
',' .;:,' .:." ',::
::;' :-::" ,::

.... ';. ..
..• ~. .'; :.;: .;::

Tape Drive
Software Cookbook

: : : : : : :
: : ~~

: : :
: : : : :

.' " .'.' '. . ,. .';"
;:' :;: .. :;: :::: .'::.: .. :::::.: .:: ,:;' .-:'
.: .. : ;" ,.';' .. :.:.. :
" .;:' ,': ,:::' ',' ,:;: .;. :{

: : : : : : : : : : : : :
: : : : : : : ;:: :

.;: : : : : : : : : : : : :

...

. }::i;:;.:~::::..:>;:::::j:;;;j:::::~::E::;:~II~I~

Subj ect: IRWIN TAPE DRIVE SOFTWARE COOKB)()K

Number: AN-001

Date: September, 1984

1

1.0 Introduction

2.0 Tape Operation and Fonnat
2.1.0 Tape Operation MOdes
2.1.1 Streaming MOde
2.1.2 Start/Stop MOde
2.1.3 In-place Update MOde
2.2 Tape Servo writing
2.3.0 Tape Format and Organization
2.3.1 Tape Format
2.3.2 Block Format
2.3.3 Format Parameters - Block 0
2.4.0 Tape Positioning
2.4.1 Access Time
2.5 write Data Verification
2.6 Head Positioning

3.0 Hardware Considerations
3.1.0 Floppy Disk Controller
3.1.1 8" Floppy Disk Carpatibility

Considerations
3.2 DMA - Direct Memory Access
3.3 Interrupts
3.4 Controller Addressability
3.5 Host Memory Requirements
3.6 Power Supply

4.0 Software Considerations
4.1 General Software Requirements
4.2.0 Software/Hardware Interaction Concerns
4.2.1 Interrupts
4.2.2 DMA Operation
4.2.3 Memory Buffers
4. 3 • 0 Software Design
4.3.1 Software Transportability
4.3.2 Software Interrupts
4.4.0 Software Design Example
4.4.1 Mid-Level Tape I/O Routines
4.4.2 Low-Level Device Routines

2

4

5
5
5
5
6
6
6
7

11
13
15
18
18
18

19
19

20
21
22
22
23
23

24
24
25
25
26
26
27
28
28
28
32
39

5.0 Considerations for the western Digital
WD179x and WD279x Series 51

5.1 Using the western Digital Commands 52
5.2 Tape Positioning with the western Digital 53

6.0 Considerations for the NEe 765 Controller 54
6.1 Using the NEe 765 Camlands 55
6.2 Tape Positioning with the NEe 765 57
6.3 Progranming Problems with the NEe 765 57

7.0 Low-Level Device Driver Flowcharts 58

A.O Indexes 98
A.l Index 98
A.2 Index of Tape Driver Routines 100
A.3 Index of Figures 101
A.4 Index of Tables 101

3

1.0 Introduction

This document is intended to be used as a "cookbook" to help you
design and test software for the Irwin 110, 210, and 310 tape
drives.

we asstmle that you are familiar with the operation of the floppy
disk interface, the disk controller, and other hardware elements
of the system. Accordingly, there is no effort to describe any
hardware beyond what is required to understand its interaction
wi th the Irwin tape drives. We also assume that you have read the
Irwin Tape Drive OEM Manual which defines the terrrdnology used in
this document.

Existing Irwin application software used to format tapes, and for
image or file-oriented dump/restore operations is referred to
often throughout this document.

4

2.0 Tape operation and Format

This section describes the three operating modes of the 110/210.
Next, the track layout, the block fonnat, and the sector fonnat of
the cartridge tape are discussed. Also included in this section is
the description of the fonnat of Block O. Finally, tape and head
positioning are discussed.

2.1.0 Tape Operating ~bdes

The tape drive has three modes of operation: Streaming,
Start/Stop, and In-place Update.

2.1.1 Streaming Mode

The streaming mode is characterized by constant, end-to
end tape rrotion while reading or writing data. This mode
provides the best data throughput since no time is
wasted starting and stopping the tape. For example, in
this rrode 10.35 megabytes of data can be stored on the
tape in only eight minutes.

Programs written to support this mode are rrore difficult
to design since they must accommodate continuous read or
write operations, where data is read or recorded as a
"stream". This usually requires implementing special
program procedures to prevent gaps in data when writing,
or data overruns when reading.

--------- 2.1.2 Start/Stop MOde

The Start/Stop mode permits starting and stopping the
tape anywhere without losing storage efficiency. In
conventional tape drives, an inter-record gap (IRG) is
produced each time the tape is stopped and restarted. As
the number of starts and stops increases, storage
efficiency decreases because of the wasted space
represented by the IRGs.

The Irwin tape drives avoid this problem by using a
formatted tape with identifiable, fixed-length blocks
located along its length. Since all blocks are
identified, the tape can be positioned to the start of
any data block on the tape with no loss of storage
capacity.

5

'lhe Start/Stop mode is useful when processor overhead is
such that streaming is impractical. Using the
Start/Stop mode permats you to position the tape at a
specific tape block to selectively read or write one or
more blocks, to retry errors, or to update data in
place.

2.1.3 In-place Update Mode

'lhe tape drive also penni ts in-place updating, allowing
you to selectively write to any sector in any block on
the tape. 'lhis mode is a particularly beneficial
feature of the Irwin drive because it provides a randan
access capability. Using the In-place Update mode, you
can maintain and update individual sectors of
directories, bad block maps, tape 10 blocks, and other
files on the tape.

2.2 Tape Servo-writing

Tapes used in the drive must have a servo pattern recorded on
them before they can be used to store data. 'lhe drives have
an internal servo-writer that is implemented using a special
firmware module and the drive's read/write head.

Tb guarantee successful servo-writing, you must first
completely erase the tape using a bulk eraser. Failure to do
this may leave residual data on the tape (previously recorded
servo patterns, for exanple) that may confuse the drive's
track following circuitry.

2.3.0 Tape Format and Organization

During servo-writing the tape is physically and logically
di vided into tape blocks. Each block occupies 11.95 inches
of tape and provides an unfonnatted capacity of 9,562 bytes.
An unfo:rroatted tape block is analogous to an unfonnatted
track on a floppy disk. Servo information used for head
posi tioning is recorded at the beginning of each block. 'lhis
information is for internal drive functions and is not user
accessible.

6

To a floppy disk controller, the tape "looks" just like a
floppy diskette with a lot more tracks. To maintain
compatibility, the host software must format each tape block
so that it" looks" like a track on the floppy. This includes
recording fields such as an index gap, header ID IS, header
gaps, data fields, CRC IS, and so forth, on the tape. Since
the format fields are just like those used on the floppy, the
part of the format program that produces the data will be
very similar to programs used to format floppy diskettes.
After formatting, each tape block contains sectors just like
the floppy track.

The design of the drive allows you to use just about any tape
format you choose. You are free to vary the number of sectors
per block as well as the number of bytes per sector. However,
most floppy controllers impose restrictions that tend to make
same formats better than others. A format with eight sectors
per block and 1,024 bytes per sector provides the lowest
overhead and maxinrum space available for data. This is
especially true when the drive is being used with floppy
controllers that use the NEe 765 or western Digital l79X chip
sets. Accordingly, all of the application software written by
Irwin uses this format.

For details regarding disk/tape formats, refer to the NEC 765
and western Digital l79x specifications and application
notes.

When formatting data fields, we recarmend using a 6Dh "fill
character". The 6Dh pattern is the most difficult MFM
pattern to read and consequently provides a read integrity
test for the tape media and read channel electronics.

To format the tape with the 5.25" .MFM data format standard,
we recommend using Write Track commands.

2.3.1 Tape Format

Irwin has established the following format
specifications for the tape cartridge. We use this
format extensively because it maximizes the amount of
space available for data by minimizing ID header
overhead.

7

The tape is divided into B tracks ntmlbered 0 through 7.
The tracks are organized on the tape in a serpentine
fashion, with even numbered tracks recorded in the
forward direction (beginning-of-tape (BOT) to end-of
tape (Ear», and odd ntmlbered tracks recorded in the
reverse direction (EOT to BOT).

Each track is divided into 158 blocks, which are also
called cylinders. While blocks and cylinders represent
the sane areas, blocks are the logical divisions of the
tape and cylinders are the physical divisions of the
tape. Cylinders are numbered 0 through 157 on each
track. Blocks are numbered 0 through 1,263 across the
entire tape. (See Figure 1 - Tape Layout, and Figure 2
- Track Layout.)

Each block is further divided into 8 sectors, numbered 1
through 8. The format of each data sector is mini-floppy
conpatible. Each sector has a 1,024 byte data area, to
provide a block capacity of BK bytes. The total capacity
of a tape track is 158 X BK bytes, or 1.294MB. This
translates to a tape capacity of 8 X 1.294MB, or
10.355MB. (See Section 2.3.2 - "Block Fo:rmat".)

The tape format parameters are stored in block 0, which
is the very first block on the tape. Format parameters
include the version ntmlber of the formatting program,
the date of fonnatting, the number of tracks per tape,
the number of blocks per track, the number of sectors
per block, the number of bytes per sector, the
application program used on the tape, the current volume
number and the total volume limit, the time and date of
the last tape change, and the track and cylinder of the
tape's first free block. Every parameter is duplicated
for redundancy checking. (See Section 2.3.3 - "Fonnat
Parameters - Block 0".)

B

PHYSICAL
BEGINNING OF TAPE HEAD

LOAD LOAD

1
BOT HOLES ... ,._A...,R", EA_ r PO I NT

I----''''''---V ~

•• • • • • ~
"'1 FT ... ~ 1 FT .. ~ 1 FT -- • 1.5FT 4FT

I l~ ,

177FT

I

TURN
EARLY AROUND

PHYSICAL
END OF

TAPE

WARNING l __ A_R ~E~ __ ----., \'-_ _-,
EOT HOLES

1
I • • •

4FT 1.5FT • ~ 1 FT .. ~ 1 FT .tp 1 FT ..

BOT
14----- AREA

CONTINUOUS CONTINUOUS BOT
____ 1- SERVO ~4--- DATA ----e SERVO ~....----- AREA ----~

33 SEC AT 70 IPS ---~

59 SEC AT 39 IPS ---~

Figure 1 - Tape Layout

9

BOT EOT

BLOCK CYLINDER TRACK CYLINDER BLOCK

1263 157 • 0 1106

948 0 157 1105 •
947 157 0 790 •
632 0 157 789

~

631 157 0 474
:4

316 0 157 473 •
315 157 0 158 •
0 0 157 157 •

Figure 2 - Track Layout

10

--------- 2.3.2 Block Format

Each tape block is formatted as shown in Figure 3
Block Layout. The top section of Figure 3 shows how each
block is divided into the block header and 8 data
sectors. The lower portion of the figure expands Sector
5 to illustrate the format of an individual sector and
its header.

Block Header

Number of Bytes

80
12

3
1

50

Hex Value

4E
00
C2 (lAM - Index Address Mark)
FC
4E

The following pattern is then repeated for each of the
eight sectors.

Sector Fonnat

Number of Bytes Hex Value

12 00
3 AI (lOAM - ID Address Mark)
1 FE
1 nn (Cylinder #i nn = 0 - 157)
1 00
1 nn (Sector #i nn = 1 - 8)
1 03 (Bytes per Sector Flag)
2 CRC

22 4E
12 00

3 AI (DAM - Data Address Mark)
1 FB

1024 xx (Data (6Dh suggested))
2 CRC

54 4E

11

S
E BLOCK SECTOR SECTOR SECTOR SECTOR SECTOR SECTOR SECTOR SECTOR GAP
R HEADER 1 2 3 4 5 6 7 8 .,. 296
V BYTES
0 4E

146 1140
BYTES BYTES

/ ------------ ~
80 12 3 1 50 13 8 2 22 12 3 1 1024 2 54

BYTES BYTES BYTES BYTE BYTES BYTES BYTES BYTES BYTES BYTES BYTES BYTE BYTES BYTES BYTES

4E 00 C2 FC 4E 00 INFO. CRC 4E 00 A1 FB DATA CRC 4E

GAP SYNC lAM GAP SYNC ID GAP SYNC DAM GAP

/ --- -
3 1 1 1 1 1

BYTES BYTE BYTE BYTE BYTE BYTE
CYL SIDE SECTOR BYTES/

SECTOR
A1 FE 00 03

lOAM

Figure 3 - Block Layout

12

--------- 2.3.3 Format Parameters - Block 0

Irwin application programs use the first block on the
tape (cylinder 0 of track 0) to store format parameters
and the bad block map. All of this information is stored
in duplicate immediately after formatting the tape.
Sector 1 contains the tape's format parameters. Sectors
2 and 3 contain the bad block map and Sector 4 contains
nulls. Sectors 5 through 8 are duplicates of sectors 1
through 4.

Although this format is optional, we reccmnend that you
use it to insure interchangeability between products
fram different manufacturers.

The suggested format parameters are listed in Table 1
Block 0, Sector 0 Layout.

The bad block map is 1,264 bytes long (one byte for each
block on the tape) and occupies all of sector 2 and a
small portion of sector 3. Ini tiall y, every byte in the
table is set to OOh. When a bad block is discovered
while formatting the tape or while using the tape, the
corresponding byte in the bad block map is changed to
FFh.

An alternate approach is to use the bad block map to
identify defective sectors. With this approach, any non
zero byte identifies a defective block, while individual
bits within the byte identify which of the eight sectors
is defective.

13

Table 1 - Block 0, Sector a Layout

Description

Format program name and version number
Date of formatting (Get fran DOS)
Tracks per tape
Blocks per track
Sectors per block
Bytes per sector
Application program version number (major)
Application program version number (minor)
Tape use flag (a-unused, l-FIP, 2-IMAGE, •••)
Volume name
Volume number
Volume lirni t
Date of last tape change (MM/DD/yyyy)
Time of last tape change (HH:MM)
Cylinder of first free block
Track of first free block

Reserved for application program use

14

Bytes Data Type

0-36
37-44
45-46
47-48
49-50
51-52
53-54

55
56

57-69
70
71

72-82
83-89
90-91
92-93

959-1023

ASCII
ASCII

decimal
decimal
decimal
decimal
decimal
decimal
decimal
ASCII

decimal
decimal
ASCII
ASCII

decimal
decimal

---- 2.4.0 Tape Positioning

The tape can be moved at either
actually reading or writing data,
the tape to a desired data block.

of two speeds: 39ips when
or 70ips while positioning

Spec if ic data blocks can be located by counting Index pulses.
Index pulses are generated by the tape drive when the
embedded servo area, located between each tape block, passes
under the tape head. The pulses are coupled fran the tape to
the floppy controller and are usually made available to the
host. When the current block and desired block addresses are
both known, positioning is accomplished by issuing a Move
Physically Forward (or Reverse) command and counting Index
pulses until the tape is within six or seven blocks of the
desired position. Stopping the tape takes about 400
milliseconds, which translates to about three tape blocks. By
issuing a Move Logically Forward (or Reverse) command the
desired position can be approached at 39ips. By reading and
interpreting the tape's address headers recorded on tape by
your formatting program the desired position can be located
exactly.

As an example, if the tape is at cylinder 4 of an even track
and you want to move to cylinder 100, you would issue a Move
Physically Forward cannand, count 90 Index pulses (to get to
cylinder 94), then issue a Stop cammand. During the 400
millisecond stop time, cylinders 95, 96, and 97 would pass
beneath the head. Then you would issue a Move Logically
Forward ccmnand and interpret the cylinder headers to locate
cylinder 100. The desired read or write operation would then
be initiated.

Because the NEe 765 does not provide an Index line, most
controllers using the NEC chip set do not provide a way for
the host to monitor the Index signal. Same controllers may
incorporate external hardware to monitor this Index signal.
(On the other hand, the Western Digital 179x shows Index as a
bit "Sl" in the Status Register for Type One commands.) When
Index is not available, same other positioning technique must
be used. One method that has proven successful with the NEe
765 is to repeatedly ask it to find an invalid sector. The
chip is designed to try to locate a specified sector for two
complete disk revolutions, which is the same as the passing
of two tape blocks. If it is unsuccessful, the chip times
out. By repeatedly ccmnanding the controller to seek an
invalid sector and by counting the number of tirneouts, you
can simulate an Index pulse counter.

15

Another method of positioning is to initiate movement in the
desired direction and use a timer to time the passage of each
block. At 70ips, it takes 192.4 milliseconds for a block to
pass beneath the head. While calculating the time you must
also account for the 400 milliseconds required to start and
stop the tape. This method is less accurate due to
cumulative errors in speed and start/stop timing.

When using any of these positioning techniques, you must use
a "read header" routine to read and interpret block address
headers. It is only by reading these headers that you can be
absolutely certain of tape position.

Ideally, after positioning the tape will be only one or two
blocks ahead of the desired block. However, unless Index
pulses are actually counted, it is possible to overshoot the
desired position. If this happens, issue one or more Pause
commands to move the tape backward to the desired block.
Each Pause ccmnand moves the tape back two blocks towards the
start of the file (i.e. "against" data).

Each tape block is 13.47 inches long, so at a tape speed of
70ips and with a stop time of 400 milliseconds, it takes
about three blocks to stop the tape. Since the tape I S start
and stop times are equal, it also takes three blocks to
restart the tape, making the total start/stop overhead six
blocks. Thus, in the forward direction, you should stop the
tape at least six blocks short of the desired position. When
you are approaching the desired block fram the reverse
direction, the start/stop times are overlayed and cancel each
other. To be safe, you should stop the tape a block past of
the desired position, allowing it to coast to a position four
blocks past the desired point. (See Figure 4 - Tape Motion
Timing.)

16

12.2ms
at 39ips

6.8ms
at 70ips

S
E
R
V
0

.... 1 36. Sms r at 39ips

BLOCK SECTOR SECTOR SECTOR
HEADER 1 2 3

120.3ms I
-/ at 70ips r-

342.Sms
at 39ips

30.6ms
at 39ips

SECTOR SECTOR
4 5

170.5ms
at 70 ips

170.5ms
at 70ips

190.8ms
at 70ips

SECTOR
6

Figure 4 - Tape Motion Timing

17

-
~

SECTOR SECTOR GAP
7 8 "" 296

BYTES
4E

B
L
A
N
K

.... 24 .3ms
39ips

S
E
R
V
0

at

13. Sms
at 70ips

--------- 2.4.1 Access Time

At the drive's 39ips read/write speed, it takes 59
seconds to move from BOT to EOT. At the 70ips
positioning speed, BOT to EOT takes 33 seconds. Use
these figures to calculate access time.

At 59 seconds per track, it takes about eight minutes to
read or write the entire tape.

---- 2.5.0 Write Data Verification

Like a floppy disk, the tape drive has no "on the fly" read
after-write capability. Consequently, to insure data
integrity, data recorded on tape must be verified by one of
two methods. First, verification can be perfonred by simply
rereading the original data and canparing it to the data read
fran the tape. Secondly, verification can be perfonned by
reading the data from the tape and watching for CRC errors
produced by the floppy disk controller.

Since tape positioning is time consuming, you should attempt
to make just two passes -- one to record everything that is
to be recorded, and one to read it back for verification.

---- 2.6.0 Head Positioning

Proper head positioning is automatically accolplished by the
tape drive's microprocessor through the use of servo
information on the tape. At the beginning and end of tape
head positioning is almost instantaneous because of the
continuous servo information. In the middle of the tape the
servo patterns occur as small sections between each data
block. Thus, track-to-track posi tioning may require the
passing of 2 or 3 blocks. This should be taken into account
when preparing for a data transfer from another track by
positioning the tape 2 or 3 blocks before the desired block.

18

3.0 Hardware Considerations

This section discusses hardware needs, options, and operations.
As these considerations vary fran system to system, use only what
is applicable to your system.

---- 3.1.0 Floppy Disk Controller

There are two basic kinds of floppy disk controllers. One
type is based around one of the cOl((only available floppy
disk controller chip sets. The second type uses discrete
logic, a microprocessor (possibly bit-slice), or both.

Most of the floppy controller chips are functionally the
same. The two most popular chips are the western Digital 179X
series and the NEe 765, so the following discussion is
confined to these. These chips have a processor interface on
one side and a floppy disk interface on the other.

The most important requirement for a floppy disk controller
is to have a mechanical and electrical 5.25" interface that
is carpatible with the Shurgart SA450 standard. Most 5.25"
floppy disk drives (both full- and half-height, single-sided
or double-sided) support this interface.

Areas of floppy disk controller design where
incompatibilities arise are in the number of drives supported
by the controller and the use of the Motor ON and Side Select
signals. '!he Irwin tape drive can be set to respond to any
of the four device selects signals, and does not use the
Motor ON, Side Select, or Direction signals.

Mechanically the tape drive has a 5.25" half-high
"footprint". Electrically it uses the same interface and
~r connectors used by SA450-collpatible disk drives. It can
be connected in a daisy-chain arrangement with floppy disks,
and is addressed the same as a floppy. When the tape drive
is the last device on the daisy-chain, it must have a
terminator resistor pack (SIP style) installed. Otherwise,
the terminator pack, which is provided with the drive, must
be rerroved.

19

Another area of consideration is the write precompensation of
the floppy disk controller. The tape drive works best with a
write precompensation of 250 nanoseconds for all blocks.
Most controllers have an adjustable write precompensation
circuit since cOlpensation varies fram one type of disk to
another. Adjusting wri te precompensation below the
recommended 250 nanosecond specification may increase the
number of soft errors, which show up as CRC errors at the
controller. In sane cases, however, we have been successful
reading data that was recorded with only 125 nanoseconds of
write precampensation.

The last area of floppy disk controller concern is the MFM
Data Separator or Data Recovery circuit. A Data Separator
recovers a serial data stream and the appropriate clock
bits. This type of electronics is commonly found in a
discrete logic or microprocessor-based controller. Most of
the chip-based controllers, such as those using the NEC 765
and the western Digital l79x, have a Data Recovery circuit to
generate a synchronized data-clock window which directly
drives the controller chip. In either case, it is i.rrportant
that both circuits are carefully designed to operate over a
wide range of read-data-bi t jitter that can be generated by
the tape or floppy drive. This can be accanplished using a
phase-lock loop design. Reading data fram the Irwin tape
drive is much like reading data fram the inside tracks of a
floppy disk. (The data recovery electronics have an easier
time reading the floppy's outside tracks than the tracks on
the inside. This is due to the fact that the bit density is
higher on the inside tracks.) Poor data recovery technique
will have an adverse effect on soft error rate.

3.1.1 8" Floppy Disk Compatibility Considerations

Eight-inch floppy disk controllers are incanpatible with
the tape drive but can usually be modified to work. The
two devices have incompatible data rates and connecting
cables. The data rate used in the eight-inch floppy is
500KHz, unlike the 250KHz data rate used in the tape
drive. Also, the data and power connections used in
eight-inch drives are mechanically different.

These incanpatibilities can usually be resolved by
rrodifying the controller. In most cases the data rate
can be reduced by halving the clock frequency (usually
wi th flip-flops) to the controller chip. Wi th the
addition of a simple logic circuit, the controller can
be made to operate at either of two software-controlled
data rates.

20

Since eight-inch controllers generally use the same I/O
lines as the tape drive, all that is usually required
is a simple mechanical adapter to adapt the standard 50-
pin I/O ribbon cable to the tape drive.

3.2 DMA - Direct Memory Access

In most microcomputers, a single processor is used to
transfer data between all peripherals. With disk and tape
controllers, the processor is a slave of the controller
during data transfers because of strict timing requirements.
These timing requirements are needed to insure no loss of
data due to a busy processor.

In a backup situation using a single processor, the processor
initially does a disk access to retrieve data, then does a
tape access to store data. While the processor is reading
information fram the disk, the tape must remain motionless
because the processor cannot do two things at once. Wi th a
single-processor design, a "save" operation involves moving
data fram disk to merrory, then fram merrory to tape as the
microprocessor sequentially moves each chunk of data.

Direct Memory Access (DMA) circuits allow the hardware to
perfonn independent operations while the processor's software
program is involved with other tasks. Some microcomputers
have more than one DMA channel, penni tting simul taneous
transfers to two different peripherals. with a dual-channel
DMA, for example, one channel can be transferring data fram
hard disk to menory, while the second is transferring data
fram memory to the tape. with a single-channel DMA, one of
the peripherals (tape or disk) typical 1 y has DMA capabili ty
while the other relies on the host processor to move data
between menory and the peripheral.

In sane instances, both DMA channels cannot use the same
memory buffer simultaneously, so the memory must be
partitioned to let the disk load one partition while the tape
is unloading the other. When the operation is finished, the
devices switch partitions.

The processor's role in this is typically to turn channels on
and off and to manage the starting address and size of the
buffer transfers. The absolute size of the memory buffer
required depends upon the system timing differences between
transfers to and from disk and tape.

21

3.3 Interrupts

Interrupts give a peripheral the ability to capture the
attention of the processor and direct it to an associated
interrupt service routine. Interrupts that are disabled, or
turned off, are ignored by the processor.

During a tape-to-disk data transfer, when host timing is very
critical (even with DMA), it is irrportant to prevent other
peripherals from interrupting the host processor. An
interrupt may stop data transfer and require costly time to
reposi tion the tape. You should make sure that unnecessary
hardware interrupts are disabled when perfonning tape data
transfers.

For more information on software interrupts, see Section
4.3.2 - "Software Interrupts".

3.4 Controller Accessability

Tb operate the tape drive using an SA450 interface, low-level
device software must allow the hardware to perform primitive
floppy disk operations. These operations include selecting
the drive, head stepping, transferring data, and controller
operation interruption. For these reasons, the software has
to have access to the controller's hardware.

The level of hardware accessibility depends upon the design
of the controller. A very smart controller that executes
high-level commands such as read/write sector, data block, or
file, from the host may not be usable with the tape drive
because the controller is incapable of perfonning low-level
operations. Most controllers of this type have their own
microprocessor and program ROM. They interface to the host
through these high-level commands and perform low-level
operations as needed to accomplish higher-level functions.
While these controllers are generally incompatible with the
tape drive, it is sanetimes possible to reprogram their RCM
to provide the kind of low-level support the tape drive
needs.

22

---- 3.5 Host Memory Requirements

A tape drive application program typically takes 20K to 60K
of memory, not including buffers. Depending on the hardware
configuration, buffer requirements may be small or quite
large. In a system with DMA, buffers should be about 8K to
16K. In a non-DMA system, the buffers should be as large as
possible to minimize the number of start/stop operations.

3.6 Power Supply

It is important that the host power supply provides
sufficient power for the tape drive. Software problems and
failure to stop at the tape I s Ear or BOT mark are sane of the
problems caused by inadequate supply of power. Power supply
problems are the most frequent cause of tape drive failure.
(See Irwin Application Note AN-002 - DC Power Considerations
for the 110/210.)

23

4.0 Software Considerations

To minimize the cost of the tape drive subsystem, Irwin designed
the tape drive so it interfaces directly to an existing floppy
disk controller, rather than using a separate tape controller.
Although the tape drive's hardware is totally coopatible with
floppy hardware, the drive is not intended to be operated by
floppy disk software drivers. This requires writing separate
software drivers that recognize the tape drive's unique identity.

This section considers the conceptual design of application
programs by discussing low-level device drivers, tape drive needs,
and application considerations. This section leads you through
the design of a typical application program.

---- 4.1 General Software Requirements

While the tape drive is different fran a floppy disk drive,
many aspects of the software are the same. This is one
advantage of using the same controller for both devices.
However, since the controller was ini tiall y designed for
floppy disks, it is necessary to program it to "think" like a
tape drive controller for many tape drive operations.

The software has tVJO major areas of responsibility: data
transfer and tape positioning. Data transfer operations use
software that is practically identical to floppy software,
while tape positioning requires a completely new set of
modules.

In general, the positioning software needs to convert a
floppy disk controller into a tape controller. This involves
progranming the floppy controller hardware, whether carprised
of discrete circuits or controller chip sets, to do tape
controller functions. The popular floppy disk controller
chips, the western Digital l79x and NEe 765, can present
conversion problems if careful programming techniques are not
used. A good understanding of the operation of these
controller chips is a prerequisite for writing effective low
level device drivers.

24

---- 4.2.0 Software/Hardware Interaction Concerns

When programming a tape or disk peripheral, the peripheral
requires that the proper amount of data be transferred at a
specified rate and time. Good overall perfonnance depends on
the interaction between hardware and software.

The perfonnance of the tape drive is optimized when data is
transferred continuously as a constant "stream". This means
that the program must transfer data fast enough to keep the
tape moving without causing gaps (during writes) or data
overruns (during reads) • Continuously streaming data is
desirable because this minimizes tape start/stop operations
which are very time-consuming.

There are three areas of software/hardware interaction that
must be addressed: interrupts, DMA operation, and merrory
buffers.

4.2.1 Interrupts

It is necessary to know which interrupts are required
by the system and when they will occur. If an untimely
interrupt occurs during tape transfers, the tape may not
be serviced as needed, requiring you to reposition the
tape. To prevent this, interrupts should be disabled
during tape data transfers.

You will have to determine which interrupts can and
should be disabled. Since the floppy controller
interrupt is set up to always vector to the floppy
interrupt service routine, you will have to revise the
program to vector to either a floppy or a tape drive
interrupt handler, depending upon the current mode of
the controller.

Other interrupt routines, depending on the operating
system, may have to be patched to trap interrupts that
may reset or change the status of the floppy disk
controller. An exanple of this is IBM PC-DOS R~ BIOS
Interrupt 13. It is also important to restore all
interrupt routine pointers to their original states
after tape drive operations are completed.

25

--------- 4.2.2 DMA Operation

DMA is necessary to permit "streaming" operation.
Knowing how your system's DMA channel v.orks is a
prerequisite to writing effective data transfer
routines. Things to consider are the transfer speed of
data over the DMA channel(s), setup time, and buffer
design. Buffer design factors include the number of
buffers to use, buffer size, the buffer address, and
buffer speed.

--------- 4.2.3 Memory Buffers

Memory buffer usage is a function of the DMA hardware
archi tecture and the anount of me.roc>ry available for use
as a buffer. If your system doesn't have a DMA channel,
then use as large a buffer as you can. A large buffer
will let you transfer as much data as possible to or
fram the tape without interruption, and as a result,
minimize the number of starts and stops. If the system
has DMA, optirrn.un buffer size depends upon the DMA
channel's architecture and speed.

With the aid of DMA and interrupts, a buffer managenent
schene using overlapped I/O is a good way to minimize
tape repositioning. In this schene, tv.o or more me.roc>ry
buffers are used in the data transfer. One DMA channel
continuously loads data into the buffer(s) fram the tape
or disk, while a second channel unloads data and
transfers it to the opposite peripheral. The tv.o DMA
channels operate independently, one filling me.roc>ry, one
dumping memory, and at cOllpletion both interrupting the
processor.

A buffer management program controls the DMA and memory.
To optimize overlapped I/O, use as much memory as
possible for the buffer(s). Also, renenber that hard
disk data transfers, in most cases, will be faster than
transfers to or fram the tape. Because of this, keep the
buffer(s) full of data during disk-to-tape transfers,
and empty for tape-to-disk transfers.

It sanetimes happens, hONever, that tape transfers have
a higher effective transfer rate. This is primarily
caused by the processor overhead associated with v.orking
with disk directories, searching for particular files,
servicing interrupts, and hard disk errors (retries). If
this happens, the tape will have to be stopped while the
disk catches up.

26

To minimize the number of starts and stops, once you are
forced to stop the tape it is a good practice to
camp~etely fill the buffer (or empty it, in the case of
tape-to-disk transfers). This gives the disk a head
start on the tape and lets it run longer before things
get out of hand again.

---- 4. 3 • 0 Software Design

Most application program design is done using a "top-down"
approach. Using this approach, the user's needs are
determined first and then software modules are specified,
progressing down from the required user functions to the
primitive operations known as the low-level device drivers.

Using a floppy controller to control the tape drive requires
rethinking this traditional approach. For the tape drive, you
must define program operations from both a top-down and a
"bottom-up" standpoint.

In the bottom-up approach, the low-level device driver
routines are considered first. The modules are then
implemented by specifying software modules through
hierarchical levels, progressing up to the user interface.
Where the two designs meet is where the optimal trade-off
between progranming goals, user's needs, hardware
considerations, and operation speed occurs.

An exanple of the merged approach can be illustrated by the
approach used to design a disk backup program. A disk backup
program must permit unsophisticated users to quickly and
easily save hard disk files on the tape. This requires a
program that is easy to operate, fast, and fail-safe. (The
campanion "restore" program must also be easy to use, but can
take longer since it is used less frequently.)

To get started on such a program, you must first know how the
controller hardware works and what it is capable of doing. In
addition, you must know how the operating system works, how
files are structured, and how to interface to them.

In the process of examining both the top-down and bottan-up
designs, you will make decisions regarding the user
interface, information to be backed up (files, directories,
or the entire disk), how tape movement and repositioning are
to be done, and how the DMA and rnerrory are to be used.

27

--------- 4.3.1 Software Transportability

Software transportabili ty is another consideration when
writing programs of any kind. Transportability means
the ability to export software across hardware,
operating system, and file system boundaries. Hardware
boundaries are crossed by low-level device routines,
usually written in assembler, while other progranrning is
done in a high-level language (such as "C"). Operating
systems and file system boundaries can be crossed if you
design your program modularly, keeping all system
dependent functions in a small number of program
modules.

--------- 4.3.2 Software Interrupts

One particular concern with operating systems is
software interrupts. Same of these interrupts interact
directly with the floppy disk controller, resetting the
controller or its parameters, causing loss of controller
status knowledge with respect to the tape application
program. An exarrple of this is the IBM PC-DOS ROM BIOS
Interrupt 13 that occurs after a hard disk read error.
This interrupt routine recalibrates both the hard disk
and floppy disk controllers and drives. Recalibration
causes the tape program to "forget" the contents of the
NEC 765's track register. This, in turn, impacts the
software's ability to send commands to the drive.
Another consideration dealing with software interrupts
is a general policy of trapping unwanted interrupts and
redirecting them to a new handler. The ideas and
philosophies will differ with hardware, operating
systems, and file systems.

---- 4.4 Software Design Example

we begin the software design process with a top-down design
procedure to determine the general flow of the program. A
block diagram showing the program outline can be very
helpful.

Figure 5 - IMAGE Program Block. Diagram, shows the
organization of the Irwin IMAGE program that performs an
image backup fran disk to tape and an image restore fran tape
to disk.

28

At the top level is the user interface, if any, followed by
the main structure of the program. Further down the block
diagram are the data handling and manipulation routines.
These mid-level modules deal with the operating system being
used, the desired data organization on tape, and
considerations about the specific hardware used. For these
mid-level modules, you should probably move away from the
top-down approach, and begin favoring the bottom-up approach.
At the bottom level of the program are the low-level I/O and
hardware interfacing routines.

29

High-level
Disk I/O

Program Initialization

Main Program Control

High-level
Tape I/O

Get Program
Parameters

Success/
Failure

---------- ------- ~------- ----------~----------. ~--------------------

Mid-level
Disk I/O

Mid-level
Tape I/O

Block
Queue

Manager

FAT Buffer Logical/
Handler Manager Physical

Redir-
Buffer ection

Space
Alloc-
ation

Get YIN
Answer

Get Drive
Letter

Get
Decimal

Number

Get
Hex

Number

--

Low-level
Disk I/O

Low-level
Tape I/O

Print Dec
Number

Print Hex
Number

Console I/O

IMAGE Program Block Diagram

30

In most tape application programs there will be similar main
program tasks. Following is a list of same of these
programning tasks. This list is not meant to be canplete,
nor does any program depend on the existence of the listed
routines.

User Interface

The user interface routines provide two-way communications by
getting any information needed to operate the program, and
outputting status or information back to the user. All error
messages should be handled through the user interface.
Ergonanics and other human factors should be considered when
designing the user interface routines.

Carmand Parser

This routine deciphers the user's input and passes the needed
pararreters and program control to the proper routine.

Front End Calculations

These routines perform any calculations required and pass the
results to the calling program. The information can be the
number of tapes needed, which bytes to transfer, which flags
to set, or which data pointers and buffers to set up.

Operating System Interface

These routines read and write data to and fran the disk
through the operating system and the file system. This
reading and writing can be done on a file, logical allocation
unit, or disk sector basis. Basically, these routines
provide an interface to the system and file services provided
by the operating system.

Tape File/Format Manager

These routines interface to intermediate-level tape routines
and operating system routines. Actual calls to read and
write the tape are done here. These routines manage tape data
flow and tape formatting. Most of the application program
code will be in these routines.

31

Buffer Manager

These routines organize and manage the memory buffers and
interface to the DMA channel if one is available. Timing
requirements are critical and consequently will be a major
consideration for these modules.

--------- 4.4.1 Mid-level Tape I/O Routines

The mid-level tape I/O routines allow you to move the
application software across operating system and
hardware boundaries. These routines are called by the
tape file manager and buffer manager and make the tape
look like one continuous stream of 1,264 tape blocks
(158 blocks/track x 8 tracks). All tape and tape head
positioning is done automatically. On the following
pages is a list of the suggested mid-level routines.

32

TPlONL

Get Drive Line Number

Calling Parameters

None

Return Parameters

None

Description

Gets the tape drive's physical unit number and stores it for
future reference. This routine is called once per program to
insure that the controller and tape drive are on-line and
operational.

TPIOFL

Remove Drive Line

Calling Parameters

None

Return Parameters

None

Description

Sets the drive off-line. This routine is called once per program.

33

TPlREDMm'

Read t-bunt

Calling Parameters

None

Return Parameters

None

Description

Prepares a new tape for reading. 'Ibis routine assumes that the
drive is already on-line. If necessary, the user is asked to
insert a tape cartridge. A seek load point operation is perforrced
to position the head to BOT over track O.

This routine is called once per tape change.

TPlWR'IMNT

Write ~unt

Calling Parameters

None

Return Parameters

None

Description

Prepares a new tape for writing. 'Ibis routine is identical to the
read mount routine except that the write protect status is checked
to see if writes to the tape are allowed. If not, the user is
asked to insert a non-protected tape.

34

TPlRED

Read Block

Calling Parameters

Buffer Address - Where to start storing data read fran tape.
Block - Block number.

Return Parameters

None

Description

Reads a single block of data fran tape. All of the tape
positioning required to position the desired block under the
read/write head is handled internally.

The read block operation will fail if the routine is unable to
initiate the read (because of a buffer boundary error or simply a
controller error). A failure indicates a fairly serious problem,
so a retry \\Ould also fail. Any less serious problems will be
discovered by the Read Wait routine (TPlREDwr).

When this routine returns, either normally or abnormally, tape
motion continues.

TPlREDwr

Read wait

Calling Parameters

None

Return Parameters

None

Description

waits for the completion or error return fran a TPlRED call.
Errors are returned to the calling program as return codes.

35

TPlWRT

Write Block

Calling Parameters

Buffer Address - The starting address for data to be recorded on
tape.

Block - Block number

Return Parameters

None

Description

Transfers a block of data fran the buffer and records it on the
tape. Tape positioning required to position the desired block
beneath the read/write head is handled internally by the routine.

The wri te block operation fails if the routine is unable to
initiate the write (because of a buffer boundary error or simply a
controller error). A failure indicates a fairly serious problem,
so a retry would also fail. Any less serious problems will be
discovered by the Write wait routine (TPIWR'IWI').

When this routine returns, either normally or abnormally, tape
motion continues.

TPIWRTWr

Write Wait

Calling Parameters

None

Return Parameters

None

Description

Wai ts for the cOllpletion or error return fran a TPIWRT call.
Errors are returned to the calling program as return codes.

36

TPlPAUSE

Pause

Calling Parameters

None

Return Parameters

None

Description

Backspaces the tape two blocks, then stops. This routine is used
when there must be a terrporary pause in the streaming mode to
correct for tape/disk timing differences.

TPISTOP

Stop

Calling Parameters

None

Return Parameters

None

Description

Backspaces the tape one block, then stops. This routine is used
when the streaming mode is ending to position the tape so it will
be ready to start streaming where it left off.

37

TPlCONI'

Continue

Calling Parameters

None

Return Parameters

None

Description

Starts the tape in the logical forward direction • This routine is
called after TPlPAUSE or TPlSTOP to restart tape motion.

TPlDMNT

Disnnunt

Calling Parameters

None

Return Parameters

None

Description

Disrrounts, or "unloads", the tape. A seek load point catrnand is
issued without waiting for completion.

38

--------- 4.4.2 Low-Level Device Routines

The low-level device routines are intimately involved
with hardware operations. These routines are custom
written for the hardware used with any given system.
They are typically written in assembler and are called
only by the mid-level routines. On the following pages
is a list of the suggested low-level routines.

39

Table 2 - TPO Return Codes

These are the suggested return codes for the low-level (TPO) tape
I/O routines. These are the return codes used by Irwin I s own
applications software. The codes that each routine will return
depend upon the implementation of the TPO routines, which is in
turn dependent on the configuration of the system.

Description Code Number

Still busy, waiting for not busy failed -01

Command accepted 00

Command not accepted 01

Receive time-out, read controller error 02

Send time-out, write controller error 03

Controller error, invalid controller response 04

Record not found, no valid 10 read 05

Sector CRC error, checksum error on record 06

OMA error, OMA processor missed ORQ, data lost 07

Tape is write protected 08

10 not found, no valid ID read 09

Interrupt time-out, I/O never properly completed 10

DMA boundary, internal boundary alignment problem 11

Error code out of range, internal program problem nn (other)

40

TPOINI

Controller Initialization

Calling Parameters

Load Time
Unload Time
Step Rate
I/O Gap

- Head load time in milliseconds (suggest 4).
- Head unload time in milliseconds (suggest 480).
- Step speed in milliseconds (suggest 6).
- Gap length to use for read/write (suggest Ol7h).

Return Parameters

None

Description

Initializes the floppy disk controller for tape usage. The floppy
hardware interrupt vectors are saved and replaced with different
interrupt vectors for the tape routines. Depending on the
controller, the calling parameters are passed on to the
controller, saved for reference, or simply ignored.

Any software or hardware initialization that needs to be done once
per program should be done by this routine.

TPOTRM

Controller Termination

Calling Parameters

None

Return Parameters

None

Description

Terminates the use of the floppy disk controller to perform tape
functions. All of the initialization processes are reversed by
restoring floppy disk parameters. Most notably, the floppy
hardware interrupt vectors are restored.

41

TPOONL

Drive Select

Calling Parameters

Drive - Drive number.

Return Parameters

None

Description

Selects or initializes the indicated drive. '!his routine is
performed with a controller reset and as part of a recalibrate
carmand. It must be called once prior to the first call to any
other function with the same specified "drive" parameter. '!his
routine may be called again after TPOOFL.

TPOOFL

Drive Unselect

Calling Parameters

Drive - Drive number.

Return Parameters

None

Description

Deselects the specified drive. It must be called once after the
last call to any other function with the same specified "drive"
parameter. This routine must be called before TPOTRM. (In sane
systems, this routine may do nothing, or not even exist.)

42

TPOROCAL

Recalibrate

Calling Parameters

Drive - Drive number.

Return Parameters

None

Description

Atterrpts to "awaken" the drive by resetting the controller and
issuing a recalibrate carmand to the tape drive. This routine is
performed automatically when required to clear a drive error.

TPORESET

Controller Reset

Calling Parameters

None

Return Parameters

None

Description

Atterrpts to "awaken" the controller by issuing a controller reset
command. This routine is performed automatically when necessary to
reset the controller following an error.

43

TPOBUSY

Check for Busy

Calling Parameters

Drive - Drive number.

Return Parameters

Busy - Drive busy flag.

Description

Checks to see if the specified drive is busy.

TPOCOMM

Issue Ccmnand

Calling Parameters

Drive
Steps
Wait/status

- Drive number.
- Number of step pulses in the command.
- Flag meaning "Wait until end, then report status".

Return Parameters

None

Description

Issues the command which corresponds to the number of step pulses
specified. (See Table 3 - Step Pulse Command List on the following
page.) If the wait/status flag is set, the routine waits until the
command is executed, then returns the status in the return code.
Otherwise, it returns with no status.

44

Table 3 - Step Pulse Command List

Carmand Number of Pulses

Return busy status 0

Stop tape 2

Pause 3

Seek load point 4

Move physically forward 5

Move physically reverse 6

Report normal completion 7

Report drive presence 8

Report end-of-tape status 9

Report beginning-of-tape status 10

Report cartridge presence 11

Report track found 12

Report new cartridge 13

Move logically reverse 14

Move logically forward 15

Enter format mode (turn on second index pulse) 16

Exit format mode (turn off second index pulse) 17

Seek track n (0 <= n <= 7) 20 + n

write servo 31

Recalibrate 32 +

45

TPOREDI

Initiate Read

Calling Parameters

Drive
Buffer Address
Cylinder
Sector
Sector Count

- Drive number.
- Starting address of buffer for storing data.
- Cylinder number.
- Sector number.
- Number of sectors to be read.

Return Parameters

None

Description

Ini tiates a read tape operation. If the system has DMA, the
routine returns iIrlrediately and reports any errors. If the system
does not have DMA, the routine returns only after reading the
specified data and saves an error code that is reported later by
TPOrDWr.

TPORED

Read

Calling Parameters

Drive
Buffer Address
Cylinder
Sector
Sector Count

- Drive number.
- Starting address of buffer for storing data.
- Cylinder number.
- Sector number.
- Number of sectors to be read.

Return Parameters

None

Description

Performs a complete read operation by sequentially calling TPOREDr
and TPOrOWI'. Any errors are returned imnedi.ately.

46

TPOWRTI

Initiate Write

Calling Parameters

Drive
Buffer Address
Cylinder
Sector
Sector Count

- Drive number.
- Starting address for data to be recorded.
- Cylinder number.
- Sector number.
- Number of sectors to be written.

Return Parameters

None

Description

Ini tiates a wri te tape operation. If the system has DMA, the
routine returns imnediately and reports any errors. If the system
does not have DMA, the routine returns only after writing the
specified data, and saves an error code that is reported later by
TPOIowr.

TPOWRT

Write

Calling Parameters

Drive
Buffer Address
Cylinder
Sector
Sector Count

- Drive number.
- Starting address for data to be recorded.
- Cylinder number.
- Sector number.
- Number of sectors to be written.

Return Parameters

None

Description

Performs a complete write operation by sequentially calling
TPOWRTI and TPOICM.r. Any errors are reported inmediately.

47

TPOICMr

I/O Status (for Wait)

Calling Parameters

Drive - Drive number.

Return Parameters

None

Description

Wai ts for the coupletion of the TPOREDI/TPOWRTI I/O. After
carpletion of the I/O this routine returns and reports any errors
to the calling program.

TPOSNS

write Protect Status

Calling Parameters

Drive - Drive number.

Return Parameters

Protected - Write protect status.

Description

Returns the status of the cartridge's write protect tab.

48

TPONDX

Count Index Pulses

Calling Parameters

Drive - Drive number.
Pulse Count - Number of pulses to count.

Return Parameters

None

Description

This routine counts the specified number of Index pulses and
returns. In implementations where only an even number of pulses
are counted, odd numbers are rounded down.

TPOFRMFL

Fill Format Buffer

Calling Parameters

Buffer Address - Starting address of the buffer used to store
format data

Sector Length - Length of each data sector.
Sector Count - Number of sectors per block.
Format Gap - Gap length actually written (suggest 034h).

Return Parameters

None

Description

Fills the buffer that is used to format one tape block. The buffer
rrnlst be longer than a tape block, as unfonnatted tape area varies
with tape speed error and timing. (Twice the block length is
sufficient, as it depends on the gap length.)

This buffer contains the format information to be written in the
data area between the servo information bursts. The gap length
specifies the byte time length of the write splice between
adjacent sectors.

49

TPOFRMl'

Fonnat

Calling Parameters

Drive
Buffer Address

Cylinder
Sector Length
Sector Count
Format Gap

- Drive ntmlber.
- Starting address of the buffer to be used for

format data.
- Cylinder number.
- Length of each sector.
- Number of sectors per block.
- Gap length actually written (suggest 034h).

Return Parameters

None

Description

Formats the specified number of sectors in the specified block of
the tape. The routine TPOFRMFL rrrust be called to fill the buffer
before this routine can be executed. The calling parameters
"Sector Count" and "Format Gap" must be the same as used by
TPOFRMFL. As in TPOFRMFL, the buffer length must be longer than
the block length. (Twice the block length is sufficient, as it
depends on the gap length.)

TP01D

Read 1D

Calling Parameters

Drive - Drive number.

Return Parameters

Cylinder
Sector

Description

- Cylinder number.
- Sector number.

Reads the current 1D (which is the sector header) of the next
sector to pass under the head. This 1D contains the block (or
floppy track) number and the sector number.

50

5.0 Considerations for the western Digital WD179x and WD279x
Series

This section discusses the special considerations needed when
using floppy disk controllers based upon the western Digital
series of floppy disk controller chips. The following is a list
of the Western Digital camands used in the TPO routines and the
parameters required for each ccmnand:

(Parameter options vary between western Digital MOdels 1791, 1792,
1793, 1794 and MOdels 1795 and 1797. The roodels handle the Side
Select options differently.)

Cc.mnand Parameters Required

Restore and Seek 1. Load head at beginning of operation
2. Set for no verify
3. Set for 3 millisecond step rate

Read and Write sector 1. Number of sectors to transfer
2. Select side 0, or set sector length
3. Set head delay to 0
4. Set side select update to zero,

or disable side catpare
5. If write, set data address mark

Write Track 1. Set head delay to zero
2. Set side select update to zero

Force Interrupt 1. Set as needed

Read ID 1. Set head delay to 0
2. Set side select update to zero

51

5.1 Using the western Digital Commands

The western Digital ccmnands are used in the following ways:

Restore

The tape drive executes a simulated recalibrate, which is a
good test to see if the drive is connected and working. The
controller chip's internal track register is set to zero.
This carmand is used in the TPOONL and TPORECAL low-level
device drivers.

Seek

The Seek command is used to issue the command pulse train
that causes the tape drive to execute one of its ccmnands.
This carmand is issued by the TPOCOMM low-level device
driver. Since the internal track register is accessible to
the software, the way to issue a command is to zero out the
track register, load the value (number of pulses) associated
wi th the desired ccmnand into the register, then execute the
seek camrnand.

Read Sector/Write Sector

These two ccmnands read or write one or rnul tiple sectors in a
single tape block. They are used in low-level device routines
TPOREDI and TPOWRTI, respectively. Software used in this
area will be similar to floppy data transfer software.

The Western Digital chip sets allow single or multiple sector
data transfers. When reading or writing more than one sector,
your device driver software must keep track of the number of
sectors that are read or written. This is because in mul ti
sector mode the controller continues to read (or write)
sectors until the program issues a Force Interrupt
instruction or until the Western Digital chip times out. A
chip tineout occurs when the desired sector is not found
within five tape blocks, which is equivalent to five
revolutions of the disk. If this timeout occurs, it will be
necessary to reposition the tape since it is now five blocks
downstream.

52

In same systems, processor timing considerations dictate that
sector counting cannot be done by the software. When this is
the case, we recommend using single sector read/write
operations. To take full advantage of this technique, set up
a large enough buffer to accamodate all of the data for the
entire operation for transfers to or fran the tape. Then
issue successive single sector data transfer commands to the
controller between sectors. The controller chip will accept a
read or write sector command between the end of the previous
sector and the beginning of the next sector. The read or
write sector ccmnand is sent during the write splice gap area
since the tape blocks are formatted with no sector
interleave.

write Track

Used in low-level device driver,
tape block. This implementation
to that used for a floppy disk.

Force Interrupt

TPOFRMT, to format a single
of this command is similar

This command is used to force hardware interrupts to the
processor. It is used in TPOREDI and TPOWRTI to terminate
multiple sector data transfer operations. It is also used to
reinitialize the controller chip following an error or in
hang-up situations.

Read ID

Used in low-level device driver TPOID to find next ID on tape
for tape positioning.

---- 5.2 Tape Positioning with the western Digital Controller

Bit I of the Type I status register always reflects the
status of the Index line. To position the tape, ITOni tor this
bit and count the passing tape blocks.

53

6.0 Considerations for the NEe 765 Controller

This section discusses the special considerations needed when
using the NEe 765 floppy disk controller chip. The following is a
list of the NEe 765 carmands used in the TPO routines and the
parameters required for each command:

Corrmand Parameters Required

Recalibrate 1. Drive unit select

Sense Interrupt Status 1. Drive unit select
2. Cylinder Number

Specify 1. Step Rate
2. Head Load Time
3. Head Unload Time
4. DMA ~ Yes/No

Sense Drive Status 1. Drive Unit Select
2. Head Select Zero

Seek 1. Drive Unit Select
2. Head Select Zero
3. Cylinder Number

Read Data/Write Data 1. Drive Unit Select
2. Head Select Zero
3. Cylinder Number
4. Head Number Zero
5. Sector Number
6. Sector Length
7. Last Sector Operation
8. VCO Sync Time
9. DTL - User-defined Data Length

Read ID 1. Drive Unit Select
2. Head Select Zero
3. Select MEM Mode

Format a Track 1. Drive Unit Select
2. Head Select Zero
3. Sector Length
4. Number of Sectors per Track
5. Gap Length
6. Format Data Constant

54

---- 6.1 Using the NEC 765 Commands

The NEC 765 ccmnands are used in the following ways:

Recalibrate

The tape drive executes a simulated recalibration, which is a
good test to see if drive is "awake". The track register is
set to zero, which is a useful way to start over when the
software gets confused as to which track it is on. This
command is used in TPOONL and TPORECAL low-level device
drivers.

Sense Interrupt Status

The controller chip sends back an interrupt after the
canpletion of a carmand, a change in status of the Ready
line, or during the execution phase in non-DMA rrode. When an
interrupt is acknowledged, program control should pass to the
software interrupt handling routine. Interrupts not reset by
command operations must be reset by the sense interrupt
command. Sense interrupt status is generally used after a
seek or a recalibrate command to return calpletion status
information and the present cylinder (floppy track) number.
This information is useful to verify that the proper command
was sent to the tape drive.

Irwin has observed multiple NEC 765 interrupts following a
Recalibrate command if non-contiguous drive select addresses
are used. For exarrple, having t\\O drives addressed 0 and 2
with no drives existing for drive selects 1 and 3 (either
floppy or tape drive) causes this condition. When this
happens, interrupts get nested, and the software is unable
to sort them out. Therefore, it is a good idea to execute
multiple Sense Interrupt commands until you get an invalid
interrupt response. This technique will always clear out the
interrupt queue.

Specify

The Specify command is
initialize the step rate,
roode.

used by TPOINI and TPOTRM to
head load and unload time, and DMA

55

Sense Drive Status

The Sense Drive Status command is used to monitor the status
of the Track 0 and Write Protect lines of the tape drive.
This command is used throughout the low-level device drivers.

Seek

The Seek command is used to issue the command pulse train
that causes the tape drive to execute one of its commands.
This command is issued by TPOCOMM low-level device driver.

Since the controller chip's internal track register is not
accessible to the software, the application program must
maintain an external register that indicates which track the
NEe is currently "on". When the NEC is "on" a track, the
internal track register contains that track number, but the
track number does not correspond to the tape track number.
This register is kept to avoid confusion and so that the
program can calculate the correct track number for the NEC
chip to seek to when a command is to be issued. For exarrple,
if the NEC 765 is "on" track 24 and you wish to issue a pause
carmand to the Irwin drive (3 pulses) then you would seek to
track 27.

Tb keep the track register in the NEC 765 valid (no track
number greater than 77 or less than 0), Irwin reccmnends a
seeking philosophy of keeping the track number as close to 38
as possible (38 is one-half the distance to track 77).
Therefore, if the present track is less than 38, then seek to
the present track number + n pulses for the desired command.
If the track is greater than 38, then seek to the present
track number - n pulses. This philosophy will avoid the
program issuing invalid track seeks to the NEC 765.

Read Data/Write Data

These two ccmnands read or write the sectors in a tape block.
They are used in low-level device drivers TPOREDI and
TPOWRTI, respectively. Software used in this area will be
similar to that used to transfer data to and fram floppies.

Read ID

Similar to Read and Write Data.
TPOID to find the next ID on tape,
Index pulses. (See Section 6. 2 -
NEe 765.")

56

This command is used in
and in TPONDX to count two
"Tape Positioning with the

Format a Track

Used in the low-level device driver, TPOFRMr, to format a
single block. Software implementation is similar to that for
a floppy disk.

6.2 Tape Positioning with the NEe 765

There are t\\O ways to perform tape positioning with the NEe
765.

The first method involves using the Read ID command while the
tape is at read/write speed (39ips) and picking up the next
block/sector header that goes under the head.

The second method involves moving the tape at high speed
(70ips) and issuing a Read ID command. After t\\O revolutions
of the disk, or in this case, after t'WO tape blocks have
passed beneath the tape head, the NEe 765 will timeout since
it cannot read sector 1.0. 's while moving at 70ips. In fact,
at 70ips, data reads fran the tape drive are inhibited, but
Index pulses are not.

The tape positioning routine can equate the timeout to the
passage of two tape blocks. Therefore, by reissuing the Read
10 cammand, the required number of blocks can be passed and
counted to position the desired block beneath the read/write
head.

6.3 Programming Problems with the NEe 765

There are two programming problem areas with the NEe
controller chip.

The first problem is the number of hardware interrupts sent
during a Recalibrate command. This was discussed previously
in the description of the Recalibrate command.

The second problem has to do with keeping track of the
contents of the controller's internal track register, since
the register is not accessible to either the hardware or
software. Problems arise when the controller chip receives
Recalibrate or Reset commands fran unknown sources (like IBM
PC-DOS ROM BIOS Interrupt 13) and the internal track register
gets out of synchronization with the software track register.
When this occurs, a Recalibrate or Reset carmand must be
issued to re-synchronize the t\\O track registers.

57

The above problems will cause the drive to execute ccmnands
other than those issued. Because the internal track register
is different than the software track register, an unexpected
number of pulses will be sent to the drive. Since the
problems will not be noticed until a command is issued and
the unexpected results occur, the only solution to the above
problems is careful prograrrming.

7.0 Low-Level Device Driver Flowcharts

The flowcharts on the following pages outline the low-level device
drivers described above. An atterrpt was made to make these
flowcharts controller independent. Specific implementations of
this outline will differ slightly.

58

TPOINI (load time, unload time, step rate, io gap)

TPOINI

Call TPiVEC
(replace system interrupt vectors

wi th pointers to local ISR IS)

Call TPiRESET
(output the hardware reset

signal to the FOC)

Convert the HEAD LOAD TIME,
HEAD UNLOAD TIME, and S'l'EP RATE

parameters into a string of
byte commands for output

to the FOC (if applicable)
or store as a variable for

future reference

Call ISSUE COMMAND
(output the command bytes

to the FOC (if applicable»

Call TPiDVEC
(restore the system
interrupt vectors)

59

TPOTRM()

TPOTRM

Call TPiVEC

Create a string of byte carmands
that sets up default values for

HEAD LOAD TIME, HEAD UNLOAD TIME,
AND S1'EP RATE to reinitialize FDC

for floppy disk operation

Call ISSUE COMMAND

Call TPiDVEC

60

TPOONL(drive)

TPOONL

Select drive

TPOOFL(drive)

TPOOFL

Deselect drive

61

TPORECAL (drive)

TPORECAL

Select drive

Call TPiROCAL
(send a hardware

RECALIBRATE to the FOC)

Deselect drive

62

TPORESET()

TPORESET

Call TPiVEC

Call TPiRESET

Call TPiDVEC

63

N

Return busy status

TPOBUSY (drive)

TPOBUSY

Select drive

Call TPiBUSY

y

Call FDC CHECK
(perform a recalibration
on the FDC if necessary)

Deselect drive

64

TPOCOMM(drive, steps, wait/status)

TPOCOMM

Select drive

N

Convert the number of
step pulses for the FDC

to send to a seek location

y

Construct a string of
byte commands that will cause
the FDC to pulse the stepper

Call ISSUE COMMAND

y

Call WAIT INT

65

y

Does the FDC status
report the seek

location expected?

N

Is FDC report on
status to be done?

y

Call TPiRPRT

66

y

N

y

Delay 2rns

Call FOC CHOCK
(perform a recalibration
on the FOC if necessary)

Deselect drive

67

TPORED(drive, buffer address, cylinder, sector, sector count)

TPORED

Call TPiREDI

Call TPiIOWI'

Deselect drive

TPOREDI(drive, buffer address, cylinder, sector, sector count)

TPOREDI

Call TPiREDI

Deselect drive

68

TPOWRT(drive, buffer address, cylinder, sector, sector count)

TPOWRT

Call TPiWRTI

Call TPiIOWI'

Deselect drive

TPOWRTI(drive, buffer address, cylinder, sector, sector count)

TPOWRTI

Call TPiWRTI

Deselect drive

69

TPOrOWI'(drive)

TPorOWl'

Call TPirOWl'

Deselect drive

70

TPOSNS (drive, protected)

TPOSNS

Select drive

Call TPiBUSY

>--_~ Not accept error t----I'"

N

Read the FDC status, checking
the write protect bit state

Call FDC CHECK
(perform a recalibration
on the FOC if necessary)

Deselect drive

71

TPOFRMI'(drive, buffer address, cylinder, sector length,
sector count, format 95P)

TPOFRMr

Select drive

Set up header, sector addresses,
etc. in format buffer

Calculate number of bytes
to be transfered

Call DMA SETUP (if applicable)

y

N

Construct a string of
byte ccmnands for the FDC

to initiate the DMA data move

Call ISSUE COMMAND

72

y

Call WAIT 1m'

Call FDC CHECK
(perform a recalibration
on the FDC if necessary)

Deselect drive

73

TPOID(drive, cylinder, sector)

TP010

Select drive

Call TPi10

Get the FOC return data
for the tape 10 parameters

Call FDC CHOCK
(perform a recalibration
on the FOC if necessary)

Deselect drive

74

TP~

Sends recalibrate ccmnand to drive and makes sure drive goes busy
for 13 ros.

Called by: TPOONL, TPORECAL, FIX: CHOCK.

TP~

Call TPiRESET

Select drive

y

Construct a string of
byte ccmnands for the FDC

that perform a
recalibrate function

Call ISSUE COMMAND

y

75

call WAIT IN!'

y

Call TPiRPRT

y

Set up a counter to make sure
drive stays busy for 13ms

Delay 1ms

Call TPiBUSY

76

N

Is the tape drive
busy (=track 0) with
the recalibration?

Is it zero?

77

N

No errors

y No errors

TPiRESET

Executes a hardware controller reset (really not applicable to the
western Digital 179x chip).

Called by: TPOINI, TPORESET, TPiRECAL.

TPiRESET

Output to the FDC a
hardware reset

Call WAIT INT
(delay a short time monitoring

the FDC interrupt status)

Get the status byte (s) returned
fram the FDC after a reset

y N

No errors Bad FDC error

78

TPiBUSY

Queries controller and returns controller busy status if there is
no error condition.

Called by: TPOBUSY, TPOSNS, TPiRPRT, TPiRECAL.

TPiBUSY

Construct a string of byte commands
for the FOC that perfonn a sense

drive status function

Call ISSUE COMMAND

y

Call RESULTS

y

79

y N

Set busy Set not busy

80

TPiREDI

Performs a read operation.

Called by: TPORED, TPOREDI.

TPiREDI

Set up to send a DMA read command
to the FDC (if applicable)

Call RW OPN

81

TPiWRTI

Performs a write operation.

Called by: TPOWRT, TPOWRTI.

TPiWRTI

Set up to send a DMA write ccmnand
to the FDC (if applicable)

Call RW OPN

82

TPiIC>Wr

Waits for data transfer operation to finish and checks status.

Called by: TPORED, TPOWRT, TPOIOwr.

TPiIOWI'

Call WAIT IN!' to wait
for data transfer to finish

Check data transfer
status (Crc, lost data,

sector not found, missing
address mark, etc.)

Call FDC CHECK
(perform a recalibration
on the FDC if necessary)

83

TPiIO

Executes a read next 10 command.

Called by: TPOID.

TPiID

Construct a string of byte carmands
to make the FDC return ID info

Call ISSUE COMMAND

y

Call WAIT IN'!'

y

Check data transfer
status (Crc, lost data,

sector not found, missing
address mark, etc.)

84

TPiRPRT

Waits for l3ms after issuing of report status command and checks
busy status.

Called by: TPOCOMM, TPiRECAL.

TPiRPRT

Set up a 13 loop counter

Delay lms

Call TPiBUSY

y

Set error

y

Drive busy

Decrement the counter

85

N y Drive not busy r---~

86

TPiVEC

Sets up tape interrupt service routine (ISR) vector.

Called by: TPOINI, TPOTRM.

TPiVEC

y

N

Save copies of the system interrupt
vectors that will be modified

Interrupts off

Replace system interrupt vectors with
the address vectors to local ISR

ExEcute functions necessary to
restrain the resident operating
system from interfering with the

tape drive operation, for example,
prevent FDC drive select timeout

Interrupts on

87

TPiDVEC

Restores system interrupt vectors.

Called by: TPOINI, TPOTRM, TPORESET.

r "'"

"
TPiDVEC

~

, r
Interrupts off

r
Restore the system interrupt
vectors corrupted by TPiVEC

, ,
Fix any system functions

altered by TPiVEC

, r
Interrupts on

I

Return

88

FDC CHOCK

Executes a drive recalibrate command if the previous FDC status
was bad.

Called by: TPOCOMM, TPOSNS, TPOFRMI' , TPOID, TPiBUSY, TPilowr ,
RW OPN.

FDC CHECK

Check FDC status for bad
status (abnormal completion,

invalid command, seek incomplete,
failed restore, drive not

ready, or timeout)

N

y

Call TPiRECAL

89

DISK INl'

Handles FDC interrupts. (Hardware interrupt)

Called by: WAIT INT.

DISK INT

y

N

Construct a string of byte
ccmnands for the FDC that perfonn

a sense interrupt status

Call ISSUE COMMAND

y

N

Call RESULTS

90

y

Check the status returned fran the FDC
and look for a valid interrupt

Use the specific End-of-Interrupt
signal for the FDC

Interrupt return

91

DMA SETUP

Sets up DMA for read or write operation.

Called by: TPOFRMI', RW OPN.

r '"\
I DMA_SETUP ~
\..

,
Initialize the DMA channel by
outputting control bytes to it

r

Set the DMA RED/WRT roode,
the DMA address, and the

byte transfer count

, t
Check for DMA boundary errors,

chip errors, and any other errors

,
Return

92

ISSUE COMMAND

Sends a train of stepping pulses to the drive to execute a
corrmand.

Called by: TPOINI I TPOTRM, TPOCOMM, TPOFRMI', TPiRECAL I TPiBUSY I
TPiID, DISK INT, RW OPN.

N

Set up a 10 second timer and wait
for controller to go not busy

N

Decrement the timer

Is the
timer

Set timeout error

Is FOC
status OK to

send carmands?

93

y

Output next carmand
to the FOC

Are there any
rrore ccmnand

bytes to issue?

N

No errors

y

RESULTS

Reads and stores the results from the FDC status and data.

Called by: TPiBUSY, DISK INr.

RESULTS

Read status from FDC

N

y

Set up for data read operation

N

Timeout error

94

-
r B'"" l J , ~

r
I II

.-

r " I C J , ~
,.

Input the next data fran FDC

Store the FDC data

I,
Count the data byte

95

RW OPN

Sets up and executes a read or write operation.

Called by: TPiREDI, TPiWRTI.

RW OPN

Select drive

Calculate number of bytes
to be transfered

Call DMA SETUP (if applicable)

y

Construct a string of
byte ccmoands for the FDC

to select a RED/WRT DMA function

Call ISSUE COMMAND

Call CHOCK RECAL

96

WAIT IN!'

Waits for 13mB after issuing of report status command and reports
busy status.

Called by: TPOCOMM, TPiRECAL.

WAIT IN!'

Initialize a 10 second counter

N

N

Decrement the timer

Is the
timer

Set time-out error

97

y

DISK IN!'

A.O Indexes

A.1 Index

access time
addressability

bad block map
block 0
blocks
block layout
BOT/ECYr
buffers

capacity
cUlIpatibili ty with 8" systems
cylinders

Data Recovery, Data Separator
DMA - Direct Men:ory Access

fill character
floppy disk controller
fonnat
format parameters

In-place Update mode
Index pulses
interrupts

tID: 765

portability
positioning (tape)
power supply

98

18
19

13
8, 13-14
5-8, 11, 15-16, 35-36, 50
8, 11-12
8, 18, 23
21, 23, 26-27

5-6, 8
20-21
8, 15

20
21, 23, 26

7, 11
7, 15, 19-22, 24, 28, 51-58
7-8, 13, 45, 49-50, 53, 58
8, 13-14

6
15-16, 49, 53, 56-57
22, 25, 28-29, 41, 52-53, 55

23, 26
7, 20

....

7, 15, 19-20, 24, 28, 54-58

28
5-6, 15-18, 24, 52-53, 57
23

sectors
servo, servo writing
Shurgart SA450
Start/Stop mode
starting and stopping
step pulses
streaming
Streaming mode

tape layout
tape operation roodes
tape speed (39ips, 70ips)
track layout

verification

Western Digital 179x
write precampensation
write protect

99

7-8, 11, 13, 52-53, 56
6, 15, 18, 45
19, 22
5
5-6, 15-16, 26-27
44-45, 52, 56, 58
5, 25-26
5

6-9
5-6
15-16, 18, 57
8, 10

18

7, 15, 19-20, 24, 51-53
20
34, 40, 48, 56

A.2 Index of Tape Driver Routines

Mid-Level Tape I/O Routines

TPIONL
TPIOFL
TPlREDMNT
TPIWRrrMNI'
TPlRED
TPlREDWI'
TPIWRT
TPIWR'lWI'
TPlPAUSE
TP1S'IDP
TP1CONr
TPlDMNT

Low-Level Device Routines

Table 2 - TPO Return Codes
TPOINI
TPOTRM
TPOONL
TPOOFL
TPORECAL
TPORESET
TPOBUSY
TPOCOM'1
Table 3 - Step Pulse Command List
TPOREDI
TPORED
TPOWRTI
TPOWRT
TPOIGWr
TPOSNS
TPONDX
TPOFRMFL
TPOFRMr
TPOID

Misc. routines

33
33
34
34
35
35
36
36
37
37
38
38

40
41,
41,
42,
42,
43,
43,
44,
44,
45
46,
46,
47,
47,
48,
48,
49
49
50,
50,

59
60
61
61
62
63
64
65-67

68
68
69
69
70
71

72-73
74

75-97

100

A.3 Index of Figures

Figure 1 - Tape Layout 9
Figure 2 - Track Layout 10
Figure 3 - Block Layout 12
Figure 4 - Tape Motion Timing 17
Figure 5 - IMAGE Program Block Diagram 30

A.4 Index of Tables

Table 1 - Block 0, Sector 0 Layout 14
Table 2 - TPO Return Codes 40
Table 3 - Step Pulse Command List 45

101

