the interrupt should be processed, and the procedure and the environment for executing the procedure.

The Interrupt Vector Table is a table of two-word entries in memory which specify the action to be
taken when an interrupt is to be processed. The address of the first entry of this table is specified
by a pointer in memory at location '"0A", The format of the Interrupt Vector Table entry is shown in
Figure A. ’

The Interrupt Vector Table is accessed when an enabled interrupt is honored. The address of the
desired table entry is:

Interrupt Vector Table entry address = (""0A') * 4 + interrupt-vector-number * 4

The interrupt vector numbers are specified in topic 3.3. The address is the address of the first word
of the desired entry.

Bit 0 of the first word of the entry is an armed bit. This bit specifies whether the particular interrupt
is armed or disarmed. If it is disarmed, the interrupt is disregarded. If it is armed, the table entry
specifies the interrupt processing procedure to be used and the environment to be set up by this
procedure.

The definition of the fields of the Interrupt Vector Table entry are as follows:

I Interrupt Arm word 0, bit 0
I=0: interrupt is disarmed; disregard this interrupt
I=1: interrupt is armed; proceed with interrupt processing
X Mode word 0, bit 1
X =0: execute the interrupt procedure in the normal mode
X=1: execute the interrupt procedure in the executive mode
S Stack word 0, bit 2
S=0: use the currently active data stack when executing the
interrupt procedure
S=1: use the interrupt data stack when executing the interrupt
procedure
word 0, bit 3
- not used
., MASK Interrupt Mask word 0, bits 7-4

This is the external interrupt line enabled/disabled mask to be placed into the
Program Status Register for use when the interrupt procedure is invoked. The
definition of these bits is as follows:

bit = 0: line disabled
bit =1: line enabled

The bits correspond to lines as follows:

bit 4: operator interrupt
bit 5: timer overflow
bit 6: external interrupt line 0

bit 7: external interrupt line 1

PLIBN Program Library Number word 0, bits 15-8

This field is the index into the Program Library, PLIB, for the interrupt procedure

to be used.

PP Program Pointer word 1
This field is the Program Pointer value to be used as the entry point into the
interrupt procedure.

NOT USED
MASK: —————————— ————— STACK:
0: CURRENTLY ACTIVE STACK
EXTERNAL :
INTERRUPT 1: INTERRUPT STACK
LINE ENABLE:
0: DISABLED
1: ENABLED MODE:
0: NORMAL
1: EXECUTIVE
INTERRUPT ARM:
0: DISARMED
PLIB .
INDEX 1: ARMED
J
15 8 7 4 3 2 1 0
PLIBN MASK —-s x|
PP
START ADDRESS

Figure A. Interrupt Vector Table Entry.

3.2

3 Interrupts

3.3 INTERRUPT DEFINITIONS

The types of internal and external interrupts are named, their interrupt vector numbers defined,
and the arguments which are pushed into the top of the stack upon acknowledgment are specified.

Each type of internal and external interrupt has a unique interrupt vector number which specifies
the Interrupt Vector Table entry to be used in processing it. The generation of an internal
interrupt and the honoring of an external interrupt pushes an argument into the top of the

stack which is active during the interrupt processing; this argument is utilized by the interrupt
processing procedure. The interrupts are defined below with the interrupt vector number at the
left margin and the argument at the right margin.

NOTE: Interrupt types are referred to, in this manual, by their interrupt vector number and
argument: interrupt-vector-number argument.

Internal Interrupts:

1 Trace argument: 0
An instruction of a procedure segment marked for trace has been executed.
1 Trace argument: 1

A procedure in a segment marked for trace has been CALLed but no
instructions in that procedure have been executed.

4 Supervisor Call . argument: *
A Supervisor Call instruction has been executed.

5 Program Complete argument: 0

A Procedure Exit instruction has been executed when the latest Procedure
Mark is that for a MAIN PROCEDURE.

6 Unimplemented Instruction argument: **

An attempt has been made to execute an instruction which is not defined
in the processor set.

* %k

7 Trap Instruction argument:
A Trap instruction has been executed.
8 Attention Bit argument: PLIBN

The Program Library (PLIB) descriptor retrieved in process of calling
or returning to a remote program segment has its attention bit (A) set.

9 Stack Overflow argument: 1
The stack is within 16 words of SL.

9 Stack Underflow argument: 2
An attempt has been made to pop an empty stack.

9 SB/SL Violation argument: 4
An attempt has been made to reference data outside the stack.

9 Privileged Instruction Violation argument: 5

An attempt has been made to execute a privileged instruction
(PNOP, XIM, MICR, or RESM) while in normal mode.

9 Privileged Addressing Mode Violation argument: 6

An attempt has been made to execute a memory reference instruction
with an absolute addressing mode (mode 7) while in normal mode.

9 Store into Program Segment Violation argument: 7

An attempt has been made to execute a store type of memory reference
instruction with a constant addressing mode (mode 6) while in normal mode.

External Interrupts
(1] Power Fail argument: **

AC power has been lost and DC power to the processor will be available
a minimum of 2 milliseconds. (DC power will be maintained to the MOS
memories if an optional battery pack is attached to the machine.) See
topic 13.2.

2 Operator Interrupt argument: **

The interrupt button on the front panel has been depressed.
Enabled/disabled by bit 4 in the PSR.

3 Timer Overflow argument: **

A timer signal from the real-time clock (located in the power supply)
causes the timer (addresses 4-7) to be incremented; if a carry out of
the most significant bit occurs, a timer overflow interrupt will occur.
When the timer interrupt is not enabled (bit 5, PSR), the counting does
not occur and an interrupt cannot happen.

15 Maximum Device Number Exceeded argument; *ikk

The number at the interrupting device exceeds the maximum device
number as specified in location "000E".

16+ External Input/Output Interrupts argument: ****
Device
Number

An interrupt request has been honored for a device controller on one
of the four external interrupt lines.

Action Requests

In addition to the internal and external interrupts defined above, there are a number of action
request conditions which are serviced by the processor. Specifically:

Parity Error: This condition arises when the processor detects a parity
error when reading from memory. When the condition arises,
the processor locks up. The condition is verified by a panel
address display of '"0051" when the CMA/FBUS is selected.

Restart See topic 13.2

Maximum Device Number Exceeded, ConcurrentI/O: See topic 4.5

Load: See topic 12.6.
* The argument is copied from TOS of the calling stack.
*% Bit 15 of the argument indicates which stack was active when the interrupt occurred:
bit 15 = 0: user stack
bit 15 = 1: interrupt stack
o The argument is the PP for the instruction following the trap instruction.
Hokokok Bit 15 of the argument indicates which stack was active when the interrupt occurred,

and bits 9-0 indicate the interrupt source:

bits 9-0: device number
bit 15 = 0: user stack
bit 15 = 1: interrupt stack

3.3

3 Interrupts

3.4 INTERRUPT PROCESSING SEQUENCE

The sequence of steps involved in honoring and initiating the processing of an internal or
external interrupt is flow charted.

Figure A flowcharts the steps followed by the 32/S processor as it recongizes an enabled interrupt
request, and then sets up the environment for the interrupt procedure.

Internal interrupts are generated by execution of specific 32/S instructions. The instruction
execution includes the set up of the interrupt environment.

External interrupt requests are processed between execution of 32/S instructions. If two or more
interrupts are enabled at the same time the one of highest priority is honored first. The priority is:
Power Fail

Timer Overflow

Operator Interrupt

Device controller on external interrupt line 3.

Device controller on external interrupt line 2.

Device controller on external interrupt line 1.

N o U W N

Device controller on external interrupt line 0.

The power fail interrupt and external interrupt lines 2 and 3 are always armed. Timer overflow,
operator interrupt and external interrupt lines 0 and 1 may be armed or disarmed. Interrupts are
only honored for armed interrupt sources.

Any number of I/0 device controllers attached to a given external interrupt line may desire to
signal an interrupt request simultaneously. A hardware daisy chain priority network assigns
priority to the I/O device controllers on the basis of their position within the chassis; the priority
goes from high to low, moving from the foremost card slot to the rear of the chassis. Only the
highest priority controller desiring to interrupt is permitted to present its interrupt request.
After this interrupt has been honored, the next highest priority controller desiring to interrupt
presents its interrupt request.

A "maximum device number exceeded" interrupt request may be generated during the processing
of an interrupt requested by a device controller. If this occurs, the maximum device number
exceeded interrupt is taken rather than the external I/O interrupt requested by the device controller.

RECOGNIZE
INTERRUPT

INTERNAL ¢ EXTERNAL OR
\ INTERNAL ?
g EXTERNAL
INTERRUPT LINE
ENABLED OR DISABLED? DISABLED RETURN TO CURERENT
(MASK IN PSR) PROCEDUR
‘ ENABLED
YES RECOGNIZE “zle
? DN EXCEEDED"
DN > DN MAX: INTERRUPT
l NO
RESET INTERRUPT REQUEST
FETCH INTERRUPT
VECTOR
RETURN TO
INTERRUPT DISARMED INTERRUPTED
ARMED ? PROCEDURE
‘ ARMED
IN WAIT MODE \ YES
?
‘ NO
CAP-OFF CURRENT STACK RESET WAIT MODE

WITH INTERRUPT MARK

]

OBTAIN FROM INTERRUPT VECTOR:
MASK, X BIT, PLIBN, PRTN
AND USE TO UPDATE PSR, PB, PL, PP

USE CURRENT ‘ USE INTERRUPT
ooRce CURRENT OR INTERRUPT "\ §TACK
STACK TO BE USED ?
(S IN INTERRUPT VECTOR) i

YE ALREADY USING
S C INTERRUPT STACK
?

o

SET INTERRUPT STACK
ACTIVE STATUS; CHANGE SB, SL

INTERRUPT ARGUMENTS —+TOS

{

BEGIN
INTERRUPT
PROCESSING NOTE: DN = DEVICE NUMBER

Figure A. Interrupt Processing.

3.4

3 Interrupts

3.5 DATA STACK AS PROCESS INTERRUPT

When an interrupt is serviced within the currently active stack the environment for the interrupt
interrupt procedure is created by the processor. and rolled back by an IXIT instruction.

Figure A shows a sequence of four snapshots of the data stack as an interrupt is processed
for the case in which the Interrupt Vector Table entry specifies that the interrupt is to
be processed in the currently active stack.

The occurrance of an interrupt causes the contents of the active stack head registers to
be pushed into the stack in memory, creates the Interrupt Mark, and pushes the interrupt
argument into the stack. The interrupt procedure then executes in the environment above
this Mark, An IXIT (Interrupt Procedure Exit) instruction (see topic 9.5) terminates the
interrupt procedure by rolling back the environment created by the Interrupt Mark.

MEMORY

EP: DLINK:
LATEST PREVIOUS
MARK MARK

< $ STACK HD. % <

REGISTERS

LATEST
MARK

SP: A A
B
C C

@

EP:

" -
[INTERRUPT_|

MARK

SP: [ARGUMENT

EXECUTE
INTERRUPT
PROCEDURE

EP: DLINK:
LATEST PREVIOUS

MARK MARK

S g Ty

SP:

O]} >|
Ojwm|>

‘[INTERRUPT]
MARK

SP: D

m

Figure A. Data Stack as Process Interrupt in Current Stack.

3 Interrupts

3.6 DATA STACK AS PROCESS INTERRUPT (Continued)

When the servicing of an interrupt requires changing from a user stack to the interrupt stack, the
processor caps off the current user stack and activates the interrupt stack.

Figure A shows a sequence of snapshots of the current user stack and of the interrupt stack as an

interrupt is processed, for the case in which the Interrupt Vector Table entry specifies that stacks
be switched. Four pictures of the user stack are shown across the top of the figure, and the four

corresponding pictures of the interrupt stack are shown across the bottom of the figure.

To describe the sequence of events associated with switching stacks to service an interrupt, it is
helpful to first describe how a software executive (operating system) might control the activity of
the stacks. The executive itself uses the interrupt stack as its own data stack. Within this stack
it maintains an Active Process Table which contains the Stack Base and Stack Length parameters
for each user stack.

The system is activated with the executive running and with the interrupt stack as the active stack.
The user stacks are all capped off with Interrupt Marks and inactive. When the executive wishes
to activate a user it places a Stack Descriptor word, SD, into the top of the stack and executes a
RESM (Resume) instruction. This instruction uses the SD to access the Stack Base and Stack
Length parameters for the desired user stack and activates this stack. This RESM instruction
also caps off the interrupt stack with an Interrupt Mark and inactivates it. :

When an interrupt occurs and the Interrupt Vector Table entry for that interrupt specifies switching
to the interrupt stack, this entry will also specify that control be returned to the executive. The
processor then inactivates the user stack and activates the interrupt stack. An interrupt
procedure within the executive then processes the interrupt. The interrupt procedure is
terminated by an IXIT (Interrupt Procedure Exit) instruction (see topic 9.5). This rolls back the
interrupt stack to the environment which existed before it activated the user.

Subsequently, the executive will determine which user to activate next. It then pushes the desired
Stack Descriptor into its stack and executes a RESM instruction.

The stack drawings in Figure A show a sequence which begins at the point when a user is active
(leftmost user and interrupt stacks). When the interrupt is acknowledged, the interrupt firmware
pushes the active stack head registers into the user stack in memory. The processor then caps
off the user stack with an Interrupt Mark and inactivates it. Finally, the processor activates
the interrupt stack and pushes the interrupt argument into this stack (the argument is not shown).
The interrupt procedure is then processed in the interrupt stack. (See second-from-left user
and interrupt stacks.)

At the termination of the interrupt procedure an IXIT instruction is executed. This rolls back
the interrupt stack to the environment preceding its Interrupt Mark. (This Interrupt Mark had
been created when the executive originally executed a RESM to activate the user.) The interrupt
stack remains active as the executive performs other tasks.

At the point when the executive desires to activate a user, it executes a LADR (Load Address)
instruction to push the Stack Descriptor, SD, into its stack. The status of the user and interrupt
stacks are then as shown in the second from right column of pictures.

The executive then executes a RESM instruction. This instruction activates the user stack
specified via the SD pointer to the Active Process Table. It caps off the interrupt stack with an
Interrupt Mark and makes it inactive. (Rightmost user and interrupt stacks.)

Note that, for simplicity, the figure shows a single user stack being interrupted, inactivated,
and then reactivated. However, in a multi-user stack environment the executive would presumably
activate a new user after servicing the interrupt.

MEMORY

SB:

2 - SB:
L~
< o < <o < < < N
EP: EP:
LATEST PREVIOUS PREVIOUS LATEST
MARK MARK MARK MARK
STACK HD.
REGISTERS
SP: - SP: .
INTERRUPT INTERRUPT
MARK MARK
USER USER USER USER
STACK STACK STACK STACK
(ACTIVE) (INACTIVE) (INACTIVE) (ACTIVE)
INTERRUPT AND BODY OF IXIT, LADR RESM
INTERRUPT PROCEDURE INSTRUCTION INSTRUCTION
//‘ STACK SB: STACK SB, EP: STACK o STACK
BASE BASE BASE BASE
MARK MARK MARK MARK
s T T 3 s 9 T Y
ACTIVE ACTIVE ACTIVE ACTIVE
PROCESS PROCESS PROCESS PROCESS
TABLE TABLE SD: TABLE TABLE
T3 < 3 T 3 T T
EP: SP:| _so -
INTERRUPT INTERRUPT INTERRUPT
MARK MARK \ MARK
INTERRUPT INTERRUPT
STACK STACK
SP: _ (ACTIVE) (INACTIVE)
INTERRUPT INTERRUPT
STACK STACK * ACTIVE PROCESS TABLE:
(INACTIVE) (ACTIVE) SB, SL ENTRIES FOR ALL USER STACKS

Figure A. User and Interrupt Stacks as Process an Interrupt.

3.6

4 Input/Output

4.1 TYPES OF 1/0

The 32/8 provides three types of I/O facilities, each providing the optimum hardware cost/
programming/speed tradeoff for a particular 1/0 situation.

Three types of I/O facilities are provided in the 32/S computer: programmed1/0O, concurrent I/0,
and direct memory access I/0. (See Figure A.) Programmed1/O permits the transfer of a single
byte or word. Concurrent I/0O and direct memory access I/0 accomplish the transfer of a block of
data. The concurrent I/O facility is used for low speed peripheral devices, and the direct memory
access 1/0 is used for high-speed peripheral devices.

A programmed I/0 operation is accomplished by executing a load instruction or a store instruction
from or to a Monobus location which is assigned to the desired register within the desired peripheral
device controller, The controllers contain registers for status, mode, order (command) and data,
and for device parameters (such as sector and track addresses in a disc controller). The group of
registers for a particular controller are assigned to a block of Monobus locations which are referred
to as a Device Register Block, DRB. The format of the DRB used in standard Microdata controllers
is discussed in topic 4.2.

A concurrent 1/0 operation is initialized by programmed I/O operations, but the data block transfer
is then controlled by the processor without program intervention. Thus the program may perform
other operations while data transfers are occurring. The transfer of the individual byte or word is
accomplished between execution of 32/S instructions. The controller generates a concurrent 1/0
request whenever it is ready to transfer the byte or the word. To transfer the data, the processor
refers to the Concurrent 1/0 Control Block (in memory) for the requesting device controller to
determine the memory address for the next byte or word to be transferred. Information in this block
determines if the block transfer is to be terminated. (The block is initialized by software before the
transfer operation is triggered.) The processor commands the controller to stop requesting 1/0
when the block transfer is complete. The controller may request an external interrupt when informed
that the transfer is terminated. (See topic 4.5 and 4.6.)

A direct memory access 1/0 operation is also initialized by programmed I/O operations, but the data
block transfer is then controlled by hardware within the device controller instead of information
contained in a CIOCB. The transfer of the individual byte or word is accomplished whenever the
controller can get priority to use the Monobus. The controller hardware determines when the transfer
is to be terminated, and may request an external interrupt at that time.

The sequence of I/O operations is shown in Figure B. The solid lines of the flowchart indicate the
sequence followed by the 32/S processor. The dotted lines indicate that the direct memory access
I/0 operates in the background, and does not involve the processor.

Programmed I/0 may be used to effect data transfers on a single byte or word basis with low speed
devices such as a TTY, CRT, card reader, line printer, paper tape punch or paper tape reader.
Concurrent I/0 may be used to effect data block transfers with these same types of devices. Direct
memory access I/0 is used with high speed devices such as a magnetic tape unit or disc drives.

PROGRAMMED 1/0 SINGLE BYTE/WORD @ DATA TRANSFER
TRANSFER EXECUTED BY
® DATA LOAD AND STORE
® STATUS INSTRUCTIONS
® COMMAND
CONCURRENT 1/0 BLOCK TRANSFER @ INITIALIZED BY
OF DATA FOR PROGRAMMED /0
LOW-SPEED DEVICES @ DATA TRANSFER
[] EXECUTED BY PROCESSOR
@ DATA TRANSFER
BETWEEN INSTRUCTION
EXECUTIONS
DIRECT MEMORY BLOCK TRANSFER ® INITIALIZED BY
ACCESS 1/0 OF DATA FOR PROGRAMMED 1/0
HIGH-SPEED DEVICES ® DATA TRANSFER EXECUTED
BY CONTROLLER
HARDWARE
@® DATA TRANSFER AS SOON
AS CONTROLLER
GETS PRIORITY TO USE
MONOBUS
Figure A. Types of /0.
INSTRUCTION
//_ EXECUTION
/
/7
/
/
DMA I/0 é CONCURRENT \ YES PROCESSOR EXECUTES|
DATA = — - - 1/0 CONCURRENT
TRANSFER N REQUEST ? 1/0 DATA TRANSFER
\\
A \ EXTERNAL YES PROCESS
N— INTERRUPT EXTERNAL

REQUEST?

INTERRUPT REQUEST

Figure B. Sequence of 1/0 Operations.

4 Input/Output

4.2 DEVICE REGISTER BLOCK

Each device controller has an eight-word block of Monobus locations called a Device Register Block,
DRB, through which its registers can be accessed. Each interrupt line has a single word location
through which the device address of an interrupting controller can be accessed.

An eight-word block of Monobus locations is reserved for each I/0 device controller number. These
locations correspond to the status, order, data and other registers within the device controller module.
They are read and written as though they were locations within main memory. The block of locations
is referred to as a Device Register Block, DRB.

The DRB's begin at Monobus word location '"3C000". Each DRB begins at the location "3C000" + 16 *
(device number). A maximum of 1024 DRB's is available, although the last one (starting at "3FFF0'")
is assigned to a special role associated with interrupts and with the front panel. See Figure A.

A device controller module may contain more than one device controller, and therefore more than one
device number and DRB associated with it. For example, the Multi-Purpose 1/0 controller module,
which interfaces to several peripherals of different types, has four DRB's. On the other hand, the
disc controller module, which interfaces with up to four disc drives, has a single DRB. Switches on
the controller modules are used to assign device numbers and to thereby assign DRB locations.

The standard format of the eight-word DRB is shown in Figure A. The status word contains bits which
indicate the ready status of the peripheral device, interrupt requests which are pending, and error
conditions. The order byte is used to specify an order, or command, to the controller. The mode
byte is used to set up to four different types of modes, such as the interrupt mode, parity mode, etc.
The data word (or the least significant byte of this word) is the input data or output data for the

device. The extended status and extended order words provide optional extensions to the status word
and order byte field.

The word labeled disc address is used to specify platter, head, track, and sector addresses in the disc
controller. The last two words of the DRB are the data buffer bookkeeping registers used in controllers
with direct memory access I/O capabilities. The next DMA data address is initialized to point to the
low-address end of the data buffer. The remaining DMA byte count is initialized to the byte count of

the data buffer. As each data word (or byte) is transferred, the controller hardware increments the
next DMA data address and decrements the remaining DMA byte count.

Standard formats for the status word, order byte, and mode byte are presented in separate topics
within this section. The specific formats of each field of the DRB for particular device controllers
are given in the I/O appendix to this manual.

The highest-address DRB is assigned to a special purpose. The first four word locations contain the
device number of the device requesting an interrupt on each of the four external interrupt lines. The
fifth word location contains the device number of a device requesting a concurrent I/O transfer. See
topic 4.3 for a further explanation.

The last four locations of the highest address DRB are associated with the maintenance front panel.
(See topic 4.12.)

MEMORY

3C000: —]
— DRB —
A o
*3C000" — ——
+(16* DEVICE } |— —
-]
NUMBER) — ors
— —
_. —]
L —

STATUS

MODE ORDER

DATA

EXTENDED STATUS

EXTENDED ORDER

(DISC ADDRESS)

NEXT DMA DATA ADDRESS

}DEVICE REGISTER
BLOCK (DRB)

REMAINING DMA BYTE COUNT J

N
3FFFO: |EXTERNAL INTERRUPT LINEO

EXTERNAL INTERRUPT LINE 1

EXTERNAL INTERRUPT LINE 2

EXTERNAL INTERRUPT LINE 3

CONCURRENT I/0 REQUEST

<

» RESPONSE WORDS

SPECIAL DEVICE
} REGISTER BLOCK
FOR FRONT PANEL

Figure A. 1/0 Monobus Map.

4 Input/Output

4.3 CONTROLLER RESPONSE WORD

Device Controllers provide a response word to specify their device number and other information
when they request an external interrupt or a concurrent 1/0 transfer.

Each device controller is designed to provide a response word when its request for an external
interrupt, or for a concurrent 1/0 data transfer, is honored. This response word identifies the
interrupting controller to the processor. The sequence of operations involved in accessing the
response word is discussed in topic 4.4.

The format of the response word is shown in Figure A, Bits 13 through 4 contain the controller's
device number. Bits 0 and 1 are utilized for concurrent I/O transfer requests to inform the
processor of the type of data transfer to be performed. Specifically:

bit 0 = 0: input data transfer
bit 0 = 1: output data transfer
bit 1 = 0: transfer word

bit 1 =1: transfer byte

bits 3, 2: zeroes

bits 13-4: device number

bits 15, 14: zeroes

|15 }14 13

NERFIEREN

Lofo]

DEVICE NUMBER

[ofo]]

0: WORD
1: BYTE

0: INPUT
1: QUTPUT

Figure A. Response Word.

4.3

4 1/0

4.4 CONTROLLER INTERRUPT OPERATION

The 32/S computer provides four external interrupt lines. Any number of controllers may be set
to request interrupts on any one of the four lines. Interrupt requests on each line are acknowledged
in the priority established by the physical placement of the controllers in the chassis.

The 32/S computer provides four external interrupt lines. Controllers may be manually set to
request interrupt on any one of these four lines. Two lines are independently enabled or disabled

by the mask in the Program Status Register; the other two lines are always enabled. (See topic 2.16.)
(In addition, each controller's interrupts may be individually enabled or disabled by setting its
interrupt mode. See topic 4.9.)

The processor honors requests on the enabled priority lines in the priority order of line 8 through
line 0. The controllers respond according to a daisy-chain priority which is established by their
position within the chassis, with the highest priority position being the front-most card slot. See
Figure A.

When the processor determines that there is an external interrupt request on a particular enabled
external interrupt line it reads the Monobus location of the corresponding response word. The
controller with the highest priority, according to the priority daisy chain, which is requesting an
interrupt on that line, responds by outputting its response word on to the Monobus.

The external interrupt line assignment of a device controller specifies which one of four external
interrupt response word addresses that controller can respond to. Specifically:

External Interrupt Line Response Word Monobus
Assignment Address
0 "3FFFO"
1 "3FFF2"
2 "3FFF4"
3 "3FFF6"

(See topic 4.2.)

The interrupt process is flow charted in Figure B. When an interrupt condition arises in a
controller, the controller sets a bit to indicate this condition in the status word of its DRB. No
further action occurs unless or until the controller is placed into the enable interrupts mode
(by writing into the mode byte of the DRB).

If the controller is in the enable interrupt mode it signals its assigned external interrupt line.
When the processor responds to the request on this interrupt line it reads the corresponding
response word location. If the controller is the highest priority unit which is signaling on this
external interrupt line it responds by outputting its response word. It then releases the external
interrupt line.

The processor utilizes the device number field of the response word to index to an entry in the
Interrupt Vector Table. (See topic 3.2.) A bit in this entry indicates whether the interrupt for
the requesting controller is armed or disarmed. If the interrupt is disarmed, the interrupt
request is disregarded. If the interrupt is armed, the interrupt procedure specified in the
Interrupt Vector Table entry is invoked.

DAISY
CHAIN

POSITIONAL
PRIORITY

ENCODED
PRIORITY

EXTERNAL II]ITERRUTT LINES
b Y

3 2 1

REQUEST

>.

0

ADDRESS DATA
LINES LINES

NN

CONTROLLER <II\CKNOWLEDGE

RESPONSE

CONTROLLER <

J>.

CONTROLLER

AN

Figure A. Interrupt Lines, Block Diagram.

YES

YES

YES

l——————» 6. ISCONTROLLER THE HIGHEST

. INTERRUPT CONDITION OCCURS
. CORRESPONDING STATUS BIT IS SET
. DEVICE INTERRUPT ENABLED?

NO

P WN =

. CONTROLLER SIGNALS ON THE
EXTERNAL INTERRUPT LINE
TO WHICH IT IS ASSIGNED

5. PROCESSOR ADDRESSING THE =
EXTERNAL INTERRUPT LINE
TO WHICH CONTROLLER IS ASSIGNED?

NO
NO

PRIORITY REQUESTER ON THAT LINE?
7. CONTROLLER OUTPUTS RESPONSE WORD AND
RELEASES EXTERNAL INTERRUPT LINE
[J
[]
[]
. SOFTWARE READS CONTROLLER’S STATUS
2. SOFTWARE OUTPUTS ORDER CODE TO
RESET INTERRUPT STATUS BIT(S)

e

Figure B. Flowchart for Controller Interrupt Sequence.

4.4

4 Input/Output

4.5 CONCURRENT I/0 CONTROL BLOCK

The processor's concurrent 1/0 facility provides the control of block transfer I/0O operations utilized by
lower speed devices. The block transfer may be terminated either on the basis of data byte count or
data byte match.

The processor provides the control logic for controlling data block transfers to and from device
controllers designed for concurrent I/O operation. Concurrent I/0 utilizes a four-word control block
in main memory for each device number to keep track of the current data buffer address and to
determine if the block transfer is to be terminated. The block transfer termination may be specified
either on the basis of byte count or byte match. The actual data transfer occurs when the processor
acknowledges a concurrent I/O request from the controller.

The location in memory of the Concurrent I/0 Control Block, CCIOB, is specified by a pointer in
location '"00008'" and by the device number. (See Figure A.) Specifically:

address of first word of Concurrent I/0 Control Block = ((''00008") + 2 * device number) * 4
The format of the Concurrent I/O Control Block is shown in Figure A.

The second word of the block and the AA field of the first word specify the address of the next data
word or byte to be transferred. Specifically:

address of next word or byte to be transferred = (AA) * 216 4 (next-data-address-word)
This address is initialized by the software to the lowest address of the data buffer.

The third word of the block specifies the byte count remaining to be transferred. The software initializes
this word to the number of bytes to be transferred.

The fourth word of the block is used in specifying a block transfer on the basis of a byte match. Two
criteria of byte match are provided: a match on the basis of a compare, and a match on the basis of a
bit table. The type of match is specified by the T bit in the first word of the block. Specifically:

T = 0: match on basis of compare

T=1: match on basis of bit table

For a match on the basis of the bit table, each data byte transferred is used as an index to a bit table.
If the bit table contains a 1 bit at the indexed position, the match is successful. If the table contains
a 0 bit, the match is unsuccessful. For example, if the byte being moved has the value ""0F" then the
16th bit of the table is tested. If the 16th bit is a 1, the match is successful and data transmission is
terminated.

The address of the 256-bit table is specified by the fourth word of the block and the BB field of the
first word of the block. Specifically:

address of first word of bit table = (BB) * 216 (byte-match-control-word)

For a match on the basis of compare, the fourth word of the Concurrent I/0 Control Block provides an
offset byte and a compare byte which are the matching criteria. The match comparison process is as
follows: the data byte transferred is added to the most significant byte, and the result is masked to
seven bits (modulo 128). This "adjusted data byte" is then compared to the least significant byte. If
the adjusted data byte is less than the least significant byte, the match is successful. Specifically:

L [byte-match—control (bits 15—8_)] + data} AND "7TF"'& |.byte—match-control (bits 7-0):] : match

The basis for the block transfer termination is specified by the S bit in the first word of the block.
Specifically:

0: terminate on basis of byte count exhausted

1: terminate on basis of byte match or on the basis of byte count exhausted,
whichever occurs first.

The byte count is considered to be exhausted when it has been:

byte data: decremented to 0 or -1
word data: decremented to 1, 0, -1, or -2

NOTE: The device number supplied by the controller is compared against the number of entries
in the Concurrent I/0 control block (location 110", see topic 2.15). If the device number exceeds
this maximum value, the processor locks up. The condition is verified by a panel address display

of 3080 when the CMA/FBUS is selected.

MEMORY

00008: [) RESPONSE
WORD

O L oo

< - L Jo:inpuT
1: OUTPUT

|o|o| DEVICE NUMBER |o|o| |]

— CCl/0 -
— CONTROL —
e BLOCK
1] | LLLL
T cSR7R0. | NowieE e I
— CoMIROL —] NUMBER »8 | BYTE MATCH:
0: VIA MASK
BN < 1: VIA MATCH TABLE
—— TERMINATION:
R 2 MSB'S 0: COUNT
L ccvo — OF 18-BIT 1: BYTE MATCH/COUNT
l— CONTROL —| ADDRESSES TRANSMISSION ON
pe BLOCK i rm——— INPUT
0: YES
AR 1 { :
. AAIBB| — |T[s N 1: NO
' NEXT DATA ADDRESS
REMAINING BYTE COUNT
| BYTE MATCH CONTROL
L. -

IF T = 0: MASK
IF T=1: BASE OF BIT(1) TABLE

Figure A. Concurrent |/O Control Block.

4.5

4 Input/Output

4.6 CONCURRENT I/0 SEQUENCE

A concurrent I1/0 transfer is initiated by outputting a start device (in concurrent 1/0) order. The
processor then performs data transfers in response to requests from the controller.

A concurrent I/0 data transfer is initiated by the software storing a "start device in concurrent I/0"
order to the device controller. Previous to this, the software has set up the data buffer area in
main memory and initialized the Concurrent I/O Control Block for the desired device.

When the device controller is ready to transfer a data byte or word, it signals on the concurrent
I/0 request line. The 32/S processor tests this line after execution of each 32/S instruction. The
processor acknowledges the request by reading the concurrent I/0 request response word location
(address ""S8FFF8", see topic 4.2). The controller with the highest priority, according to the
priority daisy-chain, which is requesting a concurrent I/0O transfer, responds by outputting its
response word onto the Monobus.

When the controller is ready to transfer data, it signals the processor. After completion of the
current instruction the processor determines the address of the Concurrent I/0 Control Block
from the device address field of the response word. It also determines, from bits in the response
word, whether it is to do a word or byte transfer, and whether the transfer is input or output.

The processor then performs the data transfer by reading or writing the data byte/word of the
controller's DRB, decrements the remaining byte count word of the Concurrent I/O Control Block,
and then determines if the transfer is to be terminated. (See Figure A.)

After performing the data transfer, the processor resumes instruction execution.
If a terminate condition exists, the processor writes a stop device order into the controller's

DRB. This will generate a terminate interrupt condition in the controller which will result in an
external interrupt request (if the controller is in the interrupt enable mode).

TRANSFER DATA
DECREMENT COUNT

!

YES / IS COUNT
—\ EXHAUSTED ?
\
4

C

‘NO
Q ISS=07? L2
‘NO
YES IST=0? NO
IS DATA + OFFSET NO YES IS TABLE (DATA) = 12
<COMPARE? ;
YES NO

)

TERMINATE I/0

EXIT

Figure A. Concurrent 1/0 Flowchart.

4.6

4

4.7

Input/Output

STATUS WORD FORMAT, DEVICE REGISTER BLOCK

The standard format of the DRB's status word provides four bits of ready status, four interrupt pending
bits, and eight bits of general status.

The standard format of the status word of the Device Register Block is shown in Figure A. Not all
controllers will actually use all of the bits defined in the standard format. The status word of the
DRB is a read-only Monobus word; its contents are modified only by the logic within the controller.
The definition of these bits is as follows:

bit 0

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7

bit 8

Controller Busy

This bit is a 1 if the controller has been given a start order and has not yet terminated
activity.

Device Ready
This bit is a 1 if the peripheral device is available to transfer data.
Data Service

This bit is a 1 if the controller has data ready for input to the computer, or if it is ready
to accept the next data from the computer.

Device Writable

This bit is a 1 if the peripheral device is an output device (e.g., line printer) and if the
device is not in a write-protected mode.

Data Service Interrupt Pending

This bit becomes a 1 when the controller requests a programmed I/0 data transfer (bit 2
goes from 0 to 1) This condition can only occur when the device is started in programmed
1/0 mode. The bit is reset by issuing a reset interrupt order.

Terminate Interrupt Pending

This bit becomes a 1 when the controller goes from the busy state to the not busy state.
This termination may be a result of issuance of a stop order to the controller or end of
record condition (e.g., 80th column read from a card), or of an error condition which
occurred in a controller operating in the stop on error mode. The termination can also
occur as the result of starting a not ready device, or by a busy device becoming not ready.
The bit is reset by issuing a reset interrupt order.

Ready Change Interrupt Pending

This bit becomes a 1 whenever the peripheral device changes its ready state. The bit is
reset by issuing a reset interrupt order.

Special Interrupt Pending

This bit becomes a 1 when a set special interrupt order is issued to the controller. The
bit is reset by issuing a reset interrupt order.

Error Bit(s) Set

This bit is a 1 if one or more error conditions are detected by the controller.

bit 9

Data Overrun

This bit becomes a 1 if the controller has lost data because the computer has not moved
previous data soon enough. The bit is reset on a start command.

bit 10 Device Parity Error
This bit becomes a 1 if the controller detects a parity error in data input from the
peripheral device. The bit is reset on a start command. The controller must be
operating in a check parity mode for this bit to be set.
bit 11 Bus Parity Error
This bit becomes a 1 if a parity error occurs when a controller reads data from memory.
This feature may be implemented in a direct memory access type of controller, and
requires that the parity option be installed in the processor and in the memory modules.
(The parity bits are actually generated and checked by logic within the processor; the
processor provides the parity check result to controllers on the Monobus.) The status
bit is reset on a start command.
bit 12 Spare Bit No. 1
This bit is available for implementing device-peculiar types of status (e.g., motion
check error on a card reader).
bit 13 Spare Bit No. 2
This bit is available for implementing device-peculiar types of status.
bit 14 Alarm
This bit is set to a 1 when the controller determines that an alarm status exists within
the peripheral device (e.g., hopper check on a card reader). The bit is reset when the
alarm condition is eliminated in the device.
bit 15 Operation Abort
This bit is set to a 1 when the controller determines that it must abort its current operation.
Whenever this bit is set, terminate is also set. It is reset when a new order is issued.
7 6 5 4 3 2 1 0
READY DATA CON-
SPECIAL TERMINATE - DEVICE DATA DEVICE
CHANGE SERVICE TROLL
INTERRUPT | SRR 0 oy | INTERRUPT | [NrERRUPT| WRITABLE | SERVICE READY BUSYER
15 14 13 12 1 10 9 8
BUS DEVICE ERROR,
OPERATION SPARE SPARE DATA OR
ALARM PARITY PARITY
ABORT NO. 2 NO. 1 ERROR ERROR OVERRUN ERROR
SUMMARY
1=TRUE

Figure A. Status Field of Device Register Block.

4.7

4 Input/Output

4.8 ORDER BYTE FORMAT, DEVICE REGISTER BLOCK

The standard format of the DRB's order byte consists of a four-bit order code and four bits which
specify specific commands.

The standard formats used in writing the order byte of the Device Register Block are shown in

Figure A. Seven standard four-bit order codes are defined. For some of these order codes the

remaining four-bits specify specific command information. The format of the byte obtained in

reading the DRB order byte contains a zero order code in the least significant four bits; the

definition of the most significant four bits is device-dependent.

NO OPERATION Order Code: 0"
This order causes no operation within the controller.

START DEVICE ' Order Code: "2"

This order starts the device performing a data transfer operation.

The standard definition of the specific command bits for concurrent 1I/0
devices is as follows:

bit 4 = 0: begin programmed I/0O data transfer.
bit 4 = 1: begin concurrent I/0 block data transfer.
bit 5 = 0: perform an input operation.
bit 5 = 1: perform an output operation.
bit 6 = 0: continue to run the I/0 transfer even if an error occurs.
bit 6 = 1: stop the I/O transfer if an error occurs.
bit 7 = 0: operate device in forward motion direction.
bit 7 = 1: operate device in reverse motion direction.
INITIAL PROGRAM LOAD Order Code: ''C"

This order code starts the device performing an Initial Program Load, IPL.
The controller inputs an IPL record into memory, starting at location 0,
and then stops the transfer and causes a power restart. (See topic 12.6)
STOP DEVICE Order Code: 4"
This order code stops the device.

DEVICE CONTROL Order Code: 6"

This order code specifies a device-dependent command to the controller.
The most significant four bits are interpreted by the controller.

SET SPECIAL INTERRUPT Order Code: 8"

This order code sets the Special Interrupt Pending status bit (bit 7) of
the DRB's status word.

RESET INTERRUPT

Order Code: "A"

This order code resets the interrupt pending bits in the DRB's status word. The
definition of the specific command bits are as follows:

bit 4 = 0: no action,
bit 4 = 1: reset Data Service Interrupt Pending status bit.
bit 5 = 0: no action
bit 5 = 1: reset Terminate Interrupt Pending status bit.
bit 6 = 0: no action.
bit 6 = 1: reset Ready Change Interrupt Pending status bit.
bit 7 = 0: no action
bit 7 = 1: reset Special Interrupt Pending status bit.
sTposiTion: | 7] 6]s|a]3|2]1]0]
NO OPERATION: [00 0 O | 0 0 0 0 I 00"
startoevice: | | [| Jo o 1 o] “n2"
[
0: PROGRAMMED 1/0
1: CONCURRENT 1/O0
0: INPUT
1: OUTPUT
0: RUN ON ERROR
1: STOP ON ERROR
0: FORWARD
1: REVERSE
INITIAL PROGRAM P
LOAD — [+ 1 o o | nc
STOP DEVICE: | 00 00 | 01 0 0] 04"
DEVICE CONTROL: [[0 1 1 o] “nG"
DEVICE DEPENDENT
COMMANDS
SET SPECIAL naQe
INTERRUPT: LO 0 00] 1009 ﬂ 08
RESETINTERRUPT:[| I I I 1.0 1 0 l “nA"

DATA SERVICE

TERMINATE 0: NO ACTION
1: RESET

READY CHANGE
SPECIAL

Figure A. Order Code Field of Device Register Block.

4 Input/Output

4.9 MODE BYTE FORMAT, DEVICE REGISTER BLOCK

The standard format of the DRB's mode byte provides the capability of setting up to four types of
operating modes within the controller.

The standard format used in writing the mode byte of the Device Register Block (DRB) is

shown in Figure A. It provides the capability to set up to four different types of modes in the
controller. The interrupt enable/disable mode is standard to all controllers. The parity check/
generate mode is utilized in all controllers which interface to devices which operate with parity
bits. The remaining two modes are utilized for device-specific purposes. Note that any one or
more modes can be changed without affecting the setting of the other modes.

The format of the byte obtained in reading the DRB mode byte is device dependent. However,
bit 8 is always a 0 if in the disable interrupt mode, and a 1 if in the enable interrupt mode.

15 14 13 12 | n 10
SPARE NO.2 | SPARE NO. 1 PARITY INTERRUPT
fr——
0 0 DONOT CHANGE MODE
0 1 ENABLE INTERRUPTS
1 0 DISABLE INTERRUPTS
1 1 NOT USED
——
0 0 DO NOT CHANGE MODE
0 1 DONOT CHECK/GENERATE PARITY
1 0 CHECK/GENERATE EVEN PARITY
1 1 CHECK/GENERATE ODD PARITY
r——
0 0 DO NOT CHANGE MODE
0 1 NOT USED
1 0 RESET MODE
1 1 SET MODE
r——
0 0 DONOT CHANGE MODE
0 1 NOT USED
1 0 RESET MODE
1 1 SETMODE

Figure A. Mode Field of Device Register Block.

4 Input/Output

4.10 INPUT CONTROLLER STATES

A typical controller for an input device operates in four states. This topic defines these states and
relates them to DRB status bits.

A typical programmed I/0 or concurrent I/O controller for an input device is a four-state machine,
The states, transition between states, and the values of the four least significant status bits are
shown in Figure A.

The four states are defined as follows:

Rest: controller is at rest and waiting for a start order;
Wait: controller has been ordered to move data from the device and

is waiting for that data;

Data Ready: controller is ready to move data to the computer;
Status Update: controller is in the process of updating its status bits.

The condition RUNENABLE is defined in Figure A. If this condition occurs the controller will
exit the wait or data ready states, go into the status update state, and return to the rest state.

Note that the controller will return to the wait state after each data transfer unless the RUNENABLE
condition occurs.

The listing of status bits in Figure A assumes that the device remains ready. If the device goes
not ready the controller will abort its operation, causing the RUNENABLE condition. It

will then return to the rest state. However, the controller cannot exit the rest state until the
device goes ready again.

Note that the data service interrupt pending status bit will go true in the data ready state only if
the controller is executing a programmed I/0 data transfer. This bit will remain true when the
c ontroller returns to the wait state. It is only reset by the software issuing a reset interrupt
order to the controller.

STATUS BITS

4 3 2
DATA SERVICE DEVICE DATA

1 0
DEVICE CONTR.

SERVICE WRITABLE SERVICE READY BUSY

INTERRUPT
REST 0 0 0

RUNENABLE

RUNENABL

START
ORDER

WAIT ;| 0 0 0

CONTROLLER
INPUTS
FROM DEVICE

CcCl/0: 0
DATA READY coio: 1 0 !

COMPUTER
INPUTS
FROM

) CONTROLLER

STATUS UPDATE

RUNENABLE

RUNENABLE = DEVICE GOES NOT READY AND CONTROLLER ABORTS

OR

STOP ON ERROR MODE SET AND ERROR OCCURS
OR

STOP DEVICE ORDER ISSUED

* ASSUMES SOFTWARE RESETS INTERRUPT WHEN INPUTS DATA

Figure A . State Diagram for Input Controller.

4 Input/Output

4.11 OUTPUT CONTROLLER STATES

A typical controller for an output device operates in four states. This topic defines the four states
and relates them to DRB status bits.

A typical programmed I/O or concurrent I/O controller for an output device is a four-state machine.
The states, transition between states, and values of the four least significant status bits are shown
in Figure A.

The four states are defined as follows:

Rest: controller is at rest and waiting for a start order;

Data Ready: controller has been ordered to move data to a device and is ready
for the data from the computer;

Wait: controller has data from computer and is waiting to move data
to device;

Status Update: controller is in process of updating its status bits.

The condition RUNENABLE is defined in Figure A, If this condition occurs the controller will
exit the data ready state, go into the status update state, and return to the rest state.

Note that the controller will return to the data ready state after each data transfer unless the
RUNENABLE condition occurs.

The listing of status bits in Figure A assumes that the device remains ready. If the device goes
not ready the controller will abort its output operation, causing the RUNENABLE condition. It
will then return to the rest state. However, the controller cannot exit the rest state until the
device goes ready again.

Note that the data service interrupt pending status bit will go true in the data ready state only if the
controller is executing a programmed 1/0 data transfer. This bit will remain true when the
controller leaves the data ready state unless the software issues a reset interrupt order to the
controller.

STATUS BITS

4 3 2 1 0
DATA DEVICE DATA DEVICE CONTR.
SERVICE WRITABLE SERVICE READY BUSY
INTERRUPT
| REST |— 0 1 0 1 0
START
ORDER
RUNENABLE
DATA READY %:8; ? 1 1 1 1
COMPUTER
OUTPUT TO
CONTROLLER
w
-
<
z | WAIT 0 1 0 1 1
z
5 CONTROLLER
« OUTPUT
TO
DEVICE
STATUS UPDATE |
RUNENABLE

RUNENABLE = DEVICE GOES NOT READY AND CONTROLLER ABORTS
OR
STOP ON ERROR MODE SET AND ERROR OCCURS
OR
STOP DEVICE ORDER ISSUED
* ASSUMES SOFTWARE RESETS INTERRUPT WHEN OUTPUTS DATA

Figure A. State Diagram for Output Controller.

4.11

4 Input/Output

4.12 I/0 FOR THE MAINTENANCE FRONT PANEL

With the exception of the hardware status indicators and the leftmost six display selectors, the
maintenance front panel switches and displays are read and written as a special purpose 1/0
device controller. This permits control of the panel by 32/S software.

The switches and displays of the maintenance front panel are read and written, respectively, as
a special purpose I/0 device controller on the Monobus. The status indicators and the leftmost
six display selectors are exceptions; these displays are not program accessible.

The Device Register Block for the maintenance panel has a specialized format, as shown in
Figure A. This DRB is located at Monobus word addresses "8FFFC" through "8FFFF". All
read and write operations must be word operations.

Reading word location "3FFFC" inputs the following data:

bit 15: 1 if data switch 17 is depressed (leftmost switch).

bit 14: 1 if data switch 16 is depressed (second from left switch)
bits 13-7: 100000,

bits 74: binary encoded indication of which display selector switch is

depressed. The switches are weighted in their order on the
panel, starting at the left, e.g., the DAR/LOC/M selector is
0001; the DAR/ABS/M selector is 0010, etc.

bit 3: 1 if the keylock is in the LOCK position.
bit 2: 1 if the address enter switch is depressed.
bit 1: 1 if the data enter switch is depressed.
bit 0: 1 if the advance switch is depressed.

Reading word location "3FFFF" inputs the data switches. * A bitis a 1 if the switch is
depressed. Bit positions match the switch positions.

Writing word location "38FFFD" sets the leftmost displays of the address display. *
bit 15: if a 1, turns on address display 17.
bit 14: if a 1, turns on address display 16.

Writing word location "3FFFE" sets the least significant 16 bits of the address display. If a bit
is a 1, the display is turned on. Bit positions match the display positions.

Writing word location "8FFFF" sets the least significant 16 bits of the data display. * If a bit is
a 1, the display is turned on. Bit positions match the display positions. The two most significant
bits of the data display cannot be turned on.

Note that the conventional definition of word address versus byte address does not apply to the
maintenance panel's DRB.

*These operations can only be performed by the processor. The 32/S software cannot read or
write words at odd addresses.

s |13 |7 al3|2]1]0]
READ 3FFFC: | l 1 [—] I | l]]
r f t
L EXTENSION BITS DISPLAY ADVANCE
16, 17, DATA SELECTION L DATAENTER
SWITCHES CODE L ——————— ADDRESS ENTER
LOCK
READ 3FFFF: l DATA SWITCHES 15 — 0 1
15 |13
WRITE 3FFFD:[| | j
N

L EXTENSION BiTS
16, 17, ADDRESS
DISPLAY

WRITE 3FFFE: L ADDRESS DISPLAY 15 -0 I

WRITE 3FFFF: L ADDRESS DISPLAY 15 -0 J

Figure A. Special Device Register Block for Maintenance Front Panel.

4.12

5 Data

5.1 DATA FORMAT LENGTHS

Data format lengths of variable field, byte, word, doubleword, and tripleword are defined at
Monobus Locations. Operations within the top of the stack are defined for word, doubleword,
and tripleword length data.

Data of variable field length, byte, word, doubleword, or tripleword size can be loaded into
the top of the stack from Monobus locations. Similarly, variable field length, byte, word,
doubleword, or tripleword size data can be stored into Monobus locations from the top of the
stack. TField and byte data are always right justified as they are loaded into TOS, and the
remaining most significant bit positions are set to zeroes. Field and byte data are extracted
from the rightmost field or byte of TOS when they are to be stored into a Monobus location.
See Figure A.

The standard 32/S instruction set provides for operations on word, doubleword, and triple-
word size data within the top of the stack.

Variable length field data is defined by a field descriptor word. The least significant four-bit
field specifies the bit position of the rightmost bit of the field within the Monobus word. The
next most significant four-bit field specifies the field length, minus one. (See topic 7.11). When
a field is stored into a Monobus word location the bit positions outside of the field are left
undisturbed. When a field is loaded into TOS, the bit positions to the left of the field are set

to zeroes. See Figure B.

The location of byte data within a Monobus word location is specified by the least significant
bit of the Monobus address. A least significant bit value of zero specifies the most significant,
or leftmost byte within the word. When a byte is stored into a Monobus word location the other
byte of the word is left undisturbed. When a byte is loaded into TOS, the leftmost eight bits
are set to zeroes.

The Monobus address of a doubleword points to its most significant 16 bits, DW1. The least
significant 16 bits, DWO0, are in the next higher word address location. When loaded into the
top of the stack, DW1 is pushed first, and DWO0 is pushed next, leaving DW0 in TOS and DW1
in TOS1.

The Monobus address of a tripleword points to its most significant 16 bits, TW2, The next
most significant 16 bits, TW1, are in the next higher word location, and the least significant
16 bits, TWO0, are in the next higher word location. When loaded into the top of the stack,
TW2 is pushed first, TW1 next, and TWO last, leaving TWO in TOS, TW1 in TOS1, and TW2
in TOS2.

Numeric data formats are defined for word, doubleword, and tripleword length data. Logic
value data formats are defined as word and doubleword length data. These formats are
defined in topic 5.2

ADDR: TW2

ADDR:| pwi ™1
ADDR: I 3 I ADDR: svrel ADDR: lBYTE ADDR| woRD DWO ™o
S TYTY OTT OSTY OTT OTVYOY
ToS: |F Tos: IBYTE ToS: |BYTE Tos:| woRD w1 W2
ToS: DWO ™W1
TOS: ™wo
FIELD BYTE BYTE WORD DOUBLEWORD TRIPLEWORD

WHERE: F = FIELD
DWO = LEAST SIGNIFICANT HALF OF DOUBLEWORD
DW1 = MOST SIGNIFICANT HALF OF DOUBLEWORD
TWO = LEAST SIGNIFICANT 16 BITS OF TRIPLEWORD
TW1 = MIDDLE 16 BITS OF TRIPLEWORD
TW2 = MOST SIGNIFICANT 16 BITS OF TRIPLEWORD

Figure A. Data Formats, Monobus Location and TOS.

|15 8|7 4|3 0|
FIELD
DESCRIPTOR: — | FL—1 [LSBP]
| FL | LSBP |
MONOBUS
B o | UNDISTURBED FIELD] UNDISTURBED
~
STORE
LOAD
a
TOS: SET TO ZEROES ON LOAD FIELD]

Figure B. Relationship Between Field Formats, Monobus Location and TOS.

5.1

5 Data

5.2 NUMERIC AND LOGICAL DATA FORMATS

Formats are defined for integer and floating point numeric data, and for logical data.

The 32/8 instruction set can process binary integers of word and doubleword length, floating
point numbers of tripleword length, and logical information of word and doubleword length.
The operations performed fall into three classes: signed integer arithmetic, floating point
arithmetic, and logical operations.

Integer Arithmetic Operations

The operands for integer arithmetic operations may be either word or doubleword signed
numbers. See Figure A. Negative numbers are represented in two's complement form.
For word operations, the two word operands are contained in TOS and TOS1 before the
operation begins. For doubleword operations, the two operands are contained in TOS, TOS1
and TOS2, TOS3 with the most significant portion of the operands contained in TOS1 and
TOS3. Arithmetic operations are performed by popping the two operands from the stack
and combining them according to the operation being performed. The result is then pushed
into the stack.

The operation of addition can also be performed on word operands using TOS as one operand
and a word in memory as the other operand. This operation pops the TOS operand and adds
it to the memory operand. The sum replaces the memory operand.

Floating Point Arithmetic Operations

Floating point operands are tripleword in length. See Figure B.

The fraction of a floating point number is expressed in base 1000 digits, each digit consisting

of 10 binary bits having the value 0-999. The fraction consists of four digits, thus giving a
precision for normalized numbers of from 10 to 13 decimal places. The fraction is represented
in true magnitude with the fraction sign in bit position 47. Specifically:

S=0: positive fraction

S=1: negative fraction

The radix point of the fraction is assumed to be to the left of the most significant fraction digit.
To represent the magnitude of the floating point number, the fraction is considered to be
multiplied by a power of 1000. The characteristic, CHAR, occupies bit positions 40-46 of the
floating point number, and indicates the power of 1000. The characteristic is treated as an
excess 64 number with a range -64 through +63 and thus permits the representation of numbers
in the range .1 x 10-192 to .999999999999 x 10191,

All floating point numbers are considered to be in normalized form, that is, the most significant
fraction digit is not zero. The only exception is the floating point zero. A floating zero is
represented by each of the three words of the number being zero.

If any digit of the fraction is greater than 999, the floating point number is considered undefined.
The result of any floating point operation where one or both operands is undefined is also
undefined. If any operation causes exponent overflow, the first word of the result is set to all
binary one's (this is an undefined result). Division by a floating zero will also result in the
first word of the result set to all binary one's.

The operands for floating operations are contained in TOS, TOS1, TOS2 and TOS3, TOS4, TOS5.
The operations are performed by popping the two operands from the stack and combining them
according to the operation being performed. The result is then pushed into the stack. The
result of a floating point operation may be a floating point number, word integer, or a
doubleword integer.

Logical Operations

The operands for logical operations are word or doubleword quantities. The two word operands
are contained in TOS and TOS1. The two doubleword operands are contained in TOS, TOS1 and
TOS2, TOS3 before the operation begins. The operations are performed by popping the two
operands from the stack and combining them according to the operation being performed. The
result is then pushed into the stack. For logical operations each corresponding pair of operand
bits is combined independently of the other bits.

The result of executing a comparison instruction (see topic 7.5) is to leave a True/False word
result in the top of the stack. See Figure C. The least significant bit defines the True or False
value, and the most significant 15 bits are zeroes. Specifically:

bit 0 = 1: True

bit 0 = 0: False

bits 15-1: All zeroes.

sl lo}
WORD: [\l J
DOUBLE WORD: { : MOST SIGNIFICANT HALF

: LEAST SIGNIFICANT HALF

Figure A. Numeric Word and Doubleword Formats.

la7]asl ao]as [aof29] Jeolo] hole| |of
[s] crar | DO | D1 | D2 I D3 |

W2 | TWI | TWO

WHERE:
S: SIGN OF FRACTION
CHAR: CHARACTERISTIC
D0—D3: FRACTION DIGITS
(DO: MOST SIGNIFICANT FRACTION DIGIT)
TW2—TW0: WORDS OF TRIPLEWORD
(TW2: MOST SIGNIFICANT WORD)

Figure B. Floating Point Numeric Format

hs| lo]
WHERE:
LOGIC WORD:l 0 M V=0: FALSE
V=1: TRUE

Figure C. Logic Value Word Format.

6 Memory Reference Instructions

6.1 MEMORY REFERENCE INSTRUCTIONS - INTRODUCTION

The 15 types of memory reference instructions perform load and store operations on each of
the different size data items, add and subtract word to the data stack operations, and the add
word to memory operation. Three formats are used to accommodate eight addressing modes
for each of the 15 types of instructions.

The memory reference instructions transfer data between an addressed location on the Monobus
and the top of the stack. The addressed location is specified by an addressing mode in the
instruction and calculated from a displacement field in the instruction and index, indirect, and
base addresses in the top levels of the stack. There are three formats for these instructions,
differing in the size of displacement field required for the addressing mode.

The instruction formats are shown in Figure A. Each of the three formats is identical in the first
byte, having a 1 in the most significant bit position, followed by a four-bit operation code field,
followed by a three-bit addressing mode field. Format 1 contains no address displacement field;
Format 2 contains an 8-bit address displacement field, D8; Format 3 contains a 16-bit address
displacement field, D16.

The 15 types of memory reference instructions are listed in Figure B. Store and load instructions
transfer word operands (integer numbers and logic values), doubleword operands (integer numbers
and logic values), and tripleword operands (floating point numbers). Loading a byte operand
pushes the byte into the stack as a word operand, with the least significant 8-bits of the word
containing the byte and the most significant 8-bits set to zeroes. Storing a byte operand stores
the least significant 8-bits of the word in the top of the stack into a byte of memory. Loading a
field operand pushes a specified field of 1 to 16 bits into the stack as a word operand. The field

is right-justified in the word and the remaining (leftmost) bits are set to zeroes. Storing a field
operand stores a specified field of 1 to 16 bits of the word in the top of the stack into a specified
portion of a word in memory. All store instructions except the store word nondestructive pop

the word(s) containing the operand from the stack.

Add and subtract instructions add and subtract the word from the Monobus location to/from the
word in the top of the stack. A second type of add instruction adds the word in the top of the
stack in with the word in the Monobus location. The swap type of instruction interchanges the
word in the top of the stack with a word in memory.

The general categories of memory addressing are diagrammed in Figure C. The absolute mode
provides a full 18-bit addressing range displacement from a base value contained in TOS1. This
mode is used to address Monobus locations outside of a data stack, such as I/0 controller Device
Register Blocks, alterable control memory locations, and system tables (e.g., Program Library,
Concurrent 1/0 Control Block). It may only be used while operating in executive mode.

The global addressing modes provide a 16-bit addressing range displacement from the Stack Base,
SB. These modes are used to address variables which are global to an MPL PROCEDURE.

The local addressing modes provide an 8-bit addressing range displacement from the Environmental
Pointer, EP. These modes are used to address variables which are local to the current environment.

The constant addressing mode provides a 16-bit addressing range displacement from the Program
Base, PB. This mode is used to address constants stored within the program segment.

The addressing modes are specified in topic 6.2. The instruction types are defined in topics 6.3,
6.4, 6.5, and 6.6.

1 [1] opcope | mopE |

2 [1] opcooe | mope | D8 |
3 [1] opcooe | mopE | D16)
L7 s 3|2 0] 7 o7 0|
Figure A. Memory Reference Instruction Formats.
4* (TOS1) =
STORE FIELD
BYTE <o <o ABSOLUTE
WORD
WORD, NONDESTRUCTIVE 8
DOUBLE WORD
TRIPLE WORD
LOAD FIELD (L N
BYTE EP
WORD GLOBAL
DOUBLE WORD \EL
TRIPLE WORD — ,§§,
ADD WORD TO MEMORY
WORD (TO STACK) sP LOCAL
SUBTRACT WORD (FROM STACK) I
SWAP WORD (WITH MEMORY)
PB
CONSTANT

Figure B. Op Codes.

Figure C. Addressing Modes.

6.1

6 Memory Reference Instructions

6.2 ADDRESSING MODES

Eight addressing modes are defined for the memory reference instructions. This topic defines the
effective address calculation for each mode.

The addressing mode specifies the calculation to be performed in determining the effective address
for accessing the Monobus. The effective address expression for each addressing mode is listed in
Figure A, along with the use of the mode and the instruction format required. The effective address
expressions are also showngraphically in Figure B.

Definitions of the terms used in the effective address expressions are:
SB: Stack Base register value, 18 bit absolute address of base of data stack.

EP: Environmental pointer register value, 16 bit address of the base of the
current Mark, relative to SB.

DS8: 8-bit address displacement field of instruction.
D16: 16-bit address displacement field of instruction.
TOS(X): 16-bit index contained in TOS, the top level of the stack. This index

specifies a number of data items, independent of data length; e.g.,
number of bytes, number of words, etc. It is converted to a byte-level
index when the memory reference instruction is executed. For example,
if an indexed doubleword instruction is executed, the index value is

multiplied by 4.
TOS(D16): 16-bit address displacement contained in TOS, the top level of the stack.
TOS1(D16): 16 -bit address displacement contained in TOS1, the second to top level

of the stack.

TOS1(D18): 18-bit base address contained in TOS1, the second to top level of the
stack. NOTE: Only the most significant 16 bits of the D18 displacement
are stored in TOS1; the least significant 2 bits are assumed to be zeroes.
The TOS1(D18) is multiplied by 4 (as shown for mode 7) when calculating
the effective address.

As shown graphically in Figure B, the effective addresses of modes 0, 1, 4 and 5 are based at SB,
the Stack Base. Mode 0 provides direct addressing and mode 1 provides direct addressing with
indexing via the contents of TOS. Mode 4 provides indirect addressing via the contents of TOS.
Mode 5 provides indirect addressing via the contents of TOS1, with indexing via the contents of TOS.

The effective addresses of modes 2 and 3 are both based at SB + EP, the absolute address of the
base of the latest Mark in the stack. Mode 2 provides direct addressing and Mode 3 provides direct
addressing with indexing via the contents of TOS.

The effective address of Mode 6 is based at the Program Base, PB. It provides direct addressing
with indexing via the contents of TOS. Mode 6 may not be used with store instructions, AWM, or
SWAP. An interrupt (see topic 3.3) will be generated if so used.

The effective address of Mode 7 is based at address contained in TOS1 (multiplied by 4, as TOS1
contains the most significant 16 bits of the 18-bit base address). It provides indirect addressing via
the contents of TOS1, with indexing via the contents of TOS. It is a privileged mode.

All effective address calculations are performed only on the least significant 16 -bits of the 18-bit
addresses. The upper 2 bits of the 18-bit base address are not modified during the address
calculations; therefore, all effective addresses "wraparound'" at the 64K byte bank boundaries
(see topic 2.1).

For the store and add to memory instructions, the references to TOS and TOS1 in the above effective
address expressions refer to the stack after the data item to be stored, or added, to memory has been
popped from the data stack.

ADDRESSING INSTRUCTION
MODE EFFECTIVE ADDRESS USE FORMAT
0 SB+D16 GLOBAL DIRECT 3
1 SB + D16 + TOS(X) GLOBAL DIRECT, INDEXED 3
2 SB + EP + D8 LOCAL DIRECT 2
3 SB + EP + D8 + TOS(X) LOCAL DIRECT, INDEXED 2
4 SB + TOS(D16) INDIRECT THRU TOS 1
5 SB + TOS(X) + TOS1 (D16) INDIRECT THRU TOS, INDEXED 1
6 PB + D16 + TOS(X) CONSTANT DIRECT, INDEXED 3
7 TOS(X) +4+TOS1 (D18) ABSOLUTE, INDEXED 1
Figure A. Addressing Modes and Effective Addresses.
7
4+(TOS1) -+

S <

TOS(X) +4*TOS1(D18)

SB 0 1 4 5
ot
EP l D16 + TOS(X)
< e l TOS(D16)
, s L TOS(X) + TOS1(D16)
!

MARK
SP D8 |

L D8 + TOS(X)
6

PB — ___._._T__

D16 + TOS(X)

/

I

Figure B. Addressing Diagram.

6 Memory Reference Instructions

6.3 STORE INSTRUCTIONS

Store instructions are defined to store field, byte, word, doubleword, and tripleword data.

There are six types of store instructions. Each of these instructions may have any of the three
formats shown in topic 6.1, with any of the corresponding address modes shown in topic 6.2.

Figure A shows the data stack before and after execution of five of the six types of store instructions
(the STT is similar to STD). There are five '"before" pictures of the stack for each instruction,
each labeled (across the top) with the address modes for which they apply. As can be seen from

the effective address expressions (see topic 6.2), the stack must, for some modes, contain base
address, index, and indirect address values in the stack below the item to be stored. The
references to TOS and TOS1 in the effective address expressions refer to the stack after the data
item to be stored has been popped from the stack.

Note that, not only the data item to be stored, but also the effective address parameters (X, D16,
D18) are popped from the stack in the execution of the store instructions. The one exception is the
Store Word Non-Destructive in which the stored word is pushed back into the stack at the conclusion
of execution.

STF Store Field Op Code "'1"

A field descriptor word, FD, contained in TOS1 is used to insert the field, F,
contained in TOS into the word at the effective address. The bits outside the field
are not changed. The field descriptor specifies the length of the right-justified
field F in TOS and the bit position to insert F in the word in memory. The
definition and interpretation of the field descriptor are given in topic 7.11.

The field descriptor, FD, and the word containing the field, F, are popped. The
effective address parameters are popped.

STB Store Byte Op Code "7"
The 8-bit byte, B, contained in the least significant 8 bits of TOS, is stored at
the effective address. The word containing the byte is popped. The effective
address parameters are popped.

STW Store Word Op Code "6"

The word, W, contained in TOS is popped and stored in the effective address.
The effective address parameters are popped.

STWN Store Word Non-Destructive kOp Code ''5"
The word, W, contained in TOS is popped and stored in the effective address.
The effective address parameters are popped. A copy of the word W is then
pushed back into the stack.
STD Store Doubleword Op Code "0"
The doubleword on the top of the stack is popped and stored at the effective
address. Specifically, TOS1 is stored in the word at the effective address and
TOS is stored at the effective address, plus two.
The effective address parameters are popped from the stack,
STT Store Tripleword Op Code ''3"
The tripleword on the top of the stack is popped and stored at the effective
address. Specifically, TOS2 is stored into the word at the effective address.
TOS1 is stored into the word at the effective address plus 2, and TOS is

stored into the word at the effective address plus 4.

The effective address parameters are popped from the stack.

ADDRESSING MODE
4

OP CODE 0.2 1.3.6 5 7

F_D X D-;s 516 18 —

STORE FIELD - F FD FD X X > -
- > F L g F FD FD -

- - - - F F —

STORE BYTE »{ =] B X D16 D16 D18 —
— » - [8B — | B X X > —

— — — »-18 -1 8 -

STORE WORD > v_v X D16 D16 D18 —
= > W Y X X > > —

— — — - w W —

NG w % b1 ois 515 o
NON DESTRUCTIVE — - - ~ ~ ~
— — — - w w =

STORE oW 1 X 516 D1_6 s poy
-+ Dwo DW1 DW1 X X p

DOUBLE WORD = -+ Dwo — bwo DW1 DW1 Z> —
— — — +{ DWO DWO -

WHERE —:POINTS TO TOS

F: WORD CONTAINING FIELD

FD: FIELD DESCRIPTOR
X: INDEX

W: WORD

B: BYTE

DW1: MOST SIGNIFICANT HALF, DOUBLE WORD

DWO: LEAST SIGNIFICANT HALF, DOUBLE WORD
D16: 16-BIT INDIRECT ADDRESS
D18: 16 MOST SIGNIFICANT BITS OF 18-BIT BASE ADDRESS

Figure A. Memory Before and After Execution of Store Instructions.

6.3

6 Memory Reference Instructions

6.4 LOAD INSTRUCTIONS

Load instructions are defined to load field, byte, word, doubleword, and tripleword data.

There are five types of load instructions. Each of these instructions may have any of the three
formats shown in topic 6.1, with any of the corresponding addressing modes shown in topic 6.2.

Figure A shows the data stack before and after execution of four of the five types of load
instructions. (The LTW is similar to LD). There are five '"before" pictures of the stack for

each instruction, each labeled (across the top) with the address modes for which they apply. As
can be seen from the effective address expressions (topic 6.2), the stack must, for some modes,
contain base address, index and indirect address values before the load instructions are performed.
The effective address parameters are popped before the data item is pushed into the stack.

LF Load Field Op Code: "A"

A field descriptor, FD, is popped and used to extract a field, F, from the word
at the specified address. The effective address parameters are popped. The
extracted field is right-justified and pushed into the stack; if the field is less
than 16 bits long the bits in the stack to the left of the field are set to zeroes.
The definition and interpretation of the field descriptor are given in topic 7.11.

LB Load Byte Op Code: "F"

The effective address parameters are popped. An 8-bit byte, B, obtained from
the effective address, is pushed into the stack. The byte is right-justified and
the most significant 8 bits are set to zeroes.

w Load Word Op Code: "E"

The effective address parameters are popped. The word at the effective address
is pushed into the stack.

LD Load Doubleword Op Code "'8"

The effective address parameters are popped. The doubleword at the effective
address is pushed into the stack. Specifically, the word at the effective address
is loaded into TOS1, and the word at the effective address plus 2 into TOS.

LTW Load Tripleword Op Code ""D"

The effective address parameters are popped. The tripleword at the effective
address is pushed into the stack. Specifically, the word at the effective address
is loaded into TOS2, the word at the effective address + 2 into TOS1, and the
word at the effective address + 4 into TOS.

ADDRESSING MODE

OP CODE 0,2 13,6 4 5 7
LOAD FIELD — F_D ; D16 D16 D18
— = FD -+ FfD X X

p— — = | FD FD

LOAD BYTE e - = = = = =
— - X -+ D16 D16 D18

— — — - X X

LOAD WORD - = = = = —
— - x + D16 D16 D18

— — — > X X

LOAD - — — — —
DOUBLE WORD — - X -» D16 D16 D18
. — = - X X

WHERE: -»: POINTS TO TOS
F: WORD CONTAINING FIELD
FD: FIELD DESCRIPTOR
X: INDEX
W: WORD
B: BYTE
DW1: MOST SIGNIFICANT HALF, DOUBLE WORD
DWO: LEAST SIGNIFICANT HALF, DOUBLE WORD
D16: 16-BIT INDIRECT ADDRESS
D18: 16 MOST SIGNIFICANT BITS, 18-BIT BASE ADDRESS

.

gt

-

o
|
||llr;

5y

pfefr]En

DW1

bwo

Figure A. Memory Before and After Execution of Load Instructions.

6.4

6 Memory Reference Instructions

6.5 MEMORY REFERENCE ARITHMETIC INSTRUCTIONS

Arithmetic instructions are defined to add a word to memory, to add a word to TOS, and to
subtract a word from TOS.

There are three types of memory reference arithmetic instructions. Each of these may have any
of the three formats shown in topic 6.1, with any of the corresponding addressing modes shown in
topic 6.2.

Figure A shows the data stack before and after execution of each of the three types of memory
reference arithmetic instructions. There are five '"before" pictures of the stack for each
instruction, each labeled (across the top) with the address modes for which they apply. As can
be seen from the effective address expressions (topic 6.2), the stack must, for some modes,
contain base address, index, and relative address values before the arithmetic instructions are
performed. These address parameters are popped after adding TOS to memory and before
adding or subtracting the memory word to/from TOS.

In each of these three instruction types, a carry result sets or resets the carry bit of the
Program Status Register; an overflow result sets the overflow bit of the Program Status Register.

AWM Add Word to Memory Op Code: "4"

The word operand in TOS is added to the word operand at the effective address,
and the sum is stored into the word at the effective address. The word in TOS
and the effective address parameters are popped.

AW Add Word to Stack Op Code: "C"
The word operand in TOS is added to the word operand at the effective address.
The word in TOS and the effective address parameters are popped, and the sum
is pushed into the stack.

SW Subtract Word from Stack Op Code: '"D"
The word operand at the effective address is subtracted from the word operand

in TOS. The word in TOS and the effective address parameters are popped,
and the difference is pushed into the stack.

ADDRESSING MODE

OP CODE
0.2 136 4 5 7
ADD WORD - = i 518 big
TO MEMORY — - w - W X X
- - —_ - w > w
ADD WORD -

=)t
Y
x|
¥
o
|||§;|
L
=<3
[}
¥
o
l|§xa|

SUBTRACT WORD -s»

WHERE —»:POINTS TO TOS
X: INDEX
W: WORD
D16: 16-BIT INDIRECT ADDRESS
D18: 16 MOST SIGNIFICANT BITS, 18-BIT BASE ADDRESS
M: WORD FROM MONOBUS

wW+M

|

W - M

e
¥
L= x|!
|
||IE§I
¥
HiEl<2
L]
||§x§l

]
e

Figure A. Memory Before and After Execution of Memory Reference Arithmetic Instructions.

6.5

6 Memory Reference Instructions

6.6 MEMORY REFERENCE SWAP INSTRUCTION

An instruction is defined to swap a word in TOS with a word in memory in one uninterruptable
memory cycle.

The swap type of instruction swaps the word in TOS with a word in memory in a single memory
cycle. The interchange of the two words, since it occurs in a single memory cycle, is guaranteed
to be executed without interruption. This instruction provides the capability of synchronizing two
processors on the Monobus.

SWAP Swap Word in Stack with Memory Op Code 2"
The word in TOS and the effective address parameters are popped. The word

at the effective address is pushed into the stack, and the word which had been
in TOS is stored at the effective address.

6.6

6.6

7 Stack Operate Instructions

7.1 STACK OPERATE INSTRUCTIONS - INTRODUCTION

The stack operate instructions operate on one or two operands in the top of the stack, or push a
literal operand into the stack.

The stack operate instructions may be categorized as follows:

arithmetic, word operand

arithmetic, doubleword operand

logical

comparison, arithmetic word and doubleword, logical, floating
shift word and doubleword

load literal and enter configuration switches.

stack modification

field descriptor generation

The stack operate instruction formats are shown in Figure A. The top two formats, which
consist only of a single byte or two-byte operation code, are used for all instructions except the
load literal instructions. All operands for the instructions using these two formats are in the
top of the stack before the instruction is executed. The result produced by the instruction
execution is left in the top of the stack.

The execution of the single-byte and two-byte, operation-code-only instructions is illustrated

in Figures B and C. Figure B shows the stack before and after execution of a subtract instruction
and before and after execution of a less-than comparison instruction. Figure C shows the stack
before and after execution of a shift instruction.

The lower five formats in Figure A are used for the load literal instructions. The L field is
the literal to be pushed into the stack. There is one instruction type for each format; the
difference between types being the length of the literal field. The last format contains a word
count field which specifies the word length of the following literal field. The last format may
be used to load a floating point literal into the stack.

OP CODE

BOTH OPERANDS
IN TOP OF STACK

3]

I cggel L l (LJIPTEERR/;NL? ||_S
l cggsl L]
cObE Mé:%RTD] L

| 8yTE | BYTE | BYTE | BYTE | BYTE |

Figure A. Stack Operate Instruction Formats.

A —™FBA) EXAMPLE: SUBTRACT
o > _ F(B,A)=A-B
A - T/F EXAMPLE: LESS THAN COMPARISON
- B — A< B
NOTE: TRUE =1

FALSE =0
- : POINTS TO TOS

Figure B. Stack Before and After Execution of Arithmetic and Comparison Instructions.

1A WHERE:
AS = A SHIFTED BY N BITS

- - — : POINTS TO TOS

Figure C. Stack Before and After Execution of Shift Instruction.

7.1

7

7.2

Stack Operate Instructions

ARITHMETIC INSTRUCTIONS, WORD OPERAND

Eight stack operate arithmetic instructions are defined for word operands.

ADD

SUB

NEG

ABS

MUL

MULD

DIv

MOD

Add Op Code:

The word operand in TOS is added algebraically to the word operand in TOS1.
Both operands are popped from the stack, and the sum is pushed into the
stack. The carry and overflow bits of the Program Status Register reflect
the results of this operation.

Subtract Op Code:

The word operand in TOS is subtracted from the word operand in TOS1.
Both operands are popped from the stack and the difference is pushed into
the stack. The carry and overflow bits of the Program Status Register
reflect the results of this operation.

Negate Op Code:

The word operand in TOS is replaced by its two's complement.

Absolute Value Op Code:

If the word operand in TOS is negative, it is replaced by its two's
complement. If it is positive, it is left unchanged.

Integer Multiply Op Code:

The word operand in TOS1 is multiplied by the word operand in TOS.
Both operands are popped from the stack. The least significant 16 bits
of their product is pushed into the stack.

Multiply with Doubleword Product Op Code:

The word operand in TOS1 is multiplied by the word operand in TOS. Both
operands are popped from the stack. The doubleword product is pushed
into the stack. The least significant half of the doubleword is left in TOS
and the most significant half in TOS1.

Integer Word Divide Op Code:

The word operand in TOS is divided into the word operand in TOS1. Both
operands are popped from the stack, and the 16-bit integer quotient is
pushed into the stack.

Modulo Op Code:

The word operand in TOS is divided into the word operand in TOS1. Both
operands are popped from the stack, and the 16-bit integer remainder is
pushed into the stack.

”20"

H21”

”10"

"1EH

"22”

"36"

”23"

"24”

7.2

7

7.3

Stack Operate Instructions

ARITHMETIC INSTRUCTIONS, DOUBLEWORD OPERAND

Nine stack operate arithmetic operations are defined for doubleword operands.

DADD

DSUB

DNEG

DABS

DMUL

DDIV

DIVD

Doubleword Add Op Code: "4F 00"

The doubleword operand in TOS and TOS1 is added algebraically to the
doubleword operand in TOS2 and TOS3. Both doubleword operands are
popped and the doubleword sum is pushed into the stack. The carry and
overflow bits of the Program Status Register reflect the results of this
operation.

Overflow occurs if the original two doubleword operands had the same
sign and the sign of the result was different.

Doubleword Subtract Op Code: "4F01"

The doubleword operand in TOS and TOS1 is subtracted from the
doubleword operand in TOS2 and TOS3. Both doubleword operands are
popped from the stack. The doubleword difference is pushed into the
stack. The carry and overflow bits of the Program Status Register
reflect the results of this operation.

Overflow occurs if the original two doubleword operands had different

signs and the sign of the result was not the same as the sign of the
original second doubleword in the stack.

Doubleword Negate Op Code: "3C"

The doubleword operand in TOS and TOS1 is replaced by its two's
complement.

Doubleword Absolute Value Op Code: "3E"

If the doubleword operand in TOS and TOS1 is negative, it is replaced
by its two's complement. If it is positive, it is left unchanged.

Doubleword Integer Multiply Op Code: "4F02"

The doubleword operand in TOS2 and TOS3 is multiplied by the
doubleword operand in TOS and TOS1. Both doubleword operands
are popped, and the least significant 32 bits of their integer product
are pushed into the stack.

Doubleword Integer Divide Op Code: "4F03"
The doubleword operand in TOS and TOS1 is divided into the doubleword

operand in TOS2 and TOS3. Both doubleword operands are popped from

the stack. The doubleword integer quotient is pushed into the stack.

Divide Doubleword by Word Op Code: "4F14"
The word operand in TOS is divided into the doubleword operand in TOS1

and TOS2. The word and the doubleword operand are popped. The 16-bit
quotient is pushed into the stack.

DMOD

MODD

Doubleword Modulo Op Code: "4F04"
The doubleword operand in TOS and TOS1 is divided into the doubleword

operand in TOS2 and TOS3. Both doubleword operands are popped from

the stack. The doubleword integer remainder is pushed into the stack.

Doubleword Modulo by Word Op Code: "4F15"
The word operand in TOS is divided into the doubleword operand in

TOS1 and TOS2. The word and doubleword operands are popped from
the stack. The word integer remainder is pushed into the stack.

7.3

7

7.4

Stack Operate Instructions

ARITHMETIC INSTRUCTIONS, FLOATING POINT OPERAND

Five floating point instructions are defined for arithmetic operations on floating point tripleword

operands.

In all floating point operations the two operands are in TOS, TOS1, TOS2 and in TOS3, TOS4,
and TOS5. The result is left in TOS, TOS1, TOS2. The operands are popped from the stack.
The table below shows the operand locations:

OPERATION TOS, TOS1, TOS2 TOS3, TOS4, TOS5
FADD addend augend
FSUB subtrahend minuend
FMUL multiplier multiplicand
FDIV divisor dividend

In all floating point operations, if either operand is an undefined floating point number, the result
will contain all one bits.

FADD

FSUB

FMUL

Floating Point Add Op Code: "4F20"

The two tripleword operands are popped from the stack. Their floating point sum
is pushed into the stack.

If the difference between the exponents is greater than 5 (in absolute value) the
operand with the larger exponent is the result.

If the exponent difference is not greater than 5, addition takes place. The number
with the smaller exponent is shifted right by the number of digits corresponding to
the exponent difference. The exponent of the sum is the larger exponent. A zero
digit is appended to the right of the larger number. Five digits of the smaller
number are retained. The two fractions are then added. If the sum overflows,
the intermediate sum is shifted right one digit; the most significant digit is set to
one, and the exponent is increased by one. If an exponent overflow occurs, the
result is set to all one bits in the most significant word.

After addition, the intermediate sum is shifted left until a non-zero digit is shifted
into the most significant digit. The exponent is decreased by cne for each position
shifted. If an exponent underflow occurs, the result is a normal floating zero.

Floating Point Subtract Op Code: "4F21"

The sign of the subtrahend is changed and the operation proceeds as in the FADD
instruction.

Floating Point Multiply Op Code: "4F22"

The two tripleword operands are popped from the stack. The normalized product
of the operands is pushed into the stack.

The floating multiplication consists of characteristic addition and fraction multi-
plication. The characteristic of the product is the sum of the operand characteristics,
less 64, The fractions are multiplied to form an 8-digit product. After multiplication,
the product is normalized by shifting left until a non-zero digit is shifted into the most
significant digit position. The exponent is decreased by one for each position shifted.
If the resulting exponent underflows, the result is a normal zero. If the characteristic
is greater than 127 after normalization, the result is set to all one's in the most
significant word. The four most significant digits (after normalization) of the product
are retained.

FDIV Floating Point Divide Op Code: "4F23"

The two tripleword operands are popped from the stack. The normalized quotient
of the operands is pushed into the stack.

The division consists of a characteristic subtraction and a fraction division.
The characteristic of the quotient is the difference between the dividend and
divisor characteristics, plus 64. If the dividend fraction is greater than the
divisor fraction, the dividend is shifted right 1 digit and the intermediate
characteristic is reduced by 1. The resulting dividend fraction is divided by
the divisor to form the quotient. If the divisor is zero, or if the characteristic
overflows, the result is set to all one's. If the dividend is zero, or if the
characteristic underflows, the result is a normal zero.

FABS Floating Point Absolute Value Op Code: "4F18"

If the tripleword floating point operand in the top of the stack is negative, it
is set to positive. If the operand is positive, it i left unchanged.

7.4

7

7.5

Stack Operate Instructions

MAXIMUM, MINIMUM AND SIGN VALUE INSTRUCTIONS

Six instruction types are provided to determine the maximum value and minimum value of pairs
of word, doubleword, and floating point operands. Three instructions are provided to determine
the sign of each of these types of operands.

MAX

MIN

DMAX

DMIN

FMAX

FMIN

SGN

DSGN

FSGN

Maximum Value Op Code: ""34"

The two words on the top of the stack are popped and compared. The operand of
greater arithmetic value is pushed into the stack.

Minimum Value Op Code: "35"

The two words on the top of the stack are popped and compared. The operand of
lesser arithmetic value is pushed into the stack.

Doubleword Maximum Value Op Code: "4FOE"

The two doublewords on the top of the stack are popped and compared. The operand
of greater arithmetic value is pushed into the stack.

Doubleword Minimum Value Op Code: "4F0F"

The two doublewords on the top of the stack are popped and compared. The operand
of lesser arithmetic value is pushed into the stack.

Floating Point Maximum Value Op Code: "4F2E"
The two floating point operands on the top of the stack are popped and compared.

The operand of greater arithmetic value is pushed into the stack. If either or both

are undefined, the result will be set to all one bits.

Floating Point Minimum Value Op Code: "4F2F"
The two floating point operands on the top of the stack are popped and compared.

The operand of lesser arithmetic value is pushed into the stack. If either or both

are undefined a word of the result will be set to all one bits.

Sign Value Op Code: ''44"
The word on the top of the stack is popped and tested. If the operand is zero,

a zero is pushed into the stack. Otherwise a '1' value is pushed into the stack

with the sign of the operand.

Doubleword Sign Value Op Code: "45"
The doubleword on the top of the stack is popped and tested. If the operand is

zero, a doubleword zero is pushed into the stack. Otherwise a doubleword '1'

is pushed into the stack with the sign of the operand.

Floating Point Sign Value Op Code "4F19"
The floating point operand on the top of the stack is popped and tested. If the

operand is zero, a floating point zero is pushed into the stack. Otherwise
a floating point '1' is pushed into the stack with the sign of the operand.

7.5

7

7.6

Stack Operate Instructions

LOGICAL INSTRUCTIONS

Eight stack operate logical instructions are defined, four with word operands and four with
doubleword operands.

AND

NOT

OR

XOR

DAND

DNOT

DOR

DXOR

Logical AND Op Code:

Logically AND the two words on the top of the stack and replace the second word
with the result. Then pop the top of the stack.

Logical Not Op Code:
Replace the word on the top of the stack by its one's complement.
Logical OR Op Code:

Logically OR the two words on the top of the stack and replace the second word
with the result. Then pop the top of the stack.

Logical EXCLUSIVE OR Op Code:

Logically EXCLUSIVE OR the two words on the top of the stack and replace the
second word with the result. Then pop the stack.

Doubleword Logical AND Op Code:

Logically AND the two doublewords on the top of the stack and replace the second
doubleword with the result. Then pop the doubleword from the top of the stack.

Doubleword Logical Not Op Code:
Replace the doubleword on the top of the stack with its one's complement.
Doubleword Logical OR Op Code:

Logically OR the two doublewords on the top of the stack and replace the second
doubleword with the result. Then pop the doubleword from the top of the stack.

Doubleword Logical EXCLUSIVE OR Op Code:
Logically EXCLUSIVE OR the two doublewords on the top of the stack and replace

the second doubleword with the result. Then pop the doubleword from the top of
the stack.

”25”

A RAL

"26"

7727H

"4F05"

H3DH

H4F06'|

1!4F07H

7.6

7 Stack Operate Instructions

7.7 COMPARISON INSTRUCTIONS

Twenty-two stack operate comparison instructions are defined: 10 for word operands, six for
doubleword operands, and six for floating point (tripleword) operands.

All stack operate comparison instructions perform similar operations:
1. The two operands are popped from the top of the stack.
2. The operand which had been second in the stack is compared to the
operand which had been in the top of the stack on the basis specified
by the instruction name; e.g., second operand greater than first
operand.
3. If the result of the comparison is true, a word with the value of 1 is
pushed into the stack. If the result of the comparison is false, a word
with the value of 0 is pushed into the stack.
4. If the comparison is being performed on floating point (tripleword)
operands, and if either or both of the operands are undefined, the
comparison cannot be meaningfully performed. In this case, a
word with the value of 2 is pushed into the stack.
In the instruction definitions which follow, only the basis for a true comparison result is given.
EQ Equal Comparison Op Code: "2A"
Word in TOS1 equal to word in TOS.
GE Greater Than or Equal Comparison Op Code: "2C"
Word in TOS1 arithmetically greater or equal to word in TOS.
LGE Logical Greater Than or Equal Comparison Op Code: "3A"

Word in TOS1 greater or equal to word in TOS, both words treated as
16 bit positive numbers.

GT Greater Than Comparison Op Code: "2D"
Word in TOS1 arithmetically greater than word in TOS1.
LGT Logical Greater Than Comparison Op Code: "3B"

Word in TOS1 greater than word in TOS1, both words treated as 16 bit
positive numbers.

LE Less Than or Equal Comparison Op Code: '29"
Word in TOS1 arithmetically less than or equal to word in TOS.
LLE Logical Less Than or Equal Comparison Op Code: "'39"

Word in TOS1 less than or equal to word in TOS, both words treated
as 16 bit positive numbers.

LT Less Than Comparison Op Code: "'28"

Word in TOS1 arithmetically less than word in TOS.

LLT

NE

DEQ

DGE

DGT

DLE

DLT

DNE

FEQ

FGE

FGT

FLE

FLT

FNE

Logical Less Than Comparison

Word in TOS1 less than word in TOS, both words treated as 16-bit
positive numbers.

Not Equal Comparison

Word in TOS1 not equal to word in TOS.

Doubleword Equal Comparison

Doubleword in TOS2 and TOS3 equal to doubleword in TOS and TOS1.
Doubleword Greater Than or Equal Comparison

Doubleword in TOS2 and TOS3 arithmetically greater than or equal to
doubleword in TOS and TOS1.

Doubleword Greater Than Comparison

Doubleword in TOS2 and TOS3 arithmetically greater than doubleword
in TOS and TOS1.

Doubleword Less Than or Equal Comparison

Doubleword in TOS2 and TOS3 arithmetically less than or equal to
doubleword in TOS and TOS1.

Doubleword Less Than Comparison

Doubleword in TOS2 and TOS3 arithmetically less than doubleword in
TOS and TOS1.

Doubleword Not Equal Comparison

Doubleword in TOS2 and TOS3 not equal to doubleword in TOS and TOS1.

Floating Point Equal Comparison

Floating point number in TOS3, TO0S4, and TOS5 equal to floating point
number in TOS, TOS1 and TOS2.

Floating Point Greater Than or Equal Comparison

Floating point number in TOS3, TOS4, and TOS5 arithmetically greater
than or equal to floating point number in TOS, TOS1, and TOS2.

Floating Point Greater Than Comparison

Floating point number in TOS3, TOS4, and TOS5 arithmetically greater
than floating point number in TOS, TOS1 and TOS2.

Floating Point Less Than or Equal Comparison

Floating point number in TOS3, TOS4, and TOS5 arithmetically less
than or equal to floating point number in TOS, TOS1, and TOS2.

Floating Point Less Than Comparison

Floating point number in TOS3, TOS4, and TOS5 arithmetically less
than floating point number in TOS, TOS1, and TOS2.

Floating Point Not Equal Comparison

Floating point number in TOS3, TOS4, and TOS5 not equal to floating
point in TOS, TOS1, and TOS2.

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

Op Code:

"38”

H2Bll

H4FOA'I

"4FOC"

"4FOD"

H4F09H

'|4F08”

"4FOB"

"4F2A"

"4Fac"

H4F2DH

"YF29"

""4F28"

"4F2B"

7.7

7 Stack Operate Instructions

7.8 SHIFT INSTRUCTIONS

Eight stack operate shift instructions are defined; four with word operands and four with
doubleword operands.

SLC Shift Left Circular Op Code: ""33"

A shift count word is popped from the top of the stack and is used to determine
the number of bit positions to circularly left shift the word now on top of the
stack. Bits shifted off of the most significant end of the word are inserted into
the vacated least significant bits.

The shift count is treated as modulo 16.

SLL Shift Left Logical Op Code: "'30"
A shift count word is popped from the top of the stack and is used to determine
the number of bit positions to left shift the word now on the top of the stack.

Zeroes are inserted into vacated bit positions. Bits shifted off the most
significant end of the word are lost.

The shift count is treated as modulo 16.

SRA Shift Right Arithmetic Op Code: "'31"
A shift count word is popped from the top of the stack and is used to
determine the number of bit positions to right shift the word now on the

top of the stack. The sign bit is extended to the right. Bits shifted off
the least significant end of the word are lost.

The shift count is treated as modulo 16.
SRL Shift Right Logical Op Code: "'32"
A shift count word is popped from the top of the stack and is used to
determine the number of bit positions to right shift the word now on the
top of the stack. Zeroes are inserted into the vacated most significant bit.
Bits shifted off the least significant end of the word are lost.
The shift count is treated as modulo 16.
DSLC Doubleword Shift Left Circular Op Code: '"4F13"
A shift count word is popped from the top of the stack and is used to
determine the number of bit positions to circularly left shift the
doubleword now on top of the stack. Bits shifted off of the most
significant end of the doubleword are inserted into the vacated least
significant bits.
The shift count will be treated as modulo 32.
DSLL Doubleword Shift Left Logical Op Code: "4F10"
A shift count word is popped from the top of the stack and is used to determine
the number of bit positions to left shift the doubleword now on the top of the
stack. Zeroes are inserted into the vacated least significant bits. Bits

shifted off of the most significant end are lost.

The shift count is treated as modulo 32.

DSRA

DSRL

Doubleword Shift Right Arithmetic Op Code: "4F11"

A shift count word is popped from the top of the stack and is used to
determine the number of bit positions to right shift the doubleword now
on the top of the stack. The sign bit is extended to the right. Bits
shifted off the least significant end of the doubleword are lost.

The shift count is treated as modulo 32.

Doubleword Shift Right Logical Op Code: "4F12"
A shift count word is popped from the top of the stack and is used to

determine the number of bit positions to right shift the doubleword now

on the top of the stack. Zeroes are inserted into the vacated most

significant bits. Bits shifted off the least significant end of the word

are lost.

The shift count is treated as modulo 32.

7.8

7 Stack Operate Instructions

7.9 LOAD LITERAL & ENTER CONFIGURATION SWITCH INSTRUCTIONS

Stack operate instructions are defined to push 4-bit, byte, word, doubleword, and variable word-
length literals into the stack. An additional instruction is defined to sense and push the state of the
configuration switches into the stack.)

Ln Load 4 Bit Literal format: "7n"

The lower four bits (n) of the instruction are pushed onto the top of the stack
as an integer word with a value of 0-15,

The complete set of instruction mnemonics is: L0, L1, L2, L3, 14, L5, L6,
L7, L8, L9, L10, L11, L12, L13, L14, L15.

LBL Load Byte Literal format: "'41 xx"

The 8-bit byte literal contained in the second byte of the instruction (xx) is
pushed onto the top of the stack as a 16-bit word. The upper 8-bits of the
word on the top of the stack will be set to all zeroes.

LWL Load Word Literal format: '"40 xx xx"'

The word length literal contained in the second and third bytes of this
instruction (xxxx) is pushed onto the top of the stack.

LDL Load Doubleword Literal format: ""42 xx xx xx xx"'

The doubleword length literal contained in the second, third, fourth, and
fifth bytes of the instruction (xxxxxxxx) is pushed onto the top of the stack.
The least significant half of the doubleword will be TOS; the most
significant half in TOS1.

LTL Load Tripleword Literal format: '"43 xx xx xx XX XX xx"'

The tripleword length literal contained in the second through seventh bytes
of this instruction (xcoocoooooooak) is pushed onto the top of the stack. The
most significant word will be in TOS2 and the least significant word in TOS.

FILL Fill Stack with Literal format: "59yyxxxx...."

The second byte of the instruction (yy) is a word count. The number of words
specified by this count is pushed into the stack. The stack is stuffed into
memory.

ESW Enter Configuration Switches format: ''05"

The conditions of the four internal configuration switches on the processor
data board are copied into the low order four bits of a word which is pushed
onto the top of the stack. The upper 12 bits of the word are zeroes. These
four switches are the same switches used during an Initial Program Load
to select the load device.

7.9

7 Stack Operate Instructions

7.10 STACK MODIFY INSTRUCTIONS

Eight stack operate instructions are defined to modify the contents of the top of the stack.

Eight instructions are provided to modify the contents of the top of the stack. 'Before and after’
pictures of the data stack are shown in Figure A for six of these instructions.

DBL1 Convert TOS to Doubleword Op Code: ''08"

The signed word operand in TOS is popped from the stack and converted into
a signed doubleword operand. This doubleword operand is pushed into the
stack. The most significant half of the doubleword result (in TOS1) is the
sign bit extension (either all zeroes or all one's) of the original word operand.
The least significant half of the doubleword result (in TOS) is identical to the
original word operand.

DBL2 Convert TOS2 to Doubleword Op Code: 4F16"
The words in TOS and TOS1 are popped and saved. An operation identical to

execution of the DBL1 instruction is performed. The two words originally
in TOS and TOS1 are then pushed back into the stack.

SNGL Convert Doubleword to Single Word Op Code: "37"
The signed doubleword operand in TOS and TOS1 is popped and converted to
a signed word operand. The resultant word is pushed into the stack. The
resultant word (in TOS) is identical to the least significant half of the original

doubleword operand.

Note: Overflow occurs unless, if in the original doubleword, the most
significant 17 bits are either all one's or all zeroes.

DDUP Duplicate Doubleword on Top of Stack Op Code: "3F"

The doubleword operand in the top of the stack is duplicated by pushing a
copy of that doubleword into the stack.

DUP Duplicate Top of Stack Op Code: "1F"

The word operand in the top of the stack is duplicated by pushing a copy of
that word into the stack.

XCH Exchange Top of Stack Words Op Code: '"2F"
The two word operands in the top of the stack are exchanged.

FLOT Float an Integer Op Code: "4C"
The doubleword integer operand in TOS and TOS1 is popped from the stack
and converted into a floating point tripleword operand. The resultant
tripleword is pushed into the stack.

FIX Fix a Floating Point Number Op Code: "4F17"
The tripleword floating point operand in TOS, TOS1, and TOS2 is popped
from the stack and converted into a doubleword integer operand. The

resultant doubleword is pushed into the stack.

The fractional part of the floating point number is lost in the conversion
process. If the number is greater than 2, 147,483, 647 in absolute value, the
overflow indicator is set in the Program Status Register and the resultant
doubleword (in TOS and TOS1) is not predictable.

CONVERT TOS S
obousLworo &= [Lss > > SIGN EXTENDED
J— ——S'%lmssl LsB
SI(—L'MSB‘ |LSB SIGN EXTENDED
CONVERT TOS 2 i oo
TO DOUBLE WORD > > NI""SB|
— A
—_ —»] A
CONVERT <
DOUBLE WORD G ImMsB| ——'315'814! LsB
TO WORD P o [—
NOTE: OVERFLOW OCCURS UNLESS SIGN, MSB,...B;¢ ARE ALL ZEROES OR ARE ALL ONES.
M. S. % DOUBLE WORD M.S. % DOUBLE WORD
DUPLICATE
DOUBLE WORD - L.S. % DOUBLE WORD > L.S. % DOUBLE WORD
IN TOS
_ M. S. % DOUBLE WORD
— —» L.S.% DOUBLE WORD
DUPLICATE TOS —»f WORD > > WORD
—_ — WORD
EXCHANGE WORD 2 > e
TOS WORDS
— WORD 1 - WORD 2

WHERE —: POINTS TO TOS

Figure A. Memory Before and After Execution of Stack Modification Instructions.

7.10

7 Stack Operate Instructions

7.11 FIELD DESCRIPTOR GENERATION INSTRUCTION

An instruction is provided to generate field descriptors in the top of the stack.

The field descriptor is used to extract a field from a word in memory and to store a field into a
word in memory. The explanation of its use is given in topic 5.1

The format of the field descriptor is shown in Figure A. The rightmost field specifies the
location of the field within the word. The second rightmost field specifies the field length.
Specifically:

LSBP (bits 3-0): binary-encoded bit position of the least significant bit
position of the field within the word.
FL-1 (bits 7-4): binary-encoded number of bit positions, minus one,

in the field.

Before and after pictures of the stack are shown in Figure B for the Generate Field Descriptor
instruction.

GFD Generate Field Descriptor Op Code: "2E"

This instruction converts the two words on the top of the stack into an
appropriate field descriptor word for the load field (LF) and store field
(SF) memory reference instructions.

The low order four bits of the second word on the stack are decremented
by one, shifted left four bit positions, and logically ORed with the low
order four bits of the word on the top of the stack. The result replaces
the second word on the stack. The top of the stack is popped.

,- [- ’FLJ[LSBPI

FIELD LENGTH -1

LEAST SIGNIFICANT
BIT POSITION OF FIELD

Figure A. Field Descriptor Format.

- | - — FL -~ = | — JFr]usee

=T 3 -

WHERE —» : POINTER TO TOS

Figure B. Memory Before and After Execution of Generate Field Descriptor Instruction.

7 Stack Operate Instructions

7.12 BIT ARRAY INSTRUCTIONS

Three special instructions are provided to convert a bit array index to a word index for use by
indexed Load Field and Store Field instructions.

BIT(1), BIT(2), and BIT(4) data types are defined in MPL. Declaration of these data types
reserves arrays of one-bit, two-bit, and four-bit fields in memory. The fields are specified to
begin at Monobus word location boundaries. Arrays of these fields are indexed by an "array
index.!" See Figure A.

The Load Field and Store Field memory reference instructions are used to load and store
individual fields of these arrays. To index into the arrays these instructions utilize the indexed
addressing modes (modes 3, 5, 6 and 7). This mode of addressing (for the Load Field and Store
Field) requires that a word index and a field descriptor be in the top of the stack before instruction
execution begins. (See topics 6.3 and 6.4.)

Three types of instructions are provided to generate a word index and a field descriptor from an
array index. The relationship between an array index and the corresponding word index and field
descriptor is illustrated in Figure B.

The three types of instructions correspond to the three types of bit arrays, BIT(1), BIT(2), and
BIT(4). These instructions take an array index in TOS and convert it to a word index in TOS1 and
a field descriptor in TOS. The field descriptor has an appropriate Field Length -1 value for the
field size specified (0, 1, or 3). See Figure C.

XB1 Convert Index for BIT(1) Arrays Op Code: "0D"

Pop the Bit(1) array index from the top of the stack and convert it into a
word index which is pushed onto the stack and an appropriate field descriptor
word which is also pushed onto the stack. This field descriptor and index
will be used by a subsequent load field or store field instruction to access
the appropriate element in an array of one bit items.

XB2 Convert Index for BIT(2) Arrays Op Code: "0E"

Pop the Bit(2) array index from the top of the stack and convert it into a word
index which is pushed onto the stack and an appropriate field descriptor word
which is also pushed onto the stack. This field descriptor and index will be
used by a subsequent load field or store field instruction to access the
appropriate element in an array of two bit items.

XB4 Convert Index for BIT(4) Arrays Op Code: "0F"

Pop the Bit(4) array index from the top of the stack and convert it into a word
index which is pushed onto the stack and an appropriate field descriptor word
which is also pushed onto the stack., This field descriptor and index will be
used by a subsequent load field or store field instruction to access the
appropriate element in an array of four-bit terms.

MEMORY

| |o
BIT (1) ARRAY
FIRST Y
ELEMENT BIT (2) ARRA
OF ARRAY
BIT (4) ARRAY
Figure A. Bit (n) Array Formats.
MEMORY
BIT (4)
ARRAY: T Fo | Fi I F2 | F3
WORD o
INDEX e le FL e Lsare
Fk I Fk+1 [Fk+2 l FK+3
WHERE: SUBSCRIPT ON F IS ARRAY INDEX
FIELD
DESCRIPTOR: — | FL-1 l LsBP |

Figure B. Relationship Between Word Index/Field Descriptor and Array Index.

ARRAY INDEX

WHERE —*: POINTS TO TOS

WORD INDEX

- | - IFL-1]LSBP

Z>*

Figure C. Stack Before and After Execution of Convert Index for Bit (n) Array.

8 Branch Instructions

8.1 BRANCH INSTRUCTIONS - INTRODUCTION

Seventeen types of branch instructions are provided. Four of these are specialized to the functions
specified by MPL DO statements.

Three categories of simple branch instructions are provided: a relative branch backwards from
the current Program Pointer value; a direct branch; and an indirect branch via the contents of
TOS. Both conditional and unconditional branch instructions are provided within each category
(except the indirect, which is only unconditional), The three categories of simple branch
instructions are shown in Figure A.

Branch backward instructions use a two byte format, with the rightmost byte being an eight bit
displacement, D8. The effective address to be placed in the Program Pointer, PP, is computed
by subtracting the displacement D8 from the current value of PP, At the time that the effective
address is computed, PP is pointing to the displacement byte of the instruction (therefore a D8
value of one would specify a branch back to the instruction itself). Both conditional and
unconditional branch backward instructions are provided.

Branch long instructions use a three-byte format, with the rightmost two bytes being a 16-bit
direct address, ADDR, to be placed in the Program Pointer, PP. Both unconditional and
conditional (based upon the contents of TOS) branch long instructions are provided.

Branch indirect via TOS instructions use a one-byte format. The two-byte indirect address is
provided in TOS. An unconditional branch instruction is provided.

Four specialized branch instructions are provided to facilitate the compilation of MPL DO
statements. These instructions are shown in Figure B.

The CASE branch instruction provides a multiway indirect branch. It uses a three-byte format,
with the rightmost two bytes being a 16-bit address, ADDR. The effective address to be placed
in the Program Pointer is retrieved from an indirect address table which begins at the address:
Program Base (PB) plus ADDR. The entry within the indirect address table is specified by an
index value which is in the top of the stack.

The DO Loop Initialize and Branch instruction initializes the data stack for performing the DO
loop code, tests the initial and final variable values to see if loop execution should be performed
and, if not, branches the program around the DO loop code. It uses a three-byte format, with
the rightmost two bytes, ADDR, being the effective address to be placed in the Program Pointer
if the DO loop is not to be executed.

The DO Loop Step, Branch Backward and DO Loop Step, Branch Long instructions test the
current and final variable values to see if another iteration of the DO loop code is to be done
and, if it is, branch the program to the start of the DO loop code. The branch backward
instruction uses a two-byte format, with the rightmost byte being eight-bit displacement, DS8.
The effective address to be placed in the Program Pointer (if the DO loop is to be executed) is
computed by subtracting the displacement D8 from the current value of PP, The branch long
instruction uses a three-byte format, with the rightmost two bytes being a 16-bit direct address,
ADDR, to be placed in the Program Pointer (if the DO loop is to be executed).

BRANCH 56
BACKWARD CODE m PP _ D8 —»PP
BRANCH oF

LONG l CODE l ADDR —| ADDR - PP
BRANCH

INDIRECT E T0S —epP
VIA TOS

| BYTE | BYTE | BYTE |

UNCONDITIONAL
AND CONDITIONAL

UNCONDITIONAL
AND CONDITIONAL
BASED UPON TOS

UNCONDITIONAL

Figure A. Simple Branch Instructions.

CASE BRANCH

L]

ADDR —l (PB + ADDR — 2 * INDEX)

- PP

DO LOOP INITIALIZE

AND BRANCH L4 |

ADDR] ADDR —= PP

DO LOOP STEP,
BRANCH BACKWARD

[+ [os |

PP — D8 -=PP

DO LOOP STEP,
BRANCH LONG

[|

ADDR 1 ADDR -+ PP

| BYTE | BYTE | BYTE |

MULTI-WAY INDIRECT
BRANCH TO BEGIN
EXECUTION OF DO CASE
STATEMENT

CONDITIONAL BRANCH
DO LOOP EXECUTION

CONDITIONAL BRANCH
DO LOOP EXECUTION

CONDITIONAL BRANCH
DO LOOP EXECUTION

Figure B. Specialized Branch Instructions.

8.1

8.2

Branch Instructions

SIMPLE BRANCH INSTRUCTIONS

Three types of unconditional branch instructions, one with each type of branch addressing (relative
backwards, direct, and indirect via TOS) are defined. Ten types of conditional branch instructions,
all but one with direct addressing, are defined.

The simple branch instructions utilize the three formats and the three corresponding effective
address expressions described in topic 8.1.

BRB

BRA

BTOS

DBB

BEQZ

BGEZ

DBL

Branch Backward format: ""46 xx"

Branch backward across the number of bytes specified by the second byte
(xx) of the instruction.

Branch format: "47 xx xx"'

Branch to the PB relative address contained in the second and third bytes
of the instruction (xxxx).

Branch Through Top of Stack format: "'15"

Branch to the PB relative address contained in the word on the top of the
stack. Pop the word from the top of the stack.

Decrement TOS and Branch Backward format ''16 xx''

Decrement the word on the top of the stack and if the result is non-negative,
branch backward across the number of bytes specified by the second byte
(xx) of the instruction.

If the result was negative, pop the value from the top of the stack and
execute the next instruction in sequence.

Branch If TOS Equal to Zero format: "1A xx xx"

Pop the word from the top of the stack and if it is equal to zero, branch to
the PB relative address contained in the second and third bytes of this
instruction (xxxx); otherwise execute the next instruction in sequence.

Branch If TOS Greater Than or Equal to Zero format: "1C xx xx"'

Pop the word from the top of the stack and if it is greater than or equal to
zero, branch to the PB relative address contained in the second and third
bytes of this instruction (xxxx); otherwise execute the next instruction in
sequence.

Decrement TOS and Branch Long format: "17 xx xx"
Decrement the word on the top of the stack and if the value is non-negative,
branch to the address contained in the second and third bytes of the

instruction (xxxx).

If the result was negative, pop the word from the top of the stack and
execute the next instruction in sequence.

BGTZ

BLEZ

BLTZ

BNEZ

BRF

BRT

Branch If TOS Greater Than Zero format: '"1D xx xx"'

Pop the word from the top of the stack and if it is greater than zero, branch
to the PB relative address contained in the second and third bytes of this
instruction (xxxx); otherwise execute the next instruction in sequence.

Branch If TOS Less Than Or Equal to Zero format: "19 xx xx"

Pop the word from the top of the stack and if it is less than or equal to zero,
branch to the PB relative address contained in the second and third bytes of
this instruction (xxxx); otherwise execute the next instruction in sequence.

Branch If TOS Less Than Zero format: ""18 xx xx"'

Pop the word from the top of the stack and if it is less than zero, branch
to the PB relative address contained in the second and third bytes of this
instruction (xxxx); otherwise execute the next instruction in sequence.

Branch If TOS Not Equal to Zero format: "1B xx xx"'

Pop the word from the top of the stack and if it is not equal to zero, branch
to the PB relative address contained in the second and third bytes of this
instruction (xxxx); otherwise execute the next instruction in sequence.

Branch False format: "13 xx xx''

Pop the word from the top of the stack and if the least significant bit of the
word is zero, branch to the PB relative location contained in the second and
third bytes of this instruction (xxxx); otherwise execute the next instruction
in sequence.

Branch True format: ""12 xx xx"'

Pop the word from the top of the stack and if the least significant bit of the
word is a one, branch to the PB relative address specified by the second

and third bytes of this instruction (xxxx); otherwise execute the next instruction
in sequence.

8.2

8 Branch Instructions

8.3 CASE BRANCH INSTRUCTION

The CASE branch instruction provides a multiway indirect address branch for compilation of DO
CASE MPL statements.

The CASE branch instruction utilizes a three byte format and specifies the Program-Base relative
address of an indirect address table of branch addresses which must be aligned on a word boundary.
An index into this table is provided in the top of the stack. Figure A shows the instruction format,
the location and indexing of the indirect address table in the program segment, and the before and
after pictures of the data stack.

As indicated in Figure A, the indirect address table is indexed in an inverted order, and the index.
which is provided to the instruction in TOS, is multiplied by two to provide a word-level index. The
continuation point of the program, the next word after the indirect address table, is pushed into the
stack after the index is popped. This address is normally used by a top of stack branch (BTOS)
instruction as the program continuation point after executing the instruction for the selected case.

CASE CASE Branch format: "14 xx xx"'

The PB relative address contained in the ADDR field of the instruction (xxxx),
minus two times the value of the index word on the top of the stack, points to a
branch address which is placed in the Program Pointer. The address in the
instruction, ADDR, plus two, replaces the contents of the stack.

CASE BRANCH

INSTRUCTION

PROGRAM SEGMENT
IN MEMORY:

PB

| BYTE | BYTE

| BYTE |

| e | ADDR J

ADDR

CONT.
ADDR.

2 * INDEX

v |

TABLE OF
¢ BRANCH

BRANCH ADDR NO. K
| AN

< ADDRESSES

L
PROGRAM

S SSS

BRANCH ADDR NO. K —=PP

STACK BEFORE

—> INDEX

WHERE —: POINTS TO TOS
NOTE: CONT. ADDR. = ADDR +2

7

CONTINUATION%

STACK AFTER

CONT. ADDR.

.

Figure A. The Case Branch Instruction.

8.3

8 Branch Instructions

8.4 DO LOOP INITIALIZE & BRANCH INSTRUCTION

The DO Loop Initialize and Branch instruction initializes the data stack for performing the DO
loop code, tests the initial and final values of the variable to see if the loop should be executed and,
if it should, branches to the start of the DO loop code.

The DO Loop Initialize and Branch instruction utilizes a three-byte instruction format and specifies
the Program Base relative address to be placed in the Program Pointer if the DO loop is not to be
executed. The initial, final, and step control parameter values for the DO statement are provided
in the top of the stack, along with the Stack Base relative address into which the initial control
parameter value is to be stored.

Figure A shows the instruction format. It also shows the before and after pictures of the data
stack if the DO loop is not executed and the branch is taken; if the DO loop is executed, the stack
remains as in the '"before' picture. Figure A also shows a flowchart of the instruction execution.

DIB DO Loop Initialize and Branch format: ''48 xx xx"'

The Stack Head Registers are pushed into the stack in memory. The INITIAL
value of the DO loop control variable contained in TOS3 is stored at the SB
relative address contained in TOS.

The INITIAL value of the control variable is then compared with the FINAL
value in TOS2 as directed by the sign of the STEP value in TOS1 to determine
if a branch will occur.

If the sign of STEP is positive, and the value of INITIAL is less than or equal

to the value of FINAL, or if the sign of STEP is negative and the value of
INITIAL is greater than or equal to the value of FINAL, then the next instruction
in sequence is executed. If the INITIAL value exceeds the FINAL value in the
direction of the sign of STEP, then the four words on the top of the stack are
popped and a branch is executed.

If the branch is to be executed, the ADDR field in the second and third bytes of
the instruction (xxxx) specify the PB relative address of the branch.

—a] ADDRESS

DO LOOP
INITIALIZE
AND BRANCH

STACK BEFORE

INITIAL
FINAL
STEP

WHERE —: POINTS TO TOS

| BYTE | BYTE | BYTE |
L2 |

ADDR l

STACK AFTER

—
ONLY IF BRANCH

LINITIAL - (SB + ADDRESS)

NEGATIVE

>

INITIAL FINAL

?

EXECUTE
NEXT INSTRUCTION

POSITIVE

INITIAL < FINAL

?

NO

1 !

POP TOP 4 WORDS
OF STACK
ADDR += PP

EXECUTE
INSTRUCTION AT
BRANCH ADDRESS

Figure A. De Loop Initialize and Branch Instruction.

8.4

8 Branch Instructions

8.5 DO LOOP STEP, BRANCH BACKWARD & BRANCH LONG INSTRUCTIONS

The two DO Loop Step instructions each determine if another iteration of the DO loop code is to
be performed, and branch to that code if it is to be executed.

The DO Loop Step instructions utilize two different formats with corresponding effective address
expressions. The DO Loop Step, Branch Backward instruction uses a two-byte format which
provides an 8-bit displacement to be subtracted from the Program Pointer if the branch is taken.
The DO Loop Step, Branch Long instruction uses a three-byte format which provides a 16-bit
address to be placed into the Program Pointer if the branch is to be taken. The initial, final, and
step control parameter values for the DO statement are provided in the top of the stack, along with
the Stack Base-relative address of the current control parameter value.

Figure A shows the format of the two types of instructions. It also shows the before and after
pictures of the data stack if the DO loop is not executed and the branch is not taken. If the DO
loop is executed, the stack remains as in the "before" picture. Finally, Figure A shows a flow
chart of the instruction execution.

DSBB DO Loop Step, Branch Backward format: "4A xx"

The word in TOS is the SB relative address of the current control variable. The
STEP value contained in TOS1 is added to this current control variable to obtain
the new current value. If an arithmetic overflow occurs in this addition, the four
words are popped and the branch is not taken. The Overflow indicator, however,
is not affected by this instruction.

The new control variable value is then compared with the FINAL value in TOS2
as directed by the sign of the STEP value in TOS1 to determine if a branch will
occur.

If the sign of STEP is positive and the value of the new control variable is greater
than the value of FINAL, or if the sign of STEP is negative and the value of the
new control variable is less than the value of FINAL, then the next instruction is
executed and the top four stack values are popped. If the current control variable
is less than or equal to the FINAL value in the direction of the sign of STEP, the
stack is unaltered and the branch occurs.

If the branch occurs, the branch location is computed by subtracting the value of
the D8 field of the instruction (xx) from the Program Pointer,

DSBL DO Loop Step, Branch Long format: 4B xx xx"

The operation of this instruction is the same as DSBB except for the branch
address determination.

If the branch is to be executed, the Program Base relative address contained
in the ADDR field of the instruction (xxxx) is placed in the Program Pointer.

DO LOOP STEP, BRANCH BACKWARD

DO LOOP STEP, BRANCH LONG L 4B I

ADDR J

| BTE | BYTE | BYTE |

STACK BEFORE STACK AFTER
—_— — —_—
ONLY IF NO BRANCH
INITIAL _—
FINAL -
STEP -
— ADDRESS -
WHERE —» : POINTS TO TOS @
CURRENT + STEP
— (SB + ADDRESS)
NEGATIVE ~_POSITIVE

CURRENT > FINAL) YES
?

CURRENT < FINAL
?

BRANCH BACKWARD:
PP — ADDR -+ PP

BRANCH LONG:
ADDR —= PP

EXECUTE
INSTRUCTION AT
BRANCH ADDRESS

1 !

POP TOP 4 WORDS OF
STACK

!

EXECUTE
NEXT INSTRUCTION

Figure A. Do Loop Step, Branch Backward and Branch Long Instructions.

8.5

9 Control Instructions

9.1 BEGIN BLOCK ENTRY & BEGIN BLOCK EXIT INSTRUCTIONS

The Begin Block Entry instruction creates a Begin Mark in the data stack and the Begin Block
Exit instruction removes the Begin Mark.

The Begin Block Entry instruction is compiled for an MPL BEGIN statement. Its function is to
create and activate the Begin Mark in the top of the data stack to delineate the start of the stack
environment for the BEGIN block. The Begin Block Exit instruction is compiled for the MPL
END statement which terminates the BEGIN block. Its function is to 'roll back" the stack to
the environment of the preceding block by resetting the Environmental Pointer to the preceding
Mark.

Figure A shows a typical data stack before and after execution of the Begin Block Entry
instruction. Figure B shows a typical data stack before and after execution of a Begin Block
Exit instruction.

BENT Begin Block Entry format: "'53"

The contents of the active stack head registers are pushed into the top of
the stack in memory. The Stack Pointer, SP, is then increased by eight
to begin the construction of the four-word Mark. The contents of the
Environmental Pointer, EP, are copied into SP-6, the first word of the
Mark under construction. If the DLINK entry of the current Mark is odd-
valued, it is copied into SP-4, the second word of the Mark under
construction. If that DLINK value is even, the (contents of EP) +1

is loaded into SP—4.

The Environmental Pointer is then set to SP-6, activating the Begin Mark
which has been constructed.

BXIT Begin Block Exit format: "'58"

The stack head registers are all marked inactive. The top of the stack
is adjusted to the location preceding the current Mark by loading the
Stack Pointer register with the contents of the Environmental Pointer
register, minus two.

The previous Mark is then reactivated as the latest Mark by loading
the Environmental Pointer with SLINK (first word of the Begin Mark
being removed).

MEMORY

MEMORY
EP: SLINK:
LATEST PREVIOUS
MARK MARK
STACK HD.
ﬁ Ay REGISTERS > < \A
SP: A o A STACK HD.
8 B REGISTERS
c C
P:[SLINK
LATEST DLINK
MARK =
SP: = - =
Figure A. Begin Block Entry Instruction.
MEMORY MEMORY
SLINK: EP:
PREVIOUS - LATEST
MARK MARK
STACK HD.
REGISTERS
< < Z: S <o
SP:
EP:[_SLINK -
DLINK LATEST
= MARK
STACK HD.
REGISTERS
SP: A ___
B
C

Figure B. Begin Block Exit Instruction.

9.1

9 Control Instructions

9.2 MARK STACK FOR PROCEDURE CALL INSTRUCTION

The Mark Stack for Procedure Call instruction initiates the construction of a Procedure Mark
in the data stack. (A succeeding CALL instruction completes the construction of the Mark and
activates it.)

The Mark Stack for Procedure Call instruction is compiled for an MPL PROCEDURE invocation.
Its function is to initiate the construction of a Procedure Mark in the top of the stack. It
establishes the SLINK and DLINK entries in the first two words of the Mark under construction,
and passes information specifying the location of the called procedure and the number of words
to be returned by the called procedure in the last two words of the Mark.

Figure A shows a typical data stack before and after execution of the Mark instruction, and the
format of the instruction. The instruction's DESTINATION field and the byte to the left of that
field get copied into the Mark under construction.

The rightmost 16 bits of the Mark instruction, DESTINATION, specifies the entry point into the
called procedure. If the called procedure is in the currently active program segment, the
DESTINATION is a Program Pointer value; if the called procedure is in a remote program
segment, the DESTINATION field is a Program Library Number, PLIBN, and Program Reference
Table Number, PRTN. The Z bit of the instruction specifies the proper interpretation of the
DESTINATION field.

The number of words to be returned by the called procedure is specified in the R field of the
instruction. This parameter is left in the Procedure Mark for use by the Exit instruction which
removes the Mark.

The value of SLINK, the link to the Mark of the next outermost block for the called procedure,
is computed during the instruction execution. The DLEX field of the instruction specifies the
number of levels of indirect addressing, up the chain of SLINK entries, to this Mark. (See
topic 2.11.)

MARK Mark Stack for Procedure Call format: ''50 xx xx xx"

The active stack head registers are pushed into the top of the stack in
memory. The Stack Pointer, SP, is then increased by eight to begin
the construction of the four-word Mark.

The second (from the left) byte of the instruction (DLEX, Z, R) is loaded
into the rightmost byte of the word at SP. The rightmost two bytes of
the instruction, DESTINATION, are loaded into SP-2. The contents of
the EP register are loaded into the word at SP—4, to become the DLINK.

The SLINK field is then determined by tracing back through the linked
list of SLINK entries by DLEX levels, counting the contents of the EP
register as the 0 level, the SLINK in the current Mark as the first level,
etc. The SLINK entry, which is DLEX levels up the list, becomes the
SLINK value loaded into the location at SP-6.

The specific procedure for determining SLINK is as follows:

1. The DLEX field of the instruction is placed in a temporary register, T1.
The value in the EP register (i.e., the Stack Base relative address of the
first word of the current Mark) is placed in another temporary register, T2.

2. If the value in T1 is zero, then the contents of T2 are loaded into location
SP-6, to form the SLINK entry; execution of the Mark instruction is then
completed.

3. If the value in T1 is not zero, then the contents of the word pointed to by

T2 replace T2; T1 is decremented by one, and processing of the instruction
continues with step 2, above.

The specific definitions of the instruction fields are given in Figure A.

MEMORY MEMORY
EP: EP:
LATEST LATEST
MARK MARK
STACK HD. Z—>
REGISTERS
s s AN A
SP: A A
--- STACK HD.
B REGISTERS
c c
NEW SLINK
(EP)
DESTINATION
sP:| -
|7 4|3 ol7 al|3]|2|1lol1s ol
MARK
INsTRuCTION: 5 | 0 [DLEX [-z| » | DESTINATION |

Figure A. Mark Stack for Procedure Call Instruction.

9.2

9 Control Instructions

9.3 PROCEDURE CALL INSTRUCTION

The Procedure Call instruction completes the construction of a Procedure Mark in the data stack and
activates it. (The construction of the Mark was initiated by a preceding Mark instruction.)

The Procedure Call instruction is compiled for an MPL PROCEDURE invocation. Its function is to
complete the construction of a Procedure Mark, begun by a preceding Mark instruction, and to
activate the called procedure.

Figure A shows a typical data stack before and after execution of the Procedure Call instruction,
along with the format of the instruction. The "before' picture of the stack indicates the Mark whose
construction was begun by the preceding Mark instruction, and a sequence of words which were
pushed into the stack by code following the Mark instruction. These words are to be passed to the
called procedure as arguments.

One of the functions of the Procedure Call instruction is to activate the new Procedure Mark by
adjusting EP to point to the base of this Mark. Since the SP has been advanced as arguments were
pushed into the stack, the Procedure Call instruction must indicate how many argument words are
being passed. This information is provided in the MARK BASE field, the rightmost byte of the
instruction. Actually, the MARK BASE is a quantity which is three greater than the number of
words passed as arguments, and is therefore the number of words between the hase of the new
Mark and the top of the stack.

The other function of the Procedure Call instruction is to complete the construction of the new
Procedure Mark. The before and after pictures of this Mark are shown in Figure B, The
contents of the Mark under construction are defined in topic 9.2, and the contents of the

completed Mark are defined in topic 2.8. The Procedure Call instruction extracts the destination
information from the "before' Mark, and using the Z bit of this Mark to interpret this information,
changes the Program Base and Program Length registers (if a new program segment is being
invoked), and loads the new value into the Program Pointer. This accomplishes the actual jump
of the program to the called procedure.

The construction of the Mark is completed by the Procedure Call instruction storing the current
Program Pointer, Program Library Number, and overflow status into the Mark.

CALL Procedure Call format: '"52 xx"'
The active stack head registers are pushed into the stack in memory.

EP is loaded with the value SP~2* MARK-BASE. (EP now points to the base
of the Mark.)

The DESTINATION word is fetched from location EP+4.
The current PP is stored at location EP+4. This saves the return address.

The word at location EP+6 is fetched and the Z bit (bit 2) is saved. The current
PLIBN and overflow status (from the PSR) and the R field (from the word at
location EP~6, bits 1-0) are merged to form the status word and loaded into
location EP+6. The overflow status in the PSR is reset.

If the Z bit location (EP+6, bit 2) is a zero, then the DESTINATION is stored
into PP and the CALL instruction is complete. If the Z bit is a one, the called
procedure is in a remote program segment and processing of the instruction
continues.

DESTINATION, bits 15-8, becomes the new PLIBN field in the PSR.
The new PLIBN is used as an index into the Program Library and the program

segment's descriptor is fetched from PLIB. The PB and PL registers are set
from the values in the descriptor.

If the attention bit in the program segment's descriptor is set, an attention
interrupt is caused, and execution of the Procedure Call instruction is
terminated; otherwise the instruction execution continues.

If the trace bit in the program segment's descriptor is set, the internal
trace interrupt status bit is set. (See topic 2.17.)

The value of the remote PRTN (DESTINATION, bits 7-0) is used as an index
into the remote procedure's PRT. This word (external entry address) is
fetched and placed into PP.

MEMORY MEMORY
EP:
LATEST PREVIOUS
MARK MARK
& AN S o
EP:
UNDER :
CONSTRUCTION ol
STACK HD. §rack Ho.
= REGISTERS MARK = REGISTERS
- BASE -
< WORDS <
SP:) _—— o
E E
F 3 SP: F R
|7 0|7 o|
[s | 2 [maRK BASE | cALL INSTRUCTION
T NUMBER OF WORDS PASSED TO
CALLED PROCEDURE AS
ARGUMENTS, PLUS 3 - WORD
OFFSET FOR LATEST MARK
Figure A. Procedure Call Instruction.
MARK UNDER CONSTRUCTION COMPLETED MARK
SLINK SLINK
DLINK DLINK
DESTINATION PP
— | DLEX |-|z| R PLIBN] —]0{ R
WHERE:

IFZ=0: CALLED PROCEDURE IS IN SAME PROGRAM SEGMENT

AND DESTINATION IS PP FOR ENTRY TO CALLED PROCEDURE
IFZ=1: CALLED PROCEDURE IS IN NEW PROGRAM SEGMENT

AND DESTINATION IS PLIBN (BITS 15 — 8) AND PRTN (BITS 7 — 0)
DLEX = NUMBER OF STATIC LINK LEVELS TO PROCEDURE CONTAINING

CALLED PROCEDURE

R = NUMBER OF WORDS TO BE RETURNED BY CALLED PROCEDURE
PLIBN = PLIBN OF CALLING PROCEDURE’S PROGRAM SEGMENT
0=O0VERFLOW STATUS AT CALL EXECUTION TIME

Figure B. Procedure Mark Completion by Call Instruction.

9 Control Instructions

9.4 PROCEDURE BLOCK EXIT INSTRUCTION

The Procedure Block Exit instruction removes the Procedure Mark upon exiting a called procedure.

The Procedure Block Exit instruction is compiled for the MPL END or RETURN statement which
terminates a PROCEDURE block. Its function is to "roll back' the stack to the environment which
existed when the procedure was called. Since the program may be executing within one or more
BEGIN blocks when the PROCEDURE block is to be exited, rolling back the environment may
remove one or more Begin Marks along with the Procedure Mark itself.

Figure A shows a typical data stack before and after execution of the Procedure Block Exit
instruction. In this example, it is assumed that no BEGIN blocks are being executed at the point
when the PROCEDURE block is being exited.

The Procedure Block Exit instruction not only rolls back the stack by deactivating the latest
Procedure Mark (and any subsequent Begin Marks), but it also restores the program environment
and the Program Status Register. Finally, it leaves the R words returned by the procedure

(R is specified in the Procedure Mark) in active stack head registers, so that they will remain on
the top of the stack when the Mark is popped.

A flow chart for determining how many Marks are to be removed is shown in Figure B. If the
DLINK value (in the Mark being removed) is "FFFF" this indicates that the Mark is that of the
MAIN PROCEDURE block (or, if it is a Begin Mark, that the next outermost PROCEDURE block
is a MAIN PROCEDURE). Exiting of this procedure means that the program execution has been
completed, and therefore a program complete interrupt, interrupt vector number 5 is to be
generated.

If the DLINK value is odd, this indicates that the latest Mark is a Begin Mark. The DLINK value
of the first Begin Mark following a Procedure Mark is the SLINK value, plus one, of that Begin
Mark. All consecutively successive Begin Marks have DLINK entries which are copies of that
DLINK. Therefore, the instruction determines the location of the latest Procedure Mark by
subtracting one from the DLINK entry of a Begin Mark.,

If the DLINK value is even, the latest Mark must be the Procedure Mark which is to be removed.

EXIT Procedure Block Exit format: ''54"

The DLINK word at location EP+2 is fetched. If it is "FFFF" a program complete
interrupt (interrupt vector number 5) is generated; instruction execution is then
terminatea. If it is an odd value, one is subtracted from it, and the result is
placed into the EP register.

The stack is adjusted so that R words are in the stack head registers (the value
of R is contained in bits 1, 0 of the word at location EP+6).

The overflow status in bit 2 of the word at location EP+6 is ORed into the current
overflow status bit of the Program Status Register.

The PP word in location EP+4 replaces the contents of PP,

The PLIBN byte in bits 15-7 of location EP+6 is fetched and saved in a temporary
register.

The DLINK value in the EP register, minus two, is loaded into the SP register,
and the contents of location EP+2 (fetched above) is loaded into the EP register.

If the value of PLIBN fetched above equals the contents of the current PLIBN
in the PSR, then the processing of the instruction is complete; otherwise the
processing of the instruction continues.

PLIBN is used as an index into the Program Library and the program segment
descriptor is fetched. The PB and PL registers are loaded with the values
from the Descriptor.

If the attention bit, A, in the descriptor is set, an attention interrupt (interrupt
vector number 8) is taken; otherwise, if the trace bit is set, the trace status

bit is set.
MEMORY MEMORY
DLINK: EP:
PREVIOUS LATEST
MARK MARK
S <o < < STACK HD.
REGISTERS
EP:[” sLINK -=- A
DLINK LATEST [
PP MARK
e =Tl STACK HD. <
REGISTERS
N FROM REMOVED MARK:
PP —PP REGISTER
SP: A - - - " 0 OR’ED WITH OVERFLOW IN PSR
2 PLIBN COMPARED WITH PLIBN IN PSR

AND NEW PB, PL OBTAINED IF DIFFERENT
R WORDS RETURNED (SHOWN HERE AS A, B, C)

Figure A. Procedure Block Exit Instruction, Where Latest Mark is a Procedure Mark.

LOGIC FOR ROLLING BACK
THE CORRECT NUMBER OF
MARKS

VALUE OF
DLINK
IN LATEST MARK

“FFFF”

obD ‘
(BUT NOT “FFFF")

EVEN
MAIN PROCEDURE MARK .
GENERATE PROGRAM Esi'f Bt?,f,!‘_”,‘“"'
COMPLETE INTERRUPT

PROCEDURE MARK:
ROLL BACK 1 MARK [~

Figure B. Number of Marks Rolled Back by Procedure Block Exit Instruction.

9.4

9 Control Instructions

9.5 INTERRUPT PROCEDURE EXIT INSTRUCTION

The Interrupt Procedure Exit instruction removes the Interrupt Mark upon exiting from a procedure
entered as a result of an interrupt.

The Interrupt Procedure Exit instruction is compiled for the MPL END and RETURN statements
which terminate an INTERRUPT PROCEDURE block. Its function is to 'roll back" the stack to the
environment which existed when the interrupt was acknowledged. Since the program may be executing
within one or more BEGIN blocks when the interrupt procedure is to be exited, rolling back the
environment may involve rolling back one or more Begin Marks before removing the Interrupt Mark
itself.

Figure A shows a typical data stack before and after execution of an Interrupt Procedure Exit
instruction. In this example it is assumed that no BEGIN blocks are being executed at the point
when the INTERRUPT PROCEDURE block is being exited.

The Interrupt Procedure Exit instruction not only rolls back the stack by deactivating the latest
Interrupt Mark, but it also restores the program environment and the Program Status Register of
the previous procedure in the current stack.

An explanation of the process of rolling back Begin Marks, until a Procedure Mark is reached, is
given in topic 9.4. The same process is used to roll back to an Interrupt Mark.

IXIT Interrupt Procedure Exit format: "55"
The execution follows these steps:
1. The active stack head registers are pushed into the stack in memory.

2. If the processor is in normal mode, bits 3 and 2 of the byte at location EP + 7
are copied into bits 3 and 2, respectively, of the PSR. This restores the carry
and overflow status. The process continues with step 3. If the processor is in
the executive mode, the byte at location EP + 7 replaces the lower half of the
PSR. This restores the previous interrupt mask, carry, overflow, and mode
(executive/normal) status.

3. The SP register is set pointing to EP-2 and the contents of location EP + 2 are
loaded into the EP register.

4. A new PLIBN is installed into the Program Status Register from the word at SP,
bits 15-8. This is used as an index into PLIB to retrieve PB and PL values.
These values are loaded into the PB and PL registers.

5. If the attention bit in PLIB is not set, or if the attention interrupt (interrupt
vector number 8) is not armed, the process continues with step 6. If the
attention bit is set, and the interrupt is armed, an attention interrupt is then
processed, and execution of the Interrupt Procedure Exit instruction is
terminated; otherwise the instruction execution continues.

6. If the 'Z! bit in the new status, (location EP + 6, bit 0) is set, the PRTN (from
location EP + 4) is used to index into the PRT; the address retrieved from the
PRT is loaded into the Program Pointer Register. If the 'Z' bit is not set, the
word at location EP + 4 is loaded into PP.

7. If the trace bit in PLIB is not set, the instruction execution is complete. If the
trace bit is set, a trace flag is set to cause an interrupt after the next instruction.
All interrupts are postponed until after the trace interrupt. The instruction
execution is then complete.

MEMORY MEMORY

EP:
DLINK:
PREVIOUS ;‘ALEKST
MARK
STACK HD.
REGISTERS
< < < <
EP: 0000’
DLINK LATEST
PP/PRTN MARK
STACK HD.
Pusn ¢ T REGISTERS
MASK e
COXE FROM REMOVED MARK:
<p: — IF WERE IN EXECUTIVE MODE:
: -— - = MASK, C, 0, X, Z - PSR
< USE PLIBN TO OBTAIN NEW PB, PL
IFZ=0:
PP —= PP REGISTER
IFZ=1:

(PB + PL - PRTN) — PP REGISTER

Figure A. Interrupt Procedure Exit Instruction.

9.5

9 Control Instructions

9.6 RESUME TASK IN ANOTHER STACK INSTRUCTION

The Resume Task in Another Stack instruction inactivates the current data stack and activates a
new data stack. The process involves capping off the current stack with an Interrupt Mark and
removing an Interrupt Mark from the top of the new stack.

The function of the Resume Task in Another Stack instruction is to switch to the environment in
the top of a presently inactive data stack. A currently inactive stack has previously been capped
off by an Interrupt Mark which supplies the Program Status Register, Program Pointer, and
Environmental Pointer register values for the new environment. The currently active stack is
then capped off with an Interrupt Mark, to retain its corresponding parameters, and its Stack
Pointer register value is saved in its Stack Base location. The currently active stack provides
the Stack Base and Stack Length register values for the stack which is to be activated.

Figure A shows one typical data stack being inactivated and another typical data stack being
activated, by execution of this instruction. Note that the TOS of the currently active stack
contains the Stack-Base relative address, SD, of a pair of locations which contain the Stack
Base value (divided by four) and the Stack Length value for the stack which is to be activated.

RESM Resume Task in Another Stack format: "'56"
The execution follows these steps:
1. If the system is not in the executive mode a privileged instruction
violation interrupt (interrupt vector number 9.5) is generated

immediately, and instruction execution is terminated.

2. The address of the stack descriptor, SD, is saved in a temporary
register, TI, and is popped from the top of the stack.

3. The active stack head registers are pushed into the stack in memory.

4. The value in the Stack Pointer, SP, register is increased by eight,
and is stored in the location pointed to by SB.

5. A zero is stored in the word at SP-6. The contents of EP are stored
in the word at SP-4. The contents of PP are stored in the word at
SP-2. The PSR is stored in the word at SP.

6. The interrupt stack active status bit is reset. The stack descriptor
address is fetched from the temporary register T1 and the SB and SL
registers are set from the values in the descriptor.

7. The SP register is set to the contents of the word pointed to by SB.
The EP register is set to the value of SP-6. EP and SP now point to
the first and fourth word (respectively) of an Interrupt Mark.

8. Execution continues with step 2 of the Interrupt Procedure Exit
instruction (see topic 9.5).

This is a privileged instruction.

MEMORY

MEMORY
SB:
SD:[SB, STACK NO.2]
SL, STACK NO.2
< AN <
EP: DLINK:
’l‘.n;:'l":(EKST PREVIOUS
STACK HD. MARK
REGISTERS
23 s
SP: A - 2
s 8
SD 10000
DLINK LATEST
STACK PP MARK
NO. 1 =-
(ACTIVE) STACK
NO. 1
(INACTIVE)
MEMORY MEMORY
SB:
3 3 LATEST
- EP: MARK
PREVIOUS
MARK STACK HD.
REGISTERS
< T\ <
0000~
DLINK LATEST
PP/PRTN MARK STACK
NO. 2
Y INIIN]
\\ (ACTIVE)
STACK ;i::
NO. 2 FROM REMOVED MARK:
(INACTIVE) MASK, C, 0, X, Z — PSR
USE PLIBN TO OBTAIN NEW PB, PL
IFZ=0:
PP — PP REGISTER
IFZ=1:

(PB +PL- PRTN) —= PP REGISTER

Figure A. Resume Task in Another Stack Instruction.

9.6

9 Control Instructions

9.7 WAIT FOR AN INTERRUPT INSTRUCTION

The Wait for an Interrupt instruction generates an Interrupt Mark and places the processor in the
wait mode until an interrupt occurs.

The Wait for an Interrupt instruction places an Interrupt Mark on the top of the data stack. It then
sets the processor in the wait mode, causing instruction execution to stop. When any interrupt
occurs, the wait mode is reset, and instruction execution continues with the processing of an
interrupt. See Figure A.

WAIT Wait for an Interrupt format: "5C"
The active stack head registers are pushed into the data stack in memory. The
value in the Stack Pointer, SP, is increased by eight. The value in SP is loaded
into the location pointed to by the Stack Base register.

The Interrupt Mark is installed. The Program Status register is loaded into the
location at SP. The Program Pointer register is loaded into the location at SP-2,

The Environmental Pointer register is loaded into the location at SP-4.

The wait mode bit is set and instruction execution ceases.

MEMORY MEMORY

SB: SB:
EP: DLINK: PREVIOUS
LATEST REVIOU
MARK MARK
STACK HD.
\A v& REGISTERS : é é
. A STACK HD.
SP: A - = 5 REGISTERS
C c
EP:[__ 0000
LATEST DLINK
MARK ldd
SP: PSR e

BIT 0, PROGRAM STATUS REGISTER=— 1
INSTRUCTION EXECUTION HALTS

Figure A. Wait for an Interrupt Instruction.

9.7

9 Control Instructions

9.8 SUPERVISOR CALL INSTRUCTION

The Supervisor Call instruction generates an Interrupt Mark and a Supervisor Call Interrupt.

Control is passed to the Supervisor system software by executing a Supervisor Call instruction.
This process is accomplished by generating a Supervisor Call interrupt, interrupt vector 4.

If the current data stack is the interrupt data stack (the data stack used by the Supervisor
Procedure), an Interrupt Mark is installed, but the stack remains active. This is shown in
Figure A.

If the current data stack is not the interrupt data stack, and the interrupt is to be taken in the
interrupt stack, an Interrupt Mark is installed, and the current stack is made inactive. The
interrupt data stack is then activated. This is shown in Figure B.

In either of the above two cases a one word argument, which was in the top of the previously
active stack, is pushed into the top of the new active stack.

SUPV Supervisor Call format: '"09"
The word in the top of the stack is saved in a temporary register, T1.
The active stack head registers are pushed into the data stack in memory.
The value of the Stack Pointer, SP, is increased by eight.
‘The value in SP is loaded into the location pointed to by the Stack Base register.
The Interrupt Mark is installed. The Program Status Register is loaded into
the location at SP. The Program Pointer register is loaded into the location
at SP-2. The Environmental Pointer register is loaded into the location at
SP4.
If the current data stack is not the interrupt data stack, and the interrupt is
to be taken in the interrupt stack, the latter stack is activated. The Stack
Base and Stack Length for the interrupt data stack are accessed from Monobus
locations ''00000" and ''00002'" and loaded into the Stack Base and Stack Length
registers. The value in the location pointed to by the Stack Base register is

loaded into the Stack Pointer register.

In either case, the argument in T1 is pushed into the currently active stack.

MEMORY

EP:
LATEST PREVIOUS
MARK MARK
STACK HD.
REGISTERS
SP: A - A
B B
ARGUMENT EP:
LATEST
MARK
SP:[ARGUMENT |
Figure A. Supervisor Call Instruction, User Stack is Interrupt Stack.
MEMORY
SB:
EP:
LATEST PREVIOUS
MARK MARK
STACK HD.
T REGISTERS S 'y
A
SP: A _ B
B
ARGUMENT INTERRUPT
USER MARK
STACK D
(ACTIVE)
USER
STACK
(INACTIVE)
—° SB:
<
< < < <
IN pT JEP:
INTERRUPT M:,EERU T
MARK

INTERRUPT
STACK
(INACTIVE)

SP:[[ARGUMENT | _

INTERRUPT
STACK
(ACTIVE)

Figure B. Supervisor Call Instruction, User Stack not the Interrupt Stack.

9.8

9 Control Instructions

9.9 LOAD ADDRESS INSTRUCTION

The Load Address instruction creates an indirect address to be used in accessing data within the
data stack environment of an outer block.

The memory reference instructions are provided with direct addressing modes to access local data
within the current environment and to access global data. To access locations within the environment
of statically intermediate blocks, these instructions are provided with indirect addressing modes.
The indirect address is taken from TOS. (See topic 6.2.) The Load Address instruction is provided
to generate this indirect address in TOS. See Figure A.

The indirect address generated by the Load Address instruction is a Stack Base-relative address.

The instruction generates this address by adding a 16-bit displacement field, which it provides, to
the Stack Base-relative address of the Mark for the desired environment. The Mark's address is

determined by tracing back through the SLINK (Static Link) chain from the current Mark by DLEX

(Delta Lex) levels. (See topic 2.11.) The instruction specifies the DLEX value to be used.

In addition to generating an indirect address as described above, this instruction can also specify
that an index, obtained from TOS, be added in with the indirect address. A field of the instruction

specifies whether this index is a byte, word, or doubleword index. The instruction adjusts the
index to a byte-level index before adding it into the indirect word.

LADR Load Address format: '"06 xx xx xx"'
The address displacement field of the instruction, D16, is pushed into the stack.
If the DLEX addition field of the instruction, D, is a 1, the DLEX field of the
instruction is used to obtain the SLINK value which points to the Mark for the
environment DLEX levels up.

The specific process for determining the desired SLINK value is as follows:

1. The DLEX value is placed in a temporary register, T1. The value in
the Environmental Pointer register is placed in a temporary register T2.

2. If the value in T1 is zero, the desired SLINK value is in T2, and the
process is completed.

3. The value in T1 is decremented by 1. The value at the location pointed
to by the value in T2 is placed in T2.

The process then continues with step 2, above.
If the Index field of the instruction, I, is a 1, an index in TOS1 (at this point) is to be

added to the address being formed in TOS. The Index Length field of the instruction,
L, is used to adjust the index. Specifically:

1. If L = 0, the index is ready to be used.

2, If L = 1, the index is multiplied by two.

3. If L = 2, the index is multiplied by four.

4. If L = 3, the index is to be multiplied by six.

The value in TOS is then added into TOS1 and TOS is popped. If thel field is a 0, the
procedure described in this paragraph is skipped.

The specific definitions of the instruction fields are given in Figure A.

|7 4| o|7 al32)i of7 0|7 0

0 6 DLEX |D|I| L D16

T— ADDRESS DISPLACEMENT

LENGTH OF INDEXED ITEM:
0: BYTE
1: WORD
2: DOUBLEWORD
3: TRIPLEWORD

—— INDEXING:

0: NO INDEXING

1: ADJUST THE INDEX IN TOS
FOR ITEMLENGTH(PER L
FIELD) AND ADD TO
ADDRESS FIELD

'—— DLEX ADDITION

0: NO EFFECT

1: ADD THE VALUE OF THE STATIC
LINK (SLINK) FOR THE DLEX TH
ENVIRONMENT BACK DOWN THE
STATIC LINK CHAIN TO THE
ADDRESS FIELD. (IF DLEX =0
THE CONTENTS OF THE EP
REGISTER ARE ADDED.)

'— DLEX VALUE

0—15: NUMBER OF LEVELS OF INDIRECT
ADDRESSING DOWN THE STATIC
LINK CHAIN TO OBTAIN THE STATIC
LINK (SLINK) VALUE TO BE USED
IFDFIELD =1

Figure A. Format of Load Address Instruction.

9.9

9 Control Instructions

9.10 GO TO INSTRUCTION

The GOTO instruction provides the means to transfer program control and, if desired, to
simultaneously exit to the environment of an outer block.

An MPL GOTO statement can specify that program control be transferred to a statement in the
current block or an outer block. The GOTO instruction is compiled to implement this process.

The GOTO instruction provides two parameters; the new Program Pointer value and the Delta
Lex, DLEX, between the current data stack environment and the desired environment. The
desired environment is reestablished by tracing back through the SLINK (Static Link) chain from
the current Mark by DLEX levels. The Mark pointed to by that SLINK value is then activated by
placing the SLINK value in the Environmental Pointer register.

A typical data stack, before and after execution of the GOTO instruction, is shown in Figure A.
Note that the Stack Pointer value is not changed by execution of the GOTO instruction. To
complete the environmental "roll back, " SP must be set to point to the last word of the new

environment. This is done by executing a Set SP instruction at the place that the GOTO
instruction points to.

GOTO GOTO format: '57 xx xx xx''

The ADDRESS field of the instruction is placed into the Program Pointer
register. The Environmental Pointer, EP, is rolled back DLEX levels.
The specific process for doing this is as follows:

1. The DLEX value is placed in a temporary register, T1.

2. If the value in T1 is a zero, the process is complete and instruction
execution is completed.

3. The value in T1 is decremented by 1. The value in the location
pointed to by the value in EP is placed in EP.

The process then continues with step 2, above.

The specific definitions of the instruction fields are shown in Figure A.

MEMORY . MEMORY

73 o
EP:
LATEST
MARK
LEVELS
OF SLINK
CHAIN L
EP: LATEST
RK
STACK HD. STACK HD.
REGISTERS REGISTERS
SP: — SP: ——
NOTE: MUST EXECUTE A SET SP INSTRUCTION
(SSP) TO ESTABLISH NEW SP VALUE
|7 0]74|30]15 0|

rs | 7 | 0 |2)'3| ADDRESS J GO TO INSTRUCTION

NEW PP VALUE

NUMBER OF LEVELS OF INDIRECT
ADDRESSING DOWN THE STATIC

LINK CHAIN TO OBTAIN THE NEW
VALUE TO BE USED FOR EP.

(DLEX = 0 MEANS EP DOES NOT CHANGE)

Figure A. Branch to New Environment (GOTO) Instruction.

9.10

9 Control Instructions

9.11 MISCELLANEOUS CONTROL INSTRUCTIONS

Ten types of control instructions are defined.

sSSP Set Stack Pointer format: ''5A xx xx"
The contents of the active stack head registers (if any) are pushed into the data
stack within memory. The Stack Pointer register is loaded with the value obtained
by adding the contents of the Environmental Pointer to twice the value contained in
the rightmost two bytes (xxxx) of the Set Stack Pointer instruction.

SSPL Set Stack Pointer Indirect format: ""5B"
The contents of the active stack head registers (if any) are pushed into the data
stack within memory. The word on the top of the stack is popped, multiplied by
two, and added to the value in the Environmental Pointer; the resultant value is
loaded into the Stack Pointer.

SSR Stuff Stack Registers format: "5F"
The contents of the active stack head registers (if any) are pushed into the data
stack within memory, (and the Stack Pointer is adjusted accordingly). The stack
head registers are then all marked inactive.

POP Pop TOS format: "0B"
The word on the top of the stack is popped.

NOP No Operation format: "01"
This instruction performs no operation. Instruction execution continues
immediately with the next sequential instruction.

PNOP Privileged No Operation format: "02"
If the processor is in the executive mode, then this instruction performs no
operation. Instruction execution continues immediately with the next sequential
instruction.

If the processor is in the normal mede, a privileged instruction violation
interrupt, interrupt vector number 9.5 occurs.
This is a privileged instruction.

TCAR Test Carry format: ""04"
The carry status condition is tested, and if it is set, a word value of one (True),
is pushed onto the top of the stack. If carry is reset, then a zero (False), is
pushed. Testing the carry status does not change its condition.

TOVF Test Overflow format: ""03"

The overflow status condition is tested, and if it is set, a word value of one
(True), is pushed onto the top of the stack. If overflow is reset, then a zero
(False), is pushed.

This instruction resets the overflow status condition.

TRAP

XIM

Trap format: "'00"

A Trap instruction interrupt (interrupt vector number 7) is generated
immediately after this instruction.

Exchange Interrupt Mask format: "0A"
The Interrupt Mask in the PSR is exchanged with bits 7 through 4 of the

word in TOS. The timer update enable bit will be set or reset by bit 3

of TOS. This is the only instruction that can change the state of the

timer update enable bit. The instruction following this instruction will

be executed before any interrupt can occur.

This is a privileged instruction.

9.11

9 Control Instructions

9.12 INITIATE MICROPROGRAMMED PROCEDURE INSTRUCTION

The Initiate Microprogrammed Procedure instruction causes execution of a procedure specified by
a firmware routine. This instruction provides the capability to call out procedures incorporated in

add-on firmware.

MPL provides the capability to call out procedures which are implemented in firmware added on to
the standard 32/S firmware. The capabilities of the standard 32/S can thereby be extended in
high-speed firmware and utilized at the MPL level without revising the MPL compiler.

Each 32/S instruction has an operation code which is interpreted to cause a micro-level jump

to a specific 32/S firmware routine for executing that instruction. This is diagrammed in Figure A,
The Initiate Microprogrammed Procedure instruction provides a 16-bit control memory address
which specifies a corresponding jump to a specific firmware routine.

MICR Initiate Microprogrammed Procedure format: "OC xx xx"'
The control memory address contained in the rightmost two bytes of the
instruction, (xxxx), are loaded into the control memory address register.

Execution of the firmware beginning at this control memory address is
then initiated.

This is a privileged instruction.

PROGRAM
SEGMENT,
MAIN
MEMORY

oc1 +/

0C2

F(OC1):

F(OC 2):

MICR

ADDRESS

ADDRESS:

MICROPROGRAM,
CONTROL MEMORY

Figure A. Initiate Microprogrammed Procedure Instruction.

9.12

10 String Instructions

10.1 STRING DESCRIPTORS AND INSTRUCTIONS

The string move and compare instructions are introduced, and the string descriptor is defined.

The 32/S provides two groups of string instructions: move and compare. The pairs of string
operands for these instructions are each defined by a two-word string descriptor.

The format of the string descriptor is shown in Figure A. The most significant 16 bits of the
doubleword contain the string start address. Successive bytes of the string are at successively
higher addresses. The least significant 16 bits contain the length, in bytes, of the string

(0 to 65, 535).

The string descriptors for the two strings must be in the top of the stack before execution of the
instructions. (In the MVA instruction, two pointers must also be in the top of the stack.) The
string descriptors are popped from the stack and used to control the instruction execution.
Specifically, the start address is incremented and the string length is decremented as each byte
of the strings is moved or compared.

String move instructions move a source string, as defined by the source string descriptor, into
the string locations specified by the destination string descriptor. The move is completed
whenever either string length is decremented to zero.

String compare instructions scan two strings from left to right until the end of one or both strings,
or until a difference is found. Comparisons are made on 8-bit bytes as positive integers. If the
strings are equal byte by byte up to the end of one string and the other string is longer, the short
string is considered less than the longer string. Strings are equal only if they have identical
lengths and each character equals its corresponding character in the other string.

Since the byte-length of the strings being moved or being compared may be quite long, it is necessary
to break into the instruction execution in order to service interrupts and concurrent I/0. This is
accomplished by stopping the move or comparison operation after 16 bytes have been moved or
compared. The Program Pointer (PP) is decremented by two, and the updated string descriptors
(and in the case of MVA, the two pointers) are pushed into the stack. The instruction execution is
then complete. After any outstanding interrupts or concurrent I/O requests have been handled,
execution of the same string instruction continues where it had left off.,

el

lo]

STRING START ADDRESS

STRING LENGTH

:MOST SIGNIFICANT HALF
:LEAST SIGNIFICANT HALF

Figure A. String Descriptor.

10.1

10 String Instructions

- 10.2 STRING INSTRUCTIONS

Three types of move string instructions and six types of compare string instructions are defined.

String Move Instructions

MOV Move String Within Stack Op Code: '"4F30"

The string start addresses within both the source string descriptor and
the destination string descriptor are relative to the Stack Base, SB.

The source string descriptor (in TOS, TOS1) and the destination string
descriptor (in TOS2, TOS3) are popped and used to move a string.

1. If either string length field is zero, the instruction proceeds with
step 4.
2. The byte within the stack, addressed by the source start address,

is fetched and stored at the byte in the stack addressed by the
destination start address.

3. Each address is incremented by one and each length is decremented
by one. The instruction proceeds with step 1, unless the move loop
(steps 1-3) has been executed 16 times. If the loop has been executed
16 times, the instruction continues with step 5.

4. The updated destination descriptor is pushed into the top of the stack.
The instruction execution is complete.

5. The Program Pointer is decremented by two, and the current
destination string descriptor and source string descriptor are
pushed into the stack. The instruction execution is complete.

MVP Move String from Procedure to Stack Op Code: '"4F31"

This instruction is similar to MOV except that the source string is contained
in the current Program Segment. (The string start address in the source
string descriptor is relative to the Program Base, PB.)

MVA Move String Absolute Op Code: ''4F38"

A source string descriptor (in TOS, TOS1), a pointer (in TOS2) to the

source string base address, a destination string descriptor (in TOS3, TO0S4),
and a pointer (in TOS5) to the destination string base address are popped

and used to control the move. The pointers are used to fetch the source

and destination base address (D18's) from the stack. The start addresses

in the string descriptors are offset relative to their respective base addresses.
The move occurs similarly to MOV except that if after 16 bytes the instruction
is not complete, the pointers as well as the updated string descriptors are
pushed back into the top of the stack.

This is a privileged instruction and if executed in normal mode an interrupt (9.5)
will be generated instead.

String Comparison Instructions

All string comparison instructions perform similar operations:

1. The two string descriptors in the top of the stack are popped.

2. The string specified by the descriptor which had been in TOS2,
TOS3 is compared to the string specified by the descriptor which
had been in TOS, TOS1, on the basis specified by the instruction
name.

3. If the result of the comparison is true, a word with the value of 1
is pushed into the stack. If the result of the comparison is false,
2 word with the value of 0 is pushed into the stack.

The string start addresses in both string descriptors are relative to the Stack Base, SB.

In the instruction definitions which follow,

given:

SLT

SLE

SEQ

SNE

SGE

SGT

String Compare Less Than Op Code:

String of descriptor in TOS2, TOS3 less than string of descriptor in
TOS, TOSI1.

String Compare Less Than or Equal Op Code:

String of descriptor in TOS2, TOS3 less than or equal to string of
descriptor in TOS, TOS1.

String Compare Equal Op Code:

String of descriptor in TOS, TOS3 equal to string of descriptor in
TOS, TOS1.

String Compare Not Equal Op Code:

String of descriptor in TOS2, TOS3 not equal to string of descriptor
in TOS, TOS1.

String Compare Greater Than or Equal Op Code:

String of descriptor in TOS2, TOS3 greater than or equal to string
of descriptor in TOS, TOSI.

String Compare Greater Than Op Code:

String of descriptor in TOS2, TOS3 greater than string of descriptor
in TOS, TOS1.

only the basis for a true comparison result is

"4F32"

H4F33"

"'4F34"

”4F35"

""4F36"

"4F37"

10.2

11 Control Memory

11.1 CONTROL MEMORY

Add-on control memory is addressable via the Monobus, permitting the loading and verifying of
firmware in optional writable control memory.

The standard 32/S firmware is provided in 2K (32-bit) words of read-only control memory on the
Processor Control board. Additional control memory is available in both read-only and writable
control memory modules. New firmware is usually debugged in the writable control memory and
then implemented in the lower-cost, non-volatile, read-only memory.

New firmware may be developed, either to add to the 32/S instruction set, or to replace the 32/S
instruction set. In either case, the standard 32/S firmware provides the computer control to load
and to verify the new firmware in the writable control memory. In the case of a replacement
instruction set, control is manually switched from the 32/S firmware to the new firmware (in the
writable control memory) after the load and verify operations.

The writable control memory, WCM, interfaces with the computer in two ways. The WCM interfaces
to the computer via the Monobus, permitting it to be loaded and verified. The WCM interfaces to
the computer via the control memory address and data buses, and operates as control memory.

A manual switch on the Processor Control board is provided to switch out the read-only memory
containing the 32/S firmware if a replacement firmware set is being developed.

When interfaced to the computer via the Monobus, the WCM modules respond to Monobus addresses
in the ""38000'" to "3BFFF'" range. Control memory address and Monobus address are related as
follows (see Figure A):

Monobus address = '"38000"" + 4 * control-memory-address + byte-number
where

byte-number: byte position within control memory word, with the leftmost byte
having a byte position of 0.

The optional read-only control memory module provides up to eight pages of control memory. Its
Monobus addressing (for read only) is related to its control memory addressing in the same manner
as for the WCM.

NOTE: The WCM modules require a high power supply current. Therefore, if more than one module
is used, an auxiliary power supply will be required, the power line etch in the backplane must be cut,
and caution must be observed in placement of the modules. See topic 13.1.

Each WCM module provides one page (512 32-bit words) of control memory. A four-pole switch on
the module is manually set to specify the page address. The poles of this switch, reading from left to
right, are: .

S3: bit 2
52: bit 1
S1: bit 0

S0: not used.

If add-on (to the 32/S) firmware is being developed, the WCM modules must be set to pages 4
through 7 so as to follow the four pages of the 32/8 firmware. If a replacement firmware is
being developed, the WCM pages may start with page 0.

The procedure followed in debugging 32/S add-on firmware is as follows:

1. Set the page addresses on each WCM module to page 4, or higher.

2. Set the control switch on the Processor Control module to control. »

3. Start the computer and load and verify the WCM with the new firmware.
4. Start the computer and debug the new firmware.

The procedure followed in debugging a replacement firmware is as follows:

1. Set the page addresses on each WCM module to page 4, or higher.
2. Set the control switch on the Processor Control module to control.
3. Start the computer and load and verify the WCM with the new firmware.
4. Halt the computer and set the page address on successive WCM to
page 0, 1, 2, 3.
5. Set the control switch on the Processor Control module to off.
6. Start the computer and debug the firmware.
MONOBUS
*38000"
4* CMA
+BYTE-NO.
o T
CONTROL MEMORY
0 1 CMA: 0 I 1 I 2 l 3
2 3 -
BYTE-NO.

| BYTE | BYTE | BYTE | BYTE |

Figure A. Control Memory Address—Monobus Address Relationship.

1.1

12 Front Panel

12.1 MAINTENANCE & BASIC FRONT PANELS

The maintenance and basic front panels provide a multi-position key lock switch, and interrupt and
load buttons. The maintenance panel, in addition, permits selection of one of 18 different address/
data pairs for display or for entry via switches. The maintenance panel also provides 11 control
switches and seven status displays.

A simplified view of the maintenance front panel is shown in Figure A. The basic front panel has
only the key lock switch, load button, and interrupt button.

The maintenance panel switches and displays are grouped into four areas. The display selectors
are 18 switches which define the meaning of the address display, data display, and entry keys in
the area immediately below. Each display selector is a momentary switch with an accompanying
indicator to mark the last display selector depressed. The definitions of the display selectors
are given in topic 12.3. The selectors are labeled with the address definition above, and the
data definition below, a horizontal line.

The address displays are 18 indicators which are defined by that display selector which is marked
by the lighted indicator. The data displays are 16 indicators which are defined by the marked
display selector. The entry keys are 18 alternate action switches which are used to enter the
address or the display specified by the marked display selector. Address enter and data enter
switches in the control switch area define the use of the entry keys.

The status indicators are seven indicators which display the hardware operational status (e.g.,
clock running, breakpoint reached).

The control switches are 11 switches which permit the operator to control the computer operation
(e.g., system reset) and the panel operation (e.g., address enter).

DISPLAY SELECTORS

ADDRESS DISPLAY
DATA DISPLAY
ENTRY KEYS

[STATUS INDICATORSJ [CONTROL SWITCHES J

QB4

AN

x OPERATOR INTERRUPT BUTTON

LOAD BUTTON

KEY LOCK SWITCH

Figure A. Simplified View of Maintenance Panel.

| a a a a (=} a o o (=] a o a o o o o [m=) 1
ADR_ MBA CMU_NCMA cMA DAR fP__ P8 _SP_ EP SB
DDR MBD ML F [LOC/M ABS/M PB/M EP/M_SB/M_SP/M TOS NSTR PL SPEP PSR SL
[... [e e o

a a a a a o a a o a a a a a a a a a)
ADDRESS
a a a a o a a o a a) a a a a a a a
DATA
[O [B | B

o o o

INSTR CMA MBA BREAK
ENTERENTER DAR STEP

SYS PCREG CLOCK
STOP BREAKBREAK +-/W

MEM ON LOCK CLOCK BUS INSTR BREAK RESET ENABL HALT
c o o) (IO OJOOCI0] 00 J0]

[m] a a a

RUN LOCK
Db
HOLD @ ‘® OFF

Figure B. Maintenance Panel

12.1

12 Front Panel

12.2 KEY LOCK, LOAD & INTERRUPT BUTTONS

The 32/S computer can be put in any one of five states with the key lock switch. An initial program
load can be accomplished by depressing the load button, and an operator interrupt can be caused by
pushing the interrupt button.

The key lock switch, load button, and interrupt button are controls which are common to both the
maintenance and basic front panels. The meaning of these controls is described in Figure A.

The key lock switch has five unique positions. Basically, OFF and HOLD are identical, except that

in the HOLD position, power is supplied to the MOS memory modules (only), permitting data

retention without batteries at a time when the user wishes to turn off the computer and controllers.
STOP permits all computer operations except instruction execution (e.g., concurrent I/0). RUN

and LOCK are identical normal running modes, except that in LOCK the operator interrupt is the

only operational button, or switch, on the panel which affects machine execution. While in LOCK

any register can be displayed, but only the DAR can be modified (via entry switches or via the

ADV DAR switch), and break conditions can be detected (but machine execution does not halt on break).

The specific definitions of the key lock switch positions are as follows:

OFF: All AC and battery power is off.

HOLD: Power supply provides power and refresh signals to the MOS memories,
ensuring data retention. (AC line voltage or a battery option must be
present.)

STOP; Power is on to the entire computer. All éomputer operations are enabled

except for execution of 32/S instructions. The enabled operations include
concurrent 1/0 transfers, timer update, and power fail interrupt,
acknowledgment and operation of the front panel itself. This is the only
state in which the LOAD button is active. The purpose of the STOP
position is to permit operation of the front panel or to perform an Initial
Program Load before instruction execution is begun. It is for this reason
that the STOP position is placed both between OFF and RUN/LOCK and
between HOLD and RUN/LOCK.

If a power fail occurs while the key is in the STOP position, the computer
reverts to the run state. Turning the key from STOP to HOLD returns
the machine to the run state and causes a power fail interrupt.

RUN: Power is on to the entire computer. All computer operations, including
instruction execution, are enabled. All maintenance panel functions
except the LOAD button are enabled.

LOCK: Power is on to the entire computer. All computer operations, including
instruction execution, are enabled. All maintenance panel functions
which affect machine operation, except the operation interrupt INT are
disabled.

The LOAD and INT buttons are defined as follows:

LOAD: LOAD is a momentary-action button which, when depressed, causes an
Initial Program Load (IPL) to start. (See topic 12.6.) It is only operative
when the key lock is in the STOP position.

INT: INT is a momentary-action button which, when depressed, causes an
operator interrupt to occur. (See topic 3.8.) It is operative when the
key lock is in the STOP, RUN, or LOCK positions.

ALL CONTROLS OPERATIONAL EXCEPT LOAD

POWER ON
PROCESSOR COMPLETELY OPERATIONAL
INSTRUCTIONS BEING EXECUTED

INTERRUPT (INT) IS ONLY OPERATIONAL CONTROL

LOAD INT
POWER OFF
EXCEPT TO
MOS MEMORY
OPERATE OPERATE
POWER ON IN STOP IN STOP,
CONCURRENT 1/0, TIMER UPDATES, RUN, LOCK

POWERFAIL; RESTART, LOAD, INT
DISPLAY REQUESTS RECOGNIZED
NO INSTRUCTION EXECUTION

Figure A. Controls Common to Both Basic and Maintenance Panels.

12.2

12 Front Panel

12.3 DISPLAY SELECTORS

The display selectors permit the operator to display and modify Monobus locations specified both
absolutely and relative to the 32/S data stack and program segment registers. Local memory and
the Program Status Register can also be displayed and modified.

The 18 display selectors are divided into two groups. The leftmost six selectors permit display of
hardware-level buses. The rightmost 12 selectors permit display and modification of Monobus
locations specified both in absolute addresses and in addresses relative to the data stack and the
32/S hardware registers. These Monobus locations include locations in main memory, read/write
control memory, and the Device Register Blocks of 1/O device controllers.

The definition of the rightmost 12 display selectors is indicated in Figure A. A Monobus map is
shown with the label from each of the selector switches (except, in the case of the local memory
selector, a local memory map is shown). The item which has the@rsymbol next to it is the one
which is displayed on the address display and loaded by the ADDR ER switch. The item which
has the @ symbol next to, or in it, is the one which is displayed on the data display and loaded by
the DATA ENTER switch.

The term DAR refers to the display address register. This is an 18-bit register which is loaded
and modified only from the maintenance panel and has no function other than holding a relative
Monobus address for panel display and entry purposes. When the DAR is selected, its value can
be incremented by depressing the ADV DAR switch, permitting the panel operator to step through
Monobus locations.

NOTE: When either of the two display selectors involving the Stack Pointer, SP, are depressed, the
contents of the stack head registers are first pushed into the memory stack and SP is adjusted

accordingly.

The definition of the six hardware level display selectors is given briefly, although the 32/S user
will not need to use them.,

CMA : Display the current control memory address as the address, and

I the I-bus as the data.

"

CMA : Display the current control memory address as the address, and

F the F~bus as the data.
NCMA : Display the next control memory address as the address, and the
CML least significant 16 bits of the control memory data as the data.
CMU : Display the most significant 16 bits of the control memory data as
CML address, and the least significant 16 bits of control memory as data.
MBA : Display the hardware Monobus address register as address and the
MBD Monobus data register as data.
ADR : Display the most recent contents of the address display and data
DDR display registers. (Updated by MBA/MBD and by firmware driven

displays.)

LOCAL

M
o EMORY
(® oar
_L D)
32 —»
DAR
Loc/m
MONOBUS
sB
EP
(® par
N5
DAR
EP/M
MONOBUS

TOS @)_

PP

TOS

MONOBUS

T0S

SP
SP — EP

MONOBUS

DAR
18 BIT

1. _()

DAR
ABS/M

MONOBUS

N Ol

PB—-I—

® v
L NIGO)

DAR
SB/M

MONOBUS

BYTE
DISPLAY
PP
INST
MONOBUS
SB—-l—>
EP
PSR:
EP_
PSR

STACK, WITH SP ADJUSTED ACCORDINGLY

MONOBUS

(o)

DAR
PB/M

MONOBUS

SB

-]

TOS

DAR
SP/M

*

MONOBUS

@PBT—
o7,

PB

PL

MONOBUS

SB
SL

* CAUSES CONTENTS OF STACK REGISTERS TO BE PUSHED INTO MEMORY

DAR (A)

Figure A. Dispaly Selection Right-most 12.

12.3

12 Front Panel

12.4 CONTROL SWITCHES

The functions of reset, break-point and single-step are provided in the control switch area. This
area also contains the two switches which cause the entry keys to be read in as either address or

data.

The 32/S break-point and single-step operations are accomplished with the use of the CLOCK
HALT, INSTR STOP, CMA BREAK, MBA BREAK, BREAK+-/W, and STEP switches. The basic
definition of these switches' functions is given first, but since their operation interacts, Figure A
will be used to explain how break-point and single-step operations are performed.

CLOCK HALT : Depressing this alternate action switch halts the computer
clock, stopping execution of firmware instructions.

INSTR STOP : Depressing this alternate action switch generates a stop
interrupt and stops further execution of 32/S instructions.
Concurrent 1/0, timer updates, and the front panel remain
operational.

CMA BREAK : Depressing this alternate action switch in conjunction with
the MBA BREAK switch specifies that the break address be
interpreted as a word address. (By itself, this switch is
used to control a break on control memory address - see
the manual on the 3200 Microprocessor.)

MBA BREAK : Depressing this alternate action switch specifies that the
entry keys provide the Monobus address which defines a
break condition.

BREAK+-/W Depressing this alternate action switch in conjunction with
the MBA BREAK switch specifies that the break condition
only arises when a write operation is being performed at the
Monobus break address. (This switch is also used to control
a control memory break function - see the manual on the
3200 Microprocessor.)

STEP : Depressing this momentary action switch causes execution
of one firmware or one 32/S instruction depending, respectively,
upon whether the CLOCK HALT is depressed or if only the
INSTR STOP switch is depressed.

Figure A shows how the six control switches defined above are used to accomplish break-point and
single-step operations. The CMA BREAK, MBA BREAK, and BREAK+-/W switches define the break
condition. If no break condition is specified, the STEP switch can be used to single step through
firmware instructions (if CLOCK HALT is depressed) or 32/S instructions (if INSTR STOP, only,

is depressed).

If a break condition is specified, but neither CLOCK HALT or INSTR stop is depressed, the computer
will continue to run. However, a sync pulse is generated and the BREAK display (in the status
indicators area) flashes each time the break condition occurs.

If a break condition is specified, and either the CLOCK HALT or INSTR STOP is depressed, the
computer runs until the break condition occurs. At that point, it gives a stop interrupt (if the

INSTR STOP switch, only, is depressed) or halts the clock (if the CLOCK HALT switch is depressed).
Once the break condition has been reached, depressing the STEP switch releases the computer to do
at least one 32/S instruction (if the INSTR STOP switch, only, is depressed) or at least ane firmware
instruction (if the CLOCK HALT switch is depressed).

The inputting of address or data with the entry keys is controlled by the ADDR ENTER and DATA
ENTER switches, in conjunction with the display selectors. The display address register, DAR,
which holds a relative Monobus address for display, is advanced by the ADV DAR switch.

ADDR ENTER : If this momentary action switch is depressed, the 18 bits
specified by the entry keys are entered into the address
register specified by the active display selector. A depressed
entry key is entered as a 1-bit.

DATA ENTER : If this momentary action switch is depressed, the 16 bits
specified by the 16 rightmost entry keys are entered into the
local memory location, Monobus location, or register
specified by the active display selector. A depressed entry
key is entered as a 1-bit.

ADV DAR : 1f this momentary switch is depressed, when any display
selector DAR/xxx is selected, the maintenance panel's DAR
register is incremented by two, unless LOC/M is selected
in which case it is incremented by one.

The system reset function is performed by the SYS RESET switch:

SYS RESET : Depressing this momentary switch issues a system reset
signal to all logic in the computer, maintenance panel, and
1/0 device controllers.

The PCREG ENABL switch is used in conjunction with firmware debug operations only - see the
Microprocessor manual.

CLOCK INST CM MBA BREAK STEP
HALT STOP BREAK BREAK +-/W
— J/

BREAK CBNDITION
— NO BREAK
— READ/WRITE @BYTE
v — WRITE ONLY ADDRESS
— READ/WRITE @ WORD
— WRITE ONLY ADDRESS
— CPU RUNS; SYNC PULSE AND
BREAK LIGHT ON BREAK
— GENERATES STOP INTERRUPT
ON BREAK
v (JORA) — HALTS CLOCK ON BREAK
] v # — EXECUTES AT LEAST 1 32/S
INSTRUCTION AND THEN

GENERATES STOP INTERRUPT
ON BREAK

v (JOR4) v — EXECUTES AT LEAST 1 FIRM.
INSTRUCTION AND THEN
HALT CLOCK ON BREAK
t — EXECUTE 1 32/S INSTRUCTION
AND GENERATE STOP INTERRUPT
— EXECUTE 1 FIRM. INSTRUCTION
AND HALT CLOCK.

-
-

-+ @{*t e = =«
L<—

-+

-

v (YORA)

Figure A. Break-Point and Single-Step Operations.

12.4

12 Front Panel

12.5 STATUS INDICATORS

The seven status indicators indicate the dynamic operational state of the computer.

The status indicators are defined as follows:

MEM

ON

LOCK

CLOCK :

BUS

INSTR

BREAK :

This indicator is lit if the MOS main memory has power.

This indicator is lit if the 32/S computer has power on.

This indicator is lit if the key lock is in the LOCK position.
This indicator is lit if the computer clock is running.

This indicator lights each time a Monobus transfer takes place.
This indicator lights whenever a 32/S instruction is executed.

This indicator lights whenever a break condition occurs.

12.5

12 Front Panel

12,6 INITIAL PROGRAM LOAD, IPL

A program can be loaded via the I/0 device controller specified by the configuration switches on the
Processor Data Board. The IPL is initiated from the LOAD button on the frant panel.

A flow chart explaining the Initial Program Load feature is shown in Figure A. Note that the size
of the IPL record is device dependent, being a single sector on a disc, a single record on a magnetic
tape unit, and a variable-length record on any concurrent 1/0 device.

The I/0 device controller which is to perform the IPL operation is specified by a four-pole switch on
the Processor Data board. This switch permits selection of any device number in the range of 0 to 15.
The poles of this switch are, reading from left to right:

S3: bit 3 1
S2: bit 2
S1: bit 1
So: bit 0

of device number

The IPL record is read into main memory, starting at absolute location 0. The format of this record
must be obtained from Microdata. It includes a brief program segment and data stack.

After the IPL record is loaded, the processor begins execution of the procedure in the record's program
segment. This IPL procedure reads in a loader procedure and creates a data stack for use by that
procedure. The IPL procedure terminates with a RESM instruction which activates the newly created
stack and calls the loader procedure.

SET SWITCHES ON DATA BOARD TO DEVICE
NUMBER OF IPL DEVICE

LOAD MEDIA WITH IPL RECORD ON IPL DEVICE

TURN KEY SWITCH TO STOP OR SET INST STOP SWITCH

PUSH LOAD BUTTON, PLACE MACHINE IN RUN STATE

IPL DEVICE READS

IPL RECORD
INTO MEMORY,
STARTING AT 0
CONCURRENT
DISC MTU 1/0 DEVICE
READS DRIVE 0, READS NEXT Féﬁl’é‘%’i‘;ﬁ?
SECTOR 0, RECORD BYTE DEFINES
TRACK 0, _
TOP SURFACE RECORD: READS
TOP PLATTER T g\lrJTME%ER OF
DEVICE STOPS
POWER RESTART
OCCURS

PROGRAM
EXECUTION

Figure A. Initial Program Load.

12.6

13 Power

13.1 POWER REQUIREMENTS

Power requirements are specified for the standard 32/S computer, memory, and I/0 device
controller modules.

The current drawn from each of the four power supply voltage lines is listed in Figure A. Each
system requirement must be checked for current requirements, particularly on the +5 volt line
before being assembled. :

The power to 32/S modules is supplied via the backplane. Normally all power is provided by the
integral power supply. However, when additional power is required, it can be provided by using
an additional power supply.

An additional power supply can be used to supply additional +5 volt current. To do this, two cuts
must be made in the +5 volt printed circuit etch of the backplane. This will separate the +5 volt
line used by the front card slots from the +5 volt line used by the back card slots. The cuts can
be made between any pair of adjacent slots starting with the seventh and eighth. A remote-
mounted supply is then plugged into the rear end of the backplane.

Standard rack-mounted power supplies are available to provide 20 amps or to supply 40 amps on
the +5 volt line.

Instructions for cutting the backplane, ordering, and installing the additional power supply may
be obtained from Microdata.

NOTE: The user must keep in mind the power requirements of various modules if he wishes
to move modules around in a system configured with an additional remote power supply.

MODULE +5.0V +12V -12v +21V +5.3V
DATA 40 - - - -
MONOBUS INTERFACE } CcPU 25 - - - -
PROCESSOR CONTROL 5.0 - - - -
8K X 16 MOS MEMORY — ACTIVE 0.35 — - 0.5 0.7
— INACTIVE 0.35 - - 0.2 0.7
— STANDBY (] - - 0.2 0.02
MAINTENANCE FRONT PANEL 5.6 - - - -
(SWITCH AND LOGIC)
BASIC FRONT PANEL 0.1 - - - -
READ-ONLY CONTROL MEMORY - _ _ _ _
EXPANSION, 512 WORDS :
READ-ONLY CONTROL MEMORY 3.0 _ _ _ -
EXPANSION, 1K WORDS ’
WRITABLE CONTROL MEMORY, 7.4 - - - -
512 WORDS
MPI/O CONTROLLER 38 - -
DISC CONTROLLER 4.6 - - - -
MAGNETIC TAPE CONTROLLER 3.8 - - - -
BUS COUPLER 1.0 - - - -
TOTAL AVAILABLE FROM 35.0A 3.0A 3.0A 4.0A 6.0A

INTEGRAL POWER SUPPLY

Figure A. Module Power Requirements.

13.1

13 Power

13.2 POWER FAIL & RESTART

The software servicing of a power fail interrupt and firmware reaction to a restart are described.

The power fail circuitry in the power supply provides a power fail interrupt (interrupt vector
number 0) when a loss of AC power is detected. A minimum of 2 milliseconds is assured from
that time until the DC power drops below regulation. The processor will go into the run state
if it had been in the wait state.

The Interrupt processing procedure must be executed in the interrupt stack (S = 1 in the power
fail interrupt vector). The last instruction after preparing for the power fail must be a WAIT
instruction. This instruction builds a Mark in the interrupt stack.

When power is restored, the processor restarts execution at the instruction following the WAIT
instruction, operating out of the interrupt stack.

A restart occurs when the key lock is switched from OFF or HOLD to STOP, after restoration
of power following a power failure, or after an initial program load (see Initial Program Load,
topic 12.6). The Interrupt Stack Descriptor (locations 00" and '02'") is used to set up the SB
and SL registers. The contents of the word addressed by SB are transferred to the SP register.
The word at SP-4 is stored into the EP register. The word at SP is used to restore the PSR
and then PLIB is accessed to set up PB and PL. PP is restored from the word at SP-2 and
then the top four words of the stack are popped (SP is decremented by 8). The interrupt stack
active status bit is set and the wait status bit is reset. Instruction execution starts if and when
the key switch is set in the RUN or LOCK position.

13.2

A 1/0 Device Controllers

A-1 SERIAL INPUT, MPI/O CONTROLLER

The Device Register Block is defined for the serial input controller in the MPI/O module.

STATUS

ECHO PARITY | INTERRUPT
— MODE MODE MODE ORDER

_ DATA

NOT USED %

Figure A. Device Register Block, Serial Input, MP1/0.

[18[14]13]12]11]10] 9] 8| 7]6]|5] a3 o
[ofofo] Jofofo] [of Jof Jo o o o]

] [0: PROGRAMMED 1/0 MODE

0: ECHO MODE OFF 1: CONCURRENT 1/0 MODE

1: ECHO MODE ON

0: RUN ON ERROR MODE
1: STOP ON ERROR MODE

[__ } 0: INTERRUPTS INHIBITED MODE
1: INTERRUPTS ENABLED MODE

Figure B. Read Format of Mode and Order Fields, Serial Input, MP1/O.

BIT DEFINITION BITPOSITION] 7 | 6| 5] 4] 3] 2]1]0]
0 CONTROLLER BUSY NO
1 DEVICE READY opERATION | © 0 0 o]0 0 0 o]
2 DATASERVICE
3 0
START
DEVICE [| I"l 0 ‘°|
|
4 DATASERVICE ? CONGURRENT 10,
5 TERMINATE INTERRUPT
6 READY CHANGE [PENDING
7 SPECIAL 0: RUN ON ERROR
1: STOP ON ERROR -
INITIAL
PROGRAM [|0|0|0|1 1 I
8 0 (NOT USED)
9 OVERRUN ERROR
10 DATA PARITY ERROR STOP
11 0 (NOT USED) DEVICE |0 0 0 O o 1 0 o]
12 FRAMING ERROR
13 BREAK ERROR
14 0 (NOT USED)
15 OPERATION ABORT SET SPECIAL _
INTERRUPT [0 0 O °|‘ 0o °]
1: TRUE CONDITION RESET
0: FALSE CONDITION INTERRUPT l I l‘ ld‘ 01 O—I
DATA SERVICE
TERMINATE 1: RESET
READY CHANGE [0: NO EFFECT
SPECIAL
Figure C. Status Field, Serial Input MP1/O. Figure D. Order Field, Serial Input, MPI/O.
| 15 14 | 13 12 | 11 10| 9 8 |
l - l l | INTERRUPT I
e, e,
DO NOT CHANGE MODE 0 0 0 0 DONOT CHANGE MODE
NOTUSED 0 1 0 1 ENABLE INTERRUPTS
RESET TONON-ECHO 1 0 1 0 DISABLE INTERRUPTS
SET TO ECHOMODE 1 1 1 1 NOTUSED
—— |

0 0 DO NOT CHANGE MODE
0 1 DO NOT CHECK PARITY
1 0 CHECK FOR EVEN PARITY
1

1 CHECK FOR ODD PARITY

Figure E. Mode Field, Serial Input, MP1/O.

A 1/0 Device Controllers

A-2 SERIAL OUTPUT, MPI/O CONTROLLER

The Device Register Block is defined for the serial output controller in the MPI/O module.

STATUS

_ l _ | PARITY INTERRUPT
MODE MODE

—_ DATA

? NOT USED ZZ

ORDER

Figure A. Device Register Block, Serial Output, MP1/O.

[15]14|13|12|11|10| 9| 8] 7|6]|5]|4|3 ol
Lofofe] Jofofo] Jof [+] [0 oo of
0: PROGRAMMED 1/0 MODE
0. ECHO MODE OFF] [1: CONCURRENT 1/0 MODE
1: ECHO MODE ON

0: RUN ON ERROR MODE
1: STOP ON ERROR MODE

|] 0: INTERRUPTS INHIBITED MODE
1: INTERRUPTS ENABLED MODE

Figure B. Read Format of Mode and Order Fields, Serial Output, MP1/O.

BIT DEFINITION

0 CONTROLLER BUSY

1 DEVICE READY

2 DATA SERVICE

3 1

4 DATASERVICE

5 TERMINATE INTERRUPT
6 READY CHANGE | PENDING
7 SPECIAL

8 0

9 0
0 0
11 0 $ (NOT USED)
12 0
13 0
14 0

15 OPERATION ABORT

1: TRUE CONDITION
0: FALSE CONDITION

BITPOSITION| 7]6] 5| 4]3|2]|1]0]

ggERATION ro 0o °l° 00 °J

e [of Tof Jo o1 o]

L 0: PROGRAMMED 1/0

1: CONCURRENT 1/0

0: RUN ON ERROR
1: STOP ON ERROR

dewice [0 00 oo 1 0 o]

om0 0 0 of1 0 o of

RESET

INTERRUPTr‘ [[J1 o ﬂ
DATA SERVICE
TERMINATE SET
READY CHANGE 0 NO EFFECT
SPECIAL

Figure C. Status Field, Serial Output, MP1/O.

Figure D. Order Field, Serial Output, MP1/O.

| 11 10| 9 g |

| | INTERRUP'ﬂ

mt—
0 0 DONOT CHANGE MODE
0 1 ENABLE INTERRUPTS
1 0 DISABLE INTERRUPTS
1 1 NOT USED

0 0 DO NOT CHANGE MODE

0 1 DO NOT GENERATE PARITY
1 0 GENERATE EVEN PARITY

1 1 GENERATE ODD PARITY

Figure E. Mode Field, Serial Output, MPI/O.

A 1/0 Device Controllers

A-3 PAPER TAPE READER, MPI/O CONTROLLER

The Device Register Block is defined for the parallel input controller in the MPI/O module, when
used as a paper tape reader controller.

STATUS

INTERRUPT
— l —_— —_ MODE ORDER

DATA

$ NOT USED ?

Figure A. Device Register Block, Paper Tape Reader, MP1/O.

[15]1a]13]12]11|10] 9|8 |7|6]| 5] 4]3 o]
Lelofofofolofol T 1 fof o 0o of

[0: PROGRAMMED 1/0 MODE

1: CONCURRENT 1/0 MODE

L_] 0: RUN ON ERROR MODE
1: STOP ON ERROR MODE

1: INTERRUPTS ENABLED MODE 1: RUN, REVERSE

0: INTERRUPTS INHIBITED MODE] | 0: RUN, FORWARD

\

Figure B. Read Format of Mode and Order Fields, Paper Tape Reader, MP1/0.

BIT DEFINITION
0 CONTROLLER BUSY
1 DEVICE READY
2 DATASERVICE
3 0
4 DATASERVICE
5 TERMINATE INTERRUPT
6 READY CHANGE [PENDING
7 SPECIAL

8 0 (NOT USED)
9 OVERRUN ERROR

10 0

1" 0

12 0 » (NOT USED)

13 0

14 0

15 OPERATION ABORT

1: TRUE CONDITION
0: FALSE CONDITION

BITPOSITION| 7 |6] 5|4]3| 2]1]0]

g(P)ERATION r° 0o °|° 00 ‘d

START
DEVICE

FORWARD:
REVERSE :

INITIAL
PROGRAM

STOP
DEVICE

SET SPECIAL

INTERRUPT

RESET
INTERRUPT

|o|| oo

0
1

0: PROGRAMMED 1/0
1: CONCURRENT 1/0

0: RUN ON ERROR
1: STOP ON ERROR

[ofo]o]1[1 1 0 0]

[oooo|o1ooJ

|oooo|1oooJ

[[[[1 o1 o]

L DATA SERVICE

TERMINATE . RESET
READY CHANGE [0 NO EFFECT
SPECIAL

Figure C. Status Field, Paper Tape Reader, MPI/0.

Figure D. Order Field, Paper Tape Reader, MP1/O.

9 8 |

INTERRUPT]

A

0 0 DO NOT CHANGE MODE
0 1 ENABLE INTERRUPTS

1 0 DISABLE INTERRUPTS
1 1 NOT USED

Figure E. Mode Field, Paper Tape Reader, MP1/O.

A 1/0 Device Controllers

A-4 PAPER TAPE PUNCH, MPI/O CONTROLLER

The Device Register Block is defined for the parallel output controller in the MPI/O module,
when used as a paper tape punch controller.

STATUS

_ INTERRUPT
l MODE ORDER

DATA

? NOT USED

Figure A. Device Register Block, Paper Tape Punch, MP1/0.

[16]14]13[12]|11|10| 9| 8| 7|6|5]|4]3 o]
[ofofofofofofo] Jof [1] o o o of

[O: PROGRAMMED /0 MODE

1: CONCURRENT 1/0 MODE

0: RUN ON ERROR MODE
1: STOP ON ERROR MODE

|__] 0: INTERRUPTS INHIBITED MODE
1: INTERRUPTS ENABLED MODE

Figure B. Read Format of Mode and Order Fields, Paper Tape Punch, MP1/O.

BIT DEFINITION

0 CONTROLLER BUSY

1 DEVICE READY

2 DATASERVICE

3 1

4 DATASERVICE

5 TERMINATE INTERRUPT
6 READY CHANGE [PENDING
7 SPECIAL

8 0

9 0

NOT USED

10 0 (NO)
1M1 0

12 TAPE HANDLING ERROR
13 0 (NOT USED)

14 TAPE LOW

15 OPERATION ABORT

1: TRUE CONDITION
0: FALSE CONDITION

BITPOSITION| 7 |6] 5|4 |3]2]|1]0]

OPERATION ro 0 00foo0 Oﬂ

ige [of 1] Jo o1 o]

T_[O: PROGRAMMED 1/0

1: CONCURRENT 1/0

0: RUN ON ERROR
1: STOP ON ERROR

DEVICE [°°°°|°1°ﬂ

INTERRUPT

SETSPECIAL | o ¢ ¢ OI1 0o 0 0|

PTERRUPT [| ‘ | [1 01 OJ
‘ Y oataservice
TERMINATE 1: RESET

SPECIAL

READY CHANGE [0: NO EFFECT

Figure C. Status Field, Paper Tape Punch, MP1/0.

Figure D. Order Field, Paper Tape Punch, MP1/O.

| 11 0] 9 g |

] — | INTERRUPT |

e

0 DO NOT CHANGE MODE
1 ENABLE INTERRUPTS
0 DISABLE INTERRUPTS
1 NOT USED

-—_-0 0

Figure E. Mode Field, Paper Tape Punch, MPI/O.

A-4

A 1/0 Device Controllers

A-5 CARD READER, MPI/O CONTROLLER

The Device Register Block is defined for the parallel input controller in the MPI/O module, when
used as a card reader controller.

STATUS

CONVERT INTERRUPT
MODE — MODE ORDER

d DATA*

% NOT USED

*WHEN OPERATING IN THE CONVERT MODE DATA IS THE L. S. 8 BITS

Figure A. Device Register Block, Card Reader, MP1/O.

[15]1a]13]12|11[10 9|8 | 7]6|5]4]3 o]
Lofofof JofoJo] Tof Jo] Jo o ¢ o]
0: PROGRAMMED 1/0 MODE
0: CONVERT MODE OFF} [1: CONCURRENT 1/0 MODE
1: CONVERT MODE ON

0: RUN ON ERROR MODE
1: STOP ON ERROR MODE

L {0: INTERRUPTS INHIBITED MODE
1: INTERRUPTS ENABLED MODE

Figure B. Read Format of Mode and Order Fields, Card Reader, MP1/0.

BT

W N = O

N O oS

10
1"
12
13
14
15

DEFINITION

CONTROLLER BUSY
DEVICE READY
DATA SERVICE

0

DATA SERVICE

TERMINATE INTERRUPT
READY CHANGE | PENDING
SPECIAL

0 (NOT USED)

OVERRUN ERROR
g] {NOT USED)

MOTION CHECK ERROR
CARD READER ERROR
HOPPER CHECK
OPERATION ABORT

BITPOSITION|7 | 6] 5| 4]3]2]1]0]

NO

OPERATION LO 0o °| 0 00 0]

START

vevice (0] o] Jo o1 o]

L 0: PROGRAMMED 1/0

1: CONCURRENT 1/0
0: RUN ON ERROR
1: STOP ON ERROR

INITIAL

procram | 0] o[oo 1 1 0 o

LOAD:

STOP

DEVICE [o 00 0]0 10 o|

SET SPECIAL J
INTERRUPT [0 0o °l‘ 0 00

1: TRUE CONDITION RESET
0: FALSE CONDITION INTERRUPT I | / l l vt o ﬂ
DATA SERVICE
TERMINATE 1: RESET
READY CHANGE { 0. NO EFFECT
SPECIAL
Figure C. Status Field, Card Reader, MP1/O. Figure D. Order Field, Card Reader, MP1/0.
| 15 14] 13 12 | n 0] 9 g |
L —_ l l —_ INTERRUPT I
P —— P ey
DO NOT CHANGE MODE 0 0 0 0 DO NOT CHANGE MODE
NOT USED 0 1 0 1 ENABLE INTERRUPTS
RESET TO NON-CONVERT MODE 1 0 1 0 DISABLE INTERRUPTS
SET TO CONVERT MODE 1 1 1 1 NOT USED

Figure E. Mode Field, Card Reader MP1/0.

A 1/0 Device Controllers

A-6 LINE PRINTER, MPI/O CONTROLLER

The Device Register Block is defined for the parallel output controller in the MPI/O module,
when used as a line printer controller.

STATUS

INTERRUPT
l —_ MODE ORDER

—_— DATA

47 NOT USED %

Figure A. Device Register Block, Line Printer, MP1/O.

[15]1a[13|12|11|10| 0| 8| 7|6]5]| 4|3 o]
[°l°|°|°|°|°|°|‘|°l [1] Jo oo of

[O: PROGRAMMED 1/0 MODE

1: CONCURRENT |/0 MODE

0: RUN ON ERROR MODE
1: STOP ON ERROR MODE

|__] 0: INTERRUPTS INHIBITED MODE
1: INTERRUPTS ENABLED MODE

Figure B. Read Format of Mode and Order Fields, Line Printer, MP1/O.

BIT DEFINITION

0 CONTROLLER BUSY

1 DEVICE READY

2 DATASERVICE

3 1

4 DATASERVICE

5 TERMINATE INTERRUPT
6 READY CHANGE | PENDING
7 SPECIAL

8 0

9 0 ¥(NOT USED)
0 0
1M1 0

12 NOT READY ERROR
13 0 (NOT USED)

14 0 (NOT USED)
15 OPERATION ABORT

1: TRUE CONDITION
0: FALSE CONDITION

BITPOSITION| 7|66 [4]3]2]1]0]

NO
OPERATION | © 0 0 0o 0o ‘Ll

oeviee 0]

|o| Io 0 1 oJ
L[0: PROGRAMMED 1/0

1: CONCURRENT 1/0

0: RUN ON ERROR
1: STOP ON ERROR

STOP

DEVICE [°°°°l° 1°°|

SETSPECIAL[| J
INTERRUPT L0 0 0 0|1 0 00

RESET
Reserauer L | | |10 0]
L DATA SERVICE
TERMINATE 1: RESET
READY CHANGE(f 0. NO EFFECT
SPECIAL

Figure C. Status Field, Line Printer, MP1/O.

Figure D. Order Field, Line Printer, MP1/O.

| 15 | 13 | 11 0] 9 8 |
[— | I — I INTERRUPL]
’__q
0 0 DONOTCHANGE MODE
0 1 ENABLE INTERRUPTS
1 0 DISABLE INTERRUPTS
1 1 NOT USED

Figure E. Mode Field, Line Printer, MP1/O.

A 1/0 Device Controllers

A-7 DISC CONTROLLER

The Device Register Block is defined for the Disc controller. This topic covers the status, order,
and mode fields.

STATUS
INTERRUPT
— s ORDER
BRIVE READY
— STATUS
EXTENDED STATUS

DMA START
ADD. MSB — [ACTION

DISC ADDRESS

NEXT DMA DATA ADDRESS

REMAINING DMA BYTE COUNT

Figure A. Device Register Block, Disc.

BIT DEFINITION BITPOSITION | 7| 6|5]4]3]2]1]0]|
0 CONTROLLER BUSY NO
1 SEEK PENDING OPERATION [0 00 0| 00 0 oJ
2 0 (NOT USED)
3 0 (NOT USED)
START
CONTROLLERl 0 0 0 °|° 0 1 OJ
(RETURN)
4 0 (NOT USED)
5 TERMINATION) |NTERRUPT STOP
6 READY CHANGE } PENDING CONTROLLERlO 00 olo 1 0 o]
7 SPECIAL (RETURN)
SELECT
(QUEUE) [o o] T Jo 1 1 of
8 ERROR BIT(S) SET DRIVE
IN EXTENDED STATUS 5 o DRIVEO
9 0 (NOT USED) o 1 DRIVE1
10 0 (NOT USED) 0 DRIVE2
11 BUS PARITY ERROR 1
12 o 1 1 DRIVE3
3 0% NoTuseD SET SPECIAL 00 o0[10 o0 o |
14 0 INTERRUPT :
15 0
RESET
INTERRUPT | | |°| T o1 OJ
0: FALSE CONDITION READY CHANGE | 1: RESET
SPECIAL 0: NO EFFECT
START IN IPL
e [oooo|11oo
Figure B. Status Field, Disc. Figure C. Order Field, Disc.
| 15 10] 9 8 |
NOT USED] INTERRUPTJ
—
0 0 DONOTCHANGE MODE
0 1 ENABLE INTERRUPTS
1 0 DISABLE INERRUPTS
1 1 NOTUSED

Figure D. Mode Field, Disc.

A 1/0 Device Controllers

A-8 DISC CONTROLLER (Continued)

The Device Register Block is defined for the Disc controller. This topic covers the extended
status, drive ready status, action, and disc address fields.

STATUS

INTERRUPT
_ MODE ORDER

DRIVE READY
STATUS

EXTENDED STATUS

DMA START ;
ADD. MSB — ACTION

DISC ADDRESS

NEXT DMA DATA ADDRESS

REMAINING DMA BYTE COUNT

Figure A. Device Register Block, Disc.

BIT DEFINITION
— —_ 131211101
0 0 0 DRIVENO.O
1 0 1 DRIVENO.1
1 0 DRIVENO.?2 1 8 pRrIVENO.O
1 1 DRIVENO. 3 DRIVE NO. 1 1: READY
2 0 (NOT USED) DRIVENO.2 [0: NOT READY
3 0 (NOT USED) DRIVE NO. 3
4 NOT READY ERROR (DRIVE
QUEUED, CONTROLLER STARTED,
DRIVE IS NOT READY) Figure C. Drive Ready Status Field, Disc.
5 NOSEEK ERROR (CONTROLLER
STARTED, NO DRIVE QUEUED)
6 SEEK INCOMPLETE ERROR |312]1]0|
(TRACK NOT FOUND)
7 SECTOR NUMBER ERROR
(SECTOR NOT FOUND,>23)
8 PLATTER FORMAT PROTECT (0 0 0 READ
ERROR 0 o VERIFY
9 EE%TOORR WRITE PROTECT OPERATIONAL | 0 0 1 0 WRITE
10 DISC ADDRESS ERROR USAGE 0 0 1 1 FORMAT-NON
11 HEADER CYCLIC REDUNDANCY PROTECTED
CHECK CODE ERROR 0 1 0 0 FORMAT-
12 DMA OVERRUN ERROR . PROTECTED
13 DATA CYCLIC REDUNDANCY ;
CHECK CODE ERROR tooo ESLR%%OVERRUN
14 0 (NOT USED)
156 0 (NOT USED) DIAGNOSTIC J 1 0 0 1 WRITE ZERO
USEAGE DATA CHECK
CODE
1: TRUE CONDITION
0: FALSE CONDITION (1 0 1 0 WRITEZERO
HEADER CHECK
CODE
Figure B. Extended Status Field, Disc. Figure D. Action Field, Disc.
[15]14 6|54 o
PLATTER
1: FIXED \~| Pl TRACK NUMBER® | H |SsECTOR ADDRESS]

0: REMOVABLE

100 TPI: 0 THRU 202
200 TPI: 0 THRU 405

.
HEAD SELECTION A \—‘ 0 THRU 23

0: TOP
1: BOTTOM

*TRACK NUMBER OF 510 OR 511 CAUSES
A RESTORE OPERATION (RETURN TO TRACK ZERO).

Figure E. Disc Address Field, Disc.

A 1/0 Device Controllers

A-9 MAGNETIC TAPE FORMATTER CONTROLLER

The Device Register Block is defined for the Magnetic Tape Formatter controller.

covers the status, order (controller orders), and mode fields.

This topic

STATUS

PARITY INTERRUPT
MODE

MODE ORDER

EXTENDED STATUS

DMA START
ADD. MSB

NEXT DMA DATA ADDRESS

REMAINING DMA BYTE COUNT

Figure A. Device Register Block, Magnetic Tape Formatter Controller

@
3

mmummbwn-ol

DEFINITION

CONTROLLER BUSY
0
0
0
0
TERMINATION
READY CHANGE}
SPECIAL

SOFT ERROR

DMA OVERRUN ERROR
READ DATA ERROR
BUS PARITY

EOF READ

EOT PASSED

PE BURST READ
OPERATION ABORT

NOT USED

INTERRUPT
PENDING

TRUE CONDITION
FALSE CONDITION

sreosimion |7]6|s|a]3]2]1]0]
NO OPERATION[0 0 0 0]0 0 o 0|
gg?i’;ROLLER [0 0 0 0|0 10 0]
T - [0 0 0 0o]1 0 0 o]
|RNET$§gRUPT L1] [o]1 0 1 0]
Y rerminaTE
READY CHANGE } o' SSSEE;FECT
SPECIAL
STARTINIPL [0 5 o1 1 o o]

Figure B. Status Field, Magnetic Tape

Figure C. Order Field, Magnetic Tape (Controller Orders)

0 DO NOT CHANGE MODE
1 ENABLE INTERRUPTS

0 DISABLE INTERRUPTS
1

| 1s w | 13 12 |1 w0] 9 8 |
{ — l — | eamiTy ||NTERRUPTI
PR S—
0
0
1
1 NOT USED
f—ﬁ—q
0 0 DONOTCHANGE MODE
0 1 GENERATE AND CHECK ODD PARITY
1 0 GENERATE AND CHECK EVEN PARITY
1 1 NOTUSED

Figure D. Mode Field, Magnetic Tape

A 1/0 Device Controllers

A-10 MAGNETIC TAPE FORMATTER CONTROLLER (Continued)

The Device Register Block is defined for the Magnetic Tape Formatter controller. This topic
covers the extended status and order (drive select orders) fields.

STATUS
— | “hsse |™asse| ORDER
EXTENDED STATUS
DMA START]
ADD. MSB _
NEXT DMA DATA ADDRESS
REMAINING DMA BYTE COUNT

Figure A. Device Register Block, Magnetic Tape Formatter Controller

BIT DEFINITION BIT POSITION |7]s]s|a]3]2]]0]
0 W 000 DRIVE NO. 0
1 001 DRIVENO.1 | FORMATTER
2 | o10 DRIVENO.2 [NO.0O READ [0 0 0 o] T] [1]
011 DRIVENO.3
> 100 DRIVE NO.0
101 DRIVENO.1 | FORMATTER
110 DRIVENO.2 [NO.1 DRIVE NO. 0 00 0)
111 DRIVE NO. 3
DRIVENO.1 0 0 1
J FORMATTERNO.O Y fovene's o 1 o
3 0 (NOTUSED) DRIVENO.3 0 1 1 | ppive
4 ON LINE DRIVE NO. 0 1 0 0 | seLect
5 REWINDING DRIVE NO. 1 10 1
6 0 (NOT USED) FORMATTER NO. 1 DRIVE NO. 2 11 0
7 0 (NOT USED) DRIVENO.3 1 1 1
8 LOAD POINT ' 4
9 FILE PROTECT
10 7 TRACK
1 EXCESSIVE READ DATA
12 0 R
:i g (NOT LSED) SENSE 00 0 1 1
5 0 BACKSPACE TO EDIT 00 1 1 1
BACKSPACE RECORD 0100 1
BACKSPACE TO FILEMARK| 0 1 0 1 1
FORWARD SPACE RECORD| 0 1 1 0 1
FORWARD SPACE FILE 0 1 1 1
WRITE 1000 1
ERASE 1 0 01 1
WRITE FILE MARK 10 10 1
WRITE TO EDIT 10 11 1
1: TRUE CONDITION REWIND t100 !
o: FALSE CONDITION REWIND AND DISCONNECT| 1 1 0 1 1
Figure B. Extended Status Field, Magnetic Tape Figure C. Order Field, Magnetic Tape (Drive Select Orders)

A-10

B.

B.1

Index and Tables

INDEX TO REGISTERS AND FORMATS

An index is provided of registers and formats.

PB

PL

PP
PRT
PRTN
PLIBN

SB
SL
EP
SP
TOS
TOS1
TOS2
TOS3
TOS4

DLEX
PSR

DRB

CCIOB

Program Base

Program Length -

Program Pointer

Program Reference Table
Program Reference Table Number
Program Library

Stack Base
Stack Length
Environmental Pointer

Stack Pointer

Top of Stack Registers

Stack Head Registers

Procedure Mark
Begin Mark
Interrupt Mark

Delta Lex Level
Program Status Register

Interrupt Vector Table

Interrupts

Device Register Block
Controller Response Word
Concurrent 1/0 Control Block

Field Descriptor
String Descriptor
Word Index
Array Index

Toplc
2,2
2.2
2.2
2.2
2.2
2.3

2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

2.8
2.8
2.9

2.11
2.16

3.2
3.3

4.2
4.3
4.5

7.11
10.1
7.12
7.12

B Index and Tables

B.2 INDEX TO INSTRUCTIONS

An index to instructions is provided.

MEMORY REFERENCE

Addressing Modes Mode

Global Direct

Global Direct, Indexed
Local Direct

Local Direct, Indexed
Indirect Thru TOS

Indirect Thru TOS, Indexed
Constant Direct, Indexed
Absolute, Indexed

STF
STB
STW
STWN
STD
SST

LF
LB
Lw
LD
LTW

AWM
AW
SwW
SWAP

STACK OPERATE

ADD
SUB
NEG
ABS
MUL
MULD
DIV
MOD

DADD
DSUB
DNEG
DABS
DMUL
DDIV
DIVD
DMOD
MODD

FADD
FSUB
FMUL
FDIV
FABS

OO R W RO

Store Field

Store Byte

Store Word

Store Word, Non-Destructive
Store Doubleword

Store Tripleword

Load Field

Load Byte

Load Word

Load Doubleword
Load Tripleword

Add Word to Memory
Add Word to Stack
Subtract Word from Stack

Swap Word in Stack with Memory

Add

Subtract

Negate

Absolute Value

Integer Multiply

Multiply with Doubleword Product
Integer Word Divide

Module

Doubleword Add

Doubleword Subtract
Doubleword Negate
Doubleword Absolute Value
Doubleword Integer Multiply
Doubleword Integer Divide
Divide Doubleword by Word
Doubleword Modulo
Doubleword Modulo by Word

Floating Point Add

Floating Point Subtract
Floating Point Multiply
Floating Point Divide
Floating Point Absolute Value

Op Code

OoEHp WouogHR

oaw»

20
21
10
1E
22
36
23
24

4F00
4F01
3C

3E

4F02
4F03
4F14
4F04
4F15

4F20
4F21
4F22
4F23
4F18

Topic

Y

.

DO OD
. P
DNDNNDNNDDNDNDDN

.

DO,
o« e e e e
LW wWwwwowow

(=2« R e I« B o)
B B

[or R~
Y
(5 I)]

[=>]
.
[=2]

3 -3 -3 -3 333
DN NN N DN N

.

IR JES BN TPS JURC B SR
N . N
O L OO OO Lo LY

NN N NN

S JES IR

STACK OPERATE (Cont'd) Op Code Topic

MAX Maximum Value 34 7.5
MIN Minimum Value 35 7.5
DMAX Doubleword Maximum Value 4F0E 7.5
DMIN Doubleword Minimum Value 4FOF 7.5
FMAX Floating Point Maximum Value 4F2E 7.5
FMIN Floating Point Minimum Value : 4F2F 7.5
SGN Sign Value 44 7.5
DSGN Doubleword Sign Value 45 7.5
FSGN Floating Point Sign Value 4F19 7.5
AND Logical AND 25 7.6
NOT Logical Not 11 7.6
OR Logical OR 26 7.6
XOR Logical EXCLUSIVE OR 27 7.6
DAND Doubleword Logical AND 4F05 7.6
DNOT Doubleword Logical Not 3D 7.6
DOR Doubleword Logical OR 4F06 7.6
DXOR Doubleword Logical 4F07 7.6
EQ Equal Comparison 2A 7.7
GE Greater Than or Equal Comparison 2C 7.7
LGE Logical Greater Than or Equal Comparison 3A 7.7
GT Greater Than Comparison 2D 7.7
LGT Logical Greater Than Comparison 3B 7.7
LE Less Than or Equal Comparison : 29 7.7
LLE Logical Less Than or Equal Comparison 39 7.7
LT Less Than Comparison 28 7.7
LLT Logical Less Than Comparison 38 7.7
NE Not Equal Comparison 2B 7.7
DEQ Doubleword Equal Comparison 4F0A 7.7
DGE Doubleword Greater Than or Equal Comparison 4F0C 7.7
DGT Doubleword Greater Than Comparison 4F0D 7.7
DLE Doubleword Less Than or Equal Comparison 4F09 7.7
DLT Doubleword Less Than Comparison 4F08 7.7
DNE Doubleword Not Equal Comparison 4F0B 7.7
FEQ Floating Point Equal Comparison 4F2A 7.7
FGE Floating Point Greater Than or Equal Comparison4F2C 7.7
FGT Floating Point Greater Than Comparison 4F2D 7.7
FLE Floating Point Less Than or Equal Comparison 4F29 7.7
FLT Floating Point Less Than Comparison 4F28 7.7
FNE Floating Point Not Equal Comparison 4F2B 7.7
SLC Shift Left Circular 33 7.8
SLL Shift Left Logical 30 7.8
SRA Shift Right Arithmetic 31 7.8
SRL Shift Right Logical 32 7.8
DSL.C Doubleword Shift Left Circular 4F13 7.8
DSLL Doubleword Shift Left Logical 4F10 7.8
DSRA Doubleword Shift Right Arithmetic 4F11 7.8
DSRL Doubleword Shift Right Logical 4F12 7.8
Ln Load 4 Bit Literal Tn 7.9
ILBL Load Byte Literal 41 7.9
LWL Load Word Literal 40 7.9
LDL Load Doubleword Literal 42 7.9
LTL Load Tripleword Literal 43 7.9
FILL Fill Stack with Literal 59 7.9
ESW Enter Configuration Switches 05 7.9

B Index and Tables

B.3 INDEX TO INSTRUCTIONS - (Cont'd)

An index to instructions is provided.

Op Code Topic
STACK OPERATE
DBL1 Convert TOS to Doubleword 08 7.10
DBL2 Convert TOS2 to Doubleword 4F16 7.10
SNGL Convert Doubleword to Single Word 37 7.10
DDUP Duplicate Doubleword on Top of Stack 3F 7.10
DUP Duplicate Top of Stack 1F 7.10
XCH Exchange Top of Stack Words 2F 7.10
FLOT Float an Integer - 4C 7.10
FIX Fix a Floating Point Number 4F17 7.10
GFD Generate Field Descriptor 2E 7.11
XB1 Convert Index for BIT(1) Arrays 0D 7.12
XB2 Convert Index for BIT(2) Arrays OE 7.12
XB4 Convert Index for BIT(4) Arrays OF 7.12
BRANCH INSTRUCTIONS
BRB Branch Backward 46 8.2
BRA Branch 47 8.2
BTOS Branch Through Top of Stack 15 8.2
DBB Decrement TOS and Branch Backward 16 8.2
BEQZ Branch If TOS Equal to Zero 1A 8.2
BGEZ Branch If TOS Greater Than or Equal to Zero 1C 8.2
DBL Decrement TOS and Branch Long 17 8.2
BGTZ Branch If TOS Greater Than Zero 1D 8.2
BLEZ Branch If TOS Less Than Or Equal to Zero 19 8.2
BLTZ Branch If TOS Less Than Zero 18 8.2
BNEZ Branch If TOS Not Equal to Zero 1B 8.2
BRF Branch False 13 8.2
BRT Branch True 12 8.2
CASE CASE Branch 14 8.3
DIB DO Loop Initialize and Branch 48 8.4
DSBB DO Loop Step, Branch Backward 4A 8.5
DSBL DO Loop Step, Branch Long 4B 8.5
CONTROL INSTRUCTIONS
BENT Begin Block Entry ' 53 9.1
BXIT Begin Block Exit 58 9.1
MARK Mark Stack for Procedure Call 50 9.2
CALL Procedure Call 52 9.3
EXIT Procedure Block Exit 54 9.4
IXiT Interrupt Procedure Call 55 9.5

RESM Resume Task in Another Stack 56 9.6

CONTROL INSTRUCTIONS - (Cont'd)

WAIT

SUPV

LADR

GOTO

SSpP
SSPI
SSR
POP
NOP
PNOP
TCAR
TOVF
TRAP
XIM

MICR

Wait for an Interrupt
Supervisor Call
Load Address

GOTO

Set Stack Pointer

Set Stack Pointer Indirect
Stuff Stack Registers

Pop TOS

No Operation

Privileged No Operation
Test Carry

Test Overflow

Trap

Exchange Interrupt Mask

Initiate Microprogrammed Procedure

STRING INSTRUCTIONS

MOV
MVP
MVA
SLT
SLE
SEQ
SNE
SGE
SGT

Move String Within Stack

Move String from Procedure to Stack
Move String Absolute

String Compare Less Than

String Compare Less Than or Equal
String Compare Less Than or Equal
String Compare Not Equal

String Compare Greater Than or Equal

String Compare Greater Than

Op Code

5C

09

06

57

5A
5B
5F
0B
01
02
04
03
00
0A

4F30
4F31
4F38
4F32
4F33
4F34
4F35
4F36
4F37

Topic_
9.7
9.8
9.9 »

9.10

. .

WO WWYWWWYWWOWOOoO

[l s el el el
[P P P i N N e)

©
oy
[\

10.2
10.2
10.2
10.2
10.2
10.2
10.2
10.2
10.2

B Index and Tables

B.4 INSTRUCTION OP CODE TABLE

A table of instruction Op Codes is provided.

X0 X1 X2 ‘ X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF
0X TRAP NOP PNOP | TOVF TCAR ESW LADR DBL1 SUPV XIM POP MICR XB1 XB2 XB4
01 NEG NOT BRT BRF CASE BTOS DBB DBL BLTZ BLEZ BEQZ BNEZ BGEZ BGTZ ABS DUP
2X ADD SUB MUL DIV MOD AND OR XOR LT LE EQ NE GE GT GFD XCH
3X SLL SRA SRL SLC MAX MIN MULD SNGL LLT LLE LGE LGT DNEG DNOT DABS DDUP
4X LWL LBL LDL LTL SGN DSGN BRB BRA DIB DSBB DSBL FLOT *
5X MARK | CALL BENT EXIT IXIT RESM GOTO BXIT FILL SSP SSPI WAIT SSR
6X
(p:¢ Lo L1 L2 L3 14 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
8X | <. STD o | - STF —
9X | -t SWAP o | . SST —
AX | e i — e —— AWM - — | e - STWN - — -
BX |8 STW Lo ~a STB st
CX | —- LD -

DX | == LF | e LTW L
EX | —= AW it SW >
FX | —~= Lw > | s LB -
* X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF
0X DADD DSUB | DMUL DDIV DMOD DAND DOR DXOR DLT DLE DEQ DNE DGE DGT DMAX DMIN
X DSLL DSRA | DSRL DSLC DIVD MODD DBI2 FIX FABS FSGN
2X FADD FSUB | FMUL FDIV FLT FLE FEQ FNE FGE FGT FMAX FMIN
3X MOV MVP SLT SLE SEQ SNE SGE SGT MVA

g

	0000
	0001
	0002
	0003
	002
	003
	004
	005
	006
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	05-00
	05-01
	05-02
	05-03
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	10-00
	10-01
	10-02
	10-03
	11-00
	11-01
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	13-00
	13-01
	13-02
	13-03
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07

