TECHNICAL MANUAL
SECTION PAGE

1. General Description of the MIME-I 1-1
1.1 Power Supply 1-1
1.2 Keyboard 1-1
1.3 Input/Output Interfaces 1-3
1.4 Microprocessor Control Unit 1-4
1.5 Synchronization Generator 1-4
1.6 Refresh Display Memory 1-4
1.7 Video Generator 1-4
1.8 Operating Examples 1-5
1.8.1 Receiving/Displaying Characters 1-5
1.8.2 Keying/Sending Characters 1-6
2. Power Supply 2-1
2.1 Minus Voltage Supplies 2-1
2.2 Plus Voltage Supplies 2-1
3. Keyboard 3-1
3.1 Encoding Regular Keys 3-2
3.2 Repeat Function 3-2
3.3 Cursor Control Keys 3-3
3.4 Insertion of Cable Into Jl 3-3
4. Input/Output Circuits 4-1
4.1 I/0 UART 4-1
4.2 Character Transmission from the Keyboard in LINE Mode 4-2
4.2.1 Half Duplex Operation 4-2
4.2.2 Full Duplex Operation 4-6
4.3 RS232C Interface 4-6
4.4 Block Mode Transmission in LOCAL MODE 4-6
4.5 UART Clock Generation 4-7
4.6 Bell Circuit 4-8
4.7 Printer Port 4-8
4.8 Current Loop Interface 4-8
5. CPU - Processor Circuits 5-1
5.1 Data Bus Control 5-1
5.2 CPU I/O Port Assignments 5-6
5.2.1 I/0 Port \emptyset 5-6

TABLE OF CONTENTS (continued)

SECTION PAGE
6. Synchronization Generation Circuits 6-1
6.1 Dot Oscillator and Counter 6-1
6.2 Horizontal Position Character Counter (CNT2, CNT\#) Display Column Counters 6-1
6.3 Dot Oscillator Enable Flip-Flop 6-4
6.4 Horizontal Sync. Generation 6-4
6.5 Vertical Sync. and Display Enable Generation 6-5
6.6 Row Offset Pointer - CNT6 6-7
7. Refresh Arm 7-1
7.1 Addressing 7-1
7.2 Data Bus Interfacing 7-3
8. Video Generator Circuit 8-1
8.1 Character Font 8-1
8.2 Display Sequencing 8-2
8.3 Video Signal Composition 8-4
9. Troubleshooting 9-1
9.1 Troubleshooting Hints 9-1
9.1.1 Keyboard Fault Diagnosis 9-1
9.1.2 I/0 Fault Diagnosis 9-2
9.1.3 Sync. Generation 9-2
9.1.4 Refresh RAM Diagnosis 9-2
9.1.5 Testing the Video Generator Circuits 9-3
9.2 Disassembly 9-3
9.2.1 Board Removal 9-3

PAGE

10-1	MAIN LOGIC BOARD, Parts List
	Intergrated Circuits
10-2	Capacitors
	Resistors
	Voltage Regulator
	Circuit Board
Transistors	
Tr-3	Diodes
	Switches
	Sockets/Connectors
Crystals	

APPENDIX 2

Technical Drawings

> 11-1 Mime Character Generator

11-2 Elston Monitor Schematic
11-3 Main Logic Board, Parts Location
11-4 Sync Generator (SG) Schematic
11-5 Input/Output (I/0) Schematic
11-6 Processor (P) Schematic
11-7 Memory (M) Schematic
11-8 Video Generator (VG) Schematic
11-9 Power Supply (PS) Schematic
11-10 Keyboard (K) Schematic
11-11 Keyboard Parts Location

1. GENERAL DESCRIPTION OF THE MIME-I

The MIME-I computer terminal provides a communication channel between humans and computers. It is equipped with many features that facilitate the man-machine interface. Figure 1.1 presents the MIME-I block diagram. There are seven major circuits in the MIME-I. These are:

1) Power Supply
2) Keyboard
3) Input/Output Interfaces
4) Microprocessor Control Unit
5) Synchronization Generator
6) Refresh Display Memory
7) Video Generator

Each of these circuits is described in detail in the later sections of this manual. In this section the operation of the MIME-I will be discussed at the block-diagram level. Circuit diagrams and other technical data can be found in the Appendices.

First, each of the seven circuits will be briefly described. Then the interactions between the circuits will be demonstrated through descriptions of the two basic terminal functions; i.e. receiving/displaying characters and keying/ sending characters.

1.1 Power Supply

The MIME-I power supply produces +5 volts at $1.5 \mathrm{amps},+12$ volts at 200 ma and -12 volts at 250 ma . Minus five volts is derived from minus twelve in the video generator circuit.

1.2 Keyboard

The MIME-I keyboard uses a scanning encoding technique to generate the ASCII character set. Several keys on the keyboard are auto-repeating. When they are held dows for more than one second the keyboard circuit generates a series of strobe pulses at the rate of 15 characters per second.

Figure 1.1: MIME-I Block Diagram

Auto repeat keys are Space, $\rightleftarrows, \uparrow \downarrow$ and period. Any key may be made to repeat by first depressing it and then holding the repeat key down. The CAPS LOCK key forces the keyboard to generate only upper case alphabetic codes when alphabetic keys are struck. When the CAPS LOCK key is disengaged the entire 128 character ASCII set can be generated. All data generated by the keyboard is sent to the Input/Output section regardless of whether the terminal is in the LOCAL or LINE mode.

Depressing the NUM key modifies the outputs of the J, K, L, V, I and 0 keys only. It causes these six keys to produce numeric codes rather than alphabetic codes.

1.3 Input/Output Interfaces

The MIME-I communicates with external devices through its I/O interface circuit. This circuit converts internal TTL parallel data into either serial RS232C or 20 ma current loop data for transmission to the computer. Likewise it converts serial RS232C or 20 ma current loop data received from the computer into parallel TTL data for internal processing. The I/O circuit can operate in several modes: LINE, LOCAL, Full or Half Duplex.

In LINE mode each character is transmitted to the computer as it is struck on the keyboard. If in LINE/Half Duplex the character is "echoed" back to the Input circuit as it is transmitted by the output circuit.

In LOCAL mode characters generated by the keyboard are echoed to the receiver circuit but are not transmitted to the computer until either the SEND key or the SHIFT SEND keys are depressed. This permits use of the MIME-I editing features. While in the LOCAL mode characters sent by the computer are displayed on the MIME-I screen.

A Printer Port output facilitates local hard copy output by providing a serial RS232C output port to a printer.

Data rates and UART options are conveniently switch selectable to modify various communications parameters.

1.4 Microprocessor Control Unit

The heart of the MIME-I is the F8 microprocessor which completely controls and characterizes the operation of the MIME-I. Its principal function is to decode received characters and perform the operations required to obtain the desired result. These operations include reading data from and writing data to the UART and display memory. Two 1024 by 8 ROMs hold the program that causes the F8 to act like a computer terminal. These ROMs can be altered to change the operation of the MIME-I.

1.5 Synchronization Generator

All timing signals required to synchronize both internal circuits and internal or external video monitors (CRTs) are generated by this circuit. All signals except the 2 MHz CPU clock are derived from a crystal controlled 9.828 MHz oscillator. The F8 2 MHz clock is generated by its internal clock circuit and an external 2 MHz crystal.

1.6 Refresh Display Memory

The ASCII codes for characters displayed in the $1920(80 \times 24)$ positions on the MIME-I screen are stored in a 2048 by 9 bit random access memory (RAM). Nine bits are required to store the seven bit ASCII code plus a cursor bit and a full/ half intensity (Un/Protected) bit. This refresh RAM is shared by the F8 and the video generator circuit. The F8 both reads and writes from and to the RAM while the video generator only reads from the RAM.

1.7 Video Generator

The video generator circuit reads ASCII data from the refresh RAM and generates a dot pattern for display on the monitor. This circuit generates a video signal for

direct drive (or data display) monitors.

Further details concerning the operation of the above circuits can be found in the following sections of this manual.

1.8 Operating Examples

The operating examples discussed in this section indicate the manner in which the various blocks in the MIME-I block diagram of Figure 1.1 interact to perform the required operation.

1.8.1 Receiving/Displaying Characters

When the UART assembles a complete ASCII character it raises its data available flag and interrupts the F8. The F8 reads the character from the UART into its accumulator and resets the UART flag.

The character is then tested to determine if it is a displayable or a control character. If it is displayable the F 8 waits until the next horizontal retrace period, takes control of the multiplexed address lines to the display RAM and writes the character into the RAM with the cursor bit low. During the next horizontal sync pulse the F8 takes control of the RAM address lines and reads the character code stored in the position where the cursor is to be moved. The cursor bit is set and the character is replaced during still another horizontal retrace pulse. The maximum time required to perform these operations is 192usec (64×3).

If the received character causes a scroll operation (i.e. it is either the 80th character to be loaded on the bottom line or a line feed code) the execution time is increased to approximately 700 usec. After loading the character in the display memory the F8 waits to be interrupted by the UART flag when the next character is received.

When the MIME-I receives control characters from either its keyboard (in the Local mode) or from the external computer it responds as programmed in the 2708

Master Control ROMs (MPB,PT).

Abstract

1.8.2 Keying/Sending Characters

When in the on LINE mode of operation the MIME-I keyboard has control of the transmitter half of the I/0 UART at all times except for a few moments when the F8 takes control to report the cursor position after receiving such a request. Each character is transmitted as soon as the key is struck. If the half duplex mode has been selected the characters will be presented simultaneously to the external computer and the MIME-I I/O UART for immediate display (local echo).

In the Local mode characters typed on the MIME-I keyboard are locally echoed but are not sent to the external computer until the SEND key or the SHIFT SEND keys are depressed. When the F8 receives this locally echoes send command it commences passing the required amount of data to the UART for transmission to the external computer. During this time characters typed on the keyboard are not transmitted or echoed locally.

2. POWER SUPPLY

The MIME-I power supply generates the following D.C. voltages: $+12 \mathrm{v},+5 \mathrm{v}$, -5 v , and -12 v . The power supply is fed by a transformer with dual primaries (to allow for either 110 or 220 volt operation) and dual center-tapped secondaries. The secondaries are both rated at 12.6 volts, 2.5 amps . The first secondary (Red, Red/Yel, Red) provides $A C$ power to the -12 and $-5 v o l t$ supplies for the main board and also provides current to the +12 volt monitor and main board supplies. The other secondary provides $A C$ power to the +5 volt supply for the logic on the main board.
2.1 Minus Voltage Supplies

Both the -12 and -5 volt supplies are lightly loaded and consequently are implemented with zener diodes and pass transistors. They are not short circuit protected.

2.2 Plus Voltage Supplies

The +12 and +5 volt power supplies are also of the pass transistor type; however, each of these employs an operational amplifier to provide feedback for regulation rather than rely on zener diode regulation. The positive supplies are not short circuit protected; however, high power zener diodes (D8 and D9) are placed across their outputs to protect the logic circuits from overvoltage conditions. The pass transistors Q10 and Q11 are mounted to the MIME-I chassis (with insulating hardware) allowing the cabinet to act as a heat sink.
3. KEYBOARD

The MIME-I keyboard is capable of generating the complete set of ASCII codes (0-7F Hex). The assignment of ASCII codes to keyswitches is listed below. Keyswitches are either auto repeating or regular.

Main Keyboard

Main Keyboard

3.1 Encoding Regular Keys

The MIME-I uses a grid scanning routine to encode the keyboard. CNT2 provides address information to D.S.1 and D.S.2. When a key is depressed one of the output lines from D.S. 1 will be shorted to one of the input pins of D.S. 2 and D.S. 2 pin 3 will go high for the duration the key is held down. This rising signal is delayed by C5 and applied to the base of Q2 which drives the A input of O.S.1. O.S.1 is a retriggerable one-shot with a period of 8 ms (determined by R14 and C3). This period is long enough to prevent keybounce from generating multiple strobes. When O.S.la fires and its \bar{Q} output drops low CNT2 is halted with a count value that corresponds to the depressed key. This value provides six of the ten address lines to a lk by 8 ROM (MKE). The other four address lines are provided by the CAPS LOCK, NUM, CTRL and SHIFT keyswitches. MKE performs a table look-up to produce the required ASCII code at its parallel outputs (DO through D6). The output at D7 indicates whether the key is auto-repeating or not (see Section 3.2 below). When O.S.la fires it triggers $0 . S .1 \mathrm{~b}$ which generates a 300 usec strobe pulse.

3.2 Repeat Function

$0 . S .1 b$ can be forced to generate multiple strobe pulses by sending a pulse train into its A trigger input from the selected output of CNT 1. The standard repetition rate of 15 characters per second is implemented by dividing the 60 Hz display enable signal by four at CNTlpll. CNT1 is normally held to the zero state by virtue of pin 2 (reset) being pullsed up to +5 through R5 and D2. When an auto-repeating key is held down MKEpl7 (D7) goes low and discharges Cl through R8. After about one second the voltage at CNTlp2 is sufficiently low to enable the counter and produce multiple strobes. Regular keys may be made to repeat by depressing the REPEAT key. This also discharges Cl and enables CNT1.

3.3 Cursor Control Keys

Since the ASCII code - keyswitch assignment of the MIME-I keyboard is set by MKE it is not possible to have the cursor control keys to generate codes required by all of the four terminals that the MIME-I is capable of mimicing. The output codes for the \leftrightarrows and $\uparrow \downarrow$ keys are those specified by the ACT-IV cursor control feature. The keyboard code assignments may be altered by modifying the contents of the MKE (MIME Keyboard Encoder) ROM.

3.4 Insertion of Cable Into J1

The proper orientation of the ribbon connector in socket $J 1$ is illustrated below:

4. INPUT/OUTPUT CIRCUITS

The input/output (I/O) circuits of the MIME-I establish all necessary communications links between the terminal and remote devices such as computers or modems. The serial to parallel and parallel to serial conversions that are required to permit communication between the parallel-bus oriented MIME-I and serial ASCII oriented computer interfaces are performed in the I/O circuits.
4.1 I/O UART
All serial communcations to and from the I/O and printer ports on the

4.2.1 Half Duplex Operation

In half duplex the keyboard strobe (J1p8, STR) sets FF3 and forces the data
strobe input of the UART (Ulp23) low through data switch D.S.4p12 since the keyboard has been selected to provide the inputs to the transmitter section of the UART. This selection is made by the F8. The keyboard is normally chosen unless the F8 needs to send characters out in the block transmit mode. The keyboard strobe pulse sets FF3 to indicate the character originated from the keyboard. When Ulp23 ($\overline{\mathrm{DS}})$ returns high the character data present at Ulp26-32 is transmitted serially out Ulp25. The serial data out at Ulp25 is normally marking (logical 1 $=+5 \mathrm{v}$). It drives two inputs on DS6 (pins 2 and 13). Depending on whether the CPU has selected the I/O or the printer as the destination port (via CPUp31 to D.S.6pl) the serial data will emerge at either DS6p12 or DS6p4. Printer port serial data at DS6p4 drives a TTL to RS232C level converter consisting of R18, 19, 20 and Q7. The RS232C output of this circuit drives an external printer via pin 14 of the 25 pin EIA connector (I/O Conn p 14). The operation of the printer port is described further in Section 4.7 below. Serial data emerging at DS6pl2 provides one of the five inputs to CR2 (control ROM). Table 4.1 lists the other inputs and outputs of CR2. Figure 4.1 illustrates the operation of CR2. In the on line, half duplex mode serial data at CR2p14 is passed on to both CR2p4 (for transmission out of the MIME-I via OA2p8 and I/O Conn p 2 for RS232C or via ISO2, FWB2 and I/O Conn p 10, 11 for loop out and CR2p1 for internal echo. Note that if the current loop interface has been enabled and no current is flowing in the loop in of the MIME-I CR2p12 will be low and will prevent the internal echo of data in either the half duplex or local modes due to the manner in which these signals are gated internally in CR2.
INPUTS TO CR2 PIN \#
I/O Serial Data Out (H=Mark) 14
I/O Serial Data In (L=Mark) 13
Current Loop In (L=Mark) 12
Line/ $\overline{\text { Loca }}$ ($\mathrm{H}=$ Line) 11
Full/Half Duplex (H=Full) 10
OUTPUTS OF CR2
Serial Data In (To UART) 1
Current Loop Out (L=Mark) 2
Line/Local (L=Line) 3
Serial Data Out (L=Mark) 4

Table 4.1: Inputs and Outputs of CR2

Figure 4.1: CR2 Functional Diagram

4.2.2 Full Duplex Operation

In the full duplex mode serial data at CR2p14 is routed only to CR2 pins 2 and 4. There is no internal echo unless the LINE/LOC. switch is in the LOC(al) position.

4.3 RS232C Interface

Two of the four operational amplifiers in OA2 are used to provide an RS232C line driver and receiver. Serial data at Ulp25 is routed to CR2p4 as described in the previous paragraphs. When Ulp25 is in the mark (logical 1) state CR2p4 and OA2p9 are low (zero volts). OA2p10, 6, 2 and 13 are all held at approximately 1.5 volts by the voltage divider circuit of R15 and R16. This voltage provides a threshold reference for all four amplifiers in OA2. The combination of a low level at OA2p9 and a higher level at OA2p10 forces OA2p8 to -12 volts (an RS232C mark). When Ulp25 is in the space state OA2p8 is high (+5 volts). The BREAK key holds the serial output in the space state when it is depressed.

RS232C serial data into the MIME-I at I/O Conn p 3 is fed to OA2p5 where it is compared to the 1.5 volt reference. When no connection is made to I/O Conn p 3 R28 holds that line in mark state.

4.4 Block Mode Transmission in LOCAL Mode

When operating in the LOCAL mode CR2 echoes data back to the receiver half of the UART for immediate display and no data is sent out the MIME-I serial out lines (RS232C or Current Loop) until the SEND key is depressed either alone or in conjunction with the SHIFT key. Depressing the SEND key forces the MIME-I into the LOCAL mode and also sends the code IC hex to the UART receiver.

The F8 recognized this and sends all of the full intensity characters on the line containing the cursor. This is accomplished by pulling the select line of DS4 and DS5 and CR2p11 high. This allows the F8 data bus to drive the UART transmitter buffer inputs and also forces the I/O circuit into the line mode regardless
of the position of the LINE/LOC• switch.
Before sending each character in the block mode the F8 samples the Data Set Ready (DSR) line at pin 6 of the I/O Connector and will not transmit until this line assumes the high state. If the external device (modem or computer) does not use this line to indicate readiness R 25 will hold the line high to permit transmission. If for some reason I/O Conn p 6 is grounded and a SEND or SHIFT SEND operation is initiated the MIME-I will enter an "infinite loop" waiting for this line to rise. When transmission is completed the MIME-I sounds its beeper.

4.5 UART Clock Generation

The clock rates of 16 times (16x) the desired serial bit (baud) rate are generated by a digital divide-down chain which is driven by the dot-oscillator of the MIME-I. This dot oscillator's frequency is 9.828 MHz .

A 7493 divide-by-eight counter, CNT7, provides a 1.2 MHz square wave into CNT9. CNT9 is a binary counter that divides the 1.2 MHz signal from CNT7 by successive factors of two and yields the $16 x$ clock rates for $9600 \mathrm{~B} / \mathrm{S}$ to $300 \mathrm{~B} / \mathrm{S}$ at the following pins:

```
16x Clock Frequency (KHz) Origin
```

153.6
76.8
38.4

2,400
1,200
600
300
110

CNT9p6
CNT9p5
CNT9p3
CNT9p2
CNT9p4
CNT9p13
CNT8p6

Note that the $16 x$ clock for the 110 baud rate is obtained by dividing the 1200 baud $16 x$ rate by 11 with CNT8 and A6. A common problem that arises with the MIME-I I/O circuits is for the user to position the baud select switch in the null position. Be sure to refer to your operating manual to assist in selecting the data rate.

4.6 Bell Circuit

When the MIME-I receives a bell code (07 hex), completes a SEND or SHIFT SEND operation or removes the cursor from the screen in the hold screen mode it sounds an audible tone. The F8 causes a negative going pulse to appear at CR1pl and N6p13. This pulse triggers the one-shot whose output at N6pll gates the 16x 110 baud UART clock of 1760 Hz through A6pl to Q10 which drives the speaker. The tone lasts for about one half of a second.

4.7 Printer Port

The unidirectional printer port of the MIME-I provides a serial RS232C output signal at pin 14 of the 25 pin $1 / 0$ connector. Serial data out of the UART at Ulp25 is routed through DS6p4 to R20 which is tied to the base of Q7. A high level (mark) at U1p25 and DS6p4 cuts off Q7 and I/O Conn p 14 is then pulled to -12 volts by R18. A low level at U1p25 and DS6p4 turns Q7 on and pulls I/O Conn p 14 high. When the F8 routes the serial data through DS6 to the printer output interface it also routes the printer baud rate clock from J2p15 to U1pl7 and 40. Printer readiness is reported at I/O Conn p 24. Before transmitting each character during a PRINT operation the F8 samples this printer ready line and suspends transmission if it is low. If no connection is made to this pin the F8 will assume the printer is ready.

4.8 Current Loop Interface

The current loop interface consists of two full wave bridges and two optical isolators. When the MIME-I serial output at U1p25 is marking (High) CR2p2 is low, the LED in the optical isolator is on and causes the isolator transistor to conduct. This transistor combines with Q8 to form a Darlington pair which drives the full wave bridge such that current will flow in either direction through the AC inputs to the bridge. When the serial output is spacing (low) the LED in the optical isolator is cut off and no current will flow in either direction through the $A C$ inputs of the bridge.

5. CPU - PROCESSOR CIRCUITS

The following integrated circuits are considered to be integral components of the microprocessor which controls and defines the MIME-I: CPU(F8 3850 microprocessor), SMI (3853 Static Memory Interface), MPB,MPT (Master Control Roms 2708), CR1 (Control Rom 1), and the gates in N5 and N6.

Familiarity with microprocessor concepts and practices in general and those of the F8 in particular are helpful -- if not mandatory -- in understanding the discussion that follows. The interested reader should refer to the F8 Users Guide (published by Fairchild Semiconductor, a division of Fairchild Camera and Instrument Corporation, 464 Ellis Street, Mountain View, California 94042) for detailed descriptions of the F8 operation not included in this manual.

5.1 Data Bus Control

In order for the F8 to completely control the functioning of the MIME-I it is interconnected to the other circuits in a number of ways. These interconnections permit the F8 to perform the functions described in the following sections.

The principal channel of communication between the F8 and the other circuits in the MIME-I is the 8-bit bi-directional data bus. Devices connected to this bus are categorized as either drivers (sources) or receivers (sinks). Some devices possess both source and sink capabilities. Devices connected to the data bus and their capabilities are:

DEVICE	DRIVER	RECEIVER
F8-CPU	X	X
F8-SMI	X	X
RAM	X	X
I/0 UART	X	X
MPB ,MPT	X	

Selection of the data bus driver/receiver pair at any given time is controlled by the three most significant SMI address lines (A13, 14 and 15), CPU Read (SMIp34) and RAM Write (SMIp6). All of these signals provide inputs (addresses) to CR1. CR1 decodes these input signals and produces outputs under the circumstances given in Figure 5.1 and Table 5.1.

The next few paragraphs contain explanations of the actions caused by the eight outputs of CRI.

PIN 1:
A negative going pulse out of this pin triggers the one-shot whose output at N6pll enables the 110 baud UART clock (1760 Hz) to drive the speaker and produce an audible beep when the MIME-I receives the Bell code or when block transmission to either the host computer or the local printer terminates.

PIN 2: $\overline{\text { Incr }}$ Row Offset Pointer (C6)

When the MIME-I scrolls all data in the RAM memory locations corresponding to the top row of the display is changed to an ASCII SPACE (code 20 Hex) and the Row Offset Pointer (ROP) is incremented. Incrementing the ROP causes the old second line to be displayed at the top of the screen while the old top line "moves" to the bottom of the display. Increment pulses from the F8 are OR-ed with those from the display circuit at OR1p8 and C6pl. Increment pulses
from the F8 occur during the Horizontal retrace period and therefore do not collide with increment pulses from the display circuit.

PIN 3: Read Master Control ROMs (MPB,MPT)
The 2048 word Master Control ROMs of the MIME-I reside in the first $2 k$ of the 65 k address space of the F8. Any reference to these locations (0-7FF) by the F8 results in CRlp3 producing a negative going pulse that allows the MCR to drive the data bus. Al0 is used in conjunction with CR1p3 to select either MPB (0-3FF) or MPT (400-7FF).

PIN 4: $\overline{R e a d}$ Display RAM

This line goes low to enable the Display RAM to drive the F8 data bus. This takes place each time a displayable character is received by the I/O UART and read into the F8. First the location pointed to by the cursor is loaded with the received character and a low (off) cursor bit. Then the next position to be pointed to by the cursor is read in and written back with a high (on) cursor bit. The display RAM is also read during SEND and PRINT operations.

PIN 5: Write to RAM

A negative going pulse on this line causes the data placed on the F8 data bus during the execution of an F8 STORE instruction to be loaded into the display RAM in the location specified by the F8 Data Counter. F8 access to the display RAM is restricted to Horizontal and Vertical Sync periods. Hence the display RAM appears to have a 64 usec access time to the F8.

PIN 6: $\overline{R e a d}$ I/0 UART
A negative going pulse here causes the I/O UART to drive the F8 data bus with the contents of its receiver holding register. This operation is performed each time the I/O UART receives a character and the F 8 reads it.

PIN 7:
This line, in conjunction with the "blank the display line" at CPUp10 and the dot oscillator enable line (FFlapl2), controls the address multiplexer to the display RAM (DS1,2,3). This line is asserted whenever the F8 reads or writes data from or to the RAM.

PIN 9: Write to UART

This line in conjunction with Bit 0 of I/O port 1 controls transmission of parallel data to the UART. The write pulse emanating from CR1p9 drives the multiplexer on the Data Strobe ($\overline{\mathrm{DS}}$) line of the transmitter in the I/O UART. The LSB of I/O Port \emptyset in the F8 (CPUp16) is tied to the select lines of the

Figure 5.1: CR1 Connections

												$\circ$$\stackrel{5}{2}$은은	
OPERATION	$\begin{aligned} & \text { SMI } \\ & \text { A13 } \end{aligned}$	$\begin{array}{r} \text { SMI } \\ \text { A14 } \end{array}$	$\begin{aligned} & \text { SMI } \\ & \text { Al5 } \end{aligned}$	$\frac{\text { RAM }}{\text { WRITE }}$	$\begin{aligned} & \hline \text { CPU } \\ & \text { READ } \\ & \hline \end{aligned}$								
Read MP(Bor T)	0	0	0	1	1	1	0	1	1	1	1	0	1
Ring Bell	1	1	1	0	0	1	0	1	1	1	0	0	0
Read RAM	0	1	0	1	1	1	1	1	1	0	0	0	1
Write to RAM	0	1	0	0	0	1	1	1	0	1	0	0	1
Read UART	0	0	1	1	1	1	0	0	1	1	0	0	1
Write to UART	0	0	1	0	0	0	0	1	1	1	0	0	1
Incr CNT 6	1	0	0	0	0	1	0	1	1	1	0	1	1
none			OTH			1	0	1	1	1	0	0	1

Table 5.1: Inputs and Outputs of CR1
multiplexers feeding data and strobe signals to the I/O UART's transmitter. When the F8 raises this line high write pulses to the UART will load the data on the F8 data bus into the UART for transmission to either the host computer via pin 2 of the EIA I/O connector or to the printer via pin 14 of the EIA I/O connector. This line is normally low when the MIME-I is in the (on) LINE mode. Hence the keyboard drives the UART transmitter unless the MIME-I receives a request for cursor position. Receipt of this code causes the F8 to take control of the I/O transmitter by raising CPUpl6 while transmitting the values of the row and column counters. In the LOCAL mode the select line from CPUp16 remains low until the SEND key is depressed on the keyboard. The F8 then takes control of the I/O transmitter while sending data out the RS232C interface to pin 2 of the EIA connector. During this period the MIME-I's Data Terminal Ready (DTR) line at pin 20 of the I/O connector is held low to indicate that it is busy transmitting data and is ignoring characters received at the UART until the transmission is complete.

5.2 CPU I/O Port Assignments

The F8 uses its two 8-bit bi-directional I/0 ports to observe and control the state of the MIME-I. A description of the electrical characteristics of the F8 I/0 ports can be found in the F8 Users Guide published by Fairchild. The I/O port assignments and a description of their uses are as follows:

5.2.1 I/O Port \emptyset

Bit \emptyset (CPUp16): UART Transmitter select. This line controls whether the keyboard or the F8 drives the UART transmitter buffer. A high level selects the F8 and a low level selects the keyboard.

Bit 1 (CPUp11): Intensity Bit to RAM. This line provides the intensity information to the display RAM when characters are written to it. A high level indicates full intensity (unprotected data) and a low level indicates half intensity (protected field). Intensity information is read back from the display RAM to the F8 on the MSB of the data bus.

Bit 2 (CPUp10): Display Blanking. When this line goes low the video output to the CRT is blanked. This is done when the F8 performs operations that require display RAM access at times other than during horizontal retrace (add or delete a line are two examples).

Bit 3 (CPUp5): DTR. This line drives pin 20 (Data Terminal Ready) of the 25 pin I/O connector through an Operational Amplifier (OA2) to indicate readiness on the part of the MIME-I to accept data. This line goes low during a SEND or PRINT operation and remains high otherwise.

Bit 4 (CPUp36): Transmitter Buffer Empty/End of Character (TBE/EOC). This line is pulled low by the UART when it is busy transmitting a character. The F8 senses this and suspends transmission of characters to the UART until it returns high.

Bit 5 (CPUp31): UART Select. This line controls the multiplexer (DS6) that routes either the I/O baud rate clock (from B.R.S.1) or the printer baud rate clock (from J2p15) to the UART clock pins (40 and 17). It also routes the UART serial output (from U1p25) to either the printer output at I/O connector pin 14 (via R20 and Q7) or to pin 14 of the I/O control rom (CR2). If the MIME-I is in the LINE mode the serial data emerges at CR2p4 and drives I/0 connector pin 2 (RS232 data out) through Op. Amp 2. The UART select line also chooses either the Data Set or printer ready lines to pass on to CPUp7 -- see description below.

Bit 6 (CPUp30): Terminal Option Switch 3. This line reports the status of T.0. Sw. 3 to the F8. When low (T. 0 Sw. $3=0$) the selected terminal is not enhanced. When high the terminal selected is enhanced.

Bit 7 (CPUp25): Display Column Address 7. This input line is sampled by the F8 to detect the advent of the horizontal sync pulse.

5.2.2 I/O Port 1

Bit \emptyset (CPUp27): Character Origin. This input line is driven by FF3pl3 to indicate whether the most recently received character was from the MIME-I or from the remote computer.

Bit 1 (CPUp13): Reset Row Offset Pointer. During the power on sequence this line is pulsed low when the F8 senses the display has entered the displayoff period prior to the start of the next vertical scan. This pulse is inverted at N4p11 and applied to the reset line of Cnt 6 (p2). Resetting the Row Offset Pointer in this manner establishes an agreement as to the row address of the first line of characters between the display and loading circuits.

Bit 2 (CPUp8): Terminal Option Switch 2. This line reports the position of T.O. SW. 2 to the F8 to allow it to determine the type of terminal desired.

Bit 3 (CPUp7): Computer/Printer Ready. This line is driven by DS6p7 which is the translated ready signal. A high level at CPUp7 indicates readiness on the part of the computer or printer to accept data.

Bit 4 (CPUP34 Not Used.
Bit 5 (CPUp33): Terminal Option Switch 1. This line reports the position of T.0. Sw. 1 to the F8 to allow it to determine the type of terminal desired.

Bit 6 (CPUp28 Not Used.
Bit 7 (CPUp14): Display Enable. This input line is driven by the Display Enable signal and is sampled during the power on sequence to initiate a reset pulse to the Row Offset Pointer (Cnt 6) as described in the paragraph titled Bit 1 above.

6. SYNCHRONIZATION GENERATION CIRCUITS

The synchronization generation circuits of the MIME-I are responsible for producing horizontal and vertical sync signals to drive the CRT display and various other internal synchronizing signals. All of these signals are generated from a single master oscillator.

6.1 Dot Oscillator and Counter

The master oscillator is referred to as the dot oscillator and has a frequency of 9.828 MHz .

The dot oscillator is a ring oscillator whose output frequency (at N1p8) is determined by the crystal inserted between N1p6 and N1p1. The dot oscillator output drives CNT1 -- the modulo-six dot counter. Every sixth dot, as N1p8 falls, CNT1p9 and CNT1p8 rise forcing Alp6, N2p5 and N1p12 high. When N1p8 rises, (one half cycle of the dot oscillator later) a negative going pulse with duration equal to half of a dot oscillator cycle is fed to the count-up input line of CNT2 (CNT2p5 through N1p11).
6.2 Horizontal Position Character Counter (CNT2, CNT3) - Display Column Counters CNT2 and CNT3 count the number of character positions in a horizontal scan. A MIME-I has 105 character positions per horizontal scan. The MIME-I displays characters in 80 of these positions. The remaining positions correspond to left and right horizontal margins and the horizontal sync interval. Table 6.1 on the next page shows the allocation of character positions as counted in CNT2 and CNT3.

IVB	
2	Begin displaying characters (Gate the dot oscillator to the video generator) End the left margin
82	Cease displaying characters (Quit sending pulses to the video generator) Begin right margin
$105=0 \quad$Start horizontal sync interval End right margin	
End horizontal sync interval Begin left margin NOTE: There is a 2 character wide left margin on the MIME-I display.	

Table 6.1

The outputs of the character position counter (Display Column Counter) are:

BIT \#	SIGNIFICANCE	ORIGIN
DCØ	1 (LSB)	CNT2p3
DC1	2	CNT2p2
DC2	4	CNT2p6
DC3	8	CNT2p7
DC4	16	CNT3p3
DC5	32	CNT3p2
DC6	64	CNT3p6

DC2 through DC6 are used to address Control ROM 3 (CR3). Signals generated by CR3 and N3 control the Dot Oscillator Enable flip-flop (D.O.En.-FFla) and FFlb and also provide the horizontal sync pulses for the direct-drive data display monitors.

The modulo 105 operation of CNT2 and CNT3 in a MIME-I is achieved by pulling low on the Load inputs of CNT2 and CNT3 (CNT2, CNT3p11) when the column count reaches 104 and N3p8 goes low. Timing diagrams for the functions which operate at the horizontal frequency are provided in Figure 6.1.

6.3 Dot Oscillator Enable Flip-Flop

The clock line of the D.0.En. flip-flop (FFlapl) is pulsed when C2p2 (DC1) goes high and CNT3p6 (DC6) is low. The J and K inputs of the D.0.En. flip-flop are tied to the Q and \bar{Q} outputs of the Display Enable flip-flop (Disp. En.FF2a). Hence the clock pulses at the D.0.En. flip-flop cause it to be set only when the Disp. En. flip-flop is set -- i.e. the beam is vertically positioned in the display area. Operation of the Disp. En. flip-flop is described in Section 6.5 below. When the D.O.En. flip-flop sets its Q output allows the negative going strobe pulses that occur during the second half of every sixth dot to pass from N2p6 to the shift-register (SR1) and to the data latches (L1, L2) in the video generator (VG) circuit. The high Q output of the D.O.En. flip-flop also permits the shift pulses that occur during the second half of every dot to pass from Alp8 to SR1p7 and gates cursor and video data in the video generator circuit as described in Section 8. When the Display Column Counters (CNT2, CNT3) reach a value of 82 (80 characters after the D.0.En. flip-flop was set) a negative going pulse is applied to the reset pin of the D.0.En. flip-flop and it resets -- pulling its Q output low and disabling all functions it had enabled. When the Display Column Counters (CNT2, CNT3) reach a count of 81 (as the beam finishes passing through the sixth dot of the 79 th horizontal display position) an increment pulse is sent from FFlbp8 to CNT5p14. CNT5 is a modulo ten character scan line counter whose operation is described in Section 8.

6.4 Horizontal Sync. Generation

Horizontal sync. pulses begin at a column count of 88 and end at a count of 20. Since CNT2 and CNT3 are modulo 105 counters the direct-drive Hor. Sync. pulses for the 12 inch data-display monitor last for 40 character positions. This Hor. Sync. output is routed to the monitor through P4pl to V.Con p6 and Mon p6.

6.5 Vertical Sync and Display Enable Generation

A nine bit scan line counter (CNT4) is used to count horizontal sync pulses and thus indicate the vertical position of the beam in the same manner that the Display Column Counters CNT2 and CNT3 count character positions to indicate the horizontal position of the beam. Figure 6.2 provides a pictorial representation of the timing functions described below. The count in line of CNT4 at pin 10 is driven by CR3p3. CNT4 is reset at the beginning of the vertical sync (Vert. Sync.) interval and at a given instant its outputs indicate the number of horizontal sync pulses that have occurred since the start of the most recent Vert. Sync. pulse. The outputs of CNT4 are decoded to control the Vert. Sync. flip-flop (FF2b) and the Display Enable flip-flop (FF2a). A summary of the operation of these flip-flops for both 60 Hz and 50 Hz models is given in the following table:

MODEL	$(60 \mathrm{~Hz})$	$(50 \mathrm{~Hz})$
Set Disp. En. FF	16	16
Reset Disp. En. FF	256	256
Set Vert. Sync. FF	260	312
Reset Vert. Sync. FF	5	5
Reset CNT4	260	312

Using the information provided in the foregoing tables and knowing the dot-oscillator frequency, one can calculate the Vert. Sync. frequency using the equation:
V.Sync. Freq. $=$ Dot Osc. Freq. $\div 6 \div$ Modulo of CNT2,CNT3 \div modulo of CNT4. Plugging in values for the MIME-I we obtain:
V. Sync. Freq. =

$$
\frac{9.828 \times 10^{6}}{6 \times 105 \times 260}=60.00 \mathrm{~Hz}
$$

A Vert. Sync. rate of 50 Hz can be achieved by changing the modulo of CNT4 from 260 to 312. This is accomplished by selecting alternate inputs to the gating circuits that control the Vert. Sync. and Disp. En. flip-flops.

The set pulse to the Disp. En. FF is delayed until horizontal scan line number 16 to allow for a margin at the top of the screen. Negative Disp. En. at FF2ap12 drives an I/O port line of the F8 (CPUp27).

Vert. Sync. at FF2bp2 drives the $\overline{V . S y n . ~ i n p u t ~ a t ~ p i n ~} 9$ of the monitor connector.

6.6 Row Offset Pointer - CNT6

The last portion of the Sync. Generator (SG) circuits is the Row Offset Pointer (ROP) CNT6. This counter points to the row of characters in memory to be displayed in the first row on the screen. CNT6 is a modulo 24 counter that increments each time the display circuitry finishes displaying a row of characters (i.e., the beam passes through the 10th row of dots in the 80 th character and the D bit of CNT5 falls) or when the load circuit performs a scroll operation. The F8 issues scroll pulses only when CNT6 is not being incremented by the display circuits. This prevents CNT6 missing any counts and losing sync. As described in Section 5, during a power-on sequence CNT6 is reset by the F8 and the F8's internal pointer to the row of memory that is to be displayed at the top of the screen (first row) is also set at zero. If for any reason (such as voltage spikes on the power line) these two pointers become unequal, the MIME-I will incorrectly position the cursor in a row other than the top one when commanded to move to the home position. The two pointers can easily be resynchronized by turning the MIME-I off and back on immediately (forcing a power-on restart).

7. REFRESH RAM

The refresh RAM stores the 7 bit ASCII codes for the characters to be displayed on the MIME-I monitor. It also has storage to position the cursor and to determine whether the characters are to be displayed in full or half intensity. The memory capacity is 2048 words of 9 bits (7 ASCII, 1 cursor, 1 intensity). Only 1920 locations are accessed by the MIME-I for display purposes (24 lines by 80 characters).

7.1 Addressing

In general, 11 bits of address are required to uniquely address 1920 memory locations. The MIME-I memory is addressed by 12 bits -- 5 bits to encode the row address $(0-23)$ and 7 bits to encode the column address ($0-79$). Both the memory loading circuitry and the display generation circuitry retain their own copies of these address. These two addresses are presented to the 12 bit digital switch comprised of DS1, DS2 and DS3. Row and column address bits for the display and load circuit inputs to the digital switch and the selected outputs can be found at the following pins on DS1, 2 and 3:

SWITCH	SELECTED
CONNECTION	OUTPUT NAME

ADDRESS LINE NAME
Column Addressing
Display Column Address LSB (DCAØ) CNT2p3 Load Column Address LSB (LCAø) SMIp15

DCA1	CNT2p2	DS1p2	DS1p4	CA1
LCA1	SMIp14	DS1p3		
DCA2	CNT2p6	DS1p5		
LCA2	SMIp13	DS1p6	DS1p7	CA2
DCA3	CNT2p7	DS1p11	DS1p9	CA3
LCA3	SMIp12	DS1p10		
DCA4• $\overline{0 V F}$	A3p6	DS2p5	DS2p7	CA4
LCA4	SMIp11	DS2p6		
DCA5	CNT3p2	DS2p11		
LCA5	SMIp10	DS2p10	DS2p9	CA5

The 6th and 7th bits of the display column address (DCA4 and DCA6) are obtained by anding the overflow ($\overline{O V F}$) output of CR3 (CR3p6) with the 6 th and 7 th bits of the modulo 105 character space counter. This results in a modulo 80 display column address.

The 12 bit output of digital switches DS1, 2 and 3 needs to be mapped into an 11 bit address to access the refresh RAM. This mapping is performed by 2 And gates (A3) and 3 Or gates (OR1). The 7 column address bits (CAD-CA6) and the 5 row address bits (RAD-RA4) are mapped into the 11 memory address bits (MAØ-MA10) as follows:*

SELECTED COLUMN or ROW ADDRESS
or OTHER GATE FUNCTION

САФ
CA1
CA2
CA3
CA4 + (CA6•RA4)
CA6
$C A 5+(C A 6 \cdot R A 3)$
RAØ
RA 1
RA2
RA3
RA4 + CA6
RA4 + CA6

* + indicates the logical OR function; - indicates the AND function

This address assignment divides the screen into two portions: One portion is stored in M1-M9 and is selected when the column address is in the range 0-63 and the row address is between 0 and 15 (decimal) inclusive. The other half of the memory (M10-M18) is selected when either CA6 is high (column count of 64 to 79) or RA4 is high (row address of 16 to 23).

When the row offset counter C6 has a value of zero the allocation of memory sections to the display looks like

The above pattern rolls upward (i.e., the top row replaces the bottom row and all others move up once) each time the MIME-I performs a scroll operation and C6 is incremented.

7.2 Data Bus Interfacing

The MIME-I refresh RAM is connected to the F-8 data bus through an 8 bit tri-state buffer (B1). When the processor wants to write data into the RAM the 7 bit ASCII code and the cursor bit are placed on the F-8 data bus while the intensity bit is present at the F-8 I/0 port. The relationship between F-8 data bus bits and memory chips is as follows:
SIGNAL NAME
F-8 DATA BIT \#
MEMORIES USED
ASCII BIT 1 BOM1, 10
ASCII BIT 2 B1
ASCII BIT 3 B2
ASCII BIT 4 B3
ASCII BIT 5 B4
ASCII BIT 6 B5
ASCII BIT 7 B6
CURSOR BIT B7
M2, 11
M3, 12
INTENSITY BIT I/O PORT 0 BIT 1 M8, 17M4, 13M5, 14M6, 15
M7, 16M9, 18
When the F-8 needs to read from a location in the refresh RAM the data bus control circuit produces an enable pulse from CR1p4 to Blp19 while addressing the desired location. This enable pulse causes the addressed data to drive the data bus through B1.
When either writing to or reading from the refresh RAM the RAM driver select line at DS1, 2 and $3 p 1$ is driven by the processor circuit to select the load column and row addresses for driving the memory. This line is returned low to allow the display circuits to address the RAM.

8. VIDEO GENERATOR CIRCUIT

The Video Generator (VG) circuit of the MIME-I receives parallel ASCII data from the refresh RAM and sync signals from the sync generator and produces video signal(s) capable of driving the direct-drive data display monitor in the MIME-I.

8.1 Character Font

The MIME-I display is sectioned into 1920 character positions in a 24-1ine by 80 column grid of 6×10 dot matrices. A basic character position is illustrated in Figure 8.1 below. Both row 0 and column 6 are always blank to provide a boundary between characters. Rows 8 and 9 are used only by descending lower case letters and the cursor. A complete listing of the character generator ROM is given in the Appendix. Ten address lines are required to indicate the character (7 bits of ASCII) and the character scan line (3 bits) to be displayed. Latches L1 and L2 provide the 7 ASCII data bits and CNT5 -- the Modulo 10 character scan line counter provides the 3 bits needed to indicate which scan line is to be displayed. These address lines are summarized in Table 8.1.

6 Dots
This Column Always Blank

123456

Figure 8.1: Individual Character Grid

Source	Address B
ASCII Bit 1	0
" " 2	1
" " 3	2
" " 4	3
" " 5	4
" " 6	5
" " 7	6
CNT5 Bit A (LSB)	7
CNT5 Bit B	8
CNT5 Bit C (MSB)	9

Table 8.1: Character Generator Addressing

An example of how a particular character's dot pattern is stored in the CG ROM is as follows: Suppose we take the character A (ASCII code 41 Hex) for example. The dot pattern for its first row (ROW \emptyset) can be found in location 041 of the CG. Referring to the listing provided in the Appendix we see that the data in location 041 is 00 (Hex). This causes row 0 of the letter A to be blank. By incrementing CNT5 by one we find that the CG address for the row 1 dot pattern is OC1. The data at this address is 04 . Since the output data word corresponds to the character dot positions as shown in Figure 8.1 output word 04 causes dot 3 to be turned on at the top of the A. This process can be repeated with the following results:

Scan line	CG Address	Data		ot	Pa	att	ern
1	0 C 1	04		0	\bullet	0	0
2	141	OA		\bullet	0	\bullet	0
3	1 C	11		0	0	0	-
4	241	11		0	0	0	-
5	2 C	1F		-	-	-	-
6	341	11		0	0	0	-
7	3 C 1	11		0	0	0	-

Using the information provided above one may design his own character set.

8.2 Display Sequencing

Each time the beam passes through the sixth dot of a display position (anywhere in the 24×80 grid) N 2 p 6 pulses low and jams the dot pattern of the present scan line of the next character to be displayed into the shift register (SR).

At the same instant the ASCII code and the cursor and intensity bits for the next character (next here meaning the one to be displayed after the one in the shift register) are loaded into the latches L1 and L2 and the character generator (CG) begins looking up the dot pattern for that character. This dot pattern is to be loaded into the shift register when the beam passes through the next sixth dot. Figure 8.2 illustrates this procedure. Suppose the beam is passing through the top scan line of the letters $A B C$. The sixth dot pulse generated between the A and B jams the dot pattern for the first row of the letter B (11110) into the shift register while simultaneously loading the ASCII code 43 (Hex) with a high cursor bit into the latches. As soon as this code appears at the outputs of the latches the character generator ROM starts looking up the dot pattern for the top row of the C (01110). This data is jammed into the shift register as the beam passes through the sixth dot in the top row of the B.

Figure 8.2: Display Sequencing
This type of display sequencing resembles a bucket brigade since the character generator is always looking up data for the next character to be displayed (i.e. the CG is one character ahead of the video output) and the display RAM is accessing data for the second character to be displayed after the present one (i.e. it is two characters ahead of the video).

8.3 Video Signal Composition

Digital dot pattern data shifted out of SR at pin 13 is anded with the dot oscillator enable flip-flop, the blank the display signal (CPUp10) and the signal produced at XORp6. This signal falls and prevents rows 0 and 1 from being displayed until rows 8 and 9 when the character is a descending lower case one. When non-descending characters are displayed XORp6 pulls low and prevents the recurrent display of row 0 and 1 during rows 8 and 9. Anding SRpl3 with the dot oscillator enable flip-flop and the CPU display blanking signal at A2p6 prevents video data from being displayed outside of the 24×80 display area or during F8 memory access periods. The cursor enable at L2p12 is also anded with the dot oscillator enable FF and the CPU display blanking signal at A2p8. Digital video data at Alp3 is summed into the video combiner circuit along with a duplicate signal from A5p3 (for full intensity characters) and cursor data from A2p8. The summing point for the video output is the base of Q1. Q1 is an emitter follower circuit that provides a low impedance video signal to drive the internal monitor.

9. TROUBLESHOOTING

This section contains a list of trouble symptoms, their causes and remedies. It also describes the disassembly procedures for the MIME-I.

SYMPTOM
Dark horizontal band
slowly rolls up screen.

CAUSE
One of the two diodes in the $+5 v$ full wave bridge bad and causing ripple on +5 .

All keys work except one.
Bad key or loose solder connection to that key.

Either a keyswitch is stuck down or shorted or 0S1, DS1, 2 or CNT1 is bad.

Defective C.G. or S.R.

Crosstalk in one of M1-M18.

REMEDY
Replace defective diode. solder joints.

Free jammed key or replace defective IC.

Determine IC at fault and replace.

Determine faulty bit (by comparing extra characters ASCII code to space code -Hex 20) and replace memory chip.

9.1 Troubleshooting Hints

To perform any diagnosis and/or repair work on a MIME-I terminal you should have thoroughly familiarized yourself with the principles of operation described in the earlier sections of this manual. The following paragraphs suggest tests to perform to determine the cause of a malfunction in the various MIME-I circuits.

9.1.1 Keyboard Fault Diagnosis

If when you hold a selected key down on the keyboard you either (1) do not observe a strobe pulse at J1pl or (2) note that the ASCII data at J1p2-8 is in error, then the keyboard circuits have failed. Roughly speaking, data failures are the result of MKE failing or DS4 or DS5 loading down the data lines. Strobe problems are usually due to a faulty OS1, N2, DS1 or DS2 chip. Refer to Section 3 of this manual for a detailed description of the keyboard circuits.

9.1.2 I/O Fault Diagnosis

If either (1) no serial data is present at pin 2 of the 25 pin I/0 connector when both strobe and data signals from the keyboard are present, or (2) no serial data is present at Ulp20 when the same is present at pin 3 of the 25 pin I/0 connector the I/O circuit is malfunctioning.

When testing the output circuit one should verify that strobe, data and clock signals are present at the appropriate pins on the UART. Next check to see that the serial data out of U1p25 passes through to CR2p4 (when in remote) and drives OA2. Note that if for some reason CR2p11 does not get pulled up by the LINE/LOCAL switch no serial data will appear at I/O Conn. p 2.

9.1.3 Sync Generation

Troubles in the sync circuits can be due to either (1) the main oscillator quitting; (2) the divide by 6 counter CNT1 malfunctioning; (3) the character position counters CNT2 and CNT3 malfunctioning; (4) a faulty scan line counter CNT4; (5) a bad character row counter CNT6 or defective gates and flip-flops that provide the dot oscillator, horizontal and vertical sync signals. To identify the faulty circuit refer to Section 6 of this manua1. Note that since CNT3p6 feeds CPUp25 if the CPU fails such that CPUp25 gets pulled high or low it will appear as if CNT3 is faulty when it is not.

9.1.4 Refresh RAM Diagnosis

The most common failure mode for the semiconductor memories used in the MIME-I refresh RAM is indicated by one or more characters appearing (or being altered) in positions other than the cursor position when loading characters at the cursor position. The faulty memory may be identified by noting that the ASCII code for the character that was altered usually differs from the ASCII code for the character that replaced it by only one bit. That reduces the possible candidates for the bad IC to only two memory chips (i.e., the two that store the bit in question). After
replacing these chips the malady should disappear.

9.1.5 Testing the Video Generator Circuits

In order to troubleshoot the video generator circuit you should study Section 8 of this manual.

If the cursor moves around on the screen when data is sent to the MIME-I but no characters are displayed either the character generator (C.G.) or the shift register (SR) has failed.

9.2 Disassembly

Unplug the unit to gain access to the main logic board as follows:
Remove the two screws at the top rear of the cabinet and the rear cover. The unit may now be plugged in for servicing.

9.2.1 Board Removal

The main logic board is mounted in the MIME-I cabinet with 2 regular and 2 Phillips screws. The 2 Phillips screws are on each side of the 25 pin EIA connector. One of the regular screws is about half an inch below the baud rate switch and the final mounting screw is directly above the power switch. Before removing any of these screws UNPLUG the unit. All interconnection cables and plugs are labeled to avoid confusion when reinstalling the board.

MIME
Integrated Circuits

Part	Description	Quantity	Board Location
A1,2,3,5	74LS08	4	H3, I3,F4, J3
A4	4081	1	G3
A6	4082	1	I8
B1	81LS95	1	C7
CNT 1	7492	1	H2
CNT 2,3	74LS193	2	F2,F3
CNT 4,9	4040	2	G2,G8
CNT 5	7490	1	G5
CNT 6,8	4024	2	F5,H8
CNT 7	7493	1	J2
CG1	2708P	1	I5
CPU	3850	1	D6
CR 1,2,3	74S288	3	B2,B7,G2
DS1,2,3,4,5,6	74LS157	5	E2,E3,E5, A4, B4, A6
FFL, 3	74LS73	2	G4, A1
FF2	4013	1	H4
FWB 1,2	VMø8	2	A8,A8
ISO 1,2	4N37	2	A7,A7
L1,2	74LS174	2	J5, J4
M1-M18	2102L1PC	18	E6-K6 and E7-K7
MPB, MPT	2708P	2	C1,C2
N1	7400	1	I2
N2,3,4	74LS00	3	H4,G3,G5
N5,6	4011	2	A2,A2
OA1	UA1458TC	1	L5
OA2	LM348	1	B8
OR1	74LS32	1	E4
SMI	3853	1	D4
SR1	74166	1	H5
U1	AY5-1013	1	B4
X-ORT	74LS86	1	I4 10-1
		69	

Capacitors

Part \# (Name)	Description	Quantity	Location
Cl	4,700uf,25v	1	M2
C2	470uf,40v	1	L2
C3	2,200uf,25v	1	L4
C4,7,8,9,23,24	15uf, 16v Tantalum	6	K1,M7,M6,J8,A2,B6
$\begin{aligned} & \mathrm{C}, 10,11,12,13,14,18,19 \\ & 20,25,26 \end{aligned}$.luf ceramic	11	$\mathrm{G}, \mathrm{I}, \mathrm{C} 8, \mathrm{C} 8, \mathrm{~K} 2, \mathrm{~F} 1,$ G1, G1, H1, I1,F6
C6,17,27	220pf silver mica	3	J2,G5,H4
C15	. 0luf ceramic	1	H4
C16	.001uf ceramic	1	H5
C21,22	10pf silver mica	2	C7,C7
C28	100pf ceramic	1	G2

Resistors

R1,2,27
R3,4,10,26
R6,7,17,18
R8,16,5,29
R9
R11
R12,20
R13,24
R14
R15,22
R19,23
R21,25,28
Voltage Regulator

VRI
78L05
1
M5

Circuit Board
 1

Transistors

Q1,6,8,9,10	MPS5172	5	J3,A5,A7,A6, J8
Q2,3	NSD202	2	K1,K2
Q4,5	NSD102	2	M6,M6
Q7	MPS3638	1	C8

MIME
Diodes

Switches
BRS1 Baud Rate Rotary 1 G8
SS1
TO
US1-6
F/H Duplex Slide Switch 1 D8
Terminal Option 3 posDip 1 E7
UART Option - 6 pos-Dip $\frac{1}{4}$ B6
TOTAL 4

Sockets/Connectors

I/0 Conn.

OA2,FF1,FF3
CR1,2,3,J1,J2
MPB,MPT,CG1
CPU,SMI,U1
P1,2,3,4
DB25SF179 1
14 pin dip I.C. sockets 3
16 pin dip I.C. sockets 5
B8
B8,G4,A1

24 pin dip I.C. sockets 3
B2,B7,G2,B3,E9

40 pin dip I.C. sockets 3
C2,C1, I5

Molex 6 pin plugs TOTAL $\frac{4}{19}$
D6,D4,C4

Crystals
XTAL1
XTAL2
$\begin{array}{llll}9.828 \mathrm{MHz} & & 1 & \mathrm{~J} 2 \\ 2.00 \mathrm{MHz} & \text { TOTAL } & 1 & \text { C6 }\end{array}$
$145640.53 F F$
500600600000100 $5010 \quad 0060608$
5020404046040
503904040900

50506060060610
5069040964040
5076 ES 61 04601
5060 1F 1F 1016
50906010960109

50 EG GE Q4 日E 1F
50 Cg GE G4 1E GE
500 C 1E GE 1 E 日E
50 E as an as 90

510 Cl 11 1F 10 Cl
511060606060
5120 06 日4 日明
513011 GC 11 G1
514011 日月 1111
$\begin{array}{lllll}5156 & 11 & 11 & 11 & 11\end{array}$
$5160 \quad 04606860$
517604090609
$5180 \quad 11$ 1F 1018
519060606060
51 AD Q6 Q4 日f 1F
515013040162
510015111110
510611111116
51 E G2 aE ge g7
$51 F \operatorname{GE}$ Qr ge of
520611 1F 1165
521060606060
522060404064
$5230 \quad 15040606$
$5246 \quad 1711$ 1E 10
$52501 E 11$ 1E 日E
526060620908
$5270 \quad 09696968$
528011 1F De 1F
5290 1F 0060100

$52 \mathrm{Ca} 16 \quad 1 \mathrm{~F} 1110$
$\begin{array}{llllll}5200 & 16 & 15 & 14 & 61\end{array}$
52E日 04 aE 9908
52FG 09096966
$5300111 F \quad 0404$

53200060909
5330111041611
534016111111
$\begin{array}{lllll}5350 & 16 & 12 & 12 & 11\end{array}$
$5369 \quad 120129968$
$5370 \quad 09 \quad 09 \quad 09 \quad 01$
$53 E 0$ 1F IF De as
$539060001 F 60$
53 FE 090460 AH
5SEG GE DE 1F GE
530 EF 11 1E EE
$53001600110 E$
53EG GU GF GE 日T
5SFG OE OT GS GE

60606060 $32 \quad 24 \quad 28 \quad 24$ 00606000 06408060 6960606 096060100 69096021 60460460 15 1E Gs 64 2 E 2 EE 3 S $9418 \quad 1964$ Q2 1F 19 1F 1E 1F 1F 日F
$\begin{array}{lllll}1 F & 11 & 11 & 11\end{array}$
61 60 6s Ee
04606969
$\begin{array}{llll}10 & 64 & 14 & 64\end{array}$
60606000
$\begin{array}{llll}\text { 日F } & 19 & 14 & 14\end{array}$
EE 10 as 11
11161610
041111111
61606460
04006060
18 GE 14 IF
00606060
$14 \quad 6214 \quad 64$
日月 1E 10 E2
11161610
04111111
$07 \quad 66 \quad 0467$
GE 691111
05096964
00606000
GE 640609
$12 \quad 01 \quad 1 E \quad 4$
11 IE 1E 16
64111115
99 ag QE ag
04691115
1月 日月 60 64
60． 64 6c 18
05081560
$1 F 611168$
11101013
64111115
69 日F 6409
04091115
04046060
12001204
1E 131260
ae $1111 \quad 1109$
$11 \quad 161611$
0411 बम 1E
99696469
0409 af 15
$08681041 F$
12040418
04636060
G2 GE GE De
1E 1F 16 日
04 日E 0411
070764
040764 1E

06060060 24243220
09606060
64 60406
64 641046
696420100
60602060
Q6 E1 646
046060164
24382028
04 E4 1446
QE DE EQ 00
11 日E E1 11
1111 1F 1F
Qs 6020 cc

02060464
09606060
$\begin{array}{llll}68 & 02 & 15 & 64\end{array}$
1111646
$11 \quad 646112$
11110118
$0864-1208$
00606048
01006094
00606060
10 G1 GE G4
11116484
11840114
af 日月 日2 18
0 E 6 ag 69
$11091 F 09$
1F 15 1F 14
00606060
$1001641 F$

$1 F \quad 04 \quad 0118$
04 24 a4 15
0964 日2 日月
0月 $69 \quad 0210$
01006015
04 IE GC 1E
1601 日E E4
11016464
$\begin{array}{lll}11 \quad 04 \quad 61 & 14\end{array}$
0月 64 as 15
090402 ac
04090468
026064 EE
$081610 \quad 104$

63	62	15

11 ae 6094
$\begin{array}{llll}11 & 14 & 11 & 12\end{array}$
11041618
0904 a2 an
af ag as as 04696044 1E 1810 as 04646464 GE 1C 0068 11 GE GE 11 11 E4 1F 1F 09646299 $11071 F \cos$

00606060
32220060
00404006
06606060

060460104
00606060
00608060
1F
2022 GF 1F
00606060
日2 94 ag EE
101111 EE
$001 F 6060$
04 60 60 00
04 E15 1F
$601 F 6060$
001041515
09606061
64606411
$161 E 1111$
160560 at
04606060
$0402001 F$
$06601 F 60$
$\begin{array}{lllllllll}06 & 15 & 15\end{array}$
06606062
as 1F a2 02
$\begin{array}{llll}10 & 15 & 19 & 11\end{array}$
Q8 936408
0411 aE as
04 日2 0e $1 F$
0060 ED 1 F
06 EOLF 17
$001 F 60-14$
10606104
16151511
Q4 as an 1F
04 1E $69 \quad 19$
$00181 \quad 151 E$
0600600
60 ac 0511
040060 日e
Qe 1F a2 14
10111311
as as 11 as
$041569 \quad 69$
G4 ae 日e 1F
00606060
12120511
04606016
04606460
$\begin{array}{llll}10 & 11 & 11 & 11\end{array}$
$01 \quad 036064$
04156969
0462 am 1 F
80606060
ac aE as 1F
68 6464 64
02606964
1F 11111 日E
60 1F 06
041109 ac
04 6L 10

MIME－I CHARACTER GENERATOR
8／2／78 Revision A

