X

=
: Z
o
& P
(o]
m N
£
3

™M

Aztec C Version 4.10¢c
for PC-DOS and MS-DOS

Release Document

Information about version 4.10c of Aztec C86 is contained in the following -
places: '

* The release document for v4.10a. It describes all the features
of version 4.10a that weren’t discussed in the manual, and
describes the files in version 4.10a. These files are also in
versions 4.10b and 4.10c of the software.

* This document. It describes the features that are new in
version 4.10c. It also includes information from the 4.10b
release document.

* A "read.me" file on the v4.10c disks, which lists the bugs that
have been fixed in going from version 4.10a to v4.10b to
v4.10c and lists known bugs.

New Features

The following describes the new features and enhancements found in
versions 4.10b and 4.10c. Descriptions of the new programs are appended to
this release document.

BUGS FIXED

Several bugs have been fixed. These are described in the readme file.

NEW COMPILER FEATURES
A new option, +If, causes the compiler to make all global data far.

NEW LINKER FEATURES -

When generating a symbol table in response to the -t option, the linker now
by default outputs, for each symbol, the relative paragraph number of the
segment that contains the symbol in addition to the offset of the symbol within
that segment.

A new option, +p, causes the linker, when generating a symbol table, to
output just the offset component of each symbol’s address.

Apr 88 Release Doc Aztec C86, v4.10c

NEW UTILITIES
This release contains five new utility programs:

cpp Generates an output file with your preprocessor
statements.

ctoeng Generates an English dcséription for a specified C

declaration.

engtoc Given an English description of a desired C declaration,
engtoc generates the C declaration.

hd hex dump utility

proto | Generates a file containing C prototype definitions for the

functions that are in a specified C source module.
Documentation Corrections

The following utilities are included only in the Developer and Commercial
Packages:

ctags
proto

Aztec C86, v4.10c Release doc Apr 88

Packaging
As stated, the Aztec C86 Developer system is a superset of the
Professional, and the Commercial system is a superset of the Developer.

This section first lists the files that are common to all three systems. It then
lists the files that are in the Developer and Commercial systems, but not in
the Professional. It then lists the files that are only in the Commercial
system.

FILES IN ALL VERSIONS OF AZTEC C86

Executable Programs
The following executable programs are in all versions of Aztec C86:

CC.EXE C Compiler, pass 1
CGEN.EXE C Compiler, pass 2
ASEXE Assembler
LN.EXE Linker
OBJ.EXE Aztec-to-Microsoft object convertor
DB.EXE Assembly language Debugger
SDB.EXE Source level debugger
LB.EXE Object file librarian
ORD.EXE Object library generation utility
CNM.EXE Object file utility
OBD.EXE Object file utility
SQZ.EXE Object file utility
CRC.EXE CRC utility
ARCV.COM Source archive utility
C.EXE C driver
TERM.EXE Terminal emulator program
Z.EXE Text editor
CTAGS.COM Text editor utility
CTOENG.EXE C-to-English translator
ENGTOC.EXE English-to-C translator
CPP.EXE C Pre Processor
HD.EXE HexDump Utility

Libraries

The following libraries are in all versions of Aztec C86. Each uses the
small code and small data memory model.

"C.LIB
MLIB

Library of non-floating point functions
Library of floating point functions (non-8087
version)

3

Apr 88 ’ Release Doc Aztec C86, v4.10¢

MS87.LIB , Library of floating point functions (8087 version)

MS87S.LIB Library of floating point functions (sensing
version)

S.LIB Screen functions

G.LIB Graphics functions

All Aztec C86 systems also contain a ‘large code’, ‘large data’ version of
each of the above libraries. The name of a ‘large code’, ‘large data’ version of a
library is derived by appending the letter ‘I’ to the name of the ‘small code’,
‘small data’ version of the library. For example, the name of the ‘large code’,
‘large data’ version of c.lib is cLlib,

Object Modules

The following object modules are in all versions of Aztec C86:
OVLD.O, OVLDPATH.O, OVBGN.O
Object modules for overlay support
CRT0.0BJ Object module of Startup routine for programs
linked with Microsoft libraries

New Header File

All Aztec C86 systems include several header files, which can be included
in C programs. These files have extension .h.

STDLIBH declares size_t and gives Prototypes for standard
functions.

Source Archives

The following source archives are in all versions of Aztec C86. They can
»¢ unpacked using the arcv program.

S.ARC ; Screen functions

G.ARC Graphics functions

TERM.ARC terminal emulator programs
viiscellaneous

The source file stksiz.c controls the size of a program’s stack and heap, and
he relative positioning of these two areas. For details, see the Programming
Jrganization section of the Technical Information chapter.

The runtime variable _agetc_mask determines the appropriate mask for
igetc. This used to be Ox7f. If you did an agetc and the high bit was on, it got
urned off. In this release it is set to Oxff, and the high bit remains intact. This
llows Aztec C to handle 8-bit characters in strings and quotes. For more
nformation refer to the Lib86 section of your 4.1 Release Document.

Aztec C86, v4.10¢ Release doc Apr 88

The file exmpl.c contains source to a sample C program.

FILES ONLY IN DEVELOPER AND COMMERCIAL SYSTEMS

Executable Programs

The following programs are only in the Developer and Commercial
versions of Aztec C86:

MAKE.EXE Program maintenance utility

DIFF.EXE Source file comparator

GREP EXE Pattern matcher

LS.COM File listing utility

PROF.EXE: Program profiler

PROTO.EXE Prototype Generator
Libraries

In addition to ‘small code’, ‘small data’ and ‘large code’, ‘large data’
versions of each library, the Developer and Commercial versions of Aztec
C86 contains a version that uses the ‘large code’, ‘small data’ memory model
and a version that uses the ‘small code’, ‘large data’ memory model. The name
of the ‘large code’, ‘small data’ version of a library is derived by appending the
letters Ic to the name of the ‘small code’, ‘small data’ library, while the name of
the ‘small code’, ‘large data’ version is derived by appending Id.

For example, the name of the ‘large code’, ‘small data’ version of ¢.lib is
cle.ib.

FILES ONLY IN THE COMMERCIAL SYSTEM

Librarles

The Commercial version of Aztec C86 contains a library, ¢86.1ib, for
generating programs that run on CP-M/86.

Source Archives

The following source archives are only in the Commercial version of
Aztec C86. They can be unpacked using the arcv program.

STDIO.ARC Standard I/O functions

MISC.ARC Miscellaneous functions

MCHB86.ARC Miscellaneous functions

MATH.ARC Floating point functions

DOS20.ARC DOS 2.x functions

CPM86.ARC CP/M-86 functions

BUILD.ARC Makefiles & related files, for library generation

5

Apr 88 Release Doc Aztec C86, v4.10c

UNPACK.BAT Batch file for dearchiving source archives

Files for Creating ROMable Code

The following Commercial system files are used to generate ROMable
code:

HEX86.EXE Intel hex record generator

ROM.O Object module of Startup routine for ROMable
programs that use ‘small code, small data’

LROM.O Object module of Startup routine for ROMable

: programs that use ‘large code, large data’ .

LCROM.O . Object module of Startup routine for ROMable
programs that use ‘large code, small data’

LDROM.O Object module of Startup routine for ROMable

programs that use ‘small code, large data’

CHECKING THE FILES

The file crelist contains the CRC values for the files. You can compute the
CRC values of the files we sent you and then compare them with their expected
values, using the program crc. For example, entering

cre**
computes the CRC of all the files on the current directory of the default drive.

Common Problems

Stray Polinters

If a program does not behave consistently or corrupts the operating system,
the program may contain stray pointers. (Stray pointers are defined as those
variables that are not pointing to the proper memory given their assigned values
and that are directed to storage in an improper location.) This may occur when
the user variable fails to initialize a local variable properly.

To locate a stray pointer, use sdb or db.
Array Index Out of Bounds

Memory may be corrupted if an array index is out of bounds.

To avoid this problem, be sure that all subscripts are valid. This can be
Jone using the assert function.

Aztec C86, v4.10c Release doc Apr 88

Calls to Library Functions

If you encounter an error in a large program that you think might be related
to calling in a library function, test the function call first in a small program,

Library Function Return Values

‘When you call one or more library functions, be sure to check their return
values, if any, if your program does not work.

Assignment vs. Equals
Remember that the following code: '

A =B

represents "assignment,” not "equal.”
Use

A == B
to compare A and B.

Function Return Values

The program will not run if the return value or the parameters of a function
are wrong.

To avoid this problem, use prototypes. The proto can be used to generate
prototypes. For information on proto, see the manual page for PROTO in this
release document.

TECHNICAL SUPPORT

‘While we do our best to ship problem-free software, problems sometimes
occur. Manx has a Technical Support staff ready to help you out if you should
encounter problems while using our software. A Problem Report form is
located in this section to assist you in describing your problem. In addition, our
Technical Support Staff is available from Monday through Friday 10am-
12Noon and 2pm-5pm EST. They can be reached at (201) 542-1795.

CTOENG C-TO-ENGLISH TRANSLATOR CTOENG

NAME
ctoeng - C-to-English Translator

SYNOPSIS
- ctoeng [C declaration]

DESCRIPTION

ctoeng takes a C declaration from standard input (keyboard) or the
command line and writes the corresponding English description to standard
output.

Only valid C declarations should be used because of the limited capability
for syntax error checking.

EXAMPLES

char *(*id[3]));
generates

& three element arrray of pointers to char
while

char *(*id) O;
generates

_ a’pointer to function returning pointer to char

SUPPORT

. To a limited degree, ctoeng does support scalar variables, array
declarations, and function definitions. It does not support structs, unions, or
cnums.

ENGTOC ENGLISH-TO-C TRANSLATOR ENGTO(

NAME
engtoc - English-to-C translator

SYNOPSIS
engtoc [english description]
DESCRIPTION

engtoc takes an English description of a C declaration from standard input
or the command line and writes the C declaration to standard output.

An English description can be a standard C type specifier; e.g. char,
int, long, float, double, short, void, volatile.

If desc is an English description, the following are, too (brackets indicate
optional entries):

pointer [to] desc
function [returning] desc
[a] <number> element [array of] desc

The following keywords can be abbreviated to their first three characters:
array, char, double, element, float, function, long, pointer, short, signed, void,
and volatile.

Make the following keywords plural, if necessary, by adding "s" to the end
of the word: array, char, double, element, float, function, int, long, pointer,
short, and signed. : '
EXAMPLES
Input:

a 3 element arr of pointers to char
Output:

char *id[3]:;
Input:

pol to 3 ele arr of unsigned long
Output:

unsigned long (* id) [3}:

CcppP - C-PREPROCESSOR CcprpP

NAME
CPP - C-Pre-Processor

SYNOPSIS
cpp [k -3 -d<id>=<macro> -0 <filename> -n]

DESCRIPTION

cpp is a C preprocessor which uses command line options and your C
program as input. The output file generated substitutes your #defines, #includes,
#ifdefs, and line directives with their actual values. '

NAMING CONVENTIONS
prog.c
generates an output file
prog.i

OPTIONS
-k suppress extended keywords.
-3 use old preprocessor rules
-d<id><Macro> allows you to define a macro
-n suppress the #line directive
-b specify pathname of the include file directory.
-o<filename> name of the output file
LIMITATIONS ,
All constant expressions evaluate to zero on #IF statements.

10

PROTO PROTOTYPE GENERATOR PROTO

NAME
proto - function prototype declarations

SYNOPSIS
proto [-options] filel [file2...]
DESCRIPTION
The proto utility program creates a file of function prototype declarations
for the functions that are defined in the C source files filel, file2, ...
Input Files
The specified filenames can contain "wildcard” characters. Also, the

extension on a file name is optional; if not specified, it’s assumed to be ".c". For
example,

*c All files in the current directory whose extension is .c

f*.c Files in the current directory whose name begins with "f" and
whose extension is .c

t* Files in the current directory whose name begins with t and
whose extension is .c.

proto also automatically generates prototypes for functions defined ina C
source file’s #include files.

Output file

By default, proto writes generated prototypes to the file proto.h. This can
be overriden using the -0 option. This option is followed by the name of the
desired output file. For example, the following command writes prototypes for
the C source file prog.c to prog.pro:

proto -0 prog.pro prog.c

By default, proto creates a new file before writing the prototypes to it. The
-a option tells proto to append the prototypes to an existing file.

11

PROTO

Options

-a
- path

-0 outfile

-r

-b

PROTOTYPE GENERATOR PROTO

Append prototypes 1o the output file, if it exists.

Search for #include files in the directory defined
by path, in addition to the directories defined by the
INCLUDE environment variable.

Write prototypes to outfile instead of proto.h.

Ignore register class in formal parameter with
register attribute (default: put storage class " regnster
in prototype).

Generate prototypes for all functions (default: dont
generaie prototypes for static functions)

Suppress comments in the output file

12

HD HEX DUMP UTILITY HD

NAME
hd - Hex Dump Utility

SYNOPSIS
hd [-r] {+n[.]] filel [+n[.]] file2 ...

DESCRIPTION

k hd displays the contents of one or more files in hex and ascii to its
standard output.

filel, file2,... are the names of the files to be displayed.

+n specifies the offset into the file where the display is to start, and
defaults to the beginning of the file.

if +n is followed by a period, n is assumed to be a decimal number;
otherwise it is assumed to be hexidecimal. Each file will be displayed beginning
at the last specified offset. '
EXAMPLES
hd +16b oldtest newtest +0 junk

displays the data forks of the files oldtest and newtest, beginning at offset
0x16b, and of the file named junk beginning at its first byte.

hd -r +1000. tstfil

displays the contents of the resource fork of tstfil beginning at byte 1000

13

STR FUNCTIONS STR FUNCTIONS

NAME
strsrt, stricmp, strrev, striwr

SYNOPSIS
char *strstr(s1,s2)
const char *sl, *s2;
int stricmp(s1,s2)
const char *s1, *s2;
char *strrev(sl);
char *s1;
char *striwr(sl);
char *sl;

DESCRIPTION

Strstr finds the first substring in s1 identical to s2. If it is found, strstr
returns a pointer to it, else it remurns a NULL pointer.

Stricmp does a string compare with no case sensitivity, ¢.g. the letters "A"
and "a" are considered the same. Stricmp returns either less than zero, zero, or
greater than zero, depending on whether sl is lexigraphically greater than, equal. .
to, or less than s2.

Strrev takes a pointer to 5 string and reverses the order of it, overwriting
the original string. Strrev returns a pointer to the new string.

Striwr takes a pointer to a string and converts it to lower case letters, thus
overwriting the original string. Strlwr returns a pointer to the new string.

EXAMPLES

main()
{
printf("%s\n", strstr("hello world", "world"));
printf("%d\n", stricmp("aBc", "abc");
printf("%s\n", strrev("hello world");

printf("%s\n", striwr("This Had Caps™));

} :

generates the following output:

world

0

dirow olich
this had caps

14

Aztec C86, version 4.10
for PC-DOS and MS-DOS, versions 2.x and 3.0
Release Document

This release document introduces the features of Aztec C86,
version 4.10 for PC-DOS and MS-DOS. 1It’s divided into the following
sections:

1. Description of the Package
2. Information for New Users
3. New Features

4. Packaging

5. Techwnical Support

6.

Additional Documentation

This release document contains updates made to the manual since it
was printed as well as new enhancements to our software environment.

1. Description of the Package

Aztec C86, version 4.10, consists of software and a manual for
developing programs in the C language using PC-DOS or MS-DOS.

There are threc Aztec C86 systems available: Professional,
Developer, and Commercial. The Developer system is a superset of the
Professional, and the Commercial is a superset of the Developer.

The systems are supplied on floppy disks whose contents are
described in the Packaging section of this document.

If you're a necw user of Aztec C86, your package also includes a
manual.

There are three sources of documentation for Aztec C86: (1) the
manual; (2) documentation that’s appended to this release document,
which describes {eatures that have been added to Aztec C86 since the
manual was last printed; and when appropriate (3) a read.me file on
the disks, which describes featurcs that have been added since the
releasc document was printed. Taken together, this documentation
describes all the features of the Commwercial version of Aztec C86. If
you have the Professional or Developer system, your package doesn’t
have all the documented features.

1.1 Differences between the three systems

As mentioned above, the Developer system is a supersct of the
Professional, and the Commercial is a superset of the Developer. In this
section we're going to describe the main differences between the three
systems.

Release Document Aztec C86, v4.10

The main components of the Professional system are these:

The compilers, assembler, and linker;

Object modulc utilitics;

8087/80287 support;

Libraries supporting two memory models: one for the small
code, small data memory model; and the other for large code,
large data.

* The debuggers sdb and db;

* The Z text cditor;

* The C driver program, c.

* ¥ ¥ ¥

The Developer system contains all the components of the
Professional, plus the following

* The "Unitools" programs make, grep, diff, and Is;

* pcz, a memory-mapped version of Z for IBM PCs and true
compatibles;

* Librarics for the other two memory models (large code, small
data; and small code, large data);

* The prof profiler.

The Commercial system contains all the components of the
Developer, plus the following:

* Source to the library functions;

* Support for generation of ROMable code;
* Librarics for creating CP/M-86 programs;
* Onc year of updates.

2. Information for New Users

The best way to acquaint yourself with our package is to go through
the overview and tutorial sections in the manual. This will provide an
introduction to your C programming environment by walking you
through the commands nceded to compile, assemble, and link the
sample program provided. The sections on the compiler, assembler,
linker, and libraries will provide you with additional information and
options to allow you to make the most out of the product that you
have received.

Another section in the manual to read is the style chapter. This
chapter explains some common pitfalls and things to watch out for.

3. New features

This section summarizes the features that have been added to Aztec
C86 in going from version 3.40b to version 4.10a. Complete
descriptions of these features are appended to this release document.

Aztec C86, v4.10 Release Document

3.1 The compiler

The following list describes the changes that have been made to the
compiler in going from version 3.40b to 4.10a:

3.1.1 Two passes

The compiler has been divided into two passcs. Pass 1 is named
cc.exe, and pass 2 is named cgen.exe. cc automatically starts cgen.

3.1.2 ANSI support

Aztec C86 now supports the following features of the proposed
ANSI standard: (1) function prototypes, (2) the ANSI preprocessor, (3)
the keywords const and volatile, (4) expression evaluation using value-
preserving rules, and (5) switches whose expression is of type long.

Therc are two new compiler options reclated to the new ANSI
features: -ansi and -3. The -ansi option makes the compiler behave as
much as possible like an ANSI compiler, leaving the ANSI fcatures
cnabled and disabling any non-ANSI features. The -3 option makes
the compiler accept programs written for version 3.40b of the Aztec
C86 compiler; this requires the compiler to disable some of the ANSI
features.

Another new option, -¢, causes the compiler to issue a warning
message when it automatically converts an argument to a prototyped
function.

The first formal review period for the draft proposed ANSI
standard has ended, and there will probably be a second review period
later this ycar. The proposed standard will probably become a real
standard in the first half of 1988.

3.1.3 Inline 8087 support

The compiler can now generate inline 8087 code. This is enabled
using one of two options:

+e When nccessary, save 8087/80287 registers between
subroutine calls.

+ef Don’t save 8087/80287 registers between subroutine
calls.

3.1.4 Compiler support for inline 80287 instructions

If you specifly the compiler options that enable 80286 support (the
+2 option) and inline-floating point code (the +e or +ef option) the
compiler will automatically generate code that supports the 80287, by
starting the assembler with the new -2 option,

3.1.5 New keywords: near, far, huge

Aztec C86 now allows you to explicitly define the addressing
technique uscd to access specific data items and functions, using the

-3-

Release Document Aztec C86, v4.10

keywords near, far, and huge. Data 1t<7ms and functions for which
these keywords arcn’t used are accessed using the addressing technique
associated with the program’s memory model.

Support for these keywords is disabled by the new option -k, and by
the -ansi option.

By default, these keywords ‘bind’ just like the ANSI keywords const

and volatile. The new option -Ze causes them to bind as specified by
the Microsoft compiler.

3.1.6 New keywords: fortran, pascal, cdecl
These keywords are reserved, but are not yet functional.

Support for thesc keywords is disabled by the -k option, and by the
-ansi option.

3.2 The assembler

To support the 8087 and 80287 math coprocessors, the following
fcatures have been added to the assembler.,

* Support for the 8087 and 80287 instructions, by implementing
their codemacros.

* Support for the codemacro paramecter specifiers F and T,
which define a floating point register.

* Support for the floating point codemacros rfix, rfixm, rnfix,
rufixm, and rwfix.

* Support for the gword and thyte data items.

In addition, thc new -2 option cnables the assembler’s support for
the 80287 chip, by preventing the assembler from gencrating a WAIT
instruction when it processes an instruction for a math co-processor.

3.3 SDB: new features
sdb supports the following new featurcs:
* Disassembly of floating point instructions;

* New options for the bs command, which allow a breakpoint to
be set to a function’s return address. If the function isn’t
currently active, sdb will automatically set the breakpoint on
entry to the function.

* Enhancements to the bd command, to support the changes
made to the bs command.

* A new command , ‘P’, that is like ‘p’, except that it prints the
address of displayed items.

* The print command’s ‘format override’ specifier, ‘@’, is now
optional.

Aztec C86, v4.10 Release Document

* When printing a string, the print command can now
optionally display non-printable characters using thc standard
backslash notation.

* You can now specify to the print command the number of
characters to be printed in a string.

* The precision specifier, a period followed by a number, now
applics just to the next string- or float-specifier, and not to
subscquent specifiers.

* In assembly mode, the ‘¢ command now causes sdb to skip
over function calls, instead of single-stepping into the called
function.

* When sdb is in source mode and enters a function for which
no source information exists, it will suspend source mode and
enter asscmbly mode until it gets back to a function for which
source information exists.

* Variable names can be qualified, specifying a function from
which they’re visible, or a file that contains them.

* sdb can search for an unqualified name, in the current module
and in the file whose source is currently being displayed with
the df command.

* When displaying a source statement, sdb now displays the
comments that precede the statement rather than those that
follow it.

* Uscr variable namcs take precedence over register names.

* While sdb is active, you can execute a DOS command, using
sdb’s new ‘I’ command.

* sdb can make use of two screens: one for itself, the other for
the program being debugged.

3.4 Z - new features

Z has been enhanced to allow editing of large files, to support the
EGA 43-line mode, and to support color displays.

3.5 The printf functions

The printf functions have been enhanced to support the ANSI
definition, and to support pointer arguments that use the rnear, far, and
huge keywords.

3.6 New functions: lnulloc, lcalloc, Irealloc, Ifree

Several new memory allocation functions are provided in this
release: Imalloc, lealloc, lrealloc, and [free. These arc similar to the
UNIX-compatible functions malloc, calloc, realloc, and free, except that
they can allocate a buffer that’s larger than 64Kkb.

-5-

Release Document Aztec C86, v4.10

3.7 Standard I/O access of the preopened auxiliary and printer devices

The preopened auxiliary and printer devices can now be accessed
by programs via the standard I/O functions. To do so, the program
must #define the symbol MSDOS before #including stdio.h, and must
refer to these devices using the names stdaux and stdprt.

3.8 New features of the agefc function

Before returning a character, the agetc function masks it with the
contents of the global int __agetc. A program can change this field,
thereby changing the mask.

3.9 Linking old and new object modules together

You can link together object modules that have been created using
Aztec C86 version 3.4 and version 4.10a, since the object module
format hasn’t changed. However, you must use the new object module
libraries, since several internal library functions have been added
and/or changed.

4, Packaging

The Aztec C86 Developer system is a superset of the Professional,
and the Commercial system is a superset of the Developer.

This scction first lists the files that are common to all three
systems. It then lists the files that are in the Developer and Commercial
systems, but not in the Professional. It then lists the filcs that are only
in the Commercial system.

4.1 Files that are in all versions of Aztec C86
4.1.1 Executable programs

The following executable programs arc in all versions of Aztec C86:
CC.EXE Optimizing C Compiler, pass 1
CGEN.EXE Optimizing C Compiler, pass 2
CCB.EXE Non-optimizing C Compiler

AS.EXE Asscmbler

LN.EXE Linker

OBJ.EXE Aztec C-to-Microsoft object convertor
DB.EXE Asscmbly language Debugger
SDB.EXE Source level debugger

LB.EXE Object file librarian

ORD.EXE Object library gencration utility
CNM.EXE Object file utility

OBD.EXE Object file utility

SQZEXE Object file utility

CRC.EXE CRC utility

ARCV.COM Source archive utility

C.EXE C driver

TERM.EXE Terminal emulator program

-6-

Aztec C86, v4.10 Release Document
Z.EXE Text cditor (non-memory mapped)
CTAGS.COM Text editor utility

4.1.2 Libraries

The following libraries are in all versions of Aztec C86. Each uses
the ‘small code’ and ‘small data’ memory model.

C.LIB Library of non-floating point functions

M.LIB Library of floating point functions
(non-8087 version)

M87.L1B Library of floating point functions

(8087 version)

MS87S.LIB Library of floating point functions
(sensing version)

S.LIB Screen functions

G.LIB Graphics functions

All Aztec C86 systems also contain a ‘large code’, ‘large data’
version of cach of the above libraries. The name of a ‘large code’,
‘large data’ version of a library is derived by appending the letter ‘I’ to
the name of the ‘small code’, ‘small data’ version of the library. For
example, the name of the ‘large code’, ‘large data’ version of c¢./ib is
cllib.

4.1.3 Object modules
The following object modules are in all versions of Aztec C86:
OVLD.O, OVLDPATH.O, OVBGN.O
Object modules for overlay support

CRTO0.0BJ Object module of Startup routine for
programs linked with Microsoft librarics

4.1.4 Header files

All Aztec C86 systems include several header files, which can be
included in C programs. These files have extension .h.

4.1.5 Source archives
The (ollowing source archives arc in all versions of Aztec C86.
They can be unpacked using the arcy program.

S.ARC Screen functions
G.ARC Graphics functions
TERM.ARC terminal emulator programs

4.1.6 Miscellaneous

The source file stksiz.c controls the size of a program’s stack and
heap, and the relative positioning of these two arcas. For details, see
the Programming Organization section of the Technical Information

-7-

Release Document Aztec C86, v4.10

chapter.

The file exmpl.c contains source to a sample C program.
4.2 Files that are only in Developer and Conwercial systems
4.2.1 Executable programs

The following programs arc only in the Developer and Commercial

versions of Aztec C86:

MAKE.EXE Program maintenance utility

DIFF.EXE Source file comparator

GREP.EXE Pattcrn matcher

LS.EXE File listing utility

PCZEXE Text editor (PC memory mapped)

PROF.EXE Program profiler

4,2.2 Libraries

In addition to ‘small code’, ‘small data’ and ‘large code’, ‘large data’
versions of ecach library, the Developer and Commwercial versions of
Aztec C86 contains a version that uses the ‘large code’, ‘small data’
memory modcl and a version that uses the ‘small code’, ‘large data’
memory model. The name of the ‘large code’, ‘small data® version of a
library is derived by appending the letters /o to the name of the ‘small
code’, ‘small data’ library, while the name of the ‘small code’, ‘large

data’ version is derived by appending Id. :

For cxample, the name of the ‘large code’, ‘small data’ version of
c.lib is cle.lib.

4.3 Files that are only in the Commercial System
4.3.1 Source archives

The following source archives are only in the Commercial version
of Aztcc C86. They can be unpacked using the arcy program.

STDIO.ARC Standard I/0 functions
MISC.ARC Miscellaneous functions
MCH86.ARC Miscellancous functions
MATHARC Floating point functions
DOS20.ARC DOS 2.x functions
CPM86.ARC CP/M-86 functions
DOS11.ARC PC-DOS/MS-DCOCS 1.1 functions

4.3.2 Files for creating ROMable code
The following Commercial system files are used to gencrate (
ROMable codc:

HEX86.EXE Intel hex record generator
SROM.O Object module of Startup routine for ROMable
programs that usc ‘small code, small data’

-8-

Aztec C86, v4.10 Release Document

LROM.O Object module of Startup routine for ROMable
programs that use ‘large code, large data’

LCROM.O Object module of Startup routine for ROMable
programs that use ‘large code, small data’

LDROM.O Object module of Startup routine for ROMable
programs that use ‘small code, large data’

4.4 Checking the files

The file crelist contains the CRC values for the files. You can
compute the CRC values of the files we sent you and then compare
them with their expected values, using the program CRC. For
example, entering

cre **

computes the CRC of all the files on the current directory of the
default drive.

5. Technical support information

While we do our best to ship problem frce software, problems
sometimes occur. Manx has a technical support staff ready to help you
out if you should encounter problems while using our software. At the
very end of this document is a discussion of how to make the most out
of the tcchnical support that Manx offers. In addition, we have added
problem rcport forms for the reporting of any problems you may
encounter with our software.

6. Additional Documentation

This section contains documentation of features that have been
added to Aztec C86 since edition 4 of the manual was printed. In
particular, it discusses the following topics:

New compiler features

The ANSI preprocessor

Defining the memory model of individual items

New assembler features

New linker features

New Z features

New features of the printf functions.

New Imalloc, lcalloc, lrealloc, and Ifree functions.

Support for stdprt and stdaux

New features of the agetc function

New sdb features

sdb tutorial

New C driver program, c.

Additions to the manual’s description of the open function.
New filelock {unction.

Corrections to the manual’s description of the make program.

%X X X ¥ X X X X X X ¥ ¥ X ¥ ¥ ¥

-9-

Release Document Aztec C86, v4.10

* Corrections to the manual’s description of the scdir function.
* Technical Support Information.

The description of new features of the compiler, assembler, linker,
and sdb can be added to the end of the corresponding manual chapters.

The descriptions of Z’s ncw features can be appended to the
Unitools chapter.

The descriptions of the new features of the printf functions can be
appended to the manual’s System Independent Functions chapter.

The description of the lmualloc, lealloc, lrealloc, and Ifree functions
can be added to the "8086 Functions" chapter.

The description of agetc’s new features can be added to the "8086
Functions" chapter.

The description of the support for Standard I/O access of the
preopened auxiliary and printer devices can be added to the chapter
entitled "Library Functions Overview: 8086 Information".

The sdb tutorial takes you through the startup and some of the
more commonly used commands of the source level debugger. You
can place this tutorial at the front of the sdb chapter.

The C driver, ¢, is a program that gencrates a program. It invokes
the compiler and assembler to generate the program’s object modules,
- and then invokes the linker to combine the modules into an executable
program. To put it in perspective, it’s similar in function to the UNIX
cc command, more powerful and flexible than the PCDOS/MSDOS
batch facility, and less powerful (but easier to use) than the muke
program. You can place the description of the C driver at the end of
the manual’s Unitools chapter.

The description of the new options available to the open function
can be placed after the description of open in the manual’s System
Independent Functions chapter.

The description of the filelock function can be added to the chapter
entitled "8086 Functions".

The discussion of MANX itechnical support and the problem report
forms can be put at the very end of your manual,

-10 -

Aztec C86 COMPILER

The Compiler: new features

The following list describes features that have been added to the
compiler since the manual was last printed. The description of each
feature lists the version of Aztec C86 in which the feature was
introduced.

1. Two passes

The compiler is divided into two passes. Pass 1 is named cc and
pass 2 is named cgen. cc automatically starts cgen.

The compiler was first split into two passes for version 4.10a.

2. ANSI support

Aztec C86 supports some of the features of the proposed ANSI
standard. :

The compiler supports two options related to the new ANSI
features: -ansi and -3. The -ansi option makes the compiler behave as
much as possible like an ANSI compiler, leaving the ANSI fcatures
enabled and disabling any non-ANSI features. The -3 option makes
the compiler accept programs written for version 3.40b of the Aztec
C86 compiler; this requirces the compiler to disable some of the ANSI
features. These options are described in detail later in this section.

ANSI support was {irst available in version 4.10a of Aztec C86.
2.1 Function prototypes

The compiler supports function prototypes, as defined in the
proposcd ANSI standard. A function prototype defines the types of a
function’s arguments in addition to the type of its return value. For
cxample, the following is a prototype definition of the function subr,
which rcturns a double as its value, and which is passed threc
arguments: a double, a pointer to a long int, and a pointer to a
structure of the typedef-ed type FILE:

double subr(double, long *, FILE *);

When the compiler encounters a call to subr(), it will examine the
arguments being passed to subr:

* If there’s too few or too many arguments, the compiler will
log an error message.

* If the type of an actual argument differs from that of the
corresponding prototype argument, and if conversion of the
actual argument’s type to the prototype argument’s type is
valid, the compiler will automatically generate code that
performs the conversion.

cc cc-ap.1 v4.10a

COMPILER Aztec C86

By default, the compiler will issuc warning messages when it
generates code to convert the type of an argument to a prototyped
function. The new -c¢ option toggles the flag that specifies whether
these messages are displayed; and the -ansi option turns off this flag.

2.2 Support for ANSI preprocessing directives

Aztec C86 by default supports the ANSI preprocessor. The features
of this preprocessor are described in a separate appendix to this relcase
document, ‘

The -3 option “disables the ANSI preprocessor and enables the
UNIX-compatible preprocessor that was supported by earlier versions
of Aztec C86.

2.3 Expression evaluation using ANSI-defined, ‘value-preserving’ rules

Aztec C86 by default generates code that computes expressions
using the ANSI-defined rules, which are called ‘value-preserving’.
With these rules all data types are assigned a rank. When two operands
are used in an expression, the operand having lesser rank is promoted
to the typc of the other operand. The ranking of data types, ordered
from lowest to highest is as follows: char, unsigned char, short,
unsigned short, int, unsigned int, long, unsigned long, float, double.

The rules used by previous versions of the compiler were called
‘unsigned-preserving’. With these rules, all signed data types are
assigned a rank. When two operands are used in an expression, the
expression is first evaluated as if both operands are signed, after
promoting the lesser-ranked operand to the type of the other operand.
Then, if either operand is unsigned, the type of the expression is set to
‘unsigned’.

As an example of the difference in these rules, consider the
addition of an unsigned char to a signed int: for ‘value-preserving
rules’, the type of the sum is signed int, while for ‘unsigned
preserving’ rules, it’s unsigned int.

The option -3 causes the compiler to cvaluate expressions as it did
in version 3.40Db; i.e. using unsigned-preserving rather than value-
prescrving rules.

2.4 Evaluation of shift operations using ANSI-defined rules

Aztec C86 gencrates code that evaluates shift operations as defined
by the proposed ANSI standard. According to the standard, the type of
the shift operation is determined by the type of the left operand. The
type of the right opcrand has no effect on the resultant type; and in
fact the right operand is converted to an int before the shift occurs.

In previous versions of the compiler, both operands participated in
dctermining the type of a shift operation, using unsigned-preserving
rules.

v4.10a cc-ap.2 cc

Aztec C86 COMPILER

The -3 option has no effect on the evaluation of shilt expressions:
the compiler always evaluates shift expressions using ANSI rules.

2.5 Support for the type specifiers volatile and const

Aztec C86 supports the type specifiers volatile and const. A volatile
data item may be modified in ways unknown to the¢ compiler, so the
compiler won’t perform register tracking on it. For example, volatile
variables can be used as synchronization flags between scparate
programs.

A const data item cannot be written to, and the compiler can do
register tracking on it.

\
It’s possible for a data item to be both const and volatile. Such an
item may be modified by hardware, but it can’t be assigned to,
incremented, or decremented.

3. Inline 8087 support

The compiler can generate inline 8087 code. This is enabled using
onc of two options:

+e When necessary, save 8087/80287 registers between
subroutine calls.

+ef Don’t save 8087/80287 registers between subroutine
calls.

The +ef option is provided for Microsoft compatibility. It
generates faster code than the +e option, but the resultant program
may not work correctly: there aren’t many 8087 registers, and the
program may rcuse some that are already in use.

Inlinc 8087 support was first available in version 4.10a of Aztec
C86.
4. Compiler support for inline 80287 instructions

If you specify the compiler options that enable 80286 support (the
+2 option) and inline-floating point code (the +e or +ef option) the
compiler will automatically gencrate code that supports the 80287, by
starting the assembler with the -2 option. For information on the -2
option, see¢ the discussion of the assembler.

80287 support was first available in version 4.10a of Aztec C86.

5. Defining the memory model for selected items

The Aztec C86 compiler now allows you to explicitly define, using
keywords near, far, and huge, the memory model used by select data
items and (unctions, thus overriding the default memory model

cc cc-ap.3 v4.10a

COMPILER Aztec C86
Support for these keywords is disabled by the option -k, and by the
-ansi option.
This topic is discussed in a separate appendix to this release
document.
6. The fortran, pascal, cdecl keywords
These keywords are reserved, but are not yet functional.

Support for these keywords is disabled by the -k option, and by the
-ansi option.

Support for these keywords was first available in version 4.10a of
Aztec C86.
7. The -ansi option

The -ansi option makes the compiler look, as much as possible, like
an ANSI compiler, by enabling the ANSI features and disabling non-
ANSI extensions. Specifically, the -ansi option:

* Enables the ANSI preproccssor;

* Turns off the flag that spccifies whether warning messages are
displayed when an argument to a prototyped function is
automatically converted;

* Enables expression evaluation using ‘value-preserving’ rules;

* Disables the following keywords: near, far, huge, pascal,
fortran, cdecl.

Support for the -ansi option was first available in version 4.10a of
Aztec C86.
8. The -3 option

The -3 option makes the compiler accept programs that were
previously compiled using the version 3.40b compiler. This option
doesn’t affect those features of the compiler that were not available in
the version 3.40b compiler.

Specifically, the -3 option:

* Enables the v3.40b preproccssor and disables the ANSI
preprocessor;

* Enables expression ecvaluation using ‘unsigned-preserving’
rather than ‘valuc-preserving’ rules.

Support for the -3 option was first available in version 4.10a of
Aztec C86.

v4.10a cc-ap.4 cc

Aztec C86 COMPILER

9. Code generator improvements

To generate better code, the following changes have been made to
the compiler in version 4.10a;

* Register tracking has been improved;

* The floating point code generator has been completely
reworked;

* The bit field code gencrator has been completely reworked;

* If an expression has no side effects (e.g it doesn’t modify
memory), the compiler doesn’t generate code for it;

* For control structures whose test is known in advance (c.g.
while (1) and if (0)) the compiler generates a jmp instruction
rather than a test and jmp.

10. Support for sdb, the source-level debugger

The compiler by default generates information used by sdb, the
Aztec source-level debugger. The -n option tells the compiler not to
collect and save this information thus resulting in an increase in
compilation speed.

Support for sdb was first available in version 3.40a of Aztec C86.

11. Placement of string constants

By default, a program’s string constants are put in the program’s
data segment. For a module that uses the ‘large data’ memory model
(i.c. that has been compiled with the +1 or +1d option), the compiler’s
+s option causes string constants to be placed instecad in the code
segment. This option is useful if you are creating ROMable code.

The -s option was first available in version 3.40a of Aztec C86.

12. Stack overflow

The +b option tells the compiler to generate code for a program
that will, on entry to a function, see if the program’s stack has
overflowed its area. If so, a message ("stack overflow, raise stack size")
is output. This message is contained in a module, _ stkover, in c.lib; it
can be modified by the user if different behavior is desired.

The +b option was first available in version 3.40a of Aztec C86.

13. Summary of new compiler options

The following list summarizes the compiler options that are not
listed in the manual

-3 Make the compiler revert to its v3.40b behavior.

-ansi Enable the ANSI features, and disables non-ANSI
extensions.

-C Toggles the flag that specifies whether to issue

cc cc-ap.5 vd. 10a

COMPILER

+ef

+5
+b

v4.10a

Aztec C86

warning messages when an argument to a prototyped
function is automatically converted.

Disable support for the keywords rmear, far, huge,
pascal, fortran, cdecl.

Make the keywords wnear, far, and huge behave as
defined by Microsoft.

Generate in-linc 8087/80287 floating point
instructions. When necessary, save and restore
floating point registers between function calls.
Generate in-line 8087/80287 floating point
instructions. Don’t save and restore floating point
registers between function calls.

Don’t generate sdb information

Put string constants in the code segment.

Generate code that checks for stack overflow.

cc-ap.6 cc

Aztec C86 ANSI C preprocessor

The ANSI C Proprocessor

Version 4.10a of the Aztec C86 compiler supports two
preprocessors: the preprocessor defined in the proposed ANSI
standard, and the UNIX-compatible processor that was supported by
previous versions of Aztec C86. This section highlights the features of
the ANSI preprocessor. For a complete description of the ANSI
preprocessor, sce the proposed ANSI standard. For a description of
the UNIX preprocessor, sce the Compiler section of the Aztec C86
manual.

This section discusses the following features of the ANSI
preprocessor:

Directive syntax;

The #include directive;
The #if directive;

The #define directive.
Miscellaneous directives;

AL

1. Directive syntax

ANSI preprocessing directives occupy a single source file line, and
have the following format;

dirname [operands]

where dirname is the name of the directive and operands are its
operands. The ‘#’ need not be the first character on the line;
whitespace characters (space, tab, comments) can precede it.
Whitespace can separate the ‘#’ from the directive name. Whitespace
must separate the directive name from its operands.

The preprocessor supports macro substitution, as described below,
but the dircctive name cannot itself be the result of a macro expansion.
Thus, you can’t creatc your own preprocessor directives.

2. The #include Directive

As with the UNIX preprocessor, the #include directive causes the
ANSI preprocessor to suspend the compilation of one source file,
compile another, and then continue compilation of the suspended file.
#include statements can be nested.

The #include directive still supports the angle-bracket and double-
quote syntax for specifying include files. For example, the first of the
following two #include dircctives causes the preprocessor to search for
sidio.h in the directories defined in the compiler’s -I option and in the
INCLUDE environment variable. The second causes the preprocessor
to scarch for myhdrh in the current directory, then in the -I

cc cepp-ap.1 v4.10a

ANSI C preprocessor Aztec C86

directories, and finally in the INCLUDE directories.

#include <stdio.h>
#include "myhdr.h"

If the operand to the #include dircctive isn’t in angle-bracket or
quoted-string form, the ANSI preprocessor will treat the remainder of
the line (i.e. the part that follows the #include) as normal text, and
perform macro expansions. The resultant text then must be an angle-
bracket or double-quote specification of a file name. For example, the
following statements cause the preprocessor to include the statements
that are in vars.h.

#define hdr <vars.h>
#include hdr

3. The #if Directive

There are several #if directives: #if, #ifdef, #ifndef, #elif, and
#endif. Of these, only #elif was not supported by previous versions of
Aztec C86. This new directive is syntactically similar to #if and has
the same purpose as else if does in the rest of the language, removing
the necessity for nesting #ifs to obtain a simple sclection. Except for
the treatment of the constant expression following #if and #elif, all of
the #if directives behave as in the UNIX preprocessor. Six levels of
nesting is guaranteed.

The constant expression in an #if or #elif is evaluated following
normal C rules, with the following exceptions:

* The expression must have an integer value.

* It can’t use the sizeof operator, casts, or enumeration
constants.

* All integer constants in the expression are treated as if they
were followed by ‘L.

* Undefined symbols are replaced by the value 0.

The ANSI preprocessor supports a new unary opcrator, named
de fined, which has the following two forms:

defined identifier
defined (identifier)
defined cvaluates to one if thc macro name identifier is currcntly
defined as a macro, otherwise zero. Thus #ifdef name can be thought

of as being equivalent to #if defined(name), and #ifndef name as
cquivalent to #if /de fined(name)

4. The #define directive

As with the UNIX preprocessor, the ANSI processor supports
macro dcfinition using the #define macro, and macros undefinition
using the #undef directive. The syntax of these directives is still the

v4.10a ccpp-ap.2 cc

Aztec C86 ANSI C preprocessor

same: in particular, #define supports the definition of function-like
macros that have parameters, and of object-like macros that don’t.

Two definitions of the same macro are not permitted unless (1)
there is an intervening #unde f of the macro or (2) the two definitions
are identical cxcept for white space. This prohibits stacking of
definitions, but permits "benign” redefinition.

An invocation of a function-like macro is not recognized unless the
macro name is followed by an open parenthesis, nor are macros
recognized in string literals or character constants. For example, in the
following example, only the second occurrence of muc is recognized as
an invocation of the mac macro.

#define mac(x) x

int magc;

char a[]="hello mac(world)";

int mac(c); /* expands to int ¢; */

Macro invocations, as opposed tu definitions, may occupy more
than one line of source, since a ncwline is considered as just another
whitc space character within invocations.

Arguments to a macro invocation are separated by commas. An
argument can be parenthesized, but the parentheses must be matched.
Commas inside of a parenthesized argument are not considered to be
argument-separators. For example, the arguments to the following
macro call are (a, b) and c:

m((a,b),c)
4.1 The ‘stringize’ operator, #

The UNIX preprocessor performs substitution of macro arguments
that occur within a macro body’s quoted strings, but the ANSI
preprocessor doesn’t. For example, consider the following statements:

#define pr(x) printf("x=%d", x)
pr(a+b);
The UNIX preprocessor expands the sccond statement to
printf("a+b=%d", a+b);
The ANSI preprocessor expands it to
printf("x=%d", a+b);

To allow creation of strings containing macro arguments, the ANSI
preprocessor provides the ‘stringize’ operator, #. If, during ¢xpansion
of a macro, the preprocessor finds a # followed by a macro argument
in the macro body, it replaces the # and the argument with a character
string consisting of the argument value surrounded by double quotes.

When combined with the rule that string literals, separated only by
white-space, are treated as a single string literal, this allows you to

cc cepp-ap.3 v4.10a

ANSI C preprocessor Aztec C86

build strings that contain macro arguments.
For example, the #define used above could be rewritten as:
#define pr(x) printf(#x "=%d", x)

When # is used, the original spelling of the argument is retained.
For example, using the pr macro defined above, the statement
pr{0x0001) causcs 0x0001=1 to be written to stdout.

Normally, when the ANSI preprocessor is expanding a macro
function and finds an argument in the macro body, it performs macro
expansion on the argument and substitutes the resulting value into the
macro body. However, when the argument is preceded by the
stringizc opcrator, #, the argument is not first macro-expanded. For
example, the following macro call expands to a, not &:

#define m(x) #x
#definc a b
m(a);

4.2 The ‘concatenate’ operator, ##

The ANSI preprocessor supports thc concatenate operator, ##,
which is used with the body of a macro to concatcnatc macro
arguments. This opecrator isn’t supported by the UNIX prcprocessor.
For example, the following invocation of the concat macro expands to
ab since ab is not an argument of concat:

#define mac(a,b) ab
mac(,func)

—.’

The next invocation of concat expands to __ func, since the ##
operator allows the preprocessor to identify the two arguments:

#define macl(a,b) a##b
mac(_ ,func)

)
As with the ‘stringiz¢’ operator, arguments used with the

concatenate operator arc not macro-ecxpanded before they are
substituted into the macro body.

4.3 Recursion

In the ANSI preprocessor, macro invocations arc not recursive,
even indircctly, although the replacecment string altcr expansion is
examincd for invocations of other macros. Of course, if a macro’s
invocation has an invocation of itself as an argument, the argument is
expanded.

For c¢xample, the following code expands to x = *sin(3.14).

#define sin(x) *sin(x)
X = sin(3.14);

vd4.10a ccpp-ap.4 cc

Aztec C86 ANSI C preprocessor

The next example expands to mac(((3)+1)-1).

#define mac(a) macb((a)+1)
#define macb(a) mac((a)-1)
mac(3)

The next example expands to ((3)+1)+1:

#define add(x) (x)+1
add(add(3))

4.4 Predefined macros
The ANSI preprocessor predefines the following macros

Macro Value

LINE A decimal constant representing the
number of the current source line;

FILE A string literal containing the name of the
current source file;

DATE The compilation date, in "Feb 5 1987"
form;

TIME The compilation time, in "13:01:22" form;

STDC A decimal constant one, indicating
conformance.

None of these macros can be #undefed, nor can any other macro
identifiers be predefined.
5. Miscellaneous Directives
The miscellancous directives are these:
Directive Meaning

#line Redefines the compiler’s notion of the number of the
current source line and optionally the name of the
currcent source filc;

#error Causes thc preprocessor to produce a diagnostic
message that includes the processed remainder of the
line. This is a convenicnt means of obtaining an error
from the preprocessing phase of compilation.

#pragma Aztec C86 docsn’t currently support any pragmas.
Ignored (present for historical reasons).

cc ccpp-ap.S v4.10a

ANSI C preprocessor

v4.10a

ccpp-ap.6

Aztec C86

cC

Aztec C86 Defining items memory models
Defining the memory model of selected items

By default, the memory model used by a module defines the
memory model used by its functions and data; i.e. the segments in
which functions and data are located, and the addressing technique
used to access them. For example, if a module uses the ‘small code’,
‘small data’ memory model, then (1) its functions, and the functions
that it calls, arc in a single code segment, (2) the data items that it
accesses are in a single data segment, and (3) functions and data are
accessed using 16-bit addresses.

Aztec C86 now allows you to explicitly define the memory model
for specific functions and data, thus overriding their default memory
model. This is done using the keywords near, far, and huge.

For example, suppose that your program has modest nceds except
for one char array that must be 75kb long. There’s no limit to the size
of a huge array, so you could keep the size of the program down, its
speed up, and still allow the existerice of this large array by specifying
that the array is huge and that the rest of the program is to use the
small code, small data memory model.

Support for these keywords is disabled by the option -k, and by the
-ansi option.

By default, these keywords bind just like the ANSI keywords const
and volatile. The new -Ze option makes them bind like the Microsoft
compiler.

Support for mnear, far, and huge keywords was first available in
version 4.10a of Aztec C86.

1. Near, far, and huge data items
For a data itcm, the keywords have the following meanings:

near A data item of type near is in a program’s standard
data scgment. This segment can be up to 64kb long,
It contains many things (as defined in the manual’s
Tech Info chapter), so defining a data item to be near
limits its size to something less (usually much less)
than 64kb. A rnear data item can be accessed using
16-bit addresses, since the program’s DS segment
register always points to the standard data segment.

far A data item of type far is in its own scgment. The
maximum size of this segment, and thus of the only
data item that it contains, is 64kb. A far data item is
accessed using 32-bit addresses. To determine the
address of an item in the segment, the scgment

cc far.1 v4.10a

Defining items memory models Aztec C86

component is set to that of the segment’s beginning
address, and the offset component is computed.

huge A data item of type huge is in its own segment. The
size of this segment is limited only by the size of
available memory. A huge data item is accessed using
32-bit addresscs. To determine the address of an item
in the scgment, both scgment and offset components
must be computed.

Summarizing, the size of a near data item is less (usually much less)
than 64kb; a far data item is limited to 64kb; and a huge data itcm is
limited only by memory size. A near data item is accessed fastest and
with the least amount of code; a far item slower and with more code;
and a huge item slowest and with the most code.

We recommend that you use huge data items only when necessary,
and when far data items won’t suffice, because of the resultant
performance degradation.

2. Near, far, and huge functions

For functions, the keywords have the following meanings:

near The function is accessed using 16-bit addresses.

far The function is accessed using 32-bit addresses.

huge Samc as far (huge is mainly used for making huge data
items).

Unlike far and huge data items, a far function is not put in its own
segment: it remains in its module’s code segment,

Using near and far functions, you can create programs whose
modules use different code memory models. In this case, the code for
the modules that have been compiled to use the ‘small code’ memory
model are gathered together into one segment, while the code for cach
‘large code’ module is in its own segment. Each of these code
segments can be up to 64kb long.

For example, suppose you have an object library whose modules
have been compiled to use the large code memory model, and that you
want to call these functions from some of your own modules, which
have been compiled to use the small code memory model. In your
modules, simply define the library’s functions as type far. When the
program is linked, the code for your ‘small code’ modules will be in
one segment, and the code for each of the library’s ‘large code’
modules that is pulled into the program will be in its own segment; the
maximum size of each of these segments is 64kb.

Continuing with this example, suppose that the library functions
call one of your functions (you define this function to the library by

vd.10a far.2 cc

Aztec C86 Defining items memory models

passing its address to the library functions). This function would be
dcfined as type far. When called by a library function, it could still call
other functions, including those of type near. Esscntially, it provides a
gatcway between the library’s far functions and your own wear
functions.

3. Example 1

This example creates an array named arr of 30000 chars. arr is in
its own segment (which could be up to 64kb long). An array element
is accessed using a 32-bit address, whose segment component is sct to
that of arr’s first clement, and whose offset component is computed.

char far arr{30000];

The far keyword binds to char, which means that cach element of arr
has the far attribute. This attribute tells the compiler where to place
the array (in its own segment), and how to compute clement’s
addresses (32-bit addresscs, single segment, computation only of
elements’ offsct component).

4, Example 2

This example creates an array arr of 70000 inss. arr is in its own
segment (size limited only by the size of memory). An array element
is accessed using a 32-bit address, whose segment and offset
components must both be computed.

int huge arr[70000];

The huge keyword binds to int, giving it the huge attribute. This
attribute tells the compiler where to place the array, and how to
compute an element’s address.

5. Example 3

This example creates a wear array of 32-bit pointers to far chars.
That is, the array of pointers is in the standard data scgment, each
clement of which is a 32-bit pointer to a char that is in its own
segment. Such a segment can be at most 64kb long, so the address of
another char in a segment is determined by sctting the segment
component to that of the segment’s beginning address, and by
computing the offset component.

char far * arr[100];

The far keyword binds to the char keyword, giving it the far attribute.
The attribute of the * isn’t specified, so it defaults to rear.

arr is thus an array of pointers having the near attribute, which
mcans that the array is in the standard data segment and can be
accessed using the DS segment register and a computed 16-bit offset.

cc far.3 v4,10a

Defining items memory models Aztec C86

Each array clement points at a char having the far attribute, which
means that the pointers are 32 bits long, that a referenced segment can
be at most 64kb long, and that the address of other fields in a segment
are determincd by setting the segment component to that of the
segment’s beginning address and by computing the offset component.

6. Example 4
This example demonstrates the binding of far to *.

This example creates a far array of pointers to near chars. That is,
the array is in its own segment, which can be up to 64kb long; each
pointer is 16 bits long and points to a char that’s in the standard data
segment, :

char * far arr[100];

The far keyword binds to *, giving * the far attribute. The attribute of
char is not specified, and hence defaults to near.

arr is thus an array of pointers, cach having the far attribute. This
means that the array is in its own segment, that the segment is at most
64kb long, and that the address of an array clement is determined by
setting the segment component to that of the array’s beginning address
and by computing the offset component,

Each array clement points at a char having the near attribute. This
means that each pointer is 16 bits long, pointing to a char in the
standard data segment.

7. Example 5

This example defines a far [unction named func. It’s accessed using
32-bit addresses and returns an it as its value. The compiler will
translatc C-language call statements to furnc into assembly language far
call statements.

int far func();

The far keyword binds to int, giving it the far attribute. By definition,
a [unction that returns a value having the far attribute is accessed
using 32-bit addresses and assembly language far call instructions.

8. Example 6

This example defines fp, a near array of pointers to far functions,
cach of which returns a pointer to a far char.

char far * far (*fp[1)();

The attribute of the rightmost * is near, since its attribute isn’t
explicitly specified. Thus, fp is an array of pointers ecach having the
neqr attribute, which means that the array is in the standard data
segment and its elements can be accessed using 16-bit addresses.

v4.10a far.4 cc

Aztec C86 Defining items memory models

The rightmost parentheses specify that each array clement is a
pointer to a function,

The far to the right of * binds to the * Together, they say that a
function pointed at by an ¢lement of fp returns a pointer having the
far attribute. By definition, this means that each function is accessed
using 32-bit addresses and by assembly language far call instructions.
Since the fp array elements point to functions, this in turn means that
the clements of the fp array are 32 bits long.

The far to the right of char binds to char. Together, they say that a
pointer rcturned by a function references a char having the far
attribute. This means that a referenced char is in its own segment, that
the scgment can be at most 64kb long, and that the address of other
fields in the segment are determined by setting the segment
component to that of the segment’s beginning address and by
computing the offsct component.

9. Example 7

The following example creates a typedef fi for a far int. It then
creates an array arr of fi objects. The array is thus in its own segment,
and its clements are accessed using 32-bit pointers, whose segment
component is that of the segment’s beginning address, and whose offset
component is computed.

It also creates xp, a pointer to an fi object. xp is in the standard
data segment. The object it points at is in its own segment. This
secgment is at most 64kb long. The address of ficlds in the segment are
determined by sctting the scgment component to that of the segment’s
beginning address, and by computing the offsct component.

typedef far int fi;
fi arr[100], *xp;

The far could be to cither the left or right of iz it binds to int in
cither casc.

10. Example 8

This example first creates fume, a typedef for a far function that
returns an int. It then defines f, a far function that returns an int. It
also define fp, a near variable that points at a far function that returns
an int.

typedef int far func();
func f, *(p;

cc far.5 v4,10a

Defining items memory models

v4.10a

far.6

Aztec C86

cc

Aztec C86 ASSEMBLER

The Assembler: new features

Scveral features have been added to the assembler, to support the
8087 and 80287 math coprocessors. These features are discussed in the
following paragraphs.

1. 80287 support

The -2 option enables the assecmbler’s support for the 80287 chip,
by preventing the assembler from generating a WAIT instruction when
it processes an instruction for a math coprocessor.

2. New codemacro parameter specifiers: F and T

There are two new codemacro parameter specifiers:

F Matches a reference to a floating point stack element;
e.g. ST or ST().
T Matches a reference to the top of the floating point

stack; ¢.g. ST or ST(0).

3. New types for data items
~ The assembler supports the following additional types for data
items:

QWORD Eight bytes long

TBYTE Ten bytcs long

4, New codemacro directives

The assembler supports the following additional codemacro
directives:
4.1 RFIX

rfix has a single argument, which can be either an absolute number
or the name of a formal parameter whose specificr is D.

When the assembler is gencrating 8086/8087 code (i.c. it was
started without the -2 option) rfix generates two bytes, of which the
first is a wait instruction. The second is an escape instruction’s first
byte; its low-order three bits are defined by the rfix parameter.

When the assembler is gencrating 80286/80287 code (i.e. it was
started with the -2 option) rfix behaves like it does when generating
8086/8087 code, except that it doesn’t generate the leading wait
instruction.

For example, here’s the codemacro for the fld! instruction:

as as-ap.1 v4.10a

ASSEMBLER Aztec C86

codemacro {1dl

rfix 001B
db 11101000B
endm

When the assembler is started without the -2 option, the source
statement fld] gencrates:

10011011 11011001 11101000

The first byte is the wait instruction. The sccond is the escape
instruction’s first byte. The low-order threc bits of the second byte
and the bits in the third byte identify this as an fld] instruction.

When the assembler is started with the -2 option, the statement fid]
gencerates:

11011001 11101000
4.2 RFIXM
rfixm has the following format:
rfixm esc, memloc

where esc is cither an absolute number or the name of a formal
parameter with specifier D; and memldoc is the name of a formal
parametcr that represents a memory address (e.g. its specifier is E, M,
or X).

When the assembler is gencrating 8086/8087 code (i.e. it was
started without the -2 option), rfixm generates two bytes that are the
same as those gencrated by rfix. When nccessary, it also generates a
segment-override byte to access the specified memory address; this
byte is generated after the wait instruction and before the escape
instruction’s first byte.

When the assembler is generating 80286/80287 code (i.e. it was
started with the -2 option), rfixm behaves like it does when generating
8086/8087 code, except that it doesn’t generate the leading wait
instruction,

For example, here’s the codemacro for the fadd instruction:

codemacro fadd memloc:Mq
rfixm 100B, memloc

modrm 0, memloc

endm

When the assembler is gencrating 8086/8087 code, the source
statement fadd quad pir es:10[{bx] gencrates the following bytes:

10011011 00100110 11011100 00001010

The {irst bytc is the wait instruction. The second is the segment
override Dbyte, specifying the ES recgister. The third is the escape

v4.10a as-ap.2 as

V2N

Aztec C86 ASSEMBLER

instruction’s first byte. It’s low-order three bits and the bits in the
fourth and fifth bytes identify this as an fadd instruction with memory
operand ten bytes bcyond the location pointed at by BX.

4.3 RNFIX
rafix has the following format:
rnfix op

where op is either an absolute number or the name of a formal
paramecter with specifier D.

rnfix generates two bytes. The first byte is a nop instruction. The
second is an escape instruction whose low-order three bits are sct to
the value defined by rmfix’s parameter.

For example, here’s the codemacro for the fuclex instruction:

codemacro fnclex
rnfix 011B
db 11100010B

The source statement frclex generates the following three bytes:
10010000 11011011 11100010.
4.4 RNFIXM
rnfixm has the following format:
rnfixm csc, memloc

where esc is either an absolute number or a the name of a formal
parameter with specifier D, and memidoc is the name of a formal
parameter that represents a memory address (i.e. its specifier is E, M,
or X).

rufixm generates two bytes that are the same as those generated by
rufix. When nccessary, it also generates a segment-override byte to
access the specified memory address; this byte is generated after the
nop instruction and before the escape instruction’s first byte.

For example, here’s the codemacro for the fusave instruction:

codemacro fnsave memloc:M
rnfixm 101B, memloc

modrm 110B, memloc

cndm

The source statement fusave word pir ss:[bx] gencrates the following
bytes:

10010000 00110110 11011101 00110111

as as-ap.3 v4.10a

ASSEMBLER Aztec C86

4.5 RWFIX
rwfix generates a wait instruction (10011011B). Its format is:

rwlix

AN

/—\

v4.10a as-ap.4 as

Aztec C86 LINKER

The Linker: new features

The following list describes featurcs that have been added to the
linker since the manual was last printed. The description of each
feature lists the version of Aztcc C86 in which the feature was
introduced.

1. The CLIB environment variable

The CLIB environment variable can now define a list of directories
to be searched for libraries that are specified using the -/ option. As
described in the following section, this list of directories can also be
searched for object modules and libraries that are specified by name.
Each CLIB list clement defines a directory to be scarched, and the
clements are separated by semicolons or spaces.

A list clement, which specifies a directory, consists of a path to the
directory, followed (usually) by a trailing backslash. The trailing
backslash is required because of the way the linker generates a file
name from a directory specifier: it prepends the directory specifier to
the base file name. A null list element refers to the current directory.

For example, the following setting of CLIB causes the linker to
search for libraries and object modules in the pathl directory (which is
a subdircctory of the current directory), then the \ path2 directory, and
finally in the current directory.

sct CLIB=path!\;\path2\;

The following setting of CLIB causcs the linker to search for
libraries and object modules in the current directory, then in the
current dircctory of the d: drive, and finally in the \ path2 directory.

sct CLIB=;d:;\ path2\

Support for CLIB directory lists was introduced in version 3.40b of
Aztec C86.

2. Searching for object modules and libraries

The linker can now search for object modules and libraries that are
specificd by name. Given a file name, here’s how the linker trics to
find the file:

1. Using the specified name, the linker trics to open the file.

2. If an extension wasn’t specified, the linker appends ".0" to the
specified name and trics to open that file.

3. Using ecither the specified name (if an extension was
specified) or the name with an appended ".0" (if an extension
wasn’t specified), the linker scarches for the file in the
dircctories defined by the CLIB environment variable.

In In-ap.1 v4.10a

LINKER Aztec C86

Support for this searching was introduced in version 3.40b of Aztec
C86.

3. Linking programs that have lots of symbols

Version 3.40b of Aztec C86 contained two versions of the Aztec
C86 linker. One of these was /n, which was limited in the number of
symbols that a linked program could have, but which ran fast. The
other was bln, which had much higher limits on the number of
symbols that a program could have, but which ran slower than /n.

We found that »sln’s speed wasn’t significantly slower than ’s, so
version 4,10a of Aztec C86 has just the bln-type linker. Its name is /n.

4, Support for sdb

Two new options -g, and -¢g have been added to the linker to enable
and disable, respectively, the collection of the symbol table
information needed by the source level debugger sdb. This
information is put into a file whose namc is derived from that of the
program file, with extcnsion changed to .dbg. When sdb loads a
program, it automatically looks for an associated .dbg file.

These options allow you to collect source level dcbugger
information for sclected files. When /n encounters a -g option, it
begins collecting sdb information, and continues doing so until it
cither finds a -g option or reaches the end of the argumecent list.
Similarly, when it finds a -g option, it stops collecting sdb information,
and doesn’t start again until and unless it finds a -g option.

Support for sdb was introduced in version 3.40a of Aztcc C86.

v4.10a In-ap.2 In

PN

Aztec C86 Z

Z - new features

This scction describes the changes that have been made to the Z
text editor.

1. Editing large files

The size of file that Z can edit is now limited only by the amount
of memory. Z will initially allocate a 16kb edit buffer; when
necessary, it will allocate additional 16kb buffers.

2. Support for the EGA 43-line display

On an EGA display, Z can now optionally display 43 lines of text.
This feature is enabled and disabled by specifying the operands 43=1
and 43=0, respectively, in an .se command or in the ZOPT file.

3. Support for color displays

Z now allows you to define the color of a display’s text arca and
status line, by specifying, as operands to the :se command or in the
ZOPT file, the display characters’ attribute bytes.

The operands to define the attribute byte for characters in the
display’s text arca and status line are, respectively:

co=val
sc=val

where val is the decimal value of the attribute byte.

By default, the attribute byte of text area characters is 7 (white
characters on black background), and those of status line characters is
112 (black characters on whitc background). For a definition of screen
attribute bytes, sec the PC technical reference manual.

4. ZOPT enhancements

The ZOPT environment variable can now define either the file in
which :se options arc found or the options themselves.

The syntax for defining the ZOPT file is unchanged. For example,
the following command says that the options are in the file zopt.cnd:

set ZOPT=zopt.cmd

To define options in the ZOPT variable, set the first character of
the variable to a colon, *’ and list the options, with each pair of
options scparated by spaces. If an option normally requires an equals
character followed by a value (e.g. co=7), enter a colon instead of the
cquals (e.g. co:7). (DOS doesn’t allow equals characters in an
environment variable’s value). For example, the following command

unitools z.1 v4.10a

zZ

is equivalent to entering the command :se co=31 sc=32 to Z:
set ZOPT=:c0:31 sc:32

v4.10a z.2

Aztec C86

unitools

PN

Aztec C86 PRINTF

New features of the printf functions

Enhancements have been made to the printf-type functions (printf,
Sforintf, sprintf, and format) to support the argument conversion
specifications defined by the ANSI standard, and to support the near,
far, and huge keywords. The following paragraphs discuss these
changgs.

* For the d, i, o, u, x, X conversions, the precision indicator
defines the minimum number of digits to be displayed.

* To indicate that a d, i, o, u, x, or X conversion specifier
. applics to a short int or unsigned short int, the specifier can
optionally be preceded by A.

* To indicate that a d, i, o, u, x, or X conversion specificr
applics to a long int or unsigned long int, the specifier can
optionally be preceded by L

* To indicatc that a e, E, f, F, g, or G conversion specifier
applies to a long double, the specifier can optionally be
preceded by L.

* If h, I, or L prccedes any other conversion specificr, it is
ignored.

* The field width indicator can optionally be preceded by a flag
character. The flag characters and their meanings are:

- Left-justify the result in its field.

+ Prepend a sign character (plus or minus) to
the result of a signed conversion.

space If the first character of a signed conversion is
not a sign, prepend a space character to the
result. If both space and + flags are specified,
the space flag is ignored.

- Convert the result to an alternate form, as
follows: For ¢, d, i, s, and 1 conversions, this
flag has no effect. For an o conversion,
increase the precision to force the first digit
of the result to bc a zero. For x and X
conversions, prepend the result with 0x or
0X.

* There are several new conversion specifiers:
i The same as d.

X The same as x, except upper case letters
(ABCDEF) arc wused instecad of lower

lib printf.1 v4.10a

PRINTF

n

p

Aztec C86

{abedef).

The samc as e, except the exponent is
preceded by E instead of e.

The same as g except that when exponential
form is used, the cxponent is preceded by E
instcad of e.

The argument is a pointer to an integer into
which is written the number of characters
written to the output so far by this call.

The argument is a pointer to void. The value
of the pointer is printed.

* A conversion specifier (such as s) that takes a pointer as an
argument can be preceded by an N or F, indicating that the
pointer is near or far, respectively. A neaqr pointer is a 16-bit
offsct to a ficld in the programs’ standard data scgment. A far
pointer is a 32-bit value that can point at any location in

v4.10a

mcmory.

For a numerical conversion (%d, %x, %o, ctc.), the field width
indicator in a conversion specification defines the minumum
number of characters that the converted value will use, not (as
the Aztec C86 manual says) the exact number of characters.
For a string conversion (%s), the field width defines the
maximum number of characters in the generated string.

printf.2 lib

LMALLOC (C) LMALLOC

NAME

Imalloc, Icalloc, Irealloc, Ifree - memory allocation

SYNOPSIS

huge void * lmalloc(size)
long size;

huge void * Icalloc(nelem, elemsize)
long nelem, elemsize;

huge void * Irealloc(ptr, size)
huge void *ptr;

long size;

Ifree(ptr)

huge void *ptr;

DESCRIPTION

1ib86

Introduction

These functions allocate and free blocks of memory, from the
arca above the program. They are similar to the UNIX-
compatible functions malloc, calloc, realloc, and free, except that
(1) the size of a block can be larger than 64kb; and (2) for a
program that uses the ‘small data’ memory model, and whose
stack is above its heap, the arca of memory managed by these
functions is completely separate from that managed by mualloc,
ctc.

When called by programs that use the ‘large data’ memory
model, the area managed by these functions is the same as that
managed by the malloc, free, sbrk, and brk functions. In this
case, in fact, these functions call sbrk to allocate and free
buffers, just as do the malloc and free functions.

These functions can be used by any program, except one that
uscs the ‘small data’ memory model and whose stack is below
the heap. Programs can mix calls to these functions, the malloc
and free functions, and the sbrk and brk functions.

Function Descriptions
Imalloc allocates a block of size bytes, and returns a pointer to it.

lcalloc allocates a single block of memory which can contain
nelem elements, cach elemsize bytes big, and returns a pointer to
the beginning of the block. Thus, the allocated block will contain
(nelem * elemsize) bytes. The block is initialized to zeroes.

lrealloc changes the size of the block pointed at by pir to size
bytes, returning a pointer to the block. If necessary, a new block
will be allocated of the requested size, and the data from the
original block moved into it. The block passed to lrealloc can
have been freed, provided that no intervening calls to Ilalloc,

Imalloc.1 v4.10a

LMALLOC (C) LMALLOC

Imalloc, or Irealloc have been made.

Ifree dcallocatcs a block of memory which was previously
allocated by Imalloc, lealloc, or Irealloc; this space is then available
for reallocation. The argument pir to Ifree is a pointer to the
block.

Technical Information

These functions maintain a circular list of frece blocks. When
called, Imalloc searches this list, beginning with the last block
freed or allocated, coalescing adjacent free blocks as it scarches.
It allocates a buffer from the first large enough (rec block that it
encounters. If this scarch fails, it calls sbrk or DOS to get more
memory for use by these functions.

SEE ALSO
Mcmory Usage (O), break (S)

DIAGNOSTICS
Imalloc, lcalloc and lrealloc return a null pointer (0) if there is no
available block of memory.

Ifree returns -1 if it’s passed an invalid pointer.

vd.10a Imalloc.2) lib86 _

Aztec C86 stdaux & stdprt support
Standard 1/0 and the auxiliary and printer devices

When a program starts, five devices are preopened for it. Three of
these have always been accessible via the standard 1/0 functions: stdin,
stdout, and stderr.

Now, if the symbol MSDOS is #defined before the header file is
#included in a program, the other two prcopened decvices arc also
accessible via the standard I/O functions: the auxiliary device is
accessed using the name sidaux, and the printer is accessed using the
name sid prt.

For cxample, the following program writes a message to the printer:

#define MSDOS
#include <stdio.h>
main()

fprintf(stdprt, "hello, world");

Iibov86 std__devs.1 v4.10a

stdaux & stdprt support Aztec C86

v4.10a std__devs.2 libov86

Aztec C86 AGETC
The agetc function: new features

Before returning a character, the ageic function ands it with the
contents of the global /nt named __agetc__mask. This ficld by default
contains 0x7f, which causes the standard I/O function agetc to turn off
the high-order bit of all characters it returns. By setting this field to
0xff, you can prevent agetc from turning off this bit.

For example, to read a file created by a word processor, in which
the most significant bit of each byte contains control information, a
program would set __agetc__mask to Oxff, thus preventing the agetc
function from stripping off these control bits.

1ib86 agetc.1 v4.10a

AGETC

vd4.10a

agetc.2

Aztec C86

Aztec C86 SDB

SDB: new features

The following paragraphs describe the features that have been
addcd to sdb in going from version 3.40b to 4.10a.

1. Floating point disassembly

sdb now supports disassembly of floating point instructions.

2. New addressing modes for bs command

The bs command, which is used to set or modify a breakpoint, has
two new addressing modes, @func and @. @func causcs a temporary
breakpoint to be set at the return address of the specified function,
whenever the function is called. The breakpoint is dynamically set
when the function is entered, and is removed once taken; thus, the
actual breakpoint address can differ for each call to the specified
function.

@ causes a permancnt breakpoint to be set at the return address of
the current function. The breakpoint must be explicitly removed
using the hc command.

3. New display information for the A/ command

The hd command, which lists breakpoints that have been set with
the bs command, has been enhanced to support the bhs @func
command. Such a breakpoint can have one or more entries in the
breakpoint list. One entry always exists for such a breakpoint: its
address field contains the function address, preceded by the @
character. The other entries follow the @ entry, and define actual
addresses at which temporary breakpoints will be taken on return from
the function; thc address field for these entries contains the actual
breakpoint address, preceded by the ~ character.

4. Changes to the print command

The following paragraphs describe changes that have been made to
the print command.

4.1 The P command

A ‘P’ command has been added, which is just like the ‘p” command,
except it prints the address of the display items.

4.2 Format override character @ is now optional

The print command can display the same ficld in several formats.
If you don’t specify a format, the ficld will be displayed in its default
format. In previous versions of sdb, you had to precede the characters
that defined the override format with a @ character. This preceding

sdb sdb-ap.1 v4.10a

SDB Aztec C86

@ is now optional. It is also obsolete, and will be removed in the next
version of sdb.

4.3 Changes to the string format specifier, ‘s’

The ‘s’ format has been changed slightly. It now causcs the non-
printable characters in a character string to be displayed using standard
backslash notation. For ecxample, if a character string is defined as
follows:

char arr{]="abc\tdef\n";
then the command "ps arr" prints "abc\tdef\n".
4.4 Precision specification for strings

The number of characters to be printed from a character string can
be deflined by preceding the ‘s’ or ‘S’ specifier with a period followed
by a number. For example, the command "p.8s arr" prints the first 8
characters from arr.

4.5 Precision specifier

The precision specifier, a period followed by a number, now applics
just to the next string- or float-specificr, and not to subsequent
specifiers. For cxample, il you enter "p.5f f1" and then "pf 2", f1 will
be displayed using five digits of precision, and f2 using the default 7
digits of precision.

4.6 Repeating a print command

Typing ‘p’ without operands causcs sdb to recompute the address
used in the last print command. Typing the rcturn key causes sdb to
display the next value in a list of values.

For example, suppose that ip is a pointer to an array of imis. Then
the following command displays the int pointed at by ip:

p*d ip
If you then type return, s¢b will display the second it in the array.
If you then type ‘p’ without operands, sdb will display the first int
again.
5. Changes to the ‘t’ command
In asscmbly mode, sdb will now skip over calls, instcad of single-
stepping into the called function.
6. Suspension of source mode

When sdb is in source mode and enters a function for which no
source information exists, it will suspend source mode and enter
assembly modc until it gets back to a function for which source
information exists.

v4,10a sdb-ap.2 sdb

Aztec C86 SDB

7. Qualifying names and expressions
7.1 Name qualifiers

Previous version of sdb have only allowed you to access variables
that are in the current function and the module that contains it. Using
name¢ qualifiers, you can now access automatic and static variables that
arc located in other functions and modules.

There arc two types of qualifiers: file qualifiers and function
qualifiers. File qualifiers are used to specify the file that contains
file-scope statics; i.e. static variables that are defined outside of any
function. Function qualificrs are used to access automatic and static
variables that are visible to an active function; i.e. to a function that
has been called but that hasn’t yet returned.

A qualificr to a variable name precedes the name, and is separated
from it by a period.

For example, suppose that a program has taken a breakpoint in the
function s4(), and that the active functions, and the order in which
they were called, are main(), s1(), s2(), s3(), and s4(). Then you could
refer to the automatic or register variable av in function s2() using the
function-qualified name s2.av. If qv is a static that is visible from
s2(), you could also refer to it using the function-qualified name s2.av.

Suppose [urther that the program has a module mwd.c, and that it
contains the file-scope static fss. You could refer to it using the file-
qualificd name mod.c. fss.

7.2 Expression qualifiers

You can also qualify expressions, to define the function from which
the cxpressions elements are visible or the file in which they are
defined. The qualifier precedes the parenthesized expression, and is
separated from it by a period.

Continuing the above example, suppose that sl() contains the
automatic variables v/ and v2. Then you could display the value of
v1-v2 using thc command

=sl.(v1-v2)

If the file mwod.c contained the file-scope statics x/ and x2, you
could display the sum of x/ and x2 using the command

=mod.c.(x1+x2)
7.3 Disambiguating qualified names and expressions

There are cascs where sdb can’t tell where the qualifier ends and
the qualificd name begins. To clearly identify the qualifier from the
qualified name, surround the qualificr with backquotes.

sdb sdb-ap.3 v4,10a

SDB ‘ Aztec C86

For ¢xample,

= ‘my-prog.c’.av

8. Searching for unqualified names

If you specify an unqualifiecd name, sdb will first search for it in
the current function and module. If not found, it will then look for a
file-scope static of that name in the file, if any, that’s currently being
examined using the df (display file) command.

9. Displaying comments

When sdb displays a statement, it will display the comments that
immediatcly precede it. The previous version of sdb displayed the
comments that followed a displayed statement.

10. User names and register names

User names take precedence over register names. For example, if
your program has a variable named ax, the command "dw ax" will
display the contents of that variable, and not of the AX register.

11. Executing another command

While sdb is active, you can execute a DOS command, batch file, or
program named cmid by cntering:

lemd

12. Separate screens for programs and sdb (the -w option)

When used on an IBM PC or an cquivalent, sdb can optionally
maintain scparate screens for itsclf and for a program that is being
debugged. With this feature enabled, a program-gencrated screen is
displayed while a program is executing, and a screen of operator-sdb
interactions is displayed while sdb is executing.

By default, this feature is implemented as follows: when a program
encounters a breakpoint, sdb saves the contents of the screen and
displays the debug screen; similarly, when sdb continucs a program, it
saves the debug screen and restores the program screen.

Alternatively, if your system has a display adaptor that supports
multiple pages, you can tcll sdb to display its information on a
specified page. This will speed up sdb, since it won’t have to save and
restore screens.

To cnable the use of separate screens for programs and sdb, where
sdb will save and restore the sdb and program screens, specify the -w
option when vou start s¢h. This option must precede the name of the
program that is to be debugged. To have sdb usc a specific page of
display memory for its display, follow the -w option with the number

v4.10a sdb-ap.4 sdb

Aztec C86 SDB

of the page that is to be uscd for sdb’s information.
Two sdbh commands are related to separate program/debug screens:

* The w command causes sdb to toggle between displaying the
debug and program screen.
* The W command disables screen saving and restoring.

13. Using two screens (the -2 option)

The -w option described above allows sdb to scparate its displayed
information from that of a program, using just one actual display. If
you have two displays, you can have the program’s information
displayed on the default display (the one that was active when sdb was
started), and sdb’s information displayed on the other by specifying the
option -2 when you start sdb.

sdb sdb-ap.5 v4.10a

SDB

v4.10a

sdb-ap.6

Aztec C86

Aztec C86 SDB Tutorial

SDB Tutorial

This document forms a brief tutorial on use of the source-level
debugger, detailed reference documentation is provided in the SDB
manual supplied with this package.

1. Getting Started

Since sourcc-level debug mode is the default mode for the
compiler, no changes necd be made to your compiling directives in
order to make use of the debugger. The linker, however, only produces
the .dbg file necded by sdb if the -g option is specified. Note: the -g
option must be specified on the link command line before any object
files upon which you wish to be able to run sdb.

For general use of the debugger, you should make use of the help
screcns, which can be obtained by entering ?<return>. Futher detail is
provided for many of the commands by entering the first letter of the
command followed by ?<return>. Some bricf directions for using sdb
follow:

2. Starting the sdb
The command for starting sdb is of the form:
sdb |options] [progfile] [argl arg2 ...]

The optional parameter [progfile] is the name of a file containing a
program to be debugged, and the optional parameters argl, arg2, ...,
arc character strings to be passed to the program. [options] is any of
the following:

-sdirl;dir2;... Search for source files in the directories dirl, dir2, ...
-idirl;dir2;... Same as the -s option.

-w{page] Maintain separate scrcens for the dcbugger and the
program that’s being debugged. If page isn’t specified,
sdb will save and restore the two screens on entry and
exit from sdb. For display adaptors that support
multiple screen pages, page can be used to define the
page that sdb will use for its own display; in this case,
sdb will simply switch screens upon entry and exit,
instead of saving and restoring screen information.

-2 System has two physical displays. Use the primary for
the program’s output, and the alternate for sdb’s.

-a start debugger in assembly mode - default is C source
mode.

- sdbtut.1 -

SDB Tutorial Aztec C86

When invoked, sdb will load the program to be dcbugged, start it,
and then stop at the entry point to the main function, displaying that
line.

3. Displaying sections of the source file.

Two commands, ¢ and df, arc provided for displaying the user’s
source file. ¢ displays the current source line together with the five
lines that precede and follow it. It takes no arguments.

The format of the df command is:
df [FILENAME,] RANGE

where FILENAME is the name of a file to be displayed. FILENAME
is optional and dcfaults to the current file if nonc is specified.
FILENAME can be used to display lines from a file that is not the
current one.

RANGE is one of the following:

LINE
LINE .. LINE
LINE,COUNT

LINE and COUNT are expressions yiclding an intcger result,

If LINE is specified alone, the line indicated is displayed together
with the next nine lines from the file.

As with all display commands, hitting <return> after issuing the
command will cause the next ten lines of source to be displayed.

4. Running the program.

Oncc the program has been loaded, debugging consists of setting
breakpoints and running the program. Breakpoints can be one-time
breakpoints or can be set as permanent breakpoints.

If you don’t wish to set permanent brcakpoints, you can contol
execution of the program using the single step and go commands.

The format of a single step command is:
[COUNT]s
[COUNT]S
[COUNT]t
[COUNT]T
where COUNT is a positive integer which causcs the debugger to

single step COUNT times, printing information for each breakpoint,
before stopping.

The difference between s and ¢ is that s single steps into calls while
¢ single steps across calls. In effect, ¢ treats a call as a single line.

- sdbtut.2 -

Aztec C86 SDB Tutorial

S and T will step COUNT times displaying information only for the
last breakpoint taken. S will step into calls just like s while T will treat
calls as a single line.

In source level mode (the default), single step is by source line. In
assembly mode, (sct by typing z<return>) single step is by instruction.

If single stepping encounters a function for which no source line
information is available (a library function for example), single
stepping into the function will cause the debugger to step over the call
just like 4

To sct a permancnt breakpoint type:
[COUNT]bs ADDR[,COMMAND]
where ADDR is:

[FILENAME].LINE
FUNCTION[.LINE]
ADDRESSEXPRESSION

COUNT is an integer cxpression. COMMAND is a sct of debugger
commands scparated by scmicolons. For example, you can enter:

bs linkmain.c.39

This will sct a breakpoint on line 39 of linkmain.c. Alternatively,
bs getfld.10

will sct a breakpoint at line 10 in the function getfld.
bs getlld+10

will sct a breakpoint at ten bytes beyond the start of getfld.

Finally, to make the program go, you simply type g<return>. The
program will ¢cxecute until it encounters a breakpoint or terminates.

The format of the go command is:
g [@][ADDR]

where ADDR is as described above and ‘@’ means go until hitting a
return after ADDR. ADDR is sct as a temporary breakpoint and won’t
be remembered after execution of the command. For cxample:

g@
mecans go until the current function returns.
g linkmain.c.39

means go to line 39 in linkmain.c

- sdbtut.3 -

SDB Tutorial Aztec C86

5. Displaying the trace of calls

It is often uscful to know where the program is in a set of nested
calls, and what the arguments and local variables are to cach of the
calls. to display the nested stack of calls in sdb, simply type ds<return>.
Each of the calls currently active will be displayed together with its
arguments. Each argument is displayed in a form appropriate to its
type. Typing dS<return> causes the functions to be displayed with the
types, names, and values of each function argument, and auto
variables. ’

For example:
ds
might causc the following display
main__(1,0xFF35)
Croot__()
while
ds
could causc:
main(int argc = 1, char **argv = 0xFF35)
inti=0
long j= -1
char name[8] = "hello."

Croot_ ()

6. Displaying values and computing expressions.

sdb provides some¢ simple, but powerful facilities for displaying
variables, arrays, and structures. These are the p (print) and the e
(evaluate) commands. For example, to print a structure named symbol
you simply enter:

p symbol
which might result in:

struct symboltb symbol = {
ints flag= 10
char ¥s__name = 0xFF42
int s__value[2] = {
10,5
)
}

Suppose then you want to display the string pointed to by
symbols__name. You simply type:

- sdbtut.4 -

Aztec C86 SDB Tutorial

ps *symbol.s__name
So the result might be:
"pointer”

In addition to the print command, the debugger has an evaluate
command, so you can perform genecral C expression evaluation,
including calls to C functions, assignment, pre- and post- increment
and decrement, casts, and conditionals.

e ¢ = getchar()
might result in
=10

7. Walking up and down the frames.

In using the expressions shown above the user is generally limited
to refering to variables that are visible by C rules at the point where
execution stopped. That is, you cannot refer to local variables of
functions that arc not active or are not the "current" function. (Statics,
however, may be referred to by qualifying them with the name of the
file or function they were declared in. e.g. linkmain.c.name or
main.name).

In order to refer to names in other active functions you can change
sdb’s notion of what the current function is by walking up and down
the call frames, using thc commands fu for frame up, and fd for frame
down. These commands walk up the call frames, displaying the line
from which the next frame down was called and making visible all of
the current call’s local variables.

8. Displaying assembly.

Finally, you can display the assembly code at any address with the
unassemble command. Its format is:

u ADDR
U ADDR

where ADDR is as described above.

u does a disassembly with symbols substituted where possible for
global and local variables. U disassembles without symbol substitution
but with the hex for the code shown as well as the assembly.

- sdbtut.5 -

SDB Tutorial Aztec C86

- sdbtut.6 -

)
/

Aztec C86 ; C Driver
NAME

¢ - ¢ driver
SYNOPSIS

c [options] filel [file2 file3 ...] [-Imylib] -Imylib2 ...]
DESCRIPTION

The driver is designed to compile, assemble and link using one
command. You can specify a single file, multiple files, or a file which
contains a list of files that are to be compiled, assembled and linked
together to create one executable file. Filenames can optionally
specify multiple files, using the "wildcard" characters (? and *). The
name of the executable is derived by taking the first file specified and
appending .exe unless you use the -o linker option.

‘The actions taken by the driver are dependent on the options given
and on the filenames and extensions.

* A .c extension will cause the file to compiled, assembled, and
linked.

* A .asm will cause the file to be assembled and linked.
* A .o will cause the file to be linked only.

Specifying the library names to the linker is optional. The ¢ library,
clib, will always be linked in with the appropriate memory model
version based on the options to the compiler. For example, typing the
following line:

¢ foo.c fum.asm

will cause the driver to compile and assemble foo, assemble fum, link
both programs together with c.lib and create an executable called
foo.exe.

To compile and link using the large code, large data model, and the
math library, you would type the following:

¢ +1 foo.c fum.asm -Im

will cause the driver to compile and assemble foo, assemble fum, link
both programs together with cLlib and mlLlib and create an executable
called foo.exe. This assumes that fumi.asm has been previously
compiled using the large model option. If not, a mixed model error
will result.

If you have more than one file that must be compiled, and/or
assembled, and linked to create an executable, you could use the -f
option. This option allows you to include a file containing the names
of the modules desired. For example, to include a file filelist and link
in the graphics library:

C Driver Aztec C86

c -f filelist -lg
OPTIONS

1. Driver Options
-f file Read command arguments from file.
-C Don’t invoke the linker.

2. Compiler Options

-a Prevents the compiler from starting assembler.
-b Don’t pause after every fifth error.
-d Defines a symbol for the preprocessor.

example: -dmaxlen=100 prog.c
-C Specifies the size of expression table.
example: -e100

-1 Defines an area to be searched for files specified in a
#include statement.

example: -ib:urceinc

-L Specifies the size of the local symbol table.
example: -L200
-n Do not collect source level debugger information.
-S Don’t print warning messages.
-T Include ¢ source statements in the assembly code

output as comments.

-y Specifies the maximum number of outstanding cases
allowed in a switch.

example: -y100
-Z Specifics the size of the table for literal strings.
example: -z100

+1 Generate code that uses the ‘large code’,‘large data’
memory model

+lc Generate code that uses the ‘large code’,‘small data’<
memory model.

+1d Generate code that uses the ‘small code’,'large data’
memory model

Aztec C86

C Driver

3. Linker Options

-B addr

-C addr

-D addr

When linking a DOS .com file, set the program’s base
address to the hex value addr.

When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s code segments to the hex value addr.

When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s data segments to the hex value addr.

Enables the collection of source level debugger
information for all files listed after it on the command
line. (This information is put into a .dbg file.)

Search the library name.lib for needed modules.

Don’t issue ‘multiply defined symbol’ warning
messages.

Don’t abort if there are undefined symbols.
Write executable code to the file named file.

Disables the collection of source level debugger
information for all files listed after it on the command
line.

Tell DOS not to load the program unless at least size
bytes is available for its stack and heap.

example: -S 400 i.e. 400 is hex value.
Generate a symbol table file (for DB).

When linking a DOS .com file, set the starting offset
of the program’s uninitialized data segment to the hex
value addr.

Be verbose.

Tell DOS to allocate memory to the program so that
the program doesn’t have more than size paragraphs
for its stack and heap.

example: -x 400 i.e. 400 is hex value.

C Driver

Aztec C86

MAKE MAKE

1.

2.
3.

Enhancements to MAKE

The following enhancements have been added to the make utility:

Dependencies on files in directories and drives other than the
current one ar¢ now supported.

Command line macros now supported.
Command line options are now order independent.

These enhancements are discussed in detail below.

1. Different directory and drive dependencies

make has been enhanced to permit dependencies on files in

directories and drives other than the current directory and drive. In
previous versions of make, the following dependency line was illegal:

foo.o: a.../front/cc.h

make will now allow the drive name in a directory specification, but
the following rules must be used :

* The colon (‘) is used in two places, one to mark a dependency,

and one to specify another disk drive. A colon that is marking a
dependency must have a tab or a space on any side of it,
otherwise it is taken to be an alternate drive specification.

If you specify a file to be in a different drive, do not refer to the
file later with a different path name. This will confuse make and
the consequences from it are undefined.

Here is an example of what NOT to do.
foo.c : a.../src/foo.0
and then later name it by ...

a:/root/src/foo.c

The forward slash or the backward slash may be used in any
combination to specify other directories.

adir/sub/foo.c IS NOT THE SAME AS a:/dir/sub/foo.c.

The first name will look for foo.c starting with the current
dircctory drive a is set to, the sccond name will look for foo.c in
the path starting at drive a’s top directory, even if this was all
taking place from a makefile on drive b. This is because MS-DOS

unitools make-ap.1 v3.2¢

MAKE MAKE
remembers a current directory for each drive.

2. Command line macros

You can also define Macros from the command line. Here are
some examples.

make COPT=-DDEBUG
make OBJ=f00.0

However, you cannot specify a macro with whitespace in it.
make NOGOOD=fo00.0 slug.o splat.o

This would define the macro NOGOOD to be foo.0 only, and then try
and "make" the files siug.o and splat.o.

Any command line macro specified will override any macro with
the same name in the makefile, for the duration of that execution of
make.

3. Command line argument order

Command line arguments may now be specified in any order.

v3.2e make-ap.2 : unitools

OPEN(O) DOS 3.x Functions OPEN

NAME

open - additional modes for file sharing

DESCRIPTION

open supports DOS 3.1 file sharing. The header file fentlh
contains these additional mwodes:

mode meaning
O_DENYRW Deny read, deny write
O_DENYW Deny write
O_DENYR Deny read
O_DENYN Deny nothing
O__INHER Inherit attributes
O__COMP Compatibility mode

These modes are different from the other modes allowed by
open in that they must be or’d and not added.

NOTE: no support is provided for fopening shared files.
However, you can get shared file support for stream I/0O
through the use of fdopen which converts a file opened by open
into a stream.

SEE ALSO

For more information on file sharing, refer to the section on
Interrupts, DOS function call 0x3D, in the PCDOS Technical
Reference manual, version 3.00.

EXAMPLES

lib

To create, open, and restrict the read and write priviledges on a
file, testfile:

fd = open("testfile", O__CREAT | O__DENRW);

To use the standard I/O functions on a shared file it must first
be opened by open and then by fdopern.

#include "fcntlh"
FILE *fp, *fdopen();
int fd;

fd = open("testfile", O_CREAT | O__ DENRW);
{p = fdopen(fd, "r+");

open.ap.1 v3.4a

OPEN(CO) DOS 3.x Functions OPEN

v3.da open.ap.2 lib

FILELOCK(C) DOS 3.x Functions FILELOCK

NAME
filelock - lock a region within a file

SYNOPSIS
int filelock(fd, flag, offset, length)
int fd, flag;
long offset, length;
DESCRIPTION

filelock locks or unlocks a region of a file that has been opened
for unbuffered I/0.

Jd is the file descriptor associated with the file.
flag indicates the action to be done: 0 = lock, 1 = unlock.

filelock will lock/unlock a region starting at offset bytes from
the beginning of a file for length bytes.

If filelock is successful, it will return a zero.

NOTE: care should be exercised when locking files used by stdio
streams due to some buffering that takes place.

SEE ALSO
Unbuffered I/0 (O).

For morec information on file locking, refer to the section on
Interrupts, DOS function call 0x5C, in the PCDOS Technical
Reference manual, version 3.00.

DIAGNOSTICS

If filelock fails, it will return -1 as its value and set an error code
in the global integer errno.

1ib86 Iib86.ap.1 v3.4a

FILELOCK(C) DOS 3.x Functions FILELOCK

v3.4a 1ib86.ap.2 1ib86

Using MANX Technical Support

We have put together a set of guidelines to help you take the most
advantage of the technical support service offered by MANX., We ask
that you read and follow these guidelines to enable us to continue to
give you quality technical support.

Have everything with you.

Try to be organized. When using our phone support, have
everything you need with you at the time you call. Our goal is to get
you the help you need without keeping you on the phone too long.
This can save you a lot of time, and if we can keep the calls as short
as possible we can take more calls in the day. This can be to your
advantage on days when we are busy and it’s hard to get through.
Also, have the following information ready when you call technical
support. We will ask you for this information first.

* Your name. This is necessary in case we need to get back to you
with additional information.

* Phone number. In case we have additional information we will be
able to contact you. This will never be given to anyone, so you
need not worry.

* The product you are using, and the serial number. If you have a
cross compiler please tell us both host and target, even if the
problem is with just one side of the system.

* The revision of the product you are using. This should include a
letter after the number; ie. 3.20d or 1.06d. THIS IS VERY
IMPORTANT. The full version number may be found on your
distribution disks or when you run the COMPILER.

* The operating system you are using, and also the version.
* The type of machine you are using.

* Anything interesting about your machine configuration. ie. ram
disk, hard disk, disk cache software etc.

Know what questions you wish to ask.

If you call with a usage question please try to have your questions
narrowed down as much as possible. It is easier and quicker for all to
answer a specific question than general ones.

Isolate the code that caused the problem.

If you think you have found a bug in our software, try and create
a small program that reproduces the problem. If this program is small
enough we will take it over the phone, otherwise we would prefer
that you mail it to us, using the supplied problem report, or leave it
on one of our bbs systems. Once we receive a "bug report" we will
attempt to reproduce the problem and if successful we will try to have
it fixed in the next release. If we can not reproduce the problem we
will contact you for more information.

Use your C language book and technical manuals first.

We have no qualms about helping you with your general C
programming questions, but please check with a C language
programming book first. This may answer your question quicker and
more thoroughly. Also, if you have questions about machine specific
code, i.e. interrupts or dos calls, check with that machine’s technical
reference manual and/or operating system manual,

When to expect an answer.

A normal turn around time for a question is anywhere from 2
minutes to 2 days, depending on the nature of the question. A few
questions like tracing compiler bugs may take a little longer. If you
can call us back the next day, or when the person you talk to in
technical support recommends, we will have an in-depth answer for
you. But normally we can answer your questions immediately.

Utilize our mail-in service.

It is always easier for us to answer your question if you mail us a
letter (We have included copies of our problem report form for your
use). This is especially true if you’ve found a bug with our compiler
or other software in our package. If you do mail your question in, try
to include all of the above information, and/or a disk with the
problem. Again, please write small test programs to reproduce
possible bugs. The address for mail-in reports is P.O. Box 55,
Shrewsbury, N.J. 07701. If you have questions/problems concerning
C Prime or Apprentice C, mail them to P.O. Box 8, Shrewsbury, N.J.
07701.

Updates, Availability, Prices.

If you have any questions about updates, availability of software,
or prices, please call our order desk. They can help you better and
faster. You can reach them at...

Qutside N.J. --> 1-800-221-0440
Inside N.J. --> 1-201-542-2121 (also for outside the U.S.A.)

Bulletin board system.

For users of Aztec C we have a bulletin board system available.
The number is ...

1-(201)-542-2793 This is at 300/1200 bps. (all products)

Answer the questions that will be asked after you are connected.
When this is done you will be on the system with limited access. To
gain a higher access level send mail to SYSOP. Include in this
information your serial number and what product you have. Within
approximately 24 hours you should have a higher access level,
provided the serial number is valid. This will allow you to look at the
various information files and upload/download files.

To use the bulletin board best, please do not put large (> 8 lings)
source files onto the news system, which we use for an open forum
question/answer area. Instead, upload the files to the appropriate area,
and post a news item explaining the problem you are having. Also,
the smaller the test program, the quicker and easier it is for us to look
into the problem, not to mention the savings of phone time.

When you do post a news item, please date it and sign it. This will be
very helpful in keeping track of questions. Try to do the same with
uploaded source files.

Phone support, number and hours.

Technical support for Aztec C is available between 10-12 am and
2-6 pm castern standard time at 1-(201)-542-1795. Phone support is
available to registered users of Aztec C with the exception of the
Apprentice C and C Prime products. For those products, please use
the mail-in support service and send questions/problems to P.O. Box
8, Shrewsbury, N.J. 07701.

These guidelines will aid us in helping you quickly through any
roadblocks you may find in your development. Thanks for your
cooperation.

MANX Problem Report

Jate: / /_

Name:

>hone #:1-()- -

—_ompany :

Address :

>roduct : ¢86-PC ¢86-CPM86 c68k
c68k-Am cll ¢80
¢65-ProDos ¢65-Dos3.3
Cross:

/ERSION #: Serial #:

Jp. - sys. Machine Config.:

iend this form to :
(C Prime/Apprentice C only):

Manx Software Systems MANX Software Systems
P.O. Box 55 P.O. Box 8
Shrewsbury, N.J. 07701 Shrewsbury, N.J. 07701

ir call tech support at 1-201-542-1795 between 10-12 am and 2-6 pm EST.

Sorry, phone support not available for the C Prime/Apprentice C
product.)

description of problem --
(include what has already been attempted to fix it)
(use the reverse side of this sheet if needed.)

MANX Problem Report

Date: / /-

Name:

Phone #:1-()- -

Company :

Address :

Product : ¢86-PC c86-CPM86 c68k
c68k-Am cll c80
¢65-ProDos ¢65-Dos3.3
Cross:

VERSION #: Serial #:

Op. - sys.. Machine Config.:

Send this form to :
(C Prime/Apprentice C only):

Manx Software Systems
P.O. Box 55
Shrewsbury, N.J. 07701

MANX Software Systems
P.O. Box 8
Shrewsbury, N.J. 07701

or call tech support at 1-201-542-1795 between 10-12 am and 2-6 pm EST.
(Sorry, phone support not available for the C Prime/Apprentice C

product.)

Description of problem --

(include what has already been attempted to fix it)
(use the reverse side of this sheet if needed.)

Aztec C86
for
PCDOS, MSDOS, CP/M-86,
and the
8086 Family of ROM Systems

version 3.2

Copyright (¢) 1986 by Manx Software Systems, Inc.
All Rights Reserved
Worldwide

Distributed by:
Manx Software Systems, Inc.
P.O. Box 55
Shrewsbury, N.J. 07701

- 11 -

Pr=N

USE RESTRICTIONS

The components of Aztec C86 are licensed software products. Manx
Software Systems reserves all distribution rights to these products. Use
of these products is prohibited without a valid license agreement., The
license agreement is provided with each package. Before using any of
these products the license agreement must be signed and mailed to:

Manx Software Systems
P. O. Box 55
Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine.
Any uses of these products that might lead to the creation of or
distribution of unauthorized copies of these products will be a breach
of the licensing agreement and Manx Software Systems will excercise
its right to reclaim the original and any and all copies derived in whole
or in part from first or later generations and to pursue any appropriate
legal actions.

Software that is developed with the Aztec C86 can be run on
machines that are not licensed for these products as long as no part of
the Aztec C software, libraries, supporting files, or documentation is
distributed with or required by the software. In the latter case a
licensed copy of the appropriate Aztec C software is required for each
machine utilizing the software. There is no licensing required for
executable modules that include runtime library routines.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. DAC
#84-1, 1 March 1984. DOD Far Supplement.

COPYRIGHT

Copyright (C) 1981, 1982, 1984, 1985 by Manx Software Systems. All
rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into
~any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without prior written permission of Manx Software
Systems, Box 55, Shrewsbury, N. J. 07701.

- iii -

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Manx Software Systems reserves the right to revise this publication
and to make changes from time to time in the content hereof without
obligation of Manx Software Systems to notify any person of such
revision or changes. '

TRADEMARKS

Aztec C, Manx AS, and Manx LN are trademarks of Manx Software
Systems. CP/M-80 and CP/M-86 are trademarks of Digital Research.
MSDOS is a trademark of Microsoft. PCDOS is a trademark of IBM.
UNIX is a trademark of Bell Laboratories. Macintosh is a trademark of
Apple Computer.

-iv-

P=aN

Manual Revision History

February 1983 oo ss s e eee s s senm e sereneesserrnn First Edition

December 1984 erereterereresrenenensesssneresneneneses Second Edition
MaAY 1985 ..eeeeeeerinreeeenererisserersenessesersesssseresseresssrsssarsssensenses Third Edition
FEDIrUary 1986uceevevereereirinnenrnsenneseseessseesessesesssssssarsssensans Fourth Edition

Summary of Contents

8086-specific chapters

title code
OVEIVIEW ...eeererereneeeeenssissesnssessesssessarsssssesssessssstosaressosssasasssssassassssasnessassnsns ov
Tutorial INtrOQUCLIONcoovveienerrceereeeerresseesrssesesnessssessersesessesasssssssasnnsns tut
ThE COMPIIEToeeeereeeeereereeeserreeesessresssrasseseseessresssnnsesessansssssrensosssasssnonsasotsos cc
The ASSEMDBICTccuoceerreercernrernrreereesneserecensessesaeseesssassssassarasssessssessessasssssesens as
ThE LINKETueeeeveererereensvreseineesescsssssesssasassesassensssssasssssasssssesessssassessssessssens In
ULIIEY PrOSIAIMScoveeeieeeerreeeresnssesrseeseressssessssessesssasssssensessssesassssessssassssens util
Library Functions Overview: 8086 Informationccceevvrennene libov86
8086 FUNCLIONS ...ceeveeeeeretrrereseeresaenesssssersssssssssesssesessssssssasesssassessasssssssnnns 11b86
Technical INfOrMALIONcoeeeevrvererireresnrerencrssnrisssessseeserssnssseseasasesesasass tech
UDILOOIS ...eeiereerecrenereetseneeesernnsssresaasessssssssestssssssenassssssasassasensssssssssessasess unitools
SoUrce LeVel DEDUEGEELcoucevvereenenrerererereressrssnsssassssasasssassessssssesssoosessses sdb
Assembly Language DEDUZEETocieeeerieennemrrenserensinsessesesssssnssesseseseens db

System Independent Chapters

Overview of Library FUNCHIONScccrrerreinees seseseesensnsesesnsesenseseenases libov

System-Independent FUNCLIONSceceveerveeees vereeeeersnssassessssesssssssesseaasases lib

SEYIC cverencrrerrrrrrencnes cevnvsasaecsesasnssrasaseensnses ceeeneae ettt st ssas s st e b sreaean style

Compiler Error MESSAZESevverrrerrerneseses secsererasesernscessasssesesassssssnssssesescsens err
Index

IRACK et st st s se st e s serasss e st sae b sae b ae index

- vii -

Contents

OVETVIEW .eereeererererenerenenns . teererneressrenserastaraesstensesresseraene ov
Tutorial INtrOAUCHIONcucovereeereeeeeereeeeeeseeresesste e sstessrsssessssnsensssseessanarsenes tut
1. INStalling AZLEC C86cueeereeererereerrrneeeeresssereraesssesassesnssessnssssessessesens 3
2. Creating an exXecutable PrOogramcococeeeererverernessessssesnesesrerssseresses 7
3. Where to go from herecvveereereervererennene .8
TRE COMPILETvevereeeererenes crrererinsesetessessseseasssessssssssssseseressssssassesssssnsesssssnsss cc
1. Operating INSIIUCLIONSoeeveeeeeererresnreereresersressessssssesiscsrssssessssessssses 5
1.1 The C Source File reerserresareeresteeasanestesaarnseseerasraessaseans 6
1.2 The OUtPULt FIIES ..cocevereereevererrerrreessesnssrsessssesessessossssessessesersosseseses 7
1.2.1 Creating an Object Code Flle .. 7

1.2.2 Creating just an Assembly Language Source File 8

1.3 Searching for #include FilESccccevureeeveerererrerenereseeeesnsesnsenenns 9
1.3.1 The =] OPLION eoovereeerreeiieeceeecteerereesessneresssesssseesasessssessessenes 9

1.3.2 The INCLUDE Environment Variableccceverenee. 10

1.3.3 The Search Order for #include Filesccuuvuevrvenreneneee. 10

1.4 Memory MOCEISocccerivrereerernenenessnenesesessesseseesnesassesesseseeses 11
1.4.1 How a Memory Model is Selectedovevevreererenreivnrnens 12

1.4.2 Multi-module PrOSIAIMSccecevvrervvererrersernesvessereossessesses 13

1.4.3 Program Organizationce.eeevereeenmsensessseesssesesaene 15

1.4.4 ’Large model’ versus OVErlayscccvveerenrernrreereensseesenee 15

1.4.5 Implementation of the Memory Models 16

2. Compiler Options reesrersereesesaeenteresaseresrasaesrenssressasass . 19
2.1 Summary of the OPLIONScccvveveererveereeraisensrereesecsasscsseseraenes 19
2.1.1 Machine-Independent Utility Optlons 19

2.1.2 Table Manipulation OPLiOnSceceevreereeerecseeressereeserseses 19

2.1.3 8086 Options for the Optimizing Compilers 20

2.1.4 8086 Options for the Non-optimizing Compllers 21

2.2 THhE OPLONS ..eeieerereeeeeeeeieeereeseseseseseessasesseressssssssessasessssssassasssases 22
2.2.1 Machine-Independent Ut111ty Optxons 22

2.2.2 Table Manipulation Options vreeeenensresnesaes 23

2.2.3 8086 Options for the Optimizing Compilers 26

2.2.4 8086 Options for the Non-optimizing Compilers 29

3. Programming INfOrmMationccecereeereseseessscnssusissessenssnssssorsensanns 31
3.1 Supported Language Featuresceeconinenccncccssecsneses 31
3.1.1 Preprocessor StAtCMENTSccccerrseerresrecereresaessessascnsorassosses 31
3.1.1.1 MACIOS cvecverecersensaeeseeseesassessesnessessessessssesseessasasssssssasssane 31

- viii -

216 13 51 1 1= USROS 31

3.1.1.2 Conditional Compllatlon .. 34

FEILAEL oot eeeteae e nasse e sessasesssassesasaesesesersssnsnans 35

#ifndef revsesenensesaraenranen . veenrenens 35

FEAL cereereeerecreeen i eesneseeasessstesiasrassnentnonssreresnesseserasaassereanes 35

3.1.1.3 More Preprocessor Statementso..ceeeeveeererenerernes 36
#include eeresreressetenaes 36

FHNE ooneeeereeeereeecreeeseesesvesessossasesessene reeerreraesnressennns 36

#asm and #endasm .. 36

3.1.2 MOTE FEALUIESc.covevevereecerrennireeneeeseessrserasssesssssssenesssnsanans 37
Structure ASSISNMENLeceeerreererenene rreerereenenraeineas 37

Line Continuation reevererenearnaenas rrereereeaenrerenenes 37

The void Data TYDPE ..veevererereireerieiesienterseenesessesasessessesesssasasses 38

Special SYMDOLScceverrerrereiiremereneenennesessesessessanessasassassesesses 38

_ FILE ettt asenestsss s s 38
TTLINE e ssssasissssssnsons 38

_ FUNC__ st sesssasesssssninenns 38

3.1.3 Special Features of AzteC Ccouvvveveirenriressesnnvessessens 39
String METGINGcceeeevecrenieeenireecenenenernneeeseneeseseenessssassesssseases 39
ReSErved WOrdScovveeeienennrnneeninienecnsnnsensosssssesssesessssssssesnsans 39

GIobal VariabIEScovceeeveeeeerreraerenienevesessesessessesasserassarsesasans 39

3.2 DAata FOIMALScocoeeeeeererereereressessssoacsesessessesessesssssesessessssosasns 41
3.2.1 CRAT eeectesreccesnnesessesraseersssesessasasessessessassessessossassessanes 41

3.2.2 POIDLET ooeeeerrererreeresersnsessereenesseresessasssssssessssossossssonsassassssssess 4]

3.2.3 AN, SROTL cueeeveeeveertenernrncresseressesessssessosessessssossssessessesessoressons 41

3.2.4 0N .ocuccevrererrrerererirerasrnsresseressssesssssresnssssssssesassenssssssssesessesenes 41

3.2.5 float and double 42

3.3 Floating Point EXCEPLIONSvceeeeeeeceeieeererersrenensseaesencnsessessesens 42
3.4 Writing Machine-Independent Codeuceeeeceireenreenerinnnns 42
3.4.1 Compatibility between Aztec C Productscceuuee.e. 42

3.4.2 Sign Extension for char variablesvreerereeeenne. 43

3.4.3 The MPU... SYMDOIS ...coeiervrrerrrerereriereceereesreseeseossessossssnens 43

3.5 Using Long POINLETSccccrevevevererenecniemsererenssensssssssssesessssseseseens 44
3.5.1 Passing Long Pointers Between Functions 44

3.5.2 Expressions involving Long Pointersceeeeeveueneens 46

3.5.3 Creating and Accessing Huge Arrayscceeeeeveenenas 43

4. ETTOT MESSALES .eereerereerranerersesrerssesnssassssesssrssssscssessesessosssessasessansssassosens 50
The Assembler rereererenrenens veerere A8
1. Operating InStructionscoeeeenne rerereseebesnessenesseeneesatesassins 5
1.1 The Source File eretessseenaeaisensebensrereesensas s enessaseresennsten 5
1.2 The Object Code Fileuuinineernrenncieirseeeessesessssesssssessssesnes 6
1.3 . The LiSting File ...coeeccicrnisincncnisiseninsnsessiasessesesseone 6
1.4 Secarching for "include’ FIIEScccccemrveererrererrercreeseseesessesesesnies 6

2. ASSEMDIET OPLIONS cveereirieererreresreresreseesesnsessessessosssessosessessssossssssnsnsres 9
3. Programmer Information ... veereneenenaeanens 10
3.1 Syntax . . eeetererestebeseeassenenrenenensneteseanans 10
3.2 Symbols ceeresestsseneseasaterersatesstesereasataresar s esesssasases 11

- iX -

3.3 Segmentation reereesererenetarartesenenara s et s are e e aerenssenreen 13

3.3.1 The SEGMENT and ENDS Directivescevvureeerenenes 13
3.3.2 Multiple Definitions for a Segmentcoeueuee. 14
3.3.3 Nested SEEMENLScoveceieereecreeerresresssrereeesearasserssssesasasssssans 14
3.3.4 The Default SESMENLecveeererrrieierererreseeaeeesareseessessssnes 15
3.3.5 The ASSUME DIIreCtiVecoecermveriverirrimersiesisessesenssnes 15
3.3.6 Using the Uninitialized Data Segmentcccceveveeunenen. 16
3.4 Globally-accessible SYMDOISoeevvereeereerenerceereerereeneacsesssrescens 16
3.4.1 The PUBLIC DIiIECLIVE ...ucoervvrererrerrernesnesensseresessessecsoseon 16
3.4.2 The GLOBAL Directivecoecermeueemreeccrecrersonce vevreeene 17
3.4.3 The EXTRN DII€CtIVE ..covvevrrvrrrireeriveresresmrorssessesrssessessane 17
3.4.4 Interactions of GLOBAL, PUBLIC, and EXTRN 18
3.5 Operands and EXPresSionscveveeereesseeressssinssssasssssesessessnns 19
3.5.1 REGISTELS uvvuirrererrerieresererirereseesessessssesersessesessisssssossasosssssasnns 19
3.5.2 Immediate Operandsccccveeeeerereeneeerenrereeeseseeesererens 19
3.5.3 Memory Operandscceevveereernieeeserssmresssrsssseseessesesens 20
3.5.4 Operand EXPIreSSIONSceiveereneiseerisssesneseiseressessssssssenesnes 23
3.5.5 The ArithmetiC OPETAtOIS ...c.covevereeirserrirneressesserseesaeeseseens 23
HIGH and LOW ..ieeriiteveseseeeereseseseeseassnssesssassssnssoses 23
Addition and SUbLractioneeeererinreressnereseessereses 23
Multiplication and DiVISIONccccevneereerermisirererscresnesnsnsnns 23
The Shift OPEIALOLScovvveecrerrerereeerensrerererrsinseesessssesserssnnes 24
The Relational OPeratorsecceevevveeiereenesrssresesssseesseseseons 24
The LogiCal OPEIAtOTSvvveevrerrervrerrermrsesseresssaressssessesesassessne 24
3.5.6 Attribute-overriding Operatorsceeeivecseveersseeseruenes 25
SegMENT OVEITIAE .oveceeeeeeeeneeererreeenrerererenseressessessssesnesesenes 25
PTR ...
SHORT
3.5.7 Attribute-value Operators
THIS oeeeetceteteeeeeeeretsseessasebessssassresssesssessssenssassssensssesenes
SEG ettt seass s e se st st s sen s s are e s sa s nen
OFFSET
TYPE ... eeerererreesstreessrsssnsseeessessesssesnsessesssesrasasssssnenssesans
LENGTH
SIZE ooeeeeeeeenreeeneeeesvesneseresanens
3.5.8 Operator Precedence
3.6 INSLIUCHONS ..evveererireernrrernenesnesereesinsssrrssssssssrsessssesssnssssssssesseseasnss
3.7 Directivesceeeeerereenene
ASSUME ...t esesesssssssssessessssssrsssasessensasessessns
BSS e
DB, DW, and DDeeeeenreeeriineenernscsn s sssseresssssessssenes
EIND .crritcresnncnrercsnssestesisessssosessessrossssessesassasressssessessessssessans
EQU
EVEN oottt s tsssse e sesssseseses st ssssases srassasensonessnsesesens
EXTRIN ..ooereverevemrereessesesrersissssssessssessssessssessesasssssessssassasessssssssans
GLOBALooovveererrrerenvesnesenens
GROUP .oeetceeersesreseastesssenssessssessssssssesssssessssssssesasssnsnsessssasss

INCLUDE e s s b b R e e s 37

LABEL ...t ceeseaestessssnssesestesnsesensssesssanssssssssessntesess saesen 38
LARGECODEcuivnnieienenresesininssasessssssssesssssssssssssssssssases 38
MODI8E ...ttt esensssesssesessese s snssesessssssessssnsssensssnsns 39
NAME ... ireeuresesatatere et et e st R aerer et st eraRe e e ae e st seessasresseserten 39
ORG ... esteresesesetesesabesaetatate e atata e seateseseraebetaranressrarsststanans 39
PROC and ENDP (reasssesatenserssnsaressirasasenersesasensssessesassasnsrasas 39
PUBLIC eeseesesesesereasesetessesasentsntnsetaneetetenart et et aneeen e e ernen 42
RECORDooiteieriteeensnieintesesiesssessssssasessssssssssssassasassssssssssssssasenss 42
SEGMENTToooteteeeeeteeteesesesssessssesesessssesesssssessssssesessssssssasenss 44
3.8 MACro DIr€CHIVEScciecerierecenreienereenresreseesenesssesssessssssesssensasensns 44
3.8.1 Local SYMDOISc.ccvrerneererrirerensseiernreiasnresesessarssssasssasesnenes 46
3.8.2 Concatenating Parameters to TeXtoeveeeereeveveererereenn. 47
3.8.3 Concatenating Parameters to Parameterscun....... 48
3.8.4 Parameter Substitution in Quoted Stringsc.coce.e.. 49
3.8.5 Passing a Symbol’s Valué t0 @ MACIO weuueveereeemevereeeeenenn. 50
3.8.6 Passing Comma-containing Parameters to a Macro 50
3.8.7 NEStING MACTOS ...ccovrrrrvrrrnrnerrrarerarnesrereesseresessssssssressesesesesens 51
3.8.8 Repeatedly Assembling a Block of Statements 53
3.8.9 Summary of the Macro Directivescecerveeevvererernnn. 56
INDM ..ttt sae s sese s sssassss st ssssassssessssssssessssnsnsenans 56
EXITM ..t eteneesenes s esssssessesese e ssssessssssasesessssssessasnns 56
IRP et rteeccstetstesse s enessae st ase e st st b sa st esasas bt ensanasasansans 56
TRPC ...ttt tetesetste e st erersse st ssssstessssassasasssasssnsasesans 56
LIOCAL ...ttt nerieisrssasses st sesssssssssssssesssssassesessasasans 56
MAGCRO ..ottt stassss st sssssss st sassasessssssssssasessnsans 56
PURGE ...ttt iesstersssssesstsaessssssesessssesessssnsesensssnsnns 57
REPT ... seteeeetetete et tesensesetsssses st saessesessssssassssessssesesssssans 57
3.9 Conditional DIreCtivescvvrrvereccerecrmrenssssssssesrsesrsssssssssssssssseses 57
TF oereeeereenteressnsnessnssssssessnssssesssnsesenesssnssassssssssssrasanssssessensrsnsane 58
IFE ...ooeeereetneresreneserste s sresasessesaesessaesaessansessasaesnassesasssosssnness 59
TFL ettt etesenesene e ts s ber et asassssersssesatesessasesessssnsesssensenns 59
T2 e eeeesrcinretetes st e e see s enesesssssssssssssesssnes e sesesssesessnsenans 59
IEDEF ...t tesesetesenssessssssessssssessssesesessssssasssasesenens 59
IENDEFooooivieiennninesrcreressssesassssnessssssssssssassrsssssssassssesesns 59
TEB e rercreestsnsterssnrseseses st erassssssss st sss e sassssssesasassasansasans 59
TENB ...ttt e et sesesesssaesesssssessesasessssssessesssosssennesesens 59
TFIDINoeeeeeneneriinissseessessesessessrsssssssnsssssssssessensnssessessassesesens 60
TEDIE ...ttt enesss st esnsss sasssssssssensasssessssosssansssenans 60
ELSE ..ottt rensse et esastesssssesssnesessssasa e sasastesessnsnsans 60
ENDIFooorierirrenennrirnesesinernessesensisassssesessssassasssessenssesasnass 60
3.10 COAEMACTOS ...voveveeeeeirrereeienserersssesessessessasssesesessssesssaassasessnssenes 60
3.10.1 SPECITIETS eovervriiervrnrersrerieenereeneinesesessesssassssssssssssssssessssnes 62
3.10.2 MOGIfIETS .ovvceerereteeeiereecte et seesse e s easns s erasesasasnsans 63
3.10.3 Range SPECIIETS .uuveereerereerereicereererrereerereeesssressesasassaesesasnes 63
3.10.4 The Codemacro DireCtivescocovvmermeeerenesernrnensenans 64
SEGEFIX ettt reeteeses e sssssssssssssesassssssssessnssssasasasens 64
NOSEGFIX ittt steesssssssasssssesessesssesssessesesesssesesssnes 65

MODRM rreress s et s st rentes . 65

RELB - reereeenereaesassene 66

RELW - . . 66

DB, DW, and DDeevererireeereneresnsreseneees 66
User-dcfined Record DlreCtIVCS 67

3.10.5 The DOtshift OPEIALOTueeoueeeereeerirmeecerreserresesessesesesens 67

3.10.6 The PROCLEN Symbol 68

3.10.7 Matching Codemacros to Instructionsce.eceese.. 69

The Linker reeseereseseseersente st nsaresaan aaresaesnaratassasesaresans In
1. Introduction to linking eeeteseseesisbeseseaenstaresareresees s seasarenerebens 3

2. USING the LANKETcooeerreererieeieeririsieeeresesessesesessssesossasarssesssesesesssasons 7

3. LinKEr OPLIONS ...voveeererererrevererermeresesesssessasesessasesssssssssssassosssssssesessrssens 9

4, LinKer EXrOr MESSALESceererverensreeseseresssersarersssserssnsrnssmsessassosessasss 17
Utility Programs .. reererersereserearesnasaeneresaensrsrasen util
arcv (Source dcarchlver) reerestenesteseser s aestene s ssresasresassarasa e seransertses 4
cnm (Object file utility) eeerveeseeresseseaensessassersesarsearass . .5
CIC (File VETIfICAIOT) .ccccvurerennrerreereenennnssessssasssssesssssssessssensasesssssssnnens 9
hex86 (ROM Hex Generator) eereneessnssasnenenressrass 10

Ib (Object module HBrarian)eieivevverencecsrenneesssereesescsesasseses 11

IS (liSt QITECLOTY COMIENLS ..ouvvvereerrereereresrsrseescsnessasssessesassessssessssessssen 22
obd (ODbject file ULIILY) ..ecvvreeererieeeieresrcesrerereees s esnessestesesnseseseseones 25
obj (MSDOS/PCDOS ObJect code EENETALOT) .ocveveereeeencvranneenesenene 26
ord (Object library generation Utility)ccecoeeeeenereveseeecevensenes 27
prof (Execution profiler) rrersernerssssossesenassrons . . 28
SQZ (Object file ULHILY) ..cvvervrcecrirerierceceisieeseeiecseesesesseessnesesssssnssnens 29
term (terminal emulator for IBM PC) .. 30
Library Overview: 8086 INformationccceoeeeceereevesceiasescsnenene libov86
8086 FUNCLIONS ...cevevrrereereneeenseraresesnisssssssssiacsesesesssessassssasesossssssssasssssoses 1ib86
Index reetseeusetertastsaere et et b seReRes saereas st en et et ren e eense s seaensererenneserans 5
THE FUNCHOMNS ..co.ueeeveererererrerrereraesessesenensssssensssssesersssssnsessssssrsssassassssssssasses 7
Technical INfOrMALIONcoevvererirenns vererererersneenssersesssisorsssssssesessossesesenes tech
1. Program OrganiZationecoeonsenesrossesseseessersessssssssssessessossons 4
1.1 The PrOgram Areasceceereerereserserecserersessrnssassssaesessssessssnes 5

1.2 Factors affecting Program Organizationeeevennenene 7

1.3 Symbols related to Program Organizationceoeeeeeres 13

1.4 Startup routine Termination Codeseeerrrrierervenrersenennns 14

2. OVETIAY SUPPOLL ...oeereererenrererereeressessesessesesseresssssesssasassessersesssssasarassars 15
2.1 Introduction to Overlays rrerererseraeeastesasseseaannsaes 15

2.2 Programmer INfOrmationccoeceveeereesneeeenreseeseseesesesnsnssenes 19

3. LIDIari€scocvcveereneeseenserssssnsnessns reveerereeresssessasaenaensrseraesenes 25

4., Cross DEVEIOPIMENLccceveerereerererreresseriessssessesessssessersssasassassarsesessns 26

5. Using the PCDOS/MSDOS LANKETcovevererievrerreneseerereesesessreeneaes 27

6. Assembly Language FUNCLIONSccoveeeeeererreierecreseessssesnrenssnnenens 30
6.1 Conventions for C-callable FUNCtionsceeceeververenrererene 30

- Xii -

6.2 Assembly Language MAaCIOSccccoceveeverecrucnesnnanseseeresensasesseses 33

6.3 Embedded Assembler SOUICEcuveveeeerereeerneernernveresesssseenns 39

7. Generating ROMable COdeicumrrrnreeererereerererineresnseenesensesesenens 41
7.1 Features of ROMable Programiscceceeeveerereesesserecansesenenns 41
7.2 Special ROM-related Programsccceceeereereeesensereeeeesessenes 42
7.3 The Procedure teeetestesseetisesnsesbessesnertessesstesaeseraresessans 42
7.4 Description of hex86 leesseserressesnessssssssesssesemsassossessenase 43
UNULOOIS ...eceveneererrernenieresseseessasesessssesesssnssessessssesessssessessesssasensases unitools
diff (Source File COMPATAtOr)cccceeereeremesererensesessesereasssessssasesssaes 6
grep (Pattern Matcher) teereesesseresesesneresennessasearastatensasatatarsasannanaas 10
make (Program Maintainance UtIlity)cceeereremererenesenesenneerenenenes 16
1. THE BASICS ..uveeeerrecereereensiesesreerssensesesresesassasesesessssssesassssessssraseseses 16
1.1 What MAKE dOESooveeeeeeceeeeteeeeeneeereeeeecvesssesnsesssensesssesens 17

1.2 The MAaKefileccvvevvrerrererrrrenerrrernesnseeseseeareseseaenens verenenns 17

L3 RUIES eeeeerireeereeecerseeneressererassrensssessensssssssesssssesssssessessssesseses 19

1.3.1 MAKE’s use OF TUIES .oveervererenenrrerveseesnneressesnnesasnennns 20

1.3.2 AN EXAMDPIE ...c.eoveveeereerrreevenerrsreressesnensrnennessrssssnssssenes 20

1.3.3 Interaction or rules and dependency entries 21

2. Advanced Features reesueseeseenseresnes rossasessreserstsnererare s siniras 21
2.1 Dependent filES .. ieereecrnrierieseeseessesnssessessessessessonsens 21

2.2 Macros teeesseessersseseessesssessenseaaesressasstasnaeesnesseanaresrensassarans 22

2.2.1 USING MACIOS ...ccererererrerreesmrresessessaesessesssesessessssesesssssens 22

2.2.2 Defining macros in a makefilecovoveerevevenenenen. 22

2.2.3 Defining macros in a command lineccecerverenneene 23

2.2.4 Macros used by built-in rulescceuenenen. . 23

2.2.5 Special macros tteeeensessnesesresarenaenn .23

2.3 RUIES .ooueeeeieereeeerererereensereessesesseessesesssesessessessassasssssesssssasasssenss 24

2.3.1 Rule defmmon 24

2.3.2 BUIlt-iN TUIES ..eeeereeeeeereeeeirneneereneesneseenesssssesssasssanessanns 25

2.4 COMMANGSooreererrernerrereerverassersecressessessessassessassssssesassessessassans 26

2.4.1 Allowed commandscoecerereeererrenenaesnsseessesersessens: 26

2.4.2 Logging commands and aborting MAKE 26

2.4.3 Long command liNeScccoeerreerereereerereennessssnsessen: 26

2.5 MAKESIle SYNLAX ..ucerirererrerecrrenecceirentiensssssisssssssssesnssssssassassssans 27

2.5.1 COMMENLS ..cceevrenecreeeereerenerenssesassessssssesasens wreveenens 27

2.5.2 Line coNtinUAtiONcccveerereverieneesssresessssesesssessesnsens 27

2.6 Starting MAKE .. eerarenteeee st aeneaeneneas . . 28

2.6.1 The command line rersrersissniastersbesserebesererasaans 28

2.6.2 MAKE'’s standard outputceeeeeerrerererenrernereresennens 29

2.7 Executing COMMANASccccoememememecssssnnsmscesscsssssssssssosensssssons 29

2.8 Differences between the Manx and UNIX MAKGEs:....... 29

3. Examples rereeerenreeraenenns 30
3.1 Example 1 rrereesereeresetertesretaresaateseataaarasaseas 30

3.2 Example 2ouuueen. beveereeresenseserareresseessor bt seesersessessensasants 31

Z - the tEXE EAILOTcvevevevereereienreeareeseresenessssesesssesssrarssesssensesssesassssssnssens 34
1. Getting Startedc.occcvernereerernsrersesesnsesssrsssssasassesssaseseacaesencacsenss 37
1.1 Creating a new file retreeiaesestesesrenereneresasaesaresesiarsons 37

- xiii - .

1.2 Editing an existing fileccevieeeerrerrriersesnerneesssessenessseeene 40

. MOTre COMMANGSceveeerererereerrrrnrestssninnereseresessesssssrssesssssassnssssesns 45
2.1 Introductionccccereuenene. ereeeretensnasstaneeresaanteneree 46
2.2. Paging and scrolling reereereenrsaate s aneesesraasas 48
2.3, Scarching fOr StriNgSccceeererersiesenesererssescecsssasassensaeses 49

2.3.1 The other string search commandsccecevvererenens 49
2.3.2 Regular EXPreSSIONS ..uuermeererseereressesssrnsessessersesseseses 49
2.3.3 Disabling extended pattern matching 50
2.4, LOCAl INOVES ...eccereerrrrererreneinaeeesessessessesaessesssnsessessassassesssosses 52
2.4.1 Moving around on the sCreencccoveevrveereerverernenns 52
2.4.2 Moving within a liNEceecerevevnrrrenreinnneeereressesenenns 52
2.4.3 WOrd MOVEMENLSccceererreerererrerinecensessarasessessensarsessaasans 53
2.4.4 Moves within C Programsceeeeeerevereeerererueeeenns 53
2.4.5 Marking and returningcoceeceveveereseereernereraesnesens 54
2.4.6 Adjusting the SCrECNcccvvvenrrirerrrnerernenrersesesasaessrenens 55
2.5. MaKing ChANGEScccvveeereererereremrreresssessescsessssesesssssasaseseses 56
2.5.1 Small ChANGEScovevrveerrerernercrereeresresnnesreresseressaees 56
2.5.2 Operators for deleting and changing text 56
2.5.3 Deleting and changing linesccceerrerereeveresssessenns 57
2.5.4 Moving DIOCKS Of tEXL ..cececruerereereeieraeresreesanserasssenenne 57
2.5.5 Duplicating blockS Of tEXLcccoveervrererrmrerserirnereesseesens 58
2.5.6 Named DULTETS ...cccocovererererrrererereseeeeenennnaressssssesenssesesens 59
2.5.7 Moving text between filesccevmveervernienieernereeens 60
2.5.8 SHifting tEXT .cccvverrerereernerereerereransereessnsesneresssassassans e 60
2.5.9 Undoing and redoing changescccceveeeeenneee 60
2.6. INSETHING TEXL ccoverrereruecerrereerernersassseresseseesessesennssrssssesaassesesses 61
2.6.1 Additional commandscccevererereereseresserersesessenes 61
2.6.2 Insert mode cOMMANSccccereveerereerenrerennnneraeseesenns 61
2.7, MECIOS ceuvuereeireeererereesesersssrssssnesessssssesssssssssasseses erernerierenserens 63
2.7.1 Immediate macro definitionc.ceceveveveereervnrrrvescenenns 63
2.7.2 EXQAMPIES ...cerrerereerrerecerreerereeseeessessessesessesessesesnsssasassassenns 63
2.7.3 Indirect macro definitioncceeerevrmvenreererereesenenns 64
2.7.4 Re-eXECULING MACTOS ...coveerrrerereesereinreeresensssesssaesaeasenns 65
2.8 The Ex-like commAandsccoveerierensersereresssenesnsssssnesesenns 67
2.8.1 Addresses in Ex commandscoeemrnerrencrerneneenenns 67
2.8.2 The ’substitutute’ commandccoceeevecceveererveseenene 68
2.8.3 The &’ (repeat last substitution) command 69
2.9. Starting and StOPPING Zoceeveeveerrevemrereresesseresseseseasesesenes 70
2.10. ACCESSING fI1ES ...ouvverireerrereeerereeraeeeressresseniasressessssssnssssaens 73
2.10.1 File NAMES ...coorerieeeeerecreeenereereriacesenseeseseesesseseensesssseses 73
2.10.2 WIItING fIIES .ucoverererreriiernirirerniaernsssenessssnessersssersenneses 73
2.10.3 Reading filescoevermrrmeererereereeenereseereernsnesesassenes 74
2.10.4 Editing another filecooveeeerveveneerecrrcrnesernereseseenes 74
2.10.5 FIlE LISIS .cvevrrrererreerererenencseeneserasseseessssesseressassensasassessseses 76
2.10.6 Tags . reerereenrerestesert bt et e et e st e e enranse e seans 76
2.10.7 The CTAGS UtIlity ...ccvveerrerieieerereressennreessenssesesssnns 77
2.11. Executing system COMMANGSccccevuerremserasserereesesconsnans 79
2,12, OPLONS .oerverierererernsesesaeseesesserssnssnesssessssserserssssesssssasessassases 80

213 Z VS, Vi e ssaessesssssssssessesessessessssensensanes 81

2.14. System dependent features ... 82
2.14.1 IBM PC fEaturescccocvureverreernrreserneressersosssseressssssses 82

3. Command SUMMATYcccceeveererereereseerereeseesessasessssessnssessssssesseseens 85
SoUrce Level DEDUEEETcuvriiieceeecieeseretneesctesessseeessnsessssessenessanessens sdb
L. OVEIVIEW uuereeivireerereree s enrssesesisnssesissssssssssesssssssssssesessasssessassssnsasans 5
1.1 Basic CommAandSccccoevecererereresessesenniessesessssssssessesessasssssoreres 5
L2 INAMIES .oceeerreerereerereerteeseessnesseesesnsesnssnsessenseesssssesssessesssssrnenssesens 6
1.2.1 Code and Data SYmMDBOIScoceverreienenerrereerneerernecneresesnne 6
1.2.2 Operator Usage of NAMESc.ccerererveereerrrerseresersesesescsesanns 6
1.3 Loading programs and Symbolscccceeveeerereerreereceneereressnna. 6
1.4 BIEaKPOINLS ...coverercernrenrirenreressasessersesesareossesessesssessessasssesasssonsssssres 7
1.5 Memory-change breakpointscoveevereeereeseneniessseessseneseses 8
1.6 Separate screens for programs and $@dcecreriniisieneninenes 8
L7 Trace MOAEuevevvverveneenieieiesseseersnssessssessesssessanssssensessassssseseses 9
1.8 BACKITACINEGocereirieiiiecierenrienrenerseiesessreensessssessesensensesssesasnsessessnsses 9
1.9 MaCroscccvveeeeeennenne eeettereseeteeeeesbenstressaaeeneeesneereaeraeenras 9
1.10 Displaying SoOUrce filesc.cccevermrerecennrerviscsresesessarssssesnenes rresenires 9
1,11 Other fEAtUIEScoieeereerirriecriernneerieresnieresessesessessesessssseraresssns 10
2. USING SDBooverireenrnenieenencsresnssinssssesesssnssssssessssessssesssssssassessssssssassssoss 11
2.1 Starting SDB reeereteeeserersateare s arateseteseatesesaeesnnaseserasanss 11
2.2 Commandscceeererrurnererneerarens reeeeeeteesaeeteeseessenseeans 11
2.2.1 DEfINIIONS ..vouririeirreeerenritneereeressaessesesseressesessesossensssesessenes 11
2.3 Command dESCIIPHIONS ...uecueeeeereirenriniervrieceireeseseeseessesssssessossons 13
2.3.1 The BREAKPOINT (b) commandsccccceerererrreuenenens 13
2.3.2 The DISPLAY (d) commandscococereereneernereene. 16
2.3.3 The ’Find source string’ (/) commandccceeervereenenee 20
2.3.4 The FRAME (f) commandsccoeeeerrereeeererurreerressenns 21
2.3.5 The GO (g) cOMMANScoevevreeererenrrrerererreenernseressessenns 21
2.3.6 The INPUT (i) cOmMmMANASccceereererrrrererereereresureereranens 22
2.3.7 The LOAD (1) commandscccccovererreereeerereerescnsereneans 23
2.3.8 The MODIFY MEMORY (m) commandsccueueen. 24
2.3.9 The OUTPUT (0) comMmMANSccceveruereereenernerenseerarneens 25
2.3.10 The PRINT (p) commandcccreeereceeececcnsersnceerneenens 25
2.3.11 The QUIT (q) cOMMANAcoereerereerrrerereereneensaresreraennns 32
2.3.12 The REGISTER (r) commandcocecereeeruermeesnssssaresonas 33
2.3.13 The SINGLE STEP (5) commandsoeeeverecesvereresanes 33
2.3.14 The UNASSEMBLE (u) commandsccoeveeuevervenennn. 34
2.3.15 The VARIABLE (v) commandcccevereeererrrenennenns 34
2.3.16 The MACRO (x) cOMMANSceeverrerrrereerearernreesseesnnenns 35
2.3.17 The EXPRESSION cOmMMANASc.oeccrerrernerereneeseesearenns 35
2.3.18 The ’Redirect command input’ (<) commands 36
2.3.19 The HELP (?) commandcccooevereeeveererereerererererarsonens 36
2.3.20 The *Change Mode’ (z) commandcceeeeverrerererene 37

3. Command SUMMATYcccccenmsiaenmsieisssostesssssssessssessscssossaesissssosens 38
Assembly Language DEDUEEETcvoverevecveerrieenicreninenrieseseseeesessesesessessens db

-xv-

L. OVEIVIEW .ocecereererernreenesieseessssesesessesesssssssssesssssasassesssnsssssss sasssessssasans 5
1.1 BasiC COMMANMSccerrererrererrennserireressarersssesesssssasssssssssessssesssssse 5
1.2 INAIES ..oucccerrcnrrcnnenerssesesescsassesesssesesssasssesssssesssesessssssssssasssssssssssessns 5

1.2.1 Code and Data Symbols 6

1.2.2 Operator Usage of Namescceceverereren . .6
1.3 Loading programs and SYMDOIScceeeuererrmererereenenerseessnennens 6
1.4 BreaKPOINTSccceveerecerrerersareresssssesssssessessssssssesssessarsssssnsssessassesssses 7
1.5 Memory-change breakpointsc..oeveeeeeeniereneesssessesessenses 8
1.6 Separate screens for programs and dbcucevrevecererennnenens 8
L7 Trace MOdEcccceivereerererermvenesnssensssnmeeessssnensssessmmssnssnnssesssssssans 9
1.8 BACKITACINEGcccovverenrnrrenereserrerssessmsenasesssssaresesssassarssssssssssssssssssacns 9
L9 MACTOS .eoverernrcrncerereessseressessssnssesasesssnsssntsssnsnesssenssasssssssssassossassassons 9
1.10 Displaying SOUTCE fileScccecervrrerererererneeeereseninssssaesesersaesesesssens 9
1,11 Other fEAtUIES ...cvevvererenerrvineresennrinsnesesessssssessssesessssssassssssessssses 9

2. Using DB trtesssesseteseeasnatessaesasessaeseresanssasesessen s nesnnesessasantsn 11
2.1 Starting DB reereeeseretet et an s et es s s s e seene s seasaeabenenesn 11
2.2 Commands reeeeeneraereres e eterese e st aeasasaseseran saeraensasnens 11

2.2.]1 DELINItIONS ..ccviricereereereereresenesesesnsesesssesesesessssassssessasssssesssossns 11
2.3 Command deSCriPIONSuveeeveeriivnrmreriseessssseeressssssssossssosssnsses 16
2.3.1 The BREAKPOINT (b) commands 16
2.3.2 The CLEAR (c) commandsc.ccccervrereeremrereeenenresseesennes 19
2.3.3 The DISPLAY (d) commandsc.ccoeovmeerurenearersaescnnss 19
2.3.4 The ’Find source string’ (f) commandcceeeuereenene, 23
2.3.5 The GO (g) commandscccecereerrerererrernnrrerernseesenesscns 24
2.3.6 The INPUT (i) commandsccceevereeeeerereieuerersnnesessssonns 25
2.3.7 The LOAD (1) commandscoceeveeurrerrnervrveeernrssesenenens 25
2.3.8 The MODIFY MEMORY (m) commandsccoe.e.e.. 27
2.3.9 The OUTPUT (0) commAndsccceerereeereererrresneenasassans 29
2.3.10 The PRINT (p) commandccceeeerereruerrererorcnnmeeserereasens 29
2.3.11 The QUIT (q) cOMMANAceeeerereerrrerererrimressernraesessersaens 35
2.3.12 The REGISTER (r) commandcccceuvrerrerreunucercvsrores 36
2.3.13 The SINGLE STEP (s) commandsc..ccruerererererneee. 36
2.3.14 The UNASSEMBLE (u) commandscceverererverernene 37
2.3.15 The VARIABLE (v) commandscccceeeereenennes 37
2.3.16 The MACRO (x) commandcoecerererereerrmrereereerserenennes 38
2.3.17 The ’Display Expression’ commandcceeeeeeeeervevennens 38
2.3.18 The ’Redirect command input’ (<) command 39
2.3.19 The HELP (?) commANdcocerevuerrrrvrvececrmreeneansveneseses 39
3. Command SUMMATYcccoereererrerreresressereeses “ 40
Overview of Library Functions ... eeereusentseseresasseresaes libov

L. I/ O OVEIVIEW .ucuererererrerinmrensirensissresessessssesesssasssssssasssmsssesasssssesssssnsas 4
1.1 Pre-opened devices, command Hne argsoeeeeererernenes 4
1.2 File I/O0 aereererenerenenens - . 6

1.2.1 Sequential I/0 teeseeristestsersasiatsasenseserbesreneaeraes 6
1.2.2 Random I/Ovvnnencsinnnnssssisnsesseesssmsassssasssasssessasnnse 6
1.2.3 Opening Filescceienierernrereivesensnsssessaenssererssesssasessesssssses 6
1.3 Device I/0 . w7

- Xvi -

1.3.1 COnS01E I/O aeeeeeereecrereereetesessaessesessssesssss s s eneesssense 7

1.3.2 T/O tO Other DEVICES uuveineirereirinresinreeeresvesissesesseseosessssnne 7

1.4 Mixing unbuffered and standard I/O callsccecevruveererrncnne 7

2. Standard I/ O OVETVIEWeoeieriveineeiecrenirssesesissessessesesasssnssessisensi 9
2.1 Opening files and AEVICESovueeereereerererereeesesreneeessesesenessrens 9
2.2 ClOSING SLIEAMScevverererrrrrerererersesessesssssessseesesesssssessssnessssessssssasee 9
2.3 Sequential I/O ereererestesrinester s sensanearesesarerssnessasane 10
2.4 RaNAOM I/ O ...eeeereneerreresesese e stse s e sressssssesassssnsessenns 10
2.5 Buffering . rrerteteneerenseseaanirssas et e sre s abanares 10
2.6 ETTOTS .uceeeerieeecrieereesessssesentessasessssessssesesssssssansesessensesassesassssasssssans 11
2.7 The standard I/O functions reevessistsasseeebeneassesnons w12

3. Unbuffered I/O OVEIVIEWeivvieeeeeeceirereinneeneeseseesessssssesssesssneneans 14
3.1 FIE T/ O e reereesesreeseessee e sssssstassss s st s snsesssssssmsssnsess 15
3.2 Device I/0 ..ierrrerneeeererereennans rrerneteterenesaetsatesesreanans 15
3.2.1 Unbuffered I/O to the CONSoIecoevereeveeerrennnerenenen. 15

3.2.2 Unbuffered I/0 to Non-Console Devicesccvuruneet 16

4. Console I/ O OVEIVIEWoccueueereeeerecesrecsiesesssesseessnssssssesssssssssassssens 17
4.1 Line-0riented INPUL ...ccceeeeeeeererrrerersrsssssreeressessesssssssessssssnsseseseas 17
4.2 Character-oriented INPULceeeevrrereenrererreresesseesesesesssessesssens 18
4.3 Using ioctl reereseressreneasnatesenenaaereneneeraseans 19
4.4 The SGLY fIELASoveveveeeerrrereinieeersssesiecsssssssesesssesssssssessseseseserssns 19
4.5 Examplesccoveevervennnen eeerereeesteearensnestassessnenates 20

5. Dynamic Buffer AHOCAtiONcooveeverevereeseesrnererneenesessssesssesesneseans 22
6. Error Processing OVEIVIEWcccoeveeeeirrevenierseissesssseserassssesssarsons 23
System Independent Functions treeessaessesaeseraestennerersestensesaensesns lib
Index . eeeeensenesarsaete e s st e asa Tt areeraesar e et arare e s enssn TRt e saersera st e asesernaarren 5
THE fUNCHONS ...voeeererreereeenececereresessnssassesessasseresesssessassessssessssesssssssnssesees 8
SEYIE cetrrreeeeencrrnrrnseeesieses sesesasrsresesssssssssassssssensasassesssesssssesssssesssssesssresanssen style
L. INTOAUCHIONcueeeetereeereerteere et senssasensssresseseseesesesssssssessnsnsesessasennns 3
2. Structured PrOSrammingccceceeiecereeiereenssesesnseesssesessesesesssres 7
3. Top-down Programmingceeeeceesenccieisesmesesesssessessssssesssses 8
4. Defensive Programming and chuggmg 10
5. Things to WatCh OUL fOIceceierivriieinesie e sreecrreteseessssessasesesssnns 15
Compiler Error COAESoovueeeiescerreesesreeeaesresseressssssessssssssensssesosesessens err
1. SUMMALYccorreeeereereereerrrenereennes rereeeerressnennsansanesrasresnesasaseres 4
2. Explanations . " W7
3. Fatal Error Messages reeurerestetaete s s seae s ens e saaasrasneressarasenans 35

- Xvii -

- Xviil -

OVERVIEW

-ov.1-

OVERVIEW Aztec C86

- ov.2 -

Aztec C86 OVERVIEW

Overview

Aztec C86 is a set of programs for translating programs written in
the C programming language into a form which can be executed on
8086 systems running PC-DOS, MS-DOS, or CP/M-86.

Aztec C86 can also be used to create programs that will run on a
ROM-based 8086 system.

The development can be done on a PC-DOS, MS-DOS, or CP/M-86
system; it can also be done on several other types of systems, as
described below, and the executable code downloaded to the target
machine.

There are several different Aztec C86 Systems, providing different
features. The following is a list of features that are in the Aztec C86
Commercial System. Not all of these features are supported by the
other Aztec C86 Systems.

* The full C language, as defined in the book The C
Programming Language, by Brian Kernighan and Dennis
Ritchie, is supported. This now includes the bit field data
type and many of the System 5 extensions to the C language.

* Floating point operations can be performed either by software
routines or by the 8087 math chip. The choice can be made
when a program is linked, by linking the program with the
appropriate version of the math library. The choice can be
made dynamically, when the program is started, by linking the
program with the ’sensing’ math library; in this case, the 8087
will be used if it’s on the machine on which the program is
currently running, and the software routines will be used if
it’s not.

* Programs can be created that use the 80186 instructions.

* An extensive set of user-callable functions is provided;

* Programs can be created that use the ’small code’ or ’large
code’ memory model and/or the ’small data® or ’large data’
memory model. ’Large code’ allows a program to have as
much memory-resident executable code as desired. ’Large
data’ allows a program to have 64K bytes of global and static
data, 64K bytes of stack space for automatic variables, and
unlimited space for dynamically-allocated buffers.

* QOverlays are supported, allowing programs to be created and
executed that are larger than available memory;

-ov.3-

OVERVIEW Aztec C86

* Object modules and libraries created with the Aztec C86
compiler and assembler can be linked together with either the
Aztec linker or the PC-DOS/MS-DOS linker, link.

* Aztec C86-compiled and assembled object modules and
libraries can be linked with object modules and libraries that
have been created using other manufacturers’ compilers and
assemblers, such as those from Lattice and Computer
Innovations.

* With some versions of Aztec C86, several utility programs are
provided that are similar to UNIX programs: Z, a text editor,
which is like the UNIX vi editor; make, which automates some
of the steps in program development and maintainance; grep,
a pattern-matcher; diff, a program that determines the
difference in source files;

* Modular programming is supported, allowing the components
of a program to be compiled and assembled separately, and
then linked together;

* Assembly language code can either be combined in-line with
C source code, or placed in separate modules which are then
linked with C modules;

* A powerful symbolic debugger is provided.

There are two classes of user-callable functions: system independent
and system dependent. The system-independent functions are
compatible with their UNIX counterparts and with the system-
independent functions provided with Aztec C packages for other
systems. Use of these functions allows programs to be recompiled for
use on UNIX-based systems or on other systems supported by Aztec C
with little or no change.

The system-dependent functions allow programs to take advantage
of special features of a system.

Versions

Several Aztec C86 packages are available, for use in different
environments:

* The PCDOS/MSDOS package and the code it generates run
on systems using PCDOS or MSDOS, version 2.0 or later.
With some versions of this package you can gencrate
programs that will run on systems using CP/M-86, or on
PCDOS/MSDOS version 1.1.

* The CP/M-86 package and the code it generates run on
CP/M-86. With some versions of this package you can
generate programs that will run on systems using
MSDOS/PCDOS.

-ov.d -

Aztec C86 OVERVIEW

*

The UNIX package runs on a system which uses the UNIX
operating system, and generates code which runs on PCDOS
or MSDOS systems or on CP/M-86 systems.

Components

Aztec C86 contains the following components:

*

*

Preview

The compiler, assembler, linker, and object file librarian;

Object libraries containing user-callable functions and support
functions;

Several utility programs, including, with some packages,
programs similar to the UNIX programs make, grep, diff, and
a symbolic debugger.

This manual is divided into two sections, each of which if in turn

divided

into chapters. The first section presents 8086-specific

information; the second describes features that are common to all
Aztec C packages. Each chapter is identified by a symbol.

The 8086-specific chapters and their identifying codes are:

tut describes how to get started with Aztec C86: it discusses
the installation of Aztec C86 and gives an overview of the
process for turning a C source program into an executable
form;

cc, as, and In present detailed information on the compiler,
assembler, and linker;

util describes some of the utility programs provided with
Aztec C86;

libov86 presents 8086-specific overview information;

Iib86 describes the 8086-specific functions provided with
Aztec C86;

tech discusses several miscellaneous topics, including program
organization, overlays, cross development, libraries provided
with Aztec C86, using the Microsoft linker, generating
ROMable code, and writing assembly language functions that
can call and be called by C functions.

unitools describes the utility programs z, make, grep, and diff,
which are similar to UNIX programs.

sdb describes the source level debugger;
db describes the assembly language debugger;

The System-independent chapters and their codes are:

-ov.5 -

OVERVIEW Aztec C86

libov presents an overview of the system-independent features

lib describes the system-independent functions provided with
Aztec C86;

style discusses several topics related to the development of C
programs;

err lists and describes the error messages which are generated
by the compiler and linker.

- ov.6 -

TUTORIAL INTRODUCTION

- tut.1 -

TUTORIAL Aztec C86

Chapter Contents

Tutorial Introduction eeeteeeeeeebe e arntaebansssenansnans tut
1. INStalling AZLEC €8Occvcvreereriiirreereserssnssrssssseresessssanssensossssssssssssesans 3
2. Creating an executable Programcecceeeeeerereresesseseesseresnesssesaes 7
3. Where t0 80 fIOM REreuuiveieecrerererreseeeeneeeeresresssessesesessessanses 8

- tut.2 -

Aztec C86 TUTORIAL

Tutorial Introduction

This chapter describes how to start using your Aztec C86 software.
The chapter has three sections: the first describes how to install Aztec
C86; the second describes the procedure to create an executable
program from a simple C source program; and the third introduces
some features of Aztec C86 that you may want to investigate further.

1. Installing Aztec C386

Manx has sent you your Aztec C86 software on one or more floppy
disks. If your system supports only single-sided disk drives, we may
have used reversible disks, and put files on both surfaces of a single
disk. In this case, each side of a disk that we have used will have a
label. To access the files on a particular side of a reversible disk, put
the disk in the drive with that side facing the drive’s read/write heads.

The disks we have sent you are not bootable; that is, they don’t
contain the operating system (DOS or CP/M-86). In order to use
them, you will have to boot the operating system from one of your
own disks.

Back up the disks

The first thing you should do with your Aztec C disks is make a
copy of them. This can be done using the standard operating system
copy utility.

Check the Files

Before you start using your Aztec C software, you should verify
that all the files are there, by comparing a directory of the provided
files with a list that’s in the release document.

The crc utility that’s on your disk computes a unique number for a
file, called its crc. If you wonder whether a file is corrupted, you can
compare its crc number with its correct value, which is listed in the
file crclist.

A complete description of crc is provided in the Utility Programs
chapter. To compute the crc of all files on the b: drive, enter

crc bi¥*
Create a working disk

A ’working disk’ is a disk ‘that contains just the most frequently-
used Aztec C files. When developing programs, you will have the
working disk in one drive, and a disk containing the programs being

- tut.3 -

TUTORIAL Aztec C86

developed in another drive.

Thus, before you can begin using Aztec C, you must create a
working disk.

You can link object modules together using either the Aztec linker
In or the PCDOS/MSDOS linker link. For now, we’ll assume that you
want to use the Aztec linker. At the end of this section, we’ll show
you how to modify the working disk for use with the PCDOS/MSDOS
linker.

Here are the steps to create a working disk:

1. The first file you need on your working disk contains the C
compiler. Some Aztec C86 packages contain two C compilers,
with the versions differing in the speed of compilation, the
optimization of the generated code, and support for the 80186
and 80286 processors. To get started, you can just copy the cc
compiler to the working disk. Later on, you can select another
compiler, if desired. The compiler chapter and the release
document describe the features of the compilers.

The name of the file containing a program is derived from
the name of the program by appending an extension to the
program name: the extension is .exe for PCDOS/MSDOS, and
.cmd for CP/M-86. Thus, the name of the file containing the cc
compiler is cc.exe on PCDOS/MSDOS and cc.crmd on CP/M-86.

Next, copy the as assembler and the /n linker to the working disk.

3. Now copy any header files you need to the working disk. A
"header file" is a file containing C source code which another
program includes in itself with the #include statement. The
header files provided with the Aztec package have extension ".h".

4. Finally, copy the object libraries you need to the working disk.
the libraries that you will need initially are c.lib and m.lib, which
contain the non-floating-point functions and floating-point
functions, respectively. These libraries use the ’small code’ and
’small data’ memory model. Other versions of these libraries that
support other memory models are provided with some packages.
See the Libraries section of the Technical Information chapter
for details.

If your working disk can’t hold all these files, we recommend that
you put the compiler, assembler, and header files on one disk, and the
linker and libraries on another disk.

The working disk and the PCDOS/MSDOS linker

If you want to use the PCDOS/MSDOS linker instead of the Aztec
linker you must modify your working disk, as follows:

- tut.4 -

Aztec C86 TUTORIAL

L

2.

Replace the Aztec linker In on your working disk with the
PCDOS/MSDOS linker.

Copy the Aztec utility program obj onto the working disk. This
program converts object modules from Aztec format into
PCDOS/MSDOS format.

Copy the special startup routine crt0.0bj to the working disk.

Using obj, convert c.lib and m.lib to PCDOS/MSDOS format by
entering:

obj c.lib mc.lib
obj m.lib mm.lib

The converted libraries are in the files mc.lib and mm.lib. You
can now remove c./ib and m.lib from the working disk.

- tut.5 -

TUTORIAL Aztec C86

| Editor I
I
/ C \
| source file |
\ /
I
1. } Aztec C Compiler {
|
/ assembler \
| source file |
N\ 7
I
2 = Assembler !
!
a \
|\0bJCCt file /| -——> = Librarian ‘
| I
3. | . . | / subroutine \
I Link Editor ke—m- | library |
| \ /
| executable file |
N
|
4. |

| Program execution |

Figure 1: Developing C programs with Aztec C

- tut.6 -

Aztec C86 TUTORIAL

2. Creating an Executable Program

Figure 1 graphically depicts the steps to create an executable
program from a C source program.

The following paragraphs will first present the actual commands to
create an executable version of the sample program exmpl.c that is on
the distribution disk, when using the Aztec linker. Then follows a
brief description of each of the commands. For complete descriptions
of these programs, see subsequent chapters in this manual.

At the end of this section is a description of the commands for
converting exmplc into an executable program when using the
PCDOS/MSDOS linker.

Typically, when developing programs, you will have your working
disk in the a: drive and a disk containing your own files in the b:
drive. The following discussion assume that this is the case. The
commands to generate an executable version of exmpl.c, when using
the Aztec linker, are:

cc b:exmpl.c step 1 & 2: compile and assemble
In b:exmpl.o c.lib step 3. link

Step 0: Create the Source Program
Any text editor can be used to create C source programs.
Step 1: Compile

cc translates a C source program into an assembly language
program. This translation is called compilation. The command to
compile the C source that’s in the file exmpl.c which is in the
current user area on the b: drive is:

cc brexmpl.c

cc writes the assembly language source for the C program to a
temporary file in the current area on the b: drive, and then starts
the assembler. The ’current area’ on PCDOS/MSDOS is the
current directory and on CP/M-86 is the current user area.

Step 21 Assemble

as, which is automatically started by the compiler, unless you
specify otherwise, translates an assembly language source program
into relocatable object code.

It writes the object code to the file exmplo in the current area
on the b: drive, and then automatically deletes the temporary
assembler source file, since it is no longer needed.

Step 3: Link

The object module version of the exmpl program must next be
linked to needed functions that are in the c./ib library of object

- tut.7 -

TUTORIAL Aztec C86

modules and converted into an executable form. This is done by
entering;

In brexmplo c.lib

The output of the linker is sent to the file exmplexe on
PCDOS/MSDOS, and to exmpl.cmd on CP/M-86, in the current
area on the b: drive.

During the link step, the linker will search libraries specified to it;
when it finds a module containing a needed function, it will include
the module in the executable file it’s building.

All C programs need to be linked with c.lib (or an equivalent, if the
program uses a memory model other than ’small code’/ ’small data’.
This library contains the non-floating point functions which are
defined in the functions chapter, /ib of this manual It also contains
functions which are called by compiler-generated code.

If a program performs floating point operations, it must also be
linked with a math library. The math library that you will use when
getting familiar with Aztec C is m.lib. This uses ’small code’, *small
data’, and uses software routines to perform the floating point
operations. Other versions of the math library are available. See the
Libraries section of the Technical Information chapter for details.

When a program is linked with a math library, that library must be
specified before c.lib. For example, if exmpl.c performed floating
point, the following would link it;

In b:exmpl.o m.lib c.lib
Creating an executable program, when using the PCDOS/MSDOS linker

If you are using the PCDOS/MSDOS linker, the following
commands will convert exmpl.c into an executable program:

cc exmpl.c
obj exmpl.o
link crtO0+exmplexmpl,exmpl,,mc

3. Where to go from here

You now have a working disk and have used it to create an
executable program from a C source file. Since the C language
supported by Aztec C is fully UNIX-compatible, and since Aztec C86
supports a large subset of the standard UNIX functions, you can
proceed to develop programs without immediately reading the rest of
this manual, with assurance that that Aztec C behaves like the version
of UNIX with which you are familiar, or like the textbook on UNIX
and C that you are reading.

To be able to make full use of Aztec C, however, you must read the
rest of this manual. Some topics of interest:

- tut.8 -

Aztec C86 TUTORIAL

* You should peruse the Library Functions chapters. We have
provided a lot of functions, including 8086-specific ones, and
an awareness of them may save you from reimplementing
some of them.

* As your programs get larger, you may want to either use one
of the large memory model options or partition them into
overlays. Memory models are discussed in the Operator
Information section of the Compiler chapter, and Overlays in
the Technical Information chapter. Use of alternate memory
models for a program requires use of alternate versions of the
clib and m.lib. The libraries provided with Aztec C are
discussed in the Libraries section of the Technical
Information chapter.

* You have control over several factors that determine how a
program is organized in memory. Some of the most
important of these determine the size of the program’s stack
and heap areas, and whether a program’s stack is above or
below the heap. (the heap is the area from which buffers are
dynamically allocated). With the heap above the stack, the
heap can grow and contract dynamically, and with it the space
allocated to the program, to satisfy requests for buffers. For a
discussion of program organization, see the Technical
Information chapter.

* The version of the math library that we have discussed in this
chapter, m.lib, performs floating point operations using
software routines, and requires the program to use the ’small
code’ and ’small data’ memory models. Other versions of the
math library are provided that use the 8087 to perform
floating point operations, and that use different memory
models. With some of the math libraries, the choice of
software- or 8087-execution of floating point operations is
made when the program is linked. For others, the choice is
made when the program is started: an 8087 will be used if
available, and software routines otherwise. The Libraries
section of the Technical Information chapter has the details.

* Use of the PCDOS/MSDOS linker instead of the Aztec linker
is discussed in detail in the section "Using the
PCDOS/MSDOS Linker" section of the Technical Information
chapter.

* You may want to create modules that can call functions in
other manufacturers’ libraries; for example, those of Lattice
or Computer Inovations. Or you may want to create modules
or libraries that can be called by modules that have been
created with other manufacturers’ compiler and assembler.
The compiler options relevant to this are discussed in the

- tut.9 -

TUTORIAL Aztec C86

Options section of the Compiler chapter. In this case, you
must use the PCDOS/MSDOS linker link. This is discussed in
the section "Using the PCDOS/MSDOS Linker", 'in the
Technical Information chapter.

* The creation of ROMable code is discussed in the Technical
Information chapter.

* If you want to write assembly language routines that can call
and be called by C functions, see the "Assembler Functions"
section of the Technical Information chapter and the
Programmer Information section of the Assembler chapter.

* The compiler has an option that causes it to generate code
that uses 80186 instructions. If you have a machine that has
and 80186 or 80286 microprocessor, you may want to compile
your programs using this option, and recompile the libraries
using this option. See the Options section of the Compiler
chapter for details.

- tut.10 -

THE COMPILER

-ccl -

COMPILER Aztec C86

Chapter Contents

The Compilercccervenene “ rreesenesresessessseressassenneseen cc
1. Operating INSITUCLIONSccveeeeeeveieiiesieeseesssesesessesssesssssesssssssscssssesesens 5
1.1 The C Source File erereereresennensssssensiasrsesrereseranne 6
1.2 The OUtPUL FIIES ...ovcveceerieieeeeceerercveerissessessessesessssseessessesessoons 7
1.2.1 Creating an Object Code Fileccoivrreevennrerrrnrreneeeserenns 7
1.2.2 Creating just an Assembly Language Source File 8
1.3 Searching for #InClude FIIEScccovvvrveermrrervererereeressesererasennns 9
1.3.1 ThE =1 OPLION eovrreeerireeririreeseerneerecreressessessessesssessesssssersosansns 9
1.3.2 The INCLUDE Environment Variablecoceveereenenne 10
1.3.3 The Search Order for #include Filescuurvrererveennnne. 10
1.4 Memory MOAEIScoeeveienrrerecrernnrcsenteresnsesessassscesssesesesens reerenes 11
1.4.1 How a Memory Model is Selectedcoveemenrneeereeneenns 12
1.4.2 Multi-module Programsc.ceeeeecerecnerseeererernesseserassens 13
1.4.3 Program OrganizZationc...ceieeeeeeeeresesssessensesesesnens 15
1.4.4 ’Large model’ versus OVErlaysccccoveeveveerrnnercecrneceennens 15
1.4.5 Implementation of the Memory Modelscceuuuun.n. 16

2. COMPIIET OPLIONS ...oeeeereereerereersrerernesessssesesssesessasassssesessesesessssesesses 19
2.1 Summary of the OPLIONScceceeeeeriresesesesersnssnesesssnsssesssesesnans 19
2.1.1 Machine-Independent Utility Optionscceceeeveveerenas 19
2.1.2 Table Manipulation Optionsccceeeeverneerererssessansnsene 19
2.1.3 8086 Options for the Optimizing Compilers 20
2.1.4 8086 Options for the Non-optimizing Compilers 21
2.2 THE OPLIONS ..ueveeerenierrrernenereiensisesserssesssseresseressasssnsssessesessesassessens 22
2.2.1 Machine-Independent Utility Optxons 22
2.2.2 Table Manipulation OPtioNsceeceveeererereesnereersseosesaennes 23
2.2.3 8086 Options for the Optimizing Compilers 26
2.2.4 8086 Options for the Non-optimizing Compilers 29

3. Programming INOrmMAatiOnccccceveveririnererensessenssesessssassssssensssnes 31
3.1 Supported Language Featurescccceevvveereneccnnreereneerenvennens 31
3.1.1 Preprocessor Statementsccomeecrecscmresssnecssssssasessns 31
3.1.1.1 Macros eeeressissesreseesaesebesnenrerserasabe st s saasesensasnsestane 31
FEAETINE uveereveereeeeerenecineeressessessersssaessssesnsssssssensessessssassens 31

3.1.1.2 Conditional Compxlatlon 34
#ifdef revererenertrsesesetesnesssesaesssasets 35

FITNACT ..ovevevverererereerreerersene e sessesesaesee s seeessensssasansssses 35

FEIL e erere e saese e s e s es s se s senene e st saasaseses 35

3.1.1.3 More Preprocessor Statementsceeeveererveecarsenne 36
#include ... rrereerenserenatenns 36

FEHINC cuveeveiererenrernerersoresesassssassessssesserarsssessessassssssnosansssansassassans 36

#asm and #endasmcceeveevreererirenreneeraenneesesasseseesesns 36

3.1.2 More Features . eresserseserseessesesasaesaess e atatesaasarstensarneasase 37
Structure ASSIZNMENTcceecveereierecenrerereseseessesaesesessenssrensseses 37

-cc2 -

Aztec C86 COMPILER

Line CONtINUALION ..uoveueeieeeeeeereniiereseeseesesesesssressesesessesessensos 37

The v0id Data TYPE .coveeeeeiererrereeenresseecrssesersesessessesesseserasansnsss 38
SPECIal SYMDBOISceveeerrremercrereneesnenenseseesessaesssessssessasesssesssenes 38
_FILE e ssvusssssss e sssssss s s sssssess 38
_LINE st sissssessesssssesssssessenes 38
FUNC 38

3.1.3 Special Features of Aztec C 39
SEANG METBINGoovvvverieererierirnnreressesereesresessessssssessnssessosssssenses 39
RESEIVEA WOTIASoovivierecicrernreneeesrereresaesessssesnessseseenssessnesnens 39
Global VariabIEsScocreeeecerriniimreesesnseenenesesersesesessssssensaens 39

3.2 Datad FOIMALS ...ccevrvceriecereirsesinsesiestssrereereessnesessssssssssssssessessersrsses 41
32,1 CRAT ...t cecercee st srensnnensssenessenssnssssesassasnssarnesasaenes 41
3.2.2 POINLET ..uceeveereeerenreerenerereessessseeesssssesessessrsenssssisnsessesssesassses 41
3.2.3 AN, SROTLE ceeeeeeieiecereeeeereriesessssisessessssessessesesssssessseaesnsssnsseses 41
3.2.4 long eeerteeeteereresterertesassr s eetese it ennennerensnsesane 41
3.2.5 float and double .. 42
3.3 Floating Point EXCEPLIONSc.coevrerereerreeenrenseesssesesssesesensans 42
3.4 Writing Machine-Independent Codecovveerermveerervernnnas 42
3.4.1 Compatibility between Aztec C Productseeneue.e. 42
3.4.2 Sign Extension for char variablescoereeerreerenens 43
3.4.3 The MPU... SYMDOIScoueerverrererenneerirrraernerernssessessensasasses 43
3.5 Using Long Pointersooceevevvvvevenes rreerreeressrerens 44
3.5.1 Passing Long Pointers Between Functlons 44
3.5.2 Expressions involving Long Pointerscovveevernne. 46
3.5.3 Creating and Accessing Huge AITaysccoevevecenerennes 48

. EITOT MESSAGES ..ecovrevercrerrenierenecsienssesnsesinsnesessssssssessssassssaseoses .. 50

-cc.3 -

COMPILER

-cc4 -

Aztec C86

~~

Aztec C86 COMPILER

The Compiler

This chapter describes how to use the Aztec C compiler. It is not
intended to be a complete guide to the C language; for that, you must
consult other texts. One such text is The C Programming Language, by
Kernighan and Ritchie. The Aztec C compiler was implemented
according to the language description in the Kernighan and Ritchie
book.

As mentioned in the Tutorial chapter, some Aztec C86 Systems
provide two C compilers, supporting different features. The cc
compiler in the Developer and Commercial Aztec C86 Systems
supports the full C language (now including bit fields), generates
optimized code, can optionally generate code that takes advantage of
the 80186 and 80286 processors, and supports the large memory
models. The cch compiler in the Developer and Commercial Systems
and the cc compiler in the Personal System support the full C language
except for bit fields, quickly generate non-optimized code, can’t
generate 80186 and 80286 code, and don’t support the large memory.
models. All the compilers are operationally the same, with the
exception of the 8086-specific options. Modules that are compiled
with different compilers can be linked together into one program. The
only place in this chapter where we make a“distinction between the
compilers is in the discussion of the 8086-specific. options.

This chapter has four major sections: the first describes how to use
the compiler, the second describes the compiler options, the third
describes information related to the writing of programs, and the
fourth describes error processing, '

1. Compiler Operating Instructions
The compiler is invoked by a command of the format:
cc [-options] filename.c

where [-options] specify optional parameters, and filename.c is the
name of the file containing the C source program. Options can appear
either before or after the name of the C source file.

The compiler reads C source statements from the input file,
translates them to assembly language source, and writes the result to
another file.

When the compiler is done, it activates the Manx assembler, unless
it’s told not to. The assembler translates the assembly language source
to relocatable object code, writes the result to another file, and deletes

- ¢cc.S -

COMPILER Aztec C86

the assembly language source file. The compiler -A option tells the
compiler not to start the assembler.

1.1 The C source file

On the command line, the name of the file containing the C source
can optionally specify the drive on which the file is located. If not
specified, it’s assumed to be on the default drive.

1.1.1 Source files on MSDOS and PCDOS.

On MSDOS and PCDOS, the source file name can optionally
specify a path to the directory containing the file. By default, it’s
assumed to be in the current directory on the specified drive. For
example, with the following command the compiler looks for
filename.c on drive a:, directory \source\ subs:

cc a:\source\subs\filename.c

and for the following command, with b: as the default drive and
\ modules as the current directory, the compiler looks for filename.c on
the b: drive, directory \modules:

cc filename.c
1.1.2 Source files on CP/M-86.

On CP/M-86, the source filename can optionally specify the user
area containing the file. If not present, it’s assumed to be in the
current user arca on the specified drive. For example, with the
following command, the compiler will look for clock.c on drive h., user
5:

cc 5/biclock.c

As shown in this example, a CP/M-86 filename consists of (1)
optionally, a user area followed by a backslash, (2) optionally, a drive
identifier, followed by a colon, (3) the file name, and (4) optionally, a
period followed by an extension. On CP/M-86, any file name passed to
a Manx program has this format. '

For another CP/M-86 example, if the default drive is c:, and the
current user area is 8, with the following command, the compiler will
look for generate.c on drive c:, user 8:

cc generate.c
1.1.3 More source file information.

The extension on the source file name is optional. If not specified,
it’s assumed to be .c. For example, with the following command, the
compiler will assume the file name is text.c:

cc text
The compiler will append .c to the source file name only if it doesn’t

- ¢c.6 -

——

Aztec C86 COMPILER

find a period in the file name. So if the name of the source file really
doesn’t have an extension, you must compile it like this:

cc filename.

The period in the name prevents the compiler from tacking on .c to
the name.

1.2 The output files
1.2.1 Creating an object code file

Normally, when you compile a C program you are interested in the
relocatable object code for the program, and not in its assembly
language source. Because of this, the compiler by default writes the
assembly language source for a C program to an intermediate file and
then automatically starts the assembler. The assembler then translates
the assembly language source to relocatable object code, writes this
code to a file, and erases the intermediate file.

By default, the object code generated by a compiler-started
assembler is sent to a file whose name is derived from that of the file
containing the C source by changing its extension to .0. This file is
placed in the area that contains the C source file. On MSDOS and
PCDOS, the area is the directory containing the source file, and on
CP/M-86 it’s the user area containing the source file. For example, if
the compiler is started with the command

cC prog.c

the file prog.o will be created, containing the relocatable object code
for the program.

The name of the file containing the object code created by a
compiler-started assembler can also be explicitly specified when the
compiler is started, using the compiler’s -O option. For example, the
command

cc -O myobj.rel prog.c
compiles and assembles the C source that’s in the file prog.c, writing
the object code to the file myobj.rel.

When the compiler is going to automatically start the assembler, it
by default writes the assembly language source to a temporary file
named ctmpxxx.xxx, where the x’s are replaced by digits in such a
way that the name becomes unique.

On MSDOS and PCDOS the temporary file is placed in the drive
and directory specified by the environment variable CCTEMP. If this
variable doesn’t exist, the file is placed in the current directory on the
default drive.

The format of CCTEMP is

-cc.7 -

COMPILER Aztec C86

[d:][path\]

where the brackets indicate an optional field. The fields have the
following meanings:

* d: is the identifier of the drive on which the file is to be
placed; if not specified, the default drive is used.

* path\ specifies the directories that must be passed through to
reach the directory in which the temporary file is to be
placed. If not specified, the file is placed in the root directory
on the selected drive. When path is specified, it must have a
trailing backslash character.

For example, the first command that follows sets CCTEMP so that the
temporary file is placed in the root directory on the c: drive; the
second causes it to be placed in the compile\temp directory on the
default drive; the third causes it to be placed in the imp directory on
the d: drive:

set CCTEMP=c:
set CCTEMP=compile\temp\
set CCTEMP=d:tmp\ \

Note that a terminating backslash is required when a subdirectory is
explicitly specified, but not when just the drive is specified.

On CP/M-86 the temporary file is always placed in the current user
area of the default drive.

If you are interested in the assembly language source, but still want
the compiler to start the assembler, specify the option -T when you
start the compiler. This will cause the compiler to send the assembly
language source to a file whose name is derived from that of the file
containing the C source by changing its extension to .asm. The C
source statements will be included as comments in the assembly
language source. For example, the command

cc -T prog.c
compiles and assembles prog.c, creating the files prog.asm and prog.o.
1.2.2 Creating just an assembly language file

There are some programs for which you don’t want the compiler to
automatically start the assembler. For example, you may want to
modify the assembly language generated by the compiler for a
particular program. Or you may want the assembly language source
sent to a location, such as a RAM disk, where it wouldn’t normally be
sent when the compiler activates the assembler.

In such cases, you can use the compiler’s -4 option, which prevents
the compiler from starting the assembler.

When you compile a program using the -4 option, you can tell the
compiler the name and location of the file to which it should write the

-cc.8 -

Aztec C86 COMPILER

assembly language source, using the -O option.

If you don’t use the -O option but do use the -4 option, the
compiler will choose the name and location of the assembly language
source file: it will send the assembly language source to a file whose
name is derived from that of the C source file by changing the
extension to .asm, and place this file in the same area as the one that
contains the C source file. On MSDOS and PCDOS, the area is the
directory containing the source file, and on CP/M-86 it’s the user area
on the drive containing the source file.

For example, the command
cc -A prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to prog.asm.

As another example, the command
cc -A -0 e:temp.asm prog.c

compiles, without assembling, the C source that’s in prog.c, sending the
assembly language source to the file femp.asm on the drive e..

When the -A option is used, the option -T causes the compiler to
include the C source statements as comments in the assembly language
source.

1.3 Searching for #include files

You can make the compiler search for #include files in a sequence
of areas, thus allowing source files and #include files to be contained in
different areas.

Areas can be specified with the -I compiler option, and, on MSDOS
and PCDOS, with the INCLUDE environment variable. The compiler
itself also selects a few areas to search. The maximum number of
searched areas is eight.

If the file name in the #include statement specifies a drive id, user
area, or path, only the single area specified in the statement is
searched.

1.3.1 The -I option.

A -I option defines a single area to be searched. The area descriptor
follows the -I, with no intervening blanks.

1.3.1.1 The -I option on MSDOS and PCDOS
On MSDOS and PCDOS, the -I option looks just like you’d expect:
-Ib:\incfiles
defines the directory \incfiles on drive b,

-cc9 -

COMPILER Aztec C86

1.3.1.2 The -I option on CP/M-86

On CP/M-86, the area descriptor following the -I consists of (1) an
optional user number followed by a slash, and (2) an optional drive
identifier. For example, the following defines user area 5 on drive ¢:

-I5/c
The user number is optional, and defaults to the current user number:
-Id:
defines the current user area on the d: drive. The drive id is also
optional, and defaults to the default drive:
-14/
defines user area 4 on the default drive.
1.3.2 The INCLUDE environment variable.

On MSDOS and PCDOS, the INCLUDE environment variable also
defines directories to be searched for #include files. This variable has
the same format as the PATH environment variable. That is,
something like the following, which defines three areas to be searched:

set INCLUDE=b:\incl;c:\ cc\inc2;a:
1.3.3 The search order for include files
1.3.3.1 The search order on MSDOS and PCDOS.

On MSDOS and PCDOS, directories are searched in the following
order:

1. If the #include statement delimited the file name with the
double quote character, ", the current directory on the default
drive is searched. If delimited by angle brackets, < and >, this
area isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directories defined in the INCLUDE environment
variable are searched, in the order listed.

1.3.3.2 The search order on CP/M-86.
On CP/M-86, user areas are searched in the following order:

1. If the #include statement delimited the file name with the
double quote character ("), the current user area on the
default drive is searched. If delimited by angle brackets, < and
>, this area isn’t automatically searched.

2. The directories specified in -I options are searched, in the
order listed on the command line.

-cc.10 -

TN

PN

Aztec C86 COMPILER

3. If the current user number isn’t zero, user area 0 on the
default drive is searched.

4. 1If the default drive isn’t A:, and if the A: drive is logged in,
that is, has been accessed, user area 0 on the A: drive is
searched.

1.4 Memory models

This section discusses the different memory models supported by
Aztec C86. The cc compiler that is in the Developer and Commercial
Aztec C86 Systems allows you to select the memory. model that a
program will use. The cch compiler that is provided with these systems
and the cc compiler that is provided with the Personal Aztec C86
System supports just one model: ’small code’ and *small data’.

A program created by Aztec C86 is organized into several sections.
The memory model selected for a program determines how large the
program’s sections can be.

The sections of a program are these:

* code, containing the program’s executable code;

* data, containing the program’s global and static data;

* stack, containing its automatic variables, control information,
and temporary variables;

* heap, an area from which buffers are dynamically allocated.

There are two attributes to a program’s memory model. One
determines the amount of executable code the program can have. This
attribute can specify that a program is to have smuall code or large code:

* small code limits a program to 64K bytes of code, if the
program isn’t partitioned into overlays;

* large code means that there’s no limit to the size of a
program’s code.

The other attribute to a program’s memory model determines the
amount of data the program can have. This attribute can specify that a
program is to have small data or large data:

* small data limits the sum of the sizes of a program’s data,
stack, and heap sections to 64K bytes;

* large data allows the program’s data section to be up to 64K
bytes long, its stack to be up to 64K bytes long, and its heap to
be any size up to the remaining amount of memory.

Even with ’large data’ there is a limitation on the size of data
objects such as arrays and dynamically allocated buffers: they can’t
normally contain more than 64K bytes. Bigger arrays and buffers can
be created, but their fields can be accessed only by using 8086-specific
code.

-cc.11 -

COMPILER Aztec C86

One other important characteristic of ’large data’ programs is that
they can directly access any memory location, since such a program
uses long pointers (four bytes containing segment and offset
components) to data objects. A ’small data’ program uses short
pointers (two bytes containing just an offset within the program’s data
area) to data objects, and hence can’t directly access memory outside
its data area.

When a program uses either ’large code’ or ’large data’ it obviously
has one advantage over a *small code’, *small data’ version of the same
program: it can be bigger. It also has some disadvantages:

The program is larger;

It takes longer to load the program;

For ’large code’, function calls and returns take longer;

For ’large data’, it takes longer to access a variable via a
pointer;

* For ’large data’, the ability to access any location in memory
means that the program can accidentally destroy any location
in memory, possibly resulting in unexplained crashes or other
anti-social behavior.

* %* ¥ ¥

Thus, indiscriminate use of the ’large code’ and/or ’large data’ memory
model options for programs is not recommended.

Only .exe programs that run on PC-DOS or MS-DOS, version 2.0 or
later can use the ’large code’ or ’large data® memory model. DOS 2.x
.com programs, DOS 1.1 programs, and CP/M-86 programs must use
’small code’ and ’small data’.

1.4.1 Selecting a module’s memory model

The memory model to be used by a module is selected when the
module is compiled. With the cc compiler that is in the Developer and
Commercial Aztec C86 Systems, you can explicitly select a module’s
memory model using the following compiler options:

+LC Large code, small data;
+LD Small code, large data;
+L Large code, large data.

With this compiler, if a module is compiled without the specification
of a memory model, it will have the *small code’, *small data’ memory
model

With the cch compiler that is in the Develop and Commercial
Systems, and the cc compiler that is in the Personal System, a module
always has the *small code’, ’small data’ memory model.

For example, the following commands compile prog.c to use
different memory models;

-cc.12 -

Aztec C86 COMPILER

command memory model

CC prog small code, small data
cc +LC prog large code, small data
cc +LD prog small code, large data
cc +LC +LD prog large code, large data
cc +L prog large code, large data

Compiling a module to use the ’large data’ memory model just
causes the module’s data object pointers to be long pointers. In order
for the program to actually have the large data areas, it must be linked
with a ’large data’ version of c.lib, which includes a special startup
routine that sets up the program’s data areas. This is discussed below.

1.4.2 Multi-module programs

A C program contains multiple modules, which are linked together
to form the executable program. In this section we want to discuss the
relationship of the memory models that are used by a program’s
modules.

1.4.2.1 You can’t mix ’large code’ and >small code’ modules

All modules that are linked together to form an executable program
must use the same memory model code option. That is, they must
either all use the *small code’ or all use the ’large code’ memory model
option.

1.4.2.2 Mixing ’large data’ and >small data’ modules

There are two characteristics to a program’s data memory model:
the maximum size of its memory-resident data areas, and the size of
pointers to data objects. As mentioned above, the former
characteristic is given to a program by the startup routine with which
the program is linked; this in turn depends on whether the program is
linked with a ’large data’ or ’small data’ version of c.lib. The latter
characteristic is given to an individual module when it is compiled.

Usually, you’ll want a program to have either large data areas and
long data object pointers, or small data areas and short data object
pointers. And you will prefer for a program to use small data areas
and short data object pointers whenever possible, since the use of long
pointers makes a program larger and slower.

It is possible and occasionally useful, however, to mix together in
the same program modules that use different memory model data
options. This allows you to keep a program’s size down and its speed
up, by compiling most of its modules to use the ’small data’ memory
model, and by linking it with a ’small data’ version of c./ib, while still
allowing the program to directly access any location in memory, via
modules that have been compiled to use the ’large data® memory
model.

-cc13 -

COMPILER Aztec C86

For example, if you are writing a driver that can be called by other
programs, you could place the functions that initialize the interrupt
vector table and that access the caller’s memory space in ’large data’
modules and the rest of the program’s functions in ’small data’
modules.

The only requirements for a program that mixes modules that use
different data memory models are:

* It must be linked with a version of c./ib that uses the ’small
data’ memory model.

* When a pointer to a data object is passed between two
functions or when a global pointer is referenced by two
functions, the functions must use the same memory model
data option.

1.4.2.3 Libraries

The rules presented above concerning the mixing of modules that
use different memory models also apply when some of the modules are
in libraries. Thus, it’s possible that you may need up to four versions
of a library, corresponding to the four possible combinations of
memory model options. In a particular version of a library, all
modules must have been generated to use the same memory model
options.

For example, there are four possible versions of c.lib, whose
modules use the following combinations of memory models:

’small code’, small data’,
’large code’, ’large data’,
’small code’, ’large data’
’large code, ’small data’

Similarly, there are four possible versions of each of the other
libraries provided with Aztec C86.

For most libraries, the only difference between a ’small data’ and
’large data’ version of the library is that for the ’small data’ library the
modules are compiled to use short pointers to data objects, and for the
’large data’ library they are compiled to use long pointers to data
objects. For c.lib, the versions also contain a different startup routine:
a ’small data’ version contains shegin, while a ’large data’ version
contains lbegin. sbegin gives a program the ’small data’ memory
organization (ie, a single physical data segment), while lbegin gives a
program the ’large data’ memory organization (ie, separate data and
stack segments, and separate heap space).

® £ X %

The following rules define the libraries that you should use:

* Use a ’small code’ or ’large code’ version of a library,
depending on whether your modules use *small code’ or ’large
code’;

-c¢c.14 -

Aztec C86 COMPILER

* Use a ’small data’ version of a library if any of your modules
uses *small data’. Use a ’large data’ version of a library only if
all of your modules use ’large data’.

Since it is illegal to link together modules that use different
memory model code options, the linker will generate an error message
in this case. However, since it is legal to link together modules that
use different memory model data options, the linker won’t generate a
message in this case. Thus, you must be careful when mixing modules
that use different memory model data options, since the linker can’t
know whether it was intentional, or whether the resulting code is
correct.

There are several Aztec C86 packages available. They don’t all
provide all four memory model versions of each library. For more
information, see the Libraries section of the Technical Information
chapter and the release document.

1.4.3 Program Organization

The memory model that is selected for a program affects how the
program is organized in memory. For a discussion of this, see the
section "Program Organization" in the Technical Information chapter.

1.4.4 ’large model’ versus overlays

Normally, when a program is created by the Manx Linker, the
entire program resides in memory. If you have a big program you can
select one of the large memory models for the program. The program
has then acquired the negative features noted above; in addition, the
machine on which the program is to run must have enough memory
for the entire program to reside in memory at once.

An alternative way to create the program is to partition it into
overlays. When a program is partitioned into overlays, only those parts
that are actually being executed need to be in memory at once. Thus,
a program containing overlays can be as large as needed, regardless of
the amount of memory available on the machine on which the
program is to run.

There is degradation in performance of an overlaid program
compared to a non-overlaid version of the same program, since the
overlays must be loaded into memory from disk before they can be
executed. But with judicious partitioning of the program, the affect of
the loading of overlays can sometimes be minimized.

A program cannot use both overlays and a large memory model.
1.4.5 Implementation of the memory models

The following paragraphs discuss the memory models supported by
Aztec C86 in more detail than was discussed above. You don’t need to
read this discussion in order to create programs that use a large

- cc.15 -

COMPILER Aztec C86

memory model.
1.4.5.1 Small code

The executable code for a program that uses the ’small code’
memory model is contained in a single logical segment, and all
functions are ’near’ procedures. The CS register is set up to point to
the beginning of this segment, and is never changed. All references to
functions, such as function calls and pointers to functions, are
represented by two bytes, which contain the offset of the function
from the beginning of the code segment. These offsets are determined
when the program is linked, and hence don’t require adjustment when
the program is loaded.

1.45.2 Large code

The executable code for a program that uses the ’large code’
memory model is contained in multiple logical segments, each
containing the functions declared in a single module. When a function
is active, the CS segment register points to the beginning of the
segment containing the function.

Thus, on entry to or exit from a function in a program that is using
large code option, the CS segment register must be modified. This is
not the case for programs that use the small code option. Hence,
function calls and returns are executed slightly faster for ’small code¢’
programs for ’large code’ programs.

When a program uses the large code option, the address of a
function is contained in four bytes in a ’call’ instruction or in a
variable that points to a function: two bytes contain the paragraph
number of the beginning of the segment containing the function, and
the other two contain the offset of the function’s entry point from the
beginning of the segment. As noted above, function addresses are
represented by two bytes in programs using the small code option.
Hence, a program will be larger if it uses the large code option than if
it uses the small code option.

If a program uses the large code option, the paragraph numbers of
the logical segments that contain functions aren’t known until the
program is loaded. Thus, fields within a large code program that
contain function addresses (that is, function calls and variables that
point to functions) must be modified when the program is loaded into
memory. Only the paragraph number of a function reference needs to
be modified; the offset of the function within its segment is correctly
determined when the program is linked. This modification isn’t
necessary for *small code’ programs. Hence, a program will take longer
to load if it uses the ’large code’ memory model than if it uses the
’small code’ memory model

-cc.16 -

Aztec C86 COMPILER

1.4.5.3 Small data

The data-containing sections of a program that has been linked with
a ’small data’ version of c.l/ib are organized into a single section of
memory, as described in the Program Organization section of the
Technical Information chapter. The DS, ES, and SS segment registers
are initialized to the beginning of this block when the program is
loaded, and don’t change. Note that while ES is initialized to the same
value as DS, no Aztec function or program requires it to have a
particular value.

Data object pointers in modules that have been compiled to use the
’small data’ memory model are two bytes long, consisting of the offset
of the object from the beginning of the physical data segment. The
linker determines these offsets; hence they don’t have to be adjusted
when the program is loaded into memory.

1.45.4 Large data

The data-containing sections of a program that has been linked with
a ’large data’ version of c./ib are organized into three separate blocks of
memory, as described in the Program Organization section of the
Technical Information chapter.

For a ’large data’ program, all its modules must be compiled to use
the ’large data’ memory model. This causes its data object pointers to
be four bytes long; two bytes contain the paragraph number of the
beginning of the segment that contains the item, and the other two
bytes contain the offset of the item within this segment.

When a program accesses a variable in one of the data sections
directly (that is, not via a pointer), the access is as fast when the
program uses ’large data’ as when it uses ’small data’. This is because
the compiler-generated code knows which segment the item is in and
which segment register points to this segment, and hence can generate
code that accesses the item without having to load a segment register
with the paragraph number of the segment.

When a program accesses a variable via a pointer, the access is
slower if the program uses ’large data’ than if it uses ’small data’. The
reason for this is that a ’large data’ program must load a four-byte
pointer into registers, while a ’small data’ program must only load a
two-byte pointer.

If a program pre-initializes a pointer to a data item with a
declaration such as
char *cp=&a;

the pointer must be adjusted when the program is loaded into memory.
The reason for this is that the starting address of the segment
containing the pointed-at item is not known until the program is
loaded. The offset of the item within its segment is determined when

-cc17 -

COMPILER Aztec C86

‘the program is linked, and hence need not be modified when the
program is loaded. For a ’small data’ program, pre-initialized pointers
to data items don’t have to be adjusted when the program is loaded;
Hence, a program will take longer to load if it uses ’large data’ than if
it uses ’small data’.

-cc.18 -

Aztec C86 COMPILER

2. Compiler Options
2.1 Summary of options

There are two types of options in Aztec C compilers: machine
independent and machine dependent. The machine-independent
options are provided on all Aztec C compilers. They are identified by
a leading minus sign.

The Aztec C compiler for each target system has its own, machine-
dependent, options. Such options are identified by a leading plus sign._

There is one set of 8086-specific options for the cc compiler that is
in the Developer and Commercial Aztec C86 Systems. There is
another set of 8086-specific options for the cch compiler that is in
these -systems and for the cc compiler that is in the Personal System.
In the description of options that follow, we refer to the cc compiler
that is in the Developer and Commercial Systems as the ’Optimizing
Compiler’. We refer to the cch compiler that’s in these systems and the
cc compiler that’s in the Personal System as ’Non-Optimizing
Compilers’.

2.1.1 Machine-independent utility Options

-A Prevents the compiler from starting the assembler.

-D Defines a symbol for the preprocessor.

-1 Defines an area to be searched for files specified in a
#include statement.

-0 Used to specify an alternate output file.

-S Don’t print warning messages.

-T Include C source statements in the assembly code

output as comments. Each source statement appears
before the assembly code it generates.

-B Don’t pause after every fifth error to ask if the
compiler should continue. See the Errors section of
this chapter for details.

2.1.2 Table Manipulation Options

The following options allow you to specify the size of the tables
used by the compiler. They are preceded by a minus sign, indicating
that they are common to all Aztec compilers.

-E Specifies the size of the expression table.
-L Specifies the size of the local symbol table.
-Y Specifies the maximum number of outstanding cases

allowed in a switch.

-¢c.19 -

COMPILER Aztec C86

-Z Specifies the size of the table for literal strings.
2.1.3 8086 options for the Optimizing Compiler

The following options are available for the optimizing compiler, cc,
that is provided with the Developer and Commercial Aztec C86
Systems.

+F Generate fast, rather than compact, code.
+C Generate compact, rather than fast, code.
+N Save register variables before all function calls, and

restore them afterwards. This option must be
specified when calling functions in modules that have
been compiled by other compilers, such as Lattice and
CI/C86.

+D Module calls Lattice-compiled function that returns a
long. The compiler will generate code to convert long
values returned by called functions to Aztec format.

+DF Module is being called by Lattice-compiled function.
The compiler will generate code to return long values
in Lattice format.

+U Convert uninitialized global variables into externs.

+R Disable register tracking between statements.

+0 Generate code for an 8086 or 8088 processor.

+1 Generate code for an 80186 processor.

+2 Generate code for an 80286 processor.

+LC Generate code that uses the ’large code’, ’small data’

memory model. (for more information on memory
models, see the Operator Information section of this
chapter).

+LD Generate code that uses the ’small code’, ’large data’
memory model

+L Generate code that uses the ’large code’, ’large data’
memory model

+4 The module being compiled does not use ’aliases’ of
the form *pir for a named variable when assigning
values to the variable.

+M When a statement is encountered that requires
multiplication by a constant, always use the 8086
‘multiply’ instruction.

-cc.20 -

Aztec C86 COMPILER

2.1.4 8086 options for the Non-optimizing Compilers

The following 8086 options are provided for non-optimizing Aztec
C86 compilers. As mentioned above, these compilers are the cc
compiler that is provided with the Personal Aztec C86 System, and the
cch compiler that is provided with the Developer and Commercial
Aztec C86 Systems.

+F Forces frame allocation to take place in-line rather
than through a call to a library function.

+U Same as the optimizing compilers’ +U option.

+J Generate short, rather than long, conditional jump
instructions.

-cc.21 -

COMPILER Aztec C86

2.2 Detailed description of the options
2.2.1 Machine-independent utility options
The -D Option (Define a macro)

The -D option defines a symbol in the same way as the
preprocessor directive, #de fine. Its usage is as follows:

cc -Dmacro[=text] prog.c
For example,
cc -DMAXILEN=1000 prog.c

is equivalent to inserting the following line at the beginning of the
program:

#define MAXLEN 1000
Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the preprocessor

directive, #ifdef, to selectively include code in a compilation. A
common example is code such as the following:

#ifdef DEBUG
printf("value: %d\n", i);
#endif

This debugging code would be included in the compiled source by
the following command:

c¢c -dDEBUG program.c

When no substitution text is specified, the symbol is defined as the
numerical value, one.

The -I Option (Include another source file)

The -I option causes the compiler to search in a specified area for
files included in the source code. On MSDOS and PCDOS, the area is a
directory on a drive; on CP/M-86, it’s a user area on a drive.

The name of the area immediately follows the -I, with no
intervening spaces. For example, on MSDOS and PCDOS, the
following defines directory \source\inc on drive b: as a search area:

-Ib:\source\inc

On CP/M-86, the area consists of (1) optionally, a user number and
slash, (2) optionally, a drive id. The user number defaults to the
current user number, and the drive defaults to the default drive. For
example, the following defines user 8 on drive c: as a search area:

-18/¢:
For more details, see the Compiler Operating Instructions, above.

- cc.22 -

Aztec C86 COMPILER

The -S Option (Be Silent)

The compiler considers some errors to be genuine errors and others
to be possible errors. For the first type of error, the compiler always
generates an error message. For the second, it generates a warning
message. The -S option causes the compiler to not print warning
messages.

2.2.2 Table Manipulation Options

The compiler has several memory-resident tables in which to store
information about a program it is compiling. Some of these tables are
used to keep track of the symbols defined within the program, and
some as a "scratch pad" for temporarily storing information.

The compiler uses the following tables: macro/global symbol table,
local symbol table, label table, string table, expression work table, and
case statement work table.

The sizes of these tables are determined when the compiler starts.
For all tables except the macro/global symbol table, the size can be
specified by the user with a command line option; if the user doesn’t
specify the size of one of these tables, the compiler sets it to a default
value.

The macro/global symbol table is located in memory above all the
other tables. Its size is set after all the other table sizes have been set,
so that it uses all the rest of available memory. Hence, the user can’t
set the size of this table.

If a table overflows, the compiler will print an error message and
stop. If any table except the macro/global symbol table overflowed, the
compilation can be restarted, using a different size for the table which
overflowed. If the macro/global symbol table overflowed, the
compilation can be restarted, using smaller sizes for one or more of the
other tables.

2.2.2.1 The Macro/Global Symbol Table

This table is where macros defined with the #define statement are
remembered. It also contains information about all global symbols.

If this table overflows, the message
Out of Memory!
will be printed.
2.2.2.2 The Local Symbol Table and the -L Option

New symbols can be declared after any open brace. Most
commonly, a declaration list appears at the beginning of a function
body. The symbols declared here are added to the local symbol table, If
a variable is declared in the body of, say, a for loop, it is added to the
table. When the compiler has finished compiling the loop, that entry in

-¢c.23 -

COMPILER Aztec C86

the table is freed up. And when it has finished the function, the table
will be empty.

The default size of the table is 40 entries. Since each entry
consumes 26 bytes, the table begins at 520 bytes. If the table overflows,
the compiler will send a message to the screen and stop.

The number of entries in the table can be adjusted with the -L
option. The following compilation will use a table of 75 entries, or
almost 2000 bytes:

cc -L75 program.c
2.2.2.3 The Expression Table and the -E Option

This is the area where the "current” expression is handled. It is the
compiler’s work space as it interprets a line of C code. The various
parts of the line are stored here while the statement is being compiled.
When the compiler moves on to the next expression, this space is again
freed for use.

The default value for -E is 80 entries. Each "entry" in the table
consumes 14 bytes in memory. So the expression table starts at 840
bytes. Each operand and operator in an expression is one entry in the
expression table-- another fourteen bytes. The term, "operator”,
includes each function and each comma in an argument list, as well as
the symbols you would normally expect (+, &, ~, etc.). There are some
other rules for determining the number of entries an expression will
require. Since they are not straightforward and are subject to change,
they will not be discussed here.

The following expression uses 15 entries in the table:
a=b+ function(a+ 7, b, d) *x

Everything is an entry except for the ")", including the commas which
separate the function arguments.

If the expression table overflows, the compiler will generate error
number 36, "no more expression space."

This command will reserve space for 100 entries (1400 bytes) in the
expression table:

cc -E100 filename

The option must be given before the filename. There can be no space
between the option letter and the value.

2.2.2.4 The Case Table and the -Y Option

When the compiler looks at a switch statement, it builds a table of
the cases in it. When it "leaves" the switch statement, it frees up the
entries for that switch. For example, the following will use a maximum
of four entries in the case table:

- cc.24 -

Aztec C86 COMPILER

switch (a) {

case O: /¥ one */
a+=1;
break;
case 1 /* two */
switch (x) {
case ’a* /* three */
funcl (a);
break;
case b’ /* four */
func2 (b);
break;
} /* release the last two */
a=23;
case 3: /* total ends at three */
func2 (a);
break;
}

The table defaults to 100 entries, each using up four bytes. If the
compiler returns with an error 76 ("case table exhausted"), you will
have to recompile with a new size, as in:

cc -Y100 file
2.2.2.5 The String Table and the -Z Option

This is where the compiler saves "literals", or strings. The size of
this area defaults to 2000 bytes. Each string occupies a number of bytes
equal to the size of the string. The size of a string is just the number
of characters in it plus one (for the null terminator).

If the string table overflows, the compiler will generate error 2,
"string space exhausted". The following command will reserve 3000
bytes for the string table:

cc -Z3000 file

- cc.25 -

COMPILER Aztec C86

2.2.3 8086 options for the Optimizing Compiler
The +F Option (Generate Fast Code)

The +F option causes the compiler to select code sequences that
yield the fastest possible execution time, even at the cost of increased
program size.

The +C Option (Generate Small Code)

The +C option causes the compiler to select code sequences that
yield the smallest resultant program size, even at the cost of reduced
execution speed.

The +N Option (Foreign Functions)

The +N option causes the compiler to generate code for function
calls that saves registers that contain register variables before issuing
the function call and that restores the registers afterwards.

This option is not needed when calling functions that are in
modules that have been compiled by Aztec C, since such modules
preserve the caller’s register variables.

It’s only needed when calling functions that are in modules that
have been compiled by other C compilers, such as Lattice and CI/C86,
if those functions don’t preserve register variables.

The +D Option (Lattice Interface)

The +D option must be specified for modules that call Lattice-
compiled functions that return a long int. It causes the compiler to
generate code that fetches the returned value from the registers in
which Lattice-compiled functions return long ints, (AX and BX) rather
than from those in which Aztec-compiled functions return long ints
(AX and DX). This option need not be used when calling CI/C86-
compiled functions that return longs, since they return longs in the
same registers as Aztec C86-compiled functions.

If this option is specified when compiling a module, all functions
called by the module that return a long must return the value in AX
and BX. That is, the module can’t call both Lattice-compiled functions
and Aztec C86-compiled functions that return longs.

The +DF Option (Lattice Interface)

The +DF option must be specified when compiling a module
containing a function that returns a long, and that will either be called
by a Lattice-compiled function or be called by a function that has been
compiled with the Aztec compiler using the +D option. The option
causes the compiler to return the long value in the registers in which
the Lattice function will expect to find it (AX and BX) rather than the
registers that Aztec C86-compiled functions normally use (AX and

DX).

- ¢cc.26 -

Aztec C86 COMPILER

The +0, +1, and +2 Options (Processor Selection)

The +0, +1, and +2 options define the type of processor for which
the compiler is to generate code:

option processor
+0 8086/8088
+1 80186

+2 80286

If these options aren’t specified, the cc compiler that is supplied
with the Developer and Commercial Aztec C86 Systems will generate
code for the 8086/8088 processors.

The +R option (Forget Registers)

The +R option causes the compiler to forget the contents of
registers between statements. If the +R option is not used, the
compiler will track contents of registers throughout each user function,
attempting to minimize register reloads.

The +U Option (Globals to Externs)

The +U option converts global variables into externs. For example,
if a program is compiled with the +U option, it i outside any function
becomes extern int i. This option is useful when compiling modules
that will be linked with the MS-DOS/PC-DOS linker.

The universal way of defining a global integer, i, is to have the
statement, int i, in one file and the statement, extern int i in all other
program files in which the variable is used. The int i is a "definition" of
the variable since it causes space to be reserved in memory for the
variable. The extern causes no memory to be reserved; it says, "This
variable is defined somewhere ¢lse but it is going to be used in this file
of the program."

When using the Aztec assembler and linker, the only requirement is
that a global variable must be defined at least once. So in this example,
it is also possible to have int i in every file; the "extern" keyword is not
extremely significant in this case. Although there may turn out to be
more than one global int i in the program, memory will be allocated for
just one. This is also the behavior under UNIX.

The situation is slightly different when employing the MS-
DOS/PC-DOS linker. In this case, a global variable must be defined
exactly once. That is, extern int i must appear in every declaration
except one, which must be an int i. This is where the +U option is
useful. By specifying it for all but a single source file, you will not
have to worry about having too many or not enough externs; the
"externs" can be left off entirely since they will be tacked on under the
+U option.

-cc.27 -

COMPILER Aztec C86

A global initialization is immune to the +U option. Hence, int i = 3;
is unchanged by it. Initializing a global variable to zero will cause it to
be ignored by +U. This is one means for forcing a data definition
when using this option.

The +a option

The +a option tells the compiler that, in the module being
compiled, there are no assignments of the form

*ptr= ...

where ptr is a pointer to a named variable. With this information, the
compiler can generate better code for the module.

For example, suppose a module contains the declarations
int i, *ip;
The following assignment is allowed in a module that’s compiled with
the +a option:

i=1;

But if ip points to the named variable i, the following assignment
prevents the module from being compiled with the +a option:

*ip=1;

A module can be compiled with the +a option and still contain
assignments of the form *ptr=... providing that ptr doesn’t point to a
named variable. For example, if pir points to an element of a
statically- or dynamically-allocated array, the assignment of values to
the array elements using statements of the form *ptr=... do not
preclude the compilation of the module using the +a option.

As implied by the above paragraph, statically-allocated arrays are
not considered to be named variables; hence, values can be assigned to
their elements using *ptr=... or afi/=... statements without preventing
the compilation of the module with the +a option.

Structures, whether statically- or dynamically-allocated, are also not
considered to be named variables. Thus, the following statements do
not prevent the module from being compiled with the +a option:

struct xx s, *sp;

sp=&s;
*3p=..

The compilers normally track registers, that is, remember that a
register contains a constant or the value of a named variable, so that
they don’t unneccessarily generate code to load a register with a
constant or variable whose value is already in a register. The
compilers also assume by default that an assignment of the form *ptr=
may assign a value to a named variable. Because they can’t know the

- cc.28 -

Aztec C86 COMPILER

named variable, if any, that such an assignment affects, they must,
upon encountering such an assignment, forget the contents of all
registers that they thought contained values of named variables.

When a module is compiled with the +a option, the compilers
assume that assignments of the form *pir= don’t affect the values of
named variables. Thus, they can generate better code, since they need
not forget that a register contains the value of a named variable when
they encounter a *pir=... assignment.

The +m option

When the compiler encounters a statement that requires
multiplication of a value by a constant, it will normally either generate
code that performs the operation by a sequence of 8086 ’shift’ and
*add’ instructions, or generate an 8086 *multiply’ instruction, with the
choice depending on the number of instructions in the sequence (if six
or fewer instructions, use the sequence, otherwise use the multiply
instruction). A ’shift/add’ sequence executes faster than the *multiply’
instruction, but requires more code.

The +m option causes the compiler to always generate a *multiply’
instruction, thus resulting in code that executes slower but that is
smaller.

Like +m, the +c option also causes the compiler to always generate
a multiply’ instruction when a non floating point value needs to be
multiplied by a constant. However, the +c option also causes the
compiler to generate other code that reduces code size at the expense
of increased execution time, including the following: at the beginning
of a function, it generates a call to an internal subroutine, rather than
in-line code, that performs function initialization; when a switch
statement is encountered, it generates a call to an internal subroutine,
rather than generating in-line code, that process the switch.

For some programs, such as those that perform lots of operations
on arrays of structures, the generation of a *multiply’ instruction than a
>shift/add’ sequence to process multiplication of a variable by a
constant can dramatically decrease the size of the program, and is
worth the increased execution time; the decreased code size caused by
the other +c selections, on the other hand, are not deemed worth the
increased execution time. For such programs, the +m option was
invented.

2.2.4 8086 options for the non-optimizing compilers
The +F Option (Generate fast code)

The +F option for the non-optimizing C86 compiler causes
function entry code to be generated in-line. Normally, every compiled
C function begins with a call to a routine in c.lib. This option replaces
this call with the equivalent code.

- ¢c.29 -

COMPILER Aztec C86

This results in a small savings in execution speed every time the
compiled function is called. If the function is called repeatedly, the
savings can add up to a large difference in the execution time of the
program. As a side effect, this option will slightly increase the size of
the compiled code.

The +J Option (Generate short branches)

The +J option for the non-optimizing C86 compiler, which must be
used with care, causes the compiler to generate code that is somewhat
faster and smaller, by creating short conditional jump instructions
rather than long. By default, the compiler generates long conditional
jumps.

A short jump can jump to an instruction within approximately 128
bytes of itself, whereas a long jump can jump to any instruction within
the code segment.

The 8086 and 8088 don’t actually have a long conditional jump
instruction, so' the compiler simulates one with a ’codemacro’
instruction consisting of a short conditional jump, and a long
unconditional jump.

This option cannot be used with all programs: it will sometimes
create programs that cannot be linked. The reason for this is that the
compiler, when it generates a short jump instruction, doesn’t know if
the destination of the jump is within range of the jump or not.

Short jumps which are out of range can be detected by the Manx
assembler (backward jumps only), the linker, or the sqz utility.

So, use this option with care: if your program links, all short jumps
were within range; otherwise, go back and recompile the unlinkable
modules without the +J option.

The +U Option (Globals to Externs)

The +U option is the same for both the non-optimizing and
optimizing Aztec C86 compilers. See its description in the section on
options of the optimizing compilers for details.

-¢cc.30 -

Aztec C86 COMPILER

3. Writing programs

The previous sections of this chapter discussed operational features
of Aztec C86; that is, presented information that an operator would
use to compile a C program. In this section, we want to present
information of interest to those who are actually writing programs to
be compiled with Aztec C86.

3.1 Supported language features

Aztec C86 supports the entire C language as defined in The C
Programming Language by Kernighan and Ritchie. This now includes
the bit field data type.

It also supports additional features, as described below.
3.1.1 Preprocessor statements

Aztec C86 supports the following preprocessor statements, all of
which begin with a #.

3.1.1.1 Macros

A macro is a symbol that has an associated character string. When
the compiler is reading a C source file and encounters a macro name,
it replaces the name with its associated string.

Basic definition and use of macros

A macro can be defined in two ways: from within a C source
program, using the #define preprocessor statement; and from the
command that starts the compiler, using the -D option.

The #define statement within a C program defines a macro. This
statement has the form

#define name string

where name is the name of the macro and string is its associated string,
When the preprocessor subsequently encounters the string name in the
source, it replaces it with the associated string, string.

For example, the following code defines the macro named
MAXFILE. The declaration of fable then creates an array of 8
integers.

#define MAXFILE 8

int tablef MAXFILE]

The compiler option -D is used to define a macro in the command
line that starts the compiler. This option has the form

-Dname=def

where name is the name of the macro, and def is its associated string.
When a macro is defined in this way, spaces are not allowed in

-¢cc.31 -

COMPILER Aztec C86

-Dname=def; this entire string must be passed to cc as a single
argument.

The =def part is optional; if not given, a string containing the
single character "1" is associated with name.

For example, the definition of MAXFILE could have been made
with the following command:

cc -DMAXFILE=8 prog

where prog.c is the name of the file being compiled. And if
MAXFILE was to be assigned a value of 1, the compiler could have
been started with either of the following commands:

c¢c -DMAXFILE=1 prog
cc -DMAXFILE prog

Macros having parameters

A macro can have named parameters. A macro having parameters
is defined within a C program with a statement of the form

#define name(parml,...,parmx) string

This statement defines a macro named name that has arguments,
associating with it the string string. When the preprocessor encounters
the string name(argl,...,argx) it replaces the string with string; in the
process, it performs parameter substitution, replacing every occurrence
of parml in string by argl, and so on. :

In the definition, no spaces are allowed between the name of the
macro and the (. Spaces are allowed in string.

For example, the following code first defines a macro named abs
that computes the absolute value of its argument. It then uses this
macro to compute the absolute value of the expression a+b.

#define abs(x) ((x) > 0?7 (x) : -(x))

y = abs(a+b);

As with parameterless macros, parameterized macros can also be
defined in the command that starts the compiler. The syntax is the
same; namely

cc -Dname=def prog

As with parameterless macros that are defined with the -D option, the
entire -Dname=def string must not contain any spaces.

Thus, the abs macro that was defined above using the #define
statement could also be defined when the compiler is started using the
statement

-cc.32 -

Aztec C86 COMPILER

cc -Dabs(x)=((x)>0?(x):-(x)) prog
where prog.c is the name of the file to be compiled.
Undefining macros

Macros can be undefined from within a C program, with the
statement

#undef name
where name is the name of the macro being undefined.
More features of macros

This section discusses several additional features of the definition
and use of macros.

* A macro name can be any valid C name.

* When the compiler finds the beginning of a symbol name in a C
source file, it reads the entire name before checking to see if the
name is a macro. For example, consider the following code:

#define a 3
#define b 4
#define ab 56
int y=ab;

This creates the integer variable y; it’s initialized to 56, not 34.
* Macros can be defined in terms of other macros.
Thus, the following statements

#definc ay
#define ba
int b;
causes an integer variable named y to be defined.
* Macro expansion doesn’t occur in #define or #undef statements.
For example, consider the following statements:

#define ay
#define ba
#undef a
int b;

This example causes an integer variable named a to be created. If
macro expansion occurred when b was being defined, the name of
- the created variable would have been y.

* Macro names are not recognized in character constants or quoted
strings during the processing of normal C statements.

-cc.33 -

COMPILER Aztec C86

For example,
#define a 12345
char y[]="a";

creates a character array named y, initializing it with the string "a",
and not with the string "12345".
Macro names are not recognized in character constants or quoted
strings during macro definition.

Thus,

#define b 123
#define a "b"

char y[]=a;

creates a character array named y, initializing it with the string "b",
and not to "123".

* Macro parameters are recognized and substituted in a macro’s
associated string, even when the parameters are in character
constants or quoted strings.

For example,
#define b(a) "a"
char y[] = b(123);
creates a character array named y, initializing it to "123".

* A macro must not be defined when an attempt is made to define it
in a #define statement.

For example, the following statements generate an error:

#defineab
#define ac

while these don’t;

#defincad
#undef a
#define a ¢

3.1.1.2 Conditional compilation statements

Aztec C86 supports several preprocesssor statements that makes the
compilation of blocks of statements conditional.

The simplest use of the conditional compilation statements is to
begin the block with one of the #if... statements and end it with the
#endif statement. For example, in the following code the block of
statements within the #ifdef and #endif statements will be compiled if
and only if the symbol DEBUG has been defined:

- ¢cc.34 -

Aztec C86 COMPILER

#ifdef DEBUG

/* the block goes here */

/¥ it’s compiled only if DEBUG is defined */
#endif

You can also have one or another block be compiled, depending on
specified conditions, using the #else statement:

#ifdef LARGE

/¥ this block compiled only if LARGE is defined */
#else

/* this block compiled only if LARGE is not defined */
#endif

Those are the two basic conditional compilation constructs. These
constructs can be nested, in which case an #else will pair up with the
nearest preceding #if....

The following paragraphs define the different forms of #ij...
statements.

#ifdef name

This statement causes the block which follows to be compiled
only if the symbol name is defined. The definition could have
been made using the #define statement or using the compiler’s
-D option. If name was defined, and then later undefined by
#undef, the block won’t be compiled.

#ifndef name

This statement causes the block of statements that follows to be
compiled if the symbol name is not defined. The definition of
name that would cause the block to not be compiled could have
been made using the #define statement or using the compiler’s
-D option. If the symbol was defined, and then later undefined
by #undef, the block will be compiled.

#if expression

This statement causes the block of statements which follows to be
compiled if and only if the expression evaluates to non-zero.
expression must be built from constant integer values. All binary
non-assignment C operators, the ?: operator, the unary operators
-, I, and ~ are allowed in expression. Their precedence is the
same as for normal C statements.

For example, the following code will be compiled only if the
symbol MAXFILES is defined and has a value greater than 5:

- cc.35 -

COMPILER Aztec C86

#if MAXFILES > 5
/¥ code to be compiled if MAXFILES > 5 */

;;endif
3.1.1.3 More preprocessor statements

In addition to statements for defining and undefining macros and
for making the compilation of statements conditional, the preprocessor
supports several other statements. These statements are discussed in
this section.

#include <filenarme>
#include "filename”

Causes the contents of filename to be read and compiled. For
more information on this statement and on the places that the
compiler searches for the file, see the description on include files
in section 1 of this chapter.

#line line__number "filename”

Causes the compiler to think that the line number of the next
line to be compiled is line__number, and that the name of the file
being compiled is filename. If "filename" is not given, the
current file name is unchanged.

#asm and #endasm

Aztec C86 allows C programs to contain in-line assembly
language source. The assembly language code begins and ends
with the preprocessor directives #asm and #endasm, respectively.

When the compiler encounters a #asm statement, it copies
lines from the C source file to the assembly language file that it’s
generating, until it finds a #endasm statement. The #asm and
#endasm statements are not copied.

While the compiler is copying assembly language source, it
doesn’t try to process or interpret the lines that it reads. In
particular, it won’t perform macro substitution.

A program that, uses #asm ..#endasm must avoid the
following placing in-line assembly code immediately following an
if block; that is, it should avoid the following code:

- ¢c.36 -

Aztec C86 COMPILER
if ()
-
#asm
#endasm

The code generated by the compiler will test the condition and if
false branch to the statement following the #endasm instead of to
the beginning of the assembly language code. To have the
compiler generate code that will branch to the beginning of the
assembly language code, you must include a null statement
between the end of the if block and the asm statement:

if (...){

}

;#asm

#.é.ndasm
3.1.2 More features

In addition to the preprocessor statements described above, Aztec
C86 supports several language features that aren’t described in the K &
R text.

Structure assignment

Aztec C86 supports structure assignment. With this feature, a
program can cause one structure to be copied into another using the
assignment operator.

For example, if sI and s2 are structures of the same type, you can
say:

sl =s2;
thus causing the contents of structure sl to be copied into structure s2.

Unlike other operators, the assignment operator doesn’t have a
value when it’s used to copy a structure. Thus, you can’t say things
like "a = b = ¢", or "(a=b).fld" when a, b, and ¢ are structures.

Line continuation

If the compiler finds a source line whose last character is a
backslash, \, it will consider the following line to be part of the current
line, without the backslash. For example, the following statements
define a character array containing the string "abcdef":

-cc.37 -

COMPILER Aztec C86

char array[]="ab\
cd\
ef";

The void data type

Functions that don’t return a value can be declared to return a void.
This provides a safety check on the use of such functions: if a void
function attempts to return a value, or if a function tries to use the
value returned by a void function, the compiler will generate an error
message.

Variables can be declared to point to a void, and functions can be
declared as returning a pointer to a void.

Unlike other pointers, a pointer to a void can be assigned to a
pointer to any type of object, and vice versa. For other types of
pointers, the compiler will generate a warning message if an attempt is
made to assign one pointer to another, when the types of objects
pointed at by the two pointers differ.

That is, the compiler will generate a warning message for the
assignment statement in the following program:

main()
char *cp;
int *ip;
ip = cp;
}
The compiler won’t complain about the following program:
main()
char *cp;
void *getbuf();
cp = getbuf();
Special symbols
Aztec C86 supports the following symbols:
FILE Name of the file being compiled. This is a
character string.
LINE Number of the line currently being
compiled. This is an integer.
FUNC Name of the function currently being

compiled. This is a character string.

In case you can’t tell, these symbols begin and end with two
underscore characters.

-cc.38 -

P

Aztec C86 COMPILER

For example,

printf("file= %s\n", FILE);

printf("line= %d\n", LINE);

printf("func=%s\n", FUNC);
3.1.3 Special features

The following features are supported by Aztec C86, but not by any
of the UNIX C compilers,

String merging
The compiler will merge adjacent character strings. For example,
printf("file=" __ FILE___ " line= %d func="__FUNC__,
__ILINE_);
Long names

Symbol names are significant to 31 characters. This includes
external symbols, which are significant to 31 characters throughout
assembly and linkage.

Reserved words

const, signed, and volatile are reserved keywords, and must not be
used as symbol names in your programs.

Global variables

Aztec C supports the rule of the standard C language regarding
global variables that are to be accessed by several modules. This rule
requires that in the modules that want to access such a variable, exactly
one module declare it without the extern keyword and all others
declare it with the extern keyword.

Previous versions of Aztec C did not strictly enforce this rule when
the Aztec linker /n was used to link programs. In these versions, the
following modified version of the rule was enforced:

* multiple modules could declare the same variable, with the
extern keyword being optional;

* when several modules declared a variable without using the
extern keyword, the amount of space reserved for the variable
was set to the largest size specified by the various
declarations;

* when one module declared a wvariable using the extern
keyword, at least one other module must declare the variable
without using the extern keyword;

* at most one module could specify an initial value for a global
variable;

* when a module specified an initial value for a global variable,
the amount of storage reserved for the variable was set to the
amount specified in the declaration that specified an initial

-cc.39 -

COMPILER Aztec C86

value, regardless of the amounts specified in the other
declarations.

In order both to enforce the standard C rule regarding global
variables and to provide compatibility with previous versions of Aztec
C, the current Aztec linker will generate code consistent with the
previous versions, but will by default generate a "multiply defined
symbol" message when multiple modules are found that declare a
global variable without the extern keyword. The -M linker option can
be used to cause the linker to treat global variables just as they were in
previous versions of Aztec C; in this case, the "multiply defined
symbol" message won’t occur when several modules declare the same
variable without the extern keyword, as long as no more than one
specifies an initial value for the variable. If multiple modules declare
an initial value for the same variable this message will be issued,
regardless of the use of the -M option.

Both previous and the current versions of Aztec C prevent a global
symbol from being both a variable name and a function name. When
such a situation arises, the linker will issue the "multiply defined
symbol" message, regardless of the use of the -M option.

If you have programs whose modules follow the modified version
of the rule regarding global variables, and you either want to link the
modules using the Aztec linker without having to specify the -M linker
option and without having the "multiply defined symbols" message
appear, or you want to link the modules using the PCDOS/MSDOS
linker, the compiler’s -U option can be useful. When a module is
compiled with this option, all the declarations of global variables that
don’t specify an initial value are implicitly turned into extern
declarations. Thus, you can place the declarations of a program’s
global but uninitialized variables into one file, place #include
statements for that file in the modules that need those variables, and
compile one of the modules without the -U option, and the others with
it.

There are three assembly language directives that create globally-
accessible variables: public, which causes a variable that is defined in
the module using a db, dw, or dd directive to be made globally-
accessible; global, which both creates a variable in the uninitialized
data area and makes it globally accessible; and extrn, which permits a
module to access a variable that is defined in another module using
public or global. When the Aztec compiler encounters a declaration of
a variable outside a function, it generates a global, public, or extrn
directive for the variable, depending on the declaration and on
whether the compiler was started with the +U option:

* A global directive is generated if the declaration doesn’t
specify an initial value for the variable, and the declaration
doesn’t specify the extern keyword, and the +U option isn’t

- cc.40 -

Aztec C86 COMPILER

used.

* A public directive is generated if the declaration specifies an
initial value for the variable.

* An extrn directive is generated if the declaration declares the
variable to be an extern, or if the +U option is used.

For a discussion of global variables in assembly language terms, see
the discussion of globally-accessible variables in the Programmer
Information section of the Assembler chapter.

3.2 Data formats
3.2.1 char

Variables of type char are one byte long, and can be signed or
unsigned. By default, a char variable is signed.

When a signed char variable is used in an expression, it’s converted
to a 16-bit integer by propagating the most significant bit. Thus, a char
variable whose value is between 128 and 255 will appear to be a
negative number if used in an expression.

When an unsigned char variable is used in an expression, it’s
converted to a 16-bit integer in the range 0 to 255.

A character in a char is in ASCII format.
3.2.2 pointer

Pointer variables are either two or four bytes long, depending on
the memory model that the program is using.

Function pointers are two bytes long if the program uses the ’small
code’ memory model option, and four if it uses ’large code’.

Pointers to data items are two bytes long if the proram uses the
>small data’> memory model option, and four if it uses ’large data’.

3.2.3 int, short

Variables of type short and int are two bytes long, and can be signed
or unsigned.

A negative value is stored in two’s complement format. A -2 stored
at location 100 would look like:

location contents in hex
100 FE
101 FF
3.2.4 long

Variables of type long occupy four bytes, and can be signed or
unsigned.

- cc4l -

COMPILER Aztec C86

Negative values are stored in two’s complement representation.
Longs are stored sequentially with the least significant byte stored at
the lowest memory address and the most significant byte at the highest
memory address.

3.2.5 float and double

Variables of type float are represented in 32 bits, and those of type
double are represented in 64 bits. They are in standard 8087 format.

3.3 Floating Point Exceptions

Floating point operations are performed either by an 8087 co-
processor or by software, depending on the version of m.lib with which
a program is linked.

If software routines perform the calculations, the routines check for
overflow, underflow, and division by zero. When the software floating
point functions return to the caller, the global integer flterr indicates
whether an exception has occurred, as follows:

[lterr value returned meaning
0 computed value no error has occurred
1 +/- TINY__VAL underflow
2 +/- HUGE_ VAL overflow
3 +/- HUGE__VAL division by zero

The symbols HUGE_VAL and TINY_ VAL are defined in the file
math.h.

When an 8087 performs floating point calculations, floating point
exceptions are not detected, and flterr is not used.

3.4 Writing machine-independent code

The Aztec family of C compilers are almost entirely compatible.
The degree of compatibility of the Aztec C compilers with v7 C,
system 3 C, system 5 C, and XENIX C is also extremely high. There
are, however, some differences. The following paragraphs discuss
things you should be aware of when writing C programs that will run
in a variety of environments.

If you want to write C programs that will run on different
machines, don’t use bit fields or enumerated data types, and don’t pass
structures between functions. Some compilers support these features,
and some don’t.

3.4.1 Compatibility Between Aztec Products

Within releases, code can be easily moved from one
implementation of Aztec C to another. Where release numbers differ
(i.e. 1.06 and 2.0) code is upward compatible, but some changes may
be needed to move code down to a lower numbered release. The
downward compatibility problems can be eliminated by not using new

-cc.42 -

Aztec C86 COMPILER

features of the higher numbered releases.
3.4.2 Sign Extension For Character Variables

If the declaration of a char variable doesn’t specify whether the
variable is signed or unsigned, the code generated for some machines
assumes that the variable is signed and others that it’s unsigned. For
example, none of the 8 bit implementations of Aztec C sign extend
characters used in arithmetic computations, whereas all 16 bit
implementations do sign extend characters. This incompatibility can be
corrected by declaring characters used in arithmetic computations as
unsigned, or by AND’ing characters used in arithmetic expressions
with 255 (0xff). For instance:

char a=129;
int b;
b = (a & 0xff) * 21;
3.4.3 The MPU... symbols
To simplify the task of writing programs that must have some
system dependent code, each of the Aztec C compilers defines a

symbol which identifies the machine on which the compiler-generated
code will run, These symbols, and their corresponding processors, are:

symbol processor
MPU68000 68000
MPU8086 8086/8088
MPU80186 80186/80286
MPU6502 6502
MPU8080 8080
MPUZ80 780

Only one of these symbols will be defined for a particular compiler.

For example, the following program fragment contains several
machine-dependent blocks of code. When the program is compiled for
execution on a particular processor, just one of these blocks will be
compiled: the one containing code for that processor.

#ifdef MPU68000
/* 68000 code */

#else

#ifdef MPUS8086
/* 8086 code */

#else

#ifdef MPUS080
/* 8080 code */

#endif

#endif

#endif

-cc43 -

COMPILER Aztec C86

3.5 Using long pointers

A pointer is either two or four bytes long: a two-byte pointer is
called a ’short pointer’, and a four-byte pointer is called a ’long
pointer’. A program’s function pointers will be short or long,
depending on whether the program’s modules use *small code’ or ’large
code’. Similarly, a module’s pointers to data objects will be short or
long, depending on whether the module uses *small data’ or ’large data’.

There are several things of which you should be aware when using
long pointers:

* You must explicitly specify the passing of a long pointer
between functions, because of the difference in size of infs
and long pointers.

* Normally, you can use long pointers in expressions just as you
would a short pointer. However, if you create unusual data
objects, or access data objects in unusual ways, your program
may not behave as you expect.

These topics are discussed in the following sections.
3.5.1 Passing pointers between functions

This section presents rules that a program should follow when
passing pointers between functions. These rules should be followed by
all programs, whether they use short or long pointers; that way, if a
program uses a small memory model, you can easily convert it to a
large memory model.

* Declare functions that return pointers

If a function returns a pointer, a module that calls the function and
the function itself should say so. Otherwise, the compiler will assume
that the function returns an int, which is a two-byte value. If the
called function returns a small pointer, the resulting program will
work, since small pointers are also two bytes long. But if the called
function returns a long pointer, the program won’t work, since long
pointers are four bytes long.

For example, the following code correctly specifies that the
function f{) returns a char pointer:

char *cp, *();

cp = £();
*ep =2

If the declaration char *f() was omitted, the program would work if f{)
returned a short pointer, but if it returned a long pointer the
assignment cp=/() will set the segment component of ¢p to an incorrect
value (to be specific, it sets it to a 16-bit value generated by
propagating the most significant bit of the offset returned by f{')). The

- cc.44 -

Aztec C86 COMPILER

statement *cp="a’ then will set ’a’ somewhere within the operating
system, and the operating system will probably crash mysteriously at
some later time.

* Declare function arguments that are pointers

If a pointer is passed as an argument to a function, the function
should say so.

If it doesn’t, the compiler will assume that the argument is a two-
byte int. This assumption will do no harm, and the program will work,
if the function is passed a short pointer, but if it’s passed a long
pointer, the program won’t work.

For example, consider the following function, f{), which is passed a
character pointer and an integer.

f(cp,i)
char *cp; int i;
{
int a=i;
x(cp,5);

}

Suppose that the declaration char *cp was missing. If the module
containing f() used short data pointers, the function would behave
correctly. But if it used long data pointers, the assignment a=i
wouldn’t work, because the compiler-generated code’s idea of the
location of i would be incorrect. And the function call x(cp,5) would
pass only the offset part of cp, which would result in x() not being able
to access whatever c¢p pointed at, and in x() not being able to correctly
access its second argument.

* Declare constant pointers to functions

If a constant pointer is passed to a function, the caller should cast
the constant to be a pointer. Otherwise, as usual, the call will be
correctly done if a short pointer is passed, but not if a long pointer is
passed.

For example, a null pointer should be passed to the function f() as
follows:

f((char *) 0);

If it was passed using the statement f(0), the call would pass only two
null bytes instead of four. This would be all right if a short pointer
was to be passed, but not if a long pointer was needed.

Within stdio.h is the definition
#define NULL (void ¥) 0
You should not use NULL to pass a null function pointer, since NULL

- cc.45 -

COMPILER Aztec C86

is a null pointer to a data object. If you do, and the program uses
’large data’ and ’small code’ or ’small data’ and ’large code’, an
incorrect number of bytes will be passed. The following statement
creates the symbol NULLFP that can be used as a null function
pointer:

#define NULLFP (int (*)()) 0
3.5.2 Expressions involving long pointers to data objects

There are several facts about a ’large data’ program that allows the
compiler to give the program special characteristics that make it
smaller and faster than it would otherwise be. These facts are:

* Long pointers are in segment/offset form, with the most
significant word of a long pointer containing the starting
paragraph number of a segment that contains the referenced
object, and the other word containing the offset of the object
from the beginning of the segment.

* The maximum size of a data object, such as an int, array,
structure, union, or a buffer that is allocated by one of the
Aztec functions, is 64K bytes. This is also the maximum size
of a physical segment.

* When a call is made to one of the Aztec functions to
dynamically allocate a buffer, the function returns the long
pointer in ’canonical form’, in which the offset component is
between 0 and 15.

* Any field within a standard data object can be accessed by
manipulating just the offset component of the object’s base
address.

The special characteristics that the compiler gives to a ’large data’
program because of these facts are described below.

* Long pointer arithmetic doesn’t affect the segment number

When a long pointer is used in an expression, the value of which is
another pointer, the resultant pointer points at an object that is in the
same physical segment as the pointer that’s in the expression.

In other words, when an integer is added or subtracted from a long
pointer, the arithmetic is performed using just the offset portion of the
original pointer; the segment portion of the resultant pointer is the
same as that of the original pointer.

Since a data object can’t occupy more than a single physical
segment, and since C does not approve of a program’s generating the
address of one data object from that of another, this characteristic of
’large data’ programs should be satisfactory for most programs.

- ¢cc.46 -

Aztec C86 COMPILER

For programs that need data objects that are bigger than 64K bytes,
and that need to move a pointer around within the entire object, see
below.

* Subtraction of two long pointers doesn’t use their segment numbers

When two long pointers are subtracted, the compiler assumes that
the pointers reference objects that are in the same physical segment,
and that the segment components of the two pointers are the same.
The compiler then generates code that subtracts just the offset
components of the pointers, and not on their segment parts.

Here are some things things relating to the subtraction of long
pointers of which you should be aware:

* The number of bytes between locations referenced by two
long data pointers can be determined by directly subtracting
the pointers (that is, by saying something like ¢pl - cp2) only
if the locations are in the same data object (and it’s a standard
data object) or if the locations are either both in the
program’s physical data segment or both in the program’s
physical stack segment.

For other cases, you can subtract two long pointers by (1)
calling the function __ ptrdiff or by (2) converting the pointers
to absolute addresses, using the ptrtoabs function, and then
directly subtracting the absolute addresses.

* When two long pointers reference fields in the same
dynamically-allocated buffer, you can compare them by
directly subtracting them and testing the resultant value. You
can’t do this if they reference fields in different dynamically-
allocated buffers.

* If you allocate a non-standard data object that is bigger than
64K bytes, you can’t compute the number of bytes between
two arbitrary locations in the object by simply subtracting
pointers to the locations.

See below for an example of a program that accesses ficlds
within a buffer that’s bigger than 64K bytes.

* Pointer comparisons sometimes compare the segment numbers

When two pointers are compared, the compiler assumes that the
pointers reference objects that are in the same physical segment, and
that their segment components are the same, if one of the pointers is a
constant or is generated by taking the address of a variable. In this
case, the compiler-generated code compares just the offset components
of the two pointers.

For example, the code generated for the following expression
compares just the offsets of the pointers:

- cc.47 -

COMPILER Aztec C86

char *cp;
int i, a[10];

if (&a[i] < cp)

If two pointer variables are compared, the compiler makes no
assumptions about the segments in which the referenced objects reside.
In this case, the compiler generates code that first compares the
segment components and then, when neccessary, compares the offset
components.

For example, the code generated for the following expression
compares first the segment numbers and then the offset components of
the pointers:

char *cpl, *cp2;

i.t."(cpl < cp2)

If the segment component of cpl is less than that of cp2, the
comparison is true. If it’s greater than that of cp2 the comparison is
false. If it’s equal, then the value of the comparison depends on the
relationship of the offset components.

The code generated by the compiler to compare two pointer
variables is suitable for most programs. However, if your program
itself manipulates the segment component of a pointer variable, you
must be careful when you compare the value of that variable to other
pointer variables.

3.5.3 Creating and accessing huge arrays

Aztec C86 provides several functions that allow a program to easily
access arrays that contain more than 64K bytes. These are:

Sunction purpose

ptrtoabs convert long ptr to absolute address

abstoptr convert absolute address to long ptr
__ptradd add a long value to a long pointer
ptrdlff subtract two long pointers

An absolute address is a 20-bit value that uniquely defines a
location in memory. Thus, one way to use these functions to access
the elements of a huge array is to keep the address of the element
being accessed in absolute format, converting it to pointer format only
when necessary. For example, the following program, which uses the
large data memory model, dynamically allocates a 100K-byte array and
then goes into a loop, calling the function process to process each word
of the array.

- cc.48 -

_—x

Aztec C86 COMPILER

void *abstoptr(),*sbrk();
long ptrtoabs();
long bv, lv, ev;
unsigned seg, off;
main()
{
bv=ptrtoabs(sbrk(0)); /¥ get ptr to array */
if ((brk(abstoptr(bv+100000))) /* allocate array */
exit(3); /* exit if array can’t be allocated */
ev = bv+100000; /* end of array */
for (lv=bv; lv<ev; v +=2)
process(abstoptr(1v));
}

To allocate a 100K-byte buffer, the program has to be somewhat
devious, since the normal buffer-allocation functions can’t allocate
buffers that are bigger than 64K bytes. It first calls sbrk to get the
pointer to the current top of allocated heap space. It converts this
pointer to a 20-bit absolute address, adds 100,000 to this address to get
the ending address of the 100K-byte buffer, converts the ending
address to a segment/offset pointer; and calls brk to set the top of
allocated heap space to this address.

The program could also have used the __ ptradd function instead of
abstoptr and ptrtoabs, but this would have been a little less efficient,
since the addition of a value to a long pointer takes longer than the
addition of the value to a long int.

- cc.49 -

COMPILER Aztec C86

4. Error checking

Compiler errors come in two varieties-- fatal and not fatal. Fatal
errors cause the compiler to make a final statement and stop. Running
out of memory and finding no input are examples of fatal errors. Both
kinds of errors are described in the Errors chapter. The non-fatal sort
are introduced below.

The compiler will report any errors it finds in the source file. It
will first print out a line of code, followed by a line containing the
up-arrow (caret) character. The up-arrow in this line indicates where
the compiler was in the source line when it detected the error. The
compiler will then display a line containing the following:

The name of the source file containing the line;

The number of the line within the file;

An error code;

A message describing the error;

The symbol which caused the error, when appropriate.

x X ¥ %X ¥

The error codes are defined and described in the Errors chapter.

The compiler writes error messages to its standard output. Thus,
error messages normally go to the console, but they can be associated
with another device or file by redirecting standard output in the usual
manner. For example,

cc prog errors sent to the console
cc prog >outerr errors sent to the file outerr

The compiler normally pauses after every fifth error, and sends a
message to its standard output asking you want to continue. The
compiler will continue only if you enter a line beginning with the
character ’y’. If you don’t want the compiler to pause in this manner,
(if, for example, the compiler’s standard output has been redirected to
a file) specify the -B option when you start the compiler.

The compiler is not always able to give a precise description of an
error. Usually, it must proceed to the next item in the file to ascertain
that an error was encountered. Once an error is found, it is not
obvious how to interpret the subsequent code, since the compiler
cannot second-guess the programmer’s intentions. This may cause it to
flag perfectly good syntax as an error.

If errors arise at compile time, it is a general rule of thumb that the
very first error should be corrected first. This may clear up some of
the errors which follow.

The best way to attack an error is first to look up the meaning of
the error code in the back of this manual. Some hints are given there
as to what.the problem might be. And you will find it easier to
understand the error and the message if you know why the compiler
produced that particular code. The error codes indicate what the

- ¢c.50 -

Aztec C86 COMPILER

compiler was doing when the error was found.

- ¢cc.51 -

COMPILER

- ¢c.52 -

Aztec C86

THE ASSEMBLER

- as.1 -

ASSEMBLER Aztec C86

Chapter Contents

The AsSSemDBIETcccvvveerrreeereeernneerernnne rveesnreeernassasessnrane as
1. Operating Instructlons 5
1.1 The Source File eeverseeseeterssesaresacsreenareseeretesensesnesserenessans 5
1.2 The Object Code File “ reerernesrisereressessserassresesrentes 6
1.3 The Listing File eeeteresessaearsssess s sesasasasenes 6
1.4 Searching for ’include’ Filescuvrirereeeeeereerereveeeeenereeneenene 6
2. Assembler Options eevesasseserastetereeteseraenstennesensatsenee 9
3. Programmer INfOrmationeceeeneeenneeseesnimessrerenens 10
3.1 SYNLAX ecerrvererrrenccorsessnsserssssesssessessasessassssssssssssssaseresesssssessseseseses 10
3.2 Symbols .. eetreaseetenere st et eae e ssene s sessene saan . 11
3.3 SEEMENLALIONoeeeeeeeererreererenreneriiseseeeresseresessessessesessssssessasesenss 13
3.3.1 The SEGMENT and ENDS DIirectivesccececevvmvirernne 13
3.3.2 Multiple Definitions for a Segmentocoveveeverenenenee 14
3.3.3 Nested Segments reeeessteerereasaeatsasatenesaareessesennesen 14
3.3.4 The Default SEGMENLecvevieevecrerereereie i ereee e ssseseoens 15
3.3.5 The ASSUME DIirectiveccveeeeveenneivmreeresceesessseseenne 15
3.3.6 Using the Uninitialized Data Segmentcccccovrvvunnnee 16
3.4 Globally-accessible SYMDOISccceviererernnreereiiremsneriesreressessenesses 16
3.4.1 The PUBLIC DiI€CtiVeceevvrerereemreencccersensesensnsesesessens 16
3.4.2 The GLOBAL Dir€Ctivecccceveveerevvereeseesrverernseneessenns 17
3.4.3 The EXTRIN DIreCtIVEcevrrrereresrernrreraneresessessesessessessenes 17
3.4.4 Interactions of GLOBAL, PUBLIC and EXTRN 18
3.5 Operands and EXPIESSIONSceeeeeeeeereereerernrensreseessessessasaseens 19
3.5.1 REGISTETS wevvrererireirireresreressiresessessesesesssssesesasassarsssosssssssssonssass 19
3.5.2 Immediate Operandsceeveneernensissernesnernnsessosessenes 19
3.5.3 Memory Operandscoceveveereneeereresaiesessessssssesssseressass 20
3.5.4 Operand EXDPIeSSIONScccvevvrerersersrsearscasesseseerasnsssossaseses 23
3.5.5 The Arithmetic OpPEratorscccceveeeeerererrernereesseesesesenens 23
HIGH and LOW eeeteuenesesesesessraeereteresser s eresesheressarareresen 23
Addition and Subtractlon .. 23
Multiplication and DiviSIONccceevmeerneieereereerseesninenesens 23

The Shift OPEratorsocccvveevevererereerernnsereressesesseeresseansesess 24

The Relational OPEratorso.cueeeereecrererreressereraeseessesesensers 24

The LogIiCal OPEratorsccceermerererrereererneeereresrorersesessesesesessens 24

3.5.6 Attribute-overriding Operators 25
Segment OVEITIAEcccovverenneneecenerencsnreresssenssresesscssassssssaseres 25

PTR . teetereeeearaerersastsrare sresenaenstestesebennne 25
SHORTcooerreerererveneverenens 27

3.5.7 Attnbute-value OPETALOLS ..veeereeeerrrrereresrerereseeessessnessnssseens 27
THIS oottt sessseseesesse e sessretssasarsasansasstesesssrssassasanassnes 27

SEG et seessssesesssesesssssassssssansesare statessanssessssasassane 28

Aztec C86 ASSEMBLER

OFFSET ...t ecerresersressssssessssesssssessssesssssssessssssssanssasans 28
TYPE .ottt reereeecresses e eraessscssaesaessssssesssessesnsenssasasons 29
LENGTHooereereereeeeresesrssensesssssesossesssssssssssssssssssssasasssnses 29
SIZE ..oeeeereeeeiecsseesessssessssessssessessesesessnsssssessessssesssssssssssnsens 29
3.5.8 Operator PreCedenceuvveervmrveerersesesneseesessessansnessens 30
3.6 Instructions eeeererresteeraeteraseresastesaresaestestarseenastesearaearanan 30
3.7 Directives reeneetenesteast et ee et saesesneseesrasaraasanan .31
ASSUMEererresestrnesssesssesesessssessnsssssssssssssnsssssssasressssssssenes 31
BSS eesteresetteeerenatesentta e seoresestab e ssareseteratasans 31
DB, DW, and DD eeteseesretesesetetatatessaneseseserbeseanaras 32
END ... enresssessseesesns s e sssassesesansssessassesesesensensasasesan 34
EQU sttt ssssstssssssssssnsssesesasssssssaesssssssesssssensnsasasases 35
D eeeetereee ettt b bt st st sr et e s seras et et et e er A s en et ebe s Reseseh et b barenensreaes 36
EVEN ...ttt tnesseseeesese st s sssassesessssesssessasssssessasasessssanseen 36
EXTRN ...oioeetrtesrcessreeetnseseiesessesessssesesesnessssnssessssesssessssesesessenssesensen 37
GLOBAL ...ttt sretrs st esssessssssssasessssessssnsenssesenees 37
GROUP ...oeeeereeevsrnerenessereesetsssssssssesesesesssasssssesssssessssssessssassses 37
INCLUDEouoivererrerenneserssssesiserssenssssesssssesssssssssssssessnssssenssssssssses 37
LABEL ...ttt tneeersssseseresesenssesssassesssssssasessnsnssessssssnssnses 38
LARGECODE ...ttt eessesesesessssssassssssensssssssessssnsns 38
MOD186 . eeeteteeuetesaetetatesetenerensatate e sse s ssasnse bt easntanens 39
NAMEcvvvrvreerieserrennns reertereteeie e be et beneb s aes et anesataneaes 39
ORG ..eercreninsresrsssasasssseresssesssssesssesssesssersssssssssssssssssarsssesssssssseses 39
PROC and ENDPreeetcrccntnreeserrsessssssessssesssessssssssnns 39
PUBLICoeceereeeerrnnenetesesenssenssesesesesssiresssssssssssssessosssnsesesssaseses 42
RECORDecoereeeerenereesesssenieensesssessssesssesessesssessssssessssnsssesssssssns 42
SEGMENT reetetesetatate e ettt et e et et et se st eaeeeree s asrestetensntetans 44
3.8 MACTO DITECIVES ..ccvvveeeevenrerirerereresnssessssnsseseseseseresssesssasasssenssesens 44
3.8.1 LOCAl SYMDBOIS ...uereiritiererericrcierisessessssessesesrsseessssessssssees 46
3.8.2 Concatenating Parameters to TexXtcoocvveeriererernseennnne. 47
3.8.3 Concatenating Parameters to Parametersccooeenene. 48
3.8.4 Parameter Substitution in Quoted Stringscen.. 49
3.8.5 Passing a Symbol’s Value t0 2 Macroceeeereeennee. 50
3.8.6 Passing Comma-containing Parameters to a Macro 50
3.8.7 NEStING MACIOS ..c.covverrerirrerereraereeerecsessesessessesssessssessossssenes 51
3.8.8 Repeatedly Assembling a Block of Statements 53
3.8.9 Summary of the Macro Dir€Ctivesooevereeererervennns 56
ENDDM .oiecertrrcrersnsinssssesssesssssesssssesssssssssssssssesssssssssssassssssns 56
EXITM ereereetcreisste e sessesssanstessssenssssssssssssssssssassssssssesssses 56
IRP ..oeeeeeerete st stensssesssesss s ssssressassesssssssessssssssssnsssssssnesasssens 56
IRPC ...oeeeereeeecesertnenessnesnesestssasasssessesssssssssssssssssanssssssssssssens 56
LOCAL ..eeeeeerrecrete e ssnsesesensssssssssssssssssassssnssssssssssssssn 56
MAGCRO ...t ssessssessssessssse s ssssssssssssssassnsasasassess 56
PURGE ...ttt st sesssesessssssssssssssssessssasesssssnsnsssasas 57
REPT ..eeeeeeeseeeerrrenessesesese e seseresssesesesssssasesssnsasssssssssassssesssens 57
3.9 Conditional DIr€CtiVEScoeviererereereererenssseressssesessesessseressessens 57
TE ettt et e e st et r b e et snaress st e e e e asassnans 58
IEE oo srcrescsseseesesnsssssssssesassasnsesssbesssansssssasenssssasasssass 59

ASSEMBLER Aztec C86
TFL coeeececeiienesstesesesnensnsressacsresssessssssssessesssssensssssessssessassassass 59
IE2 .oeeecrrencreresesessssssesesssssessssesessosensssssnassnssssssssassessanssssens 59
IFDEFociereverreresreressismssessssssessssssssssssessssasrssessassosassosssssseses 59
IFINDEFoouvoviiveriveernerseesreressssessssessesessesessessosess ssnsassssssssssssasses 59
IFB oeeeeceereeresreressesessssssessssessessrassassnssesssssssss sansnesasassassssassns 59
IFINB ..ottt sessssssssssssesssssssssoseasoseane 59
IFIDIN ..ocoveiiveriecrirmseesasissessesersssessossssesessasessossssessssssnssassessassasenns 60
IFDIEooovevevrerirerrernressermssesseseressersrsessosessessssesassesessasnssassosssssensase 60
ELSE ... oeeiectiieeiieeeseenteeseessessnsssssssessessssssssssassessesesssssnessssasass 60
ENDIFooeoveriernrerennseernsreseserssssssesessones 60

3,10 COAEMACTOS cvevuvrerreresrrsresnereesessosseesessessssssosassessessssssessorsossassossess 60
3.10.1 SPECITIEIS ecveeeecrierventeereesneresesensersessssesssesssnssssasasssssssensnns 62
3.10.2 MOQIFIETS uecvvvevrerrervrinireinincsesssnssesnesessesnssessessessassssasessossass 63
3.10.3 RANGE SPECILICTS .cuverevrrrirerrrrrrrenrrsessersesessrassssorsssssosessassenens 63
3.10.4 The Codemacro DireCtivesvcereermreresvereeseneassnsreseses 64

SEGETX aoeereiriereinessnrerseeresesssssesessssessossasesassoress 64
INOSEGEFIX ooeeceerererernnnnirereessssssesessssesessssssonssssssssssssssessesasens 65
MODRMcooovvrrrimnecrinrsenssessssssersssssssssssssassesserssssaseasessrassessoseses 65
RELB .. rrereressesererestshareeranbeRrbeRreRe R R e steReehbsbsrbareR s srraeans 66
RELW reereressanerertessrssersersesaeresersartstestenterearesentenerssresnans 66
DB, DV, and DD rereeeinierensarreerensrrsrsaens 66
Uscr-defmed Record Dlrectxves ... 67
3.10.5 The DOtShift OPETAOTceereerererenrervereersaeererreseessscesesessens 67
3.10.6 The PROCLEN SyMDOLooiveeereirireieisesissssssessosesnons 68
3.10.7 Matching Codemacros to InStructionsceeveeen. 69

- asd -

Aztec C86 ASSEMBLER

The Assembler

This chapter describes the Manx AS assembler. It has three
sections; the first describes how to operate the assembler, the second
describes the assembler’s options, and the third contains information of
interest to those writing assembly language programs.

1. Operating Instructions
The assembler is activated by entering on the command line:
as [-options] filename.asm

where [-options] specify optional parameters and filename.asm is the
name of the file to be assembled.

The assembler reads assembly language source statements from the
input file, translates them to relocatable object code, and writes the
result to another file. The assembler can optionally write a listing to a
third file.

The following paragraphs describe the input and output files and
the assembler options.
1.1 The Source File

The source file name can either specify the disk drive containing

the file or not. If it’s not specified, the assembler assumes the file is on
the default drive.

1.1.1 Source files on MSDOS and PCDOS

On MSDOS and PCDOS, the source file name can optionally
specify the directory containing the file. By default, it’s assumed to be
the current directory on the specified drive. For example, for the
following command the assembler looks for filename.asm on drive a,
directory \ assem\ src:

as a:\assem\src\filename.asm

and for the following, the assembler looks for filename.asm on the
current directory of the default drive:

as filename.asm
1.1.2 Source files on CP/M-86

On CP/M-86, the source file name can optionally specify the user
area containing the file. It defaults to the current user area on the
default drive. The format of a CP/M-86 filename is defined in the
compiler chapter. For example, with the following command the

-as.5 -

ASSEMBLER Aztec C86

assembler will look for subs.asm on user 9, drive d:
as 9/d:subs.asm

The user number defaults to the current user and the drive defaults to
the default drive.

The -ZAP option causes the assembler to delete the source file
when it finishes. This option is used by the compiler, when it creates a
temporary file containing assembler source and then starts the
assembler.

1.2 The Object Code File

The name of the file to which the compiler writes object code to
the file specified by the -O option; if this option isn’t used, the
assembler chooses the name and location of the object file.

When the -O option isn’t used, the object file is created on the
same drive and directory (for MSDOS or PCDOS) or user area (for
CP/M-86) as the source file. The object file name is the same as the
source file name, with the extension changed to .o0.

When the -O option is used, the object file name follows the -O,
with spaces between the -O and the file name. The file name can
specify the drive and/or the directory (for MSDOS and PCDOS) or
user area (for CP/M-86). For example, the following will assemble
subs.asm and send the object code to subs.086:

as -0 subs.086 subs.asm
1.3 The listing file

The -L option causes the assembler to create a file containing a
listing of the program being assembled. The file is on the same drive
and directory (for MSDOS and PCDOS) or user area (for CP/M-86) as
the object code file. It’s name is the same as that of the object code
file, with the extension changed to .Ist.

1.4 Searching for include files

You can make the assembler search for include files in a sequence
of areas, thus allowing source files and include files to be contained in
different areas. For DOS, an ’area’ is a directory on a drive; for
CP/M-86, it’s a user area on a drive.

Areas can be specified with the -I assembler option, and, on
MSDOS and PCDOS, with the INCLUDE environment variable. The
assembler itself also selects a few areas to search. The maximum
number of searched areas is eight.

If the file name in the include directive specifies a drive id, user
area, or path, only the single area specified in the statement is
searched.

- as.6 -

Aztec C86 ASSEMBLER

1.4.1 The -I option.

A -I option defines a single area to be searched. The area descriptor
follows the -I, with no intervening blanks.

1.4.1.1 The -I option on MSDOS and PCDOS
On MSDOS and PCDOS, the -I option looks just like you’d expect:
-Ib:\incfiles
defines the directory \incfiles on drive b:.
1.4.1.2 The -I option on CP/M-86

On CP/M-86, the area descriptor following the -I consists of (1) an
optional user number followed by a slash, and (2) an optional drive
identifier. For example, the following defines user area 5 on drive c:

-15/c:
The user number is optional, and defaults to the current user number:
-Id:

defines the current user area on the d: drive. The drive id is also
optional, and defaults to the default drive:

-14/
defines user area 4 on the default drive.
1.4.2 The INCLUDE environment variable.

On MSDOS and PCDOS, the INCLUDE environment variable also
defines directories to be searched for include files. This variable has
the same format as the PATH environment variable. That is,
something like the following, which defines three areas to be searched:

set INCLUDE=Wb:\incl;c:\cc\inc2;a:
1.4.3 The search order for include files
1.4.3.1 The search order on MSDOS and PCDOS.

On MSDOS and PCDOS, directories are searched in the following
order:

1. The currrent directory on the default drive is searched.

2. The directories defined in -1 options are searched, in the
order listed on the command line.

3. The directories defined in the INCLUDE environment
variable are searched, in the order listed.

1.4.3.2 The search order on CP/M-86.
On CP/M-86, user areas are secarched in the following order:

- as.7 -

ASSEMBLER Aztec C86

1. The current user area on the default drive is searched.

2. The directories specified in -I options are searched, in the
order listed on the command line.

3. If the current user number isn’t zero, user area 0 on the
default drive is searched. q

4. If the default drive isn’t A:, and if the A: drive is logged in,
that is, has been accessed, user area 0 on the A: drive is
searched.

-as.8 -

Aztec C86

Options ASSEMBLER

2. Assembler Options
The assembler supports the following options:
-0 objfile Send object code to objfile.

-ZAP
-186

-Sn

Delete the source file after assembling it.

Enable generation of code for 80186-specific
instructions.

Make ’n’ squeeze passes through the file, converting
long branch and jump instructions to short. If this
option isn’t used, the assembler makes just two passes
through the file, and doesn’t squeeze the code.

Defines an area to be searched for files specified in a
#include statement. For more information, see the
Operating Instructions section of the Assembler
chapter, above.

Send a program listing to a file. All statements in a
macro expansion that actually generate code are listed.
The name of the file is derived from that of the file to
which the object code is sent by changing the
extension to .Ist’.

Send a listing to a file. All statements in a macro
expansion are listed, including those that aren’t
actually assembled due to their inclusion in a
conditional block whose condition is false. The name
of the file is derived in the same way as for the -L
option.

Send a listing to a file. The statements in a macro
expansion aren’t listed. The name of the listing file is
derived in the same way as for the -L option.

Same as -L, except the listing is sent to the console.
Same as -LA, except the listing is sent to the console.
Same as -LS, except the listing is sent to the console.

Don’t list false conditionals. If this option is specified
and if the assembler is generating a listing, it won’t list
statements whose assembly is conditional, if their
condition is false.

-Dsym[=const]

Creates the symbol sym, assigning it the constant const.
If =const isn’t specified, sym is assigned the value 1.

- as.9 -

ASSEMBLER Programmer Information Aztec C86

3. Programmer Information

as i1s a relocating assembler: it translates an assembly language
program into relocatable object code, which must then be converted
into executable machine code by a linker. You can use either the
Aztec In linker or, after feeding the object module through the Aztec
obj utility, the standard PC-DOS/MS-DOS link linker.

as supports many of the features of the PC-DOS/MS-DOS masm
assembler, including all the standard 8086 and 80186 instructions,
macros, conditional assembly, global symbols, and many of the masm
directives.

as allows a program to be partioned into segments in a manner that
is similar yet different from the segmentation supported by masm.

as also supports codemacros in a manner similar to that supported
by Intel’s own 8086 assembler. This feature allows you to create your
own assembly language instructions.

The remainder of this section discusses the following topics:

* Syntax, which describes the syntax of assembly language
statements.

* Symbol, which describes the attributes of symbol names.

* Segmentation, which describes how you divide an assembly
language program into segments.

* Global symbols, which describes how an assembly language
module accesses symbols in other modules.

* Operands, which describes the operands to instructions and
directives, and the operators that can be used to construct
operand expressions.

* Instructions, which discusses the instructions supported by the
assembler.

* Directives, which discusses the directives supported by as,
except for those related to macro definition, conditional
assembly, and codemacro definition.

* Macros, which describes as’s support for macros.

* Conditional Assembly, which describes how to partition an
assembly language program into blocks whose assembly
depends on certain conditions being met.

* Codemacros, which describes how to create your own assembly
language instructions.

3.1 Syntax

An assembly language program consists of a sequence of statements.
Each statement is on a single line, whi¢ch can contain up to 256
characters. There are two types of statements: instructions, which are
translated into machine code, and directives, which pass information to
the assembler.

- as.10 -

Aztec C86 Language Syntax ASSEMBLER

A statement has the form:
name operation operand, operand ;comment
where:

* name is the name of the statement.

* operation is the name of the instruction or directive that the
assembler is to perform for the statement.

* The operand fields are expressions, separated by commas, that
the assembler is to perform the operation on.

* ;comment is a comment, which the assembler ignores, that you
use to describe the statement.

A particular statement may not need all the fields described above.
For example, a statement can contain just a comment. And the
statement

ret

contains just the operation field: ret is the name of the 8086 return
instruction.

The fields in a statement can be separated by blanks or tabs, and
don’t have to begin in specific positions on a line.

Symbol names

A symbol name can be built up from the alphabetic characters A
through Z; the numerical digits 0 through 9; and the following special
characters: ? @ __ $. The first character in a name must not be a digit.

For symbols that are used as statement names, the assembler
distinguishes between upper and lower case characters. For other
symbols (instruction and directive names, etc), the assembler doesn’t
care about the case of the alphabetic characters in the symbol. For
example, a statement that contains the 8086 return instruction could be
coded in any of the following forms:

ret
Ret
RET

And the following statements create two distinct symbols as variable
names: Bvar and bvar:

Bvar db 10
bvar db 10

A symbol can contain as many characters as desired. However,
only the first 63 are significant.

3.2 Symbols

The as assembler has a very small instruction set; in fact, there are
fewer instruction mnemonics than there are 8086 machine

- as.11 -

ASSEMBLER Symbols Aztec C86

instructions. Most instruction mnemonics can generate any of several
hardware instructions; the assembler uses attributes of an instruction’s
operands to decide which hardware instruction to generate.

For example, there are several different hardware instructions for
moving data around. There is just one instruction mnemonic for
moving data around, mov, and the assembler uses the attributes of the
operands to a particular mov instruction to decide which hardware
move instruction to generate.

When a symbol is defined, the assembler will store its name and its
attributes. Then, when the symbol is used in an instruction, the
assembler will recall the symbol’s attributes. There are several operand
operators that allow you to obtain or to override the attributes of a
symbol. These are discussed in the Operands section of this chapter.

One of the attributes of a symbol is its type. This can specify a
constant, which is an absolute number; a variable, which refers to a
data item in memory, or a label, which refers to a memory location
that can be called or jumped to.

Variables

Another attribute of a variable or label is its segment, which is the
starting paragraph number of the segment in which the symbol is
defined.

A variable or label also has an offset attribute, which is the distance
in bytes from the symbol to the beginning in memory of the segment
in which it is defined.

There are several types of variables. They are:
* byte - a one-byte data item.
* word - a two-byte data item.
* dword - a four-byte data item.

A variable is defined using one of the data definition directives db,
aw, dd, bss, global;, or using the label directive.

Labels
There are two types of labels:

* near - represents a label that will be accessed by a *near’ call or
jump instruction. For such an instruction, the instruction and
the target label must liec in the same physical code segment.
When a ’near’ call or jump is made, the contents of the IP
register are set to the offset of the label from the beginning of
the physical segment containning it, and the CS segment
register is unchanged.

- as.12 -

Aztec C86 Symbols ASSEMBLER

* far - represents a label that will be accessed by a far’ call or
jump instruction. For such an instruction, the instruction and
the target label need not be in the same physical code
segment. When a ’far’ call or jump is made, both the IP and
the CS registers are changed.

A label is defined in the following ways: (1) in the name field of an
instruction, followed by a ’:’; (2) using a proc directive; (3) using a labe!
directive.

3.3 Segmentation

as allows a module’s code and data to be partitioned into three
segments: a code segment, which contains the program’s executable
code and, optionally, data; an initialized data segment, that contains
data but no code, and an uninitialized data segment, which contains
uninitialized variables.

Variables in a module’s initialized data segment can. be defined to
have an initial value, if desired. When a program is loaded, initialized
variables in this segment will assume their specified values: variables
whose initial value depends on where the program is loaded will be set
by the loader; other initialized variables will have been preset by the
linker. The initial value of uninitialized variables in this segment is
indeterminate.

When a linked program begins execution, variables in its
uninitialized data segment will automatically be cleared.

When modules are linked together, all the modules’ initialized data
segments are appended one to another, as are the modules’
uninitialized data segments. The two resulting segments will reside in
the same physical segment, the maximum size of which is 64K bytes.
If the program was linked to have the ’small data’ memory model, the
two data segments will share the physical segment with the program’s
stack and heap. If the program was linked to have the ’large data’
memory model, the two data segments will have the entire physical
segment to themselves; the program will have a separate stack segment,
and it will use as much space above the program as needed for its heap.

When modules are linked together, the code segments of the
modules that use the ’small code’ memory model (that is, that don’t
contain the largecode directive) will be appended one to another into a
single physical segment, the maximum size of which is 64K bytes. The
code segments of modules that use the ’large code’ memory model will
each occupy its own physical segment, whose maximum size is 64K
bytes.

3.3.1 The SEGMENT and ENDS Directives

The segment and ends directives surround a sequence of statements
and define the segment that is to contain the code and data generated

- as. 13 -

ASSEMBLER Program Segmentation Aztec C86

for the statements. The directives have the form
segname segment [align-type] [combine-type] [’cname’]

segname ends

segname is the name of the segment into which the surrounded
code and data is to be placed. This can be either codeseg or dataseg, to
specify the code segment or initialized data segment, respectively.

The align-type operand specifies on what type of boundary in
memory the segment will be located. It can have one of the following
values:

* para - Paragraph alignment. The segment will be on a
paragraph boundary; that is, it will begin at a byte whose
address is divisible by 16 (ie, an address whose least
significant hexadecimal digit is 0). If align-type isn’t
specified, the segment will have para alignment.

* byte - Byte alignment. The segment can start at any location.

* word - Word alignment. The segment must begin at a byte
whose address is even. See the even directive.

* page - Page alignment. The segment must begin at an address
whose least significant two hex digits are 00.

The combine-type operand is provided for compatibility with other
8086 assemblers, and has no effect on the as assembler. If specified,
this operand must have one of the following values: public, common,
stack, memory, at expr.

The ‘cname’ operand is also provided for compatibility with other
8086 assemblers, and has no effect on the as assembler. If specified,
this operand must be a character string, surrounded by single or double
quotes.

3.3.2 Multiple definitions for a segment

You may open and close a segment using the segment and ends
directives within a module as many times as you want. All parts of
such a segment will be joined together by the assembler.

3.3.3 Nested segments

The assembler allows segments to be ’nested’; that is, one segment
can be opened and closed using the segment and ends directives while
another is still open. The assembler will separate the code and data for
the two segments so that the one won’t be imbedded in the other when
the program is actually in memory.

For example, the following code nests dataseg within codeseg:

- as.14 -

Aztec C86 Program Segmentation ASSEMBLER

codeseg segment
;:begin assembling into codeseg
dataseg segment
;assemble into dataseg
dataseg ends
;continue assembling into codeseg
codeseg ends

The assembler will extract the data defined in dataseg so that dataseg
won’t be contained in codeseg when the program is loaded into
memory.

When a segment is nested within another, the nested segment must
be closed before the other segment is closed. For example, the
following is an error:

codesegsegment
'c.i'ataseg segment

codesegends o
dataseg ends

3.3.4 The default segment

If a program contains statements that aren’t within an open
segment, the generated code will be placed in codeseg.

3.3.5 The ASSUME Directive

The assume directive identifies to the assembler the segments that
are pointed at by segment registers. It has the form:

assume seg-reg:seghame [,seg-reg:segname ...]

The assembler uses this information when it is processing
instructions that access memory, and which don’t explicitly specify the
segment register to be used in the memory access. In such a case, if
the segment register that should be used is the same as the segment
register that the instruction will use by default, the assembler will just
output the code for the instruction. If the desired and default segment
registers differ, the assembler will automatically output a prefix byte
before the instruction, which will force the instruction to select the
proper segment register. If the desired segment isn’t pointed at by a
segment register, the assembler will display an error message.

The first form of assume defines the contents of individual segment
registers. The second form tells the assembler not to make any
assumptions about the contents of the segment registers.

In the first form, assume is passed a list of items, separated by
commas, each defining the contents of a particular segment register.
An item has the form seg-reg:segname, where seg-reg is the name of

- as. 15 -

ASSEMBLER Program Segmentation Aztec C86

the segment register; that is, CS, DS, ES, or SS.
segname can be one of the following:

* The name of the segment whose starting paragraph number is
in seg-reg.

* seg name, where name is the name of a variable of label that is
contained in a logical segment whose starting paragraph
number is in seg-reg.

* nothing, if the assembler is not to make any assumptions about
the contents of seg-reg.

For example, the assume statement in the following program tells
the assembler that the logical segment named codeseg is pointed at by
CS, that segment dataseg is pointed at by DS and ES, and that the
assembler shouldn’t make any assumptions about the contents of SS:

assume cs:codeseg, ds:dataseg, es:dataseg, ss:nothing

dataseg segment para
dl dw

dataseg ends
codesegsegment para

mov ax,dl

codeseg gnds

Because of the assume statement in the above program, the program
doesn’t have to explicitly specify the segment register to be used in the
mov instruction. Without the assume directive, the mov instruction
would have had to specify the segment register that it used; that is,

mov ax, ds:dl
3.3.6 Using the Uninitialized Data Segment

The bss and global directives create variables in the uninitialized
data segment. For more information on these directives, see the
Directives section of this chapter.

3.4 Globally-accessible symbols

as creates object modules that can be linked together into an
executable program. Each module may define *global symbols’; that is,
labels, variables, and constant symbols that other modules may use.

There are three directives relevant to the creation and use of global
symbols: public, global, and extrn.

3.4.1 The PUBLIC Directive

The public directive makes symbols that are defined in a module
accessible by other modules. The symbols can have been defined in
the name field of an instruction, or using the label directive, or using

- as.16 -

Aztec C86 Globally-Accessible Symbols ASSEMBLER

the equ directive.
The public directive has the form:
public name [,name ...]

where the name operands are the names of symbols defined in the
module that are to be made accessible by other modules.

For example, the following code creates the variables varl and var2
and the label /bl and makes them accessible by other modules.

public varl, var2, Ibl
dataseg segment
varl dw?

dataseg ends
codesegsegment
bl

var2 dd ?

codesegends

3.4.2 The GLOBAL Directive

The global directive reserves space in the uninitialized data area,
creates a variable name that refers to that space, and makes the name
accessible by other modules. The directive has the form:

global sym:type,size

where the operand defines the attributes of the created variable, as
follows:

* sym - the name of the variable;
* type - its type. This can be byte, word, or dword.
* size - the number of bytes to be reserved for the variable.

For example, the following statement creates the globally-accessible
variable gbl, whose type is word:

global gbl:word,10

Ten bytes will be reserved for the variable, and it will be located in the
uninitialized data segment, unless the overriden by the declaration of
gbl in other modules’ global and public directives. This overriding is
discussed below.

3.4.3 The EXTRN Directive

The extrn directive allows a module to access global symbols, which
have been defined in other modules using the public and/or global
directives. The directive has one or more comma-separated operands,

- as.17 -

ASSEMBLER Globally-Accessible Symbols Aztec C86

each of which defines the attributes of one global symbol. It has the
form:

extrn name:type [,name:type ...]

where name is the name of a global symbol and type is its type. type
can be byte, word, dword, near, or far.

The extrn directive must be contained in the segment in which the
variables are actually located, or in the dataseg segment if they are in
the uninitialized data area.

For example, the following code demonstrates how a module can
use the extrn directive to access the variables and labels var, varl, var2,
and /bl that are defined using the public and global directives shown
above:

dataseg segment
extrn var:byte, varl:word, gbl:word

dataseg ends
codesegsegment

extrn Iblknear, var2:dword
codesegends

3.4.4 Interactions of the GLOBAL, PUBLIC, and EXTRN Directives

A globally-accessible variable can be defined using the global
directive in some modules, using the extrn directive in other modules,
and using the public directive in at most one module. If the variable is
defined using an extrn directive in one module, it must be defined
using a global or public directive in at least one other module.

When a variable is defined using global directives in one or more
modules and is not specified in a public directive, an amount of space
in the uninitialized data area is reserved for the variable that is equal
to the largest size specified for it in the global directives. For example,
if the variable var is defined in different modules using the following
declarations, it will have 20 bytes reserved for it when it is linked:

global var:byte, 10 :module 2a’s declaration
global var:byte,20 ;module b’s declaration
global var:byte,0 :module ¢’s declaration

When a variable is specified in a module’s public directive, the
variable will be located in the segment in which it is defined,
regardless of its specification in other modules’ global directives. In
this case, the global directives don’t have any effect on the amount of
space reserved for the variable; the statement in the module containing
the public directive that actually creates the variable defines its space.
For example, if a module contains the declarations

- as. 18 -

{

[

Aztec C86 Globally-Accessible Symbols ASSEMBLER

dataseg segment

public var
var byte S5dup(?)
dataseg ends

and it is linked with the three modules shown above, which define var
using global directives, then 5 bytes are reserved for var in the dataseg
segment.

In order to alert you to accidental duplication of globally-accessible
names in different modules, the Aztec linker will issue a "multiply-
defined symbol" message when it encounters a global or public symbol
in one module that matches a name in another module, and then
proceed to generate code as discussed above. The -M linker option
will prevent the linker from issuing these messages for global and
public definitions of symbols that obey the rules; for those that don’t, it
will still generate an error message.

The PCDOS/MSDOS linker lnk does not support the global
directive; obj, the Aztec program that converts object modules from
Aztec to PCDOS/MSDOS format so that they can be linked with Zink,
translates the definition of a variable using global into an equivalent
definition using the public directive, and a db, dw, or dd directive.
These converted directives don’t allow the same variable to be defined
in different modules using the public directive. Thus, if a program is
to be linked using the PCDOS/MSDOS linker, a globally-accessible
variable must be defined using exactly one global or public directive in
all the modules that are linked together.

3.5 Operands and expressions
3.5.1 Registers

8086 registers are referenced using their standard names: CS, DS,
SS, ES, AL, AH, BL, BH, CL, CH, DL, DH, AX, BX, CX, DX, SP, BP,
SI, DI

as does not support the 8087 instruction mnemonics, and the
standard names for the 8087 registers, st(0), ..st{7), are not reserved
symbols in as.

3.5.2 Immediate operands (constants)

as allows an instruction operand to be a constant; that is, a number
that has no attributes other than its value. The following types of
constants are supported:

* Binary (base 2): A sequence of 0’s and 1’s followed by the
letter B. For example: 10010110B and 11B.

* Octal (base 8): A sequence of digits 0 through 7 followed
cither by the letter Q or the letter O. For example: 1777Q
and 560.

- as.19 -

ASSEMBLER Instruction Operands Aztec C86

* Decimal (base 10): A sequence of digits 0 through 9,
optionally followed by the letter D. For example: 1234 and
1234D

* Hexadecimal (base 16): A sequence of digits 0 through 9
and/or letters A through F, followed by the letter H. The
sequence must begin with one of the digits 0 through 9. For
example: OFFFFH.

* ASCII Character: One or more characters surrounded by
single or double quotes. When a quoted character is used as
an instruction operand, the character’s ASCII value is used.
Character strings containing more than two characters are
only valid for the db, dw, and dd directives.

3.5.3 Memory operands

An operand in memory is specified using an "address expression”,
Address expressions are specified using the standard 8086 syntax. This
syntax is described in the following paragraphs.

Accessing data in memory

The simplest type of address expression that accesses data is just the
name of the variable containing the data, plus or minus a constant.
For example,

add dx,count ;add contents of count to DX
add abc+4,cx ;add CX to contents of abc+4
add abc[4],cx ;same as the above

An address expression can also specify that a data operand resides
in memory at an offset computed by adding together any or all of the
following:

* An 8- or 16-bit displacement
* The contents of a base register
* The contents of an index register.

If a base or index register is used, its name is surrounded by square
brackets.

As an example of a memory operand that doesn’t involve a register,
the following instruction moves the contents of the word at location
count+6 into AX:

mov ax,count+6

If the operand’s offset is specified by just a constant, the constant
must be surrounded by square brackets. For example, the next
instruction moves 0 into AX, while the one after it moves the contents
of the word at the beginning of the segment pointed at by the DS
segment register into AX:

- as.20 -

Aztec C86 Instruction Operands ASSEMBLER

mov ax,0
mov ax,[0]

The following instructions demonstrate how an offset can be
specified using just a register. The first instruction moves the contents
of the word pointed at by BX into AX, while the second moves the
contents of AX to the word pointed at by S

mov ax,[bx]
mov [si], ax

The next instructions use one register and a displacement to define
the location of an operand. The first instruction moves into AX the
contents of the word whose offset from the beginning of the data
segment equals that of the variable fable plus the contents of register
SI. The second and third instructions move the contents of AX to the
memory word whose offset from the beginning of the data segment
equals that of the variable data plus 4 plus the contents of BP.

mov ax,table[si]
mov data+4[bp],cx
mov [data+4+bp],cx

The following equivalent instructions use an index register, base
register, and a displacement to define the location of an operand:

mov ax,table+4[bp][di]

mov ax,table+4[bp+di] ;same as the above
mov ax,[table+4+bp+di] ;same as the above
add [bx][si],32

Operands to jump and call instructions

A call or jump instruction can specify the address to which control
is to be transferred within the instruction. For example,

call Ibl

Ibk:
It can also specify a variable which contains the address to which
control is to be transferred. For example,

XX dw subl
yy dd sub2

call XX ;near call to subl
jmp vy sfar call to sub2

A jump or call instruction can transfer control to a location whose
offset if in any 16-bit general-purpose, base, or index register. In this
case, the register name isn’t surrounded by square brackets. For
example,

- as.21 -

ASSEMBLER Instruction Operands Aztec C86

jop ax ;jump to location whose offset is in AX

A call or jump instruction can transfer control to a location whose
offset and, optionally, its segment number are in a memory location,
where the offset of the memory location is in a base or index register.
In this case, the register name is surrounded by square brackets. For
example

call word ptr [si]
call dword ptr [bx]

In the above example, the first instruction performs a near call to the
location whose offset is contained in a word in memory. The offset of
this word is contained in SI. The second instruction performs a far call
to the location whose offset and segment number is contained in a
doubleword in memory. The offset of this double word is contained in
BX.

A jump or call instruction can specify that the target address is
contained in a memory location whose offset is defined by the sum of
a displacement, contents of a base register, and contents of an index
register., For example,

table dw subl, sub2, ...

Jmp table[si] ;near jump
jmp word ptr [bp][di]

Which segment register is used?

An instruction can only access a memory operand that is contained
in a physical segment whose segment number is in one of the four
segment registers. The assembler and the 8086 itself will select the
segment register to be used in a memory access, if an instruction
doesn’t explicitly specify one, using the following rules:

* If the operand contains a variable or label name, the segment
register that points to the segment containing the variable or
label is used. The assume directive defines the contents of the
segment registers.

* Otherwise, if the operand uses BP or if the instruction is a
stack instruction, the SS segment register is used.

* Otherwise, the DS segment register is used.

An address expression can explicitly specify the segment register
that points to the segment containing the expression’s operand by
preceding the expression with the name of the segment register,
followed by a colon. For example, the first instruction below fetches a
word from the segment pointed at by SS, while the second fetches the
operand from the segment pointed at by DS:

- as.22 -

Aztec C86 Instruction Operands ASSEMBLER

mov ax,[bp]
mov ax,ds:[bp]

3.5.4 Operand Expressions

An expression that is used as an instruction’s operand can be
| created using the operators described in the following paragraphs.

3.5.5 Arithmetic Operators

The HIGH and LOW Operators

high operand
low operand

high and low have as their value the most significant and least
significant bytes, respectively, of operand. operand can be an
expression having a constant value; in this case, the resulting
value is also constant. operand can also be a relocatable
expression; in this case, the resulting value is also relocatable.

For example, the following mwov instruction moves the most
significant byte of the address of the variable abc into AH:

abc dw ?
mov ah,high abc

The Addition and Subtraction Operators

Addition: operand + operand
Subtraction: operand - operand

When object modules are linked using as, any of the operands
can be relocatable or constants. When they are linked using the
PCDOS/MSDOS linker (after using obj to convert them to
PCDOS/MSDOS format), the following restrictions apply:

* For addition, at most one of the operands can be
relocatable.

* For subtraction, either or both the operands can be
relocatable. '

The Multiplication and Division Operators

Multiplication: operand * operand
Division: operand / operand
Modulo: operand MOD operand

These operators may only be used on operands that are constant
expressions. The result is always a constant.

- as.23 -

ASSEMBLER Instruction Operands Aztec C86

The Shift Operators
Shift right: operand shr count
Shift left operand shl count

These operators shift operand the number of bits specified by
count. Bits shifted into the operand are set to 0. Both operand
and count must be expressions that evaluate to absolute numbers.

For example, the following instruction moves into AX the
constant Ofh, which is derived by shifting Ofah right 4 bits.

add ax,0fah shr 4

The Relational Operators
equal: opl eq op2
not equal opl ne op2
less than: opl It op2
less than or equal: opl le op2
greater than: opl gt op2

greater than or equal: opl ge op2

The relational operators compare two operands, opl and op2,
returning an 8- or 16-bit value that is all ones if the relationship
is true, and all zeroes if it’s false.

Both operands must be expressions that evaluate to an
absolute number.

For example,
count = 5

1f count It 5

The Logical Operators

opl or op2
opl xor op2
opl and op2
not opl

The logical operators may only be used with expressions that
evaluate to an absolute number. They return an absolute
number.

or performs a logical ’or’ of the two operands. For each pair
of bits, the resultant bit is 0 if both operand bits are 0, and is 1
otherwise. For example,

10011B or 01010B = 11011B

- as.24 -

Aztec C86 Instruction Operands ASSEMBLER

xor performs an exclusive ’or’ on the bits in the two operands.
For each pair of bits, the resultant bit is 1 if exactly one of the
operand bits is 1, and is 0 otherwise. For example,

10011B xor 01010B = 11001B

and performs a logical ’and’ of the bits in the two operands.
For each pair of bits, the resultant bit is 1 if both of the operand
bits is 1, and is 0 otherwise. For example,

101010B and 111B = 10B

not performs a logical negation of its operand, converting 1’s
to 0’s and 0’s to 1’s. For example,

not 101001B = 10110B
3.5.6 Attribute-overriding operators

The Segment Override Operator, *?
segreg:addrexpr

The segment override operator, :, is used to explicitly specify the
segment register that is to be used to access a memory operand.
If this operator isn’t used, the assembler will decide which
segment register must be used to access the operand and, if
necessary, output a segment-selection prefix for the instruction.

addrexpr is the address expression whose -corresponding
memory operand is to be accessed, and segreg is the name of the
segment register to be used for the access.

One common use of this operator is to override the segment
register that the hardware by default selects to access an operand.
For example, the following instruction will access the memory
operand using the DS segment register:

mov ax,[bx]

If the operand is contained in a physical segment that is pointed
at by ES, the following instruction could be used to access it:

mov ax,es:[bx]

In this case, the instruction that is assembled will be preceded by
a "segment override prefix" that forces the processor to use ES to
access the operand.

The PTR Operator

type pir expr

The ptr operator sets the type of the operand expression expr to
type.

- as.25 -

ASSEMBLER Instruction Operands Aztec C86

For most of the 8086 instruction mnemonics, there are several
hardware instructions. When the assembler encounters an
instruction, it uses the types of the instruction’s operands to
decide which hardware instruction it should generate. In many
cases, the assembler can determine the type of an expression
from the type of the symbols that are in the expression. For
example:

wvar dw ?
bvar db ?

inc wvar ;increment a two-byte field
inc bvar increment a one-byte field

The assembler knows that wvar is the name of a word field and
that bvar is the name of a byte field. Thus, for the first inc
instruction it correctly generates the hardware instruction that
increments a word in memory. And for the second it generates
the hardware instruction that increments a byte in memory.

There are some operands for which the assembler can’t
determine the type of the operand. For example, the assembler
can’t decide whether the operand in the following instruction
refers to a byte or word:

inc [bx]

In cases like this, the pir operator can be used to explicitly state
the type of the operand:

inc word ptr [bx]
inc byte ptr [bx]

The operand of the first instruction above is stated to be a word,
and that of the second instruction is stated to be a byte.

The ptr operator can also be used to override the assembler’s
idea of the type of an operand. For example, for the first
instruction that follows the assembler generates code that moves
the immediate value 10 into AX. And for the second instruction
it generates code that moves the contents of the word at offset 10
into the segment pointed at by the DS segment register into AX.

mov ax,10
mov ax,word ptr 10

As another example, the following code accesses separately
the two bytes of a word variable:

mov al, byte ptr aword ;get low order byte
mov bl byte ptr aword+1 ;get high order byte

The type field of the ptr operator can have the following
values;

- as.26 -

Aztec C86 Instruction Operands ASSEMBLER

byte
word
dword
near
far

* ¥ ¥ X ¥

The SHORT Operator
short bl

The short operator is used within the operand of a jmp
instruction to specify that a forward-referenced label, b/, is
within 127 bytes of the instruction. With this information, the
assembler can generate a two-byte instead of a three-byte
instruction for the jmp.

If despite your claim, the linker finds that /bl is not within
127 bytes of the jmp, it will report an error.

3.5.7 Attribute-value operators

The THIS Operator
this type

The this operator is used within an equ statement to create a
symbol whose segment and offset components are those of the
current segment and the current offset in that segment,
respectively, and whose type is fype.

this is frequently used to create an alternate name and type for
a data item. For example:

aword equ this word
bytel db ?
byte2 db ?

Using the this operatdr with the equ directive is equivalent to
using the label directive. The above example could also have
been coded using the lable directive as:

aword label word
bytel db ?
byte2 db ?

The symbol $ is equivalent to this near. For example,
XX equ $
jmp xx
The type operand to the this operator can have the following
values:
* byte

- as.27 -

ASSEMBLER Instruction Operands Aztec C86

* word
* dword
* near
* far

The SEG Operator
seg varlab

The seg operator has as its value the beginning paragraph number
of the segment in which name is contained. This value is
relocatable; that is, it isn’t known until the program is loaded into
memory. varlab is the name of a variable or label

For example, the sirt variable that follows contains the starting
paragraph number of the dataseg segment, and the mov
instruction moves dataseg’s starting paragraph number into AX:

dataseg segment

dl dw ?
strt dw seg d1 ;starting para no of dataseg
dataseg ends
codesegsegment
mov ax,seg dl ;get dataseg base
The OFFSET Operator
offset varlab

The offset operator has as its value the offset of varlab, which is a
variable or label, from the beginning of the segment in which
varlab is contained.

The type of the resulting value is relocatable immediate’; this
causes the assembler to match an instruction that uses the offset
operator to an ’immediate’, rather than a ’memory reference’,
version of the hardware instruction.

For example, the first instruction that follows is a memory
reference instruction; it moves the contents of the memory
location named fable into bx. The second instruction is an
immediate instruction; it moves the offset of the memory
location named fable from the beginning of the segment
containing it into bx.

mov bx, table ;move contents of table into bx
mov bx,offset table ;move offset of table into bx

- as.28 -

Aztec C86 Instruction Operands ASSEMBLER

The TYPE Operator
type varlab

The type operator has as its value an integer constant that
identifies the type of the operand varlab, which is the name of a
variable or label. This operator is useful in sequences of code
that process the elements of an array or table.

The types of varlab and the corresponding values of the type
operator are:

varlab type
byte 1
word 2
dword 4
near 255
far 254

For an example, see the description of the length operator,
below.
The LENGTH Operator
length var

The length operator returns the number of elements (bytes,
words, or dwords) that have been allocated for the variable var.
This operator is useful in instruction sequences that process the
elements of a table or array.

For example, the following code processes the elements of zbi-
mov cx,length tbl ;get # of elements in tbl

mov si,0 ;index into tbl
doone:
mov ax,tbl[si] ;get current tbl element
;process it
add si,type tbl ;incr SI to next element
loop doone
The SIZE Operator
size var

The size operator returns the number of bytes allocated for a
variable. This value is related to the values of the length and type
operators as follows:

size = length * type
For example

- as.29 -

ASSEMBLER Instruction Operands Aztec C86

wtbl dw 100 dup (?)
btbl db 100 dup (?)

mov ax,size wtbl ;ax=200"
mov ax,length wtbl ;ax=100
mov ax,size btbl ;ax=100
mov ax,length btbl ;ax=100

3.5.8 Operator Precedence

The expression operators are listed below in decreasing order of
precedence. An expression is evaluated from left to right, following
the precedence rules. You can use parentheses to specify the order in
which an expression should be evaluated.

Highest precedence

Square-brackets and the length and size operators.

pir, offset, seg, type, this, and segment override (segreg:name)
high and low

* [, mod, shr, shl

Unary + and -

Binary + and -

eq, ne, It, le, gt, ge

not

W © NN R WD

and

ot
e

or and xor

11. short
Lowest precedence

3.6 Instructions

as supports all the standard 8086, 8088, and 80186 instructions, plus
some special instructions. It does not support the 8087 instructions.

as has a feature, codemacros, with which you can define, and then
invoke, your own instructions. Codemacros are described in another
section of this chapter.

Most of the special instructions supported by as are conditional
branch instructions, whose target location can be anywhere in the
current code segment. The standard conditional jump instructions
require that the target address be inside a small interval of code
centered around the jump instruction.

When a conditional branch instruction is assembled, the equivalent
jump instruction will be generated if the target of the branch can be

- as.30 -

Aztec C86 Instructions ASSEMBLER

reached by the jump instruction. Otherwise, the assembler will
generate two hardware instructions for the branch: an unconditional
jump to the target (which can access any location in the code segment),
preceded by a conditional jump around the unconditional jump. This
preceding conditional jump tests for a condition that is the opposite of
the one specified by the branch instruction.

The special branch instructions and their corresponding jump
instructions are:

branch Jjump
beq je
bne jne
blt jl
ble jle
bgt i
bge jge
blo jb
blos jbe
bhi ja
bhis jae

The other special instructions supported by as are nil, which does
nothing and which generates no code; and xlath, which is the same as
the standard xlat instruction, but which doesn’t require an operand,
and which assumes that the translate table is in the segment pointed at
by the DS segment register (ie, it won’t automatically output a segment
override prefix).

3.7 Directives

The ASSUME Directive

assume seg-reg:segname, ...
or
assume nothing

assume identifies to the assembler the segments that are pointed
at by segment registers. This directive is discussed in the
"Segmentation" section of this chapter.

The BSS Directive

bss sym:type,size

The bss directive creates a variable that will be placed in the
program’s uninitialized data area. This area immediately follows
the program’s dataseg segment, and is automatically cleared by
the startup routine that is in the standard versions of c./ib.

The operands to bss define the attributes of the created
variable, as follows:

- as. 31 -

ASSEMBLER Directives Aztec C86

* sym - the name of the variable;

* fype - its type. This can be byte, word, or dword.

* size - the number of bytes to be reserved for the
variable. '

By default, a symbol defined with the bss directive is local to
the module in which it is defined; that is, it can’t be accessed by
other modules. It can be made globally accessible using the public
directive.

The global directive defines uninitialized variables that can be
accessed by other programs. Normally, you should use global to
create an uninitialized global variable.

The bss and public can be useful for creating a globally-
accessible area in the uninitialized data area that can be accessed
using more than one name. This can’t be done using the global
directive. For example, the following code allocates 10 bytes in
the uninitialized data area, which can be accessed by the names
fred and susan:

public fred, susan

bss fred:0,byte

bss susan:10,byte
The DB, DW, and DD Directives

[var] db val [val val...]
[var] dw val [val val...]
[var] dd val [val val...]

The db, dw, and dd directives reserve one or more fields of
memory, optionally initializes them, and optionally defines a
variable. The number of bytes per field for db, dw, and dd is
one, two, and four, respectively.

var is a variable name, and is optional. If specified, the name
is entered into the symbol table with the following attributes:

attribute value
type byte (for db), word (dw), or dword (dd)

segment the starting paragraph number of the segment in
which var is defined.

offset the distance in bytes of var from the beginning
of the segment.

length the number of fields defined in the directive.
size the number of bytes defined in the directive.

Each val operand causes one or more fields of memory to be
reserved and optionally initialized. The assembler processes the

- as.32 -

Aztec C86 Directives ASSEMBLER

val operands from left to right, reserving space within the current
segment at successively higher addresses.

A val can be one of the following:

* An expression that evaluates to a constant. In this case,
a single field is reserved for the operand and is
initialized to the value of the expression. For example,
the first directive that follows reserves a one byte field,
and initializes it to the decimal value 10. The second
reserves a two-byte field, and initializes it to the
hexadecimal value 1234h (with 12h in the highest-
addressed byte). The third reserves a four-byte field,
and initializes it to hex 1234h (with 0 in the highest-
addressed word and 1234h in the'lowest).

db 10
dw 1234h
dd 1234h

* An address expression, for dw and dd. That is, a
relocatable expression whose type is variable or label
For dw, the offset attribute of the expression is set in
the field. (that is, the distance of the location
referenced by the expression from the beginning of the
segment containing it). For dd, both the segment and
offset components of the expression are set in the four-
byte field, with the segment number in the highest-
addressed two bytes.

For example, suppose var is the name of a variable in
the dataseg segment. Then the dw statement below
reserves two bytes and places the offset of var in it. And
the dd statement reserves four bytes, placing the
segment number of dataseg in the two highest-addressed
bytes and the offset of var from the beginning of dataseg
in the two low-addressed bytes.

dw var
dd var

The offset of var is determined when the program is
linked. The starting paragraph number of dataseg isn’t
known until the program is loaded, so the loader has to
adjust the two high-order bytes of the dd statement
when it loads the program.

* For dw and dd, an operand can be a segment name, or
an expression that evaluates to the starting paragraph
number of a segment (such as seg name). The paragraph
number is set in the highest-addressed two bytes for dd,
and the low-addressed bytes are set to zero.

- as.33 -

ASSEMBLER Directives Aztec C86

* A db, dw, or dd operand can be a question mark. In this
case, a single field is reserved for the operand, and is not
initialized. For example,

db ?
dw ?
dd ?

reserve one byte, word, and double word, respectively,
and don’t initialize them.

* For db, an operand can be a character string, surrounded
by a pair of single or double quotes. The characters in
the string will occupy successively higher memory
locations. For example,

db "This is a string"
db ’as is this’
* An operand to db, dw, or dd can be a repeated
reservation and initialization of the form
count dup (vall, val2,..)

where each val is a legal operand of the directive
containing it, and count is a constant. This type of
operand is equivalent to replicating the operands

vall, val2, ...
count times in a statement.

For example, the following statement reserves 5 bytes
of memory, without initializing it

db S dup (?)

The following statement reserves 10 sets of three four-
byte fields. In each set, the first four-byte field is
initialized to count, the second to start, and the third is
uninitialized: ’

dd 10 dup (count, start, ?)
dup items can contain strings, as in

db 5 dup (Chello’, ’goodbye’)
db 8 dup (5, "albert")

And they can contain nested dup fields, as in
db 15 dup(hello’, 3 dup(’goodbye’))

The END Directive
end [expr]

- as.34 -

Aztec C86 Directives ASSEMBLER
The end directive identifies the end of an assembly language

program.

The optional parameter expr identifies the address at which
execution will begin in a program. If several modules are linked
together to form an executable program, at most one of them can
specify the program’s starting address. And if, when an
executable program is linked, none of its modules specifies a
starting address for the program, execution will begin at the first
byte in the program’s first code segment.

The EQU Directive
name equ expr

equ creates an entry in the symbol table for the symbol name,
assigning it the value of expr.

name must not already be defined (that is, have an entry in
the symbol table). If you want to create identifiers whose value
can be redefined, use the = directive.

expr can be any of the following:

* A variable or label name. This name can be a forward
reference, if necessary; that is, the statement defining
the name can follow the equ statement. For example,
both the egu statements that follow are legal:

dl dw ?
newl equ dl1
new2 equ 42
d2 dw ?
* An integer numeric constant. For example,
size equ 10

* A valid expression involving constants, variables and
labels. For example,

el equ 2+3
e2 equ el and 4
e3 equ dl + 8
dl dw ?
* An 8086 register name. For example,
count equ cX
pointer equ bx
mov count,10
mov pointer, offset array

8086 instruction names. For example,

- as.35 -

ASSEMBLER Directives Aztec C86

get equ mov
bump equ inc
get ax,bx
bump ax
* A register expression. For example,

argl equ -4[bp]

Iell equ O[bp]
mov ax,argl
mov bx,Icll

expr cannot be an external identifier (that is, an identifier
defined in the exirn directive).

The = (equal sign) Directive
name = expr

The = directive assigns the value of the constant expression expr
to the identifier name.

name can be either a new identifier or one that was previously
defined using the = directive. In the latter case, the new value
replaces the old.

The = directive is similar to equ. It differs in that it allows
identifiers to be redefined, and can only be assigned a constant
expression as a value.

For example, the first statement below creates the symbol sum
and assigns it the value 0. The second statement redefines sum to
7. And the last statement increments the current value of sum by

one.
sum = 0
sum = 7
sum = sum+1

An identifier created using the = directive can’t have its value
redefined using equ. For example, since in the above statements
sum was created using =, its value couldn’t be redefined using
sum equ 8.

Similarly, an identifier created using equ can’t have its value
redefined using =.

The EVEN Directive
even

The even directive ensures that the data following the directive is
aligned on a word boundary. If the following data would
otherwise begin on an odd-numbered byte, even outputs a single

- as.36 -

P

Aztec C86 Directives ASSEMBLER

byte consisting of a nop instruction (0). If the code or data would
begin on an even-numbered byte, even does nothing.

even can be used to speed up execution of programs that will
run on 8086, 80186, or 80286 processors. The reason for this is
that on these processors, but not on an 8088 processor,
instructions that access a word in memory execute slightly faster
if the word begins on an even-numbered address.

even can only be used in the data segment, and cannot be used
if the segment is byte-aligned.

The EXTRN Directive
extrn name:type [,name:type,...]

extrn defines the names and types of symbols that have been
declared to be "public" or "global" in other modules, and thus
allows the program being assembled to reference those symbols.
For more information, see the section entitled "Globally-
accessible Symbols" m this chapter.

The GLOBAL Directive
global sym:type,size

The global directive creates a global variable that will be placed in
the program’s uninitialized data area. For more information, see
the section entitled "Globally-accessible Symbols" in this chapter.

The GROUP Directive
name GROUP segname, segname, ...

The group directive, which is supported by the PC-DOS/MS-
DOS assembler, masm, is accepted by as, but doesn’t have any
effect, since the assembler doesn’t support Intel-style grouping of
segments.

The INCLUDE Directive
include filename

The include directive causes as to suspend assembly of the file
that contains the directive and to assemble the source that is in
the specified file, filename. When the assembler finishes with the
include file, assembly of the file containing the include directive
continues.

The include statement allows you place statements that are
common to several assembly language programs in one file.
Other files can access these statements using an include statement,
eliminating the need to repeat the statements in each file that

- as.37 -

ASSEMBLER Directives Aztec C86

uses them.

There is no limit to the number of include statements that a
single file can contain, and a file specified in an include directive
can itself contain an include directive. The maximum depth of
include file nesting is five files; this means that when one file
includes another, which includes another, and so on, the total
number of files in this chain can’t exceed five.

The LABEL Directive
name label type

The label directive creates a variable or label named name, which
has the following attributes:

* Type: the value of the type operand. This can be byte,
word, dword, near, or far.

* Segment: the segment into which code and data are
currently being assembled.

* Offset: the current offset within that segment.

label is useful when several names, possibly having different
type attributes, need to be associated with the same location.

For example, the following code allows a program to easily
access two consecutive bytes as both a word and as two separate

bytes:
aword label word
alow db ?
ahigh db ?

label can also be used to define secondary entry points within
a procedure that has been defined with the proc .. endp
directives. For example,

main proc far

sec faibel far

main ;.ndp
If you use the label directive in this way, be careful that the type
of the label matches the type of the procedure in which it is
contained.

The LARGECODE Directive
largecode

The largecode directive specifies that the module being assembled
is to use the large code memory model This causes the
program’s codeseg segment to be a separate segment when the

- as.38 -

Aztec C86 Directives ASSEMBLER

module is linked into a program.

If the largecode directive isn’t specified, the module will use
the small code memory model. In this case, when the module is
linked into a program, its codeseg will be joined with the codeseg
of all other modules that were assembled to use the small
memory model, into a single segment.

The MOD186 Directive

mod186

The mod186 directive specifies that the module will run on a
80186 or compatible processor. This allows the module to
contain 80186 instructions.

If this directive isn’t specified, and if the program contains
80186 instructions, the assembler will flag them as an error.
The NAME Directive
name module-name

The name directive defines the name of the object module
generated for an assembly language source file.

A module name contains up to eight characters. module-name
can contain any number of characters, but only the first eight are
used.

The only time a module needs a name is when it’s in a
library. When the librarian /b places a named object module in a
library, that name is given to the library’s copy of the module.
When it places an unnamed module in a library, /b derives the
name of the library’s copy of the module from the name of the
input file, by removing the drive, path, and extension
components of the file name.
The ORG Directive
org expr
The org directive sets the location counter within the current
segment to expr.
The PROC and ENDP Directives

proc_name proc [proc__type]

proc__name endp

The proc and endp directives are used to delimit a related
sequence of instructions, such as a subroutine.

- as.39 -

ASSEMBLER Directives Aztec C86

The proc directive creates the label proc__name. The optional
operand proc__type defines the type of the label; if specified, it
can be either near or far. If the type operand is not specified,
proc__name is given type far if the module is being assembled to
use the large code memory model (that is, it contains the
largecode directive), and is given type near otherwise.

The type assigned to proc__name controls the type of return
instruction that is generated for each ret instruction within the
proc ... endp directives: if proc__name is of type near, then near
returns are generated; and if proc__name is of type far, then far
returns are generated.

For example, the following program fragment defines a near
procedure, np, and a far procedure, fp, and shows calls to them:

codeseg segment para
np proc near

;the proc’s code

ret ;this will be a near return.
np endp

fp proc far
;code for the proc

;ét ;this will be a far return
fp endp
call np ;a near call

call fp ;a far call

codeseg ends

There can be several labels that serve as entry points into the
statements within a pair of proc .. endp directives. If the
procedure is of type near, the entry point labels can be defined
using the label directive or in the label field of an instruction.
For example, the following near procedure can be entered at the
labels main, secl, or sec2:

main pro¢c near
secl label near
sec2: mov ax,bx

ret ;a near return

If the procedure is of type far, secondary entry points can
only be defined using the label directive. Other labels can be
defined within the procedure in the label field of instructions,
but these can only be used as the target of jump instructions that
are contained in the procedure, and not as labels that can be

- as.40 -

Aztec C86

Directives ASSEMBLER

called from outside of the procedure. For example, in the
following code, the near label ¢7 can be jumped to by code that is
within the subr proc, but it can’t be called from code outside of
the proc. The far label 2 can be called from outside the proc,
but you probably wouldn’t jump to it from code that’s in the

proc.
codesegsegment para public
subr proc far
tl: va ax,bx
£ label far
subr gndp
call subr ;far call to subr
call 2 sfar call to t2
call tl “:near call to t1 **don’t do this**
codesegends

procs can be nested; that is, one proc can be contained within
another. For example, in the following code, the far proc muin
contains the near proc subr.

codesegsegment para public
main proc far
subr proc near
;code for subr
ret ;near return from subr
subr endp
;code for main
call subr ;near call to subr
main endp
codesegends

There is no "block structuring" of procs; that is, execution can
fall into a nested proc. "Falling into" a nested procedure is
usually an error, as shown in the following erroneous example:

- as.41 -

ASSEMBLER Directives Aztec C86

pl proc far
mov ax,bx

add ax,12
p2 proc near
L1: mov ax,cx
ret
p2 endp
sub ax,1
ret
pl endp

The programmer expected that the next instruction to be
executed after the add in the pl proc would be the sub that
follows the p2 proc; actually, the next instruction to be executed
will be the mov in the p2 proc. This program will crash, because
a call to the far proc pl will result in a near return, at the ret
that’s in p2.

The PUBLIC Directive

public sym [,sym ...]

The public directive identifies the symbols defined in the
program being assembled that can be accessed by other modules.
For more information, see the section entitled "Globally-
accessible symbols" in this chapter.

The RECORD Directive
recname record fldname:width [=initval] [,...]

The record directive creates user-defined directive that can be
used in a codemacro. When such a user-defined directive is
encountered during the expansion of a codemacro, the assembler
combines specified values into a byte or word and then outputs
the result. The record directive also defines a template that is
associated with the user-defined directive. The template for a
user-defined directive has the following uses:

* it defines whether a byte or word will be generated
when the directive is invoked,

* it organizes the bits in the byte or word into named
fields,

* it optionally assigns a default value to the fields.

In the synopsis, recname is the name of the user-defined
directive.

The record directive has one or more operands, separated by
commas, each of which defines the attributes of a field within
the template that is created for the user’s directive. As shown in
the synopsis, the operand for a field contains the following items:

- as.42 -

Aztec C86 Directives ASSEMBLER

* fldname is the field’s name.

* fldwidth is the number of bits it contains.

* jnitval is the default value for the field. This value is
optional; if not specified, it’s assumed to be 0. When the
user-defined directive is used, and a byte or word is
generated for it, a value will be set in each of the
record’s fields. The user-defined directive can
optionally specify the value of the fields. For those
fields for which the directive doesn’t specify a value, the
field is set to its default value.

The record directive doesn’t explicitly specify whether the
created template contains a byte or a word. This is determined
from the size of the individual fields: if the sum of the field sizes
is less than 8 bits, the template will occupy one byte; if the sum
is greater than 8, the template will occupy a word.

Also, the record directive doesn’t explicitly specify the
location of a template’s fields. This is determined from the sizes
of the template’s fields: the fields in the template are contiguous
and are right-justified, with the last field defined in the record
directive that created the record’s template occupying the least
significant bits in the template.

For example, the following record directive creates a directive
named errflgs and associates with it a template containing three
fields: ioerr, containing 3 bits; syserr, containing 4 bits; and
memerr, containing 1 bit.

errflgs record ioerr:3, syserr:4, memerr:1

The template contains a single byte, since that is all that is
needed to hold the record. The memerr field will occupy the least
significant bit of the template; syserr field will occupy the next
four most significant bits; and the ioerr field will occupy the most
significant bits, No initial value was specified for the fields;
because of this, when the errfigs directive is used, those fields for
which initial values aren’t explicitly specified will be set to 0.

A template need not specify all the fields in a template. In
this case, the template’s defined fields will be right-justified, with
the undefined bits occupying the most significant bits in the
template. For example, the following record directive creates a
directive named partly and associates with it a template
containing two named fields: hi, containing 6 bits, and low,
containing 5 bits.

partly record hi:6=32, low:5=24

The template is 16 bits wide, with its low occupying the least
significant 5 bits, the hi field occupying the next most significant
6 bits, and the most significant 5 bits of the storage being

- as.43 -

ASSEMBLER Directives Aztec C86

unnamed and unused.

In the last example, a default value was specified for each of
the template’s fields. If a partly directive is used and the
directive doesn’t specify the initial value of the hi field, the field
will be initialized to 32. Similarly, the default initialization
value of the low field is 24.

Using a User-defined Record Directive

A user-defined record directive can only be used in a codemacro.
This is discussed in the Codemacro section of this chapter.

The SEGMENT and ENDS Directives
segname segment [align_type] [comb-type] [‘cname’]

segname ends

The segment and ends directive identify the logical segment
containing the code and data that are defined between the
directives, and define the attributes of the segment. For more
information, see the "Segmentation" section of this chapter.

3.8 Macro directives

as provides support for macros. The as macro features are
compatible with those provided by the MS-DOS/PC-DOS assembler.

A macro is a named sequence of statements, which is defined when
a program is assembled. Each time a macro is "invoked" (that is, its
name appears in the operation field of a source line), the macro’s
statements are assembled.

A macro can have named parameters, with the names appearing in
the statements within the macro. When a macro having parameters is
invoked, the actual parameters for the macro (that is, the operands in
the invoking line) replace the parameter names and then the resulting
statements of the macro are assembled.

A macro definition begins with the macro directive and ends with
the endm directive. The block of statements that will be assembled
whenever a macro is invoked appear between these two statements.

As an example of a parameterless macro, the following statements
define the macro begin, which might be used when entering a
subroutine:

begin macro
push bp ;save bp
mov sp,bp ;set new frame pointer
add sp,10 :reserve 10 bytes on stack for locals
endm ;end of macro definition

- as.44 -

Aztec C86 Macros ASSEMBLER

This macro is invoked within a program as follows:
input proc near entry point for the input subr

begin ;set up stack & stack regs for subr
_;body of the input proc

input endp send of input

output proc near entry point for the output subr
begin ;initial code for subr
;body of the output proc

output endp ;end of output

Thus, the input and output subroutines that use macros are
equivalent to the following:

input proc near entry point for the input subr

push bp

mov bp,sp

add sp,10

;body of the input proc
input endp send of input
output proc near entry point for the output subr

push bp

mov bp,sp

add sp,10

;body of the output proc
output endp ;end of output

As you can see, use of macros makes the source program shorter, and
frequently makes it easier to understand.

For an example of a macro with parameters, let’s modify the begin
macro so that it can push a invoker-specified register and add an
invoker-specified amount to the stack pointer:

begin macro reg,size

push bp

push reg ;push specified register

mov bp,sp

add sp,size ;add specified value to stack pointer
endm ;end of macro definition

In this macro, the name of the parameter specifying the register to be
pushed is reg, and the name of the parameter specifying the amount to
be added to the stack pointer is size.

Now let’s modify the input and output subroutines to use the
modified begin macro. input will tell begin to push register AX and add
20 bytes to the stack pointer; output will tell begin to push register BX
and add 30 bytes to the stack pointer:

- as.45 -

ASSEMBLER Macros Aztec C86

input proc near entry point for the input subr

begin ax,20
;body of input
input endp send of input
output proc near entry point for the output subr
begin bx,30
;body of subr
output endp send of output

When the modified begin macro is invoked in the input subroutine, the
assembler assembles the macro’s statements, replacing each occurrence
of the parameter named reg within the macro’s statements with the
character string "ax", and each occurrence .of the size parameter with
the character string "20". Similarly, when the modified begin macro is
invoked in the output subroutine, the assembler assembles the macro’s
statements, replacing each occurrence of the parameter named reg with
"bx", and each occurrence of the size parameter with "30". The
macro-ized input and output subroutines are thus equivalent to the
following:

input proc near entry point for the input subr

push bp

push ax

mov bp,sp

add sp,20

;body of input
input endp ;end of input
output proc near ;entry point for the output subr

push bp

push bx

mov bp,sp

add sp,30

;body of subr
output endp send of output

3.8.1 Local symbols

It is sometimes neccessary to define symbols in a macro invocation
which won’t conflict with other symbols defined in the program and
that won’t conflict with the symbols created by other invocations of
the same macro. For example, the following macro creates the label /bl
whenever it is invoked:

bump macro

test ax,4

jz Ibl

add bx, 10
bl

endm

There are two problems with this macro: first, the programmer will

- as.46 -

Aztec C86 Macros ASSEMBLER

have to insure that a program that uses bump doesn’t itself contain the
label /bl Second, the program will only be able to call bump once; if it
calls it more than once, /b will be multiply defined.

The local directive can solve these problems. This directive, which
must precede all other type of statements in a macro definition, creates
symbols that are unique for each invocation of a macro. For example,
if the statement

local 1bl

is added to the beginning of the bump macro, then bump can be used as
often as desired in a program, and the macro’s /bl symbol won’t
conflict with a /bl symbol in the main body of the program.

3.8.2 Concatenating parameters to text

When the assembler is processing a macro invocation, it can
unambiguously spot a parameter name within the macro’s statements if
the name is surrounded by delimiter characters such as newline, tab,
space, brackets, etc. For example, consider the following macro
definition:

sum macro a

add ax,a
jmp lbla
endm

sum has one parameter, a. When sum is invoked, the assembler will
spot only one occurrence of the parameter name in the macro’s
statements: as the second operand to the add statement. This
occurrence of the name is separated by the delimiters °,” and the
newline character. There are several other occurrences of the
parameter name in the macro’s statements (such as the ’a’ in ’add’, ’ax’,
and °’Ibla’), but since they aren’t surrounded on both ends by
delimiters, they aren’t considered to be parameter names. Thus, if the
sum macro is invoked with the statement

sum one
the assembler will generate and assemble the following statements:

add ax,one
jmp Ibla

If a parameter name appears in a statement within a macro and the
name isn’t surrounded on both sides by delimiters, you can tell the
assembler to spot this occurrence of the parameter name during an
invocation of the macro by putting an & character at the ends of the
name that aren’t joined to delimiters. During the invocation the
assembler will replace the parameter name and the surrounding &
characters with the actual value of the parameter.

- as.47 -

ASSEMBLER Macros Aztec C86
For example, let’s modify the sum macro so that the assembler will
recognize the q in the jmp statement as a parameter name:

sum macro a
add ax,a
jmp Ibl&a
endm

When this modified sum macro is invoked with the statement
sum one
the assembler will generate and assemble the following code:

add ax,one
jmp Iblone

To demonstrate how the assembler can spot a macro name that is
entirely surrounded by text, let’s modify the sum macro again:

sum macro a

add ax,a
jmp Ibl&a&xyz
-endm

We still want the a in the jmp statement to be recognized by the
assembler as being a macro name. Since both ends of it are delimited
by text and not by delimiter characters, an & character is needed at
each of its ends. When this macro is invoked with

sum one
the assembler will generate and assemble

add ax,one
jmp lblonexyz

3.8.3 Concatenating parameters to parameters

Using the & character, a macro statement can also specify that the
value of two or more macro parameters are to be concatenated when
the macro is invoked. For example:

‘space macro pl,p2
pl&&p2 dw - ?
endm

Note that two & characters are used in the dw statement. This is done
because of the way the assembler performs parameter substitution:
when the macro is invoked, the assembler will replace pl& with the
value of pl, and &p2 with the value of p2. As a convenience, the
assembler allows you to abbreviate two adjacent & characters with just
one; so pl&&p2 could have been abbreviated to pl&p2.

When the space macro is invoked with the line

- as.48 -

Aztec C86 Macros ASSEMBLER

space reg,min

the following statement is generated and assembled:
regmin dw ?

3.8.4 Parameter substitution within quoted strings

When a macro is invoked, the assembler doesn’t normally replace a
parameter name found in a quoted string with the parameter’s value.
For example, consider the storage macro:

storage g‘i)acro Ea"
endm
When storage is invoked with the statement
storage abc
the assembler will generate and assemble the statement
db "a"

To have the quoted a replaced by the value of the parameter named
a, prefix the parameter name with an & character:

storage macro a

db " &all
endm
With this version of the sforage macro, the statement
storage abc
now generates
db "abcll

Modifying the definition of storage to
storage macro a

db "x&a&y"
endm
And invoking it with
storage abc
generates
db "xabcy"

The use of & to identify a macro parameter name is less flexible
when the name is inside a quoted string than when it’s outside: when
inside, the macro name must be preceded by an & It can have a
terminating &, if needed to separate the name from text that follows,
but it must always have a preceding &. Thus, the following definition
of storage is invalid:

- as.49 -

ASSEMBLER Macros Aztec C86

storage macro a
db "a&" invalid
end
3.8.5 Passing a symbol’s value to a macro

Normally, when a character string is specified as an operand in a
macro invocation, the assembler replaces occurrences of the operand’s
corresponding macro parameter name with that character string as it
processes the macro. If the character string is the name of a symbol
that has been given a constant value, using the equ or = directives, you
can alternatively have the parameter name replaced with the symbol’s
value instead of its name. To request this, prefix the symbol name
with the character % in the statement that invokes the macro.

For example, consider the following macro:

load macro val
mov ax,val
endm

If load is invoked with the statement
load count

the following statement will be generated:
mov ax,count

If it is invoked with the following statements:

count = 1
load %count

the following statement will be generated:
mov ax,l

In this second invocation, the % character tells the assembler to replace
occurrences of the a parameter with the value of the count symbol and
not with the string count.

3.8.6 Passing comma-containing arguments to macros

When a macro is invoked, commas separate the arguments that are
to be passed to the macro. These commas are not passed to the macro.
If a comma occurs in a quoted string, the assembler will consider it to
be part of the string and not an argument separator.

A macro invocation can pass a comma-containing string that isn’t
quoted to a macro by surrounding the string with angle brackets <>.
The assembler passes the string, without the angle brackets, to the
macro as a single argument.

For example, consider the macro fop:

- as.50 -

P =N

Aztec C86 Macros ASSEMBLER

top macro pl,p2

dw pl

db p2

endm
Invoking top with

top a,b,c,d
generates

db a

db b
Invoking top with

top <a,b,c>,d
generates

dw a,b,c

db d

3.8.7 Nesting macros

Macros can be "nested"; that is, the definition of one macro can
contain a statement that invokes another macro, including the macro
being defined. For example, the following code defines two macros,
outer and inner. outer calls inner:

outer macro pl,p2

pl
inner p2
endm
inner macro p3
dw p3
endm
The statement:
outer 1,2
generates:
db 1
dw 2

As an example of a macro that calls itself, consider the storage
macro, which allocates a sequence of bytes of storage, containing
successively smaller values:

- as.51 -

ASSEMBLER Macros Aztec C86

storage macro count

db count
if count-1
storage %count-1
endif
endm
The statement:
storage 3
generates:
db 3
db 2
db 1

The expansion of a macro invocation that is nested within another
macro occurs when the outer level macro is invoked. Consider, for
example, the following code. First, two macros, outer and inner, are
defined, where outer invokes inner. Then outer is invoked, inner is
redefined, and outer is invoked again. Finally, inner is purged again.

inner macro ;define inner
db 5
endm
outer macro ;define outer
dw 4
inner
endm
outer ;invoke outer
purge inner ;delete inner
inner macro ;define a new inner
db 6
endm
outer ;invoke outer

purge inner ;purge inner
This code generates the following:

dw 4
db 5
dw 4
db 6

which is what you’d expect with macro expansion occurring when a
macro is invoked.

If the last purge of inner is omitted, the assembler will generate the
following code:

- as.52 -

Aztec C86 Macros ASSEMBLER

dw 4
db 6
dw 4
db 6

The reason for this is that when the assembler makes its second, code-
generation pass, through the source file, and encounters the first
definition of inner, it will not process it if inner is still defined from
the first pass.

3.8.8 Directives for repeatedly assembling a block of statements

There are three directives that cause the assembler to assemble a
block of statements multiple times: rept, irp, and irpc. The block begins
with one of these directives and ends with the endm directive.

These directives can be used to define a block of statements either
within or without a macro definition. In the former case, the block
isn’t assembled until the macro in which it is defined is invoked. In
the latter case, the block is assembled just at the point in the program
where it is defined; it doesn’t have a name, and hence can’t be invoked
for assembly at another point in the program.

One of the directives, rept, doesn’t support parameter definition
and substitution; its statements are simply assembled a specified
number of times. The other two directives, irp and irpc, each defines a
parameter name and a list of values. A block defined using one of
these directives is assembled once for each of the values; during a
single assembly of the block, occurrences of the parameter name in the
block are replaced by the current value.

A block defined using one of these directives can use some of the
features available to macros:

“* Tt can define local symbols , using the local directive.
* It can prematurely exit from the assembly of the block, using
the exitm directive.
* A parameter can be joined to text using the & character;
* The value of a constant symbol can be passed to the block as
an argument rather than its name, by prefixing the name with
the % character;

3.8.8.1 The REPT Directive
The rept directive has the form:
rept const__expr

where const_expr is a constant expression that defines the number of
times the directive’s block of statements is to be assembled.

For example,

- as.53 -

ASSEMBLER Macros Aztec C86

X = 0
rept 4
db X

X = x+1
endm

generates the equivalent of the statements

db 0
db 1
db 2
db 3

If this block of statements occurs outside of a macro definition, the
assembler generates the db statements at the point in the program
where it encounters the block, and the block can never be invoked
again. If it occurs inside a macro definition, the assembler generates
the db statements when the macro is invoked. The macro can be
invoked of often as desired, with its repr block assembled anew each
time. For example, consider the macro gen, which contains a slightly
modified version of the above rept block:

gen macro initval, count

X = initval ;set x to the starting value, initval
rept count ;generate the db statement count times
db X

X = x+1

endm ;end of the rept block
endm ;end of the gen macro

The rept block inside the gen macro won’t be assembled until gen is
invoked. If gen is invoked at one point with the statement:

gen 10,3
the equivalent of the following statements are assembled:
db 10
db 11
db 12

3.8.8.2 The IRP directive
The irp directive has the form:
irp param, <arglist>

where param is the name of a parameter and <arglist> is a list of actual
arguments that are separated by commas and surrounded by angle
brackets.

The irp directive’s block of statements are assembled once for each
argument in arglist. Each time the block is assembled, occurrences of
the parameter name param in the block are replaced with the current

- as.54 -

Aztec C86 Macros ASSEMBLER

argument.
For example,

irp x, <1,2,3>
db X
endm

generates the following:

db 1
db 2
db 3

In the following example, the macro bump increments the locations
whose names are passed to it by a specified value:

bump macro val, list

irp x, <list>

add x, val

endm ;end of irp

endm ;end of bump macro
If bump is called with:

bump 10, <count, a, ax>
the following code is generated:

add count, 10
add a,10
add ax,10

3.8.8.3 The IRPC directive
The irpc directive has the form:
irpc param, string

where param is the name of the directive’s parameter and string is a
character string. The directive’s block of statements are assembled
once for each character in string, Each time the block is assembled,
occurrences of the parameter name param are replaced with the
current character from string.

For example,

irpc x, 0123
db X
endm

generates:

- as.55 -

ASSEMBLER Macros Aztec C86

db 0
db 1
db 2
db 3
3.8.9 Summary of the macro directives
The ENDM Directive
endm

Identifies the end of a block of statements that begins with macro,
rept, irp, or irpc.
The EXITM Directive
exitm

exitm causes the assembler to terminate the expansion of a macro
or repetition directive. If the block containing exitm is contained
within another block, the outer level block continues to be
expanded. A block containing exitrm must still be terminated
with the endm directive; exitm and endm are not interchangeable.
The IRP Directive
irp param, <arglist>
irp causes its block to be assembled several times, once for each
argument in arglist; each time the block is assembled, occurrences
of param in the block are replaced with the current arglist
argument.
The IRPC Directive
irpc param, string
irpe causes its block to be assembled several times, once for each
character in string; each time the block is assembled, occurrences
of param in the block are replaced with the current character in
string.
The LOCAL Directive
loFal name [,name ...J

local is used within a macro block to create unique names for the
names namel, name2, ... When namel, name2, ... are encountered
in the block, they are replaced with their unique name.

The MACRO Directive
macname macro [param [, param ...]]

- as.56 -

Aztec C86 Macros ASSEMBLER

macro begins the definition of a macro. It has the form:
macname macro argl, arg2, ...

where macname is the macro’s name and argl, arg2, ... are the
names of its arguments.

The PURGE Directive
purge name [, name ...]

purge deletes the definition of a macro, allowing its space in
internal tables to be reused.

A macro cannot be redefined without first using purge to
delete the previous definition.

The REPT Directive
rept expr

rept begins a block of statements that are to be assembled expr
times.

3.9 Conditional directives

as supports several directives with which you can specify that parts
of your program should be assembled only if certain conditions are
satisfied.

To make assembly of a sequence of statements conditional, begin
the block with one of the if directives, which specifies the condition
that must be met for the block to be assembled, and terminate the
block with the endif directive. Such a block has this form:

if condition
;statements to be assembled if condition is true
endif

You can also specify that one block of statements is to be assembled
if a condition is true and that another is to be assembled if the
condition is false. The two blocks have this form:

if condition
;statements to be assembled if condition is true
else
;statements to be assembled if condition is false
endif

You can nest blocks of statements whose assembly is conditional, to
any level. This means that a block of statements whose assembly is
conditional can itself contain blocks of statements that are surrounded
by the conditional assembly directives. For example

- as.57 -

ASSEMBLER Conditional Directives Aztec C86

if cond1
;statements to be assembled if condl is true
if cond2
. ;statements to be assembled if condl and cond2 are true
endlf endlf for ’if cond2’
;more statements to be assembled if condl is true Qﬁ
cndif ;endif for ’if cond!’

Another example:

if cond1
;statements to be assembled if condl is true
if cond2

;statements to be assembled if cordl and cond2 are true
else

;statements to be assembled if condl is true

;and cond? is false

endif ;endif for ’if cond2’
;more statements to be assembled if condl is true
endif ' ;endif for ’if condl’

The else and endif directives pair up with the nearest preceding if
directive. Because of this, a block of statements whose assembly is
conditional can’t be partially within and partially outside another such
block; it must either be entirely within or entirely outside.

Here are the conditional directives: \,

The IF Directive
if const__expr

const_expr is an expression having a constant value, which is
built from constants, the names of symbols having a constant
value, the names of macro arguments, and operators described in
the section on operand operators that act on constant arguments.
When computing the value of an expression in an if statement,
the assembler uses the value of a symbol or macro argument, and
not its name.

The if directive’s condition is true if the value of the
expression is nonzero, and is false if the value is zero.

For example,

if count It 5
;statements to be assembled when count < 5 f

clse \

;statements to be assembled when count >= 5

endif

- as.58 -

Aztec C86 Conditional Directives ASSEMBLER

The IFE Directive
ife const_expr

const_exp is an expression having a constant value, as described
in the discussion of the if directive. The ife directive’s condition
is true if the value of the expression is zero, and is false if the
value is nonzero.

The IF1 Directive
ifl
ifl is true if the assembler is making its first pass through the
source file, and is false otherwise.

The IF2 Directive
if2
if2 is true if the assembler is making its second pass, or a sqeeze
pass, through the source file, and is false otherwise.
The IFDEF Directive
ifdef symbol

ifdef is true if symbol is defined or has been declared external,
and is false otherwise.

The IFNDEF Directive
ifndef symbol

ifndef is true if symbol is not defined and has not been declared
external, and is false otherwise.

The IFB Directive
ifb <arg>

ifb is true if arg is blank or if the entire argument to ifb,
including the angle brackets, is not present, and is false
otherwise. The angle brackets around arg are required.

ifb is primarily used within macros, to determine whether a
particular parameter has been passed to the macro.

The IFNB Directive
ifnb <arg>

ifnb is true is arg is not blank, and is false otherwise. The angle
brackets around arg are required.

- as.59 -

ASSEMBLER Conditional Directives Aztec C86
As with ifb, ifnb is used primarily within macros.

The IFIDN Directive
ifidn <argl>, <arg2>

argl and arg2 are character strings. ifidn is true if the two strings
are identical, and is false otherwise. The angle brackets around
argl and arg2 are required.

ifidn is used primarily within macros to determine the value
of a character string argument in a call to the macro.
The IFDIF Directive
ifdif <argl>, <arg2>

ifdif is true if the character strings argl! and arg2 are not
identical, and is false otherwise. The angle brackets around the
arguments are required.

As with ifidn, ifdif is used primarily within macros.

The ELSE Directive
else

The else directive can be used with an if directive to specify a
block of code that is to be assembled if the if directive condition
is false. Only one else directive is allowed for an if directive.

The ENDIF Directive

endif

The endif directive identifies the end of a block of statements
whose assembly is conditional. endif terminates the most recent,
unterminated if directive.

3.10 Codemacros

A codemacro is a named sequence of directives. When the
assembler encounters a codemacro’s name in the operation field of a
statement, it generates code as directed by the codemacro’s directives.

All the instructions supported by as are implemented as
codemacros. You can define your own codemacros, thereby creating
your own customized instruction set. For example, the following
statements invoke the codemacros mov, myinst, and add:

mov bx,mem
myinst [bx], ax
add ax,5

mov and add are codemacros whose definitions are built into the

- as.60 -

Q

{

Aztec C86 Codemacros ASSEMBLER

assembler. myinst is a codemacro that was defined within the program
sometime prior to its invocation.

A’ codemacro can have parameters. When a parameterized
codemacro is invoked, parameters are specified as operands to the
instruction; as the assembler processes the codemacro invocation, it
replaces the names of the parameters in the codemacro’s definition
with the parameter values. In the above code, for example, bx and
mem are parameters to the mov instruction. As the assembler processes
the mov codemacro’s directives, it replaces occurrences of the
codemacro’s first parameter name with bx and occurrences of the
second parameter name with mem.

Codemacros can have the same name. For example, there are
eleven different codemacros that have the name add.

The definition of a codemacro specifies the number of operands
that an invocation of the codemacro can have and the types of the
operands. When a codemacro name is encountered in a statement, the
assembler examines the definitions of codemacros having that name,
beginning with the last such codemacro that was defined. When it
finds one whose requirements are met by the invocation’s actual
parameters, it processes that codemacro.

A codemacro definition begins with a codemacro directive and ends
with the endm directive. In between these two directives are directives
that form the body of the codemacro.

The codemacro directive has the following form:
codemacro name [param__list]

where name is the name of the codemacro, and param__list is a list of
items, separated by commas, each of which defines the name and
attributes of one of the codemacro’s parameters.

A param__list item has the form:
pname:specifier [modifier] [range]

where pname is the name of the parameter, specifier is a letter defining
the type that the corresponding actual parameter of an invocation of
this codemacro must have, modifier is an optional letter that imposes
further requirements on the actual parameter, and range is an optional
expression, or pair of expressions separated by a comma, that is
surrounded by parentheses and that imposes even more requirements
on the actual parameter.

An alternative form of the statement that begins a codemacro is
codemacro name prefx

This form is used to define a codemacro that is to be used as a prefix
to other instructions. For example, the standard codemacros lock and

- as.61 -

ASSEMBLER Codemacros Aztec C86

rep are defined using this form of the codemacro directive.

Only a few directives can occur within a codemacro definition.
These are:

segfix
nosegfix
modrm
relb
relw

*

x % X X % ® % %
[~

Record initialization
These directives are discussed later in this section.
Here are some simple codemacros:

CodeMacro CLC
db 0f8h
Endm

CodeMacro POPF
db 9dh
Endm

CodeMacro ADD dst:Ab, src:Db
db 4

db src

Endm

The first codemacro defines a codemacro named CLC. It will match a
statement having CLC in its operation field, with no operands. When
such a statement is found, the codemacro causes the assembler to
output the byte 0f8h. Similarly, the POPF codemacro matches a
statement whose instruction is POPF and that doesn’t have any
operands. When such a statement is found, the assembler will output
the byte 9dh.

The third codemacro defines one of the eleven codemacros whose
name is ADD. It has two parameters, named dst and src. This ADD
codemacro will match an ADD instruction having two operands, the
first being either AL or AH, and the second being a constant
expression.

3.10.1 Specdifiers

A parameter’s specifier letter defines the type of actual parameter
that will match the parameter. The letters and their associated types:

specifier parameter type

- as.62 -

Aztec C86 Codemacros ASSEMBLER

A Accumulator; that is, AX or AL

C Code; that is, a label expression only.

D Data; that is, an immediate expression having a
constant value.

E Effective address; either an M (memory reference) or
R (register).

M Memory reference; either a variable (with or without
indexing) or a bracketed register expression.

R General Register only: not an address expression, not
a register in brackets, and not a segment register.

S Segment register only: CS, DS, ES, or SS.

X Direct memory reference; a simple variable name

with no indexing.
3.10.2 Modifiers

The optional modifier letter for a codemacro’s parameter further
defines the type of instruction operand that will match the parameter.
The meaning of the modifier depends on the parameter’s type:

* For variables, the modifier defines the size of the operand: '’
for byte, *w’ for word, ’d’ for dword.

* For labels, the modifier defines the type and distance of the
operand from the invoking statement: ’b’ for a near label
within in a small interval surrounding the invoking statement
(-128 to 127 bytes), 'w for a near label that’s outside this
interval, and ’d’ for a far label.

* For constants, the modifier defines the size of the constant:
b’ for -256 to 255, *w’ for constants outside this range but still
between -65536 and 65535.

3.10.3 Range Spedifiers

The optional range specifier for a codemacro’s parameter defines
even more requirements that an invoking statement’s operand must
meet if the statement is to match the codemacro. A range specifier
consists of an expression, or a pair of expressions separated by a
comma, that is surrounded by parentheses. Each expression must be a
register or must evaluate to a constant number.

If a register or pair of registers is specified, an operand will match
the parameter only if it is one of the range’s registers. If a single
constant is specified as the range, an operand must have that value in
order to match the parameter. If a pair of constants is specified as the
range, an operand must have a number in that interval in order to
match the parameter.

- as.63 -

ASSEMBLER Codemacros Aztec C86

For example, here are the first lines of three codemacros that use
the range specifier:

codemacro IN dst Aw, portt Rw(DX)
codemacro ROR dstEw, countRb(CL)
codemacro ESC opcode:DB(0,63), adds:Eb

The first codemacro directive begins one of the IN instruction’s
codemacros. For an IN statement to match this codemacro, the
instruction’s second operand must be the DX register.

The second codemacro directive begins one of the 'ROR
instruction’s codemacros. For an ROR instruction to match this
codemacro, the instruction’s second operand must be the CL register.

The third codemacro directive begins the ESC codemacro. For an
instruction to match this codemacro, the instruction’s first operand
must be a constant expression whose value is between 0 and 63.

3.10.4 The Codemacro Directives
3.10.4.1 The SEGFIX directive
The segfix directive has the form:
segfix param__name

where param_name is the name of a codemacro parameter. This
parameter must specify a memory address; that is, its specifier must be
E, M or X

When the assembler is generating code for an instruction, segfix
causes the assembler to determine whether the memory operand
corresponding to param__name can be accessed using the instruction’s
default, hardware-selected segment register. If not, the assembler will
output a segment-override prefix as the first byte of the instruction. If
the prefix isn’t needed, the assembler won’t output it.

: The assembler knows that when a segment-override prefix isn’t
sp¢cified in an instruction, the 8086 hardware uses the SS segment
register to access the instruction’s memory operand if the memory
operand uses the BP base register; otherwise, it uses the DS segment
register.

The assembler decides which segment register is needed to access
an instruction’s memory operand as follows:

* If the operand specifies the segment register to use, using the
segment selector operator, :, then of course that’s the segment
register that is needed.

* QOtherwise, if the operand contains a variable or label name,
then the needed segment register is the one that points to the
segment containing the variable or label, as defined by the
assume directive.

- as.64 -

@

(

i
\

Aztec C86 Codemacros ASSEMBLER

* Otherwise, if the operand uses the BP base register, then SS is
needed.

* Otherwise, DS is needed.
3.10.4.2 The NOSEGFIX Directive
The nosegfix directive has the form:
nosegfix segreg, param__name

where segreg is one of the segment register and param__name is the
name of a codemacro parameter that has a memory address specifier
(that is, its specifier is E, M, X).

When the assembler is generating code for an instruction, the
nosegfix directive causes it to verify that the actual operand
corresponding to param__name can be accessed using the segreg
segment register. If not, the assembler reports an error.

nosegfix is used in instructions, such as CMPS, MOYVS, SCAS, and
STOS, where a memory operand can only be accessed by the ES
segment register.

3.10.4.3 The MODRM Directive

The modrm directive causes the assembler to generate the ModRM
byte for an instruction. If the instruction calls for an 8- or 16-bit
displacement, modrm generates that as well. The modrm directive has
the form

modrm regfld, modrmfld

where regfld defines the contents of the ModRM byte’s reg field, and
modrmfld defines the contents of the ModRM byte’s mod and rm fields
and, when necessary, the contents of the displacement bytes.

regfld can be either an absolute number or the name of one of the
codemacro’s parameters. If it’s a number, that same value is always set
in the instruction’s reg field when the instruction is used. If it's a
parameter name, then the corresponding actual parameter, which is
usually a register number, is set in the instruction’s reg field An
instruction can specify a register by its name, of course; the assembler
will place the register’s number in the modrm byte’s reg field.

modrmfld is the name of a codemacro parameter. When the
assembler is generating code for an instruction, it determines whether
the actual parameter that corresponds to the modrmfld parameter is a
register, variable, or indexed variable and constructs the instruction’s
mod and r/m fields. If the operand also needs an 8- or 16-bit
displacement, the assembler generates that, too.

As an example of a codemacro that uses modrm, here is one of the
codemacros for the mov instruction:

- as.65 -

ASSEMBLER Codemacros Aztec C86

codemacro MOV dst:Rw, src:Ew
segfix src

db 8bh

modrm dst, src

endm

Because of the specifiers on the two parameters, this codemacro will
match those MOV instructions whose first operand is a 16-bit general
register, and whose second operand designates a 16-bit register or
memory location.

Continuing with this example, the instruction
mov dx, [bx][si]
will match this codemacro, generating the two bytes
10001101 10010000

The first byte is the instruction code for moving a 16-bit value from
memory or register into a register. The second byte is the ModRM
byte, with the destination register, DX, encoded as 010 in bits 3-5, a
Mod field of 10 in bits 6 and 7, and an RM field of 000 in bits 0-2.

3.10.4.4 The RELB and RELW Directives

The relb and relw directives are used in the codemacros for call and
jump instructions. They tell the assembler to output an 8- or 16-bit
displacement, respectively, from the end of the instruction being
processed to the label specified in the instruction.

The directives have the form:

relb param_ name
relw param__name

where param__name is the name of a codemacro parameter that has a
’Cb’ or ’Cw’ specifier, respectively.

For example, here are two codemacros that use relb and relw:

codemacro JMP place:Cw
db 0eSh

relw place

endm

codemacro JE place:Cb
db 74h

relb place

endm

3.10.4.5 The DB, DW, and DD Directives

When the assembler encounters a db, dw, and dd directive as it is
generating code for an instruction, it generates a byte, word, or
doubleword, respectively.

- as.66 -

Aztec C86 Codemacros ASSEMBLER

The directives have the form:

db cmac__expr
dw cmac__expr
dd cmac__expr

where cmac_expr is either an absolute number, without forward
references; thé name of a codemacro parameter;, or the name of a
codemacro parameter with a dot-recordfield shift operator.

Unlike the use of these directives outside a codemacro, these
directives when used within a codemacro cannot specify a list of values
separated by commas, and cannot use the DUP construct.

3.10.4.6 User-defined Record Directives
The record initialization directive has the form
recname <pl, p2, ...>

where recname is the name of a record that was previously defined
using the record directive (see the Directives section), and pl, p2, ...
are operands.

When the assembler encounters a user-defined record directive
while generating code for an instruction, it will put together and
output a byte or word (depending on the record definition) from the
values in the record’s operand list.

For example, here is the definition of the record r53, and its use in
the codemacro for the version of the dec instruction that decrements a
16-bit general register:

R53 Record RF1:5,RF2:3
codemacro dec dstirw

r53 <01001b, dst>
endm

When the assembler encounters a dec instruction that matches this
codemacro, it will output a byte whose most significant 5 bits are
01001 and whose least significant 3 bits are the number of the register
that is specified as the operand of the instruction.

3.10.5 Using the Dot operator to Shift Parameters

There is a special operator, the dot operator, that can be used in a
codemacro definition on the operands of the db, dw, dd, and record
initialization directives. The operator has the form

param__name.field__name

where param__name is the name of codemacro parameter whose
corresponding operand will be an absolute number. field _name is the
name of a record field.

- as.67 -

ASSEMBLER Codemacros Aztec C86

When the assembler encounters an expression containing a dot
operator as it is generating code for an instruction, it shifts the
operand corrresponding to param__name to the right, using the shift
count defined by field _name.

The shift count for a record field name is the number of bits
between the field and the least significant bit of its record. For
example, with the record definition

R233 record rf6:2, mid3:3, rf7:3

the shift counts of the fields rf6, mid3, and rf7 are 6, 3, and 0,
respectively.

The dot-shift operator is used in the codemacros for the ESC
instruction. Here is one of them:

R53 Record RF1:5,RF2:3
R233 Record RF6:2, Mid3:3, RF7:3

codemacro esc opcode:db(0,63), addr:Eb
segfix addr
r53 <11011b, opcode.mid3>
modrm opcode, addr

endm

When the assembler encounters an esc instruction that matches this
codemacro, it will output a byte for the r53 directive whose most
significant five bits are 11011 and whose least significant 3 bits are the
value of the actual esc operand, shifted right 3 bits.

3.10.6 The PROCLEN Symbol

The special symbol proclen equals 0 within a near proc and Offh
inside a far proc. It also equals O outside of PROC ... endp blocks.
This symbol is used by the codemacros for the ret instructions to
generate the correct machine instruction to return from a call to a near
or far proc.

For example, the codemacro for the version of the ret instruction
that doesn’t add a value to the stack is :

R413 Record RF8:4, RF9:1, RF10:3

codemacro Ret

rd13 <Och, proclen, 3>
endm -

When the assembler encounters a parameter-less ret instruction it will
output one byte whose most significant four bits are 1100 and whose
least significant three bits are 011. The bit in the middle will be 0 if
the instruction is in a near proc and 1 if it is in a far proc.

- 2s.68 -

Aztec C86 Codemacros ASSEMBLER

3.10.7 Matching Instructions to Codemacros

When the assembler encounters an instruction, it searches the
codemacros that have that name, beginning with the last one defined,
looking for one for which the number of codemacro and instruction
parameters are the same, and for which the attributes of each of the
instruction’s and codemacro’s parameters match.

The following rules are used to decide if an instruction parameter
matches a codemacro parameter:

Specifiers
* In pass 1, a forward reference matches C, D, E, M, X.
* AX and AL match A, E, R.
* A label matches C.
* A number matches D.
* A non-indexed variable matches E, M, X
* An indexed variable or register expression matches E, R.
* A segment register matches S.
Modifiers

Once an instruction’s parameter has matched the specifier of a
codemacro’s parameter, an attempt is made to match the instruction’s
parameter to the modifier of the codemacro’s parameter. Modifier
matching depends on the type of the instruction’s parameter.

For a number:
* A number between -256 and 255 matches ’b’ only.
* QOther numbers match *w’ only.

For a label

* A near label that is accessable from the current contents of the
CS segment register (as defined by the assume directive) and
that is in the range -126 to +129 from the beginning of the
instruction matches only ’b’. An expression that is explicitly
typed using the short operator also matches only ’b’.

* Another near label that is accessable from the current contents
of CS matches only *w’.

* A far label matches °d’.

For a variable:
* A variable of type byte matches b’
* A variable of type word matches 'w’.

- as.69 -

’

ASSEMBLER Codemacros Aztec C86

* A variable of type dword matches *d’.

A forward reference matches any modifier, except when typing
information is specified in the instruction’s operand (eg, byte ptr).

If an index-register expression is used as an operand in a multi-
operand instruction and its type can’t be determined from the
expression itself (eg, [bx]), the operand type will be determined from
that of the other operand, if possible. In this case, if the other operand
is a number, the operand being matched will match only ’w’. If the
instruction contains just a single operand, it matches no modifier.

Ranges

Range specifiers are legal only for number and register parameters
(that is, whose specifier is A, D, R, or S). If the range is just a single
value, an actual operand must be that value in order to match. If the
range is a pair of values, the actual operand must be the specified
range in order to match. Forward references do not match a
codemacro’s parameter if the parameter contains a range specifier.

As an example of codemacro matching, consider the 8086 add
instruction: there are eleven add codemacros, which match the
following combinations of source and destination operands:

Destination Source

memory byte immediate byte

memory word immediate byte (not between -128 & 12
memory word immediate byte (from -128 to 127)
memory word immediate word

AL immediate byte

AX immediate byte

AX immediate word

memory byte or byte register byte register
memory word or word register word register

lO byte regxster memory byte or byte register

11. word register memory word or word register

Here are the first lines for each of the add codemacro definitions,
which correspond to the above operand list:

VWO NS W

- as.70 -

Aztec C86

Codemacros ASSEMBLER

CodeMacro Add dstEb, src:Db
CodeMacro Add dst:Ew, src:Db
CodeMacro Add dst.Ew, src:Db(-128,127)
CodeMacro Add dst:Ew, src:Dw
CodeMacro Add dst.Ab, src:Db
CodeMacro Add dst:Aw, src:Db
CodeMacro Add dst:Aw, sr¢:Dw
CodeMacro Add dst:Eb, src:Rb
CodeMacro Add dst.Ew, src:Rw
CodeMacro Add dst:Rb, src:Eb
CodeMacro Add dst:Rw, src;:Ew

When the assembler is trying to find a codemacro that matches an
add instruction, it begins with the last add codemacro defined, number
11, and searches backwards. Thus, the ordering of codemacros for an
instruction is very important.

Here are some examples on the matching of actual add instructions
to the add codemacros. For these examples, assume that bvar and wvar
are byte and word variables, respectively:

add
add
add
add
add
add
add
add
add
add
add
add

ax,250 ;matches add codemacro # 6
ax,300 ;#7
bx,wvar;#11

bx,dx #l11

bvar,al ;#8
bvar,254 #1
wvar,cx;#9
dh,bvar{si] #10
al,3 #5
wvar,35648 #4
[bx][si],ah ;#8
wvar,255 #2

- as.71 -

ASSEMBLER Codemacros Aztec C86

- as.72 -

THE LINKER

-In.1 -

LINKER Aztec C86
Chapter Contents
TRE LINKET .ucooeeieeereieerecretssnssssesessessssesssssssssessssssssessessesessesessesessssssssesssseses In C
1. Introduction t0 LiNKINgcceeverrrmerssssmsssseresessssasssssssessesssesesssasensas 3
2. USINg the LINKET ...cccecvvererrrereernenescrsersasenssesasssssssssssssassssssssesssessnsssssases 7
3. LinKer OPLIONS ...ccocveverrrerennerersseseeressasasssssesessesssssesesiasassssssssnssesesssssseses 9
4. LinKer Error MESSALES ...cocvvrererrrererereesreisseseresssassesesesassesssssssssssesasens 17

-In.2 -

Aztec C86 LINKER

The Linker

The Manx linker has two functions:

* It ties together the pieces of a program which have been
compiled and assembled separately;

* It converts the linked pieces to a format which can be loaded
and executed.

The pieces must have been created by the Manx assembler.

The first section of this chapter presents a brief introduction to
linking and what the linker does. If you have had previous experience
with linkage editors, you may wish to continue reading with the
second section, entitled "Using the Linker." There you will find a
concise description of the command format for the linker.

1. Introduction to linking
Relocatable Object Files

The object code produced by the assembler is "relocatable" because
it can be loaded anywhere in memory. One task of the linker is to
assign specific addresses to the parts of the program. This tells the
operating system where to load the program when it is run.

Linking hello.o

It is very unusual for a C program to consist of a single, self-
contained module. Let’s consider a simple program which prints "hello,
world" using the function, printf. The terminology here is precise;
printf is a function and not an intrinsic feature of the language. It is a
function which you might have written, but it already happens to be
provided in the file, c./ib. This file is a library of all the standard i/o
functions. It also contains many support routines which are called in
the code generated by the compiler. These routines aid in integer
arithmetic, operating system support, etc.

When the linker sees that a call to prinff was made, it pulls the
function from the library and combines it with the "hello, world"
program. The link command would look like this:

In hello.o c.lib

When hello.c was compiled, calls were made to some invisible support
functions in the library. So linking without the standard library will
cause some unfamiliar symbols to be undefined. All programs will
need to be linked with c.lib.

-In.3 -

LINKER Aztec C86

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are certain
to call user-defined functions. It is up to the linker to connect a
function call with the definition of the function somewhere in the
code.

In the example given below, the linker will find two function calls
in file 1. The reference to funcl is "resolved” when the definition of
funcl is found in the same file. The following command

In filel.o c.lib

will cause an error indicating that func2 is an undefined symbol. The
reason is that the definition of func2 is in another file, namely file2.0.
The linkage has to include this file in order to be successful:

In filel.o file2.0 c.lib

file 1 file 2

main() func2()
funcl(); return;
func2(); }

}

funcl()

(.
return,

}

Libraries

A library is a collection of object files put together by a librarian.
Libraries intended for use with /n must be built with the Manx
librarian, /b. This utility is described in the Utility Programs chapter.

All the object files specified to the linker will be "pulled into" the
linkage; they are automatically included in the final executable file.
However, when a library is encountered, it is searched. Only those
modules in the library which satisfy a previous function call are pulled
in.

For Example

Consider the "hello, world" example. Having looked at the module,
hello.o, the linker has built a list of undefined symbols. This list
includes all the global symbols that have been referenced but not
defined. Global variables and all function names are considered to be
global symbols.

The list of undefined’s for hello.o includes the symbol printf. When
the linker reaches the standard library, this is one of the symbols it

-Ind4 -

e

Aztec C86 LINKER

will be looking for. It will discover that printf is defined in a library
module whose name also happens to be printf. (There is not any
necessary relation between the name of a library module and the
functions defined within it.)

The linker pulls in the printf module in order to resolve the
reference to the printf function.

Files are examined in the order in which they are specified on the
command line. So the following linkages are equivalent:

In hello.o
In c.lib hello.o

Since no symbols are undefined when the linker searches c./ib in the
second line, no modules are pulled in. It is good practice to leave all
libraries at the end of the command line, with the standard library last
of all.

The Order of Library Modules

For the same reason, the order of the modules within a library is
significant. The linker searches a library once, from beginning to end.
If a module is pulled in at any point, and that module introduces a new
undefined symbol, then that symbol is added to the running list of
undefined’s. The linker will not search the library twice to resolve any
references which remain unresolved. A common error lies in the
following situation:

module of program re ferences (function calls)
main.o getinput, do__calc
input.o gets

calc.o put__value

output.o printf

Suppose we build a library to hold the last three modules of this
program. Then our link step will look like this:

In main.o proglib.lib c.lib

But it is important that proglib.lib is built in the right order. Let’s
assume that main() calls two functions, gefinput() and do__calc().
getinput() is defined in the module input.o. It in turn calls the standard
library function gets(). do__calc() is in calc.o and calls put_ value().
put__value() is in output.o and calls printf().

What happens at link time if proglib.lib is built as follows?

proglib.lib: input.o
output.o
calc.o

After main.o, the linker has getinput and do__calc undefined (as well as
some other support functions in c.fib). Then it begins the search of

-In.5 -

LINKER Aztec C86

proglib.lib. It looks at the library module, input, first. Since that module
defines getinput, that symbol is taken off the list of undefined’s. But
gets is added to it.

The symbols do__calc and gets are undefined when the linker
examines the module, output. Since neither of these symbols are
defined there, that module is ignored. In the next module, calc, the
reference to do__calc is resolved but put value is a new undefined
symbol.

The linker still has gets and put_value undefined. It then moves on
to clib, where gets is resolved. But the call to put value is never
satisfied. The error from the linker will look like this:

Undefined symbol: put__value__ -

This means that the module defining put__value was not pulled into the
linkage. The reason, as we saw, was that put value was not an
undefined symbol when the output module was passed over. This
problem would not occur with the library built this way:

proglib.lib: input.o
calc.o
output.o

The standard libraries were put together with much care so that this
kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a library so
that all references are resolved. In the example, the problem could be
solved with the following command:

In main.o proglib.lib proglib.lib c.lib

The second time through proglib.lib, the linker will pull in the
module output. The reason this is not the most satisfactory solution is
that the linker has to search the library twice; this will lengthen the
time needed to link

-In.6 -

Aztec C86 LINKER

2. Using the Linker
The general form of a linkage is as follows:
In [-options] filel.o [file2.0 etc] [libLIib etc]

The linker combines object modules produced by the Manx
assembler into an executable program. It can search libraries of object
modules for functions needed to complete the linkage; including just
the needed modules in the executable program. The linker makes just
a single pass through a library, so that only forward references within a
library will be resolved.

The executable file

. The linker can create both .exe and .com files for PCDOS and
MSDOS. It creates .cmd files for CP/M-86.

The name of the executable output file can be selected using the -O
linker option. If this option isn’t used, the linker will derive the name
of the output file from that of the first object file listed on the
command line, by changing its extension to .exe on MSDOS and
PCDOS, and to .cmd on CP/M-86. In the default case, the executable
file will be located in the same area as the first object file. (an "area" is
a directory on a drive, on MSDOS and PCDOS, and is a user area on a
drive, on CP/M-86). For example,

In prog.o c.lib

will produce the disk file prog.exe, on MSDOS and PCDOS, and the
file prog.cmd on CP/M-86. The standard library, ¢.lib, will have to be
included in most linkages.

A different output file can be specified with the -O option, as in
the following command:

In -0 program.com modl.o mod2.0 c.lib

This command also shows how several individual modules can be
linked together. A "module", in this sense, is a section of a program
containing a limited number of functions, usually related. These
modules are compiled and assembled separately and linked together to
produce an executable file.

Libraries

Several libraries of object modules are provided with Aztec C86.
The most frequently-used of these are c./ib, which contains the non-
floating point functions and which use the ’small code’ and small data’
memory model; and m.lib, which contains the floating point functions,
which perform the operations using software routines, and which use
the ’small code’ and ’small data’ memory model. Other libraries are

provided with some versions of Aztec C86; for their description, see
the Libraries section of the Technical Information chapter.

-In.7 -

LINKER Aztec C86

All programs must be linked with one of the versions of c./ib. In
addition to containing all the non-floating point functions described in
the Functions chapter, it contains internal functions which are called
by compiler-generated code, such as functions to perform long
arithmetic. ‘

Programs that perform floating point operations must be linked
with one of the versions of m.lib, in addition to a version of c.lib. The
floating point library must be specified on the linker command line
before c.lib.

Libraries of user modules can also be searched by the linker. These
are created with the Manx /b program, and must be listed on the linker
command line before the Manx libraries.

For example, the following links the module program.o, searching
the libraries mylib.lib, new.lib, m.lib, and c.lib for needed modules:

In program.o mylib.lib new.lib m.1ib c.lib

Each of the libraries will be searched once in the order in which
they appear on the command line.

Libraries can be conveniently specified using the -L option. For
example, the following command is equivalent to the following:

In -0 program.o -lmylib -lnew -Im -Ic

For more information, see the description of the -L option in the
Options section of this chapter.

-In.8 -

Aztec C86

LINKER.

3. Linker Options
3.1 Summary of options
3.1.1 General Purpose Options

-0 file
-Lname
-F file

Write executable code to the file named file.
Search the library name.lib for needed modules.
Read command arguments from file.

Generate a symbol table file.

Don’t issue warning messages.

Don’t abort if there are undefined symbols.

Tell DOS not to load the program unless at least size
bytes is available for its stack and heap. size is a hex
value.

Tell DOS to allocate memory to the program so that
the program doesn’t have more than size paragraphs
(16-byte blocks) for its stack and heap. size is a hex
value. Only valid .exe programs running on DOS 2.0
or later.

Be verbose.

3.1.2 Options for Segment Address Specification

-B addr

-C addr

-D addr

-U addr

When linking a DOS .com file, set the program’s base
address to the hex value addr.

When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s code segments to the hex value addr.

When linking a .com program, set the starting offset of
the program’s code segment from the beginning of the
physical segment containing the program to the hex
value addr.

When linking an .exe program that will be burned into
ROM, set the starting paragraph number of the
program’s data segments to the hex value addr.

When linking a DOS .com file, set the starting offset of
the program’s initialized data segment to the hex value
addr.

When linking a DOS .com file, set the starting offset of
the program’s uninitialized data segment to the hex
value addr.

-In.9 -

LINKER

Aztec C86

3.1.3 Options for Overlay Usage

-R

+C size

+D size

Create a symbol table to be used when linking
overlays.

Reserve size bytes at end of the program’s code
segment (the overlay’s code segment is loaded here).
size is a hex value.

Reserve size bytes at end of the program’s initialized
and uninitialized data segments (the overlay’s data is
loaded here). size is a hex value.

- In.10 -

Aztec C86 LINKER

3.2 Detailed description of the options
3.2.1 General Purpose Options:
The -O option

The -O option can be used to specify the name of the file to which
the linker is to write the executable program. The name of this file is
in the parameter that follows the -O. For example, the following
command writes the executable program to the file prog.com:

In -0 prog.com prog.o c.lib

If this option isn’t used, the linker derives the name of the
executable file from that of the first input file, by changing its
extension to .exe on DOS and to .cmd on CP/M-86.

The linker decides what type of executable program to create, based
on the extension of the file to which it is written. Thus, if you're
creating a program that will run on CP/M-86, the extension of the
executable file must be .cmd. And if you’re creating a DOS program,
its extension must be .exe or .com.

The -L option

The -L option provides a convenient means of specifying to the
linker a library that it should search, when the extension of the library
is .zib.

On DOS, the name of the library is derived by concatenating the
value of the environment variable CLIB, the letters that immediately
follow the -L option, and the string .lib. For example, with the
libraries subs.lib, io.lib, m.lib, and c.lib in a directory specified by CLIB,
you can link the module prog.o, and have the linker search the libraries
for needed modules by entering

In prog.o -Isubs -lio -Im -Ic

CLIB is set using the DOS set command. For example, the first
command that follows sets CLIB when the libraries are in the root
directory on the ¢ drive; the second sets it when they are in the
directory \ cc\ libs on the default drive, and the third sets it when they
are in the directory libs on the d: drive:

set CLIB=c:
set CLIB=\cc\libs\
set CLIB=d:\libs\

Note the terminating backslash on the CLIB variable when the
libraries are not in a root directory. This is required since the linker
simply prepends the value of the CLIB variable to the -L string.

On CP/M-86, the linker derives the name of the file containing a
library that is specified in a -L option by appending ./ib to the string
that immediately follows the -L.

-In.11 -

LINKER Aztec C86

The -F option

-F file causes the linker to merge the contents of the given file with
the command line arguments. For example, the following command
causes the linker to create an executable program in the file
myprog.exe (on DOS) or myprogcmd (on CP/M-86). The linker
includes the modules myprog.o, modl.o, and mod2.0 in the program,
and searches the libraries mylib.lib and c.lib for needed modules.

In myprog.o -f argfil c.lib
where the file argfil, contains the following:

modl.o mod2.0
mylib.lib

The linker arguments in argfile can be separated by tabs, spaces, or
newlines.

There are several uses for the -F option. The most obvious is to
supply the names of modules that are frequently linked together. Since
all the modules named are automatically pulled into the linkage, the
linker does not spend any time in searching, as with a library.
Furthermore, any linker option except -F can be given in a -F file. -F
can appear on the command line more than once, and in any order.
The arguments are processed in the order in which they are read, as
always.

The -T option

The -T option creates a disk file which contains a symbol table for
the linkage. This file is just a text file which lists each symbol with a
hexadecimal address. This address is either the entry point for a
function or the location in memory of a data item. A perusal of this
file will indicate which functions were actually included in the
program.

The symbol table file will have the same name as that of the file
containing the executable program, with extension changed to .sym.
This file can be used in conjunction with the Manx db debugger or
with the Digital Research debugger, SID86.

There are several special symbols which will appear in the table.
They are defined in the Program Organization section of the Technical
Information chapter.

The -M option

The linker issues the message "multiply defined symbol" when it
finds a symbol that is defined with the assembly language directives
global or public in more than one module. The -M option causes the
linker to suppress this message unless the symbol is defined in more
than one public directive.

-In.12 -

PN

Aztec C86 LINKER

To maintain compatibility with previous versions of Aztec C, the
linker will generate code for a variable that is defined in multiple
global statements and in at most one public statement, and also issue the
“multiply defined symbol" message. Thus, if you use the global and
public directives in this way, and don’t want to get this message, use
the -M option to suppress them.

The definition of a symbol in more than one public directive is
never valid, so the -M option doesn’t suppress messages in this case.

For more information, see the discussion on global symbols in the
Programmer Information sections of the Compiler and Assembler
chapters.

The -N option

Normally, the linker halts without generating an executable
program if there are undefined symbols; that is, symbols that are
defined in one module using the assembly language extrn directive but
that aren’t defined in another module using a global or public directive.

The -N option causes the linker to go ahead and generate an
executable program anyway.

The -S option

The -S size option can be used when linking programs that will run
on PCDOS or MSDQOS, to tell DOS to load the program only if there is
enough memory for the program to have a stack and heap whose
combined size is at least size bytes, where size is a hex value.

If this option isn’t specified, the size defaults to 4K bytes.

This option is provided for compatibility with earlier versions of
Aztec C, and is not useful now: the global variables _STKSIZ and
__HEAPSIZ define the sizes of these areas; if the startup routine is not
able to give the program the requested space for its stack and heap, it
will halt the program.

The -X option

The -X size option can be used when linking .exe programs that will
run on PCDOS or MSDOS 2.0 or later, to tell DOS to allocate memory
to the program such that it has at most size paragraphs (16-byte blocks)
available for its stack and heap. size is a hex value.

If this option isn’t specified, the size defaults to a huge value.

When a DOS program starts, the startup routine will allocate as
much memory to the program as it needs and can use, and frees the
rest of memory. If the program’s stack is below its heap, then the -X
option is not useful at all, because the size of the program’s heap will
grow automatically to satisfy program requests for dynamically-
allocated buffers.

-In13 -

LINKER Aztec C86

If the program’s stack is above its heap, the -X option may be used
to create a program whose allocated memory is less than the maximum
allowed amount,

For more information, see the Program Organization section of the
Technical Information chapter.

The -V option

The -V option causes the linker to send a progress report of the
linkage to the screen as each input file is processed. This is useful in
tracking down undefined symbols and other errors which may occur
while linking.

3.2.2 Options for segment address specification

The linker organizes a program into three areas: code, initialized
data, and uninitialized data areas. the following paragraphs discuss the
positioning of these areas using the linker’s -C, -D, -U, and -B options.

For more information on a program’s areas, see the Program
Organization section of the Technical Information chapter.

3.2.2.1 Segment specification for .exe programs

An .exe program that is created by the linker has some fields
containing long pointers whose values must be adjusted when the
starting addresses of the program’s segments are known. Normally,
DOS determines these addresses and adjusts the long pointer fields
when it loads the program, using information that the linker sets in the
beginning of the .exe file.

If the program is to be burned into ROM, the linker itself must
adjust the long pointer fields. For it to do this, you must tell it the
starting addresses of the program’s code and data areas, using the -C
codebgn and -D databgn options. codebgn and databgn are the starting
paragraph numbers, in hex, of the program’s code and data areas,
respectively.

For example, if the program prog.exe is to be burned into ROM,
and its code and data are to start at paragraphs 0xf000 and 0,
respectively, then the command to link it could be

In -C £000 -D 0 -0 prog.exe srom.o prog.o -Ic

For more information on generating ROMable code, see the
Technical Information chapter.

3.2.2.2 Segment specification for .com programé

When you create a .com program, the program will occupy a single
physical segment and won’t contain any fields that need adjustment
when the program is loaded. You normally won’t need to specify the
location of the program’s areas within the physical segment, but if you
do, the offset of the start of the logical code, initialized data, and

-In.14 -

Aztec C86 LINKER

uninitialized data segments from the beginning of the physical segment
containing them can be specified by the -C, -D, and -U linker options,
respectively. A fourth linker option, -B, will set the "base address" of
the program. These options are followed by the desired offset, in hex.

By default, the base address is at 0x100, the logical code segment
starts at 0x103, the initialized data follows the code, and the
uninitialized data follows the initialized data.

A .com file contains a memory image of the program, from its base
address through the end of its code or initialized data segments
(whichever is higher). This image is loaded into its physical segment,
with the first byte in the file loaded at the offset specified by the base
address.

When the program is to be loaded by DOS, the base address must
be 0x100; the DOS loader simply loads the contents of the .com file
into the program’s physical segment, with the first byte in the file
loaded at offset 0x100, and transfers control to 0x100.

The program is expected to begin execution at its base address.
Most programs have a startup routine, which performs initialization
activities and then calls the program’s main function. This startup
routine is usually somewhere in the middle of the program, so at the
base address the linker will normally set a near jump instruction to the
startup routine.

You can explicitly specify that a label in a module is the beginning
of a startup routine by placing the label in the operand field of the
module’s assembly language end directive. For example, the sbegin
module in c./ib contains the function $begin. This label is declared in a
public directive and also in the module’s end directive. When a C
module is compiled, the compiler always generates a reference to
8begin; thus, when the program is linked, /n will include the sbegin
module from clib and place a jump to it in the first byte of the
program’s .com file (ie, at its base address).

If the linker doesn’t find a startup routine when it links a program,
it won’t set the jump instruction at the program’s base address. In this
case, if you don’t specify a starting offset for the program’s code
segment, it will begin right at the base address.

For example, the following command sets the base address of
prog.com to 0x500:

In -b 500 -0 prog.com prog.o -lc

Because none of the other segment selection options were used in this
example, the program’s code will begin at offset 0x503, followed by its
initialized data, followed by its uninitialized data.

In the next example, the program’s base address is set to 0x200, the
offset of its code, initialized data, and uninitialized data segments to

-In.15 -

LINKER Aztec C86

0x500, 0x1000, and 0x3000, respectively:
In -b 200 -¢ 500 -d 1000 -u 3000 prog.o -Ic
3.2.3 Options for Overlay Usage

The -R option causes the linker to generate a file containing the
symbol table. It’s used when linking a program which calls overlays.

The name of the symbol table file is derived from that of the
executable file by changing the extension to .rsm. The file is placed in
the same area as the executable file.

The +C and +D options effectively increase the size of the code and
data segments of the linked program. For example,

In +c¢ 3000 +d 1000 prog.o -Ic

will reserve 0x3000 bytes in the code segment and 0x1000 bytes in the
data segment for overlays. See the Technical Information chapter for
more details.

-In.16 -

S

Aztec C86 Error Messages

4. Linker Error Messages
4.1 Summary of Error Messages
4.1.1 Command line errors:
1. unknown option ’<bad option letter>’
too few arguments in command line.
No input given!
Cannot have nested -f options.
too few arguments in -f file: <filename>

o os

multiple <origin> declarations, last one used.

b
=
o

1/O errors:

can’t open <filename>, err=<error number>
Cannot open -f file: <filename>

I/0 error (<error number>) reading/writing output file
Cannot write output file

Cannot create output file: <filename>

Cannot create symbol table output

Cannot create overlay symbol table output

.1.3 Corrupted object files:

object file is bad!

invalid operator in evaluate <hex value>
library format is invalid!

Cannot read module from <input> on pass2
can’t find symbol, <symbol name>, on pass two
<filename> is not a rel file!

=
!":“L“?*S":"W!":‘"‘\'P*P‘P?’!\’:"

4 Errors in use of Memory:

Insufficient memory!

Too many symbols!
3. -C or -D value less than base address
4. Code and data regions overlap

4.1.5 Errors arising from source code:
1. Undefined symbol <symbol name>

-In.17 -

LINKER

LINKER Error Messages Aztec C86

N v AW

<symbol narhe> multiply defined

passl(<hex value>) and pass2(<hex value>) values differ:
symbol type differs on pass two: <symbol name>
Attempt to Initialize Data in Root

undefined COMMON <symbol name>

-In.18 -

——

Aztec C86 Error Messages LINKER

4.2 Description of Linker Error Messages

When invoked, the linker processes the arguments given it,
performs the linkage requested, and gencrates an executable output
file on the disk. The first line to appear on the screen is a banner
which indicates that the linker has been loaded and is running. If
everything goes well, the base address message will follow and the
linker will finish, The linker may encounter an error while it is
running, in which case it will send a message to the screen.

Errors may be reported at a variety of points during the linking
process. In does its work in two stages, known as pass 1 and pass 2. The
base address message is printed at the end of pass 1, so any errors
occurring after that have been detected during pass 2 of the linker.

Following is a list of the messages which the linker will generate in
response to an error. The messages are grouped according to the source
of the errors which cause them. Elements which are variable are
enclosed by angled brackets: <>.

4,21 Command line errors:
1. unknown option ’<bad option letter>’

An option letter has been specified which the linker does not
recognize. Only the letter will be ignored; everything else on the
command line has been preserved, and the linker will try to execute
what it has interpreted. See the Options section of this chapter for a
list of options which are supported.

2. too few arguments in command line.

Several of the linker options have an associated value or name, such
as -B 2000. If a neceded value is missing, the linker will give this
message and die.

3. Noinput given!
The linker will quit immediately if not given any input to process.
4, Cannot have nested -f options.

A file which is given as a -f argument can contain any option letter
except -f itself. However, more than one -f is allowed on a command
line,

5. too few arguments in -f file; <filename>

An option letter specified in the file, "filename," requires a value or
name to follow it. If an option appears at the end of the file, its
associated value may not appear back on the command line.

6. multiple <origin> declarations, last one used.

The message will specify that one of the segment address selection
options, -C, -D, or -U, was specified more than once in the command

-In.19 -

LINKER Error Messages Aztec C86

line:

The linker will use the last value specified for a segment address.
4.2.2 1/0 errors:
1. can’t open <filename>, err=<ermo>

If any file in the command line cannot be opened, this message
will be sent to the screen, specifying the filename and the current
value of errno.

2. Cannot open -f file: <filename>
A file given with the -f option cannot be opened.
3. I/O error (<errno>) reading/writing output file

An error reading or writing the output file probably means there is
no more disk space available. In particular, a block of the output file
was written to disk and then could not be read back. The current value
of errno is given in these messages.

4. Cannot write output file
The description of the previous message applies to this one, too.
5. Cannot create output file; <filename>

This message usually indicates that all available directory space on
the disk has been exhausted.

6. Cannot create symbol table output

The -T option was given in the command line, but the file
containing the linkage symbol table cannot be written to disk. It is
possible that there is no more space on the disk.

7. Cannot create overlay symbol table output

Occurs when using the -R option. The file containing the overlay
symbol table cannot be written to disk.

4.2.3 Corrupted object files:
1. object file is bad!

This is the most explicit indication that an object file in the linkage
has been corrupted. The solution is simply to recompile and assemble
the source file.

2. invalid operator in evaluate <hex value>

This is really the same as the previous error message. Unless you
have changed the object code by hand, the file has been corrupted.

- 1n.20 -

Aztec C86 Error Messages LINKER

3. library format is invalid!
A library in the linkage has been corrupted.
4. Cannot read module from <input> on pass2

Indicates that a module has been corrupted between pass 1 and pass
) 2. On a multiuser system, it is possible that another user changed the
file while the linker was running. Otherwise, the error was probably
due to a hardware failure.

5. can’t find symbol, <symbol name>, on pass two
Same as the previous message.
6. <filename> is not a rel file!

A file given to the linker does not contain relocatable object code
which /n can process. For instance, a source file may have been
included in the link.

4.2.4 Errors in use of memory:
1. Insufficient memory!

The linkage process needs memory space for In, global and local
symbol tables, and approximately 5K for buffers. Just as with
compilation, most memory use is devoted to the program software and
symbol tables. Since In is not especially large, only an extremely
complicated linkage might run out of memory.

2. Too many symbols!

This is another way of saying that not enough memory was
available for the symbol tables needed for the linkage.

3. -Cor -D value less than base address

It is not possible for the starting address of the code or data to be
less than the base address of the program, which is specified by the
option, -B.

4. Code and Data Regions Overlap

By default, data resides above the code area in memory. The
starting addresses of both areas must be spaced far enough apart to
accommodate all the code. If the -D option is used to begin the data
area in the middle of the code, this error message will be put out.

4.2.5 Errors arising from source code:
1. Undefined symbol: <symbol name>

A global symbol name has remained undefined. This is commonly a
function which has been referenced in the source code but not
included anywhere in the link.

-In.21 -

LINKER Error Messages Aztec C86

2. <symbol name> multiply defined

A global symbol has been defined more than once. For instance, if
two functions are accidentally given the same name, this message will
be generated.

3. passl(<hex value>) and pass2(<hex value>) values differ:

This message may be generated during pass 2 following a *multiply
defined’ message in pass 1.

4. symbol type differs on pass two: <symbol name>
Same as the previous message.
5. Attempt to Initialize Data in Root

On the source code level, this means that a global symbol was
defined in the root of an overlay and then initialized in an overlay
module. For example,

root: overlay:

int i; inti=3;
The problem arises because the initialization is performed by the
linker, but the varial?le to be initialized is in an entirely different file.

The situation which follows is valid because the assignment
statement is evaluated at run time:

root: overlay:
int i; int i;
function()
i=3;
}

6. undefined COMMON <symbol name>

This error now occurs only in reference to the user’s own assembly
language routines. It is generated by a COMMON block of size zero.

-1n.22 -

UTILITY PROGRAMS

- util.1 -

UTILITIES Aztec C86
Chapter Contents
Utility Programscceee cervenene reeeverasenerenssesnenns util
arcv (Source dearchiver) reevesersrestsarstestsabesssnbetesrerassarenensesanses 4
cnm (Object file utility)cccvveeeerveenes . w3
Crc (File VETifiCator)cccviveeiiseecesinnsiinensseenissiscsnissesessssssassssssssssenens 9
hex86 (ROM HeEX GENETALOL) ..uceevereeecreerrierereresserssenssessessessasssesssssereas 10
Ib (Object module HBIarian)eeeremesensecsesenssssssssns 11
IS (list AIr€CtOTY CONLENLS ...cccorrrereriererereenrersrrnssesssessmserersessssnssereseneses 22
0bd (ObjJect file ULILILY) cevvrverrerrrrernerrresunsesassesessnesssessasesrassasserassnsassessens 25
obj (MSDOS/PCDOS Object code generator)coeeeeeererererereens 26
ord (Object library generation Utility)ccceceeeeevemmerenceereseresssesens 27
prof (EXECUtiON PIOfiler)cccveeeeerereeereienereseseessereesessssssssesassesesens 28
sqz (Object file ULHIILY) ..ceeereeererererereneneereeenenesesnesens reesaserssanaanene 29
term (terminal emulator for IBM PC)ccceverevenmervernenceneenennene 30

- util.2 -

PSRN

Aztec C86 UTILITIES

Utility Programs

D This chapter describes utility programs that are provided with
Aztec C86. For a description of other utility programs, which are
provided in some Aztec C86 packages, see the Debugger Utilities
chapter and the Unitools chapter.

- util.3 -

ARCY ARCV

NAME

arcv - source dearchiver
SYNOPSIS

arcv arcfile [dest-area]
DESCRIPTION

arcv extracts the source from the archive file arcfile and places the
results in separate files. You can’t create archive files yourself; you can
just unpack those that are provided with some versions of Aztec C86.

The optional parameter dest-area defines the area in which the files
are created, where on DOS and ’area’ is a directory on a drive and on
CP/M-86 it’s a user area on a drive. arcv generates the name of a file
it wants to create by prepending the dest-area parameter to the file
name as recorded in the archive. Thus, if dest-area isn’t specified, the
files will be created on the current areca, which on DOS is the current
directory on the default drive, and on CP/M-86 is the current user
area on the default drive.

For example, the file stdio.arc contains the source for all the
standard i/o files. To create these files in the current area, enter:

arcv stdio.arc

On DOS, the first of the following two commands will create the
files on the root directory on the b: drive, and the second on the \src
directory on the ¢. drive:

arcv stdio.arc b:
arcv stdio.arc c:\src\

Because arcy prepends the dest-area parameter to a file name, the
terminating backslash is required when dest-area contains a directory
name,

On CP/M-86, the first of the following two commands will create
the files on the current user area on the b: drive, and the second on
user area 4 on the ¢: drive:

arcv stdio.arc b:
arcv stdio.arc 4/c:

- util.4 -

PEgEN

CNM Aaztec Utility Program CNM

NAME

cnm - display object file info
SYNOPSIS

cnm [-sol] file [file ...]
DESCRIPTION

cnm displays the size and symbols of its object file arguments. The
files can be object modules created by the Manx assembler, libraries of
object modules created by the Manx librarian /b, and ’rsm’ files created
by the Manx linker during the linking of an overlay root.

For example, the following displays the size and symbols for the
object module subl.o, the library c.lib, and the rsm file root.rsm:

cnm subl.o c.lib root.rsm

By default, the information is sent to the console. It can be
redirected to a file or device in the normal way. For example, the
following three commands send information about subl.o to the
display, the file dispfile, and the printer, respectively:

cnm subl.o
cnm subl.o > dispfile
cnm >lst: subl.o

A filename can optionally specify multiple files, using the
"wildcard" characters ? and *. These have their standard meanings: ?
matches a single character; * matches zero or more characters. For
example

*0 Specifies all files with extent ’.0’
a??.lib Specifies all files whose filename has three characters,
the first of which is ’a’, and whose extent is *.1ib’

The first line listed by cnm for an object module has the following
format; '

file (module): code: cc data: dd udata: uu total: tt (Oxhh)
where

* file is the name of the file containing the module,

* module is the name of the module; if the module is unnamed,
this field and its surrounding parentheses aren’t printed;

* ¢c is the number of bytes in the module’s code segment, in
decimal;

* dd is the number of bytes in the module’s initialized data
segment, in decimal;

* yy is the number of bytes in the module’s uninitialized data
segment, in decimal;

* 1t is the total number of bytes in the module’s three segments,

- util.5 -

CNM Aztec Utility Program CNM

in decimal;
* hh is the total number of bytes in the module’s three
segments, in hexadecimal,

If cnm displays information about more than one module, it
displays four totals just before it finishes, listing the sum of the sizes
of the modules’ code segments, initialized data segments, and
uninitialized data segments, and the sum of the sizes of all segments of
all modules. Each sum is in decimal; the total of all segments is also
given in hexadecimal

The -s option tells cnm to display just the sizes of the object
modules. If this option isn’t specified, cnm also displays information
about each named symbol in the object modules.

When cnm displays information about the modules’ named symbols,
the -/ option tells cnm to display each symbol’s information on a
separate line and to display all of the characters in a symbol’s name; if
this option.isn’t used, cnm displays the information about several
symbols on a line and only displays the first eight characters of a
symbol’s name.

The -0 option tells cnm to prefix each line generated for an object
module with the name of the file containing the module and the
module name in parentheses (if the module is named). If this option
isn’t specified, this information is listed just once for each module:
prefixed to the first line generated for the module.

The -0 option is useful when using cnm in combination with grep.
For example, the following commands will display all information
about the module perror in the library c.lib:

cnm -0 c.lib >tmp
grep perror tmp

cnm displays information about an module’s *named’ symbols; that
is, about the symbols that begin with something other than a dollar
sign followed by a digit. For example, the symbol quad is named, so
information about it would be displayed; the symbol $0123 is
unnamed, so information about it would not be displayed.

For each named symbol in a module, cnm displays its name, a two-
character code specifying its type, and an associated value. The value
displayed depends on the type of the symbol. :

If the first character of a symbol’s type code is lower case, the
symbol can only be accessed by the module; that is, it’s local to the
module. If this character is upper case, the symbol is global to the
module: either the module has defined the symbol and is allowing
other modules to access it or the module needs to access the symbol,
which must be defined as a global or public symbol in another module.
The type codes are:

- util.6 -

CNM

ab

pg

dt

Cm

rf

oy

un

Aztec Utility Program ‘ CNM

The symbol was defined using the assembler’s
EQUATE directive. The value listed is the equated
value of its symbol.

The compiler doesn’t generate symbols of this type.

The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

The compiler generates this type symbol for function
names. Static functions are local to the function, and
so have type pg; all other functions are global, that is,
callable from other programs, and hence have type Pg.

The symbol is in the initialized data segment. The
value is the offset of the symbol from the start of the
data segment.

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type dr; all other variables are global, that is,
accessable from other programs, and hence have type
Dt

The symbol is the name of a segment whose
combine-type is COMMON. The value is the size of
the segment, in bytes. Cm is in upper case because
common block names are always global.

The compiler doesn’t generate this type symbol.

The symbol is defined within a segment whose
combine-type is COMMON. The value is the offset of
the symbol from the beginning of the segment.

The compiler doesn’t generate this type symbol.

When an overlay is being linked and that overlay itself
calls another overlay, this type of symbol can appear
in the rsm file for the overlay that is being linked. It
indicates that the symbol is defined in the program
that is going to call the overlay that is being linked.

The value is the offset of the symbol from the
beginning of the physical segment that contains it.

The symbol is used but not defined within the
program. The value has no meaning.

Un symbols (that is, the u is capitalized) have been
defined with the assembly language directive extrn.

The compiler generates Un symbols for functions that
are called but not defined within the program, for

- util.7 -

CNM

bs

Gl

Aztec Utility Program CNM

variables that are declared to be extern and that are
actually wused within the program, and for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program aren’t mentioned in the assembly
language source file generated by the compiler and
hence don’t appear in the object file.

The symbol is in the uninitalized data segment. The
value is the space reserved for the symbol.

The compiler generates bs symbols for static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates bs symbols for symbols
defined using the bss assembler directive.

The symbol is in the uninitialized data segment. The
value is the space reserved for the symbol.

The compiler generates GI symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates GI! symbols for variables
declared using the global directive which have a non-
zero size.

- util.8 -

CRC CRC generator CRC

NAME

crc - Utility for generating the CRC for files
SYNOPSIS

crc files
DESCRIPTION

crc computes a number, called the CRC, for the specified files. By
using the standard ’wild-card’ characters, files can specify multiple
files.

The CRC for a file is entirely dependent on the file’s contents, and
it is very unlikely that two files whose contents are different will have
the same CRCs. Thus, crc can be used to determine whether a file has
the expected contents.

The file crclist that is on the Aztec C disks lists the CRC values for
each of the files on the disks. By comparing these values with those
computed by your own running of crc, you can easily determine
whether what we thought we sent you is what you got.

As an example of the usage of crc, the following command
computes the crc of all files whose extension is .c.

crec *¢

- util.9 -

HEXS86 Intel Hex Generator HEX86

NAME

hex86 - Intel Hex Generator
SYNOPSIS

hex86 [-zeos] infile [outfile]
DESCRIPTION

hex86 is used when generating ROMable programs. It converts an
.exe file to Intel hex format, which can then be read by a ROM
programmer.

For more information, sece the section entitled "Generating
ROMable Code" in the Technical Information chapter.

- util.10 -

LB Object file librarian LB

NAME

Ib - object file librarian
SYNOPSIS

1b library [options] {modl mod2 ...]
DESCRIPTION

Ib is a program that creates and manipulates libraries of object
modules. The modules must be created by the Manx assembler.

This description of /b is divided into three sections: the first
describes briefly »’s arguments and options, the second [»’s basic
features, and the third the rest of /»’s features.

1. The arguments to /b

1.1 The library argument

When started, /b acts upon a single library file. The first argument
to Ib (library, in the synopsis) is the name of this file. The filename
extension for library is optional; if not specified, it’s assumed to be ./ib.

1.2 T_he options argument

There are two types of options argument: function code options, and
qualifier options. These options will be summarized in the following
paragraphs, and then described in detail below.

1.2.1 Function code options

When b is started, it performs one function on the specified
library, as defined by the options argument. The functions that /b can
perform, and their corresponding option codes, are:

function code
create a library (no code)
add modules to a library -a, -i, -b
list library modules -t
move modules within a library -m
replace modules -
delete modules -d
extract modules -X
ensure module uniqueness -u
define module extension -¢
help -h

In the synopsis, the options argument is surrounded by square
brackets. This indicates that the argument is optional; if a code isn’t
specified, /b assumes that a library is to be created.

- util.11 -

LB Object file librarian LB

1.2.2 Qualifier options

In addition to a function code, the options argument can optionally
specify a qualifier, that modifies /b’s behavior as it is performing the
requested function. The qualifiers and their codes are:

verbose -v
silent -s

The qualifier can be included in the same argument as the function
code, or as a separate argument. For example, to cause /b to append
modules to a library, and be silent when doing it, any of the following
option arguments could be specified:

-as
-sa
-a-s
-5 -a

1.3 The r»od arguments

The arguments modl, mod2, etc. are the names of the object
modules, or the files containing these modules, that /b is to use. For
some functions, /b requires an object module name, and for others it
requires the name of a file containing an object module. In the latter
case, the file’s extension is optional; if not specified, the /b that’s
supplied with native Aztec C systems assumes that it’s .0, and the »
that’s supplied with cross development versions of Aztec C assumes
that the extension is .r. You can explicitly define the default module
extension using the -e option.

1.4 Reading arguments from another file

/b has a special argument, -f filename, that causes it to read
command line arguments from the specified file. When done, it
continues reading arguments from the command line. Arguments can
be read from more than one file, but the file specified in a -f filename
argument can’t itself contain a -f filename argument.

2. Basic features of /b

In this section we want to describe the basic features of /b. With
this knowledge in hand, you can start using /b, and then read about the
rest of the features of /b at your leisure.

The basic things you need to know about /b, and which thus are
described in this section, are:

* How to create a library
* How to list the names of modules in a library
* How modules get their names

- util.12 -

LB Object file librarian LB

* Order of modules in a library
* Getting /b arguments from a file

Thus, with the information presented in this section you can create

libraries and get a list of the modules in libraries. The third section of
- this description shows you how to modify selected modules within a
library.

2.1 Creating a Library

A library is created by starting /b with a command line that
specifies the name of the library file to be created and -the names of
the files whose object modules are to be copied into the library. It
doesn’t contain a function code, and it’s this absence of a function
code that tells /b that it is to create a library.

For example, the following command creates the library exmpl.lib,
copying into it the object modules that are in the files objl.o and
o0bj2.0:

Ib exmpl.1ib objl.o obj2.0

Making use of /p’s assumptions about file names for which no
extension is specified, the following command is equivalent to the
above command:

1b exmpl objl obj2

An object module file from which modules are read into a new
library can itself be a library created by /b. In this case, all the
modules in the input library are copied into the new library.

2.1.1 The temporary library

When b creates a library or modifies an existing library, it first
creates a new library with a temporary name. If the function was
successfully performed, /b erases the file having the same name as the
specified library, and then renames the new library, giving it the name
of the specified library. Thus, /b makes sure it can create a library
before erasing an existing one.

Note that there must be room on the disk for both the old library
and the new.

2.2 Getting the table of contents for a library

To list the names of the modules in a library, use /b’s -t option. For
example, the following command lists the modules that are in exmpl.lib:

1b exmpl -t

The list will include some **DIR** entries. These identify blocks
within the library that contain control information. They are created
and deleted automatically as needed, and cannot be changed by you.

- util.13 -

LB Object file librarian LB

2.3 How modules get their names

When a module is copied into a library from a file containing a
single object module (that is, from an object module generated by the
Manx assembler), the name of the module within the library is derived
from the name of the input file by deleting the input file’s volume,
path, and extension components.

For example, in the example given above, the names of the object
modules in exmpl.lib are objl and 0bj2.

An input file can itself be a library. In this case, a module’s name
in the new library is the same as its name in the input library.

2.4 Order in a library

The order of modules in a library is important, since the linker
makes only a single pass through a library when it is searching for
modules. For a discussion of this, see the tutorial section of the
Linker chapter.

When b creates a library, it places modules in the library in the
order in which it reads them. Thus, in the example given above, the
modules will be in the library in the following order:

objl obj2

As another example, suppose that the library oldlib.lib contains the
following modules, in the order specified:

subl sub2 sub3

If the library newlib.lib is created with the command
1b newlib mod1 oldlib.lib mod2 mod3

the contents of the newly-created newlib.lib will be:
modl subl sub2 sub3 mod2 mod3

The ord utility program can be used to create a library whose
modules are optimally sorted. For information, see its description later
in this chapter.

2.5 Getting /b arguments from a file

For libraries containing many modules, it is frequently
inconvenient, if not impossible, to enter all the arguments to /b on a
single command line. In this case, Ib’s -f filename feature can be of
use: when /b finds this option, it opens the specified file and starts
reading command arguments from it. After finishing the file, it
continues to scan the command line.

For example, suppose the file build contains the line
exmpl objl obj2

- util.14 -

LB : Object file librarian LB

Then entering the command
1b -f build

causes /b to get its arguments from the file build, which causes /b to
create the library exmpl.lib containing objl and 0bj2.

Arguments in a -f file can be separated by any sequence of
whitespace characters ("whitespace’ being blanks, tabs, and newlines).
Thus, arguments in a -f file can be on separate lines, if desired.

The /b command line can contain multiple -f arguments, allowing /b
arguments to be read from several files. For example, if some of the
object modules that are to be placed in exmpllib are defined in
arith.inc, input.inc, and output.inc, then the following command could be
used to create exmpllib, '

1b exmpl -f arith.inc -f input.inc -f output.inc
A -f file can contain any valid /b argument, except for another -f.
That is, -f files can’t be nested.
3. Advanced /5 features

In this section we describe the rest of the functions that /b can
perform. These primarily involve manipulating selected modules
within a library.

3.1 Adding modules to a library

b allows you to add modules to an existing library. The modules
can be added before or after a specified module in the library or can
be added to the beginning or end of the library.

The options that select /b’s add function are:

option Sfunction
-b target add modules before the module target
-i target same as -b target
-a target add modules after the module target
-b+ add modules to the beginning of the library
-i+ same as -b+
-a+ add modules to the end of the library

In an /b command that selects the add function, the names of the
files containing modules to be added follows the add option code (and
the target module name, when appropriate). A file can contain a single
module or a library of modules.

Modules are added in the order that they are specified. If a library
is to be added, its modules are added in the order they occur in the
input library.

- util.15 -

LB Object file librarian LB

3.1.1 Adding modules before an existing module

As an example of the addition of modules before a selected module,
suppose that the library exmpl.lib contains the modules

objl obj2 obj3
The command
Ib exmpl -i obj2 modl mod2

adds the modules in the files modl.o and mod2.0 to exmpllib, placing
them before the module 0bj2. The resultant exmpl.lib looking like this:

objl modl mod2 obj2 obj3

Note that in the /b command we didn’t need to specify the
extension of either the file containing the library to which modules
were to be added or the extension of the files containing the modules
to be added. /b assumed that the extension of the file containing the
target library was ./ib, and that the extension of the other files was .o.

As an example of the addition of one library to another, suppose
that the library mylib.lib contains the modules

modl mod2 mod3

and that the library exmpllib contains
objl obj2 obj3

Then the command
Ib -b obj2 mylib.lib

adds the modules in mylib.lib to exmpllib, resulting in exmpllib
containing

objl modl mod2 mod3 obj2 obj3

Note that in this example, we had to specify the extension of the
input file mylib.lib. If we hadn’t included it, /b would have assumed
that the file was named mylib.o.

3.1.2 Adding modules after an existing module

As an example of adding modules after a specified module, the
command

1b exmpl -a objl modl mod2

will insert modl and mod2 after objl in the library exmpllib. If
exmpl.lib originally contained

objl obj2 obj3
then after the addition, it contains

- util.16 -

N

LB Object file librarian LB

objl modl mod2 obj2 obj3
3.1.3 Adding modules at the beginning or end of a library

The options -b+ and -a+ tell /b to add the modules whose names
follow the option to the beginning or end of a library, respectively.
Unlike the -i and -a options, these options aren’t followed by the name
of an existing module in the library.

For example, given the library exmpl.lib containing
objl obj2

the following command will add the modules mod! and mod2 to the
beginning of exmpl.lib:

Ib exmpl -i+ modl mod2
resulting in exmpl.lib containing
modl mod2 objl obj2

The following command will add the same modules to the end of
the library:

1b exmpl -a+ modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2
3.2 Moving modules within a library

Modules which' already exist in a library can be easily moved about,
using the move option, -m.

As with the options for adding modules to an existing library, there
are several forms of move functions:

option meaning v
-mb target move modules before the module rarget
-ma target move modules after the module farget
-mb+ move modules to the beginning of the library
-ma+ move modules to the end of the library

In the /b command, the names of the modules to be moved follows
the *move’ option code.

The modules are moved in the order in which they are found in
the original library, not in the order in which they are listed in the /6
command.

3.2.1 Moving modules before an existing module

As an example of the movement of modules to a position before an
existing module in a library, suppose that the library exmpl.lib contains

- util.17 -

LB Object file librarian LB

objl obj2 obj3 obj@d obj5 obj6
The following command moves 0bj3 before 0bj2:

Ib exmpl -mb obj2 obj3
putting the modules in the order:

objl obj3 obj2 obj4 obj5 objb

And, given the library in the original order again, the following
command moves 0b/6, 0bj2, and 0bj1 before 0bj3.

Ib exmpl -mb obj3 obj6 obj2 objl
putting the library in the order:
objl obj2 obj6 obj3 obj4d obj5

As an example of the movement of modules to a position after an
existing module, suppose that the library exmpllib is back in its
original order. Then the command

Ib exmpl -ma obj4 obj3 obj2
moves 0bj3 and 0bj2 after obj4, resulting in the library
objl obj4 obj2 obj3 obj5 obj6
3.2.2 Moving modules to the beginning or end of a library

The options for moving modules to the beginning or end of a
library are -mb+ and -ma+, respectively.

For example, given the library exmpl.lib with contents
objl obj2 obj3 obj4 obj5 objb

the following command will move 0bj3 and 0bj5 to the beginning of
the library:

Ib exmpl -mb+ obj5 obj3
resulting in exmpl.lib having the order
obj3 obj5 objl obj2 objd obj6

And the following command will move 0bj2 to the end of the
library:

Ib exmpl -ma+ obj2
3.3 Deleting Modules

Modules can be deleted from a library using /b’s -d option. The
command for deletion has the form

Ib libname -d modl mod2 ...
where modl, mod2, ... are the names of the modules to be deleted.

- util.18 -

~

LB Object file librarian LB

For example, suppose that exmpl.lib contains
objl obj2 obj3 obj4 obj5 obj6
The following command deletes 0bj3 and 0bj5 from this library:
Ib exmpl -d obj3 obj5
3.4 Replacing Modules

The b option ’replace’ is used to replace one module in a library
with one or more other modules.

The ’replace’ option has the form -r farget, where target is the name
of the module being replaced. In a command that uses the *replace’
option, the names of the files whose modules are to replace the target
module follow the ’replace’ option and its associated target module.
Such a file can contain a single module or a library of modules.

Thus, an /b command to replace a module has the form:
1b library -r target mod! mod2 ...

For example, suppose that the library exmpllib looks like this:
obj!l obj2 obj3 obj4

Then to replace obj3 with the modules in the files modl.0 and mod2.0,
the following command could be used:

1b exmpl -r obj3 modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2 obj4
3.5 Uniqueness

16 allows libraries to be created containing duplicate modules, where
one module is a duplicate of another if it has the same name,

The option -u causes /b to delete duplicate modules in a library,
resulting in a library in which each module name is unique. In
particular, the -u option causes /b to scan through a library, looking at
module names. Any modules found that are duplicates of previous
modules are deleted.

For example, suppose that the library exmpllib contains the
following:

objl obj2 obj3 objl obj3
The command
1b exmpl -u

will delete the second copies of the modules objI and 0bj2, leaving the
library looking like this:

- util.19 -

LB Object file librarian LB

objl obj2 obj3
3.6 Extracting modules from a Library

The b option -x extracts modules from a library and puts them in
separate files, without modifying the library.

The names of the modules to be extracted follows the -x option. If
no modules are specified, all modules in the library are extracted.

When a module is extracted, it’s written to a new file; the file has
same name as the module and extension .o.

For example, given the library exmpllib containing the modules
objl obj2 obj3
The command
Ib exmpl -x

extracts all modules from the library, writing objl to objl.o, obj2 to
0bj2.0, and 0bj3 to obj3.0.

And the command
1b exmpl -x obj2
extracts just obj2 from the library.
3.7 The *verbose’ option

The ’verbose’ option, -v, causes /b to be verbose; that is, to tell you
what it’s doing,

This option can be specified as part of another option, or all by
itself. For example, the following command creates a library in a
chatty manner:

Ib exmpl -v mod]l mod2 mod3

And the following equivalent commands cause /b to remove some
modules and to be verbose:

Ib exmpl -dv mod1l mod2
Ib exmpl -d -v modl mod2

3.8 The ’silence’ option
The ’silence’ option, -s, tells b not to display its signon message.

This option is especially useful when redirecting the output of a list
command to a disk file, as described below.

3.9 Rebuilding a library

The following commands provide a convenient way to rebuild a
library:

- util.20 -

LB Object file librarian LB

Ib exmpl -st > tfil
Ib exmpl -f tfil

The first command writes the names of the modules in exmpllib to
the file ¢fil. The second command then rebuilds the library, using as
arguments the listing generated by the first command.

The -s option to the first command prevents /b from sending
information to t¢fil that would foul up the second command. The
names sent to ¢fi/ include entries for the directory blocks, **DIR**, but
these are ignored by /b.

3.10 Defining the default module extension.

Specification of the extension of an object module file is optional;
the /b that comes with native development versions of Aztec C assumes
that the extension is .o, and the /b that comes with cross development
versions of Aztec C assumes that it’s .r. You can explicitly define the
default extension using the -e¢ option. This option has the form

-€ .ext

For example, the following command creates a library; the
extension of the input object module files is .i.

Ib my.lib -¢ .i modl mod2 mod3
3.11 Help

The -k option is provided for brief lapses of memory, and will
generate a summary of /b functions and options.

- util.21 -

LS LS

NAME

Is - list directory contents
SYNOPSIS

Is [-options] [namel name?2 ...]
DESCRIPTION

Is displays information about the files and directories namel,
name2, ... If no names are specified, /s displays information about all
the files and directories in the current directory on the default drive.
For example, the following command displays information about the
files subl.o and subl.c in the default drive’s current directory, and the
directory d.\ include:

Is subl.o subl.c d:\include

A name can optionally specify multiple files, using the "wildcard
characters” * and 7. These have their standard meaning: * matches one
or more characters, and ? matches a single character. For example, the
following command displayes information about all files that have
extension .c and that are in the directory ¢\ src.

Is c:\src*.c

Wildcard characters can be used only in file names, and not in
directory or drive names. A wildcard character won’t match the
period that separates a file or directory name and its extension. Thus,
the command /s * will list just the files and directories that don’t have
extensions.

Is sends the information to its standard output. This information
thus by default is sent to the console, but can be redirected to a file or
other device in the normal way. For example, the first of the
following commands displays on the console information about files
that have extension .0 and that are in the current directory. The
second and third commands send information about the same files to
the file info.obj and to the printer prn, respectively:

Is *o0
Is *.0 >info.obj
Is *.0 >prn

Is by default displays information in ’short form’, listing just the names
of the specified files and directories. You can also specify the -/ option
to cause Is to display information in ’long form’, listing lots of
information.

Even when long form is specified, Is will only list the name of
specified directories. To list the contents of a directory, you must
specify the files in the directory, using wildcard characters. For
example, to see the contents of the directory \ work, you would say

- util.22 -

LS LS

Is \ work\ *.*

When Is sends information in short form to the console, the names
are in columns on the screen, with a dash preceding directory names.
When the information is sent to a file or other device, the names are
listed one per line, and a directory name isn’t by default preceded by a
dash.

Is sorts the list it’s going to display. By default, the list is sorted
alphabetically; you can also specify options to cause Is to sort based on
other the list such as ’last modified’ time and file size, and, for a given
criteria, to sort in the reverse of the normal order. default drives.

All options to Is must be specified in one parameter to /s. This
parameter begins with a dash and comes before the file and directory
names. /s supports the following options:

-l List in long form. For a description of the ’long form’
information, see below.

-b When listing in long form, list the number of 512-byte
blocks that a file uses, in addition to the other
information.

-a List all files, including those whose first character is a
period (such as . and ..).

-p When listing in short form, precede directory names
with a dash.

-t Sort by ’last-modified’ time.

-s Sort by file size.

-r Reverse the order of the sort. For example, when

sorting alphabetically, list names beginning with ’Z’
first and those beginning with *a’ last.

When displaying in long form, the line on which information is
displayed for a file or directory has the following form:

dshr bytesize (blksize) dat¢ name

The first four letters define attributes of the file or directory. If it
doesn’t have an attribute, the letter is replaced with a dash. The
meaning of the letters are:

d Directory

s System file

h Hidden file

r Read-only file

The other fields in a long form listing have the following meaning:

bytesize Number of bytes in a file. This field is zero for a
directory.

- util.23 -

LS

blksize

date

name

LS

Number of 512-byte blocks that the file uses. This
field is zero for a directory, and is only listed when
the -b option is specified.

Date and time at which the file was last modified. If
the file was modified within the last six months, this
field lists the month, day, and time of modification;
otherwise, it lists the month, day, and year of
modification,

The name of the file or directory.

- util.24 -

OBD Aztec Utility Program : OBD

NAME

obd - list object code
SYNOPSIS

obd <objfile>
DESCRIPTION

obd lists the loader items in an object file. It has a single parameter,
which is the name of the object file.

- util.25 -

OBJ Microsoft object generator OBJ

NAME

obj -- convert object modules from Aztec to Microsoft format
SYNOPSIS

obj [options] infile [outfile]
DESCRIPTION

obj converts object modules from Aztec to Microsoft format. The
resultant files can then be linked using the Microsoft linker with other
Microsoft object files to produce an executable program.

For more information, see the section entitled "Using the Microsoft
Linker" in the Technical Information chapter.

Options
obj supports the following options:

-u Don’t strip trailing underscores from names.
- Truncate external names to eight characters.

- util.26 -

ORD Aztec Utility Program ORD

NAME

ord - sort object module list
SYNOPSIS

ord [-v] [infile [outfile]]
DESCRIPTION

ord sorts a list of object file names. A library of the object modules
that is generated from the sorted list by the object module librarian, /b,
will have a minimum number of *backward references’; that is, global
symbols that are defined in one module and referenced in a later
module.

Since the specification of a library to the linker causes it to search
the library just once, a library having no backward references need be
specified just once when linking a program, and a library having
backward references may need to be specified multiple times.

infile is the name of a file containing an unordered list of file
names. These files contain the object modules that are to be put into a
library. If infile isn’t specified, this list is read from ord’s standard
input. The file names can be separated by space, tab, or newline
characters.

outfile is the name of the file to which the sorted list is written. If
it’s not specified, the list is written to ord’s standard output. outfile can
only be specified if infile is also specified.

The -v option causes ord to be verbose, sending messages to its
standard error device as it proceeds.

- util.27 -

PROF Profiler report program PROF

NAME

prof - execution profiler report program
SYNOPSIS

prof -s symfile [-m monfile] [-[ant]] [-[x0]] [-[zh]]
DESCRIPTION

prof processes a monitor file produced by the monitor function, and
produces a report on the execution of the monitored program. For
each function in the range specified in monitor, prof counts the
number of ticks encountered in that function and determines the
percentage of program run time spent in the function.

Options

-8 The -s argument is the name of the symbol table file
for the program generated by the linker -t option. This
argument must be present.

-m The -m option allows the user to specify the monitor
output file to be processed. If this option is not
present, prof assumes the file is named mon.out (the
name always used by monitor) and is on the current
directory.

The -t, -a, and -n options determine the sorting of lines in the
report. '

-t Sort by percentage of time spent in function, greatest
to least (This option is the default).

-a Sort by address of function.

-n Sort alphabetically by function name.

The -0 and -x options cause prof to display the addresses of the
functions in the report along with their names.

-0 Specify function addresses in octal.
-X Specify function addresses in hexadecimal.
-z The -z option causes all symbols in the range specified

in the call to monitor to be displayed, regardless of
-whether any ticks were encountered in these
functions. The default is to supress listing any
unencountered functions.

-h The -h option causes prof to suppress printing its
normal header in the report. This is useful if the
information is to undergo further processing.

- _ - util.28 -

SQz Aztec Utility Program SQZ

NAME

sqz - squeeze an object library
SYNOPSIS

sqz file [outfile]
DESCRIPTION

sqgz compresses an object module that was created by the Manx
assembler.

The first parameter is the name of the file containing the module
to be compressed. The second parameter, which is optional, is the
name of the file to which the compressed module will be written.

If the output file is specified, the original file isn’t modified or
erased.

If the output file isn’t specified, sqz creates the compressed module
in a file having a temporary name, erases the original file, and renames
the output file to the name of the original file. The temporary name is
derived from the input file name by changing it’s extent to .sgz.

If the output file isn’t specified and an error occurs during the
creation of the compressed module the original file isn’t erased or
modified.

- util.29 -

TERM TERM

NAME

term - Terminal Emulator
SYNOPSIS

term [baud]
DESCRIPTION

term is a terminal emulation program that allows an IBM PC
operator to talk to another computer. To the other system, the IBM
PC will appear to be a terminal that supports some of the special
features of the ADM-3A terminal.

term reads characters from the keyboard and writes them to the
serial interface whose base address is 0x3f8. It also reads characters
from this interface and writes them to the console. This address is
normally associated with the PC-DOS device coml.

The optional parameter baud defines the baud rate of the i/o ports.
If not specified, it’s assumed to be 9600 baud.

The source for term is in the archive term.arc. Files can be
extracted from this archive using the Manx utility program arcy.

- uti.l.30 -

LIBRARY FUNCTIONS OVERVIEW:
8086 INFORMATION

- libov86.1 -

LIBRARY Aztec C86

- libov86.2 -

Aztec C86 LIBRARY

Library Functions Overview:
8086 Information

The Library Functions Overview chapter presented overview
information that is independent of the system on which your programs
run. This chapter presents overview information about the library
functions that is specific to programs that run on an 8086 under
PCDOS, MSDOQOS, or CP/M-86.

The sections in this appendix and in the Overview of Library
Functions chapter are numbered. The information discussed in a
section of this appendix relates to the section in the Overview of
Library Functions chapter that has the same number.

1. Overview of 1/0: 8086 Informatiof

For systems using PCDOS and MSDOS, the operating system places
a limit on the maximum number of devices and files simultaneously
open for standard and unbuffered i/o: this limit is defined by the
operating system’s configuration option named FILES. The default
value for FILES is 10.

The Aztec C i/o routines impose a further restriction, limiting the
number of files and devices that can be simultaneously open for
standard i/o to eleven, regardless of the value of FILES.

For systems using CP/M-86, a maximum of eleven files and
devices, including the standard i/o devices, can be open at once for
both standard and unbuffered i/o. When this limit is reached, an open
file or device must be closed before another can be opened.

1.1 Pre-opened devices and command line arguments

For programs running on an 8086, whether under PCDOS,
MSDOS, or CP/M-86, a null pointer is the first item in the array that
is pointed at by the second argument of the of the program’s main
function. That is, if the main function begins

main(argc, argv)
int argc; char *argv[];

- libov86.3 -

LIBRARY Aztec C86

then argv/0] is a null pointer.
1.2 File I/O
1.2.1 Sequential I/O

On PCDOS/MSDOS, data can always be correctly appended to a
file, since PCDOS/MSDOS keep track of the exact number of bytes
that have been written to the file.

On CP/M-86 it isn’t always possible to correctly append data to a
file, since this system doesn’t keep track of the exact number of bytes
that have been written to a file; see below for details.

1.2.2 Random I/O

On PCDOS/MSDQOS, positioning of a file using fseek or Iseek is
always correctly done, since these systems keep track of the exact
number of bytes that have written to the file.

On CP/M-86, a file can always be correctly positioned relative to
its beginning and current position. But positioning relative to its end
can’t always be correctly done, since this system doesn’t keep track of
the exact number of bytes that have been written to the file. This is
discussed in the following paragraphs.

Finding the end of a file on CP/M-86

UNIX keeps track of the last character written to a file. Since the
Aztec I/0 functions attempt to make a file look like a UNIX file to a
program, when a program requests that a file be positioned relative to
its end (that is, relative to the last character which was written to it),
the Aztec C routines must try to locate the last character which was
written to it. This can always be done if the operating system on which
Aztec C is running also keeps track of the last character written to a
file.

PCDOS and MSDOS do this, and so positioning relative to the end
of a file on these systems is always correctly done.

However, CP/M-86 only keeps track of the last record written to a
file, and not the last character. Because of this, it is not always
possible for the Aztec C i/o functions to determine the last character
written to the file, when the program in which they are contained is
running on CP/M-86. And because of this, it is not always possible
for a program running on CP/M-86 to correctly position a file relative
to its end.

When a program running on CP/M-86 requests positioning of a file
relative to its end, the Aztec i/o functions try to find the last character
written to the file. They always succeed if the file contains only text;
for files containing arbitrary data, they may not succeed.

- libov86.4 -

Aztec C86 ' LIBRARY

To locate the last valid character in a file on CP/M-86, the Aztec
routines use the following fact: when a file is created on these systems
using Aztec C, the last record in the file is padded at the end with the
special character which denotes the end of a text file. For CP/M-86,
the special character is control-z. If the program exactly filled the last
record, it won’t have any padding.

When a program requests that a file be positioned relative to its
end, the Aztec C i/o routines search the file’s last record; end of file is
declared to be located at the position following the last non-end-of-file
character.

For files of text, this algorithm always correctly determines the last
character in the file, so appending to text files is always correctly done.

For other files, this algorithm will still correctly determine the last
valid character in the file...most of the time. However, if the last valid
characters in the file are end-of-file characters, the file will be
incorrectly positioned.

1.2.3 Opening Files
1.2.3.1 Opening files on PCDOS and MSDOS

When opening a file on systems running PCDOS or MSDOS, the
filename has the standard DOS 2.x format; that is, it consists of an
optional drive identifier, an optional directory path, and a filename.
The drive defaults to the default drive and the directory to the current
directory.

1.2.3.2 Opening files on CP/M-86

On CP/M-86, the character string which specifies the file to be
opened has the following fields, which must be in the order listed: (1)
a user number followed by a forward slash, (2) a drive identifier
followed by a colon, (3) the filename, (4) a period followed by an
extension. Only the third field is mandatory. If a user number isn’t
specified, the file is assumed to be on the current user. If the drive
isn’t specified, the file is assumed to be on the default drive.

For example, the following are valid file names:

file.ext file.ext is on default drive, current user
b:file.ext file.ext is on b: drive, current user
15/file.ext file.ext is on default drive, user 15

12/cfile.ext file.ext is on ¢ drive, user 12

A program can have files located in several different user areas
open at once.

There are several functions which may be useful to programs which
need to access files in various user areas: getusr, which returns the
current user number; setusr, which sets the current user number; and
rstusr, which resets the current user number. See the USER section in

- libov86.5 -

LIBRARY Aztec C86

the 8086 Functions chapter for more details.
1.3 Device I/O

On PCDOS/MSDOS, a program accesses devices using their
standard PCDOS/MSDOS names.

On CP/M-86, a program accesses devices using the following ‘
names:

Device name
keyboard con:
display con:
printer prn:
" Ist:
RS232 in rdr:

RS232 out pun:

2. Overview of Standard I/O: 8086 Information
2.5 Buffering

On PCDOS, MSDOS, and CP/M-86, the size of a buffer used for
standard I/0 is 1024 bytes.

4. Console I/O Overview: 8086 Information
4.2 Character-oriented Input
4.2,1 Character-oriented Input on CP/M-86

On CP/M-86, a program issuing a read request to the console when
it is in character- oriented input mode will wait until at least one
character has been typed.

If the console is in RAW mode or in CBREAK mode with ECHO
turned off, an unbuffered read request for more than a single character
may return before all requested characters have been typed. That is, if
the operator doesn’t type the characters fast enough, the read operation
will time-out and return whatever characters have been entered up to
that point. For example, if a program issues the call

read(0, buf, 80);

to read 80 characters into buf from the console, with the console in
RAVW or CBREAK without ECHO modes, the read will return at least
one character, but may return fewer than 80 characters, if the operator
doesn’t type fast enough.

If the console is in CBREAK mode with ECHO enabled, a read
request to the console always returns the requested number of
characters; that is, the operator can take his or her own sweet time
entering characters.

- libov86.6 -

Aztec C86 LIBRARY

4.2.2 Character-oriented Input on PCDOS and MSDOS

A read request to the console will always return the requested
number of characters.

4.4 The sgtry fields
4.4.1 The sg__flags field

On PCDOS and MSDOS, some bits in the sg__flags field have
meaning to MSDOS and PCDOS, in addition to the ones we have
described. Thus, on MSDOS and PCDOS systems, a program that
wants to change the console options must fetch the current options
using the TIOCGETP mode of ioctl, modify as desired just the bits that
we have defined in this chapter, and then call joctl to set the new
options.

~When a program terminates, the console stays in the mode set by
the program. So programs which change the console options from their
default settings should set them back before terminating.

- libov86.7 -

LIBRARY Aztec C86

- libov86.8 -

8086 FUNCTIONS

- 1ib86.1 -

8086 Functions Aztec C86

Chapter Contents

8086 FUNCLIONS .cuveeeeereercreeriireeerisesensseesessessssseseensssessessessssasssssnsssssssesessaenes 11b86
Index reteestessrsseesesssustesatesaeaesassbe st eesaeasaesaserRassteraesrnresasenesraes 5
TheE FUNCHIONScevuviriiereiierreseenerersisisseseessessessessesesssssessessesssssseseesssssesasssssne 7

- 1ib86.2 -

Aztec C86 8086 Functions

8086 Functions

This chapter describes functions which are available only to
programs which are running on 8086- and 8088-based systems and
which use as an operating system MSDQOS, PCDOS, or CP/M-86.

As with the System Independent Functions chapter, this chapter is
divided into sections, each of which describes a group of related
functions.

Some of the functions in this section will only run on a specific
operating system. The header to a section defines the systems on which
the section’s functions will run, as does the index which follows this
introduction. The codes defining the systems on which functions run
are:

DOS Function runs on any version of MSDOS or PCDOS;
DOS2x MSDOS or PCDOS, version 2.x or later;

DOS11 MSDOS or PCDOS, version 1.1;

PCDOS PCDOS, any version;

CP/M-86 CP/M-86, any version.

As with the system independent functions, the header to a section
has a parenthesised letter that specifies the library containing the
section’s functions. The codes and their related libraries are:

C c.lib;
S s.lib;
G g.lib.

c.lib contains only functions for the system on which the your
Aztec C86 programs run., Thus, a parenthesized ¢’ in a section’s title
doesn’t always mean that the section’s functions are included in your
c.lib. The functions are in c.lib only if they are available on all 8086-
based systems or on your specific system. For example, if you have the
PCDOS version of Aztec C86, your c.lib includes, in addition to
system-independent functions, functions which will run on any 8086-
based system and functions which run on PCDOS/MSDOS, version
2.x. It doesn’t contain functions which run on CP/M-86 or on
MSDOS/PCDOS, version 1.1.

Some Aztec C86 packages contain libraries that can be used in place
of c.lib, to support different memory models or to generate code that
will run in different environments. For more information, see the
release document,

For Apprentice C, the library functions are all in the run-time
system, and not in libraries.

- 1ib86.3 -

8086 Functions Aztec C86

Index to 8086 Functions

This section lists the 8086-specific functions that are provided with
Aztec C86. The list is sorted alphabetically by function name. For
each function it gives the function’s name, the title of the section in
which the function is described, a phrase describing the function’s
purpose, and a parenthesised code that defines the systems on which
the function is provided. The codes are defined at the beginning of
this chapter, with the exception of ’all’, which of course means that the
function is provided for all systems.

Sfunction page description
abstoptr LONGPTR absolute addr to seg:off ptr (DOS2x)
ACCESS weverrrrerenrens ACCESSovrreerrernanns determine file accessibility (all)
asCtime ...vevnenee. TIMEccoouvmunne. convert data & time to ASCII (DOS)
PR of AR ASSERToveeecerennennns verify program assertion (all)
o7 (o S DOS ..o issue DOS int 21 function call (DOS)
bdoS ...coeeerrerrerene BDOS ...oeveereenenne issue CPM86 BDOS call (CPM86)
bdoSX .ecvveeerrrerens BDOSX issue bdos call with a far pointer (DOS2x)
[3)5 PR BREAK . set heap pointer (all)
chdir ... DIRECTORY change current directory (DOS2x)
chmod CHMODcovevrrrerenereens set attributes of file (DOS2x)
Circleveveeee CIRCLEcocveererrrenrrrereresennisenes draw a circle (PCDOS)
clock ..ieeennee. CLOCKuiecrierrrernisesrsssessesesssssossessssnesens get time (DOS)
(6] (o] NN (60} 50 2 SR set color (PCDOS)
__csread ... CSREADerirrcrrne read into code segment (all)
CHtIME auevrrerrrarens TIME convert binary data & time to ASCII (DOS)
doS ..oervrennes I DOS ... issue DOS int 21 function call (DOS)
dostime TIME ...oooeeeveeererrnesrereeenesesennes get data & time (DOS)
6 (015 QS BDOSX issue DOS int 21 call with far ptr (DOS2x)
6 117 J, DUP ... open second file descriptor for file (DOS2x)
execl, etc EXEC ... jump to another program (D052x & CPM86)
(. < 1 O) 2.4 | [terminate program (all)
__EXit e, EXIT .overveveenne terminate program (all)
farcall FARCALLrireesrrrerereseennvenennen issue far call (all)
fcbinit FCBINIT . initialize an FCB (all)
fdup ...coeereevnnen DUP ... open second file descriptor for file (DOS2x)
fexecl, fexecv .. FEXECvvvrverenrennne call another program (DOS2x)
ftimecouu..... FILETIME get or set file’s date & time (DOS2x)
getewdoceneeeee DIRECTORY get name of current directory (DOS2x)
getenyv ..., GETENYV get value of environment variable (DOS2x)
=115 SR USERcocervverenenen get current user number (CPM86)
gmtime TIMEooeeeeeererrereerenenes convert date & time (DOS2x)

- 1ih86.4 -

Aztec C86 8086 Functions

ground COLORooverrerecrrrereenns set background color (PCDOS)
inportb, etc PORTccooevereerereecvenraenernerecnnes read from a port (all)
__int_sp MONITOR set monitoring clock speed (PCDOS)
line, lineto LINEooeeeecereeenenrnrereeresessnseenes draw a line (PCDOS)
localtime TIMEooereeereerncvenerennns convert date & time (DOS2x)
memccpy, etc .. MEMORYveerenvenvenrnens memory operations (all)
mktemp MKTEMP make name for temporary file (all)
modecevreeennne MODE . set screen mode (PCDOS)
monitor MONITORccoveeereeernene profiling function (PCDOS)
movblock - MOVBLOCKcccverne. move block of memory (all)
mkdir DIRECTORYcovrrrerrnnens make a directory (DOS2x)
outportb, €tC PORTuvveeveerrineerivseressesssssessesssssenns write to a port (all)
palette ... [6/0) 50) - S set palette (PCDOS)
peekb, peekw ... PEEKevrereevenne get memory byte or word (all)
perror, etc PERRORcoueueueee. ' ... wWrite error message (all)
POoint ...ceeveevvrnenns POINTvrevieectecreresreesneressenns plot a point (PCDOS)
pokeb, pokew .. PEEK set memory byte or word (all)
__ptradd, LONGPTR long pointer arithmetic (DOS2x)
__ptrdiff, ... LONGPIR long pointer arithmetic (DOS2x)
ptrtoabs LONGPIR seg:off ptr to absolute addr (DOS2x)
rmdir DIRECTORYcccceunvee. remove a directory (DOS2x)
ISTUST .voverecrernnnne USER .. reset user number to previous value (CPMS86)
rSVSK eovrererenenee BREAKcovrerrerrrernee set heap-stack boundary (all)
SBIK aeveerireerennnen BREAKocreiectreesiereeenensanes set heap pointer (all)
scdir e, SCDIR ...t cesreennen Scan directory (DOS2x)
scr__curs, etc ... SCREEN access console via ROM BIOS (PCDOS)
signalccoeeree SIGNAL define how to handle a signal (DOS2x)
segread SEGREAD get contents of segment registers (all)
SEtUSTccveveeenenen USERcoereeeeernees set current user number (CPM3$6)
] 721 AR CHMODoueerererrererrenene get file attributes (DOS2x)
Sysint FARCALL ..o execute int instruction (all)
systemcceue. SYSTEM call program or batch file (DOS2x)
timE ..coveeveveecenee TIME ieivcverccnenenne get date & time (DOS2x)
tmpfile TMPFILE create & open temporary file (all)
tmpnam TMPNAM make name for temporary file (all)
utimeoeuee FILETIME get or set file’s date & time (DOS2x)
WALL ieoverrereenreerens FEXEC get rtn code from fexec-ed program (DOS2x)

- 1ib86.5 -

ACCESS (C) DOS and CP/M-86 Function ACCESS

NAME

access - determine accessibility of a file or directory

SYNOPSIS

int access (filename, mode)
char *filename;
int mode;

DESCRIPTION

access determines whether a file or directory can be accessed in
the way that the calling function wants to access it. It can also
be used to just test for the existence of a file or directory.

filename points to the name of the file or directory; this name
optionally contains the drive and path of directories that must
be passed through to get to the file or directory. If the drive
component isn’t specified, the file or directory is assumed to
reside on the default drive. If the path component isn’t
specified, the file or directory is assumed to reside in the
current directory on the specified drive.

mode is an int that specifies the type of access desired:

mode meaning

4 read

2 write

1 execute (if a file) or search (if a directory)
0 check existence of the file or directory.

If the existence of the file or direc