

51:

_CLJX_TM
System Guide

INTErGr<NH
DSYS18510

il L l UR

CLIX System Guide

~ January 1990

DSYS18512
Edition 1

2 CLIX SYSTEM GUIDE

Warranties and Liabilities

I""""' All warranties given by Intergraph Corporation about equipment or software are set forth in
"--" your purchase contract.

·-

The information and the software discussed in this document are subject to change without
notice and should not be considered commitments by Intergraph Corporation.
Intergraph Corporation assumes no responsibility for any errors that may appear in this docu­
ment.

The software discussed in this document is furnished under a license and may be used or
copied only in accordance with the terms of this license.

No responsibility is assumed by Intergraph for the use or reliability of software on equipment
that is not supplied by Intergraph or its a:flmated companies.

Trademarks

Intergraph is a registered trademark of Intergraph Corporation.
CLIX, IGDS, InterServe, and CLIPPER are trademarks of Intergraph Corporation.

Other brands and product names are trademarks of their respective owners.

Classifications

This equipment is designed to comply with the requirements in Part 15 of the FCC rules for a
class A computing device.

3

Copyrights

0 1989, 1990 INTERGRAPH CORPORATION ,....._

INCLUDING THIS DOCUMENTATION, AND ALL SOFTWARE AND ITS FILE FORMATS ~

AND AUDIO-VISUAL DISPLAYS DESCRIBED HEREIN; ALL RIGHTS RESERVED; MAY

ONLY BE USED PURSUANT TO THE APPLICABLE SOFTWARE LICENSE AGREEMENT;

CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION OF INTERGRAPH

AND/OR OTHER THIRD PARTIES WHICH IS PROTECTED BY COPYRIGHT, TRADE

SECRET AND TRADEMARK LAW AND MAY NOT BE PROVIDED OR OTHERWISE MADE

AVAILABLE WITHOUT PRIOR WRITTEN AUTHORIZATION.

RESTRICTED RIGHTS LEGENDS

Use, duplication, or disclosure by the United States Government is subject to restrictions as set

forth in subdivision (c)(l)(ii) of the rights in technical data and computer software clause at

52.227-7013.

Unpublished-rights reserved under the Copyright Laws of the United States.

Intergraph Corporation

Huntsville, AL 35894-0001

This software and documentation is based in part on the Fourth Berkeley Software

Distribution under license from The Regents of the University of California.

Portions of this manual Copyright • 1986, 1987, 1988 Lachman Associates, Incorporated

(LAI) All Rights Reserved

Portions of this manual Copyright• 1984, 1985, 1986, 1987, 1988 AT&T

4 CLIX SYSTEM GUIDE

-

Additional References

The following UNIX System V documentation is required reference
material. These documents can be purchased individually or in sets from
Intergraph:

Title Release V.3

AT&T UNIX System V User's Reference Manual
AT&T UNIX System V User's Reference Addendum
AT&T UNIX System V Administrator's Reference Manual
AT&T UNIX System V Administrator's Reference Addendum
AT&T UNIX System V Programmer's Reference Manual
AT&T UNIX System V Programmer's Reference Addendum

DSYS08110
DSYS19410
DSYS08310
DSYS19710
DSYS08510
DSYS19510

The following UNIX System V documentation is suggested reference
material. The following documents can be purchased individually or in
sets from Intergraph:

Title

AT&T UNIX System V User's Guide
AT&T UNIX System V Programming Guide
AT&T UNIX System V Administrator's Guide

Release V.3

DSYS08010
DSYS08410
DSYS08210

Ordering Information

To order any of these documents:

• Within the United States contact your Customer Engineer or Sales
Account Representative.

• For International locations, contact the Intergraph subsidiary or dis­
tributor where you purchased your workstation.

Support Information

If you have trouble with the workstation/server or the procedures
described in this guide. contact Intergraph Customer Support at
1-800-633-7248. International customers should contact the Intergraph

subsidiary or distributor where the workstation was purchased.

5

Introduction

The CLIX System Guide contains procedures and tutorials designed to give
instructions in how to perform tasks. It also provides background infor­
mation explaining when and why these tasks are needed.

The following documents provide related information:

• The CLIX System Administrator's Reference Manual. describes the
commands and special interfaces used by those who administer a
CLIX system.

• The CLIX Programmer's cl User's Reference Manual. describes the
commands that constitute the basic software running on an Inter­
graph workstation or server. as well as system calls. library rou­
tines. file formats. and miscellaneous facilities.

The CLIX System Guide is divided into the following sections:

Part 1: System Administrator"s Tutorials

1. FFS Tutorial

2. FFS Check Tutorial

3. BSD LP Spooler Tutorial

4. NQS Tutorial

s. YP Tutorial

Part 2: System Administrator"s Procedures

1. System Rebuild

2. New Product Delivery

3. System Reconfiguration

4. FFS Installation

s. BSD Network Configuration

6. NFS/YP Installation

7. NQS Installation

INTRODUCTION 1

lntrociuctlon

Part 3: ProgrilIIlmer"s & User"s Tutorials

1. Technical Programming Tutorial

2. PROC Debugging Tutorial

3. Network Programming Tutorial

4. BSD Porting Tutorial

5. Introductory Socket Tutorial

6. Advanced Socket Tutorial

1. NQS Tutorial

8. RCS Tutorial

9. RPC/XDR Tutorial

The CLIX System Administrator's Rejerence Manual, is divided into the
following sections:

(1M) System Administrator Commands

(7) Special Interfaces

(7S) Special Files

(7B) BSD Network Interfaces

(7 A) Asynchronous Interfaces

The CLIX Programmer's & User's Reference Manual is divided into the fol­
lowing sections:

(1) Commands

(2) System Calls

(2B) BSD System Calls

(21) Intergraph System Calls

(3) Library Routines

2 CLIX SYSTEM GUIDE

(3C) and (3S) C Programming Language Utilities

(3B) BSD Library Routines

(3N) Intergraph Network Library Routines

(3R) RPC/XDR/YP Library Routines

Introduction

(3A) Intergraph Synchronous/ Asynchronous Library Rou­
tines

(4) File Formats

(5) Miscellaneous

Forrnat

The following conventions are used throughout this document:

Boldface User input such as commands, options and argu­
ments to commands, directories, and files appear in
bold.

Ital.ic Substitutable values or new terms appearing for the
first time appear in ital.ics.

constant width Text that is printed on your terminal or program
code appears in a constant width font.

command(number) A command name followed by a number in
parentheses refers to the corresponding part of the
appropriate CLIX or UNIX System V reference
manual as follows:

a Look up references followed by (1M), (7S). (7B). or

(7 A) in this document.

a Look up references followed by (1), (2B), (21),
(3C). (3B). (3N). (3R). (3A). (4). or (5) in the

CLIX Programmer's & User's Reference Manual.

a Look up all other references in the appropriate

CLIX document.

INTRODUCTION 3

Introduction

If the references are not in the CL.IX document,
refer to the appropriate UNIX System V manual.

4 CLIX SYSTEM GUIDE

c

c

c

c

Chapter 1: FFS Tutorial

Introduction 1-1

Old File System 1-3

New File System Organization 1-5

Optimizing Storage Utilization 1-6

File System Parameterization 1-10

Layout Policies 1-12

Performance 1-15

File System Functional Enhancements 1-19

File Locking 1-19

Symbolic Links 1-21

Rename 1-22

References 1-22

TABLEOFCONTENTS 1~

Introduction

Fast File System is a reimplementation of the UNIX~ file system. The
reimplementation provides substantially higher throughput rates by using
more flexible allocation policies that allow better locality of reference and
can be adapted to a wide range of peripheral and processor characteristics.
The new file system clusters data that is sequentially accessed and provides
two block sizes to allow fast access to large files while not wasting large
amounts of space for small files. File access rates of up to ten times faster
than the standard UNIX file system are experienced. Long needed enhance­
ments to the programmers· interface are discussed. These include a
mechanism to place advisory locks on files. extensions of the name space
across file systems. the ability to use long file names. and provisions for
administrative control of resource usage.

This tutorial presents the motivations for changes in the file system. the
methods used to effect these changes. the rationale behind the design deci­
sions. and a description of the new implementation. This discussion is fol­
lowed by a summary of the results obtained. directions for future work.
and the additions and changes made to the facilities available to program­
mers.

The original UNIX system has simple and elegant file system facilities.
File system input/output is buffered by the kernel: there are no alignment
constraints on data transfers and all operations are made to appear syn­
chronous. All transfers to the disk are in 512-byte blocks. which can be
placed arbitrarily within the data area of the file system. Virtually no
constraints other than available disk space are placed on file growth
[Ritchie74]. [Thompson78]. On practice. a file"s size is constrained to be
less than about one gigabyte.)

When used on the V AX™-11 with other UNIX enhancements. the original
512-byte UNIX file system is incapable of providing the data throughput
rates that many applications require. For example. applications such as
VLSI design and image processing do a small amount of processing on large
quantities of data and need to have a high throughput from the file system.
High throughput rates are also needed by programs that map files from the
file system into large virtual address spaces. Paging data in and out of the
file system is likely to occur frequently [Ferrin82b]. This requires a file
system providing higher bandwidth than the original 512-byte UNIX. one
that provides only about two percent of the maximum disk bandwidth or
about 20 kilobytes per second per arm [White80]. [Smith81b].

FFS TUTORIAL 1-1

Introduction

The UNIX file system has been modified to improve its performance. Since
the UNIX file system interface is well understood and not inherently slow.
this development retained the abstraction and changed the underlying
implementation to increase its throughput. Consequently. users of the sys­
tem have not been faced with massive software conversion.

Problems with file system performance have been dealt with extensively in
the literature; see [Smith81a] for a survey. Previous work to improve the
UNIX file system performance has been done by [Ferrin82a]. The UNIX
operating system drew many of its ideas from Multics. a large. high per­
formance operating system [Feiertag71]. Other work includes Hydra
[Almes78]. Spice [Thompson80]. and a file system for a LISP environment
[Symbolics81]. A good introduction to the physical latencies of disks is
described in [Pechura83].

1-2 CLIX SYSTEM GUIDE

Old File System

In the file system developed at Bell™ Laboratories (the .. traditional" file
system). each disk drive is divided into one or more partitions. Each of
these disk partitions may contain one file system. A file system never
spans multiple partitions. (By .. partition" here we refer to the subdivision
of physical space on a disk drive. In the traditional file system as in the
new file system. file systems are really located in logical disk partitions
that may overlap. This overlapping is available. for example. to allow
programs to copy entire disk drives containing multiple file systems.) A
file system is described by its super-block. which contains the basic param­
eters of the file system. These include the number of data blocks in the file
system. a count of the maximum number of files. and a pointer to the free
list. a linked list of all free blocks in the file system.

Within the file system are files. Certain files are distinguished as direc­
tories and contain pointers to files that may be directories. Every file has a
descriptor associated with it called an i-rwde. An i-node contains informa­
tion describing ownership of the file. time stamps marking last
modification and access times for the file. and an array of indices that point
to the data blocks for the file. For this section. we assume that the first
eight blocks of the file are directly referenced by values stored in an
i-node. (The actual number may vary from system to system. but is usu­
ally in the 5-13 range.) An i-node may also contain references to indirect
blocks containing further data block indices. In a file system with a
512-byte block size. a singly indirect block contains 128 further block
addresses. a doubly indirect block contains 128 addresses of further singly
indirect blocks. and a triply indirect block contains 128 addresses of
further doubly indirect blocks.

A 150-megabyte traditional UNIX file system consists of four megabytes
of i-nodes followed by 146 megabytes of data. This organization segre­
gates the i-node information from the data: thus. accessing a file normally
incurs a long seek from the file 0 s i-node to its data. Files in a single direc­
tory are not typically allocated consecutive slots in the four megabytes of
i-nodes, causing many nonconsecutive blocks of i-nodes to be accessed
when executing operations on the i-nodes of several files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional
file system never transfers more than 512 bytes per disk transaction and
often finds that the next sequential data block is not on the same cylinder.
forcing seeks between 512-byte transfers. The combination of the small

FFS TUTORIAL 1-3

Old File System

block size. limited read-ahead in the system. and many seeks severely lim­
its file system throughput.

The first work at Berkeley on the UNIX file system attempted to improve
both reliability and throughput. The reliability was improved by staging
modifications to critical file system information so that they could either
be completed or repaired cleanly by a program after a crash [Kowalski78].
The file system performance was improved by a factor of more than two
by changing the basic block size from 512 to 1024 bytes. The increase hap­
pened because of two factors: each disk transfer accessed twice as much
data. and most files could be described without needing to access indirect
blocks since the direct blocks contained twice as much data. The file sys­
tem with these changes will henceforth be referred to as the old file system.

This performance improvement gave a strong indication that increasing the
block size was a good method for improving throughput. Although the
throughput had doubled. the old file system was still using only about
four percent of the disk bandwidth. The main problem was that. although
the free list was initially ordered for optimal access. it quickly became
scrambled as files were created and removed. Eventually. the free list
became entirely random. causing files to have their blocks allocated ran­
domly over the disk. This forced a seek before every block access.
Although old file systems provided transfer rates of up to 175 kilobytes
per second when they were first created. this rate deteriorated to 30 kilo­
bytes per second after a few weeks of moderate use because of this ran­
domization of data block placement. There was no way of restoring the
performance of an old file system except to dump. rebuild. and restore the
file system. Another possibility. suggested by [Maruyama76]. would be to
have a process that periodically reorganized the data on the disk to restore
locality.

1-4 CLIX SYSTEM GUIDE

New File System Organization

In the new file system organization (as in the old file system organization).
each disk drive contains one or more file systems. A file system is
described by its super-block. located at the beginning of the file system's
disk partition. Because the super-block contains critical data. it is repli­
cated to protect against catastrophic loss. This is done when the file system
is created; since the super-block data does not change. the copies need not
be referenced unless a head crash or other hard disk error causes the
default super-block to be unusable.

To ensure that it is possible to create files as large as 232 bytes with only
two levels of indirection. the minimum size of a file system block is 4096
bytes. The size of file system blocks can be any power of 2 greater than or
equal to 4096. The block size of a file system is recorded in the file
system's super-block so it is possible for file systems with different block
sizes to be simultaneously accessible on the same system. The block size
must be decided when the file system is created; it cannot be subsequently
changed without rebuilding the file system.

The new file system organization divides a disk partition into one or more
areas called cylinder graups. A cylinder group is composed of one or more
consecutive cylinders on a disk. Associated with each cylinder group is
some bookkeeping information that includes a redundant copy of the
super-block. space for i-nodes. a bit map describing available blocks in the
cylinder group. and summary information describing the usage of data
blocks within the cylinder group. The bit map of available blocks in the
cylinder group replaces the traditional file system's free list. For each
cylinder group. a static number of i-nodes is allocated at file system crea­
tion time. The default policy is to allocate one i-node for each 2048 bytes
of space in the cylinder group. expecting this to be far more than will ever
be needed.

All cylinder group bookkeeping information could be placed at the begin­
ning of each cylinder group. However if this approach were used. all
redundant information would be on the top platter. A single hardware
failure that destroyed the top platter could cause the loss of all redundant
copies of the super-block. Thus. the cylinder group bookkeeping informa­
tion begins at a varying offset from the beginning of the cylinder group.
The offset for each successive cylinder group is calculated to be about one
track further from the beginning of the cylinder group than the preceding
cylinder group. In this way. the redundant information spirals down to

FFS TUTORIAL 1-5

New File System Organization

the pack so that any single track. cylinder. or platter can be lost without
losing all copies of the super-block. Except for the first cylinder group. the
space between the beginning of the cylinder group and the beginning of the
cylinder group information is used for data blocks. (While it appears that
the first cylinder group could be laid out with its super-block at the
.. known .. location. this would not work for file systems with block sizes of
16 kilobytes or greater. This results from a requirement that the first 8
kilobytes of the disk be reserved for a bootstrap program and a separate
requirement that the cylinder group information begin on a file system
block boundary. To start the cylinder group on a file system block boun­
dary. file systems with block sizes larger than 8 kilobytes would have to
leave an empty space between the end of the boot block and the beginning
of the cylinder group. Without knowing the size of the file system blocks.
the system would not know what roundup function to use to find the
beginning of the first cylinder group.)

Optirrizing Storage Utilization

Data is laid out so that larger blocks can be transferred in a single disk
transaction. greatly increasing file system throughput. As an example.
consider a file in the new file system composed of 4096-byte data blocks.
In the old file system. this file would be composed of 1024-byte blocks. By
increasing the block size. disk accesses in the new file system may transfer
up to four times as much information per disk transaction. In large files.
several 4096-byte blocks may be allocated from the same cylinder so that
even larger data transfers are possible before requiring a seek.

The main problem with larger blocks is that most UNIX file systems are
composed of many small files. A uniformly large block size wastes space.
Figure 1-1 shows the effect of file system block size on the amount of
wasted space in the file system. The files measured to obtain these figures
reside on one of our time sharing systems that has roughly 1.2 gigabytes of
online storage. The measurements are based on the active user file systems
containing about 920 megabytes of formatted space.

1-6 CLIX SYSTEM GUIDE

New File System Organization

S_E_ace used '1o waste Or_g_anization
775.2 Mb 0.0 Data only. no separation between files
807.8 Mb 4.2 Data only. each file starts on 512-byte boundary
828.7 Mb 6.9 Data+ i-nodes. 512-byte block UNIX file system
866.5 Mb 11.8 Data+ i-nodes. 1024-byte block UNIX file system
948.5 Mb 22.4 Data+ i-nodes. 2048-byte block UNIX file system
1128.3 Mb 45.6 Data + i-nodes. 4096-b_y_te block UNIX file system

Figure 1-1: Amount of Wasted Space as a Function of Block Size

The space wasted is calculated to be the percentage of space on the disk not
containing user data. As the block size on the disk increases. the waste
rises quickly to an intolerable 45.6 percent waste with 4096-byte file sys­
tem blocks.

To be able to use large blocks without undue waste. small files must be
stored more efficiently. The new file system accomplishes this goal by
allowing the division of a single file system block into one or more frag­
ments. The file system fragment size is specified when the file system is
created; each file system block can optionally be broken into 2. 4. or 8
fragments. each of which is addressable. The lower bound on the size of
these fragments is constrained by the disk sector size. typically 512 bytes.
The block map associated with each cylinder group records the space avail­
able in a cylinder group at the fragment level; to determine if a block is
available. aligned fragments are examined. Figure 1-1 shows a piece of a
map from a 4096/1024 file system.

Bits in map
Fragment numbers
Block numbers

xx xx
0-3
0

xxoo
4-7
1

ooxx
8-11

2

0000
12-15

3

Figure 1-2: Example Layout of Blocks and Fragments in a 4096/1024 File
System

FFS TUTORIAL 1-7

New File System Organization

Each bit in the map records the status of a fragment; an .. X .. shows that
the fragment is in use. while a .. ff. shows that the fragment is available
for allocation. In this example. fragments 0-5. 10. and 11 are in use. while
fragments 6-9 and 12-15 are free. Fragments of adjoining blocks cannot be
used as a full block. even if they are large enough. In this example. frag­
ments 6-9 cannot be allocated as a full block: only fragments 12-15 can be
coalesced into a full block.

On a file system with a block size of 4096 bytes and a fragment size of
1024 bytes. a file is represented by zero or more 4096-byte blocks of data.
and possibly a single fragmented block. If a file system block must be
fragmented to obtain space for a small amount of data. the remaining frag­
ments of the block are made available for allocation to other files. As an
example. consider an 11.000-byte file stored on a 4096/1024-byte file sys­
tem. This file would use two full-size blocks and one three-fragment por­
tion of another block. If a block with three aligned fragments is not avail­
able at the time the file is created. a full-size block is split. yielding the
necessary fragments and a single unused fragment. This remaining frag­
ment can be allocated to another file as needed.

Space is allocated to a file when a program does a write system call. Each
time data is written to a file. the system checks to see if the size of the file
has increased. A program may be overwriting data in the middle of an
existing file. In this case. space would already have been allocated. If the
file needs to be expanded to hold the new data. one of three conditions
exists:

1. Enough space is left in an already allocated block or fragment to
hold the new data. The new data is written into the available
space.

2. The file contains no fragmented blocks (and the last block in the
file contains insufficient space to hold the new data). If space exists
in a block already allocated. the space is filled with new data. If
the remainder of the new data contains more than a full block of
data. a full block is allocated and the first full block of new data is
written there. This process is repeated until less than a full block
of new data remains. If the remaining new data to be written will
fit in less than a full block. a block with the necessary fragments is
located. Otherwise. a full block is located. The remaining new
data is written into the located space.

1-8 CLIX SYSTEM GUIDE

New Fiie System Organization

3. The file contains one or more fragments (and the fragments contain
insufficient space to hold the new data). If the size of the new data
plus the size of the data already in the fragments exceeds the size
of a full block. a new block is allocated. The contents of the frag­
ments are copied to the beginning of the block and the remainder of
the block is filled with new data. The process then continues as in
(2) above. Otherwise. if the new data to be written will fit in less
than a full block. a block with the necessary fragments is located.
Otherwise. a full block is located. The contents of the existing
fragments appended with the new data are written into the allo­
cated space.

The problem with expanding a file one fragment at a time is that data may
be copied many times as a fragmented block expands to a full block. Frag­
ment reallocation can be minimized if the user program writes a full block
at a time. except for a partial block at the end of the file. Since file systems
with different block sizes may reside on the same system. the file system
interface has been extended to provide application programs the optimal
size for a read or write. For files. the optimal size is the block size of the
file system on which the file is being accessed. For other objects. such as
pipes and sockets. the optimal size is the underlying buffer size. This
feature is used by the Standard Input/Output Library. a package used by
most user programs. This feature is also used by certain system utilities
such as archivers and loaders that do their own input and output manage­
ment and need the highest possible file system bandwidth.

The amount of wasted space in the 4096/1024-byte new file system organ­
ization is empirically observed to be about the same as in the 1024-byte
old file system organization. A file system with 4096-byte blocks and
512-byte fragments has about the same amount of wasted space as the
512-byte block UNIX file system. The new file system uses less space than
the 512-byte or 1024-byte file systems for indexing information for large
files and the same amount of space for small files. These savings are offset
by the need to use more space for keeping track of available free blocks.
The net result is about the same disk utilization when a new file system's
fragment size equals an old file system's block size.

For the layout policies to be effective. a file system cannot be kept com­
pletely full. For each file system there is a parameter. termed the free
space reserve. that gives the minimum acceptable percentage of file system
blocks that should be free. If the number of free blocks drops below this

FFS TUTORIAL 1-9

New File System Organization

level. only the system administrator can continue to allocate blocks. The
value of this parameter may be changed at any time. even when the file
system is mounted and active. The transfer rates that appear in section 4
were measured on file systems kept less than 90 percent full (a reserve of
10 percent). If the number of free blocks falls to zero. the file system
throughput tends to be cut in half. because of the inability of the file sys­
tem to localize blocks in a file. If a file system's performance degrades
because of overfilling. it may be restored by removing files until the
amount of free space once again reaches the minimum acceptable level.
Access rates for files created during periods of little free space may be
restored by moving their data once enough space is available. The free
space reserve must be added to the percentage of waste when comparing
the organizations given in Figure 1-1. Thus. the percentage of waste in an
old 1024-byte UNIX file system is roughly comparable to a new
4096/512-byte file system with the free space reserve set at 5 percent.
(Compare 11.8 percent wasted with the old file system to 6.9 percent
waste+ 5 percent reserved space in the new file system.)

File System Parameterization

Except for the initial creation of the free list. the old file system ignores
the parameters of the underlying hardware. It has no information about
either the physical characteristics of the mass storage device or the
hardware that interacts with it. A goal of the new file system is to
parameterize the processor capabilities and mass storage characteristics so
that blocks can be allocated in an optimum configuration-dependent way.
Parameters used include the speed of the processor. the hardware support
for mass storage transfers. and the characteristics of the mass storage dev­
ices. Disk technology is constantly improving and a given installation can
have several different disk technologies running on a single processor. Each
file system is parameterized so that it can be adapted to the characteristics
of the disk on which it is placed.

For mass storage devices such as disks. the new file system tries to allocate
new blocks on the same cylinder as the previous block in the same file.
Optimally. these new blocks will also be rotationally well positioned. The
distance between .. rotationally optimal" blocks varies greatly: it can be a
consecutive block or a rotationally delayed block. depending on system
characteristics. On a processor with an input/output channel that does not
require any processor intervention between mass storage transfer requests.
two consecutive disk blocks can often be accessed without suffering lost

1-10 CLIX SYSTEM GUIDE

New File System Organization

time because of an intervening disk revolution. For processors without
input/output channels. the main processor must field an interrupt and
prepare for a new disk transfer. The expected time to service this inter­
rupt and schedule a new disk transfer depends on the speed of the main
processor.

The physical characteristics of each disk include the number of blocks per
track and the rate at which the disk spins. The allocation routines use this
information to calculate the number of milliseconds required to skip over a
block. The characteristics of the processor include the expected time to
service an interrupt and schedule a new disk transfer. Given a block allo­
cated to a file. the allocation routines calculate the number of blocks to
skip over so that the next block in the file will come into position under
the disk head in the expected amount of time that it takes to start a new
disk transfer operation. For programs that sequentially access large
amounts of data. this strategy minimizes the amount of time spent waiting
for the disk to position itself.

To ease the calculation of finding rotationally optimal blocks. the cylinder
group summary information includes a count of the available blocks in a
cylinder group at different rotational positions. Eight rotational positions
are distinguished. so the resolution of the summary information is 2 mil­
liseconds for a typical 3600 revolution-per-minute drive. The super-block
contains a vector of lists called rotational layout tables. The vector is
indexed by rotational position. Each component of the vector lists the
index into the block map for every data block contained in its rotational
position. When looking for an allocatable block. the system first looks
through the summary counts for a rotational position with a nonzero block
count. It then uses the index of the rotational position to find the
appropriate list to use to index through only the relevant parts of the
block map to find a free block.

The parameter that defines the minimum number of milliseconds between
the completion of a data transfer and the initiation of another data
transfer on the same cylinder can be changed at any time. even when the
file system is mounted and active. If a file system is parameterized to lay
out blocks with a rotational separation of two milliseconds. and the disk
pack is then moved to a system that has a processor requiring four mil­
liseconds to schedule a disk operation. the throughput will drop precipi­
tously because of lost disk revolutions on nearly every block. If the even­
tual target machine is known. the file system can be parameterized for it
even though it is initially created on a different processor. Even if the

FFS TUTORIAL 1-11

New File System Organization

move is not known in advance. the rotational layout delay can be

reconfigured after the disk is moved so that all further allocation is done

based on the characteristics of the new host.

Layout Policies

The file system layout policies are divided into two distinct parts. At the

top level are global policies that use file system-wide summary informa­

tion to decide the placement of new i-nodes and data blocks. These rou­
tines are responsible for deciding the placement of new directories and files.

They also calculate rotationally optimal block layouts. and decide when to

force a long seek to a new cylinder group because insufficient blocks remain

in the current cylinder group to do reasonable layouts. Below the global

policy routines are the local allocation routines that use a locally optimal

scheme to lay out data blocks.

Two methods for improving file system performance are to increase the

locality of reference to minimize seek latency as described by [Trivedi80]

and to improve the layout of data to make larger transfers possible as
described by [Nevalainen77]. The global layout policies try to improve
performance by clustering related information. They cannot attempt to
localize all data references. but must also try to spread unrelated data
among different cylinder groups. If too much localization is attempted. the

local cylinder group may run out of space. forcing the data to be scattered

to nonlocal cylinder groups. Taken to an extreme. total localization can
result in a single huge cluster of data resembling the old file system. The

global policies try to balance the two conflicting goals of localizing data

that is concurrently accessed while spreading out unrelated data.

One allocatable resource is i-nodes. I-nodes are used to describe both files

and directories. I-nodes of files in the same directory are frequently

accessed together. For example. the .. list directory" command often

accesses the i-node for each file in a directory. The layout policy tries to

place all i-nodes of files in a directory in the same cylinder group. To

ensure that files are distributed throughout the disk. a different policy is

used for directory allocation. A new directory is placed in a cylinder
group that has a greater than average number of free i-nodes. and the

smallest number of directories already in it. The intent of this policy is to

allow the i-node clustering policy to succeed most of the time. The alloca­

tion of i-nodes within a cylinder group is done using a next free strategy.

Although this allocates the i-nodes randomly within a cylinder group. all

1-12 CLIX SYSTEM GUIDE

New Fiie System Organization

the i-nodes for a particular cylinder group can be read with 8 to 16 disk
transfers. (At most. 16 disk transfers are required because a cylinder
group may have no more than 2048 i-nodes.) This puts a small and con­
stant upper bound on the number of disk transfers required to access the
i-nodes for all files in a directory. In contrast. the old file system typically
requires one disk transfer to fetch the i-node for each file in a directory.

The other major resource is data blocks. Since data blocks for a file are
typically accessed together. the policy routines try to place all data blocks
for a file in the same cylinder group. preferably at rotationally optimal
positions in the same cylinder. The problem with allocating all data blocks
in the same cylinder group is that large files will quickly use available
space in the cylinder group. forcing a spill over to other areas. Further.
using all the space in a cylinder group causes future allocations for any file
in the cylinder group to also spill to other areas. Ideally. none of the
cylinder groups should ever become completely full. The heuristic solu­
tion chosen is to redirect block allocation to a different cylinder group
when a file exceeds 48 kilobytes. and at every megabyte thereafter. The
first spill over point at 48 kilobytes is where a file on a 4096-byte block
file system first requires a single indirect block. This appears to be a
natural first point at which to redirect block allocation. The other spill­
over points are chosen with the intent of forcing block allocation to be
redirected when a file has used about 25 percent of the data blocks in a
cylinder group. In observing the new file system in day-to-day use. the
heuristics appear to work well in minimizing the number of completely
filled cylinder groups.

The newly chosen cylinder group is selected from those cylinder groups
that have a greater than average number of free blocks left. Although big
files tend to be spread out over the disk. a megabyte of data is typically
accessible before a long seek must be performed. and the cost of one long
seek per megabyte is small.

The global policy routines call local allocation routines with requests for
specific blocks. The local allocation routines will always allocate the
requested block if it is free. Otherwise. it allocates a free block of the
requested size that is rotationally closest to the requested block. If the glo­
bal layout policies had complete information. they could always request
unused blocks and the allocation routines would be reduced to simple
bookkeeping. However. maintaining complete information is costly: thus.
the implementation of the global layout policy uses heuristics that employ
only partial information.

FFS TUTORIAL 1-13

New File System Organization

If a requested block is not available. the local allocator uses a four-level
allocation strategy: Use the next available block rotationally closest to the
requested block on the same cylinder. It is assumed here that head switch­
ing time is zero. On disk controllers where this is not the case. it may be
possible to incorporate the time required to switch between disk platters
when constructing the rotational layout tables. This. however. has not yet
been tried. If blocks are not available on the same cylinder. use a block
within the same cylinder group. If that cylinder group is entirely full.
quadratically hash the cylinder group number to choose another cylinder
group to look for a free block. Finally if the hash fails. apply an exhaus­
tive search to all cylinder groups.

Quadratic hash is used because of its speed in finding unused slots in
nearly full hash tables [Knuth75]. File systems that are parameterized to
maintain at least 10 percent free space rarely use this strategy. File sys­
tems that are run without maintaining any free space typically have so
few free blocks that almost any allocation is random; the most important
characteristic of the strategy used under such conditions is that the stra­
tegy be fast.

1-14 CLIX SYSTEM GUIDE

Performance

Ultimately. the proof of the effectiveness of the algorithms described in the
previous section is the long-term performance of the new file system.

Our empirical studies have shown that the i-node layout policy has been
effective. When running the .. list directory .. command on a large directory
that contains many directories (to force the system to access i-nodes in
multiple cylinder groups). the number of disk accesses for i-nodes is cut
by a factor of two. The improvements are even more dramatic for large
directories containing only files. with disk accesses for i-nodes being cut by
a factor of eight. This is most encouraging for programs such as spooling
daemons that access many small files. since these programs tend to flood
the disk request queue on the old file system.

Figures 1-3 and 1-4 summarize the measured throughput of the new file
system. Several comments need to be made about the conditions under
which these tests were run. The test programs measure the rate at which
user programs can transfer data to or from a file without performing any
processing on it. These programs must read and write enough data to
ensure that buffering in the operating system does not affect the results.
They are also run at least three times in succession; the first to get the sys­
tem into a known state and the second two to ensure that the experiment
has stabilized and is repeatable. The tests used and their results are dis­
cussed in detail in [Kridle83]. (A UNIX command that is similar to the
reading test that we used is .. cp file /dev/null:· where .. file·· is eight mega­
bytes long.) The systems were running multiuser but were otherwise
quiescent. There was no contention for either the CPU or the disk arm.
The only difference between the UNIBUS™ and MASSBUS™ tests was the
controller. All tests used an AMPEX Capricorn 330-megabyte Winchester
disk. All file system test runs were on a VAX 11/750. All file systems
had been in production use for at least a month before being measured.
The same number of system calls were performed in all tests: the basic
system call overhead was a negligible portion of the total running time of
the tests.

FFS TUTORIAL 1-15

Performance

Type of Processor and Read
File System Bus Measured S~d Bandwidth %CPU

old 1024 750/UNIBUS 29 K bytes/sec 29/983 3% 11%

new 4096/1024 750/UNIBUS 221 K bytes/sec 221/983 22% 43%

new 819211024 750/UNIBUS 233 K bytes/sec 233/983 24% 29%

new 4096/1024 750/MASSBUS 466 K bytes/sec 466/983 47% 73%

new 8192/1024 750/MASSBUS 466Kb~sec 466/983 47% 54%

Figure 1-3: Reading Rates of the Old and New UNIX File Systems

Type of Processor and Write
File S_ystem Bus Measured s~ Bandwidth %CPU

old 1024 750/UNIBUS 48 K bytes/sec 48/983 5% 29%
new 4096/1024 750/UNIBUS 142 K bytes/sec 142/983 14% 43%
new 8192/1024 750/UNIBUS 215 K bytes/sec 215/983 22% 46%
new 4096/1024 750/MASSBUS 323 K bytes/sec 323/983 33% 94%
new 8192/1024 750/MASSBUS 466 K bytes/sec 466/983 47% 95%

Figure 1-4: Writing Rates of the Old and New UNIX File Systems

Unlike the old file system. the transfer rates for the new file system do not

appear to change over time. The throughput rate is tied much more

strongly to the amount of free space that is maintained. The measure­

ments in the tables were based on a file system with a 10% free space

reserve. Synthetic workloads suggest that throughput deteriorates to

about half the rates given in the figures when the file systems are full.

The percentage of bandwidth given in Figures 1-3 and 1-4 is a measure of

the effective utilization of the disk by the file system. An upper bound on

the transfer rate from the disk is calculated by multiplying the number of

bytes on a track by the number of revolutions of the disk per second. The

bandwidth is calculated by comparing the data rates the file system is able

to achieve as a percentage of this rate. Using this metric. the old file sys­

tem is only able to use about 3-5% of the disk bandwidth. while the new

file system uses up to 47% of the bandwidth.

1-16 CLIX SYSTEM GUIDE

Performance

Both reads and writes are faster in the new system than in the old system.
The biggest factor in this speedup is because of the larger block size used
by the new file system. The overhead of allocating blocks in the new sys­
tem is greater than the overhead of allocating blocks in the old system.
However. fewer blocks need to be allocated in the new system because
they are bigger. The net effect is that the cost per byte allocated is approx­
imately the same for both systems.

In the new file system. the reading rate is always at least as fast as the
writing rate. This is to be expected since the kernel must work more when
allocating blocks than when simply reading them. Note that the writing
rates are approximately the same as the reading rates in the 8192-byte
block file system: the writing rates are slower than the reading rates in the
4096-byte block file system. The slower write rates occur because the ker­
nel has to perform twice as many disk allocations per second. making the
processor unable to keep up with the disk transfer rate.

In contrast. the old file system is about 50 percent faster at writing files
than reading them. This is because the write system call is asynchronous
and the kernel can generate disk transfer requests much faster than they
can be serviced. Hence. disk transfers queue up in the disk buffer cache.
Because the disk buffer cache is sorted by minimum seek distance. the
average seek between the scheduled disk writes is much less than it would
be if the data blocks were written in the random disk order in which they
are generated. However when the file is read. the read system call is pro­
cessed synchronously so the disk blocks must be retrieved from the disk in
the nonoptimal seek order in which they are requested. This forces the
disk scheduler to do long seeks. resulting in a lower throughput rate.

In the new system. the blocks of a file are more optimally ordered on the
disk. Even though reads are still synchronous. the requests are presented
to the disk in a much better order. Even though the writes are still asyn­
chronous. they are already presented to the disk in minimum seek order so
reordering them is not beneficial. Hence. the disk seek latencies that lim­
ited the old file system have little effect in the new file system. The cost of
allocation is the factor in the new system that causes writes to be slower
than reads.

The performance of the new file system is currently limited by memory to
memory copy operations required to move data from disk buffers in the
system's address space to data buffers in the user's address space. These
copy operations account for about 40 percent of the time spent performing

FFS TUTORIAL 1-17

Performance

an input/output operation. If the buffers in both address spaces were
properly aligned. this transfer could be performed without copying by
using the VAX virtual memory management hardware. This would be
especially desirable when transferring large amounts of data. We did not
implement.this because it would change the user interface to the file sys­
tem in two major ways: user programs would be required to allocate
buffers on page boundaries. and data would disappear from buffers after
being written.

Greater disk throughput could be achieved by rewriting the disk drivers to
chain together kernel buffers. This would allow contiguous disk blocks to
be read in a single disk transaction. Many disks used with UNIX systems
contain either 32 or 48. 512-byte sectors per track. Each track holds
exactly two or three 8192-byte file system blocks. or four or six 4096-byte
file system blocks. The inability to use contiguous disk blocks effectively
limits the performance on these disks to less than 50% of the available
bandwidth. If the next block for a file cannot be laid out contiguously. the
minimum spacing to the next allocatable block on any platter is between a
sixth and a half a revolution. The implication of this is that the best possi­
ble layout without contiguous blocks uses only half of the bandwidth of
any given track. If each track contains an odd number of sectors. it is pos­
sible to resolve the rotational delay to any number of sectors by finding a
block that begins at the desired rotational position on another track. Block
chaining has not been implemented because it would require rewriting all
disk drivers in the system. and the current throughput rates are already
limited by the speed of the available processors.

Currently only one block is allocated to a file at a time. A technique used
by the DEMOS file system when it finds that a file is growing rapidly is to
preallocate several blocks at once. releasing them when the file is closed if
they remain unused. By batching up allocations. the system can reduce the
overhead of allocating at each write. and it can cut down on the number of
disk writes needed to keep the block pointers on the disk synchronized
with the block allocation [Powell79]. This technique was not included
because block allocation currently accounts for less than 10 percent of the
time spent in a write system call and. once again. the current throughput
rates are already limited by the speed of the available processors.

1-18 CLIX SYSTEM GUIDE

File System Functional Enhancements

The performance enhancements to the UNIX file system did not require
any changes to the semantics or data structures visible to application pro­
grams. However. several changes had been generally desired for some time
but had not been introduced because they would require users to dump
and restore all their file systems. Since the new file system already
required all existing file systems to be dumped and restored, these func­
tional enhancements were introduced at this time.

File Locking

The old file system had no provision for locking files. Processes that
needed to synchronize the updates of a file had to use a separate .. lock'" file.
A process would try to create a .. lock" file. If the creation succeeded, the
process could proceed with its update; if the creation failed. the process
would wait and try again. This mechanism had three drawbacks.
Processes consumed CPU time by looping over attempts to create locks.
Locks left lying around because of system crashes had to be manually
removed (normally in a system startup command script). Finally.
processes running as system administrator are always permitted to create
files, so they were forced to use a different mechanism. While it is possible
to get around all these problems. the solutions are not straightforward. so
a mechanism for locking files has been added.

The most general schemes allow multiple processes to concurrently update
a file. Several of these techniques are discussed in [Peterson83]. A simpler
technique is to serialize access to a file with locks. To attain reasonable
efficiency. certain applications require the ability to lock pieces of a file.
Locking down to the byte level has been implemented in the Onyx file sys­
tem by [Bass81]. However, for the standard system applications. a
mechanism that locks at the granularity of a file is sufficient.

Locking schemes fall into two classes. those using hard locks and those
using advisory locks. The primary difference between advisory locks and
hard locks is the extent of enforcement. A hard lock is always enforced
when a program tries to access a file; an advisory lock is only applied when
it is requested by a program. Thus. advisory locks are only effective when
all programs accessing a file use the locking scheme. With hard locks. some
override policy must be implemented in the kernel. With advisory locks.
the policy is left to the user programs. In the UNIX system, programs

FFS TUTORIAL 1-19

File System Functional Enhancements

with system administrator privilege are allowed to override any protection
scheme. Because many of the programs that need to use locks must also
run as the system administrator. we chose to implement advisory locks
rather than create an additional protection scheme that was inconsistent
with the UNIX philosophy or could not be used by system administration
programs.

The file locking facilities allow cooperating programs to apply advisory
shared or exclusive locks on files. Only one process may have an exclusive
lock on a file while multiple shared locks may be present. Both shared and
exclusive locks cannot be present on a file at the same time. If any lock is
requested when another process holds an exclusive lock or an exclusive
lock is requested when another process holds any lock. the lock request
will block until the lock can be obtained. Because shared and exclusive
locks are advisory only. even if a process has obtained a lock on a file.
another process may access the file.

Locks are applied or removed only on open files. This means that locks can
be manipulated without needing to close and reopen a file. This is useful.
for example. when a process wishes to apply a shared lock. read informa­
tion and determine whether an update is required. and then apply an
exclusive lock and update the file.

A request for a lock will cause a process to block if the lock cannot be
immediately obtained. In certain instances this is unsatisfactory. For
example. a process that wants only to check if a lock is present would
require a separate mechanism to find out this information. Consequently.
a process may specify that its locking request should return with an error
if a lock cannot be immediately obtained. Being able to conditionally
request a lock is useful to .. daemon .. processes that wish to service a spool­
ing area. If the first instance of the daemon locks the directory where
spooling occurs. later daemon processes can easily check to see if an active
daemon exists. Since locks exist only while the locking processes exist.
lock files can never be left active after the processes exit or if the system
crashes.

Almost no deadlock detection is attempted. The only deadlock detection
performed by the system is that the file to which a lock is applied must
not already have a lock of the same type. (The second of two successive
calls to apply a lock of the same type will fail.)

1-20 CLIX SYSTEM GUIDE

Fiie System Functlonal Enhancements

Symbolic Links

The traditional UNIX file system allows multiple directory entries in the

same file system to reference a single file. Each directory entry .. links·· a

file"s name to an i-node and its contents. The link concept is fundamental;

i-nodes do not reside in directories. but exist separately and are referenced

by links. When all links to an i-node are removed. the i-node is deallo­

cated. This style of referencing an i-node does not allow references across

physical file systems. nor does it support intermachine linkage. To avoid

these limitations. symbolic links similar to the scheme used by Multics

[Feiertag71] have been added.

A symbolic link is implemented as a file that contains a path name. When

the system encounters a symbolic link while interpreting a component of a

path name. the contents of the symbolic link is prepended to the rest of the

path name. and this name is interpreted to yield the resulting path name.

In UNIX. path names are specified relative to the root of the file system

hierarchy. or relative to a process"s current working directory. Path names

specified relative to the root are called absolute path names. Path names

specified relative to the current working directory are termed relative path

names. If a symbolic link contains an absolute path name. the absolute

path name is used. Otherwise. the contents of the symbolic link are

evaluated relative to the location of the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link

in a path name that they are using. However. certain system utilities must

be able to detect and manipulate symbolic links. Three new system calls

provide the ability to detect. read. and write symbolic links; seven system

utilities required changes to use these calls.

In future Berkeley software distributions. it may be possible to reference

file systems located on remote machines using path names. When this

occurs. it will be possible to create symbolic links that span machines.

FFS TUTORIAL 1-21

File System Functional Enhancements

Rename

Programs that create a new version of an existing file typically create the
new version as a tern porary file and then rename the tern porary file with
the name of the target file. In the old UNIX file system. renaming required
three calls to the system. H a program were interrupted or the system
crashed between these calls. the target file could be left with only its tem­
porary name. To eliminate this possibility. the rename system call has
been added. The rename call performs the rename operation in a fashion
that guarantees the existence of the target name.

Rename works both on data files and directories. When renaming direc­
tories. the system must perform special validation checks to ensure that
the directory tree structure is not corrupted by the creation of loops or
inaccessible directories. Such corruption would occur if a parent directory
were moved into one of its descendants. The validation check requires
tracing the descendants of the target directory to ensure that it does not
include the directory being moved.

References

[Almes78]

[Bass81]

[Feiertag71]

[Ferrin82a]

Almes. G .. and Robertson. G. ··An Extensible File
System for Hydra·· Proceedings of the Third Inter­
national Conference on Software Engineering. IEEE.
May 1978.

Bass. J ... Implementation Description for File Lock­
ing;· Onyx Systems Inc .. 73 E. Trimble Rd. San
Jose. CA 95131. Jan. 1981.

Feiertag. R. J. and Organick. E. I. ... The Multics
Input-Output System:· Proceedings of the Third
Symposium on Operating Systems Principles. ACM.
Oct. 1971. pp 35-41.

Ferrin. T.E Performance and Robustness
Improvements in Version 7 UNIX;· Computer
Graphics Laboratory Technical Report 2. School of
Pharmacy. University of California. San Francisco.
January 1982. Presented at the 1982 Winter Usenix

1-22 CLIX SYSTEM GUIDE

[Ferrin82b]

[Kridle83]

[Kowalski 78]

[Knuth75]

[Maruyama 76]

[Nevalainen 77]

[Pechura83]

[Peterson83]

[Powell79]

[Ritchie74]

File System Functional Enhancements

Conference. Santa Monica. California.

Ferrin, T.E Performance Issues of VMUNIX
Revisited,'' :login: (The Usenix Association
Newsletter). Vol 7, #5, November 1982, pp 3-6.

Kridle. R .. and McKusick. M Performance Effects
of Disk Subsystem Choices for VAX Systems Run­
ning 4.2 BSD UNIX," Computer Systems Research
Group. Dept. of EECS. Berkeley. CA 94720, Techni­
cal Report #8.

Kowalski. T. ..FSCK - The UNIX System Check
Program." Bell Laboratory. Murray Hill. NJ 07974.
March 1978.

Kunth. D ... The Art of Computer Programming,"
Volume 3 - Sorting and Searching. Addison-Wesley
Publishing Company Inc, Reading. Mass. 1975, pp
506-549.

Maruyama. K .• and Smith. S. ..Optimal reorganiza­
tion of Distributed Space Disk Files,'' CACM. 19.
11. Nov. 1976, pp 634-642.

Nevalainen. 0 .. V esterinen, M. ..Determining
Blocking Factors for Sequential Files by Heuristic
Methods." The Computer Journal. 20. 3, Aug. 1977.
pp 245-247.

Pechura. M .. and Schoe:ffier. J ... Estimating File
Access Time of Floppy Disks ... CACM. 26. 10. Oct.
1983. pp 754-763.

Peterson, G ... Concurrent Reading While Writing."
ACM Transactions on Programming Languages and
Systems. ACM. 5. 1. Jan. 1983. pp 46-55.

Powell. M. ..The DEMOS File System ... Proceedings
of the Sixth Symposium on Operating Systems Prin­
ciples. ACM. Nov. 1977. pp 33-42.

Ritchie, D. M. and Thompson. K The UNIX
Time-Sharing System," CACM 17. 7. July 1974. pp
365-375.

FFS TUTORIAL 1-23

File System Functional Enhancements

[Smith81a]

[Smith81b]

[Symbolics81]

[Thompson78]

[Thompson80]

[Trivedi80]

[White80]

Smith. A ... Input/Output Optimization and Disk
Architectures: A Survey.'' Performance and Evalua­
tion 1. Jan. 1981. pp 104-117.

Smith. A. ..Bibliography on File and I/O System
Optimization and Related Topics.·· Operating Sys­
tems Review. 15. 4. Oct. 1981. pp 39-54.

.. Symbolics File System.'' Symbolics Inc. 9600
DeSoto Ave. Chatsworth. CA 91311. Aug. 1981.

Thompson. K. ..UNIX Implementation.'' Bell Sys­
tem Technical Journal. 57. 6. part 2. pp 1931-1946.
July-August 1978.

Thompson. M. ··spice File System.'' Carnegie­
Mellon University. Department of Computer Sci­
ence. Pittsburg. PA 15213 #CMU-CS-80. Sept 1980.

Trivedi. K ... Optimal Selection of CPU Speed. Dev­
ice Capabilities. and File Assignments.'' Journal of
the ACM. 27. 3. July 1980. pp 457-473.

White. R. M. ..Disk Storage Technology:· Scientific
American. 243(2). August 1980.

1-24 CLIX SYSTEM GUIDE

c

c

c

Chapter 2: FFS Check Tutorial

Introduction 2-1

Overview of the File System 2-2

Super-block 2-2

Summary Information 2-3

Cylinder Groups 2-3

Fragments 2-4

Updates to the File System 2-4

Fixing Corrupted File Systems 2-6

Detecting and Correcting Corruption 2-6

Super-block Checking 2-7

Free-block Checking 2-7

Checking the I-node State 2-8

I-node Links 2-8

I-node Data Size 2-9

Checking the Data Associated with an I-node 2-10

File System Connectivity 2-11

References 2-12

Appendix A - Ffsfsck Error Conditions 2-13

Conventions 2-13

Ini tializa ti on 2-13

Phase 1 - Check Blocks and Sizes 2-1 7

Phase lb - Rescan for More Dups 2-21

Phase 2 - Check Path Names 2-21

Phase 3 - Check Connectivity 2-28

Phase 4 - Check Reference Counts 2-30

Phase 5 - Check Cyl Groups 2-34

Cleanup 2-35

TABLE OF CONTENTS 2-i

Introduction

This tutorial reflects the use of :If sfsck.(lM) with the 4.2 Berkeley
Software Distribution (BSD). 4.3 BSD. and CLIX Fast File System (FFS)
file system organization. This is a revision of the original paper written by
T. J. Kowalski.

File System Check Program (:lfsfsck.(lM)) is an interactive file system
check and repair program. :lfsfsck.(1M) uses the redundant structural
information in the UNIX file system to perform several consistency checks.
Han inconsistency is detected. it is reported to the operator. who may elect
to fix or ignore each inconsistency. These inconsistencies result from the
permanent interruption of the file system updates. which are performed
every time a file is modified. Unless there has been a hardware failure.
ffsfsck.(1M) is able to repair corrupted file systems using procedures based
upon the order in which UNIX honors these file system update requests.

The purpose of this document is to describe the normal updating of the file
system. to discuss the possible causes of file system corruption. and to
present the corrective actions implemented by :lfsf sck.(1M). Both the pro­
gram and the interaction between the program and the operator are
described.

When a UNIX operating system is brought up. a consistency check of the
file systems should always be performed. This precautionary measure
helps to ensure a reliable environment for :file storage on disk. If an incon­
sistency is discovered. corrective action must be taken. :lfsfsck(1M) runs
in two modes. Normally. it is run noninteractively by the system after a
normal boot. When running in this mode. it will only make changes to the
file systems that are known to always be correct. Han unexpected incon­
sistency is found, :lfsfsck.(1M) will exit with a nonzero exit status. leaving
the system running single-user. Typically. the operator then runs
ffsfsck(1M) interactively. When running in this mode. each problem is
listed followed by a suggested corrective action. The operator must decide
whether the suggested correction should be made.

The purpose of this memo is to dispel the mystique surrounding file sys­
tem inconsistencies. It first describes the updating of the file system (the
calm before the storm) and then describes file system corruption (the
storm). Finally. the set of deterministic corrective actions used by
ffsfsck.(1M) (the Coast Guard to the rescue) is presented.

FFS CHECK TUTORIAL 2-1

Overview of the File System

The file system is discussed in detail in [Mckusick84]; this section gives a
brief overview.

Super-block

A file system is described by its su.per-block. The super-block is built when
the file system is created (newfs(lM)) and never changes. The super­
block contains the basic parameters of the file system. such as the number
of data blocks it contains and a count of the maximum number of files.
Because the super-block contains critical data. newfs(lM) replicates it to
protect against catastrophic loss. The defauU su.per-block always resides at
a fixed offset from the beginning of the file system·s disk partition. The
redundant su.per-blocks are not referenced unless a head crash or other hard
disk error causes the default super-block to be unusable. The redundant
blocks are sprinkled throughout the disk partition.

Within the file system are files. Certain files are distinguished as direc­
tories and contain collections of pointers to files that may themselves be
directories. Every file has a descriptor associated with it called an i-node.
The i-node contains information describing ownership of the file. time
stamps indicating modification and access times for the file. and an array of
indices pointing to the data blocks for the file. In this section. we assume
that the first 12 blocks of the file are directly referenced by values stored
in the i-node structure itself. (The actual number may vary from system
to system. but is usually in the range 5-13.) The i-node structure may
also contain references to indirect blocks containing further data block
indices. In a file system with a 4096-byte block size. a singly indirect
block contains 1024 further block addresses. a doubly indirect block con­
tains 1024 addresses of further single indirect blocks. and a triply indirect
block contains 1024 addresses of further doubly indirect blocks. (The tri­
ple indirect block is never needed in practice.)

In order to create files with up to 2'2 bytes. using only two levels of
indirection. the minimum size of a file system block is 4096 bytes. The
size of file system blocks can be any power of two greater than or equal to
4096. The block size of the file system is maintained in the super-block. so
it is possible for file systems of different block sizes to be accessible simul­
taneously on the same system. The block size must be decided when
newfs(lM) creates the file system; the block size cannot be subsequently

2-2 CLIX SYSTEM GUIDE

Overview of the Fiie System

changed without rebuilding the file system.

Surnnary lnfonnation

Associated with the super-block is nonreplicated summary information.
The summary information changes as the file system is modified. The
summary information contains the number of blocks. fragments. i-nodes
and directories in the file system.

Cylinder Groups

The :file system partitions the disk into one or more areas called cylinder
groups. A cylinder group is composed of one or more consecutive cylinders
on a disk. Each cylinder group includes i-node slots for files. a block map
describing available blocks in the cylinder group. and summary informa­
tion describing the usage of data blocks within the cylinder group. A fixed
number of i-nodes is allocated for each cylinder group when the file sys­
tem is created. The current policy is to allocate one i-node for each 2048
bytes of disk space: this is expected to be far more i-nodes than will ever
be needed.

All the cylinder group bookkeeping information could be placed at the
beginning of each cylinder group. However. if this approach were used. all
the redundant information would be on the top platter. A single hardware
failure that destroyed the top platter could cause the loss of all copies of
the redundant super-blocks. Thus. the cylinder group bookkeeping infor­
mation begins at a floating offset from the beginning of the cylinder group.
The offset for the t+lst cylinder group is approximately one track further
from the beginning of the cylinder group than it was for the ith cylinder
group. In this way. the redundant information spirals down into the pack;
any single track. cylinder. or platter can be lost without losing all copies of
the super-blocks. Except for the :first cylinder group. the space between
the beginning of the cylinder group and the beginning of the cylinder group
information stores data.

FFS CHECK TUTORIAL 2-3

Overview of the Ale System

Fragments

To avoid waste in storing small files, the file system space allocator divides
a single file system block into one or more fragments. The fragmentation
of the file system is specified when the file system is created: each file sys­
tem block can be optionally broken into 2, 4, or 8 addressable fragments.
The lower bound on the size of these fragments is constrained by the disk
sector size: typically 512 bytes is the lower bound on fragment size. The
block map associated with each cylinder group records the space availabil­
ity at the fragment level. Aligned fragments are examined to determine
block availability.

On a file system with a block size of 4096 bytes and a fragment size of
1024 bytes, a file is represented by zero or more 4096-byte blocks of data,
and possibly a single fragmented block. H a file system block must be
fragmented to obtain space for a small amount of data, the remainder of
the block is made available for allocation to other files. For example, con­
sider an 11000-byte file stored on a 4096/1024-byte file system. This file
uses two full-size blocks and a 3072-byte fragment. H no fragments with
at least 3072 bytes are available when the file is created, a full size block is
split, yielding the necessary 3072 byte fragment and an unused 1024-byte
fragment. This remaining fragment can be allocated to another file as
needed.

Updates to the File System

Every working day hundreds of files are created, modified, and removed.
Every time a file is modified, the operating system performs a series of file
system updates. These updates, when written on disk, yield a consistent
file system. The file system stages all modifications of critical information:
modification can either be completed or cleanly backed out after a crash.
Knowing the information that is first written to the file system, deter­
ministic procedures can be developed to repair a corrupted file system. To
understand this process, the order that the update requests were being
honored must first be understood.

2-4 CLIX SYSTEM GUIDE

Overview of the Fiie System

When a user program performs an operation to change the file system, such
as a write(2), the data to be written is copied into an internal in-core
buffer in the kernel. Normally, the disk update is handled asynchro­
nously; the user process is allowed to proceed even though the data has not
yet been written to the disk. The data, along with the i-node information
reflecting the change, is eventually written to disk. The real disk write
may not happen until long after the write(2) system call has returned.
Thus. at any given time. the file system. as it resides on the disk. lags the
state of the file system represented by the in-core information.

The disk information is updated to reflect the in-core information when
the buff er is required for another use. when an update(2) is performed (at
five-second intervals) by bdflush. or by manual operator intervention with
the sync(lM) command. If the system is halted without writing the in­
core information. the file system on the disk will be in an inconsistent
state.

If all updates are done asynchronously. several serious inconsistencies can
arise. One inconsistency is that a block may be claimed by two i-nodes.
Such an inconsistency can occur when the system is halted before the
pointer to the block in the old i-node has been cleared in the copy of the
old i-node on the disk. and after the pointer to the block in the new i-node
has been written to the copy of the new i-node on the disk. Here. there is
no deterministic method for deciding which i-node should really claim the
block. A similar problem can arise with a multiply claimed i-node.

The problem with asynchronous i-node updates can be avoided by deallo­
cating all i-nodes synchronously. Consequently. i-nodes and indirect
blocks are written to the disk synchronously (i.e. the process blocks until
the information is really written to disk) when they are being deallocated.
Similarly. i-nodes are kept consistent by synchronously deleting. adding.
or changing directory entries.

FFS CH ECK TUTORIAL 2-5

Fixing Corrupted File Systems

A file system can become corrupted in several ways. The most common of
these ways are improper shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens
when proper shutdown procedures are not observed. physically write­
protecting a mounted file system. or when a mounted file system is taken
off-line. The most common operator procedural failure is forgetting to
sync the system before halting the CPU.

Any piece of hardware can fail at any time. Failures can be as subtle as a
bad block on a disk pack. or as blatant as a nonfunctional disk-controller.

Detecting and Correcting Corruption

Normally. ffsfsck.(1M) is run noninteractively. In this mode it will only
fix corruptions that are expected to occur from an unclean halt. These
actions are a proper subset of the actions that ffsfsck.(1M) will take when
it is running interactively. Throughout this paper. we assume that
ff sf sck.(1M) is being run interactively and all possible errors can be
encountered. When an inconsistency is discovered in this mode.
ffsfsck.(1M) reports the inconsistency for the operator to chose a corrective
action.

A quiescent (unmounted and not being written on) file system may be
checked for structural integrity by performing consistency checks on the
redundant data intrinsic to a file system. The redundant data is either read
from the file system or computed from other known values. The file sys­
tem must be in a quiescent state when ffsfsck.(1M) is run since
ffsfsck.(1M) is a multi-pass program.

In the following sections. we discuss methods to discover inconsistencies
and possible corrective actions for the cylinder group blocks. the i-nodes.
the indirect blocks. and the data blocks containing directory entries.

2-6 CLIX SYSTEM GUIDE

Fixing Corrupted Flle Systems

Super-block Checking

The most commonly corrupted item in a file system is the summary infor­
mation associated with the super-block. The summary information is
prone to corruption because it is modified with every change to the file
system"s blocks or i-nodes. and is usually corrupted after an unclean halt.

The super-block is checked for inconsistencies involving file-system size.
number of i-nodes. free-block count. and the free-i-node count. The file­
system size must be larger than the number of blocks used by the super­
block and the number of blocks used by the list of i-nodes. The file­
system size and layout information are the most critical pieces of informa­
tion for :ffsfack.(lM). While there is no way to actually check these sizes
since they are statically determined by newfs(lM). :ffsfack.(1M) can check
that these sizes are within reasonable bounds. All other file system checks
require that these sizes be correct. If :ffsfack.(lM) detects corruption in the
static parameters of the default super-block. :ffsfsck(lM) requests the
operator to specify the location of an alternate super-block.

Free-block Checking

ffsfsck(lM) checks that all the blocks marked as free in the cylinder
group block maps are not claimed by any files. When all the blocks have
been initially accounted for. :ffsfsck(lM) checks that the number of free
blocks plus the number of blocks claimed by the i-nodes equals the total
number of blocks in the file system.

If anything is wrong with the block allocation maps. ffsfsck(lM) will
rebuild them based on the list it has computed of allocated blocks.

The summary information associated with the super-block counts the total
number of free blocks within the file system. ffsfsck(lM) compares this
count to the number of free blocks it found within the file system. If the
two counts do not agree. :ffsfack(lM) replaces the incorrect count in the
summary information by the actual free-block count.

The summary information counts the total number of free i-nodes within
the file system. :ffsfack(lM) compares this count to the number of free i­
nodes it found within the file system. If the two counts do not agree.
:ffsfack(lM) replaces the incorrect count in the summary information by

FFS CHECK TUTORIAL 2-7

Axing Corrupted Fiie Systems

the actual f ree-i-node count.

Checking the I-node State

An individual i-node is not as likely to be corrupted as the allocation
information. However. because of the great number of active i-nodes. a
few of the i-nodes are usually corrupted.

The list of i-nodes in the file system is checked sequentially starting with
i-node 2 (i-node 0 marks unused i-nodes; i-node 1 is saved for future gen­
erations) and progressing through the last i-node in the file system. The
state of each i-node is checked for inconsistencies involving format and
type. link count. duplicate blocks. bad blocks. and i-node size.

Each i-node contains a mode word. This mode word describes the type and
state of the i-node. I-nodes must be one of six types: regular i-node. direc­
tory i-node. symbolic link i-node. special block i-node. special character i­
node. or socket i-node. I-nodes may be found in one of three allocation
states: unallocated. allocated. and neither unallocated nor allocated. This
last state suggests an incorrectly formatted i-node. An i-node can get in
this state if bad data is written into the i-node list. The only possible
corrective action is for ffsfsck(lM) to clear the i-node.

I-node Links

Each i-node counts the total number of directory entries linked to the i­
node. ffsfsc:t.(lM) verifies the link count of each i-node by starting at the
root of the file system and descending through the directory structure.
The actual link count for each i-node is calculated during the descent.

If the stored link count is nonzero and the actual link count is zero. a
directory entry does not appear for the i-node. If this happens.
ffsfsc:t.(lM) will place the disconnected file in the lost+found directory.
If the stored and actual link counts are nonzero and unequal. a directory
entry may have been added or removed without the i-node being updated.
If this happens. ffsfsck.(lM) replaces the incorrect stored link count by the
actual link count.

2-8 CLIX SYSTEM GUIDE

Fixing Corrupted Fiie Systems

Each i-node contains a list. or pointers to lists (indirect blocks). of all the
blocks claimed by the i-node. Since indirect blocks are owned by an i­
node. inconsistencies in indirect blocks directly affect the i-node that owns
it.

ffsfsck(lM) compares each block number claimed by an i-node against a
list of already allocated blocks. If another i-node already claims a block

number. the block number is added to a list of dupUcate blocks. Otherwise.
the list of allocated blocks is updated to include the block number.

If there are any duplicate blocks. ffsfsck.(1M) will perform a partial
second pass over the i-node list to find the i-node of the duplicated block.

The second pass is needed. since without examining the files associated with
these i-nodes for correct content. not enough information is available to
determine which i-node is corrupted and should be cleared. If this condi­

tion does arise (only hardware failure will cause it). the i-node with the
earliest modify time is usually incorrect. and should be cleared. H this
happens. :ffsfsck.(1M) prompts the operator to clear both i-nodes. The
operator must decide which one should be kept and which one should be
cleared.

ffsfsck.(1M) checks the range of each block number claimed by an i-node.

If the block number is lower than the first data block in the file system or

greater than the last data block. the block number is a bad block number.
Many bad blocks in an i-node are usually caused by an indirect block that
was not written to the file system. a condition which can only occur if
there has been a hardware failure. If an i-node contains bad block
numbers. :ffsfsck(lM) prompts the operator to clear it.

I-node Data Size

Each i-node contains a count of the number of data blocks that it contains.

The number of actual data blocks is the sum of the allocated data blocks

and the indirect blocks. :ffsfsck.(1M) computes the actual number of data

blocks and compares that block count against the actual number of blocks

the i-node claims. If an i-node contains an incorrect count. ffsfsck.(1M)

prompts the operator to fix it.

FFS CHECK TUTORIAL 2-0

Fixing Corrupted Fiie Systems

Each i-node contains a 32 bit size field. The size is the number of data
bytes in the file associated with the i-node. The consistency of the byte
size field is roughly checked by computing from the size field the max­
imum number of blocks that should be associated with the i-node and
comparing that expected block count against the actual number of blocks
the i-node claims.

Checking the Data Associated with an I-node

An i-node can directly or indirectly reference three kinds of data blocks.
All referenced blocks must be the same kind. The three types of data
blocks are plain data blocks. symbolic link data blocks. and directory data
blocks. Plain data blocks contain the information stored in a file: symbolic
link data blocks contain the path name stored in a link. Directory data
blocks contain directory entries. ffsfsck(1M) can only check the validity
of directory data blocks.

Each directory data block is checked for several types of inconsistencies.
These inconsistencies include directory i-node numbers pointing to unallo­
cated i-nodes. directory i-node numbers that are greater than the number
of i-nodes in the file system. incorrect directory i-node numbers for ·· :·
and .. _ . ._ and directories that are not attached to the file system. H the i­
node number in a directory data block references an unallocated i-node,
ffsfsck.(1M) will remove that directory entry. Again, this condition can
only arise when there has been a hardware failure.

Ha directory entry i-node number references outside the i-node list,
ffsfsck.(1M) will remove that directory entry. This condition occurs if
bad data is written into a directory data block.

The directory i-node number entry for ·· ... must be the first entry in the
directory data block. The i-node number for··:· must reference itself; for
example, it must equal the i-node number for the directory data block.
The directory i-node number entry for ·• -·· must be the second entry in the
directory data block. Its value must equal the i-node number for the
parent of the directory entry (or the i-node number of the directory data
block if the directory is the root directory). H the directory i-node
numbers are incorrect, ffsfsck(lM) will replace them with the correct
values. H there are multiple hard links to a directory, the first one
encountered is the real parent to which .. _ .. should point: ffsfsck.(1M)
recommends deletion for the subsequently discovered names.

2-10 CLIX SYSTEM GUIDE

Fixing Corrupted Fiie Systems

File System Connectivity

ffsfsck(1M) checks the general connectivity of the file system. H direc­
tories are not linked into the file system. ffsfsck.(1M) links the directory
back. into the file system in the lost+found directory. This condition only
occurs when there has been a hardware failure.

FFS CHECK TUTORIAL 2-11

References

[Dolotta78] Dolotta. T. A .• and Olsson. S. B. eds .• UNIX User's
Manual., Edition 1.1. January 1978.

[Joy83] Joy. W .• Cooper. E .• Fabry. R .• Leffler. S .• McKusick. M ..
and Mosher. D. 4.2BSD System Manual. University of
California at Berkeley. Computer Systems Research Group
Technical Report #4. 1982.

[McKusick84] McKusick. M .. Joy. W .• Leffler. S .. and Fabry. R. A Fast
File System for UNIX. ACM Transactions on Computer
Systems 2. 3. pp. 181-197. August 1984.

[Ritchie78] Ritchie. D. M .. and Thompson. K .. The UNIX Time­
Sharing System. The Bell System Technical Journal S7. 6
(July-August 1978. Part 2). pp. 1905-29.

[Thompson78] Thompson. K .• UNIX Implementation. The Bell System
Technical Journal S7. 6 (July-August 1978. Part 2). pp.
1931-46.

2-12 CLIX SYSTEM GUIDE

Appendix A - Ff sf sck Error Conditions

Conventions

:lfsfack(1M) is a multi-pas-s file system check program. Each file system
pas-s invokes a different phase of the :lfsfack(1M) program. After the ini­
tial setup. :lfsfack(1M) performs successive phases over each file system.
checking blocks and sizes. path names. connectivity. reference counts. and
the map of free blocks (possibly rebuilding it) and performs some cleanup.

Normally :lfsfack(1M) is run noninteractively to preen the file systems

after an unclean halt. While preening a file system. it will only fix corrup­

tions that are expected to occur from an unclean halt. These actions are a

proper subset of the actions that :lfsfack(1M) will take when it is running

interactively. Throughout this appendix many errors have several options
that the operator can take. When an inconsistency is detected. :lfsfack(lM)

reports the error condition to the operator. If a response is required.
:lfsfack(1M) prints a prompt message and waits for a response. When

preening, most errors are fatal. For those that are expected. the response
taken is noted. This appendix explains the meaning of each error condition.

the possible responses. and the related error conditions.

The error conditions are organized by the phase of the ffsfsck(lM) pro­
gram in which they can occur. The error conditions that may occur in
more than one phase will be discussed in initialization.

Initialization

Before a file system check can be performed. certain tables have to be set

up and certain files opened. This section is concerned with the opening of

files and the initialization of tables. It lists error conditions resulting from

command-line options. memory requests. opening of files. status of files.

file system size checks. and creation of the scratch file. All the initializa­

tion errors are fatal when the file system is being preened.

C option?
C is not a legal option to :lfsfack(lM); legal options are -b. -y. and -n.
:lfsfack(1M) terminates on this error condition. See :lfsfsck(1M) in the

CLIX System Administrator's Reference Manual. for further detail.

FFS CHECK TUTORIAL 2-13

Appendix A - Ff sfsck Error Conditions

cannot alloc NNN bytes for block.map
cannot alloc NNN bytes for freemap
cannot alloc NNN bytes for statemap
cannot alloc NNN bytes for lncntp
ffsfsck(tM)"s request for memory for its virtual memory tables failed.
ffsfsck(lM) terminates on this error condition.

Can't open checklist ftle: F
The file system checklist file F (usually /etc/fstab) cannot be opened for
reading. ffsfsck(lM) terminates on this error condition. Check access
modes of F.

Can't stat root
ffsfsck(tM)"s request for statistics about the root directory ··r failed.
ffsfsck(lM) terminates on this error condition.

Can't stat F
Can't make sense out of name F
ffsfsck(lM)"s request for statistics about the file system F failed. When
running manually. it ignores this file system and continues checking the
next file system given. Check access modes of F.

Can'topenF
ffsfsck(lM)"s request attempt to open the file system F failed. When run­
ning manually. it ignores this file system and continues checking the next
file system given. Check access modes of F.

F: (NO WRITE)
Either the -n flag was specified or ffsfsck(lM)"s attempt to open the file
system F for writing failed. When running manually. all the diagnostics
are printed. but no modifications are attempted to fix them.

file is not a block or character device; OK
You have given ffsfsck(lM) a regular file name by mistake. Check the
type of the file specified.

Possible responses to the OK prompt are:

2-14 CLIX SYSTEM GUIDE

-------------- Appendix A - Ff1f1ck Error Conditions

YES Ignore this error condition.

NO Ignore this file system and continues checking the next file system
given.

UNDEFINED OPTIMIZATION IN SUPER-BLOCK (SET TO DEFAULT)
The super-block optimi.7.ation parameter is neither OPT_ TIME nor
OPT_SPACE.

Possible responses to the SET TO DEFAULT prompt are:

YES The super-block is set to request optimi.7.ation to minimize running
time of the system.

NO Ignore this error condition.

~IBLE MINFREE-D IN SUPER-BLOCK (SET TO DEFAULT)
The super-block minimum space percentage is greater than 99% or less then
0%.

Possible responses to the SET TO DEFAULT prompt are:

YES The minf ree parameter is set to 10%.

NO Ignore this error condition.

One of the following messages will appear:
MAGIC NUMBER. WRONG
NCG OUT OF RANGE
CPG OUT OF RANGE
NCYL OOF3 NOT JIVE WITH Nco-cPG
SIZE PREPOSTEROUSLY LARGE
TR.ASHED VAL~ IN SUPER BLOCK
and will be followed by the message:
F: BAD SUPER. BLOCK: B
USE -b OPTION TO FFSFSCK TO SPECIFY LOCATION OF AN
ALTERNATE
SUPER-BLOCK TO SUPPLY NEEDED INFORMATION; SEE fsck(tM).
The super-block has been corrupted. An alternative super-block must be

selected from among those listed by newfs(1M) (in the CLIX System

FFS CHECK TUTORIAL 2-15

Appendix A - Ff sf sck Error Conditions

Admini.strator's Reference Manual) when the file system was created. For
file systems with a block size less than 32K. specifying -b 32 is a good first
choice.

INTERNAL INCONSISTENCY: M
:ffsf sck(1M) has had an internal panic. whose message is specified as M.

CAN NOT SEEK: BLK B (CONTINUE)
:ffsfsck(tM)"s request for moving to a specified block number B in the file
system failed.

Possible responses to the CONTINUE prompt are:

YES Attempt to continue to run the file system check. Often. however.
the problem will persist. This error condition will not allow a
complete check of the file system. A second run of :ffsfsck.(1M)
should be made to recheck this file system. If the block was part
of the vL.-tual memory buffer cache. :ffsfsck(1M) will terminate
with the message .. Fatal 110 error:·

NO Terminate the program.

CAN NOT READ: BLK B (CONTINUE)
:ffsfsck(tM)"s request for reading a specified block number Bin the file
system failed.

Possible responses to the CONTINUE prompt are:

YES Attempt to continue to run the file system check. It will retry the
read and print the message:
THE FOLLOWING SECTORS COULD NOT BE READ: N
where N indicates the sectors that could not be read. If
:ffsfsck(1M) tries to write back one of the blocks on which the read
failed. it will print the message:

WRITING ZERO'ED BLOCK N 1'0 DISK

where N indicates the sector that was written with zeros. If the
disk is experiencing hardware problems. the problem will persist.
This error condition will not allow a complete check of the file sys­
tem. A second run of :ffsfsck.(1M) should be made to recheck this
file system. If the block was part of the virtual memory buffer

2-16 CLIX SYSTEM GUIDE

Appendix A - Ff sf sck Error Conditions

cache. ffsfsck(lM) will terminate with the message .. Fatal 110
error ...

NO Terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)
ffsf8Ck.(1M)"s request for writing a specified block number B in the file

system failed. The disk is write-protected: check the write-protect lock on

the drive.

Possible responses to the CONTINUE prompt are:

YES Attempt to continue to run the file system check. The write opera­

tion will be retried with the failed blocks indicated by the message:

THE FOLLOWING SECTORS COULD NOT BE WRITTEN: N

where N indicates the sectors that could not be written. If the disk

is experiencing hardware problems. the problem will persist. This

error condition will not allow a complete check of the file system.

A second run of ffsfsck.(1M) should be made to recheck this file

system. If the block was part of the virtual memory buffer cache,

ffsf8Ck.(1M) will terminate with the message .. Fatal 110 error:·

NO Terminate the program.

bad i-node number DDD to gi-node
An internal error has attempted to read nonexistent i-node DDD. This

error causes ffsf8Ck.(1M) to exit.

Phase 1 - Check Blocks and Sizes

This phase is concerned with the i-node list. It lists error conditions

resulting from checking i-node types. setting up the zero-link-count table,

examining i-node block numbers for bad or duplicate blocks, checking i­

node si7.e. and checking i-node format. All errors in this phase except

INCOllECT BLOCK COUNT and PARTIALLY TRUNCATED INODE

are fatal if the file system is being preened.

UNKNOWN FILE TYPE l•J (CLEAR)
The mode word of the i-node I indicates that the i-node is not a special

block i-node. special character i-node. socket i-node, regular i-node,

FFS CHECK TUTORIAL 2-17

Appendix A - Ffsfsck Error Conditions

symbolic link. or directory i-node.

Possible responses to the CLEAR prompt are:

YES Deallocate i-node 1 by zeroing its contents. This will always
invoke the UNALLOCATED error condition in phase 2 for each
directory entry pointing to this i-node.

NO Ignore this error condition.

PARTIALLY TRUNCATED INODE l•l (SALVAGE)
:ffsfsck.(1M) has found i-node 1 whose size is shorter than the number of
blocks allocated to it. This condition should only occur if the system
crashes while in the midst of truncating a file. When preening. the file sys­
tem. :ffsfsck.(1M) completes the truncation to the specified size.

Possible responses to SALVAGE are:

YES Complete the truncation to the size specified in the i-node.

NO Ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An internal table for :ffsfsck.(1M) containing allocated i-nodes with a link
count of zero cannot allocate more memory. Increase the virtual memory
for :ffsfsck.(1M).

Possible responses to the CONTINUE prompt are:

YES Continue with the program. This error condition will not allow a
complete check of the file system. A second run of :ffsfsck.(1M)
should be made to recheck this file system. If another allocated i­
node with a zero link count is found. this error condition is
repeated.

NO Terminate the program.

BBADI-1
I-node 1 contains block number B with a number lower than the number
of the first data block in the file system or greater than the number of the
last block in the file system. This error condition may invoke the EXCES­
SIVE BAD BL.KS error condition in phase 1 (see next paragraph) if i-node

2-18 CLIX SYSTEM GUIDE

Appendix A - Ff sf sck Error Conditions

1 has too many block numbers outside the file system range. This error
condition will always invoke the BAD/DUP error condition in phase 2 and
phase 4.

EXCESSIVE BAD Bl.KS l•l (CONTINUE)
There is more than a tolerable number (usually 10) of blocks with a
number lower than the number of the first data block in the file system or
greater than the number of the last block in the file system associated with
i-node 1.

Possible responses to the CONTINUE prompt are:

YES Ignore the rest of the blocks in this i-node and continue checking
with the next i-node in the file system. This error condition will
not allow a complete check of the file system. A second run of
ffsfack.(1M) should be made to recheck this file system.

NO Terminate the program.

BAD &TATE DDD TO BLICERJl
An internal error has scrambled ffsfack.(tM)"s state map to have the
impossible value DDD. ffsfack.(1M) exits immediately.

BDUPl•l
I-node 1 contains block number B that is already claimed by another i­
node. This error condition may invoke the EX~IVE DUP Bl.KS error
condition in phase 1 if i-node 1 has too many block numbers claimed by
other i-nodes. This error condition will always invoke phase lb and the
BAD/DUP error condition in phase 2 and phase 4.

EXCESSIVE DUP Bl.KS l•l (CONTINUE)
There is more than a tolerable number (usually 10) of blocks claimed by

other i-nodes.

Possible responses to the CONTINUE prompt are:

YES Ignore the rest of the blocks in this i-node and continue checking
with the next i-node in the file system. This error condition will
not allow a complete check of the file system. A second run of
ffsfack.(1M) should be made to recheck this file system.

FFS CHECK TUTORIAL 2-10

Appendix A - Ffsfsck Error Conditions

NO Terminate the program.

DUP TABLE OVERFLOW (CONTINUE)
An internal table in :ffsfsck(lM) containing duplicate block numbers can­
not allocate any more space. Increase the amount of virtual memory avail­
able to :ffsfsck(lM).

Possible responses to the CONTINUE prompt are:

YES Continue with the program. This error condition will not allow a
complete check of the file system. A second run of :ffsfsck(lM)
should be made to recheck this file system. H another duplicate
block is found. this error condition will repeat.

NO Terminate the program.

PARTIALLY ALLOCATED INODE l•J(CLEAR)
I-node I is neither allocated nor unallocated.

Possible responses to the CLEAR prompt are:

YES Deallocate i-node I by zeroing its contents.

NO Ignore this error condition.

INCORRECTBLOCK
The block count for i-node I is X blocks. but should be Y blocks. When
preening. the count is corrected.

Possible responses to the CORRECT prompt are:

YES Replace the block count of i-node I with Y.

NO Ignore this error condition.

2-20 CLIX SYSTEM GUIDE

Appendix A - Ff sf sck Error Conditions

Phase 1b: Rescan for More Dups

When a duplicate block is found in the file system. the file system is res­
canned to find the i-node that previously claimed that block. This section
lists the error condition when the duplicate block is found.

BDUPl•J
I-node I contains block number B that is already claimed by another i­
node. This error condition will always invoke the BAD/DUP error condi­
tion in phase 2. You can determine which i-nodes have overlapping blocks
by examining this error condition and the DUP error condition in phase 1.

Phase 2 - Check Path Names

This phase is concerned with removing directory entries pointing to error
conditioned i-nodes from phase 1 and phase 1 b. This section lists error
conditions resulting from root i-node mode and status. directory i-node
pointers in range. and directory entries pointing to bad i-nodes and direc­
tory integrity checks. All errors in this phase are fatal if the file system is
being preened. except for directories not being a multiple of the block size
and extraneous hard links.

ltOOT INODE UNALLOCATED (Au..OCA TE)
The root i-node (usually i-node number 2) has no allocate mode bits. This
should never happen.

Possible responses to the ALLOCATE prompt are:

YES Allocate i-node 2 as the root i-node. The files and directories usu­
ally found in the root will be recovered in phase 3 and put in
lost+found. If the attempt to allocate the root fails. ffsfsck.(1M)
will exit with the message:
CANNOT ALLOCATE ltOOT INODE.

NO ffsfsck(1M) will exit.

ltOOT INODE NOT DIRECTOltY CltEALLOCATE)
The root i-node (usually i-node number 2) is not a directory i-node type.

FFS CHECK TUTORIAL 2-21

Appendix A - Ffsfsck Error Conditions

Possible responses to the REALLOCATE prompt are:

YES Clear the existing contents of the root i-node and reallocate it. The
files and directories usually found in the root will be recovered in
phase 3 and put in lost+found. If the attempt to allocate the root
fails. ffsfsck(tM) will exit with the message:
CANNOT ALLOCATE ROOT INODE.

NO ffsfsck(lM) will then prompt with FIX.

Possible responses to the FIX prompt are:

YES Replace the root i-node"s type to be a directory. If the root i-node"s
data blocks are not directory blocks. many error conditions will be
produced.

NO Terminate the program.

DUPS/BAD IN ROOT INODE (REALLOCATE)
Phase 1 or phase lb have found duplicate blocks or bad blocks in the root
i-node (usually i-node number 2) for the file system.

Possible responses to the REALLOCATE prompt are:

YES Clear the existing contents of the root i-node and reallocate it. The
files and directories usually found in the root will be recovered in
phase 3 and put in lost+found. If the attempt to allocate the root
fails. ffsfsck(lM) will exit with the message:
CANNOT ALLOCATE ROOT INODE.

NO ffsfsck(lM) will then prompt with CONTINUE.

Possible responses to the CONTINUE prompt are:

YES Ignore the DUPS/BAD error condition in the root i-node and
attempt to continue to run the file system check. If the root i-node
is not correct. this may result in many other error conditions.

NO Terminate the program.

NAME TOO LONG F
An excessively long path name has been found. This usually indicates
loops in the file system name space. This can occur if the super-user has

2-22 CLIX SYSTEM GUIDE

Appendix A - ffsf 1ck Error Conditions

made circular links to directories. The offending links must be removed.

I OUT OF RANGE 1-1 NAME-F CllEMOVE)
A directory entry F has an i-node number 1 that is greater than the end of
the i-node list.

Possible responses to the REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

UNALLOCATED 1-1 OWNER.-0 MODE-M SIZE-S MTIME-T type-F
CllEMOVE)
A directory or file entry F points to an unallocated i-node I. The owner O.
mode M. size S. modify time T. and name F are printed.

Possible responses to the REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD I-J OWNER.-0 MODE-M SIZE-S MTIME-T type-F
CllEMOVE)
Phase 1 or phase lb have found duplicate blocks or bad blocks associated
with directory or file entry F. i-node I. The owner O. mode M. size S.
modify time T. and directory name Fare printed.

Possible responses to the REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

ZERO LENGTH DIRECTORY I-1 OWNER.-0 MODE-M SIZE-S
MTIME-T DIR.-F CllEMOVE)
A directory entry F has a size S that is zero. The owner 0. mode M. size S.

modify time T. and directory name Fare printed.

Possible responses to the REMOVE prompt are:

FFS CHECK TUTORIAL 2-23

Appendix A - Ff sfsck Error Conditions

YES The directory entry Fis removed; this will always invoke the
BAD/DUP error condition in phase 4.

NO Ignore this error condition.

DIRECTORY TOO SHORT 1-1 OWNER.-0 MODE-M SIZE-S MTIME-T
DIR.-F(Fix)
A directory F has been found whose size Sis less than the minimum size
directory. The owner 0. mode M. size S. modify time T. and directory
name F are printed.

Possible responses to the FIX prompt are:

YES Increase the size of the directory to the minimum directory size.

NO Ignore this directory.

DIRECTORY F LENGTH SNOT MULTIPLE OF B (ADJUST)
A directory F has been found with size S that is not a multiple of the
directory block size B.

Possible responses to the ADJUST prompt are:

YES The length is rounded up to the appropriate block size. Thus. when
preening the file system. only a warning is printed and the direc­
tory is ad justed.

NO Ignore the error condition.

DIRECTORY CORRUPTED 1-1 OWNER.-0 MODE-M SIZE-S MTIME-T
DIR.=F (SALVAGE)
A directory with an inconsistent internal state has been found.

Possible responses to the FIX prompt are:

YES Throw away all entries up to the next directory boundary (usually
512-byte) boundary. This drastic action can throw away up to 42
entries. and should be taken only after other recovery efforts have
failed.

2-24 CLIX SYSTEM GUIDE

Appendix A - Ff1f1ck Error Conditions

NO Skip up to the next directory boundary and resume reading. but do

not modify the directory.

BAD INODE NUMBER FOR '.' 1=1 OWNER=O MODE==M SIZE-S
MTIME-T DIR.•F CFIX)
A directory 1 has been found whose i-node number for·: does not equal I.

Possible responses to the FIX prompt are:

YES Change the i-node number for·.· to be equal to I.

NO Leave the i-node number for·.· unchanged.

MISSING '.' 1•1 OWNER-0 MODE-M SIZE-S MTIME-T DIR.•F (FIX)

A directory 1 has been found whose first entry is unallocated.

Possible responses to the FIX prompt are:

YES Build an entry for ·: with i-node number equal to I.

NO Leave the directory unchanged.

MISSING'.' 1•1 OWNER-0 MODE-M SIZE-S MTIME-T DIR.•F
CANNOT FIX. FIRST ENTRY IN DIRECTOR.Y CONTAINS F

A directory 1 has been found whose first entry is F. ffsfsck.(1M) cannot

resolve this problem. The file system should be mounted and the offending

entry F moved elsewhere. The file system should then be unmounted and

ffsf.c:t.(1M) should be run again.

MISSING'.' 1•1 OWNER-0 MODE-M SIZE-S MTIME-T DIR.•F

CANNOT FIX. INSUFFICIENT SPACE TO ADD'.'
A directory 1 has been found whose first entry is not·:. ffsfsck.(1M) can­

not resolve this problem as it should never happen.

EXTRA'.' ENTRY 1•1 OWNER-0 MODE-M SIZE-S MTIME-T DIR.-F
<FIX)
A directory 1 has been found that has more than one entry for ·:.

Possible responses to the FIX prompt are:

FFS CHECK TUTORIAL 2-25

Appendix A - Ff sfsck Error Conditions

YES Remove the extra entry for ·:.

NO Leave the directory unchanged.

BAD INODE NUMBER FOR'-' 1=1 OWNER-0 MODE=M SIZE-S
MTIME=T DIR=F (FIX)
A directory 1 has been found whose i-node number for · .: does not equal
the parent of I.

Possible responses to the FIX prom pt are:

YES Change the i-node number for·.: to be equal to the parent of 1 c·-··
in the root i-node points to itself.)

NO Leave the i-node number for·.: unchanged.

MISSING '-' 1=1 OWNER=O MODE=M SIZE-S MTIME=T DIR=F (FIX)
A directory 1 has been found whose second entry is unallocated.

Possible responses to the FIX prompt are:

YES build an entry for · .: with i-node number equal to the parent of 1
(.. -·· in the root i-node points to itself).

NO leave the directory unchanged.

MISSING '-' 1==1 OWNER-0 MODE=M SIZE-S MTIME=T DIR.-F
CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F
A directory 1 has been found whose second entry is F. ffsfsct.(1M) cannot
resolve this problem. The file system should be mounted and the offending
entry F moved elsewhere. The file system should then be unmounted and
ffsfsck.(1M) should be run again.

MISSING'-' 1=1 OWNER-0 MODE-M SIZE=-S MTIME=T DIR-F
CANNOT FIX, INSUFFICIENT SPACE TO ADD'-'
A directory 1 has been found whose second entry is not·.:. ffsfsck.(1M)
cannot resolve this problem. The file system should be mounted and the
second entry in the directory moved elsewhere. The file system should
then be unmounted and ff sf set.(1M) should be run again.

2-26 CLIX SYSTEM GUIDE

Appendix A - Ff sfsck Error Conditions

EXTRA '-' ENTlt.Y I-J OWNER.-0 MODE-M SIZE-S MTildE=T DIR=F
(FIX)
A directory I has been found that has more than one entry for· .. ·.

Possible responses to the FIX prompt are:

YES Remove the extra entry for • .: .

NO Leave the directory unchanged.

N IS AN EXTRANEOUS HARD LINK TO A DIRECTORY D (REMOVE)

ffsf11ek.(lM) has found a hard link. N. to a directory. D. When preening

the extraneous links are ignored.

Possible responses to the REMOVE prompt are:

YES Delete the extraneous entry. N.

NO Ignore the error condition.

BAD INODE S TO D:ESCEND
An internal error has caused an impossible state S to be passed to the rou­

tine that descends the file system directory structure. ff sfack.(lM) exits.

BAD RETURN STA TES FROM D:ESCEND
An internal error has caused an impossible state S to be returned from the

routine that descends the file system directory structure. :ffsfack.(1M)

exits.

BAD STA TES FOR ROOT INODE
An internal error has caused an impossible state S to be assigned to the root

i-node. ffsf11ek.(1M) exits.

FFS CHECK TUTORIAL 2-27

Appendix A - Ff sfsck Error Conditions

Phase 3 - Check Connectivity

This phase is concerned with the directory connectivity seen in phase 2.
This section lists error conditions resulting from unreferenced directories
and missing or full lost+found directories.

UNREF DIR I-I OWNER.-0 MODE-M SIZE-S MTII\m-T (RECON­
NECT)
The directory i-node I was not connected to a directory entry when the file
system was traversed. The owner O. mode M. size S. and modify time Tof
directory i-node I are printed. When preening. the directory is reconnected
if its size is nonzero. Otherwise. it is cleared.

Possible responses to the RECONNECT prompt are:

YES Reconnect directory i-node I to the file system in the directory for
lost files (usually lost+faund). This may invoke the lost+found
error condition in phase 3 if there are problems connecting direc­
tory i-node I to lost+faund. This may also invoke the CON­
NECTED error condition in Phase 3 if the link was successful.

NO Ignore this error condition. This will always invoke the UNREF
error condition in phase 4.

NO lost+found DIRECTORY (CREA TE)
There is no lost+found directory in the root directory of the file system:
When preening. ffsfsck.(1M) tries to create a lost+found directory.

Possible responses to the CREATE prompt are:

YES Create a lost+found directory in the root of the file system. This
may raise the message:
NO SPACE LEFT IN I (EXPAND)
See below for the possible responses. Inability to create a
lost+/aund directory generates the message:
SORRY. CANNOT CREATE lost+found DIRECTORY
and aborts the attempt to link the lost i-node. This will always
invoke the UNREF error condition in phase 4.

2-28 CLIX SYSTEM GUIDE

Appendix A - Ffsfsck Error Conditions

NO Abort the attempt to link the lost i-node. This will always invoke

the UNREF error condition in phase 4.

lost+found IS NOT A DIRECTORY CREALLocA TE)

The entry for lost+found is not a directory.

Possible responses to the REALLOCATE prompt are:

YES Allocate a directory i-node. and change lost+found to reference it.

The previous i-node referenced by the lost+found name is not

cleared. Thus. it will either be reclaimed as an UNREFed i-node or

have its link count ADJUSTed later in this phase. Inability to

create a lost+found directory generates the message:
SORRY. CANNOT CREATE lost+found DIRECTORY

and aborts the.attempt to link the lost i-node. This will always

invoke the UNREF error condition in phase 4.

NO Abort the attempt to linkup the lost i-node. This will always

invoke the UNREF error condition in phase 4.

NO SPACE LEFT IN /lost+found CExPAND)
There is no space to add another entry to the lost+found directory in the

root directory of the file system. When preening. the lost+f ound directory

is expanded.

Possible responses to the EXP AND prompt are:

YES The lost+found directory is expanded to make room for the new

entry. H the attempted expansion fails :ffsfack.(1M) prints the

message:
SORRY. NO SPACE IN lost+found DIRECTORY
and aborts the attempt to link the lost i-node. This will always

invoke the UNREF error condition in phase 4. Clean out unneces­

sary entries in lost+found. This error is fatal if the :file system is

being preened.

NO Abort the attempt to link the lost i-node. This will always invoke

the UNREF error condition in phase 4.

FFS CHECK TUTORIAL 2-29

Appendix A - Ffsfsck Error Conditions

DIR 1=11 CONNECTED. PARENT WAS l=/2
This is an advisory message indicating a directory i-node I 1 was success­
fully connected to the lost+found directory. The parent i-node 12 of the
directory i-node 11 is replaced by the i-node number of the lost+f ound
directory.

DIRECTORY F LENGTH SNOT MULTIPLE OF B (ADJUST)
A directory F has been found with size S that is not a multiple of the
directory block size B. (This can recur in phase 3 if it is not adjusted in
Phase 2.)

Possible responses to the ADJUST prompt are:

YES The length is rounded up to the appropriate block size. Thus. when
preening the file system. only a warning is printed and the direc­
tory is adjusted.

NO Ignore the error condition.

BAD INODE S TO DESCEND
An internal error has caused an impossible state S to be passed to the rou­
tine that descends the file system directory structure. ffsfsck(lM) exits.

Phase 4 - Check Reference Counts

This phase is concerned with the link count information seen in phase 2
and phase 3. This section lists error conditions resulting from unrefer­
enced files. a missing or full lost+found directory. incorrect link counts
for files. directories, symbolic links or special files, unreferenced files, sym­
bolic links and directories and bad or duplicate blocks in files, symbolic
links, and directories. All errors in this phase are correctable if the file
system is being preened, except running out of space in the lost+found
directory.

UNREF FILE I=/ OWNER-0 MODE==M SIZE-S MTIME=T (RECON­
NECT)
I-node I was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S. and modify time Tof i-node I are

2-30 CLIX SYSTEM GUIDE

Appendix A - Ffsf1ck Error Conditions

printed. When preening. the file is cleared if either its size or its link count

is :1.ero. Otherwise. it is reconnected.

Possible responses to the RECONNECT prompt are:

YES Reconnect i-node I to the file system in the directory for lost files

(usually lost+found). This may invoke the lost+found error con­

dition in Phase 4 if there are problems connecting i-node I to

lost+found.

NO Ignore this error condition. This will always invoke the CLEAR

error condition in phase 4.

(CLEAlt)

The i-node mentioned in the previous error condition cannot be recon­

nected. This cannot occur if the file system is being preened. since lack of

space to reconnect files is a fatal error.

Possible responses to the CLEAR prompt are:

YES Deallocate the i-node mentioned in the previous error condition by

:1.eroing its contents.

NO Ignore this error condition.

NO lost+f ound DIRECTORY (CREA TE)
There is no lost+found directory in the root directory of the file system

When preening. :ffsfack.(1M) tries to create a lost+found directory.

Possible responses to the CREATE prompt are:

YES Create a lost+f ound directory in the root of the file system. This

may raise the message:
NO SPACE LEFr IN I CExPAND)
See below for the possible responses. Inability to create a

lost+found directory generates the message:
SOR.RY. CANNOT CREATE lost+found DIRECTORY

and aborts the attempt to linkup the lost i-node. This will always

invoke the UNREF error condition in phase 4.

NO Abort the attempt to link the lost i-node. This will always invoke

the UNREF error condition in phase 4.

FFS CHECK TUTORIAL 2-31

Appendix A- Ff1f1ck Error Condition•

lost+found IS NOT A DIRECTORY CREALLocATE)
The entry for lost+found is not a directory.

Po~ible responses to the REALLOCATE prompt are:

YES Allocate a directory i-node. and change lost+found to reference it.
The previous i-node reference by the lost+found name is not
cleared. Thus. it will either be reclaimed as an UNREFed i-node or
have its link count ADJUSTed later in this phase. Inability to
create a lost+found directory generates the message:
SORRY. CANNOT CREATE lost+found DIRECTORY
and aborts the attempt to linkup the lost i-node. This will always
invoke the UNREF error condition in phase 4.

NO Abort the attempt to link the lost i-node. This will always invoke
the UNREF error condition in phase 4.

NO SPACE LEFT IN /lost+found CExPAND)
There is no space to add another entry to the lost+found directory in the
root directory of the file system. When preening. the lost+found directory
is expanded.

Po~ible responses to the EXP AND prompt are:

YES The lost+found directory is expanded to make room for the new
entry. H the attempted expansion fails. :ffsfsck(lM) prints the
message:
SORRY. NO SPACE IN lost+found DIRECTORY
and aborts the attempt to link the lost i-node. This will always
invoke the UNREF error condition in phase 4. Clean out unneces­
sary entries in lost+found. This error is fatal if the :file system is
being preened.

NO Abort the attempt to link the lost i-node. This will always invoke
the UNREF error condition in phase 4.

LINK COUNT type l•l OWNER-0 MODE-M SIZE-S MTIME-T
COUNT•X SHOULD BEY (ADJUST)
The link count for i-node I is X. but should be Y. The owner O. mode M.
size S. and modify time Tare printed. When preening the link count is

2-32 CLIX SYSTEM GUIDE

Appendix A - Ff sf sck Error Conditions

adjusted unless the number of references is increasing. a condition that

should never occur unless precipitated by a hardware failure. When the

number of references is increasing under preen mode. ffsfsck(1M) exits

with the message:
LINX COUNT INCREASING

Possible responses to the ADJUST prompt are:

YES Replace the link count of file i-node I with Y.

NO Ignore this error condition.

UNREF type l•l OWNER-0 MODE-M SIZE-S MTIME-T (CLEAR)

I-node I. was not connected to a directory entry when the file system was

traversed. The owner O. mode M. size S. and modify time T of i-node I are

printed. When preening. this is a file that was not connected because its

size or link count was zero. Hence. it is cleared.

Possible responses to the CLEAR prompt are:

YES Deallocate i-node I by zeroing its contents.

NO Ignore this error condition.

BAD/DUP type l•l OWNER.-0 MODE-M SIZE-S MTIME-T (CLEAR)

Phase 1 or phase lb have found duplicate blocks or bad blocks associated

with i-node I. The owner O. mode M. size S. and modify time T of i-node

I are printed. This error cannot arise when the file system is being

preened. as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:

YES Deallocate i-node I by zeroing its contents.

NO Ignore this error condition.

FFS CHECK TUTORIAL 2-33

Appendix A - Ff sfsck Error Conditions

Phase 5 - Check Cyl Groups

This phase is concerned with the free-block and used i-node maps. This
section lists error conditions resulting from allocated blocks in the free­
block maps. free blocks missing from free-block maps. and the total free­
block count incorrect. It also lists error conditions resulting from free i­
nodes in the used-i-node maps. allocated i-nodes missing from used i-node
maps. and the total used i-node count incorrect.

CG C: BAD MAGIC NUMBER
The magic number of cylinder group C is wrong. This usually indicates
that the cylinder group maps have been destroyed. When running manu­
ally. the cylinder group is marked as needing to be reconstructed. This
error is fatal if the file system is being preened.

BLK(S) :MISSING IN BIT MAPS (SALVAGE)
A cylinder group block map is missing some free blocks. During preening.
the maps are reconstructed.

Possible responses to the SALVAGE prompt are:

YES Reconstruct the free block map.

NO Ignore this error condition.

SUMMARY INFORMATION BAD (SALVAGE)
The summary information was found to be incorrect. When preening. the
summary information is recomputed.

Possible responses to the SALVAGE prompt are:

YES Reconstruct the summary information.

NO Ignore this error condition.

FREE BLK COUNT(S) WRONG IN SUPER-BLOCK (SALVAGE)
The super-block free block information was found to be incorrect. When
preening. the super-block free block information is recomputed.

Possible responses to the SALVAGE prompt are:

2-34 CLIX SYSTEM GUIDE

Appendix A - ffsf1ck Error Conditions

YES reconstruct the super-block free block information.

NO ignore this error condition.

Ceanup

Once a file system has been checked. a few cleanup functions are per­

formed. This section lists advisory messages about the file system and

modify status of the file system.

V files, W used, X free (Y frags, Z blocks)
This is an advisory message indicating that the file system checked con­

tained V files using W fragment sized blocks leaving X fragment sized

blocks free in the file system. The numbers in parentheses break the free

count down into Y free fragments and Z free full sized blocks .

._..REBOOT UNIX*****

This is an advisory message indicating that the root file system has been

modified by ffsfack.(1M). If UNIX is not rebooted immediately. the work

done by ffsfack.(1M) may be undone by the in-core copies of tables UNIX

keeps. When preening. ffsfack.(1M) will exit with a code of 4. The stan­

dard auto-reboot script distributed with 4.3 BSD interprets an exit code of

4 by issuing a reboot system call.

*****FILE SYSTEM WAS MODIFIED*****
This is an advisory message indicating that the current file system was

modified by ffsfack.(1M). If this file system is mounted or is the current

root file system. ffsfack.(1M) should be halted and UNIX rebooted. If

UNIX is not rebooted immediately. the work done by ffsfsck(1M) may be

undone by the in-core copies of tables UNIX keeps.

FFS CHECK TUTORIAL 2-35

c

c

~
OJ en
CJ
r
'1J
en

"'O
0
0
co ...,
-I
c:
0 ...,
~

Chapter 3: BSD LP Spooler Tutorial

Introduction 3-1

Overview 3-2

Commands 3-3

lpd- Line Printer Daemon 3-3

lpq - Show Line Printer Queue 3-4

lprm - Remove Jobs from a Queue 3-4

lpc - Line Printer Control Program 3-4

Access Control 3-5

Setting Up 3-6

Creating a Printcap File 3-6

Printers on Serial Lines 3-6

Remote Printers 3-7

Output Filters 3-7

Access Control 3-8

Output Filter Specification 3-10

Line Printer Administration 3-12

Initializing for the First Time 3-12

Disabling the lpr Service Completely 3-12

Line Printer Control 3-13

TABLE OF CONTENTS

Introduction

This document describes the structure and installation procedure for the

line printer spooling system developed for the 4.3 BSD version of the

UNIX opera ting system.

BSD LP SPOOLER TUTORIAL 3-1

Overview

The line printer system supports:

• Multiple printers

• Multiple spooling queues

• Local and remote printers

• Printers attached via serial lines that require line initialization such
as the baud rate

The line printer system consists mainly of the following files and com­
mands:

/etc/printcap
/usr/lib/lpd
/usr/spool/lpr
/usr I spool/I pq
/usr/spool/lprm
/etc/lpc
I dev I printer

Printer configuration and capability database
Line printer daemon. does all the real work
Program to enter a job in a printer queue
Spooling queue examination program
Program to delete jobs from a queue
Program to administer printers and spooling queues
Socket on which lpd(1M) listens

The file /etc/printcap is a master database describing line printers directly
attached to a machine and printers accessible across a network. The manual
page entry printcap(4) provides the authoritative definition of the format
of this database. and specifies default values for important items such as
the directory in which spooling is performed. This document introduces
information that may be placed in printcap(4).

3-2 CLIX SYSTEM GUIDE

Commands

lpd - Line Printer Daemon

The program lpd(1M). usually invoked at boot time from the

/etc/rc2.d/lpr file. acts as a master server for coordinating and controlling

the spooling queues configured in the printcap(4) file. When lpd(1M) is

started. it makes a single pass through the printcap(4) database. restarting

any printers that have jobs. In normal operation. lpd(1M) listens for ser­

vice requests on multiple sockets. one in the UNIX domain (named

/dev/printer) for local requests. and one in the Internet domain (under

the .. printer .. service specification) for requests for printer access from

off-machine: see socket(2B) and services(4) for more information on sock­

ets and service specifications. respectively. lpd(1M) spawns a copy of

itself to process the request: the master daemon continues to listen for new

requests.

Clients communicate with lpd(1M) using a simple transaction-oriented

protocol. Remote clients are authenticated based on the .. privilege port""

scheme employed by rcmd(3B). The following table shows the requests

understood by lpd(1M). In each request. the first byte indicates the

.. meaning·· of the request. followed by the name of the printer to which it

should be applied. Additional qualifiers may follow. depending on the

request.

Request

"Aprinter\n
"Bprinter\n
"Cprinter [users ...] [jobs ...]\n

"nprinter [users ...] [jobs ... l\n

"Eprinter person [users .. .] [jobs ... l\n

Interpretation

check the queue for jobs and print any found

receive and queue a job from another machine

return short list of current queue state

return long list of current queue state

remove jobs from a queue

The lpr(1) command is used to enter a print job in a local queue and to

notify the local lpd(1M) that new jobs are in the spooling area. lpd(lM)

either schedules the job to be printed locally. or if printing remotely.

attempts to forward the job to the appropriate machine. If the printer can­

not be opened or the destination machine is unreachable. the job will

remain queued until it is possible to complete the work.

BSD LP SPOOLER TUTORIAL 3-3

Commands

lpq - Show Line Printer Queue

The lpq(l) program works recursively backward displaying the queue of
the machine with the printer and then the queue(s) of the machine(s) that
lead to it. lpq(l) has two forms of output: in the default. short. format it
gives a single line of output per queued job: in the long format it shows the
list of files and their sizes that compose a job.

lprm - Remove Jobs from a Queue

The lprm.(1) command deletes jobs from a spooling queue. If necessary.
lprm.(1) will first kill a running daemon servicing the queue and restart it
after the required files are removed. When removing jobs destined for a
remote printer. lprm.(1) acts similarly to lpq(l) except it first checks
locally for jobs to remove and then tries to remove files in queues off­
machine.

lpc - Line Printer Control Program

The system administrator uses the lpc(lM) program to control the opera­
tion of the line printer system. For each line printer configured in
/etc/printcap. lpc(lM) may be used for the following:

• Disable or enable a printer

• Disable or enable a printer's spooling queue

• Rearrange the order of jobs in a spooling queue

• Find the status of printers and their associated spooling queues and
printer daemons

3-4 CLIX SYSTEM GUIDE

Access Control

The printer system maintains protected spooling areas so that users cannot
circumvent printer accounting or remove files other than their own. The
strategy used to maintain protected spooling areas is as follows:

• The spooling area is writable only by a daemon user and daemon
group.

• lpr(l) runs set-user-id to root and set-group-id to group daemon.
The root access permits reading of any file required. Accessibility is
verified with an access(2) call. The group ID is used to set up
proper ownership of files in the spooling area for lprm.(1).

• Control files in a spooling area are made with daemon ownership and
group ownership daemon. Their mode is 0660. This ensures that a
user does not modify control files and that no user can remove files
except through lprm.(1).

• The spooling programs, lpd(lM), lpq(l), and lprm.(1) run set-user­
id to root and set-group-id to group daemon to access spool files and
printers.

• The printer server, lpd(lM), uses verification procedures to authenti­
cate remote clients. The host on which a client resides must be in
the file /etc/hosts.equiv or /etc/hosts. lpd(1M) and the request
message must come from a reserved port number.

In practice, lpd(1M), lpq(1), or lprm.(1) would not have to run as
user root if remote spooling were not supported.

BSD LP SPOOLER TUTORIAL 3-5

Setting Up

The real work in setting up is creating the printcap(4) file and any printer
filters for printers not supported in the distribution system.

Creating a Printcap File

The printcap(4) database contains one or more entries per printer. A
printer should have a separate spooling directory; otherwise. jobs will be
printed on different printers depending on which printer daemon starts
first. This section describes how to create entries for printers that do not
conform to the default printer description (an LP-11 style interface to a
standard. band printer).

Printers on Serial Lines

When a printer is connected via a serial communication line. it must have
the proper baud rate and terminal modes set. The following example is for
a DecWriter™ m printer connected locally via a 1200-baud serial line.

lplLA-180 Dec.Writer 111:\
: lp-/dev/lp:br#'1200:\
:tr-\f :ofw/uar/1 lb/lpf: lf-/uar/ado/lpd-erra:

The Ip entry specifies the file name to open for output. Here it could be
omitted since /dev/lp is the default. The br entry sets the baud rate for
the tty line (see termio(7S)). The tr entry indicates that a form feed
should be printed when the queue empties so the paper can be torn off
without turning the printer ofiline and pressing form feed. The of entry
specifies that the filter program lpf should be used for printing the files;
more will be said about filters later. The last entry causes errors to be
written to the file /usr/adm./lpd-errs instead of to the console.

3-6 CLIX SYSTEM GUIDE

Setting Up

Remote Printers

Printers that reside on remote hosts should have an empty lp entry. For
example. the following printcap(4) entry would send output to the
printer named Ip on the machine ucbvax.

lpldefoult line printer:\
:lp-:rm-ucbvax:rp-lp:sd-/usr/spool/vaxlpd:

The rm entry is the name of the remote machine to connect to; this name
must be a known host name for a machine on the network. The rp capa­
bility indicates that the name of the printer on the remote machine is Ip;
here it could be omitted since this is the default value. The sd entry
specifies /usr/spool/vax.Ipd as the spooling directory instead of the default
value /usr/spool/lpd.

Output Filters

Filters are used to handle device dependencies and for accounting func­
tions. The output filtering of of is used when accounting is not being per­
formed or when all text data must be passed through a filter. It is not
intended for accounting since it is started only once. all text files are
filtered through it. and no provision is made for passing owners· login
names. identifying the beginning and ending of jobs. etc. The other filters
(if specified) are started for each file printed and for accounting if an af
entry exists. If entries for both of and other filters are specified. the· out­
put filter is used only to print the banner page: it is then stopped to allow
other filters access to the printer. An example of a printer that requires
output filters is the Benson™-Varian.

BSD LP SPOOLER TUTORIAL 3-7

Setting Up

valvarfanlBeneon-Varfan:\
: lp-/dev/va0:96-/usr/spool/vad:of•/usr/I fb/vpf :\
:tf-/uar/I fb/rvcat:~:pl~:p>f!S2112:J»-1700:tr-\f:

The tf entry specifies /usr/lib/rvcat as the filter to be used to print
troff(l) output. This filter is needed to set the device to print mode for
text, and plot mode for printing troff files and raster images. The page
length is set to 58 lines by the pl entry for 8.5" x 11" fan-fold paper. To
enable accounting. the varian entry would be augmented with an af filter
as shown below.

valvarfanf8en9on-Varfan:\
: lp-/dev/va0:ed-/usr/spool/vad:of•/usr/I ib/vpf :\
: f f-/usr/I fb/vpf :tf-/usr/I ib/rvcat:af-/usr/ad1\l'vaacct:\
:llDC#2000:pl~:p>fll2112:p)4-1700: tr-\ f:

17 I /asr/llb/vpf and /asr/lib/rvcot are not supplied with lpr(l).

Access Control

Local access to printer queues is controlled with the rg printcap(4) entry.

: rg-1 prgroup:

Users must be in the group lprgroup to submit jobs to the specified
printer. The default is to allow all users access. Once the files are in the
local queue. they can be printed locally or forwarded to another host,
depending on the configuration.

3-8 CLIX SYSTEM GUIDE

Setting Up

Remote access is controlled by listing the hosts in either the file
/etc/hosts.equiv or /etc/hosts.lpd. with one host per line. rcmd(l) and
rcp(l) use /etc/hosts.equiv to determine which hosts are equivalent for
allowing logins without passwords. The file /etc/hosts.lpd is only used to
control which hosts have line printer access. Remote access can be further
restricted to only allow remote users with accounts on the local host to
print jobs by using the rs printcap(4) entry.

:rs:

BSD LP SPOOLER TUTORIAL 3-9

Output Filter Specifications

Depending on the device and accounting methods. you may need to create a
filter.

Filters are spawned by lpd(lM) with the data to be printed as their stan­
dard input. and the printer as their standard output. The standard error is
attached to the If file for logging errors. A filter must return a 0 exit code
if no errors occurred. 1 if the job should be reprinted. and 2 if the job
should be discarded. When lprm(l) sends a kill signal to the lpd(1M)
process controlling printing. it sends a SIGINT signal to all filters and des­
cendants of filters. This signal can be trapped by filters that need to do
cleanup operations such as deleting temporary files.

Arguments passed to a filter depend on its type. The of filter is called with
the following arguments.

filter -wwidth -Uength

The width and length values come from the pw and pl entries in the
printcap(4) database. The following parameters are passed to the if filter.

filter [~] -wwtdth -Uength -iindent -n login -h lwst accaurtting_Jile

The~ flag is optional and only supplied when control characters are to be
passed uninterpreted to the printer (when using the -1 option of lpr(l) to
print the file). The-wand -1 parameters are the same as they are for the
of filter. The -n and -h parameters specify the login name and host name
of the job owner. The last argument is the name of the accounting file
from printcap(4).

All other filters are called with the following arguments:

filter -xwtdth -ylength -n login -h lwst accaurtting_jile

The -x and -y options specify the horizontal and vertical page size in pixels
(from the px and py entries in the printcap(4) file). The remaining argu­
ments are the same as they are for the if filter.

3-10 CLIX SYSTEM GUIDE

Output Filter Specifications

Filters are user-supplied executables. lpr(l) only provides pr and

/usr/lib/lpf.

BSD LP SPOOLER TUTORIAL 3-11

Line Printer Administration

Initializing for the First Time
lpr(l) is delivered in the SYSTEMV product in a dormant state. To ini­
tialize lpr(l). enter the following as super-user:

/etc/init.d/lpr init

This enters lpr(l) in the initial startup for the system and starts the line
printer daemon, lpd(lM).

If no Internet address exists for the machine. the initialization script will
prompt the user for one. See the BSD Network Configuration procedure for
further information about the format of an Internet address. If an Inter­
net address is entered. the system must be rebooted to initialize the
address.

Hereafter. the lpr printer daemon is automatically started after each sys­
tem boot to listen for print requests.

Disabling the lpr Service Completely
After lpr(l) has been initialized. it can be removed from default startup
routines by entering the following as super-user.

/etc/init.d/lpr disable

This removes lpr(l) from the startup script and
prevents the lpr(l) service from starting after a boot.
However, the user can still manually start the lpd(lM) print daemon
by entering the following
as the super-user.

/usr/lib/lpd

After the lpr(l) service is disabled. it must be initialized again as
described above before the service will automatically start at boot
time.

3-12 CLIX SYSTEM GUIDE

Line Printer Administration

The concurrent use of more than one print service (lp, lpr(l), or NQS)

can cause problems if more than one print service is using the same dev­
ice.

Line Printer Control

The lpc(lM) program provides local control over line printer activity. The

major commands and their intended uses will be described. The command

format and remaining commands are described in lpc(lM).

abort and start

Abort terminates an active spooling daemon on the local host immediately

and then disables printing (preventing new daemons from being started by

lpr(l)). This is normally used to forcibly restart a hung line printer dae­

mon. (lpq(l) reports that a daemon is present. but nothing is happening.)

It does not remove jobs from the queue. (Use the lprm.(1) command

instead.) Start enables printing and requests lpcl(lM) to start printing

jobs.

enable and disable

Enable and disable allow spooling in the local queue to be turned on/off.

This will allow/prevent lpr(l) from putting new jobs in the spool queue.

It is frequently convenient to turn spooling off while testing new line

printer filters since the root user can still use lpr(l) to put jobs in the

queue. but no other user can. The other main use is to prevent users from

putting jobs in the queue when the printer is expected to be unavailable for

a long time.

restart

Restart allows ordinary users to restart printer daemons when lpq(l)

reports that no daemon is present.

BSD LP SPOOLER TUTORIAL 3-13

Line Printer Administration

atop

Stop halts a spooling daemon after the current job completes: this also dis­
ables printing. This is a clean way to shut down a printer for mainte­
nance. etc. Users can still enter jobs in a spool queue while a printer is
stopped.

topq

Topq places jobs at the top of a printer queue. This can be used to reorder
high-priority jobs since lpr(l) only provides first-come-first-serve ordering
of jobs.

3-14 CLIX SYSTEM GUIDE

Troubles hooting

Several messages may be generated by the line printer system. This section

categorizes the most common and explains the causes for their generation.

When the message implies a failure. directions are given to remedy the

problem.

In the examples below. the name printer is the name of the printer from
the printcap(4) database.

LPR Error Messages

lpr: printer: unknown printer

The printer was not found in the printcap(4) database. Usually this is a

typing mistake: however. it may indicate a missing or incorrect entry in
the /etc/printcap file.

lpr: printer: jobs queued, but cannot start daemon.

The connection to lpd(1M) on the local machine failed. This usually means

the printer server started at boot time has died or is hung. Check the local

socket /dev/printer to ensure that it still exists. (If it does not exist. no
lpd(1M) process is running). Usually a super-user typing the following
will restart lpd(1M):

/usr/lib/lpd

You can also check the state of the master printer daemon with the following:

ps -p 'cat /usr/spool/lpd.lock'

Another possibility is that the lpr(1) program is not set-user-id to root.

set-group-id to group daemon. This can be checked by entering the follow­

ing:

ls -lg /usr/spool/lpr

BSD LP SPOOLER TUTORIAL 3-15

Troubles hooting

lpr: printer: printer queue 11 disabled

This means the queue was turned off with the following to prevent lpr(l)
from putting files in the queue.

lpc disable printer

This is normally done by the system manager when a printer will be down
for a long time. The printer can be turned back on by a super-user with
lpc(lM).

LPQ Error Messages

waiting for printer to become ready (offllne 7)

The printer device could not be opened by the daemon. This can happen for
several reasons; the most common is that the printer is turned offi.ine. This
message can also be generated if the printer is out of paper or the paper is
jammed. etc. The actual reason depends on the meaning of error codes
returned by the system device driver. Not all printers supply enough
information to distinguish when a printer is ofiline or having trouble (such
as a printer connected through a serial line). Another possible cause of this
message is that some other process. such as an output filter. has an
exclusive lock on the device. Your only recourse here is to kill the
offending program(s) and restart the printer with lpc(1M).

printer 11 ready and printing

The lpq(l) program checks to see if a daemon process exists for printer and
prints the file status located in the spooling directory. If the daemon is
hung. a super-user can use lpc(1M) to abort the current daemon and start
a new one.

waiting for host to come up

This implies that a daemon is trying to connect to the remote machine
named host to send the files in the local queue. If the remote machine is up.
lpd(lM) on the remote machine is probably dead or hung and should be
restarted as mentioned for lpr(l).

3-16 CLIX SYSTEM GUIDE

Troubleshooting

sending to host

The files should be in the process of being transferred to the remote host.

If not. the local daemon should be aborted and started with lpc(lM).

Warning: printer Is down

The printer has been marked as being unavailable with lpc(lM).

Warning: no daemon present

The lpd(lM) process overseeing the spooling queue. as specified in the lock

file in that directory. does not exist. This normally occurs only when the

daemon has unexpectedly died. The error log file for the printer should be

checked for a diagnostic from the deceased process. To restart an lpd(lM).

use the following:

lpc restart printer

no space on remote; waiting for queue to drain

This implies that insufficient disk space is on the remote. If the file is large

enough. there will never be enough space on the remote (even after the

queue on the remote is empty). The solution is to move the spooling queue

or make more free space on the remote.

LPRM Error Messages

lprm: printer: cannot restart printer daemon

This case is the same as when lpr(l) prints that the daemon cannot be

started.

LPD Error Messages

The lpd(lM) program can log many different messages on the console.

Most of these messages are about files that cannot be opened and usually

imply that the printcap(4) file or the protection modes of the files are

incorrect. Files may also be inaccessible if people manually manipulate

the line printer system. (They bypass the lpr(l) program.)

BSD LP SPOOLER TUTORIAL 3-17

Troubles hooting

In addition to messages generated by Ipd(1M). any of the filters that
lpd(1M) spawns may log messages using the error log file (the file specified
in the If entry in printcap(4)).

LPC Error Messages
couldn't start printer

This case is the same as when lpr(l) reports that the daemon cannot be
started.

cannot examine spool directory

Error messages beginning with .. cannot"" usually result from incorrect
ownership or protection mode of the lock file. spooling directory. or
lpc(1M) program.

3-18 CLIX SYSTEM GUIDE

c

c

c

Chapter 4: NQS Tutorial

~

NQS Concepts
"""

4-1
Network Queuing System (NQS) Features 4-1

Convenience and Security 4-1
Clients and Servers 4-1

Understanding Queues 4-2
Device Queues 4-2
Pipe Queues 4-2
Batch Queues 4-2

Understanding Devices 4-3
Device Capabilities 4-3
Understanding Forms 4-3

The Queue Manager Utility (qmgr) 4-4
Accessing the Queue Manager 4-5

1,-.. Keying in Commands in qmgr 4-5

'-' Getting Help in qmgr 4-5
Exiting the Queue Manager 4-7

Command Overview 4-7

NQS Privileges 4-8

Privilege Classifications 4-8
Assigning and Removing Privileges 4-8

The add managers Command 4-8

The delete managers Command 4-9

The set managers Command 4-10

Obtaining Access to Other Nodes 4-10

The hosts.nqs File 4-10

,..,._

~

TABLE OF CONTENTS

Table of Contents

Crea ting and Managing Queues from the Command Line 4-13

Creating and Manipulating Queues 4-13

Creating Batch Queues 4-13 ~
,.,,,,.,,,,

Creating Device Queues 4-14

Creating Pipe Queues 4-16

Creating a Queue Complex 4-18

Adding Queues to a Queue Complex 4-18

Removing Queues from a Queue Complex 4-19

Enabling and Disabling Queues 4-19

Saving and Restoring Queue Configuration 4-19

Starting. Stopping. and Restarting Queues 4-20

Changing the Queue Priority (All Queue Types) 4-21

Changing the Queue Run Limit (Batch and Pipe Queues) 4-21

Moving Requests and Queues 4-21

Modifying Queue Destination Lists (Pipe Queues Only) 4-22

Adding a Destination to a Pipe Queue 4-22

Deleting a Destination from a Pipe Queue 4-22
~,

Creating a New Destination List for a Pipe Queue 4-22

Restricting Queue Access 4-23

Deleting Users and Groups from a Queue 4-24

Restoring Unrestricted Access to Queues 4-24

Deleting Queues 4-24

Creating and Managing Devices from the Command Line 4-26

Creating Devices 4-26

Using Devicecap Files 4-28

Devicecap File Format 4-28

Changing the Device List for a Device Queue 4-29

Adding a Device to a Device List 4-30

Example Device Configuration 4-30
Device Defaults 4-30

....,,,,

Enabling and Disabling Devices 4-31

The enable device Command 4-31

Ii SYSTEM ADMINISTRATOR'S GUIDE

The disable device Command

Setting Defaults
Setting Default Request Parameters

Setting a Default Batch Request Priority

Setting the Default Batch Request Queue

Setting the Default Print Request Queue

Setting the Debug Level

Setting a Default Destination Retry Time

Setting a Default Destination Retry Wait Time

Setting a Default Device Request Priority

Setting a Default Print Form

Setting a Default Shell Strategy

Setting Default Maximum Values

The set lifetime Command

The set maximum copies Command

The set maximum open_retries Command

The set maximum print_size Command

The set nice_ value_limit Command

The set per_process permfile_limit Command

The set open_ wait Command

Network Services

Locking the Local Daemon

Unlocking the Local Daemon

Table of Contents

4-31

4-32

4-32

4-32

4-33

4-33

4-34

4-35
4-35

4-35
4-36
4-36
4-37
4-37

4-38

4-38

4-38
4-38

4-39

4-39
4-40

4-40
4-40

TABLE OF CONTENTS iii

NQS Concepts

NQS is a network-based, multipurpose printing, plotting, and batch- queu­
ing resource for Intergraph CLIPPER workstations and InterServe proces­
sors.

Network Queuing System (NQS) Features

NQS is a batch- and device-queuing facility supporting job requests in a
networked environment composed of CLIPPER workstations and/or Inter­
Serve processors. The nodes in an NQS network must be running the CLIX
3.1 operating system (or later version).

Convenience and Security

NQS provides a convenient and secure solution to network printing, plot­
ting, and batch queuing. Using NQS, you can submit print requests, plots,
or batch jobs to your local node or to a remote node. You gain access to
other NQS nodes when the remote node's owner maps your node name and
user name to a user name on the remote node. You are mapped to another
node when you are added to the list of users that can submit requests to
the remote node.

Clients and Servers

An NQS network is composed of clients (nodes that submit requests) and
servers (nodes that receive and service requests). A client must have
access to a server before it can submit jobs. This access restriction allows
you to determine the users who can access your node. (A node can be both

NQS Tutorial 4-1

NQS Concepts

a client and server.)

Understanding Queues

A queue is a waiting line in which job requests reside until they are pro­
cessed. NQS supports these three queue types.

• Device queues

• Batch queues

• Pipe queues

Each queue type is discussed briefly below.

Device Queues

A device queue routes requests to a printer or plotter. Device queues exist
only on NQS server nodes because only server nodes are connected to out­
put devices. A device queue may service any number of devices and
several queues may service the same device. Each request in a device
queue awaits its turn for the next available device serviced by that queue.

Pipe Queues

A pipe queue routes requests to another queue the way a device queue
routes requests to an output device. Pipe queues can accept any type of
request: a batch request. a device request. or a request from another pipe
queue.

A pipe queue interprets the request and pipes it to the first available queue
that is in its destination list and that will accept the request. The destina­
tion list may contain any queue type. You must use pipe queues to submit
jobs to remote nodes.

Batch Queues

A batch queue accepts requests to execute shell scripts or commands from
the keyboard. The batch request executes as if the requester had logged in.
The resulting output returns to the original requester's current directory
when the job was submitted. The output may remain on the executing
node or return to a remote node at your request.

4-2 CLIX SYSTEM GUIDE

N QS Concepts

Understanding Devices

Devices in NQS are the interfaces to the printers and plotters from which

hardcopy output is produced. The queues discussed in the previous section

service these devices. You must create a device interface for every physi­

cal printer or plotter. (The "Manipulating Devices From the Command

Line .. section describes how to create devices.) However. when you create

a device queue with the pconftg utility. a device interface is created

automatically. (See the Network Queuing System (NQS) User's Guide for

more information on pconfi.g)

Device Capabilities

The capabilities for each NQS device are stored in a devicecap file. A devi­

cecap file contains the default behavior. environment. and permitted input

types for the device that it serves. A devicecap file must be defined for

each device you create. However. more than one device can use the same

devicecap file.

When you create a device queue with the pcon:fig utility, an appropriate

devicecap file is created automatically.

Understanding Forms

A form is a tag associating a name with a specific device configuration. The

most common use for forms is for specifying the type of paper that your

print request will print on. A form might also specify a switch set on a

printer.

Forms are specified in two places:

• Through the Queue Manager qmgr(lM)

• In the command line that submits your request

NQS does not understand form types and will not configure your devices

differently for specific forms. Therefore. you can assign any form name to

any type characteristic. NQS uses form names only by ensuring that the

form name in your request matches the form type allowed for that device.

Using forms is optional; if no form is specified. NQS will print on

NQS Tutorial 4-3

NQS Concepts

whatever form exists for the device.

Because NQS does not designate form names, it is helpful to assign logical
names to your forms. Below are several suggestions for naming forms:

• Sysform is generally the default form (the form most frequently
used at your site).

• The form landlO might represent a landscape form with a type style
of 10 characters-per-inch.

The Queue Manager Utility (qmgr)

The NQS Queue Manager (qmgr(lM)) utility allows the system manager
or operator to control NQS configuration and operation. Using qmgr(lM),
you can (if you have system privileges) manipulate NQS requests, queues,
and devices. (System privileges allow you to perform NQS maintenance
tasks that other users cannot perform.)

Because qmgr(lM) performs a wide variety of functions, these functions
are explained in context in the appropriate sections of this tutorial. The
following list describes a subset of the functions that can be performed in
qmgr(lM).

• Assign NQS privileges. (See the .. NQS Privileges" section.)

• Display status information using the show commands. (See the
.. Displaying Status Information" section of the Programmer's &
User's .. NQS Tutorial".)

• Create and manage queues from the command line. (See the
.. Configuring Queues from the Command Line" section.)

• Create and manage devices from the command line. (See the .. Mani­
pulating Devices from the Command Line" section.)

When you first install NQS, qmgr(lM) access is limited to the super-user,
who assigns initial NQS privileges. Other users can later change NQS
configuration or operations only if a user with manager privileges assigns
them manager or operator privileges. Any user can obtain status informa­
tion using qmgr(lM).

4-4 CLIX SYSTEM GUIDE

NQS Concepts

Accessing the Queue Manager

When NQS is first installed. gain access to qmgr(lM) by keying it in at the
super-user prompt. The Mgr: prompt displays afterwards as follows:

#qmgr
Mgr:

After NQS privileges have been assigned. privileged users can key in qmgr
at the system prompt to display the Mgr: prompt:

$qmgr
Mgr:

Unprivileged users may enter qmgr(lM) but will receive an "insufficient
privileges" message if they attempt to perform operations requiring
privileges.

Keying in Commands in qmgr

Queue manager commands must be executed through qmgr(lM). Long
command strings that do not fit on one line can be continued on a second
line by keying in a backslash (\) at the end of the first line. (Key in a
space before the backslash only if a space is needed in the command line.)
The system will return an Mgr:_ prompt to let you know that you may
finish keying in the command.

For example. the following command is valid in qmgr(lM):

Mgr: show long \
Mgr:_ queue

Getting Help in qmgr

qmgr(lM) has a help facility that provides information about qmgr(lM)
commands. To use the help facility. key in h or help at the Mgr: prompt

and a help screen displays.

NQS Tutorial 4-5

NQS Concepts

Mgr: help
The available carmands are:

ABort
EXit
Purge
STArt

>Dd Create DEiete
Help t-Old Lock
RELease REMove SEt
STOp LN-lo I d LNLock

Disable ENable
M:Oify M:We
Sl-0.v SHJtdOM'I

To obtain more information about a carmand, type:

Help ccmnand-nane

If you key in help alone as shown in the example above the list of avail­
able commands displays. The capital letters in each command indicate the
minimum number of letters that must be keyed in to execute that com­
mand. All qmgr(lM) commands can be abbreviated to the minimum
number of characters that uniquely identifies them. If you key in help fol­
lowed by a command name, help for that command displays as follows:

Mgr: he I p shoN queue

The canand:
9btt Q.ieue [<queue-nane> [<use r-nane>]]

is used to display status information about Nl5 queues in a
short format.

If no queue nane is specified, then status information is
di sp I ayed for a 11 Nl5 queues.

If a queue nane is specified, then specific status information
for the naned queue is displayed, including the ordering of
requests within the queue. If a user nane is specified, then
the requests shoNn w i 11 be I i mi ted to those be I ong i ng to that
user.

4-6 CLIX SYSTEM GUIDE

Exiting the Queue Manager

To exit qmgr(1M). key in exit at the Mgr: prompt:

Mgr: exit
$

Command Overview

N QS Concepts

Six NQS commands are available outside the qmgr(1M) environment.

Any NQS user can key in these commands from the system prompt:

• qsub(1) is used to submit batch requests. The "Submitting and

Deleting NQS Requests" section in the Programmer's & User's "NQS

Tutorial" details the qsub(1) command.

• qpr(1) is used to submit print requests. The "Submitting and Delet­

ing NQS Requests" section in the Programmer's & User's "NQS

Tutorial" details the qpr(1) command.

• qdel(1) is used to delete and signal requests. The "Submitting and

Deleting NQS Requests" section in the Programmer's & User's "NQS

Tutorial" details the qdel(1) command.

• qstat(l) is used to display queue status without needing to enter

qmgr(1M). The "Displaying Status Information" section in the

Programmer's & User's "NQS Tutorial" details the qstat(1) com­

mand.

• qdev(1) is used to display device status. The "Submitting and

Deleting NQS Requests" section in the Programmer's & User's "NQS

Tutorial" details the qdev(1) command.

• qlimit(1) is used to display NQS limits. The "Displaying Status

Information" section in the Programmer's & User's "NQS Tutorial"

details the qlimit(1) command.

NQS Tutorial 4-7

NQS Privileges

Every NQS user has a certain privilege level. These privilege levels are
manager, operator, and nonprivileged user. This section discusses these
privilege levels and how to assign them using qmgr(lM).

Privilege Classifications

NQS recognizes the following privilege classes:

• Nonprivileged users

• Operators

• Managers

Nonprivileged users can submit requests to unrestricted queues and
display status information about requests. They cannot affect queue con­
trol or change the NQS configuration. Most users are in this category.

Operators can access commands that directly affect queue control and
request management (such as starting and stopping queues and deleting
requests). They cannot change the NQS configuration.

Managers have all available NQS privileges. Only managers can change the
NQS configuration (such as creating queues and defining default parame­
ters).

Assigning and Removing Privileges

Only a person with manager privileges or the super-user can use
qmgr(lM) to assign privileges to other NQS users. The following sections
describe the commands that a manager can use to assign and remove user
privileges.

The add managers Command

The add managers command is used to assign manager or operator
privileges to one or more users. You must invoke qmgr(lM) to use the
add managers command.

4-8 CLIX SYSTEM GUIDE

$qmgr
Mgr:

NQS Privileges

To give manager privileges to one or more users. key in the add managers

command as follows.

Mgr: add managers username: m [username: m ...]

To give operator privileges to one or more users. key in the add managers

command as follows:

Mgr: add managers username: o [username: o ...]

• You can assign managers and opera tors on the same line.

• Root is always listed as a manager and cannot lose privileges.

• A user must have an account on your workstation or server to be

given manager or operator privileges.

• Managers have all privileges that operators have; however. operators

have only a subset of the privileges that managers have.

The delete managers Command

The delete managers command removes manager and operator privileges

from the specified users. You must invoke qmgr(lM) to use the delete

managers command. To remove manager privileges from one or more

users. key in the following:

Mgr: delete managers username: m [username: m ...]

To remove operator privileges from one or more users. key in the follow­

ing:

Mgr: delete managers username: o [username: o ...]

NQS Tutorial 4-9

N QS Privileges

Root is always listed as a manager and cannot lose privileges.

The set managers Command

The set managers command removes manager and operator privileges
from all existing managers and operators (except root) and reassigns these
privileges to the specified users.

To define a new set of managers and operators. key in the set managers
command as follows:

Mgr: set managers username: m [username: o username: m ...]

Obtaining Access to Other Nodes

To submit jobs to or display status information on NQS nodes (other than
your local node). you must have access to these nodes. To gain access. the
system manager of the node you want to access must add your account to
the /etc/hosts.nqs file on the node. (The Berkeley method of mapping
users through .rhosts and /etc/hosts.equiv can also be used.)

The hosts.nqs file is explained below.

The hosts.nqs File

If during the NQS delivery procedure you specified that you wanted to
map all remote users to the rje account. a default hosts.nqs file was placed
in your /etc directory. If you did not accept the default. a model
hosts.nqs file was placed in the product directory. /usr/ip32/nqs. You
can copy this model to your /etc directory and modify it using any editor
supported on your workstation.

4-10

The default and model hosts.nqs files contain helpful information about
how to map users to your node. This information is commented out and
will not interfere with your mappings.

CLIX SYSTEM GUIDE

N QS Privileges

Remember that the hosts.nqs file on your node determines only who can
access your node. The information in the hosts.nqs files on other nodes
determines whether you can access them.

Format for the hosts.nqs File

The hosts.nqs file contains a list of remote nodes that have NQS access on
the local node. Users on remote nodes map to users on the local node.
Here is the basic format for the hosts.nq s file:

remote_node
remote_node
#comments

remote_user
remote_ user=local_ user

These terms are defined as follows:

remote_node name of the remote node that has access or* (all remote
nodes have access)

remote_user

#comments

user name on remote node or * (all users)

Any lines preceded by the# sign are comments that
NQS does not read.

You may use the wildcard character(*) in place of any remote node name
or remote user name in the hosts.nqs file.

Modifying the hosts.nqs File

If you need to modify the hosts.nqs file. use the following examples as a

guideline:

• The following line is the default entry in the hosts.nqs file. This

line maps any user to the rje account on this node.

* *=rje

• The next line gives user fred on node red access to the local node.
With this mapping. when fred submits a job to this node. he will be

logged in as joe.

red fred=joe

NQS Tutorial 4-11

NQS Privileges

• The next line gives any user on node yellow access to the local node.
When users from node yellow submit jobs to this node. they will
map in as guest.

yellow *=guest

• The following line in a hosts.nqs file maps all users by name to the
local node. Use this mapping with extreme caution. as it provides no
security for your local accounts.

*

4-12 CLIX SYSTEM GUIDE

Creating and Managing Queues from the Command Line

This chapter provides instructions on how to create and manipulate queues
directly from the command line using NQS's queue manager utility.
qmgr(1M).

You must have NQS manager privileges to create and make changes to
queues. See the "NQS Privileges" section.

The commands in this chapter must be executed from the Mgr: prompt.
The Mgr: prompt indicates that you are in the qmgr(lM) environment.
To access the Mgr: prompt, key in qmgr at the system prompt as follows:

$qmgr
Mgr:

Creating and Manipulating Queues

The following sections describe the commands used to create and manipu­
late queues from the qmgr(1M) command line.

You can continue long command strings that do not fit on one line on a
second line by keying in a backslash (\) at the end of the first line. (Key
in a space before the backslash only if a space is needed in the command
line.) The system will return an Mgr:_ prompt to notify you that you
may finish keying in the command.

Creating Batch Queues

Batch queues are used to submit batch requests. Batch-processing requests

are shell-scripts or other program files that will execute as batch jobs on

the local node or on a remote server.

To create a batch queue. key in the create batch_queue command at the

Mgr: prompt as follows:

Mgr: create batch_ queue queue_name priority=n [pipeonly]\
Mgr:_ [run_limit=n]

NQS Tutorial 4-13

Creating and Managing Queues from the Command Line

• The required queue name contains any printable character except for
a space. @. comma (.). and = and may not begin with a number or a
dash(-).

• The required priority determines which queues will be checked first
for requests. (Queues with higher priority values will be checked
first.) Then value is a number between 0 and 63.

• The optional pipeonly parameter restricts queue requests to those
routed from a pipe queue.

• The optional run_limit is a limit on the number of jobs that may
execute simultaneously in the queue. Then value is the job-number
limit.

Batch Queue Examples

The examples below illustrate several batch queue configurations:

• The queue named sysbatch has the simplest queue configuration.
Requests in this queue will be processed one-at-a-time by default.

Mgr: create batch_queue sysbatch priority=16

• The queue named batchpipe has the same configuration as sysbatch.
except that it will only accept requests coming from a pipe queue
(running either locally or on another server node.)

Mgr: create batch_queue batchpipe priority=16 pipeonly

• The queue named batchquick has a higher priority than sysbatch. so
it will be checked first for requests. Batchquick has a run limit of
five: only five requests may run simultaneously in the queue.

Mgr: create batch_queue batchquick priority=20 run_limit=5

Creating Device Queues

Device queues schedule requests to NQS devices. NQS devices are the
printer and plotter interfaces that produce the hardcopy output requested
by NQS.

4-14 CLIX SYSTEM GUIDE

Creating and Managing Queues from the Command Line

To create a device queue, key in the create device_queue command as 'fol­

lows:

Mgr: create device_queue queue_name priority=n\

Mgr:_ [device=(device ,device ...] \
Mgr:_ [pipeonly]

• The required queue name contains any printable character except for a

space,@, comma(,), and= and may not begin with a number or a dash

(-).

• The required priority determines which queues will be checked first for

requests. (Queues with higher priority values will be checked first.)

Then value is a number between 0 and 63.

• The optional device parameter specifies the devices serviced by the

queue. Devices must be created before NQS recognizes them as valid;

see the "Manipulating Devices from the Command Line .. section.)

Enclose the device list in parentheses and separate the devices by com­

mas. (If only one device is in the list. you may omit the parentheses.)

NQS will search for the devices when requests are submitted from the

queue to the printer. Devices are checked in the order in which they

appear in the list. Therefore, the first device in the list will be used

most frequently.

Do not confuse the create device_queue command with the create dev­

ice command discussed in the "Manipulating Devices from the Command

Line" section.

• The optional pipeonly parameter restricts queue requests to those

routed from a pipe queue.

Device Queue Examples

The examples below illustrate several device queue configurations:

NQS Tutorial 4-15

Creating and Managing Queues from the Command Line

In the examples below, the devices called printronix, lpll, and dotmat
must have been previously defined to NQS before their servicing queues
can be created. The "Manipulating Devices from the Command Line" sec­
tion details devices.

• The device queue sysprint has a priority of 16 and services the dev­
ice called printronix. Since sysprint services only one device.
requests will execute sequentially.

Mgr: create device_queue sysprint priority=16\
Mgr:_ device=printronix

• The device queue laser has the same priority as sysprint but ser­
vices a device called lp8 ll.

Mgr: create device_queue laser priority=16 device=lp811

• The device queue dotmat also has a priority of 16 but services three
devices: epson. fujitsu. and printronix. When requests are queued
to the printer. the NQS scheduler will check for the first available
device beginning with the first device in the device list. Therefore.
the epson printer will be used more frequently than the fujitsu
printer will because the epson will always be checked first. If both
devices are busy. the request will be printed on the printronix device
so long as another queue to that device has not already requested it.
When all three devices are busy. the request will be scheduled for
the first device in the list that becomes available.

Mgr: create device_queue dotmat priority=16 device={epson,\
Mgr:_ fujitsu,printronix)

Creating Pipe Queues

Pipe queues are the most versatile queues. Pipe queues route requests to
batch or device queues or to other pipe queues. Any request sent to a
remote server must be routed through a pipe queue.

4-16 CLIX SYSTEM GUIDE

Creating and Managing Queues from the Command Line

To create a pipe queue. key in the create pipe_queue command as follows:

Mgr: create pipe_queue queue_name priority=n\
Mgr:_ server=(/usr/lib/nqs/pipeclient)\
Mgr: [destination=(queue,queue@Jwst, .. .)] [pipeonly] [run_limit=n]

• The required queue name contains any printable character except for a
space. @. comma (.). and= and may not begin with a number or a dash
(-).

• The required priority determines which queues will be checked first for
requests. (Queues with high priority values will be checked first.) The
n value is a number between 0 and 63.

• The server is always the queue server process.
/usr/lib/nqs/pipeclient.

• The optional destination allows you to specify the local or remote des­
tinations that requests can be routed to. The queue@Jwst list names
destination queues separated by commas and enclosed in parentheses.
If only one destination queue is in the list. you may omit the
parentheses.

• The optional pipeonly parameter restricts queue requests to those
routed from another pipe queue.

• The optional run_limit parameter allows you to specify a limit on the
number of jobs that may be routed simultaneously through that queue.

Pipe Queue Examples

The examples below illustrate several pipe queue configurations:

• The queue syspipe has a basic pipe queue configuration. The two
destinations are local queues sysbatch and sysprint. Jobs submit­
ted to this queue will execute on the local node.

Mgr: create pipe_queue syspipe priority=16\
Mgr:_ destination=Csysbatch,sysprint)\
Mgr:_ server=(/usr/lib/nqs/pipeclient)

• The queue to_jim executes requests on the remote server named
jim. This is the most common configuration for a queue that exe-

NQS TUTORIAL 4-17

Creating and Managing Queues from the Command Line

cutes requests on a remote host.

Mgr: create pipe_queue to_Jim priority=16\
Mgr:_ destination=(sysbatch@jlln, sysprint@jim)\
Mgr:_server=(/usr /lib/nqs/pipeclient)

• The queue to_print will route requests to the first available desti­
nation queue that will accept the request. specifically. the device
queues sysprint at the local host. sysprint at the node jim. or sys­
print at the node k.athy.

Mgr: create pipe_queue to_print priority-16\
Mgr:_ destination=Csysprint,sysprint@jlln, \
Mgr:_ sysprint@k.athy) server=C/usr/lib/nqs/pipeclient)

The queue routepipe would be useful in an environment where all
other queues on the local workstation or server are restricted.
(See the .. Restricting Queue Access .. section.) In this case. all
requests coming from remote clients would be forced through
routepipe so that the local system can route them to another local
queue.

Mgr: create pipe_queue routepipe priority=16\
Mgr: pipeonly destination=Csysbatch, \
Mgr:_ sysprint) server=(/usr/lib/nqs/pipeclient)

Creating a Queue Complex

Queue complexes allow you to group queues for setting parameters that
affect the entire complex. Queue complexes are primarily used to limit the

number of jobs that a batch or device queue complex will service at a time.

This is useful for ensuring that jobs to different devices on a mux do not
collide. Key in the create complex command as follows:

Mgr: create complex=(queue_name [,queue_name, ...]) complex_name

Adding Queues to a Queue Complex

Add queues to a queue complex using the add queue command. Key in the
command as follows:

Mgr: add queue= (queue_name [,queue_name, ...]) complex_name

4-18 CLIX SYSTEM GUIDE

Creating and Managing Queues from the Command Line

Removing Queues from a Queue Complex

Remove queues from a queue complex using the remove queue command.
Key in the command as fallows:

Mgr: remove queue- (queue_name [,queue_name, . .]) complex_name

Enabling and Disabling Queues

A queue is disabled when it is created. Queues can be enabled or disabled
in qmgr(1M).

Disabling a queue prevents requests from being submitted to the queue; it
does not prevent jobs in the queue from running. If you disable a queue
while it is running. jobs already in the queue will execute. Therefore. it
may be necessary to stop the queue before disabling it.

• An enabled queue is ready to accept requests. Enable a queue by key­
ing in the fallowing:

Mgr: enable queue queue_name

• A disabled queue will not accept requests. Disable a queue by keying
in the following:

Mgr: disable queue queue_name

Saving and Restoring Queue Configuration

The qsave and qrestore commands save and restore the current NQS
configuration.

The qsave command saves the current NQS queue configuration in a file
and can be performed after any queue is created. The save command is
normally used after the system manager has configured all queues. Key in
the qsave command at the super-user prompt as follows:

qsave file_name

The qrestore command restores any previously saved queue
configurations. but will not restore requests held in the queue.
Key in the qrestore command at the super-user prompt as follows:

NQS TUTORIAL 4-19

Creating and Managing Queues from the Command line

qrestore file_name

The queue configuration can only be restored when NQS is shut down.
The following command sequence can be used to shut down NQS. restore a ~
queue. and restart NQS:

#qmgr
Mgr: shutdown
Mgr: exit
qrestore file_name
/etc/init.d/nqs start

Starting, Stopping, and Restarting Queues

A queue is stopped when it is first created. Queues can be started and
stopped in qmgr(lM). A started queue may be running or inactive.

• A started queue is running if it is servicing requests. To start a queue.
key in the following:

Mgr: start queue queue_name

• A started queue is inactive if it is ready to service requests.

• A stopped queue will accept but not execute requests. You may want
to stop a queue to fix a device or change pa per.

Requests in a stopped queue will remain there indefinitely (or for the time
limit specified in the set lifetime command discussed in the "set lifetime
Command'' section.

To stop a queue. key in the following:

Mgr: stop queue queue_name

Restarting a stopped queue causes running jobs to be killed and

4-20 CLIX SYSTEM GUIDE

Creating and Managing Queues from the Command Line

rescheduled. Restarting is useful when you want to reprint the job that
is currently running. To restart a queue that has been stopped. key in
the following:

Mgr: restart queue queue_name

Changing the Queue Priority (All Queue Types)

Queue priorities determine the order in which NQS checks queues for
requests. When you create a pipe or device queue with pconfig. the queue
priority defaults to 31.

Change the priority value for any existing queue by keying in the follow­
ing. where n is the priority value from 0-63:

Mgr: set priority=n queue_name

Changing the Queue Run Limit (Batch and Pipe Queues)

~ The run limit value is the number of jobs that can execute simultaneously
in the named batch queue or the number of requests that can be routed
simultaneously through the named pipe queue.

Change the run limit for an existing queue by keying in the following.
where run_limit is the maximum number of requests allowed in that
queue.

Mgr: set run_Iim.it=run_limit queue_name

Moving Requests and Queues

Moving requests and/or queues can be useful in rerouting jobs from a
printer/plotter to another device.

Use the qstat(l) command to determine the request ID of the job to be
moved and then use the move command to move one request from one
queue to another. The format of the move command is as follows:

Mgr: move request_id destination_queue_name

Moving a queue moves all requests in the queue. Key in the following

NQS TUTORIAL 4-21

Creating and Managing Queues from the Command Line

to move a queue:

Mgr: move queue saurce_queue_name destination_queue_name

Modifying Queue Destination Lists (Pipe Queues Only)

You may add. delete. or set new destinations for an existing pipe queue.
The following sections provide instructions for modifying the queue desti­
nation list.

Pipe queues created in pconftg have only one destination, which is always
a device queue.

Adding a Destination to a Pipe Queue

To add a destination queue to the end of a pipe queue·s destination list. key
in the add destination command as follows. Destination queues on remote
nodes must have the format queue_name@host.

Mgr: add destination=(dest_queue.[dest_queue, ...]) queue_name

Deleting a Destination from a Pipe Queue

To delete a destination from a pipe queue·s destination list. key in the
delete destination command as follows. Destination queues at remote
locations must have the format queue_name@host.

Mgr: delete destination=(dest _queue.[dest _queue, ...]) queue _name

Creating a New Destination List for a Pipe Queue

Since destinations are placed in the destination list in priority order. you
may sometimes need to replace an existing destination list with a new one.
To create a new destination list. key in the set destination command as
follows. Destination queues at remote locations must have the format
queue_name@host.

Mgr: set destination=(dest_queue.[dest_queue, ...]) queue_name

4-22 CLIX SYSTEM GUIDE

Creating and Managing Queues from the Command Line

Restricting Queue Access

When you create any queue, it defaults to unrestricted access. This means
that any user with access to NQS can submit requests to the queue. You
can, however (if you have NQS manager privileges), restrict queue access
to certain groups or users.

To restrict access to a queue, you must first restrict all access to the queue
and then add users as desired. Groups and users may be deleted later if
necessary. Follow steps 1 and 2 below to restrict queue access to specific
users and groups.

Step 1: Restrict All Access to the Queue

Restrict all access to a queue by keying in the set no_access command as
follows:

Mgr: set no_access queue_name

Step 2: Add Specific Users and Groups

• Add users as desired by keying in the add users command as follows:

Mgr: add users=(username ,[username ...]) queue _name

The username(s) are the names of users who will have access to the
queue. Multiple usernames are separated by commas and enclosed in
parentheses. If there is only one username, you may omit the
parentheses.

• Add groups as desired by keying in the add groups command as fol­
lows:

Mgr: add groups (graupname .[graupname . ..]) queue_name

The graupname(s) are the names of groups that will have access to
the queue. The graupnames specified are the default log-in groups
defined in the /etc/passwd file. Multiple graupnames are enclosed
in parentheses and separated by commas. If there is only one
graupname, you may omit the parentheses.

NQS TUTORIAL 4-23

Creating and Managing Queues from the Command Line

If a user is a member of a group that you have added, you do not have to
add that user with the add users command.

Deleting Users and Groups from a Queue

After you have established users and groups for a queue. you may need to
restrict one or more of those users and groups from that queue. To delete
users from a queue, key in the delete users command as follows:

Mgr: delete users=(username .[username ...]) queue_name

The username(s) are the names of users who will be restricted from
using the queue. Multiple usernames are separated by commas and
enclosed in parentheses. If there is only one username. you may
omit the parentheses. To delete groups from a queue. key in the
delete groups command as follows:

Mgr: delete groups=(groupname.[groupname ...]) queue_name

The groupname(s) are the names of groups (specified in your
/etc/group file) that will be restricted from the queue. Multiple
groupnames are enclosed in parentheses and separated by commas. If
there is only one groupname. you may omit the parentheses.

Restoring Unrestricted Access to Queues

If you want to restore unrestricted access to a restricted queue. key in the
set unrestricted_access command as follows:

Mgr: set unrestricted_access queue_name

Deleting Queues

Before a queue can be deleted. it must be disabled and inactive. Use the
show queue command to ensure that the queue is disabled and inactive
before deleting it. These are the steps to delete a queue:

1. Ensure that the queue you want to delete is inactive. Check the queue ~
using the show queue command.

Mgr: show queue

4-24 CLIX SYSTEM GUIDE

2.

Creating and Managing Queues from the Command line

Information similar to this should display. Note the queue's
inactive status.

sysbatchOlga; type-BATCH; [ENABLED, INACTIVE]; pri==16
0exit; 0 run; 0stage; 0queued; 0wait; 0hold; 0arrive;

Disable the queue as follows:

Mgr: disable queue queue_name

You may want to use the show queue command again to ensure that
the queue is disabled.

Mgr: show queue

sysbatchOlga: type•BATCH: [DISABLED, INACTIVE]: pri•16
0exit: 0 run: 0stage: 0queued; 0wait; 0hold; 0arrive;

3. Key in the delete queue command as follows:

Mgr: delete queue queue_name

NQS TUTORIAL 4-25

Creating and Managing Devices from the Command Line

This section provides instructions on how to create and manipulate devices
directly from the command line using NQS·s queue manager utility.
qmgr(lM).

The commands in this chapter must be executed from the qmgr(lM) util­
ity. The Mgr: prompt indicates that you are in the qmgr(lM) environ­
ment. To access the Mgr: prompt, key in qmgr at the system ($) prompt
as follows:

$qmgr
Mgr:

Creating Devices

Devices in NQS are the interfaces to the printers and plotters on which
hardcopy output is produced. The queues discussed in the previous section ~

service these devices. An NQS device must be created for every physical _..,,.,,
printer or plotter.

To create a device. key in the following:

Mgr: create device device_name forms=forms fullname=pathname\
Mgr: server=(/usr/lib/nqs/devserver [-n comment]\
Mgr:_ /usr/lib/nqs/config_files/devicecap_file)

You must specify all parameters. except for the -n comment
parameter. when creating a device. These parameters are described
as follows:

• The device_name can be any name that describes the device.

• The form mounted on the device can be any form that you have defined
to NQS.

• The full pathname for the device may be one of the following:

4-26 CLIX SYSTEM GUIDE

-

Creating and Managing Devices from the Command Line

For a serial device connected to ...

The RS-232 port
RS-232 auxiliary port 0
RS-232 auxiliary port 1
RS-232 auxiliary port2

For a parallel device connected to ...

Plotter port (versatec-type device)
Mux port 1 (versatec-type device)
Mux port 2 (versatec-type device)
Mux port 3 (versatec-type device)
Mux port 4 (versatec-type device)

Parallel port (centronix-type device)
Mux port 1 (centronix-type device)
Mux port 2 (centronix-type device)
Mux port 3 (centronix-type device)
Mux port 4 (centronix-type device)

Key in ...

/dev/ttyOO
/dev/ttyOO
/dev/tty01
/dev/tty02

Key in ...

/dev/vop
/dev/vop1
/dev/vop2
/dev/vop3
/dev/vop4

/dev/cop
/dev/copl
/dev/cop2
/dev/cop3
/dev/cop4

For an offi.ine device... Key in ...

Key in any valid directory path name such as... /usr/plotwrk/offi.ine

• The device server process is /usr/lib/nqs/devserver. The -n option
following the server specifies a comment that will print on a banner
page before your job begins (if a banner is enabled in your devicecap
file.)

• The devicecap file that you specify will pass information about the
device to the devserver process. Every device must have its own
devicecap file. (See the .. Using Devicecap Files .. section.)

A device is disabled and inactive when it is first created. (See the
.. Enabling and Disabling Devices .. section.)

NQS TUTORIAL 4-27

Creating and Managing Devices from the Command Line

Using Devicecap Files
~.

Devicecap files contain the capabilities. including the default behavior.,,,
environment. and permitted input types. for the device that it serves. One
deviceca p file must be defined for each device.

When you create device queues using peon.fig, an appropriate devicecap file
is generated for you.

Devicecap File Format

A devicecap file contains a list of device characteristics. separated by
colons. that define how jobs submitted to that device will print. An exam­
ple of a devicecap file follows.

Information can be continued to the next line by placing a"\" at the end
of the first line. Lines beginning with "#'' are comments that NQS
ignores.

devicecap for lp811 (lp811.cap)
#define stty settings and environnent characteristics
cx:t-FIQ.RATICN:af•/usr/tq>/sysprint.acc:\

: io=9600 -raw:stty settings:\
:e~IVERS=/usr/drivers.~lp811:environ vars:

#set data types, filters, ports, and page paraneters
textldefaultlascii:of•/usr/bin/textplot -p p0:\

if-pr -166:pl#66:pt#132:
igds:of•/usrbin/igdsplot -p p0:
script:of-/usr/bin/ps -p p0:

4-28 CLIX SYSTEM GUIDE

Creating and Managing Devices from the Command Line

The values that can be included in the devicecap file are discussed in the
following table.

Value

CONFIGURATION

default

text. ascii. igds. script

af=string

ba (boolean)

io=string

en=string

of=string

if=string

ff (boolean)

lf=string

pl#number

pw#number

Purpose

Defines the default values for the entire file.

Defines the input type if none is specified in the
qpr(l) command line.

Specifies valid input types. (See your lnterPlot
User's Guide for a complete list of input types.)

Defines the name of the file that accounting
information will be written to.

Generates an ASCII banner for the specified input
type.

Defines the stty settings.

Defines the default environment variables.

Defines the output filter. Output filters are
invoked only once in a job·s lifetime.

Defines the input filter. Input filters are invoked
once for each file in a job·s lifetime.

Understands formfeeds.

Defines the name of the file that errors will be
written to.

Defines the page length.

Defines the page width.

Changing the Device List for a Device Queue

You may (if you have NQS manager privileges) add. delete. or set
(redefine) devices for an existing device queue. (Device queues are dis-

~ cussed in the .. Configuring Queues from the Command Line .. section.)

NQS TUTORIAL 4-29

Creating and Managing Devices from the Command Line

Adding a Device to a Device List

• To add a device to the end of a device list for a queue. key in the fol- ~
lowing: ~

Mgr: add device=device queue_name

• To delete a device from a device list for a queue. key in the follow­
ing:

Mgr: delete device device queue _name

• To redefine an existing device list (delete it and create a new one).
key in the following:

Mgr: set device (device. device, ...) queue_name

Example Device Configuration

The following is an example of a simple device being created:

Mgr: create device epson fullname=/dev/ttyOO form=SYsform\

Mgr:_ server={/usr/lib/nqs/devserver -n EPSON /usr/lib/nqs/config_fi.les\

Mgr:_ Jepson.cap)

The command lines above specify a printronix device that exists on serial
port 0 as /dev/ttyOO. The print request will be printed on the form sys­
form. The server that will service the device is devserver. and the devi­
ceca p file that will pass device inf orma ti on to devserver is called
epson.cap. The word EPSON will print on the banner page.

Device Defaults

The default device configuration has the following characteristics:

• The printer is an ASCII device that will accept output at 9600 baud.

• The NQS banner has 66-lines-per-page and 132 columns.

• The printer does not understand form feeds for banner pages. NQS
will use carriage returns to advance to the top of the next page.

4-30 CLIX SYSTEM GUIDE

Creating and Managing Devices from the Command Line

Enabling and Disabling Devices
.~.

~ Like queues. devices can be enabled or disabled through qmgr(1M). Disa­
bling a device prevents a broken device from being used.

• An enabled device is ready to accept requests.

• A disabled device will not accept requests.

A device is disabled when it is first created. When a device is enabled. it
will handle one request at a time from its device queue(s).

The enable device Command

Enable a device by keying in the following:

Mgr: enable device device

The disable device Command

Disable a device by keying in the following:

Mgr: disable device device

NQS TUTORIAL 4-31

Setting Def au Its

The commands in this chapter must be executed from the Mgr: prompt.
The Mgr: prompt indicates that you are in the qmgr(lM) environment.
To access the Mgr: prompt, key in qmgr at the system prompt as follows:

$qmgr
Mgr:

You must have NQS manager privileges to set system defaults.

Setting Def a ult Request Parameters

If you have NQS manager privileges. you can set several default request
parameters in qmgr(lM). These parameters will be used in the absence of
specific parameters on an NQS command line. Setting defaults permits you
to submit requests without needing to key in each argument. For example. ~
if a default queue parameter is specified to NQS. you will not need to key ...,,.,;
in the queue name when you want to submit a print or batch job to that
queue. If no default queue is specified to NQS. the job will fail in the
absence of a queue name. The following sections discuss the defaults that
you can set.

Setting a Default Batch Request Priority

The set default batch_request priority command sets the intraqueue
priority (the relative ordering of requests in a queue) for batch requests.
If you do not specify a priority using the -p parameter on the qsub(l)
command line. NQS uses the default priority.

The default batch request priority does not determine the request's execu­
tion priority; it determines only the relative ordering of requests in a
queue.

Key in the command as follows. where n is the default priority value:

Mgr: set default batch_request priority=n

4-32 CLIX SYSTEM GUIDE

SeWng Defaults

Setting the Default .Jatch Request Queue

,.,-.., There are two ways to set a default batch request queue. These are the
·'-"' following:

• Place the default batch request queue in your system environment.

• Use the qmgr(1M) set default batch_request queue command.

Placing a Default Batch Request Queue in Your Environment

If you want to set a default batch request queue in your system environ­
ment, place the following line in your .env or .profile file, where
default_queue is the name of your default batch queue:

QSVB_QVEVE=default_queue
export QPR_QUEUE

Using the qmgr(1M) set default batch_request queue Command

The set default batch_request queue command sets the default queue for
batch requests. If you do not specify a queue using the -q parameter on
the qsub(l) command line and you have not set up an environment vari­
able to define your default batch queue, NQS uses the default queue set
with this command.

Key in the command as follows, where queue_name is the name of the
default batch queue.

Mgr: set default batch_request queue=queue_name

Removing a Def a ult Batch Queue

The set no_default batch_request queue removes a default batch queue.
Key in the command as follows:

Mgr: set no_default batch_request queue

Setting the Default Print Request Queue

.- There are two ways to set a default print request queue. These are the fol-
·~ lowing:

NQS TUTORIAL 4-33

Setting Defaults

• Place the default print request queue in your system environment.

• Use the qmgr(lM) set default print_request queue command.

Placing a Default Print Request Queue in Your Environment

If you want to set a default print request queue in your system environ­
ment. place the following lines in your .env or .profile file. where
default_queue is the name of your default print queue:

QPR_QVEVE=default_queue
export QPR_QUEUE

Using the qmgr set default prlnt_request queue Command

The set default print_request queue command sets the default queue for
print requests. If you do not specify a queue using the -q parameter on the
qpr(l) command line. and you have not set up an environment variable to
define your default print queue. NQS uses the default queue set with this
command.

Key in the command as follows. where queue_name is the name of the
default print queue.

Mgr: set default print_request queue=queue_name

Removing a Def a ult Print Queue

The set no_default print_request queue removes a default print queue.
Key in the command as follows:

Mgr: set no_default print_request queue

Setting the Debug Level

The set debug command sets the level at which NQS records debug
informtion. Currently. debugging may be either on or off; the system
defaults to off.

Key in the set debug command as follows. where level is either 0 (off) or 1
(on):

Mgr: set debug level

4-34 CLIX SYSTEM GUIDE

Setting Defaults

Setting a Def a ult Destination Retry Time

The set default destination_retry time command sets the default max­
imum number of hours that may elapse while NQS attempts to reach a
pipe queue·s destination. After this time. the request will fail.

Key in the command as follows. where retry _time is the number of hours
that NQS will attempt to reach the destination queue:

Mgr: set default destination_retry time retry_time

Setting a Default Destination Retry Wait Time

The set default destination_retry wait command sets the default
number of minutes that NQS will wait before retrying to reach a pipe
queue·s destination queue that was unreachable during the last attempt.
NQS will retry to reach the destination queue until the maximum retry
time has elapsed.

Key in the command as follows. where interval is the number of minutes
that NQS will wait before retrying to reach a destination queue:

Mgr: set default destination_retry wait interval

Setting a Default Device Request Priority

The set default device_request priority command sets the intraqueue
priority (the relative ordering of requests in a queue) for device requests.
If you do not specify a priority using the -p parameter on the qpr(l) com­
mand line. NQS uses the default priority.

The default device request priority does not determine the request's execu­
tion priority; it determines only the relative ordering of requests in a
queue.

Key in the command as follows. where n is the default priority value:

~ Mgr: set default device_request priority=n

NQS TUTORIAL 4-35

Setting Defaults

Setting a Default Print Form

The set default print_request forms command sets the default form to ~

be used for print requests. If no form is specified on the qpr(l) command ..._,,,
line using the -f parameter. NQS will assume that the request is printing
on the default form. If no default is specified. NQS assumes that any form
is acceptable.

Key in the set default print_request forms command. where form_name
is the name of the default form.

Mgr: set default print forms form_name

Removing a Def a ult Form

The set no_default print forms command removes the default print
form. Key in the command as follows:

Mgr: set no_default print forms

Setting a Default Shell Strategy

The set shell_strategy sets the default shell strategy for the execution of
batch requests. These are the shell strategy options:

• fixed

• free

• login

Fixed Shell Strategy

A fixed shell strategy defines the specified shell pa th name as the shell to be
used to execute all batch requests. Use a fixed shell strategy for NQS ins­
tallations that use only one shell type.

Set the shell strategy to fixed by keying in the following. where
shell_JJathname is the full path name of the specified shell (Korn. C-shell.
or Bourne):

Mgr: set shell_strategy fi:xed=(shell_JJathname)

4-36 CLIX SYSTEM GUIDE

Setting Defaults

Free Shell Strategy

A free shell strategy instructs NQS to spawn the user's login shell when
that user's batch request is run. The user's login shell will examine the
user's batch request shell script to determine the shell that will execute it.
Therefore. the free shell strategy results in the spawning of an extra shell
for all batch request executions. just as if you had executed the script
interactively.

Set the shell strategy to free by keying in the following:

Mgr: set shell_strategy free

Login Shell Strategy

A login shell strategy instructs N.QS to spawn the originating user's login
shell to execute all batch requests. The login shell will not examine the
batch shell script to determine its script type.

Set the shell strategy to login by keying in the following:

Mgr: set shell_strategy login

Setting Default Maximum Values

If you have NQS manager privileges. you can specify several default max­
imum values for queues in qmgr(lM). These values are the limits that
prevent requests from waiting indefinitely in the queue or devices from
becoming overloaded. The commands used to set default maximum values
are discussed below.

The set lifetime Command

The set lifetime command sets the maximum lifetime for a request wait­
ing in the named pipe queue. After this time expires. the request will fail
and NQS will send a mail message informing the request owner that the
request has been deleted.

The set lifetime command prevents queues from filling up due to system
or network failures. The lifetime value defaults to 72 hours for queues
created in qmgr(lM). If you want to set an indefinite lifetime. set the
lifetime value to zero.

NQS TUTORIAL 4-37

Setting Def au Its

Key in the command as follows. where haurs is the maximum lifetime in
hours for a request:

Mgr: set lifetime haurs

The set maximum copies Command

The set maxim.um copies command sets the maximum number of copies
that can be printed for a request submitted to the named device queue.
NQS defaults to two copies.

Key in the command as follows. where n is the maximum number of
copies:

Mgr: set maximum copies n queue_name

The set maximum open_retries Command

The set maxim.um open_retries command sets the maximum number of
times that NQS will attempt to open a device for writing.

Key in the command as follows. where n is the maximum number of
retries.

Mgr: set maximum open_retries n queue_name

The set maximum print_size Command

The set maxim.um print_size command sets the maximum size in bytes
for a print request submitted to the named device queue.

Key in the command as follows. where size is the print file's size in bytes.

Mgr: set maximum print_size size queue_name

The set nice_value_limit Command

The set nice_value_lim.it command is used to set the per-process CLIX
nice value limit for any batch request placed in the named batch queue ~

without a user-specified nice value.,.,,,

4-38 CLIX SYSTEM GUIDE

Setting Def au Its

Each batch request is examined when it is queued to ensure that any user­
specified nice value does not exceed to nice value for the batch queue. The

.~ user-specified nice value cannot be numerically less than the queue's nice
~ value limit. If you attempt to queue a batch job that requests a nice value

limit that is numerically too low. the job is rejected. (Your NQS online
help and the CLIX documentation contains details about nice values.)

~ Some implementations of UNIX do not support configurable limits.

: in the set nice_value_limit command as follows:

Mgr: set nice_ value_limit=nice_value batch_queue

The set per _process permfile_limit Command

The set per_process permftle_limit command sets the per-process max­
imum permanent file size for all batch requests placed in the specified
batch queues. When each batch request is placed in a queue. it is examined

- to ensure that the maximum permanent file size does not exceed the max-
~ imum file size for the queue (provided that a maximum file size has been

set for the queue). If you attempt to queue a batch job that requests a
larger file size than the queue allows. the request is rejected.

Key in the set per_process permftle_limit command as follows:

Mgr: set per_process permftle_limit limit batch_queue

The set open_wait Command

The set open_ wait command sets the number of seconds that NQS will
wait before retrying to send a request from a device queue to a failed dev­
ice.

Key in the command as follows. where seconds is the interval in seconds
between device retries:

Mgr: set open_ wait seconds

NQS TUTORIAL 4-39

Setting Defaults

Network Services

NQS contains three network service utilities. These are the following:

• The netdaemon (network daemon) listens for messages from remote
clients and manages network requests. The full path name for the
default netdaemon process is /usr/lib/nqs/netdaemon.

• The netclient (network client) stages out batch request output files
and empties network queues. The full path name for the default
netclient process is /usr/lib/nqs/netclient.

• The netserver (network server) processes submission requests from
remote pipe clients. The full path name for the default netserver is
/usr/lib/nqs/netserver.

Do not attempt to modify the network service utilities.

Locking the Local Daemon

Locking the network daemon in memory permits faster access to the dae­
mon. However. locking the daemon requires additional system memory
and should not be done if the daemon is used infrequently.

To lock the daemon in memory. key in the following:

Mgr: lock local_daemon

Unlocking the Local Daemon

To unlock a daemon that you have locked in memory. key in the follow­
ing:

Mgr: unlock local_daemon

4-40 CLIX SYSTEM GUIDE

Network Issues

An Internet address is often referred to as a TCP/IP address. The terms
Internet address and TCP/IP address are used interchangeably. If the
TCP/IP software is running on the NQS host. the host will have an Inter­
net address. Note that the TCP/IP software does not need to run on the
host to run NQS. For more information. see the .. BSD Network
Configuration Tutorial.""

Classes of Addresses
The Internet address identifies the network and individual hosts within the
network.

Internet addresses are divided into three ranges. each representing a net­
work with a different size than the others.

• Class A addresses are reserved for large networks. Class A contains
only 126 networks composed mainly of government and large com­
mercial organizations.

• Class B addresses are generally assigned to all other organizations
with a large network. Class B addresses allow 64.516 nodes.

• Class C addresses allow only 254 hosts on each network; however.
Cius C can have several networks.

Valid Formats
An Internet address has the following form:

Class A
Internet Address:
Restrictions:

Class B

nnn.hhh.hhh.hhh
nnn < 126

Internet Address: nnn.nnn.hhh.hhh
Restrictions: 128.001 ' nnn.nnn < 191.254

Class C
Internet Address: nnn.nnn.nnn.hhh
Restrictions: 192.001.001 ' nnn.nnn.nnn < 233.254.254

N is the network number and h is the host number. The numbers 0 and
255 should not be used in any field.

NQS TUTORIAL 4-41

Network Issues

Assigning an Internet Address
The system administrator must assign an Internet address to all NQS nodes
when the NQS software is delivered.

• If the NQS host is not connected to an official Department of Defense
(DoD) network. any valid Internet address can be assigned to the
NQS nodes.

• If the NQS host will be connected to a DoD network. you must get a
registered Internet address from the DoD.

Account Mapping
NQS account mapping can be tedious. Because the queuing is networked. a
more complex mapping is needed to secure NQS from unauthorized clients.
And. knowing the local user responsible for the request is necessary in case
a disaster strikes. the job fails. or the original requester's remote system is
unreachable.

Two main methods are used to define NQS access. The first method is the
default system access defined in /etc/hosts.equiv or .rhosts. Using
/etc/hosts.equiv is dangerous because it maps any user from a specified
remote system so long as the user name matches.

The .rhosts file is better because the user controls the access. However. the
user name must still match on both local and remote systems for NQS to
recognize the mapping. This method is more secure than the above method
and easier to use than using the nmapmgr method discussed next.

The last type of mapping is performed through nmapmgr. Although this
method is more cumbersome to use. it enables you to control NQS access on
the local system. The sections below discuss each method in more detail.

When submitting a request to a remote host. both local and remote hosts
must allow access to each other. For example. if red can access machine
yellow. but yellow cannot access red. a strange problem will occur.

If red submits a request to yellow. yellow will accept and service the
request. When yellow tries to return the output to red. it fails because
red does not allow access to yellow. In the opposite case when yellow
submits a job to red. the job will immediately fail because red will not
allow access.

4-42 CLIX SYSTEM GUIDE

Network Issues

/etc/hosts.equiv and .rhosts
The /etc/hosts.equiv file grants account access by machine and user name.

Edit this file to include all names of machines allowed to have direct

remote-user-name to local-user-name (bill on machine red to bill on

machine blue) access to your machine. Each line should have one node

name.

When a remote client succeeds in mapping a machine-id from the

nmapmgr. it checks the /etc/hosts.equiv file to see if machine-wide access

is allowed from a machine x. So. if bill at red tries to use blue.
/etc/hosts.equiv at blue is checked to see if red is listed. If red is listed.

it will allow bill to use bill at blue if bill at blue exists. If bill at blue

does not exist. access is denied.

However. if bill at blue exists. but red is not listed in /etc/hosts.equiv.

bill at red can still access bill at blue if bill at blue has a file called

.!"hosts in its home directory on blue that contains the line .. red bill:· This

means that bill at blue explicitly gives access when bill at red tries to

access the account.

Consequently. bill cannot implicitly use tom at the remote machine

because NQS will not know to check tom's .!"hosts file. This type of map­

ping must now be achieved with nmapmgr.

N map mgr: Machine Mappings
Nmapmgr controls NQS access for remote users wanting to use local

resources. It also performs remote machine validation and account-to­

account mappings. The super-user must run nmapmgr to add. delete. or

change machine mappings. Otherwise. any user may query the database.

While in nmapmgr. you can access help to list valid commands. Here are

some of the common commands.

add mid mid principal.-name
change name mid new-name
create
delete mid mid
exit
get mid name
get name mid
help
quit

NQS TUTORIAL 4-43

Network Issues

If installation was successful. the internal nmap file should have been
created and the local machine-id (mid) initialized. The screen below shows
a nmapmgr session where the nmap file has not been created.

nmapmgr
NMAPMGR>: create (usually done durtng tnstallatton)
NMAPMGR > : add mid 1 red
NMAPMGR>: add mid l blue
NMAPMGR>: get mid blue
NMAP_SUCCESS: Successful completion
Mld•2.
NMAPMGR : get name 1
NMAP _SUCCESS: Successful comp let ion
Name• red.
NMAPMGR: change name 2 blue.Jay
nMAP _SUCCESS: Succesef u I comp I et I on
NMAPMGR: get name 2
NMAP _SUCCESS: Succese f u I comp I et I on
Name • b I ue jay.
NMAPMGR: delete mid 1
NMAP _SUCCESS: Succesef u I comp I et I on
NMAPMGR : get name red
NMAP _ENOMAP: No such ma pp Ing.
NMAPMGR: ext t

This example shows that the nmap file is created and red and blue are
added to the list of machine-ids as 1 and 2. respectively. When the
machine-id blue is requested. nmapmgr returns 2. just as it returns red as
the name of the machine-id 1.

Then. machine 2 · s principal name blue changes to blue jay. When you
query for machine 2·s name. the program verifies the name bluejay.

Next. machine 1 is removed from the list. The program indicates that
machine 1 no longer exists when it is queried for. Finally. nmapmgr is
exited.

4-44 CLIX SYSTEM GUIDE

Network Issues

The commands, add name name to-machine-id and delete name name, add

and delete alias names for machines. Additional aliases can be added to

machine-ids. However. if the primary machine name like red is deleted.

the machine-id will still map to red. but red will no longer map to the

machine-id. We suggest that you avoid these commands.

All machines that you wish to access must be listed in nmapmgr.

Machine-ids must map correctly with the remote machine before access is

permitted.

Nmapmgr: User Mappings
User mappings can be achieved with the /etc/hosts file or .rhosts file as

discussed previously. However. nmapmgr is the designated mechanism

that NQS uses to control user access to the local NQS.

More complex mapping can be performed in nmapmgr than is available in

the other methods described before. However. this mapping is now done

by numeric UID and can be awkward to use. Uids are mapped with the

following commands:

add uid from-mid from-uid to-uid
delete uid from-mi,d from-uid to-uid

For example, uid-100 calling from mid-1 can be given explicit access to

uid-127 on the local system even if the user names differ. The mapping is

specified as follows:

add uid 1 100 127

Groups can also be specified using a similar command add gid. However,

the command does not have meaning in this implementation.

When many users want to use a particular system. account mapping can

become time consuming. In this vein. nmapmgr has provided default

mappings. The associated commands are

eet defuid from-mi,d defuid
delete defuid from-mi,d defuid

Suppose that anybody calling from mid-10 should use uid-.500. This is

specified using the following command:

NQS TUTORIAL 4-45

Network Issues

add defuid 10 SOO

Again. default group-ids (gids) are mapped similarly. but do not have
meaning.

Displaying the mappings is primitive at this point. Only the following
command is provided:

get uid from-mid from-gid

The following command will specify where uid-107 calling from mid-7 is
mapped to:

get uid 7 107

If a specific mapping is listed. it will be shown. Otherwise. a default map­
ping is used if possible. If not. the mapping will fail. It will also fail if the
machine-id is not defined in nmapmgr.

4-46 CLIX SYSTEM GUIDE

An Internal Overview

Several processes are important to NQS. They are as follows:

logdaemon
nqsdaemon
netdaemon

These three processes are the core of NQS. The nqsdaemon is the master
process of NQS. It maintains all configurations. handles all queues.
schedules all requests. and owns all child processes through interprocess
messaging using named pipes.

The netdaemon handles networking for NQS. It receives and processes all
network requests. It communicates directly with the main local nqsdae­
mon.

The third daemon is the logdaemon. It records all error messages and
activity for NQS. The amount of information in records is controlled by
the set debug command.

As requests are processed. server processes are created to service the
requests. NQS server processes include the following:

nqsdaemon (a child process of the main local nqsdaemon)
netdaemon (a child process of the main netdaemon)
netserver
netcllent
pipecllent
lpaerver

Sometimes the above servers will appear as machine server or user server.
where machine and user name a particular machine or user.

NQS TUTORIAL 4-47

c

c

Chapter 5: VP Tutorial

Introduction and Terminology
RPC- Remote Procedure Call

XDR - External Data Representation

YP Data base Servers
Maps and Map Operations

Map Structure
Match Operation
Map Entry Enumeration

Entire Map Retrieval

Map Update
Master and Slave YP Database Servers

Map Propagation and Consistency

Functions to Aid in Map Propagation

Domains

Nonfeatures
Version Commitment Across Multiple Requests

Guaranteed Global Consistency

Access Control
YP Database Server Protocol Definition

RPC Constants
Other Manifest Constants ..

Remote Procedure Return Values

Basic Data Structures

YP Database Server Remote Procedures

YP Binders
Introduction
YP Binder Protocol Definition

RPC Constants

5-1
5-2
5-2

5-4
5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-6
5-6
5-6
5-1
5-1
5-1
5-1
5-1
5-1
5-8
5-9

5-12

5-17
5-17
5-18
5-18

TABLE OF CONTENTS

Table of Contents

Other Manifest Constants
Basic Data Structures
YP Binder Remote Procedures

II CLIX SYSTEM GUIDE

5-18
5-19
5-20

Introduction and Teminology

The Yellow Pages (YP) is a network service providing read access to a

replicated database. The lookup service is provided by a set of YP database

servers. The client interface to this service uses the Remote Procedure Call

(RPC) mechanism.

Translating or mapping a name to its value is one of the most common

operations performed in computer systems. Common examples are the

translation of a variable name to a virtual memory address. the translation

of a user name to a system ID or list of capabilities. and the translation of

a network node name to an Internet address. There are two fundamental

read-only operations that can be performed on a map: match and

enumerate. Match means to look up a name (which we call a key) and

return its current value. Enumerate means to return each key-value pair.

in tum.

The YP supplies match and enumerate operations in a network environ­

ment. where high availability and reliability are required. It provides that

availability and reliability by replicating both databases and database

servers on multiple nodes within a single local network. and within the

Internet. The database is replicated. but not distributed: all changes are

made at a single server and eventually propagate to the remaining servers

without locking. The YP is appropriate for an environment in which

changes to the mapping databases occur on the order of tens per day.

The YP operates on an arbitrary number of map databases. Map names

provide the lower of two levels of a naming hierarchy. Maps are grouped

into named sets called domains. Domain names provide a second. higher

level of naming. Map names must be unique within a domain. but may be

duplicated in di1f erent domains. The YP client interface requires that both

a map name and a domain name be supplied to perfprm match and

enumeration operations.

The YP achieves high availability by replication. One area not addressed

by the protocol which has to be addressed by the implementors is global

consistency among the replicated copies of the database. Every implemen­

tation should be designed so that. at steady state. a request yields the same

result when it is made of any YP database server. Update and update­

propagation mechanisms must be implemented to supply the required

degree of consistency.

YP TUTORIAL 5-1

lnlroductlon and Terminology

RPC - Remote Procedure Call

The Remote Procedure Call (RPC) mechanism defines a paradigm for inter­
process communication modeled on function calls. Clients call functions
that optionally return values. All input and output to the functions are in
the client"s address space. The function is executed by a serwr program.

Using RPC. clients address servers by a program number. that identifies the
application-level protocol that the server speaks. and a version number.
Additionally. each server procedure has a procedure number assigned to it.
In an Internet environment. clients must also know the server· s host Inter­
net address and the server·s rendezvous port. The server listens for service
requests at ports associated with a particular transport protocol -
Transmission Control Protocol/Internet Protocol (TCP/IP) or User
Datagram Protocol/Internet Protocol (UDP/IP).

The format of the data structures used as input to and output from the
remotelyexecuted procedures are typically defined by header files that are
included when the client interface functions are compiled. Levels above
the client interface package need not know any particulars of the RPC
interface to the server.

XOR - External Data Representation

The External Data Representation (XDR) specification establishes standard
representations for basic data types (such as strings. signed and unsigned
integers. and structures and unions) in a way that allows them to be
transferred among machines with varying architectures. XDR provides
primitives to encode (translate from the local host"s representation to the
standard representation) and decode (translate from the standard represen­
tation to the local host"s representation) basic data types. Constructor
primitives allow arbitrarily complex data types to be made from the basic
types.

The YP"s RPC input and output data structures are described using XDR"s
data description language. In general. the data description language looks
like the C language. with a few extra constructs. One such extra construct
is the discrimi.nated union. This is like a C language union in that it can
hold various objects. but di1fers from it in that a discriminant indicates

5-2 CLIX SYSTEM GUIDE

Introduction and Terminology

which object it currently holds. The discriminant is first across the wire.
Consider a simple example:

wilcn •Itch (long Int) (
1:

etrlng _..,i_ncne16
8:

uwlgned Int .,...,i_error_code
default:

•truct {}

The example should be interpreted as follows: the first object to be
encoded/decoded (that is. the discriminant) is a long integer. If it has the
value one. the next object is a string. If the discriminant has the value
uro. the next object is an unsigned integer. If the discriminant takes any
other value. do not encode or decode any more data.

A ming data type in the XDR data definition language adds the ability to
specify the maximum number of elements in a byte array or string of
potentially variable si7.e. For instance:

etrlng dalGlnYPMAXDOMAIN;

states that the byte sequence domain may be less than or equal to YPMAX­
DOMAIN bytes long.

An additional primitive data type is a boolean. which takes the value one
to mean TRUE and uro to mean FALSE.

VP TUTORIAL 5-3

VP Database Servers

Maps and Map Operations

Map Structure

Maps are named sets of key-value pairs. Keys and their values are
counted binary objects. and may be ASCII information. but need not be.
The data composing a map is determined by the client applications that are
the final customers for the data. not by the YP. The YP has no syntactic or
semantic knowledge of the map contents. Neither does the YP determine
or know any map"s name. Map names are managed by the yp·s clients.
Conflict in the map name space must be resolved by human administrators
outside the YP system.

Typical implementations for YP maps are files or database management
systems. The design of the yp·s map database is an implementation detail
and is unspecified by the protocol.

Match 0 peration

The YP supports an exact match operation in the YPPROC_MA TCH pro­
cedure. That is. if a match string and some key in the map are exactly the
same. the value of the key is returned. No pattern matching. case conver­
sion. or wildcarding is supported.

Map Entry Enumeration

It is possible to get the first key-value pair in a map with YPPROC_FIRST
and the next key-value pair with YPPROC_NEXT. Calling .. get first ..
once and ··get next"' until the return value indicates there are no more
entries in the map will retrieve each entry once. Making the same calls on
the same map at the same YP database server will enumerate all entries in
the same order. The actual order. however. is unspecified. Enumerating a
map at a different YP database server will not necessarily return entries in
the same order.

5-4 CLIX SYSTEM GUIDE

VP Database Servers

Entire Map Retrieval

The YPPROC_ALL operation retrieves all key-value pairs in a map with a
single RPC request. This is faster than map entry enumeration. and more
reliable since it uses TCP. Ordering is the same as when enumeration is
applied.

Map Update

The update of YP maps is an implementation detail which is outside the
specification of the YP service.

Master and Slave VP Database Servers

For each map. there is one YP database server called the map's master.
Map updates take place only on the master. An updated map should be

transferred from the master to the rest of the YP database servers. which
are slave servers for this map.

It is possible for each map to have a diff'erent YP database server as its
master. for all maps to have the same master. or any other combination.
The choice of how to set up map masters is one of implementation and
administrative policy.

Map Propagation and Consistency

Getting map updates from the master to the slaves is called map propaga­
tion. Neither technology nor algorithms for map propagation are specified
by the protocol. Map propagation may be entirely manual: for instance. a

person could copy the maps from the master to the slaves at a regular
interval or when a change is made on the master. This is unnecessarily

labor intensive.

In order to escape the idiosyncrasies of any particular implementation. all

maps should be uniformly timestamped.

VP TUTORIAL 5-5

Y P Database Servers

Functions to Aid in Map Propagation

The way a map is transferred from one server to another is not specified
by the YP protocol. One possibility would be for the system administrator
to do it manually. Another would be for the YP database server to
activate another process to perform the map transfer. A third would be
for a server to enumerate a recent version of the map. using the normal
client map enumeration functions.

The YPPROC_XFR procedure requests the YP server to update a map and
permits the actual transfer agent (some server process) to call back the
requester with a summary status.

Domains

Domains provide a second level for naming within the YP subsystem.
They are names for sets of maps. Therefore. create separate map name
spaces. Domains provide an opportunity to break large organizations into
administerable chunks and the ability to create parallel. noninterfering test
and production environments.

Ideally. the domain of interest to a client ought to be associated with the
invoking user. but in practice it is useful for client machines to be in a
default domain. Implementations of the YP client interface should supply
some mechanism for telling processes the domain name they should use.
This is needed not only because the concept of domain is a useless one as
far as most programs are concerned. but. more importantly. so that pro­
grams that are insensitive to both location and the invoking user can be
written.

Nonf eatures

The following capabilities are not included in the current YP protocols:

All write (and delete) access to the YP's map database is assumed to be
outside of the YP subsystem. It is probable that write access to the map
database will be included in later versions of the YP protocols.

5-6 CLIX SYSTEM GUIDE

Y P Database Servers

Ver•lon Commitment Acro11 Multiple Requests

The YP protocol was designed to keep the YP database server stateless with
regard to its clients. Therefore. there is no facility for contracting with a
server to preallocate any resource beyond that required to service any sin­
gle request. In particular. there is no way to get a server to commit to use
a single version of a map while trying to enumerate that map"s entries.
Use YPPROC_ALL to avoid these problems.

Guaranteed Global Consistency

There is no facility for locking maps during the update or propagation
phases. Therefore. it is virtually guaranteed that the map database be glo­
bally inconsistent during those phases. The set of client applications for
which the YP is an appropriate lookup service is one that (by definition)
must be tolerant of transient inconsistencies.

Acce11 Control

The YP database servers make no attempt to restrict access to the map data
by any means. All syntactically correct requests are serviced.

VP Database Server Protocol Definition

This section describes version 2 of the protocol. It is likely that changes
will be made to successive versions as the service matures.

RPC Constants

All numbers are in decimal.
The YP database server protocol program number.

YPVERS2 The current YP protocol version.

Other Manifest Constants

All numbers are in decimal.
The total maximum size of key and value for any pair. The absolute sizes
of the key and value may divide this maximum arbitrarily.

VP TUTORIAL 5-7

Y P Database Servers

YPMAXDOMAIN 64 The maximum number of characters in a domain
name.

YPMAXMAP64

YPMAXPEER 64

The maximum number of characters in a map name.

The maximum number of characters in a YP host
name.

Remote Procedure Return Values

This section presents the status values returned by several of the YP
remote procedures. All numbers are in decimal.

ypstat

typedef enn {

} ypetot

ypxfrstat

'TP __ TR..E - 1.
'TP __ N:M:RE - 2.
'TP__FALSE - ••
'TP __ N:MIP - -1.
'TP __ ~ - -2.
'TP __ Nl<EY - -3.
'TP __ BtO:P - -4.
'TP __ EWIB - -5.
'TP __ ~ - -6.
'TP __ BtOtR;S - - 7.
'TP __ VERS • -8

5-8 CLIX SYSTEM GUIDE

I• General purpoee ~ code. •/
/• No nore .,tries in niap. •/

/• General purpoee failure code.•/
/• No 9UCh map in dcnain. •/
/• Dcnain not 9l4)p0rted. •/
/• No 9UCh 1cey in "'°P· •/
/• lnYOI id operation. •/
/• Server databoee i• bad. •/
/• 'TP eerver error. •/
/• Request ar9'.mertt• bad. •/

/• 'TP eerver version 11inatch. •/

VP Database Servers

typedef .-..II {

"1PA'R_s.m - 1 • /• Succese •/

"1PA'R_}GE • 2, /• ~ter'1 version not newer •/

"1PA'R_N:Mtf> • -1, /• Can't find eerver for map •/

"1PA'R_NlXM • -2, /• Dana in not supported •/

"1PA'R_~ • -3, /• Loco! reeource al loc failure •/

"1PJCFR_flle • -4, /• fllC failure talki~ to eerver •/

"1PA'R_MtaR • -S, /•Can't get master oddrea •/

"1PA'R_~ • -6, /• '1P eerverfaq> cl> error •/

"1PA'R~ -7, /• Requnt argl.nienta bad•/
"1PA'R_CBt • -8, /• local databaee failure •/

"1PA'R_Fll.E • -9, /• Loco! file I/t> failure •/

"1PA'R_9<EW • -18, /• ~ vereion ek• in transfer •/

"1PA'R_Cl.flfi • -11, /•Can't clear local ypeerv •/

"1PA'R_RRE • -12, /• ~t override defaults•/

"1PA'R_>CFREJfi • -13, /• ypxfr error •/

"1PJCFR_REF\.5El:)m -14 /• ypeerv refueed t ranafer •/

} ypxf retat

Basic Data Structures

This section defines the data structures used as input to and output from

the YP remote procedures.

domain name

typedef etri~ daroimarreYPMAXDOMAIN

mepneme

typedef etri~ ~YPMAXMAP

YP TUTORIAL 5-9

Y P Database Servers

peername

typedef string peerrmwaYPMAXPEER

keydat

typedef string k#rydatyPMAXRECORD

valdat

typedef string YGldatyPMAXRECORD

ypmap_parm1

typedef at ruct {
dc:nalnncne
nq>ncnl8

~lgned long ordemu1
peemcne

} YJlftCJP _pa ""8

This contains parameters giving information about map mapname within
domain domainname; peername is the name of the map"s master YP data­
base server. If any of the three strings is null. it indicates information is
unknown or unavailable. The ardernum element contains a binary value
representing the value of the map"s order number; if unavailable. this is 0.

ypreq_xfr

typedef atruct {
et ruct yptq>_pame nq>_pame
~igned long traneid
~igned long prog
~ i gned lhort port

} ypreq_xfr

5-10 CLIX SYSTEM GUIDE

ypresp_val

typedef etruct {
ypetat
voldat

} ypreep_vo I

ypreap_key _val

typedef atruct {
YJ)9tat
keydat

voldat
} ypreep_key_vol

ypreap_rnaater

typedef atruct {
ypetat
peemcne

} ypreep_Jllallter

ypresp_order

typedef at ruct {
YJ)9tat
uwlgned long ordem.n

} ypreep_order

ypresp_al

typedef wilon •Itch (boolean more) {

lR.£:
ypreep_key_vol

FALSE:
•truct { }

} ypreep_al I

VP Database Servers

VP TUTORIAL 5-11

Y P Database Servers

ypresp_xfr

typedef struct {
Wl8lgned long traneld
ypxf rstat xf rstat

} yprnp_xfr

ypmapnst

typedef •t ruct {
rnapnane
ypnapl 1st •

} ypnapl let

ypresp_mapllst

typedef st ruct {
ypetat
ypnapl let •

} ypreap_mapl let

VP Database Server Remote Procedures

This section contains a specification for each function that can be called as
a remote procedure. The input and output parameters are described using
the XDR data definition language.

Do Nothing

Procedure O. Version 2.

e. "'fffffX_NJ..L () returns ()

This takes no arguments. does no work. and returns nothing. It is made
available in all RPC services to allow server response testing and timing.

5-12 CLIX SYSTEM GUIDE

Do You Serve This Domain?

Procedure 1. Version 2.

1. ~..JXM'IN (danain) retume (aerves)

danalnnane danaln;
boo I eon aerves;

Y P Database Servers

This returns TRUE if the server serves domain and FALSE otherwise.

This procedure allows a potential client to determine if a given server sup­
ports a certain domain.

Answer Only If You Serve This Domain

Procedure 2. Version 2.

2. ~-~tl..~ (danaln) retume (aerves)

danalnnane danaln;
boo I eon eervee;

This procedure returns TRUE if the server serves domain: otherwise. it
does not return. The intent of the function is that it be called in a broad­

cast environment in which it is useful to restrict the number of useless
messages. If this function is called. the client interface implementation

must be written to regain control in the negative case. such as by means of

a timeout on the response.

The current implementation currently returns in the FALSE case by forc­

ing an RPC decode error.

Return Value of a Key

Procedure 3. Version 2.

3. "tPFRX:_M\lOi (req) returne (reap)

ypreq_key req:

ypreep_val reap:

This returns the value associated with the datum keydat in req. If the

status element in resp has the value YP _TRUE. the value data is returned

in the datum val.dot.

VP TUTORIAL 5-13

Y P Database Servers

Get First Key-Value Pair In Map

Procedure 4. Version 2.

4. ~_FIRST (req) returns (resp)
ypreq_key req:
ypresp_J<ey_vol resp:

If status has the value YP _TRUE. this returns the first key-value pair
from the map named in req to the keydat and valdat elements within resp.
When status contains the value YP _NOMORE. the map is empty.

Get Next Key-Value Pair In Map

Procedure 5. Version 2.

5. ~-t-EXT (req) returns (resp)
ypreq_key req:
ypresp_key_vol resp;

If status has the value YP _TRUE. this returns the key-value pair follow­
ing the key-value named req to the keydat and valdat elements within resp.
If the passed key is the last key in the map. the value of status is
YP_NOMORE.

Transfer Map

Procedure 6. Version 2.

6. ~-XFR (req) returns (resp)
ypreq_xf r req:
ypresp_xfr resp:

The action taken in response to this request is unspecified and is
implementation-dependent. The intention is to indicate to the server that a
map should be updated. and to allow the actual transfer agent (whether it
be the YP server process or some other process) to call back the requester
with a summary status.

The transfer agent should call back the program running on the requesting
host with program number req.prog. program version 1. and listening at
port req.port. The procedure number is 1 and the callback data is of type
ypresp_xfr. The transid field should tum around req.transid. and the
xfrstat field should be set appropriately.

5-14 CLIX SYSTEM GUIDE

RelnltlaRze Internal St'ate

Procedure 7. Version 2.

7. "fflRX:_aEM () retume ()

Y P Database Servers

The action taken in response to this request is unspecified and is

implementation-dependent. Dilf erent server implementations may have

dilferent amounts of internal state (such as open files or the current map).

This request signals that all such state should be expunged.

Get Aft KeJ-Value Pairs In Map

Procedure 8. Version 2.

8. "fflRX:_fa.l (req) retume (reep)
ypreq_nokey req;
ypreep_al I reep;

This allows all key-value pairs from a map to be transferred with a single

RPC request. When the union"s discriminant is FALSE. no more key-value

pairs will be returned. The status field of the last rpresp_lcey_val struc­

ture should be consulted to determine why the :flow of returned key-value

pairs has stopped.

Get Map Mailer Name

Procedure 9. Version 2.

9. "fflRX:_~ (req) retume (reep)
ypreq_nokey req;
ypreep_ .. ter reep;

This returns the map's master YP server inside the resp structure.

Get Map Order Number

Procedure 10. Version 2.

18. "tffRX:_CJUR (req) retume (reep)

ypreq_nokey req;
ypreep_order reep;

This returns a map's order number as an unsigned long integer. which indi­

cates when the map was built. This quantity represents the number of

seconds since the midnight before 1 January 1970 GMT.

VP TUTORIAL 5-15

Y P Database Servers

Get All Maps In Domain

Procedure 11. Version 2.

11. ~_MtPUST (req) returns (reap)
cbfta I mcne req;
ypreep_mapllet reap:

This returns a list of all the maps in a domain.

5-16 CLIX SYSTEM GUIDE

VP Binders

Introduction

So that any network service is usable. there must be some way for poten­

tial clients to find the servers. This section describes the YP binder. an

optional element in the YP subsystem that supplies YP database server

addressing information to potential YP clients.

In order to address a YP server in the Internet environment. a client must

know the server"s Internet address and the port at which the server is

listening for service requests. No contract is negotiated between a YP

server and a potential client. Therefore. the addressing information is

sufficient to bind the client to the server.

Of the many possible ways for a client to get the addressing information.

one alternative is to supply an entity to cache the bindings and to serve

that binding database to potential YP clients. The theory is that. if finding

the service takes a lot of work. allocate a specialist to do it rather than

burden every client with a job that is irrelevant to its real function. A YP

binder only makes sense if it is easier for a client to find the YP binder

than to find a YP database server and if the YP binder can find a YP data­

base server.

We assume that a YP binder is present at every network node. and because

of this. addressing the YP binder is easier than addressing a YP database

server. The scheme for finding a local resource is implementation-specific.

but given that a resource is guaranteed to be local. there may be some

efficient way of finding it. We further assume that the YP binder can find

a YP database server somehow. but that the way is either complicated.

time-consuming. or resource-consuming. If either of these assumptions is

untrue. probably your implementation is not a good choice for a YP binder.

If a YP binder is implemented. it can provide added value beyond the bind­

ing: it can verify that the binding is correct and that the YP database

server is alive and well. for instance. The degree of sureness in a binding

that the YP binder gives to a client is a parameter that can be tuned

appropriately in the implementation.

VP TUTORIAL 5-17

VP Binders

VP Binder Protocol Definition

This section describes version 2 of the protocol. It is likely that changes
will be made to successive versions as the service matures.

RPC Constants

All numbers are in decimal.

YPBINDPROG 100007 The YP binder protocol program number.
YPBINDVERS 2 The current YP binder protocol version.

Other Manifest Constants

All numbers are decimal.

YPMAXDOMAIN 64

ypblnd_resptype

....,. ypbi nd_reeptype {

The maximum number of characters in a domain
name. This is identical to the constant defined
above within the YP database server protocol
section.

'tFBIN>_S.O:::_VAL • 1 •
'tFBIN>_FAILVAL • 2

This discriminates between success responses and failure responses to a
YPBINDPROC_OOMAIN request.

ypblnderr

typedef {

} ypbinderr

'tFBIN>_~~ 1/• Internal error•/
'tFBIN>_~_t<SERV 2/• No ~ eerver for dcmal n •/
'tFBIN>_~RES: 3/• Can't allocate ayatn reeource •/

The error case of most interest to a YP binder client is
YPBIND_ERR_NOSERV; this means that the binding request cannot be

5-18 CLIX SYSTEM GUIDE

VP Binders

satisfied because the YP binder does not know how to address any YP data­
base server in the named domain.

Basic Data Structures

This section defines the data structures used as input to and output from
the YP binder remote procedures.

domain name

typedef atrlng daralrrraweYPMAXDOMAIN

This is identical to the domainname string defined above within the YP
database server protocol section.

Jpblnd_blndlng

typedef at ruct {

} ypbind_binding

w.lgned long ypbind_binding_addr
w.igned ehort ypblnd_binding_port

This contains the information necessary to bind a client to a YP database
server in the Internet environment: ypbind_binding_addr holds the host
IP address (four bytes). and ypbind_binding__port holds the port address
(two bytes). Both IP address and port address must be in ARP A network
byte order (most significant byte first or big endian). regardless of the host
machine·s native architecture.

Jpblnd_reap

typedef at ruct {

} ypbi nd_rap

&.r1ion awitch (enu11 ypbind_reeptype statue) {
'Y'FBIN>_~_VAL:

ypblnd_binding
'Y'FBIN>_F'AI l:._VAL:
ypbinderr
default:
{ }
}

This is the response to a YPBINDPROC_OOMAIN request.

VP TUTORIAL 5-19

VP Binders

ypblnd_setdom

typedef etruct {

} ypbind_eetdcn

danaimcne
ypbind_binding

version

This is the input data structure for the YPBINDPROC_SETDOM pro­
cedure.

VP Binder Remote Procedures

Like the YP procedures earlier. these procedures are described using the
XDR data definition language.

Do Nothing

Procedure O. Version 2.

e. "TflBINFRX_N.U. () returns ()

This does no work. It is made available in all RPC services to allow server
response testing and timing.

Get Current Binding for a Domain

Procedure 1. Version 2.

1. "TflBINFRX.JX'M'IN (danain) returns (reap)

danaimcne danain;

ypbind_reap reap;

This returns the binding information necessary to address a YP database
server within the Internet environment.

5-20 CLIX SYSTEM GUIDE

Set Domain Binding

Procedure 2. Version 2.

2. WBINFR:x:_SETIXM (•tdan) returna ()
ypbind_•tdan •tdcJll:

VP Binders

This instructs a YP binder to use the passed information as its current
binding information for the passed domain.

VP TUTORIAL 5-21

c

c

Procedure 1: System Rebuild

Overview of System Rebuild Pl-1

Backing Up Files Pl-3

Creating Current Rebuild Floppy Disks Pl-4

Booting from the Rebuild Boot Floppy Disk Pl-7

Entering the Utility Pages Pl-8

Entering the Utility Pages on a Workstation Pl-8
Entering the Utility Pages on a Server Pl-8

~

·-..,",...... Verifying Hard Disk Flaws Pl-10

Verifying a Workstation Hard Disk Pl-11
Verifying a Server Hard Disk P1-12

Formatting the Hard Disk Pl-13
Formatting Workstation Hard Disks Pl-13
Formatting Server Hard Disks Pl-14

Selecting the Rebuild Utility Page Icon Pl-16

Repartitioning the Hard Disk Pl-17

Using the Current Partition Table Pl-17
Repartitioning Using Default Partitions Pl-18

""c" Repartitioning Using Custom Partitions Pl-19

Partitioning Overview Pl-19
Determining Partition Sizes Pl-20

TABLE OF CONTENTS

Table of Contents

Reallocating Space Between Partitions Pt-21

Understanding Partition Names Pt-22
Creating Nonstandard Partitions Pt-23,,,,

Repartitioning Workstation Hard Disks Pt-23

Repartitioning an InterServe Hard Disk Pt-25

Loading the Re build Root Media Pt-27

Entering the Rebuild Environment Pt-29

Restoring the File Systems Pt-30

Loading Nucleus Software with newprod Pt-34

Preparing the Hard Disk to Load Software from CD ROM Pt-34

Loading Software Pt-35 ~

""-"'

Preparing Nonstandard Partitions for Use Pt-37

Creating a Device File Pt-37

Creating a File System on a Partition Pt-43

Creating a Standard File System Pt-43

Creating a Fast File System Pt-44

Mounting a Partition Pt-45

Loading Application Software with newprod Pt-47

Restoring Files from Backups Pt-48

~

~

i1 SYSTEM ADMINISTRATOR'S GUIDE

-

--

Overview of System Rebuild

Purpose To replace damaged file systems on a hard disk

When When the hard disk is corrupted so that the
Performed workstation/server will not boot or when bad block

messages are received

Bootable
Programs

Media

Time

Caution

Rebuild Boot Floppy

Rebuild Boot Floppy (#1)
Rebuild Boot Floppy (#2)
Rebuild Root Floppy (#3)
Rebuild Root Floppy (#4)
Rebuild Root Floppy (#5)
Rebuild Root Floppy (#6)

1 hour

Formatting the hard disk destroys all data on the
hard disk. Rebuilding a partition destroys all data on
the partition. Therefore. you should back up all
data.

Rebuilding the hard disk involves (at the minimum) rewriting the file

system(s). Existing data on a file system is overwritten; thus. rebuilding

can be a destructive process. Rebuild the hard disk under any of the fol­

lowing circumstances. Unless one of these circumstances is true. do not

rebuild the hard disk.

• The hard disk is corrupted and you cannot boot your workstation.

• You cannot boot your workstation to single-user mode. (You never

reach the blue introductory screen.)

• Bad block messages such as the following appear on the screen:

Disk failed: s0u0p7.1 read error at block2933

SYSTEM REBUILD Pl-1

Overview of System Rebuild

• You want to change file system types. (For example. you want to
convert /usr from a standard file system to a Fast File System.)

• You want to alter the partition sizes on the hard disk.

This chapter describes how to rebuild the hard disk. Following these steps
will ensure that you lose as little data as possible when you rebuild. Each
step is described in detail throughout the rest of this procedure.

• Back up all personal files.

• Create Rebuild floppy disks with the current software.

• Boot from the Rebuild Boot floppy (#1).

• Enter the Utility Pages.

• Verify hard disk flaws.

• Format the hard disk (optional).

• Select the Rebuild Utility Page icon.

• Repartition the hard disk (optional).

• Load the Rebuild Root media.

• Enter the Rebuild environment.

• Restore the file systems.

• Load nucleus software with 1he newprod(1M) utility.

• Prepare nonstandard partitions for use.

• Load application software with the newprod(lM) utility.

• Restore files from backups.

Pl-2 CLIX SYSTEM GUIDE

Backing Up Files

Before you rebuild the hard disk you should first back up all personal files.
including system files (such as /etc/passwd and /etc/group) that are
unique to the machine you are rebuilding. The rebuild process recreates
the file systems on the hard disk and. in the process. overwrites all data on
the hard disk. After the rebuild. you will not be able to access any files in
the file systems that were recreated.

SYSTEM REBUILD Pl-3

Creating Current Rebuild Floppy Disks

After you have backed up your personal files. you should create or locate a
current set of Rebuild floppy disks. The Rebuild floppy disk set is used to
rebuild a corrupted hard disk to a bootable state.

Customers receive a set of Rebuild floppy disks with each shipment of
Intergraph software. If you have Rebuild floppy disks from the most
recent software shipment. you may use them to rebuild.

CLIPPER Rebuild floppy sets contain these diskettes:

• Rebuild Boot for 100/32C/300-series (floppy #1)

• Rebuild Boot for 300/400/3000/4000-series (floppy #1)

• Rebuild Boot for 6000-series (floppy #1)

• Rebuild Root (floppy #2)

• Rebuild Root (floppy #3)

• Rebuild Root (floppy #4)

• Rebuild Root (:floppy #5)

• Rebuild Root (floppy #6)

To rebuild. you will use the Rebuild Boot floppy disk appropriate for the
machine you are rebuilding to boot and the Rebuild Root :floppies (2-6) to
rewrite the file systems. You will not use the extra Rebuild Boot :floppies.

If you cannot locate the most recent Rebuild floppy disks. you will need to
create a current set of Rebuild floppy disks. This section provides pro­
cedures for creating Rebuild floppy disks. You need six formatted. high­
density floppy disks to create a Rebuild floppy disk set.

Do not attempt to make Rebuild floppy disks on the machine that you are
rebuilding. Instead, use another machine that is completely operational.

Follow these steps to create a CLIPPER Rebuild floppy disk set:

1. You must be in super-user mode to perform this procedure. Log in
and key in su at the system prompt as follows:

login: username

P1-4 CLIX SYSTEM GUIDE

Creating Current Rebuild Floppy Disks

$su

2. Invoke the newprod(lM) utility to load the rebuild product
(sss0003) by keying in the following:

newprod sss0003

3. Key in the correct entry at the following prompt:

Enter source of installation n)etwork, f) loppy, t)ape,

r)emote cdrom, or local c)drom;

If you key in n for network or r for remote CDROM. the following

prompt appears:

Enter Ethernet connect string (08-00-36-XX-XX-XX) :

Key in the Ethernet address or the node name of the delivery node

where the new products reside and a valid user name and pass­
word.

4. Messages similar to the following appear. Follow the instructions

as prompted on the screen. To create a complete CLIPPER Rebuild
floppy set. select .. both .. at the first prompt.

Instal I ing: REBJILD (ss8000J) - Rebui Id Floppies
Instal I ing .••••

Do you want to make a "root" set, a "boot" floppy, both or

none? [both]:

Do you want to make a "boot" floppy for a 100~/200 series

system, a 300/400/3000/~ system or a 6000 series system?

[100/E/200]:

DaMiloading the Clipper Rebut Id #1 (100~/200) floppy.

Insert a formatted floppy into the floppy drive and press

~-->

You have a good "100/E/200" f loppyl
Label this floppy "Clipper Rebui Id #1 (100~/200)"

D<Mnloading the Clipper Rebui Id #1. (root) floppy.
Insert a formatted floppy into the floppy drive and press

~-->

SYSTEM REBUILD Pt-5

Creating Current Rebuild Floppy Disks

You have a good "root" f loppyl
Label this floppy "Clipper Rebui Id ff1. (root) (100~/200)"

Do.wllooding the Clipper Rebui Id #3 (root) floppy.
Insert a formatted floppy into the floppy drive and press
<RETLR-l> - ->

You have a good "root" f loppyl
Label this floppy "Clipper Rebui Id #3 (root) (100~/200)"

Do.wllooding the Clipper Rebui Id #4 (root) floppy.
Insert a formatted floppy into the floppy drive and press
<RETLR-l> - ->

You have a good "root" f loppyl
Label this floppy "Clipper Rebui Id #4 (root) (100~/200)"

Do.wllooding the Clipper Rebui Id >f5 (root) floppy.
Insert a formatted floppy into the floppy drive and press
<RETLR-l> -->

You have a good "root" f loppyl
Label this floppy "Clipper Rebui Id >f5 (root) (100~/200)"

Do.wllooding the Clipper Rebuild #6 (root) floppy.
Insert a formatted floppy into the floppy drive and press
<RETLR-l> - ->

You have a good "root" f loppyl
Label this floppy "Clipper Rebui Id #6 (root) (100~/200)"
Cleaning up •••
Successful installation: REBJILD (sss000J)
Product installed in the /usr/ip32/rebui Id di rectory

5. After these messages appear, press <RETURN> to return to the
newprod.(1M) menu. Key in q to exit the newprod.(1M) utility.

P1-6 CLIX SYSTEM GUIDE

Booting from the Rebuild Boot Floppy Disk

After you have created a set of Rebuild floppy disks with the current
software. you must boot the workstation from the Rebuild Boot floppy
disk.

If you use the Rebuild set delivered with the software. notice that you
received the following Rebuild Boot (#1) floppy disks:

• Rebuild Boot for 100/32C/300-series (floppy #1)

• Rebuild Boot for 300/400/3000/4000-series (floppy #1)

• Rebuild Boot for 6000-series (floppy # 1)

To boot from the Rebuild Boot floppy. select the Boot floppy appropriate
for the machine that you will rebuild. Insert this disk in the floppy disk
drive and boot the workstation/server. The machine will boot from the
Rebuild floppy rather than from the hard disk.

SYSTEM REBUILD Pl-7

Entering the Utility Pages

After you have booted from the Rebuild Boot floppy disk. you must enter

the Utility Pages. You will use the Utility Pages to verify hard disk flaws.
format the hard disk (if desired). repartition the hard disk (if desired).
and load the rebuild media. Because the interface is different for worksta­
tions and servers. this section separates the procedures for workstations
and servers.

Entering the Utility Pages on a Workstation

When an Intergraph workstation boots from the Rebuild floppy disk. a

blue introductory screen appears. You must move the mouse or cursor
within five seconds if you wish to enter the Utility Pages. From the intro­

ductory screen. select the Utility icon to enter the Utility Pages. If the
Utility Pages have been assigned a password. you will be prompted to
enter the Utility Page password.

If the Utility Pages do not have a password, you may wish to assign one
for security purposes. (Only the system manager should be allowed to
access the Utility Pages because this environment allows you to format
and repartition the hard disk.) To assign a password to the Utility Pages,
select the Workstation Password icon on the Main Utility Page and key
in the desired password when prompted.

The Utility Pages are a series of screens that allow you to configure the
system. At the bottom of each Utility Page screen. notice the Help icon.
To use the help function. place the cursor on the item for which you want
information and tap the reset button.

Entering the Utility Pages on a Server

When an Intergraph server boots from the Rebuild floppy disk. an intro­

ductory screen appears. You must press any key within five seconds to
enter the Startup Utility Pages. From this screen. key in UT to enter the
Utility Pages. If the Utility Pages have been assigned a password. you will
be prompted to enter the Utility Page password.

Pl-8 CLIX SYSTEM GUIDE

Entering the Utility Pages

If the Utility Pages have not been assigned a password, you may wish to
assign one for security purposes. (Only the system manager should be
allowed to access the Utility Pages because this environment allows you to
format and repartition the hard disk.) To assign a password to the Utility
Pages, key in PW at the Main Utility Page and key in the desired pass­
word when prompted.

The Utility Pages are a series of screens that allow you to configure the
system. At the bottom of each Utility Page screen. notice the Help option.
To use the help function. key in h followed by the string required to select
the option. For example. to read help information on the Disk Partitioning
screen. key in h dp. Notice that the help function is not case-sensitive.

SYSTEM REBUILD P1-9

Verifying Hard Disk Flaws

From the Utility Pages. you will be able to verify the locations of hard
disk flaws by running the Verify procedure. This procedure reads the hard
disk and records all flaws to ensure that data is not written over flawed
areas. It does not erase or change data on the disk.

If you are rebuilding because you wish to repartition the hard disk or con­
vert to a different file system type. you do not need to run the Verify pro­
cedure. However. if you are rebuilding the hard disk to correct bad block
messages or to correct a corrupted disk. you must run the Verify pro­
cedure.

The following is an example of a bad block message:

Di s k fa i I ed: s0u0p07. 1 medium error:

read error at block 2933

Bad blocks are flawed areas on the hard disk. As the disk drive writes data
on the disk. it calculates an Error Correction Code (ECC) for each block
and stores the code at the end of each block. When the drive reads data ~

from the disk. it calculates another ECC and compares it to the original ...,,,,.,
stored value. If the codes match. the data stored in that block is intact and
uncorrupted. If the codes do not match. the drive generates an ECC error
and the host displays a medium error or a bad block message.

The Intergraph 156-MB CDC and 180-MB Imprimis disks have automatic
read and write reallocation. This means that if the system finds an error
that it cannot recover from (save the data. move it to a new location. and
experience no data loss). the block will be automatically reallocated to
another sector of the disk and the original data will be rewritten there
(with no data loss).

However. if the system finds an unrecoverable data error while executing a
read or write operation. it will report a medium error. If you receive one
or more medium errors. run the Verify procedure on the disk to register
and reallocate any other bad blocks that may have developed.

Some Maxtor disks have Automatic Read and Write Reallocation. Regard­
less of your Maxtor disk version. you will still receive a bad block message
if unrecoverable data errors are encountered on the disk. When a bad
block message displays. you must run the Verify procedure to reassign the
bad blocks.

Pl-10 CLIX SYSTEM GUIDE

Verifying Hard Disk Flaws

The Verify procedure attempts to read every location on the disk. It
checks the data by comparing a computed value of ECC with a value that

,,.,..... was computed when the data was written and stored on the disk at the end
~ of each track. If the ECC code does not match. the procedure reads the

disk again. One retry is categorized as a soft error. Two or more retries
indicate a hard error. Hard errors are :flagged as bad blocks. If the pro­
cedure finds a bad block. the host reassigns the bad block to a spare loca­
tion on the disk.

After all bad blocks are found. the disk is clean and ready to go. A bad
block indicates that a block of data has an error. As a result. the data in
this block may not be recoverable.

Procedures differ for workstations and servers and are described in
separate sections.

Verifying a Workstation Hard Disk

Follow these steps to Verify a workstation hard disk.

1. From the Main Utility Page. select the Disk Maintenance Utility
,,,....,,... screen button.

2. Select the Next Page screen button to access the Hard Disk Flaw
Data Utility Page.

3. Select the Verify screen button to access the Verify page.

4. From the Verify page. check to see that the SCSI ID. Disk Capacity.
and Logical Unit Number fields contain the correct settings for the
disk you want to verify.

The SCSI ID and LUN for internal hard disks are 0. The disk capa­
city depends on the internal hard disk size.

5. Select the Verify screen button to begin the Verify process.

6. If the hard disk is corrupted with numerous bad blocks. the Verify
process may not complete. If the process is not successful. you
must format the hard disk to mark all bad blocks. Proceed to
.. Formatting the Hard Disk.'' If the verification process completes
successfully. you will not be required to complete step 6 in the
rebuild process ... Formatting the Hard Disk.··

SYSTEM REBUILD Pl-11

Verifying Hard Disk Flaws

Verifying a Server Hard Disk

Follow these steps to Verify a server hard disk:

1. From the Main Utility Page. key in the following to display the
Disk Maintenance Utilities menu:

Option: DM

2. Check to see that the SCSI_id. Logical_Unit_Number. and Disk
Capacity fields contain the correct settings for the disk you want to
verify.

3. Key in the following to select the VeriFY option. which runs the
verification procedure.

Option: VFY

4. If the hard disk is corrupted with numerous bad blocks. the Verify
process may not complete. If the process is not successful. you
must format the hard disk to mark all bad blocks. Proceed to
.. Formatting the Hard Disk.""

5. If the verification process completes successfully. you will not be
required to complete step 6 in the rebuild process ... Formatting the
Hard Disk.""

Pl-12 CLIX SYSTEM GUIDE

Formatting the Hard Disk

If the Verify procedure fails. you must format the hard disk. Otherwise.
formatting is optional. Formatting overwrites all data on the hard disk:
therefore. you should not format unless the Verify procedure failed.

Formatting involves structuring the disk so that hardware and software
can communicate with the disk. This process writes a test pattern to the
disk and reads it to verify the pattern. checks for any errors. and marks
locations on the disk (flaws) that cause errors. These flaws are recorded to
prevent any future writing to or reading from that location.

Rebuilding without formatting is possible. In many cases. only part of the
hard disk is corrupted. You may be able to restore the corrupted file
system(s) without formatting the hard disk. If you format. you will lose
all data on the disk; if you do not format. you will lose only the data in
file systems that you restore. If you do not wish to format the hard disk,
proceed to .. Selecting the Rebuild Utility Page Icon.··

Formatting takes approximately 45 minutes for 80-MB hard disks. 90
minutes for 156-MB hard disks. 4 hours for 355-MB hard disks. and 8
hours for 670-MB hard disks.

~Formatting destroys all data on the disk. Therefore, back up all personal v files before formatting.

Formatting procedures for workstations and servers differ and are
described separately.

Formatting Workstation Hard Disks

Follow these steps to format workstation hard disks:

1. From the Main Utility Page. select the Disk Maintenance Utility
Page.

2. When the Disk Maintenance Utility Page appears. select the follow­
ing settings for an internal hard disk:

SCSI ID •0

SYSTEM REBUILD P1-13

Formatting the Hard Disk

Log i ca I Unit Number• 0

For an external hard disk, you would set the SCSI ID to 1. 2, or 3,
and the LUN to 0. ~

3. Match the Intergraph Part Number on the Hard Disk Profile Sheet
with the part number in the Disk Type roll-through box.

4. Key in the serial number from the Hard Disk Profile Sheet if it does
not display in the Serial Number data entry field.

5. Select the Next Page screen button to access the Hard Disk Flaw
Data Utility Page. Select the following settings:

Format W i th FI aw Dot a • Yes

Selecting .. yes·· for the Format With Flaw data option prevents
flaws on the disk from being ignored during the format process.

Ver I fy on Format •Yes

Selecting .. yes" for the Verify on Format option runs the Verify
procedure to record any new flaws found on the disk during the
format.

6. Select the Format screen button to access the red Format Utility
Page.

7. Select the Format screen button to start the procedure. While the
format procedure is running. messages revealing the part of the
disk being verified and identifying the bad blocks appear on the
screen. You do not need to respond to any of these messages. The
message .. Format Complete" appears when formatting is finished.
Select the Previous Page screen button to return to the Hard Disk
Flaw Data Utility Page.

Formatting Server Hard Disks

Follow these steps to format an InterServe hard disk:

1. From the Main Utility Page, key in DM to display the Disk
Maintenance Utilities menu.

P1-14 CLIX SYSTEM GUIDE

-

Formatting the Hard Disk

2. Key in the following to set the SCSI ID to O:

Option: SCSI 0

3. Key in the following to set the logical unit number to 0:

Option: LUN 0

4. Key in the following. where serial-number is the correct serial
number for the disk as the Hard Disk Profile Sheet indicates:

Option: SN serial-number

5. Key in the following so that fl.aw data will be considered during
the format:

Option: FWF Y

6. Key in the following for the flaw data list to be verified during the
format and for any additional bad blocks to be added to the list
and registered:

·~ Option: FWV Y

7. Key in the following to start the format procedure:

Option: FORMAT

While the format procedure is running. messages revealing the
part of the disk being verified and identifying the bad blocks
appear on the screen. The message .. Format Complete .. appears
when formatting is finished.

SYSTEM REBUILD Pl-15

Selecting the Rebuild Utility Page Icon

After verifying and formatting the hard disk. the next step in the rebuild
process is selecting the Rebuild Utility Page from the Main Utility Page.
Do so by selecting the Rebuild icon on the Main Utility Page (for worksta­
tions) or keying in REBUILD at the Main Utility Page (for servers).

The Rebuild Utility Page allows you to repartition. load Rebuild media.
and enter the Rebuild environment. Before you can begin restoring the file
systems. you must have specified an acceptable partition table. successfully
loaded the Rebuild media. and selected the icon to enter the Rebuild
environment. H any of these steps has not been completed. you will not be
allowed to continue the rebuild process.

Notice that the left portion of the Rebuild Utility Page displays messages
concerning your current status and your next step. While you are using
the Rebuild Utility Page. refer to this message area for brief instructions.

Pl-16 CLIX SYSTEM GUIDE

Repartitioning the Hard Disk

From the Rebuild Utility Page. you may repartition the hard disk. This
step is not required unless the current partitions are unacceptable for the
rebuild procedure.

Partitioning logically divides the hard disk into separate sections or devices
for specific areas of user and operating system functions. You must repar­
tition the hard disk only if the current partitions are not acceptable for the
Rebuild software. You may also repartition to increase or decrease the size
of specific partitions or to add nonstandard partitions. For example. you
may need to add a stash partition to produce large plots on raster output
devices. See the lnterPlot User's Guide for more information on creating a
stash partition.

The Rebuild Utility Page refers to the partitions on the disk as the parti­
tion table. This documentation will use the terms partitions and partition
table interchangeably.

During the rebuild process. you must choose one of the following options
concerning hard disk partitions:

• Use the current partitions.

• Repartition using Intergraph-defined default partitions.

• Repartition using custom partitions.

Using the Current Partition Table

If the current partition table is acceptable for the Rebuild software and
you do not wish to alter it. you will not need to repartition the hard disk.
Partitions must meet the following requirements before the Rebuild
software will accept them:

• The root partition must have at least 25.000 blocks.

• The swap partition must have at least 15.000 blocks.

SYSTEM REBUILD Pl-17

Repartitioning the Hard Disk

• The usr partition must exist.

Other software products may have additional partition requirements. The
system manager should determine the partition sizes appropriate for the
system and the software the system uses. Refer to "Partitioning Over­
view" for information on factors that you should consider when you
establish partition sizes.

Follow these steps if you wish to use the current disk partitions:

1. Access the Rebuild Utility Page.

2. If the messages on the left portion of the screen indicate that the
current partitions are not acceptable, you must repartition the hard
disk. Proceed to .. Repartitioning Using Default Partitions .. or to
.. Repartitioning Using Custom Partitions ...

3. If the messages on the left portion of the screen indicate that the
partitions are acceptable, proceed to .. Loading the Rebuild Media ...

Repartitioning Using Default Partitions

If you are not currently using the (Intergraph-defined) default partitions
but wish to, you must repartition the hard disk using the Default option
supplied on the Rebuild Utility Page. Be aware that you will lose all data
on any partition that you alter.

Intergraph has established the following default partition sizes:

80MB 156MB 355MB 584MB 670MB

boot: 3988 7988 7988 7988 7988
root: 25000 25000 25000 25000 25000
swap: 27360 71000 71000 71000 71000
PC-DOS: 5000 none none none none
usr: 100000 200600 590298 1037988 1204900
usr2: none none none none none

Pl-18 CLIX SYSTEM GUIDE

~

~

-

-

Repartitioning the Hard Disk

The total number of blocks in the partition table and the disk capacity
differ, because a one block header is associated with each partition. The
header blocks are included in the disk capacity count and not in the parti­
tion table count.

Follow these steps to repartition using default partitions:

1. Access the Rebuild Utility Page.

2. Select the Default icon under the Create Partition Table heading.
This menu option will automatically redefine all hard disk parti­
tions according to the defaults. You will lose all data in any parti­
tion that is altered.

3. If the messages on the left portion of the screen indicate that the
partitions are acceptable, proceed to .. Loading the Rebuild Media."

Repartitioning Using Custom Partitions

This section describes repartitioning the hard disk using custom partitions
rather than using the Intergraph-defined default partitions described in the
previous section. For example, you may want to create a usr2 or usr3 par­
tition by taking space from usr. Be aware that you will lose all data on
any partition that you alter.

• If you are not familiar with the concept of repartitioning the hard
disk. read .. Partitioning Overview .. before you begin actually repar­
titioning the hard disk.

• If you are familiar with the concept of repartitioning the hard disk,
proceed to .. Creating Nonstandard Partitions ...

Partitioning Overview

This section provides information concerning the following topics:

• Determining partition sizes

SYSTEM REBUILD Pl-19

Repartitioning the Hard Disk

• Reallocating space between partitions

• Understanding partition names

Determining Partition Sizes

Intergraph divides workstation/server hard disks into the following parti­
tions:

• boot

• root

•swap

• DOS (32C workstations only)

• usr

Intergraph does not automatically place a stash partition (for plotting) on
hard disks. However, some plotters require stash on the plot server. A
stash may be either a partition on the hard disk or physical memory.
Refer to the lnterPlot User's Guide for information on creating a stash
partition.

The boot partition contains boot images. including the hardware diagnos­
tics test. Utility Pages. and CLIX kernel software. This partition contains
3.988 blocks for workstations with 80-MB hard disks and 7 .988 blocks for
all other hard disk sizes. You cannot access this partition on the Disk Par­
titioning Utility Page because you cannot alter its size.

The root partition contains a major portion of the CLIX operating system.
By default. this partition contains 25.000 blocks. You should not take
space from this partition. and if you receive messages saying that the root
(7.0) partition is out of space. you must add space to it.

The swap partition is used for swapping portions of memory to the hard
disk. By default. it contains 2 7 .360 blocks for 80-MB hard disks and
71.000 blocks for all other hard disk sizes. Space can be removed from the
swap partition to add to another partition. However. some applications
will not run without a minimum amount of swap space. This minimum
amount varies among applications.

P1-20 CLIX SYSTEM GUIDE

Repartitioning the Hard Disk

The DOS partition is included on 32C workstations only. If you will not
use the PC-DOS partition on your workstation or if you are using SoftPC

.~ on your workstation. you may remove the DOS partition and add the space
·~ to another partition such as usr. By default. this partition contains 5.000

blocks.

The usr partition contains user directories. most products. and any other
directories and files that users access. By default. the usr partition con­
tains 100.000 blocks for 80-MB hard disks; 200.600 blocks for 156-MB
hard disks; 590.298 blocks for 355-MB hard disks; 1.037.988 blocks for
584-MB hard disks; and 1.164.276 blocks for 670-MB hard disks. Because
this partition is the user's work partition. it contains the most free space.
You may wish to remove space from usr and form a usr2 partition.

You must have a stash on your plot server to plot on most plotting dev­
ices. A stash may be either a partition on your hard disk or physical
memory. (Physical memory may be used only if sufficient physical
memory is available on your server. See section 1.13 in the lnterPlot
User's Guide.)

Reallocating Space Between Partitions

To take space from one partition and add it to another. those two parti­
tions must be adjacent on the disk. and the partition receiving the addi­
tional space must be positioned to the left of (behind) the partition giving
up space.

By default. the standard partition order on hard disks is as follows:

For 32/32C workstations only:

I root I swap PC-DOS usr I

For all other workstations and servers:

I root I swap usr I

For example, on a 32C workstation you could remove the DOS partition
and add it directly to the swap partition (since these partitions are adja­
cent). However. you could not remove the DOS partition and add it
directly to root. You could add the DOS space to root only by adding it to

SYSTEM REBUILD Pl-21

Repartitioning the Hard Disk

the swap partition and then removing it from swap and adding it to root.

In addition, when you add a partition, the system will only search for-
ward on the disk for space to claim. That is, to remove the DOS partition ~
(on a 32C workstation) and add that space to the usr partition, you could ~
not remove the DOS partition and add a larger usr partition. Doing so
would cause the system to search for and allocate space at the beginning
and beyond the usr partition. Instead, you would need to remove the DOS
and the usr partition and then add a larger usr partition. In this case, the
system would start allocating space from the beginning of the (former)
DOS partition.

~ Repartitioning the hard disk loses any information in a moved, removed, y or resized partition. Therefore, back up all files before repartitioning.

Understanding Partition Names

Partition names appear in the following form on the Disk Partitioning
Utility Pages:

sAuBpC.D

The following table defines the components of this partition name:

Labels Variables

s =SCSI ID
u =unit
p = partition

A: SCSI ID number
B: unit (drive) number
C: general-purpose division number (partition)
D: modifier number (subpartition)

Intergraph specifies the following general-purpose division numbers on the
hard disk:

2 = flaw information partition
4 =error log
5 =configuration information partition
7 = CLIX partition
8 =boot code partition
9 =DOS partition
A= diagnostic software partition
F = stash partition

Pl-22 CLIX SYSTEM GUIDE

Repartitioning the Hard Disk

For example. a CLIX partition begins with a 7 (as in s0u0p7.3).

Intergraph defined the following general-purpose partition and modifier
numbers on the hard disk:

7.0 =root partition
7.1 =swap partition
7 .3 = usr partition
7.4 = usr2 partition

Combining the partition and modifier allows each of the possible 16
general-purpose partitions to be divided into 16 subpartitions for a total of
256 virtual disks.

Creating Nonstandard Partitions

This section supplies the general steps for creating new partitions. The
system manager should decide how much space must be allocated for each
partition. Follow steps in this section for adding partitions and altering
partition sizes. For more information on creating a stash partition. refer to
the Inter Plot User's Guide.

" Repartitioning erases all data on any altered partition. Therefore, back up y all files before repartitioning.

Repartitioning Workstation Hard Disks

Follow these steps to repartition workstation hard disks:

1. Select the Custom icon from the Rebuild Utility Page. This selec­
tion will transfer control to the Disk Partitioning Utility Page.

2. Notice the chart displaying the hard disk partitions at the top of
the Disk Partitioning Utility Page. Study this chart to determine
how you wish to alter the partitions. Keep in mind the following
restrictions enforced by the Rebuild software:

o The root partition must have at least 25 .000 blocks.

SYSTEM REBUI LO Pl-23

Repartitioning the Hard Disk

3.

o The swap partition must have at least 15 .000 blocks.

o The usr partition must exist.

Other software products may have additional partition requirements. The
system manager should determine the partition sizes appropriate for the
system and the software the system uses. Refer to "Determining Partition
Sizes" for information on factors you should consider when you establish
partition sizes.

From the Disk Partitioning Utility Page. you can add and remove
partitions. Thus. to change partition sizes. you must remove all
partitions being altered and then add them back with new sizes.

To remove a partition. scroll through the Partition Names roll­
through box until the name of the partition to remove appears. If
the desired name is not in the roll-through box. key in the Partition
Number and the Modifier Number (in their respective fields) for
the partition to be removed. Select the Remove Partition button to
remove the partition currently displaying in the Partition Names
roll-through box.

Enter the name of the new partition in the Partition Names box.
Then. enter the Size in Blocks of the new partition. To add the
specified partition. select the Add Partition button. The partition
will be added in the first available slot.

If you plan to make the size of the last partition equal to the amount of
available free space listed in the partition table, you must subtract two
from the amount of free space. (The partition header and the "End of
Disk" header require one block each.)

Notice that the bar chart at the top of the screen reflects adjust­
ments to the disk partitions.

4. After you have defined all hard disk partitions. select the Utility
icon to return to the Main Utility Page and then the Rebuild icon
to return to the Rebuild Utility Page.

Keep in mind that you must create a device file and then create and
mount a file system on any nonstandard partition (such as usr2 or
usr3) that you add. These steps are described in .. Preparing

Pl-24 CLIX SYSTEM GUIDE

Repartitioning the Hard Disk

Nonstandard Partitions for Use:·

. .--.... Repartitioning an lnterServe Hard Disk

Follow these steps to repartition an InterServe hard disk:

1. Select the Custom icon from the Rebuild Utility Page. This selec­
tion will transfer control to the Disk Partitioning Utility Page.

2. Key in the following to list the partitions currently on the hard
disk:

Option: LP

Keep in mind the following restrictions enforced by the
Rebuild software:

o The root partition must have at least 25 .000 blocks.

o The swap partition must have at least 15 .000 blocks.

o The usr partition must exist.

Other software products may have additional partition requirements. The
system manager should determine the partition sizes appropriate for the
system and the software the system uses. Refer to "Determining Partition
Sizes" for information on factors that you should consider when you
establish partition sizes.

3. From the Disk Partitioning Utility Page. you can add and remove
partitions. Thus. to change partition sizes. you must remove all
partitions being altered and then add them back with new sizes.

To remove a partition from an InterServe hard disk. first key in the
following to list the existing partitions:

Option: LP

Next. write down the partition and modifier numbers (such as 1 and
3 for usr) for the partitions you will remove.

Then. key in the following command line to remove a partition.
substituting the appropriate values in each field:

Option: RMP partition-number rrwdifier-numher

Components of this command line are defined as follows:

SYSTEM REBUILD P1-25

Repartitioning the Hard Disk

o Rl\fi> is the ReMove_Partition option, which removes the parti­
tion designated on the same line from the disk.

o partition-number is the number of the partition to be removed.

o mndifier-number is the modifier number of the partition to be
removed.

To add a partition to a server hard disk, first key in the following to
select the Add_SYStem option. This option reserves the first 7988
blocks of disk space for the bootable partitions and images that you
must create later when rebuilding the hard disk with the Rebuild
floppy disk set (described in .. Restoring the File Systems ..).

Option: ASYS

Key in the following to add each desired partition to the disk:

Option: ADDP partition-number mndifier-numher size

If you plan to make the size of the last partition equal to the amount of
available free space listed in the partition table, you must subtract two
from the amount of free space. (The partition header and the "End of
Disk" header require one block each.)

4. Key in the following to select the List_Partitions option, which
lists existing partitions and verifies that the desired partitions have
been added:

Option: LP

5. After you have defined all hard disk partitions, key in UT to
return to the Main Utility Page and then REBUILD to return to the
Rebuild Utility Page.

Keep in mind that you must create a device file and then create and
mount a file system on any nonstandard partition that you add
(such as usr2 or usr3).

P1-26 CLIX SYSTEM GUIDE

Loading the Rebuild Root Media

The next step in the rebuild process is to load the Rebuild Root media.
This step loads minimal file systems to the hard disk. The minimal file
systems are stored temporarily in swap space. When you begin actually
restoring the file systems. these file systems will be copied from swap to
the appropriate partitions.

Follow these steps to load the Rebuild Root media:

1.

2.

3.

4.

5.

You can rebuild your workstation/server with different media types,
including :O.oppy disk, micro:O.oppy, tape, or CDROM. This section will
provide instructions for loading Rebuild :0.oppy disks; however, the inter­
face is similar for all media types.

Locate (or create) the Rebuild Root media. If your requested media
type is floppy disk. locate or create the five Rebuild Root floppy
disks.

Select the appropriate media type (for example. floppy) from the
roll-through box in the Load Rebuild Root Media portion of the
Rebuild Utility Page. If you are rebuilding with 3112 -inch floppy
disks. select the micro:floppy media type.

Insert one of the Rebuild Root floppy disks in the drive and select
the Load icon. The Rebuild software does not require you to load
the Rebuild Root :floppies in any specific order. You may load the
media in any order. as long as you load each floppy.

As the media is being loaded on the hard disk. notice that the
blocks remaining to be read display in the Blocks Remaining menu
box. This menu box is purely informational; you do not need to
respond to it.

When the floppy has been loaded. remove it from the drive and
insert the next floppy. Continue this process until all Rebuild Root
:floppies have been loaded on the hard disk.

SYSTEM REBUILD Pl-27

Loading the Rebuild Root Media

If the system reports a "CRC error,, while you are loading the media, try
again to load the media. If the media still does not load successfully,
recreate the Rebuild Root disk.

Pl-28 CLIX SYSTEM GUIDE

Entering the Rebuild Environment

After loading the Rebuild media. you may enter the Rebuild environment.
After you have loaded the Rebuild media on the hard disk. select the Boot
icon on the Rebuild Utility Page. This icon will boot the workstation into
single-user mode and initiate the Rebuild menu. You do not need to boot
from the Rebuild floppy disks because the Rebuild media has already been
loaded on the hard disk (in swap space). Thus. you may remove Rebuild
media from the disk drive before you boot into the Rebuild environment.

SYSTEM REBUILD Pl-29

Restoring the File Systems

After you have entered the Rebuild environment. you may restore
minimal file systems to the hard disk. Restoring minimal root and /usr
file systems prepares the hard disk so that software can be loaded through
the newprod(lM) utility.

The steps in this section differ depending on the extent you need to rebuild.
Depending on the problem with your hard disk. you may need to restore
only root. or you may need to restore root and /usr. This section provides
guidelines for a partial rebuild. However. this section focuses on perform­
ing a complete rebuild (restoring the root and /usr file systems).

Follow these steps to restore the file systems:

1. After the workstation/server boots to single-user mode. the fol­
lowing menu appears:

Rebu i Id options:

1 • Re bu i Id the ROOT (7. 0) and USR (7. 3) f i I e systems.

2. Rebui Id the hard disk ROOT file system.

3. Rebut Id the hard diskUSR file system.

4. Make a hard disk fast f i I e system (other than ROOT or USR).

5. Boot the system.

q. Quit the Rebui Id ut i Ii ty.

Enter se I ect i on(s) separated by spaces--->

The appropriate response to this prompt depends on the extent you
need to rebuild. Before you decide which menu option to choose.
read the description for each option carefully.

Option 1. Rebuild the ROOT (7.0) and USR (7.3) :file systems.

The first option restores the root and /usr file systems. This option
allows you to create /usr as a Fast File System. (See the descrip­
tion of option 4.) If you select this option. you will lose all data
on the disk. including personal files. ~

Option 2. Rebuild the hard disk ROOT :file system.

This option creates a minimal root file system. Unless you know

Pl-30 CLIX SYSTEM GUIDE

Restoring the File Systems

that the problem is in a file system besides root (such as /usr or
/usr2), this menu option should be your initial choice. After
choosing option 2, reboot, load software from newprod(1M). and
then reboot again. If this menu choice does not correct the problem
on the hard disk, return to the Rebuild options menu and select
option 3.

Option 3. Rebuild the hard disk USR file system.

This option creates a minimal /usr file system; thus, it overwrites
all files (including any personal files) in the current /usr file sys­
tem. It allows you to create /usr as a Fast File System. You
should choose this option if option 2 did not solve the problem or if
you know that the /usr file system is corrupted. After the /usr
file system has been restored. reboot. load software from
newprod(1M), and reboot again. If this menu option does not solve
the hard disk problem, return to the Rebuild options menu and
select option 1.

Option 4. Make a hard disk fast file system (other than ROOT
or USR)

This option creates /usr2, /usr3. or /usr4 as a Fast File System.
Fast File Systems contain 8K-byte units. whereas standard file sys­
tems (S51K) contain 1K-byte units. For this reason. Fast File Sys­
tems read large files more efficiently than standard S51K file sys­
tems do. Any file system can be created as a Fast File System.
Because this option creates a new file system on the partition. any
data on the partition will be lost.

The RFS product does not support FFS. Thus, if you use RFS, do not
create any file system as a FFS.

Option S. Boot the workstation

This option boots the workstation. You will need to select this
option after completing option 2. 3. or 4. You do not need to select
this option after completing option 1 because option 1 automati­
cally reboots after file systems are restored.

SYSTEM REBUILD Pl-31

Restoring the Fiie Systems

Option q. Quit the Rebuild utility

This option exits the Rebuild options menu and leaves you in

single-user mode. In single-user mode. you can key in Rebuild to

return to the Rebuild options menu or boot to reboot the system.

In addition. you can use a limited number of commands such as
mount(1M). tar(1). and vi(1).

2. Select the option(s) of your choice at the Rebuild options menu.

Rebui Id options:

1. Re bu 1 Id the ROOT {7. 0) and USR{7. 3) f 11 e systems.

2. Rebui Id the hard disk ROOT f i I e system.

3. Rebui Id the hard disk USR f i I e system.

4. Make a hard disk fast file system {other than ROOT or USR).

5. Boot the workstation.

q. Quit theRebuildutility.

Enter se I ect i on{s) separated by spaces--->

This documentation assumes that you needed to rebuild your
hard disk entirely. including all file systems. The following
prompt appears:

Do you want to make root a Fast Fi I e System {y/n)? [n]

Do you want to make uer a Fast Fi I e System {y/n)? [y]:

3. Key in y at each prompt if you want to create root and /usr as Fast

File Systems (unless you use RFS or lnformix).

Once the rebuild procedure is complete. the following prompt
appears on the screen:

Rebooting the workstation.

WARNING: Insert the Rebu i Id #1 Boot f I oppy.

Press <RETURN> when ready to boot--->

Before you press <RETURN>. insert the Rebuild Boot floppy (#1)

in the disk drive.

Pl-32 CLIX SYSTEM GUIDE

Restoring the File Systems

4. Press <RETURN>. Messages similar to the following appear
briefly:

Syncing disks.

INIT: Sing I e User Mode

System Reboot In progreaa •

With the Rebuild Boot floppy disk inserted. the system boots.

"Do not remove the Rebuild Boot floppy until after you initiate the y newprod(lM) utility.

SYSTEM REBUILD Pl-33

Loading Nucleus Software with newprod

After file systems are restored and the hard disk is booted, load nucleus
software using the newprod(1M) utility. At this point in the rebuild pro­
cedure, minimal file systems reside on the hard disk.

After loading nucleus software, you must reboot the system to initiate the
new software and check to ensure that the hard disk is functional. You do
not need to load application software until the system is completely func­
tional.

If you do not load software from delivery CD ROM, proceed to .. Loading
Software."

Preparing the Hard Disk to Load Software from CDROM

Before you can load software from CDROM after a rebuild, you must
complete the following steps:

1. Insert the CDROM in the caddy and the caddy in the CDROM
drive.

2. If your CD ROM drive is not connected to SCSI ID 4, you must
create the CDROM drive device file using the mknod(1M) com­
mand. Refer to the CDROM Drive User's Guide for the appropriate
command line.

If your CDROM drive is connected to SCSI ID 4, the device file has
already been created. Check the DIP switch setting on the rear of
the CDROM drive to determine the SCSI ID setting. Proceed to step
3 if the drive is connected to SCSI ID 4.

3. Link the device file (/dev/dsk/s4uOpO.O) to the CDROM drive
(/dev/dsk/cdrom) by keying in the following command line at the
super-user prompt. This example assumes that the CDROM drive
is connected to SCSI ID 4. If it is not. substitute the proper device
file for I dev I dsk/s4u0p0.0.

ln /dev I dsk/s4u0p0.0 /dev /dsk/cdrom

P1-34 CLIX SYSTEM GUIDE

-

4.

Loading Nucleus Software with newprod

Mount the device by keying in the following at the super-user
prompt:

mount -rf FFS /dev/dsk./s4u0p0.0 /mnt

5. Copy the runcd(lM) utility by keying in the following:

cp /mnt/runcd /usr/bin

6. Unmount the CDROM by keying in the following:

umount/mnt

7. Invoke the runcd(lM) utility by keying in the following:

runcd

8. At the CDROM Menu. key in 2 to invoke the newprod(lM) util­
ity.

Loading Software

Follow these steps to load software:

1. After the system boots. the following prompt appears:

CLIPPER Re bu i Id
Do you wish to invoke "newprod", the product i nsta 11 at ion ut i 1-

i ty? [y]:

Key in y to invoke newprod(lM).

2. The following prompt appears:

Enter source of installation: n)etwork, f)loppy, t)apeor

r}emote cdrom or I oca I c}drom -->

Respond to the prompt by keying in the first letter of your instal­
lation source. If you key inc for local CDROM. a message similar
to the following may appear:

Cannot mount /dev/dsk/cdrom on /de I

If this message appears. complete the steps in .. Preparing the Hard

SYSTEM REBUILD P1-35

Loading Nucleus Software with newprod

Disk for CD ROM Software Delivery" before you begin the rebuild
process.

If you keyed in n for network or r for remote CDROM, you will
be prompted to enter the network connect string. After rebuilding.
you cannot key in the node name of the delivery node; instead, you
must key in the Ethernet address.

3. If the Rebuild Boot floppy disk (#1) is still in the floppy disk drive,
remove it from the drive.

4. Load nucleus software with the newprod(lM) utility. Refer to
the .. New Product Delivery·· procedure for instructions for using
the newprod(1M) utility to deliver software.

5. After products have been loaded. reboot from the hard disk (not
from the Rebuild Boot floppy). If the system boots without
displaying disk errors, continue to the next step in the rebuild pro­
cess (.. Preparing Nonstandard Partitions for Use''). If the system
does not boot correctly. return to .. Restoring the File Systems" and
attempt to rebuild again. This time select a different option from
the Rebuild options menu.

Pl-36 CLIX SYSTEM GUIDE

Preparing Nonstandard Partitions for Use

After you have successfully loaded all baseline nucleus products. you
must prepare all nonstandard partitions for use. If you created nonstan­
dard partitions (such as usr2 or usr3). you may need to create a device file.
create a file system on the partition. and then mount the file system before
you can access the partition.

If you did not create any nonstandard partitions. proceed to .. Loading
Application Software with newprod:·

Creating a Device File

The first step in preparing a nonstandard partition for use is creating the
device file for the partition. The device file must be created in the
/dev/dsk directory. This section explains the procedure for creating a
device file.

The example in this section shows how to create a device file for the
s0u0p7.4 (usr2) internal hard disk partition. The procedure for creating a
device file for an external hard disk is no different than the procedure for
creating a device file for an internal hard disk except that the device file
reflects a different SCSI ID for the external hard disk. The SCSI ID for an
internal hard disk is usually O; the SCSI ID for an external hard disk is
usually 1. 2. or 3.

Follow these steps to create a device file:

1. Secure the following information about the partition:

o Partition name (for example. usr2)

o Size in blocks

o Block major (b-maj) number

o Block minor (b-min) number

o SCSI ID number

You can find this information in the Partition Table on the Disk
Partitioning Utility Page. In addition. the charts on the following
pages provide the partition name. size. block major number. and
block minor number. if you know the SCSI ID.

SYSTEM REBUILD Pl-37

Preparing Nonstandard Partitions for Use

Figure Pl-1: Device File Information for Creating Partitions for SCSI ID 0,
LUNO

Pl-38 CLIX SYSTEM GUIDE

~

~

""""

Preparing Nonstandard Partitions for Use

Nane Device Device Fi le Type •• maj # min#

root /dev/dsk/s1u0p7.0 b 66 112
/dev/rdsk/s1u0p7.0 c 66 112

SWOJ>* /dev/dsk/s1u0p7.1 b 66 113
/dev/rdsk/s1u0p7.1 c 66 113

tf11) /dev/dsk/s1u0p7.2 b 66 114
/dev/rdsk/s1u0p7.2 c 66 114

usr /dev/dsk/s1u0p7.3 b 66 115
/dev/rdsk/s1u0p7.3 c 66 115

usr2 /dev/dsk/s1u0p7.4 b 66 116
/dev/rdsk/s1u0p7.4 c 66 116

usr3 /dev/dsk/s1u0p7.5 b 66 117
/dev/rdsk/s1u0p7.5 c 66 117

usr4 /dev/dsk/s1u0p7.6 b 66 118
/dev/rdsk/s1u0p7.6 c 66 118

• Not used for file systems; reserved for swap space.
••The device file can be block (b) or character (c) type.

Figure Pl-2: Device File Information for Creating Partitions for SCSI ID 1.
LUNO

SYSTEM REBUILD Pl-39

Preparing Nonstandard Partitions for Use

tbne Device Device Fi le Type •• maj # min#

root /dev/dsk/a'J.Ubp7.e b 68 112
/dev/rdsk/a'J.Ubp7 .e c 68 112

swap* /dev/dsk/s2UIJp7.1 b 68 113
/dev/rdsk/s2UIJp7. 1 c 68 113

tmp /dev/dsk/s2UIJp7.2 b 68 114
/dev/rdsk/s2UIJp7.2 c 68 114

usr /dev/dsk/s2UIJp7.3 b 68 115
/dev/rdsk/s2UIJp7.3 c 68 115

usr2 /dev/dsk/s2UIJp7.4 b 68 116
/dev/rdsk/a'J.Ubp7.4 c 68 116

usr3 /dev/dsk/s2UIJp7.5 b 68 117
/dev/rdsk/s2UIJp7.5 c 68 117

usr4 /dev/dsk/s2UIJp7.6 b 68 118

/dev/rdsk/s2UIJp7.6 c 68 118

• Not used for file systems: reserved for swap space.
••The device file con be block (b) or character (c) type.

Figure Pl-3: Device File Information for Creating Partitions for SCSI ID 2,
LUNO

Pl-40 CLIX SYSTEM GUIDE

~ ...,,

.~

~

~

Preparing Nonstandard Partitions for Use

Nane Device Device Fi le Type •• maj # min#

root /dev/dsk/~7.0 b 70 112
/dev/rdsk/~7 .0 c 70 112

SWCIP* /dev/dsk/s3Ul!p7. 1 b 70 113
/dev/rdsk/s3Ul!p7. 1 c 70 113

tq> /dev/dsk/s34Jap7.2 b 70 114
/dev/rdsk/~7.2 c 70 114

usr /dev/dsk/~7.3 b 70 115
/dev/rdsk/~7.3 c 70 115

usr2 /dev/dsk/s3c.l?Jp7.4 b 70 116
/dev/rdsk/~7.4 c 70 116

usr3 /dev/dsk/s3Ubp7.5 b 70 117
/dev/rdsk/~7.5 c 70 117

usr4 /dev/dsk/s3Ubp7.6 b 70 118
/dev/rdsk/s3Ubp7.6 c 70 118

• Not used for file systems; reserved for swap space.
••The device file con be block (b) or character (c) type.

Figure Pl-4: Device File Information for Creating Partitions for SCSI ID 3.
LUNO

SYSTEM REBUILD Pl-41

Preparing Nonstandard Partitions for Use

2. Boot. log in. and access the super-user account as follows:

login: username

3.

$su

If you restored the /usr file system(s), user accounts will no longer exist.
Log in using the sys account. You will need to restore user accounts by
recovering the /etc/passwd and /etc/group files from the previous
backup or recreate user accounts.

Change to the /dev/dsk directory as follows:

cd /dev/dsk

4. List the contents of this directory to verify that a file with the
same name as the new partition (s0u0p7.4 in this example) does
not already exist.

5. If this device file does not exist. create it by using the mknod(lM)
command. This command creates a device file. or special file.

The syntax for this command is as follows. where name is the dev­
ice name. type is the device file type represented by the character b
(for block) or c (for character). b-maj is the block major number.
and b-min is the block minor number:

/etc/mk.nod /dev/dsk/name type b-maj b-min

For example. to create a CLIX device file for partition
s0u0p7.4 (for usr2). key in the mknod(lM) command and the
partition information obtained in step 1 as follows:

/etc/mk.nod /dev/dsk/s0u0p7.4 b 64 116

6. List the contents of the root (/) directory with the following com­
mand to ensure that a /usr2 directory (or name of another /usr
directory that you are creating) does not already exist.

ls I

P1-42 CLIX SYSTEM GUIDE

~

-

Preparing Nonstandard Partitions for Use

7. If this directory does not exist. create it by keying in the following.
(This example creates the /usr2 directory.)

mkdir /usr2

Creating a File System on a Partition

Once a partition has a device file. a file system must be created on the par­
tition. You can create one of two types of file systems: a standard file sys­
tem (S51K) or a Fast File System (FFS). S51K file systems contain lK­
byte units. whereas Fast File Systems contain 8K-byte units. For this rea­
son. Fast File Systems read large files more efficiently than standard S51K
file systems do. The most efficien.t use of Fast File Systems is for file sys­
tems that contain many large files such as design files. Thus. you can con­
vert file systems such as /usr2 to Fast File Systems to store and access
large files efficiently.

Creating a Standard File System

Follow these steps to create a standard file system on a partition:

1. Use the mk.fs(lM) command to create a standard file system. The
syntax for this command is as follows. where name is the partition
name and size is the partition size (in blocks):

/etc/mk.fs /dev/dsk/name size

For example. to create a file system on the s0u0p7.4 (usr2)
partition. you could key in the following at the super-user prompt:

/etc/mk.fs /dev/dsk/s0u0p7.4 100000

Messages similar to the following appear:

M<FS: /dev/rdsk/rllAJ!Jp7 .4
(DEL i f wrong)

After approximately five seconds. messages similar to the
following appear:

bytes per logical block• 1024

SYSTEM REBUILD Pl-43

Preparing Nonstandard Partitions for Use

total logical blocks • 21800
total inodes • 5440
gaps (physical blocks) • 1

cylinder size (physical blocks) - 128

mkfs: Available blocks• <size of partitiort>

These messages confirm that the file system has been created.

2. After creating a file system on the desired partition. run
labelit(lM) to label the partition and attach a logical base direc­
tory name to the file system. For instance. to run labelit(lM) on
the s0u0p7.4 device (usr2). key in the following at the super-user
prompt. where the first usr2 represents the file system's mounted
name and the second represents the volume name (which is user­
definable):

/etc/labelit /dev/dsk./s0u0p7.4 usr2 usr2

Creating a Fast File System

Follow these steps to create a Fast File System on a partition:

1. To create a Fast File System use the newfs(lM) command. The
syntax for this command consists of the following. where name is
the partition name and disk is the disk type:

/etc/newfs /dev/dsk./name disk

Notice that this command requires a disk type. The following
chart displays the disk types that Intergraph supplies.

Disk Size Disk Type

80 MB (Quantum) FDSK150
80 MB (Priam) FDSK131
156 MB FDSK155
355 MB FDSK226
584 MB FDSK211
670 MB FDSK230

For example. key in the following at the super-user prompt to
create a file system on the s0u0p7.4 (usr2) partition for a 156-MB
hard disk:

Pl-44 CLIX SYSTEM GUIDE

Preparing Nonstandard Partitions for Use

/etc/newfs /dev/dsk/s0u0p7.4 FDSK155

~ Unlike the mk.fs(1M) command. the newfs(1M) command does
~ not require the file system size. Instead. it derives the file system

size from the partition size.

2. After creating a file system on the desired partition. run the
labelit(1M) program to label the partition and attach a logical base
directory name to the file system. For instance. to run labelit(lM)
on the s0u0p7.4 device (usr2). key in the following at the
super-user prompt where the first usr2 represents the file system's
mounted name and the second represents the volume name (which
is user-definable):

/etc/labelit /dev/dsk/s0u0p7.4 usr2 usr2

Mounting a Partition

To access and use a partition. you must mount it on a base directory.
~ Mounting a partition connects the partition to the existing file system.

allowing it to be accessed. A partition must be mounted on a base direc­
tory (an empty directory that will serve as the top directory for that file
system). Partitions can be mounted on standard or Fast File Systems. Fol­
low these steps to mount a partition:

1. The syntax for the mount(lM) command is as follows. where type
is the file system type. name is the partition name. and directory is
the directory where the file system will reside:

/etc/mount -ftype /dev/dsk/name directory

For example. assuming that a standard (S51K) file system now
exists on /dev/dsk/s0u0p7.4. you could mount the usr2
partition with the following command:

/etc/mount -f SS1K /dev/dsk/s0u0p7.4 /usr2

The following command mounts a partition with a Fast File
System created on it:

/etc/mount -f FFS /dev/dsk/s0u0p7.4 /usr2

SYSTEM REBUILD Pl-45

Preparing Nonstandard Partitions for Use

2. To mount the partition and check the file system automatically
each time you boot. add the partition to the /etc/fstab file. Other-
wise. you will need to mount the partition manually every time ~

you boot. ..,,.,,

The following examples modify the appropriate operating system
file so that /dev/dsk./s0u0p7.4 mounts automatically on directory
/usr2 when the workstation boots.

For a standard file system. add a line similar to the following to
the /etc/fstab file:

/dev/dsk./s0u0p7A /usr2 S51K

For a Fast File System. add a line similar to the following to the
/etc/fstab file:

I dev I dskl s0u0p7.4 /usr2 FFS

Pl-46 CLIX SYSTEM GUIDE

Loading Application Software with newprod

,,-... After you have prepared any nonstandard partitions for use. you must
~ load application software. Now that the system is functional and all par­

titions are mounted. you can load this software on the hard disk.

Follow these steps to invoke newprod(lM) and deliver software:

1. Log in to the system and access the super-user account as follows

login: username

2.

$SU

If you restored the /usr file system(s), user accounts will no longer exist.
Log in using the sys account. You will need to recreate all user accounts.

Invoke the newprod(lM) utility as follows:

newprod

The following prompt then appears:

Enter source of Installation: n)etwork, f)loppy, t)ape or r)emote
cdran or local c)dran --->

If you keyed in n for network or r for remote cdrom. you will
be prompted to enter the network connect string. After
rebuilding. you cannot key in the node name of the delivery
node: you must key in the Ethernet address.

3. The newprod(lM) menu appears. From this menu. you may select
(highlight) products to download. Select and load all software
products that you wish to use on the system. For instructions on
using the newprod(lM) utility. refer to the "New Product
Delivery" procedure.

SYSTEM REBUILD Pl-47

Restoring Files from Backups

The final step in the process of rebuilding the hard disk is restoring files
from backups.

After restoring the software products with the newprocl(lM) utility.
restore all user- and site-specific files that you backed up before beginning
the rebuild procedure.

Pl-48 CLIX SYSTEM GUIDE

c

!'-:>
z
CD
:IE
-u
0
Cl. ,!"""'
c
u ~
0
~
<"
CD

-<

c

Procedure 2: New Product Delivery

Overview of New Product Delivery

Setting Up the Delivery Source
Setting Up an Intergraph VAX Delivery Source

Delivering Workstation/Server Software Products to the VAX
Initializing VAX-based DEL TOOLS
Initializing Workstation/Server Products

Setting Up a Workstation/Server Delivery Source
Loading Delivery Node Utilities
Loading Software Through the makenode Utility

Delivering Software Using newprod
Using newprod to Install Products
Understanding and Using the Menu

Product Status
Needs to be updated
Workstation newer
New
Up to date
Downloaded okay
Installation errors and Load errors

Available Disk Space
Loading Products

Selecting/U nselecting Products
Loading Selected Products

Moving in the Menu
Moving the Cursor
Changing Menu Modes
Moving Between Menus
Searching for Products

P2-1

P2-2
P2-2
P2-3
P2-3
P2-4
P2-5
P2-5
P2-9

P2-14

P2-14
P2-20
P2-20
P2-21
P2-21
P2-23
P2-23
P2-23
P2-23
P2-24
P2-27
P2-27
P2-28
P2-28
P2-28
P2-29
P2-29
P2-29

TABLE OF CONTENTS

Table of Contents

Interactive Options
Command-Line Options

CD ROM Software Delivery
CDROM Terminology

Delivering Software
Setting Up a Delivery Source
Using the CDROM Menu
Restoring runcd

ii CLIX SYSTEM GUIDE

P2-29
P2-34

P2-38

P2-39

P2-41
P2-49
P2-49
P2-54

Overview of New Product Delivery

Purpose

When
Performed

Starting
Conditions

Commands

Media

Time

Caution

To install new software or update existing software
on workstations/ servers

After purchasing software or after receiving a new
release of software

Log in as super-user

ne-wprod(11\1).mak.enode(11\1).runcd.(11\1)

New product tapes. floppy disks. or CDR01\1s

2 - 10 minutes per product

Do not abort ne-wprod(11\1) when installing UNIX­
BOOT or SYSTE1\1V. For multinode networks. you
should be logged in to the machine you want the
software installed on. Download only the products
to be updated.

References ne-wprod(11\1). mak.enode(11\1). runcd.(11\1)

NEW PRODUCT DELIVERY P2-1

Setting Up the Delivery Source

Intergraph delivers workstation/server software upgrades on the following """'
media types: """"'

• VAX magnetic tape

• Cartridge tape

• 6250 tape

• CDROM

In addition. some software products and product fixes are delivered on
floppy disks. You can request a specific media type by calling Intergraph
Software Delivery.

After you receive the delivery medium. you must load products from the
medium to each Intergraph workstation/server. If you have more than one
workstation/server. you probably load software on a VAX or on one
workstation/server and allow all other workstations/servers on the net­
work to load the products from the VAX or workstation/server. The
machine that other nodes load software from is called a delivery source.
This section explains how to prepare a delivery source for storing products
in deliverable format.

• If you use a VAX or workstation/server as a delivery source. follow
the procedures in this section to prepare the delivery node.

• If you deliver software from CDROM. refer to .. CDROM Software
Delivery .. for instructions in setting up the delivery node and
delivering software.

• If you deliver directly from cartridge tape. 6250 tape. or floppy disk.
no setup is necessary. Proceed to .. Delivering Software Using new­
prod.00

Setting Up an Intergraph VAX Delivery Source

Before you can download product software to the workstation/server from ~
a VAX. you must ensure that the products have been loaded and initialized,,,
on the VAX. This section discusses procedures for loading and initializing
the workstation/server software products on the VAX. The following
steps are required to set up an Intergraph VAX as a delivery source:

P2-2 CLIX SYSTEM GUIDE

Setting Up the Delivery Source

1. Deliver workstation/server software products to the VAX.

2. Initialize the VAX-based DELTOOLS product.

~ 3. Initialize all workstation/server products.

The information presented in these VAX setup procedures builds on and
refers to the information in the VMS Delivery Guide (DDEL001). Refer to
this guide for complete instructions on making full baseline deliveries to
the VAX or for more information on product deliveries.

Delivering Workstation/Server Software Products to the
VAX

The first step in setting up a VAX as a delivery source is delivering the
workstation/server software products to the VAX.

The information in this section assumes that all baseline products of the
VAX/VMS operating system have been delivered to your delivery VAX.
If necessary. consult your VAX system manager for assistance in deliver­
ing software products to the VAX.

Follow these steps to deliver the workstation/server software products to
the VAX:

1. Make an image backup of the VAX disk(s) to which you will
deliver software products.

2. Load the workstation/server software products on the VAX disk
from the delivery tapes using the vaxprod or newprod(lM) util­
ity as described in the VMS Delivery Guide.

Initializing VAX-based DEL TOOLS

The second step in setting up a VAX as a delivery node is initializing the
VAX-based DELTOOLS product. When the VAX-based DELTOOLS pro­
duct is initialized. the logical name PRO_DD_DELTOOLS is assigned to
the DELTOOLS directory ([IGR.DELTOOLS.PRO]) so that DELTOOLS can

~ be accessed by the logical name from this point on.

NEW PRODUCT DELIVERY P2-3

Setting Up the Delivery Source

In the following example and throughout this guide, ZFAO will be the
VAX disk on which software has been loaded. Key in the examples as
shown. substituting your VAX disk where required.

Key in the following commands to initialize VAX-based DEL TOOLS:

set def ZFAo:[IGR.DELTOOLS.PRO]
@initial

In i t i a I i ze DEL TOOLS
Configure DELTOOLS
DELTOOLS-I-CONF'IG_EXIT. operation comp I ete
DELTOOLS-I-INITIAL_EXIT, operation comp I ete

Initializing Workstation/Server Products

The final step in setting up the VAX as a delivery node is initializing all
workstation/server products. When these products are initialized on the
VAX, the WS_INITIAL utility found in PRO_DD_DELTOOLS is exe­
cuted. WS_INITIAL will either read the PRODUCT.DEF file or execute
the INITIAL.COM file found in each product's directory. WS_INITIAL :>
will then call WSPROD_ENTRY. which will enter the product into the
product list. This list resides in the PRO_DD_CFG directory under the
name of either WS_S.PRODS or WS_l.PRODS.

Key in the following commands to initialize all workstation products:

set def pro_dd_deltools
@ws_initial

NEW Usage:
OWS_I NIT IAL ZF A3: [ws_s. AC•]
This wi 11 initialize al I WS products on ZFA3 that start with "AC"
OWS_INITIAL ZFA3:[WS_•.•]
This wil I initialize al I WS products (WS_I.WS_S) on ZFA3
• NOTE: 01 d usage wi 11 'st i 11 work

For which CPU do you want to Initialize
I-NS32 CLIPPER. S-C100 CLIPPER? [S]: S
Which disk are the ws_s products on? [ZFA0:]:ZFA0
Executing the initial.com in ZFA0:[WS_S.ACTEM] ...
INITIAL -- ACTEM/CLIPPER WORKSTATION
Reading the product.def in ZFA0:[WS_S.MSTATION] ...

P2-4 CLIX SYSTEM GUIDE

Setting Up the Delivery Source

Reading the product.def in ZFA0:[WS_S.UNIXBOOT] ...
Reading the product.def in ZFA0:[WS_S.CGH] ... </SD>

~· Setting Up a Workstation/Server Delivery Source

You can set up a workstation or server as a delivery source. Then. other
workstations/servers can load products from the delivery source through
the network.

The following steps are required to set up an Intergraph
workstation/server as a delivery source:

1. Load delivery node utilities.

2. Load software through t~e makenode(lM) utility.

Delivery node utilities make setting up a workstation/server delivery
source easier. These utilities are located in the DELTOOLS product. Thus.
to create a delivery source. first load DELTOOLS through newprod(lM).
Then. use the makenode(lM) utility to load the products that will be
available for other workstations and servers to download. As products are
downloaded through makenode(lM), the delivery node utilities initialize
them.

Products downloaded with the makenode(lM) utility are placed in the
/usr/ws_s directory (unless otherwise specified). Using a
workstation/server as a delivery source consumes a large amount of disk
space because some products will exist in two places on the disk:
/usr/ip32 (in executable, run-time format) and /usr/ws_s (in
compressed, deliverable format).

Loading Delivery Node Utilities

The delivery node utilities. which reside in the /usr/ip32/deltools direc­
tory. enable you to set up a workstation/server as a delivery source. These
utilities enable products to be initialized as they are downloaded. Thus.
you should load these utilities on the workstation/server before you
deliver software to the delivery source through the makenode(lM) util­
ity. Follow these steps to load the delivery node utilities:

NEW PRODUCT DELIVERY P2-5

Setting Up the Delivery Source

Refer to "Delivering Software Using newprod" for detailed instructions
for using newprod(lM).

1. Log in and access the super-user account.

2. Invoke the newprod(lM) utility as follows:

newprod

3. Respond to the following prompt:

Enter source of installation: n)etwork. f)loppy. t)ape.
r)emote cdrom or local c)drom: ->

Key in n to use the network.
Key in f to download from floppy disk.
Key int to download from tape.
Key in r to download from remote CDROM.
Key in c to download from CDROM.

You can key in the first letter of each installation option or the
entire word. For example. you can key inn or network to use the
network. newprod(lM) accepts upper- or lower-case letters.

4. If you are downloading from the network. respond to the following
prompts concerning the network address and the
username.password combination. Then. proceed to step 6.

Enter network connect string or address
(08-00-36-XX-XX-XX) -> 08-00-36-12-34-56

You can enter the network address or node name at the connect
string prompt.

Enter "username.password" combination for
"08-00-36-XX-XX-XX" ->john.doe

If you do not want to display the password. key in username fol­
lowed by a period at the prompt and press <RETURN>. The sys­
tem automatically prompts for a password. and the password does

P2-6 CLIX SYSTEM GUIDE

Setting Up the Delivery Source

not display as it is keyed in.

5. If you are downloading from tape or floppy disk. respond to the
following prompt:

Insert a newprod product floppy/tape and press <RETURN>~>

6. The Newprod Available Products -- Classifications Menu appears.
This menu contains product groups. or classifications.

Newprod Available Products -- Classifications Menu
Free space on /usr: ~blocks.
Classification title

>Core Interactive Graphics
Demos
InterPlot Client Products
InterPlot Server products
InterPlot Driver Products
Network Applications
Progranning Tools
System App I i cations
System Graphics Applications
System Nucleus
Utilities Products

0 blocks selected
Status

0 out of
0 out of
0 out of
0 out of
0 out of
0 out of
0 out of
0 out of
0 out of
0 out of
0 out of

6 selected
3 selected
6 selected

12 selected
93 selected
8 selected

17 selected
13 selected
3 selected

11 selected
2 selected

Arron <SPICE>-Select a•Autoselect c-Clear /•Search for product nane
m • Enter Al I-products menu f-Qlooae file system ?•Newprod Help q•Q.iit

Figure P2-1: Newprod Classifications Menu

To enter a classification. use the arrow keys to move the cursor to
the classification you wish to enter and press the <SPACE> bar.
For example. to load nucleus products (products required to run

NEW PRODUCT DELIVERY P2-7

Setting Up the Delivery Source

the System V operating system). move the cursor to the System
Nucleus classification. To enter the desired classification, press the

<SPACE> bar. The classification submenu appears. A
classification submenu lists all products available in that ~

classification. .._,,,

Newprod Avai I able Products -- System tlllcleus Menu
Free space on /usr: Y!r!61 blocks.
Nane Nunber Title

>ftff.6_S
<FIPE_S
REBJILD
DELTCX>l..S
WIR:N_S
IN:
RE3l.JaS
~
StST9M
l.NI)S)JT
VT220

I/Forms Runt irne Package
Clipper Geanetry Pipe I ine Lib
Rebuild Floppies
Delivery Tools
Clipper Graphics Shared Libra
Workstation Network Software
Graphics Resources
Screen manager
System V 3.1 Fi le Systems
System V 3.1 Boot Images
DEC VT220 Ei'M.11 at ton

0 blocks selected
Blocks Status

1881
3075
2000
2006
3766

10433
29406

4J6
34775
7500

756

New
New
New
Up to date
Up to date
Up to date
Up to date
Up to date
Up to date
Up to date
Up to date

ArrONS <:SP,6CE:::m6elect ~toselect o=Clear p=Preview ll=+ielp u=Update

<DELETE>=Return to ~in menu f=Choose file system ?=Newprod Help q=()Jit

Figure P2-2: Newprod Classification Submenu

7. Two steps are required to load products. You must first select pro­

ducts that you want to download. Then. you must issue a com­
mand to load the products that have been selected.

To select a product to download, use the arrow keys to move the
cursor to the product and then press the <SPACE> bar. Notice
that the product is now highlighted (selected).

To load highlighted products, issue the u (update) option. If you

P2-8 CLIX SYSTEM GUIDE

Setting Up the Delivery Source

decide not to load a highlighted product. move the cursor to that
product and press the <SPACE> bar. The product will be
unhighlighted (unselected) and will not be loaded when the u
option is issued.

8. The only product you need to download now is DELTOOLS.
because an option in DEL TOOLS allows you to set up the delivery
source. Enter the System Nucleus classification and use the arrow
keys to move the cursor to DEL TOOLS.

9. Press the <SPACE> bar to select (highlight) DELTOOLS to be
downloaded.

10. Key in u to update DEL TOOLS.

11. During installation. the following prompt appears:

Del tools contains delivery node uti I ities that facilitate setting

up this node as a software delivery source for newprod.

Do you want the delivery node utilities (y/n)? [n]:

Respond to this prompt by keying in y.

12. After DEL TOOLS is installed successfully. press <RETURN> to
return to the menu.

13. Key in q to quit newprod(1M).

Loading Software Through the makenode Utility

The second step in setting up your workstation/server as a delivery source
is loading the software through m.ak.enode(1M). After you load software
on the designated workstation/server. other workstations and servers can
load software from this delivery source through newprod(1M) (assuming

that your workstations/servers are connected through a network).

makenode(1M) is modeled after newprod(1M). makenode(1M) has the

same menu interface as newprod(1M). makenode(1M) contains all

newprod(1M) interactive mode options and command-line options except

for the following:

NEW PRODUCT DELIVERY P2-9

Setting Up the Delivery Source

x - install script debug

y - accept installation defaults

d - accept installation defaults

Refer to the sections on using newprod(lM)/mak.enode(lM)'s interactive
and command-line options for more information.

A main difference between newprod(lM) and mak.enode(lM) is that pro­
ducts delivered through newprod(lM) are executable. Products delivered
through mak.enode(lM) cannot be executed; they are stored in deliverable
format. By default. products downloaded through mak.enode(lM) are
placed in /usr/ws_s. Each product's status in the mak.enode(lM) menu
reflects how the software in the /usr/ws_s compares with the software on
the delivery medium.

Follow these steps to use mak.enode(lM) to install products from net­
work. floppy disk. or tape:

1. Power up the workstation/server designated as the delivery source.

2. Log in and access the super-user account.

3. To invoke mak.enode(lM). key in the following:

makenode

4. Respond to the following prompt:

Enter source of lnatal lotion: n)etwork, f)loppy, t)ape,
r)emote cdrom or local c)drom: ~~

Key inn to use the network.
Key in f to download from floppy disk.
Key in t to download from tape.
Key in r to download from remote CDROM.
Key in c to download from CDROM.

You can key in the first letter of each installation option or the
entire word. For example. you can key in n or network to down- ~.

load from a node connected through the network. makenode(lM)_,,,
accepts upper- or lower-case letters.

P2-10 CLIX SYSTEM GUIDE

Setting Up the Delivery Source

5. If you are downloading through the network. respond to the fol­
lowing prompts concerning the network address and the
username.password combination for the node you are connecting to.
Then. proceed to step 7.

Enter network connect string or address
(0&-00-36-XX-XX-XX) -::> 08-00-36-12-34-56

You can enter the network address or node name at the connect
string prompt.

Enter "username.password" combination for
"0&-00-36-XX-XX-XX" -::>john.doe

If you do not want to display the password. key in username fol­
lowed by a period at the prompt and press <RETURN>. The sys­
tem automatically prompts for a password. and the password does
not display as it is keyed in.

6. If you are downloading from tape or floppy disk. respond to the
following prompt:

Insert a newprod product floppy/tape and press <RETURN>-::>

7. At the following prompt. specify the directory to load to or press
<RETURN> to choose the default directory:

Enter the directory where the products are to be loaded
[/usr/ws_s]:

8. The Makenode Available Products -- Classifications Menu appears.
This menu contains product groups. or classifications. See Figure
P2-1.

To enter a classification. use the arrow keys to move the cursor to
the classification you wish to enter and press the <SPACE> bar.
For example. to load nucleus products (products required to run
the System V operating system). move the cursor to the System
Nucleus classification. To enter the desired classification. press the
<SPACE> bar. The classification submenu appears. A

NEW PRODUCT DELIVERY P2-11

Setting Up the Delivery Source

classification submenu lists all products available in that
classification. See Figure P2-2.

9. Two steps are required to load products. You must first select pro- ~

ducts that you want to download. Then. you must issue a com- .._,,,,
mand to load the products you selected.

To select a product to download. use the arrow keys to move the
cursor to the product and then press the <SPACE> bar. Notice
that the product is now highlighted. or selected.

To load highlighted products. issue the u (update) option. If you
decide not to load a highlighted product. move the cursor to that
product and press the <SPACE> bar. The product will be
unhighlighted. or unselected. and will not be loaded when the u
option is issued.

The following interactive options are useful for using
mak.enocle(lM):

h This option provides help on selected products. Select all pro-
ducts that you want information on and key in h. Informa­
tion on those products will display.

f This option allows you to specify the file system to load pro­
ducts to. By default. mak.enocle(lM) loads products to /usr.
If you would rather load products to /usr2 or another file sys-
tem that has more free space than /usr. issue the f command.
mak.enocle(lM) prompts you for the file system to download
to.

m This option changes menu mode. mak.enocle(lM) has two
menu modes: multimenu and single-screen. Multimenu mode
has the classifications menu and submenus for each
classification; this is the mode you are placed in when you
invoke mak.enocle(lM). Single-screen mode lists all products
on one menu.

a This option automatically selects all products in all
classifications with the status .. Needs to be updated'" and
clears all selected products. This option switches the interface
to single-screen mode. To return to multimenu mode. issue
the m option.

P2-12 CLIX SYSTEM GUIDE

0

Setting Up the Delivery Source

c This option automatically clears all selected products in all
classifications. All highlighted products become unhighlighted.

I This option searches for a product. After you key in I.
makenode(lM) prompts you for the name of the product to
search for. From the classifications menu or any submenu.
mak.enode(lM) will search another submenu.

10. Select all products that you want to download in deliverable for­
mat. Remember. you must download any product that other
workstations/servers might want to download.

11. Key in u to load all selected (highlighted) products.

12. When all products have been installed. the Available Products
Menu appears. Key in q to quit makenode(lM).

13. Repeat this procedure for all delivery tapes or floppies that you
received.

Recall that the first step in setting up a workstation/server as a delivery
source is downloading DEL TOOLS through newprod(lM) to install the
delivery node utilities. If you did not load the delivery node utilities
before you invoked the mak.enode(lM) utility. you must do so now. You
may have downloaded products through mak.enode(lM). but you will not
be able to deliver the products to other workstations/servers until you ini­
tialize the products. (All products must be initialized on the delivery
source before they can be delivered.)

If you installed the delivery node utilities before you downloaded through
mak.enode(lM). the products were automatically initialized during instal­
lation. and you will not need to complete the following steps. Thus. you
will not need to complete the following steps. However. if you installed
the delivery node utilities after you downloaded with mak.enode(lM).
you must initialize products using the Initial command stored in the
/usr/ip32/deltools/node directory.

If you did not install the delivery node utilities before you loaded pro­
ducts. key in the following to initialize all products:

cd /usr/ip32/deltools/node
• /Initial /usr/ws_s/•

NEW PRODUCT DELIVERY P2-13

Delivering Software Using newprod

Once you have performed all predelivery setup procedures described in
.. Setting Up the Delivery Source:· you are ready to deliver Intergraph

software to the workstation/server. This section describes how you can
use the newprod(lM) utility Cintergraph·s main software delivery utility)
to deliver software.

If one of the following circumstances applies to you, you must complete
additional steps before you download software using newprod(lM):

• You are making a full hardware and software upgrade from a
32032-based workstation to a CLIPPER.

If so. refer to the Upgrading 32032-based Workstations to CLIPPERs

guide that comes with the CLIPPER upgrade package for complete
instructions. Information on delivering new software is also pro­
vided in this guide.

• You are receiving disk media error messages similar to the following:

Disk failed: s0u0p07.1 medil.lft error:
read error at 2933

If so. you must rebuild your hard disk. Follow steps in the .. System
Rebuild .. procedure to create current Rebuild Floppy disks, back up
files. verify, format. partition, and rebuild your internal
workstation/server hard disk before delivering new software pro­
ducts.

Using newprod to Install Products

This section provides steps for using newprod(lM) for loading software.

newprod(lM) is Intergraph·s main software delivery utility.
newprod(lM) resides in the /usr/ip32/deltools directory and is linked to

/usr/bin (so that it can be invoked from any directory).

When newprod(lM) is invoked, it loads the ws_s.prods file in /usr/tmp.
Then, newprod(1M) compares the date of each product listed in
ws_s.prods with the date of each product's product.def. This comparison

determines each product's status on the newprod(lM) menu. The Status

P2-14 CLIX SYSTEM GUIDE

Delivering Software Using newprod

field on the newprod.(1M) menu contains one of the following descrip­
tions:

....-... • Needs to be updated. The product version on the delivery medium is
~ more recent than the version on your workstation/server.

• Workstation newer. The product version on your workstation/server
is more recent than the version on the delivery medium.

• New. The product does not exist on your workstation/server.

• Up to date. The product version on the delivery medium is the same as
the version on your workstation/server.

To download a product. you must first select the product and then issue a
command to load all selected products. To select a product. use the arrow
keys to move the cursor to the product and press the <SPACE> bar.
When you attempt to select a product. newprod.(1M) checks the
product.def file to determine the producfs size. If the workstation has
enough free space to load the product. the product highlights when you
press the <SPACE> bar. If the product requires more than the available
space. the keyboard beeps and the product is not selected (or highlighted).
The amount of free space on the file system you are downloading to and
the total number of blocks required to load selected products display at
the top of the menu.

The u (update) command loads all selected products. When the update
command is issued. newprod(1M) loads all selected products.

When you are downloading multiple products. newprod.(1M) loads the
baseline nucleus products before it loads any supplemental products or
applications to ensure that the System V operating system is installed
properly. newprod.(1M) loads baseline nucleus products (products
required to run the System V operating system) in the following order:

NEW PRODUCT DELIVERY P2-15

Delivering Software Using newprod

System V 3.1 File System Boot Images (UNIXBOOT)
Delivery Tools (DEL TOOLS)
System V 3.1 File System (SYSTEMV) ~

CLIPPER Graphics Libraries (ENVIRON_S) ...,.,.;

Screen Manager (SCREENMGR)
Workstation Network Software (INC)
Gpipe Host Shared Library (GPIPE_S)
DEC VT220 Terminal Emulation (VT220)
Workstation Graphic Resources (RESOURCES)
Workstation/Server Diagnostics (DIAG)
I/Forms Runtime Package (FORMS_S)
RIS Support Package (RISCCU)

After the nucleus products have been loaded. newprod(1M) begins loading

baseline supplemental products (products that come free-of-charge with
your workstation/server but are not required to be loaded on the hard
disk) and all purchased products.

For each product. newprod(1M) loads the READ1\1E file and then invokes

the product's install script (install.sh). The install script performs the ~

following functions:,,,

• Connects to the network (network deliveries only)

• Downloads the product from the delivery source to the
/usr/tm.p/ product-number directory

• Decompresses the product file (if it is compressed format) and
extracts it

• Saves user-specific and user-modified files in the current product
directory

• Sets default protections on the files

• Copies startup files

• Adds the product to the workstation pull-down menu. if applicable

• Fulfills other miscellaneous installation requirements

P2-16 CLIX SYSTEM GUIDE

Delivering Software Using newprod

After the installation script completes. newprod(lM) resumes control.
Now. newprod(lM) moves the product from /usr/tmplproduct_number
to the product directory. which is usually /usr/ip32/product_name.

Follow these steps to install products from network. floppy disk. or tape:

1.

2.

3.

This section assumes that you have completed all delivery steps necessary
to set up the delivery source (as described in "Setting Up a Delivery
Source").

Power up the workstation/server.

Log in and access the super-user account.

To invoke the newprod(lM) utility. key in the following:

newprod

4. Respond to the following prompt:

Enter source of installation: n)etwork, f)loppy. t)ape,
r)emote cdrorn or local c)drorn: -~

Key in n to use the network.
Key in f to download from floppy disk.
Key int to download from tape.
Key in c to download from CDROM.
Key in r to download from remote CDROM.

You can key in the first letter of each installation option or the
entire word. For example. you can key in n or network to use the
network. newprod(lM) accepts upper- or lower-case letters.

5. If you are downloading from the network. respond to the following
prompts concerning the network address and the
username.password combination. Then. proceed to step 7.

Enter network connect string or address

""*"""" (08-00-36-XX-XX-XX) -~ 08-00-36-12-34-56

You can enter the network address or node name at the connect
string prompt.

NEW PRODUCT DELIVERY P2-17

Delivering Software Using newprod

Enter "username.password" combination for
"08-00-36-XX-XX-XX" ->john.doe

If you do not want to display the password. key in username fol­
lowed by a period at the prompt and press <RETURN>. The sys­
tem automatically prompts for a password. and the password does
not display as it is keyed in.

6. If you are downloading from tape or floppy disk. respond to the
following prompt:

Insert a newprod product floppy/tape and press <RETURN>->

7. The Newprod Available Products -- Classifications Menu appears.
This menu contains product groups. or classifications. See Figure
P2-1.

To enter a classification. use the arrow keys to move the cursor to
the classification you wish to enter and press the <SPACE> bar.
For example. to load nucleus products (products required to run
the System V operating system). move the cursor to the System
Nucleus classification. To enter the desired classification. press the
<SPACE> bar. The classification submenu appears. A
classification submenu lists all products available in that
classification. See Figure P2-2.

8. Two steps are required to load products. You must first select pro­
ducts that you want to download. Then. you must issue a com­
mand to load the products that have been selected.

To select a product to download. use the arrow keys to move the
cursor to the product and then press the <SPACE> bar. Notice
that the product is now highlighted. or selected.

To load highlighted products. issue the u (update) option. If you
decide not to load a highlighted product. move the cursor to that
product and press the <SPACE> bar. The product will be
unhighlighted. or unselected. and will not be loaded when the u
option is issued.

The following interactive options are useful for using
newprod(lM):

P2-18 CLIX SYSTEM GUIDE

Delivering Software Using newprod

h This option provides help on selected products. Select all pro­
ducts that you want information on and key in h. Informa­
tion on those products will display.

f This option allows you to specify the file system to load pro­
ducts to. By default. newprod(lM) loads products to /usr. If
you would rather load products to /usr2 or another file sys­
tem that has more free space than /usr. issue the f command.
newprod(lM) prompts for the file system to download to.

m This option changes menu mode. newprod(lM) has two menu
modes: multimenu and single-screen. multimenu mode has
the classifications menu and submenus for each classification;
this is the mode you are placed in when you invoke
newprod(lM). Single-screen mode lists all products on one
menu.

a This option automatically selects all products in all
classifications with the status .. Needs to be updated .. and
clears all selected products. This option switches the interface
to single-screen mode. To return to multimenu mode. issue
the m option.

c This option automatically clears all selected products in all
classifications. All highlighted products become unhighlighted.

I This option searches for a product. After you key in I.
newprod(lM) prompts for the name of the product to search
for. From the classifications menu or any submenu.
newprod(lM) will search another submenu.

9. Select all baseline (free) products that you want to download. The
following baseline products must be installed before you can run
the System V operating system:

System V 3.1 File System Boot Images (UNIXBOOT)
Delivery Tools (DEL TOOLS)
System V 3.1 File System (SYSTEMV)
CLIPPER Graphics Libraries (ENVIRON_S)
Screen Manager (SCREENMGR)
Workstation Network Software (INC)
Gpipe Host Shared Library (GPIPE_S)
DEC VT220 Terminal Emulation (VT220)

NEW PRODUCT DELIVERY P2-19

Delivering Software Using newprod

Workstation Graphic Resources (RESOURCES)
Workstation/Server Diagnostics (DIAG)
I/Forms Runtime Package (FORMS_S)
RIS Support Package (RISCCU)

10. Key in u to load all selected (highlighted) products.

11. After the baseline products have been successfully installed. select
all other products that you wish to download.

12. Key in u to load all selected products.

13. After all products have been installed. key in q to quit
newprod(1M).

Understanding and Using the Menu

Previous sections provided brief procedures for using newprod(1M) and
mak.enode(1M). This section provides detailed explanations of
newprod(1M)'s and makenode(1M)'s menu features.

Product Status

When you invoke the delivery utility (newprod(1M) or mak.enode(1M)).
one of four descriptions will display in the Status field for each product in
the menu. These four descriptions include the following:

• Needs to be updated

• Workstation newer

• New

• Up to date

A product" s status describes how the software on your workstation/server
compares with the software on the delivery source. The delivery utility
compares the date of the product on the menu with the date of the same
product on your workstation/server (in /usr/ip32 for nondeliverable pro­
ducts loaded through newprod(1M) and in /usr/ws_s for deliverable pro­
ducts loaded through makenode(1M)). Products are listed alphabetically

P2-20 CLIX SYSTEM GUIDE

Delivering Software Using newprod

by product name within each status group.

In addition. the following statuses may appear after you have loaded pro­
ducts:

• Downloaded okay (newprod(lM) only)

• Made deliverable (mak.enode(1M) only)

• Installation errors

• Load errors

For example. if you download a product through newprod(lM). its status
will change to .. Downloaded okay:· If you wish to clear this status so the
status that describes whether the product is up-to-date displays. key in a
(autoselect). The a option automatically selects all products with the
.. Needs to be updated .. status and clears all temporary statuses.

Each status is described in the following sections.

Needs to be updated

All products with this status appear at the top of the menu. The .. Needs
to be updated"' status indicates that the date of the product on your
workstation/server is older than the date of the same product on the
delivery source (VAX. workstation/server. CDROM. tape. or floppy disk).
Thus. this product is outdated on your workstation/server. You need to
load the product's newer version that is available on the delivery source.

Workstation newer

Products with this status appear second in the menu under products that
need to be updated.

The .. Workstation newer .. status indicates one of the following cir­
cumstances:

• The product was previously downloaded from one delivery source
and is currently being compared to an older version on another
delivery source. The product version on the workstation/server is
more recent than the version on the delivery source.

NEW PRODUCT DELIVERY P2-21

Delivering Software Using newprod

• The product was not initialized on the delivery node (VAX or
workstation/server).

In the first case (downloading from multiple delivery nodes). you can
download a product with the .. Workstation newer" status. (You will be
loading an older version of that product.) However. first check the
product.def. and READ?vlE files to ensure that no compatibility problems
between products exist.

In the second case (the product was not initialized). you cannot download
the product. The system manager must initialize the product on the
delivery node before that product can be downloaded.

Use one of the following methods to initialize products on a VAX delivery
source.

• Initialize all products with the following commands:

set def pro_dd_deltools
@ws_initial

• Initialize individual products by issuing the following commands. ~

(In this example. the MicroStation product is initialized.) ~

set def pro_dd_deltools
@ws_initial ZFAJ: [ws_mstation]

Use one of the folowing methods to initialize products on a
workstation/server delivery node:

• Initialize all products with the following command:

/usr/ip32/deltools/node/Initial /usr/ws_s/•

• Initialize selected products with the following command. (In this
example. the MicroStation product is initialized.)

/usr/ip32/deltools/node/Initial /usr/ws_s/mstation

Intergraph initializes all products on delivery CDROM. tape. or floppy disk ~

before shipping. Thus. you do not need to initialize products on these ""-""
media types.

P2-22 CLIX SYSTEM GUIDE

Delivering Software Using newprod

New

Products with this status appear in the menu after any products with the
.. Workstation newer .. status. The .. New'' status indicates that this pro­
duct is available to download but does not exist on the workstation/server.
To load products with this status. you may select them and load them on
your workstation/server.

Up to date

Products with this status appear at the bottom of the menu. The .. Up to
date .. status indicates that the fixes file date of the product on your
workstation/server is the same as the fixes file date of the same product on
the delivery source (VAX. workstation/server. CDROM. tape. or floppy
disk). Thus. the same product version exists on your workstation/server
and the delivery source. Products with this status are already up-to-date
and do not need to be downloaded. However. you may download a pro­
duct with this status (such as if you wish to respond to installation
prompts differently than when you previously installed the product).

Downloaded okay

If a product is loaded through newprod(1M) successfully. the product's
status becomes .. Downloaded okay ... When the Available Products Menu
appears. the product will be listed in the location on the menu where it
was before installation. Then. the next time you invoke the delivery util­
ity. the product will display the .. Up to date .. status and will be listed at
the bottom of the menu with the other up-to-date products.

Installation errors and Load errors

If a product is. not loaded successfully on the hard disk. the product's
status will become .. Installation errors .. or .. Load errors ... After the
product's install script has completed. the message .. Unsuccessful installa­
tion .. appears. If baseline nucleus products are not installed properly. the
message .. WARNING: Please DO NOT reboot until this product is loaded
successfully .. displays. When the Available Products Menu reappears, the
product will be located where it was before you attempted to install it.
Then. the next time you invoke the delivery utility. the product will
display its status before you attempted to load it. You must attempt to
load the product again before you can use it because it was not copied to
your hard disk.

NEW PRODUCT DELIVERY P2-23

Delivering Software Using newprod

Available Disk Space

The amount of free disk space (in the base directory) available for loading ~

products displays at the top of all newprod(1M) or mak.enode(lM) ~

menus. In addition. the amount of space required by selected products also

displays at the top of the screen. When you select a product. the number
of blocks in the "blocks selected" field increases by the size of the product.
As you select products. you can compare the amount of free space to the

number of blocks selected.

If you attempt to select a product that requires more than the space avail­

able on your workstation/server. the keyboard beeps and the product

remains unhighlighted.

When you select products with the "Needs to be updated" status. the

number of blocks selected does not increase because the product already
resides on the disk. newprod(1M)/mak.enode(1M) expects the new pro­

duct version to overwrite the old product.

Problems arise when new product versions require more space than old

product versions. Thus. you should allow approximately 10.000 extra free
blocks when loading up-to-date products to ensure that you do not run out ~
of disk space.

If you run out of disk space while loading products. the console window
displays disk error messages. At that point. you should delete the console

window and use the <CONTROL>-C <CONTROL>-C key sequence to
kill the newprod(1M)/mak.enode(1M) process.

The following are suggestions for freeing disk space. You are not required

to perform all or any of them. However. each step will help free disk

space.

1. Product install scripts place products in /usr/tmp before they are
moved to the appropriate product directory. This directory·s con­
tents are removed when you reboot. Thus. you can regain disk
space by rebooting or removing the contents. To remove the con­
tents of the /usr/tmp directory. key in the following command:

rm -r /usr/tmp/* ~
·~

P2-24 CLIX SYSTEM GUIDE

Delivering Software Using newprod

2. Core files can be created through several possible occurrences rang­
ing from machine checks to graphics aborts. Use the fi.nd(1) com­
mand to locate all core files on the disk. Any core files found will
be printed on the screen as they are located. An example of possi­
ble output follows:

fmd I -name core -print
/usr/ip32/vt200/core
/usr/john/graphics/core

Delete the core files using the remove (rm(1)) command as follows:

rm /usr/ip32/vt200/core
rm /usr/ john/ graphics/ core

3. The file system checker. fsck(1M). which checks the file system's
connectivity and integrity. places files in the lost+found directory.
fsck(1M) runs automatically at boot time when the system was
not shut down properly. This program finds and stores files not
linked orderly to the file system. Remove all files in the
lost+found directory by keying in the following:

rm -r /usr/lost+found/•

4. The following utilities are delivered with the SYSTEMV product.
If you do not use any of these utilities (assist(l). help(1). and
graf). you can free approximately 8.000 blocks by removing them.
Remove these utilities by keying in the following commands:

rm -r /usr/lib/assist
rm -r /usr/lib/help
rm -r /usr/bin/graf

5. The disk free command displays free space on root and all mounted
usr file systems. Key in the df(1M) (disk free) command to see
how much free space is available on the file system to which you
are trying to load products as follows:

df

If you think you have enough free space to load the products you
need. or if you can load some products on an alternate file system

NEW PRODUCT DELIVERY P2-25

Delivering Software Using newprod

(besides /usr). invoke newprod(1M)/makenode(1M) and try
again. To load products on an alternate file system (such as /usr2).
use the f option in the newprod(1M)/makenode(1M) menu to
specify the system to download to.

If you think you have enough free space to load the products you
need. or if you can load some products on an alternate file system
(besides /usr). invoke newprod/makenode and try again. To load
products on an alternate file system (such as /usr2). use the f
option in the newprod/makenode menu to specify the system you
will download to.

6. If you still do not have enough free space for downloading pro­
ducts. remove any personal files and products that you do not need.

To remove products. use the remove shell script as follows:

/usr/ip32/deltools/remove

First. the remove shell script prompts you for the file system to
reclaim space in as shown in the following illustrations:

Intergraph Workstation Disk Space Reclanation Uti I ity

Fi le system Device

I
/usr
/usr2

(/dev/dsk/~7 .0):
(/dev/dsk/~7.3):
(/dev/dsk/~7 .4):

Used/Total blocks

17338 I 25000
88584 I 100000
332.38 I 100500

Percent used

Enter which file system you wish to reclaim space in, or q to quit [/usr]:

Figure P2-3: Select File System to Remove Products From

Then. the remove shell script lists products that can be removed.
Specify any products you wish to remove.

P2-26 CLIX SYSTEM GUIDE

Delivering Software Using newprod

Products avai I able to remove on file system /usr:

Nane

accessory
de I tools
diag
envi ronv
environ_e
gpipe_e
inc
screermgr
systemv
sysvdoc
unixboot
vt220

Nunber Title

SSS0053 Workstation Accessories
SSS0040 Delivery Tools
SSS0086 w:R<STATI~ OIJGlSTICS
SSSlll67 Environ V Host Shared Library
SSS0073 Clipper Graphics Shared Llbrar
SSS00e0 Gplpe Target Run-Time Shared L
SSS0636 Workstat Ion Network Software
SSS0045 Screen t.bnage r
SSS0044 System V 3.1 Fi le Systems
SSS0017 System V Qi- I i ne Documentation
SSS0043 System V 3.1 Boot Images
SSS0049 DEC VT220 Eill.l I at ion

Size Di rectory

851
735
93
49
21
29

8623
460
98

7351
98

1008

/usr/ip32/acc
/usr/ip32/deltools
/usr/ip32/diag
/usr/ip32/envi ronv
/uer/ip32/envlronv_e
/uer/I p32/gpl pe_e
/usr/ip32/inc
/usr/ip32/sngr
/usr/ip32/systemv
/usr/ip32/sysvdoc
/usr/ip32/unixboot
/usr/ip32/vt200

Enter the product(s) nane(s) you wish to remove. delimited by spaces.
or q to qui t [none] :

Figure P2-4: Removing Products

Loading Products

Two steps are required to load products. First. you must select the pro­
duct (or products) that you wish to load. Then. you must issue a com­
mand to load all selected products.

Selecting/Unselecting Products

To select a product. move the cursor to the product and press the
<SP ACE> bar. All selected products are highlighted.

NEW PRODUCT DELIVERY P2-27

Delivering Software Using newprod

To unselect a product that is currently highlighted, move the cursor to
that product and press the <SPACE> bar.

Keep in mind the following interactive commands that facilitate selecting
and unselecting products:

o Key in a at any newprocl(1M) or makenocle(1M) menu to select
all products in all classifications with the .. Needs to be updated"
status.

o To unselect all highlighted products in all classifications. key inc at
any newprocl(1M) or makenocle(1M) menu.

Loading Selected Products

To load all selected (highlighted) products. issue the u (update) option
from the newprocl(1M)/makenocle(1M) menu.

Moving in the Menu

This section includes information concerning moving the cursor. changing
menu modes, moving between menus. and searching for products.

Moving the Cursor

newprocl(lM) and makenocle(1M) accept arrow keys. vi keystrokes. and
emacs keystrokes for moving the cursor up and down the product list.
The following chart shows these three different methods of moving the
cursor up and down a list of products.

Action

Up a line
Down a line
Back a page
Forward a page
Top of list
Bottom of list

Arrow Keys

Up arrow
Down arrow
Left arrow
Right arrow

P2-28 CLIX SYSTEM GUIDE

vi Keystroke

k
j
<Ctrl-U>
<Ctrl-D>
Tor 1
BorG

emacs Keystroke

<Ctrl-P>
<Ctrl-N>
<Ctrl-Z> or <Esc> V
<Ctrl-V>
<Esc> <
<Esc> >

Delivering Software Using newprod

Changing Menu Modes

When you invoke newprod(lM)/mak.enode(lM). you are placed in mul­
timenu mode. This menu mode groups products into classes for download­
ing. If you prefer to see all products listed in one list. you can change to
single-screen mode. To move from multimenu mode to single-screen mode.
key in mat any newprod(lM) or makenode(lM) menu. To return to
multimenu mode. key in m again. You can use either multimenu or
single-screen menu mode.

Moving Between Menus

To move from the Classifications Menu to a classification submenu. move
the cursor to the submenu you wish to enter and press the <SPACE> bar.
To exit a submenu and return to the Classifications Menu. press the
<BACKSPACE> or <DELETE> key. See Figure P2-l.

Searching for Products

Another way to move through newprod(lM)/makenode(lM) menus is to
search for a product. You can issue the I (search) command at any

''""" newprod(lM)/makenode(lM) menu and you will be prompted for the
name of the product to search for. For example. if you are in the
Classifications Menu and search for the DELTOOLS product, the search
command transfers you to the classification submenu where DELTOOLS
can be found (Systems Nucleus). The cursor remains on the DEL TOOLS
product. You can also search from one submenu to another.

Interactive Options

You can use the following options interactively at any
newprod(lM)/makenode(lM) menu.

? Access help for interactive options and moving the cursor.

I Search for a product.

Escape to shell.

~~ a Automatically select all out-of-date products.

NEW PRODUCT DELIVERY P2-29

Delivering Software Using newprod

c Clear all selected products.

d Accept installation defaults automatically (newprod(lM) only).

e Exit.

f Choose file system to download to.

h Access help for downloading individual products.

m Change menu mode.

r Review product fixes from the README file.

q Quit.

u Update selected products.

v Download products in verbose mode.

x Display install script while loading the product (newprod(lM) only).

y Accept installation defaults automatically (newprod(lM) only).

The following items are functions that can be accomplished using these

interactive options.

Help

The? (newprod(lM) help) option lists and states the function of

newprod(lM)/mak.enode(lM) options. From this help screen. if you

press the <SPACE> bar. a help screen for moving the cursor displays.

The h (product help) option provides help on downloading selected pro­

ducts. Select all products that you want information on and key in h.

Information such as product dependencies. the order for loading products.

and file system dependencies for those products will display.

Product Information

The h (product help) option provides help for selected products. Select all

products that you want information on and key in h. Information on

those products will display. As the help information file displays. press ~

<RETURN> to access the next page. To return to the menu without . .._....

reading the rest of the file. key in q.

P2-30 CLIX SYSTEM GUIDE

Delivering Software Using newprod

The r (review) option displays the fixes portion of the READ ME file for
the product at the cursor. Product fixes are changes or fixes to a product

~ since its last release. As this file displays. press <RETURN> to continue
~ to the next page. To return to the menu without reading the rest of the

file. key in q. Select all products that you want information on and key in
h. Information on those products will display.

Choose Menu Style

The m (menu) option toggles between multimenu and single-screen mode.
When you invoke newprod(1M)/makenode(1M). you are placed in mul­
timenu mode. If you prefer to see products listed on one screen rather
than in product classifications. use this option to change menu modes.

Specify Fiie System to Download To

The f (file system) option allows you to choose the file system that you
will download to. Products are ordinarily downloaded to /usr. Activat­
ing this command causes a chart listing available file systems to appear. At

_.,,. the prompt. key in the file system that you will download to.

When you return to the newprod(1M)/makenode(1M) menu. notice that
the chosen file system displays at the top. The free space and status fields
reflect the change in file systems. If you have a product loaded on /usr and
change to /usr2. this product·s status will display as .. New .. because it
does not reside in /usr2. You may load products in more than one file sys­
tem, but doing so consumes disk space.

newprod(1M)/makenode(1M) will load the product on the specified file
system. but will symbolically link the product to /usr. The symbolic link
will cause the product to appear as though it resides in the /usr file sys­
tem. If you list the product directory (in /usr) with the ls -1 command.
the product directory will point to the directory in another file system
where the product actually resides. For example. if the news product was
loaded in the /usr2 file system. the long listing of the news product in
/usr/ip32 appears as follows:

lrwxrwx 1 root sys 15 Mat 13 15:14 news-> /usr2/ip32/news

The I indicates the symbolic link and the arrow-> indicates the directory
to which the file is linked.

NEW PRODUCT DELIVERY P2-31

Delivering Software Using newprod

Execute Shell Commands Inside newprod/makenode

The! (escape to shell) option allows you to execute a shell command in

newprod(1M)/makenode(1M). When you activate this command. the ~
product menu clears and the command line? prompt appears. At this

prompt. you may execute shell commands such as ls(1) or df(1M). You

are automatically placed in the /usr/tmp directory when you escape to the

shell. To return to the newprod(1M) Available Products Menu. press

<RETURN> after the prompt.

Search for a Product

The I (search) option searches for the product name specified. When you

invoke this command. you are prompted for the name of the product to

search for. newprod(1M)/makenode(1M) searches all product

classifications until it finds the product specified. The cursor remains on

the specified product.

Select/Unselect Products to be Loaded

To load. preview. or read a help screen for a product. you must select that ~

product. To select a product. move the cursor to the product and press the

<SPACE> bar. This action causes the product to highlight. Pressing the

<SP ACE> bar again causes the product to be unhighlighted. or unselected.

The a (autoselect) option selects all products (in all classifications) with

the .. Needs to be updated .. status and clears all previously selected pro-

ducts. If you are in multimenu mode when you issue the a option.

newprod(lM)/makenode(1M) switches to single-screen mode and

highlights out-of-date products. To return to multimenu mode. key in m.

Selected products will remain highlighted when you change menu modes.

The c (clear) option clears (or unselects) all products (in all

classifications).

P2-32 CLIX SYSTEM GUIDE

Delivering Software Using newprod

Installation Defaults Accepted Automatically

The dory (installation defaults) option toggles between accepting all ins­
tallation defaults and prompting for information. The default for this
command is off (prompting for information). D appears at the top of the
Available Products Menu when you activate this mode. When you invoke
this command and download products. you will not be prompted with any
questions. Instead. all installation defaults will be accepted. Use this
option only if you are sure that the installation defaults are acceptable for
your system. For information on responding to product installation
prompts. use the newprod.(1M)/mak.enode(1M) h option (help on loading
products).

The y option does not respond to all installation defaults with a "yes." It
accepts the default (whether it is "yes" or "no").

Additional Information Displayed During Installation

The v (verbose) option toggles the verbose mode between on and off: the
default is off. Activating this mode causes a "V" to appear at the top of
the Available Products Menu. When you download products in verbose
mode. messages explaining the steps to install products appear on the
screen. If you are having problems installing a product. use this option
(along with the install script debug option) to determine the problem
source.

The x (install script debug) option toggles the install script debug mode
between on and off: the default is off. "X"" appears at the top of the Avail­
able Products Menu when you activate this mode. When you invoke this
command and download products. the installation script for that product
scrolls down the screen as products are installed. If you are having prob­
lems installing a product. use this option (along with the verbose option)
to determine the problem source.

NEW PRODUCT DELIVERY P2-33

Delivering Software Using newprod

Load Products

The u (update) option loads all selected products to the hard disk.

Exit

Thee (exit) or q (quit) option exits newprod(lM) or makenode(lM).

Command-Line Options

The syntax for command-line mode options is as follows:

makenode(lM) can be substituted for newprod(lM) in all examples in
this section except for the :x, y, and d option examples.

newprod [-tf cplvxydmR.V] [-b basedir] [-nr connstr] [-F prodlist]
[-T tapedev] [selection ...]

Valid newprod(lM) arguments are listed and described below.

Option Purpose/Example

-n (Network) Allows you to bypass prompts by specifying the
node address. user name. and password on the command line
(newprod(1M) and mak.enode(lM)).

newprod -n 08-00-36-XX-XX-XX.username.password

-r (Remote CDROM) Allows you to bypass prompts by specifying
the node address. user name. and password on the command
line (newprod(lM) and mak.enode(lM)).

-t

newprod-r 08-00-36-XX-XX-XX.username.password

(Tape) Allows you to bypass prompts by specifying tape as the
installation source on the command line (newprod(lM) and
makenode(lM)).

newprod-t

P2-34 CLIX SYSTEM GUIDE

-c

Deltverlng Software Using newprod

(CDROM) Allows you to bypass prompts by specifying
CDROM as the installation source on the command line
(newprod(lM) and mak.enode(lM)).

newprod-c

-f (Floppy) Allows you to bypass prompts by specifying floppy
disk as the installation source on the command line
(newprod(lM) and mak.enode(lM)).

newprod-f

-b (Base directory) Allows you to specify an alternate file system
to install products on (newprod(lM) and makenode(lM)).

newprod -b /usr2

-F (Configuration file) Specifies the product configuration file. For
example. if you have set up a product list file other than
ws_s.prods. you must use this option to specify this alternate
configuration file. If you do not use the -F option.
newprod(lM) defaults to ws_s.prods (newprod(lM) and
mak.enode(1M)).

newprod-F plotting.prods

-1 (Long) Displays additional information such as the host direc­
tory and workstation/server directory in the Available Pro­
ducts Menu (newprod(1M) and mak.enode(1M)).

newprod-1

-p (Page) Displays all products on one long menu. To load pro­
ducts. you must key in the product numbers at the end of the
menu (newprod(lM) and makenode(lM)).

newprod-p

NEW PRODUCT DELIVERY P2-35

Delivering Software Using newprod

-R (Review) Allows you to review product fixes to ensure that
you wish to install them (newprod(1M) and makenode(1M)).

newprod -R SSSS0040 SSSS0044

-T (Tape device) Specifies the tape device. The default is
/dev/rmt/Omn. This device must be non-rewindable.

newprod-T /dev/rm.t/mt6n

-v (Verbose) Displays additional information about the software
products as they are loaded (newprod(1M) and
makenode(1M)).

newprod-v

-V (Version) Displays the version number of
newprod(1M)/m.ak.enode(1M) and exits (newprod(1M) and
mak.enode(1M)).

newprod-V

-x (Install script) Displays the install script (newprod(1M) only).

newprod-x

-y or -d (Installation default) Loads products and accepts the default
response to any installation prompt (newprod(1M) only).

newprod-y
newprod-d

You can use multiple options on the command line. The following are
examples of using multiple command-line options.

The following option invokes newprod(1M)/mak.enode(1M) through the
network, connecting to 08-00-36-12-34-00, and specifies to load products ~

in the /usr2 base directory: ~

newprod -b /usr2 -n 08-00-36-12-34-00.username.password

P2-36 CLIX SYSTEM GUIDE

Delivering Software Using newprod

The following option loads the SSSS0081 product from a local CDROM
drive and automatically accepts all installation defaults:

newprod -c -d SSSS0081

The following option loads the SSSS0081 product from a remote CDROM
drive and automatically accepts all installation defaults. The CDROM
drive is connected to a node with the network address 08-00-36-72-90-00.

newprod -r 08-00-36-72-90-00 -d SSSS0081

The following option displays the README file for the SSSS0081 product:
the file is read from the delivery node 08-00-36-12-34-00.

newprod -n 08-00-36-12-34-00.username.password -R SSSS0081

The following option invokes newprod(1M)/makenode(1M) from a pro­
duct tape and loads the product SSSS0096 in verbose mode: as the product
is installed. the install script will display.

newprod -t -vx SSSS0096

NEW PRODUCT DELIVERY P2-37

CDROM Software Delivery

This section provides step-by-step instructions for delivering software
from CDROM (from a local or remote drive).

If you deliver software from CDROM, you are not required to set up a
delivery source. However, the following are reasons for which you
should set up a delivery source instead of delivering software from a
remote CDROM:

When you deliver software from CDROM without setting up a delivery
source, you will usually leave one delivery disc in the drive continuously.
However, if you need to deliver software from multiple delivery discs,
you will be required to switch discs.

When you deliver software from CD ROM to numerous remote nodes,
access time may be slower than it would for a delivery source.

Before you deliver software from CDROM. you must have completed the
following:

• Configured the CD ROM drive properly. as described in the CD ROM
Drive User's Guide.

• Followed procedures given in Chapter 11. .. Rebuilding and Reparti­
tioning the Hard Disk:· of the CLIPPER System Administrator's
Guide if you have just rebuilt the hard disk. The procedures in sec­
tion 11.12.1 are especially important for preparing the hard disk for
CDROM software delivery.

• Read and understood the instructions for inserting the CDROM in
the CDROM drive. as described in the CDROM Drive User's Guide.

• Read and understood the care and handling instructions on the back
of the CDROM case.

• Read and understood the terms explained in the following .. CDROM
Terminology .. section.

P2-38 CLIX SYSTEM GUIDE

CDROM Software Delivery

CDROM Terminology
.. ~

~ The following terms are used throughout this chapter. Refer to these
terms when necessary during software delivery procedures.

Baseline software You received baseline software products free of charge
when you purchased an Intergraph workstation or
server. There are two categories of baseline products:
nucleus and supplemental. Baseline nucleus products
must reside on the workstation or server before you
can run the System V operating system. Baseline sup­
plemental products are free. but do not need to reside
on the workstation or server.

Caddy An empty CDROM caddy is included with the CDROM
drive. This caddy is approximately the same size as
the jewel case. You must insert the CDROM in the
caddy and insert the caddy in the CDROM drive to be
able to access any data.

CDROM The CDROM (Compact Disc Read Only Memory)
media stores approximately 600 MB of data. As a
result. you will usually load Intergraph software from
only one delivery CDROM rather than from numerous
tapes or floppy disks. Remember. this CD ROM is
read-only; you cannot overwrite the data on the
CD ROM.

CDROM drive A CDROM drive allows you to access information
from a CDROM but not write information to it. The
CDROM drive should be configured for SCSI ID 4.
Refer to the documentation that came with the drive
for additional information concerning the drive.

CDROM node The CDROM node is the workstation or server to
which the CDROM drive is connected.

Delivery source A delivery source is a workstation or server that stores
products in deliverable format. Other
workstation/servers download products from the
delivery source across the network through
newprod(1M). To create a delivery source. download

NEW PRODUCT DELIVERY P2-39

CDROM Software Delivery

Jewel case

Load key

Load-key memo

makenode

delivery node utilities and then deliver products using
mak.enode(lM). You are not required to create a

delivery source to load software from CD ROM.

The jewel case is the clear plastic case in which the
CDROM was delivered. Any time you are not using
the CDROM. store it in its jewel case.

A load key is a unique alphanumeric character
sequence that enables you to copy the purchased pro­
duct from the CDROM to the workstation/server hard
disk.

You received a load-key memo with your CDROM
delivery. This memo lists the network address of the
workstation or server to which your CDROM drive is
connected. It also lists your unique load keys that
enable you to download software.

mak.enode(lM) loads software products on a
workstation/server so that it can function as a
delivery source. This process enables other worksta­
tions and servers to download software from the
delivery source through a network using
newprod(lM). Products loaded with makenode(lM)
are not installed: they serve only as a delivery source
for other workstations/servers. To install products so
they can be executed locally. use newprod(lM).

Network address Each workstation/server has a unique identification
number known as its network address. To display this

number. key in netaddr at the CLIX shell($ or#)

prompt.

newprod newprod(lM) installs software products on your

workstation/server so that they can be executed
locally.

p2 .. 40 CLIX SYSTEM GUIDE

CDROM Software Delivery

Delivering Software

~ newprod(lM) now has the capability to load software on a
workstation/server from a remote CDROM drive. thus eliminating the
need to create a delivery source. By not creating a delivery source for
storing deliverable products. you will save disk space. The products (in a
deliverable format) reside only on the CDROM media.

Notice that (regardless of your hardware configuration) you will first
deliver software to the workstation/server that the CDROM drive is con­
nected to. Then. if you must also deliver software to remote nodes. you
will move to each remote node and deliver software from the CD ROM
drive.

The remainder of this section provides step-by-step procedures for deliver­
ing software from CD ROM without creating a delivery source.

One disadvantage to delivering software from a remote CDROM drive is
that installation tends to be slower when numerous nodes are accessing the
CDROM drive at once.

Follow these steps to deliver software to the workstation/server that the
CD ROM drive is connected to and then (if necessary) to deliver software
to remote workstations and servers. For additional information on using
newprod(1M). refer to .. Delivering Software Using newprod.''

1.

2.

3.

Steps 1through14 must be performed only on the node that the CDROM
drive is connected to.

Power up the workstation/server that the CDROM drive is con­
nected to.

Log in and access the super-user account.

Verify that the network address of the host matches the network
address on the load-key memo you received with the delivery
CDROM. Locate this memo and keep it handy during the software
delivery process. This memo lists all available products and their
associated load keys. Each memo is specific to one

NEW PRODUCT DELIVERY P2-41

CDROM Software Delivery

workstation/server and to the delivery date. You will receive a
new load-key memo with each software delivery. If DECnet is
loaded on the node. verify the correct network address from the
utility pages. If the node is not running DECnet. issue the follow­
ing command to ensure that the host's network address corresponds
to the network address on your load-key memo:

netaddr

If the network address that appears (with the format. 08-00-36-
XX-XX-XX) is not the network address specified on the load-key
memo. you are logged in to the wrong machine for the load keys on
the memo. Find the machine whose network address corresponds
to the network address on the memo.

4. Insert the CDROM in the caddy and the caddy in the CDROM
drive.

5. Enter the CD ROM Menu by keying in the runcd(lM) command as
follows:

6.

runcd

If you receive a message saying that runcd(lM) is not found on your hard
disk, refer to section 1.5 for instructions on copying runcd(lM) from the
CDROM to your workstation/server.

If the CDROM drive has not been configured. the following message
will appear:

Your CDRCM drive has not been configured.
The device file (/dev/dsk/cdrorn) has not been defined.
Please refer to the CDRCM Drive User's Guide for proper
configuration procedures.

P2-42 CLIX SYSTEM GUIDE

,,,.,

CDROM Software Delivery

If you did not receive this error message, continue to step 7.

You must configure your CDROM drive before you can load
software. Check the DIP switches on the rear of the CDROM drive
to ensure that the drive is configured for SCSI ID 4. If it is. key in
the following commands to create and link the device file:

I etc/mknod I dev I dsk.I s4u0p0.0 b 72 0
In /dev/dsk./s4u0p0.0 /dev/dsk./cdrom

If the CD ROM drive is not configured for SCSI ID 4. ref er to the
documentation that came with the CDROM drive.

7. The CDROM Menu appears on the screen. This menu provides the
following options:

1.
2.
3.
4.
5.

View CDRCM Software Delivery Documentation
Invoke the "newprod" utility for installing software
Invoke the "makenode" utility to create a delivery node
Set up System V Online Documentation and Intergraph Online News
Exit

Key in 2 to invoke newprod(lM).

8. The Newprod Available Products -- Classifications Menu appears.
This menu lists product classification submenus. Classification
submenus group products in general categories. See Figure P2-1.

To enter a classification. use the arrow keys to move the cursor to
the classification you wish to enter and press the <SPACE> bar.
For e~ample. to load nucleus products (products required to run
the System V opera ting system). move the cursor to the System
Nucleus classification. To enter the desired classification. press the
<SPACE> bar. The classification submenu appears. A
classification submenu lists all products available in that
classification. See Figure P2-2.

Many products are listed in each classification submenu. Products
stored on the CDROM include baseline (free) products.
Intergraph-developed applications. and selected third-party appli­
cations.

NEW PRODUCT DELIVERY P2-43

CDROM Software Delivery

Each baseline product has an asterisk to the left of its product
status. You can load baseline products without entering a load
key.

All other products require a load key before they can be installed. ~
Refer to your load key memo for a list of all products that you
have purchased and thus can install. If you wish to purchase addi-
tional products. contact your Intergraph Sales Representative.

9. Two steps are required to load products. You must first select pro­
ducts that you want to download. Then. you must issue a com­
mand to load the products that have been selected.

To select a product to download. use the arrow keys to move the
cursor to the product and then press the <SPACE> bar. Notice
that the product is now highlighted (selected).

At this time. you must load the following products so that the
software on the CDROM node will allow you to remotely load pro­
ducts from the CDROM. These products are all baseline (free) pro­
ducts; thus. you will not be required to enter a load key to install
them.

System V 3.1 File System Boot Images (UNIXBOOT)
Delivery Tools (DEL TOOLS)
System V 3.1 File System (SYSTEMV)
CLIPPER Graphics Libraries (ENVIRON_S)
Screen Manager (SCREENMGR)
Workstation Network Software (INC)
Gpipe Host Shared Library (GPIPE_S)
DEC VT220 Terminal Emulation (VT220)
Workstation Graphic Resources (RESOURCES)
Workstation/Server Diagnostics (DIAG)
I/Forms Runtime Package (FORMS_S)
RIS Support Package (RISCCU)

Select these baseline products and any products that you have
purchased and wish to load. (You do not need to select any products
with the .. Up to date .. status because these products are not outdated.)

10. Key in u to update all selected (highlighted) products.

P2-44 CLIX SYSTEM GUIDE

CDROM Software Delivery

11. The following prompt will appear for each purchased product that
you have not previously loaded from the delivery disc:

Enter the I oad key for product-name (product-#) :

Refer to your load-key memo for each product's load key. This
memo lists load keys as follows:

product-# product-name load-key

Each load key is unique to the product, machine, and delivery date of the
CDROM. You must use the correct memo for the machine and delivery
date.

Once you have entered the load key for a product, newprod(lM) stores
the key in the /usr/ip32/deltools/keys directory, under the file name of
the delivery date (such as 083189). Then, the next time you attempt to
load that product (for example, on a remote node), you will not be
required to enter the load key.

12. After all products have been successfully installed. press
<RETURN> to return to the newprod(lM) menu. Key in q to
quit newprod(lM). If you invoked newprod(lM) from the
CDROM Menu. key in S to exit this menu.

13. Reboot the system to activate the new System V software.

14. If you have any remote nodes that you will deliver software to.
continue to step 15. Otherwise. you have completed the software
delivery process.

The remaining steps must be performed for each remote node.

15. Move to a remote workstation or server that needs its software
updated.

16. Log in and access the super-user account.

17. Invoke newprod(lM) using the remote CDROM option (-r) as fol­
lows to connect to the CDROM node:

newprod -r nodename.username.password

NEW PRODUCT DELIVERY P2-45

CDROM Software Delivery

Nodename, username, and password are for the machine that the CDROM
drive is connected to.

This method of invoking newprod(lM) allows you to load products
remotely from the CDROM.

18. If you received an error message similar to the following. you must
update the version of newprod(lM) on the workstation or server.
If you did not receive this error message. proceed to step 22.

newprod: illegal option~ r

19. Copy the version of newprod(lM) from the CD ROM node to the
node on which you are currently logged in by keying in the follow­
ing command. where rwdename.username.password represents the
node name. user name. and password of the workstation or server
that the CDROM drive is connected to:

fmu rwdename.username.password receive /usr/bin/newprod

20. Link the updated version of newprod(lM) to the getfi.le utility by
keying in the following command:

ln /usr/bin/newprod /usr/bin/getfi.le

21. Invoke newprod(lM) as follows. where
rwdename.username.password represents the node name. user name.
and password of the machine that the CDROM drive is connected
to:

newprod -r rwdename.username.password

22. The Newprod Available Products -- Classifications Menu appears.
This menu lists product classification submenus. Classification
submenus group products in general categories. See Figure P2-l.

To enter a classification. use the arrow keys to move the cursor to
the classification you wish to enter and press the <SPACE> bar.
For example. to load nucleus products (products required to run
the System V opera ting system). move the cursor to the System

P2-46 CLIX SYSTEM GUIDE

CDROM Software Delivery

Nucleus classification. To enter the desired classification. press the
<SPACE> bar. The classification submenu appears. A
classification submenu lists all products available in that
classification. See Figure P2-2.

Many products are listed in each classification submenu. Products
stored on the CDROM include baseline (free) products.
Intergraph-developed applications. and selected third-party appli­
cations.

Each baseline product has an asterisk(•) to the left of its product
status. You can load baseline products without entering a load
key.

All other products require a load key before they can be installed.
Refer to your load-key memo for a list of all products that you
have purchased and thus can install. If you wish to purchase addi­
tional products. contact your Intergraph Sales Representative.

23. Two steps are required to load products. You must first select pro­
ducts that you want to download. Then. you must issue a com­
mand to load the products that have been selected.

To select a product to download. use the arrow keys to move the
cursor to the product and then press the <SPACE> bar. Notice
that the product is now highlighted (selected).

Select all baseline nucleus products (these products must be
updated before you can update the System V operating system)
and any other products that you want to download. (Refer to step
9 for a list of baseline nucleus products.) You do not need to select
any products with the .. Up to date .. status because these products
are not outdated.

24. Key in 1l to load all selected (highlighted) products. The following
prompt will appear for each purchased product that you have not
previously loaded from the delivery disc:

Enter the I oad key for product-name (product-#):

Refer to your load-key memo for each product's load key. This
memo lists load keys as follows:

product-number product-name load-key

NEW PRODUCT DELIVERY P2-47

CDROM Software Delivery

Each load key is unique to the product, machine, and delivery date of the
CDROM. You must use the correct memo for the machine and delivery
date.

Once you have entered the load key for a product, newprod(lM) stores
the key in the /usr/ip32/deltools/keys directory, under the file name of
the delivery date (such as 083189). Then, the next time you attempt to
load that product (for example, on a remote node), you will not be
required to enter the load key.

25. In some cases (such as if you just rebuilt the hard disk). you may
receive one of the following error messages when you attempt to
load products:

instal I.sh: getfile not found
stdin: not in compressed format
Unsuccessful instal lotion

OR

instal I .sh: test: argument expected
Unsuccessful instal lotion

If you receive either of these messages. you probably need to link
newprod(lM) to get:fi.le. To do so. key in the following command:

In /usr/bin/newprod /usr/bin/get:fi.le

26. When all products have been downloaded. quit newprod(lM) by
keying in q.

27. Reboot the system to activate the new System V software.

28. Repeat steps 15 through 27 for each workstation/server in the net­
work.

P2-48 CLIX SYSTEM GUIDE

CDROM Software Delivery

Setting Up a Delivery Source

A delivery source is a workstation or server that stores products loaded
with the makenode(1M) utility. Other nodes can connect to the delivery
source and install software.

In the past. if you needed to load software from one CDROM drive to mul­
tiple workstations. you were required to create a delivery source. Now.
newprod(1M) allows you to load products on workstations and servers
from a remote CDROM drive. thus eliminating the need for a delivery
source. For instructions on delivering software without creating a delivery
source. follow steps in .. Delivering Software:·

Creating a delivery source and delivering software are complicated
processes. However. a delivery source may provide quicker installation if
you will be loading software on numerous nodes simultaneously. In addi­
tion. if you do not wish to keep the delivery disc in the drive at all times,
you may wish to create a delivery source.

Using the CDROM Menu

The CDROM Menu displays when you issue the runcd(1M) command.
This menu contains the following options:

1. View CDRG.4 Software Delivery Documentation
2. Invoke the "newprod" utility for installing software
3. Invoke the "makenode" utility to create a delivery node
4. Set up System V Online Documentation and Intergraph Online News
5. Exit

Option 1: View CDROM Software Delivery Documentation

When you choose this option. the following information appears on the
screen:

NEW PRODUCT DELIVERY P2-49

CDROM Software Delivery

This menu choice al lows you to view aH:M Software Del Ivery
Docunentation. This docunentation Includes the following topics:

- aH:M terminology
- Delivering software fran a dedicated aH:M drive
- Setting up a delivery source and delivering software
- lklderstanding and using the newprod/makenode menu
- Using newprod/makenode interactive options
- Using newprod/makenode cannand- I i ne options
- Autanating the load key process

You should be fani I iar with this information before you attempt to
instal I software on your workstation/server fran delivery a:R:M.

Do you wish to view the a:R:M Software Delivery Docunentation
(y/n)? [n]:

This documentation contains the information presented in the CLIPPER
Software Delivery Guide. If you wish to read this online documentation,
key in y at the prompt. If you do not, key in n to return to the CDROM
Menu.

Option 2: Invoke the .. newprod" utility for installing software

When you choose this option, the following information appears on the
screen:

P2-50 CLIX SYSTEM GUIDE

CDROM Software Delivery

This menu choice invokes the newprod uti I ity. The newprod
uti I ity instal Is software products on your workstation/server.

Before you invoke "newprod," have the load key memo for this
workstation/server in hand. You wi 11 be pranpted to enter load
keys to instal I each purchased product. For instructions on using
''newprod." refer to the CIRM panphlet delivered with the delivery
CIRM. read the CIRM Software Delivery Documentation provided in
the CIRM Menu. or refer to the ''CLIFf>ER Software Delivery Guide."

Do you wish to invoke the ''newprod'' utility (y/n)? [n]:

If you wish to invoke newprod(lM). key in y at the prompt. If not. key
in n to return to the CDROM Menu.

Option 3: Invoke the .. makenode .. utility to create a delivery node

When you choose this option. the following information appears on the
screen:

NEW PRODUCT DELIVERY P2-51

CDROM Software Delivery

This menu choice invokes the .. rnakenode" utl I lty. The rnakenode
utility installs software products (in deliverable format) on a
workstation/server that functions as a del Ivery source. This
process enables other workstations/servers to doM"lload software
fran the del Ivery node through a network.

In the past. if you were loading products fran one CIR:M drive to
nKJltiple nodes. you were required to use .. rnakenode"to set up a
del Ivery source. Na.v, the capabi I ity exists to load products
directly fran a remote CIR:M drive using • •newprod" (without
creating a del Ivery source). Thus. you are not required to use
.. rnakenode" in order to load products to nKJI t iple nodes.

SETT!~ LP A DELIVERY'~ IS NJr REDJIRED IN N'1f SI~TICN.

00 N:>T USE lHIS UTILilY IF 'YOJ 00 NJr WI9-1 TO USE)UR

w:::R<STATictV"SERVER AS A DELIVERY' s::un:. INSTOO. USE n£ ~
UTILilY (O-OICE 2).

Before you invoke • •rnakenode, • • have the I oad key memo for the
workstation/server in hand. You wi 11 be pr~ted to enter the load
keys to instal I each purchased product. For instruct ions on using
''makenode,'' refer to the CIR:M ~let delivered with the
del Ivery CIR:M, read the CIR:M Software Del Ivery Docunentat ion
provided in the CIRM Menu, or refer to the • 'CLIAJER Software
Del Ivery Guide'•.

Do you wish to invoke the ''makenode'' utility (y/n)? [n]:

If you wish to invoke mak.enode(lM). key in y at the prompt. If not. key
in n to return to the CDROM Menu. ~

..,,,,,,

P2-52 CLIX SYSTEM GUIDE

CDROM Software Delivery

Option 4: Set up System V Online Documentation and Intergraph Online News

When you choose this option. the following information appears on the
screen:

This menu option saves disk space by providing access to these
online documentation products without having to load them on your
hard disk.

After you choose this option, you rrust exit the <IHM Menu and key
in the proper cannands to read the documentation {see descriptions
belo.v). Inmedtately after you exit the <IHM Menu, the <IHM
device is st i I I mounted. If you issue the • • runcd' ' cannand ago in,
• • runcd'' displays an error message because the a:HM device was never
urmounted; then it urmounts the device. Because the device has
been urmounted, the onl ine documentation is no longer available.
Hc:Mlever, you can access the <IHM Menu ago in and set up the
documentation again.

To access the AT&T System V and CLIX onl ine manuals, key in
••nnan<cannand>.'' For exanple, to access information on the Is
cannand, key in • •rman Is.•• Documentation for System V cannands
such as Is, rm, and mv exist and can be accessed through the manual
pages.

Internews consists of brief documentation on new Intergraph
products. To read Intergraph Online news (lnternews), key in
.. internews." A menu listing the information topics fran which to
choose appears.

Do you wish to set up the System V Online manuals and Intergraph
On I i ne News (y/n)? [n]:

NEW PRODUCT DELIVERY P2-53

CDROM Software Delivery

If you wish to set up the online documentation so that you can access it
from the delivery CDROM rather than by loading it on your hard disk.
key in y at the prompt. If not. key in n to return to the CDROM Menu.

Option 5: Exit

This option exits the CDROM Menu. It also unmounts the CDROM device
unless online documentation has been set up (option 4).

Restoring runcd

runcd(1M) is a shell script used to mount a CDROM and initiate the
CDROM Menu. To execute runcd(lM). key in the following:

runcd

If you receive a message saying that runcd(1M) was not found on your
workstation/server. follow these steps to copy runcd(1M) from the
CDROM to your hard disk:

1. Insert the delivery CDROM in the drive.

2. Mount the correct device. If your CD ROM drive is not connected
to SCSI ID 4. you must create the CDROM drive device file using
mknod(lM). Refer to the CDROM Drive Installation Guide for the
appropriate command line. If your CDROM drive is connected to
SCSI ID 4. the device file has already been created.

3. Link the device file (/dev/dsk./s4u0p0.0) to the CDROM drive
(/dev/dsk./cdrom) by keying in the following command line. This
example assumes that the CDROM drive is connected to SCSI ID 4.
If it is not. substitute the proper device file for /dev/dsk./s4u0p0.0.

In I dev I dsk./s4u0p0.0 I dev I dsk.I cdrom

4. Mount the device by keying in the following. where X represents
the SCSI ID of the CDROM drive:

mount -rf FFS /dev/dsk./sXuOpO.O /del

5. Copy runcd(1M) by keying in the following:

cp /del/runcd /usr/bin

P2-54 CLIX SYSTEM GUIDE

CDROM Software Delivery

6. Unmount the CDROM by keying in the following:

umount /del

7. Execute runcd(lM) as follows:

runcd

8. Continue the software delivery procedure.

NEW PRODUCT DELIVERY P2-55

c

c

Procedure 3: System Reconfiguration

Overview of System Reconfiguration P3-1

Getting Started
Invoking Sysconfig
Cursor Movement

Menus
Menu Hierarchy

Changed Item Display
Menu Organization

Title Line
Data Lines
Help Lines

Commands Common to All Menus
Pop-Up Help
Cursor Movement
Menu Movement
Session Change Removal
Default Values
Advanced Mode
Immediate Exit

Data Menu
Data Menu Layout
Changes

Changing Grau p Inclusion
Parameter Changes

P3-2

P3-2
P3-3

P3-4

P3-4
P3-8
P3-8
P3-8
P3-8
P3-9
P3-9
P3-9
P3-9
P3-9

P3-10
P3-10
P3-10
P3-11

P3-12

P3-12

P3-13
P3-13

P3-13

TABLE OF CONTENTS

Procedure 3: System Reconfiguration

System Creation P3-15

Appendix A: Directory Structure P3-17

Appendix B: What sysconfig Is Actually Doing P3-18

ii CLIX SYSTEM GUIDE

Overview of System Reconfiguration

Purpose To instruct the System Administrator on
reconfiguring a system

Commands sysconftg(1 M)

Caution An errant configuration change can result in a non­
bootable system.

This chapter describes how to reconfigure the CLIX system. Many parame­
ters control the CLIX system environment. For example. the number of
possible open files. the number of mounted file systems. and the total
number of processes can be adjusted. Also. there are several drivers that
may or may not be included in your system.

The sysconftg(1M) utility is a menu interface for configuring the CLIX
system. It simplifies system configuration by categorizing all the tunable
parameters and configurable drivers and providing a simple interface to
modify them. Note: sysconftg(1M) must be purchased from Intergraph.

Once sysconftg(1M) has been used to configure the system as desired. the
changes are saved. and new kernels are automatically created according to
the specifications. Two kernels are created for each machine: one with the
Network File System and Remote File Sharing support and one without
any type of remote file system capability.

e Changing a system configuration can easily result in a system that will
not boot. Therefore, extreme care must be taken when making changes.
Do not make a change without understanding its effects on the system.

SYSTEM RECONFIGURATION PJ-1

Getting Started

Invoking Sysconfig

You must be in the correct directory to access sysconfi.g(lM). The
syscon.fi.g(lM) command must be invoked from the parent of the master.d
and build directories. If not. syscon.fi.g(lM) will print an error message
and exit.

When syscon.fi.g(lM) is invoked. a Machine Menu similar to that shown
in Figure P3-1 will appear on the screen.

Target ~hlne CTRL-H for he Ip

220 : 15200
240 : IP'l40, IP'l45
J00: 15.300
32c : IP120, 1v120. IP220. IA220, IV'220, IP32c, IA32c, IV32c

340: IP340, IA.340, IV340, IP360, IA360, IY.360, IP370, IA.370, 1¥370

"100 : 15305, IS400

Figure P3-1: Machine Menu

P3-2 CLIX SYSTEM GUIDE

Getting Started

Cursor Movement

The cursor is always the currently highlighted or colored line of text on
the menu. To move the cursor. use any of the following keys:

move down:
move up:
move right:
move left:

<DOWN-ARROW>
<UP-ARROW>
<RIGHT-ARROW>
<LEFf-ARROW>

or <CONTROL>-N
or <CONTROL>-P
or <CONTROL>-F
or <CONTROL>-B

When the cursor is on the object you wish to select. press <RETURN>.

SYSTEM RECONFIGURATION PJ-3

Menus

Menu Hierarchy

The sysconfi.g(lM) menus are designed to allow quick movement to the
areas where changes are to be made. This is accomplished by arranging
items into several levels of categories and subcategories.

The menus can be conceived as a set of file drawers. To find something in a
set of files. you first choose the drawer containing the item you want.
Then. within that drawer. you choose the folder that contains the item.
Individual items or groups of items may be paper clipped together within
the folder. If the folder has groups of items. you choose the group with the
item you need. This same process of narrowing down an item"s location is
used in sysconfi.g(1M).

The first menu level. corresponding to the file drawers. is the Machine
Menu. This is where you select the machine for which you will be chang­
ing items. The Machine Menu is similar to that shown in Figure P3-2.

220 : 15200
240 : IP'240, IP'245
300 : 15300

Target M:>chine CTRL-H for he Ip

32c : IP120, IV120, IP220, IA220, 1\1220, IP32c, IA.32c, IV32c
340 : IP340, IA.340, IV340, IP360, IA.360, IV360, IP.370, IA.370, IV370
400 : 15305. 15400

Figure P3-2: Machine Menu

PJ-4 CLIX SYSTEM GUIDE

Menus

The second level. corresponding to the file folders. is the Category Menu.
The Category Menu is similar to that in shown in Figure P3-3.

Select a Category

eam...inication Facilities
File System Paraneters
Fi I e Systems
Inter-process eam...inication
Kernel Paraneters
Memory Drivers
Network Drivers

Figure P3-3: Category Menu

CTRL-H for he Ip

Paging Paraneters
Peripheral Drivers
Process Paraneters
Terminal Drivers
Terminals
User
XIO Paraneters

Each entry in this menu is an overall category of items that have com­
monality. For instance. the "File System Parameters·· category contains all
tunable parameters that deal directly with file systems. These include
items such as the total number of files that may be open on a system
(NFILE). the number of file systems that can be mounted (NMOUNT). and
the number of system buffers available for caching file blocks (RNBUF).

SYSTEM RECONFIGURATION PJ-5

Menus

The third level is either a Group or a Data Menu. depending on the
category selected at the second level. A Group Menu corresponds to
groups of items paper clipped together and is where the group is chosen.
The Group Menu appears similar to that shown in Figure P3-4.

Camunlcotion Foci I itles

Figure P3-4: Group Menu

log
skt
strean

streans
timod
ti rdwr

The streans logging driver.

CTRL-H for he Ip

The lowest level is a Data Menu and corresponds to the item groups paper
clipped together within a file folder. (If a Data Menu is found at the third
level. the items are not grouped.) The Data Menu is where the items are
viewed and changed or where a whole group can be deleted. A Data Menu
is similar to that shown in Figure P3-5.

Pl-6 CLIX SYSTEM GUIDE

Menus

Inter-process Ccrmunication include: YES (default: YES)

Def au It

100
32768
32768

50

Current I Nane

100
32768
32768

50

Def au It

4096
8

50

The inter-process cannunication message driver.

Figure P3-5: Data Menu

Hierarchy Diagram

Current

4096
8

50

The following diagram graphically represents the menu-level hierarchy:

MACHINE MENU

i
CATEGORY MENU

GROUP MENU DATA MENU

i
DATA MENU

SYSTEM RECONFIGURATION PJ-7

Menus

Changed Item Display

Any time an item is changed so that its value is different than it was when
sysconfig(1M) was invoked. the machine. category. and group containing
the item. as well as the item itself. are displayed in bold or colored text.
This allows you to quickly see the number and location of changes made.

Menu Organization

All sysconfig(1M) menus are organized into the following three kinds of
areas or sections:

Title Line
Data Lines
Help Lines

Title Line

The Title Line. a single line across the top of the screen, identifies the menu
you are using. Any time you are working within a category, the category
name is displayed on the left side of the Title Line. If you are working on
parameters within a group. the group name appears in the middle of the
Title Line. If the group may be optionally included. its status is displayed
to the right of the Title Line.

In addition. the Title Line indicates that you can invoke Help any time by
pressing <CONTROL>-H or the <HELP> key. When you press one of
them. sysconfig(1M) displays a Pop-up menu showing a summary of
sysconfig(1M) commands.

Data Lines

The Data Lines show the objects available for selection. They are located
in the middle of the display. The objects will be one of four types:

1. Machines. These are various machines that a CLIX kernel can be

configured for.

2. Categories. These are the categories that the CLIX parameters and
groups are in.

PJ-8 CLIX SYSTEM GUIDE

Menus

3. Groups. These are groups within a category that may be optional.
have tunable parameters associated with them. or both.

4. Parameters. These are tunable parameters within a category or
group.

Help Lines

The Help Lines offer helpful information for any group or parameter that
is currently highlighted. In addition. any messages or prompts
sysconftg(lM) displays are put on these lines. The Help Lines consist of
either one or three lines at the bottom of the display. depending on the
current menu.

Commands Common to All Menus

Pop-up Help

Help is available any time within sysconftg(lM) by pressing
<CONTROL>-H or the <HELP> key. When you are finished using the
pop-up Help. press any key to remove it.

Cursor Movement

The cursor is highlighted. To move it. use any of these keys:

move dovln:
move up:
move right:
move left:

Menu Movement

<DOWN-ARROW>
<UP-ARROW>
<RIGHT-ARROW>
<LEFf-ARROW>

or <CONTROL>-N
or <CONTROL>-P
or <CONTROL>-F
or <CONTROL>-B

To move up to the previous menu. press <CONTROL >-Z. If you press
<CONTROL>-Z while in the top-level menu (Machine Menu). all
changes are saved and new kernels are created for the machines that have
changes.

SYSTEM RECONFIGURATION Pl-9

Menus

To move down to the next menu, press <RETURN> while the cursor is

on the object you want to move to. (This only works if there is a lower

menu to move to.)

Session Change Removal
You can reset all items in an object to the values they had when

syscon.fig(lM) was invoked by moving the cursor over the object and

pressing <CONTROL >-R.

The reset feature is useful if you made changes in several categories or

several groups and decide to return some to their original values. To do

this, move the cursor over the machine, category. or group to reset and

press <CONTROL>-R. You are prompted on the Help Lines with
.. Remove session changes?:· To reset the items, respond with a Y or a y

followed by <RETURN>. No action will be taken for other responses.

The reset feature is also useful if you change an item and later decide that

you did not really want to change it. Simply move the cursor over the

item and press <CONTROL >-R. The item is changed back to its original

value.

Default Values

You can reset all items in an object to their default values by moving the
cursor over an object and pressing <CONTROL>-U. An object may be

either a machine, category, group, or item. Unless the cursor is directly on

an item, you are prompted on the Help Lines with a .. Use default values?"

question. If you are sure you want to use default values for the object,

respond with a Y or a y followed by <RETURN>. No action will be

taken for other responses.

Advanced Mode

Many items known as .. advanced" topics are not displayed unless

advanced mode is toggled on. This mode can be toggled on any time by

pressing <CONTROL>-A. To toggle advanced mode off. press
<CONTROL>-A again. The state of advanced mode (on or off) is

displayed in the pop-up Help. The advanced mode defaults to off.

P3-10 CLIX SYSTEM GUIDE

Menus

Immediate Exit
You can exit sysconftg(1M) any time by pressing <CONTROL>-C. All
changes are lost and sysconfi.g(1M) does not ask for confirmation when
you choose immediate exit.

SYSTEM RECONFIGURATION Pl-11

Data Menu

Data Menu Layout

Figure P3-6 is a sample Data Menu.

Inter-process Camunlcation

Nane Def au It

100
32768
32768

50

Current I Nane

100
32768
32768

50

include: YES (default: YES)

Default

4096
8

50

Current

4096
8

50

The Inter-process camunlcatlon message driver.

Figure P3-6: Data Menu

The top right section is where you can specify whether a group will be
included. This section does not appear if the Data Menu is accessed from
the Category Menu or if the group's inclusion is not optional.

The middle section of the window shows the tunable parameters with their
default and current values. If a value contains too many characters to fit
in the space allocated. it is marked with a ·· >" on its right. For example.
the Kernel Parameter .. NREGION" defaults to ((NPR007)/2). This is too
long to be displayed completely. so it appears in the menu as follows:

((NPROC•>

To see the rest of the value. move the cursor over it and repeatedly press
the .. >" key. The value shifts left one character with each key press.

P3-12 CLIX SYSTEM GUIDE

Data Menu

Eventually. it looks like this:

<0C•7}/2}

A··< .. appears on the right as soon as the value shifts and the··>·· on the
right disappears when the rightmost character of the value is displayed.
The value can be shifted left and right as much as desired. The display
returns to showing the left part of the value when the cursor is moved.

Help for the currently highlighted item is displayed in the bottom section
of the window.

Changes

Changing Group Inclusion

If a Data Menu is accessed from a Group Menu. group inclusion may be
optional. The current inclusion state is displayed on the right side of the
top line and may be changed.

In most cases. a group corresponds to a driver. Therefore. including a
group also includes a driver in the system. Similarly. excluding a group
also excludes a driver. For example. in Figure P3-6 the group name is
.. msg" and corresponds to the .. Inter-Process Communication Message"
driver shown in the Help line.

When the menu is first displayed. the cursor is over the first letter of the
value next to .. include:." This value is either .. YES" if the group is to be
included in the kernel. or .. NO" if it is not.

Press n to change the value to .. NO" or y to change it to .. YES." The cur­
sor can be moved between this area and the parameters using the arrow
keys in the normal manner.

Parameter Changes

To change the value of a parameter. move the cursor over it. key in the
new value. and press <RETURN>. <UP-ARROW>. or <DOWN­
ARROW>. If <RETURN> or <DOWN-ARROW> is pressed. the cursor
moves down to the next parameter. If <UP-ARROW> is pressed. the
cursor moves up to the previous parameter.

SYSTEM RECONFIGURATION PJ-13

Data Menu

If the parameter value is blank when input is completed (you erased
everything you entered). the value will be the same as it was before.

When the first character is entered. the old value is erased and the new
character followed by the cursor is displayed. Each additional character
entered pushes the previous characters left. while the cursor remains in the
same position. The maximum length of a value is 29 characters.

If a parameter value has too many characters to fit in the display area. a <
appears to the left of the display area to denote more characters exist to
the left. and a > appears to the right to denote more characters to the
right. To see the hidden characters. the <RIGHT-ARROW> and
<LEFT-ARROW> keys can be used to shift the value right or left.
respectively.

While entering a parameter value. several editing commands similar to
those used in the EMACS text editor are available. The available com­
mands are as follows:

<CONTROL>-A

<CONTROL>-B

<CONTROL>-D

<CONTROL>-E

<CONTROL>-F

<CONTROL>-H

<CONTROL>-K

<CONTROL>-N

<CONTROL>-P

<CONTROL>-Y

Move the cursor to the beginning of the parameter
value.

Move the cursor one character left.

Delete the character under the cursor.

Move the cursor to the end of the value string.

Move the cursor one character to the right.

Delete the character to the left of the cursor.

Erase the current parameter value. The last param­
eter value erased can be called back with
<CONTROL>-Y.

Save the parameter value and move the cursor
down to the next parameter.

Save the parameter value and move the cursor up to
the previous parameter.

Replace the current parameter value with the last
one erased by <CONTROL>-K. If
<CONTROL>-K has not been used yet. replace the
current parameter value with the value it had
before editing.

P3-14 CLIX SYSTEM GUIDE

System Creation

After the changes are complete. a new kernel can be created. To do this.

move to the Machine Menu and press <CONTROL >-Z. You are

prompted with the "Save changes and make kernels?" question. If you are

certain that the changes are correct. type Y or y and a <RETURN>.

After you press a <RETURN> sysconftg(lM) first saves all changes and

then creates two kernels for each machine that you changed. one with

remote and network file sharing and one without. As each kernel is

created. you see the commands issued to create it. After all kernels are

created. their file locations are displayed and sysconftg(lM) exits.

To install a newly created kernel. move the kernel (either with or without

remote file system support) to /unix of the target machine and reboot the

target machine. The new kernel will be loaded and executed during the

machine boot.

You should retain the old kernels by renaming them rather than overwrit­

ing them. If a new kernel causes problems. you can reboot the machine

using the old kernel that worked correctly.

To reboot from a kernel other than /unix. on a graphics workstation (not

an InterServe™). press <CONTROL>-C immediately after choosing Sys­

tem V from the System Startup (blue page) Menu. You will be prompted

for the kernel name at which time you may enter the name of the saved

kernel and press <RETURN> .

To reboot from a kernel other than /unix on an InterServe. press any key

after the "Hit any key in 5 seconds" prompt. Enter unix. press

<RETURN>. and immediately press <CONTROL>-C. You will be

prompted for the kernel name. At this time you may enter the name of the

saved kernel and press <RETURN> .

Example

This example will demonstrate the process to install a new kernel on an

InterServe 200 after changing the number of concurrent processes a

nonsuper-user is allowed to run.

1. Move to the directory containing the master.d and build sub­

directories (most likely the /usr/src/uts/clipper directory).

SYSTEM RECONFIGURATION PJ-15

System Creation

2. Execute sysconftg(1M).

3. Choose .. 200" as the target machine.

4. Choose the .. Process Parameters" category.

5. Move to the parameter to be changed. The parameter is .. MAXUP"'
in the .. Process Parameters" category.

6. Change .. MAXUP" to the new value by typing in the new value.
7. Move back to the Machine Menu and exit sysconftg(1M) with

<CONTROL>-Z. Answer yes to the .. Save changes and make ker­
nels?'" question.

8. sysconftg(1M) indicates that it is saving your change. It will then
show the commands issued to make the new kernels. Finally. it
indicates that the new kernels were created and stored in
build/200/unix and build/200/unixf s.

9. Rename the /unix kernel so it is not overwritten with the new one
(in case the new one does not work correctly).

10. Move either build/200/unix or build/200/unixfs to /unix.
11. Reboot the workstation.

The machine should now run under a new kernel with .. MAXUP" set to
the new value.

Pl-16 CLIX SYSTEM GUIDE

Appendix A: Directory Structure

The directory structure delivered with the Configurable Kernel product is
as follows:

master.di sysconfig build/

config machl/ mach2/ mach3/ machl/ mach2/ mach3/

I I I
info info info make make make

Usually. this tree will be in the /usr/src/uts/clipper directory. However.
location is not important so long as the structure remains the same.

The master.d directory contains all configuration information about the
various machines. An additional file. conftg. in the master.d directory con­
tains data sysconftg(lM) uses to determine what machines can be
configured and where the configuration information for each machine is
located.

The build directory contains all libraries and support files for creating new
kernels for various machines.

SYSTEM RECONFIGURATION P3-17

Appendix B: What sysconfig Is Actually Doing

The syscon.ftg(lM) utility is a smart editor that produces a kernel from a
custom configuration. It follows specific rules for locating parameters that
can be changed and files that can be optionally included. When you chang
values using syscon.ftg(lM). syscon.ftg(lM) rewrites the new values in the
location of the old ones and initiates the creation of the new kernel.

The files with the information that sysconfi.g(1M) needs are stored in the
master.d directory under directories for each machine type. Three kinds
of information are in these files: C program code and data. sysconfi.g(1M)
tokens. and mkcon.ftg(lM) tokens. The mkcon.ftg tokens and C text
describe kernel creation. The syscon.ftg(1M) tokens describe the items that
may be changed in each file.

Parameters changed with sysconfi.g(tM) are actually arguments in
#define lines in the master.d files. To find current parameter settings. it
searches all files for tunable #define lines and reads the current values. To
make the necessary parameter changes. syscon.ftg(1M) overwrites the old
#define arguments with the new ones.

Groups that can be included or excluded are actually the names of files
within the master.d machine directories. An excluded file will be ignored
when a kernel is created. The names of included files are kept in the
master.d machine directories in files named LISTmachine, where machine
is the name of the corresponding machine. For example, the InterServe 200
file is called LIST200. This list is later used to determine which files need
to be processed to create a kernel. When syscon.ftg(lM) is first executed. it
reads the USTmachine files to determine current kernel configurations.

After syscon.ftg(tM) has written all changes. it executes make(t) using
the makefile in the build/machine directory. The makefile gathers infor­
mation needed to make a new kernel and invokes mkcon.ftg. mkcon.ftg
processes the configuration files and generates the C source code needed to
make the kernels. The makefile then continues with the compilation and
linking of the kernels.

The newly created kernels will be in the directory build/machine. The
two kernels created for each machine are unix and unixfs. The difference
between these two kernels is that unixfs contains the code needed to sup­
port both the Network File System (NFS™) and Remote File Sharing
(RFS). while the unix kernel does not contain this code.

P3-18 CLIX SYSTEM GUIDE

c

Procedure 4: FFS Installation

Overview of FFS Installation

Installing a Fast File System

Automation

P4-1

P4-2

P4-4

TABLE OF CONTENTS i

Overview of FFS Installation

Purpose To instruct the system administrator in installing a
Fast File System to organize data on a disk for more
efficient access

When When users do not need to access the file system
Performed being upgraded

Starting Log in as super-user
Conditions

Commands newfs(lM), ffsmk.fs(lM). umount(lM).
Dl.ount(lM), labelit(lM)

Caution If the Fast File System being created already is a
standard file system. back up all files that you want
to save. The procedure for creating a Fast File Sys­
tem deletes all files in the existing file system. Also.
the existing file system must be unmounted using
umount(lM) before newfs(1M) is executed.

Reference FFS Tutorial
FFS Check Tutorial

The Fast File System (FFS) is a way of organizing data stored on a mag­
netic disk drive to enhance the speed of disk read and write operations.
All file systems on the workstation/server other than /(root) and /usr can
be converted to FFS provided they do not contain symbolic links. The
current implementation of FFS does not support symbolic links. File sys­
tems can be converted to FFS while the system is running by following
this procedure.

FFS INSTALLATION P4-1

Installing a Fast File System

Step 1:

Step 2:

Step 3:

The following procedure will destroy all data currently on the file sys­
tems being upgraded to FFS.

Back up all files on the existing file system that you want to
save. cpio(l). tar(l). or backup(l) may be used to perform the
backup. The conversion process will erase any pre-existing data
on the file system(s).

Find out the Intergraph part number of the drive you are using.
These numbers have the form FDSKxxx or MESAxxx and can be
found on the Disk Maintenance page of the Utility pages. You
need the part number for the disk corresponding to both the
SCSI ID and logical unit number (LUN) where the partition
being upgraded resides.

Create the Fast File System. If you are on an Intergraph­
supplied disk. use the newfs(lM) utility.

If you are using a non-Intergraph-supplied disk. you must use
:ffsmkfs(lM). Refer to your hardware manual for your drive
and :ffsmkfs(1M) for details on building a Fast File System.

The arguments to newfs(1M) are as follows:

newfs [-v] [-N] [:ffsmkfs-options] special part_number

The components of these arguments are explained below.

v

N

:ffsmkfs-options

Prints the :ffsmkfs(1M) command executed
to build the FFS and then builds the f s.

Does not create a FFS; it prints out parame­
ters that would be used.

Are not recommended but can be used to
override defaults in unusual cases (see
:ffsmkfs(1M) and newfs(1M)).

P4-2 CLIX SYSTEM GUIDE

special

part-number

lnstalllng a Fast File System

Is the block device file associated with the
partition.

Is the Intergraph part number found on the
Disk Maintenance menu of the Utility pages.

newfs(1M) automatically calculates the size of the file system
to be the size of the partition the file system is built on.

For example, to make a FFS on a CDC WREN III drive, device
file /dev/dsk/s2u0p7.3, 150,000 blocks. enter the following at
the# prompt:

newfs /dev/dsk./s2u0p7.3 fdsk155

The file system is now ready to be mounted and used.

Y If the Fast File System being created exists, the file system must be
unmounted using umount(lM) before executing newfs(lM) or
ffsmkfs(lM).

Step 4:

Step 5:

Mount the Fast File System using the mount(1M) command
with the -f FFS option. To mount the file system used in the
previous example on /usr2. enter the following at the# prompt:

mount -f FFS /dev/dsk/s2u0p7.3 /usr2

mount: warning:<> mounted as </usr2>

To suppress the warning use labelit(1M) to label the file system
usr2.

After rebooting. restore any backups made in step 1.

FFS INSTALLATION P4-3

Installing a Fast File System

Automation
Fast File Systems can be checked and mounted automatically. For the file
system to be checked automatically after system failures. enter the block
device used for the file system in /etc/checklist. For example. to check
our example file system. add the following line to the /etc/checklist file:

/dev/dsk/s2u0p7.J

Fast File Systems can be automatically mounted by putting them in
/etc/fstab with one additional parameter. To add our example file system.
/usr2. to the automounts. add the following line to the /etc/fstab file:

/dev/dsk/s2u0p7.3 /usr2 FFS

The FFS at the end of the line will insert -f FFS in the mount(lM) com­
mand invoked to mount the file system.

For additional information on Fast File Systems see the system
administrator's .. FFS Tutorial." For additional information on sanity­
checking Fast File Systems. see the system administrator's .. FFS Check
Tutorial.""

P4-4 CLIX SYSTEM GUIDE

c

Procedure 5: BSD Network Configuration

Overview of BSD Network Configuration

The Internet Address
Internet Address Notation
Internet Address Installation

Entering an Internet Address in the Clearinghouse

Updating I etc/hosts

Propagation of the Internet Address

Addressing Non-Intergraph Systems

Changing an Internet Address

Assigning Internet Addresses and Node Names
with the IP Address Broker Service

Overview of the Broker Service

Address Broker Terminology

Broker Service Files

Format of the XXXXXXXX.bcf Files

Format of the broker.nets File

Configuring the Broker Service

Network Configuration Files
General-Purpose Configuration Files

The I etc/hosts File

The I etc/ services File

The /etc/protocols File

The I etc/networks File

Application Configuration Files

/etc/hosts.equiv and"" /.rhosts

Ftp: the .netrc File

Ftpd: the /etc/ftpusers File

lpr: the /etc/hosts.lpd File

P5-1

P5-3

PS-4
PS-6
PS-6

P5-7

PS-7
PS-8
PS-9
PS-9

PS-10
PS-10
PS-11
PS-12
PS-12
PS-13

PS-16
PS-16
PS-11
PS-18
PS-19
PS-20
PS-21
PS-22
PS-22
PS-23
P5-24

TABLE OF CONTENTS

Procedure 5: BSD Network Configuration

Inetd: the inetd.conf File PS-25

Network Security PS-27

ii CLIX SYSTEM GUIDE

........
~

'""""'

Overview of BSD Network Configuration

Purpose

When
Perf orm.ed

Starting
Conditions

Commands

Time

Caution

Reference

To describe the form of an Internet address, the steps
needed to install it, and the format and use of certain
network configuration files.

Upon installation of software which uses the TCP/IP
networking protocols, e.g. NQS and TCPIP.

Log in as super-user.

clh(1)
namex(1M)
getinet(1M)

Approximately 20 minutes. (The system may need
to be rebooted.)

The Internet address must be installed before
software requiring the address can function.

See specific software requiring an Internet address for
more information.

This procedure describes the configuration requirements for software using
the Transmission Control Protocol/Internet Protocol (TCP/IP) communica­
tion protocols. Such software includes NQS, lpr(1), the remote command
utilities in the TCPIP product, and most programs which use the "sockets"
inter-process communication facility (see socket(2B)) and related routines
in the "CLIX Programmer's and User's Reference Manual," as well as the
socket tutorials in the "CLIX System Guide"). Topics discussed are the
formation and installation of the Internet address used by TCP/IP and the
use and maintenance of configuration files which affect the behavior of cer-

"" tain programs using the protocols.

BSD NETWORK CONFIGURATION P5-1

Overview of BSD Network Configuration

TCP/IP protocols are independent of the Xerox Network Systems (XNS)
protocols used on Intergraph systems and use a different addressing
scheme. Unlike XNS addresses. which are permanently encoded in
hardware. TCP/IP addresses exist only in software and must be configured
and initialized before the protocols can be used by software that depends
on them.

A TCP/IP address is also referred to as an Internet address. and a machine
using the TCP/IP protocols is identified by its Internet address. This
address must be supplied by the network administrator. The first section
of this tutorial describes Internet addresses and their construction. A list
of applications requiring Internet addresses is also provided.

The Internet Protocol (IP) Address Broker Service can generate Internet
addresses for Intergraph nodes. If the Broker service is not available. the
getinet(1M) routine can be used to generate the address.

Certain configuration files control address resolution. access permissions.
and other parameters for TCP/IP-based network applications. These files
are described in the "Network Configuration Files .. section.

P5-2 CLIX SYSTEM GUIDE

The Internet Address

The TCP/IP protocols identify systems by a configurable address known as
the Internet address or TCP/JP address. (The terms are used interchange­
ably.) A strict convention dictates the format of this address and mal­
formed addresses can cause network problems. Procedures and programs
mentioned in this tutorial are provided to assist with address assignment;
nevertheless. the network administrator generally needs to be very fami­
liar with the addressing scheme and to take care in assigning addresses to
systems on a network.

Products that require an Internet address usually prompt the installer for
an Internet address during installation if none exists for the machine.
Rebooting the machine initializes the address. The following is a partial
list of Intergraph applications that use the TCP/IP protocols and require
the machine to have an Internet address.

Applications Requirin_g_ an Internet Address
Product Description

lpr (System V) A remote print spooling program
NFS Network File System
NQS Network Queuing System
TCP IP A group of applications includ-

ing ftp. rcmd. rep. rlogin. rup-
time. rwho. telnet. tftp. and
udpecho

XWINDOWS The X-Window system

The product TCPIP does not contain the actual TCP/IP protocols, but
rather a group of utilities which use the TCP/IP protocols. The product
TCPIP is not needed for any of the other products to run.

In general. Intergraph network applications are either XNS- or TCP/IP­
based. An application based on BSD-style socket calls (see socket(2B)) is
probably TCP/IP-based. thus requiring an Internet address.

BSD NETWORK CONFIGURATION P5-3

The Internet Address

Since malformed addresses can cause problems for network nodes other
than the one to which the address is assigned. it is important that the fol­
lowing guidelines be kept in mind:

• If the host will not be connected to an official Department of Defense
(DoD) network. any valid Internet address can be assigned to the
machine.

• If the host will be connected to a DoD network. it must be assigned a
registered Internet address from the DoD.

The Network Information Center (NIC) located at SRI International
assigns all Internet addresses. NIC assigns only the network portion
of the address and the requesting organization assigns host numbers.
(See below for definitions of the .. network" and .. host" components
of the address.) More information is available from the following
address:

Network Information Center
SRI International
333 Ravenswood Avenue
Menlo Park. CA 94025
(415) 859-3695

Internet Address Notation

An Internet address is a 32-bit number ordinarily expressed as four fields
separated by periods. each consisting of three digits. as in the following:

nnn.nnn.nnn.nnn

This convention is known as Internet address rwtation. Each field
represents eight bits of the 32-bit address. Within each field. leading
zeroes can be omitted. The largest permissible value in a field is 255. The
following are examples of Internet address notation:

1.1.1.1
1.0.0.12
1.2.123.255

Each address has two portions. The leftmost portion is a network number.
which identifies the local network on which the node resides. The right­
most portion is a host number. which identifies an individual node within a

PS-4 CLIX SYSTEM GUIDE

The Internet Address

network.

The network portion of the Internet address must be the same for all
nodes on a Local Area Network (LAN).

The leftmost three bits of the Internet address are used to divide the
address space into three network classes. The allocation of the remaining
bits to the network and host portions depends on the class to which the
network belongs. The three classes are defined as follows:

Class A
Class B
Class C

Field 1
Bits
0

Field 2

8
0 Network l
10 Network
110 Network

Field 3 Field 4

16 24 31
Local

l Local

l Local

,,,,....._ Within Class A. only a few networks can exist. each having a large
~ number of nodes. In contrast. Class C provides a large number of net­

works. each having relatively few nodes (254 maximum). The scheme
limits permissible values for individual fields within each class to the fol­
lowing:

Class A
Class B
Class C

Field 1
0-127

128-191
192-223

Field 2 Field 3 Field 4
0-255t 0-255t 0-255t
0-255 0-255t 0-255t
0-255 0-255 1-254t

t The host number cannot contain all binary Os or all binary ls because
these values have special meaning within the TCP/IP protocols. In
terms of Internet address notation. this means that fields composing
the host number cannot all be 0 or all be 255.

BSD NETWORK CONFIGURATION P5-5

The Internet Address

A network number of 127 should not be used because it has the meaning
loopback.

The Department of Defense protocols allow omission of leading fields in
the local portion if they contain all zeros. (A network ID of 0 indicates the
local network.) For example. the following Class A Internet address can
be shortened to 126.111 because the two fields of zeros are part of the local
address.

Network
126.000.000.111 or 126.

Internet Address Installation

Local
000.000.111

Users of network applications generally wish to reference systems by
name rather than address. This need for binding names to addresses and ~

for propagating these bindings to all nodes on the network is handled """"'1Ji.

differently by XNS and TCP/IP. The Intergraph implementation of XNS
relies on the clearinghouse facility (see clh(l)) to automate the mainte-
nance of name bindings. The TCP /IP counterpart of this task is. in most
implementations. performed by manually entering name and address pairs
in a text file called /etc/hosts (see hosts(4)). The task may be performed
in this way on Intergraph systems as well. but extensions to clh(l) allow
the system administrator to maintain all name and address information in
one place. An Internet address may be added to the clearinghouse entry
for a host and automatically propagated by namex(1M) to /etc/hosts on
the local node and throughout the network as well.

Entering an Internet Address in the Clearinghouse

To enter an address in the clearinghouse. a line is added to the clearing­
house object for the local host. This line has the following form. where
nnn.nnn.nnn.nnn is the Internet address:

tcp _address: nnn.nnn.nnn.nnn

The address can be entered using the clh(l) program to edit the primary
entry listed under OWNED NETWORK OBJECTS. This is the preferred

PS-6 CLIX SYSTEM GUIDE

The Internet Address

method for adding the TCP /IP address to the clearinghouse.

The following command displays the clearinghouse entry, allowing
,,,,,,.... verification that the Internet address has been correctly added to the clear-
~ inghouse:

-

clh lookup node-name /full

Node-name is the machine"s primary name. The Internet address should
appear in the display in the same form in which it was entered. Along
with other information. the display should contain at least the following
lines:

Owned:

node_name

Address

tcp_add ress

Updating /etc/ hosts

00012345.00-00-00-00-00-00
nnn.nnn.nnn.nnn

TCP/IP applications obtain addressing information from /etc/hosts. so an
Internet address entered in the clearinghouse must also be entered there.
namex(lM) performs this service automatically once a day. updating
/etc/hosts from the information in the clearinghouse. To force this update
to occur without waiting for the scheduled execution of namex(1M). enter
the following command at the super-user prompt:

/usr/ip32/inc/namex

/etc/hosts can be updated by editing it directly rather than running
namex(lM) but the system administrator should verify that the Internet
addresses match in the clearinghouse and /etc/hosts. A discrepancy
between the two is likely to cause problems.

Propagation of the Internet Address
In order for TCP/IP applications on a node to be fully operational with all
other nodes on a network. the node"s name and address must be known to
all other nodes. and their names and addresses must be known to it. This
means that the node"s /etc/hosts must contain the names of the other
nodes. and /etc/hosts on the other systems must contain an entry for it.

BSD NETWORK CONFIGURATION PS-7

The Internet Address

This propagation proceeds in two steps:

• Each node broadcasts its clearinghouse entry to the other machines
on the network. This happens automatically once an hour; it may
be forced to happen by execution of clh -u node ruune or when the
EXIT AND UPDATE option is selected from the clh(l) menu.

• namex(lM) runs on each machine to update /etc/hosts from the
clearinghouse. As noted above. this update occurs automatically
once a day. but may be forced by explicit execution of namex(lM).

When an Internet address has been installed for the first time. the system
must be rebooted to reinitialize the TCP/IP protocols with the new address.
It is recommended that before this reboot the new address be broadcast
using clh -u node name. If it is inconvenient to wait for namex(1M) to
perform its next automatic update of /etc/hosts on the other nodes.
namex(lM) must be run manually on all the nodes with which the local
node needs to communicate.

Addressing Non-Intergraph Systems

Because non-Intergraph systems do not have the clearinghouse facility.
manual editing of /etc/hosts is required in order for Intergraph systems to
communicate with non-Intergraph systems. The names and addresses of
foreign systems must be entered in /etc/hosts on the Intergraph systems.
and vice versa.

To add a host name entry to /etc/hosts. use a text editor to enter a line in
the following format:

Internet-addr hostruune [alias] alias2 ...]

On Intergraph systems. care must be taken to avoid editing the file in such
a way as to interfere with the operation of namex(lM). If the file con­
tains the following line. the address should be added above it:

#namex entries follow: DO NOT EDIT BELON THIS LINEil

namex(1M) modifies only entries below this line. and ignores those above
this line.

P5-8 CLIX SYSTEM GUIDE

The Internet Address

Changing an Internet Address

To change an Internet address. follow these steps:

1. Update the address in the /etc/hosts file by editing it or by run­
ning namex(1M).

2. Change the address in the clearinghouse using the clh(1) program.

3. Reboot the system to initialize the TCP /IP protocols with the new
address.

Assigning Internet Addresses and Node Names with the IP
Address Broker Service

When downloading some Intergraph products. the user may be prompted
to enter the node"s Internet address. If the node has not yet been assigned
an address. the Internet Protocol (IP) Address Broker Service can be used
to assign the address. This section describes the service and how to use it.
For more information on Internet addresses and the IP Address Broker Ser-

"...- vice. please refer to the CLIX TCP/IP User's Guide.

Serious network problems can occur, both on the Local Area Network
(LAN) and on any other network to which the LAN is connected, if
addresses are assigned improperly. To avoid this, exercise caution when
using the Internet Protocol (IP) Address Broker to assign TCP/IP
addresses. The preferred method is for the network administrator to
officially request and then assign valid Internet addresses to all nodes on
the LAN.

The broker server should be configured to run on only one node on the
user's network. If more than one broker server is configured. the files used
to assign Internet addresses will be invalid.

BSD NETWORK CONFIGURATION PS-9

The Internet Address

Overview of the Broker Service

The IP Address Broker Service is a server program run by a request from
an IP Address Broker client. These programs use the XNS Sequenced
Packet Protocol (SPP) to communicate over the network. Together. they
assign an IP address for the requesting client.

The broker and client are delivered as part of the Intergraph Network Core
(INC) product. The broker client is invoked by the installation script of
every product that requires an Internet address. Some of these products
are the Network Queuing System (NQS). Network File System (NFS).
TCPIP. and XWINDOWS. If the system which invoked the client does not

already have an Internet address. the client will attempt to contact the
server on the broker's host node.

The node on which the broker server resides must be a CLIX system hav­
ing the alias ibroker. The Broker Service does not support VMS or per­
sonal computer (PC) nodes. The broker server can be installed on any
node. as long as the alias ibroker is assigned to the node. The broker host
and server must be configured before the broker client is invoked by any
host.

Address Broker Terminology

An understanding of the following terms is important for correct use of
the Broker Service:

Internet Protocol (Ip) Address

Ethernet Address

The four-byte IP Address is more commonly
referred to as an Internet address. This address is
described more completely in the section entitled
.. The Internet Address ...

An Ethernet address is a six-byte address. written
as six two-digit hexadecimal numbers. separated by
dashes. An XNS LAN number is a four-byte value.
written as a single hexadecimal number. An XNS
address is a LAN number separated by a period
from an Ethernet address (as in 134A1.08-00-36-

PS-10 CLIX SYSTEM GUIDE

Node name

Network Mask

Broker Service Files

The Internet Address

OO-F2-0A).

Every Intergraph system has a unique Ethernet
number. The XNS LAN number is configured in
routers and gateways. Each Intergraph system
determines the system's LAN number at boot time
by polling the routers on the network. Zero or the
absence of a LAN number implies the local LAN.
Internet addresses are not hard-coded into the sys­
tem because the format of the host number and net­
work number portions cannot be predetermined.

Every system has a node name by which the sys­
tem is known. This name can be translated in to an
XNS address or an Internet address. The node can
also be known by one or more additional names
ref erred to as aliases.

A network mask is a bitmask in the form of an
Internet address. with the bits set to 1 in the por­
tion of the number that is part of the network
number and reset to 0 in the portion that is the host
number.

A network number can be extended into the host
number portion to create a subnet number. A sub­
net mask has the bits of the network number and
the subnet turned on. A network or subnet mask
might be written as 255 .255 .255 .0.

You have the option of loading the Broker Service when installing the INC
product. If loaded on your system. the Broker Service maintains its data­
base in several text files in the /usr/ip32/inc/broker directory. A text file
must exist for each LAN that the broker services. The file names are in the
format XXXXXXXX.bcf, where XXXXXXXX is the hexadecimal XNS
LAN number for that LAN. These files are generated by running the
configuration shell script bcon:fi.g.sh.

BSD NETWORK CONFIGURATION PS-11

The Internet Address

The file broker.confi.g contains the network mask and the mapping of XNS

network numbers to Internet address numbers. Multiple Internet network

numbers can be used on a single XNS LAN.

The Broker Service also uses a file named broker.nets. which is generated
by the configuration script. bconfi.g.sh.

Format of the XXXXXXXX.bcf Files

These files have the same format as the /etc/hosts file. which is used on
each system to associate node names with Internet addresses.

The files have one node entry per line. Fields in the entry must be

separated by at least one space or tab. The first field is an Internet address;

the second field is the node name for that address. Optional aliases and a

comment. which must begin with a pound sign(#). can follow the node

name. This file will be returned to the requesting client as the client's
/etc/hosts file and the namex(lM) utility will then add entries for other

hosts on the network.

Format of the broker .nets File

This file is generated by the broker configuration script. The Broker Ser­
vice uses a specially formatted network name containing the XNS LAN

number that is associated with an Internet network number. When a
client asks the Broker Service to assign an Internet address. the client sends
its XNS LAN number to the Broker Service. The Broker Service then
assigns an Internet address from the Internet network number for the
specified XNS LAN.

In this file. the broker configuration script makes an entry. named after the

XNS LAN number. which resolves to the Internet network (or subnet­
work) number of the XNS LAN. The script makes another entry that
resolves to the Internet (or subnetwork) mask for the XNS LAN.

The format of the field for the Internet network number is the string net­

namel_ (including the underscore). followed immediately by the XNS

LAN number in hexadecimal (with no space after the underscore).

The Broker Service server can accommodate multiple Internet network
numbers on each XNS LAN and each entry will have a new number
appended to the LAN number. as shown in the following:

netnamel_00013498 129.135.100.0

PS-12 CLIX SYSTEM GUIDE

netname1_00013498 129.135.100.0
netname2_00013498 129.135.101.0

The Internet Address

The field for the Internet network mask is similar. but begins with net­
m.ask_. For example. if the XNS LAN number for one network is 134A1
and its Internet subnetwork number is 129.135.199. the entry in the file
might look like the following:

netname1_000134A1 129.135.199.0 bldg4net bobsnet #Bob's subnet
netmask_000134A1 255.255.255.0 #netmask for Bob's LAN

The XNS LAN number must have leading zeros to pad the number to eight
characters. Also, the entire name, including hexadecimal digits in the
XNS LAN number, must be uppercase. If the XNS LAN number is zero,
enter eight zeros for the network.

Configuring the Broker Service

To configure the Broker Service on a broker host. perform the following
steps at the super-user prompt.

1. Change to the /usr/ip32/inc/broker directory. If no TCP/IP
applications are in use and if there are no Internet network
numbers. skip step 2.

2. In the directory host:files. put a copy of the file I etc/hosts from
one machine on each LAN to be serviced by the broker host. These
files will be merged and used to generate the files used by the
Broker Server. These files should be named XXXXXXXX.lwsts.
where XXXXXXXX represents the XNS LAN number of each LAN
from which the files are copied.

3. Edit the file /usr/ip32/inc/broker/broker.admin and put in the
correct name for the person administering the broker.

4. Edit the file /usr/ip32/inc/broker/broker.con:fig to set up the
correct associations between XNS LANs and Internet networks. At
least one line must contain the string mask.: X.X.X.X. where
X.X.X.X is the Internet network mask to be applied to the
addresses. If this line appears more than once. only the last one

BSD NETWORK CONFIGURATION PS-13

The Internet Address

read will be used. The text mask: must start in the first column.

must be lowercase. and must be separated from the address by a

space.

The bconftg.sh utility supports the use of a single mask only. If

more than one mask is in use. the .bcf files must be built manually.

For each LAN to be used. one or more lines in the broker .conftg
file will contain the XNS LAN number and an Internet network
number for that LAN. More than one Internet network number
maybe assigned to each XNS LAN number.

Each network number in use will have one line in the
broker.conftg file. These lines have the following format:

lan: LLLLLLLL X.X.X.X

In this example. lan must be left-justified and lowercase. and all
fields must be separated by spaces. The field LLLLLLLL is the
hexadecimal XNS LAN number. This field must be padded
to eight characters with leading zeros. The number X.X.X.X is an
Internet network number to be associated with the XNS LAN. We
supply an example broker.conftg file.

5. Run the shell script bconftg.sh. Any nodes with Internet network
numbers that were not in the broker.conftg file will be listed in a
file named BAD _ADDS.bcf.

6.

If the system is not already using Internet network numbers and TCP/IP
applications, the .bcf files will be created but will all be empty. This is
correct. The Broker Server will add the addresses that it assigns to these
files.

Add the following line to the /usr/ip32/inc/server.dat file:

! 44 ! D !/usr/ip32/inc/broker/brokerd ! root!

7. Create a new Clearinghouse owned object that assigns the name

ibroker as an alias for the system name. The example. clh.entry. """
shows what this object should look like. This entry would be ~

named ibroker. and the Node name: field would contain the well-

known node name of the system to be the broker host.

PS-14 CLIX SYSTEM GUIDE

The Internet Address

If the Broker Service is not installed on the user's LAN. the user can
manually supply an Internet address or use the getinet(lM) utility to
generate an Internet address for the node. Again, the user should use cau­
tion and follow directions when using either the Broker Service or
getinet(lM).

BSD NETWORK CONFIGURATION PS-15

Network Configuration Files

This section describes the network configuration files referenced by
TCP/IP-based (socket-based) network application programs. Two types of
network configuration files can exist on an Intergraph system that supports
the socket service interface to the TCP/IP protocols. One type is referenced
by user programs that call network library routines. The other is refer­
enced only by application programs. In addition. the /etc/inetd.conf file
is referenced by inetd(1M). a daemon that can service user-written servers
and those delivered in the TCPIP product.

General-Purpose Configuration Files

Network library routines included in the BSD library. /usr/lib/libbsd.a.
reference particular network configuration files and return network infor­
mation to the calling program. The application programs in the TCPIP pro­
duct call some of these routines. but they all can be called by other user
programs.

The general-purpose configuration files and the network library routines ~
that reference them are as follows:

File Network Library Routines

I etc/hosts gethostent. gethostbyname. gethostbyaddr.
sethostent. endhostent

/etc/services getservent. getservbyname. getservbyport.
setservent. endservent

/etc/protocols getprotoent. getprotobyname. getproto­
bynumber. setprotoent. endprotoent

/etc/networks getnetent. getnetbyname. getnetbyaddr. set­
netent. endnetent

In these files. characters to the right of a# are treated as a comment.

PS-16 CLIX SYSTEM GUIDE

Network Configuration Files

If one of these files does not exist and a user calls a routine that references
it, the routine returns zero and errno is set to ENOENT.

The /etc/hosts File

The /etc/hosts file lists hosts available to the local machine. their Internet
addresses. and optionally their aliases. The local machine should be listed
in this file. If an Intergraph machine with TCP/IP does not have an entry
in the local /etc/hosts file. the namex(lM) program appends an entry for
that machine to the file. An entry has the following format:

Internet-addr lwstname [alias] alias2 ...]

A line can contain only one entry. Each item in an entry can be separated
by blanks or tabs. An example of an /etc/hosts file follows:

t-bsts that are available to this machine

191.196.200.1 ted #Ted Johnson's machine
191.196.200.2 myip.32c local
191. 196.200.3 susan
191. 196.200.4 sya49a

Since the /etc/hosts file will contain site-dependent information. a skele­
ton file is delivered with the SYSTEMV product if the /etc/hosts file did
not exist before delivery.

Although the namex(lM) program modifies the /etc/hosts file, the sys­
tem manager should verify that this file is set up correctly. Most TCP/IP
application programs reference this file.

BSD NETWORK CONFIGURATION P5-17

Network Configuration Files

The /etc/ services File

The /etc/services file lists network services available on the local
machine. the port numbers where they reside. the protocols that they use.
and optionally their aliases. Note that this file lists well-known services
and their port numbers. For a partial list of services that are actually
implemented as servers. refer to the /etc/inetd.conf file. Entries can be
added to the /etc/services for new or experimental services. An entry in
this file has the following format:

service port_numher/protocol [alias] alias2 ...]

A line can contain only one entry. Each item in an entry can be separated
by blanks or tabs. An example of an /etc/services file follows:

Network services. Internet style

echo 7/tcp
echo 7/udp
discard 9/tcp sink nul I
discard 9/udp sink nut I
sys tat 11/tcp users
daytime 13/tcp
daytime 13/udp
net stat 15/tcp
chargen 19/tcp ttytst aource
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
telnet 23/tcp
sntp 25/tcp mail
time 37/tcp timserver
time 37/udp t imserver
nane 42/udp naneserver # IEN 116
who is 43/tcp nicnane #usually to sri-nic
clanain 53/udp
danain 53/tcp
hostnanes 101/tcp hostnane #usually to sri-nic
sunrpc 111/udp
sunrpc 111/tcp
erpc 121/udp # rpc I istener

Host specific functions

PS-18 CLIX SYSTEM GUIDE

~

~.

~

~

~

Network Configuration Files

continue

tftp 69/udp
rje n/tcp
finger 79/tcp
I ink 87/tcp tty I ink
supdup 95/tcp
csnet-ns 105/tcp
uucp-path 117/tcp
untp 119/tcp usenet
ntp 123/tcp
ingreslock 1524/tcp

LNIX specific services

exec 512/tcp
login 513/tcp
shel I 514/tcp and # no passwords used

The /etc/services file is not site-dependent and is delivered with the SYS­
TEMV product. Many TCP/IP application programs reference this file.

The /etc/protocols File

The /etc/protocols file lists network protocols available on the network.
their protocol numbers. and optionally their aliases. Entries can be added
to this file for new or experimental protocols. An entry in this file has the
following format:

protocol protocol_numher [alias 1 alias2 .. .]

A line can contain only one entry. Each item in an entry can be separated
by blanks or tabs. The following is an example of an /etc/protocols file:

BSD NETWORK CONFIGURATION PS-19

Network Configuration Files

Internet (IP) protocols

ip
ianp
ggp
tcp
pup
udp

0
1
3
6
12
17

IP
IO.f>
exp
TCP
PlP
UP

internet protocol, pseudo protocol m.mber
internet control message protocol
gateway-gateway protocol
transnission control protocol
P~ universal packet protocol
user datagran protocol

The /etc/protocols file is not site-dependent and is delivered with the
SYSTEMV product.

The /etc/ networks File

The /etc/networks file lists networks connected to the local network.
their network addresses. and optionally their aliases. An entry in this file
has the following format:

network network_addr [alias] alias2 ...]

A line can contain only one entry. Each item in an entry can be separated
by blanks or tabs. An example of an /etc/networks file follows:

PS-20 CLIX SYSTEM GUIDE

Internet networks

bldg2
arpanet
ucb-ether

129.137
10
46

arpa
ucbether

Network Configuration Files

Since the /etc/networks file will contain site-dependent information. a
skeleton file is delivered with the SYSTEMV product if the /etc/networks
file did not exist before delivery.

The system manager should verify that the /etc/networks file is set up
correctly.

Application Configuration Files

Many of the applications that use TCP/IP reference configuration files to
validate user login information. The configuration files and the application
programs that reference them are as follows:

File Application Programs
I etc/hosts.equiv
... /.rhosts rcmd. rep. NQS. lpr. rlogin
/.rhosts
... /.netrc ftp
I etc/hosts.I pd lpr (lpd)
I etc/ftpusers ftp (ftpd)

The /etc/hosts.equiv and,... I .rhosts files are general login validation files
used for network security. These files are discussed in the .. Network Secu­
rity .. section.

BSD NETWORK CONFIGURATION PS-21

Network Configuration Files

None of these configuration files are delivered with the products. There­
fore, the system manager and individual users are responsible for setting
them up correctly.

/etc/hosts.equiv and"'/ .rhosts

The /etc/hosts.equiv and"" I .rhosts files are general remote request valida­
tion files used by several applications. The .. Network Security" section
discusses these files.

Ftp: the .netrc File

ftp(l) allows the user to specify a host name that ftp(l) will attempt to
connect to. After the connection is successfully opened (and if the -n
option was not specified). ftp(l) attempts to send user login information to
the remote host. To determine the information that should be sent. ftp(l)
follows an auto-login process. This process entails checking the .netrc file
in the local user's home directory. If this file does not exist or if this file ~. .
contains an error. ftp(l) aborts the auto-login process and prompts the,,,,
user for the login information.

The entries in the .netrc file can have the following formats. The items in
each entry can be separated by spaces. tabs. or newlines.

machine name Identify a remote machine name. The auto-login pro­
cess searches the .netrc file for a machine entry that
matches the remote machine specified on the ftp(l)
command line or as an argument on the ftp(l) open(2)
command. Once a match is found. the subsequent
.netrc entries are processed. stopping when the end of
file is reached or another machine entry is encountered.

login name Identify a user on the remote machine. If this entry is
present. the auto-login process will initiate a login using
the specified name.

password string Supply a password. If this entry is present. the auto­
login process will supply the specified string if the
remote server requires a password as part of the login
process. Note that if this entry is present in the .netrc

PS-22 CLIX SYSTEM GUIDE

Network Configuration Files

file. ftp(1) will abort the auto-login process if the
.netrc file can be read by anyone besides the user.

macdef name Define a macro. This entry functions as the ftp(1M)
macdef command functions. A macro is defined with
the specified name; its contents begin with the next
.netrc line and continue until a null line (consecutive
newline characters) is encountered. If a macro named
init is defined. it is automatically executed as the last
step in the auto-login process.

For example. suppose a user frequently logs in to myip32c as user curt and

then invokes the ftp(1) commands cd stuff and pwd. The user could

create the following .netrc file in his or her home directory. Since this file

contains a password entry. only the user should be able to read it.

machine
login
password
macdef
cd stuff
pwd

myip32c
curt
asdjkl
init

(a blank line here)

Ftpd: the /etc/ftpusers File

When the ftp(1) server. ftpd(1M). receives user login information from a
remote ftp client. it authenticates the user according to these rules:

• The user name must be in the /etc/passwd file and must have a
password. The ftp(1M) client must provide the correct password
before any file operations can be performed.

• The user name must not appear in the /etc/ftpusers file. This file is

often set up to prevent users from logging in as uucp.

• If the user name is ftp or anonymous. it can appear in the
/etc/passwd file without a password. In this case. the user is
allowed to log in without specifying a password.

The second rule implies that a system manager can tell ftpd(1M) to

prevent particular user names from logging in to the local host using

ftp(1). For example. to prevent the users root. baduser. and uucp. from

logging in. edit the /etc/ftpusers file as follows:

BSD NETWORK CONFIGURATION PS-23

Network Configuration Files

root
bad user
uucp

The third rule says that ftpd(1M) must restrict the access privileges of the
ftp and anonymous user. So that system security is not breached. the sys­
tem manager should construct the ftp or anonymous user directory with
care. The following rule is recommended:

-ftp Make the home directory owned by ftp or anonymous and make it
unwritable by anyone else.

lpr: the /etc/hosts.lpd File

The /etc/hosts.lpd has the same format as the /etc/hosts.equiv file dis­
cussed in .. Network Security." The /etc/hosts.lpd allows the clients listed
in the file to access the print spooling system. lpr(l). This gives access
privileges to the remote users who cannot otherwise access the system
through /etc/hosts.equiv or .rhosts.

Suppose the following set of files exists on the local system:

I etc/hosts.equiv
red

mary I .rhosts
blue ted bill
purple mary

/.rhosts
yellow

I etc/hosts.I pd
green

The following can access printers from a remote system:

• Any user on system red with the same user name on the local host.

• No user from machines blue. purple. or yellow because .rhosts is not
checked by lpr(l).

• All users on system green with the same user names on the local
host.

PS-24 CLIX SYSTEM GUIDE

Network Configuration Files

lnetd: the inetd.conf File

~ The inetd(1M) program listens for requests to communicate with any of
the TCP/IP servers listed in the /etc/inetd.conf file. When a request is
received. inetd(1M) invokes the appropriate server. inetd(1M) invokes a
connection-oriented (TCP) server each time a connection is made by creat­
ing a process. This process is passed the connection as file descriptor 0 and
is expected to call the getpeername(2B) routine to obtain the source host
and port.

inetd(1M) invokes a datagram-oriented (UDP) server when a datagram
arrives. A process is created and passed a pending message on file descrip­
tor 0. Datagram servers may either connect to their peer. freeing the origi­
nal socket for inetd(1M) to receive further messages on. or take over the
socket. processing all arriving datagrams and eventually timing out. The
first type of server is multi-threaded; the second type is single-threaded.

inetd(1M) uses the /etc/inetd.conf file. which is read at startup and pos­
sibly later in response to a hangup signal. Each entry in this file has the
following format:

service socket protocol thread user program [args]

Service is a service name listed in the I etc/ services file. Socket is a socket
type specified as stream or dgram. Protocol is a protocol name listed in the
/etc/protocols file. Thread is either wait for single-threaded or nowait
for multi-threaded. User is the name of the user to run the server. Pr<r
gram is the full path name of the server. Servers that are incorporated in
inetd(1M) are specified as internal. Args is the arguments to be passed to
the server. No more than five arguments can be given.

Characters to the right of# are treated as comments. Continuation lines
for an entry must begin with a space or tab. An example of an
/etc/inetd.conf file follows:

BSD NETWORK CONFIGURATION P5-25

Network Configuration Files

Internet server configuration database

ftp strean tcp nowait root /usr/ip32/tcpip/ftpd ft pd
telnet strean tcp nowait root /usr/lp32/tcplp/telnetd telnetd
exec strean tcp nowait root /usr/ip32/tcpip/rexecd rexecd
login strean tcp nowalt root /usr/ip32/tcplp/rlogind rlogind
shel I strean tcp nowait root /usr/ip32/tcpip/rshd rshd
#echo strean tcp nowait root internal
#discard strean tcp nowait root internal
#chargen strean tcp nowait root internal
#daytime strean tcp nowait root internal
#time strean tcp nowait root internal
#echo dgran udp wait root internal
#discard dgran udp wait root internal
#chargen dgran udp wait root internal
#daytime dgran udp wait root internal
#time dgran udp wait root internal

The /etc/inetd.conf file is delivered with the TCPIP product. This file
can be modified to include user-written servers.

PS-26 CLIX SYSTEM GUIDE

~

~

Network Security

Network security is provided to applications through the /etc/hosts.equiv
and""/ .rhosts (located in a user's home directory). These two files validate
requests from remote client applications and decide whether to grant access
to a user account. When system access is granted, the user does not need to
supply a password. Yellow Pages also provides a similar type of network
security. See the .. yp Tutorial'' for more information.

The use of these two files varies in scope. The system administrator main­
tains /etc/hosts.equiv and defines system-level access to the local
machine. On the other hand, .rhosts is a user-level file that exists in user
account home directories. This file controls request validation for a user's
account.

Applications that use these security measures include NQS. lpr(l). rcp(l).
and rcmd(l). When a request arrives from a remote machine from one of
these applications. security checking is performed as follows:

• First. the password file is checked to determine whether the
requested local user exists. Many of the applications default to
equivalent remote and local user names. lpr(l) bypasses this check
because the print service requires only temporary file space while it
is waiting to print. Otherwise. the request is denied access to the
system.

• For requests with an entry in the passwd file. the password is first
checked. If the user name does not have a password. the application
is granted. Otherwise, the /etc/hosts.equiv file is checked to verify
that the remote machine (or its alias) is listed. If it is listed and the
remote and local user names are identical. the application is granted
access. Requests for the root bypass this check and proceed to the
I .rhosts file in the root file system.

• If the host name is not found in the /etc/hosts.equiv file. the
-; .rhosts file in the requested user's home directory is checked. The
.rhosts file contains host name entries along with an optional user
access list. If the remote host name is found and there is no user
access list. access is granted only when the remote and local user
names are identical. If the remote host name is found along with a
user name. access is granted only when the remote (client-end) user
name matches this user name. If not. the remote user must be listed
to obtain access. lpr does not perform this check. See the hosts.lpd
file in ''Applications Configuration Files."

BSD NETWORK CONFIGURATION PS-27

Network Security

• If all of these checks fail but the requested user has a password
entry, the application may request a password. Applications treat
password entries without a password differently.

• A failure to successfully complete these checks will usually result in
a "Permission Denied .. message for applications such as rcmd(l),
rcp(l), NQS, and lpr(l).

For example, to allow all users on hosts ted, myip32c, and susan to access
the local host as the same user name, the system manager should verify
that each user has an entry in the /etc/passwd file and should edit the
/etc/hosts.equiv file so that it looks like this:

ted
myip32c
susan

To allow only select users on a host to access the local host, the system
manager should not add the host name to the /etc/hosts.equiv file.
Instead, the system manager or the user should add the host name to the
.rhosts file in each user's home directory. This file must be owned by root
or the particular user. ~

The /etc/hosts.equiv file contains only host names. However, the
-/.rhosts and /.rhosts files can contain both host names and user names.

For example, to allow user joe on host sys49a to gain access as user joe on
the local host, edit the .rhosts file in joe's home directory to contain the
following line:

sys49a

To allow only user mary on host sys49a to gain access as user john, edit
the .rhosts file in john's home directory to contain the line:

sys49a mary

Users will not be able to use rcmd(l) and rcp(l) if the /etc/hosts.equiv
and .rhosts files are not set up correctly. In addition, an entry in either of
these files is invalid if it contains trailing white space-blanks or tabs.
NQS and lpr(l) will reference these files but do not require them.

PS-28 CLIX SYSTEM GUIDE

Network Security

A .rhosts file without user name entries is dangerous because anyone
from the remote systems listed can access that account. /etc/hosts.equiv
files are also dangerous because all users from the remote system will map
to the local system by user name.

If a user on the local host does not have a password, the /etc/hosts.equiv
and -/.rhosts files are not referenced. Rather, all users from all host~
will be able to gain access as this user. As a security precaution, a system
manager should encourage all users to have a password. Users without
passwords should have restricted privileges.

BSD NETWORK CONFIGURATION PS-29

c

~
z
"Tl
CJ)
......... c -<
-0

::J
en
?]:
~
5·
::J

Procedure 6: NFS /Y P Installation

Overview of NFS/YP Installation
Terminology

UNIX and Network Services

Debugging UNIX in the Network Environment

NFS: The Network File System
What is the NFS Service?

How NFS Works

Becoming an NFS Server

Remote Mounting a File System

Debugging the Network File System

General Hints

Remote Mount Failed

Programs Hung

Everything Works Slowly

Incompatibilities with Earlier UNIX Versions

No SU Over the Network

File Operations Not Supported

Cannot Access Remote Devices

Clock Skew in User Programs

YP: The Yellow Pages Service
What is the Yellow Pages Service?

The YP Map

The YP Domain

Masters and Slaves

Yellow Pages Overview

Yellow Pages Installation and Administration

Setting Up a Master YP Server

Adding YP to Clients

P6-1

P6-2
P6-2
P6-3

P6-5
P6-5
P6-5
P6-6
P6-6

P6-7
P6-8

P6-9
P6-13
P6-14
P6-15
P6-15
P6-16
P6-16
P6-17

P6-19

P6-19

P6-19

P6-20

P6-20

P6-20

P6-22
P6-22
P6-23

TABLE OF CONTENTS

Procedure 6: NFS/VP Installation

Setting Up a Slave YP Server
Setting Up a YP Client
Modifying Existing Maps
Propagating a YP Map
Making New YP Maps
Adding a New YP Server
Changing The Master Server

Debugging a Yellow Pages Client
On Client: Commands Hang
On Client: YP Service Unavailable
On Client: Ypbind Crashes
On Client: Ypwhich Inconsistent

Debugging a Yellow Pages Server
Different Versions of a YP Map
Ypserv Crashes

Yellow Pages Policies
Security Under the Yellow Pages

Global and Local Database Files
Security Implications
Special YP Password Change
Manual Pages Covering Security

What If the Yellow Pages is Not Used?

Adding a New User to a Machine
Edit the /etc/passwd File
Make a Home Directory
The New User's Environment

II CLIX SYSTEM GUIDE

P6-24
P6-25
P6-25
P6-27
P6-28
P6-29
P6-30
P6-31
P6-31
P6-33
P6-34
P6-35
P6-35
P6-35
P6-36
P6-38
P6-38
P6-38
P6-39
P6-39
P6-40
P6-40

P6-41

P6-41
P6-43

P6-44

Overview of NFS /Y P Installation

Purpose To instruct the system administrator on the setup
and use of both the Network File System and the
Yellow Pages

Starting Valid Internet address
Conditions

Media Intergraph product ss081

Time Approximately 30 minutes

Reference RPC/XDR Tutorial in the Programmer's & User's
Tutorials
YP Tutorial in the System Administrator's Tutorials

This procedure introduces the network services. The services currently
available are described. and some terms in the network environment are
defined.

Following that. the two types of service now available on the network
(Network File System (NFS) service and Yellow Pages (YP) service) are
introduced and explained. Within each of these two sections. information
about periodic maintenance and troubleshooting for the service under dis­
cussion will be found.

While some of this material is theoretical. its specific implications will be
seen reqeatedly as you become familiar with system administration. For
example. when running the Yellow Pages you must understand that some
typical UNIX procedures have changed in the Yellow Pages environment.
That is also true of using the network file system. This chapter covers only
aspects of network services necessary for performing the duties of system
administration.

NFS/VP INSTALLATION P6-1

Overview of NFS/VP Installation

Teminology

Any machine that provides one network service is a server. A single
machine may provide more than one service. A typical configuration would
be for one machine to act as both an NFS and a YP server.

In each network service. servers are entirely passive. The servers wait for
clients to call them; they never call the clients.

A client is any entity that accesses a network service. The term entity is
used because the accessor may be an actual machine or a process generated
by software.

The degree to which clients are bound to their servers varies with each of
the network services. For example. a YP client binds randomly to one of
the YP servers by broadcasting a request. At any point. the YP client may
decide to broadcast for a new server. However. an NFS client selects a
server to mount a given file system from.

In all cases. the client initiates the binding. The server completes the bind­
ing subject to access control rules specific to each service. Since most net­
work administration problems occur at bind time. a system administrator
should know how a client binds to a server and what (if any) access con­
trol policy each server uses.

UNIX and Network Services

Unlike many recently marketed distributed operating systems. UNIX was
originally designed without knowledge that networks existed. This ··net­
working ignorance .. presents three impediments to linking with currently
available high-performance networks:

• UNIX was never designed to yield to a higher authority (like a net­
work authentication server) for critical information or services. As a
result. some UNIX semantics are hard to maintain ··over the net.··
For example. it may not always be appropriate to trust user ID 0
(root).

• Some UNIX execution semantics are difficult. For example. UNIX
allows you to remove an open file. yet the file does not disappear
until closed by everyone. In a network environment. a client UNIX

P6-2 CLIX SYSTEM GUIDE

Overview of NFS/VP Installation

machine may not own an open file. Therefore. a server may remove
a client"s open file.

• When a UNIX machine crashes. it takes all its applications down
with it. When a network node crashes (whether client or server) it
should not drag all of its bound neighbors down. The treatment of
node failure on a network raises difficulties in any system and is
especially difficult in the UNIX environment. A system of .. state­
less·· protocols has been implemented to circumvent the problem of
a crashing server dragging down its bound clients. Stateless here
means that a client is independently responsible for completing
work. and that a server need not remember anything from one call
to the next. In other words. the server keeps no state. With no state
remaining on the server. no state needs to be recovered when the
server crashes and comes back up. From the client"s point of view. a
crashed server appears no different than a very slow server.

In implementing UNIX over the network. System V NFS remains compati­
ble with UNIX when possible. However. certain incompatibilities have
been introduced. These are typically of two kinds: first. issues that would
make a networked UNIX evolve into a distributed operating system. rather
than a collection of network services. and second. issues that would make
crash recovery extremely difficult from both the implementation and
administration point of view.

All incompatibilities are documented in the appropriate sections of this
administration manual.

Debugging UNIX in the Network Environment

Most problems involving System V NFS network services are in the one of
the following four areas. which are listed in order of probability.

1. The network access control policies do not allow the operation or
architectural constraints prevent the operation.

2. The client software or environment is broken.

3. The server software or environment is broken.

4. The network is broken.

NFS/VP INSTALLATION P6-3

Overview of NFS/VP Installation

The following sections present instructions on how to check for these
causes of failure in the NFS and YP environments.

P6-4 CLIX SYSTEM GUIDE

NFS: The Network File System

What is the NFS Service?

The NFS enables users to share file systems over the network. A client may
mount or unmount file systems from an NFS server machine. The client
always initiates the binding to a server"s file system by using the
mount(lM) command. Typically. a client remembers specific remote file
systems and their mount points by placing lines like these in the file
/etc/fstab:

tltan:/uar2/uar2NFS rw,hard
venue :/uar/rtan /uar/rrtan NFS rw, hard

See fstab(4) for a full description of the format.

Since clients initiate all remote mounts. NFS servers control who may
mount a file system by limiting named file systems to desired clients with
an entry in the /etc/exports file. For example:

/uar/local # export to any machine
/uar2 blgrte> larry curley # export to only theae rrtachinea

Note that path names given in /etc/exports must be the mount point of a
local file system. See exporta(4) for a full description of the format.

How NFS Works

Two remote programs implement the NFS service - mountd(lM) and
nfsd(lM). A client"s mount(lM) request talks to mountd(lM). which
checks the access permission of the client and returns a pointer to a file
system. After the mount(lM) completes. access to that mount point and
below goes through the pointer to the server"s nfsd(lM) daemon using
rpc(4). Client kernel file access requests (delayed-write and read-ahead)
are handled by the biod(lM) daemons on the client.

NFS/VP INSTALLATION P6-5

NFS: The Network Ale System

Beconing an NFS Server

An NFS server is a machine that exports a file system or systems. The fol­
lowing steps must be taken to enable any machine to export a file system.

1. The super-user must place the mount-point path name of the file
system to be exported in the file /etc/exports. See exports(4) for
file format details. For example. to export /usr/lbin. the export
file would contain the following:

/uar/lbln

Of course. an NFS server may only export file systems of its own.

2. /etc/mountd(1M) must be running for a remote mount to succeed.
This is started from the system startup script. usually
/etc/init.d/nfs.

3. Remote mount also needs some number of nfsd(lM) NFS daemon
processes to be running on the NFS server. The actual number
depends on the number of client NFS requests that the server
should be able to handle concurrently and thus depends on the
speed and capacity of the server machine. This example shows
four nfsd(lM) daemons. The system startup script. such as
/etc/init.d/nfs. should be checked for lines like these:

/etc/nfad 4 >/dev/conaole

After these steps. the NFS server should be able to export the named file
system.

Remote Mounting a File System

Any exported file system can be remote mounted on a machine. so long as
its server can be reached over the network and the machine is included in
the /etc/export list for that file system. On the machine where the file
system is to be mounted. the super-user should type the following:

mount -f NFS server _name:/file_system /mount_point

For example. to mount the manual pages from remote machine elvhl on the
directory /usr/elvis.man enter the following:

P6-6 CLIX SYSTEM GUIDE

NFS: The Network Fiie System

mount -f NFS elvis:/usr/m.an /usr/elvia man

To ensure the file system is mounted where it is expected to be. use the
mount(lM) command without any arguments. This displays the
currently mounted file systems.

Frequently used file systems are listed with any needed options in the file
/etc/fstab. See fstab(4) for the syntax and contents of the file.

Debugging the Network File System

Before trying to debug the NFS. read the section on how the NFS works
and also mount(lM). nfsd(lM). biod(lM). showmount(lM).
rpcinfo(lM). mountd(lM). fstab{4). mnttab{4) and exports(4). It is not
necessary to understand them fully. but you should be familiar with the
names and functions of the various daemons and database files.

When tracking an NFS problem keep in mind that. like all network ser­
vices. there are three main points of failure: the server. the client. or the
network itself. The debugging strategy outlined below tries to isolate each
individual component to find the one that is not working.

For example. consider a sample mount request made from an NFS client
machine:

mount -f NFS krypton:/usr/src /krypton.arc

The example asks the server machine krypton to return a file handle
(fhandle) for the directory /usr/src. This fhandle is then passed to the
kernel in the mount(2) system call. The kernel looks up the directory
/k.rypton.src and. if everything is correct. ties the fhandle to the direc­
tory in a mount record. From now on. all file system requests to that
directory and below will go through the fhandle to the server krypton.

The above describes howthe system should work. We will now look at
what may go wrong: first. some general pointers and then a list of the pos­
sible errors and their possible causes.

NFS/VP INSTALLATION P6-7

NFS: The Network Fiie System

General Hin ts

When network or server problems occur. programs that access hard
mounted remote files will fail in different ways to those that access soft­
mounted remote files. Hard-mounted remote file systems cause programs to
retry until the server responds again. Soft-mounted remote file systems
return an error after trying for a while. mount(1M) is like any other pro­
gram: if the server for a remote file system fails to respond. it will retry
the mount request until it succeeds. A soft mount will try once in the
foreground then background itself and keep trying.

Once a hard mount succeeds. programs that access hard-mounted files will
hang so long as the server fails to respond. In this case. NFS should print a
.. server not responding'" message on the console. On a soft-mounted file
system. programs will get an error when a file whose server is dead is
accessed.

If a client is having NFS trouble. the first check must be to make sure the
server is running. From a client. the following should be typed to see if the
server is up:

rpcinfo -p server _name

It should print a list of program. version. protocol. and port numbers that
resembles the following:

(progrcn, version, protocol, port]:

(100005, 1, 17. 1872]
[100001. 2. 11. 1ee1]
[100001. 1. 11. 1ee1]
[10000'l, 1, 17, 1078]
[100008, 1, 17. 1875]
(100007. 1, 17. 10J5]
(100007, 1, 6, 10'Z7]
(100004, 1, 6, 1026]
(100004, 1, 17, 18'24]

P6-8 CLIX SYSTEM GUIDE

NFS: The Network Fiie System

rpcinfo(lM) can also be used to check if the mountd(lM) server is run­
ning by typing the following:

rpcinfo -u server _no.ms 100005 1

This should return the following:

proc 100005 .,.,.. 1 ready and wait Ing

If these steps fail. a login should be tried on the server"s console to see if it
is running.

If the server is alive but a client machine cannot reach it. the Ethernet con­
nections between the machines should be checked.

If the server and the network are alive. ps(l) should be used to check the
client daemons. A portmap(lM). ypbind(lM). and several biod(lM) dae­
mons should be running. For example. typing the following should print
lines for /etc/portmap. /etc/ypbind. and biod.

ps-ef

The four sections below deal with the most common types of failure. The
first covers the steps to be taken if a remote mount fails and the next three
discuss servers that do not respond when file systems are mounted.

Remote Mount Failed

This section deals with problems related to mounting. If mount(lM) fails
for any reason. the sections below should be checked for specific details
about what to do. They are arranged according to where they occur in the
mounting sequence and are labeled with the error message likely to be
displayed. It is assumed that YP is in use.

mount(lM) can get its parameters either from the command-line or from
the file /etc/fstab (see mount(lM)). The example below assumes com­
mand line arguments. but the same debugging techniques would apply if
/etc/fstab was the source of the options.

The interaction of the various parts of the mount(lM) request should be
considered. In the example mount(lM) request.

mount -f NFS krypton:/usr/src /krypton.src

mount(lM) goes through the following steps to mount a remote file sys­
tem.

NFS/VP INSTALLATION P6-0

NFS: The Network File System

1. mount(1M) opens /etc/mnttab and checks that this mount has not
already been done.

2. mount(1M) parses the first argument into host krypton and
remote directory /usr/src.

3. mount(1M) may call the Yellow Pages binder daemon ypbind(1M)
to determine which server machine to find the Yellow Pages server
on. It may then call the ypserv(1M) daemon on that machine to
get the Internet protocol (IP) address of krypton.

4. mount(1M) calls krypton's port mapper to get the port number of
mountd(1M).

5. mount(1M) calls krypton's mountd(1M) and passes it /usr/src.

6. krypton's mountd(1M) reads /etc/exports and looks for the
exported file system that contains /usr/src.

7. krypton's mountd(lM) may call the Yellow Pages server
ypserv(1M) to expand the host in the export list for /usr/src.

8. krypton's mountd(1M) performs a getfh(2) system call on
/usr/src to get the fhandle.

9. krypton's mountd(lM) returns the fhandle. On the client,
mount(1M) performs a mount(2) system call with the fhandle
and /krypton.src.

10. mount(lM) checks to determine whether the caller is super-user
and whether /krypton.src is a directory.

11. mount(lM) performs a statfs(2) call to krypton's NFS server
(nfsd(lM)).

12. mount(lM) opens /etc/mnttab and adds an entry.

Any of these steps can fail. some of them in more than one way. The sec­
tions below describe the failures associated with specific error messages in
detail.

mount: cannot open /etc/mnttab

The table of mounted file systems is kept in the file /etc/mnttab. This file
must exist before mount can succeed. /etc/mnttab is created when the
system is booted. and is maintained automatically afterward by the
mount(1M) and umount(lM) commands.

P6-10 CLIX SYSTEM GUIDE

NFS: The Network File System

mount: /dev/nfsd is already mounted, ... is busy,
or allowable number of mount points exceeded

This message reveals an attempt to mount a file system that is already
mounted, or for which an entry is already in /etc/mnttab. mount(1M)
requests that fail with this message will display the name /dev/nfsd (a
byproduct of the implementation) regardless of the actual mount request.

mount: ... or ... , no such fl le or directory

The "-f NFS .. or "krypton: .. part of the following command was probably
omitted.

mount -f NFS k.rypton:/usr/src /k.rypton.src

The mount(lM) command assumes that a local mount is being performed
unless the -f flag is used on the command line or the requested directory as
listed in /etc/fstab specifies :file system type NFS.

More simply, this message also appears when, for a correct mount request,
the specified local mount point is not an existing directory.

mount: cannot open </etc/fstab>

mount(lM) tried to look up the information needed to complete a mount
request in /etc/fstab but no such file existed. This :file should be created
by the system administrator as part of initial system setup .

... not in hosts database

The system name specified on the mount request suffixed by the ":" is not
listed in the :file /etc/hosts. The spelling of the host name and placement
of the colon in the mount call should be checked.

mount: di rectory argument . . . must be a f u I I path name

The second argument to mount(lM) is the path of the directory to be
covered. This must be an absolute path starting at··;·.

mount: ... server not responding(1)
: RPC_PMAP _FAILURE - RPC_TIMED_OUT

Either the server to which the mount is being attempted is down or its
portmapper is dead or hung. You should attempt to log in to that machine:
if that attempt succeeds, the problem may be in the portmapper. Run the
following from your system as super-user to test the portmapper on the
server system:

NFS/VP INSTALLATION P6-11

NFS: The Network Fiie System

rpcinfo -p [hostname]

The result should be a list of registered programs. If not. the remote port­
mapper must be killed and restarted. Restarting the portmapper is a com­
plicated process because all registered services are lost. and their associated
daemons must be restarted also. This is accomplished by the super-user as
follows. The following finds the process ids of portmap(1M) and other
service daemons:

ps-ef

The following kills the daemons:

kill -9 portmap__pid daenwn_idl daenwn_id2

The following is an example to start new daemons:

/etc/portmap
/etc/mountd
/etc/nfsd

Another alternative is to reboot the server when convenient. Because of
the stateless nature of the server implementation. there should be no
adverse effect on the clients of the system other than the time that they
will suspend awaiting the server to return.

If the server is up but it you cannonrlogin to it. the client's Ethernet con­
nection should be checked by trying to rlogin to some other machine. The
server·s Ethernet connection should also be checked.

mount: ... server not responding: RPC_PROG_NOT_REGISTERED

This means that mount(1M) got through to the portmapper. but the NFS
mount daemon mountd(1M) was not registered. The server should be
checked to ensure that /etc/mountd exists and is running.

mount: /dev/nfsd or ... , no such file or directory

Either the remote directory does not exist on the server or the local direc­
tory does not exist. Again, /dev/nfsd will always be printed to represent
the remote directory.

mount: access denied for

Your machine on which the mount attempt is being made is not in the
server"s export list for the file system to be mounted. A list of the server"s
exported file systems can be obtained by running the following as super-

P6-12 CLIX SYSTEM GUIDE

NFS: The Network File System

user:

showmoun t -e [lwstname]

If the file system wanted is not in the list or the machine name is not in the
user list for the file system. the /etc/exports file on the server should be
checked for the correct file system entry. A file system name that appears
in the /etc/exports file but not in the output from showmount(lM) indi­
cates a failure in mountd(lM). Either it could not parse that line in the
file. it could not find the file system. or the file system name was not a
locally mounted file system. See exports(4) for more information.

This message can also indicate that authentication failed on the server. It
may be displayed because the machine attempting the mount(lM) is not in
the server's export list. the server is not aware of the machine. or the
server does not believe the identity of the machine. The server's
/etc/exports should be checked.

mount: ... : no such file or directory

The remote path on the server is not a directory.

mount: not super user

mount(lM) can only be run by the super-user because it affects the file
system for the whole machine.

Programs Hung

If programs hang while performing file related work. the NFS server may
be dead. The message may be displayed on the machine's console. The mes­
sage includes the name of the NFS server that is down.

NFS server sysname not responding, st ii I trying

This is probably a problem either with one of the NFS servers or with the
Ethernet. Programs can also hang if a YP server dies.

If a machine hangs completely. the server(s) from which file systems were
mounted should be checked. If one (or more) of them is down. client
machines may hang. When the server comes back up. programs will con­
tinue automatically and will not be affected.

NFS/VP INSTALLATION P6-13

NFS: The Network Fiie System

If a soft-mounted server dies. other work should not be affected. Programs
that time-out trying to access soft mounted remote files will fail. but it
should still be possible to work on other file systems.

If other clients of the server seem to be functioning correctly. the Ethernet
connection and connection of the server should be checked.

Everything Works Slowly

If access to remote files seems unusually slow. the server should be
checked by entering (on the server) the following as super-user:

ps-ef

If the server is functioning and other users are getting good response. block
1/0 daemons on the client should be checked by typing ps -ef (on the
client) and looking for biod(lM). If the daemons are not running or are
hung. they should be killed by typing the following as super-user. The fol­
lowing finds the process ids:

ps -ef I grep biod

The following kills the daemons:

kill -9 pidl pid2 pid3 pid4

The daemons should then be restarted with the following:

/etc/biod 4

To determine whether the daemons are hung. ps(1) should be used as
above. then a large file should be copied. Another ps(l) will show whether
the biods are accumulating CPU time: if not. they are probably hung.

If biod(lM) appears to be functioning correctly. the Ethernet connection
should be checked. nfsstat -c and nf sstat -s can be used to discover
whether a client is doing a lot of retransmitting. A retransmission rate of
five percent is high. Excessive retransmission usually indicates a bad Ether­
net board. a bad Ethernet tap. a mismatch between board and tap. or a
mismatch between the client machine's Ethernet board and the server's
board.

P6-14 CLIX SYSTEM GUIDE

NFS: The Network File System

Incompatibilities with Earlier UNIX Versions

A few things work differently, or not at all, on remote NFS file systems.
The next section discusses the incompatibilities and offers suggestions on
working around them.

No SU Over the Network

Under NFS, a server exports file systems it owns so that clients may
remotely mount them. When a client becomes super-user, it is denied per­
mission on remote mounted file systems. Consider the following example:

$ cd
$ touch test1 test2
$ ctmod m test 1
$ ctmod 700 test2
$ Is -I tesh
- rwx rwx rwx 1 j sboch
-rwx------ 1 jsboch

0 ~r 24 16:12 test1
0 ~r 24 16:12 test2

The example is tried again by the super-user:

$ SU

Password:
touch test 1
touch test2
touch: test2: Permission denied
Is -I tesh
-rwxrwxrwx 1 jsbach 0 ~r 21 16:16 test1
-rwx------ 1 jsbach 0 ~r 21 16:12 test2

NFS/VP INSTALLATION P6-15

NFS: The Network File System

The problem usually shows up during the execution of a set-uid root pro­
gram. Programs that run as root cannot access files or directories unless the
permission for .. other .. allows it.

Another aspect of this problem is that ownership of remote mounted files
cannot always be changed. specifically. if they are on a server that does not
permit users to execute chown(t). Since root is treated as the .. other .. user
for remote accesses. only root on the server can change the ownership of
remote files. For example. consider a user trying to chown(t) a new pro­
gram. a.out. which must be set-uid root. This will not work. as shown
below:

$ ctmod 'rm a.out
$ SU

Password:
choMl root a.out
a.out: Not owner

To change the ownership. the user must either log in to the server as root
and then make the change. or move the file to a file system owned by the
user·s machine and make the change there. (For example /usr/tmp will
usually be owned by the local machine.)

File Operations Not Supported

File locking of directories is not supported on remote file systems.

In addition. append mode and atomic writes are not guaranteed to work on
remote files accessed by more than one client simultaneously.

Cannot Access Remote Devices

In the NFS it is not possible to access a remote mounted device. any other
character or block special file. or named pipes.

P6-16 CLIX SYSTEM GUIDE

NFS: The Network File System

Clock Skew in User Progra~

Since the NFS architecture differs in some minor ways from earlier ver­
sions of UNIX. users should be aware of places where their programs could
run up against these incompatibilities. The previous section .. Architectural
Incompatibilities" discusses features that will not work over the network.

Because each machine keeps its own time. the clocks may be out of sync
between the NFS server and client. This might cause problems. For exam­
ple. consider the following.

Many programs assume that an existing file could not be created in the
future. For example. the command ls -1 has two basic forms of output.
depending on how old the file is:

date
Sat Apr 12 15:27:"18 00' 1986
touch f i le2
#Is -I file•
- rw- r-- r-- 1 root
- rw- r-- r-- 1 root

0 Dec 27 1984 f I le
014pr 12 15:27 flle2

The first type of output from ls(l) prints the year. month. and day of last
file modification if the file is more than six months old. The second form
prints the month. day. hour. and minute of the last file modification if the
file is less than six months old.

ls(l) calculates the age of a file by simply subtracting the modification
time of the file from the current time. If the result is greater than six
months. the file is ··old.··

Assume that the time on the server is Apr 12 15:30:31. which is three
minutes ahead of the local machine·s time:

NFS/VP INSTALLATION P6-17

NFS: The Network File System

date
~r 12 15:27:31 G.fT 1986
touch f I le3
#le -1 file•
- rw- r-- r-- 1 root
- rw- r-- r-- 1 root
- rw- r-- r-- 1 root

0Dec27 1983file
0 Apr 12 15:26 file2
0 Apr 12 1986 f I le3

The difference between the current time and the library's modify time is
an unsigned number, equal to -180 seconds.

Thus, Is(1) believes the new file was created long ago.

ls(1) was modified to deal with files created a short time in the future.

In general, users should remember that applications that depend on local
time and/or the file system timestamps will have to deal with clock skew
problems if remote files are used.

P6-18 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

What is the V ellow Pages Service?

The Yellow Pages is a distributed network lookup service:

• YP is a distributed system: the database is fully replicated at several
sites. each of which runs a server process for the database. These
sites are known as YP servers. At steady state. it does not matter
which server process answers a client request: the answer will be the
same all over the network. This allows multiple servers per net­
work and gives YP service a high degree of availability and reliabil­
ity.

• YP is a lookup service. It maintains a set of databases that may be
queried. A client may ask for the value associated vith a particular
key within a database and may enumerate every key-value pair
within a database.

• YP is a network service. It uses a standard set of access procedures
to hide the details of where and how data is stored.

The VP Map

The YP system serves information stored in YP .. maps.'" Each map con­
tains a set of keys and associated values. For example. in a map called
Jwsts. all the host names within a network are the keys and the Internet
addresses of these host names are the values. Each YP map has a mapriame
used by programs to access it. Programs must know the format of the data
in the map. Many of the current maps are derived from ASCII files tradi­
tionally found in /etc: hosts(4). group(4). passwd(4). and a few others.
The format of the data within the YP map is identical. in most cases. to the
format within the ASCII file. Maps are implemented as files located in the
subdirectories of the directory /etc/yp on YP server machines.

NFS/VP INSTALLATION P6-19

VP: The Yellow Pages Service

The VP Domain

A YP domain is a named set of YP maps. Users can determine and set their
YP domains with the domname(l) command. Note that YP domains differ
from both Internet domains and sendmail domains. A YP domain is a
directory in /etc/yp where a YP server holds all YP maps. The name of
the subdirectory is the name of the domain. For example, maps for the
literature domain would be in /etc/yp/literature.

A domain name is required for retrieving data from a YP database. A
domain name must be set on all machines. both servers and clients.
Further. a single name should be used on all machines on a network.

Masters and Slaves

In the Yellow Pages environment only a few machines have a set of YP
databases. The YP service makes the database set available over the net­
work. A YP client machine runs YP processes and requests data from data­
bases on other machines. Two kinds of machines have databases: a YP slave
server and a YP master server. The master server updates the databases of
the slave servers. Changes should be made only to databases on the YP
master server. The changes will propagate from the master server to the
YP slave servers. If YP databases are created or changed on slave server
machines instead of master server machines. the YP's update algorithm
will be broken. All database creation and modification should be done on
the master server machine.

A server may be a master with regard to one map and a slave with regard
to another. Random assignment of maps to server machines could intro­
duce confusion. Users are strongly urged to make a single server the mas­
ter for all maps created by ypinit(lM) within a single domain. This docu­
ment assumes that one server is the master for all maps in the database.

Yellow Pages Overview

The Yellow Pages can serve any number of databases. Typically these
include some files that were found in /etc; such as, programs used to read
the /etc/hosts file to find an Internet address. When a new machine was
added to the network, a new entry had to be added to every machine's
/etc/hosts file. With the Yellow Pages. programs that need to look at the
/etc/hosts file now perform a Remote Procedure Call (RPC) to the servers

P6-20 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

to get the information.

Most information describing the structure of the YP system and the com­
mands available for that system is contained in manual pages and is not
repeated here. For quick reference. the manual pages and an abstract of
their contents is given below.

• ypserv(lM) describes the processes that compose the YP system.
These are ypserv(1M). the YP database server daemon. and
ypbind(1M). the YP binder daemon. ypserv(lM) must run on each
YP server machine. ypbind(lM) must run on all machines that use
YP services. both servers and clients.

• ypfi.les(4) describes the database structure of the YP system.

• ypinit(lM) is a database initialization tool. Many maps must be

constructed from files located in /etc, such as /etc/hosts,
/etc/passwd, and others. ypinit(lM) performs all such construc­
tion automatically. In addition, it constructs initial versions of maps
required by the system but not built from files in /etc: an example
is the map .. ypservers." This tool should be used to set up the mas­
ter YP server and the slave YP servers for the first time. It should
not be used as a general administrative tool for running systems.

• ypmak.e(lM) describes the use of /etc/yp/Mak.eftle, which builds
several commonly changed components of the YP's database. These
are the maps built from several ASCII files normally found in /etc:
passwd(4), hosts(4), group(4), and rpc(4).

• mak.edbm(lM) describes a low-level tool for building a dbm file
that is a valid YP map. Databases not built from /etc/yp/Makefi.le
may be built or rebuilt using mak.edbm(lM). mak.edbm(lM) may
also be used to .. disassemble" a map so that the key-value pairs that
compose it can be seen. The disassembled form may also be modified
with standard tools (such as editors, awk(l), grep(l) and cat(l)),
and has the form required for input back in makedbm(lM).

• ypxfr(lM) moves a YP map from one YP server to another, using
the YP itself as the transport medium. It can be run interactively or
periodically from crontab(l). In addition, ypserv(lM) uses
ypxfr(lM) as its transfer agent when it is asked to transfer a map.

NFS/VP INSTALLATION P6-21

VP: The Yellow Pages Service

• yppush(lM) describes a tool to administer a running YP system. It is
run on the master YP server. It requests each ypserv(lM) process
within a domain to transfer a particular map. waits for a summary
response from the transfer agent. and prints the results for each
server.

• ypset(lM) tells a ypbind(lM) process (the local one by default) to
get YP services for a domain from a named YP server.

• yppoll(lM) asks any ypserv(lM) for the information about a single
map that it holds internally.

• ypcat(l) dumps the contents of a YP map. It should be used when it
does not matter which server's version is seen. If a particular
server's map is required. users must rlogin(l) to that server (or use
rsh(l)) and use mak.edbm(lM).

• ypmatch(l) prints the value for one or more specified keys in a YP
map. Once again. there is no control over which server's version of
the map is seen.

• ypwhich(l) tells which YP server a node is using at the moment for
YP services or which YP server is master of some named map.

Yellow Pages Installation and Adrrinistration

Setting Up a Master Y P Server

To create a new master server. the super-user should cd(l) to /etc/yp.
ypinit(lM). with the -m option. should then be run. The default domain
name and the host name must be set up. ypinit(1M) will prompt for a
list of other hosts that also will be YP servers. (Initially. this will be the
set of YP slave servers. but at some future time any of them might become
the YP master server.) It is possible. but not necessary. to add other hosts
at this time.

Before you run ypinit(lM). the following files in /etc should be complete
and up-to-date: passwd(4). hosts(4). group(4). and rpc(4).

P6-22 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

For security reasons. access to the master YP machine may be restricted to
a smaller set of users than that defined by the complete /etc/passwd. To
do so. copy the complete file to a location other than /etc/passwd, and
delete the undesired users deleted from the remaining /etc/passwd. For a
security-conscious system, this smaller file should not include the YP
escape entry discussed in the next section.

To start providing Yellow Pages services, invoke /etc/yp/ypserv. It can
be started automatically from the system startup script. /etc/init.d/yp,
on subsequent reboots by editing this file and removing the comment (#)
before /etc/yp/ypserv.

Adding Y P to Clients

Once the decision has been made to serve a database with the YP. all nodes
in the network should access the YP's version of the information rather
than the potentially out-of-date information in their local files. That pol­
icy is enforced by running a ypbind(lM) process on the client node
(including nodes that may be running YP servers) and by abbreviating or
eliminating the files that traditionally implemented the database. The files
in question are /etc/passwd, /etc/hosts. and /etc/group. The treatment
of each file is discussed in this section.

• /etc/hosts must contain entries for the local host's name and the
local loopback name. These are accessed at boot time when the YP
service is not yet available. After the system is running. and after
the ypbind process is up. the /etc/hosts file is never accessed. An
example of the hosts file for YP client zippy is as follows:

127. 1
192.9.1.87

local host
zippy # John Q. Random

• /etc/passwd should contain entries for root and the primary users
of the machine. and an escape entry to force the use of the YP ser­
vice. A few additional entries are recommended: daemon. to allow
file-transfer utilities to work: sync. to run sync on a machine before
rebooting: and operator, to let a dump operator log in. A sample YP

client's /etc/passwd file follows:

root:wAm0Y41Enf6:0:10:God:/:/bin/csh
jrandorn:ut-f>1gQ2:1429:10:J Randorn:/usr2/jrandorn:/bln/csh

operator:VyZr6V9:333:20:sys op:/usr2/operator:/bln/csh

daemon:•:1:1::/:

NFS/VP INSTALLATION P6-23

VP: The Yellow Pages Service

sync::1:1::/:/bin/sync
+: :0:0:::

The last line tells the library routines to use the YP service rather
than give up the search. Entries which exist in /etc/passwd will
mask analogous entries in the YP maps. In addition. earlier entries in
the file will mask later ones with the same user name or the same
uid. The order of the entries for daemon and for sync (that have
the same uid) should be noted and duplicated in users' files.

• /etc/group may be reduced to a single line:

+:

This will force all translation of group names and group ids to be
made via the YP service. This is the recommended procedure.

Setting Up a Slave Y P Server

The network must be working to set up a slave YP server.

To create a new slave server. the super-user should cd(l) to /etc/yp. From
there. ypinit(lM) with the -s switch should be run. and a host already set
up as a YP server should be named as the master. Ideally. the named host
is the master server. but it can be any host that has its YP database set up.
The host must be reachable. The default domain name on the machine
intended to be the YP slave server must be set up and must be set to the
same domain name as the default domain name on the machine named as
the master.

After running ypinit(lM). copies should be made of /etc/passwd.
/etc/hosts. and /etc/group. For instance. type the following on the YP
slave:

cp /etc/passwd /etc/passwd-

To ensure that processes on the slave server will actually use the YP ser­
vices rather than the local ASCII files the original files should be edited in
accordance with the section above on altering the client's database. This
ensures that YP slave server is also a YP client. Backup copies of the
edited files should be made. For instance. type the following on the YP
slave:

cp /etc/passwd /etc/passwd+

P6-24 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

After the YP database is set up by ypinit(lM). you should enter
/etc/yp/ypserv to start YP services. On subsequent reboots. it will start
automatically from /etc/init.d/yp.

Setting Up a Y P Client

To set up a YP client. edit the local files as described above in the section
on altering a YP client's file database. If /etc/yp/ypbind is not running. it
should be started. With the ASCII databases of /etc abbreviated and
/etc/yp/ypbind running. the processes on the machine will be clients of
the YP services. At this point. a YP server must be available: many
processes hang if no YP server is available while ypbind(lM) is running.
The possible alterations to the client's /etc database (discussed above in the

section on altering the client) should be noted. Because some files may not
exist or may be specially altered, the ways in which the ASCII databases
are used are not always obvious. The escape conventions used within those
files to force inclusion and exclusion of data from the YP databases are
found in the following manual pages: passwd(4). hosts(4), and group(4).
In particular, note that changing passwords in /etc/passwd (by editing the
file or by running passwd(l)) will only affect the local client's environ­
ment. The YP password database should be changed by running
yppasswd(l).

Modifying Existing Maps

Databases served by the YP must be changed on the master server. The
databases expected to change most frequently. such as /etc/passwd. may
be changed by first editing the ASCII file and then running mak.e(l) on
/etc/yp/Mak.e:fi.le (see ypmake(lM)).

Databases expected to change rarely. or databases for which no ASCII form
exists (such as, databases that did not exist before the YP) may be modified
.. manually." In this case, mak.edbm(lM) with the -u switch is used to

disassemble them into a form that can be modified using standard tools
(such as awk(1). sed(t). or vi(t)). A new version should be built using

mak.edbm(1M). This may be done by hand in two ways:

• The output of makedbm(lM) can be redirected to a temporary file
that can be modified and then fed back into makedbm(1M).

NFS/VP INSTALLATION P6-25

VP: The Yellow Pages Service

• The output of mak.edbm(lM) can be operated on within a pipeline
that feeds into makedbm(lM). again directly. This is appropriate if
the disassembled map can be updated by modifying it with awk(l).
sed(l) or a cat(l) append. for instance.

Suppose you wish to create a nonstandard YP map called mymap. The
map is to consist of key-value pairs in which the keys are strings such as
al. bl. cl. etc. and the values are ar. br. er etc.

You may follow two possible procedures when creating new maps. The
first is to use an existing ASCII file as input: the second is to use standard
input.

For example. consider an existing ASCII file named /etc/yp/mymap.asc.
created with an editor or a shell script on a machine ypmaster. The map is
located in the subdirectory home_domain. The YP map for this file can
be created by typing the following on the YP master:

cd /etc/yp
makedbm mymap.asc home_domain/mymap

If you wish to include another 2-tuple. to the map. the modification can be
made simply.

In all situations like this. the map must be modified by first modifying the
ASCII file. Modifications to the map. rather than to the ASCII file. will be
lost. The modification should be made on the YP master as follows:

cd /etc/yp
make editorial change to mymap.asc
makedbm mymap.asc home_domain/mymap

If no original ASCII file exists. the YP map can be created on the YP master
as follows. (The default domain is home_domain.)

cd /etc/yp
makedbm - home_domain/mymap
al ar
bl br
cl er
<CONTROL>-D

P6-26 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

To modify the map. mak.edbm(lM) can be used to create a temporary
ASCII intermediate file that can be edited using standard tools. For
instance. type the following on the YP master:

cd /etc/yp
mak.edbm -u home_domain/mymap > mymap.temp

At this point mymap.temp can be edited to contain the correct informa­
tion. A new version of the database is created by entering the following
commands on the YP master:

mak.edbm mymap.temp home_domain/mymap
rm mymap.temp

The preceding paragraphs explained how to use some tools. but almost
everything can be done automatically by ypinit(lM) and
/etc/yp/Mak.eftle unless nonstandard maps are added to the database or
the set of YP servers is changed after the system is running.

Whether the Makefile in /etc/yp or some other procedure is used. the goal
is the same: a new pair of dbm files must end in the domain directory on
the master YP server.

Propagating a VP Map

Propagating a map means moving it from place to place - in general. mov­
ing it from the master YP to a slave YP server. Initially. the map is moved
by ypinit(lM) as described above. After a slave YP server is initialized.
updated maps are transferred from the master server by ypxfr(lM).
ypxfr(lM) may be run in three different ways: periodically by cron(lM).
by ypserv(lM). and interactively by a user.

Maps have differing rates of change: for instance. protocols.byname may
not change for long periods of time. but passwd.byname may change
several times a day in a large organization. crontab(4) entries can be set up

to periodically run ypxfr(lM) at a rate appropriate for any map in a YP
database. ypxfr(lM) will contact the master server and transfer the map
only if the master·s copy is more recent than the local copy.

To avoid a crontab(4) entry for each map. several maps with approxi­

mately the same change characteristics can be grouped in a shell script. and
the shell script can be run from a single crontab script file. Suggested
groupings. mnemonically named. can be found in /etc/yp:

NFS/VP INSTALLATION P6-27

VP: The Yellow Pages Service

ypxfr_lperhour. ypxfr_lperday. and ypxfr_2perday. If the rates of
change are inappropriate for a particular environment. these shell scripts
can be easily modified or replaced.

The same shell scripts should be run at each YP slave server in the domain.
The time of execution from one server to another should be altered to
prevent the checking from bogging down the master. To transfer the map
from a particular server rather than master can be specified using
ypxfr(lM)'s -h option within the shell script. Finally. maps having
unique change characteristics can be checked and transferred by explicit
invocations of ypxfr(lM) within crontab(l).

ypxfr(lM) is also invoked by ypserv(lM). responding to a .. Transfer
Map" request. Such a request is made as an RPC call from yppush(lM).
yppush(lM) is run on the master YP server. It enumerates the YP map
ypserver to generate a list of YP servers in the domain. To each of the
named YP servers. it sends a .. Transfer Map" request. ypserv(lM) spawns
a copy of ypxfr(lM). invoking it with the -C option, and passes it the
information needed to identify the map and to call back the initiating
yppush(lM) process with a summary status.

In the cases mentioned above. ypxfr(lM)'s transfer attempts and the ~
results can be captured in a log file. If /etc/yp/ypxfr.log exists. results
will be appended to it. No attempt to limit the log file is made: the user is
responsible for this. To turn off logging. remove the log file.

In the third case. the user runs ypxfr(tM) as a command. Typically. this
is done only in exceptional situations. such as when setting up a temporary
YP server to create a test environment or when quickly updating a YP
server that has been out of service.

Making New VP Maps

Adding a new YP map entails getting copies of the map's dbm files in the
domain directory on each of the YP servers in the domain. The actual
mechanism is described previously. This section will only describe the
work required to get the proper mechanisms in place so that the propaga­
tion works correctly.

After deciding which YP server is the master of the map,
/etc/yp/Mak.e:file should be modified on the master server so that the map
can be conveniently rebuilt. Typically. a human-readable ASCII file is
filtered through awk(t). sed(l). and/or grep(l) to make it suitable for
input to mak.edbm(1M). The existing Makefile may be consulted as a

P6-28 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

source for programming examples. Use of the mechanisms already in place
in /etc/yp/Makefi.le is recommended when deciding how to create depen­
dencies that make(l) will recognize: specifically. the use of .time files
allows users to see when the Makefile was last run for the map.

Support on the YP slave servers for propagating the new maps consists of
appropriate entries either in /usr/lib/crontab. or in one of the ypxfr(1M)
shell scripts mentioned in the previous section. To get an initial copy of the
map. run ypxfr(lM) by hand on each of the slave servers. The map must
be globally available before clients begin to access it. If the map is avail­
able from some YP servers. but not all. unpredictable behavior will be seen
from client programs.

Adding a New Y P Server

To add a new YP slave server. some maps on the master YP server must be
modified. If the new server is a host that has not been a YP server before.
the host's name must be added to the map ypservers in the default
domain. The sequence for adding a server named ypslave to domain
home_domain on YP master is as follows:

cd /etc/yp
(makedbm-u home_domain/ypservers;
echo ypslave ypslave) I makedbm - tmpmap
mv tmpmap.dir home_domain/ypservers.dir
mv tmpmap.pag home_domain/ypservers.pag
yppush ypservers

Note that some commands are displayed on two lines. These may be
entered as one long command (even if the line wraps on the screen) or the
return and newline ma~ be escaped with a backslash. as shown here.

The new slave YP server's databases should be set up by copying the data­
bases from YP master server ypmaster. Following a remote login to the
new YP slave. ypinit(1M) should be used as follows on the YP slave:

cd /etc/yp
ypinit -s ypmaster

The steps described above in the section .. Setting Up a Slave YP Server ..

should then be completed.

NFS/VP INSTALLATION P6-29

VP: The Yellow Pages Service

Changing the Master Server

To change a map's master. the map at the new master must first be built.
Because the old YP master's name occurs as a key-value pair in the existing
map. it is not sufficient to use an existing copy at the new master or to send
a copy there with ypxfr(lM). The key must be reassociated with the new
master's name. If the map has an ASCII source file. it should be present in
its current version at the new master. The YP map (example.map) should
be remade locally on the new YP master with the following sequence:

cd /etc/yp
make example.map

/etc/yp/Mak.eftle must be set up correctly for this to work. If the old
master is to remain a YP server. the /etc/yp/Mak.eftle should be edited so
that example.map is no longer made there. This is done by commenting
out the section of .. oldmaster:/etc/yp/Makefile .. that made example.map.

If the map only exists as a dbm database. it can be remade on the new
master by disassembling an existing copy from any YP server and running
the disassembled version back through An example follows:

cd /etc/yp
ypcat -k example.map I mak.edbm - mydomain/example.map

After making the map on the new master. you must send a new copy of
the map to the other (slave) YP servers. However. yppush(lM) should not
be used. as it will cause the other slaves to try to get new copies from the
old master. rather than from the new one.

A typical method is to become super-user on the old master server and
type the following:

/etc/yp/ypxfr -h newmaster example.map

This places a copy on the old master. yppush(lM) may now be run. The
remaining slave servers still believe that the old master is the current mas­
ter and will attempt to get the current version of the map from the old
master. When they do so. they will get the new map. which names the new
master as the current master.

P6-30 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

If the method above fails. another alternative must be used. On each YP

server machine. the super-user must execute the command sequence shown

above. This should be considered the worst case solution.

Debugging a Yellow Pages Oient

This section is divided into two parts: the first discusses problems seen on

a YP client. and the second discusses problems seen on a YP server.

On Client: Commands Hang

The most common problem at a YP client node is for a command to hang

and generate console messages such as the following:

yp: server not respond Ing for doma In wigwam. St I I I try Ing

Occasionally. many commands will be seen to hang. even though the sys­

tem as a whole appears to be working correctly and new commands can be

run.

The message above indicates that ypbind(lM) on the local machine is

unable to communicate with ypserv(lM) in the domain .. wigwam:· This

often happens when machines that run ypserv(lM) have crashed. It may

also occur if the network or the YP server machine is so overloaded that

ypserv(1M) cannot get a response back to the local machine's ypbind(lM)

within the timeout period. Under these circumstances. all other YP client

nodes on the network will show the same or similar problems. The condi­

tion is temporary in most cases: the messages will usually go away when

the YP server machine reboots and ypserv(lM) returns or when the load

on the YP server nodes and/ or the Ethernet decreases.

However. in the circumstances described below. the situation will not

improve.

• The YP client has not set. or has incorrectly set. domainname on the

machine. Clients must use a domain name that the YP servers know.

domname(l) should be used to see the client domain name. and this

should be compared with the domain name set on the YP servers.

When the domainname is incorrectly set. the following steps should

be taken: the super-user on the machine in question should set the

domainname with a proper domain name (this assures domain name

will be correct every time the machine boots) and set domainname

NFS/VP INSTALLATION P6-31

VP: The Yellow Pages Service

•

.. by hand'' so it is fixed immediately. This is done by typing the
following at the super-user prompt:

domname good_domain_name

If the domain name is correct. the local net should be checked to
ensure that it has at least one YP server machine. Users can only
bind to a ypserv(1M) process on the local network. not on another
accessible network. At least one YP server for each machine's
domain must be running on the local network. Two or more YP
servers will improve availability and response characteristics for YP
services.

• If the local network has a YP server. it should be checked to ensure
that it is running. Other machines on the local network should be
checked. If several client machines have problems simultaneously. a
server problem should be suspected. The ypwhich(lM) command
should be tried on a client machine that is running. If
ypwhich(1M) never returns an answer. it should be killed. On the
YP server machine. the following should be typed to discover
ypserv(lM) and ypbind(lM) processes:

ps -ef I grep yp

If the server's ypbind(lM) daemon is not running. it should be
started by typing:

/etc/yp/ypbind

If a ypserv(1M) process is running. a ypwhich(1M) should be per­
formed on the YP server machine. If ypwhich(1M) returns no
answer. ypserv(lM) has probably hung and should be restarted.
The super-user should kill the existing ypserv(1M) process and
start /etc/yp/ypserv:

kill -9 some pid # from ps
/etc/yp/ypserv

If ps(l) shows no ypserv(lM) process running. one should be
started.

P6-32 CLIX SYSTEM GUIDE

YP: The Yellow Pages Service

On Client: VP Service Unavailable

If YP services are unavailable on one machine although other machines on
the network appear to be functioning. many different symptoms may be
displayed. including:

• Some commands appear to operate correctly while others terminate.
printing an error message about the unavailability of YP.

• Some commands enter a recovery mode particular to the program
involved.

• Some commands or daemons crash with obscure messages or no mes­
sage at all.

For example. messages like the following may be displayed:

$ ypcot myf i le
ypcot: can't bind to yp server for cbnain <wigwatt>.

Reaeon: can't camuiicate with ypbind.

my_machine$ /etc/yp/yppol I myf i le
Sorry. I can't make uee of the yellow pages. I give up.

In such cases.

ls -1

should be run on a directory containing files owned by many users. includ­
ing users not in the local machine·s /etc/passwd file. such as /usr. The ls -1
reporting file owners not in the local machine·s /etc/passwd file as
numbers. rather than names. is one more symptom that YP service is not
working.

NFS/VP INSTALLATION P6-33

VP: The Yellow Pages Service

These symptoms usually indicate that the ypbind(lM) process is not run­
ning. The command ps -ef may be used to check for one. If it is not found.
the following should be entered to start it:

/etc/yp/ypbind

YP problems should disappear.

On Client: Ypbind Crashes

If ypbind(lM) crashes almost immediately each time it is started. prob­
lems probably lie in some other part of the system. The presence of the
portm.ap(lM) daemon should be ascertained by typing the following:

ps -ef I grep portmap

If it is not running. the machine should be rebooted.

If portmap(lM) will not stay up or behaves strangely. problems are prob­
ably more fundamental. The state of the network should be checked.

It may be possible to talk to the portm.ap(lM) on the local machine from a
machine operating normally. From such a machine. the following should
be typed:

rpcinfo -p yaur _machine_name

If portm.ap(lM) is functioning correctly. the output should be as follows:

[progr<lft, version, protocol, port]:

[100005, 1, 17. 1046]
[100001, 2, 17. 1065]
[100001, 1, 17. 1065]
[10000'l, 1, 17, 1052]
[100008, 1, 17. 1049]
[100007, 1, 17, 1027]
[100007, 1, 6, 1026]
[100007, 2, 17, 1031]
[100007, 2, 6, 1030]

P6-34 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

Note that port numbers will be different on different machines. The four
entries that represent the ypbind(lM) process are as follows:

[100007. 1. 17. <portp]
[100007, 1. 6, <port~#>]
[100007. 2. 17, <port_#>]
[100007, 2. 6, <port_#>]

If these entries are not there. ypbind(lM) has been unable to register its
services. The machine should be rebooted. If they are there and change
each time an attempt is made to restart /etc/yp/ypbind. the system
should be rebooted even if the portmap(lM) is up.

On Client: Ypwhich Inconsistent

When ypwhich(lM) is used several times at the same client node. the
answer that is returned varies - the YP server changes. This is normal.
The binding of YP client to YP server will change eventually on a busy
network. and when the YP servers are busy. When possible. the system
stabilizes when all clients get acceptable response time from the YP
servers. As long as the client machine receives YP service. it does not
matter where the service comes from. Often a YP server machine gets its
own YP services from another YP server on the network.

Debugging a Yellow Pages Server

Different Versions of a VP Map

Since YP works by propagating maps among servers. different versions of a
map may be found at servers on the network. This version skew is normal
only if transient.

NFS/VP INSTALLATION P6-35

VP: The Yellow Pages Service

Most commonly. normal update is prevented when some YP server or some
gateway machine between YP servers is down during a map transfer
attempt. When all YP servers and all gateways between them are running.
ypxfr(tM) should succeed.

If a particular slave server has problems updating. ypxfr(1M) should be
run interactively on that server. If ypxfr(1M) fails. a reason will be
given. This assists in understanding and fixing the problem. If ypxfr(1M)
fails intermittently. a log file should be created to enable logging of mes­
sages. The program below saves all output from ypxfr(1M).

ed. /eU:,/yp
touch ypxfr .log

The output looks much like the output generated when ypxfr(1M) is run
interactively. but each line in the log file is timestamped. The timestamp
shows when ypxfr(1M) began its work. If copies of ypxfr(1M) ran
simultaneously. but their work took differing amounts of time. they may
write their summary status line to the log files in an order different to the
orderin which they were invoked. Any pattern of intermittent failure
will appear in the log. When the prqblem is fixed. logging should be turned
off by removing the log file. If this is not done. the log file will grow
without limit.

Also. on the problem YP slave server. the /usr/lib/crontab file and the
ypxfr* shell scripts that it invokes should be inspected. Typing mistakes
in these files will cause propagation problems. as will failures to refer to a
shell script within crontab(1) or failures to refer to a map within any
shell script.

A check must be made to ensure the YP slave server is in the map
ypservers within the domain. If it is not. it will function correctly as a
server. but will not be notified by yppush(1M) when a new copy of a map
exists.

V pserv Crashes

When the ypserv(1M) process crashes almost immediately and will not
stay up even with repeated activations. the method for debugging is virtu­
ally identical to that described in the previous section .. On Client: Ypbind
Crashes.·· The portmap(1M) daemon should be checked on the YP server:

ps -ef I grep portmap

P6-36 CLIX SYSTEM GUIDE

VP: The Yellow Pages Service

If it is not found. the server should be rebooted. If it is present. the fol­

lowing should be typed on the YP server:

rpcinfo -p

Output should be similar to the following example.

[progrcn, version, protocol, port]:

[100001, 2, 17. 1062]
[100001 • 1, 17. 1062]
[100002, 1, 17, 1060]
[100006, 1, 17, 1058]
[10000.5, 1, 17. 1056]
[100007, 1, 17, 1032]
[100007, 1, 6, 1027]
[100004, 1, 6, 10'26]
[100004, 1, 17, 1024]
[100004, 2, 6, 1043]
[100004, 2, 17, 1040]

The four entries representing the ypserv(lM) process are as follows:

[100004, 1, 6, <port_#>]
[100004, 1, 17, <port_!>]
[100004, 2, 6, <port_#>]
[100004, 2, 17, <port_!>]

If they are not there. ypserv(lM) has been unable to register its services.

The machine should be rebooted. If they are there and they change each

time an attempt is made to restart /eu:Jyp/ypserv. the machine should be

rebooted.

NFS/VP INSTALLATION P6-37

VP: The Yellow Pages Service

Yellow Pages Policies

This section describes the policies set by the C library routines when they
access the following files on a system running the Yellow Pages.
/etc/passwd
Always consulted. H there are+ or - entries. the YP password map is con­
sulted. Otherwise YP is unused.

/etc/group
Always consulted. If there are+ or - entries. the YP group map is con­
sulted. Otherwise YP is unused.

/etc/hosts
Never consulted. The data in the YP database is used instead.

Security Under the Yellow Pages

Global and Local Database Files

Of the YP databases. three were formerly in /etc: /etc/passwd.
/etc/group. and /etc/hosts. (Note that a site may add database files of its
own.) The Yellow Pages is divided into local and global file types. A local
file is looked for first on the local machine and then in the Yellow Pages. A
global file is checked for only in the Yellow Pages. /etc/passwd and
/etc/group are the local files in the Yellow Pages database. The other Yel­
low Pages files are global.

For example. a program that calls /etc/passwd (a local file) will first look
in the password file on the local machine: the Yellow Pages password file
will only be consulted if the local machine"s password file contains+ (plus
sign) entries. The /etc/passwd file is local to provide local control of pass­
words. The only other local file is /etc/group.

The remaining Yellow Pages file (hosts(4)) is a global file. The informa­
tion in this file is network-wide data and is accessed only from the Yellow
Pages. However. when booting. each machine needs an entry in /etc/hosts.
In summary. if Yellow Pages is running. global files are only checked in
the Yellow Pages: a file on a local machine is not consulted.

P6-38 CLIX SYSTEM GUIDE

YP: The Yellow Pages Service

Security Implications

An /etc/passwd file and /etc/group file may also have+ entries. A line in

an /etc/passwd file such as the following pulls in an entry for nb from

the Yellow Pages.

+nb::::Napoleon Bonaparte:/usr2/nb:/bin/sh

It gets the uid. gid. and password from the Yellow Pages. and gets the

gecos. home directory. and default shell from the+ entry itself. On the

other hand. an /etc/passwd entry such as the following gets all informa­

tion from the Yellow Pages.

+nb:

Note that the following

+nb::1189:10:Napoleon Bonaparte:/usr2/nb:/bin/sh

differs from

nb::1189:10:Napoleon Bonaparte:/usr2/nb:/bin/sh

In the first of the two examples. the password field is obtained from the

Yellow Pages. In the second. the user nb has no password. If no entry for

nb is in the Yellow Pages. the effect of the first example is as if no entry

for nb is present.

Special VP Password Change

When a password is changed with the passwd(1) command. the entry

given in the local /etc/passwd file is changed. If the password is not given

explicitly but rather is pulled in from the Yellow Pages with a+ entry. the

passwd(1) command will print the following error message:

Not in passwd file

To change a password in the Yellow Pages. you must use the yppasswd(1)

command. To enable this service. the system administrator must start the

daemon yppasswdd(1M) server on the machine serving as the master for

the Yellow Pages password file.

NFS/YP INSTALLATION P6-39

VP: The Yellow Pages Service

Manual Pages Covering Security

More details may be found on the following manual pages: yppasswd(l).
exports(4). passwd(4). group(4). yppasswdd(lM).

What if the Yellow Pages is Not Used?

If you decide not to use the Yellow Pages. the following procedure for
bypassing the software implementation must be carried out. In the system
startup script. the following line must be commented out:

/etc/yp/ypbind

The result will be as follows:

#/etc/yp/ypbind

In addition. the machine·s domain name should be reset by typing the fol­
lowing as super-user:

domname""

P6-40 CLIX SYSTEM GUIDE

Adding a New User to a Machine

Adding a new user to a machine involves adding an entry to the password
file and creating a home directory on the new user's machine as described
in the steps below.

Edit the /etc/passwd File

Typically. for a new user. a password file entry should be added to every
machine on the local network. The super-user must do this. starting on the
master YP server machine. The first step is to edit the master YP server's
/etc/passwd file. Later. the password file entry for the user will be copied
to the /etc/passwd file on the new client's partition: without an entry in
it. the person administering the new client machine would not be able to
log in should the Yellow Pages fail.

On the master YP server. a new line must be added to the password file.
/etc/passwd is a readable ASCil file with a one-line entry for each valid
user on the system. Each entry is separated into fields by colons (:):
seven fields are on each line and some fields may be left blank by placing
two colons back to back. Using certain characters in the password file must
be avoided: these are single and double quotes (' ' "). backslashes (\). and
parentheses (()). passwd(4) gives more information about the file for­
mat.

If the new user's name is Mr. Chimp and his account is to be bonzo. a line
similar to the following should be added to the password file:

bonzo::1947:10:Mr. Chlmp:/uer2/bonzo:/bln/sh

Note that the second field is blank in the example. This field. when filled.
contains an encrypted version of the user's password. When the field is
blank. anyone can log in simply by typing the user name: no password is
required. It is not possible to create a password by making an entry in the
/etc/passwd file: the passwd(l) command must be used by someone
logged in either as the user in question. or as super-user. Since anyone can
log in when a user has no password. it may be preferable to provide a pass­
word for the new user and let him know it so he can log in and change it
using passwd(l) or yppasswd(l) to change it in the YP database.

NFS/VP INSTALLATION P6-41

Adding a New User to a Machine

After Mr. Chimp has a password. the entry for bonzo in the password file
will resemble the following:

bonzo:3u0mRdrJ4tEVe:1947:10:Mr. Chimp:/uer2/bonzo:/bin/eh

Fields in the password file have the following meanings:

1. Login name - synonymous with user name.

2. Encrypted password. All users should be told how to add or change
their passwords with the passwd and yppasswd commands. The
system administrator can empty this field when a user has forgot­
ten his or her password. thereby enabling login without a password
until a new one is set. Note that an asterisk(•) in this field
matches no password.

3. User ID. A number unique to this user. A system knows the user
by ID number associated with login name; therefore. a login name
must have the same user ID number on all password files of
machines networked in a local domain. Failure to keep IDs unique
will prevent users from moving files between directories on
different machines. because the system will respond as if the direc­
tories are owned by two different users. In addition. file ownership
may become confused when an NFS server exports a directory to
an NFS client whose password file contains users with uids match­
ing those of different users on the NFS server.

4. Group ID. This field may be used to group users who are working
on similar projects. All system staff are in group .. 10 .. for histori­
cal reasons. In the example above. Mr. Chimp is in the system staff
group. Normal users should not be placed in this group. Guidance
on which group to put a new user in may be obtained from
group(4) and the file /etc/group.

5. Information about the user - usually real name. phone number.
etc.

6. The user's home directory - the directory the user logs in to.

7. Initial shell to use on login. If this field is blank. the default
/bin/sh is used.

P6-42 CLIX SYSTEM GUIDE

Adding a New User to a Machine

After the password file is updated and a password created for the new

user. the Yellow Pages database must be updated by running
/etc/yp/m.ak.e for /etc/passwd:

cd /etc/yp
make passwd

Make a Home Directory

After adding a new entry to the password file. a home directory should be

created for the new user to log in to. This will be the same as the directory

given in the sixth field of the password file entry. In the /usr2 directory. a

directory should be made for the new user. Ownership should be changed

to the user's login name and group to the user's group. The following is an

example:

cd /usr2
mk.dir bonzo
chown bonzo bonzo
chgrp 10 bonzo

Note that if the Yellow Pages databases for the password file have not yet

been updated on the machine's Yellow Pages server. the following error

message will result when chown(1) is attempted:

unknown user id: username

In this case. the following set of commands should be used:

cd /usr2
mkdirbonzo
chown < userid# > bonzo
chgrp 10 bonzo

The user ID number (from the password file entry) is used instead of login

name to change the ownership of the user's home directory.

NFS/VP INSTALLATION P6-43

Adding a New User to a Machine

The New User's Environment

The environment in which the new user is placed at login may be defined
in several ways. For example. he may be given a copy of the file .profile if
he uses the Bourne shell. See the sh(l) pages in the UNIX System V User's
Reference Manual. for discussion of this file.

If the new user is a member of any groups on the site. he should be added
to /etc/group as necessary (see group(4) and groups(t)). The changes
must be made to the /etc/group file on the master YP server if the Yellow
Pages is used.

P6-44 CLIX SYSTEM GUIDE

c

Procedure 7: NQS Installation

~

~
Overview of NQS Installation P7-1

Installation Requirements P7-1

Software Requirements P7-1

Internet Address Requirement P7-2

Delivering NQS for the First Time P7-3

Delivering NQS Updates P7-6

Shutting Down NQS P7-6

Restarting NQS P7-6

TABLE OF CONTENTS

-

Overview of NQS Installation

Purpose

Starting
Conditions

Installation
Requirements

Commands

Reference

To instruct the system administrator in installing the
Network Queuing System

Log in as super-user
System V 3 .1 Release
INC 3.1 Release

Internet Address

newprod(lM)

.. NQS Tutorial" in the System Administrator's
Tutorials
.. NQS Tutorial" in the Programmer's & User's
Tutorials

This chapter provides the instructions needed to install NQS on your
CLIPPER workstation or InterServe processor.

Installation Requirements

To install NQS on your workstation or InterServe, certain conditions must
exist. The following subsections discuss these conditions.

Software Requirements

To install NQS, the following software must be installed on your worksta­
tion or In terServe:

• System V 3.1 kernel (UNIXBOOT)

• System V 3.1 File System (SYSTEMV)

• Workstation Network Software 3.1 Release (INC)

NQS INSTALLATION P7-1

Overview of NQS Installation

Internet Address Requirement

Your node must have a valid Internet address before you can initialize
NQS. The Internet address is explained in this section.

The Transmission Control Protocol/Internet (TCP/IP) protocols use the
Internet address to identify a node on the network. An Internet address is
a number with the following format, where nnn is between 1 and 223 in
the first nnn set and between 1 and 254 in the following sets.

nnn.nnn.nnn.nnn

To determine whether your node has a current Internet address. key in
the following at the system prompt:

netaddr

If an Internet address exists. it will display in the following
format. (If an Internet does not exist. only the first line will
display.)

00012345 . 00-00-00-00-00-00

Internet Address: nnn.nnn.nnn.nnn

Subnet Mask: 255.255.255.0

If your node does not have an Internet address, you will be
prompted to assign one when you install NQS. Because you supply
the Internet address. you should abide by your site·s numbering
scheme to prevent address duplication. Check with your system
administrator before assigning an Internet address. (See the
"Delivering NQS for the First Time .. section.)

The TCPIP product does not need to be installed before you can use the
TCP /IP protocol.

P7-2 CLIX SYSTEM GUIDE

Delivering NQS for the First Time

To install NQS on your node, follow the steps in the succeeding sections.

Step 1: Invoke newprod

Invoke newprod(lM) from the system super-user prompt. (See the .. New
Product Delivery .. procedure.) Select the Network Queuing System
(SSS0126) product. You must install NQS in the /usr file system.

If you do not have an Internet Address. you will be prompted for one. If
you need to assign an Internet Address, proceed to step 2. If you already
have an Internet address, skip to step 3.

Step 2: Assign an Internet Address

If you are connecting to a Department of Defense (DoD) network, you
must obtain your Internet address from the DoD. Consult your system
administrator for instructions before you assign your Internet address.
(See the "BSD Network Configuration Tutorial" for details about Internet
addresses.)

If your workstation or InterServe does not have an Internet address. the
system prompts for it now. (If your workstation or InterServe has an
Internet address, no prompt will display and you may skip to step 3.)

Enter an address with the following format, where nnn is between 1 and
223 in the first nnn set and between 1 and 254 in the following sets. (You
may let the system generate a temporary address for you.)

nnn.nnn.nnn.nnn

After you enter the Internet address, the installation procedure
continues.

Step 3: Answer the Installation Prompts

To save disk and process space, a .. client side only" option is available
when NQS is downloaded. This option will prevent server-related execut­
ables from being downloaded and will keep the network daemon from
starting. While this option saves space, remote nodes cannot use the
remote qstat(1) command option to display requests on this node.

NQS INSTALLATION P7-3

Delivering NQS for the First Time

The installation script displays the following prompts:

Wi 11 this machine be a CLIENT only? [n]

Do you want the NQS logging process started by default? [y]

To save process space. the .. no log process" option is available. This will
prevent the NQS logging process from starting. If the question is answered
.. no," logging will still be directed to the file specified in the qmgr(1M)
configuration. However, error messages will no longer appear on the con­
sole and the time will not appear on messages logged.

Def au It f i I e system for spooled data f i I e [/usr]

If you have more free space in another file system (such as /usr2) and
would like your data files to spool to that file system, key in the file sys­
tem at the prompt. Otherwise, press <RETURN> to accept the default.

The installation script will ask you the following question:

Do you want to map a 11 remote users to user [r j e] by defau It? [y]

If you want all users to have print and plot access to your node through
the rje account, accept the default. If you require additional system secu­
rity, answer .. no" and read the information on the hosts.nqs file in the
System Administrator's .. NQS Tutorial."

Do you want to I oad the pconf i gut i Ii ty? [y]

We recommend that you use the pconfig utility to create your printing
and plotting queues. Press return to accept the default and load pconfig.
(See the Network Queuing System (NQS) User's Guide for more information
on pconftg.) A message displays when the installation is complete.

Step 4: Initialize NQS

After you have installed NQS. reboot your workstation or InterServe to
initialize it. You may initialize NQS manually if both of the following
conditions are true:

P7-4 CLIX SYSTEM GUIDE

-

Delivering NQS for the First Time

• The INC. SYSTEMV. and UNIXBOOT products are present and initial­
ized.

• An Internet address was assigned to your workstation or InterServe
before NQS was installed.

To manually initialize NQS. key in the following at the super-user prompt:

I etc/init.d/nqs start

NQS INSTALLATION P7-5

Delivering NQS Updates

After you install NQS for the first time. you will need to initialize NQS ~

software updates by shutting down NQS and then restarting it or by .._,,,
rebooting your machine.

Shutting Down NQS

Any privileged user (or the super-user) can shut down NQS. (See the
"NQS privileges" section in the System Administrator's "NQS Tutorial"
for information on NQS privileges.) To shut down NQS. key in the fol­
lowing at the system prompt:

echo shutdown [seconds] I qmgr

All active NQS processes exit. The remaining processes are killed after the
specified number of seconds. If seconds are not specified. the waiting
period defaults to 20 seconds.

Using the Queue Manager to Shut Down NQS

You may also shut down NQS from the NQS Queue Manager (qmgr(1M))
utility. To shut down NQS in qmgr(1M). key in qmgr at the super-user
prompt. Then. wait for the Mgr: prompt and key in the shutdown com­
mand as follows. where grace_period is the time (in seconds) that NQS
will wait before shutting down.

qmgr
Mgr: shutdown grace_period

If you do not specify the grace period. NQS defaults to 20 seconds.

Restarting NQS

When NQS has been loaded and initialized on your workstation or server.
it will normally start up automatically each time you boot. If you shut
NQS down for any reason. restart it by keying in the following at the
super-user prompt:

I etc/init.d/nqs start

P7-6 CLIX SYSTEM GUIDE

c

c

Technical Programrring Tutorial

Introduction
Overview of Chapters

General Description
Full-Feature Kernel Implementation

High-Quality Language Processing Tools

1-1
1-1

System V Interface Definition (SVID) Compatibility

1-2

1-2
1-2
1-2

Implementation Details
Data Types

Pascal Data Types

C Data Types

Calling Sequence

Registers

Stack Frame

The Caller

The Callee

Alignment Maintenance

Profile Conventions

System Call Sequences

Regions. Segments. and Pages

Common Object File Format (COFF)

Headers and Magic Numbers

Standard Virtual Addresses

Caching Modes

Debugging Tips

Dereferenced NULL (0) Pointers

Alignment

Byte Order Dependencies

Varargs

1-4
1-4
1-4
1-4
1-6

1-6

1-8
1-9

1-10
1-10
1-11
1-13

1-13
1-14
1-14
1-16
1-17
1-18
1-18
1-18
1-19
1-20

TABLE OF CONTENTS

Table of Contents

The Assembler 1-22
Assembler Usage 1-22
Lexical Conventions 1-22

Identifiers 1-23
Constants 1-23
Labels 1-24

Comments 1-24
Statements 1-24
Expressions 1-24
Directives 1-25

Section Directives 1-25
Storage Directives 1-26
Control Directives 1-28
Symbol Directives 1-28
Symbol Table Entry Directives 1-29

Machine Instructions 1-30
Pseudo-ops 1-35

II CLIX SYSTEM GUIDE

Introduction

This document is the Technical Programming Tutorial for CLIX System V.
CLIX System Vis a derivative of AT&T0 s UNIX System V for the Inter­

graph CLIPPER 32-bit CMOS microprocessor. This manual provides pro­

gramming information for a software developer responsible for imple­
menting applications software on a CLIX system.

This tutorial should be used with standard AT&T UNIX System V docu­

mentation. You should also have Intergraph CLIPPER documentation and

other miscellaneous books and documents.

The reader should be familiar with UNIX System V. Certain well-known

program names or acronyms (such as pee) are used liberally without

explanation. Knowledge of operating system and programming language

porting issues is also desirable. but not required.

Overview of Chapters

Introduction
This chapter introduces the tutorial.

General Description
This chapter describes the CLIX System in very general terms. Ori­
ginal development goals and major decisions are discussed. It should
aid the reader in understanding the approach used to develop CLIX

System V.

Implementation Details
Low-level details. such as stack frames and executable file formats
(COFF). are discussed. It is intended to be the definitive reference
for implementation details and differences from UNIX System V.

Assembler
The CLIPPER assembler command invocation and input require­

ments are presented.

TECHNICAL PROGRAMMING TUTORIAL 1-1

General Description

This chapter describes CLIX System V in general terms. Original develop­
ment goals. new features. differences from UNIX System V Release 3.1.
and major decisions are discussed.

CLIX System V Release 3.1 is a full-feature derivative of UNIX System V
Release 3.1. It was developed to provide full UNIX System V compatibil­
ity while taking advantage of the CLIPPER architecture. CLIX System V
was also carefully implemented to allow straightforward adaptation to
specific CLIPPER-based systems.

The baseline version of UNIX System V Release 3.1 from AT&T is avail­
able only for the AT&T 3B2 computer. Throughout this manual. refer­
ences to the 3B2 implementation are provided for comparison purposes.

Full-Feature Kernel Implementation

All UNIX System kernel features have been implemented and tested.
These include features such as STREAMS and shared libraries. Also.
features from previous releases. such as demand-paged virtual memory
and interprocess communication. have been implemented and verified.

High-Quality Language Processing Tools

Intergraph contracted with Green Hills Software. Inc. to develop the
CLIPPER C. FORTRAN. and Pascal compilers. The Green Hills compilers
perform many standard optimizations (constant expression folding. opera­
tor strength reduction. loop invariant code motion. etc.) resulting in high­
quality code generation. The UNIX System V .. C .. compiler. pcc(l). and
FORTRAN compiler. f77(1). were not ported.

System V Interface Definition (SVID) Compatibility

AT&T has published a detailed functional description of most of the
features (programs. libraries. system calls. etc.) supported in UNIX Sys­
tem V. It is called the System V Interface Definition. or SVID. Compati­
bility between the SVID and CLIX System V is the most important major
issue. When the SVID is imprecise or incomplete. the 3B2 implementation

1-2 SYSTEM GUIDE

General Description

of UNIX System Vis used as the functional reference.

Some parts of the software were enhanced to take advantage of the

CLIPPER architecture where big performance improvements can be real­

ized. This has been done only when such modifications do not compromise

SVID compatibility.

TECHNICAL PROGRAMMING TUTORIAL 1-3

Implementation Details

This chapter discusses a broad range of CLIX System V Release 3.1 imple­
mentation details. Programming language calling sequence and other con­
ventions. executable file formats. standard virtual memory addresses. and
significant dilferences from the AT&T release are presented.

Data Types

CLIPPER memory is byte-addressed with 32-bit addresses. Bytes are
ordered with the least significant byte of a multibyte value stored at the
lowest address. Bits are numbered with bit zero as the least significant bit.
Character encoding is ASCil. Floating point is IEEE format (32 and 64
bits). with the least significant byte at the lowest address. Table 1-1
shows the data types implemented by the compilers along with their sizes
and alignments.

Pascal Data Types
Packed fields of records are allocated starting at bit zero. Every packed
field of a record must be fully contained in four or fewer bytes. Each
record or array is aligned to the maximum alignment requirement of any
of its components.

C Data Types
Bit fields are allocated starting at bit zero. Every bit field is fully con­
tained in four or fewer bytes. Each structure. union. or array is aligned to
the maximum alignment requirement of any of its components.

Table 1-1 CLIPPER Data Types

Type

Paacal Data Types
integer
real

1-4 SYSTEM GUIDE

Length
(bits)

32
64

Alignment
(bytes)

4
8

Implementation Details

Table 1-1 CLIPPER Data Types (continued)

Type
Length Alignment
(bits) (bytes)

C Data Types
char 8 1
unsigned char 8 1
short 16 2
unsigned short 16 2
int 32 4
unsigned int 32 4
long 32 4
pointers 32 4
float 32 4
double 64 8
enum (default) 32 4
enum (-X6) 8.16.32 1.2.4
FORTRAN Data Types
INTEGER (default) 32 4
INTEGER (-i2) 16 2
INTEGER•l 8 1
INTEGER•2 16 2
INTEGER*4 32 4
LOOI CAL 32 4
LOOICAL•l 8 1
LOOICAL•2 16 2
LOOICAL*4 32 4
REAL 32 4
REAL*4 32 4
REAL*8 64 8
DOUBLE PRECISION 64 8
CHARACTER•! 8 1
CHARACTER*n 8*n 1
COMPLEX 64 4
COMPLEX*8 64 4
COMPLEX•16 128 8
DOUBLE COMPLEX 128 8 -

TECHNICAL PROGRAMMING TUTORIAL 1-5

Implementation Details

Calling Sequence

The discussion that follows describes the calling sequence used for subrou­
tine linkage. The terms caJ1er and cal1ee are used. The caJ1er is a routine
that invokes another routine. specifically the code near the actual call. The
callee is a routine invoked by another routine. specifically the code near the
callee's entry and exit points.

Int foo()
{ I• A•/

bar(); I• e •/

/•A•/

Int bar()
{ /•A•/
} I• A•/

Figure 1-1 Callee/Caller Example

Both f oo() and bar() are caJlees near A. while f oo() is a caJ1er near B.

Registers

The register usages for CLIX System V are described as follows:

r15 The stack pointer. By hardware and software convention.
the stack pointer is assigned to rtS. or sp. The stack pointer
contains the address of the top valid item on the stack. The
stack grows from high to low addresses so that adding items
to the stack decrements the pointer. For correct interrupt and
signal handling. valid data should not be stored past the end
of the stack.

1-8 SYSTEM GUIDE

lmplementatlon Details

r14 Optional frame pointer. In the CLIPPER calling sequence.

the frame pointer. r14 or fp. is optional. It is only used by

the compilers in a complex routine or if the user directs a
compiler to provide a frame pointer for debugging. H used.

the frame pointer contains the address of a fixed reference

point within the stack from which the arguments. locals. and

temporaries may be indexed. By convention. fp contains the

address of the saved copy of the caller's fp. providing the

head of a linked list of all active stack frames. H fp is not

used as a frame pointer. it may be used as a permanent regis­

ter (see below).

r13-r6 Permanent registers. The caller assumes that the values in

these registers remain the same before and after the call. The

callee must save these registers before using them and must

restore the original values prior to returning control to the
caller. In .. c:· these registers are assigned to register variables

and frequently used values.

r5-r0 Temporary registers. The caller must assume that the

values in these registers were destroyed over a routine call.

The callee does not have to save them. Registers rO and rt are

used to pass integer and pointer arguments in .. C .. and the

address (reference) of arguments in FORTRAN. Register rO is

set by the callee to the routine"s returned value if it is an

integer or pointer type.

NOTE: Once within the callee. the registers used to pass argu­

ments may be used otherwise after the argument is offioaded

to another register or temporary storage space.

f7-f4 Permanent floating-point registers. Saving requirements

are the same as r14-r6.

f3-f0 Temporary floating-point registers. Saving requirements

are the same as rS-rO. Floating-point registers fO and fl are

used to pass floating-point arguments in .. C. ·· The floating­

point register fO is set by the callee to the routine"s returned

value if it is a floating-point type.

TECHNICAL PROGRAMMING TUTORIAL 1-7

Implementation Delalla

Permanent registers may be saved with the savewn and savedn instruc­
tions and restored with the restwn and restdn instructions.

Stack Frame

Figure 1-2 shows the stack frame for the calling sequence. It demonstrates
the worst case. that the caller is passing arguments on the stack and the
cal1ee uses permanent integer. floating-point registers and some local stack
variables or temporaries. The double line shows the double-word boun­
dary used as an alignment reference point.

t
00

+- Cal.ler 's sp before. after doing args

Argument n
...

Argument 3 +-Caller's sp before. after call

Return address

Saved fp +-Callee's fp (if used for that purpose)

Temporaries
...

and Locals
+-Possible alignment here for float regs

r13
...

Saved integer regs
+- Always an 8-byte boundary

f 7
...

Saved float regs
+-Callee's sp after entry. before return

0
!

Figure 1-2 Stack Frame

1-8 SYSTEM GUIDE

lmplementatlon Detalls

The first two arguments are usually passed in registers. The first argument
is normally passed in rO or fO. depending on its type. Similarly. the
second argument is passed in rl or fl. Structure and union arguments of
all sizes are always passed on the stack. If either the first or second argu­
ment (or both) is a structure or union. the corresponding argument register
remains unused during the transfer of control from the caller to the callee.

The Caller

The compilers first determine the number and sizes of the arguments the
caller is passing. In .. c:· all routine arguments are int or double expres­
sions. pointers, or structures. The int and pointer arguments are aligned
on 32-bit word boundaries; double arguments are aligned on 64-bit word
boundaries. Structures are aligned on either 32-bit or 64-bit word boun­
daries depending on whether the structure has any double components. To
support a variable number of arguments. the arguments are pushed on the
stack in right-to-left order as they appear in the call (first argument last).

Working backward. and assuming that the last argument pushed is
double-word aligned in memory. the compiler determines the stack off set
of each argument that preserves its alignment. This eventually produces
the required alignment of the first argument to be pushed. If this differs
from the current alignment of sp. which the compiler knows by induction.
a dummy word is pushed. (More likely. sp is decremented by 4.) Each
argument is then pushed. preceded by an aligning dummy word if neces­
sary. The ca11er pushes the callee's arguments on the stack in right to left
order as they appear in the call. If the last two arguments (the left-most
ones in the call) are not structures. they are put in their appropriate regis­
ters.

The ca11er then pushes its return address and transfers control to the callee.
Upon return. the permanent registers should all be the same as they were
before the call. The caller then removes the arguments. and any required
alignment words. from the stack.

TECHNICAL PROGRAMMING TUTORIAL 1-9

Implementation Detall1

The Callee

The compiler. assuming that the caller has left the last-pushed argument
double aligned. knows that the callee's sp is odd aligned on entry (to
account for the saved return address). It saves any required permanent
general registers by pushing the highest ones first. The savewn instruction
can be used for this purpose. The permanent floating-point registers. if
used. must be saved as double precision values in case the caller left double
precision values in them. Before saving permanent floating-point registers.
sp must be aligned to a double-word boundary. An appropriate adjust­
ment is made if it is not. The savedn instruction can be used for storing
these floating point register values.

Since the compiler knows how many and what type of registers these steps
have saved. it can determine the alignment of sp at this point. Any stack
locals or temporaries can then be properly aligned by pushing dummy
words. just as the caller did with the arguments. The stack pointer (sp) is
then left pointing to the last temporary with a known alignment.

On return. the callee removes its locals and temporaries by setting sp back
to the last saved register. The callee then restores the saved registers and
returns.

Alignment Maintenance

The operating system and runtime startup code align the stack for the first
call to the main program. completing the induction in the previous section.
The signal handling code in the kernel also aligns the stack before calling a
user· s signal handler.

If the address is ever taken of an argument that is passed in a register. that
argument is permanently moved to a temporary variable at the beginning
of the routine.

1-10 SYSTEM GUIDE

Implementation Detalls

Profile Conventions

When the compilers are invoked with the -p option, they produce code that

counts the number of times each routine is called. The user interface is as

described in cc(l) and prof(1). This section describes the additional code

produced by the compilers.

A routine compiled without the -p option normally produces an entry
point that resembles Figure 1-3 .

_myrtn:

• text
.align 2
.globl _myrtn

first instruction

Figure 1-3 Routine Entry Point

TECHNICAL PROGRAMMING TUTORIAL 1-11

Implementation Details

When compiled with the -p option. the same routine resembles Figure 1-4 .

. data
.Ln: • long e

_111,Yrtn:

.text

.align 2

.globl _myrtn

loada .Ln.r2
cal I ep,mcot.nt
first instruction

Figure 1-4 Profiled Routine Entry Point

The n in .Ln is a number chosen by the compiler to produce a local symbol
that is unique in the module. The first time _myrtn is called. the call to """'
mcount sets .Ln to point to an internal record containing the address of the
routine and the number of times it was called. Thereafter. the call to
mcount uses the pointer in .Ln to update the calling count.

The profile calling sequence is a specialized version of the standard calling
sequence. The address of .Ln is passed in r2 to preserve any arguments in
rO or rt. Register r2 is considered temporary by mcount. All other regis­
ters are preserved. Since mcount does not call any other routines. the
usual requirement for 8-byte stack alignment is lifted.

The mcount routine can also be called by the MARK interface described in
prof(4). The MARKO call is implemented as a series of um() statements.
as on the 3B2. Since the um() code cannot know the compiler's register
allocation. r2 is explicitly saved over the call to mcount.

1-12 SYSTEM GUIDE

Implementation Details

System Call Sequences

The system call numbers on the CLIX System are the same as the 382

implementation. The CLIPPER call supervisor instruction (calls) is used

with the system call number as the call supervisor number. The argu­

ments to the call are placed in registers. Upon return from the system

call.the carry bit will be set if an error occurred and rO will contain the

error number. The carry bit will be clear to indicate a successful system

call. and rO and possibly rt will contain the results.

Regions, Segments, and Pages

UNIX System V Release 3.1 has the concepts of regions and segments. Seg­

ments are large. equal-sized divisions of a process·s vmual address space.

Regions are one or more contiguous segments. They are used for pageable

executables and shared libraries. The region/segment concept was straight­

forward to implement on CLIPPER. Table 1-2 illustrates how the address

spaces of the CLIPPER microprocessor and the, 382 computer are organized.

TECHNICAL PROGRAMMING TUTORIAL 1-13

Implementation Detall1

Table 1-2 Organization of Segments

CLIPPER 3B2
Address space size 40 byte 20 byte
Low address 0 Ox80000000
High Address Oxf f fff fff Oxffffffff
Page Size 4096 byte 512 byte
Segment Size 4M byte 128K byte
Number of Se_g_ments 1024 16K

Common Object File Format (COFF)

CLIX System V object and image files conform to the Common Object File
Format (COFF). See ··eommon Object File Format'" in the UNIX System V
Programnrm- 's Guide for more details.

Headers and Magic Numbers

A COFF file begins with two headers: the file header and the a.out header.
The a.out header is optional. and is only required in executable files. Nor­
mally. object (.o) files do not contain the a.out header. Each header con­
tains a magic number. The file magic number in the file header identifies
the machine for which the file was built. The a.out magic number in the
a.out header identifies a particular type of executable image.
The file magic number supported in the current release of CLIX System V
is CLIPPERMAOIC (0577) assigned by AT&T for the CLIPPER. Table 1-3
illustrates how the a.out magic numbers are supported.

1-14 SYSTEM GUIDE

lmplernentatlon Details

Table 1-3 A.out Magic Numbers

Ma_g!_c Number Description

0407 The text region is not write-protected or
sharable: the data region is contiguous with
the text re_g_ion.

0410 The text region is write-protected and shar-
able: the data region starts at the next seg-
ment boundary. The entire image is swapped

in before execution be_g_ins.

0411 Separate instruction and data spaces.
Currently reserved by Inter_g_ra_p_h.

0413 The text region is write protected and shar-

able: the data region begins at the next seg-

ment boundary. Both are paged from the file

system on demand.

0443 Tar_g_et shared library.

An executable file with magic number 0413 has a noteworthy characteris­

tic. The text region of a program appears in the executable file immedi­

ately after the COFF headers. There is no padding after the headers to the

next page boundary. Instead. the first file page in which the text image

begins is considered the first text page. The first address of the text region

(the .text section) is bound by ld(t) just above the headers. Therefore.

part of the executable file header will actually be in memory as part of the

executable image.

The data region has a similar characteristic. The data region image begins

immediately after the text image. Again. there is no padding to the next

page boundary. So. the last page of the text image may have a small piece

of the data image. and the first page of the data image may have a small

piece of the text image.

In both cases. the extraneous bytes in the page are ignored.

TECHNICAL PROGRAMMING TUTORIAL 1-15

Implementation Details

Standard Virtual Addresses

Table 1-4 shows the standard virtual addresses for CLIPPER.

Table 1-4 Standard Virtual Addresses

Address Description
OxOOOOOOOO Text
Ox00400000 Data. BSS. and Break
or next~
OxcOOOOOOO Stack (&rows down)
Oxc0800000 First Shared Memory Se_g_ment
OxecOOOOOO private use lib 1 text
Oxec400000 private use lib 1 data

through
Oxf1800000 private use lib 12 text
OxflcOOOOO _E_rivate use lib 12 data
Oxf2000000 generic to be defined lib 1 text
Oxf 2400000 generic to be defined lib 1 data

through
Oxf 5800000 generic to be defined lib 8 text
Oxf 5c00000 _g_eneric to be defined lib 8 data
Oxf 6000000 generic networking lib text
Oxf 6400000 _g_eneric networkin_g_ lib data
Oxf 6800000 generic graphics lib text
Oxf 6c00000 generic _g_raphics lib data
Oxf7000000 generic screen lib text
Oxf7400000 _g_eneric screen lib data
Oxf7800000 generic user interface lib text
Oxf7c00000 generic user interface lib data
Oxf 8000000 generic statistics lib text
Oxf 8400000 _g_eneric statistics lib data
Oxf 8800000 generic database lib text
Oxf 8c00000 _g_eneric data base lib data

1-16 SYSTEM GUIDE

lmplementatlon Detalls

Table 1-4 Standard Virtual Addresses (continued)

Address Description

Oxf 9000000
through 24 reserved segments

OxfecOOOOO
Ox:ffOOOOOO libnsl_s text
Ox:ff 400000 libnsl s data

Ox:ff 800000 libc_s text
Ox:ff cOOOOO libc_s data

Caching Modes

ld(l) has had options added that allow the user to specify the caching poli­

cies for the executable image. The new options are as follows:

-ctcm Set the cache mode for the text region to cm.

-cdcm Set the cache mode for the data region to cm.

-Cscm Set the cache mode for the stack region to cm.

Where cm is one of the following:

pw Private. write through

sw Shared. write through

cb Private. copy back

nc Noncached

df Default for the region. Defined at kernel configuration time.

The cache mode only applies to the regions in the executable file produced

by ld(l). The cache mode for regions from shared libraries are established

by the shared library.

TECHNICAL PROGRAMMING TUTORIAL 1-17

Implementation Details

The last four bytes of the a.out header are the text caching mode. the data
caching mode. the stack caching mode. and an undefined byte. respectively.

Debugging Tips

A few debugging tips are presented here. This will aid you in porting
application programs to the CLIX system. This list is not comprehensive.
but includes the most common problems.

Dereferenced NULL (0) Pointers
Null pointers are typically used to indicate undefined or erroneous results.
For example. fopen(3S) returns NULL when a file could not be opened.
However. some programs do not properly check pointers to ensure that
they are not NULL (0) and may even attempt to dereference a NULL
pointer. The NULL pointer should never be dereferenced. This kind of
bug has plagued UNIX System programmers for years.

In the earlier VAX implementations. location 0 contained two 0 bytes:
these were the entry mask for the VAX calls (call stack) instruction.
However. since location 0 contains the beginning of the text region on
CLIPPER. there is no assurance that dereferencing the NULL pointer will
produce a 0. This is further frustrated because part of the COFF header is
loaded with the text image.

The result is that uses of the NULL pointer as strings under earlier sys­
tems produced /m empty string. However. under the CLIX System. you
will get a few extraneous bytes.

We have found the most common offenses to be in calls to strcatO and
strcpy() in string(3C). For these and other string routines. an empty
string is represented by a valid pointer to a byte containing O. not a NULL
pointer.

Alignment
The CLIPPER ClOO microprocessor does not generate data alignment faults
(loading a word from an odd address). Instead. addresses are always
aligned to the appropriate boundary by masking off low-order bits.

1-18 SYSTEM GUIDE

lmplementatlon Detalls

An example of code that might do this is shown in Figure 1-5.

char buf[100]:
short -.p;

wp • (short •) a:buf [1] : /• cast of odd odd ren •/

-.p • 101: /• uae of i~roperly al I~ short ptr •/

Figure 1-5 Bad Address Pointer Alignment

In the example. wp. a pointer to a short. is set to the cast of an odd address

of buf. The result is that wp will not be aligned on a 2-byte boundary.

The result is undefined on the CLIPPER.

Look for suspicious casts of pointers. Also look for inconsistencies between

formal and actual parameters. lint(l) can frequently detect these kinds of

bugs.

Byte Order Dependencies
Bytes are ordered with the least significant byte of a multibyte value

stored at the lowest address on the CLIPPER microprocessor. Some pro­

grams make specific assumptions about the byte ordering. This typically

appears in structure or union declarations. Consider the declaration in Fig­

ure 1-6.

TECHNICAL PROGRAMMING TUTORIAL 1-19

Implementation Delalla

W"tion {

} :

short ashort;
etruct {

char hibyte. lobyte;
} ae2bytee:

Figure 1-6 Byte Order Dependencies

The example assumes that the bytes are arranged from high order to low
order. Look for suspicious casts of pointers or structures or the use of a
structure member name on a nonstructure variable as in Figure 1-7.

short J:

J.ae2bytee.hibyte - e;

Figure 1-7 Suspicious Member Name

Varargs
One of the hardest problems to spot is improperly implemented variable
argument. or V ARARGS. routines. Arguments in this kind of routine are
not used consistently. Most often. the number and type of the arguments
are variable as in printf(3S). Sometimes. the number of arguments is not
variable but the types change. Usually. the number and/or type of each
argument is determined by other arguments.

1-20 SYSTEM GUIDE

Implementation Details

V ARARGS has two typical misuses. The first is not using the V ARARGS

convention. Beware of a function that assigns the address of one of its

arguments to a pointer variable and then attempts pointer arithmetic of

any kind (e.g .. increment. decrement. and subscript). The second is

improper use of the V ARARGS convention. An example of this is the

scanf(3S) routine in the original AT&T release. It assumed that the

V ARARGS conceptual pointer was implemented as a real pointer that

could be explicitly incremented.

TECHNICAL PROGRAMMING TUTORIAL 1-21

The Assembler

This chapter explains how to use the CLIPPER assembler. The CLIPPER
assembler is derived from the System V Release 3.0 assembler for the
AT&T 3B2. Command-line options. assembler directives. general input
syntax. and object file format are substantially the same as the System V
Release 3.0 common assembler. Instruction mnemonics and pseudo-ops are
based on the CLIPPER 32-bit Microprocessor User's Manual.

Assembler Usage

The basic operation of the assembler is described in as(l) in the CLJX
Programmer's cl User's Reference Manual.

The -al.ist option directs the assembler to generate extra alignment checking
code for each load and store instruction. List can be set to either f for
:O.oating-point instruction alignment checks. i for integer alignment instruc­
tion checks. or both. (-a is equal to -afi.) The alignment checking code
assumes that a valid. word-aligned stack addressed by the register rlS
exists. ff an alignment error is detected. a .. calls $103 .. instruction is exe­
cuted with the PC left pointing to the bad instruction. This instruction
normally causes a core dump. which can then be examined with a debugger
like adb(1).

The -V option of the assembler has been enhanced to print an Intergraph
version number in addition to AT&T's version number.

Lexical Conventions

Input to the assembler consists of lines with labels. directives. instructions.
pseudo-ops. and comments. The detailed description for each of these
assembler constructions uses the notation given in Table 1-5.

1-22 SYSTEM GUIDE

Identifiers

Table 1-5 Lexical Conventions

TERM
digit
hexdigit
octdigit
letter
char
ident
iexpr
/ex pr
string
bold
[. ..]
{ ... }

0-9
0-9, a-f
0-7

:MEANING

A-Z, a-z, _, .
Any ASCII character
Identifier
Integer expression
Floating point expression
Double-quoted character string
The literal text bold
... is optional
Zero or more occurrences of ...

The Assembler

Identifiers begin with a letter and continue with letters or digits. Identifiers

may have any length but are unique only in the first 1023 characters.

Character case is honored.

Examples:

ident
ldEnT

Constants

_main
__ exit

.L23
L00001

long_nam
really very _long_name

Numeric constants are specified as shown in Table 1-6. The letters shown

may be upper or lower case. A string may not include a double quote or a

new line, nor may it exceed 30 characters.

TECHNICAL PROGRAMMING TUTORIAL 1-23

The A11embler

Table 1-6 Numeric Constants

Labels

decimal integer
hex integer
octal integer
single fioa ting
double floating
stri~

1-9 {digit}
Ox { hexdigit }
0 { octdigit }
Of {digit } [. {digit }] [e [±] {digit }]
Od {digit} [. {digit}] [e [±] {digit}]
" {char}"

A label consists of an identifier followed by a colon (:).

Cornnents

Comments begin with a sharp character (#) and terminate with the end­
of-line.

Statements
Statements consist of an optional series of labels. followed by an assembler
directive. machine instruction. or pseudo-op. followed by an optional com­
ment.

Expressions
The operators available for arithmetic expressions are multiply(•). divide
(/). add (+). and unary and binary minus (-). The multiplication and
division operators are higher in precedence than addition and negation
operators. Expressions can be built up from constants. identifiers. and
parentheses using these operators. but they must generally be absolute or
relative to the origin of a segment. For example. if _main is a symbol in
the .text segment. _main-_main is legal because it is absolute. but
_main+ _main is not.

1-24 SYSTEM GUIDE

The Assembler

Directives

The assembler accepts several directives to control data. segments. and

symbols as listed in the following sections.

Section Directives

.text

.data

Places all following code up to the next .text • .data . .section. or

.previous directive into the text segment .

Places all following code up to the next .text . .data . .section. or

.previous directive into the data segment .

• previous
Places all following code up to the next .text . .data • .section. or

.previous directive into the section that was in force immedi­

ately preceding the current one .

.section ident. string
Places all following code up to the next .text • .data . .section. or

.previous directive into the section with the name ident. The
string may contain one or more of the letters found in Table 1-

7. These letters select the various section flags in the COFF sec­

tion header. See "Common Object File Format" in the UNIX Sys-

TECHNICAL PROGRAMMING TUTORIAL 1-25

The AHembler

tern V Programmer's Guide for more details.

Table 1-7 String Section Flags

Letter Fla_g_ Meanin_g_
b STYP_ BSS Uninitialized data
c STYP_COPY Copy section
d STYP_ DSECT Dummy section
i STYP_ INFO Comment section
I STYP_LIB Like STYP _INFO.

but for .lib section
n STYP _NOLOAD No-load section
0 STYP _OVERLAY Overlay section
w STYP _DATA Initialized data
x STYP_TEXT Executable text

Storage Directives

.align iexpr
Aligns the following text or data so that it begins on an iexpr­
byte boundary. (iexpr must be between 1 and 1024. inclusive.)
For the .align directive to work. the module's section containing
the .align must begin on a byte boundary at least as constrained
as the most constrained .align directive in the module. The
linker. ld(l). provides control over this. By default. as(l) and
ld(l) support iexpr set to 1. 2. 4. or 8. When branch optimiza­
tion is enabled . .align directives in the .text section support
only iexpr set to 1 or 2 .

.space iexpr
Allocates iexpr bytes of storage initialized to zero. lexpr must
be greater than zero .

• byte [iexpr 1:] iexpr2 { • [iexpr 1:] iexpr2}
If iexpr 1 is not specified. allocates a byte for each iexpr2 with
iexpr2 as its value. If iexprl is specified. allocates an iexprl-bit
field within a byte with iexpr2 as its value. Subsequent fields
will then fill the rest of the byte. Fields may not cross a byte
boundary. The last partial byte. if any. is filled with zeros.
Fields are allocated starting from bit O. the least significant bit.

1-26 SYSTEM GUIDE

The Assembler

.word [iexpr 1:] iexpr2 { • [iexpr 1:] iexpr2}
If iexpr 1 is not specified. allocates a 16-bit .. word .. (CLIPPER

half word) for each iexpr2 with iexpr2 as its value. If iexpr 1 is

specified. allocates an iexprl-bit field within a word with iexpr2

as its value. Subsequent fields will then fill the rest of the

word. Fields may not cross a word boundary. The last partial

word. if any. is filled with zeros. Fields are allocated starting

from bit O. the least significant bit .

.long [iexpr 1:] iexpr2 { • [iexpr 1:] iexpr2}
If iexpr 1 is not specified. allocates a 32-bit .. long .. (CLIPPER

word) for each iexpr2 with iexpr2 as its value. If iexpr 1 is

specified. allocates an iexpr 1-bit field within a long with iexpr2

as its value. Subsequent fields will then fill the rest of the long.

Fields may not cross a long boundary. The last partial long. if

any, is filled with zeros. Fields are allocated starting from bit O.

the least significant bit .

.float fexpr { .fexpr}
Allocates a 32-bit word for each single precision floating-point

fexpr with fexpr as its value .

.double fexpr { .fexpr}
Allocates a 64-bit double word for each double-precision

floating-point fexpr with fexpr as its value .

.comm ident .iexpr
Declares the symbol ident as an undefined external with value

iexpr. If another module does not explicitly define ident. the

linker allocates an iexpr-byte block in the .bss segment called

ident. This is ordinary FORTRAN-style COMMON storage and

is used by .. C .. for most global variables .

• bss ident • iexpr 1 • iexpr2
Allocates iexpr 1 bytes in the .bss area aligned on the next

iexpr2-byte boundary with the name ident. Both iexprs must

be positive and absolute. and ident must not already be defined.

TECHNICAL PROGRAMMING TUTORIAL 1-27

The AHembler

Control Directives

.ident string
The string is appended to the .comment section (created if
necessary). The .comment section is preserved by ld(l). but
not loaded by the kernel.

• version string
The string is compared with the string .. 02.01:· the AT&T ver­
sion number assigned to the assembler. An error results if
string is greater than the current assembler version number.

Symbol Directives
There are two kinds of symbol directives. The basic symbol directives are
used in most modules even when the -g option is not given to cc(l). These
are as follows:

.globl ident
Declares ident as a global symbol. If the current module defines
ident. ident becomes a global definition. Otherwise. it becomes ~
an external request .

.set ident • iexpr
Defines or redefines ident with the value iexpr. !dent must be
non-null .

.fl.le string
Declares the original high-level language source file name to be
string. The string must not exceed 14 characters. This directive
is used in assembler error messages or by the debugger.

The debugging symbol directives are used only by high-level language
debuggers. The directives in this section only apply when the compiler is
asked to generate extra debugging information with the -g command-line
option or when an assembly language programmer wishes to provide this
information manually .

.In iexpr 1 [• iexpr2]
Declares iexpr2 to be the address of the first instruction for
statement number iexpr 1 in the current procedure. The pro­
gram counter is used if iexpr2 is not specified. By convention.
iexprl has the value 1 for the line containing the opening brace

1-28 SYSTEM GUIDE

The Assembler

of a procedure and increases by 1 for each source line. The ln

directives are only generated for lines that contain code: lines

containing only declarations are not assigned line numbers. Line

numbers given with ln restart at 1 with each procedure so they

do not completely specify the line number within the source

file. The missing information. the absolute number of the line

containing the opening brace of a function. is specified in the

definition of the .bf symbol for each procedure. (See "Symbol

Table Entry Directives" below and .. Common Object File For­

mat .. in the UNIX System V Programmer's Guide.)

Symbol Table Entry Directives

Most of the debugging symbol information in the Common Object File For­

mat (COFF) is stored in complex symbol table entries. Each entry is

declared with a rigid sequence of directives that set each field in the entry

and any necessary auxiliary entries. Each symbol table entry declaration

begins with a .def directive and ends with a .endef directive. Between

these directives. other directives are given. Each directive defines a single

field in the symbol table entry structure. The .def directive is followed by

the .val and .scl directives to define the value and the storage class of the

symbol. Depending on the symbol"s storage class and type. different direc­

tives may then follow before the final .endef.

For better readability. the compilers put all directives that define a single

symbol on the same line and separate them by semicolons .

.def ident
Begins the definition of the symbol ident .

• val iexpr
Declares the value and section number of the current symbol by

setting the n_value field of the symbol table entry to iexpr and

n_scnum. to the section number to which the symbol refers. For

instance. the symbol _main. normally in the text segment. is a

section 1 symbol. An absolute symbol value is specified as sec­

tion -1.

.scl iexpr
Declares the storage class of the current symbol by setting the

n_sclass field of the symbol table entry to iexpr. This value

also determines which. if any. of the following directives are

applicable.

TECHNICAL PROGRAMMING TUTORIAL 1-29

The A11embler

.type iexpr
Declares the type of the current symbol by setting the n_type
field of the symbol table entry to iexpr .

.line iexpr
Declares the line number of the current symbol by setting the
x_lnno field of the auxiliary symbol table entry to iexpr. For
example. the line number associated with the .bf symbol is the
number of the line containing the opening brace of the current
procedure .

.si7.e iexpr
Declares the size of the object to which the current symbol
refers by setting the x_size field of the auxiliary symbol table
entry to iexpr .

• tag ident
Declares the tag index of the current symbol by setting the
x_tagndx field of the auxiliary symbol table entry to ident .

.dim iexpr { • iexpr }
Declares the dimensions of an array symbol by setting as many
elements of the x_dimen field of the auxiliary symbol table
entry as there are iexprs. At most. four iexprs are allowed .

.endef
Completes the declaration of the current symbol.

Machine Instructions

Table 1-8 defines the operand notation used to describe the assembler

1-30 SYSTEM GUIDE

The Assembler

instruction mnemonics.

Table 1-8 Assembler Operand Notation

Operand Type and Size

b byte (8-bit integer)
h halfword (16-bit integer)
w word (32-bit integer)
I longword (64-bit integer)
s single floating (32-bit)
d double floating (64-bit)

p processor re_g_ister (32-bit)

Operand Location and Syntax

q quick ($value)
i immediate ($value)
b byte ($value)

1,2 register (r0-rl5, /0-/7. psw. ssw, sswf)

a address (one of the addressin_& modes)

Addressin_g_ Modes

n absolute address
[rx](rn) relative indexed
[rx](pc) PC indexed

n(rn) relative or relative+ displacement

n(pc) PC relative
ex pr depends on relocatability

TECHNICAL PROGRAMMING TUTORIAL 1-31

The AHembler

Each instruction operand is described by a two-letter code. The left letter
of the operand code specifies the operand"s type and size. The right letter
of the code specifies the operand"s field within the instruction and its loca­
tion in the machine (immediate value. register. memory. etc.). The right
letter also specifies the operand· s syntax.

For example. the operand code wl indicates a word operand in the general
register whose number is encoded in the Rl field of the instruction. An
example might be r7. The code sa indicates a single floating operand in the
memory location whose address is given by one of the addressing modes
shown in Table 1-8. An example might be _coefficients(rJ). Quick and
immediate operand types are always w because these directly encoded
values are always zero or sign-extended to a word by the hardware before
use.

Note: fp and spare synonyms for r14 and rlS. respectively.

1-32 SYSTEM GUIDE

The Assembler

Table 1-9 Instruction Formats

Op Code Operands Op Code Operands

addd dl,d2 divd dl,d2

ad di wi,w2 divs sl,s2

addq wq,w2 divw wl,w2

adds sl,s2 divwu wl,w2

addw wl,w2 initc
add we wl,w2 loada ba,w2

an di wi,w2 loadb ba,w2

andw wl,w2 load bu ba,w2

b* ha lo add da,d2

bf• ha loadfs wl,d2

call w2,ha loadh ha,w2

callm bb [, w 1 [, w2]] loadhu ha,w2

callmp bb [, w 1 [, w2]] loadi wi,w2

calls bb loadq wq,w2

cm pc loads sa,s2

cm pd dl,d2 loadw wa,w2

cm pi wi,w2 modw wl,w2

cmpq wq,w2 modwu wl,w2

cmps sl,s2 move
cmpw wl,w2 movd dl,d2

cnvds dl,s2 movdl dl,l2

cnvdw dl,w2 movld ll,d2

cnvrdw dl,w2 movpw pl,w2

cnvrsw sl,w2 mo vs sl,s2

cnvsd sl,d2 movsu wl,w2

cnvsw sl,w2 movsw sl,w2

cnvtdw dl,w2 movus wl,w2

cnvtsw sl,w2 movw wl,w2

cnvwd wl,d2 movwp w2,pl

cnvws wl,s2 movws wl,s2

TECHNICAL PROGRAMMING TUTORIAL 1-33

The A11embler

Table 1-9 Instruction Formats (continued)

Op Code Operands Op Code Operands
muld dl,d2 savewn
muls sl,s2 scalbd wl,d2
mulw wl,w2 scalbs wl,s2
mulwu wl,w2 shai wi,w2
mulwux wl,l2 shal wl,l2
mulwx wl,l2 shali wi,l2
negd dl,d2 shaw wl,w2
negs sl,s2 shli wi,w2
negw wl,w2 shll wl,l2
noop bb shlli wi,l2
notq wq,w2 shlw wl,w2
notw wl,w2 storb w2,ba
ori wi,w2 stord d2,da
orw wl,w2 storh w2,ha
popw wl,w2 stors s2,sa
pushw w2,wl storw w2,wa
restdn subd dl,d2
restur wl subi wi,w2
restwn subq wq,w2
ret w2 subs sl,s2
reti wl subw wl,w2
roti wi,w2 subwc wl,w2
rotl wl,l2 trapfn
rotli wi,l2 tsts wa,w2
rotw wl,w2 wait
savedn xori wi,w2
saveur wl xorw wl,w2

1-34 SYSTEM GUIDE

The Assembler

Pseudo-ops
For convenience. the assembler also accepts some additional .. instruction ..

mnemonics called pseudo-ops. A pseudo-op accepts several types of

operands and selects the appropriate machine instruction based on these

types. Table 1-10 shows all pseudo-op argument combinations and the

instructions they select.

TECHNICAL PROGRAMMING TUTORIAL 1-35

The Assembler

Table 1-10 Pseudo-ops

Pseudo-op Instruction
rl,r2 addw rl,r2

addw wq,r2 addq wq,r2
wi,r2 addi wi,r2
rl,r2 andw rl,r2

andw wq,r2 an di wq,r2
wi,r2 an di wi,r2
rl,r2 cmpw rl,r2

cmpw wq,r2 cmpq wq,r2
wi,r2 c~i wi,r2

movaw ba,w2 loada ba,w2
dl,d2 movd dl,d2

movd da,d2 loadd da,d2
d2,da stord d2,da
sl,s2 mo vs sl,s2

mo vs sa,s2 loads sa,s2
s2,sa stors s2,sa

movbw ba,w2 loadb ba,w2
movbwu ba,w2 load bu ba,w2
movhw ha,w2 loadh ha,w2
movhwu ha,w2 loadw ha,w2

wl,w2 movw wl,w2
wq,w2 loadq wq,w2

movw wi,w2 notq -wi,w2
loadi wi,w2

wa,w2 loadw wa,w2
w2,wa storw wa,w2

movwb w2,ba storb w2,ba
movwh w2,ha storh w2,ha

notw rl,r2 notw rl,r2
wq,r2 no.!9._ wq,r2

1-3G SYSTEM GUIDE

The Assembler

Table 1-10 Pseudo-ops (continued)

Pseudo-op Instruction

rl,r2 orw rl,r2
orw wq,r2 ori wq,r2

wi,r2 ori wi,r2

restw13
popw rl3 and
~pw rl4

restw14 popw rl4
wl,l2 rotl wl,l2

rotl wq,l2 rotli wq,l2
wi,l2 rotli wi,l2

wl,w2 rotw wl,w2
rotw wq,w2 roti wq,w2

wi,w2 roti wi,w2

savew13
pushw rl4 and
pushw rl3

savew14 pushw rl4
wl,l2 shal wl,l2

shal wq,l2 shali wq,l2
wi,l2 shali wi,l2
wl,w2 shaw wl,w2

shaw wq,w2 shai wq,w2
wi,w2 shai wi,w2

wl,l2 shll wl,l2
shll wq,l2 shlli wq,l2

wi,l2 shlli wi,l2

wl,w2 shlw wl,w2
shlw wq,w2 shli wq,w2

wi,w2 shli wi,w2

rl,r2 subw rl,r2
subw wq,r2 subq wq,r2

wi,r2 subi wi,r2

rl,r2 xorw rl,r2
xorw wq,r2 xori wq,r2

wi,r2 xori wi,r2

TECHNICAL PROGRAMMING TUTORIAL 1-37

Chapter 2: PROC Debugging Tutorial

Introduction

Comparison of /proc and ptrace(2)

File System Differences

File System Similarities

System Call Interface

2-1

2-2

2-3

2-4

2-6

TABLE OF CONTENTS I

Introduction

The /proc file system is a simple and efficient means for inspecting and
modifying running processes. Members of this file system are processes
whose address space may be read and written using the standard file mani­

pulation system calls lseek(2). read(2). and write(2). In addition. the

ioctl(2) system call provides features such as stopping and starting a pro­

cess. posting signals to a process. and monitoring system call use.

The familiarity of the file system interface coupled with the availability of

features not found in the current process control mechanism. ptrace(2).

make /proc the preferred implementation for current and future process

debugging software.

PROC DEBUGGING TUTORIAL 2-1

Comparison of /proc and ptrace(2)

The /proc file system was designed to eliminate some problems associated
with the current process control mechanism. ptrace(2). This section
describes the problems with ptrace(2) and provides an overview of /proc
debugging.

The ptrace(2) system call requires coordination between the process being
traced and the process performing the tracing and is restricted to parent­
child process relationships. The coordination between the two processes is
an explicit request by the child to be traced and requires that the child
process be in the stopped state every time the parent process issues a trac­
ing command.

The tracing features of the /proc file system require no coordination
between the process performing the trace and the process being traced. The
only restriction on the two processes is that they must be owned by the
same user ID. A trace command can be issued any time for a process
opened under the /proc file system. The recipient acts on the command
either immediately or during the next system call entry or exit. The flexi­
bility of the /proc file interface enables tracing forked processes and
processes that were created before the tracing process.

Using the /proc file debugging is more efficient than using ptrace(2). The
ptrace(2) call transfers a maximum of one word of data per call to or
from the traced process's address space while /proc will allow entire
regions of a traced process's address space to be transferred in a single
read(2) or write(2) system call.

The /proc file capabilities not found in ptrace(2) include the ability to
read the kernel structure proc. stop a process on system call entry or exit.
and read and write a process's register set in a single system call. All of
these features are implemented through the ioctl(2) system call.

2-2 CLIX SYSTEM GUIDE

File System Differences

Although /proc appears as a normal file system to commands such as
mount(lM) and df(lM). it differs from other file system types in two

ways. First. each operating system can have only one /proc file system.
Secondly. no device is associated with a /proc file system. A device is

specified at mount time. However. it is specified only to satisfy the
requirements of mount(lM). It is never read or written. The second
difference implies that commands such as fsck.(lM) and fsdb(lM) are

unnecessary and undefined for /proc file systems.

PROC DEBUGGING TUTORIAL 2-3

File System Similarities

To use the /proc file feature of the kernel. the following command must be
issued at some point before the first use. (An appropriate time would be
during system initialization.)

mount -f PROC /dev/proc /proc

Once mounted, common file operations may be executed. For instance, a
directory listing will resemble the following:

$ la -la /proc
total 10652

e -rw------- 1 root root 0 Oct 10 13:57 00000
1"45 - rw------- 1 root root 72416 Oct 10 13:57 00001

0 - rw------- 1 root root 0 Oct 10 13:57 00002
0 - rw------- 1 root root 0 Oct 10 13:57 00003
0 - rw------- 1 root root 0 Oct 10 13:57 00004

180 - rw------- 1 root root 90520 Oct 10 13:57 00017
"454 - rw------- 1 terr I aye 229704 Oct 10 13:57 00018
214 - rw------- 1 root root 108008 Oct 10 13:57 00079

1018 - rw------- 1 root root 516352 Oct 10 13:57 00073
1475 -rw------- 1 root root 748360 Oct 10 13:57 00089
1475 - rw------- 1 root root 748360 Oct 10 13:57 00090
1475 - rw------- 1 root root 748360 Oct 10 13:57 00091
1009 - rw------- 1 root root 511656 Oct 10 13:57 00114
1290 - rw------- 1 root root 654656 Oct 10 13:57 00115
158 - rw------- 1 root root 78864 Oct 10 13:57 00118

1027 - rw------- 1 root root 520632 Oct 10 13:57 0012.3
180 - rw------- 1 root root 90520 Oct 10 13:57 ~
180 - rw------- 1 root root 90520 Oct 10 13:57 06155
366 - rw------- 1 terr I aye 1ffi2"10 Oct 10 13:57 06441
206 -rw------- 1 terr I aye 10.3560 Oct 10 13:57 06462

$

The display shows that the processes currently active on the system appear
as files whose names correspond to their process identification numbers.
The file sizes match the current size in bytes of the process's defined virtual
address space: the owner and group are taken directly from the process:

2-4 CLIX SYSTEM GUIDE

File System Similarities

and the protections allow the owner read and write access. The file dates

reflect the time when the listing was generated and indicate that the infor­

mation presented was valid at that time. (A /proc directory listing is a

snapshot of a running system similar to that provided by ps(l).)

Other commands may be applied to the process files. For instance. dd(l)

can be used to create a copy of a process's memory image. However. when

attempting an operation like this. the user must be aware of possible

discontinuities in the process's address space and map around them accord­

ingly.

PROC DEBUGGING TUTORIAL 2-5

System Call Interface

Once the /proc file system is mounted. processes may be monitored and
manipulated through the system calls lseek(2). read(2). write(2). and
ioctl(2). Each call requires a file descriptor returned from a successful
open(2). The lseek(2) system call positions the file pointer on a valid vir­
tual address for read(2) and write(2). By default. a process's data and
stack segments are read/write. while the text segment is typically read­
only. For this reason. write attempts to the text segment may fail. How­
ever. in most cases it is possible to alter the read-only status of the text
segment through the PIOEXCLU ioctl(2) command. (See the description
below.)

The following ioctl(2) commands are supported for /proc files:

PIOCGETPR

PIOCSTOP

PIOCWSTOP

PI OCR UN

PIOCSMASK

PIOCCSIG

PIOCEXCLU

PIOCOPENT

PIOCSTR

PIOCRREGS

Fetch the process's proc structure from the kernel pro­
cess table.

Send a SIGSTOP signal to the process and wait for it to
enter the stopped state.

Wait for the process to enter the stopped state.

Make the process runnable after a stop.

Specify a set of signals whose reception by the process
causes the process to enter the stopped state. A mask of
zeroes turns off the trace. Note that the trace state is
retained even after the process that requested the trace
closes the /proc file.

Clear all pending signals to a process.

Mark the process's text segment as nonshared so that
subsequent writes will succeed.

Return a file descriptor that can be used to read the file
containing the text and data segments of the process.

Set the trace flag in the process's PSW register. resulting
in a trace trap after the process executes its next instruc­
tion.

Read the process registers. including the general and
floating registers and the PSW. SSW. and PC.

2-6 CLIX SYSTEM GUIDE

System Call Interface

PIOCWREGS Write the process registers. including the general and
:floating registers and the PSW. SSW. and PC.

PIOCSEXIT Establish a system call for the process that. when exited,
causes the process to stop.

PIOCSENTR Establish a system call for the process that. when
entered, causes the process to stop.

Refer to proc(7S) for a description of the types and formats of the argu­

ments for these commands.

EXAMPLE

The following example employs many features described. The example is

designed to monitor and log all open(2) system calls a user-specified pro­

gram makes.

#include
#include
#include
#include
#include
#include
#include
#include

<atdio.11>
<6ya/typee .11>
<6ya/i 111111.11>
<ays/parm.11>
<6ya/region.11>
<6ya/proc.11>
<6ya/pioct I .11>
<zl'1a/ermo.11>

#define <PEN_~ 5

void print_open_arga():

rnain(argc. argv)
Int argc:
char .. argv:
{

Int pid:
Int procfd:
char procncne[80]:

/•#of open eyatem col I •/

Int eyacol I •<PEN_~: /• ioct I needs address of eyacol I # •/

int whyatop. whatatop: /• etatua Info returned by PICD4SltP •/

If (argc < 2) {
fprlntf(stderr. •ueage: :l{e a.out [arg1 ... argn]\n•. argv[0]);

exlt(1):

PROC DEBUGGING TUTORIAL 2-7

System Call Interface

contl

}
if ((pid • fork()) -- -1) {

}
/•

fprintf(stderr, "Xe : fork error\n", argv[0]):
exit(1):

• parent process wi 11 open chi Id's proc entry and eet up
• "stop on entry" for open eyacol I
•I
if (pid) {

epr int f (procncme, "/procj'lll6J', pi d):
if ((procfd • open(procncme, 0)) -- -1) {

fprintf(stderr, "Xe: cannot open "8\n",
argv[0], procncme):

exit(1):
}
if (ioctl(procfd, PIOCSENTR, byacall) -- -1) {

fprintf(stderr, ""8: PICCSENTER error\n", argv[0]):
exit(1);

}
} elee {

}

I•

sleep(2); /• give the parent a chance to eet up •/
if (execv(argv[1], &argv[1]) -- -1) {

fprintf(stderr. "Xe: error exec-Ing "8\n".
argv[1]. argv[1]);

_exit(1):

• Parent wt 11 monitor chi Id ll'lt I I chi Id exits or error occurs
•I

for(::) {
if (loctl(procfd. PICXRN. 0) -- -1) {

}

fprl'ntf (stderr. "Xe : fll'1 error\n". argv[0]):
exit(1):

•Itch (whystop • toctl(procfd. PICO'tSRP. a.hatetop))
COM St'SENTR'(:

If (whatstop I• CPEN_~) {
fprlntf(stderr.

exit(1):

2-8 CLIX SYSTEM GUIDE

"Xe : stopped on wrong eyacol 1\n".
argv[0]):

I•

default:

prlnt__open_args(argv[0]. procfd);
break;

System Call Interface

If (klll(pld. 0) .. -1 alt errno .. ~) {
fprlntf(etderr. "Xe: proceae exlted\n".

argv[0]);
exlt(0);

}
coae Sl'SEXIT:
coae RB:l.ISTED:
coae SIGW..LED:

fprlntf (etderr.

exlt(1);

"Xe : uiexpected PICO\STCP return (!".d !".d)\n".
argv[e]. whyatop. whatetop);

• Thi• routine pr i nte out the argunenta to the open eyatem co 11 • Qi

•the Clipper. argunente 1 and 2 will be in register• re and r1.

•I

void
pr I nt__open_args(prognane. procf d)
char •prognane;
int procfd;
{

char filencme[80];
Int open_f lag;
etruct {

int gen_regs[16];
double f loat__regs[8];
int cpu_regs[3];

regs;

if (ioctl(procfd. PICXlffn.S. A:regs) .. -1) {
fprintf(etderr. "Xe: error reading process regletere\n".

prognane);

}

I•

return;

PROC DEBUGGING TUTORIAL 2-9

System Call Interface

• aeek to location of open'e orgunent #1 and read it
• toTE: The aeek wi 11 need to be broken into rrultiple aeeke if
• open'e org #1 is at on address with high bit eet I
•I

if (laeek(procfd, rega.gen_rega(0], 0) - -1 11
reod(procfd, f I lenane, 80) - -1) {

fprlntf(stderr, "Xe: error reading orgunent 0 of open\n",
prognane);

return;

/• open's orgunent #2 is on inrnediote value in register r1 •/
fprintf(stdout, "Xe: open orgunente - "8, Xd\n",

prognane, filenane, regs.gen_regs(1]);

2-10 CLIX SYSTEM GUIDE

~
z

~
0 ...,
" ""O a cc ...,
D>
3
3
:;·
cc
-i
c:
0 ...,
~

Chapter 3: Network Programming Tutorial

Introduction

Definitions
Network Architecture
Client/Server
Connection/Connectionless
Full/Half Duplex
Addressing

Intergraph Communication Environment
FMU - File Management Utility

SNI - Simple Network Interface

The Server.dat File
CLH - Clearinghouse

Organization of the Clearinghouse

3-1

3-2

3-2

3-3
3-3
3-4
3-4

3-5

3-6

3-7
3-7
3-9

3-10

Network Configuration Through incd and ifconfig 3-14

Configuring the incd.conf File 3-14

Using ifconfig to Configure Network Interface Parameters 3-15

TABLE OF CONTENTS

Introduction

The .. Network Programming Tutorial" provides a background essential to
,........ understanding the various network programming libraries associated with
~ the Xerox Network Services Protocol (XNS). In this tutorial. application,

application program, and process are used interchangeably. Also, network
and communications are used interchangeably.

This tutorial also provides an overview of how the Intergraph network is
started and how the local network setup can be customized by modifying
the /etc/incd.conf configuration file.

This tutorial does not attempt to define all communication systems or
architectures available. It assumes that an underlying communication sys­
tem is present and does not attempt to describe how it works.

NETWORK PROGRAMMING TUTORIAL 3-1

Definitions

This section introduces some basic terminology common to many network-
ing systems. ~

Network Architecture
Networking systems. much like computer operating systems. are designed
and constructed in functional layers. These layers create the network
architecture. Each layer performs a specific set of functions and services.
Together. the layers interact to provide total end-to-end network opera­
tion.

The network architecture created by most vendors conforms to the Inter­
national Standards Organization's model for Open Systems Interconnection
(ISO/OSI). Figure 3-1 includes the ISO/OSI model and a number of vendor
architectures to show how they compare.

ex: ISO DECnet SNA XNS TCP/IP

7
File Transfer DAP NCP 3270 RJE File Transfer File Transfer

Virtual Terminal SET HOST MSCP 3770 Mall Clearinghouse Virtual Terminal

Job Management Mall LAT DISSOS Printing Protocol Mall

6 Presentation System Function Management Courier System

5 Session System Data Flow Control Courier System

4
Internet Transport Transmission Control

Transport NSP Transmission Control Protocol Protocol

ITP TCP

3 Internetwork Protocol Internet Datagram Internet

Routing Path Control Protocol Protocol
X.25 services IDP IP

2
HDLC HDLC,DDCMP SDLC HDLC HDLC

IEEE 802.3,4,5 IEEE 802.3,4,5 IEEE 802.3,4,5 IEEE 802.3,4,5

X.25 X.25 X.25 X.25 X.25

1 IEEE 802.3,4,5 IEEE 802.3,4,5 IBM• Speclllc IEEE 802.3,4,5 IEEE 802.3,4,5
RS232

RS232, V .35, X.21 RS232, V.35, X.21 V.35 RS232, V.35, X.21 RS232, V .35, X.21

Figure 3-1: Network Architecture - Functional Layers

3-2 CLIX SYSTEM GUIDE

~

Definitions

Client /Server
At least two communicating processes. the client and the server. are in any
communication system. The distinction between the two is not always
important. The client process initiates communication and then communi­
cates with the server process.

CLIENT
Communication

SERVER

Channel

Node Node

Figure 3-2: Client/Server Model

Connection/ Connectionless
A client process can communicate with a server process by using either
connection-oriented or connectionless methods. If connection-oriented
methods are used. the client must create a connection. transfer data. and
then close the connection. Connection-oriented data transfers are
guaranteed. (Once the connection has been established. no data will be
lost.) However. the process of establishing the connection constitutes a
heavy system/network penalty. If connectionless methods are used. the
client transmits the data to the server. This method has the least over­
head. but does not guarantee the delivery of the data transmitted.

NETWORK PROGRAMMING TUTORIAL 3-3

Definitions

Full/Half Duplex
Any communication session between a client and a server can be either
full-duplex or half-duplex (simplex). Either party can transmit any time
(even at the same time) with a full-duplex conversation. Alternating com­
munication. the client and server track which host is allowed to talk next
in a half-duplex conversation.

Addressing
Any network has many addressable processes or entities. An address is an
identifier (usually a number or ASCII string). specific to the network being
used. that uniquely defines an entity in the network. On every Intergraph
machine. addresses have the form [net.]host. where net represents the net­
work address associated with an entire Local Area Network (LAN) and
host represents the physical Ethernet address of the node within the LAN.
An example of an address would be 13498.08-00-36-41-00-00. This
address represents a node on LAN 13498 with a host address of 08-00-36-
41-00-00. Within the Intergraph XNS network. one further identifier 0
called server number is needed to identify a process/server within the node.
This value is associated with image names in the file named
/usr /ip32/inc/ server.dat.

3-4 CLIX SYSTEM GUIDE

-

Intergraph Communication Environment

In the previous section. some concepts were defined without actual routines
being mentioned. The remainder of this section is dedicated to describing
networking modules and routines from a programmer's point of view.

The communication library provided with the Intergraph Network Core
(INC) product contains a number of functionally-separate modules. These
modules are FMU (File Management Utility), which provides a basic call­
able interface to transfer files: SNI (Simple Network Interface). which pro­
vides a general-purpose network interface: and CLH (Clearinghouse).
which provides a network-wide clearinghouse function.

All calls return pointers to characters. If the operation was successful. the
call will return 0. If the operation was unsuccessful. the call will return a
pointer to an error message.

Figure 3-3 shows the modules and their relationships to each other.

Intergraph LIB INC Host

I FMU IEJ
I SNI I

Sockets Streams

Operating System

Figure 3-3: LIBiNC Modules and Relationships

When linking a program to the LIBINC library, use the following syntax
on the final link command:

cc [option] ... file ... -line -lnsl_s

NETWORK PROGRAMMING TUTORIAL 3-5

Intergraph Communication Environment

FMU - File Management Utility
The File Management Utility (FMU) interface allows files to be copied
from a remote to a local system or from a local to a remote system. For
example. to copy a file stored on a remote Intergraph VMS or CLIX host.
the FMU subroutines can be used.

The fmu(l) application program uses the FMU subroutines to perform its
various functions. such as the send command. For example. to transfer a
copy of the program dog.c to another system and call the transferred file
cat.c. use the following FMU command:

fmu fwst.username.password send dog.c cat.c

The FMU subroutine corresponding to this command is as follows:

fmu_send("dog. c", "cat. c")

The fmu(l) send command and fmu_send(3N) subroutine have similar
formats. The FMU calls currently supported by Intergraph follow. For
more information on these calls, see section (3N) of the CLIX
Programmer's & User's Reference Manual.. 0

Call
f m u_connect(node)
f mu_receive(srcfile. dstfile)
f mu_send(srcfile. dstfile)
fmu_rcmd(command)
fmu_set(mode)
f mu_disconnectO

Function
Connects to the Intergraph FMU server.
Receives a file from a remote system.
Sends a file to a remote system.
Executes a remote command.
Sets a mode within FMU.
Disconnects from the server.

SNI - Simple Network Interface
The Simple Network Interface (SNI) subroutines allow the implemention
of a simple client/server pair. Once a client and server are implemented.
programs can be run on a remote system to communicate with the remote
node. In other words, if Intergraph does not supply a service needed. SNI
allows service to be implemented. If desired, more than one client/server
connection can be opened at a time.

3-6 CLIX SYSTEM GUIDE

Intergraph Communication Environment

Currently. SNI is implemented on Xerox Network System (XNS) networks
only. SNI is general enough to fit the needs of most application program-

.~ mers. For instance. SNI is the underlying service used in Intergraph's File
'-" Management Utility (FMU) program.

A list of the SNI calls follows:

Call
sni_accept(sd)
sni_connect(sd. node.

sernum. server)
sni_rxw(sd. buff er.

!en.timeout)
sni_ txw(sd. buff er.

len. timeout)
sni_close(sd)

Function
Accepts a connection from a client.
Initiates a connection to a server.
and begins execution of the program.
Receives transmitted data to a buffer.

Transmits data across a connection.

Disconnects a connection.

When a client/server pair is run using SNI. the client calls
sni_connect(3N) to initiate the server program. The server would then
call sni_accept(3N) to accept the connection. Once the connection is esta­
blished. the client and server can transmit and receive data across the con­
nection using sni_rxw(3N) and sni_txw(3N). When the tasks are com­
pleted. both the client and server should call sni_close(3N) to end the
connection.

The Server .dat File
server.dat(4) is a text file containing information about servers on the
local node. The sernum and server arguments to sni_connect(3N) are
used to access the proper server entry in server.dat(4). This file is in the
/usr/ip32/inc directory.

The client initiates the link using the sni_connect(3N) call. The
xns_listener(lM) on the same node as the server picks up the request and
looks up information on the server using that node's server.dat(4) file.
Next. the xns_listener(1M) starts the server, and the server can accept
the link to the client using the sni_accept(3N) call. Once the connection
is established, the client and server can communicate with each other
across the network.

NETWORK PROGRAMMING TUTORIAL 3-7

Intergraph Communication Environment

If the xns_listener(1M) cannot start the server. the xns_listener(1M)
tells the client and the sni_connect(3N) call returns an error. This could
happen if the server is not listed in that node's server.dat(4) file or if the ~
client does not have sufficient privileges to use the server. ~

Four possible fields can be filled in the server.dat(4) file for each server.
The fields are formatted in server.dat(4) as follows where exclamation
po in ts are the required delimiters:

! [server _no]! [flag ...]! [server _file]! [default_username] !

server _no is the number assigned to the server in server.dat(4). The
numbers in the range of 1000-32767 may be used. Numbers in the range
of 0-999 are reserved by Intergraph. A server _no is passed to the
sni_connect(3N) call using the sernum argument.

The flag field in server.dat(4) is used with the default_username field to
control access to the server and the context under which it is run. A list of
the parameters specified in the flag field follows.

U User name is required.

p Password is required.

D default_username. rather than the login account. is used.

N Null passwords are not allowed.

The U. P. and N parameters refer to the argument node passed to the
sni_connect(3N) call. If U is present. the user name needs to be passed in
the node argument. If Pis present, the password must also be included. If
N is present. a null password is not allowed. These parameters help con­
trol access to the servers.

The D parameter pertains to the context under which a particular server is
used. If D is present. use the context set by the default_username field
instead of the defaults provided by the login account.

3-8 CLIX SYSTEM GUIDE

Intergraph Communication Environment

Fla_g_ User name Password Context
!! needed needed user name
!U! needed - user name
!Pl needed needed user name
!D! - - default
!UP! needed needed user name
!UD! needed - default
!PD! needed needed default
!UPD! needed needed default
!UPN! needed needed -

The server _filename is the name of the server program. This entry should
be a fully-specified file name. The information included in server.dat(4)
helps determine what must be done to run a client/server pair.

If a client/server pair is being debugged and a server 0 entry exists in
server.dat(4). this entry can be used to specify the server to be run.
When the sni_connect(3N) call is used. sernum is set to 0. Server points
to the name of the server desired. Server 0 is convenient for debugging a
server program for which a server.dat(4) entry is not desired until it runs
properly.

A new entry can be added to server.dat(4) after a server is completed or
if server 0 is not enabled. When sni_connect(3N) is used in a program.
sernum equals the server number of the entry and server is a null pointer.

Once a server has been entered in server.dat(4). the server can be used
with a client program as long as the flags set for that server allow the user
to do so.

CLH - Clearinghouse
The Intergraph clearinghouse is a network-wide distributed database. It is
used mainly to bind names and network addresses so that users do not
need to remember or type in addresses. It can also be used to access any
information that needs to be available to the network. The following CLH
call looks up the object property value:

c I h_ vbyop(object, property, value, size)

NETWORK PROGRAMMING TUTORIAL 3-9

Intergraph Communication Environment

Organization of the Clearinghouse
If the clearinghouse has been initialized on a node. it can be found in the
subdirectory /usr/lib. As the figure below illustrates. the nodes directory
has three subdirectories: local. owned. and heard. These subdirectories
store information about the nodes and individuals on the network. such as
their associated network addresses. The files in these subdirectories are
clearinghouse objects.

Owned Directory

1
Figure 3-4: Organization of the Clearinghouse

After the clearinghouse is installed on a node. the local directory will con­
tain an object named template. Template is a model for all clearinghouse
entries in the owned directory. (When an object is created. it initially con­
tains the contents of template.)

As the name implies. the local directory can also contain information that
is known by the local node only. For example. suppose a node on the net­
work was called nodl and had a clearinghouse entry of nodl containing
information about that node. To name this clearinghouse entry nodl but
include different information. place that entry in the local directory by
using the clh(1) program to first delete the heard entry nodl and then add
a nod 1 entry.

3-10 CLIX SYSTEM GUIDE

Intergraph Communication Environment

Only the local node knows the local entry and the information it contains.
In addition. when the local node's clearinghouse searches for the nodl
entry. it looks in its local directory first so it will find the local nodl clear­
inghouse entry instead of the nodl entry in the heard directory.

The owned directory contains the well-known node name entry. This
entry lists the node's network address. If a new hardware address is
assigned to the node. this entry is automatically updated to contain the
new address. When the clearinghouse software is first installed on a sys­
tem. the well-known node name is automatically entered in the owned
directory.

All information in the owned directory including the well-known node
name is propagated to the the local area network. Entries can be added to
the owned directory using clh(1). clh(1) copies the tern plate from the
local directory to begin the new entry. Information about users on the
local node or different names for the node (aliases) can be placed in the
owned directory.

Only the well-known node name entry is updated when the hardware
address changes. However. any entries in the local and owned directories
that point to the well-known node name in an owned directory for a net­
work address are indirectly updated when the well-known node name's
address is updated. Any entries that do not point to the well-known node
name for an address must be updated manually.

The heard directory contains all object entries known to the local area net­
work. This includes the owned directory of every node but does not
include the entries in the local directory. This directory contains informa­
tion about nodes or individuals on a network even when all network facil­
ities are not working properly. Each node's clearinghouse propagates one
object in its owned directory once an hour. thus ensuring that the heard
directories are kept up-to-date.

Each clearinghouse object is a text file stored in at least one of the node's
subdirectories. Once the information about a node or individual is added
to the clearinghouse. that node is represented by an object name and its
associated properties. The name of the file is the object name. The file con­
tents list the object properties and property values. An object name can

·~ have up to 14 characters and contain only lowercase alphanumeric charac­
ters and underscores. The clearinghouse does not accept any other charac­
ters (including blanks) in object names.

NETWORK PROGRAMMING TUTORIAL 3-11

Intergraph Communication Environment

A list of one or more properties and property values is in each object's file.
Only one property and property value is allowed per line. Each line looks
like the following where the colon is the required delimiter:

property: value

The following lists well-known properties:

address Specify a combination of a network and host address stored
as a hexadecimal character string. The following shows a
sample XNS address:

13498.08-00-36-28-8A-OO

xns_address Equivalent to address.

nodename Specify a name representing a node. which the clearinghouse
can use to look up a network address. (Maximum size is 14
characters.)

alias Equivalent to nodename.

scope Specify the LANs that this object should be propagated to.
(The property is always propagated to the local LAN.)

namex_note Specified when namex(lM) modifies the object.

namex_host Specified when namex(lM) creates the object.

tcp_address Specify an Internet address stored as a decimal character
string. The following shows a sample Internet address:

129.135.200.100

netmap_inf o Specify a formatted line containing information about the
system and its components. This line is added or updated
automatically at system startup.

owner Specify the hexadecimal network address of the node from
which the object was broadcast. This property is added
automatically when the object is received from the network
and therefore should only appear in heard objects.

SM_info Specified by sendmail(1) installation. This information is .~
specific to sendm.ail(l). ,._.

3-12 CLIX SYSTEM GUIDE

Intergraph Communication Environment

The well-known node name entry in the owned directory is created when
the clearinghouse is installed on a node. The well-known node name may
be changed on the Operating Systems Parameters Utility Page (accessed
from the blue screen).

e The information stored in the well-known node name file can be changed,
but do not change the address property value since this value is automati­
cally updated by the clearinghouse to reflect the local node's hardware
address.

NETWORK PROGRAMMING TUTORIAL 3-13

Network Configuration Through incd and ifconfig

An entry in /etc/inittab invokes the /etc/incd.start shell script, which,
in turn, invokes incd(1M) at boot time to configure the specified network ~

protocols on a CLIX system. incd(1M) uses a configuration file, ~

/etc/incd.conf, to determine which network protocols are to be initialized
on the system.

Configuring the incd.conf File
/etc/incd.conf specifies the protocols to be started on an interface device.
The network set-up can be customized by modifying the /etc/incd.conf
configuration file. For example, if only the XNS protocols are desired on
the Ethernet network interface, modify the /etc/incd.conf to appear as

follows:

etO xns

If only the Department of Defense (DoD) Internet Protocol (IP) suite is
desired on the Ethernet interface, /etc/incd.conf should appear as follows:

etO dod arp trlr udp tcp

In the above example, dod specifies the DoD Internet Protocol. This alone
configures access to the Ethernet interface through IP.

The arp option specifies the Address Resolution Protocol, which is essential
in mapping Internet addresses to physical Ethernet addresses.

The trlr option specifies the acceptance of trailer encapsulated Internet
Protocol packets on this interface.

The udp option specifies the User Datagram Protocol, the connectionl~ss
service of the DoD Internet Protocol suite used by the Network File Sys­
tem (NFS). rwho(1). and the trivial file transfer protocol (tftp(1)).

The tcp option specifies the Transmission Control Protocol, the connection­
oriented service of the DoD Internet Protocol suite. Utilities that use tcp
include remote login (rlogin(1). telnet(1)) and the file transfer protocol
(ftp(1)). ~

~

3-14 CLIX SYSTEM GUIDE

-

··~

Network Configuration Through incd and ifconfig

If communications are made directly through the Internet Protocol and the

higher-level User Datagram Protocol and Transmission Control Protocol

are not needed. only dod and arp need to be in the configuration file. as

shown below:

etO dod arp

If both XNS and the full DoD Internet Protocol suite are desired.

/etc/incd.conf file should appear as follows:

etO xns dod arp tr lr udp tcp

The DoD Internet Protocol suite will not be configured for a given node

unless there is an entry in the /etc/hosts file that corresponds to the local

node name. Even if the protocols are specified in the /etc/incd.conf file,

there must be an entry for the local node in the /etc/hosts file for the

DoD Internet Protocol suite to be configured on that node.

Using ifconfig to Configure Network Interface Parameters

ifconfi.g(lM) configures the network interface parameters for the DoD

Internet Protocol suite. It is also run at boot time on CLIX systems

through the /etc/incd.start shell script. The parameters that can be

configured through ifconfi.g(1M) are as follows:

• Internet address

• Subnetwork mask

• Broadcast address

• Marking an interface up (or down)

• Routing metric

• Authority to reply to ICMP Address Mask Requests

The default invocation of ifconfi.g(lM) in /etc/incd.start is as follows:

/etc/ifconfig etO inet "$UNAME" up

NETWORK PROGRAMMING TUTORIAL 3-15

Network Configuration Through lncd and lfconfig

etO is the name of the Ethernet interface device. inet indicates that this
setup is for the Internet address family. (Specifying inet is optional
because the Internet address family is the only one supported by ~.
ifconfi.g(lM)). The node name of the system will be substituted for,,,
"$UNAME". ifconfi.g(lM) will look for this node name in the /etc/hosts
file to get the corresponding Internet address that will be used as the local
Internet address for this interface. up indicates to mark the interface "up"
so that it will begin receiving Internet Protocol packets from the network.

When the interface is marked up. ip(7S) will send an Internet Control
Message Protocol (ICMP) Address Mask Request out on the network.
Other nodes on the network that are authorized to answer ICMP Address
Mask Requests will reply with ICMP Address Mask Replies containing
their subnetwork mask. The subnetwork mask will be set up for this
interface using the first valid ICMP Address Mask Reply received.

Once the subnetwork mask is set for an interface. it cannot be modified:
however. it is possible to manually specify a subnetwork mask on the
ifconfi.g command line in the /etc/incd.start shellscript to be used at boot
time. An example of specifying the subnetwork mask 255.255.255.0 fol­
lows:

/etc/ifconfig etO inet "$UNAME" netmask 255.255.255.0 up

The address for an interface cannot be modified once it has been set: how­
ever. a particular address on the ifconfig(1M) command line can be
specified in /etc/incd.start for use at boot time. An example of specifying
the Internet address 129.135.200.1 follows:

/etc/ifconfig etO inet 129.135.200.1 up

There must be an entry in the /etc/hosts file for the node name of the
local host or incd(lM) will not configure the DoD Internet Protocols, thus
rendering ifconftg(lM) useless.

The broadcast address will automatically be established for an interface
based on the Internet address of the interface and the subnetwork mask.
The broadcast address can be modified by the super-user at any time
through ifconfig(lM). An example setting the broadcast address to
129.135.200.255 for the etO interface follows:

3-16 CLIX SYSTEM GUIDE

Network Configuration Through incd and ifconfig

/etc/ifconfig etO inet broadcast 129.135.200.255

The interface accepting Internet packets from the network can be toggled
at any time by the super-user. The etO interface is set to up by default in
the /etc/incd.start shellscript.

To stop receiving the Internet Protocol traffic from the network. the fol­
lowing command should be issued:

/etc/ifconfig etO inet down

The routing metric determines the number of hops an Internet Protocol
datagram would take before reaching its destination. The default is 1.
This can be changed at any time by the super-user. An example of chang­
ing the routing metric to 3 follows:

I etc/ifconfig etO metric 3

By default. this implementation does not reply to ICMP Address Mask
Requests. To use this interface as an authoritative agent for issuing ICMP
Address Mask Replies. the following command should be issued by the
super-user:

I etc/ifconfig etO maskrep

For more information on using incd(lM) and ifconfi.g(lM). refer to sec­
tion 1M in the CLIX System Administrator's Reference Manual.

NETWORK PROGRAMMING TUTORIAL 3-17

~
CD
(/)
0
""'C
0
;+
s·
co
-f
c:
0 ..,
~

Chapter 4: BSD Porting Tutorial

Introduction 4-1

System Call Compatibility 4-2

File Truncation 4-3

Process Groups 4-4

Virtual Fork 4-4

Interprocess Communication 4-5

110 4-5

General 4-8

Include File Compatibility 4-9

Signal Compatibility 4-10

TABLE OF CONTENTS 4-1

Introduction

This tutorial describes porting programs from a 4.3 Berkeley Software Dis­

tribution (BSD) environment to a CLIX environment. The enhancements

made to support many BSD routines will be discussed. In addition. include

file differences and general examples of how to use standard CLIX routines

to imitate BSD routines that are not provided will be covered.

This tutorial does not cover all possible inconsistencies encountered when

going from a 4.3 BSD system to a CLIX system. However. enough infor­

mation should be provided for the programmer to find a workaround for

any differences.

This is not a completely compatible 4.3 BSD system. However. we have

attempted to provide as much compatibility as possible on a per-system­

call or library-routine basis. Error numbers returned from system calls

may differ slightly. See section (2B) in the CLIX Programmer's & User's

Reference Manual for exact errors to be returned from each system call.

The implemented system calls are listed on the following page. Any

known inconsistencies are discussed in the remainder of the section. For a

list of implemented library routines. see section (3B) of the CLIX

Programmer's & User's Reference Manual. We are not aware of any

discrepancies in the library routines. Therefore. these routines will not be

discussed in this tutorial. Several routines under BSD and CLIX differ

only in name. For example. the BSD getwd() and standard UNIX

getcwd(3C) routines both return the current working directory. A list of

such routines is not provided because of the difficulty in supplying a com­

plete list.

All routines added to CLIX to provide BSD compatibility may be accessed

with the BSD library. libbsd.

BSD PORTING TUTORIAL 4-1

System Call Compatibility

The 4.3 BSD system calls provided under CLIX are as follows:

accept()
bind()
connect()
ft runcate()
getdtab I es I ze()
get host id()
get host name()
getpeername()
getpgrp()
geteockname()
geteockopt ()
get t imeof day()
ki I lpg()
I leten()
I stat()
read I ink()
readv()
recv()
recvf rom()
recvmeg()
rename()
select()
aend()
aendmeg()
aendto()
aethoet id()
eethoetname()
aetpgrp()
eehockopt()
shutdown()
socket()
aocketpa Ir()
eyml ink()
vfork()
walt3()
writev()

4-2 CLIX SYSTEM GUIDE

/•accept a connection on a socket •/
/• b Ind a name to a socket •/
/• In It I ate a connect I on on a socket •/
/•truncate a file to a given length•/
/•get descriptor table size•/
/•get Identifier of current host•/
/•get name of current host•/
/•get name of connected peer•/
/•get process group•/
/• get name of socket •/
/• get opt I one on a socket •/
/•get current date and time•/
/•send signal to a process group•/
/• 11 eten for connect Ions on a socket •/
/•get statue of a f 11 e •/
/•read value of a symbol le I ink•/
/• read Input from scattered I ocat Ions•/
/• rece Ive a message from a socket •/
/• receive a message from a socket •/
/• rece Ive a message from a socket •/
/• change the name of a f i I e •/
/• synchronous 1/0 mu It Ip I ex i ng •/
/• send a message from a socket •/
/• send a message from a socket •/
/• send a message from a socket •/
/•set Identifier of current host•/
/•set name of current host•/
/• set proceu group•/
/• set opt I one on a socket •/
/•shut down part of a ful I-duplex connection•/
/•create an endpoint for communication•/
/• create a pa Ir of connected sockets •/
/•make a symbol le I ink to a f I le•/
/• spawn a new process in a v I rt ua I way •/
/•wait for a proceu to terminate•/
/•write Input to scattered I ocat I one •/

System Call Compatibility

Most of these BSD system calls are implemented as system calls under
CLIX. However. a few were implemented as library routines using stan­
dard System V .3 primitives. These are still documented in section (2B) of
the CLIX Programmer's & User's Reference Manual because they represent
system calls under BSD.

Any known descrepancies between the BSD and CLIX implementations.
aside from error codes. will be discussed in the remainder of this section.
For possible errors returned in the global variable errno. see the manual
page in section (2B) of the CLIX Programmer's & User's Reference Manual
for the specific system call.

File Truncation

ftruncate(2B) is provided to allow files to be truncated to a given length.
The truncate() routine. which takes a file name. as opposed to
ftruncate(2B). which takes a file descriptor. is not provided. The trun­
cate() routine may be simulated by opening the file for writing with the
open(2) system call and using the descriptor returned as the argument to
ftruncate(2B) as shown below.

#inc I ude <J!Jys/t ypes. tt>
#Inc I ude <J!Jys/errno. tt>
#Inc I ude <J!rfs/fcnt I. tt>

extern int errno;

main()
{

int fd;
off_t length;

/•
•The call to open() and ftruicate() replace
•a call to truncate().

•I
If ((f d • open(" f oobar", O_R:MR, 0)) - -1) {

perror(" open");
exit(errno);

BSD PORTING TUTORIAL 4-3

System Call Compatlbillty

I•
• TrlM'lCOte file to length bytes, in this
• coae, 1024 bytes
•I

length - 1024;
if (ftrlM'lCOte{fd, length) - -1) {

perror("ftrlM'lCOte"):
exit(errno):

Process Groups

Two BSD system calls. getpgrpO and setpgrpO. are provided under
different names. They were renamed to getpgrp2(2B) and setpgrp2(2B) to
avoid clashes with the standard System V.3 getpgrp(2) and setpgrp(2)
system calls.

Virtual Fork

vfork(2B) is a BSD addition that allows a new process to be spawned
without copying the entire address space of the calling process. Under
CLIX. a process's stack region is the only portion of the address space
copied.

4-4 CLIX SYSTEM GUIDE

System Call Compatibility

Interprocess Communication

BSD sockets are implemented in the Internet and UNIX domains. Stream
and datagram abstractions are provided in the Internet domain. The UNIX
domain supports only the stream abstraction.

The getsockopt(2B) and setsockopt(2B) system calls support only a sub­
set of the options that 4.3 BSD offers. SO_SNDBUF and SO_RCVBUF are
not supported. The operating system sets the buffer sizes. They range
from 4 to 4096 bytes with several sizes in between. The system chooses
the size for a request according to the smallest buffer available to fit a
request. If a request exceeds 4096 bytes. several buffers may be linked by
the system to obtain a buff er large enough for the request. SO _ERROR is
also not supported. Errors will be returned when they occur or on the first
use after the error's occurrence of the affected socket. SO_DEBUG and
SO_DONTROUTE are always off. Attempting to set them will result in
an error. SO_KEEPALIVE. SO_LINGER and SO_BROADCAST are
always on. Attempting to clear them will result in an error.

The queue limit (as set by listen(2B)) for incoming connections on a socket
is currently zero. Attempting to set it higher will not result in an error.
The system will silently set it to zero.

1/0

The select(2B) call supported on files, sockets, pseudo terminals, and tty's
in BSD is only supported on sockets and pseudo terminals under CLIX.
readv(2B) and writev(2B), which perform scatter-gather 1/0 for files and
sockets under BSD, only work on sockets under CLIX. When performing
scatter-gather 1/0 for files, you will need to perform a read(2) or write(2)
for each scatter-gather location. (See figures 4-1 and 4-2.) All forms of
the recv(2B) system call and the send(2B) system call support only the
MSG_OOB :flag. Any other flags will result in an error.

BSD PORTING TUTORIAL 4-5

System Call Compatibility

Figure 4-1:

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

extern int errno:

main()
{

char buf1[10], buf2[10]:
int fd, cc:
struct iovec iov[2]:

I•
• Set up scatter-gather locations
•I

i ov[0]. i ov_base • buf 1 :
iov[0]. iov_len • 10;
iov[1].iov_base • buf2:
iov[1].iov_len • 10;

I•
•Perform scatter-gather.
• The fd argunent was obtained fran a previous
•open(), dup(), etc. system call.
•I

if ((cc• readv(fd, &iov[0], 2)) -- -1) {
perror(" readv"):
exit(errno):

4-6 CLIX SYSTEM GUIDE

Figure 4-2:

System Call Compatibility

#Include <sys/errno.tt>

extern int errno;

main()
{

char buf1[10], buf2[10];
Int fd, cc;

/•
• Perform 2 reads to acca1\'I ish what the
• reodv() cal I in figure 4-1 does.
• The fd argunent was obtained f r<Jft a previous
• open(), dup{) , etc. system ca II •
•/

if ((cc• read(fd, buf1, 10)) - -1) {
perror("readv");
exit(errno);

}
if ((cc• read(fd, buf2, 10)) - -1) {

perror("reodv");
exit(errno):

Programs that cannot block while performing 1/0 have two methods for

blocking under BSD. One method is to use an ioctl(2) call with the com­

mand FIONBIO set. The other is to call fcntl(2) with the F _SETFL com­

mand and a flag of FNDELA Y. CLIX only supports the f cntl(2) call.

Therefore. nonblocking 110 must be set with an fcntl(2) instead of an

ioctl(2). See the following figure.

BSD PORTING TUTORIAL 4-7

System Call Compatlbll1ty

General

#include <fcntl.h>
#Inc I ude <sys/types. h>
#Include <sys/f I le.h>
#Inc I ude <sys/errno. h>

extern Int errno;

main()
{

Int fd;

/•
• The fd orgunent was obtained frm a
• prev I oua open() , dup(), etc. system co 11 .
•/

If {fcntl{fd, F_SETFL, FNE.AY) - -1) {
perror{"fcntl");
exl t(errno);

gettimeofday(2B) and rename(2B) were implemented as library routines
using standard System V.3 primitives. As a result. the granularity needed
to provide accurate microseconds for gettimeofday(2B) does not exist and
always has a value of 0. The link.(2B) and unlink.(2B) system calls were
used to implement the rename(2B) call. Since several system calls are
needed to implement rename(2B). signals that would not be received dur­
ing the rename() call under BSD may be received during the rename(2B)
call.

wait3(2B) is implemented as a library routine using the wait2(2I) system
call. This prevents the third argument to wait3(2B) from being used.

4-8 CLIX SYSTEM GUIDE

Include File Compatibility

The following procedure was performed to achieve compatibility between

BSD and CLIX include files. When no CLIX include file similar to a BSD

include file existed, the entire BSD include file was added to the CLIX sys­

tem. However, when a similar file was present, parts of its BSD counter­

part were added to the existing CLIX include file. Compatibility was not

achieved in two areas. First, when going from a BSD program that

includes <fcntl.h>, <sys/fi.le.h> will usually be needed. This need

depends on <sys/types.h>. Secondly, <dir.h> should be replaced with

< dirent.h >.

BSD PORTING TUTORIAL 4-9

Signal Compatibility

BSD and CLIX support a signal(2) system call. However. they differ in
the actions performed. When porting from a BSD environment to CLIX.
you should change all signal(2) calls to sigset(2) calls. sigset(2) is a stan­
dard System V.3 system call that acts as the BSD signal(2) call does.
The BSD sigmask macro is equivalent to the CLIX sigbit macro defined in
<signal.h>. The BSD sigsetmask() and sigblockO system calls may be
emulated by the System V.3 sigrelse(2) and sighold(2) calls. respectively.
The BSD calls act on a mask of signals. Whereas. the System V.3 calls act
on an individual signal. (See figures 4-3 and 4-4.) Therefore. multiple
calls may be needed under CLIX to perform the actions of a single call
under BSD.

#include <.alg10I .It>

main()
{

int mask;

mask• aignask(SI~);
mask• aignask(SIGIO);
aigblock(mask);

aigaetmaek(mask);

Figure 4-3: BSD Signals

4-10 CLIX SYSTEM GUIDE

#include <signal .h>
#include <.sys/errno.h>

extern int errno;

main()
{

/•

Signal Compatibility

• Col I slghold for each signal nutt>er that was

• set in the mask in Figure 4--3
•I

if (sighold(SIGAl.ff..f) - -1) {
perror("sighold"):
exit(errno):

}
if (sighold(SIGIO) - -1) {

perror("sighold"):
exlt(errno):

I•
• Col I sigrelse for each signal nutt>er that was

• set In the mask In Figure 4--3
•I

if (sigrelse(SIG6J.R,,t) - -1) {
perror("sigreleose"):
exlt(errno):

}
if (sigrelse(SIGIO) - -1) {

perror("slgreleose"):
exit(errno):

Figure 4-4: CLIX Signals

BSD PORTING TUTORIAL 4-11

c

c

c

;:a. ...,
0 c..
c
(')

0 ...,
'<
(/)

g
7'

~
-I
c
0 ...,
~

Chapter 5: Introductory Socket Tutorial

~

·~ Introduction 5-1

Processes 5-2

Pipes 5-3

Socket pairs 5-7

Domains and Protocols 5-10

Datagrams in the Internet Domain 5-12

Connections 5-17

Reads, Writes, Recvs, etc. 5-28

Choices 5-31

What to Do Next 5-32

References 5-33

TABLE OF CONTENTS

Introduction

CLIX offers several choices for interprocess communication. To aid the
programmer in developing programs composed of cooperating processes, the
different choices are discussed and a series of example programs presented.
These programs demonstrate in a simple way the use of pipes, socketpairs.
and sockets and datagram and stream communication. This document
intends to present a few simple example programs, not to describe the net­
working system in full.

INTRODUCTORY SOCKET TUTORIAL 5-1

Processes

A program is both a sequence of statements and a rough way of ref erring
to the computation that occurs when the compiled statements are run. A
process can be thought of as a single line of control in a program. Most
programs execute some statements, go through a few loops. branch in vari­
ous directions, and end. These are single process programs. Programs can
also have a point where control splits into two independent lines. an action
called forking. In UNIX these lines can never rejoin. A call to the system
routine fork(2) causes a process to split in this way. The result of this
call is that two independent processes will be running. executing exactly
the same code. Memory values will be the same for all values set before
the fork, but. subsequently. each version will be able to change only the
value of its own copy of each variable. Initially. the only difference
between the two will be the value returned by fork(2). The parent will
receive a process ID for the child; the child will receive a zero. Calls to
fork(2). therefore. typically precede. or are included in, an if-statement.

A process views the rest of the system through a private table of descrip­
tors. The descriptors can represent open files or sockets. (Sockets are com­
munication objects that will be discussed below.) Descriptors are referred
to by their index numbers in the table. The first three descriptors are often
known by special names. std~ stdout and stderr. These are the stan­
dard input. output and error. When a process forks. its descriptor table is
copied to the child. Thus. if the parent's standard input is being taken
from a terminal. the child's input will be taken from the same terminal.
(Devices are also treated as files in UNIX.) Whoever reads first will get the
input. If, before forking. the parent changes its standard input so that it is
reading from a new file, the child will take its input from the new file. It
is also possible to take input from a socket. rather than from a file.

5-2 CLIX SYSTEM GUIDE

Pipes

Most UNIX users know that they can pipe the output of a program progl

to the input of another. prog2. by typing the command progl I prog2.

This is called piping the output of one program to another because the

mechanism used to transfer the output is called a pipe. When the user

types a command. the command is read by the shell. which decides how to

execute it. If the command is simple such as progl. the shell forks a pro­

cess. which executes the program. progl. and then dies. The shell waits

for this termination and then prompts for the next command. If the com­

mand is a compound command. progl I prog2. the shell creates two

processes connected by a pipe. One process runs the program. progl; the

other runs prog2. The pipe is an 1/0 mechanism with two ends. or sockets.

Data that is written to one socket can be read from the other.

Since a program specifies its input and output only by the descriptor table

indices. which appear as variables or constants. the input source and out­

put destination can be changed without the program text being changed. It

is in this way that the shell is able to set up pipes. Before executing progl.

the process can close whatever is at stdout and replace it with one end of a

pipe. Similarly. the process that will execute prog2 can substitute the

opposite end of the pipe for stdin. ,

Consider a program that creates a pipe for communication between its

child and itself (Figure 5-1). A pipe is created by a parent process. which

then forks. When a process forks. the parent's descriptor table is copied

into the child's.

In Figure 5-1. the parent process calls the system routine pipe(2). This

routine creates a pipe and places descriptors for the sockets for the two

ends of the pipe in the process's descriptor table. pipe(2) is passed an

array in which it places the index numbers of the sockets it created. The

two ends are not equal. The socket whose index is returned in the low

word of the array is opened for reading only. while the socket in the high

end is opened only for writing. This corresponds to the fact that the stan­

dard input is the first descriptor of a process's descriptor table and the

standard output is the second. After creating the pipe. the parent creates

the child with which it will share the pipe by calling fork(2). Figure 5-2

illustrates the effect of a fork. The parent process's descriptor table points

to both ends of the pipe. After the fork. both parent's and child's descrip­

tor tables point to the pipe. The child can then use the pipe to send a mes­

sage to the parent.

INTRODUCTORY SOCKET TUTORIAL 5-3

Pipes

#include <.stdio.h>
#define ~TA "Bright star, would I were steadfast as thou art "

I•
• This progran creates a pipe, then forks. The chi Id camunicates to the
• parent over the pipe. Notice that a pipe is a one-way camunications
• device. I CXWl write to the output aocket (aockets[1], the second aocket
• of the array returned by pipe()) and read f rat1 the Input aocket
• (aockets[0]), but not vice veraa.
•I

main()
{

int aockets[2], child;

/• Create a pipe •/

if (pipe(sockets) < 0) {

}

perror("opening strean aocket pair");
exi t(10);

if ((child - fork()) -- -1)
perror("fork");

else if (child) {

} else {

char buf [10'24];
/• This is sti 11 the parent. It reads the chi Id's message. •/
close(aockets[1]);
if (read(aockets[0], buf, 10'24) < 0)

perror("reading message");
printf("-->".s\n", buf);
close(aockets[0]);

/•This is the child. It writes a message to its parent. •/
close(aockets[0]);
if (write(aockets[1], ~TA, sizeof(~TA)) < 0)

perror("writing message");
close(aockets[1]);

Figure 5-1: Use of a pipe

5-4 CLIX SYSTEM GUIDE

Pipes

A pipe is a one-way communication mechanism. with one end opened for

reading and the other end for writing. Therefore. parent and child need to

agree on which way to turn the pipe. from parent to child or child to

parent. Using the same pipe for communicating both from parent to child

and from child to parent would be possible (since both processes have

references to both ends). but very complicated. If the parent and child are

to have a two-way conversation. the parent creates two pipes. one to use in

each direction. (In accordance with their plans. both parent and child in the

example above close the socket that they will not use. Unused descriptors

are not required to be closed. but it is good practice.) A pipe is also a

stream communication mechanism; that is. all messages sent through the

pipe are placed in order and reliably delivered. When readers request a

certain number of bytes from this stream. they are given as many bytes as

are available. up to the amount of the request. Note that these bytes may

have come from the same call to write(2) or from several calls to

write(2).

INTRODUCTORY SOCKET TUTORIAL 5-5

Pipes

c) ~ pipe)

c) ~ pipe)

Figure 5-2. Parent and Child Sharing a Pipe

5-6 CLIX SYSTEM GUIDE

Socket pairs

Sockets provide a slight generalization of pipes. A pipe is a pair of con­

nected sockets for one-way stream communication. You may obtain a pair

of connected sockets for two-way stream communication by calling the

routine sock.etpair(2B). The program in Figure 5-3 calls socketpair(2B)

to create such a connection. The program uses the link for communication

in both directions. Since socketpairs are extensions of pipes. their use

resembles that of pipes. Figure 5-4 illustrates the result of a fork follow­

ing a call to sock.etpair(2B).

sock.etpair(2B) takes a specification of a domain, a style of communica­

tion, a protocol and an array in which to return the 2 socket descriptors

opened as arguments. These are the parameters shown in the example.

Domains and protocols will be discussed in the next section. Briefly, a

domain is a space of names that may be bound to sockets and implies cer­

tain other conventions. Currently, socketpairs have only been implemented

for the UNIX domain. The UNIX domain uses UNIX pa th names for nam­

ing sockets. It only allows sockets on the same machine to communicate.

Note that the header files <sys/socket.h> and <sys/types.h> are

required in this program. The constants AF_ UNIX and SOCK_STREAM

are defined in <sys/socket.h>, which, in turn, requires the file

<sys/types.h> for some of its definitions.

#inc I ude <ays/typea. tt>
#inc I ude <ays/aocket. tt>
#include <atdio.tt>

#define °'TA1 "In Xanadu. did Kublai Khan •••
#define °'TA2 "A stately pleasure dane decree . . "

/•
•This progran creates a pair of connected aockets then forks and
• camuiicotes over them. This is very similar to camulication with pipes.

• however, aocketpairs are two-way camulications objects. Therefore I can

•send mesaagea in both directions.

•/

main()

INTRODUCTORY SOCKET TUTORIAL 5-7

Socketpairs

int sockets[2], child;
char buf [10'24];

if (socketpai r(AF_lNIX, SD<_STRE'M, 0, sockets) < 0) {
perror("opening strean socket pair");
exit(1);

if ((child• fork()) -- -1)
perror("fork");

elae if (child) { /•This ls the parent. •/
cloee(sockets[0]);
If (read(sockets[1], buf, 10'24, 0) < 0)

perror("reading strean message");
printf("--~\n", buf);
if (write(sockets[1], °'TA2, sizeof(°'TA2)) < 0)

perror("writing strean meseoge");
cloee(sockets[1]);

} elae { /• This is the chi Id. •/
cloee(aoekets[1]);
if (write(sockets[0], ll'.TA1, sizeof(ll'.TA1)) < 0)

perror("writlng strean message");
if (read(sockets[0], buf, 10'24, 0) < 0)

perror("reading strean message");
printf("--:::"'9\n", buf);
cloee(sockets[0]);

Figure 5-3: Use of a Socketpair

5-8 CLIX SYSTEM GUIDE

Socketpairs

0 <--------o
- - - - - - - ->

0 <--------o
- - - - - - - ->

Figure 5-4: Parent and Child Sharing a Socketpair

INTRODUCTORY SOCKET TUTORIAL 5-9

Domains and Protocols

Pipes and socketpairs are a simple solution for a parent and child or child
processes to communicate. What if we wanted to have processes that have
no common ancestor with whom to set up communication? Neither stan­
dard UNIX pipes nor socketpairs can be used in this situation. since both
mechanisms require a common ancestor to set up the communication. We
would like to have two processes separately create sockets and then have
messages sent between them. This is often the case when providing or
using a service in the system. This is also the case when the communicat­
ing processes are on separate machines. With sockets you can create indivi­
dual sockets. give them names. and send messages between them.

Sockets created by different programs use names to refer to one another;
names generally must be translated into addresses for use. The space from
which an address is drawn is referred to as a domain. Several domains for
sockets exist. Two that will be used in the examples here are the UNIX
domain (or AF _UNIX. for Address Format UNIX) and the Internet
domain (or AF _!NET). In the UNIX domain. a socket is given a path
name within the file system name space. A file system node is created for
the socket and other processes may then refer to the socket by giving the
proper path name. UNIX domain names. therefore. allow any two
processes that work in the same file system to communicate. The Internet
domain is the UNIX implementation of the DARPA Internet standard pro­
tocols TCP/IP/UDP. Addresses in the Internet domain consist of a machine
network address and an identifying number. called a port. Internet
domain names allow machines to communicate.

Communication follows some particular .. style." Currently. communica­
tion is either through a stream or by datagram. Stream communication has
several implications. Communication occurs across a connection between
two sockets. The communication is reliable. error-free. and. as in pipes. no
message boundaries are kept. Reading from a stream may result in reading
the data sent from one or several calls to write(2) only part of the data
from a single call. if not enough room exists for the entire message or if
not all data from a large message is transferred. The protocol implement­
ing such a style will retransmit messages received with errors. It will also
return error messages if you try to send a message after the connection has
been broken. Datagram communication does not use connections. Each
message is addressed individually. If the address is correct. it will gen­
erally be received. although this is not guaranteed. Often datagrams are
used for requests that require a response from the recipient. If no response

5-10 CLIX SYSTEM GUIDE

Domains and Protocols

arrives in a reasonable amount of time. the request is repeated. The indivi­
dual datagrams will be kept separate when they are read. Thus. message
boundaries are preserved. Datagrams in the UNIX domain are not sup­
ported under CLIX.

The difference in performance between the two styles of communication is
generally less important than the difference in semantics. The performance
gain found when using datagrams must be weighed against the increased
complexity of the program. which is now concerned with lost or out-of­
order messages. If lost messages may simply be ignored. the quantity of
traffic may be a consideration. The expense of setting up a connection is
best justified by frequently using the connection. Since the performance of
a protocol changes as it is tuned for different situations. it is best to seek
the most up-to-date information when making choices for a program in
which performance is crucial.

A protocol is a set of rules. data formats. and conventions that regulate the
transfer of data between participants in the communication. In general.
each socket type (stream. datagram. etc.) has one protocol within each
domain. The code that implements a protocol tracks the names bound to
sockets. sets up connections. and transfers data between sockets. perhaps
sending the data across a network. Several protocols. differing only in
low-level details. can implement the same style of communication within a
particular domain. Although the protocol to be used can be selected. for
nearly all uses it is sufficient to request the default protocol. This has been
done in all of the example programs.

When a socket is created. the domain. style. and protocol of a socket may
be specified. For example. in Figure 5-5 the call to socket(2B) causes a
datagram socket with the default protocol in the Internet domain to be
created.

INTRODUCTORY SOCKET TUTORIAL 5-11

Datagrams in the Internet Domain

The examples in Figures 5-5 and 5-6 are examples of datagram sockets in
the Internet domain. The structure of Internet domain addresses is defined
in the file <netinet/in.h>. Internet addresses specify a host address (a
32-bit number) and a delivery slot or port on that machine. These ports
are managed by the system routines that implement a particular protocol.
Unlike UNIX domain names, Internet socket names are not entered in the
file system and, therefore. they do not need to be unlinked after the socket
is closed. When a message must be sent between machines, it is sent to the
protocol routine on the destination machine, which interprets the address
to determine the socket the message should be delivered to. Several
different protocols may be active on the same machine. but. in general.
they will not communicate with one another. As a result. different proto­
cols are allowed to use the same port numbers. Thus. implicitly. an Inter­
net address is a triple including a protocol as well as the port and machine
address. An association is a temporary or permanent specification of a pair
of communicating sockets. An association is thus identified by the tuple
<protocol, local machine address, local port, rerrwte machine address,
rerrwte port>. An association may be transient when using datagram

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
/• In the included file <netinet/in.h> a sockaddr_in is defined as fol lo.vs:

• struct sockaddr_in {
• short sin_fani ly;
• u_short sin_port;
• struct in addr sin addr;
• char sin_zero[B]; . } ;
• This progran creates a datagran socket, binds a nane to it. then reads
• fran the socket.
•I

main()
{ int sock, length;

struct sockaddr in nane;
char buf[1024] :-
/• Create socket fran which to read. •/
sock• socket(AF_It£T. s::a<_~. 0);
if (sock< 0) {

5-12 CLIX SYSTEM GUIDE

'

}

Datagrams in the Internet Domain

}

perror("opening datagran socket"):
exit(1):

/• Create nane with wt ldcards. •/
nane.sin_fani ly = AF_Il'£r;
nane. sin_ add r. s_ add r = I"'6lm _,ANY;

nane.sin_port = 0;
if (bind(sock, &nane, sizeof(nane))) {

perror("binding datagran socket");
exit(1);

}
/• Find assigned port value and print it out. •/
length= sizeof(nane);
if (getsocknane(sock, tnane, &length)) {

perror("gett ing socket nane"):
exit(1);

}
printf("Socket has port 1#'.d\n", ntohs(nane.sin_port));
/• Read f ran the socket •/
if (reod(sock, buf, 1024) < 0)

perror("receiving datagran pocket"):
prlntf("--""8\n", buf);
close(sock):

continue

Figure 5-5: Reading Internet Domain Datagrams

INTRODUCTORY SOCKET TUTORIAL 5-13

Datagrams in the Internet Domain

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <.stdio.h>

#define ~TA "The sea is calm tonight, the tide is full ... "

I•
• Here I send a datagran to a receiver whose nane I get f ran the cannand
• I ine argunents. The form of the cannand I ine is:
• dgransend hostnane portnunber
•I

main(argc, argv)
int argc;
char •argv[];

int sock;
struct sockaddr in nane;
st ruct hostent -;hp, •gethostbynane();

/• Create socket on which to send. •/

sock • socket (AF _It-ET. SD<_CXR#.4, 0):
if (sock< 0) {

perror("opening datagran socket"):
exit(1);

/•
• Construct nane, with no wi ldcards, of the socket to send to.
• Gethostbynane() returns a structure including the network address
• of the specified host. The port nunber is taken fran the cannand
• I ine.
•I

hp• gethostbynane(argv[1]);
if (hp - 0) {

}

fprintf(stderr, ..,..s: l.Wlknown host0, argv[1]);
exit(2):

bcopy(hp->h_addr. Inane. s i n_addr. hp->h_I ength):
nane.sin_fani ly • AF_It\ET;
nane.sin_port • htons(atoi(argv[2])):

5-14 CLIX SYSTEM GUIDE

Datagrams in the Internet Domain

/• Send message. •/

If (sendto(sock, °'TA, sizeof(°'TA), 0, ctnane, slzeof(nane)) < 0)
perror("sendlng datagran message"):

close(sock):

Figure 5-6: Sending an Internet Domain Datagram

sockets; the association actually exists during a send() operation.

The protocol for a socket is chosen when the socket is created. The local
machine address for a socket can be any valid network address of the
machine. if it has more than one. It can also be the wildcard value
INADDR_ANY. The wildcard value is used in the program in Figure 5-5.
If a machine has several network addresses, the messages sent to any of the
addresses should likely be deliverable to a socket. This will be the case if
the wildcard value is chosen. Even if the wildcard value is chosen. a pro­
gram sending messages to the named socket must specify a valid network
address. One can be willing to receive from .. anywhere:· but one cannot
send a message .. anywhere:· The program in Figure 5-6 is given the desti­
nation host name as a command-line argument. To determine a network
address to which it can send the message. it looks up the host address by
the call to gethostbyname(2B). The returned structure includes the hosfs
network address. which is copied into the structure specifying the destina­
tion of the message.

The port number can be considered the number of a mailbox into which
the protocol places messages. Certain daemons. offering certain advertised
services. have reserved or .. well-known"' port numbers. These fall in the
range from 1to1023. Higher numbers are available to general users.
Only servers need to ask for a particular number. The system will assign
an unused port number when an address is bound to a socket. This may
happen when an explicit bind(2B) call is made with a port number of 0 or

INTRODUCTORY SOCKET TUTORIAL 5-15

Datagrams In the Internet Domain

when a connect(2B) or send(2B) is performed on an unbound socket. Port
numbers are not automatically reported back to the user. After calling
bind(2B). asking for port O. you may call getsock.name(2B) to discover
what port was actually assigned. The routine getsockname(2B) will not ~
work for names in the UNIX domain. ~

The format of the socket address is specified in part by standards within
the Internet domain. The specification includes the order of the bytes in
the address. Because machines differ in the internal representation they
ordinarily use to represent integers. printing the port number returned by
getsock.name(2B) may result in a misinterpretation. To print the number.
you must use the routine ntohs(3B) (for network to host: short) to convert
the number from the network representation to the host's representation.
On some machines (such as 68000-based machines) this is a null operation.
On others (such as the CLIPPER) this results in a swapping of bytes.
Another routine exists to convert a short integer from the host format to
the network format. called htons(2B); similar routines exist for long
integers. For further information. refer to byteorder(3B) of the CLIX
Programmer's & User's Reference Manual.

5-16 CLIX SYSTEM GUIDE

Connections

To send data between stream sockets (having communication style
SOCK_STREAM). the sockets must be connected. Figures 5-7 and 5-8
show two programs that create such a connection. The program in 7 is
relatively simple. To initiate a connection. this program creates a stream
socket and then calls connect(2B). specifying the address to which it
wishes the socket connected. Provided that the target socket exists and is
prepared to handle a connection. connection will be complete. and the pro­
gram can begin to send messages. Messages will be delivered in order
without message boundaries. as with pipes. The connection is destroyed
when either socket is closed (or soon thereafter). If a process persists in
sending messages after the connection is closed. the operating system sends
a SIGPIPE signal to the process .. Unless explicit action is taken to handle
the signal (see signal(2) or sigset(2)). the process will terminate and the
shell will print the message .. broken pipe.··

Forming a connection is asymmetrical: one process (such as the program in
Figure 5-7) requests a connection with a particular socket; the other pro­
cess accepts connection requests. Before a connection can be accepted. a
socket must be created and an address bound to it. This situation is illus­
trated in the top half of Figure 5-9. Process 2 created a socket and bound a
port number to it. Process 1 created an unnamed socket. The address
bound to process 2's socket is then made known to process 1 and. perhaps.
to several other potential communicants as well. If several possible com­
municants exist. this socket might receive several requests for connections.
As a result. a new socket is created for each connection. This new socket is
the endpoint for communication within this process for this connection. A
connection may be destroyed by closing the corresponding socket.

INTRODUCTORY SOCKET TUTORIAL 5-17

Connections

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define °'TA "Half a league, half a league ... "

I•
• This progran creates a socket and initiates a connection with the socket
•given in the cannand line. One message is sent aver the connection and
• then the socket is closed, ending the connection. The form of the cannand
• I ine is: strearwrite hostnane portnunber
•I

main(argc, argv)
int argc;
char •argv[];

int sock;
struct sockadclr in server;
struct hostent -;hp, •gethostbynane():
char buf[1024]:

/• Create socket •/

sock• socket(AF_It£T, SXl<_STRf>M, 0):
if (sock< 0) {

perror("opening strean socket");
exi t(1):

/• Connect socket using nane specified by cannand I i ne. •/

server .sin_fani ly • AF_It£T;
hp• gethostbynane(argv[1]);
if (hp - 0) {

}

fprintf(stderr, ..,..s: unl<noM'l host0, argv[1]);
exit(2);

bcopy(hp->h_oddr, berver. s i n_addr, hp->h_I ength):
server.sin_port • htons(atoi(argv[2])):

If (connect(sock, berver, sizeof(server)) < 0) {
perror("connect ing strean socket"):
exi t(1):

5-18 CLIX SYSTEM GUIDE

if {write{sock, °'TA, eizeof{°'TA)) < 0)
perror("writing on etrean socket");

close(sock);

Figure 5-7: Initiating an Internet Domain Stream Connection

Connections

The program in Figure 5-8 is a rather trivial example of a server. It
creates a socket to which it binds a name. which it then advertises. (In this
case. it prints the socket number.) The program then calls listen(2B) for
this socket. Since several clients may attempt to connect more or less
simultaneously. a queue of pending connections is maintained in the sys­
tem address space. listen(2B) marks the socket as willing to accept con­
nections and initializes the queue. When a connection is requested. it is
listed in the queue. If the queue is full. an error status may be returned to
the requester. The maximum length of this queue is specified by the
second argument of listen(2B); the maximum length is limited by the sys­
tem. Once the listen call is complete. the program enters an infinite loop.
On each pass through the loop. a new connection is accepted and removed
from the queue. and. hence. a new socket for the connection is created.
The bottom half of Figure 5-9 shows the result of Process 1 connecting
with the named socket of Process 2 and Process 2 accepting the connection.
After the connection is created. the service. in this case printing out the
messages. is performed and the connection socket closed. The accept(2B)
call will take a pending connection request from the queue if one is avail­
able. or block waiting for a request. Messages are read from the connection
socket. Reads from an active connection will normally block until data is
available. The number of bytes read is returned. When a connection is
destroyed. the read call returns immediately. The number of bytes
returned will be zero.

INTRODUCTORY SOCKET TUTORIAL 5-19

Connections

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRE 1

I•
• This progran creates a socket and then begins an infinite loop. Each time
• through the loop it accepts a connection and prints out messages fran it.
• Yttten the connection breaks, or a tennination message canes through, the
• progran accepts a new connection.
•I

main()
{

int sock, length:
struct sockaddr_in server:
int msgsock:
char buf[1024]:
int rval:
int i:

/• Create socket •/

sock • socket(AF_It£T. s::o<_STRf>M, 0):
if (sock< 0) {

perror("opening strean socket"):
exit(1);

/• Nane socket using wi ldcards •/

server .sin_fani ly ""AF_It£T:
server. s i n_addr. s_addr • INta:R_>M':
server. s i n_port • 0;
if (bind(sock, &server, sizeof(server))) {

perror("binding strean socket"):
exit(1);

/• Find out assigned port nlllt>er and print it out •/

length• sizeof(server):
if (getsocknane(sock, &server, &length)) {

5-20 CLIX SYSTEM GUIDE

0

Connections

continue

}

perror("getting socket nane");
exit(1);

printf("Socket has port 1#'.d\n", ntohs(server.sin_port));

/•Start accepting connections •/

I i st en(sock, 5);
do {

rnsgsock = accept(sock, 0, 0);
i f (rnsgsock =- -1)

perror("accept");
else do {

bzero(buf, sizeof(buf));
if ((rval • reod(rnsgsock, buf, 1024)) < 0)

perror("reoding strean message");
i -0:
if (rval -= 0)

printf ("Ending connect ion\n");
else

pr I ntf (" -->".s\n", buf);
} while (rval I• 0);
c I ose{msgsock);

} while {TIU:);

I•
•Since this progran has an infinite loop, the socket "sock" is
• never explicitly closed. Hc:M'ever, al I sockets wi 11 be closed
• autanatical ly when a process is ki I led or terminates normally.
•/

Figure 5-8: Accepting an Internet Domain Stream Connection

INTRODUCTORY SOCKET TUTORIAL 5-21

Connections

Process 1 Process 2

0
Process 1 Process 2

Figure 5-9: Establishing a Stream Connection

5-22 CLIX SYSTEM GUIDE

#include <sys/types.11>
#inc I ude <sys/socket .11>
#include <sys/time.11>
#include <netinet/in.11>
#include <netdb.11>
#include <stdio.11>
#define TIU: 1

I•

Connections

• This progran uses select() to check that saneone is trying to connect
•before cal ling accept().
•I

main()
{

int sock, length;
struct sockaddr_in server;
int rnsgsock:
char buf[1024];
int rval;
fd_set ready;
struct timeval to;

/• Create socket •/
sock - socket (AF _11'£1". s:o<_smf>M, 0) ;
if (sock<0) {

}

perror("opening strean socket");
exit(1);

/• Nane socket using wi ldcards •/
server.sin_fani ly - AF_I1'£T;
server. s i n_addr. s_addr - I~_>M';
server .sin_port - 0;
if (bind(sock. &server. sizeof(server))) {

perror("binding strean socket");
exit(1);

}
/• Find out assigned port nunber and print it out •/
length - sizeof(server);
if (getsocknane(sock, &server, &length)) {

perror("getting socket nane");
exit(1);

}
printf ("Socket has port #..d\n". ntohs(server .sin_port));

/•Start accepting connections •/

INTRODUCTORY SOCKET TUTORIAL 5-23

Connections

I i sten(sock, 5);
do {

continue

FD_:ZOO(ctreody);
FD_SET(sock, ctreody);
to. tv sec • 5;
if (s";1 ect(sock + 1, ctreody, 0, 0, ctto) < 0) {

perror("select");
continue;

}
if (FD_ISSET(sock, ctreody)) {

} else

} while (lRE);

msgsock = accept(sock, (struct sockaddr •)0, (int •)0);
if (msgsock =- -1)

perror("accept");
else do {

bzero(buf, sizeof(buf));
if ((rva I = read(msgsock, buf, 1024)) < 0)

perror("reading strean message");
else if (rval =- 0)

printf ("Ending connect ion\n");
else

printf ("-->".s\n", buf);
} while (rval > 0);
c I ose(msgsock);

printf("Do sariething el se\n");

Figure 5-10: Using select(2B) to Check for Pending Connections

0

The program in Figure 5-10 is a slight variation on the server in Figure 5- ~
8. It avoids blocking when there are no pending connection requests by ~
calling select(2B) to check for pending requests before calling accept(2B).
This strategy is useful when connections may be received on more than one
socket or when data may arrive on other connected sockets before another

5-24 CLIX SYSTEM GUIDE

Connections

connection request.

The programs in Figures 5-11 and 5-12 show a program using stream com­
m unica ti on in the UNIX domain. Streams in the UNIX domain can be used

"""' for this type of program in the same way as Internet domain streams.
except for the form of the names and the restriction of the connections to a
single file system differ. Some differences exist. however. in the func­
tionality of streams in the two domains. notably in the handling of out-of­
band data (discussed briefly below). These differences are beyond the scope
of this paper.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define ~TA "Half a league. half a league ... "

I•
•This progran connects to the socket naned in the cannand line and sends a
• one I i ne message to that socket. The form of the ccmnand I i ne is:
• ustrearwrite pathname
•/

main(argc, argv)
int argc;
char •argv[];

int sock;
struct sockaddr un server;
char buf[1024] ;-

/• Create socket •/
sock • socket(AF_LNIX. sn<_STREi'M, 0);
if (sock< 0) {

}

perror("opening strean socket"):
exit(1):

/•Connect socket using name specified by carmand line.•/
server.sun_fani ly • AF_LNIX;
strcpy(server.sun_path. argv[1]):

if (connect(sock, &server. sizeof(struct sockaddr_un)) < 0) {
close(sock):
perror("connect ing strean socket"):
exit(1):

INTRODUCTORY SOCKET TUTORIAL 5-25

Connections

if (write(sock, ll'.TA, sizeof(ll'.TA)) < 0)
perror("writing on strean socket");

Figure 5-11: Initiating a UNIX Domain Stream Connection

#include <sys/types.It>
#include <sys/socket.It>
#inc I ude <sys/un. h'>
#include <.stdio.11>

#define t.w.£ "socket"

I•
• This progran creates a socket in the LNIX danain and binds a nane to it.
•After printing the socket's nane it begins a loop. Each time through the
• I oop it accepts a connection and prints out messoges fran it. Yflen the
•connection breaks, or a termination messoge canes through, the progran
• accepts a new connection.
•I

main()
{

int sock, msgsock, rva I ;
struct sockaddr un server;
char buf[1024] ;-

/• Create socket •/
sock• socket(AF_LNIX. s::a<_STRfJM, 0):
if (sock< 0) {

}

perror("opening strean socket");
exit(1):

/• Nane socket using f i I e system nane •/

5-26 CLIX SYSTEM GUIDE

server .sun_fani ly • AF_LNIX;
strcpy(server .sun_path. t>W.E);
if (bind(sock. &server. sizeof(struct sockaddr_un))) {

perror("binding strean socket");
exit(1);

}
printf("Socket has nane "8\n", server.sun_path);
/• Start accepting connections •/
Ii sten(sock, 5);
for(;;) {

}
I•

msgsock • accept(sock. 0. 0);
i f (msgsock =- -1)

perror("accept");
else do {

bzero(buf, sizeof(buf));
if ((rval • read(msgsock, buf, 1024)) < 0)

perror("reading strean message");
else if (rval - 0)

printf("Ending connect ion\n");
else

printf("-->".s\n". buf);
} while (rval > 0);
close(msgsock);

Connections

• The fol lotting statements are not executed. because they fol Iott an
• infinite loop. 1-b.Yever, most ordinary prograns wi 11 not run
•forever. In the LNIX danain it is necessary to tell the file
• system that one is through using t>W.£. In most prograns one uses
• the cal I uni ink() as belott. Since the user wi 11 have to ki 11 this
• progran, it wi 11 be necessary to remove the nane by a cannand f ran

• the shel I.
•/

close(sock);
uni ink(t>W.E);

Figure 5-12: Accepting a UNIX Domain Stream Connection

INTRODUCTORY SOCKET TUTORIAL 5-27

Reads, Writes, Recvs, etc.

UNIX 4.3 BSD has several system calls for reading and writing informa- ~,
tion. The simplest calls are read(2) and write(2). write(2) takes the """"""'
index of a descriptor. a pointer to a buffer containing the data and the size
of the data as arguments. The descriptor may indicate either a file or a
connected socket ... Connected" can mean either a connected stream socket
(as described in the Connections Section) or a datagram socket for which a
connect(2B) call has provided a default destination (see connect(2B)).
read(2) also takes a descriptor that indicates either a file or a socket.
wri te(2) requires a connected socket since no destination is specified in the
parameters of the system call. read(2) can be used for either a connected
or an unconnected socket. These calls are. therefore. quite flexible and may
be used to write applications that require no assumptions about the source
of their input or the destination of their output. There are variations on
read(2) and write(2) that allow the source and destination of the input
and output to use several separate buffers. which are only available on
sockets. These are readv(2B) and writev(2B). for read and write vector.

It is sometimes necessary to send high-priority data over a connection that
may have unread low-priority data at the other end. For example, a user o-
interface process may be interpreting commands and sending them to
another process through a stream connection. The user interface may have
filled the stream with. as yet. unprocessed requests when the user types a
command to cancel all outstanding requests. Rather than have the high-
priority data wait to be processed after the low-priority data. it is possible
to send it as out-of-band (OOB) data. The notification of pending OOB data
results in the generation of a SIGURG signal if this signal has been enabled
(see signal(2) or sigset(2)). See the ··Advanced Socket Tutorial" for a
more complete description of the OOB mechanism. A pair of calls similar
to read(2) and write(2) allow options. including sending and receiving
OOB information: these are send(2B) and recv(2B). When not using these
options. these calls have the same functions as read(2) and write(2).
These calls are used only with sockets; specifying a descriptor for a file
will result in the return of an error status.

5-28 CLIX SYSTEM GUIDE

Reads, Writes, Recvs, etc.

I•
•The variable descriptor may be the descriptor of a file or of a socket.

•I
cc - read(descriptor, buf, nbytes)
int cc, descriptor; char •buf; int nbytes;

cc - write(descriptor, buf, nbytes)
int cc, descriptor; char •buf; int nbytes;
I•

• The variable •'sock'' ITl.lst be the descriptor of a socket.
• Flags may be M:n_a::8.
•Alt iovec can include several source buffers.
•/

cc - readv(sock, iov, iovcnt)
int cc, descriptor; struct iovec •iov; int iovcnt;

cc - writev(sock, iovec, ioveclen)
int cc, descriptor; struct iovec •iovec: int ioveclen;

cc - send(sock, msg, len, flags)
int cc, sock; char """89: int len, flags:

cc• sendto(sock, msg, len, flags, to, tolen)
int cc, sock: char """8g; int len, flags:
struct sockaddr •to; int tolen;

cc• sendnsg(sock, msg, flags)
int cc, sock; struct msghdr msg[]; int flogs;

cc• recv(sock, buf, len, flags)
int cc, sock; char •buf; int len, flogs;

cc• recvfran(sock, buf, len, flogs, fran, franlen)
int cc, sock; char •buf; int len, flogs:
struct sockaddr •fran: int •f ranlen:

cc• recvmsg(sock, msg, flags)
int cc, socket: struct msghdr msg[]: int flags:

Figure 5-13: Varieties of Read and Write Commands

INTRODUCTORY SOCKET TUTORIAL 5-29

Reads, Writes, Recvs, etc.

To send datagrams. you must be allowed to specify the destination. The
call sendto(2B) takes a destination address as an argument and is therefore
used for sending datagrams. The call recvfrom(2B) is often used to read ,....~
datagrams. since this call returns the address of the sender. if it is avail-__;
able. along with the data. If the identity of the sender does not matter.
you may use read(2) or recv(2B).

Finally. a pair of calls allow the sending and receiving of messages from
multiple buffers when the address of the recipient must be specified. These
are sendmsg(2B) and recvmsg(2B). These calls are actually quite general
and have other uses. including. in the UNIX domain. the transmission of a
file descriptor from one process to another.

The various options for reading and writing are shown in Figure 5-13 with
their parameters. The parameters for each system call reflect the different
functions of the different calls. In the examples given in this paper. the
calls read(2) and write(2) are used when possible.

5-30 CLIX SYSTEM GUIDE

Choices

This paper presented examples of some of the forms of communication
supported by Intergraph"s port of 4.3 BSD sockets. These were presented
in an order chosen for ease of presentation. It is useful to review these
options emphasizing the factors that make each attractive.

Pipes have the advantage of portability in that they are supported in all
UNIX systems. They also are relatively simple to use. Socketpairs share
this simplicity and have the additional advantage of allowing bidirectional
communication. The major shortcoming of these mechanisms is that they
require communicating processes to be descendants of a common process.
They do not allow intermachine communication.

The two communication domains. UNIX and Internet. allow processes with
no common ancestor to communicate. Of the two. only the Internet
domain allows communication between machines. This makes the Internet
domain a necessary choice for processes running on separate machines.

The choice between datagram and stream communication is best made by
carefully considering the semantic and performance requirements of the
application. Streams can be both advantageous and disadvantageous. One
disadvantage is that a process is only allowed a limited number of open
streams. as only 64 entries are usually available in the open descriptor
table. This can cause problems if a single server must talk with a large
number of clients. Another is that. for delivering a short message. the
stream setup and teardown time can be unnecessarily long. Weighed
against this are the reliability built into the streams. This will often make
you decide to choose streams.

INTRODUCTORY SOCKET TUTORIAL 5-31

What to Do Next

Many examples presented here can be models for multiprocess programs
and for programs distributed across several machines. In developing a new :,
multiprocess program, it is often easiest to first write the code to create the
processes and communication paths. After this code is debugged. the code
specific to the application can be added.

An introduction to the UNIX system and programming using UNIX system
calls can be found in The UNIX Programming Environment. Further docu­
mentation on Intergraph's port of 4.3 BSD socket mechanisms can be found
in the Advanced Socket Tutorial. More detailed information about particu­
lar calls and protocols is provided in sections (2), (3), and (4) of the CLIX
Programmer's & User's Reference Manual. In particular, the following
manual pages are relevant:

Crea ting and naming sockets
Establishing connections
Transferring data
Addresses
Protocols

5-32 CLIX SYSTEM GUIDE

socket(2B), bind(2B)
listen(2B), accept(2B), connect(2B)
read(2), write(2B), send(2B), recv(2B)
inet(7B)
tcp(7B). udp(7B).

References

B.W. Kernighan & R. Pike. 1984. The UNIX Programming Environment.
Englewood Cliffs. N.J.: Prentice-Hall.

B.W. Kernighan & D.M. Ritchie. 1978. The C Programming Language.
Englewood Cliffs. N.J.: Prentice-Hall.

The ··Advanced Socket Tutorial. ..

CLIX Programmer's & User's Reference Manual.

INTRODUCTORY SOCKET TUTORIAL 5-33

c

c

Chapter 6: Advanced Socket Tutorial

Introduction

Basics
Socket Types

Socket Creation

Binding Local Names

Connection Establishment

Data Transfer

Discarding Sockets

Connectionless Sockets

Input/Output Multiplexing

Network Library Routines
Host Names

Network Names
Protocol Names

Service names
Miscellaneous

Client/Server Model
Servers
Clients

Connectionless Servers

Advanced Topics
Out-of-Band Data

Nonblocking Sockets

Interrupt Driven Socket 1/0

Signals and Process Groups

Pseudo Terminals

6-1

6-2
6-2
6-3
6-4
6-7

6-10
6-10
6-11

6-12

6-15
6-16
6-18
6-19
6-19
6-20

6-24

6-25

6-28
6-30

6-35

6-35
6-36

6-37

6-38
6-40

TABLE OF CONTENTS

Table of Contents

Selecting Specific protocols
Address Binding
Broadcasting and Determining Network Configuration
Socket Options
Inetd

ii CLIX SYSTEM GUIDE

6-42
6-43
6-46
6-48
6-49

Introduction

This document provides a high-level description of the 4.3 BSD Interpro­

cess Communication (IPC) facilities available under CLIX. It is designed to

complement the manual pages for the IPC primitives by giving examples of

their use. The remainder of this document is organized into four sections.

The .. Basics .. section introduces the !PC-related system calls and the basic

model of communication. The .. Network Library Routines·· section

describes some of the supporting library routines users may find helpful in

constructing distributed applications. The .. Client/Server Model" section

is concerned with the client/server model used in developing applications

and includes examples of the two major types of servers. The ··Advanced

Topics .. section delves into advanced topics that sophisticated users are

likely to encounter when using the IPC facilities.

ADVANCED SOCKET TUTORIAL 6-1

Basics

The basic building block for communication is the socket. A socket is an
endpoint of communication to which a name may be bowul. Each socket in
use has a type and one or more associated processes. Sockets exist within
communication domains. A communication domain is an abstraction intro­
duced to bundle common properties of processes communicating through
sockets. One such property is the scheme used to name sockets. For exam­
ple. in the UNIX communication domain. sockets are named with UNIX
path names; for example. a socket may be named /dev/foo. Sockets nor­
mally exchange data only with sockets in the same domain. Cit may be
possible to cross domain boundaries. but only if some translation process is
performed.) The 4.3 BSD IPC facilities support three separate communica­
tion domains: the UNIX domain. for on-system communication; the Inter­
net domain. which is used by processes that communicate using the
DARPA standard communication protocols; and the NS domain. which is
used by processes that communicate using the Xerox standard communica­
tion protocols. (See Internet Transport Protocols. Xerox System Integration
Standard (XSIS) 028112 for more information.) The underlying commun­
ication facilities provided by these domains have a significant influence on
the internal system implementation as well as the interface to socket facil­
ities available to a user. An example of the latter is that a socket .. operat­
ing .. in the UNIX domain sees a subset of the error conditions possible
when operating in the Internet (or NS) domain.

Socket Types
Sockets are typed according to the communication properties visible to a
user. Processes are presumed to communicate only among sockets of the
same type. although nothing prevents communication among sockets of
different types should the underlying communication protocols support
this.

Two types of sockets currently are available to a user. A stream socket
provides for the bidirectional. reliable. sequenced. and unduplicated flow
of data without record boundaries. Aside from the bidirectionality of data
flow. a pair of connected stream sockets provides an interface nearly ident­
ical to that of pipes. On the UNIX domain. in fact. the semantics are
identical.

6-2 CLIX SYSTEM GUIDE

Basics

A datagram socket supports bidirectional flow of data that is not
guaranteed to be sequenced. reliable. or unduplicated. That is. a process

.-...., receiving messages on a datagram socket may find messages duplicated.

"'-"" and. possibly. in an order different from the order in which they were sent.
An important characteristic of a datagram socket is that record boundaries
in data are preserved. Datagram sockets closely model the facilities found
in many contemporary packet-switched networks such as the Ethernet.

Other socket types not currently supported under the CLIX implementa­
tion are raw and sequenced packet sockets.

Socket Creation

To create a socket. use the socket(2B) system call as follows:

a•socket(domain, type, protocol):

This call requests the system to create a socket in the specified domain and

of the specified type. A particular protocol may also be requested. If the
protocol is left unspecified Ca value of 0). the system will select an
appropriate protocol from protocols that compose the communication
domain and that may be used to support the requested socket type. The
user is returned a descriptor that may be used in later system calls that
operate on sockets. The domain is specified as one of the manifest con­
stants defined in the <sys/ socket.h > file. For the UNIX domain. the con­
stant is AF_ UNIX: for the Internet domain it is AF _!NET: and for the
NS domain it is AF _NS. (The manifest constants are named AF _whatever
as they indicate the address format used in interpreting names.) The
socket types are also defined in this file and either SOCK_STREAM or
SOCK_DGRAM must be specified. To create a stream socket in the UNIX

domain. use the following call:

a• aocket(AF _UNIX, SOCK_STREAM, 0):

To create a datagram socket in the Internet domain. use the following call:

a• aocket(AF _INET, SOCK_OGRAM, 0):

ADVANCED SOCKET TUTORIAL 6-3

Basics

The above call would create a datagram socket with the User Datatgram
Protocol (UDP) protocol providing the underlying communication support.

The default protocol (used when the protocol argument to the socket(2B) ~
call is 0) should be useful in most situations. However. it is possible to,,
specify a protocol other than the default; this will be covered in the
··Advanced Topics .. section.

There are several reasons a socket call may fail. Aside from the rare
occurrence of lack of memory (ENOBUFS). a socket request may fail due
to a request for an unknown protocol (EPROTONOSUPPORT) or a request
for a type of socket that is not supported for the given domain
(ESOCKTNOSUPPORT).

Binding Local Names

A socket is created without a name. Until a name is bound to a socket.
processes have no way to reference it and. consequently. no messages may
be received on it. Communicating processes are bound by an association.
In the Internet and NS domains. an association is composed of local and
foreign addresses and local and foreign ports. while in the UNIX domain.
an association is composed of local and foreign path names. (The phrase
.. foreign path name .. means a path name created by a foreign process. not a
path name on a foreign system.) In most domains. associations must be
unique. In the Internet domain there may never be duplicate <protocol.
local address. local port. foreign address. foreign port> tuples. UNIX
domain sockets need not always be bound to a name. but when bound
there may never be duplicate <protocol. local path name. foreign path
name> tuples. The path names may not refer to files already existing on
the system.

The bind(2B) system call allows a process to specify half of an association.
<local address. local port> (or <local path name>). while the
connect(2B) and accept(2B) primitives are used to complete a socket's
association.

In the Internet domain. binding names to sockets can be fairly complex.
Fortunately. it is usually not necessary to specifically bind an address and
port number to a socket. because the connect(2B) and send(2B) calls will
automatically bind an appropriate address if they are used with an
unbound socket. The process of binding names to NS sockets is similar in
most ways to that of binding names to Internet sockets.

6-4 CLIX SYSTEM GUIDE

Basics

The bind(2B) system call is used as follows:

bind(e, name, namelen);

The bound name is a variable-length byte string interpreted by the sup­

porting protocol(s). Its interpretation may vary from communication

domain to communication domain. (This is one of the properties that com­

pose the domain.) As mentioned. in the Internet domain. names contain an

Internet address and port number. NS domain names contain an NS

address and port number. In the UNIX domain. names contain a path

name and a family. which is always AF_ UNIX. To bind the name

/tm.p/f oo to a UNIX domain socket, use the following code:

#inc I ude <6ye/1.n. tt>

etruct eockaddr_1.n addr;

etrcpy(addr.81.n_path, "/~/foo");
addr .81.n_fa11i ly • AF_lNIX:
bind(e, (etruct eockaddr •) laddr, etrlen(addr.81.n_path) +

eizeof (addr •,_fanily)):

In determining the size of a UNIX domain address null bytes are not

counted. which is why strlen(3C) is used. In the current implementation

of UNIX domain IPC, the file name referred to in addr.sun_path is created

as a socket in the system file space. The caller must. therefore, have write

permission in the directory where addr.sun_path is to reside, and this file

ADVANCED SOCKET TUTORIAL 6-5

Basics

should be deleted by the caller when it is no longer needed.

Binding an Internet address is more complicated. The actual call is similar.

#Inc I ude <sys/types. tt>
#inc I ude <net i net/in. tt>

struct eockaddr_in sin;

bind(s, (struct eockaddr •) &:sin, sizeof (sin));

but the selection of what to place in the address sin requires some discus­
sion. We will come back to the problem of formulating Internet addresses
in the .. Network Library Routines .. section when the library routines used
in name resolution are discussed.

Binding an NS address to a socket is even more difficult. especially since the
Internet library routines do not work with NS host names. The actual call
is again similar:

#inc I ude <sys/types. tt>
#inc I ude <netns/ns. tt>

struct eockoddr_ns ans;

bind(e, (struct eockaddr •) &:sne, eizeof (ens));

Discussion of what to place in a "struct sockaddr_ns" will be deferred to
the .. Network Library Routines .. Section.

6-6 CLIX SYSTEM GUIDE

Basics

Connection Establishment
Connection establishment is usually asymmetric. with one process a client

and the other a server. The server. when willing to offer its advertised

services. binds a socket to a well-known address associated with the ser­

vice and then passively listens on its socket. It is then possible for an

unrelated process to rendezvous with the server. The client requests ser­

vices from the server by initiating a connection to the server·s socket. On

the client side. the connect(2B) call is used to initiate a connection. Using

the UNIX domain. this might appear as.

etruct aockaddr_oo eerver;

oonnect(a, (etruct aockaddr •)berver, etrlen(server .sun_path) +
eizeof (eerver.eoo_fani ly));

in the Internet domain,

etruct aockaddr_in server;

oonnect(e, (etruct aockaddr •)berver, alzeof (server));

ADVANCED SOCKET TUTORIAL 6-7

Basics

and in the NS domain.

etruct eockaddr_ne •rver:

oonnect(e. (etruct eockaddr •)berver, elzeof (•rver)):

where server in the previous example would contain either the UNIX path
name. Internet address and port number. or NS address and port number
of the server to which the client process wishes to speak. If the client
process's socket is unbound at the time of the connect call. the system will
automatically select and bind a name to the socket if necessary. This is the
usual way that local addresses are bound to a socket.

An error is returned if the connection was unsuccessful. (Any name
automatically bound by the system. however. remains.) Otherwise. the
socket is associated with the server and data transfer may begin.

For the server to receive a client's connection. it must perform two steps
after binding its socket. The first is to indicate a willingness to listen for
incoming connection requests:

11 eten(e, 1):

The second parameter to the listen(2B) call specifies the maximum number
of outstanding connections that may be queued awaiting acceptance by the
server process: this number may be limited by the system. Should a con­
nection be requested while the queue is full. the connection will not be
refused. but rather the individual messages that compose the request will
be ignored. This gives a harried server time to make room in its pending
connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error. the client
would be unable to tell if the server was up. As it is now. it is still possi­
ble to get the ETIMEOOUT error back. though this is unlikely. The back­
log figure supplied with the listen call is currently limited by the system
to a maximum of one pending connection on any one queue. This avoids
the problem of processes hogging system resources by setting an infinite

6-8 CLIX SYSTEM GUIDE

Basics

backlog and then ignoring all connection requests.

With a socket marked as listening. a server may accept(2B) a connection:

struct eockaddr_in fran;

franlen • sizeof (fran);
neweock • occept(s, (struct eockaddr •)tiran, tiranlen);

(For the UNIX domain. from would be declared as a struct sockaddr _un.

and for the NS domain. from would be declared as a struct sockaddr_ns.

but nothing di:ff erent would need to be done as far as fromlen is concerned.

In the examples that follow. only Internet routines will be discussed.) A

new descriptor is returned on receipt of a connection (along with a new

socket). If the server wishes to find out who its client is. it may supply a

buffer for the client socket's name. The value-result parameter fromlen is

initialized by the server to indicate how much space is associated with

from. and then it is modified on return to reflect the true size of the name.

If the client's name is not of interest. the second parameter may be a null

pointer.

accept(2B) normally blocks. That is. accept(2B) will not return until a

connection is available or the system call is interrupted by a signal to the

process. Further. a process cannot indicate it will accept connections from

only a specific individual(s). The user process must consider who the con­

nection is from and close down the connection if it does not wish to speak

to the process. If the server process wants to accept connections on more

than one socket or wants to avoid blocking on the accept call. there are

alternatives; these will be considered in the ··Advanced Topics'" section.

ADVANCED SOCKET TUTORIAL 6-9

Basics

Data Transfer
With a connection established. data may begin to flow. To send and receive
data there are a number of possible calls. With the peer entity at each end of a connection anchored. a user can send or receive a message without
specifying the peer. As you might expect. in this case. the normal read(2) and write(2) system calls are usable.

write(s. buf 1 sizeof (buf)):
read(s. buf 1 sizeof (buf)):

In addition to read(2) and write(2). the new calls send(2B) and recv(2B)
may be used:

eend(s. buf. sizeof (buf). flogs):
recv(s. buf 1 sizeof (buf). flogs):

While send(2B) and recv(2B) are virtually identical to read(2B) and
write(2B). the extra flags argument is important. The flags. defined in <sys/socket.h>. may be specified as a nonzero value if the following is required:

MSG_OOB send/receive out-of-band data

Out-of-band data is specific to stream sockets. and we will not immedi­
ately consider it.

Discarding Sockets
Once a socket is no longer of interest. it may be discarded by applying a
close(2) to the following descriptor:

cloee(s):

If data is associated with a socket that promises reliable delivery (such as a
stream socket) when a close takes place. the system will continue to
attempt to transfer the data. However. after a fairly long period of time. if
the data is still undelivered. it will be discarded. Should there not be a
need for any pending data. a shutdown(2B) may be performed on the

6-10 CLIX SYSTEM GUIDE

Bastes

socket before closing it. This call has the form:

shJtdown(•. ho#):

How is 0 if the user is no longer interested in receiving data. 1 if no more

data will be sent. or 2 if no data is to be sent or received.

Connectionless Sockets
To this point we have been concerned mostly with sockets that follow a

connection-oriented model. However. there is also support for connection­

less interactions typical of the datagram facilities found in contemporary

packet switched networks. A datagram socket provides a symmetric inter­

face to data exchange. While processes are still likely to be client and

server. there is no requirement for connection establishment. Instead. each

message includes the destination address.

Datagram sockets are created as before. If a particular local address is

needed. the bind(2B) operation must precede the first data transmission.

Otherwise. the system will set the local address and/or port when data is

first sent. To send data. the following sendto(2B) primitive is used:

eendto(a, buf, buf ten, f toga, (atruct aockaddr •~o. tot en);

The s. bu./. bu.ff.en. and flags parameters are used as before. The to and tolen

values are used to indicate the address of the intended recipient of the mes­

sage. When an unreliable datagram interface is used. it is unlikely that

any errors will be reported to the sender. When information is present

locally to recognize a message that cannot be delivered (for instance. when

a network is unreachable). the call will return -1 and the global variable

errno will contain an error number.

To receive messages on an unconnected datagram socket. the recvfrom(2B)

primitive is provided:

recvfran(a. buf. buften, flags, (atruct aockaddr •)tiran, tfranten);

Once again. the fromlen parameter is handled in a value-result fashion. ini­

tially containing the size of the from buffer and modified on return to indi­

cate the actual size of the address from which the datagram was received.

ADVANCED SOCKET TUTORIAL 6-11

Basics

In addition to the two calls mentioned above. datagram sockets may also
use the connect(2B) call to associate a socket with a specific destination
address. In this case. any data sent on the socket will automatically be
addressed to the connected peer. and only data received from that peer will
be delivered to the user. Only one connected address is permitted for each
socket at a time; a second connect will change the destination address. and
a connect to a null address will disconnect. connect(2B) requests on
datagram sockets return immediately. as this simply results in the system
recording the peer's address (as compared to a stream socket. where a con­
nect request initiates establishment of an end-to-end connection).
accept(2B) and listen(2B) are not used with datagram sockets.
While a datagram socket is connected. errors from recent send(2B) calls
may be returned asynchronously. These errors may be reported on subse­
quent operations on the socket. A select(2B) for reading or writing will
return true when an error indication is received. The next operation will
return the error. and the error status is cleared. Other of the less impor­
tant details of datagram sockets are described in the ''Advanced Topics ..
section.

Input/Output Multiplexing
One last facility often used in developing applications is the ability to mul­
tiplex VO requests among multiple sockets and/or files. This is done using
the select(2B) call:

#include <sys/tlme.tt>
#i nc I ude <sys/types. tt>

fd_eet reoctnask. writemask, exceptmaek:
struct timevol timeout:

eelect(nfds, A:reoctnask, lwrltemask. bxceptmaak, a:t lmeout):

select(2B) takes as arguments pointers to three sets. One set is for the set
of file descriptors for which the caller wishes to be able to read data on.

6-12 CLIX SYSTEM GUIDE

Basics

one is for descriptors to which data is to be written. and one for which

exceptional conditions are pending; out-of-band data is the only excep­

tional condition currently implemented by the socket. If the user is not

interested in certain conditions (such as. read. write. or exceptions). the

corresponding argument to select(2B) should be a null pointer.

Each set is actually a structure containing an array of long integer bit

masks; the size of the array is set by the definition FD_SETSIZE. The

array is be long enough to hold one bit for each of FD_SETSIZE file

descriptors.

The macros FD_SET(/d, &mask) and FD_CLR(/d, &mask) have been pro­

vided for adding and removing file descriptor fd in the set mask. The set

should be zeroed before use. and the macro FD_ZERO(&mask) has been

provided to clear the set mask. The parameter nfds in the select(2B) call

specifies the range of file descriptors (i.e. one plus the value of the largest

descriptor) to be examined in a set.

A timeout value may be specified if the selection is not to last more than a

predetermined period of time. If the fields in timeout are set to 0. the selec­

tion takes the form of a poll. returning immediately. If the last parameter

is a null pointer. the selection will block indefinitely. (To be more specific.

a return takes place only when a descriptor is selectable. or when a signal

is received by the caller. interrupting the system call.) select(2B) nor­

mally returns the number of file descriptors selected; if the select(2B) call

returns due to the timeout expiring. the value 0 is returned. If the

select(2B) terminates because of an error or interruption. a -1 is returned

with the error number in errno and with the file descriptor masks

unchanged.

Assuming a successful return. the three sets will indicate which file

descriptors are ready to be read from. written to. or have exceptional con­

ditions pending. The status of a file descriptor in a select mask may be

tested with the FD_ISSET(/d, &mask) macro. which returns a nonzero

value if fd is a member of the set mask. and 0 if it is not.

To determine if there are connections waiting on a socket to be used with

an accept(2B) call. select(2B) can be used. followed by a FD_ISSET(/d,

&mask) macro to check for read readiness on the appropriate socket. If

FD_ISSET returns a nonzero value. indicating permission to read. then a

connection is pending on the socket.

ADVANCED SOCKET TUTORIAL 6-13

Basics

As an example. to read data from two sockets. st and s2. as it is available
from each and with a one-second timeout. the following code might be
used:

#include <sys/t ime.tt>
#Inc I ude <sys/types. tt>

fct_set reod_template;
struct tlmeval wait;

for(;;) {
wait.tv_sec • 1;
wait. tv_usec • 0;

FD_ZER>(treod_ temp I ate) ;
FD_SET(s1, treod_template);
FD_SET(s2, treod_template);

I• one second •/

nb • select(FD_SETSIZE, treod_template,
(fd_set •) 0, (fct_set •) 0, &wait);

if (nb <)II 0) {
Ni error occurred during the select, or
the select timed out.

if (FD_ISSET(s1, treact_template)) {
Socket #1 is ready to be read fran.

if (FD_ISSET(s2, treod_template)) {
Socket #2 is ready to be read f ran.

select(2B) provides a synchronous multiplexing scheme. Asynchronous
notification of output completion. input availability. and exceptional con­
ditions is possible by using the SIGIO and SIGURG signals described in the
··Advanced Topics .. section.

6-14 CLIX SYSTEM GUIDE

Network Library Routines

The discussion in the .. basics .. section indicated the possible need to locate

and construct network addresses when using the interprocess communica­

tion facilities in a distributed environment. In this section we will con­

sider several routines provided to manipulate network addresses. While

the networking facilities support both the DARPA standard Internet proto­

cols and the Xerox NS protocols. most of the routines presented in this sec­

tion do not apply to the NS domain. Unless otherwise stated. it should be

assumed that the routines presented in this section do not apply to the NS

domain.

Locating a service on a remote host requires many levels of mapping before

client and server may communicate. A service is assigned a name intended

for human consumption; for example ... the login server on host monet."

This name and the name of the peer host. must then be translated into net­

work addresses that are not necessarily understandable to a user. Finally.

the address must then be used in locating a physical location and route to

the service. The specifics of these three mappings are likely to vary among

network architectures. For instance. it is desirable for a network to not

require hosts to be named so that their physical location is known by the

client host. Instead. underlying services in the network may discover the

actual location of the host when a client host wishes to communicate. This

ability to have hosts named in a location-independent manner may induce

overhead in connection establishment. as a discovery process must take

place. but allows a host to be physically mobile without requiring it to

notify its clientele of its current location.

Standard routines are provided for mapping host names to network

addresses. network names to network numbers. protocol names to protocol

numbers. and service names to port numbers and the appropriate protocol

to use in communicating with the server process. The file <netdb.h>

ADVANCED SOCKET TUTORIAL 6-15

Network Library Routines

must be included when using any of these routines.

Host Names
An Internet host name to address mapping is represented by the hostent
structure:

struct hostent {
char •h_nane; /• official nane of host •/
char .. h al iaaes; /• al fas I ist •/
int h_ciddrtype; /• host address type (e.g .• Af_lt£T) •/
int '1.._length; /• length of addren •/
char .. '1.._addr_I ist; /• I ist of addrs. nul I terminated •/

} ;

#define h_addr h_addr_list[0] /•first addr. network byte order•/

The routine gethostbyname(3B) takes an Internet host name and returns a
hostent structure. while the routine gethostbyaddr(3B) maps Internet
host addresses to a hostent structure.

The official name of the host and its public aliases are returned by these
routines. along with the address type (family) and a null-terminated list
of variable-length addresses. This list of addresses is required because it is
possible for a host to have many addresses. all having the same name. The
h_addr definition is provided for backward compatibility and is defined to
be the first address in the list of addresses in the hostent structure.

The database for these calls is provided by the file /etc/hosts (see
hosts(4)). gethostbyname(3B) will return only one address but all listed
aliases will be included.

Unlike Internet names. there are no standard routines to map NS names

6-16 CLIX SYSTEM GUIDE

Network Library Routines

and addresses.

An NS host address is represented by the following:

ooion ne host {
"4:._char c_hoet[6];
u_short e_hoet[3];

} :

ooion ne net {
;_char c_net[4];
u_short e_net[2];

} ;

etruct ne_oddr {

} ;

oo ion ne_net x_net;
ooion ne_hoet x_hoet;
u_short x_port;

The following code fragment inserts a known NS address in an ns_addr:

#inc I ude <sys/types. ro.
#inc I ude <sya/eocket . ro.
#include <netns/ne.ro.

u_long netnun:
etruct eockaddr_ne det;

bzero((char •)adet. eizeof(det));

I•
• There is no convenient way to aesign a long
• integer to a • • oo ton ne_net • • at prnent; in
• the future. eanethtng wi 11 hopefully be provided.

• but this is the portable way to go for now.
• The network runber belCJW le the one for the f'S net

• that the desired hoet (gyre) is on.

ADVANCED SOCKET TUTORIAL 6-17

Network Library Routines

•I
netnun • htonl(2266);
dst.sna_addr.x_net • •(l.l"lion ns_net •) l:netnun;
dst.sna_fani ly •AF_~;

/•
• host 2.7.1.0.2a.18 - "gyre:Ca11>lJter Science:UoM:iryland"
•I

dst.sna_addr .x_host.c_host[0] • 0x0'2;
dst.sna__addr.x_host.c_host[1] • 0xfl17;
dst.sna_addr.x_host.c_host[2] • 0x01;
dst.sna_addr.x_host.c_host[3] • 0x00;
dst.sna_addr.x_host.c_host[4] • 0x2a;
dst.sna_addr.x_host.c_host[5] • 0x18;
dst. sna_addr. x_port • htona(75);

Network Names
For host names. routines for mapping network names to numbers and back
are provided. These routines return a netent structure:

I•
• Assu11>t ion here ia that a network nutlber
• f ita in 32 bi ta -- probably a poor one.
•/

at ruct netent {
char

} ;

char
int
int

•rt_ncme;
••n_al ioeea;
n_addrtype;
n_net;

6-18 CLIX SYSTEM GUIDE

/• off fetal ncme of net •/
/• al iae I fat •/
/• net address type •/
/• network no .• host byte order •/

Network Library Routines

The routines getnetbyname(3B). getnetbynumber(3B). and

getnetent(3B) are the network counterparts to the host routines described

above. The routines extract their information from /etc/networks.

Protocol Names
For protocols. which are defined in /etc/protocols. the protoent structure

defines the protocol-name mapping used with the routines

getprotobyname(3B). getprotobynumber(3B). and getprotoent(3B):

atruct protoent {
char •p_nane:
char ••p_al iases;
int p_proto;

} ;

/• official protocol nane •/
/• al laa I ist •/
/• protocol runber •/

In the NS domain. no protocol database exists: see the ··Advanced Topics ..

section for more information.

Service Names
Information regarding services is more complicated. A service is expected

to reside at a specific port and employ a particular communication protocol.

This view is consistent with the Internet domain. but inconsistent with

other network architectures. Further. a service may reside on multiple

ports. If this occurs. the higher-level library routines must be bypassed or

extended. Services available are contained in the file /etc/services. A ser­

vice mapping is described by the servent structure:

ADVANCED SOCKET TUTORIAL 6-19

Network Library Routines

atruct aervent {
char •a_ncne; /• off iclal aervlce nane •/
char ••a_al iaaea; /• allae I lat •/
Int e_port: /• port nullber. network byte order •/
char •a_proto; /• protocol to uae •/

} :

The routine getservbyname(3B) maps service names to a servent struc­
ture by specifying a service name and. optionally. a qualifying protocol.
Thus the call

ap • getaervbynane("telnet". (char•) 0);

returns the service specification for a telnet server using any protocol. The
call

ap • getaervbynane("telnet". "tcp"):

returns only the telnet server that uses the TCP protocol. The routines
getservbyport(3B) and getservent(3B) are also provided. The
getservbyport(3B) routine has an interface similar to that provided by
getservbyname(3B); an optional protocol name may be specified to qual­
ify lookups.

Miscellaneous
With the support routines described above. an Internet application program
should rarely have to deal directly with addresses. This allows services to
be developed as much as possible in a network-independent way. It is
clear. however. that purging all network dependencies is very difficult. So
long as the user is required to supply network addresses when naming ser­
vices and sockets. some network dependency will always be in a program.
For example. the normal code included in client programs. such as the
remote login program. has the form shown in Figure 6-1. (This example
will be considered in more detail in the .. Client/Server Model" section.)

6-20 CLIX SYSTEM GUIDE

Network Library Routines

If we wanted to make the remote login program independent from the

Internet protocols and addressing scheme. we would be forced to add a

layer of routines that masked the network-dependent aspects from the

mainstream login code. For the current facilities available in the system.

this does not appear to be worthwhile.

Aside from the address-related database routines. several other routines

are available in the run-time library that are of interest to users. These

are intended mostly to simplify manipulation of names and addresses.

Table 6-1 summarizes the routines for manipulating variable-length byte

strings and handling byte swapping of network addresses and values.

Table 6-1 C Run-Time Routines

Call Synopsis

bcmp(sl. s2. n) compare byte-strings; 0 if same. not 0 otherwise

bcopy(sl. s2. n) copy n bytes from sl to s2

bzero(base. n) zero-fill n bytes starting at base

htonl(val) convert 32-bit host quantity to network byte order

htonsCval) convert 16-bit host quantity to network byte order

ntohl(val) convert 32-bit network quantity to host byte order

ntohs(val) convert 16-bit network quantity to host byte order

The byte swapping routines are provided because the operating system

expects addresses to be supplied in network order. Host byte ordering is

different than network byte ordering for the CLIPPER architecture. Con­

sequently. programs are required to byte swap quantities. The library

routines that return network addresses provide them in network order so

that they may simply be copied into the structures provided to the system.

This implies users should encounter the byte swapping problem only when

interpreting network addresses. For example. if an Internet port is to be

printed. the following code would be required:

print f ("port l'Ullber Xd\n" , ntoha(sp->e_port));

On machines where unneeded. these routines are defined as null macros.

ADVANCED SOCKET TUTORIAL 6-21

Network Library Routines

#include <sys/typea.tt>
#include <sys/socket.tt>
#include <netinet/in.tt>
#include <atdio.tt>
#include <net<l:>.tt>

main(argc. argv)
int argc;
char ~rgv(]:
{

struct sockaddr_in aerver;
struct aervent •sp;
struct hostent •hp:
int s:

sp • getaervbynane("login". "tcp"):
if (sp - N.Jll) {

fprintf(stderr.
"rlogin: tcp/login: lM"lknown aervice\n");

exit(1);

hp• gethostbynane(argv[1]):
if (hp - N.Jll) {

fprintf (stderr.
"rlogin: "8: lM"lknown host\n". argv[1]):

exit(2);

bzero((char •)berver, sizeof (aerver)):
bcopy(hp->h_addr. (char •)berver. s i l'L_addr. hp->tt_I ength):

eerver .sin_fani ly • hp->tt_addrtype;
eerver.ain_port • sp->e_port;

a• eocket(AF_It£T. &Xl<_STRfJM. 0);
if (s < 0) {

perror("rlogin: eocket");
exit(3);

6-22 CLIX SYSTEM GUIDE

Network Library Routines

/•Connect does the binct() tor us •/

if (comect(a. (char •)berver, aizeof (eerver)) < 0) {

perror("rlogin: comect"):
exit(5);

Figure 6-1: Remote Login Client Code

continue

ADVANCED SOCKET TUTORIAL 6-23

Oient/Server Model

The most commonly used paradigm in constructing distributed applica­
tions is the client/server model. In this scheme client applications request
services from a server process. This implies asymmetry in establishing
communication between the client and server that has been examined in
the .. Basics .. section. In this section we will look more closely at the
interactions between client and server. and consider some of the problems
in developing client and server applications.

The client and server require a well-known set of conventions before ser­
vice may be rendered (and accepted). This set of conventions composes a
protocol that must be implemented at both ends of a connection. Depend­
ing on the situation. the protocol may be symmetric or asymmetric. In a
symmetric protocol. either side may play the master or slave roles. In an
asymmetric protocol. one side is immutably recognized as the master. with
the other as the slave. An example of a symmetric protocol is the TELNET
protocol used in the Internet for remote terminal emulation. An example
of an asymmetric protocol is the Internet file transfer protocol. FfP. No
matter whether the specific protocol used in obtaining a service is sym­
metric or asymmetric. when accessing a service there is a client process and
a server process. We will first consider the properties of server processes.
ant then of client processes.

A server process normally listens at a well-known address for service
requests. That is. the server process remains dormant until a connection is
requested by a client's connection to the server's address. At such time.
the server process ··wakes up .. and services the client. performing the
appropriate actions the client requests of it.

Alternative schemes that use a service server may be used to eliminate a
fiock of server processes clogging the system while remaining dormant
most of the time. For Internet servers. this scheme has been implemented
via inetd(lM). the so called .. Internet super-server:· inetd(lM) listens at
a variety of ports. determined at start-up by reading a configuration file.
When a connection is requested to a port on which inetd(lM) is listening.
inetd(lM) executes the appropriate server program to handle the client.
With this method. clients are unaware that an intermediary such as
inetd(lM) played any part in the connection. inetd(lM) will be described
in more detail in the ··Advanced Topics .. section.

6-24 CLIX SYSTEM GUIDE

Client/Server Model

Servers
Most servers are accessed at well-known Internet addresses or UNIX

domain names. For example. the remote login server's main loop of the

form shown in Figure 6-2.

main(argc, argv)
int argc:
char *<Jrgv[]:

int f:
etruct eockaddr_in frcm;
etruct eervent •ep;

ep • geteervbynane(" login", "tcp");

if (ep - N.ll) {
fprintf(etderr,

"rlogind: tcp/login: ll"lknown eervice\n");

exit(1):

#ifndef DEB.G

#endif

/• Dieaaaociate eerver f rem control I ing terminal •/

ein.ein_port • ep->e_port; /• Restricted port •/

f • eocket(AF_lt£T, &D<_sTRE')M, 0);

if (bind(f, (etruct eockaddr •) l:sin, eizeof (sin))< 0) {

I ieten(f, 5):
for(::) {

int g, len • eizeof (f rcm):

g • accept(f, (etruct eockaddr •) tircm, Iden);

if (g < 0) {
if (ermo I• EINTR)

ADVANCED SOCKET TUTORIAL 6-25

Client/Server Model

fprintf(stderr,

continue;

if (fork() -- 0) {
close(f);
doit(g, tiran);

}
close(g);

Figure 6-2: Remote Login Server

"rlogind: accept: "11\n");

The first step the server takes is to look up its service definition:

sp • getaervbyncme(" login", "tcp");
if (sp - NJLL) {

fprintf (stderr, "rlogind: tcp/login: lM"lknown aervice\n");
exit(1);

The result of the getservbyname(3B) call is used in later portions of the
code to define the Internet port at which it listens for service requests
(indicated by a connection).

6-26 CLIX SYSTEM GUIDE

Client/Server Model

Step two is to disassociate the server from the controlling terminal of its

invoker:

eetpgrp():

This step is important as the server will not likely want to receive signals

delivered to the process group of the controlling terminal. Note. however.

that once a server has disassociated itself. it can no longer send reports of

errors to a terminal. and must log errors another way.

Once a server has established a pristine environment. it creates a socket and

begins accepting service requests. The bind(2B) call is required to ensure

the server listens at its expected location. It should be noted that the

remote login server listens at a restricted port number. and must therefore

be run with a user ID of root. This concept of a .. restricted port number"

is covered in the ''Advanced Topics .. section.

The main body of the loop is fairly simple:

for(;;) {
int g, ten• eizeof (f ran):

g • occept(f. (etruct eockoddr •)tiran, .tlen):

if (g < 0) {

}

if (errno I• EINTR)
/*Write error meaaoge to log fl le •/

continue;

if (fork() - 0) { /• Chi Id •/
cloee(f);
doit(g. tiran);

}
c I oee(g); /• Parent •/

An accept(2B) call blocks the server until a client requests service. This

call could return a failure status if the call is interrupted by a signal such

as SIGCHLD (to be discussed in the next section). Therefore. the return

ADVANCED SOCKET TUTORIAL 6-27

Client/Server Model

value from accept(2B) is checked to ensure a connection has actually been established. and an error may be logged to the log file.
With a connection in hand. the server then forks a child process and invokes the main body of the remote login protocol processing. Note how the socket used by the parent for queuing connection requests is closed in the child. while the socket created as a result of the accept(2B) is closed in the parent. The address of the client is also handed the doit routine because it requires it in authenticating clients.

Cients
The client side of the remote login service was shown earlier in Figure 6-1. One can see the separate. asymmetric roles of the client and server clearly in the code. The server is a passive entity. listening for client connections. while the client process is an active entity. initiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login pro­cess. As in the server process. the first step is to locate the service definition for a remote login:

sp • getaervbynane(" login". "tcp");
if (sp - N..ll) {

fprintf(stderr. "rlogin: tcp/login: l.l'tknown aervlce\n"); exlt(1);

6-28 CLIX SYSTEM GUIDE

Cltent/Server Model

Next the destination host is looked up with a gethostbyname(3B) call:

hp- gethoetbynane{argv[1]);

if (hp - N.ll) {
fprintf{etderr. "rlogin: "8: ooknown hoet\n". argv[1]);

exit(2);

With this accomplished. all that is required is to establish a connection to

the server at the requested host and start the remote login protocol. The

address buffer is cleared. and then filled in with the Internet address of the

foreign host and the port number at which the login process resides on the

foreign host:

bzero((char •}berver. aizeof (eerver));

bcopy(hp->h_addr. (char •) berver. a i n_addr. hp->h_I ength);

eerver .ein_fani ly - hp->h_addrtype;

eerver .ein__port - ep->e__port;

A socket is created. and a connection initiated. Note that connect(2B)

implicitly performs a bind(2B) call. since s is unbound.

ADVANCED SOCKET TUTORIAL 6-29

Client/Server Model

s • socket(hp->f'L_oddrtype, 9D<__smf,4M, 0):
if (s < 0) {

perror("rlogin: socket"):
exlt(3):

If (connect(s, (struct eockoddr •)&server, slzeof (server))< 0) {
perror("rlogin: connect"):
exit(4):

The details of the remote login protocol will not be considered here.

Connectionless Servers
While connection-based services are the norm. some services are based on the use of datagram sockets. One in particular is the rwho(l) service that
provides users with status information for hosts connected to a local area network. This service. while predicated on the ability to broadcast infor­mation to all hosts connected' to a particular network. is of interest as an example usage of datagram sockets.

A user on any machine running the rwho server may learn the current
status of a machine with the rupti.me(1) program. The output generated is illustrated in Figure 6-3.

6-30 CLIX SYSTEM GUIDE

Client/Server Model

arpo up 9:45, 5 users, load 1.15, 1.39, 1.31

cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59

colder up 10:10, 0 users, load 0.Z'l, 0.15, 0.14

dal i up 2+06:28, 9 users, load 1.04, 1.20, 1.6.5

degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41

ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56

ernie cbvn 0:24
esvax cbvn 17:04
ingres cbvn 0:26
kim up 3+09:16, 8 users, load 2.0.3, 2.46, 3.11

matisse up 3+06:18, 0 users, load 0.0.3, 0.0.3, 0.05

medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50

mer I in cbvn 19+15:37
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12

monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07

oz cbvn 16:09
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86

ucbvax up 9:34, 2 users, load 6.06, 5.16, 3.28

Figure 6-3: ruptime Output

Status information for each host is periodically broadcast by rwho server

processes on each machine. The same server process also receives the status

information and uses it to update a database. This database is then inter­

preted to generate the status information for each host. Servers operate

autonomously. coupled only by the local network and its broadcast capa­

bilities.

Note that the use of broadcast for such a task is fairly inefficient. as all

hosts must process each message. whether or not using an rwho server.

Unless such a service is sufficiently universal and is frequently used. the

expense of periodic broadcasts outweighs the simplicity.

The rwho server. in a simplified form. is pictured in Figure 6-4. There are

two separate tasks performed by the server. The first task is to act as a

receiver of status information broadcast by other hosts on the network.

This job is carried out in the main loop of the program. Packets received at

ADVANCED SOCKET TUTORIAL 6-31

Client/Server Model

the rwho port are interrogated to ensure they've been sent by another
rwho server process. then are time stamped with their arrival time and
used to update a file indicating the status of the host. When a host has not
been heard from for an extended period of time. the database interpreta­
tion routines assume the host is down and indicate such on the status
reports. This algorithm is prone to error as a server may be down while a
host is actually up. but serves our current needs.

main()
{

sp = getservbynane("who", "udp");

s = socket(AF_ll'ET, 9XK_CXR4M, 0);

sin.sin_port = sp->s_port;
sin. s i n_addr. s_addr = lt-wl:R_N.J'l';
sin.sin_fani ly = AF_INET;
bind(s, (struct sockaddr •) &sin, sizeof (sin));

sigset(SI~. onal rm):
onal rm();
for(;;) {

st ruct whod wd;
int cc, whod, len = sizeof (fran);

cc= recvfran(s, (char •)&:wd, sizeof (struct whod),
0, (struct sockaddr •)&fran, &len);

if (cc<= 0) {

}

if (cc< 0 && errno I= EINTR)
fprintf (stderr, "rwhod: recvfran: ,..s\n",

sys_errlist[errno]);
continue;

if (fran.sin_port I= sp->s_port) {
fprintf (stderr, "rwhod: ,.ad: bad fran port\n",

ntohs(fran.sin_port));
continue;

if (lverify(wd.wd_hostnane)) {
fprintf(stderr.

"rwhod: malformed host nane fran ,..x\n".
fran.sin_addr);

continue;

6-32 CLIX SYSTEM GUIDE

}
(void) sprintf(path, ""'.s/whod.,...s",

RN-«DIR, wd.wd_hostnane);
whod • open(path,

O_wu.JLY I O_CREAT, 0644);

(void) t ime(&wd.wd_recvt ime);
(void) write(whod, (char •)&wd, cc);
(void) close(whod);

Figure 6-4: rwlw Server

Client/Server Model

The second task performed by the server is to supply information regard­
ing the status of its host. This involves periodically acquiring system

status information. packaging it in a message. and broadcasting it on the
local network for other rwho servers to hear. The supply function is trig­
gered by a timer and runs off a signal. Locating the system status infor­
mation is somewhat involved. but uninteresting. Deciding where to
transmit the resultant packet is somewhat problematic. however.

Status information must be broadcast on the local network. For networks

that do not support the notion of broadcast. another scheme must be used

to simulate or replace broadcasting. One possibility is to enumerate the

known neighbors (based on the status messages received from other rwho

servers). This. unfortunately. requires some bootstrapping information.

for a server will not know what machines are its neighbors until it receives

status messages from them. Therefore. if all machines on a network are

freshly booted. no machine will have any known neighbors and thus never

receive. or send. any status information. This is the identical problem

faced by the routing table management process in propagating routing

ADVANCED SOCKET TUTORIAL 6-33

Client/Server Model

status information. The standard solution. unsatisfactory as it may be. is
to inform one or more servers of known neighbors and request that they
always communicate with these neighbors. If each server has at least one
neighbor supplied to it, status information may then propagate through a
neighbor to hosts that are not (possibly) directly neighbors. If the server
is able to support networks that provide a broadcast capability. as well as
those that do not. networks with an arbitrary topology may share status
information. (One must. however. be concerned about "loops:· That is. if
a host is connected to multiple networks. it will receive status information
from itself. This can lead to an endless. wasteful exchange of informa­
tion.)

6-34 CLIX SYSTEM GUIDE

Advanced Topics

A number of facilities have yet to be discussed. For most users of IPC the

mechanisms already described will suffice in constructing distributed

applications. However. others will find the need to utilize some of the

features that we consider in this section.

Out-of-Band Data
The stream socket abstraction includes the notion of out-of-band data.

Out-of-band data is a logically independent transmission channel associ­

ated with each pair of connected stream sockets. Out-of-band data is

delivered to the user independently from normal data. The abstraction

defines that the out-of-band data facilities must support the reliable

delivery of at least one out-of-band message at a time. This message may

contain at least one byte of data. and at least one message may be pending

delivery to the user at any time. For communications protocols that sup­

port only in-band signaling (the urgent data is delivered in sequence with

the normal data). the system normally extracts the data from the normal

data stream and stores it separately. This allows users to choose between

receiving the urgent data in order and receiving it out of sequence without

having to buffer all intervening data. If the socket has a process group. a

SIGURG signal is generated when the protocol is notified of its existence. A

process can set the process group or process ID to be informed by the

SIGURG signal via the appropriate fcntl(2) call. as described below for

SIGIO. If multiple sockets may have out-of-band data awaiting delivery. a

select(2B) call for exceptional conditions may be used to determine those

sockets with such data pending. Neither the signal nor the select indicate

the actual arrival of the out-of-band data. only notification that it is pend­

ing.

In addition to the information passed. a logical mark is placed in the data

stream to indicate the point at which the out of band data was sent. The

remote login and remote shell applications use this facility to propagate

signals between client and server processes. When a signal flushes any

pending output from the remote process(es). all data up to the mark in the

data stream is discarded.

ADVANCED SOCKET TUTORIAL 6-35

Advanced Topics

To send an out-of-band message. the MSG_OOB tlag is supplied to a
send(2B) or sendto(2B) call. while to receive out-of-band data MSG_OOB
should be indicated when performing a recvfrom(2B) or recv(2B) call.
A process may also read or peek at the out-of-band data without first
reading up to the mark. This is more difficult when the underlying proto­
col delivers the urgent data in-band with the normal data. and only sends
notification of its presence ahead of time (e.g .. the TCP protocol used to
implement streams in the Internet domain). With such protocols. the out­
of-band byte may not yet have arrived when a recv(2B) is done with the
MSG_OOB tlag. In that case. the call will return an error of EWOULD­
BLOCK. Worse. in-band data may be in the input buffer so that normal
fl.ow control prevents the peer from sending the urgent data until the
buff er is cleared. The process must then read enough of the queued data so
that the urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and must handle
multiple urgent signals (such as. telnet(!)) need to retain the position of
urgent data within the stream. This treatment is available as a socket­
level option. SO_OOBINLINE; see setsockopt(2B) for usage. With this
option. the position of urgent data (the mark) is retained. but the urgent
data immediately follows the mark within the normal data stream
returned without the MSG_OOB tlag. Receiving multiple urgent indica­
tions causes the mark to move. but no out-of-band data is lost.

Nonblocking Sockets
It is occasionally convenient to use sockets that do not block; that is. 1/0
requests that cannot complete immediately and would therefore cause the
process to be suspended awaiting completion are not executed. and an error
code is returned. Once a socket has been created via the socket(2B) call. it
may be marked as nonblocking by fcntl(2B) as follows:

6-36 CLIX SYSTEM GUIDE

#Include <fcntl.tt>
#include <f ile.tt>

Int •:

• - eocket(AF_It£T. ~STREIM. e):

if (fcntl(•. F_SETFL, FNE..AY) < e)
perror("fcnt I F_SETFL, FNE..AY");

exit(1):

Advanced Topics

When performing nonblocking 1/0 on sockets. one must be careful to check

for the error EWOULDBLOCK (stored in the global variable errno). which

occurs when an operation would normally block. but the socket it was per­

formed on is marked as nonblocking. In particular. accept(2B).

connect(2B). send(2B). recv(2B). read(2). and write(2) can all return

EWOULDBLOCK. and processes should be prepared to deal with such

return codes. H an operation such as a send(2B) cannot be done in its

entirety. but partial writes are sensible (for example. when using a stream

socket). the data that can be sent immediately will be processed. and the

return value will indicate the amount actually sent.

Interrupt Driven Socket 1/0
The SIGIO signal allows a process to be notified via a signal when a socket

has data waiting to be read. Using the SIGIO facility requires three steps.

First. the process must set up a SIGIO signal handler by using the sig­

nal(2) or sigset(2) calls. Second, it must set the process ID or process

group ID to receive notification of pending input to its own process id. or

the process group ID of its process group. (Note that the default process

group of a socket is group zero.) This is accomplished by using an fcntl(2)

call. Third. it must enable asynchronous notification of pending 1/0

requests with another fcntl(2) call. Sample code to allow a given process

to receive information on pending 1/0 requests as they occur for a sockets

ADVANCED SOCKET TUTORIAL 6-37

Advanced Topics

is given in Figure 6-5. With the addition of a handler for SIGURG. this
code can also be used to prepare for receipt of SIGURG signals.

#include <fcntl.l't>
#Include <file.It>

int io_hondler();

sigaet(SIGIO. io_handler);

/• Set the process receiving SIGIO/SI<lm signals to us •/

if (fcntl(s. F_SE:rcr.N. getpid()) < 0) {
perror("fcnt I F_SETCMN");
exit(1);

/• Al low receipt of asynchronous I,A::> signals •/

if (fcntl(s, F_SETFL. FA5'tte) < 0) {
perror("fcnt I F_SETFL. FASYte');
exit(1);

Figure 6-5: Use of Asynchronous Notification of VO requests

Signals and Process Groups
Due to the existence of the SIGURG and SIGIO signals. each socket has an
associated process number. just as is done for terminals. This value is ini­
tialized to zero. but may be redefined at a later time with the F _SETOWN
fcntl(2). such as was done in the code above for SIGIO. To set the socket's
process ID for signals. positive arguments should be given to the fcntl(2)
call. To set the socket's process group for signals. negative arguments
should be passed to fcntl(2). Note that the process number indicates
either the associated process ID or the associated process group: it is

6-38 CLIX SYSTEM GUIDE

Advanced Topics

impossible to specify both at the same time. A similar fcntl(2).
F _GETOWN. is available for determining the current process number of a
socket.

Another signal that is useful when constructing server processes is
SIGCHLD. This signal is delivered to a process when any child processes
have changed states. Normally servers use the signal to .. reap" child
processes that have exited without explicitly awaiting their termination or
periodic polling for exit status. For example. the remote login server loop
shown in Figure 6-2 may be augmented as shown in Figure 6-6.

int reaper():

sigset(SIG:l-iLD, reaper);
I isten(f, 5);
for(;;) {

int g, len = sizeof (fran);

g • accept(f, (struct sockaddr •)&fran, ctlen,);
if (g<0){

if (errno I• EINTR)
/•write error message to log file•/

continue;

#include <Wait.h>
reaper()
{

union wait status;

while (wait3(&status, ~. 0) > 0)

Figure 6-6: Use of the SIGCHLD Signal

ADVANCED SOCKET TUTORIAL 6-39

Advanced Topics

If the parent server process fails to reap its children. a large number of
.. zombie" processes may be created.

Pseudo Terminals
Many programs will not function properly without a terminal for stan­
dard input and output. Since sockets do not provide the semantics ofter­
minals. it is often necessary to have a process communicating over the net­
work do so through a pseudo-terminal. A pseudo-terminal is actually a
pair of devices. master and slave. which allow a process to serve as an
active agent in communication between processes and users. Data written
on the slave side of a pseudo-terminal is supplied as input to a process
reading from the master side. while data written on the master side is pro­
cessed as terminal input for the slave. In this way. the process manipulat­
ing the master side of the pseudo-terminal controls the information read
and written on the slave side as if it were manipulating the keyboard and
reading the screen on a real terminal. This abstraction preserves terminal
semantics over a network connection; that is. the slave side appears as a
normal terminal to any process reading from or writing to it.

For example. the remote login server uses pseudo-terminals for remote
login sessions. A user logging in to a machine across the network is pro­
vided a shell with a slave pseudo-terminal as standard input. output. and
error. The server process then handles the communication between the
programs invoked by the remote shell and the user's local client process.
When a user sends a character that generates an interrupt on the remote
machine that :flushes terminal output. the pseudo-terminal generates a con­
trol message for the server process. The server then sends an out-of-band
message to the client process to signal a flush of data at the real terminal
and on the intervening data buffered in the network.

Under CLIX. the name of the slave side of a pseudo-terminal is of the
form /dev/ttyxy. where xis a single letter starting at ·p· and continuing to
·r·. y is a hexadecimal digit (i.e .. a single character in the range 0 through 9
or ·a· through T). The master side of a pseudo-terminal is /dev/ptyxy.
where x and y correspond to the slave side of the pseudo-terminal.

In general. the method of obtaining a pair of master and slave pseudo­
terminals is to find a pseudo-terminal not currently in use. The master
half of a pseudo-terminal is a single-open device; thus. each master may be
opened in turn until an open succeeds. The slave side of the pseudo­
terminal is then opened and set to the proper terminal modes if necessary.

6-40 CLIX SYSTEM GUIDE

Advanced Topics

The process then forks; the child closes the master side of the pseudo­

terminal and execs the appropriate program. Meanwhile. the parent closes

the slave side of the pseudo-terminal and begins reading and writing from

the master side. Sample code using of pseudo-terminals is given in Figure

6-7: this code assumes that a connection on a sockets exists. connected to a

peer who wants a service of some kind. and that the process has disassoci­

ated itself from any previous controlling terminal.

gotpty - 0;

for (c • •p•: lgotpty M c <)II •s•: o++) {
line• "/dfN/pty'1X':
line[sizeof("/dfN/pty")-1] • c;
I ine[sizeof("/dfN/ptyp")-1] • •0•:
if (stat(line. tetatbuf) < 0)

break;

for (i • 0; i < 16; i++) {
line[sizeof("/dfN/ptyp")-1] •

"0123456789abcdef"[i];
master• open(I ine. O_JUtR);
if (master > 0) {

gotpty - 1;
break;

if (lgotpty) {
/•write error to log file•/
exit(1):

line[sizeof("/dflvi)-1] • •t•:
slave• open(I ine. O_JUIR); /• now slave side •/
if (slave< 0) {

/•write error to log file•/
exit(1);

ioctl (slave. TOOETA. l:b);
/• set <XTY no:tee •/
ioct I (slave. ltSETA. l:b):

i •fork();

/• Set slave tty modes •/

ADVANCED SOCKET TUTORIAL 6-41

Advanced T oplcs

If (i < 0) {
/•write error to log file•/
exit(1);

} else if (i) { /• Parent •/
cloae(slave):

} else { /• Chi Id •/
(void) cloae(s):
(void) cloae(master):
dup2(slave, 0);
dup2(slave, 1);
dup2(slave, 2);
if (slave> 2)

(void) cloae(slave);

Figure 6-7: Creation and Use of a Pseudo Terminal

Selecting Specific Protocols
If the third argument to the socket(2B) call is O. socket(2B) will select a
default protocol to use with the returned socket of the type requested.
The default protocol is usually correct. and alternate choices are not usu­
ally available. To obtain a particular protocol one determines the protocol
number as defined within the communication domain. For the Internet
domain one may use one of the library routines discussed in the .. Network
Library Routines .. section. such as getprotobyname(3B): .~

6-42 CLIX SYSTEM GUIDE

#Inc I ude <aya/types. tt>
#inc I ude <aya/eocket . tt>
#Include <netlnet/ln.tt>
#include <netdb.tt>

pp• getprotobynane("newtcp"):

Advanced Topics

a • eocket (AF _It£T. &Xl<_STRf)M. pp->p__proto):

This would result in a sockets using a stream based connection. but with

protocol type .. newtcp·· instead of the default .. tcp:·

Address Binding
Binding addresses to sockets in the Internet and NS domains can be fairly

complex. As a brief reminder. these associations are composed of local and

foreign addresses and local and foreign ports. Port numbers are allocated

out of separate spaces. one for each system and one for each domain on

that system. Through the bind(2B) system call. a process may specify

half of an association. the <local address. local port> part. while the

connect(2B) and a.ccept(2B) primitives are used to complete a socket's

association by specifying the <foreign address. foreign port> part. Since

the association is created in two steps. the association uniqueness require­

ment indicated previously could be violated unless care is taken. Further.

it is unrealistic to expect user programs to always know proper values to

use for the local address and local port since a host may reside on multiple

networks and the set of allocated port numbers is not directly accessible to

a user.

To simplify local address binding in the Internet domain. the notion of a

.. wildcard .. address has been provided. When an address is specified as

INADDR_ANY (a manifest constant defined in <netinet/in.h>). the sys­

tem interprets the address as ··any valid address.·· For example. to bind a

specific port number to a socket but leave the local address unspecified. the

following code might be used:

ADVANCED SOCKET TUTORIAL 6-43

Advanced Topics

#inc I ude <sys/types. tt>
#inc I ude <net i net/in. tt>

struct eockoddr_in ain;

a• eocket(AF_It£T. s:a<_STRE"JM. 0);
ain.ain_fanily • AF_It£T;
sin.sln_oddr .s_oddr • htonl (INtaR_N«);
sln.si11..J>Ort • htons(~);
bind(s. (struct eockoddr •) l:sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to
the specified port number and sent to any of the possible addresses assigned
to a host. For example, if a host has addresses 128.32.0.4 and 10.0.0. 78.
and a socket is bound as above. the process will be able to accept connec-
tion requests addressed to 128.32.0.4 or 10.0.0. 78. If a server process ,.....
wished to only allow hosts on a given network to connect to it. it would
bind the address of the host on the appropriate network.
In a similar fashion. a local port may be left unspecified (specified as zero).
In this cas,e,'the system will select an appropriate port number for it. This
shortcut will work both in the Internet and NS domains. For example. to
bind a specific local address to a socket. but to leave the local port number
unspecified:

hp• gethostbynane(hoetnane);
if (hp - Nil) {

}
bcopy(hp->h_oddr, (char •) sin.sin_oddr. hp->h_length);
sin.sin_port • htons(0);
bind(•. (struct aockaddr •) l:sin. aizeof (sin));

6-44 CLIX SYSTEM GUIDE

Advanced Topics

The system selects the local port number based on two criteria. The first is

that Internet ports below IPPORT_RESERVED (1024) (for the XNS

domain. 0 through 3000) are reserved for privileged users (the super-user);

Internet ports above IPPORT_USERRESERVED (50000) are reserved for

nonprivileged servers. The second is that the port number is not currently

bound to some other socket. To find a free Internet port number in the

privileged range. the rresvport(3B) library routine may be used as follows

to return a stream socket in with a privileged port number:

int I port • IPR:RT_RESERVED - 1 ;
int s:

s • rresvport(&lport):
If (s < 0) {

If (errno - EAGAIN)
fprintf (stderr, "socket: al I ports in use\n");

else
perror(" rresvport: socket"):

The restriction on allocating ports was done to allow processes executing in

a .. secure .. environment to perform authentication based on the originating

address and port number. The port number and network address of the

machine from which the user is logging in can be determined either by the

from result of the accept(2B) call or from the getpeername(2B) call.

In certain cases the algorithm used by the system in selecting port numbers

is unsuitable for an application. This is because associations are created in

a two-step process. For example. the Internet file transfer protocol. FTP.

specifies that data connections must always originate from the same local

port. However, duplicate associations are avoided by connecting to

different foreign ports. In this situation the system would disallow bind­

ing the same local address and port number to a socket if a previous data

connection's socket still existed. To override the default port selection

algorithm. an option call must be performed prior to address binding:

ADVANCED SOCKET TUTORIAL 6-45

Advanced Topics

int on• 1;

setsockopt(s, S)L_s:a<ET, S:>_REl.JSE.All:R, &on, si zeof (on));
bind{s, (struct sockaddr •) &sin, sizeof (sin));

With the above call. local addresses which are already in use may be
bound . This does not violate the uniqueness requirement as the system
still checks at connect time to be sure any other sockets with the same
local address and port do not have the same foreign address and port. If
the association already exists. the error EADDRINUSE is returned.

Broadcasting and Determining Network Configuration
By using a datagram socket, it is possible to send broadcast packets on
many networks supported by the system. The network itself must sup­
port broadcast; the system provides no simulation of broadcast in
software. Broadcast messages can place a high load on a network since
they force every host on the network to service them. Broadcast is typi­
cally used for one of two reasons: it is desired to find a resource on a local
network without prior knowledge of its address or important functions
such as routing require that information be sent to all accessible neighbors.
To send a broadcast message. a datagram socket should be created:

a• socket(AF_I~. s:a<_CXRAM, 0);

or

a• socket(AF_NS, s:o<_CXRAM, 0);

and a port number should be bound to the socket:

6-46 CLIX SYSTEM GUIDE

sin.sln_fani ly • AF_INET;
sin.sin oddr.s oddr •It-Wm N-lr';
sin.sin:Jx,rt --sp->s_port; -
bind(s, (struct sockaddr •) &sin, sizeof (sin)):

or. for the NS domain.

sns.sns_fani ly - AF_t.s;
netnun - htonl(net):

/• insert net nunber •/
sns.sns_addr.x_net • •(union ns_net •) &:netnun;
sns.sns_addr.x_port • htons(M'r'R:RT);
bind(s, (struct sockaddr •) &sns, sizeof (sns));

Advanced Topics

The destination address of the message to be broadcast depends on the

network(s) on which the message is to be broadcast. The Internet domain

supports a shorthand notation for broadcast on the local network. the

address INADDR_BROADCAST (defined in <netinet/in.h>. To deter­

mine the list of addresses for all reachable neighbors requires knowledge of

the networks to which the host is connected.

With the appropriate broadcast or destination address. the sendto(2B) call

may be used:

sendto(s. buf, buflen, 0, (struct sockaddr •)acdst, aizeof (dst)):

A sendto(2B) may be done for every interface to which the host is con­

nected that supports the notion of broadcast or point-to-point addressing.

ADVANCED SOCKET TUTORIAL 6-47

Advanced Topics

Received broadcast messages contain the sender's address and port. as
datagram sockets are bound before a message is allowed to go out.

Socket Options
It is possible to set and get a number of options on sockets via the
setsockopt(2B) and getsockopt(2B) system calls. The general forms of
the calls are as follows:

setsockopt(s, level, optnane, optval. optlen);

and

getsockopt(s, level, optnane, optval, optlen);

The parameters to the calls are as follows: s is the socket on which the
option is to be applied. Level specifies the protocol layer on which the
option is to be applied; in most cases this is the .. socket level." indicated by
the symbolic constant SOL_SOCKET. defined in <sys/socket.h>. The
actual option is specified in optname and is a symbolic constant also defined in <sys/socket.h>. Optval and optlen point to the value of the option (in most cases. whether the option is to be turned on or off). and the length of the value of the option. respectively. For getsockopt(2B). optlen is a
value-result parameter. initially set to the size of the storage area pointed to by optval. and modified upon return to indicate the actual amount of
storage used.

An example should help clarify things. It is sometimes useful to deter­
mine the type (such as. stream or datagram) of an existing socket; pro­
grams under inetd(lM) (described below) may need to perform this task.
This can be accomplished as follows via the SO_ TYPE socket option and the getsockopt(2B) call:

6-48 CLIX SYSTEM GUIDE

#include <sys/types.h>
#include <sys/socket.h>

int type. size;

size• sizeof (int);

Advanced Topics

if (getsockopt(s. SJL_s:::o<ET, SJ_TYPE. (char •)&type, &size)< 0) {

After the getsockopt(2B) call, type will be set to the value of the socket
type. as defined in <sys/socket.h>. If. for example, the socket were a
datagram socket. type would have the value corresponding to
SOCK_DGRAM.

lnetd
One of the daemons provided is inetd(lM). the so-called .. Internet super­
server:· inetd(lM) is invoked at boot time, and determines from the file
/etc/inetd.conf the servers for which it is to listen. Once this information
has been read and a pristine environment created, inetd(lM) proceeds to
create one socket for each service it is to listen for. binding the appropriate
port number to each socket.

inetd(lM) then performs a select(2B) on all these sockets for read availa­
bility. waiting for somebody wishing a connection to the service
corresponding to that socket. inetd(lM) then performs an accept(2B) on
the socket in question, fork(2)s. dup(2)s the new socket to file descriptors
0 and 1 (stdin and stdout). closes other open file descriptors. and exec(2)s
the appropriate server.

Servers using inetd(lM) are considerably simplified, as inetd(lM) takes
care of the majority of the IPC work required in establishing a connection.
The server invoked by inetd(lM) expects the socket connected to its client
on file descriptors 0 and 1. and may immediately perform any operations
such as read(2). write(2). send(2B). or recv(2B). Indeed. servers may use

ADVANCED SOCKET TUTORIAL 6-49

Advanced Topics

buffered I/Oas provided by the .. stdio .. conventions. as long as as they

remember to use ffiush(3S) when appropriate.

One call that may be of interest to individuals writing servers under

inetd(lM) is the getpeername(2B) call. which returns the address of the

peer (process) connected on the other end of the socket. For example. to

log the Internet address in .. dot notation .. (.. 128.32.0.4 ..) of a client con­

nected to a server under inetd(1M). the following code might be used:

struct sockaddr in nane:
int nanelen • Sizeof (nane):

if (getpeernane(0, (struct sockaddr •)&:nane, &:nanelen) < 0) {
fprintf(stderr, "getpeernane: ""11\n");

} else
exit(1):

fprintf(stderr, "Connect ion fran ,...s\n",
inet__ntoa(nane.sin~addr));

While the getpeername(2B) call is especially useful when writing pro­

grams to run with inetd(lM). it can be used under other circumstances.

Be warned. however. that getpeername(2B) will fail on UNIX domain

sockets.

6-50 CLIX SYSTEM GUIDE

c

Chapter 7: NQS Tutorial

~

~ Displaying Status Information 1-1

-

Using the Queue Manager (qmgr) to Display Queue Status Information 7-1

The show all Command 7-1

The show complex Command 7-4

The show device Command 7-4

The show forms Command 7-5

The show limits_supported Command 7-6

The show long queue Command 7-6

The show managers Command 7-7

The show parameters Command 7-8

The show queue Command 7-9

Using the qstat Command to Display Queue Status Information 7-9

Displaying Requests Using -a

Displaying Requests Using -1

Displaying Limited Information Using -m

Displaying a User's Requests Using -u

7-10

7-11

7-12

7-13

Displaying the Queue Header Using -x 7-14

Displaying Batch Queues Using -b 7-14

Displaying Device Queues Using -d 7-14

Displaying Pipe Queues Using -p 7-15

Recursively Displaying Pipe Queues Using -r 7-15

Using the qdev Command to Display Device Information 7-15

Submitting and Manipulating NQS Requests 7-17

Submitting Print Requests 7-17

Specifying a Queue Using -q 7-18

Delaying Execution Using -a 7-19

Defining Environment Variables Using -d

Exporting a Tagged File Name Using -e

Specifying a Form Using -f

Logging a Message Using -1

7-19

7-19

7-20

7-20

TABLE OF CONTENTS

Table of Contents

Notifying the Request Originator Using -mb. -me. and -mu 7-20
Selecting the Number of Copies Using -n 7-21

~ Appending Filter Arguments Using -o 7-22
Setting Scheduling Priorities Using -p 7-22
Specifying a Request Name Using -r 7-23
Deleting Files After Spool or Transport Using -R 7-23
Specifying a Symbolic Link Using -s 7-23
Specifying the Input Type Using -t 7-24
Copying the Environment to the Server Using -x 7-24
Submitting a Request Silently Using -z 7-24

Qpr Examples 7-25
Submitting Batch Requests 7-28

Delaying Execution Using -a 7-30
Placing Output and Error Log Files 7-31
Limiting the File Size Using -lf 7-32
Setting the Execution Priority Using -ln 7-33
Notifying the Request Originator Using -mb. -me. and -mu 7-33

~ ..,,
Submitting a Nonrestartable Request Using -nr 7-34
Setting Scheduling Priorities Using -p 7-34
Specifying a Queue Using -q 7-35
Specifying a Request Name Using -r 7-35
Defining an Execution Shell Using -s 7-35
Exporting Environment Variables Using -x 7-36
Embedding Commands in the Request File 7-36
Checking Resource Limits and Shell Strategy 7-37

Sample Batch Requests 7-38
Manipulating Requests 7-40

Deleting a Request 7-40
Modifying a Request 7-42
Holding a Request 7-42

~.
Unholding a Request 7-42

""""""' Releasing a Request 7-43
Purging Requests from a Queue 7-43

ii PROGRAMMER'S GUIDE

Table of Contents

Aborting Requests in a Queue 7-43

Troubleshooting 7-44

TABLE OF CONTENTS iii

Displaying Status Information

You can display a variety of status information about NQS queues. dev­
ices. and configuration. There are two ways to display status information
in NQS: by using the show commands available through qmgr(1M) or
using the qstat(1) and qdev(l)commands from the CLIX command line.
Any user can obtain status information; no special privileges are necessary.

This chapter is divided as follows:

Using the show Commands to Display Status Information
Using the qstat Command to Display Status Information
Using the qdev Command to Display Device Information

Using the Queue Manager (qmgr) to Display Queue Status
Information

The qmgr(lM) utility provides nine show commands that allow you to
display various levels of status information about queues and the requests
in them. The show commands are detailed in the fallowing sections.

The show commands must be executed from the Mgr: prompt. The Mgr:
prompt indicates that you are in the qmgr(lM) environment. To access
the Mgr: prompt, key in qmgr at the system prompt as follows:

$qmgr
Mgr:

The show all Command

The show all command displays all NQS configuration information includ­
ing status information about all NQS queues. queue complexes. devices.
managers. forms. parameters. and defaults and limits.

Key in the show all command at the Mgr: prompt as follows:

Mgr: show all

The parameters set for your NQS configuration display. The output will

NQS Tutorial 7-1

Displaying Status Information

be similar to the following:

()Jeues:

sysbatcl'Olga; type=BA.Ta-t; [EN6BLED. I~IVE]; pri-16
0 exit; 0 run; 0 stage; 0 queued; 0 wait; 0 hold; 0 arrive;

syspipeOlga; type=PIPE; [EN6BLED, I~IVE]; pri-16
0 depart; 0 route; 0 queued; 0 wait; 0 hold; 0 arrive;

sysprintOlga; type=BA.Ta-t; [EN6BLED, I~IVE]; pri-16
0 run; 0 queued; 0 wait; 0 hold; 0 arrive;

Canplexes:

batchcatOlga
Run I imit • 1
()Je~s • [sysbatch];

Devices:

epsorOlga
Ful I name: /dev/tty00
Server: /usr/I ib/nqs/devserver
Forms: sysfonn
Status • [EN6BLED, I~IVE]

M:lnagers:

root:m
laura:m

Forms:

sysfonn
shortfonn
longfonn

NJS Operating Paranaters:

Debug level • 1
Def au It batcti._request priority • 31
Def au It batch_request queue • sysbatch
Def au It dest inat ion_retry time• 72 hours
Default destination_retry wait• 5 minutes
Default device_request priority• 31

7-2 CLIX SYSTEM GUIDE

No default print forms
Default print queue= to.£
(Pipe queue request) Lifetime= 168 hours
Log_f i le• /usr/I ib/nqs/logf i le
tkl i I account = root
tklximun nunber of print copies= 2
tklximun failed devices open retry I imit = 2
tklximun print file size• 1000000 bytes
Netdaemon •/usr/lib/nqs/netdaemon
Netcl ient = /usr/I ib/nqs/netcl ient
Netserver = /usr/I ibnqs/netserver
(Failed device) Open_wait time= 5 seconds
N:S daemon is not I ocked in memory
Next ova i I ab I e sequence nunbe r • 4
Batch request shel I choice strategy • FREE

Limits supported:

Per-process permanent file size limit {-If)
Nice value (-In)

Parameter Class Descriptions

Displaying Status Information

continue

• The Queues are the NQS queues that exist on the local node.

• The Complexes are all queue complexes (queue groups) that exist on
the local node. Queue complexes are queues joined for the purpose
of limiting the number of jobs that the group will execute simul­
taneously.

• The Devices are the NQS devices that exist on the local node.

• The Managers are the users that have NQS manager and operator
privileges on the local node.

NQS Tutorial 7-3

Displaying Status Information

• The NQS Operating Parameters are the existing defaults and limits
set on the local node.

• The Limits Supported are the limit defaults that have been set for
NQS.

The show complex Command

The show complex command displays status information for one or all
NQS queue complexes. A queue complex is a set of one or more queues
grouped together to limit the number of jobs that the queue group can ser­
vice at a given time. Queue complexes are discussed in the .. Configuring
Queues From the Command Line" section in the System Administrator's
.. NQS Tutorial. ..

Key in the show complex command at the Mgr: prompt as follows. If you
do not specify a complex name. information on all complexes displays. (If
no queue complexes have been created. none will display.)

Mgr: show complex [complex_name]

Information similar to the following displays:

batcl'Olga
Run I imit - 1
QJe~s • { sysbatch} ;

The show device Command

The show device command displays general status information for one or
all NQS devices. NQS devices are the interfaces to printers and plotters
that produce the hardcopy output requested by NQS. See the .. Manipulat­
ing Devices From the Command Line" section in the System
Administrator's .. NQS Tutorial"for information about devices. Key in the
show device command at the Mgr: prompt as follows. If you do not

7-4 CLIX SYSTEM GUIDE

Displaying Status Information

specify a device name, information for all NQS devices defined on the local
node displays. (If no devices have been created, none will display.)

Mgr: show device [device _name]

Information similar to the following displays:

epsorOlga
Ful Inane: /dev/tty00
Server: /usr/I ib/nqs/devserver
Forms: sysfonn
Status "'" [~LED. INbCTIVE]

The show forms Command

The show forms command displays the forms in the device forms list.
Forms are discussed in the .. NQS Concepts" section of the System
Administrator's .. NQS Tutorial".

Key in the show forms command at the Mgr: prompt as follows:

Mgr: show forms

NQS displays the forms you have defined as follows:

NQS Tutorial 7-5

Displaying Status Information

sys form
shortform
longform

The show limits_supported Command

The show limits_supported command displays the set of request and
process limits. You can set limits for individual batch queues from within
qmgr(lM). Setting limits is discussed in the "Configuring Queues From
the Command Line" section in the System Administrator's "NQS
Tutorial.''

Key in the show limits_supported command at the Mgr: prompt as fol­
lows:

Mgr: show limits_supported

Information similar to the following displays. (The limits shown below
are the system defaults.)

Per-process permanent file size limit (-lf)
Nice value (-ln)

The show long queue Command

The show long queue command displays detailed information about all
queues or a specific queue.

Key in the show long queue command at the manager prompt as follows.
If you do not specify a queue name. information about all local queues
displays. (If no queues have been created. then none display.)

Mgr: show long queue [queue_name]

7-6 CLIX SYSTEM GUIDE

Displaying Status Information

Information similar to the following displays:

sysbatctolgo ; ty~TOi; [ENbBLED, INbCTIVE]; pri=16
0 exit; 0 run; 0 stage; 0 queued; 0 wait; 0 hold; 0 arrive;
Cuwlative system space time• 0.00 seconds
Cuwlative user space time• 0.00 seconds
Uirestricted access
Per-process permanent file size I imit • 1 megabytes <DEF>Ull>
Per-process execution nice value• 0 <DEF>Ull>

syspipeOlgo ; type=PIPE; [ENbBLED, INbCTIVE]; pri•16
0 depart; 0 route; 0 queued; 0 wait; 0 hold; 0 arrive;
Cuwlative system space time= 1.91 seconds
Cuwlative user space time• .85 seconds
Uirestricted access
QJeue server: /usr/I ib/nqs/pipecl ient
Destset • {epsorGbritt};

The show managers Command

The show managers command displays the accounts included in the NQS
manager list. This list includes users with manager and operator
privileges. Privileges are discussed in the .. NQS Privileges'' section of the
System Administrator's .. NQS Tutorial."

Key in the show managers command at the manager prompt as follows:

Mgr: show managers

Information similar to the following displays. (The :m extension indicates
a manager: the :o extension indicates an operator.)

root:m
laura:m

diane:o

NQS Tutorial 7-7

Displaying Status Information

The show parameters Command

The show parameters command displays the current values for NQS
operating parameters. (The .. Configuring Queues From the Command
Line'' section in the System Administrator's .. NQS Tutorial'' discusses how
to change parameter values.)

Key in the show parameters command at the Mgr: prompt as follows:

Mgr: show parameters

Information similar to the following displays:

Debug level = 1
Default batch_request priority = 31
Defau I t batch_request queue • sysbatch
Default dest inat ion_retry time = 72 hours
Default destination_retry wait= 5 minutes
Def au It device_request priority = 31
No default print forms
Defau I t print queue = ~
(Pipe queue request) Lifetime• 168 hours
Loq_f i le• /usr/I ib/nqs/logf i le
Mai I account • root
Maxinun nunber of print copies • 2
Maxinun failed devices open retry I imit = 2
Maxinun print file size= 1000000 bytes
Netdaemon • /usr/I ib/nqs/netdaemon
Netcl ient • /usr/I ib/nqs/netcl ient
Netserver • /usr/I ibnqs/netserver
(Failed device) Open_wai t time • 5 seconds
N:s daemon is not locked in memory
Next ova i I ab I e sequence nunbe r = 4
Batch request she 11 choice strategy = FREE

7-8 CLIX SYSTEM GUIDE

-

Displaying Status Information

The show queue Command

The show queue command displays general queue status information. Key
in the show queue command at the manager prompt as follows:

Mgr: show queue

Information similar to the following displays:

sysbatcl"Olga: type-BAlOi; [ENtBLED, I~IVE]: pri•16
0 exit: 0 run: 0 stage: 0 queued: 0 wait: 0 hold: 0 arrive:

syspipeOlga: type-PIPE: [ENtBLED, I~IVE]: pri•16
0 depart: 0 route: 0 queued: 0 wait: 0 hold: 0 arrive:

sysprintolga: type-DEVICE: [ENtBLED, I~IVE]: pri•16
0 run: 0 queued: 0 wait: 0 hold; 0 arrive:

sysplotobob: type-DEVICE: [ENtBLED, >CTIVE]: prl•16
0 run: 3 queued: 2 wait: 0 hold: 0 arrive:

Request Nane Request ID Usr

<3 jobs queued>
1: JCE1 154.bob bob
2: JCB2 155.bob bob

Pri

31
31

State Size

MITI~ 766
MITI~ 531

Using the qstat Command to Display Queue Status
Information

The qstat(l) command displays the status of one or more queues and the
requests in those queues. The qstat(l) command provides access to the
same type of information as the show queue command provides access to.

NQS TUTORIAL 7-9

Displaying Status Information

To display queue status information, key in the qstat(l) command as fol­
lows:

qstat [-a] [-1] [-m] [-u username] [-x] [-b] [-d]
[-p] [-r] [queue_name ...] [queue@Jwst ..]

Keying in qstat with no options displays information about jobs that you
own in all local queues. You may also display information about indivi­
dual queues on multiple nodes. For example, the following command line
displays information about the local queue sysbatch, the queue sysprint
at node red, and all queues at node blue:

qstat sysbatch sysprint@red @blue

The qstat(l) options are listed in the following table and described in
detail in the following sections.

Option Description

-a Display all requests

-1

-m

-uusername

-x

-b

-d

-p

-r

Display requests in long format

Display requests in medium-length format

Display only requests belonging to the specified user

Display the queue header in extended format

Display only batch queues

Display only device queues

Display only pipe queues

Recursively display pipe queue destinations

Displaying Requests Using -a

The -a option displays a line of information about your requests in the
specified queue or all queues. The information provided about the requests
includes the request name, request ID, originating user, the request's intra­
queue priority, the request's execution state, and its size in bytes (or its
process group for batch queues). Requests that were not submitted under
your user name (for example, screen copies submitted by root through the
workstation pull-down menu) are listed in angle brackets with no job
inf orma ti on.

7-10 CLIX SYSTEM GUIDE

Displaying Status Information

For example. keying in the following command displays information about
all requests in the queue sysbatch.

qstat -a sysbatch

Information similar to the following displays:

sysbatctolga; ty~TOi: [EN!BLED, .ACTIVE]: pri=16
0 exit; 1 run: 0 stage; 0 queued; 1 wait; 0 hold; 0 arrive;

Request Ncrne Request ID Usr

1: STDIN
2: M'l'JC8

154. lga sue
155. Igo j im

Pri

31
31

State Pgrp

~IN3 411
Wfl.ITIN3 421

• The Request Name field contains the name that NQS assigned to the
request.

• The Request ID field contains the identification number that NQS
assigned to the request.

• The Usr field contains the name of the originating user.

• The Pri field contains the request's privilege level.

• The State field contains the request's execution state.

• The Size field contains the request's size in bytes.

Displaying Requests Using -I

The -1 option displays all information available about the requests in the
queue. For example, keying in the following displays all information
about the requests in the queue syspipe:

qstat -1 syspipe

Information similar to the following displays:

NQS TUTORIAL 7-11

Displaying Status Information

syspipeOlga; ty~IPE; [EN&BLED. JCTIVE]: pri•16
0 depart: 0 route; 0 queued; 1 wait: 0 hold; 0 arrive:

Request 1: Nane-61DIN 10-155. lga
C>Nner=fred Priorit>-31 *ITit-0 Sat Mar 24 00:00:00 CDT 1989

Creafred at Fri Mar 23 14:00:17 CDT 1989
Mai I • [00]
Mai I add ress=f redD I ga
C>Nner user nane at originating machine-f red
Per-proc permanent file size I imi t•[n.e. 1M3]
<OEF~l>

Per-proc execution nice priorit)4=0 <OEF>4.Jll>
Standard-error occess rnode-6RXX..
Standard-error nane = lga:/usr/fred/STDIN.e155
Standard-output occess mode • s:m...
Standard-output nane • lga:/usr/f red/STDIN.0155
Shel I • DEF>4.JLT
Unask = 2

Displaying Limited Information Using -m

The -m option displays a subset of the available information about jobs in
the queues. For example. keying in the following command displays a
subset of information about the queues sysprint and syspipe:

qstat -m sysprint syspipe

Information similar to the following displays:

7-12 CLIX SYSTEM GUIDE

,-.

~

Displaying Status Information

sysprintOlga; type=OEVICE; [~LED. JCTIVE]; pri-16
1 run: 0 queued: 0 wait: 0 hold: 0 arrive;

Request 1: Ncrne-6TDIN ld-155. lga
C>Mler-fred Priorit>-'31 ~I~ Sat t.tJy 24 00:00:00 CDT 1989

syspipeOlga; type-PIPE; [~. JCTIVE]; pri•16
0 depart; 0 route; 0 queued; 1 wait; 0 hold; 0 arrive;

Request 1: Ncrne=myprint Ict-25. lga
C>Mler-fred Priorit>-"31 WAITI~ Sat t.tJy 24 00.00.00 CDT 1989

Displaying a User's Requests Using -u

The -u option allows you to display a specific user's requests in the queue.
For example. keying in the following command displays the default infor­
mation for bob's requests in queue sysprint on node bob:

qstat @bob -u bob sysprint

Information similar to the following displays:

sysprintobob; ~pe=OEVICE; [ENtBL.ED. JCTIVE]: pri•16
0 exit; 1 run; 0 stage; 0 queued; 2 wait; 0 hold; 0 arrive;

Request Nane Request ID Usr Pri State Size

<1 job rum i ng>
1: JCB1 154.bob bob 31 WAITI~ 766
2: JC82 155.bob bob 31 WAITI~ 531

NQS TUTORIAL 7-13

Displaying Status Information

Displaying the Queue Header Using -x

The -x option displays queue header information in an extended format. ~

Use this option to find out detailed information about the queue rather_.,,
than about the requests in it. For example. keying in the following com-
mand displays information about queue sysprint:

$ qstat -x sysprint

sysprintObob; type={)EVICE; [EN&BLED, .ACTIVE]; pri-16
0 run; 0 queued; 2 wait; 0 hold; 0 arrive;

Run_I imit - 1;
Cumulative system space time= 0.60
Cumu I at i ve user space time • 0 .25 seconds
lklrestricted access
Devset = {sysprint};

Displaying Batch Queues Using -b

The -b option displays batch queues. For example. keying in the following
displays requests in all batch queues:

qstat-b

Displaying Device Queues Using -d

The -d option displays device queues. For example. keying in the follow­
ing displays requests in all device queues:

qstat-d

7-14 CLIX SYSTEM GUIDE

0

Displaying Status Information

Displaying Pipe Queues Using -p

.~ The -p option displays pipe queues. For example, keying in the following
~ displays requests in all pipe queues:

qstat -p

Recursively Displaying Pipe Queues Using -r

The -r option allows the user to recursively follow pipe queue destina­
tions. That is, if pipe queue a sends jobs to pipe queue b, which sends jobs
to device queue c, the -r option will display queues a, b, and c.

For example, keying in the following displays all device queues on the
local machine and all device queues on the end of local pipe queues. This
form of the qstat(l) command will not display intervening pipe queues.

qstat -d-r

The results of the -r option can become long if no other options are used
because all queues from all local and remote devices will be displayed.
Therefore, it is best to use the -r option with one of the following options:
-b, -d, or -p.

Using the qdev Command to Display Device Information

The qdev(l) command is used to display information about devices on
local and remote nodes. Key in the qdev(l) command as follows:

qdev [device_name device_name . ..] [device_name] [@host . ..]

If you do not specify a device_name, information about all local devices
displays. For example, the qdev(l) command may return information
similar to the following:

NQS TUTORIAL 7-15

Displaying Status Information

epsorOnynode
Ful Inane: /dev/tty00
Server: /usr/1 ib/nqs/devserver /usr/I ib/nqs/conf ig_f i les/epson
Forms: sysform
Status• [EN&BLED, I~IVE];

i 1221 i'Onynode
Ful Inane: /dev/cop
Server: /usr/I ib/nqs/devserver /usr/I ib/nqs/conf ig_f i les/i 12217

Forms: land10
Status • [EN&Bl.ED, ,tCTIVE];

You can also display the status of remote devices on multiple nodes. How­

ever. you must have access to these nodes. For example. the following

command line displays the status of the ilp811 device on the local node

and the i12217 device on node mac.

qdev ilp811 i12217@mac

7-16 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

NQS provides these commands to submit and delete print. plot. and batch
requests:

• qpr(1) submits print and plot requests.

• qsub(1) submits batch requests.

• qdel(1) deletes any NQS request from a queue.

This section contains the following major sections:

Submitting Print Requests
Printing Examples
Submitting Batch Requests
Batch-Queuing Examples
Deleting a Request
Manipulating a Request

Submitting Print Requests

Print requests are spooled to an output device such as a printer or plotter.
Devices may be connected to your node or to a node at a remote location on
the network. Use the qpr(1) command to submit print requests.

Key in the qpr(1) command at the system prompt as follows:

qpr -q queue_name [-a date_time] [-d name=value] [-e tag=filename]
[-f form_name] [-1 "log_message"] [-mb] [-me] [-mu username]
[-n copies] [-o "filter _options"] [-p priority] [-r request_name] [-R]
[-s] [-t input_type] [-x] [-z] request_files

The qpr(1) options are listed in the following table and discussed in the
following sections. If no request files are specified. the standard input
(keyboard) is used.

Option Description

-a date _time Executes the request after the specified time.

NQS TUTORIAL 7-17

Submitting and Manipulating NQS Requests

-d name=value

-e tag=filename

-f form

-1

-mb

-me

-mu username

Defines an environment variable to be placed in the
devserver environment.

Associates the tag with the file name and places it on
the server node.

Prints the request on the stated form.

Logs the specified message in the accounting file if an
accounting file is defined in the devicecap file.

Sends mail when the request begins executing.

Sends mail when the request finishes executing.

Sends mail about the request to the specified user.

-n copies Prints the specified number of copies.

-o .. filter _options .. Places the specified options at the end of the filter's

-p priority

-q queue

argument list. Enclose the options in double quotes
(" ").

Specifies the intraqueue request priority.

Submits the request to the specified queue.

-r request_name Assigns the specified name to the request.

-R Specifies that original files will be deleted after a
request is spooled or transported.

-s Specifies that the file will be symbolically linked to the
spool directory instead of being copied to it.

-t input_type Specifies the input type being sent.

-x Copies the complete environment to the server node.

-z Submits the request silently.

Specifying a Queue Using -q

The -q parameter is the only required parameter besides the request_file.
The -q parameter specifies the queue that the request will be submitted to.
Using the -q parameter followed by the name of a pipe queue. you can
submit requests to another workstation or server. Using the -q parameter

followed by the name of a device queue. you can submit requests to a

7-18 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

device connected to your machine. (You may set up a default queue. See
the .. Manipulating Devices from the Command Line" section in the System
Administrator's .. NQS Tutorial.")

For example. the following command line submits a request to the local
pipe queue. syspipe. Syspipe then routes the request to its destination
queue on a remote node.

qpr -q syspipe print_Jile

Delaying Execution Using -a

The -a option specifies a date and time after which NQS will execute a
request. Use the -a option if you wish to delay request execution. The
following examples illustrate acceptable formats for the -a option:

qpr -a "July, 4, 1989 9:00-EST" print_Jile

qpr -a "04-Jul-1989 9am, EST" print_Jile

qpr -a "Wednesday, 09:00:00 EST" print _file

qpr -a "9am. tues." print_Jile

Defining Environment Variables Using -d

The -d option allows you to define environment variables that will be
placed in the server's environment with the request.

Example:

Including the following on the qpr(l) command line sets the environment
variable MYNAME to tom.

qpr -d MYNAME=tom print_Jile

Exporting a Tagged File Name Using -e

The -e option allows you to associate a tag with a filename and export that
filename to the server by placing the tag in the server's environment. The
server can then access the tagged file by looking at the tag's environment
variable.

NQS TUTORIAL 7-19

Submitting and Manipulating NQS Requests

Example:

Including the following on the qpr(l) command line sends the tag
REND_ATT to the server. This is useful for sending attribute informa­
tion with an InterPlot plot request. (See your lnterPlot User's Guide.)

qpr -e REND_ATT=/usr/tim/myattr.ra print_file

Specifying a Form Using -f

The -f option specifies a form that the request will print on. If no form is
specified. the default form will be used. If no default form exists. the
request will print on any form in the device. (The .. Understanding
Forms" section of the System Administrator's .. NQS Tutorial" discusses
forms.)

Example:

Include the following on the qpr(l) command line specifies that the print
file will be printed on a form called longform.

qpr -f longf orm print _file

Logging a Message Using -I

The -1 option allows you to place a log message in the accounting file if an
accounting file is defined in your devicecap file. (See the .. Devicecap File
Format .. section of the System Administrator's .. NQS Tutorial. ..) Log
messages are useful for tracking information about submitted jobs. For
example. the following command places the message .. Part Number 3600 ..
in your accounting file:

qpr -1 "Part Number 3600" print_file

Notifying the Request Originator Using -mb, -me, and -mu

NQS can send mail to the request originator (or another user) when a
request begins or finishes printing. (Mail is automatically sent to the
request originator if the request fails.)

7-20 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

If you are the super-user when you submit a request, NQS will send your
mail to the root account.

• The -mb (mail begin) option tells NQS to send mail to the request
originator when the request begins printing. Use the -mb option as
follows:

qpr -mb print _file

• The -me (mail end) option tells NQS to send mail to the request ori­
ginator when the request finishes printing. Use the -me option as
follows:

qpr -me print_Jile

• The -mu (mail user) option tells NQS to send mail to a user other
than the originator. NQS will send mail when the request finishes
printing unless you also specify -mb. Use the -mu option as shown
in the examples below

• The following command sends mail to user joe when the request
finishes printing:

qpr -mu joe print_Jile

• The following command sends mail to user sue when the request
begins printing:

qpr -mb -mu sue print_Jile

Selecting the Number of Copies Using -n

The -n option specifies how many request copies will print. The following
command will print two copies of the print file. (NQS sets a default max­
imum number of copies to two. To change the default, see the .. Setting
Defaults .. section in the System Administrator's .. NQS Tutorial."

qpr -n 2 print__Jile

NQS TUTORIAL 7-21

Submitting and Manipulating NQS Requests

Appending Filter Arguments Using -o

The -o option appends the specified arguments to the filter specification """"'
before it executes. This option is useful for the application programmer ,._..,
who has developed custom filter files. Using the -o option. you can add to
or modify the filter specification without needing to modify the devicecap
file.

For example. the following line may appear in the devicecap file:

epson:of=/usr/lib/myfilter -166 -w132:

You can append another option specific to your filter by submitting the
request with the -o option. For example. if you have defined -f as a footer
(in your application) and want the footer to print for this job. include the
-o option in your command line as follows:

qpr -o "-f" print_fi,le

The filter specification for this job becomes

/usr/lib/myfilter -166 -w132 -f

Setting Scheduling Priorities Using -p

The -p option defines an intraqueue priority value (the relative order of
requests in a queue). The priority value is a number from 0 to 63.
Requests with higher scheduling priority values are positioned first in the
queue. If the -p option is not used. the default priority value for the sys­
tem is used. (See the "Setting Defaults"' section in the System
Administrator's "NQS Tutorial."')

The scheduling priority does not determine the request's execution prior­
ity; it determines only the relative ordering of requests in a queue.

The following command submits a request with an intraqueue priority of
20:

qpr -p 20 print _file

7-22 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

Specifying a Request Name Using -r

The -r parameter specifies the name to be assigned to a request file. For
example. the following command specifies that the request will be named
barb:

qsub -r barb print_fi,le

The name of the request (barb in this example) is the name that will
appear in all status displays and compose part of the output and error log
file names. (Names beginning with a number will be prefixed with the
letter .. r." For example. the name 210 would become r210.)

Deleting Files After Spool or Transport Using -R

The -R option specifies that original files be deleted after a request is
spooled or transported. This option is similar to the -r option of lpr(l).

If a request is actually spooled. all the files associated with the request.
including the ancillary files. are deleted if the user has privilege to delete
them. If the user does not have delete privilege. a message is displayed to
that effect.

If the request also specifies the -s option to symbolically link the files into
the spool directory. the files are not deleted until the request has printed or
has been transported to another machine. In this case. the user does not
actually know if the file was successfully deleted: however. a message is
printed to the console if the user does not have the privilege to delete the
request.

If a request is deleted before it has been printed or transported. the files
will also be deleted.

Specifying a Symbolic Link Using -s

The -s option allows you to symbolically link your print file to the NQS
spool directory instead of copying it there. This is useful when large print
files are too large to fit in the spool directory or are spooling slowly.

NQS TUTORIAL 7-23

Submitting and Manipulating NQS Requests

Use the -s option as follows:

qpr -s print _file

V Do not modify or delete a print file until it is finished printing. The file
and its symbolic link are one; any changes made to the original file affect
the symbolic link. Do not move a symbolically linked file, as the sym­
bolic link is only a pointer to the file and moving the file will disable the
link.

Specifying the Input Type Using -t

The -t option specifies the input type being sent to the queue. The input
type may be any input type that the device that will service the request
supports. When printing to an ASCII printer such as an Epson or Prin­
tronix. the input type will be ascii or text. For input types associated with
individual metafile interpreters. see your lnterPl.ot User's Guide.

Copying the Environment to the Server Using -x

The -x option behaves the way the -d option does; it allows you to define
environment variables that will be placed in the server's environment with
the request. However. using the -x option copies the entire environment to
the server machine.

The automatically exported variables are saved as QPR_HOST.
QPR_REQNAME. QPR_REQID. and QPR_QUEUE when the request is
submitted. If you do not use the -x option. no other environment variables
will be exported for the device request from the originating host.

For example. the following command will export all environment vari­
ables from the originating user's machine to be used for printing the file:

qpr -x print _file

Submitting a Request Silently Using -z

The -z option allows you to submit a request without a message similar to
the following displaying on your screen:

Request 24. red submitted to queue sysbatch

7-24 CLIX SYSTEM GUIDE

0

Submitting and Manipulating NQS Requests

For example. the following command will silently submit the request to
the def a ult queue:

qpr -z print _file

qpr Examples

The following sections illustrate possible printing scenarios and the qpr(1)
command lines that you would use to submit requests in these situations.

Example 1. Submitting an ASCII Print File

In this example. user Anna wants to submit an ASCII file named anna.txt
from her node. anna. to a dot-matrix printer attached to a server node.
The server node is named red and is located across the hall from her office.
The following conditions exist:

• The server's administrator used pconfi.g to create a device queue
named dot_mat to the dot-matrix printer. He has set the default
data type for queue dot_mat to ASCII.

• All users have access to the rje account on node red.

• Anna used pconfi.g to create a pipe queue named to_red on her client
node. She has set the destination queue to dot_mat on node red.

• Both the device and pipe queues are enabled and running, and the
printer is online.

To send her file to be printed at server red. Anna follows these steps:

1. Anna keys in the following command line:

qpr -q to_red ann.txt

After several seconds, the following message displays:

Request 18. anna subm I tted to queue: to_ red.

2. Anna checks her local pipe queue, to_red, to ensure that the
request is queued by keying in the following:

qstat to_red

NQS TUTORIAL 7-25

Submitting and Manipulating NQS Requests

The following queue information displays:

to_re<Danna; ty~IPE; [Et-W3LED. ICTIVE]; pr i=16
0 depart; 1 route; 0 queued; 0 wait; 0 hold; 0 arrive;

Request Nane Request ID Usr Pri State

1: anna.txt 18.anna anna 31 Routing

3. Anna waits several seconds and then checks the server node to
ensure that her job arrived. She keys in the following:

qstat @red

The following queue information displays:

dot_matored; type-OEVICE; [Et-W3LED. ICTIVE]; prl•16
1 run; 0 queued; 0 wait; 0 hold; 0 arrive;

Request Nane Request ID Usr Pri State SIZE

1: anna. txt 18.anna rje 31 Running 6F!i7

4. Anna sees that her request is running and retrieves it from the
dot-matrix printer at server red.

7-26 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

Example 2. Submitting a Plot Request

,_.,... In this example, user Bill wants to submit a postscript file named ras:file
~ from his node, bill, to an ILP2217 laser printer attached to a server node.

He wants to print three copies and receive mail when the request has
finished executing. The following conditions exist:

• The server's administrator used pconfi.g to create a device queue
named il2217 to the ILP2217 printer. He has set the default data
type for queue il2217 to igds. (Because the default is not script (the
postscript data type), Bill will need to specify the data type in the
qpr(l) command line.)

• The IP _Script metafile interpreter is installed on the server node,
blue.

• All users have access to the rje account on node blue.

• Bill used pconfi.g to create a pipe queue named to_2217 on his client
node. He has set the destination queue to il2217 on node blue.

• Both the device and pipe queues are enabled and running. and the
printer is online.

To send his file to be plotted on server blue, Bill follows these steps:

1. Bill keys in the following command line:

qpr -q -t script to_il2217 -me -n 3 ras:fi.le

After several seconds. the following message displays:

Request 20.bi 11 submitted to queue: to_i 12217

2. Bill checks his pipe queue, to_il2217. to ensure that the request is
queued by keyingTn -ihe-f ollQwing:

qstat to_2217

The following queue information displays:

NQS TUTORIAL 7-27

Submitting and Manipulating NQS Requests

to_221ia>i 11; type=PIPE; (ENtBLED. >CTIVE]; pri 16
0 depart; 1 run; 1 route; 0 queued; 0 wait; 0 hold; 0 arrive;

Request Nane Request ID Usr Pri State

1: rasf i le 18.bi 11 bll 1 31 Routing

3. Bill waits several seconds and then checks the server node to ensure
that his job arrived. He keys in the following:

qstat @blue

The following queue information displays:

Il.221'ia>lue; type-DEVICE; [ENtBLED. JCTIVE]; prl•16
1 run; 1 queued; 0 watt; 0 hold; 0 arrive;

Request Nane Request ID Usr Prl State SIZE

1 rasf i le 18.bi II rje 31 Running 1221

4. Bill sees that his request is running and retrieves it from the
ILP2217 at server blue.

Submitting Batch Requests

A batch request is used to execute a file containing command procedures. ~

An NQS batch request consists of a file containing commands and options .._,,,
that control request execution.

7-28 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

When a batch request executes. NQS logs in as the requesting user. Then,
it retrieves input from the file containing the commands to be executed.
The output and error messages normally directed to a terminal screen are
redirected to predefined standard output and standard error files. NQS
returns these output files to the original user·s current directory (when the
job was submitted) after the request completes execution.

Use the qsub(l) command to submit a batch request to NQS. Key in the
qsub(l) command as follows:

qsub [-a date_time] [-e machine: [[I] path/] filename] [-eo]
[-ke] [-ko] [-If file_size_limit] [-In nice_va/,ue_limit] [-mb]
[-me] [-mu username] [-nr] [-o machine: [[I] path/] filename]
[-p priority] [-q queue] [-r request_name] [-re] [-ro] [-s shell] [-x]
[-z] script_file

The script file contains the file to be executed. The qsub(l) options are
listed in the following table. Note the similarities between the qsub(l)
and qpr(1) options.

Option Description

-a date_time Executes the request after the specified time.

-e machine: [[I] path/] filename
Directs the standard error (stderr) output to the
specified destination.

-eo Directs the stderr output to the standard output
(stdout) destination.

-ke

-ko

-If file_size_limit

Keeps the stderr output on the executing machine.

Keeps the stdout output on the executing machine.

Establishes the per-process permanent file size lim­
its.

-In nice_value_limit Establishes per-process nice value (execution prior­
ity).

-mb Sends mail when the request begins executing.

NQS TUTORIAL 7-29

Submitting and Manipulating NQS Requests

-me

-mu username

-nr

-0

-p priority

-q queue

-r request

-re

-ro

-s shell

-x

-z

Sends mail when the request finishes executing.

Sends mail about the request to the specified user.

Specifies that the batch request is not restartable.

Directs the stdout output to the stated destination.

Establishes the intraqueue request priority.

Submits the request to the specified queue.

Assigns the specified name to the request.

Accesses the stderr output file from the remote
machine.

Accesses the stdout output file from the remote
machine.

Specifies the shell that will interpret the batch
request script.

Exports all environment variables with the request.

Submits the request silently.

Delaying Execution Using -a

The -a option specifies a date and time after which NQS will execute a
request. Use the -a option if you wish to delay request execution. The
following examples illustrate acceptable formats for the -a option:

qsub -a "July, 4, 1989 9:00-EST" script_Jile

qsub -a "04-Jul-1989 9am, EST" script_Jile

qsub -a "Wednesday, 09:00:00 EST" script_Jile

qsub -a "9am tues." script_Jile

7-30 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

Placing Output and Error Log Files Using -e, -o, -eo, -ke, -ko, -re,
and -ro

~ The output and error log file parameters specify where the output and
error log files will be placed after they are created. The following para­
graphs detail each parameter:

-

• The -e and -o parameters specify where the standard output and
standard error log files will be placed when the batch job executes.
If -e and -o are not specified. the output and error files return to
your current directory.

For example. the following command line routes the standard error
output log file to the file • J output/logfi.le on the machine red. (If
the path name supplied is a relative path name. NQS places the file
in your home directory.)

qsub -e red:output/logfi.les script_file

• The -eo parameter tells NQS to direct the error output to the stan­
dard output log file. This causes the output log and error log files to
merge to one file. For example. the following command tells NQS to
direct the standard error output from the request to the standard
output log file:

qsub -eo script_file

• The -ke (keep error) and -ko (keep output) parameters tell NQS to
retain the standard output and standard error output log files on the
executing machine. For example. the following command tells NQS
to retain the standard output log file on the destination machine for
the queue syspipe:

qsub -ko -q syspipe script_file

If the queue you specify in the command line is on your node, -ke and -ko
parameters have no meaning; the standard output log files will be placed
on your node by default.

NQS TUTORIAL 7-31

Submitting and Manipulating NQS Requests

• The -re and -ro parameters force the standard output and standard
error output log files to be sent to their destination directories as the
output is generated. (NQS normally retains the standard output log
files internally until the batch job finishes.) For example. the fol­
lowing command tells NQS to send the error log output file to its
destination as it is generated:

qsub -re script_Jile

If the destination for the output log files is a remote node, you cannot use
the -re and -ro parameters.

Limiting the File Size Using -If

The -If option specifies the maximum size of a file that may be created dur­
ing the request's execution. For example. the following command limits
the size of output files from the request file to 1 MB:

qsub -If tmb script_file

NQS enforces the file size limit internally using the ulimit command.
Since 1 MB equals 2048 blocks, NQS uses the following command to
enforce a 1 MB file size limit when a request spawns:

ulimit 2048

Because 2048 blocks is less than the default file size limit imposed when
you log in to your machine. your error log file would contain the following
error. (This error would not interfere with the request's execution.)

ksh [31]: ulimit: bad number

7-32 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

Setting the Execution Priority Using -In

.~ The In parameter sets the request"s nice value (execution priority). The
~ execution priority is a number from -20 to 20. Requests with larger exe­

cution priority values will receive the lowest priority and consume the
least amount of CPU resources. If the -In parameter is not used. the sys­
tem defaults to 0. A priority of 0 is the highest allowed for a request sub­
mitted by a user without super-user privileges.

·""""""·

The following command submits a request with an execution priority of
-10:

qsub -In -10 script_file

Notifying the Request Originator Using -mb, -me, and -mu

NQS can send mail to the request originator (or another user) when a
request begins or :finishes executing. (Mail is automatically sent to the
request originator if the request fails.)

If you are the super-user when you submit a request, NQS will send your
mail to the root account.

• The -mb (mail begin) option tells NQS to send mail to the request
originator when the request begins executing. Use the -mb option as
follows:

qsub -mb script_Jile

• The -me (mail end) option tells NQS to send mail to the request ori­
ginator when the request :finishes executing. Use the -me command
as follows:

qsub -me script_file

• The -mu (mail user) option tells NQS to send mail to a user other
than the originator. NQS will send mail when the request :finishes
printing unless you also specify -mb. Use the -mu option as shown
in the examples below:

NQS TUTORIAL 7-33

Submitting and Manipulating NQS Requests

o The following command sends mail to user joe when the request
finishes executing:

qsub -mu joe script_Jile

o The following command sends mail to user sue when the request
begins executing:

qsub -mb -mu sue script_Jile

Submitting a Nonrestartable Request Using -nr

The -nr option allows you to submit a request that will not restart if the
system fails or NQS shuts down. If you do not use the -nr option. NQS
will attempt to restart the request after recovering from a system failure.
Use the -nr option as follows:

qsub -nr script_Jile

Setting Scheduling Priorities Using -p

The -p option defines an intraqueue priority value (the relative order of 0
requests within a queue). The priority value is a number from 0 to 63.
Requests with higher scheduling priority values will be positioned first in
the queue. If the -p option is not used. the default priority value for the
queue is used.

The scheduling priority does not determine the request's execution prior­
ity; it determines only the relative ordering of requests in a queue.

The following command submits a request with an intraqueue priority of
20:

qsub-p 20 script_file

7-34 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

Specifying a Queue Using -q

,........, The -q parameter specifies the queue that the request will be submitted to.
~ Using the -q parameter to specify a pipe queue. you can submit requests to

another node. (You may set up a default queue. See the "Manipulating
Devices from the Command Line" section in the System Administrator's
"NQS Tutorial.")

For example. the following command line submits a request to the local
pipe queue. syspipe. Syspipe then routes the request to its destination
queue on a remote node.

qsub -q syspipe script_Jtle

Specifying a Request Name Using -r

The -r parameter specifies the name to be assigned to a request file. For
example. the following command specifies that the request will be named
barb:

qsub -r barb script_Jile

The name of the request file (barb in this example) is the name
that will appear in all status displays and compose part of the
output and error log file names. (Names beginning with a number
will be prefixed with the letter .. r." For example. the name 210
would become r210.)

Defining an Execution Shell Using -s

The -s option defines the execution shell that will service the request. If
the -s option is not used. the system default shell is used.

The execution shell options are the following:

• Bourne shell (sh)

• Korn shell (ksh)

- • C shell (csh)

NQS TUTORIAL 7-35

Submitting and Manipulating NQS Requests

You must be at the machine that the request file currently resides on. You
must key in the full path name of the shell that will execute the request.
For example. the following command executes the request file using the ~
Korn shell: ..,,.,,.,·

qsub -s /bin/ksh script_Jile

Exporting Environment Variables Using -x

The -x option allows you to export environment variables with your
request so long as the variable names do not conflict with the automati­
cally exported variables. HOME. SHELL. PATH. LOGNAME. MAIL. and
TZ.

The automatically exported variables are saved as QSUB_HOME.
QSUB_SHELL. QSUB_PATH. QSUB_LOGNAME. QSUB_USER.
QSUB_MAIL. and QSUB_TZ when the batch request is spawned. If you
do not use the -x option. no other environment variables will be exported
for the batch request from the originating host.

For example. the following command will export all environment vari­
ables from the originating user's machine to be used for executing the
request file:

qsub -x script_Jile

Embedding Commands in the Request File

All qsub(1) options can be embedded in the batch request file to be exe­
cuted with other commands in the file. The following example illustrates a
request file named echo.bat with embedded commands. This request will
be placed in the queue sysbatch. will execute after 11:30 PM Central Day­
light Time. and will send mail messages to the originating user when the
request begins and finishes executing.

7-36 CLIX SYSTEM GUIDE

0

-

$ cat echo.bat

Cannent
0$-q sysbatch
0$-a "11 :3a=M CDT"
0$-nb -me
#0$
echo This is my batch job
date

Submitting and Manipulating NQS Requests

As shown in the previous example, the echo.bat file is broken out as fol­
lows:

• Optional parameters are specified in comment lines. The first line in
the file is a standard comment.

• The @$ sequence tells NQS that one or more optional parameters will
follow. The following three lines are optional parameters that NQS
will recognize and execute. (The - symbol must immediately follow
the @$ symbols.)

• The@$ sequence by itself indicates the end of a series of optional
parameters.

The request file shown above could be submitted to a batch queue named
sysbatch as follows:

qsub -q sysbatch batch

Checking Resource Limits and Shell Strategy

You can display the default per-process file size limit (set with the -If
option), the default per-process nice value limit (set with the -In option).
and the default shell strategy (set with the -s option) on the local machine
by keying in the following:

qlim.it

NQS TUTORIAL 7-37

Submitting and Manipulating NQS Requests

Information similar to the following will appear:

Per-process permanent file size limit (-If)
Nice value (-In)

She 11 st rategy=fREE

Sample Batch Requests

The following is an example of the simplest type of batch request. The
request is explained in the following sample session.

$ qsub
echo This is my first batch job. The time is
date
<Ctrl-D:>
Request 29.lga sut:mitted to queue: sysbatch.
$ Is
STDIN.e29
STDIN.o29
$ cat STDIN.o29
This is my first batch job. The time is
Thu Sep 22 14:20:24 CDT 1988
$ cat STDIN.e29
stty: Not a typewriter
ksh [31]: ulimit: bad nunber

7-38 CLIX SYSTEM GUIDE

---------------------------------·, -....,.,

Submitting and Manipulating NQS Requests

When you enter qsub without a script file name. the batch command list is
taken from standard input (the keyboard). The request in the example
above displays an introduction and then the time and date.

In the example above. NQS assigns a request identification number of 29 to
the request and places the request in the queue sysbatch. (Request
identification numbers are sequential numbers assigned to all NQS
requests.) After the request is submitted. NQS schedules and executes it.

A few seconds after the request is submitted. the output and error logs
appear in the current directory. (If you do not have write permission in
the current directory. the output and error logs are placed in your home
directory.)

The Output Log File

The output log file contains the results of commands in the request. In the
previous example. the request prints an introduction (This is my first
batch job. The time is) and then the time and date (Thu Sep 22 14:20:24
CDT 1988).

Since the original request input came from the keyboard (STanDard
INput). NQS names the output log file STDIN.o29 by default. If the input
had come from a request file named time. the output file would have been
named time.029.

The Error Log File

The error log file contains the errors resulting from the request. In the
example above. stty and ulimit problems occurred during request execu­
tion. The stty error resulted when the default setup /etc/profile
attempted to set up a terminal device. an invalid procedure in a batch
environment. The ulimit error resulted when the default profile attempted
to set a permanent file size limit higher than the NQS default limit of 2048
blocks (1 MB).

The stty and ulimit errors are common and do not affect the results of the
request.

Since the original request input came from the keyboard (STanDard
INput). NQS names the error log file STDIN.e29 by default. If the input
had come from a request file named time. the error log file would have
been named time.e29.

NQS TUTORIAL 7-39

Submitting and Manipulating NQS Requests

Manipulating Requests

There are a number of ways that you can manipulate requests once after
they have been submitted to a queue. The following sections describe how
to manipulate requests.

In most cases, you must have NQS operator privileges to manipulate
requests. Exceptions are noted in the command description.

Deleting a Request

After a request has been submitted. you can delete it using the qdel(l)
command. To delete a request. at least one of the following conditions
must exist:

• You must own the request.

• You must have NQS operator privileges.

• You must be logged in as the super-user.

To delete a request, key in the qdel(l) command as follows:

qdel [-k] [signal] [-u username] request_id[@lwst] ...

• The -k option sends a kill signal to a process that is already running
a request in a queue. You do not need to use the -k option if the
request is waiting in the queue.

• The signal option sends a numeric kill signal (such as the CLIX -9)
to a process that is already running a request in a queue.

• The -u option allows you to specify the user name of the request
owner (if you have NQS operator privileges). You must use the -u
option if you do not own the request you are deleting.

• The request_id is the request identification number obtained using
the qstat(l) command or the qmgr(lM) show queue command.

7-40 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

• Use the @lwst option if the job resides on a remote host. (However.
you must have access to these nodes.)

,~ For example. to delete a request from the queue named il2217 on node
~ bob. follow these steps. (You must be at node bob to delete the request.)

1. Show the queue as follows to obtain the request identification
number.

qstat il2217@bob

i 122170bob; typei=OEVICE; [EN&BLED. ICTIVE]; pri•16
1 run; 0 queued; 1 wait; 0 hold; 0 arrive;

Request Nane Request ID Usr

1: JC81
2: JCB2

154.bob bob
155.bob bob

Pri

31
31

State Size

Rffllt-G 766
WAITit-G 531

2. Delete JOB2 by keying in the following:

qdel 1SS

3. Execute the qstat(l) command again as follows to confirm that
JOB 1 has been deleted.

qstat il2217

NQS TUTORIAL 7-41

Submitting and Manipulating NQS Requests

i 122170bob; type=OE.VICE; [ENABLED, >CTIVE]; pri=16
1 run; 0 queued; 0 wait; 0 hold; 0 arrive;

Request Nane Request ID Usr Pri State Size

1: Ja31 154.bob bob 31 Rlt-NIN3 766

Modifying a Request

You can modify several request parameters after a job has reached its des­
tination queue. so long as the job has not begun executing. (However. a
changed priority will not take effect unless the job returns to a WAIT
state.) You must have operator privileges to modify a request. Currently.
the only request parameter that may be changed is the scheduling priority.

To modify a request. obtain the request ID using the qstat(l) or show
queue command. Then, key in the command as follows:

Mgr: modify request request_id [priority=priority_value]

Holding a Request

The hold command is used to place a request in an operator hold state.
You must have operator privileges to put a request on operator hold.

To place a request on operator hold. obtain the request ID using the
qstat(1) or show queue command. Then. key in the hold command as
follows:

Mgr: hold request _id

Unholding a Request

0

The unhold command is used to remove a request from the operator hold ~
state. The request will return to the queued or waiting state. ..,,,

7-42 CLIX SYSTEM GUIDE

Submitting and Manipulating NQS Requests

To remove a request from the operator hold state. obtain the request ID
using the qstat(l) or show queue command. Then. key in the unhold
command as follows:

Mgr: unhold request _id

Releasing a Request

The release command releases a request from any held or waiting state.
To release a request. obtain the request ID using the qstat(l) or show
queue command. Then. key in the release command as follows:

Mgr: release request _id

Purging Requests from a Queue

The purge queue command deletes all requests that are not running from
the specified queue. Purged requests cannot be recovered.

Key in the purge queue command as follows:

Mgr: purge queue queue_name

Aborting Requests in a Queue

The abort queue command sends a kill signal (SIGTERM) to each process
for each request running in the specified queue when the abort queue com­
mand was received.

Key in the abort queue command as follows. (If you do not specify a
grace period. the grace period defaults to 20 seconds. Aborted requests
cannot be recovered.

Mgr: abort queue queue_name [grace_period]

NQS TUTORIAL 7-43

Troubles hooting

If you have problems operating NQS. you may be able to fix the problem
yourself. Please refer to this section or the .. Troubleshooting" section in """"
the Network Queuing System (NQS) User's Guide to see if you can diagnose ""'1111f111

1

and solve the problem. If the problem persists. call Intergraph support.

NQS returns mail saying .. Unknown Input type."

Cause:

Solution:

NQS did not recognize the input type specified in the qpr(1)
command line.

Ensure that you have installed the appropriate metafile
interpreter and that you have correctly keyed in the input
type.

The error, "Print file limits exceeded" or "Print file exceeds maximum quote
limits'' displays.

Cause:

Solution:

Your request exceeded the maximum print file size.

Use the NQS qmgr(lM) utility to increase your maximum
print file size. (See the .. Setting Defaults'' section in the
System Administrator's .. NQS Tutorial.")

You did not receive mail from your job.

Cause:

Solution:

Cause:

Solution:

You may have been logged in as the root user when you
submitted your job.

Log in the console window as root to read your mail.

You did not specify -me or -mb when submitting your job.

If you want to receive mail when a job begins or finishes
executing. you must specify -me or -mb on your submit
command line. Otherwise. you will only receive mail when
an error occurs.

7-44 CLIX SYSTEM GUIDE

Troubleshooting

When trying to configure a plotter, you receive the error" NQS manager
(FATAL): Unable to open the network file descriptor file."

Cause:

Solution:

You may have loaded NQS for the first time and not
rebooted your machine.

Reboot your machine.

You cannot execute the qstat(1) command to a remote machine; however, no
error displays and no prompt ts returned within 45 seconds.

Jobs move between the ROUTING and WAITING states in the queue, but
are not serviced.

Cause:

Solution:

Cause:

Solution:

Cause:

Solution:

Cause:

Solution:

The remote node is down.

Attempt to use the visit(l) command to log in to the
remote node. If you cannot log in, the remote node is
down. Try again later.

NQS is not loaded on the remote node.

Ask your system administrator to load NQS on the remote
node or use a different node.

One of the NQS daemons has died on the remote node.

Ask the administrator of the remote node to stop and res­
tart NQS on the node.

There is an address conflict in the I etc/hosts file. This
means that the node you are attempting to contact has the
same Internet address as another node.

Update the clearinghouse. run nam.ex(lM). and execute
I etc/ dodini.

You receive the error "NQS (FATAL): Multiple host names defined for
nnn.nnn.nnn.nnn in /etc/hosts."

Cause:

Solution:

Another node has an Internet address identical to yours or
your node name aliases are improperly scoped.

Read the .. BSD Network Configuration Tutorial'" for infor­
mation on Internet addresses and ask your system adminis­
trator to assign a new Internet address to your node.

NQS TUTORIAL 7-45

Troubleshooting

You receive the error "NQS (FATAL): No Internet Address," but your node
has an Internet address.

You receive the error .. Local network database error at transaction peer:·

Cause:

Solution:

The clearinghouse needs to be updated.

Update the clearinghouse. run nam.ex(lM). and execute
I etc/ dodini.

You receive the error "No local daemon at host."

Cause:

Solution:

The local daemon. /usr/lib/nqs/nqsdaemon. has died.

Start NQS by keying in /etc/init.d/nqs start at the
super-user(#) prompt.

You receive the error "Insufficient privilege at local host."

Cause:

Solution:

You do not have privileges to perform the operation you
attempted.

Ask your system administrator to assign you NQS manager
or operator privileges.

You submitted a job to the queue and received a message that the job was
successfully submitted, but it did not execute.

Cause:

Solution:

Cause:

Solution:

Cause:

Solution:

The pipe or device queue may be stopped. (If you are plot­
ting. see your lnterPlot User's Guide.)

Use the qstat(l) command to see if the queue is stopped. If
it is. restart it with the start queue command.

The device may be disabled.

Use the qstat(l) command to see if the device is disabled.
If it is. enable it with the enable device command.

Another device is running on the same mux as the device
you have submitted your job to.

Check the devices connected to your mux. If a device is·
running on the mux. your job will run when the job has
completed.

7-46 CLIX SYSTEM GUIDE

Cause:

Solution:

Troubleshooting

The queue complex limit has been reached.

Check the current queue complex limits with the qstat -c
command. Ensure that no other queues are running and
causing the queue complex run limit to be reached.

NQS TUTORIAL 7-47

c

c
~
:D
0 en
-I
c
0,
~

Chapter 8: RCS Tutorial

Introduction

Functions of RCS

Getting Started with RCS

Automatic Identification

How to Combine MAKE and RCS

Additional Information on RCS

8-1

8-2

8-4

8-7

8-8

8-9

TABLE OF CONTENTS I

Introduction

The Revision Control System (RCS) manages software libraries. It greatly

increases programmer productivity by centralizing and cataloging changes

to a software project. This document describes the benefits of using a

source code control system. It then gives a tutorial introduction to the use

of RCS.

RCS TUTORIAL 8-1

Functions of RCS

The Revision Control System (RCS) manages multiple revisions of text
files. RCS automates the storing. retrieval. logging. identification. and
merging of revisions. RCS is useful for text that is revised frequently.
such as programs. documentation. graphics. papers. form letters. etc. It
greatly increases programmer productivity by providing the following
functions.

• RCS stores and retrieves multiple revisions of a program and other
text. Thus. you can maintain one or more releases while developing
the next release. with a minimum of space overhead. Changes no
longer destroy the original; previous revisions remain accessible.

a RCS Maintains each module as a tree of revisions.
a Project libraries can be organized centrally. decentralized. or any

other way.

a RCS works for any type of text: programs. documentation.
memos. papers. graphics. VLSI layouts. form letters. etc.

• RCS maintains a complete history of changes. Thus. you can find out
what happened to a module easily and quickly. without having to
compare source listings or having to consult colleagues.

a RCS performs automatic record keeping.

a RCS logs all changes automatically.

a RCS guarantees project continuity.

• RCS manages multiple lines of development.

• RCS can merge multiple lines of development. Thus. when several
parallel lines of development must be consolidated into one line.
changes are merged automatically.

• RCS flags coding conflicts. If two or more lines of development
modify the same section of code. RCS can alert programmers about
overlapping changes.

• RCS resolves access conflicts. When two or more programmers wish
to modify the same revision. RCS alerts the programmers and makes
sure that one change will not wipe out the other.

8-2 CLIX SYSTEM GUIDE

Functions of RCS

• RCS provides high-level retrieval functions. Revisions can be

retrieved according to ranges of revision numbers. symbolic names.

dates. authors. and states.

• RCS provides release and configuration control. Revisions can be

marked as released. stable. experimental. etc. Configurations of

modules can be described simply and directly.

• RCS automatically identifies modules with name. revision number.

creation time. author. etc. Thus. it is always possible to determine

which revisions of which modules compose a given configuration.

• RCS Provides high-level management visibility. Thus. it is easy to

track the status of a software project.

o RCS provides a complete change history.

a RCS records who did what when to which revision of which

module.

• RCS is fully compatible with existing software development tools.

RCS is unobtrusive: its interface to the file system allows all your

existing software tools to be used as before.

• RCS's basic user interface is extremely simple. The novice only needs

to learn two commands. Its more sophisticated features have been

tuned toward advanced software development environments and the

experienced software professional.

• RCS simplifies software distribution if customers also maintain

sources with RCS. This technique assures proper identification of

versions and configurations and tracking of customer changes. Cus­

tomer changes can be merged into distributed versions locally or by

the development group.

• RCS needs little extra space for the revisions (only the di1f erences).

If intermediate revisions are deleted. the corresponding differences

are compressed into the shortest possible form.

RCS TUTORIAL 8-3

Getting Started with RCS

Suppose you have a file f .c that you wish RCS to control. Invoke the chec­
kin command as follows:

ci f.c

This command creates f.c,v. stores f.c in it as revision 1.1. and deletes f.c.
It also asks you for a description. The description should be a synopsis of
the contents of the file. All later checkin commands will ask you for a log
entry. which should summarize the changes that you made.
Files ending in •• .v .. are called RCS files (.. v .. stands for .. versions ..); the
others are called working files. To get back the working file f.c in the pre­
vious example. use the checkout command:

co f.c

This command extracts the latest revision from f .c, v and writes it in f .c.
You can now edit f.c and check it back in by invoking:

ci f.c

ci(l) increments the revision number properly. If ci(l) complains with the
following message

cl error: no I ock eet by <your I ogl n>

your system administrator has decided to create all RCS files with the
locking attribute set to ••strict."' With strict locking. you must lock the
revision during the previous checkout. Thus. your last checkout should
have been as follows:

co -1 f.c

Locking assures that only you can check in the next update. and avoids
nasty problems if several people are working on the same file. Of course. it
is too late now to checkout with locking. because you probably modified
f .c already. and a second checkout would overwrite your changes. Instead.
invoke the following:

res -1 f.c

This command will lock the latest revision for you unless somebody else
locked it. If someone else has the lock you will need to negotiate your
changes with them.

8-4 CLIX SYSTEM GUIDE

Getting Started with RCS

If your RCS file is private. (if you are the only person who is going to
revise it). strict locking is not needed and you can tum it off. If strict
locking is turned off. the owner of the RCS file need not have a lock for
checkin; all others still do. Strict locking is turned off and on with the fol­

lowing commands:

res -U f .c and res -L f .c

You can set the locking to strict or nonstrict on every RCS file.

If you do not want to clutter your working directory with RCS files.
create a subdirectory called RCS in your working directory and move all
your RCS files there. RCS commands will look first in that directory to
find needed files. All commands discussed above will still work without

any change.

Pairs of RCS and working files can really be specified in three ways: both

are given. only the working file is given. or only the RCS file is given. Both

files may have arbitrary path prefixes; RCS commands pair them intelli­
gently.

To avoid deleting the working file during checkin (if you want to continue

editing). invoke the following:

ci -1 f.c

This command checks in f .c as usual. but performs an additional checkout
with locking. Thus. it saves you one checkout operation. An option -u for
ci(l) also performs a checkin followed by a checkout without locking.
This is useful if you want to compile the file after the checkin. Both
options also update the identification markers in your file (see below).

You can give ci(l) the number you want assigned to a checked in revision.
Assume all your revisions were numbered 1.1. 1.2. 1.3. etc .• and you

would like to start release 2. The following command

ci -r2 f.c or ci -r2.1 f.c

assigns the number 2.1 to the new revision. From then on. ci(l) will

number the subsequent revisions with 2.2. 2.3. etc. The corresponding
co(l) commands

co -r2 f.c and co -r2.1 f.c

retrieve the latest revision numbered 2.x and the revision 2.1. respectively.
co(l) without a revision number selects the latest revision on the ··trunk··

RCS TUTORIAL 8-5

Getting Started with RCS

(the highest revision with a number consisting of two fields). Numbers
with more than two fields are needed for branches. For example. to start a
branch at revision 1.3. invoke the following:

ci -rl.J.1 f~

This command starts a branch numbered 1 at revision 1.J and assigns the
number 1.J.1.1 to the new revision. For more information about branches.
see rcaflle(4) in the CLIX Programmer's d: User's Reference Manual..

8-6 CLIX SYSTEM GUIDE

Automatic Identification

RCS can put special strings for identification in your source and object
code. To obtain such identification. place the following marker

$Header$

in your text (for instance in a comment). RCS will replace this marker
with a string with the following form:

$Header: filename revision.number date time author state
$

You never need to touch this string. because RCS updates it automatically.
To propagate the marker to your object code. simply put it in a literal
character string. In C. this is accomplished as follows:

et at i c char res id[]• "$Header$";

The command ident(l) extracts such markers from any file. even object
code. Thus. ident(l) helps you to find out which revisions of which
modules were used in a given program.

You may also find it useful to put the following marker

Log

in your text. inside a comment. This marker accumulates the log messages
requested during checkin. Thus. you can maintain the complete history of
your file directly inside it. Several additional identification markers exist;
see co(1) for details.

RCS TUTORIAL 8-7

How to Combine MAKE and RCS

If your RCS files are in the same directory as your working files. you can
put a def a ult rule in your makefile. Do not use a rule with the form
··.c.v.c·· because such a rule keeps a copy of every working file checked out.
even those you are not working on. Instead. use the following:

.SE'FlXES: .c,v

co -q s..c
cc $(~) -c s. .c
,,. -f s..c

prog: f1 .o f2.o •••••
cc f1.o f2.o ..•.• -o prog

This rule has the following effect. If a file f.s:, does not exist and f .o is older
than f.s;.v. make(l) checks out f.s:,, compiles f.s:, into f.o. and then deletes
f.s:,. From then on. make(l) will use f.o until you change f.s;.v.

If f .s:, exists (presumably because you are working on it). the default rule
•• .c.o ·• takes precedence and f .s:, is compiled into f .o. but not deleted.

If you keep your RCS file in the directory .IR.CS. this will not work and
you need to write explicit checkout rules for every file. as the following:

fl.c: RCS/fl.s;.v; co-q fl.s:,

Unfortunately. these rules do not have the property of removing unneeded
.c files.

8-8 CLIX SYSTEM GUIDE

Additional Information on RCS

If you want to know more about RCS (for example how to work with a

tree of revisions and how to use symbolic revision numbers). read the fol­

lowing paper:

Walter F. Tichy ... Design. Implementation. and Evaluation of a Revision

Control System:· in Proceedings of the 6th International. Conference on

Software Engineering. IEEE. Tokyo. Sept. 1982.

Looking at the manual page rcsfile(4) should also help you understand the

revision tree permitted by RCS.

RCS TUTORIAL 8-9

c

c

Chapter 9: RPC/XDR Tutorial

Introduction 9-1

Introductory Examples 9-3

Highest Layer 9-3

Intermediate Layer 9-4

Assigning Program Numbers 9-7

Passing Arbitrary Data Types 9-8

Lower Layers of RPC 9-12

More on the Server Side 9-12

Memory Allocation with XOR 9-1.S

The Calling Side 9-17

Other RPC Reatures 9-20

Select on the Server Side 9-20

Broadcast RPC 9-21

Batching 9-22

Authentication 9-27

The Client Side 9-28

The Server Side 9-28

Using inetd 9-31

More Examples 9-33

Versions 9-33

TCP 9-34

Callback Procedures 9-39

TABLE Of CONTENTS

Table of Contents -----------------

Appendix 1: Synopsis of RPC Routines 9-44

R CLIX SYSTEM GUIDE

Introduction

This document is intended for programmers who wish to write network

applications using remote procedure calls (explained below). thus avoiding

low-level system primitives based on sockets. The reader must be familiar

with the C programming language and should have a working knowledge

of network theory.

Programs which communicate over a network need a paradigm for com­

munication. A low-level mechanism might send a signal on the arrival of

incoming packets. causing a network signal handler to execute. A high­

level mechanism would be the Ada rendezvous. The method used by the

NFS is the Remote Procedure Call (RPC) paradigm. in which a client com­

municates with a server. In this process. the client first calls a procedure

to send a data packet to the server. When the packet arrives. the server

calls a dispatch routine. performs the service requested. sends back the

reply. and the procedure call returns to the client.

The RPC interface is divided into three layers. The highest layer is totally

transparent to the programmer. To illustrate. at this level a program can

contain a call to rnusers(). which returns the number of users on a remote

machine. The user need not be aware that RPC is being used. since the call

is simply made in a program. just as malloc(3R) would be called.

At the middle layer. the routine registerrpc() and callrpc() are used to

make RPC calls: registerrpc() obtains a unique system-wide number.

while callrpc() executes a remote procedure call. The rnusers() call is

implemented using these two routines. The middle-layer routines are

designed for most common applications and shield the user from needing to

know about sockets.

The lowest layer is used for more sophisticated applications. which may

want to alter the defaults of the routines. At this layer. sockets used for

transmitting RPC messages can be explicitly manipulated. This level

should be avoided if possible.

Although this document only discusses the interface to C. remote pro­

cedure calls can be made from any language. The libraries needed are

libbsd.a and librpcsvc.a. Related #include files are located in

/usr/include/RPC and /usr/include/RPCSVCn. Even though this docu­

ment discusses RPC when it is used to communicate between processes on

different machines, it works just as well for communication between

different processes on the same machine.

RPC/XDR TUTORIAL 9-1

Introduction

The following is a diagram of the RPC paradigm.

client
program

Machine A

program
continues

t

....

callrpc()
Tunct1on

return
reply

I
I
I

service:
daemon:

I
I

execute
request

' I
I
I

I
I
I
I

--~
request

completed
,
I
I
I
I
I
I
I

v

Mach" meB

call
service

return
answer

--
service
executes

Network Communication with RPC

G-2 CLIX SYSTEM GUIDE

Introductory Examples

Highest Layer

Consider a program that needs to know how many users are logged in to a

remote machine. This can be done by calling the library routine rnusers()

as illustrated below:

#include <.etdio.h>

main(orgc, orgv)
int orgc;
char * •orgv;

U'l8 i gned """;

if (orgc < 2) {
fprintf(stderr, "ueoge: rnueers hoetnane\n"):
exit(1);

}
if ((nun• rnueers(orgv[1])) < 8) {

fprintf(stderr, "error: rnueers\n"):
exit(-1);

}
printf("Xd ueers on "9\n", """· orgv(1]);
exit(0):

RPC/XDR TUTORIAL 9-3

Introductory Examples

Intermediate Layer

The simplest interface. which explicitly makes RPC calls. uses the func­
tions callrpc() and registerrpc(). Using this method. another way to get
the number of remote users is:

#Include <stdio.ti>
#Inc I ude <rpcavc/rueere. tc>

maln(argc, argy)
Int argc;
char •*Orgy;

wte I gned I ong ,...re;

If (argc < 2) {

}

fprlntf(etderr. "ueage: ,...re hoetnane\n")•
exlt(-1);

If (ca 11 rpc(argy[1]. R.6'EJ&+m, RJSERSVERS. R.6ER:fRX!_N.M.
xdr_vold. e. xdr_u_long. an.ere) ,_ e) {

fprfntf(etderr. "error: callrpc\n"):
exlt(1);

}
prfntf("nunber of ueere on "8 le Xd\n", argy[1]. ,...re):
extt(e):

A program number. version number. and procedure number defines each
RPC procedure. The program number defines a group of related remote
procedures. each of which has a different procedure number. Each program
also has a version number. so when a minor change is made to a remote
service (adding a new procedure. for example) a new program number does
not have to be assigned.

0-4 CLIX SYSTEM GUIDE

Introductory Examples

When a procedure is to be called to find the number of remote users. the

appropriate program. version. and procedure numbers are looked up in a

manual in a similar manner to looking up the name of memory allocator

when memory is to be allocated.

The simplest routine in the RPC library used to make remote procedure

calls is callrpc(). It has eight parameters. The first is the name of the

remote machine. The next three parameters are the program. version. and

procedure numbers. The following two parameters define the argument of

the RPC call. and the :final two parameters are for the returned value of

the call. If it completes successfully. callrpc() returns zero. but nonzero

otherwise. The exact meaning of the return codes is found in

<rpc/clnt.h>. and is. in fact. an enum clnt_stat cast into an integer.

Since data types may be represented differently on different machines.

callrpc() needs both the type of the RPC argument. as well as a pointer to

the argument itself (and similarly for the result). For
R.USERSPR.OC_NUM. the returned value is an unsigned long. so

callrpc() has xdr _u_long as its :first returned parameter. which says that

the result is of type unsigned long. and has &nusers as its second returned

parameter. which is a pointer to where the long result will be placed.

Since R.USER.SPROC_NUM takes no argument. the argument parameter of

callrpc() is xdr _votd.

After trying several times to deliver a message. if callrpc() gets no

answer. it returns with an error code. The delivery mechanism is UDP.

which stands for User Datagram Protocol. Methods for adjusting the

number of retries or for using a different protocol require the use of the

lower layer of the RPC library. discussed later in this document. The
remote server procedure corresponding to the above might look like this:

RPC/XDR TUTORIAL g_5

Introductory Example•

char•
ruer(lndata)

char •lndata:

etattc Int ruere:
I•

• code here to canput• the nunber of ueere
• cnt place ,...,It In variable nueere
•/

retum ((char •>ar-.-re):

It takes one argument. a pointer to the input of the remote procedure call
(ignored in the above example). and returns a pointer to the result. In the
current version of C. character pointers are the generic pointers. so both
the input argument and the returned value are cast to char•.

Normally. a server registers all of the RPC calls it plans to handle and then
goes into an infinite loop waiting to service requests. In this example. there
is only a single procedure to register. so the main body of the server would
look like this:

#Include <atdlo.l"C>
#lncludl <rpctNC/,,,..re.l"C>

char •nueer() :

11aln()
{

reglaterrpc(RS'EFCSffflj, ~. R.SER:FR:c_N..M. wr.
>Cdr_vold, >Cdr_'t_long):

8YC_run() : /• never returns •/
fprlntf(atderr, "Error: avc_rui returnedl\n"):
exlt(1):

9-6 CLIX SYSTEM GUIDE

.~.

Introductory Examples

The registerrpc() routine establishes what C procedure corresponds to
each RPC procedure number. The first three parameters. RUSERPROG.
RUSERSVERS. and RUSERSPROC_NUM are the program. version. and
procedure numbers of the remote procedure to be registered; nuser is the
name of the C procedure implementing it; and xdr _void and xdr _u_long

are the types of the input to and output from the procedure.

Only the UDP transport mechanism can use registerrpc(); thus. it is
always safe with calls generated by callrpc().

Q The UDP transport mechanism can only deal with arguments and results v less than BK bytes in length.

Assigning Program Numbers

Program numbers are assigned in groups of Ox20000000 (5'36.870.912)
according to the following chart:

0
20000000
40000000
60000000
80000000
AOOOOOOO
cooooooo
EOOOOOOO

lFFFFFFF
3FFFFFFF
5'FFFFFFF
7FFFFFFF
9FFFFFFF
BFFFFFFF
DFFFFFFF
FFFFFFFF

defined by Sun Microsystems
defined by user
transient
reserved
reserved
reserved
reserved
reserved

Sun Microsystems administers the first group of numbers. and the intent is

that they will be be identical across all systems and applications. If a cus­
tomer develops an application that might be of general interest. that appli­
cation should be given a number assigned by Sun from the first range. The
second group of numbers is reserved for specific customer applications.
This range is intended primarily for debugging new programs. The third
group is reserved for applications that generate program numbers dynami­
cally. The final groups are reserved for future use. and should not be used.

RPC/XDR TUTORIAL G-7

Introductory Example•

Passing Arbitrary Data Types

In the previous example. the RPC call passes a single unsigned long. RPC
can handle arbitrary data structures. regardless of different machines· byte
orders or structure layout conventions. by always converting them to a
network standard called eXtemal Data Representation (XDR) before send­
ing them over the wire. The process of converting from a particular
machine representation to XDR format is called serializing. and the reverse
process is called deserializing. The type :field parameters of callrpc() and
registerrpc() can be a built-in procedure like xdr_u_long() in the previ­
ous example or a user-supplied one. XDR has these built-in type routines:

xdr_int()
xdr_long()
xdr_short()

xdr u int()
xdr u long()
xdr_u_short()

xdr enum()
xdr -bool()
xdr string()

As an example of a user-de:fined type routine. if it was wished to send the
structure

etruct ei111ple {
int a:
llhort b:

} ei111ple:

callrpc() should be called as

ca II rpc(hoetncne, FRXH.M, VERSN.M, FRXM.M, xdr_a i111pl e. b i111pl e ...) :

where xdr_simple() is written as:

#include <rpc/rpc.h>

xdr_al111ple(xdrap, elnplep)
0 •xdrap:
atruct ainple •al111plep:

If (I xdr_I nt (xdrap, b l111pl ~>o))
return (e):

If (lxdr_llhort(xdrap, bl111pl~>b))
return (e):

return (1):

9-8 CLIX SYSTEM GUIDE

Introductory Examples

An XDR routine returns nonzero (true in the sense of C) if it completes
successfully. and zero otherwise. A complete description of XDR is in the
SDR Protocol Specification. so this section only gives a few examples of
XDR implementation. For details on obtaining a complete copy. call Inter­
graph Support.

In addition to the built-in primitives. there are also the prefabricated
building blocks:

xdr _arra.y()
xdr _reference()

xdr _bytes()
xdr _union()

To send a variable array of integers. they might be packaged as a structure

like this

atruct varlntarr {
Int *<Iota;
Int arrlnth;

} arr;

and make an RPC call such as

ca 11 rpc(hoetnane. FRXN.M, VERSN.M, FRXN.M, >Cdr_var I ntarr. llarr •••) ;

with xdr _ va.rintan{) defined as:

>Cdr_varlntarr(xdrap. varlntarr)
~ •>Cdrap;
atruct varlntarr -arrp;

>Cdr_array(>Cdrap. llarrp-:>data. llarrp->arrlnth. ~.
alzeof(lnt). >Cdr_lnt):

This routine takes as parameters the XDR handle. a pointer to the array. a
pointer to the size of the array. the maximum allowable array size. the size
of each array element. and an XDR routine for handling each array ele­

ment.

If the size of the array is known in advance. the following could also be

RPC/XDR TUTORIAL 9-9

Introductory Examples

used to send out an array of length SIZE:

Int I ntarr[SIZE] ;

>Cdr~lntarr(xdrap, f ntarr)
Q •>Cdrap;
Int I ntarr[] ;

Int I;

for (f •I; I <SIZE; I++) {
ff (l>Cdr~fnt(xdrap, l:fntarr[I]))

return (0):

return (1);

XOR always converts quantities to four-byte multiples when deserializing.
Thus. if either of the examples above involved characters instead of
integers. each character would occupy 32 bits. That is the reason for the
XOR routine :xdr_byt:es(). which is like :xdr_array() except that it packs
characters. It has four parameters which are the same as the first four
parameters of :xdr_array(). For null-terminated strings. there is also the
:xdr _string{) routine. which is the same as :xdr _byt:es() without the
length parameter. On serializing. it gets the string length from strlen()
and on deserializing. it creates a null-terminated string.

Here is a final example that calls the previously written :xdr _simple() as
well as the built-in functions :xdr_string() and :xdr_reference(). which
chases pointers:

0-10 CLIX SYSTEM GUIDE

etruct f inale~le {
char •string;
etruct •if9'>1• ••if9'>lep;

} f inale~le;

xdr_f inale~le(xdrep. finalp)
>IR •xdrsp;
etruct f inalex~le •finalp;

int i;

Introductory Examples

if (lxdr_string(xdrsp, tiinalp->etring, ~))
return {0);

if (lxdr_reference(xdrsp. tiinalp->ei19'>lep,
eizeof(etruct •if9'>l•). xdr_ei19'>le);

return (0);
return (1);

RPC/XDR TUTORIAL G-11

Lower Layers of RPC

In the examples given so far. RPC takes care of many details automati­
cally. This section shows how to change the defaults by using lower
layers of the RPC library. It is assumed that the reader is familiar with
sockets and the system calls for dealing with them.

More on the Server Side

A number of assumptions are built into registerrpc(). One is that the
UDP datagram protocol is being used. Another is that the user does not
want to do anything unusual while deserializing. since the deserialization
process happens automatically before the user"s server routine is called.
The server for the nuser() program shown below is written using a lower
layer of the RPC package. which does not make these assumptions.

#Include <.etdlo.tt>
#Include <rpc/rpc.tt>
#Inc I ude <rpcevc/rueera. tt>

Int nueer();

11aln()
{

S\ORn" •t ranep;

tranep • ~-create(~_M1'Sll<);
If (t ranep - NA.I.) {

}

fprlntf(atderr, "couldn't create an~ eerver\n");
e>elt(1);

pnap_lnlet(R.SERSl"tt:G. IUXRSv'ERS);
If (IBYC_reglater(tranep, R.SERSl"ft:G, IUXRSv'ERS, nueer.

}

IFFRm>_l.IP)) {
fprlntf(atderr, "couldn't register R5ER eervlce\n");
exlt(1);

ave_,,.,() ; /• never returne •/
fprlntf(atderr, "llhould never reach thl• polnt\n");

9-12 CLIX SYSTEM GUIDE

nueer(rqetp. tranp)
etruct evc_req •rqetp;
5\0fRT' •t ranep;

wmt~ long nueere:

•Itch (rqetp->rq_proc) {
coee NJL.l.FRX:

Lower Layers of RPC

If (levc_eendreply(tranep. xdr_votd, 0)) {
fprtntf(stderr. "couldn't reply to ff:c call\n"):
extt(1);

return;
caee R.SERSJRX N.M:

I• -
• code here to ~te the runber of ueere
• met put In variable nueere
•I
If (levc_eendreply(tranep. xdr_u_long. In.leers) {

fprintf(stderr. "couldn't reply to lf:c call\n"):
exlt(1);

return:
default:

evcerr_noproc(t ranep):
return:

First. the server gets a transport handle. which is used for sending out RPC

messages. :registerrpc() uses svcudp_create() to get a UDP handle. If a

reliable protocol is required. svctcp_create() should be called instead. If

the argument to svcudp_create() is RPC _ANYSOCK. the RPC library

creates a socket on which to send out RPC calls. Otherwise.

svcudp_create() expects its argument to be a valid socket number. If the

user specifies his own socket. it can be bound or unbound. If it is bound to

a port by the user. the port numbers of svcudp_create() and

clntudp_create() (the low-level client routine) must match.

RPC/XDR TUTORIAL g_13

Lower Layers of RPC

When the user specifies RPC_ANYSOCK for a socket or gives an unbound
socket. the system determines port numbers in the following way: when a
server starts. it advertises to a port mapper daemon on its local machine.
which picks a port number for the RPC procedure if the socket specified to
avcudp_create() is not already bound. When the clntudp_create() call
is made with an unbound socket. the system queries the port mapper on
the machine to which the call is being made and gets the appropriate port
number. If the port mapper is not running or has no port corresponding to
the RPC call. the RPC call fails. Users can make RPC calls to the port
mapper themselves. The appropriate procedure numbers are in the include
file <rpc/pmap_prot.h>.

After creating an SVCXPRT. the next step is to call pmap_unset() so that
if the nusers server crashed earlier. any previous trace of it is erased before
restarting. More precisely. pmap_unset() erases the entry for RUSERS
from the port mapper·s tables.

Finally. the program number for nusers is associated with the procedure
nuaer() . The final argument to avc_register{) is normally the protocol
being used which. in this case. is IPPROTO _UDP. Notice that unlike
registerrpc(). there are no XDR routines involved in the registration pro­
cess. Also. registration is done on the program rather than procedure level.
The user routine nuaer() must call and dispatch the appropriate XDR rou­
tines based on the procedure number. Note that two things are handled by
nuser() which are handled automatically by registerrpc(). The first is
that procedure NULLPROC (currently zero) returns with no arguments.
This can be used as a simple test for detecting if a remote program is run­
ning. Second. there is a check for invalid procedure numbers. If one is
detected. avcerr _noproc() is called to handle the error.
The user service routine serializes the results and returns them to the RPC
caller via avc_aendreply{). Its first parameter is the SVCXPRT handle.
the second is the XDR routine. and the third is a pointer to the data to be
returned. Not previously illustrated is how a server handles an RPC pro­
gram that passes data. As an example. a procedure RUSERSPROC_BOOL.
which has an argument nusers and returns TRUE or FALSE depending on
whether there are nusers logged on. can be added. It would look like this:

0-1' CLIX SYSTEM GUIDE

caee REiERSFfU:_BXl..: {
int bool;
w.t~ ,...rquery;

if (lavc_getarge(tranep, xdr_'L_int, anu.rquery) {
avcerr_decode(t ranap);

}

I•

return;

• code to eet rutera • nullber of ueera
•/

t f c rquery - rs)
bool • 1R£;

elee
bool • FALSE;

Lower Layers of RPC

if (lavc_eendreply(tranep, xdr_bool, lbool){
fprintf(stderr, "couldn't reply to~ call\n");
exit(1);

return;

The relevant routine is svc_getargs(). which takes as arguments an

SVCXPRT handle. the XDR routine. and a pointer to where the input is to

be placed.

Memory Allocation with XOR

XDR routines not only do input and output; they also allocate memory.

This is why the second parameter of xdr_array() is a pointer to an array.

rather than the array itself. If it is NULL. xdr_array() allocates space

for the array and returns a pointer to it. putting the size of the array in the

third argument. As an example. consider the following XDR routine

xdr_chararrl(). which deals with a fixed array of bytes with length

SIZE:

RPC/XDR TUTORIAL 0-15

Lower Layers of RPC

xdr_chararr1 (xdrap, chararr)
)(R •xdrap;
char chararr[];

char •p;
Int I.,;

p • chararr;
,., • SIZE;
return (xdr_bytea(xdrep, Ip, l:len, SIZE));

It might be called from a server like this.

char chararr[SIZE];

BYC_getarge(tranep, xdr_chararr1, chararr);

where chararr has already allocated space. If XDR was wanted to do the
allocation. this routine would have to be rewritten in the following way:

>Cdr_chararr2(xdrap, chararrp)
~ •xdrap:
char • -chararrp;

Int I.,;

,., •SIZE;
return (>Cdr_bytea(xdrep, charrarrp, 1:1.,, SIZE));

The RPC call might then look like this:

char *Orrptr;

arrptr • N.l.L.;
BYC_getarge(trc:np, >Cdr_chararr2, lorrptr);
/•

• uee the reeult here
•/

wc_f reearge(xdrap, >Cdr_chararr2, lorrpt r);

9-16 CLIX SYSTEM GUIDE

Lower Layers of RPC

After using the character array. it can be freed with svc_freeargs(). In

the routine xdr_finalexample() given earlier. if fi.nalp->string was

NULL in the call

svc_getargs(tranap. xdr_finalex~le. tiinalp):

then

svc_freeargs(xdrep, xdr_f lnale~le, tilnalp):

frees the array allocated to hold fi.nalp-> string; otherwise. it frees nothing.

The same is true for fi.nalp->simplep.

To summarize. each XDR routine is responsible for serializing. deserializ­

ing. and allocating memory. When an XDR routine is called from

callrpc(). the serializing part is used. When called from svc _getargs().

the deserializer is used. When called from svc_freeargs(). the memory

deallocator is used. When building simple examples like those in this sec­

tion. a user does not have to worry about the three modes.

The Calling Side

When callrpc() is used. there is no control over the RPC delivery mechan­

ism or the socket used to transport the data. To illustrate the layer of RPC

that allows adjustment of these parameters. consider the following code to

call the nusers service:

#Include <.etdlo.h>
#Inc I ude <rpc/rpc. h>
#Inc I ude <rpctNC/rueere. h>
#Inc I ude <eye/socket. h>
#Inc I ude <.eye/t hne. h>
#Include <netdb.h>

ma In(argc, argv)
Int argc:
char uorgv;

etruct hoetent •hp:
et ruct t lmeva I pert ry_t lmeout, tot a l_t lmeout;
etruct sockoddr_in eerver_addr;
Int addrlen, sock• IR:_IHrSD<:
r~ieter a.IENT *Cl 1.,t;

RPC/XDR TUTORIAL 0-17

Lower Layers of RPC

.,... clnl_•tat clnt__•tat:
w.lgned long ,..:

If (af"9C < 2) {

}

fprlntf(etderr. "ueage: ,.,..,.. hoetnc111e\n"):
exlt(-1):

If ((hp• gethoetbyncme(argv(1])) - Nil) {

}

fprintf(etderr. "cannot get addr for "Xe"\n". argv[1]):
exit(-1):

pertry_thneout.tv_eec • J;
pert ry_t lmeout. tv_ueec • 8;
addrlen • •izeof(etruct eockaddr_ln):
bcopy(hp->h_addr, (caddr_t)berver_addr .ef 'Laddr, hp->h_length):
•rwr_addr.•in_fant ly • AF_It£T;
•rver_addr. •I 'l..,POrt • 8:
if ((client• clntudp_create(berver_addr, R5ERSJ'f(X;,

fUBSYERS, pert ry_t imeout, bock)) - Nil) {
perror("clntudp_create");
exit(-1):

}
total_tflleOUt. tv_eec • 28:
total thneout.tv ueec • 8;
clnt__8tat • clnLcal l(cl lent, R.5ERSfR:C_N.M, >edr_void, 8,

xdr_'Llong, a:nuee,.., total_t imeout);
If (c I nl_•tat I• ~_s..a:E$) {

clnt_perror(client, "rpc"):
exit(-1);

}
clnt__delltroy(client):

The low-level version of callrpc() is clnt_call(). It takes a CLIENT
pointer rather than a host name. The parameters to clnt_call() are a ~
CLIENT pointer. the procedure number. the XDR routine for serializing
the argument. a pointer to the argument. the XDR routine for deserializing
the return value. a pointer to where the return value will be placed. and
the time in seconds to wait for a reply.

9-18 CLIX SYSTEM GUIDE

Lower Layers of RPC

The CLIENT pointer is encoded with the transport mechanism. callrpc()

uses UDP. Thus. it calls clntudp_create() to get a CLIENT pointer. To

get TCP (Transmission Control Protocol). clnttcp_create() would be

used.

The parameters to clntudp_create() are the server address. the length of

the server address. the program number. the version number. a timeout

value (between tries). and a pointer to a socket. The final argument to

clnt_call() is the total time to wait for a response. Thus. the number of

tries is the clnt_call() timeout divided by the clntudp_create() timeout.

One thing should be noted when using the clnt_destroy() call: it deallo­

cates any space associated with the CLIENT handle. but it does not close

the socket associated with it. which was passed as an argument to

clntudp_create() . The reason is that. if there are multiple client handles

using the same socket. it is possible to close one handle without destroying

the socket that other handles are using.

To make a stream connection. the call to clntudp_create() is replaced

with a call to clnttcp_create().

c Int tcp_create(berver_oddr, prognu1, versu1, l:eocket, I npute I ze, output­

e I ze);

There is no timeout argument; instead. the receive and send bu:ffer sizes
must be specified. When the clnttcp_create() call is made. a TCP connec­

tion is established. All RPC calls using that CLIENT handle would use

this connection. The server side of an RPC call using TCP has
svcudp_create() replaced by svctcp_create() .

RPC/XDR TUTORIAL G-19

Other RPC Features

Select on the Server Side

Suppose a process is processing RPC requests while performing some other
activity. If the other activity involves periodically updating a data struc­
ture. the process can set an alarm signal before calling svc_run(). How­
ever. if the other activity involves waiting for a file descriptor. the
svc_run() call will not work. The code for svc_run() is as follows:

void
8YC_rui()
{

int readfdl;

for(::) {
reodf de • 8YC f de;
•itch (eelect(32. ~readfde. N.l..l., N.l..l.. N.l..l.)) {

caee -1:

caee e:

if (ermo - EINTR)
oonti,..;

perror("ratat: eelect");
return;

break;
default:

avc_getreq(reodfde);

D-20 CLIX SYSTEM GUIDE

Other RPC Features

svc_run() can be bypassed. and svc_getreq() called directly. To do this.

the file descriptors of the socket(s) associated with the programs which are

being waited for must be known. Thus. users can write their own

select(2B)s which wait on both the RPC socket and their own descriptors.

Broadcast RPC

The portmap and RPC protocols implement broadcast RPC. Here are the

main differences between broadcast RPC and normal RPC calls:

1. Normal RPC expects one answer. whereas broadcast RPC expects

many answers (one or more answer from each responding

machine).

2. Broadcast RPC can only be supported by packet-oriented (connec­

tionless) transport protocols like UDP/IP.

3. The implementation of broadcast RPC treats all unsuccessful

responses as garbage by filtering them out. Thus. if there is a ver­

sion mismatch between the broadcaster and a remote service. the

user of broadcast RPC never knows.

4. All broadcast messages are sent to the portmap port. Thus. only

services that register themselves with their portmapper are accessi­

ble via the broadcast RPC mechanism.

Broadcast RPC Synopsis

#inc I ude <rpc/pnap_c Int. It>

er.n clnt_atat clnt_atat;

clnt_etat •
cl nt_broadcoet(prog, vere, proc, >earge, argep, xreeul ta, reeul tap, eachrnul t)

'Lieng prog;

u_long vere;

~ . ..Jong proc;
>edrproc_t >earge;

caddr_t argep;

>edrproc_t xreeulta;

caddr_t reeul tap;

bool_t (-.achreeu It)();

/• progrcn l'Mlber •/

/• version l'Mlber •/

/• procedure l'Mlber •/

/• >edr routine for arge •/

/• pointer to arge •/

/• >edr routine for reeulta •/

/• pointer to reeulta •/

/• call with each reeult obtained •/

RPC/XDR TUTORIAL 9-21

Other RPC Features

The procedure each.result() is called each time a valid result is obtained.
It returns a boolean that indicates whether the client wants more
responses.

bool_t done:

done•
eachreallt(.-..,tt•• raddr)
oaddr_t ,...,, tap;
etruct eockaddr_ln •raddr; /• oddr ... of na:hlne that eent reaponee•/

If done is TRUE. broadcasting stops and clnt_broadcast() returns suc­
cessfully. Otherwise. the routine waits for another response. The request
is rebroadcast after a few seconds of waiting. If no responses come back.
the routine returns with RPC_TIMEOOUT. To interpret clnt_stat errors.
feed the error code to clnt_perrno() .

Batching

The RPC architecture is designed so that clients send a call message and .~
wait for servers to reply that the call succeeded. This implies that clients
do not compute while servers are processing a call. This is inefficient if the
client does not want or need an acknowledgement for every message sent.
It is possible for clients to continue computing while waiting for a
response. using RPC batch facilities.

RPC messages can be placed in a ""pipeline .. of calls to a desired server; this
is called batching. Batching assumes the following:

1. Each RPC call in the pipeline requires no response from the server.
and the server does not send a response message.

2. The pipeline of calls is transported on a reliable byte stream tran­
sport such as TCP/IP.

Since the server does not respond to every call. the client can generate new
calls in parallel with the server executing previous calls. Furthermore. the
TCP/IP implementation can buffer many call messages and send them to ~
the server in one write(2) system call. This overlapped execution greatly
decreases the interprocess communication overhead of the client and server
processes and the total elapsed time of a series of calls.

0-22 CLIX SYSTEM GUIDE

Other RPC Features

Since the batched calls are buffered. the client should eventually perform a

legitimate call in order to flush the pipeline.

A contrived example of batching follows. Assume a string rendering ser­

vice (like a window system) has two similar calls: one renders a string and

returns void results. while the other renders a string and remains silent.

The service (using the TCP/IP transport) may look like the following:

#include <atdio.tt>
#inc I ude <rpc/rpc. tt>
#inc I ude <rpcavc/wi ndowa. tt>

void windowdiepatch(};

r1ain(}
{

S\OfftT •t r<JMp;

tr<JMp - evctcp_create(~_#lY'SXJ(. e. 8};

if (tr<JMp - N.ll}{
fprintf(etderr. "couldn"t create an~ aerver\n"};

exit(1);
}
pnap_&M18et(WI~. WINXYMRS);
if (levc_regieter(tr<JMp. WINXMFR:G. WINXYMRS. windowdtepatch.

lfflR)lO ltP)) {
fprlntf(etderr. "couldn"t register WIND aervtce\n");

exit(1);
}
evc_n.ri(); /• never returns •/
fprintf(stderr. "should never reach this point\n");

RPC/XDR TUTORIAL 0-23

Other R PC Features

void
wi ndowd I epatch(rqetp, t ranep)

etruct avc_req •rqetp;
9tOfRf •t ranep:

char •• • N.l.L:

•itch (rqetp->r<LJ>roc) {
caee ~:

if (levc_eendreply(tranep, >Cdr_void, e)) {
fprintf(etderr, "couldn't reply to fflC call\n"):
e>cit(1);

return:
caee RaaRSTRitG:

If (lavc_getarge(tranep, xdr_wrapetring, b)) {
fprintf{etderr, "couldn't decode argunente\n"):
8Yeerr_decode(tranep); /• tel I caller he acrewed up •/
break;

}
/•

• cal I here to to render the etring •
•I
if (levc_eendreply(tranep, xdr_void, N.l.L)) {

fprlntf(etderr, "couldn't reply to fflC call\n"):
e>cit(1);

break;

caee RaaRSTROO 8'10-E>:
if (levc_geta7ge(tranep, xdr_wrapetring, b)) {

fprlntf(etderr, "couldn't decode argunente\n"):
/•

}
/•

• • are ef l.,t In the face of protocol errore
•/

break:

• cal I here to to render the etrlng •·
• but Mndl no replyl
•/

break;
default:

wcerr_naproc(t ranep);
return;

0-24 CLIX SYSTEM GUIDE

/•
• now free string al located while decoding argunenta

•/
evc_freearga(tranap. xdr_wrapetring. b);

Other RPC Features

Of course. the service could have one procedure that takes the string and a

boolean to indicate whether the procedure should respond.

In order for a client to take advantage of batching. the client must perform

RPC calls on a TCP-based transport and the actual calls must have the fol­

lowing attributes:

1. The result's XDR routine must be zero (NULL).

2. The RPC calr s timeout must be zero.

Here is an example of a client that uses batching to render a bunch of

strings: the batching is flushed when the client gets a null string:

#include <atdio.tt>
#include <rpc/rpc.tt>
#inc I ude <rpcsvc/wl ndan. tt>
#inc I ude <.eys/eocket. tt>
#Inc I ude <.eys/t ime. tt>
#Inc I ude <netdb. tt>

ma In(ar9C. argv)
int ar9C;
char uorgv;

et ruct hoetent •hp;
etruct tirMYal pertry_t1meout. total_t1meout;

etruct 80Ckoddr_in •rver_addr;
int addrlen. eock • fR:_~;
reg1eter a.JENT *Cl Jent;

RPC/XDR TUTORIAL 0-25

Other RPC Feature•

.,.,. clnt stat clnt etat;
char buf[1eee]; -
char •• • buf;

/•
• lnltlal ae In excnple 3.3
•/

If ((cl lent• clnttcp_create(berver_addr, WINXMFR:G,
WINDWERS, bock, 8, 8)) - N.ll) {
perror("clnttcp_create");
exlt(-1);

}
total tllleOUt.tv eec • 8;
total-t In.out. tv-ueec • 8;
whl le-(ecanf ("Xe", •) I• BF) {

}

/•

clnLetat • clnt_call(cllent, RENlERSTRllG_M10E>,
>Gdr_wrapetrlng, b, N.ll, N.ll, total_tlmeout);

If (clnt_etat I• fR:_s.a:E$) {
clnt_perror(cl lent, "batched rpc");
exlt(-1);

• now f IUllh the pipe I lne
•I

total tln.out.tv eec • 28;
clnt_8tat • clnLcal l(cl lent, NAJJftX,

>Gdr_vold, N.l..L, >Gdr_vold, N.ll, total_t tmeout);
If (c I nt_etat I• fR:_s.a:E$) {

clnt__perror(cllent, "rpc");
exlt(-1);

clnt_deetroy(cllent);

Since the server sends no message. the clients cannot be notified of any of
the failures that may occur. Therefore. clients are on their own when it
comes to handling errors.

9-26 CLIX SYSTEM GUIDE

Other RPC Features

The above example was completed to render all of the (2000) lines in the

file /etc/term.cap. The rendering service did nothing but throw the lines

away. The example was run in the following four configurations:

1. Machine to itself. regular RPC

2. Machine to itself. batched RPC

3. Machine to another. regular RPC

4. Machine to another. batched RPC

The results are as follows:

1. 50 seconds

2. 16 seconds

3. 52 seconds

4. 10 seconds

Running fscanf(3S) on /etc/term.cap only requires six seconds. These

timings show the advantage of protocols that allow for overlapped execu­

tion. though these protocols are often hard to design.

Authentication

In the examples presented so far. the caller never identified itself to the

server. and the server never required an ID from the caller. Clearly. some

network services. such as a network file system. require stronger security

measures than those which have been presented so far.

In reality. every RPC call is authenticated by the RPC package on the

server. and similarly. the RPC client package generates and sends authenti­

cation parameters. Just as different transports (TCP/IP or UDP/IP) can be

used when creating RPC clients and servers. different forms of authentica­

tion can be associated with RPC clients; the default authentication type

used as a default is type none.

The authentication subsystem of the RPC package is open ended. That is.

numerous types of authentication are easy to support. However. this sec­

tion deals only with UNIX-type authentication. which besides none. is the

only supported type.

RPC/XDR TUTORIAL G-27

Other R PC Features

The Client Side

When a caller creates a new RPC client handle as in the following:
clnt • clntudp_create(addreaa, prognun, vertnn, waft, eockp)

the appropriate transport instance defaults the associate authentication
handle to be the following:

clnt->cl_auth • authnane_create();

The RPC client can choose to use UNIX-style authentication by setting
clnt->cl_auth after creating the RPC client handle:

clnt->cl_auth • authuii~create_default();

This causes each RPC call associated with clnt to carry with it the follow­
ing authentication credentials structure:

/•
• lNIX etyle credential•.
•/

•truct authuil>tJ>Ome {
'l_long

} :

char
Int
Int
'l_fnt
Int

aup_tlme:/• credential• creation time •/
*<1Up_mach11ane;/• hoet ncne of c 11 ent much i ne •/
aup_uld;/• cll.,t'• lNIX effective UID •/
aup..Jlld;/• cl f.,t '• current lNIX group ID •/
aup_I.,;/• the element length of aup_gids array •/
*<IUp..Jlide;/• array of groups to which ueer belongs •/

These :fields are set by authunix_create_default() by invoking the
appropriate system calls.

Since the RPC user created this new style of authentication. he is responsi­
ble for destroying it with:

auth_dnt roy(c I nt->c l_auth);

The Server Side

It is more difficult for service implementors dealing with authentication
issues since the RPC package passes the service dispatch routine a request
that has an arbitrary authentication style associated with it. Consider the
:fields of a request handle passed to a service dispatch routine:

0-28 CLIX SYSTEM GUIDE

Other RPC Features

/•
• M ff:JC Service request

•/
struct svc_req {

u_long rq_prog; /• eervlce progrcn runber •/

'Llong rct_vers; /• eervlce protocol version rurber•/

'LI ong rq_proc; /• the dn l red procedure runber•/

et ruct opaque_auth rct_cred; /• ra11 credent la I• frcn the "wt re" •/

coddr_t rct_clntcred; /• read only, cooked credentials•/

} ;

The rq_cred is mostly opaque except for one field of interest: the style of

authentication credentials:

/•
•Authentication info . ..,_tly opaque to the progrCJ1m11r.

•/
atruct opaque_auth {

} ;

...n_t
coddr_t
'Lint

oa_flavor;
oa_boee;
oa_length;

/• style of credential• •/

/• addreae of more auth etuf f •/

/• not to exceed ~_NTH_EM'ES •/

The RPC package guarantees the following to the service dispatch routine:

1. That the request"s rq_cred is well formed. Thus. the service imple­

mentor may inspect the request"s rq_cred.oa_ftavor to determine

which style of authentication the caller used. The service imple­

mentor may also wish to inspect the other fields of rq_cred if the

style is not one of the styles supported by the RPC package.

2. That the request"s rq_clntcred field is either NULL or points to a

well formed structure that corresponds to a supported style of

authentication credentials. As only UNIX style is currently sup­

ported. rq_clntcred could be cast to a pointer to an

authunix_parms structure. H rq_clntcred is NULL. the service

implementor may wish to inspect the other (opaque) fields of

rq_cred in case the service knows about a new type of authentica­

tion that the RPC package does not know about.

RPC/XDR TUTORIAL 9-2Q

Other RPC Feature•

The remote user"s service example can be extended ~ that it computes
results for all users except UID 16:

,.,..r(rqetp, trcq>)
•truct 8VC_r.q •rqmtp:
9tOFRT •traMp:

•truct auttudx_pa1118 *\l'tl>{_cred:
Int uld;
WW 19"9d I ong ,.,..,..

/•
• w don't care about authentication for the ool I procedure
•/

If (rq11tp->ntJ>roc - N.llfRX:) {

/•

If (18VC_Mndreply(tran.p, >cdr_vold, e)) {
fprlntf(•tderr, "couldn't reply to~ call\n"):
exlt(1):

return;

• na. get the uld
•/

•Itch (rq11tp->rq_cred.oa_flavor) {
COM NTH l.NIX:

unl>{_cred • (•truct auttu"tl~_pcar• •) rqatp->rq_clntcred;
uld • unl>{_cred->aup_uld;
break;

COM lt.llH_NIJ.:
default:

~rr_weakauth(tranep):
return;

}
•Itch (rcpatp->ntJ>roc) {
COM R.EfRSFfO::_N..M:

/•
• llKlke .ure the cal l•r I• al low to cal I thl• procedure.
•/
If (uld - 18) {

~rr_11Y9tnerr(t ranep);
return:

}
/•

0-30 CLIX SYSTEM GUIDE

Other RPC Features

• code here to ~te the l'Mlber of ueera
• met put In variable ,...ra
•I
If (lavc_eendrepty(traMp, >Cdr_u_long, an.era) {

fprlntf(etderr, "couldn't reply to ff:ac call\n");
exlt(1);

return;
default:

avcerr_noproc(t ranep);
return:

contl

A few things should be noted here. First. it is customary not to check the

authentication parameters associated with the NULLPROC (procedure

number zero). Second, if the authentication parameter's type is not suit­

able for a particular user's service. svcerr_ weakauth() should be called.

Finally. the service protocol should return status for access denied; in the

case of the above example, the protocol does not have such a status. so the

service primitive svcerr _systemerr() is called instead.

The last point underscores the relation between the RPC authentication

package and the services; RPC deals only with authentication and not with

individual services' access control. The services must implement their own

access control policies and reflect these policies as return statuses in their

protocols.

Using inetd

Some systems have a utility daemon named inetd.(1M) that simplifies the

administration of RPC servers by controlling them based on an input con­

trol file.

RPC/XDR TUTORIAL G-31

Other R PC Features

If a server is to be started by inetd(lM). the only difference from the
usual code is that svcudp_create() should be called as

t r<Jnllf> • 8YCUdp_create(0):

since inetd(lM) passes a socket as file descriptor 0. Also, svc_register()
should be called as

tNC_reglater(FRXN.M, VERN.M, eervloe, trCJnllf). 8);

with the final ilag as 0, since the program would already be registered by
inetd(lM). Remember that if he wishes to exit from the server process
and return control to inetd(lM). the user must explicitly exit. since
svc run() never returns.

The format of entries in /etc/servers for RPC services is as follows:

rpc udp server program version

Server is the C code implementing the server and program and version are
the program and version numbers of the service. The key word udp can be
replaced by tcp for TCP-based RPC services.

H the same program handles multiple versions, the version number can be
a range. as in this example:

rpc udp /usr/etc/rstatd 1000011-2

D-32 CLIX SYSTEM GUIDE

More Examples

Versions

By convention. the first version number of program FOO is
FOOVERS_ORIG and the most recent version is FOOVERS. Suppose there

is a new version of the user program that returns an unsigned short rather

than a long. If we name this version RUSERSVERS_SHORT. a server that

wants to support both versions would do a double register.

if (tsvc_reglster(tranep, ~. RJSER)VERS_CJUG, nueer,

IFFRm>_ro:>)) {
fprintf(stderr, "couldn't register R.5ER aervlce\n");

exlt(1);

if (tsvc_reglster(tranep, ~. RJSER)VERS_9im', nueer,

IFFRJTO_ro:>)) {
fprlntf(stderr, "couldn't register R.5ER aervlce\n");

exlt(1);

Both versions can be handled by the same C procedure:

nueer(rqatp, tranp)
etruct eYC_req •rqatp;
~ •tranep;

..-. I gned I ong nueere;

..-.lgned llhort nueers2

•Itch (rqatp->ruroc) {
coae N..U.FRX::

if (lsvc_aendreply(tranep, >Cdr_void, e)) {
fprlntf(stderr, "couldn't reply to ffC call\n");
exit(1);

return;
coae R.JSER:fftX N.M:

/• -
• code here to ~te the runber of uaer•

RPC/XDR TUTORIAL 0-33

More Example•

TCP

• cni put In variable ...,..,..
•/

..... rd ,...
If (rqatp->rq_ve,.. - fUE&4ERS_CRIG)

•I•

If (law_eendreply(tranmp, xdr_u_long, lnueera) {
fprlntf(atderr, "couldn't reply to f'f:ic cal 1\n");
exlt(1);

If (law_eendreply(tranmp, xdr_~llhort, lnueera2) {
fprlntf(atderr, "couldn't reply to f'f:ic call\n");
exlt(1);

return:
default:

aYCerLnoproc(t ranmp);
return;

Here is an example that is essentially rcp(l). The initiator of the RPC
client call takes its standard input and sends it to the server. which prints
it on standard output. The RPC call uses TCP. This also illustrates an
XOR procedure that behaves differently on serialization than on deseriali­
zation.

9-34 CLIX SYSTEM GUIDE

More Example•

/•
• The xdr routine:
•
• on decode, read fra1 wt re, write onto fp
• on encode, read fra1 fp, write onto wt,..
•/

#lnclude<atdio.tl>
#include <rpc/rpc.tl>

xdr_rcp(xdra, fp)
>CR •xdrs:
f'ILE •fp;

uiai9'*1 long size:
char buf[~ ~]. •p:

if (xdra->tc_op - >CR_~/• nothing to free•/
return 1:

while (1) {
if (xdrs->tc_op - >CR_ENXXE) {

if ((size• fread (buf, aizeof(char), ~ ~. fp))

p - buf;

- e '* ferror(fp)) {
fprintf(stderr, "couldn't fread\n"):
exit(1):

if (lxdr_bytea(xdrs, ap, blze, ~ ~))
return e:

if (size - e)
return 1:

if (xdra->tc_op - >CR_CBXDE) {
if (fwrite(buf, slzeof(char). size. fp) I• size) {

fprintf(atderr, "couldn't fwrite\n"):
exit(1):

RPC/XDR TUTORIAL G-35

More Example•

I•
• The eender rout I.,..
•/

#lnclude<atdio.tt>
#Include <netdb.tt>
#Include <rpc/rpc.tt>
#Inc I ude <.ay9/eocket . tt>
#Include <aye.It i•.tt>

11a In(argc, argv)
int argc;
char **Orgv;

Int err;

if (argc < 2) {

}

fprintf(atderr, "ueage: "8 aerver-nc:ne\n", argv[e]);
exit(-1);

if ((err • ca II rpctcp(argv[1] , R:fflfm, fUIFRX::_FP, RP.'ERS,
>Gdr_rcp, atdln, >Gdr_vold, e) ·- e)) {

clnt_perrno(err);
fprintf(atderr, " couldn't make R:ic call\n");
exit(1);

cal I rpctcp(hoet, progru1, procnn, ver9'UI, lnproc, in, outproc, out)
char *hoet, •in, *OUt;
>Gdrproc_t lnproc, outproc;

atruct 80Ckoddr_ln aerver_addr;
Int 80Cket • R:ic_IHtSXJ<;
....,. clnt_atat clnt_atat;
atruct hoetent *hp;
register CLIENT' *Cll.,t;
atruct tl119¥GI total_tlllllOUt;

If ((hp • gethoetbyncne(hoet)) - N.l.l.) {
fprlntf(atderr, "cannot get addr for ""8'\n", hoet);
exit(-1);

}
bcopy(hp->h_addr, (caddr_t)berver_addr .aln_addr, hp->h_length);
•rwr_addr.aln_fcni ly • lf'_lt£T;
•rver_addr.aln_port • I;
If ((cl 1.,t • clnttcp_create(berver_addr, progru1,

w,...., bocket, ElFSIZ, ElFSIZ)) - N.l.l.) {
perror("rpctcp_create");

9-36 CLIX SYSTEM GUIDE

exit(-1):

total_t lmeout. tv_eec • 28;
total tlmeout.tv ueec - e:
clnLStat • clnLcal I (cl lent, procnn, lnproc, in,

outproc, out, total_timeout);
clnt_deatroy(cl ier1t)
return (int)clnt_dtat:

More Examples

RPC/XDR TUTORIAL 9-37

More Example•

I • The receiving routlna •/
#include <atdlo.tl>
#Inc I ude <rpo/rpc. tt>

11aln()
{

}

regl•t•r 9tOFRT •tranep;
If ((trcnp • ~tcp_create(FK_MWSXJ<, 1824, 1824)) - N.l.l.) {

fprlntf(·~tcp_create: error\n");
exlt(1);

}
Jna1>_w.et(Rfflm, RFVERS);
If (l~_regleter(tranep, Rfflm, RFVERS, rcp_eervioe, lfflR1TO_TCP)) {

fprintf(etderr, ·~_register: error\n");
exit(1);

}
~_rvt(); /• never retume •/
fprlntf(etderr, ·~_n.. 8hould never return\n");

rcp_eervlce(rqetp, tranep)
regleter etruct ~-req •rqetp:
regl•t•r S\OflRr •tranep;

•Itch (rqet1>9>rq_proc) {
caee N.l.lftU::

if c~_eMdreply(tranep. >tdr_vold, e) - e) {
fprlntf(•tderr, "err: rcp_eervlce");
exlt(1);

return;
caee RFFRx: FP:

If (l~Jtarge(tranep, >tdr_rcp, etdout)) {
evcerr_deoode(t ranep);
return;

}
If (l~_eMdreply(tranep, >«fr_YOfd, 8}) {

fprlntf(etderr, "can't reply\n");
return;

}
exit(e);

default:
evcerr_noproc(t ranep) ;
return;

9-38 CLIX SYSTEM GUIDE

More Examples

Callback Procedures

Occasionally. it is useful to have a server become a client and make an RPC

call back to the proce&"S which is its client. An example is remote debug­

ging. where the client is a window system program. and the server is a

debugger running on the remote machine. Most of the time. the user clicks

a mouse button at the debugging window. which converts this to a

debugger command. and then makes an RPC call to the server (where the

debugger is actually running). telling it to execute that command. How­

ever. when the debugger hits a break point. the roles are reversed and the

debugger wants to make an RPC call to the window program. so that it can

inform the user that a break point has been reached.

In order to perform an RPC callback. a program number to make the RPC

call on is needed. Since this will be a dynamically generated program

number. it should be in the transient range. Ox40000000 - OxSFFFFFFF.

The routine gettransient() returns a valid program number in the tran­

sient range and registers it with the portmapper. It only talks to the port­

mapper running on the same machine as the gettransient() routine itself.

The call to pmap_aet() is a test and set operation in that it indivisibly

tests whether a program number has already been registered and if it has

not. reserves it. On return. the soclcp argument will contain a socket that

can be used as the argument to an svcudp_create() or svctcp_create()

call.

#include <stdio.tt>
#inc I ude <rpc/ rpc. tt>
#inc I ude <sye/eocket. tt>

gettranai.,t{proto, vera, eoclcp)
int •eoclcp;

atatic int progru1 • •4Elaaeaae;
int •· 1.,, eocktype;
atruct eockoddr in addr;
811fitch(proto) {-

oaee IFFRJTO_UP:
eocktype • SD<_JXWM;
break;

oaee IFFRJTO_ltP:

RPC/XDR TUTORIAL 0-30

More Examples

default:

}

eocktype • SXl<_~:
break;

fprlntf(atderr. "U"lknown protocol type\n");
return 8;

If (•aockp-R:c_~) {

}
.1 ..

If ((• • eocket(AF_I~. eocktype. 8)) < 8) {
perror("eocket");
return (0);

• - •eockp;
addr. •I rt_addr • ._addr - 8;
addr.•ln_fcnl ly • AF_I~:
addr.•ln_J>Ort • 8;
len • •fzeof(addr):
• nay be al ready bou'Mt. eo c1on•t check for err •/

bind(•. laddr. len);
If (geteoclcncne(•. laddr. al en)< e) {

perror("geteoclcncne");
return (8):

}
whll• (ptq>_•t(progrun++. V.r8. proto. addr .•l'L,POrt) - e)

contl,..;
return (pf'C91'A-1);

The following pair of programs illustrates how to use the gettransient()
routine. The client makes an RPC call to the server. passing it a transient
program number. Then. the client waits to receive a callback from the
server at that program number. The server registers the program EXAM­
PLEPROG so that it can receive the RPC call informing it of the callback
program number. Then. at some random time (on receiving a SIGALRM
signal in this example). it sends a callback RPC call. using the program
number it received earlier.

9-40 CLIX SYSTEM GUIDE

/•
• client
•/

#include <stdio.ti>
#inc I ude <rpc/ rpc. ti>

int co 11 bock():
char hoetnane[256]:

11ain(orgc. orgv)
char ••orgy;

int x. one. •:
S\OflRT •xprt;

gethoetnane(hoetnane. a i zeof (hoetnane));

• - fR: IM"Sll<;
x • gettronaient(lffR110_l.D>. 1. b);

fprintf(atderr. "cl lent get• prognun Xd\n". x);

if ((xprt • 8\fCUdp_creote(s)) - NA..l.) {
fprintf(stderr. "rpc_eerver: avcudp_creote\n"):

exit(1);
}
(void)llYC_regiater(xprt. x. 1. callback. e);

More Examples

one • col I rpc(hoetnane. ~. EXM>l...EFRX_CALl.BfO(.

EX.V>l£VERS. >Cdr_int. b. >Cdr_void. e);
if (one I• e) {

}

fprintf(atderr. "coll:"):
clnt_permo(ona);
fprintf(atderr. "\n");

llYC_rui() :
fprintf(atderr. "Error: SYC_rui shouldn't hoY9 returned\n"):

col lbock(rqstp. tronep)
register atruct SYC_req •rqstp:
register S\OflRT •tronap;

•itch (rqstp->rq,J>roc) {
caae e:

if (llYC_eendreply{tronap. >Cdr_void, 8) - FALSE) {
fprintf(etderr. "err: rueered\n");

}
exit(e):

exit(1);

RPC/XDR TUTORIAL 0-41

More Example•

CCl89 1:
If (levc_getarga(tranep, >Cdr_vold, 8)) {

8¥Cerr:_decode(t ranep):
exlt(1):

}
fprlntf(etderr, "client got callback\n");
If (evc_eendreply(tranep, >Cdr_vold, 8) - FALSE) {

fprlntf(etderr, "err: n..er9d");
exlt(1);

D-•2 CLIX SYSTEM GUIDE

/•
• eerwr
•/

#include <.etdio.tt>
#include <rpc/rpc.tt>
#Include <aya/algnal .tt>

char *getnewprog();
char hoetnane[Z56];
int docoll back();

More Examples

1 nt snn: /•progrcn l'Ullber for co II back routine •/

nKJ in(argc, argv)
char • *Orgv:

gethoetnane(hoetnane. a i :zeof (hoetnane));
regieterrpc(~. EX#.fll.EfRXLCAl..l8tO<, ~.

99tnewprog, >Cdr_lnt, >Cdr_vold);
fprintf(atderr, "eerwr going into 8¥C_rui\n"):

alam{10);
aignal(SI~. docollback);
8¥C_rui();
fprintf(atderr, "Error: 8¥C_rui llhouldn't have returned\n"):

char•
99tnewprog(~)

char·~;

pnut• •(int•)~;
return NJU.;

docol lback()
{

int one;

one - col I rpc(hoetnane, pnn. 1, 1, >Cdr_void, •• >Cdr_void, e):
if (one I• 0) {

fprintf(etderr, "eerwr: "):
c I nt_permo(one);
fprintf(etderr, "\n"):

RPC/XDR TUTORIAL 0-43

Append"uc 1: Synopsis of RPC Routines

auth_destroy()

void
autti_deetroy(auth)

JtJTH *<JUth:

A macro that destroys the authentication information associated with auth.
Destruction usually involves deallocation of private data structures. The
use of auth is undefined after calling auth_destroy().

authnone_create()

JtJTH •
authnone_create()

Creates and returns an RPC authentication handle that passes no usable
authentication information with each remote procedure call.

authunix_create()

NrH •
auttuiix_create(hoet, uid, gid, len, aup_gids)

char $hoet;
int uid, gid, 1.,, *OUp_gids;

Creates and returns an RPC authentication handle that contains UNIX
authentication information. The parameter host is the name of the
machine on which the information was created; uid is the user's user ID;
gid is the user's current group ID; len and aup_gids refer to a counted
array of groups to which the user belongs.

authunix_create_default()

JtJTH •
auttui I >t_create_def au I t ()

9-44 CLIX SYSTEM GUIDE

Appendix 1: Synopsis of RPC Routines

Calls authunix_create() with the appropriate parameters.

callrpc()

cal I rpc(host. prognn. versnun. procnul, inproc. in. outproc. out)

char •hoet:
u_long prognun. ver8R111, procnun;

char •in. *OUt;
xdrproc_t inproc. outproc:

Calls the remote procedure associated with prognum. versnum. and proc­

num on the machine. host. The parameter in is the address of the

procedure's argument(s). and out is the address of where to place the

result(s); inproc is used to encode the procedure's parameters. and outproc

is used to decode the procedure's results. This routine returns zero if it

succeeds or the value of enum. clnt_stat cast to an integer if it fails. The

routine clnt_permo() is handy for translating failure statuses into mes­

sages.

Q Calling remote procedures with this routine uses UDP /IP as a transport; v -clntudp_create() for restrictions.

clnt_broadcast()

..n clnt_etat
clnt_broadcaet(prognn. ver8R111, procnun. inproc. in. outproc. out. eachrnult)

lLlong prognn. ver8R111, procnun:

char •in, *OUt;
xdrproc_t tnproc. outproc:

r88Ultproc_t eachrnult;

Like callrpc(). except the call message is broadcast to all locally connected

broadcast networks. Each time it receives a response. this routine calls

eachresult(). the format of which is

eachreeult(out. addr)
char *OUt;

•truct eockaddr_tn *addr;

where out is the same as out passed to clnt_broadcast(). except that the

remote procedure's output is decoded there; addr points to the address of

the machine that sent the results. If eachresult() returns zero.

RPC/XDR TUTORIAL 0-45

Appendix 1: S1nop1ls of RPC Routine•

clnt_broadcut() waits for more replies; otherwise. it returns with the
appropriate status.

clnt_call()

..,. clnLetat
clnLoal l(clnt. procru1. lnproc. In. outproc, out. tout)

a.IENT' *CI nt: I ong procnn:
>ldrproc_t lnproc. outproc:
char •In. *OUt:
etruct tl~I tout:

A macro that calls the remote procedure procnum associated with the client
handle. clnt. which is obtained with an RPC client creation routine such as
clntudp_create. The parameter in is the address of the procedure·s
argument(s). and out is the address where the result(s) should be placed.
lnproc is used to encode the procedure·s parameters. and outproc is used to
decode the procedure·s results; tout is the time allowed for results to come
back.

clnt_destroy()

clnt_dMtroy(clnt)
a.IENT' *Clnt:

A macro that destroys the client's RPC handle. Destruction usually
involves deallocation of private data structures. including cl.nt itself. Use
of clnt is undefined after calling clnt_destroy().

Q Client destruction routines do not close sockets associated with clnt; this v la the reoponalbillty of the ..-.

9-46 CLIX SYSTEM GUIDE

clnt_freeres()

clnt_freeree(clnt. outproc. out)

CLIENT -clnt;
>Odrproc_t outproc;

char *OUt;

Appendix 1: S1nopala of RPC Routines

A macro that frees any data allocated by the RPC/XDR system when it

decoded the results of an RPC call. The parameter out is the address of the

results and outproc is the XDR routine describing the results in simple

primitives. This routine returns one if the results were successfully freed

and uro otherwise.

clnt_geterr()

void
clnl.geterr(clnt. errp)

CU91T -clnt;
atruct rpc_err .. rrp;

A macro that copies the error structure out of the client handle to the

structure at addr~ errp.

clnt_pcreateerror()

void
clnt_pcreateerror(e)

char .. ;

Prints a message to standard error indicating why a client RPC handle

RPC/XDR TUTORIAL G-47

Appendix 1: Synop1l1 of RPC Routines

could not be created. The message is prepended with strings and a colon.

clnt_perrno ()

void
clnt__perrno(•tat)

..,. clnt_•tat;

Prints a message to standard error corresponding to the condition indicated
by stat.

clnt_perror()

clnt__perror(clnt, •)
WENT *Clnt;
char ••;

Prints a me&"Sage to standard error indicating why an RPC call failed; clnt
is the handle used to do the call. The message is prepended with strings
and a colon.

clntraw_create()

WENT•
c Int rm_create(progrut, verwun)

&LI ong progrut, verwut;

This routine creates a toy RPC client for the remote program prognum. ver­
sion ver.mum. The transport used to pass messages to the service is actu­
ally a bu1f er within the process" s address space. ~ the corresponding RPC
server should live in the same address space: see svcraw _create(). This
allows simulation of RPC and acquisition of RPC overheads. such as round
trip times, without any kernel interference. This routine returns NULL if

9-41 CLIX SYSTEM GUIDE

Appendix 1: Synopsis of RPC Routines

it fails.

clnttcp_create()

CLIENT*
clnttcp_create(oddr, prognuft, veranu1, eockp, eendez, recvsz)

struct eockoddr_in *oddr:

u_I ong prognu1, versun;

int •eockp:
u_int eendu, recvsz;

This routine creates an RPC client for the remote program prognum. ver­

sion versnum; the client uses TCP/IP as a transport. The remote program is

located at Internet address *O.ddr. If addr->sin_port is zero. it is set to

the actual port that the remote program is listening on. (The remote port­

map service is consulted for this information.) The parameter •soclcp is a

&"Oeket: if it is RPC _ANYSOCK. this routine opens a new one and sets

•soclcp. Since TCP-based RPC uses buffered 110. the user may specify the

size of the send and receive buffers with the parameters sendsz and recvsz;

values of zero choose suitable defaults. This routine returns NULL if it

fails.

clntudp_create()

a.IENr *
clnt&.q>_create(oddr, prognu1, veraru1, wait, eockp)

•truct eockoddr_in *oddr:

u_long prognu1, veraru1:

•truct til'MYOI wait;

Int •eockp;

This routine creates an RPC client for the remote program prognum. ver­

sion versnum: the client uses UDP /IP as a transport. The remote program

is located at Internet address *O.ddr. If addr->sin_port is zero. it is set to

actual port that the remote program is listening on. (The remote portmap

service is consulted for this information.) The parameter •sockp is a

socket; if it is RPC _ANYSOCK. this routine opens a new one and sets

•sockp. The UDP transport resends the call message in intervals of wait

RPC/XDR TUTORIAL g_'g

Appendix 1: SJnop•la of RPC Routine•

time until a response is received or until the call times out.

Since UDP-buecl RPC messages can only hold up to eight Kbytes of
encoded data, this transport cannot be used for procedures that take large
arguments or return large results.

get_myaddresa()

void
99LllYCJdd,....(addr)

.truct 90Chaddr_ln *Clddr;

Places the machine's IP address in *addr without consulting the library
routines that deal with /etc/hosts. The port number is always set to
htom{PMAPPORT).

pmap_getmaps()

•truct pwq>ll.t •
p1ap__geblape(addr)

etruct 80Clatdr_ln *Clddr;

A user interface to the portmap service. which returns a list of the current
RPC program-to-port mappings on the host located at IP address *addr.
This routine can return NULL. The command rpcinf o -p uses this rou­
tine.

pmap_getport()

'Lftrt
pmp_getport(addr, propn, verwu1, protocol)

•truct 90Chaddr_ln *Clddr;
'Lieng progru11, verlrUI, protocol;

A user interface to the portmap service. which returns the port number on
which a service that supports program number prognum. version versnum
waits. and speaks the transport protocol associated with protocol.. A return
value of 7.erO means that the mapping does not exist or that the RPC sys-
tem failed to contact the remote portmap service. In the latter case. the •
global variable rpc_createerr contains the RPC status.

1-50 CLIX SYSTEM GUIDE

Appendix 1: Synop•I• of RPC Routines

pmap_rmtcall()

..,. clnt_•tat

pmp_nltoal I (addr. pr<9Q1, veran.n, procnn.

inproc. in, outproc. out. tout. portp)

etruct eockaddr_in *Oddr:

q..J ong 1>rogru1. wran.n. procnn:

char •in. *OUt:
>ldrproc_t lnproc, outproc;

etruct ti111YOI tout;

'LI ong *portp:

A user interface to the portmap service. which instructs portmap on the

host at IP address *addr to make an RPC call on the user"s behalf to a pro­

cedure on that host. The parameter •portp will be modified to the

program"s port number if the procedure succeeds. The definitions of other

parameters are discussed in callrpc() and clnt_call(); see also

clnt_broadcast().

pmap_set()

PftCJP_eet(progrua. veran.n. protocol. port)

'Lieng progrua, ve,...., protocol:

t.Lllhort port;

A user interface to the portmap service. which establishes a mapping

between the triple [prognum. versnum.protocol] and port on the machine"s

portmap service. The value of protocol is most likely IPPROTO_UDP or

IPPROTO_TCP. This routine returns one if it succeeds. and zero other­

wise.

pmap_unset()

pnap_wieet (pr<9QI. verwun)

'Liang Pr'C9UI• vereru1;

A user interface to the portmap service. which destroys all mappings

between the triple [prognum.versnum.•] and ports on the machine"s port­

map service. This routine returns one if it succeeds. and zero otherwise.

RPC/XDR TUTORIAL 9-51

Appendix 1: Synop1l1 of RPC Routlne1

registerrpc ()

regleterrpc(progru1. ve,...... procnun. procncne. lnproc. outproc)
'LI ong progrua. versu1. procnun;
char •(•procncne)();
xdrproc_t lnproc. outproc;

Registers procedure procnams with the RPC service package. If a request
arrives for program prognum. version versnum. and procedure procnum.
procnarM is called with a pointer to its parameter(s). Progname should
return a pointer to its static result(s): inproc is used to decode the parame­
ters while outproc is used to encode the results. This routine returns zero
if the registration succeeded. and -1 otherwise.

Q Remote procedures registered in this form are accessed using the UDP/IP v tranoport; - svcudp_create() for restrlctiorui.

rpc_createen

atruct rpc_createerr rpc_createerr;

A global variable whose value is set by any RPC client creation routine
that does not succeed. Use the routine clnt_pcreateerror() to print the
reason.

1vc_destroy()

wc_dMt roy(>eprt)
9tOFR1" •xprt;

A macro that destroys the RPC service transport handle. xprt. Destruction
usually involves deallocation of private data structures. including xprt.

9-52 CLIX SYSTEM GUIDE

Appendix 1: Synopsis of RPC Routines

Use of xprt is undefined after calling this routine.

svc_fds

int svc_fde:

A global variable reflecting the RPC service side·s read file descriptor bit

mask; it is suitable as a parameter to the 9Clect(2) system call. This is

only of interest if a service implementor does not call svc_run(). but

rather does his own asynchronous event processing. This variable is read­

only yet it may change after calls to svc_getreq() or any creation rou­

tines.

svc_freeargs()

svc_f reearga(xprt. inproc. in)
S\OflRT •xprt;
xdrproc_t inproc;
char •in;

A macro that frees any data allocated by the RPC/XDR system when it

decoded the arguments to a service procedure using svc_getargs(). This

routine returns one if the results were successfully freed and zero other­

wise.

svc_getargs ()

svc_getarga(xprt. inproc. in)
9tOFRT •xprt;
xdrproc_t lnproc;
char •in;

A macro that decodes the arguments of an RPC request associated with the

RPC service transport handle. xprt. The parameter in is the address where

the arguments will be placed; inproc is the XDR routine used to decode the

arguments. This routine returns one if decoding succeeds and zero other-

RPC/XDR TUTORIAL 0-53

Appendix 1: S1nop•ls of RPC Routines

wi8e.

1vc_.etcaller()

etruct 90Ckaddr_ln
~tcaller(>eprt)

9CFRI' •>eprt;

The approved way of associating the network address of the caller of a
procedure with the RPC service transport handle. x.prt.

1vc_.etreq ()

1P1Ct.99t req(rdf di)
Int rdfdl;

This routine is only of interest if a service implementor does not call
nc_ran(). but instead implements custom asynchronous event process­
ing. It is called when the •lect(2) system call has determined that an RPC
request has arrived on some RPC socket(s); rd/ds is the resultant read file
descriptor bit mask.. The routine returns when all sockets associated with
the value of rd/ds have been serviced. ~

1vc_re1l1ter()

wc_regleter(>eprt, progru1, ve,...,., dl..,atch, protocol)
9CflRI' *>Cprt;
'l . ..Jong progru1, ve,...,.;
void (*dl..,atch)();
at.Jong protocol;

Associates prognum and vermum with the service dispatch procedure.
dispatch. If protocol. is nomero. a mapping of the triple
[prognum.wrmum.protocol.] to xprt->xp_port is also established with the
local portmap service. (Generally. protocol. is 7.ero. IPPROTO_UDP or
IPPROTO_TCP.) The procedure dispatch() has the following form:

dl..,atch(r.queet, >eprt)
etruct wc_req •requnt;
S\CAft' •>eprt;

9-54 CLIX SYSTEM GUIDE

Append1x 1: S1nopsls of RPC Routines

The nc_regiater routine returns one if it succeeds and zero otherwise.

svc_run()

ftC_n.rt()

This routine never returns. It waits for RPC requests to arrive and calls

the appropriate service procedure (using nc_.rtreq) when one arrives.

This procedure is usually waiting for a aelect(l) system call to return.

svc_sendreply()

aYC_eendreply(xprt, outproc, out)

S\OflR1' •>eprt;
xdrproc_t outproc;
char -out;

Called by an RPC service's dispatch routine to send the results of a remote

procedure call. The parameter xprt is the caller's usociated transport han­

dle; outproc is the XDR routine which is used to encode the results; and out

is the address of the results. This routine returns one if it succeeds and

zero otherwise.

svc_unregister()

void
ftC_uiregt eter(progrua, verSUll)

'Lieng progru1, verSUll;

Removes all mapping of the double [prognum. ver.mum] to dispatch rou­

tines and of the triple [prognum.versnum.•] to port number.

svcerr_auth()

void
avcerr_auth(xprt, why)

9.0FRT •>eprt;

eru1 auth_•tat why;

Called by a service dispatch routine that refuses to perform a remote pro-

RPC/XDR TUTORIAL 9-55

Appendix 1: S1nop1l1 of RPC Routines

cedure call due to an authentication error.

svcerr_decode()

void
avcerr_decode(>eprt)

S\C)flRf •>eprt;

Called by a service dispatch routine that cannot successfully decode its
parameters. (See svc_getargs().)

svcerr_noproc()

void
avcerr_naproc(>eprt)

9tOflRI' •>eprt;

Called by a service dispatch routine that does not implement the desired
procedure number the caller requested.

svcerr_noprog()

void
avcerr:_naprog(>eprt)

S\C)flRf •>eprt;

Called when the desired program is not registered with the RPC package.
Service implementors usually do not need this routine.

svcerr _progvera ()

void
9¥Cerr....JH'09¥era(>eprt)

S\OflRT •>eprt;

Called when the desired version of a program is not registered with the

9-56 CLIX SYSTEM GUIDE

Appendix 1: Synopsis of RPC Routines

RPC package. Service implementors usually do not need this routine.

svcerr_systemerr()

void

svcerr_ayaternerr(xprt)
5'0flRT •xprt;

Called by a service dispatch routine when it detects a system error not

covered by any particular protocol. For example. if a service can no longer

allocate storage. it may call this routine.

svcerr_weakauth()

void

svcerr_weakouth(xprt)
5'0flRT •xprt;

Called by a service dispatch routine that refuses to perform a remote pro­

cedure call due to insufficient (but correct) authentication parameters. The

routine calls svcerr _auth(xprt. AUTH_TOOWEAK).

svcraw_create()

~· IM:rm_create()

This routine creates a toy RPC service transport. to which it returns a

pointer. The transport is really a buffer within the process's address space.

so the corresponding RPC client should live in the same address space; see

clntraw _create(). This routine allows simulation of RPC and acquisition

of RPC overheads (such as round trip times) without any kernel interfer-

RPC/XDR TUTORIAL 1-57

Appendix 1: S1nop•I• of RPC Routine•

ence. This routine returns NULL if it fails.

avctcp __ create()

9CflRr •
8Yetcp_create(80Ck, ent_buf_af ze. recv_buf_a I ze)

Int eock;
~Int aMd_buf_alze, recv_buf_alze;

This routine creates a TCP/IP-based RPC service transport. to which it
returns a pointer. The transport is associated with the socket sock. which
may be RPC_ANYSOCK. In this case. a new socket is created. If the
socket is not bound to a local TCP port. this routine binds it to an arbi­
trary port. Upon completion. xprt->xp_sock is the transport"s socket
number and xprt->xp_port is the transport's port number. This routine
returns NULL if it fails. Since TCP-based RPC uses buffered 110. users
may specify the si7.e of the send and receive buif ers; values of zero choose
suitable defaults.

svcudp __ create()

9CflRr •
~-create(80Ck)

Int eock;

This routine creates a UDP/IP-based RPC service transport. to which it
returns a pointer. The transport is associated with the socket sock. which
may be RPC_ANYSOCK. In this case. a new socket is created. If the
socket is not bound to a local UDP port. this routine binds it to an arbi­
trary port. Upon completion. xprt->xp_sock is the transport"s socket
number, and xprt->xp_port is the transport's port number. This routine
returns NULL if it fails.

Since UDP-based RPC messages can only hold up to eight IC.bytes of
encoded data, thit transport cannot be used for procedures that take large
arguments or return large results.

9-51 CLIX SYSTEM GUIDE

Appendix 1: Synopsis of RPC Routines

xdr_accepted_reply()

>Odr_accepted_reply{xdn1, ar)

>CR •xdn1;
•truct accepted_reply -ar;

Used for describing RPC messages externally. This routine is useful for

users who wish to generate RPC-style messages without using the RPC

package.

xdr_array()

>Odr_array{xdn1, arrp, elzep, 11CJ>C8lze, eletze, elproc)

>CR •>Odn1;
char • -arrp;
'Lint •elzep, llCl>C8lze, eletze;

>Odrproc_t elproc;

A filter primitive that translates between arrays and their corresponding

external representations. The parameter arrp is the address of the pointer

to the array. while sizep is the address of the element count of the array;

this element count cannot exceed maxsize. The parameter elsize is the

sizeof() each of the array· s elements. and elproc is an XDR filter that

translates between the array elements" C form and their external represen­

tations. This routine returns one if it succeeds and zero otherwise.

xdr_authunix_parms()

>Odr_auttutlx_parnm{xdr•. aupp)

>CR •>Odn1;
etruct auttvttx_panne ~;

Used for describing UNIX credentials externally. This routine is useful

for users who wish to generate these credentials without using the RPC

RPC/XDR TUTORIAL g..5g

Appendix 1: Synop1l1 of RPC Routines

authentication package.

xdr_bool()

>Gdr_bool (xdr8, bp)
Q •xdr8;
bool_t *hp;

A filter primitive that translates between booleans (C integers) and their
external representations. When encoding data. this filter produces values
of either one or uro. This routine returns one if it succeeds and zero oth­
erwise.

xdr_bytes()

>Gdr_bytee(xdr8, 8P· •lzep, nmcalze)
)(R •>Gdr8;

char ••8f);
'Lint ••lzep, rlmCSlze:

A filter primitive that translates between counted byte strings and their
external representations. The parameter sp is the address of the string ~
pointer. The length of the string is located at address sizep: strings cannot
be longer than maxsize. This routine returns one if it succeeds and zero
othuwise.

xdr_callhdr()

void
>edr_eal lhdr(xdr8, chdr)

)(R •>Gdr8;

at ruct rpc_Mg *chdr;

Used for describing RPC messages externally. This routine is useful for
users who wish to generate RPC-style messages without using the RPC

9-60 CLIX SYSTEM GUIDE

package.

xdr _callmsg ()

xdr_col lmeg(xdre, aneg)

>«:R •xdre;

etruct rpc_meg •aneg;

Appendix 1: Synopsis of RPC Routines

Used for describing RPC messages externally. This routine is useful for

users who wish to generate RPC-style messages without using the RPC

package.

xdr_double()

xdr_cbble(xdre, dp)

>«:R •xdre;

<bbl• .ctp;

A filter primitive that translates between C double precision numbers and

their external representations. This routine returns one if it succeeds and

zero otherwise.

xdr_enum()

xdr_.un{xdra. ep}
><R •xdre;
..... _t -.p;

A filter primitive that translates between C enums (actually integers) and

their external representations. This routine returns one if it succeeds and

zero otherwise.

xdr_float()

>Odr_f loat(xdre, fp}
~ •xdre;
float •fp;

A filter primitive that translates between C floats and their external

RPC/XDR TUTORIAL 9-61

Appendix 1: SJnop•ll of RPC Routines

representations. This routine returns one if it succeeds and 7.ero otherwise.

xdr_lnnne()

long •
>ldr_lnl lne(>edn, 1.,)

Q *>Odra;
Int 1.,;

A macro that invokes the in-line routine associated with the XDR stream.
xdr1. The routine returns a pointer to a contiguous piece of the stream's
bu1fer: z.n. Js the byte length of the desired bu1fer. Note that pointer is cast
to long•.

e mr_lnllne() may return 0 (NULL) if it cannot allocate a contiguous
piece of a buffer. Therefore, the behavior may vary among stream
imtanca; it exists for efficiency.

xdr_lnt()

>ldr_lnt(>ldra, Ip)
Q*>ldra;
Int •Ip;

A filter primitive that translates between C integers and their external
representations. This routine returns one if it succeeds and zero otherwise.

xdr_lon1()

>ldr_long(>ldra, Ip)
Q •• ,..

long •Ip;

A filter primitive that translates between C long integers and their external

9-02 CLIX SYSTEM GUIDE

-------------- Appendix 1: S:rnopsls of RPC Routines

representations. This routine returns one if it succeeds and :zero otherwise.

xdr_opaque()

xdr_opaque(xd,... cp. cnt)

>CR •xdr9;

char *cp;

'Lint cnt;

A fi.lter primitive that translates between fi.xed-si:ze opaque data and its

external representation. The parameter cp is the address of the opaque

object. and cnt is its si:ze in bytes. This routine returns one if it succeeds

and :zero otherwise.

xdr_opaque_auth()

xdr_opaque_auth(xd,... ap)

>CR •xdr9;
et ruct opaque_auth *Gp;

Used for describing RPC messages externally. This routine is useful for

users who wish to generate RPC-style messages without using the RPC

package.

xdr_pmap()

xdr_pnap(xd,... rege)

>CR •xdr9;

et ruct J1ftCJP •rege;

Used for describing parameters to various portmap procedures externally.

This routine is useful for users who wish to generate these parameters

RPC/XDR TUTORIAL 0-63

Appendix 1: Synopsis of RPC Routines

without using the portmap interface.

xdr_pmapliat()

xdr...JllaPI let(xdra. rp)
>CR •xdra:
etruct p11apllet urp:

Used for describing a list of port mappings externally. This routine is use­
ful for users who wish to generate these parameters without using the
portmap interface.

xdr_reference()

xdr_reference(xdra. pp. eln. proc)
>CR •xdra:
char •*PP;
~Int eln:
xdrproc_t proc:

A primitive that provides pointer chasing within structures. The parame-
ter pp is the address of the pointer; size is the sheof() the structure that ~
•pp points to; and proc is an XDR procedure that filters the structure
between its C form and its external representation. This routine returns
one if it succeeds and 7.ero otherwise.

xdr_rejected_reply()

xdr_,..ject~reply(xdra. rr)
>CR •xdra;
etruct ,..jected_reply •rr:

Used for describing RPC messages externally. This routine is useful for
users who wish to generate RPC-style messages without using the RPC

9-M CLIX SYSTEM GUIDE

package.

xdr_replymsg()

xdr_repl)1ft99(xdre, rmeg)

>G:R •xdr•;
•truct rpc_meg •rmeg;

Appendix 1: Synopsis of RPC Routines

Used for describing RPC messages externally. This routine is useful for

users who wish to generate RPC-style messages without using the RPC

package.

xdr_short()

xdr_llhort(xdrs, ap)
>G:R •xdrs;
llhort •ap;

A filter primitive that translates between C short integers and their exter­

nal representations. This routine returns one if it succeeds and zero other­

wise.

xdr_string()

>edr_•trlng(xdrs, ..,, lllC:IX91ze)

>c:R •xdrs;

char ••8P:
u_lnt llCIX81ze;

A filter primitive that translates between C strings and their corresponding

external representations. Strings cannot be longer than maxsize. Note that

sp is the address of the string"s pointer. This routine returns one if it

RPC/XDR TUTORIAL 9-65

Appendix 1: Synop•ls of RPC Routine•

succeeds and zero otherwise.

xdr_u_int()

xdr_4._int(xdrs, up)
>CR •xdrs:
'818i~ •up:

A filter primitive that translates between C unsigned integers and their
external representations. This routine returns one if it succeeds and zero
otherwise.

xdr_u_long()

xdr_u_long(xdrs, ulp)
>CR •xdrs:
W18i~ long •ulp;

A filter primitive that translates between C unsigned long integers and
their external representations. This routine returns one if it succeeds and
zero otherwise.

xdr_u_short()

xdr_u_8hort(xdrs, uap)
>CR •xdrs;
W181gned 9hort *Ump;

A filter primitive that translates between C unsigned short integers and
their external representations. This routine returns one if it succeeds and
zero otherwise.

xdr_union()

xdr_uiion(xdrs, ~. uip, choices, dfaul t)
>CR •xdrs;
int *<lecnp:
char tiuip;

atruct xdr_diecri11 *Choices:
xdrproc_t dfault;

A filter primitive that translates between a discriminated C union and its
corresponding external representation. The parameter dscmp is the address
of the union's discriminant. while unp is the address of the union. This

0-H CLIX SYSTEM GUIDE

Appendix 1: Synopsis of RPC Routines

routine returns one if it succeeds and zero otherwise.

xdr_void()

xdr_void()

This routine always returns one.

xdr_wrapstring()

xdr_wrapetring(xdra, ap)
>CR •xdra;

char ••ap;

A primitive that calls xdr_string(xdrs.sp.MAXUNSIGNED) where MAX­

UNSIGNED is the maximum value of an unsigned integer. This is useful

because the RPC package passes only two parameters to XDR routines.

whereas xdr_string{). one of the most frequently used primitives.

requires three parameters. This routine returns one if it succeeds and zero

otherwise.

xprt_register()

void
>q>rt_regleter(xprt)

S\OflRT •xprt:

After RPC service transport handles are created. they should register with

the RPC service package. This routine modifies the global variable

svcJds. Service implementors usually do not need this routine.

xprt_unregister()

void
xprt_"1regieter(xprt)

S\OFRl' •xprt;

Before an RPC service transport handle is destroyed. it should deregister

with the RPC service package. This routine modifies the global variable

svcJds. Service implementors usually do not need this routine.

RPC/XDR TUTORIAL 9-67

