ICON/UXB

Operating System
Reference R
Manual

Volume 2

ICON |
INTERNATIONAL

P.O. Box 340
Orem, Utah 84059
(801) 225-6888

e

C

OPERATING SYSTEM REFERENCE MANUAL

ICON/UXB

Supplementary
Documents

Volume 2

© 1988 lcon International, Inc.
All rights reserved worldwide.

Copyright © 1987 Icon International, Inc. All rights reserved. No part of this
manual shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from Icon International, Inc. While every precaution has
been taken in the preparation of this manual, Icon International assumes no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

Copyright 1979, 1980 Regents of the University of California. Permission to
copy these documents or any portion thereof as necessary for licensed use of the
software is granted to licensees of this software, provided this copyright notice
and statement of permission are included.

The document “Writing Tools — The STYLE and DICTION Programs” is
copyrighted 1979 by Bell Telephone Laboratories. Holders of a UNIXO/SQV
software license are permitted to copy this document, or any portion of it, as
necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

The document “The Programming Language EFL” is copyrighted 1979 by Bell
Telephone Laboratories. EFL has been approved for general release, so that one
may copy it subject only to the restriction of giving proper acknowledgement to
Bell Telephone Laboratories.

This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291, MCS-8005144, and MCS-74-07644-A04; DOE
Contract DE-AT03-76SF00034 and Project Agreement DE-AS03-79ER10358; and
by Defense Advanced Research Projects Agency (DoD) ARPA Order No. 4031,
Monitored by Naval Electronics Systems Command under Contract No.
N00039-80-K-0649.

This manual was prepared by the Documentation Group of Icon International,
Inc., P.O. Box 340, Orem, UT 84057-0340. A form for reader’s comments has
been provided at the back of this publication. Comments are welcomed and
may be sent to the above address. Users who respond will be entitled to free
updates of this manual for one year.

Revision B
Order Number 172-022-003 (Manual Assembly)
Order Number 171-070-003 (Pages Only)

Printed in the U.S.A.

ICON is a registered trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.

Change Record Page

Manual Part No. 172-022-003

Date |Revision Description Pages Affected
Jan. 1987 A Initial production release All
Nov. 1987 B Incorporate additions of new Main cover, titlepage, Table of Contents

supplementary documentation
included in Releases 2.16, 3.0,
and 3.1 of the ICON/UXB
Operating System

RN

NS

ICON/UXB Operating System Reference Manual
Volume 2 — Supplementary Documents
Icon International, Inc.

October, 1987

This volume contains documents which supplement the information in Volume 1 of
the ICON/UXB Operating System Reference Manual, for the ICON version of the UNIX®
operating system as distributed by U.C. Berkeley. The documents within this volume
are grouped into the areas of general works and summaries, basic information on the
UNIX® operating system, document preparation, programming, and miscellaneous infor-
.mation.

General Works
1. The UNIX Time-Sharing System. D.M. Ritchie and K. Thompson.
The original UNIX® operating system paper, reprinted from CACM.

2. Bug Fixes and changes in 4.2BSD. S.J. Leffler.
A brief discussion of the major user-visible changes made to the system since
the last release.

3. UNIX/32V — Summary.
A concise summary of the facilities available in the 32V Version of the
UNIX® operating system.

4. 7th Edition UNIX — Summary.
A concise summary of the facilities available in the 7th edition of the UNIX®
operating system.

Getting Started

5. UNIX for Beginners — Second Edition. B.W. Kernighan.
An introduction to the most basic use of the system.

6. Learn — Computer Aided Instruction on UNIX. M.E. Lesk and B.W. Kernighan.
Describes a computer-aided instruction program that walks new users
through the basics of files, the editor, and document preparation software.

7. An Introduction to the UNIX Shell. S.R. Bourne.
An introduction to the capabilities of the command interpreter, the shell.

8. An Introduction to the C Shell. W. Joy.
Introducing a popular command interpreter and many of the commonly used
commands, assuming little prior knowledge of the UNIX® operating system.

ICON INTERNATIONAL il

9. An Introduction to Display Editing with Vi. W. Joy.
The document to read to learn to use the vi screen-oriented display text edi-
tor. '

10. Vi Command & Function Reference. A.P.W. Hewett.
The reference manual for vi.

11. A Tutorial Introduction to the UNIX Text Editor. B.W. Kernighan.
An easy way to get started with the editor.

12. Edit: A tutorial (Revised). R. Blau and J. Joyce.
For those who prefer line oriented editing, an introduction assuming no pre-
vious knowledge of the UNIX operating system or of text editing.

13. Ex Reference Manual (Version 3.5 — Sept. 1980). W. Joy and M. Horton.
The final reference for the er editor, which underlies both edit and vi.

14. Ex Changes — Version 2.0 to 3.5
A quick guide to what is new in version 3.5 of ez and vi, for those who have
used version 2.0 through 3.1. Includes an update to the vi Tutorial and a
command summary for ez/edit, version 2.0. '

15. Advance Editing on UNIX. B.W. Kernighan.
The next step.

16. Mail Reference Manual (Revised). K. Shoens and C. Leres.
Complete details on the mail processing program.

Document preparation

17. Typing Documents on the UNIX System: Using the —ms Macros with Troff and
Nroff. M.E. Lesk.
Describes the basic use of the formatting tools and the formatting requests
that can be used to lay out most documents, including thoses in this volume.
Also includes A Guide to Preparing Documents with —ms, a quick summary to
the -ms macro commands.

18. A Revised Version of —ms. B. Tuthill.
A quick description of the revisions made to the —ms formatting macros for
nroff and troff. :

19. Writing Papers with nroff using —me. E.P. Allman.
A popular macro package for nroff.

20. —me Reference Manual. E.P. Allman.
The final word on —me.

21. Writing Tools — The Style and Diction Programs. L.L. Cherry and W. Vesterman
Description of programs which help you understand and improve your writ-
ing style.

22. NROFF /TROFF User’s Manual. J.F. Ossanna.

The basic text formatting program.

23. A TROFF Tutorial. B.W. Kernighan.

An introduction to TROFF for those who really want to know such things.

24. Refer — A Bibliography System. B. Tuthill.

An introduction to the tools used to maintain bibliographic databases. The
major program, refer, is used to automatically retrieve and format references
based on document citations.

iv ' ICON INTERNATIONAL

NS

NS

25.

26.

27.

28.

29.

Some Applications of Inverted Indexes on the UNIX System. M.E. Lesk.
Describes, among other things, the program refer which fills in bibliographic
citations from a database automatically.

Updating Publication Lists. M.E. Lesk.
Using refer to update a bibliographic database.

TBL — A Program to Format Tables. M.E. Lesk.
A program to permit easy specification of tabular material for typesetting.
Easy to learn and use.

A System for Typsetting Mathematics. B.W. Kernighan and L.L. Cherry.
Describes EQN, an easy-to-learn language for doing high-quality mathemati-
cal typesetting.

Typesetting Mathematics — User’s Guide (Second Edition). B.W. Kernighan and
L.L. Cherry.
The EQN User’s Guide for typesetting mathematics.

Programming

30.

UNIX Programming. B.W. Kernighan and D.M. Ritchie.
Describes the programming interface to the operating system and the stan-

dard I/O library.

31. Make — A Program for Maintaining Computer Programs. S.I. Feldman.
An indispensable tool for making sure that large programs are properly com-
piled with minimal eflort.
32. System V/68 Assembler User’s Guide.
For compiler writers using the 68000 series microprocessors.
33. Screen Updating and Cursor Movement Optimization: A Library Package.
K.C.R.C. Arnold.
An aide for writing screen-oriented, terminal independent programs. .
34. A Tutorial Introduction to ADB. J.F. Maranzano and S.R. Bourne.
How to use the ADB debugger.
35. An Introduction to the Source Code Control System. E. Allman.
A useful introductory article for those users who are licensed for SCCS.
Miscellaneous
36. A Guide to the Dungeons of Doom (Revised). M.C. Toy and K.C.R.C. Arnold.
An introduction to the popular game of rogue.
37. STAR TREK. E. Allman.
What’s UNIX without a “trekkie” to accompany us?
38. A 4.2BSD Interprocess Communication Primer. S.J. Leffler, R.S. Fabry and W.N.
Joy.
An introduction to the interprocess communication facilities included in the
4.2BSD release of the s-1UNIX® operating system.
39. gprof: a Call Graph Execution Profiler. SL. Graham, P.B. Kessler and M.K.

McKusick.
A description of the gprof profile used to account for the running time of
called routines in the running time of the routines that called them.

ICON INTERNATIONAL v

N
N

The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for the
larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 computers.
It offers a number of features seldom found even in larger operating systems,
including
i A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process 1/0,

iti The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,
v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of the
user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa 1969-70)
ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second version ran on the
unprotected PDP-11/20 computer. The third incorporated multiprogramming and ran on the PDP-
11/34, /40, /45, /60, and /70 computers; it is the one described in the previously published version
of this paper, and is also the most widely used today. This paper describes only the fourth,
current system that runs on the PDP-11/70 and the Interdata 8/32 computers. In fact, the
differences among the various systems is rather small; most of the revisions made to the originally
published version of this paper, aside from those concerned with style, had to do with details of
the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education, the
preparation and formatting of documents and other textual material, the collection and processing
of trouble data from various switching machines within the Bell System, and recording and check-
ing telephone service orders. Our own installation is used mainly for research in operating systems,
languages, computer networks, and other topics in computer science, and also for document
preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operat-
ing system for interactive use need not be expensive either in equipment or in human effort: it can
run on hardware costing as little as $40,000, and less than two man-years were spent on the main
system software. We hope, however, that users find that the most important characteristics of the

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised version
of an article that appeared in Communications of the AcM, 17, No. 7 (July 1974), pp. 365-375. That article was
a revised version of a paper presented at the Fourth Acv Symposium on Operating Systems Principles, BM Tho-
mas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.

+ UNIX is a trademark of Bell Laboratories.

-2.

system are its simplicity, elegance, and ease of use.
Besides the operating system proper, some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs? 3

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG,
Pascal :

There is a host of maintenance, utility, recreation and novelty programs, all written locally. The
UNIX user community, which numbers in the thousands, has contributed many more programs and
languages. It is worth noting that the system is totally self-supporting. All UNIX software is
maintained on the system; likewise, this paper and all other documents in this issue were generated
and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit byte)
computer with 768K bytes of core memory; the system kernel occupies 90K bytes about equally
divided between code and data tables. This system, however, includes a very large number of dev-
ice drivers and enjoys a generous allotment of space for I/O buffers and system tables; a minimal
system capable of running the software mentioned above can require as little as 96K bytes of core
altogether. There are even larger installations; see the description of the PWB/UNIX systems,* 3 for
. example. There are also much smaller, though somewhat restricted, versions of the system.3

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data sets,
and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite comput-~
ers. There are also several 2400- and 4800-baud synchronous communication interfaces used for
machine-to-machine file transfer. Finally, there is a variety of miscellaneous devices including
nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digital switching
network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.® Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that of
the old. Since the new system not only became much easier to understand and to modify but also
included many functional improvements, including multiprogramming and the ability to share
reentrant code among several user programs, we consider this increase in size quite acceptable.

II. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view of
the user, there are three kinds of files: ordinary disk files, directories, and special files.

8.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or binary
(object) programs. No particular structuring is expected by the system. A file of text consists sim-
ply of a string of characters, with lines demarcated by the newline character. Binary programs are
sequences of words as they will appear in core memory when the program starts executing. A few
user programs manipulate files with more structure; for example, the assembler generates, and the
loader expects, an object file in a particular format. However, the structure of files is controlled by
the programs that use them, not by the system.

-

\/

«

8.2 Directories

Directories provide the mapping between the names of files and the files themselves, and thus
induce a structure on the file system as a whole. Each user has a directory of his own files; he may
also create subdirectories to contain groups of files conveniently treated together. A directory
behaves exactly like an ordinary file except that it cannot be written on by unprivileged programs,
so that the system controls the contents of directories. However, anyone with appropriate permis-
sion may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root directory.
All files in the system can be found by tracing a path through a chain of directories until the
desired file is reached. The starting point for such searches is often the root. Other system direc-
tories contain all the programs provided for general use; that is, all the commands. As will be
seen, however, it is by no means necessary that a program reside in one of these directories for it to
be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified
to the system, it may be in the form of a path name, which is a sequence of directory names
separated by slashes, “/”, and ending in a file name. If the sequence begins with a slash, the
search begins in the root directory. The name /alpha/beta/gamma causes the system to search
the root for directory alpha, then to search alpha for beta, finally to find gamma in beta.
gamma may be an ordinary file, a directory, or a special file. As a limiting case, the name ““/”
refers to the root itself.

A path name not starting with *“/” causes the system to begin the search in the user’s

. current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory

alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers to
the current directory.

The same non-directory file may appear in several directories under possibly different names.
This feature is called linking; a directory entry for a file is sometimes called a link. The UNIX sys-
tem differs from other systems in which linking is permitted in that all links to a file have equal
status. That is, a file does not exist within a particular directory; the directory entry for a file con-
sists merely of its name and a pointer to the information actually describing the file. Thus a file
exists independently of any directory entry, although in practice a file is made to disappear along
with the last link to it.

Each directory always has at least two entries. The name .’ in each directory refers to the
directory itself. Thus a program may read the current directory under the name ““.”” without
knowing its complete path name. The name ‘..” by convention refers to the parent of the direc-
tory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the spe-
cial entries “ .’ and ‘“..”, each directory must appear as an entry in exactly one other directory,
which is its parent. The reason for this is to simplify the writing of programs that visit subtrees of
the directory structure, and more important, to avoid the separation of portions of the hierarchy.
If arbitrary links to directories were permitted, it would be quite difficult to detect when the last
connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported 1/O
device is associated with at least one such file. Special files are read and written just like ordinary
disk files, but requests to read or write result in activation of the associated device. An entry for
each special file resides in directory /dev, although a link may be made to one of these files just as
it may to an ordinary file. Thus, for example, to write on a magnetic tape one may write on the
file /dev/mt. Special files exist for each communication line, each disk, each tape drive, and for
physical main memory. Of course, the active disks and the memory special file are protected from
indiscriminate access.

-4-

There is a threefold advantage in treating I/O devices this way: file and device I/O are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are subject
to the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not necessary
that the entire file system hierarchy reside on this device. There is a mount system request with
two arguments: the name of an existing ordinary file, and the name of a special file whose associ-
ated storage volume (e.g., a disk pack) should have the structure of an independent file system con-
taining its own directory hierarchy. The effect of mount is to cause references to the heretofore
ordinary file to refer instead to the root directory of the file system on the removable volume. In
effect, mount replaces a leaf of the hierarchy tree (the ordinary file) by a whole new subtree (the
hierarchy stored on the removable volume). After the mount, there is virtually no distinction
between files on the removable volume and those in the permanent file system. In our installation,
for example, the root directory resides on a small partition of one of our disk drives, while the
other drive, which contains the user’s files, is mounted by the system initialization sequence. A
mountable file system is generated by writing on its corresponding special file. A utility program
is available to create an empty file system, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no
link may exist between one file system hierarchy and another. This restriction is enforced so as to
avoid the elaborate bookkeeping that would otherwise be required to assure removal of the links
whenever the removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each user
of the system is assigned a unique user identification number. When a file is created, it is marked
with the user ID of its owner. Also given for new files is a set of ten protection bits. Nine of these
specify independently read, write, and execute permission for the owner of the file, for other
members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a pro-
gram. This change in user ID is effective only during the execution of the program that calls for it.
The set-user-ID feature provides for privileged programs that may use files inaccessible to other
users. For example, a program may keep an accounting file that should neither be read nor
changed except by the program itself. If the set-user-ID bit is on for the program, it may access
the file although this access might be forbidden to other programs invoked by the given program’s
user. Since the actual user ID of the invoker of any program is always available, set-user-ID pro-
grams may take any measures desired to satisfly themselves as to their invoker’s credentials. This
mechanism is used to allow users to execute the carefully written commands that call privileged
system entries. For example, there is a system entry invokable only by the “super-user” (below)
that creates an empty directory. As indicated above, directories are expected to have entries for
“.” and “..”. The command which creates a directory is owned by the super-user and has the
set-user-ID bit set. After it checks its invoker’s authorization to create the specified directory, it
creates it and makes the entries for ““.’’ and “..”.

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is gen-
erally available without administrative intervention. For example, this protection scheme easily
solves the MOO accounting problem posed by “Aleph-null.”’6

The system recognizes one particular user ID (that of the ‘“‘super-user”’) as exempt from the
usual constraints on file access; thus (for example), programs may be written to dump and reload
the file system without unwanted interference from the protection system.

\\J

C

8.6 I/0 calls

The system calls to do I/O are designed to eliminate the differences between the various dev-
ices and styles of access. There is no distinction between ‘‘random” and ‘‘sequential” 1/O, nor is
any logical record size imposed by the system. The size of an ordinary file is determined by the
number of bytes written on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of I/O, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underlying
complexities. Each call to the system may potentially result in an error return, which for simpli-
city is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or ‘“updated,” that is, read and written
simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; ereate also
opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for the
contents of a file to become scrambled when two users write on it simultaneously, in practice
difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in our
environment, to prevent interference between users of the same file. They are unnecessary because
we are not faced with large, single-file data bases maintained by independent processes. They are
insufficient because locks in the ordinary sense, whereby one user is prevented from writing on a
file that another user is reading, cannot prevent confusion when, for example, both users are edit-
ing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the file
system when two users engage simultaneously in activities such as writing on the same file, creat-
ing files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a particu-
lar byte in the file was the last byte written (or read), the next I/O call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
= write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as I/O errors or end of physical
medium on special files; in a read, however, n may without error be less than count. If the read
pointer is so near the end of the file that reading count characters would cause reading beyond the
end, only sufficient bytes are transmitted to reach the end of the file; also, typewriter-like terminals
never return more than one line of input. When a read call returns with n equal to zero, the end
of the file has been reached. For disk files this occurs when the read pointer becomes equal to the
current size of the file. It is possible to generate an end-of-file from a terminal by use of an escape
sequence that depends on the device used.

-6-

Bytes written affect only those parts of a file implied by the position of the write pointer and
the count; no other part of the file is changed. If the last byte lies beyond the end of the file, the
file is made to grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to the
appropriate location in the file.

location = lIseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base. offset
may be negative. For some devices (e.g., paper tape and terminals) seek calls are ignored. The
actual offset from the beginning of the file to which the pointer was moved is returned in location.

There are several additional system entries having to do with I/O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protection
mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. MPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associated
file and a pointer to the file itself. This pointer is an integer called the f-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system table
(the ¢-list) stored in a known part of the device on which the directory resides. The entry found
thereby (the file’s ¢-node) contains the description of the file:

i the user and group-ID of its owner

i its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its device,
i-number, and read/write pointer are stored in a system table indexed by the file descriptor
returned by the open or create. Thus, during a subsequent call to read or write the file, the
descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by decre-
menting the link-count of the i-node specified by its directory entry and erasing the directory
entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is de-
allocated.

The space on all disks that contain a file system is divided into a number of 512-byte blocks
logically addressed from O up to a limit that depends on the device. There is space in the i-node of
each file for 13 device addresses. For nonspecial files, the first 10 device addresses point at the first
10 blocks of the file. If the file is larger than 10 blocks, the 11 device address points to an indirect
block containing up to 128 addresses of additional blocks in the file. Still larger files use the
twelfth device address of the i-node to point to a double-indirect block naming 128 indirect blocks,
each pointing to 128 blocks of the file. If required, the thirteenth device address is a triple-indirect
block. Thus files may conceptually grow to [(10-+128+128°+128%)512] bytes. Once opened, bytes
numbered below 5120 can be read with a single disk access; bytes in the range 5120 to 70,656
require two accesses; bytes in the range 70,656 to 8,459,264 require three accesses; bytes from there
to the largest file (1,082,201,088) require four accesses. In practice, a device cache mechanism (see

TN

-7-

below) proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and the
first specifies an internal device name, which is interpreted as a pair of numbers representing,
respectively, a device type and subdevice number. The device type indicates which system routine
will deal with I/O on that device; the subdevice number selects, for example, a disk drive attached
to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the device
name of the indicated special file. This table is searched for each i-number/device pair that turns
up while a path name is being scanned during an open or create; if a match is found, the i-
number is replaced by the i-number of the root directory and the device name is replaced by the
table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a write
the user’s workspace may be reused. In fact, the system maintains a rather complicated buffering
mechanism that reduces greatly the number of I/O operations required to access a file. Suppose a
write call is made specifying transmission of a single byte. The system will search its buffers to
see whether the affected disk block currently resides in main memory; if not, it will be read in from
the device. Then the affected byte is replaced in the buffer and an entry is made in a list of blocks
to be written. The return from the write call may then take place, although the actual I/O may
not be completed until a later time. Conversely, if a single byte is read, the system determines
whether the secondary storage block in which the byte is located is already in one of the system’s
buffers; if so, the byte can be returned immediately. If not, the block is read into a buffer and the
byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file, and
asynchronously pre-reads the next block. This significantly reduces the running time of most pro-
grams while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from the
avoidance of system overhead. If a program is used rarely or does no great volume of 1/0, it may
quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organizing
the file system has proved quite reliable and easy to deal with. To the system itself, one of its
strengths is the fact that each file has a short, unambiguous name related in a simple way to the
protection, addressing, and other information needed to access the file. It also permits a quite sim-
ple and rapid algorithm for checking the consistency of a file system, for example, verification that
the portions of each device containing useful information and those free to be allocated are disjoint
and together exhaust the space on the device. This algorithm is independent of the directory
hierarchy, because it need only scan the linearly organized i-list. At the same time the notion of
the i-list induces certain peculiarities not found in other file system organizations. For example,
there is the question of who is to be charged for the space a file occupies, because all directory
entries for a file have equal status. Charging the owner of a file is unfair in general, for one user
may create a file, another may link to it, and the first user may delete the file. The first user is
still the owner of the file, but it should be charged to the second user. The simplest reasonably fair
algorithm seems to be to spread the charges equally among users who have links to a file. Many
installations avoid the issue by not charging any fees at all.

V. PROCESSES AND IMAGES

An fmage is a computer execution environment. It includes a memory image, general register
values, status of open files, current directory and the like. An image is the current state of a

pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of a pro-
cess, the image must reside in main memory; during the execution of other processes it remains in

main memory unless the appearance of an active, higher-priority process forces it to be swapped
out to the disk.

The user-memory part of an image is divided into three logical segments. The program text
segment begins at location 0 in the virtual address space. During execution, this segment is write-
protected and a single copy of it is shared among all processes executing the same program. At the
first hardware protection byte boundary above the program text segment in the virtual address
space begins a non-shared, writable data segment, the size of which may be extended by a system
call. Starting at the highest address in the virtual address space is a stack segment, which
automatically grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come into
existence only by use of the fork system call:

processid = fork ()

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The new
processes differ only in that one is considered the parent process: in the parent, the returned
processid actually identifies the child process and is never 0, while in the child, the returned value
'is always 0.

Because the values returned by fork in the parent and child process are distinguishable, each
process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and write
calls that are used for file-system 1/O. The call:

filep = pipe()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, like
other open files, is passed from parent to child process in the image by the fork call. A read
using a pipe file descriptor waits until another process writes using the file descriptor for the same
pipe. At this point, data are passed between the images of the two processes. Neither process need
know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2), it is
not a completely general mechanism, because the pipe must be set up by a common ancestor of the
processes involved. :

5.3 Execution of programs
Another major system primitive is invoked by

execute (file, arg,, arg,, ..., arg,)

which requests the system to read in and execute the program named by file, passing it string
arguments arg,, arg,, ..., arg,. All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are unal-
tered. Only if the call fails, for example because file could not be found or because its execute-
permission bit was not set, does a return take place from the execute primitive; it resembles a
“jump” machine instruction rather than a subroutine call.

O

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then wait
returns the processid of the terminated process. An error return is taken if the calling process has
no descendants. Certain status from the child process is also available.

5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII below).

V1. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and inter-
prets them as requests to execute other programs. (The shell is described fully elsewhere,® so this
section will discuss only the theory of its operation.) In simplest form, a command line consists of
the command name followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg,

The shell splits up the command name and the arguments into separate strings. Then a file with
name command is sought; command may be a path name including the ¢/’ character to specify
any file in the system. If command is found, it is brought into memory and executed. The argu-
ments collected by the shell are accessible to the command. When the command is finished, the
shell resumes its own execution, and indicates its readiness to accept another command by typing a
prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to
command and attempts again to find the file. Directory / bin contains commands intended to be
generally used. (The sequence of directories to be searched may be changed by user request.)

6.1 Standard I/O

The discussion of I/O in Section III above seems to imply that every file used by a program
must be opened or created by the program in order to get a file descriptor for the file. Programs
executed by the shell, however, start off with three open files with file descriptors 0, 1, and 2. As
such a program begins execution, file 1 is open for writing, and is best understood as the standard
output file. Except under circumstances indicated below, this file is the user’s terminal. Thus pro-
grams that wish to write informative information ordinarily use file descriptor 1. Conversely, file 0

starts ofl open for reading, and programs that wish to read messages typed by the user read this
file.

The shell is able to change the standard assignments of these file descriptors from the user’s
terminal printer and keyboard. If one of the arguments to a command is prefixed by “>", file
descriptor 1 will, for the duration of the command, refer to the file named after the “>”. For
example:

Is
ordinarily lists, on the typewriter, the names of the files in the current directory. The command:
Is >there

creates a file called there and places the listing there. Thus the argument >there means “place

-10-

output on there.” On the other hand:
ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The command

ed <script

interprets script as a file of editor commands; thus <seript means “take input from script.”

Although the file name following “ < or “> appears to be an argument to the command,
in fact it is interpreted completely by the shell and is not passed to the command at all. Thus no
special coding to handle I/O redirection is needed within each command; the command need merely
use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. When
an output-diversion request with > is specified, file 2 remains attached to the terminal, so that
commands may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to the
input of another. A sequence of commands separated by vertical bars causes the shell to execute
all the commands simultaneously and to arrange that the standard output of each command be
delivered to the standard input of the next command in the sequence. Thus in the command line:

Is | pr —2 |opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates
its input with dated headings. (The argument “—2” requests double-column output.) Likewise, the
output from pr is input to opr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:
Is >templ

pr —2 <templ >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the Is command to accept user requests
to paginate its output, to print in multi-column format, and to arrange that its output be
delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons, to
expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process-
ing) is called a filter. Some filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not be
on different lines; instead they may be separated by semicolons:

Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by ‘“‘&,” the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to accept
a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion of

N
[:
NS

o

-11-

a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
“&’ may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file other
than the terminal was provided; if this had not been done, the outputs of the various commands
would have been intermingled.

The shell also allows parentheses in the above opérations. For example:
(date; 1s) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

8.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con-
struct argument lists from a specified subset of the file names in a directory. It also provides gen-
eral conditional and looping constructions.

8.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the shell
is waiting for the user to type a command. When the newline character ending the line is typed,
the shell’s read call returns. The shell analyzes the command line, putting the arguments in a
form appropriate for execute. Then fork is called. The child process, whose code of course is
still that of the shell, attempts to perform an execute with the appropriate arguments. If success-
ful, this will bring in and start execution of the program whose name was given. Meanwhile, the
other process resulting from the fork, which is the parent process, waits for the child process to
die. When this happens, the shell knows the command is finished, so it types its prompt and reads
the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial; whenever a
command line contains ‘“&,” the shell merely refrains from waiting for the process that it created
to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and out-
put files. When a process is created by the fork primitive, it inherits not only the memory image
of its parent but also all the files currently open in its parent, including those with file descriptors
0, 1, and 2. The shell, of course, uses these files to read command lines and to write its prompts
and diagnostics, and in the ordinary case its children—the command programs—inherit them
automatically. When an argument with “<” or “>” is given, however, the offspring process, just
before it performs execute, makes the standard I/O file descriptor (0 or 1, respectively) refer to
the named file. This is easy because, by agreement, the smallest unused file descriptor is assigned

-12-

when a new file is opened (or created); it is only necessary to close file 0 (or 1) and open the
named file. Because the process in which the command program runs simply terminates when it is
through, the association between a file specified after ‘“<” or “>” and file descriptor 0 or 1 is
ended automatically when the process dies. Therefore the shell need not know the actual names of
the files that are its own standard input and output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead of
files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter-
minate is discovering an end-of-file condition on its input file. Thus, when the shell is executed as
a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance of
the shell invoked by sh will terminate. Because this shell process is the child of another instance
of the shell, the wait executed in the latter will return, and another command may then be pro-
cessed.

8.6 Initialization

The instances of the shell to which users type commands are themselves children of another
process. The last step in the initialization of the system is the creation of a single process and the
invocation (via execute) of a program called init. The role of init is to create one process for
each terminal channel. The various subinstances of init open the appropriate terminals for input
and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established on dial-up lines.
Then a message is typed out requesting that the user log in. When the user types a name or other
identification, the appropriate instance of init wakes up, receives the log-in line, and reads a pass-
word file. If the user’s name is found, and if he is able to supply the correct password, init
changes to the user’s default current directory, sets the process’s user ID to that of the person log-
ging in, and performs an execute of the shell. At this point, the shell is ready to receive com-
mands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that will
later become shells) does a wait. If one of the child processes terminates, either because a shell
found an end of file or because a user typed an incorrect name or password, this path of init sim-
ply recreates the defunct process, which in turn reopens the appropriate input and output files and
types another log-in message. Thus a user may log out simply by typing the end-of-file sequence
to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the sys-
tem, because it will invoke the execution of any program with appropriate protection mode. Some-
times, however, a different interface to the system is desirable, and this feature is easily arranged
for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user’s entry in the password file may
contain the name of a program to be invoked after log-in instead of the shell. This program is free
to interpret the user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might specify
that the editor ed is to be used instead of the shell. Thus when users of the editing system log in,
they are inside the editor and can begin work immediately; also, they can be prevented from
invoking programs not intended for their use. In practice, it has proved desirable to allow a tem-
porary escape from the editor to execute the formatting program and other utilities.

AN

7

C

-13-

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illustrate
a much more severely restricted environment. For each of these, an entry exists in the password
file specifying that the appropriate game-playing program is to be invoked instead of the shell.
People who log in as a player of one of these games find themselves limited to the game and
unable to investigate the (presumably more interesting) offerings of the UNIX system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-existent
memory, unimplemented instructions, and odd addresses used where an even address is required.
Such faults cause the processor to trap to a system routine. Unless other arrangements have been
made, an illegal action causes the system to terminate the process and to write its image on file
core in the current directory. A debugger can be used to determine the state of the program at
the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the “‘delete’ character. Unless special action has been taken, this signal simply causes the program
to cease execution without producing a core file. There is also a quit signal used to force an
image file to be produced. Thus programs that loop unexpectedly may be halted and the remains
inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from logging
the user out. The editor catches interrupts and returns to its command level. This is useful for
stopping long printouts without losing work in progress (the editor manipulates a copy of the file
it is editing). In systems without floating-point hardware, unimplemented instructions are caught
and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7 and
set out to create a more hospitable environment. This (essentially personal) effort was sufficiently
successful to gain the interest of the other author and several colleagues, and later to justify the
acquisition of the PDP-11/20, specifically to support a text editing and formatting system. When
in turn the 11/20 was outgrown, the system had proved useful enough to persuade management to
invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32 machines, upon which it
developed to its present form. Our goals throughout the effort, when articulated at all, have
always been to build a comfortable relationship with the machine and to explore ideas and inven-
tions in operating systems and other software. We have not been faced with the need to satisfy
someone else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming con-
venience was that the system was arranged for interactive use, even though the original version
only supported one user. We believe that a properly designed interactive system is much more
productive and satisfying to use than a “batch” system. Moreover, such a system is rather easily
adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its software.
Given the partially antagonistic desires for reasonable efficiency and expressive power, the size con-
straint has encouraged not only economy, but also a certain elegance of design. This may be a
thinly disguised version of the ‘‘salvation through suffering” philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system, they

-14-

quickly become aware of its functional and superficial deficiencies and are strongly motivated to
correct them before it is too late. Because all source programs were always available and easily
modified on-line, we were willing to revise and rewrite the system and its software when new ideas
were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient from a
programming standpoint. The lowest possible interface level is designed to eliminate distinctions
between the various devices and files and between direct and sequential access. No large “‘access
method” routines are required to insulate the programmer from the system calls; in fact, all user
programs either call the system directly or use a small library program, less than a page long, that
buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no ‘‘control blocks™
with a complicated structure partially maintained by and depended on by the file system or other
system calls. Generally speaking, the contents of a program’s address space are the property of the
program, and we have tried to avoid placing restrictions on the data structures within that address
space.

Given the requirement that all programs should be usable with any file or device as input or
output, it is also desirable to push device-dependent considerations into the operating system itself.
The only alternatives seem to be to load, with all programs, routines for dealing with each device,
which is expensive in space, or to depend on some means of dynamically linking to the routine
appropriate to each device when it is actually needed, which is expensive either in overhead or in
hardware.

Likewise, the process-control scheme and the command interface have proved both convenient
and efficient. Because the shell operates as an ordinary, swappable user program, it consumes no
“wired-down”’ space in the system proper, and it may be made as powerful as desired at little cost.
In particular, given the framework in which the shell executes as a process that spawns other
processes to perform commands, the notions of I/O redirection, background processes, command
files, and user-selectable system interfaces all become essentially trivial to implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation of
a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

The fork operation, essentially as we implemented it, was present in the GENIE time-sharing
system.” On a number of points we were influenced by Multics, which suggested the particular
form of the I/O system calls® and both the name of the shell and its general functions. The notion
that the shell should create a process for each command was also suggested to us by the early
design of Multics, although in that system it was later dropped for efficiency reasons. A similar
scheme is used by TENEX.®

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important “applications” programs.

Overall, we have today:

125 user population
33 maximum simultaneous users
1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

-15-

There is a “background” process that runs at the lowest possible priority; it is used to soak up any
idle CPU time. It has been used to produce a million-digit approximation to the constant e, and
other semi-infinite problems. Not counting this background work, we average daily:

13,500 commands

9.6 CPU hours
230 connect hours
62 different users
240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too

numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing Sci-
ence Research Center. R. H. Canaday contributed much to the basic design of the file system. We
are particularly appreciative of the inventiveness, thoughtful criticism, and constant support of R.
Morris, M. D. Mcllroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, ‘‘An online editor,” Comm. Assoc. Comp. Mach., vol. 10,
no. 12, pp. 793-799, 803, December 1967.
B. W. Kernighan and L. L. Cherry, ‘“A System for Typesetting Mathematics,” Comm. Assoc.
Comp. Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey, March 1975.

3. This issue, B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, “UNIX Time-Sharing System:
Document Preparation,” Bell Sys. Tech. J., vol. 57, no. 6, pp. 2115-2135, 1978.

4. T. A. Dolotta and J. R. Mashey, ‘“An Introduction to the Programmer’s Workbench,”’ Proc.
2nd Int. Conf. on Software Engineering, pp. 164-168, October 13-15, 1976.

5. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1978.

6. Aleph-null, “Computer Recreations,” Software Practice and Ezperience, vol. 1, no. 2, pp.
201-204, April-June 1971.

7. L. P. Deutsch and B. W. Lampson, “SDS 930 time-sharing system preliminary reference
manual,” Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley, April 1965.

8. R. J. Feiertag and E. I. Organick, “The Multics input-output system,” Proc. Third Sympo-
stum on Operating Systems Principles, pp. 35-41, October 18-20, 1971.

9. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, “TENEX, a Paged Time

Sharing System for the PDP-10,” Comm. Assoc. Comp. Mach., vol. 15, no. 3, pp. 135-143,
March 1972.

N

7N

NS

Bug fixes and changes in 4.2BSD

July 28, 1983

Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720
(415) 642-7780

ABSTRACT

This document describes briefly the changes in the Berkeley system for the
VAX between the 4.1BSD distribution of April 1981 and this, its revision of July
1983. It attempts to summarize, without going into great detail, the changes
which have been made.

Notable improvements

The file system organization has been redesigned to provide at least an order of magnitude
improvement in disk bandwidth.

The system now provides full support for the DOD Standard TCP/IP network communica-
tion protocols. This support has been integrated into the system in a manner which allows
the development and concurrent use of other communication protocols. Hardware support
and routing have been isolated from the protocols to allow sharing between varying network
architectures. Software support is provided for 10 different hardware devices including 3
different 10 Mb/s Ethernet modules.

A new set of interprocess communication facilities has replaced the old multiplexed file
mechanism. These new facilities allow unrelated processes to exchange messages in either a
connection-oriented or connection-less manner. The interprocess communication facilities
have been integrated with the networking facilities (described above) to provide a single user
interface which may be used in constructing applications which operate on one or more
machines.

A new signal package which closely models the hardware interrupt facilities found on the
VAX replaces the old signals and jobs library of 4.1BSD. The new signal package provides
for automatic masking of signals, sophisticated signal stack management, and reliable protec-
tion of critical regions.

File names are now almost arbitrary length (up to 255 characters) and a new file type, sym-
bolic link, has been added. Symbolic links provide a ‘“‘symbolic referencing’’ mechanism simi-
lar to that found in Multics. They are interpolated during pathname expansion and allow
users to create links to files and directories which span file systems.

The system supports advisory locking on files. Files can have “shared” or “exclusive’ locks
applied by processes. Multiple processes may apply shared locks, but only one process at any
time may have an exclusive lock on a file. Further, when an exclusive lock is present on a
file, shared locks are disallowed. Locking requests normally block a process until they can be

-2-

completed, or they may be indicated as ‘“non-blocking’’ in which case an error is returned if
the lock can not be immediately obtained.

The group identifier notion has been extended to a ‘“‘group set”’. When users log in to the
system they are placed in all their groups. Access control is now done based on the group set
rather than just a single group id. This has obviated the need for the newgrp command.

Per-user, per-filesystem disk quotas are now part of the system. Soft and hard limits may be
specified on a per user and per filesystem basis to control the number of files and amount of
disk space allocated to a user. Users who exceed a soft limit are warned and if, after three
login sessions, their disk usage has not dropped below the soft limit, their soft limit is treated
as a hard limit. Utilities exist for the creation, maintenance, and reporting of disk quotas.

System time is now available in microsecond precision and millisecond accuracy. Users are
provided with 3 high-resolution timers which may be set up to automatically reload on
expiration. The timers operate in real time, user time, and process virtual time (for
profiling). All statistics and times returned to users are now given in a standard format with
seconds and microseconds separated. This eliminates program dependence on the line clock
frequency.

A new system call to rename files in the same file system has been added. This call elim-
inates many of the anomalies which could occur in older versions of the system due to lack of
atomicity in removing and renaming files.

A new system call to truncate files to a specific length has been added. This call improves
the performance of the Fortran I/O library.

Swap space configuration has been improved by allowing multiple swap partition of varying
sizes to be interleaved. These partitions are sized at boot time to minimize configuration
dependencies.

The Fortran 77 compiler and associated I/O library have undergone extensive changes to
improve reliability and performance. Compilation may, optionally, include optimization
phases to improve code density and decrease execution time.

A new symbolic debugger, dbx, replaces the old symbolic debugger sdb. Dbx works on both
C and Fortran 77 programs and allows users to set break points and trace execution by
. source code line numbers, references to memory locations, procedure entry, etc. Dbx allows
users to reference structured and local variables using the program’s programming language
syntax.

The delivermail program has been replaced by sendmail. Sendmail provides full internetwork
routing, domain style naming as defined in the DARPA Request For Comments document
#833, and eliminates the compiled in configuration database previously used by delivermail.
Further, sendmail uses the DARPA standard Simple Mail Transfer Protocol (SMTP) for mail
delivery.

The system contains a new line printer system. Multiple line printers and spooling queues
are supported through a printer database file. Printers on serial lines, raster printing devices,
and laser printers are supported through a series of filter programs which interface to the
standard line printer ‘“core programs”. A line printer control program, lpe, allows printers
and printer queues to be manipulated. Spooling to remote printers is supported in a tran-
sparent fashion.

Cu has been replaced by a new program tip. Tip supports a number of auto-call units and
allows destination sites to be specified by name rather than phone number. Tip also sup-
ports file transfer to non-UNIX machines and can be used with sites which require half-
duplex and/or odd-even parity.

Uucp now supports many auto-call units other than the DN11. Spooling has been reorgan-
ized into multiple directories to cut down on system overhead. Several new utilities and shell
scripts exist for use in adminstrating uucp traffic. Operation has been greatly improved by
numerous bug fixes.

N
{ i
N

-3-

Bug fixes and changes
Section 1

adb Support has been added for interpreting kernel data structures on a running system
and in post mortem crash dumps created by savecore. A —k option causes adb to
map addresses according to the system and current process page tables. A new com-
mand, $p, can be used to switch between process contexts. Many scripts are available
for symbolically displaying kernel data structures, searching for a process’ context by
process ID, etc. A new document, “Using ADB to Debug the UNIX Kernel”, supplies
hints in the use of adb with system crash dumps. ’

addbib Is a new utility for creating and extending bibliographic data bases for use with refer.

apply Is a new program which may be used to apply a command to a set of arguments.

ar Has a new key, ‘o’, for preserving a file’s modification time when it is extracted from
an archive.

cc Supports the additional symbol information used by dbx. The old symbol informa-

tion, used by the defunct sdb debugger, is available by specifying the —go flag. A new
flag, —pg, creates executable programs which collect profiling information to be inter-
preted by the new gprof program. A bug in the C preprocessor, which caused line
numbers to be incorrect for macros with formal parameters with embedded newlines
has been fixed. The C preprocessor now properly handles hexadecimal constants in
“#if” constructs and checks for missing “#endif”’ statements.

chfn Now works interactively in changing a user’s information field in the password file.

chgrp Is now in section 1 and may be executed by anyone. Users other than the super-user
may change group ownership of a file they own to any group in their group access list.

cp Now has a —r flag to copy recursively down a file system tree.

csh A bug which caused backquoted commands to wedge the terminal when interrupted

has been fixed. Job identifiers are now globbed. A bug which caused the ‘“wait’’ com-
mand to uninteruptible in certain cases has been fixed. History may now be saved
and restored across terminal sessions with the savehist variable. The newgrp com-
mand has been deleted due to the new group facilities.

ctags Now handles C typedefs.

cu Exists only in the form of a “‘compatible front-end” to the new tip program.

dbx Is a new symbolic debugger replacing sdb. Dbx handles C and Fortran programs.

delivermail
Has been replaced by the new sendmail program.

df Understands the new file system organization and reports all disk space totals in kilo-
bytes.

du Now reports disk usage in kilobytes and uses the new field in the inode structure
which contains the actual number of blocks allocated to a file to increase accuracy of
calculations.

dump Has been moved to section 8.

error Has been taught about the error message formats of troff.

eyacc A bug which caused the generated parser to not recognize valid null statements has
been fixed.

77 Has undergone major changes.

The i/o library has been extensively tested and debugged. Sequential files are now
opened at the BEGINNING by default; previously they were opened at the end.

fed
file

fp

. fpr
fsplit
ftp
geore
gprof

groups

bostid

hostname

indent
install
jostat

last

lastcomm

learn

-4-

Compilation of data statements has been substantially sped up. Significant new
optimization is optionally available (this is still a bit buggy and should be used with
caution). Even without optimization, however, single precision computations execute
much faster.

The new debugger, dbx, has replaced sdb for debugging Fortran programs; sdb is no
longer supported.

Files with “.F” suffixes are preprocessed by the C preprocessor. This allows C-style
“dtinclude’ and “#tdefine’’ constructs to be used. The compiler has been modified to
print error messages with sensible line numbers. Make also understands the “.F”
suffix. Note that when using the C preprocessor, the 72 column convention is not fol-
lowed.

The ~I option for specifying short integers has been changed to —i. The —I option is
now used to specify directory search paths for “#include’ statements. A —pg option

for creating executable images which collect profiling information for gprof has been
added.

Is a font editor of dubious value.
Now understands symbolic links.
Has a new —type value, ‘I’, for finding symbolic links.

Is a new compiler/interpreter for the Functional Programming language. A support-
ing document is present in Volume 2C of the UNIX Programmer’s Manual.

Is a new program for printing Fortran files with embedded Fortran carriage controls.
Is a new program for splitting a multi-function Fortran file into individual files.

Is a new program which supports the ARPA standard File Transfer Protocol.

Is a new program which creates a core dump of a running process.

Is a new profiling tool which displays execution time for the dynamic call graph of a
program. Gprof works on C, Fortran, and Pascal programs compiled with the —pg
option. Gprof may also be used in creating a call graph profile for the operating sys-
tem. A supporting document, ‘‘gprof: A Call Graph Execution Profiler" is included in
Volume 2C of the UNIX Programmer’s Manual.

Is a new program which displays a user’s group access list.

Is a new program which displays the system’s unique identifier as returned by the new
gethostid system call. The super-user uses this program to set the host identifier at
boot time.

Is a new program which displays the system’s name as returned by the new gethost-
name system call. The super-user uses this program to set the host name at boot
time.

Is a new program for formatting C program source.
Is a shell script used in installing software.

Now reports kilobytes per second transferred for each disk. This is useful as the unit
of information transferred is no longer a constant one kilobytes.

Now displays the remote host from which a user logged in (when accessing a machine
across a network). The pseudo user “ftp”’ may be specified to find out information
about FTP file transfer sessions.

Now displays flags for each command indicating if the program dumped core, used
PDP-11 mode, executed with a set-user-ID, or was created as the result of a fork (with
no following exec).

Now has lessons for vi (this is user contributed software which is not part of the stan-
dard system).

TN

Iprm

m4

Mail

make

mkdir

mt

net

netstat
oldesh
od

pagesize
passwd

pc/pi

pc

-5-

Has a new —C flag for creating lint libraries from C source code. Has improved type
checking on static variables.

Has been ported to several 68000 UNIX systems, the relevant code is included in the
distribution. A new vector data type and a form of ‘““closure’ have been added.

Has a new flag, —s, for creating symbolic links.
Has been extensively modified for use with the rlogind and telnetd network servers.
Is totally new, see lpr.

And its related programs are totally new. The line printer system supports multiple
printers of many different characteristics. A master data base, /etc/printcap,
describes both local printers and printers accessable across a network. A document
describing the line printer system is now part of Volume 2C of the UNIX
Programmer’s Manual.

Is totally new, see lpr.

Has been rewritten for the new directory format. It understands symbolic links and
uses the new inode field which contains the actual number of blocks allocated to a file
when the —s flag is supplied. Many rarely used options have been deleted.

A bug which caused m4 to dump core when keywords were undefined then redefined
has been fixed.

Now supports mail folders in the style of the Rand MH system. Has been reworked to
cooperate with sendmail in understanding the new mail address formats. Allows users
to defined message header fields which are not be displayed when a messages is viewed.
Many other changes are described in a revised version of the user manual.

Understands not to unlink directories when interrupted. Understands the new “.F”
suffix for Fortran source files which are to be run through the C preprocessor. Has a
new predefined macro MFLAGS which contains the flags supplied to make on the
command line (useful in creating hierarchies of makefiles).

Now uses the mkdir system call to run faster.
Has a new command, status, which shows the current state of a tape drive.

Has been rewritten to use the new rename system call. As a result, multiple direc-
tories may now be moved in a single command, the restrictions on having ¢“..” in a
pathname are no longer present, and everything runs faster.

And all related Berknet programs are no longer part of the standard distribution.
These programs live on in /usr/src/old for those who can not do without them.

Is a new program which displays network statistics and active connections.
No longer exists.
Has gobs of new formats options.

Is a new program which prints the system page size for use in constructing portable
shell scripts.

Now reliably interlocks with chsh, chfn, and vipw, in guarding against concurrent
updates to the password file.

For loops are now done according to the standard. Files may now be dynamically
allocated and disposed. Records and variant records are now aligned to correspond to
C structures and unions (this was falsely claimed before). Several obscure bugs
involving formal routines have been fixed. Three new library routines support random
access file i/o, see /usr/include/pascal for details.

For loop variables and with pointers are now allocated to registers. Separate compi-
lation type checking can now be done without reference to the source file; this permits
movement (including distribution) of .o files and creation of libraries. Display entries

pdx

pwd
rep

refer
reset

rlogin

rmdir

roffbib
rsh
ruptime

rwho

script

sdb
sendbug
sortbib
strip

stty

-6-

are saved only when needed (a speed optimization).

Is a new debugger for use with pi. Pdx is invoked automatically by the interpreter if
a run-time error is encountered. Future work is planned to extend the new dbx
debugger to understand code generated by the Pascal compiler pc.

Has been changed to work with the new kernel and is no longer dependent on system
page size. All process segment sizes are now shown in kilobytes. Understands that
the old “‘using new signal facilities” bit in the process structure now means “‘using old
4.1BSD signal facilities’’.

Now simply calls the getwd(3) routine.

Is a new program for copying files across a network. The complete syntax of cp is
supported, including recursive directory copying.

Has had many bugs fixed in it and the associated —-ms macro package support made to
work.

Now resets all the special characters to the system defaults specified in the include file
<sys/ttychars.h>.

Is a new program for logging in to a machine across a network. Rlogin uses the files
/etc/hosts.equiv and .rhosts in the users login directory to allow logins to be per-
formed without a password. Rlogin supports proper handling of "S/"Q and flushing
of output when an interrupt is typed at the terminal. Its ‘"’ escape sequences are rem-
iniscent of the old cu program (as it is based on the same source code).

Now uses the rmdir system call to run more efficiently and not require root privileges.
Unfortunately, this means arguments which end in one or more */” characters are no
longer legal.

Is a new program for running off bibiliographic databases.

Is a new program which supports remote command execution across a network.

Is a new program which displays system status information for clusters of machines
attached to a local area network.

Is a new program which displays users logged in on clusters of machines attached to a
local area network.

Has been rewritten to use pseudo-terminals. This allows the C shell job control facili-
ties (among other things) to be used while scripting. A side eflect of this change is
that scripts now contain everything typed at a terminal.

Has been replaced by dbx; it still lives on in /usr/src/old for those with a personal
attachment.

Is a new command for submitting bug reports on 4.2BSD in a standard format suit-
able for automatic filing by the bugfiler program.

No longer has a newgrp command due to the new groups facilities.
Is a new command for sorting bibliographic databases.

Has been made blindingly fast by using the new truncate system call (thereby elim-
inating the old method of copying the file).

The default system erase, kill, and interrupt characters have been made the DEC stan-
dard values of DEL (‘*?’), ¢*U’, and ‘"C’. This is not expected to gain much popular-
ity, but was done in the interest of compatibility with many other standard operating
systems.

Has been changed to do a ‘“full login” when starting up the subshell. A new flag, —f,
does a “fast” su for when a system is heavily loaded. Extra arguments supplied to su
are now treated as a command line and executed directly instead of creating an
interactive shell.

\\) _V//'

sysline

tail
talk

telnet

tip

ul

uucp

uusnap
vfontinfo
vgrind

vlp
vmstat

vpr

vwidth

wce

whereis
which
who

-7-

Is a new program for maintaining system status information on terminals which sup-
port a ‘‘status line”’; a poor man’s alternative to a window manager (or emacs).

Has a larger buffer so that ‘“tail -r”” and similar show more.

Is a new program which provides a screen-oriented write facility. Users may be
“talked to”across a network, though satellite response times have indicated overseas
conversations are still best done by phone. Can be very obnoxious when engaged in
important work.

Now allocates its internal buffers dynamically so that the block size can be specified to
be very large for streaming tape drives. Also, now avoids many core-core copy opera-
tions. Has a new —C option for forcing chdir operations in the middle of operation
(thereby allowing multiple disjoint subtrees to be easily placed in a single file, each
with short relative pathnames). Has a new flag, ‘B’, for forcing 20 block records to be
read and written; useful in joining two tar commands with a remote shell to transfer
large amounts of data across a network.

Is a new program which supports the ARPA standard Telnet protocol.

Replaces cu as the standard mechanism for connecting to machines across a phone line
or through a hardwired connection. Tip uses a database of system descriptions, sup-
ports many diflerent auto-call units, and understands many nuances required to talk
to non-UNIX systems. Files may be transferred to and from non-UNIX systems in a
simple fashion.

A bug which sometimes caused an extra blank line to be printed after reaching end of
file has been fixed.

And related programs have been extensively enhanced to support many different
auto-call units and multiple spooling directories (among other things). A large
number of bugs and performance enhancements have been made.

Is a new program which gives a snap-shot of the uucp spooling area.
Is a program used to inspect and print information about fonts.

Now uses a regular expression language to describe formatting. A —f flag forces
vgrind to act as a filter, generating output suitable for inclusion in troff and/or nroff
documents. Language descriptions exist for C, Pascal, Model, C shell, Bourne shell,
Ratfor, and Icon programs.

A bug which caused the "B command to place the cursor on the wrong line has been
fixed. A bug which caused vi to believe a file had been modified when an i/o error
occurred has been fixed. A bug which allowed ‘‘hardtabs” to be set to 0 causing a
divide by zero fault has been fixed.

Is a new program for pretty printing Lisp programs.

Has had one new piece of information added to —s summary, the number of fast page
reclaims performed. The fields related to paging activity are now all given in kilo-
bytes.

And associated programs for spooling and printing files on Varian and Versatec
printers are now shell scripts which use the new line printer support.

Is a new program for making troff width tables for a font.

Is once again identical to the version 7 program. That is, the —v, —t, —b, —s, and —u
flags have been deleted.

Understands the new directory organization for the source code.
Now understands how to handle aliases.
Now displays the remote machine from which a user is logged in.

-8-

Section 2.

The most important change in section 2 is that the documentation has been significantly
improved. Manual page entries now indicate the possible error codes which may be returned and
how to interpret them. The introduction to section 2 now includes a glossary of terms used
throughout the section. The terminology and formatting have been made consistent. Many
manual pages now have “NOTES” or “CAVEATS” providing useful information heretofore left
out for the sake of brevity. As always the manual pages are still for the programmer; they are
terse and extremely concise. The ¢4.2BSD System Manual” is likewise concise, but a bit more ver-
bose in providing an overall picture of the system facilities.

With regard to changes in the facilities, these fall into three major categories: interprocess
communication, signals, and file system related calls. The interprocess communication facilities
center around the socket mechanism described in the “A 4.2BSD Interprocess Communication Pri-
mer”. The new signals do not have an accompanying document, so the manual pages should be
studied carefully. The new file system calls pretty much stand on their own, with a late section of
the document ‘“‘A Fast File System for UNIX” supplying a quick overview of the most important
new file system facilities. Finally, it should be noted that the job control facilities introduced in
4.1BSD have been adopted as a standard part of 4.2BSD. No special distinction is given to these
calls (in 4.1BSD they were earmarked *2J”).

Many of the new system calls have both a ‘“set’” and a ‘“‘get” form. Only the ‘“‘get” forms
are indicated below. Consult the manual for details on the ‘‘set” form.

intro Has been updated to reflect the new list of possible error codes. Now includes a glos-
sary of terminology used in section 2.

access Now has symbolic definitions for the mode parameter defined in < sys/file.h>.

bind Is a2 new interprocess communication system call for binding names to sockets.

connect Is a new interprocess communication system call for establishing a connection between
two sockets.

creat Has been obsoleted by the new open interface.

fchmod Is a new system call which does a chmod operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.

fchown Is a new system call which does a chown operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.

fentl Is a new system call which is useful in controlling how i/o is performed on a file
descriptor (non-blocking i/o, signal drive i/o). This interface is compatible with the
System 1II fentl interface.

flock Is a new system call for manipulating advisory locks on files. Locks may be shared or
exclusive and locking operations may be indicated as being non-blocking, in which
case a process is not blocked if the requested lock is currently in use.

fstat Now returns a larger stat bufler; see below under stat.

fsync Is a new system call for synchronizing a file’s in-core state with that on disk. Its
intended use is in building transaction oriented facilities.

ftruncate Is a new system call which does a truncafe operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.

getdtablesize
Is a new system call which returns the size of the descriptor table.

getgroups Is a new system call which returns the group access list for the caller.

gethostid Is a new system call which returns the unique (hopefully) identifier for the current
host.

/—\

gethostname

getitimer

Is a new system call which returns the name of the current host.
Is a new system call which gets the current value for an interval timer.

getpagesizels a new system call which returns the system page size.

getpriority Is a new system call which returns the current scheduling priority for a specific pro-

getrlimit

getrusage

cess, a group of processes, or all processes owned by a user. In the latter two cases,
the priority returned is the highest (lowest numerical value) enjoyed by any of the
specified processes. :

Is a new system call which returns information about a resource limit. The getrlimit
and setrlimit calls replace the old vlimit call from 4.1BSD.

Is a new system call which returns information about resource utilitization of a child
process or the caller. This call replaces the vtimes call of 4.1BSD.

getsockoptIs a new interprocess communication system call which returns the current options

present on a socket.

gettimeofday

ioctl

killpg
listen

Iseek
mkdir

mpx

open

profil
quota
read

readv

readlink
recv

recvfrom

Is a new system call which returns the current Greenwich date and time, and the
current timezone in which the machine is operating. Time is returned in seconds and
microseconds siace January 1, 1970.

Has been changed to encode the size of parameters and whether they are to be copied
in, out, or in and out of the user address space in the request. The symbolic names
for the various ioct] requests remain the same, only the numeric values have changed.
A number of new ioctls exist for use with sockets and the network facilities. The old
LINTRUP request has been replaced by a call to fentl and the SIGIO signal.

Has now been made a system call; ip 4.1BSD it was a library routine.

Is a new interprotess communication system call used to indicate a socket will be used
to listen for incoming connection requests.

Now has symbolic definitions for its whence parameter defined in <sys/file.h>.
Is a new system call which creates a directory.

The multiplexed file facilities are no longer part of the system. They have been
replaced by the socket, and related, system calls.

Is different, now taking an optional third parameter and supporting file creation,
automatic truncation, automatic append on write, and “exclusive’’ opens. The open
interface has been made compatible with System III with the exception that non-
blocking opens on terminal lines requiring carrier are not supported.

Now returns statistical information based on a 100 hz clock rate.

Is a new system call which is part of the disk quota facilities. Quota is used to mani-
pulate disk quotas for a specific user, as well as perform certain random chores such as
syncing quotas to disk.

Now automatically restarts when a read on a terminal is interrupted by a signal
before any data is read.

Is a new system call which supports scattering of read data into (possibly) disjoint
areas of memory.

Is a new system call for reading the value of a symbolic link.

Is a new interprocess communication system call used to receive a message on a con-
nected socket.

Is a new interprocess communication system call used to receive a message on a (possi-
bly) unconnected socket.

recvmsg

rename

rmdir
select

send
sendto
sendmsg

setquota

setregid
setreuid
shutdown

sigblock

sigpause

-10-

Is a new interprocess communication system call used to receive a message on a (possi-
bly) unconnected socket which may have access rights included. When using on-
machine communication, recvmsg and sendmsg may be used to pass file descriptors
between processes.

Is a new system call which changes the name of an entry in the file system (plain file,
directory, character special file, etc.). Rename has an important property in that it
guarantees the target will always exist, even if the system crashes in the middle of the
operation. Rename only works with source and destination in the same file system.

Is a new system call for removing a directory.)

Is a new system call (mainly for interprocess communication) which provides facility
for synchronous i/o multiplexing. Sets of file descriptors may be queried for readabil-
ity, writability, and if any exceptional conditions are present (such as out of band
data on a socket). An optional timeout may also be supplied in which case the select

operation will return after a specified period of time should no descriptor satisfy the
requests.

Is a new interprocess communication system call for sending a message on a connected
socket.

Is a new interprocess communication system call for sending a message on a (possibly)
unconnected socket.

Is a new interprocess communication system call for sending a message on a (possibly)
unconnected socket which may included access rights.

Is a new system call for enabling or disabling disk quotas on a file system.

Is a new system call which replaces the 4.1BSD setgid system call. Setregid allows the
real and effective group ID’s of a process to be set separately.

Is a new system call which replaces the 4.1BSD setuid system call. Setreuid allows the
real and effective user ID’s of a process to be set separately.

Is a new interprocess communication system call for shutting down part or all of full-
duplex connection.

Is a new system call for blocking signals during a critical section of code.

Is a new system call for blocking a set of signals and then pausing indefinitely for a
signal to arrive.

sigsetmask Is a new system call for setting the set of signals which are currently blocked from

sigstack
sigsys

sigvec

delivery to a process.

Is a new system call for defining an alternate stack on which signals are to be pro-
cessed.

Is no longer supported. The new signal facilities are a superset of those which sigsys
provided.

Is the new system call interface for defining signal actions. For each signal (except
SIGSTOP and SIGKILL), sigvec allows a “signal vector” to be defined. The signal
vector is comprised of a handler, a mask of signals to be blocked while the handler
executes, and an indication of whether or not the handler should execute on a signal
stack defined by a sigstack call. The old signal interface is provided as a library rou-
tine with several important caveats. First, signal actions are no longer reset to their
default value after a signal is delivered to a process. Second, while a signal handler is
executing the signal which is being processed is blocked until the handler returns. To
simulate the old signal interface, the user must explicitly reset the signal action to be
the default value and unblock the signal being processed.

Four new signals have been added for the interprocess communication and interval
timer facilities. SIGIO is delivered to a process when an fentl call enables signal
driven i/o and input is present on a terminal (and a signal handler is defined).

"

\;/'J

socket
socketpair

stat

swapon
symlink
truncate
unlink

utime

utimes

vfork

-11-

SIGURG is delivered when an urgent condition arises on a socket (and a handler is
defined). SIGPROF and SIGVTALRM are associated with the ITIMER_PROF and
ITIMER_VIRTUAL interval timers, and delivered to a process when such a timer
expires (the SIGALRM signal is used for the ITIMER_REAL interval timer). The old
SIGTINT signal is replaced by SIGIO.

Is a new interprocess communication system call for creating a socket.

Is a new interprocess communication system call for creating a pair of connected and
unnamed sockets.

Now returns a larger structure. New fields are present indicating the optimal blocking
factor in which i/o should be performed (for disk files the block size of the underlying
file system) and the actual number of disk blocks allocated to the file. Inode numbers
are now 32-bit quantities. Several spare fields have been allocated for future expan-
sion. These include space for 64-bit file sizes and 64-bit time stamps. Two new file
types may be returned, S_IFLNK for symbolic links, and S_IFSOCK for sockets resid-
ing in the file system.

Has been renamed from the vswapon call of 4.1BSD.
Is a new system call for creating a symbolic link.
Is a new system call for truncating a file to a specific size.

Should no longer be used for removing directories. Directories should only be created
with mkdir and removed with rmdir. Creating hard links to directories can cause
disastrous results.

Is defunct, replaced by utimes.

Is a new system call which uses the new time format in setting the accessed and
updated times on a file.

Is still present, but definitely on its way out. Future plans include implementing fork
with a scheme in which pages are initially shared read-only. On the first attempt by a
process to write on a page the parent and child would receive separate writable copies
of the page. :

Is no longer supported. Vlimit is replaced by the getrlimit and setrlimit calls.
Is no longer supported in the system.

Has been renamed swapon.

Is no longer supported. Vtimes is replaced by the getrusage call.

Is no longer supported in the system.

Now is automatically restarted when interrupted by a signal before status could be
returned.

Returns resource usage in a different format than that which was returned in 4.1BSD.
This structure is compatible with the new getrusage system call. Wait3 is now
automatically restarted when interrupted by a signal before status could be returned.

Now is automatically restarted when writing on a terminal and interrupted by a sig-
nal before any i/o was completed.

Is a new version of the write system call which supports gathering of data in (poss:-
bly) discontiguous areas of memory

Section 3

The section 3 documentation has been reorganized to group manual entries by library. Intro-
ductory sections for each logical and physical library contain lists of the entry points in the

library.

-12-

A number of routines which had been system calls under 4.1BSD are now user-level library
routines in 4.2BSD. These routines have been grouped under section ‘“3C’’ headings, “C” for com-
patibility. Further, certain routines present in the standard C run-time library which do not easily
categorize as part of one of the standard libraries, have been group under “3X"’ headings.

curses

stdio

bstring
ctime
isprint
directory

getpass
getwd

perror

psignal
gsort
random

setjmp

net

A number of bug fixes have been incorporated, and the documentation has been
revised.

The standard i/o library has been modified to block i/o operations to disk files accord-
ing to the block size of the underlying file system. This is accomplished using the new
st_blksize value returned by fstat. The resultant performance improvement is
significant as the old 1 kilobyte buffer size often resulted in 7 memory-to-memory copy
operations by the system on 8 kilobyte block file systems.

End-of-file marks now “stick”. That is, all input requests on a stdio channel after
encountering end-of-file will return end-of-file until a clearerr call is made. This has
implications for programs which use stdio to read from a terminal and do not process
end-of-file as a terminating keystroke.

Two new functions may be used to control i/o buffering. The setlinebuf routine is
used to change stdout or stderr from block buffered or unbuffered to line buffered.
The setbuffer routine is an alternate form of setbuf which can be used after a stream
has been opened, but before it is read or written.

Three new routines, bemp, bcopy, and bzero have been added to the library. These
routines use the VAX string instructions to manipulate binary byte strings of a known
size.

Now uses the gettimeofday system call and supports time conversion in six different
time zones. Daylight savings calculations are also performed in each time zone when
appropriate.

Now considers space a printing character; as the manual page has always indicated.

Is a new directory interface package which provides a portable interface to reading
directories. A version of this library which operates under 4.1BSD is also available.

Now properly handles being unable to open /dev/tty.

Has been moved from the old jobs library to the standard C run-time library. It now
returns an error string rather than printing on the standard error when unable to deci-
pher the current working directory.

Now uses the writev system call to pass all its arguments to the system in a single
system call. This has profound eflects on programs which transmit error messages
across a network.

And sys_siglist are routines for printing signal names in an equivalent manner to per-
ror.

Has been greatly sped up by choosing a random element with which to apply its
divide and conquer algorithm.

Is a successor to rand which generates much better random numbers. The old rand
routine is still available and most programs have not been switched over to random as
doing so would make certain facilities such encrypted mail unable to operate on exist-
ing data files.

And longjmp now save and restore the signal mask so that non-local exit from a sig-
nal handler is transparent. The old semantics are available with _setjmp and
_longjmp.

Is a new set of routines for accessing database files for the DARPA Internet. Four
databases exist: one for host names, one for network names, one for protocol numbers,
and one for network services. The latter returns an Internet port and protocol to be
used in accessing a given network service.

N
.

fstab

-13-

An additional collection of routines, all prefaced with “inet_’’ may be used to manipu-
late Internet addresses, and interpret and convert between Internet addresses and
ASCII representations in the Internet standard ‘“‘dot” notation.

Finally, routines are available for converting 16 and 32 bit quantities between host
and network order (on high-ender machines these routines are defined to be noops).

The routines for manipulating /etc/fstab have been rewritten to return arbitrary
length null-terminated strings.

Section 4

The system now supports the 11/730, the new 64Kbit RAM memory controllers for the

11/750 and 11/780, and the second UNIBUS adapter for the 11/750. Several new character
and/or block device drivers have been added, as well as support for many hardware devices which
are accessible only through the network facilities. Each new piece of hardware supported is listed

below.

New manual entries in section 4 have been created to describe communications protocols, and
network architectures supported. At present the only network architecture fully supported is the
DARPA Internet with the TCP, IP, UDP, and ICMP protocols.

acc
ad

arp

css
dme

ec

lo
pel
ps

pty

& 3

tu

uda

A network driver for the ACC LH/DH IMP interface.
A driver for the Data Translation A/D converter.

The Address Resolution Protocol for dynamically mapping betwee 32-bit DARPA
Internet addresses and 48-bit Xerox 10Mb/s Ethernet addresses.

A network driver for the DEC IMP-11A LH/DH IMP interface.

A network interface driver for the DEC DMC-11/DMR-11 point-to-point communica-
tions device.

A network interface driver for the 3Com 10Mb/s Ethernet controller.

A network interface driver for the Xerox 3Mb/s experimental Ethernet controller.
A network interface driver for the Network Systems Hyperchannel Adapter.

A driver for an Ikonas frame bufler graphics device interface.

A network interface driver for the Interlan 10Mb/s Ethernet interface.

A network interface driver for the standard 1822 interface to an IMP; used in conjunc-
tion with either acc or css hardware.

A driver for a KI-11/DL-11W used as an alternate real time clock source for gathering
kernel statistics and profiling information.

A software loopback network interface for protocol testing and performance analysis.
A network interface driver for the DEC PCL-11B communications controller.

A driver for an Evans and Sutherland Picture System 2 graphics device connected
with a DMA interface.

Now includes a simple packet protocol to support flow controlled operation with
mechanisms for flushing data to be read and/or written.

A driver for the DEC dual RX02 floppy disk unit.
Now supports TUSO tape drives.

The VAX-11/750 console cassette interface has been made somewhat usable when
operating in single-user mode. The device driver employs assembly language pseudo-
dma code for the reception of incoming packets from the cassette.

Now supports RA81, RA80, and RAGO disk drives.

-14-

un A network interface driver for an Ungermann-Bass network interface unit connected to
the host via a DR-11W.

up Now supports ECC correction and bad sector handling. Also has improved logic for
recognizing many different kinds of disk drives automatically at boot time.

uu A driver for DEC dual TU58 tape cartridges connected via a DL-11W interface.

va The Varian driver has been rewritten so that it may coexist on the same UNIBUS
with devices which require exclusive use of the bus; i.e. RIK07’s.

vv A network interface driver for the Proteon proNET 10Mb/s ring network controller.

Section 5

dir Reflects the new directory format.

disktab Is a new file for maintaining disk geometry information. This is a temporary scheme
until the information stored in this file for each disk is recorded on the disk pack
itself.

dump Is a superset of that used in 4.1BSD.

fs Reflects the new file system organization.

gettytab Is a new file which idescribes terminal characteristics. Each entry in the file describes
one of the possible arguments to the getty program.

hosts Is a database for mapping between host names and DARPA Internet host addresses.

mtab Has been modified to include a “type’” field indicating whether the file system is
mounted read-only, read-write, or read-write with disk quotas enabled.

networks Is a database for mapping between network names and DARPA standard network
numbers.

phones Is a phone number data base for tip.

printcap Is a termcap clone for configuring printers.

protocols Is a database for mapping between protocol names and DARPA Internetwork stan-
dard protocol numbers.

remote Is a database of remote hosts for use with tip.

services Is a database in which DARPA Internet services are recorded. The information con-
tained in this file indicates the name of the service, the protocol which is required to
access it, and the port number at which a client should connect to utilize the service.

tar Is a new entry describing the format of a tar tape.

utmp Has been augmented to include a remote host from which a login session originates.
The wtmp file is also used to record FTP sessions.

vgrindefs Is a file describing how to vgrind programs written in many languages.

Section 6

aardvark Does not work because it requires the “‘Dungeon Definition Language” processor which
is a binary image requiring 4.1BSD compatibility mode; the DDL source is still
present.

aliens The aliens have returned home, the game is no longer included in the distribution.

backgammon

Is now screen oriented. A new program, teachgammon, instructs the new backgam-
mon player. The old version is now called btlgammon.

N
./

TN

"

-15-

canfield Is a new game which plays a brand of the popular game of solitaire. Betting is

included, the program cfscores may be used to find out your current debt.

ching Now pipes its output through more. Thus the hacker placates the seekers.
chase No longer exists because the binary does not work under 4.2BSD.
factor Is a rewrite in C of the old version 7 assembly language program which finds the

prime factors of a number.

fortune Has yet more adages.

hangman Is now screen oriented.

mille Now plays more intelligently.

primes Is a rewrite in C of the old version 7 assembly language program which finds prime

numbers within a specified range.

rogue Has been made more of a scoundrel. The supplementary document “A Guide to the

Dungeons of Doom”, has been updated as well, and is now part of Volume 2C of the
programmer’s manual.

sail Is a new game which simulates sea battles of yore. The manual page is large enough
to be a separate document and so has been left in its source directory.
trek The original trek has returned; trekies rejoice.
Section 7
hier Has been updated to reflect the reorganization to the user and system source.

mailaddr Is a new entry describing mail addressing syntax under sendmail (possibly too Berke-

ley specific).

The —ms macros have been extended to allow automatic creation of a table of con-
tents. Support for the refer preprocessor is improved. Several bugs related to multi-
column output and floating keeps have been fixed. Extensions to the accent mark
string set are available by including the .AM macro. Footnotes can now be automati-
cally numbered (in superscript) by —ms and referenced in the text with a ** string
register. The manual page includes a summary of important number and string regis-
ters. A new document ‘“Changes to -ms” is included in Volume 2C of the
programmer’s manual.

Section 8
Major changes affecting system operations include:

The system now supports disk quotas. These allow system administrators to control users’ disk
space and file allocation on a per-file system basis. Utilities in this section exist for fixing, sum-
marizing, and editing disk quota summary files.

File systems are now made with a new program, newfs, which acts as front end to the old mkfs
program. There no longer is a need to remember disk partition sizes, as newfs gets this infor-
mation automatically from the /etc/disktab file. In addition, newfs attempts to lay out file
systems according to the characteristics of the underlying disk drive (taking into account disk
geometry information).

DEC standard bad block forwarding is now supported on the RP06 and second vendor
UNIBUS storage module disks. The bad144 program can now be used to mark sectors bad on
many disks, though inclusion in the bad sector table is still somewhat risky due to requirements
in the ordering of entries in the table.

A new program, format, should be used to initialize all non-DEC storage modules before creat-
ing file systems. Format formats the sector headers and creates a bad sector table which is
used in normal system operation. Format runs in a standalone mode.

-16 -

o Getty has been rewritten to use a description file, /etc/gettytab. This allows sites to tailor ter-
minal operation and configuration without making modifications to getty.

e The line printer system is totally new. A program to administer the operation of printers, Ipc,
is supplied, and printer accounting has been consolidated into a single program, pac.

e The program used to restore files from dump tapes is now called restore. This name change
was done to reinforce the fact that it is completely rewritten and operates in a very different
way than the old restor program. Restore operates on mounted file systems and uses only nor-
mal file system operations to restore files. Versions of both dump and restore which operate
across a network are included as rdump and rrestore. Dump and restore (and their network
oriented counterparts) now perform so efficiently {mostly because of the new file system), that
disk to disk backups should no longer be an attractive alternative.

arff

bad144

badsect

bugfiler

chgrp
comsat

config

diskpart

drtest

dump

dumpfs

edquota

fastboot

No longer asks if you want to clobber the floppy when manipulating archives which
are not on the floppy.

Has been modified to use the /etc/disktab file. Can be used to create bad sector
tables for the DEC RPO06 and several new Winchester disk drives. Consult the source
code for details and use with extreme care.

Has been modified to work with the new file system and now must interact with fsck
to perform its duties. Consult the manual page for more information.

Is a new program for automatic filing and acknowledgement of bug reports submitted
by the sendbug program. Intended to operate with the Rand MH software which is
part of the user contributed software. Used at Berkeley to process bug reports on
4.2BSD.

Has been moved to section 1.

Has been changed to filter the noise lines in message headers when displaying incoming
mail. No longer uses a second process watchdog as it uses the more reliable socket
facilities instead of the old mpx facilities.

Has been extensively modified to handle the new root and swap device specification
syntax. A new document, ‘“Configuring 4.2BSD UNIX Systems with Config”,
describes its use, as well as other important information needed in configuring system
images; this is part of Volume 2C of the programmer’s manual.

Is a new program which may be used to generate disk partition tables according to the
rules used at Berkeley. Can automatically generate entries required for device drivers
and for the /etc/diskpart file. (Does not handle the new DEC DSA style drives prop-
erly because it tries to reserve space for the bad sector table.)

Is a new standalone program which is useful in testing standalone disk device drivers
and for pinpointing bad sectors on a disk.

Has been modified for the new file system organization. Mainly due to the new file
system, it runs virtually at tape speed. Properly handles locking on the dumpdates
file when multiple dumps are performed concurrently on the same machine.

Is a new program for dumping out information about a file system such as the block
size and disk layout information.

Is a new program for editing user quotas. Operates by invoking your favorite editor
on an ASCII representation of the information stored in the binary quota files.
Edquota also has a ‘“‘replication” mode whereby a quota template may be used to
create quotas for a group of users.

Is a new shell script which reboots the system without checking the file systems;
should be used with extreme care.

N

(

fasthalt Is a new script which is similar to fastboot.

format Is a new standalone program for formatting non-DEC storage modules and creating
the appropriate bad sector table on the disk.

fsck Has been changed for the new file system. Fsck is more paranoid then ever in check-
ing the disks, and has been sped up significantly. The accompanying Volume 2C
document has been updated to reflect the new file system organization.

ftpd Is the DARPA File Transfer Protocol server program. It supports C shell style glob-
bing of arguments and a large set of the commands in the specification (except the
ABORT command!). :

gettable Is a new program which can be used in aquiring up to date DARPA Internet host
database files.

getty Has been rewritten to use a terminal description database, /etc/gettytab. Consult the
manual entries for getty(8) and getlytab(5) for more information.

icheck Has been modified for the new file system.

init Has been significantly modified to use the new signal facilities. In doing so, several
race conditions related to signal delivery have been fixed.

kgmon Is a new program for controlling running systems which have been created with kernel
profiling. Using kgmon, profiling can be turned on or off and internal profiling buffers
can dumped into a gmon.out file suiitable for interpretation by gprof.

Ipc Is a new program controlling line printers and their associated spooling queues. Lpc
can be used to enable and disable printers and/or their spooling queues. Lpc can also
be used to rearrange existing jobs in a queue.

Ipd Has been rewritten and now runs as a “‘server”, using the interprocess communication
facilities to service print requests. A supplementary document describing the line
printer system is now part of Volume 2C of the programmer’s manual.

MAKEDEV
Is a new shell script which resides in /dev and is used to create special files there.
MAKEDEYV keeps commands for creating and manipulating local devices in a separate
file MAKEDEV .local.

mkfs Has been virtually rewritten for the new file system. The arguments supplied are very
different. For the most part, users now use the newls program when creating file sys-
tems. Mkfs now automatically creates the lost-+found directory.

mount Now indicates file systems which are mounted read-only or have disk quotas enabled.

newfs Is a new front-end to the mkfs program. Newfs figures out the appropriate parame-
ters to supply to mkfs, invokes it, and then, if necessary, installs the boot blocks
necessary to bootstrap UNIX on 11/750’s.

pac Is a new program which can be used to do printer accounting on any printer. It sub-
sumes the vpac program.]

quot Now uses the information in the inode of each file to find out how many blocks are
allocated to it.

quotacheck
Is a new program which performs consistency checks on disk quota files. Quotacheck
is normally run from the /etc/rc.local file after a system is rebooted, though it can
also be run on mounted on file systems which are not in use.

quotaon Is a new program which enables disk quotas on file systems. A link to quotaon,
named quotaoff, is used to disable disk quotas on file systems.

pstat Has been modified to understand new kernel data structures.

re Has had system dependent startup commands moved to /etc/re.local.

-17 -

rexecd
rlogind
rmt

route
routed

rrestore
rshd
rwhod
rxformat
savecore

sendmail

setifaddr

syslog

telnetd
tftpd
trpt

tunefs

vipw

- 18-

Is a new program to dump file systems across a network.

Has been rewritten to use the new setpriority system call. As a result, you can now
renice users and process groups.

Is a new program which summarizes disk quotas on one or more file systems.
No longer exists. A new program, restore, is its successor.

Replaces restor. Restore operates on mounted file systems; it contains an interactive
mode and can be used to restore files by name. Restore has become almost as flexible
to use as tar in retrieving files from tape.

Is a network server for the rezec (3X) library routine. Supports remote command exe-
cution where authentication is performed using user accounts and passwords.

Is a network server for the rlogin (1C) command. Supports remote login sessions
where authentication is performed using privileged port numbers and two files,
/etc/hosts.equiv and .rhosts (in each users home directory).

Is a program used by rrestore and rdump for doing remote tape operations.
Is a program for manually manipulating network routing tables.

Is a routing daemon which uses a variant of the Xerox Routing Information Protocol
to automatically maintain up to date routing tables.

Is a version of restore which works across a network.
Is a server for the rsh(1C) command. It supports remote command execution using

privileged port numbers and the /etc/hosts.equiv and .rhosts files in users’ home direc-
tories.

Is a server which generates and listens for host status information on local networks.
The information stored by rwhod is used by the rwho (1C) andruptime (1C) programs.

Is a program for formatting floppy disks (this uses the rz device driver, not the console
floppy interface).

Has been modified to get many pieces of information from the running system and
crash dump to avoid compiled in constants.

Is a new program replacing delivermail; it provides fully internetwork mail forwarding
capabilities. Sendmail uses the DARPA standard SMTP protocol to send and receive
mail. Sendmail uses a configuration file to control its operation, eliminating the com-
piled in description used in delivermail.

Is a new program used to set a network interface’s address. Calls to this program are
normally placed in the /etc/rc.local file to configure the network hardware present on
a machine.

Is a server which receives system logging messages. Currently, only the sendmail pro-
gram uses this server.

Is a server for the DARPA standard TELNET protocol.
Is a server for the DARPA Trivial File Transfer Protocol.

Is a program used in debugging TCP. Trpt transliterates protocol trace information
recorded by TCP in a circular buffer in kernel memory.

Is a program for modifying certain parameters in the super block of file systems.

Is no longer a shell script and properly interacts with passwd, chsh, and chfn in lock-
ing the password file.

&

UNIX/32V — Summary

March 9, 1979

A. What'’s new: highlights of the UNIX1/32V System

32-bit world. UNIX/32V handles 32-bit addresses and 32-bit data. Devices are addressable to
9% bytes, files to 930 bytes.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware. UNIX/32V is highly compatible with UNIX ver-
sion 7.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured program-
ming, user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for preparing
complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream
of indefinite length. AWK report generator does free-field pattern selection and arithmetic opera-
tions.

\ . . .
Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation.

Debugging. ADB does postmortem and breakpoint debugging.

C language. The language now supports definable data types, generalized initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately compiled
functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream I/O is integrated with for-
matted input and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in many
other ways too numerous to relate.

t UNIX is a Trademark of Bell Laboratories.

B. Hardware

The UNIX/32V operating system runs on a DEC VAX-11/780* with at least the following
equipment:

memory: 256K bytes or more.

disk: RP06, RMO03, or equivalent.

tape: any 9-track MASSBUS-compatible tape drive.
The following equipment is strongly recommended:

communications controller such as DZ11 or DL11.

full duplex 96-character ASCII terminals.

extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space
specified is enough to run and maintain UNIX/32V, and to keep all source on line. More memory
will be needed to handle a large number of users, big data bases, diversified complements of dev-
ices, or large programs. The resident code occupies 40-55K bytes depending on configuration; sys-
tem data also occupies 30-55K bytes.

C. Software

Most of the programs available as UNIX/32V commands are listed. Source code and printed
manuals are distributed for all of the listed software except games. Almost all of the code is writ-
ten in C. Commands are self-contained and do not require extra setup information, unless
specifically noted as “interactive.” Interactive programs can be made to run from a prepared script
simply by redirecting input. Most programs intended for interactive use (e.g., the editor) allow for
an escape to command level (the Shell). Most file processing commands can also go from standard
input to standard output (‘“filters’’). The piping facility of the Shell may be used to connect such
filters directly to the input or output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, and a compiler for the pro-
gramming language C—enough software to write and run new applications and to maintain or
modify UNIX/32V itself.

1.1. Operating System

O UNIX The basic resident code on which everything else depends. Supports the system
calls, and maintains the file system. A general description of UNIX design philoso-
phy and system facilities appeared in the Communications of the ACM, July,
1974. A more extensive survey is in the Bell System Technical Journal for July-
August 1978. Capabilities include:

QOReentrant code for user processes.

O“Group” access permissions for cooperative projects, with overlapping member-
ships.

QOAlarm-clock timeouts.

OTimer-interrupt sampling and interprocess monitoring for debugging and meas-
urement. ,

OMultiplexed 1/O for machine-to-machine communication.

DDEVICES All 1/0 is logically synchronous. I/O devices are simply files in the file system.
Normally, invisible buflering makes all physical record structure and device
characteristics transparent and exploits the hardware’s ability to do overlapped
I/0. Unbuflered physical record I/0 is available for unusual applications. Drivers

*VAX is a Trademark of Digital Equipment Corporation.

"/

0 BOOT

for these devices are available:
QAsynchronous interfaces: DZ11, DL11. Support for most common ASCII termi-
nals.
QOAutomatic calling unit interface: DN11.
QOPrinter/plotter: Versatek.
OMagnetic tape: TE16.
QOPack type disk: RP06, RM03; minimum-latency seek scheduling.
OPhysical memory of VAX-11, or mapped memory in resident system.
ONull device. '
QORecipies are supplied to aid the construction of drivers for:
Asynchronous interface: DHI11.
Synchronous interface: DU11.
DECtape: TC11.
Fixed head disk: RS11, RS03 and RS04.
Cartridge-type disk: RKO5.
Phototypesetter: Graphic Systems System/1 through DR11C.

Procedures to get UNIX/32V started.

1.2. User Access Control

0 LOGIN

O PASSWD

O NEWGRP

Sign on as a new user.

QOVerify password and establish user’s individual and group (project) identity.
(OAdapt to characteristics of terminal.

(QOEstablish working directory.

OAnnounce presence of mail (from MAIL).

OPublish message of the day.

(QOExecute user-specified profile.

(OStart command interpreter or other initial program.

Change a password.
(QOUser can change his own password.
(OPasswords are kept encrypted for security.

Change working group (project). Protects against unauthorized changes to pro-
jects.

1.3. Terminal Handling

O TABS
OSTTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input, these options are set automatically by LOGIN.

QOHalf vs. full duplex.

(OCarriage return+line feed vs. newline.

QOlnterpretation of tabs.

QOParity.

OMapping of upper case to lower.

ORaw vs. edited input.

(ODelays for tabs, newlines and carriage returns.

1.4. File Manipulation

O CAT

Concatenate one or more files onto standard output. Particularly used for una-
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

o CP

OPR

OLPR

o CMP
O TAIL

B SPLIT

D DD

D SUM

-4-

Copy one file to another, or a set of files to a directory. Works on any file regard-
less of contents.

Print files with title, date, and page number on every page.
OMulticolumn output.
OParallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.
Compare two files and report if different.

Print last n lines of input
(OMay print last n characters, or from n lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for editing

(ED).

Physical file format translator, for exchanging data with foreign systems, espe-

cially IBM 370’s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

0O RM

OLN
oMV

0 CHMOD
O CHOWN
0 CHGRP
0 MKDIR
0 RMDIR
oCD

O FIND

Remove a file. Only the name goes away if any other names are linked to the file.
(OStep through a directory deleting files interactively.
(ODelete entire directory hierarchies.

“Link” another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files’ owner.
Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.
(OCriteria include:

name matches a given pattern,

creation date in given range,

date of last use in given range,

given permissions,

given owner,

given special file characteristics,

boolean combinations of above.
QAny directory may be considered to be the root.
QOPerform specified command on each file found.

1.6. Running of Programs

O SH

The Shell, or command language interpreter.
QOSupply arguments to and run any executable program.
ORedirect standard input, standard output, and standard error files.

=
N
;

0O TEST

0 EXPR

O WAIT
O READ
O ECHO

O SLEEP
0 NOHUP
O NICE

O KILL

O CRON

D AT
0 TEE

-5-

OPipes: simultaneous execution with output of one process connected to the input
of another.
(OCompose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.
Olnitiate background processes.
OPerform Shell programs, i.e., command scripts with substitutable arguments
(QOConstruct argument lists from all file names satisfying specified patterns.
(OTake special action on traps and interrupts.
(OUser-settable search path for finding commands.
(OExecutes user-settable profile upon login.
OOptionally announces presence of mail as it arrives.
(OProvides variables and parameters with default setting.

Tests for use in Shell conditionals.
(OString comparison.

(OFile nature and accessibility.
(OBoolean combinations of the above.

String computations for calculating command arguments.
QOlnteger arithmetic
QOPattern matching

Wait for termination of asynchronously running processes.
Read a line from terminal, for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in Shell pro-
grams, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.
Run a command in low {or high) priority.

Terminate named processes.

Schedule regular actions at specified times.

(OActions are arbitrary programs.

(QOTimes are conjunctions of month, day of month, day of week, hour and minute.
Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

oLS

OFILE

List the names of one, several, or all files in one or more directories.

QOAlphabetic or temporal sorting, up or down.

(OOptional information: size, owner, group, date last modified, date last accessed,
permissions, i-node number.

Try to determine what kind of information is in a file by consulting the file sys-
tem index and by reading the file itself.

O DATE

O DF
oDU

0 QUOT
0 WHO

oPS

O JOSTAT

OTTY
O PWD

-6-

Print today’s date and time. Has considerable knowledge of calendric and horo-
logical peculiarities.
(OMay set UNIX/32V’s idea of date and time.

Report amount of free space on file system devices.
Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who’s on the system. :
QlList of presently logged in users, ports and times on.
(QOOptional history of all logins and logouts.

Report on active processes.

QOList your own or everybody’s processes.

(OTell what commands are being executed.

OOptional status information: state and scheduling info, priority, attached termi-
nal, what it’s waiting for, size.

Print statistics about system I/0 activity.
Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

O MOUNT
0 UMOUNT

0 MKFS

0 MKNOD
o TP

D TAR

0O DUMP

O RESTOR
o Ssu

0 DCHECK
O ICHECK
D NCHECK

Attach a device containing a file system to the tree of directories. Protects against
nonsense arrangements.

Remove the file system contained on a device from the tree of directories. Protects
against removing a busy device. .

Make a new file system on a device. N

Make an i-node (file system entry) for a special file. Special files are physical dev-
ices, virtual devices, physical memory, etc.

Manage file archives on magnetic tape or DECtape. TAR is newer.
(O~Collect files into an archive.

OUpdate DECtape archive by date.

OReplace or delete DECtape files.

(OPrint table of contents.

QORetrieve from archive.

Dump the file system stored on a specified device, selectively by date, or indiscrim-
inately.
Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.
OPrint gross statistics: number of files, number of directories, number of special
files, space used, space free.

0O CLRI

0 SYNC

-7-

OReport duplicate use of space.
ORetrieve lost space.

OReport inaccessible files.
(OCheck consistency of directories.
QOList names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair dam-
aged file systems.

Force all outstanding I/O on the system to completion. Used to shut down grace-
fully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off com-

pletely.
OAC

O SA

Publish cumulative connect time report.
OConnect time by user or by day.
QFor all users or for selected users.

Publish Shell accounting report. Gives usage information on each command exe-
cuted.

ONumber of times used.

(QOTotal system time, user time and elapsed time.

(OOptional averages and percentages.

(OSorting on various fields.

1.10. Communication

O MAIL

0 CALENDAR
O WRITE

O WALL

0 MESG

o CcuU

o UUCP

Mail a message to one or more users. Also used to read and dispose of incoming
mail. The presence of mail is announced by LOGIN and optionally by SH.

(OEach message can be disposed of individually.

(OMessages can be saved in files or forwarded.

Automatic reminder service for events of today and tomorrow.
Establish direct terminal communication with another user.
Write to all users.

Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.

QOTransparent interface to remote machine.

(QOFile transmission.

(QOTake remote input from local file or put remote output into local file.
ORemote system need not be UNIX/32V.

UNIX to UNIX copy.

QOAutomatic queuing until line becomes available and remote machine is up.
OCopy between two remote machines.

ODiflerences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section

2.
0O AR

Maintain archives and libraries. Combines several files into one for housekeeping
efficiency.

0O AS

O Library

O ADB

oLD

O LORDER

O NM

(Create new archive.
QOUpdate archive by date.
OReplace or delete files.
OPrint table of contents.
QORetrieve from archive.

Assembler.
(OCreates object program consisting of
code, normally read-only and sharable,
initialized data or read-write code,
uninitialized data.
ORelocatable object code is directly executable without further transformation.
(QOObject code normally includes a symbol table.
(O“Conditional jump” instructions become branches or branches plus jumps
depending on distance.

The basic run-time library. These routines are used freely by all software.

OBuflered character-by-character 1/0.

QOFormatted input and output conversion (SCANF and PRINTF) for standard
input and output, files, in-memory conversion.

(OStorage allocator.

OTime conversions.

ONumber conversions.

(OPassword encryption.

OQuicksort.

ORandom number generator.

OMathematical function library, including trigonometric functions and inverses,
exponential, logarithm, square root, bessel functions.

Interactive debugger.

- OPostmortem dumping.

(OExamination of arbitrary files, with no limit on size.
QOlnteractive breakpoint debugging with the debugger as a separate process.
(OSymbolic reference to local and global variables.
(OStack trace for C programs.
QOOutput formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions
OPatching.
(OSearching for integer, character, or floating patterns.

Dump any file. Output options include any combination of octal or decimal or
hex by words, octal by bytes, ASCII, opcodes, hexadecimal.
ORange of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from specified
libraries.
OResulting code is sharable by default.

Places object file names in proper order for loading, so that files depending on oth-
ers come after them.

Print the namelist (symbol table) of an object program. Provides control over the
style and order of names that are printed.

AN
|

\«L/’

o SIZE
DO STRIP

o TIME
o0 PROF

0 MAKE

-9-

Report the memory requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-
sampling the execution of a program.
(OSubroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version; uses time last changed to deduce minimum
amount of work necessary.

OKnows about CC, YACC, LEX, etc.

1.12. UNIX/32V Programmer’s Manual

O Manual

O MAN

Machine-readable version of the UNIX/32V Programmer’s Manual.
(OSystem overview.

QAIll commands.

(QOAIll system calls.

(Al subroutines in C and assembler libraries.

(ALl devices and other special files.

QOFormats of file system and kinds of files known to system software.
(OBoot and maintenance procedures.

Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

O LEARN

2. Languages

A program for interpreting CAI scripts, plus scripts for learning about UNIX/32V

by using it.

(OSecripts for basic files and commands, editor, advanced files and commands,
EQN, MS macros, C programming language.

2.1. The C Language

D CC

Compile and/or link edit programs in the C language. The UNIX/32V operating
system, most of the subsystems and C itself are written in C. For a full descrip-
tion of C, read The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, 1978.

(OGeneral purpose language designed for structured programming.

(OData types include character, integer, float, double, pointers to all types, func-
tions returning above types, arrays of all types, structures and unions of all
types. :

(QOOperations intended to give machine-independent control of full machine facil-
ity, including to-memory operations and pointer arithmetic.

OMacro preprocessor for parameterized code and inclusion of standard files.

OAIll procedures recursive, with parameters by value.

OMachine-independent pointer manipulation.

(OObject code uses full addressing capability of the VAX-11.

ORuntime library gives access to all system facilities.

ODefinable data types.

O LINT

oCB
2.2. Fortran

OF77

O RATFOR

0 STRUCT

-10-

OBlock structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.
QOFull cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.

(OCompatible with C and supporting tools at object level.

(OOptional source compatibility with Fortran 66.

(OFree format source.

(QOOptional subscript-range checking, detection of uninitialized variables.

QAIll widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-
byte complex.

Ratfor adds rational control structure 4 1a C to Fortran.
QOCompound statements.

Olf-else, do, for, while, repeat-until, break, next statements.
(OSymbolic constants.

QFile insertion.

(OF'ree format source

(QOTranslation of relationals like >, >=.

(QOProduces genuine Fortran to carry away.

OMay be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using state-
ment grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

oDC

D BC

Interactive programmable desk calculator. Has named storage locations as well as
conventional stack for holding integers or programs.
(OUnlimited precision decimal arithmetic.
(QOAppropriate treatment of decimal fractions.
QArbitrary input and output radices, in particular binary, octal, decimal and
hexadecimal.
OReverse Polish operators:
+-*/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.

OAIll the capabilities of DC with a high-level syntax.

(QOArrays and recursive functions.

Olmmediate evaluation of expressions and evaluation of functions upon call.
QArbitrary precision elementary functions: exp, sin, cos, atan.

QO Go-to-less programming.

N4

N
N

(

-11-

2.4. Macroprocessing

0O M4

A general purpose macroprocessor.

(OStream-oriented, recognizes macros anywhere in text.

(OSyntax fits with functional syntax of most higher-level languages.
(OCan evaluate integer arithmetic expressions.

2.5. Compiler-compilers

DYACC

D LEX

An LR(1)-based compiler writing system. During execution of resulting parsers,
arbitrary C functions may be called to do code generation or semantic actions.
OBNF syntax specifications.

(QOPrecedence relations.

OAccepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon isolation
of each lexical token.

(QOFull regular expression, plus left and right context dependence.

OResulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

DED

oPTX
0 SPELL

D0 LOOK
D CRYPT

Interactive context editor. Random access to all lines of a file.

(QOFind lines by number or pattern. Patterns may include: specified characters,
don’t care characters, choices among characters, repetitions of these constructs,
beginning of line, end of line.

(OAdd, delete, change, copy, move or join lines.

OPermute or split contents of a line.

(OReplace one or all instances of a pattern within a line.

OCombine or split files.

(OEscape to Shell (command language) during editing.

(ODo any of above operations on every pattern-selected line in a given range.

(OOptional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word
list.

(025,000-word list includes proper names.

OHandles common prefixes and suffixes. -

OCollects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.
Encrypt and decrypt files for security.

3.2. Document Formatting

0 TROFF
O NROFF

Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF are capable of elaborate feats of formatting, when
appropriately programmed. TROFF and NROFF accept the same input language.

-12-

QOCompletely definable page format keyed to dynamically planted “interrupts” at
specified lines.
OMaintains several separately definable typesetting environments (e.g., one for N
body text, one for footnotes, and one for unusually elaborate headings). ‘\\//
OArbitrary number of output pools can be combined at will.
(OMacros with substitutable arguments, and macros invocable in mid-line.
(OComputation and printing of numerical quantities.
(QOConditional execution of macros. ‘
(QOTabular layout facility. :
(OPositions expressible in inches, centimeters, ems, points, machine units or arith-
metic combinations thereof.
(QOAccess to character-width computation for unusually difficult layout problems.
(QOOverstrikes, built-up brackets, horizontal and vertical line drawing.
ODynamic relative or absolute positioning and size selection, globally or at the
character level.
(OCan exploit the characteristics of the terminal being used, for approximating
special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultaneously)
in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the
postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF,
although unskilled personnel can easily be trained to enter documents according to canned formats
such as those provided by MS, below. TROFF and EQN are essentially identical to NROFF and
NEQN so it is usually possible to define interchangeable formats to produce approximate proof
copy on terminals before actual typesetting. The preprocessors MS, TBL, and REFER are fully
compatible with TROFF and NROFF. -

o MsS

D EQN

A standardized manuscript layout package for use with NROFF/TROFF. This N
document was formatted with MS.

(OPage numbers and draft dates.

(OAutomatically numbered subheads.

(OFootnotes.

(OSingle or double column.

(QOParagraphing, display and indentation.

ONumbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For-
mulas are written in a style like this:

sigma sup 2 "="1 over N sum from i=1 to N (x sub i - x bar) sup 2

which produces:

o= L}%(z-—:?)z
N
QOAutomatic calculation of size changes for subscripts, sub-subscripts, etc.
QOFull vocabulary of Greek letters and special symbols, such as ‘gamma’,
‘GAMMA’, ‘integral’.
QOAutomatic calculation of large bracket sizes.
OVertical “piling” of formulae for matrices, conditional alternatives, etc.
Olntegrals, sums, etc., with arbitrarily complex limits.
ODiacriticals: dots, double dots, hats, bars, etc.

0 NEQN

O TBL

D REFER

0 TC

D COL
O DEROFF

-13-

(QOEasily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares formu-
las for display on any terminal that NROFF knows about, for example, those
based on Diablo printing mechanism.

(OSame facilities as EQN within graphical capability of terminal.

A preprocessor for NROFF/TROFF that translates simple descriptions of table

layouts and contents into detailed typesetting instructions.

OComputes column widths. '

(OHandles left- and right-justified columns, centered columns and decimal-point
alignment.

(OPlaces column titles.

(Table entries can be text, which is adjusted to fit.

(OCan box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
QOReferences may be printed in any style, as they occur or collected at the end.
(OMay be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for check-
ing TROFF page layout before typesetting.

Canonicalize files with reverse line feeds for one-pass printing.

Remove all TROFF commands from input.

0 CHECKEQ Check document for possible errors in EQN usage.

4. Information Handling

0O SORT

D TSORT
0 UNIQ

O DIFF

0 COMM

O JOIN
O GREP

Sort or merge ASCII files line-by-line. No limit on input size.
(OSort up or down.

(OSort lexicographically or on numeric key.

(OMultiple keys located by delimiters or by character position.
(OMay sort upper case together with lower into dictionary order.
(OOptionally suppress duplicate data.

Topological sort — converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
(QOPublish lines that were originally unique, duplicated, or both.
(OMay give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
OMay coalesce selected repeated characters.
OMay delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.

(OMay produce an editor script to convert one file into another.

QA variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows lines
present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
OMay print all lines that fail to match.

0 LOOK
owgC
0O SED

O AWK

5. Graphics

-14-

OMay print count of hits.
(OMay print first hit in each file. .

Binary search in sorted file for lines with specified prefix. \& /
Count the lines, “words” (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations on
each line of an input stream of unbounded length. '

OLines may be selected by address or range of addresses.

OControl flow and conditional testing.

OMultiple output streams.

OMulti-line capability.

Pattern scanning and processing language. Searches input for patterns, and per-

forms actions on each line of input that satisfies the pattern.

QOPatterns include regular expressions, arithmetic and lexicographic conditions,
boolean combinations and ranges of these.

(OData treated as string or numeric as appropriate.

(OCan break input into fields; fields are variables.

(OVariables and arrays (with non-numeric subscripts).

QOFull set of arithmetic operators and control flow.

(OMultiple output streams to files and pipes.

OOutput can be formatted as desired.

OMulti-line capabilities.

The programs in this section are predominantly intended for use with Tektronix 4014 storage

scopes.

O GRAPH

O SPLINE
O PLOT

Prepares a graph of a set of input numbers.
QOlnput scaled to fit standard plotting area.
{OAbscissae may be supplied automatically.
(OGraph may be labeled.

(QOControl over grid style, line style, graph orientation, etc.

_ 7/:

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer/plotter.

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else

D BACKGAMMON

0 BCD

O CAL

0 CHING

D FORTUNE

O UNITS

A player of modest accomplishment.

Converts ascii to card-image form.

Print a calendar of specified month and year.

The I Ching. Place your own interpretation on the output.

Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

Convert amounts between different scales of measurement. Knows hundreds of
units. For example, how many km/sec is a parsec/megayear?

-15-

0 ARITHMETIC

Speed and accuracy test for number facts.
D QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.
0 WUMP Hunt the wumpus, thrilling search in a dangerous cave.

D HANGMAN Word-guessing game. Uses a dictionary supplied with SPELL.

D FISH Children’s card-guessing game.

SN
./

7th Edition UNIX—Summary
September 6, 1978

Bell Laboratories
Murray Hill, New Jersey 07974

A. What’s new: highlights of the 7th Edition UNIXt System
Aimed at larger systems. Devices are addressable to 23! bytes, files to 2%° bytes. 128I{ memory
(separate instruction and data space) is needed for some utilities.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured program-
ming, user profiles, settable search path, multilevel file name generation, etc.

" Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is

now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for preparing
complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream
of indefinite length. AWK report generator does free-field pattern selection and arithmetic opera-
tions.

Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and
data spaces, floating point, etc.

C language. The language now supports definable data types, generalizes initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately compiled
functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream I/O is integrated with for-
mated input and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in many
other ways too numerous to relate.

t UNIX is a trademark of Bell Laboratories.

B. Hardware

The 7th edition UNIX operating system runs on DEC PDP-11/45 or 11/70* with at least the
following equipment:

123K to 2M words of managed memory; parity not used.
disk: RP03, RP04, RP06, RKO05 (more than 1 RK05) or equivalent.
console typewriter.
clock: KW11-L or KW11-P.
The following equipment is strongly recommended:
communications controller such as DL11 or DH11.
full duplex 96-character ASCII terminals.
9-track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space
specified is enough to run and maintain UNIX. More will be needed to keep all source on line or to
handle a large number of users, big data bases, diversified complements of devices, or large pro-

grams. The resident code occupies 12-20K words depending on configuration; system data occupies
10-28K words.

There is no commitment to provide 7th Edition UNIX on PDP-11/34, 11,40 and 11/60
hardware.

C. Software

Most of the programs available as UNIX commands are listed. Source code and printed
manuals are distributed for all of the listed software except games. Almost all of the code is writ-
ten in C. Commands are self-contained and do not require extra setup information, unless
specifically noted as "interactive." Interactive programs can be made to run from a prepared script
simply by redirecting input. Most programs intended for interactive use (e.g., the editor) allow for
an escape to command level (the Shell). Most file processing commands can also go from standard
input to standard output ("filters”). The piping facility of the Shell may be used to connect such
filters directly to the input or output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, a machine language assembler
and a compiler for the programming language C—enough software to write and run new applica-
tions and to maintain or modify UNIX itself.

1.1. Operating System

UNIX The basic resident code on which everything else depends. Supports the system
calls, and maintains the file system. A general description of UNIX design philo-
sophy and system facilities appeared in the Communications of the ACM, July,
1984. A more extensive survey is in the Bell System Technical Journal for July-
August 1978. Capabilities include:

° Reentrant code for user processes.

° Separate instruction and data spaces.

. "Group" access permissions for cooperative projects, with overlapping
memberships.

. Alarm-clock timeouts.

* PDP is a Trademark of Digital Equipment Corporation.

C

(

DEVICES

BOOT
(MKCONF

-3-

° Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.
. Multiplexed 1/O for machine-to-machine communication.

All I/O is logically synchronous. 1/O devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware’s ability to do overlapped
I/O. Unbuffered physical record 1/O is available for unusual applications.
Drivers for these devices are available; others can be easily written:

° Asynchronous interfaces: DH11, DL11. Support for most common ASCII
terminals.

° Synchronous interface: DP11.

° Automatic calling unit interface: DNI11.

. Line printer: LP11.

° Magnetic tape: TU10 and TU16.

. DECtape: TC11.

. Fixed head disk: RS11, RS03 and RS04.

. Pack type disk: RP03, RP04, RP06; minimum-latency seek scheduling.
. Cartridge-type disk: RKO05, one or more physical devices per logical device.
. Null device. *

. Physical memory of PDP-11, or mapped memory in resident system.

. Phototypesetter: Graphic Systems System/I through DR11C.

Procedures to get UNIX started.

Tailor device-dependent system code to hardware configuration. As distributed,
UNIX can be brought up directly on any acceptable CPU with any acceptable
disk, any sufficient amount of core, and either clock. Other changes, such as
optimal assignment of directories to devices, inclusion of floating point simulator,
or installation of device names in file system, can then be made at leisure.

1.2. User Access Control

LOGIN

PASSWD

NEWGRP

Sign on as a new user.

. Verify password and establish user’s individual and group (project) identity.
° Adapt to characteristics of terminal.

) Establish working directory.

e Announce presence of mail (from MAIL).

° Publish message of the day.

° Execute user-specified profile.

° Start command interpreter or other initial program.

Change a password.
. User can change his own password.
. Passwords are kept encrypted for security.

Change working group (project). Protects against unauthorized changes to pro-
jects.

1.3. Terminal Handling

TABS
STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input, these options are set automatically by LOGIN.

. Half vs. full duplex.

. Carriage return + line feed vs. newline.

° Interpretation of tabs. '

. Parity.

. Mapping of upper case to lower.

° Raw vs. edited input.

) Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

CAT

CP

PR

LPR

TAIL

SPLIT

DD

SUM

Concatenate one or more files onto standard output. Particularly used for una-
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one file to another, or a set of files to a directory. Works on any file
regardless of contents.

Print files with title, date, and page number on every page.
. Multicolumn output.

. Parallel column merge of several files.
Off-line print. Spools arbitrary files to the line printer.
Compare two files and report if different.

Print last n lines of input

. May print last n characters, or from n lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for editing

(ED).

Physical file format translator, for exchanging data with foreign systems, espe-
cially IBM 370s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

RM

LN
MV
CHMOD
CHOWN

Remove a file. Only the name goes away if any other names are linked to the
file.

® Step through a directory deleting files interactively.
° Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.
Move a file or files. Used for renaming files.
Change permissions on one or more files. Executable by files’ owner.

Change owner of one or more files.

CHGRP
MKDIR
RMDIR

FIND

-5-

Change group (project) to which a file belongs.
Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every title that meets specified criteria.
. Criteria include:

name matches a given pattern.

creation date in given range.

date of last use in give range.

given permissions.

given owner.

given special file characteristics.

boolean combinations of above.
. Any directory may be considered to be the root.

. Perform specified command on each file found.

1.8. Running of Programs

SH

The Shell, or command language interpreter.
. Supply arguments to and run any executable program.

° Redirect standard input, standard output, and standard error files.

° Pipes: simultaneous execution of one process connected to the input of
another.
. Compose compound commands using:

if ... then ... else.

case switches.

while loops.

for loops over lists.
break, continue and exit.
parentheses for grouping.

° Initiate background processes.

. Perform Shell programs, i.e., command scripts with substitutable argu-
ments.

. Construct argument lists from all file names satisfying specified patterns.

. Take special action on traps and interrupts.

° User-settable search path for finding commands.

° Executes user-settable profile upon login.

° Optionally announces presence of mail as it arrives.

. Provides variables and parameters with default setting.

TEST

EXPR

WAIT

ECHO

SLEEP
NOHUP
NICE
KILL
CRON

AT
TEE

-6-

Tests for use in Shell conditionals.
° String comparison.

e File nature and accessibility. f
° Boolean combinations of the above.

String computations for calculating command arguments.
° Integer arithmetic
° Pattern matching

Wait for termination of asynchronously running processes.
Read from a terminal, for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in Shell pro-
grams, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.
Run a command in low (or high) priority.

Terminate named process.

Schedule regular actions at specified times.
. Actions are arbitrary programs.

° Times are conjunctions of month, day of month, day of week, hour and
minute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

LS

FILE

DATE

DF
DU
QUOT

List the names of one, several or all files in one or more directories.

. Alphabetic or temporal sorting, up or down.

. Optional information: size, owner, group, date last modified, date last
accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consuling the file system
index and by reading the file itself.

Print today’s date and time. Has considerable knowledge of calendric and horo-
logical peculiarities.

° May set UNIX’s idea of date and time.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who’s on the system.
. List of presently logged in users, ports and times on.
. Optional history of all logins and logouts.

PS

IOSTAT
TTY
PWD

Report on active processes.

. List your own or everybody’s processes.
° Tell what commands are being executed.
° Optional status information: state and scheduling info, priority, attached

terminal, what it’s waiting for, size.
Print statistics about system I/O activity.
Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

MOUNT

UMOUNT

MKFS
MKNOD

" TP
TAR

DUMP

RESTOR
SU

DCHECK
ICHECK

NCHECK

Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

Remove the file system contained on a device from the tree of directories. Pro-
tects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical dev-
ices, virtual devices, physical memory, etc.

Manage file archives on magnetic tape or DECtape. TAR is newer.
. Collect files into an archive.

. Update DECtape archive by date.

. Replace or delete DECtape files.

. Print table of contents.

. Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.

° Print gross statistics: number of files, number of directories, number of spe-
cial files, space used, space free.

. Report duplicate use of space.

. Retrieve lost space.

° Report inaccessible files.

° Check consistency of directories.
. List names of all files.

-8-

CLRI Peremptorily expunge a file and its space from a file system. Used to repair dam-
aged file systems.
SYNC Force all outstanding I/O on the system to completion. Used to shut down grace-
. fully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off com-
pletely. :

AC Publish cumulative connect time report.
. Connect time by user or by day.
. For all users or for selected users.
SA Publish Shell accounting report. Gives usage information on each command exe-
cuted.
. Number of times used.
° Total system time, user time and elapsed time.
. Optional averages and percentages.
. Sorting on various fields.

1.10. Communication

MAIL Mail a message to one or more users. Also used to read and dispose of incoming
mail. The presence of mail is announced by LOGIN and optionally by SH.
. Each message can be disposed of individually.

. Messages can be saved in files or forwarded.

CALENDAR Automatic reminder service for events of today and tomorrow.

WRITE Establish direct terminal communication with another user.
WALL Write to all users.
MESG Inhibit receipt of messages from WRITE and WALL.
CU Call up another time-sharing system.
. Transparent interface to remote machine.
. File transmission.
. Take remote input from local file or put remote output into local file.
. Remote system need not be UNIX.
UUCP UNIX to UNIX copy.
. Automatic queuing until line becomes available and remote machine is up.
° Copy between two remote machines.
. Differences, mail, etc., between two machines.

N

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section

2.
AR

Library

Maintain archives and libraries. Combines several files into one for housekeeping

efficiency.

° Create new archive.

. Update archive by date.
. Replace or delete files.

. Print table of contents.
. Retrieve from archive.

Assembler. Similar to PAL-11, but different in detail.

Creates object program consisting of
code, possibly read-only,
initialized data or read-write code,
uninitialized data.

Relocatable object code is directly executable without further transforma-
tion.

Object code normally includes a symbol table.
Multiple source files.

Local labels.

Conditional assembly.

"Conditional jump" instructions become branches or branches plus jumps
depending on distance.

The basic run-time library. These routines are used freely by all software.

Buffered character-by-character 1/0.

Formatted input and output conversion (SCANF and PRINTF) for stan-
dard input and output, files, in-memory conversion.

Storage allocator.

Time conversions.

Number conversions.
Password encryption.
Quicksort.

Random number generator.

Mathematical function library, including trigonometric functions and
inverses, exponential, logarithm, square root, bassel functions.

Interactive debugger.

Postmortem dumping.

Examination of arbitrary files, with no limit on size.

Interactive breakpoint debugging with the debugger as a separate process.
Symbolic reference to local and global variables.

Stack trace for C programs.

oD

LD

LORDER

NM

SIZE
STRIP

TIME
PROF

MAKE

-10 -

. Output formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions
. Patching.
. Searching for integer, character, or floating patterns.
° Handles separated instruction and data space.
Dump any file. QOutput options include any combination of octal or decimal by
words, octal by bytes, ASCII, opcodes, hexadecimal.
. Range of dumping in controllable.
Link edit. Combine relocatable object files. Insert required routines from
specified libraries.
. Resulting code may be sharable.
. Resulting code may have separate instruction and data spaces.

Places object file names in proper order for loading, so that files depending on
others come after them.

Print the namelist (symbol table) of an object program. Provides control over
the style and order of names that are printed.

Report the core requirements of one or more object files.

Remove the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time
sampling the execution of a program. Uses floating point.

° Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file

dependencies to make new version; uses time last changed to deduce minimum
amount of work necessary.

° Knows about CC, YAC, LEX, etc.

1.12. UNIX Programmer’s Manual

Manual

Machine-readable version of the UNIX Programmer’s Manual.

° System overview.

° All commands.

° All system calls.

° All subroutines in C and assembler libraries.

° All devices and other special files.

. Formats of file system and kinds of files known to system software.

. Boot and maintenance procedures.

N
N

-11-

1.13. Computer-Aided Instruction

LEARN

2. Languages

A program for interpreting CAI scripts, plus scripts for learning about UNIX by
using it.

Scripts for basic files and commands, editor, advanced files and commands,
EQN, MS macros, C programming language.

2.1. The C Language

CcC

LINT

CB

2.2. Fortran
F77

Compile and/or link edit programs in the C language. The UNIX operating sys-
tem, most of the subsystems and C itself are written in C. For a full description
of C, read The C Programming Language, Brian W Kernighan and Dennis M.
Ritchie, Prentice-Hall, 1978.

General purpose language designed for structured programming.

Data types include characters, integer, float, double, pointers to all types,
functions returning above types, arrays of all types, structures and unions
of all types.

Operations intended to give machine-independent control of full machine
facility, including to memory operations and pointer arithmetic.

Macro preprocessor for parameterized code and inclusion of standard files.
All procedures recursive, with parameters by value.

Machine-independent pointer manipulation.

Object code uses full addressing capability of the PDP-11.

Runtime library gives access to all system facilities.

Definable data types.

Block structure.

Verifier for C programs. Reports questionable or nonportable usage such as:

Mismatched data declarations and procedure interfaces.
Nonportable type conversions.

Unused variables, unreachable code, no-effect operations.
Mistyped pointers.

Obsolete syntax.

Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.

Compatible with C and supporting tools at object level.

Optional source compatibility with Fortran 66.

Free format source.

Optional subscript-range checking, detection of uninitialized variables.

All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and
16-byte complex.

RATFOR

STRUCT

BAS

DC

-12-

Ratfor adds rational control structure a la C to Fortran.

. Compound statements. B
° If-else, do, for, while, repeat-until, break, next statements. ;‘/ h
. Symbolic constants. -
. File insertion.
. Free format source.
. Translation of relationals like >, >=.
. Produces genuine Fortran to carry away.
. May be used with F77.
Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using state-
ment grouping, if-else, while, for, repeat-until.
2.3. Other Algorithmic Languages
An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon "run".
° Statements include:
comment,
dump,
for...next,
goto,
if...else.. fi,
list,
print, N
prompt, o/
return,
run,
save.
. All calculations double precision.
. Recursive function defining and calling.
. Built-in functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
. Escape to ED for complex program editing.
Interactive programmable desk calculator. Has named storage locations as well as
conventional stack for holding integers or programs.
. Unlimited precision decimal arithmetic.
. Appropriate treatment of decimal fractions.
. Arbitrary input and output radices, in particular binary, octal, decimal and
hexadecimal.
. Reverse Polish operators:
+-*/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.
TN

-13-

BC A C-like interactive interface to the desk calculator DC.
° All the capabilities of DC with a high-level syntax.
° Arrays and recursive functions.
. Immediate evaluation of expressions and evaluation of functions upon call.
. Arbitrary precision elementary functions: exp, sin, cos, atn.
° Go-to-less programming.
M4 general purpose macroprocessor.

A

° Stream-oriented, recognizes macros anywhere in text.

° Syntax fits with functional syntax of most higher-level languages.
[]

Can evaluate integer arithmetic expressions.

2.4. Compiler-compilers
YACC An LR-based compiler writing system. During execution of resulting parsers,
arbitrary C functions may be called to do code generation or semantic actions.
o BNF syntax specifications.
° Precedence relations.
° Accepts formally ambiguous grammars with non-BNF resolution rules.
_ LEX Generator of lexical analyzers. Arbitrary C functions may be called upon isola-
tion of each lexical token.
. Full regular expression, plus left and right context dependence.
° Resulting lexical analyzers interface cleanly with YACC parsers.

3. Text Processing

3.1 Document Preparation

ED Interactive context editor. Random access to all lines of a file.

. Find lines by number or pattern. Patterns may include: specified charac-
ters, don’t care characters, choices among characters, repetitions of these
constructs, beginning of line, end of line.

. Add, delete, change, copy, move or join lines.

° Permute or split contents of a line.

) Replace one or all instances of a pattern within a line.
° Combine or split files. ’

. Escape to Shell (command language) during editing.

. Do any of above operations on every pattern-selected line in a given range.
. Optional encryption for extra security.

PTX Make a permuted (key word in context) index.

SPELL Look for spelling errors by comparing each word in a document against a word
list.
° 25,000-word list includes proper names.

° Handles common prefixes and suffixes.
° Collects words to help tailor local spelling lists.

LOOK
TYPO

CRYPT

-14-

Search for words in dictionary that begin with specified prefix.
Look for spelling errors by a statistical technique; not limited to English.
Encrypt and decrypt files for security.

3.2. Document Formatting

ROFF.

TROFF
NROFF

A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with control
lines, such as

.sp 2 insert two lines of space

.ce center the next line
ROFF is deemed to be obsolete; it is intended only for casual use.

) Justification of either or both margins.

° Automatic hyphenation.

. Generalized running heads and feet, with even-odd page capability, number-
ing, etc.

° Definable macros for frequently used control sequences (no substitutable
arguments).

. All 4 margins and page size dynamically adjustable.

. Hanging indents and one-line indents.

. Absolute and relative parameter settings.

. Optional legal-style numbering of output lines.
. Multiple file capability.
° Not usable as a filter.

Advanced typesetting, TROFF drives a Graphic Systems phototypesetter;
NROFF drives ASCII terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.

° All ROFF capabilities available or definable.

° Completely definable page format keyed to dynamically planted "interrupts”
at specified lines.

° Maintains several separately definable typesetting environments (e.g., one
for body text, one for footnotes, and one for unusually elaborate headings).

° Arbitrary number of output pools can be combined at will.

° Macros with substitutable arguments, and macros invocable in mid-line.
. Computation and printing of numerical quantities.

o Conditional execution of macros.

) Tabular layout facility.

° Positions expressible in inches, centimeters, ems, points, machine units or
arithmetic combinations thereof.

° Access to character-width computation for unusually difficult layout prob-
lems.

. Overstrikes, built-up rackets, horizontal and vertical line drawing.

e ,;,\\\

-15-

. Dynamic relative or absolute positioning and size selection, globally or at
the character level.

. Can exploit the characteristics of the terminal being used, for approximat-
ing special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultaneously)
in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the
postprocessor COL. ‘

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF,
although unskilled personnel can easily be trained to enter documents according to canned formats
such as those provided by MS, below. TROFF and EQN are essentially identical to NROFF and
NEQN so it is usually possible to define interchangeable formats to product approximate proof
copy on terminals before actual typesetting. The preprocessors MS, TBL, and REFER are fully
compatible with TROFF and NROFF.

MS A standardized manuscript layout package for use with NROFF/TROFF. This
document was formated with MS.
. Page numbers and draft dates.
° Automatically numbered subheads.
° Footnotes.
) Single or double column.
° Paragraphing, display and indentation.
° Numbered equations.
EQN A mathematical typesetting preprocessor for TROFF. Translates easily readable

formulas, either in-line or displayed, into detailed typesetting instructions. For-
mulas are written in a style like this:

sigma sup 2 "="1 over N sum from i=1 to N (x sub i - x bar) sup 2

which produces:

cr‘2=L§(a:---xbar)2
N 1

i=1

. Automatic calculation of size changes for subscripts, sub-subseripts, etc.

° Full vocabulary of Greek letters and special symbols, such as “"gamma",
"GAMMA", and "integral".

. Automatic calculation of large bracket sizes.

° Vertical "piling" of formulae for matrices, conditional alternatives, etc.

. Integrals, sums, etc., with arbitrarily complex limits.

. Diacriticals: dots, double dots, hats, bars, etc.
° Easily learned by nonprogrammers and mathematical typists.
NEQN A version of EQN for NROFF; accepts the same input language. Prepares formu-

las for display on any terminal that NROFF knows about, for example, those
based on Diablo printing mechanism.

) Same facilities as EQN within graphical capability of terminal.

REFER

TC

GREEK

coL
DEROFF
CHECKEQ

-16 -

A preprocessor for NROFF /TROFF that translates simple descriptions of table
layouts and contents into detailed typesetting instructions.

° Computes column widths.

. Handles left- and right-justified columns, centered columns and decimal-
point alignment.

° Places column titles.
. Table entries can be text, which is adjusted to fit.
° Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).

° References may be printed in any style, as they occur or collected at the
end.

° May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for check-
ing TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450, and
on Tektronix 4014.

. Gives half-line forward and reverse motions.

° Approximates Greek letters and other special characters by overstriking.
Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

Check document for possible errors in EQN usage.

4. Information Handling

SORT

TSORT
UNIQ

DIFF

Sort or merge ASCII files line-by-line. No limit on input size.

. Sort up or down.

. Sort lexicographically or on numeric key.

. Multiple keys located by delimiters or by character position.

. May sort upper case together with lower into dictionary order.
° Optionally suppress duplicate data.

Topological sort—converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
° Publish lines that were originally unique, duplicated, or both.

° May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.

. May coalesce selected repeated characters.

° May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.

° May produce an editor script to convert one file into another.

° A variant compares two new versions against one old one.

/" ' “\y
N
—

COMM

JOIN
GREP

LOOK
wC
SED

AWK

5. Graphics

The programs in

GRAPH

SPLINE
PLOT

-17 -

Identify common lines in two sorted files. Output in up to 3 columns shows lines
present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
° May print all lines that fail to match.

° May print count of hits.

. May print first hit in each file.

Binary search in sorted file for lines with specified prefix.
Count the lines, "words" (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations on
each line of an input stream of unbounded length.

° Lines may be selected by address or range of addresses.
. Control flow and conditional testing.
. Multiple output streams.

. Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and per-
forms actions on each line of input that satisfies the pattern.

. Patterns include regular expressions, arithmetic and lexicographic condi-
tions, boolean combinations and ranges of these.

. Data treated as string or numeric as appropriate.

° Can break input into fields; fields are variables.

. Variables and arrays (with non-numeric subscripts).

. Full set of arithmetic operators and control flow.
. Multiple output streams to files and pipes.

. Output can be formatted as desired.

. Multi-line capabilities.

this section are predominantly for use with Tektronix 4014 storage scopes.

Prepares a graph of a set of input numbers.

. Input scaled to fit standard plotting area.

. Abscissae may be supplied automatically.

. Graph may be labeled.

° Control over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer/plotter.

-18-

8. Novelties, Games, and Things That Didn’t Fit Anywhere Else

BACKGAMMON

A player of modest accomplishment. {/ ‘\‘x‘,
CHESS Plays good class D chess. 7
CHECKERS Ditto for checkers.
BCD Converts ASCII to card-image form.
PPT Converts ASCII to paper tape form. '
BJ A blackjack dealer.
CUBIC An accomplished player of 4x4x4 tic-tac-toe.
MAZE Constructs random mazes for you to solve.
MOO A fascinating number-guessing game.
CAL Print a calendar of specified month and year.
BANNER Print output in huge letters.
CHING The I ching. Place your own interpretation on the output.
FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies

included.
UNITS Convert amounts between different scales of measurement. Knows hundreds of

units. For example, how many km/sec is a parsec/megayear?
TT A tic-tac-toe program that learns. It never makes the same mistake twice.
ARITHMETIC Speed and accuracy test for number facts. ,\"/ N
FACTOR Factor large integers. e
QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.
WUMP Hunt the wumpus, thrilling search in a dangerous cave.
REVERSI A two person board game, isomorphic to Othello®.
HANGMAN Word guessing game. Uses the dictionary supplied with SPELL.
FISH Children’s card-guessing game.

AT

UNIX For Beginners — Second Edition

Brian W. Kernighan

ABSTRACT

This paper is meant to help new users get started on the UNIX?t operating sys-
tem. It includes:

o basics needed for day-to-day use of the system — typing commands, correcting
typing mistakes, logging in and out, mail, inter-terminal communication, the
file system, printing files, redirecting I/O, pipes, and the shell.

¢ document preparation — a brief discussion of the major formatting programs

and macro packages, hints on preparing documents, and capsule descriptions of
some supporting software.

e UNIX programming — using the editor, programming the shell, programming
in C, other languages and tools.

e An annotated UNIX bibliography.

September 12, 1986

1 UNIX is a trademark of Bell Laboratories.

O

UNIX For Beginners — Second Edition

Brian W. Kernighan

INTRODUCTION

From the user’s point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments to getting
the job done. It is hard, however, for the beginner
to know where to start, and how to make the best
use of the facilities available. The purpose of this
introduction is to help new users get used to the
main ideas of the UNIX system and start making
effective use of it quickly.

You should have a couple of other documents
with you for easy reference as you read this one.
The most important is The UNIX Programmer’s
Manual; it’s often easier to tell you to read about
something in the manual than to repeat its con-
tents here. The other useful document is A
Tutorial Introduction to the UNIX Tezt Editor,
which will tell you how to use the editor to get
text — programs, data, documents — into the
computer.

A word of warning: the UNIX system has
become quite popular, and there are several major
variants in widespread use. Of course details also
change with time. So although the basic structure
of UNIX and how to use it is common to all ver-
sions, there will certainly be a few things which are
different on your system from what is described
here. We have tried to minimize the problem, but
be aware of it. In cases of doubt, this paper
describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use, so this
section must necessarily be supplemented by
local information.

2. Day-to-day Use: Things you need every day
to use the system effectively: generally useful
commands; the file system.

3. Document Preparation: Preparing manuscripts
is one of the most common uses for UNIX sys-
tems. This section contains advice, but not
extensive instructions on any of the format-
ting tools

4. Writing Programs: UNIX is an excellent sys-
tem for developing programs. This section
talks about some of the tools, but again is not
a tutorial in any of the programming
languages provided by the system.

5. A UNIX Reading List. An annotated bibliog-
raphy of documents that new users should be
aware of.

I. GETTING STARTED

Logging In

You must have a UNIX login name, which you
can get from whoever administers your system.
You also need to know the phone number, unless
your system uses permanently connected terminals.
The UNIX system is capable of dealing with a wide
variety of terminals. Terminet 300’s; Execuport,
TI and similar portables; video (CRT) terminals
like the HP2640, etc.; high-priced graphics termi-
nals like the Tektronix 4014; plotting terminals
like those from GSI and DASI; and even the vener-
able Teletype in its various forms. But note: UNIX
is strongly oriented towards devices with lower
case. lf your terminal produces only upper case
(e.g., model 33 Teletype, some video and portable
terminals), life will be so difficult that you should
look for another terminal.

Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upper/lower case
mode, full duplex, even parity, and any others
that local wisdom advises. Establish a connection
using whatever magic is needed for your terminal;
this may involve dialing a telephone call or merely
flipping a switch. In either case, UNIX should type
“login:” at you. If it types garbage, you may be
at the wrong speed; check the switches. If that
fails, push the ‘‘break” or ‘‘interrupt’’ key a few
times, slowly. If that fails to produce a login mes-
sage, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a RETURN;
the system will not do anything until you type a
RETURN. If a password is required, you will be
asked for it, and (if possible) printing will be
turned off while you type it. Don't forget

RETURN.

The culmination of your login efforts is a
“prompt character,” a single character that indi-
cates that the system is ready to accept commands
from you. The prompt character is usually a dol-
lar sign § or a percent sign %. (You may also get
a message of the day just before the prompt char-
acter, or a notification that you have mail.)

Typing Commands

Once you've seen the prompt character, you
can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back some-
thing like

Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or
nothing will happen. If you think you’re being
ignored, type a RETURN; something should hap-
pen. RETURN won’t be mentioned again, but
don’t forget it — it has to be there at the end of
each line.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who

gives something like

mb tty01l Jan 16 09:11
ski tty05 Jan 18 09:33
gam ttyll Jan 168 13:07

The time is when the user logged in; “‘ttyxx" is the
system’s idea of what terminal the user is on.

Hf you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or less
mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left margin.
You can often fix this by logging out and logging
back in. Or you can read the description of the
command stty in section I of the manual. To get

intelligent treatment of tab characters (which are
much used in UNIX) if your terminal doesn't have
tabs, type the command

stty —tabs

and the system will convert each tab into the right
number of blanks for you. If your terminal does
have computer-settable tabs, the command tabs
will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases the
last character typed; in fact successive uses of #
erase characters back to the beginning of the line
(but not beyond). So if you type badly, you can
correct as you go:

dd#attef#fte

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input line, so if the line
is irretrievably fouled up, type an @ and start the
line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @ by
a backslash \, it loses its erase meaning. So to
enter a sharp or at-sign in something, type \# or
\@. The system will always echo a newline at
you after your at-sign, even if preceded by a
backslash. Don't worry — the at-sign has been
recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the fol-
lowing character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at you.
If you type during output, your input characters
will appear intermixed with the output characters,
but they will be stored away and interpreted in
the correct order. So you can type several com-
mands one after another without waiting for the
first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “DEL” (perhaps called ‘delete” or
“rubout” on your terminal). The “interrupt” or
“break” key found on most terminals can also be
used. In a few programs, like the text editor, DEL
stops whatever the program is doing but leaves
you in that program. Hanging up the phone will

stop most programs.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were on.
It is usually not sufficient just to turn off the ter-
minal. Most UNIX systems do not use a time-out
mechanism, so you'll be there forever uniless you
hang up.

Mail
When you log in, you may sometimes get the
message

You have mail.

UNIX provides a postal system so you can com-
municate with other users of the system. To read
your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes-
sage, and RETURN, which does not (so it will still
pe there the next time you read your mailbox).
Other responses are described m the manual
(Earlier versions of mail do not process one mes-
sage at a time, but are otherwise similar.)

How do you send mail to someone else? Sup-
pose it is to go to ‘joe” (assumig ‘‘joe” is
someone’s login name). The easiest way is this:

mail joe

now type in the text of the letter
on as many lines as you lske ...
After the last line of the letter
type the character ‘‘control-d”’,

that ss, hold down ‘‘control’’ and type
a letter ““d’’.

And that’s it. The ‘‘control-d” sequence, often
called “EOF” for end-of-file, is used throughout
the system to mark the end of input from a termi-
nal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn't as strange as it might sound — mail to one-
self is a handy reminder mechanism.)

There are other ways to send mail — you can
send a previously prepared letter, and you can
mail to a number of people all at once. For more
details see mail(1). (The notation mail(1) means
the command mail in section 1 of the UNIX
Programmer’s Manual.)

Writing to other users

At some point, out of the blue will come a
message like

Message from joe tty07...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless you take
explicit action you won’t be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is slow,
rather like talking to the moon. (If you are in the
middle of something, you have to get to a state
where you can type a command. Normally, what-
ever program you are running has to terminate or
be terminated. If you're editing, you can escape
temporarily from the editor — read the editor
tutorial)

A protocol is needed to keep what you type
from getting garbled up with what Joe types. Typ-

ically it’s like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines
as he likes). When he’s ready for a reply,
he signals it by typing (o), which stands
for “over”.

Now Smith types a reply, also terminated
by (o).

This cycle repeats until someone gets tired;
he then signals his intent to quit with (0o0),
for “‘over and out’’.

To terminate the conversation, each side
must type a ‘“‘control-d” character alone on
a line. (“Delete” also works.) When the
other person types his ‘“control-d”, you will
get the message EOF on your terminal.

If you write to someone who isn’t logged in,
or who doesn’t want to be disturbed, you'll be
told. If the target is logged in but doesn’t answer
after a decent interval, simply type “control-d”.

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can’t find an expert to assist you, you can print on
your terminal some manual section that might
help. This is also useful for getting the most up-
to-date information on a command. To print a
manual section, type ‘“man command-name’’.
Thus to read up on the who command, type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro-
gram called learn, which provides computer aided
instruction on the file system and basic commands,
the editor, document preparation, and even C pro-
gramming. Try typing the command

learn

If learn exists on your system, it will tell you
what to do from there.

. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored in
the machine? Most of these tasks are done with
the UNIX ‘“text editor” ed. Since ed is thoroughly
documented in ed(1) and explained in A Tutorial
Introduction to the UNIX Texzt Editor, we won't
spend any time here describing how to use it. All
we want it for right now is to make some files. (A
file is just a collection of information stored in the
machine, a simplistic but adequate definition.)

To create a file called junk with some text in
it, do the following:

ed junk (invokes the text editor)

a (command to “ed”, to add text)
now type in

whatever tezt you want ...

. (signals the end of adding text)

The ““.” that signals the end of adding text must
be at the beginning of a line by itself. Don’t for-
get it, for until it is typed, no other ed commands
will be recognized — everything you type will be
treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as
correcting spelling mistakes, rearranging para-
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the
information is lost.} But after w the information is

t This is not strictly true — if you hang up while editing,
the data you were worki<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>