0004 009
2000

SS9

)OO ¢

®
000
000
000

IBM System/3

Models 4,8,10,and 12
Communications Control Program
Logic Manual

Program Numbers:
5702-SC1(Models 8 and 10)
5703-SC1(Model 4)
5705-SC1(Model 12)

Feature 6033/6070/6071

$Y21-0531-2
File No. $3-36

Third Edition {June 1976)

This is a major revision of, and obsoletes, SY21-0531-1, and Technical Newsletters
SN21-5272 and SN21-5348. Numerous miscellaneous changes are added throughout
the publication. The manual should be reviewed in its entirety.

This edition applies to the System/3 program versions listed below and to all
subsequent versions and modifications until otherwise indicated in new editions
or technical newsletters.

SCP Program Feature

Number System/3 Number Version Modification
5702-SC1 Models 8 and 10 6033 13 00

5703-SC1 Model 4 6033 13 00
5705-SC1 Model 12 6070/6071 01 00

Changes are made to this information periodically. Before using this publication to
operate an |BM system, refer to the latest /BM System/3 Bibliography, GC20-8080,
for the edition that is applicable and current.

Requests for copies of IBM publications should be directed to your IBM representative
or to the branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If it has been

removed, address your comments to IBM Corporation, Publications, Department 245,
Rochester, Minnesota 55901.

© International Business Machines Corporation 1973, 1974, 1976

This logic manual is intended for IBM personnel responsible
for maintaining the Communications Control Program (CCP),
a feature of IBM System/3 Disk System Management, |1BM
System/3 Models 4, 8, 10, and 12. This feature facilitates
the implementation of telecommunications applications on
the Models 4, 8, 10, and 12. The manual is a guide to CCP
program listing; it does not contain instructions for using
CCP.

This manual is divided into six parts:

® [ntroduction (Chapter 1)

® Generation/Installation (Chapters 2-3)

® Assignment and Offline Programs (Chapters 4-7)
® Operation (Chapters 8-10)

® Service Aids (Chapters 11-14)

® Appendixes

Part 1 introduces the components of CCP. Parts 2 through 5
describe programs within CCP. Each chapter in these parts
contains:

® An introduction to the topic of the chapter.

® A method of operation section showing the functional
relation of the different parts within the program
described. Method of operation diagrams are numbered
in the form cM.nnnn, where ¢ is the chapter number, M
is method of operation, and nnnn refers to the sequence
of the diagrams within the chapter.

® A program organization section showing main storage
maps for the program described and either HIPO dia-
grams or module descriptions and flowcharts describing
individual modules. The HIPO diagrams in this manual
do not include cross references to listing labels or extend-
ed descriptions in text, but do include cross references to
other HIPQOs and flowcharts. HIPO diagrams in the pro-
gram organization sections are numbered in the form
¢cP.nnnn, where c is the chapter number, P is program
organization, and nnnn refers to the sequence of the
diagrams within the chapter.

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Preface

Appendix A in Part 6 is a system directory for locating
information in Parts 2 through 5. Appendix D describes
the macros used during CCP generation. Appendix F
illustrates the flowchart and HIPO conventions followed
in this manual.

Throughout this manual, page numbers are in the form ¢c-n,
where c identifies the chapter or appendix and n is the page
number within the chapter or appendix. The running feet,
which precede the page number on odd-numbered pages,
identify the section of the chapter (for example, method

of operation or program organization) or, in the appendixes,
a major topic of the appendix.

For ease of illustration, many of the examples in this book
use card-like figures to represent records. This does not
imply that a card device must be used for input or odtput

in these situations. Any of several input/output devices can
be used, depending on which System/3 model and configura-
tion you are using.

Integrated communications adapter (ICA) is available only
on the Model 8 and must be addressed as BSCA line 2. ICA,
local display adapter, and BSCA-2 are mutually exclusive on
the Model 8. Local display adapter is available on Models

8 and 12. The locally attached work station is available on
Model 4.

Not all CCP devices and features available on Model 10 are
available on Models 4, 8, and 12. Users should be familiar
with the information in the /ntroduction manual for the
model they are using.

In this manual a Model 12 reference to the 5444 indicates
the 3340 Direct Access Storage Facility simulation area. A
Model 12 reference to the 5445 indicates the 3340 Direct

Access Storage Facility main data area.

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Prerequisite Publications

You should be familiar with the following publications that
describe:

® Communications Control Program:

IBM System/3 Communications Control Program
Messages Manual, GC21-5170

IBM System/3 Communications Control Program Pro-
grammer’s Reference Manual, GC21-7579

IBM System/3 Communications Control Program
System Design Guide, GC21-5165

IBM System/3 Models 4, 8, 10, and 12 Communications
Control Program Data Areas and Diagnostic Aidss,
SY21-0048

IBM System/3 Models 8, 10, and 12 Communications
Control Program System Reference Manual, GC21-7588

IBM System/3 Communications Control Program Terminal

Operator’s Guide, GC21-7580

IBM System/3 Models 10 and 12 Communications
Control Program System Operator’s Guide, GC21-7581

® Multiline/Multipoint and Multiple Line Terminal Adapter:
IBM System/3 Disk Systems Binary Synchronous
Communications Programming Support Input/Output
Control System Logic Manual, SY21-0526
IBM System/3 Multiple Line Terminal Adapter RPQ
Program Logic Manual Supporting RPQs S40028 through
$40033, SY21-0527

IBM System/3 Multiline/Multipoint Binary Synchronous
Communications Reference Manual, GC21-7573

1BM System/3 Disk Sort Reference Manual, SC21-7522

IBM System/3 Models 8 and 10 System Control Program-
ming Reference Manual, GC21-7512

IBM System/3 Model 12 System Controf Programming
Reference Manual, GC21-5130

IBM System/3 Models 4, 6, 8, 10, and 12 System
Generation Reference Manual, GC21-5126

® Model 4
I1BM System/3 Model 4 Introduction, GC21-5146

IBM System/3 Model 4 CCP Concepts and System
Design Guide, GC21-5148

IBM System/3 Model 4 CCP Programmer’s Reference
Manual, GC21-5150

® Models 10 and 12 System Management:

I1BM System/3 Models 4, 6, 8, and 10 Disk Systems
System Controf Program Logic Manual, SY 21-0502

IBM System/3 Disk Systems Data Management and
Input/Output Supervisor Logic Manual, SY21-0512

IBM System/3 Dverlay Linkage Editor and Checkpoint/
Restart Program Logic Manual, SY21-0530

IBM System/3 Models 8 and 10 System Control Pro-
gramming Reference Manual, GC21-7512

IBM System/3 Model 12 System Control Programming
Reference Manual, GC21-5130

Related Publications

Because the Communications Control Program supports
communications programs written in RPG 11, COBOL,
FORTRAN 1V, and Basic Assembler, the following
publications may be useful:

IBM System/3 Disk Systems RPG |1 Logic Manual,
LY21-0501

IBM System/3 Subset American National Standard COBOL
Compiler and Library Program Logic Manual, LY28-6421

IBM System/3 Disk FORTRAN 1V Program Logic Manual,
LY28-6848

IBM System/3 Basic Assembler Program Logic Manual,
LY21-0504

IBM System/3 Models 4, 6, 8, 10, and 12 System Data
Areas and Diagnostic Aids, SY21-0045

Page of SY21-0531-2
issued 24 June 1977
By TNL: SN21-5530

Contents

CHAPTER 1. INTRODUCTION TO THE COMPONENTS INTRODUCTION TO CCP INSTALLATION

OF CCP . 1-1 (MODEL 4 ONLY) 2-33

Generation Stage (Models 8 10 and 12 Only) 1-1 Function . 2-33
Results of Generation 11 Procedure 2-33
Tailoring Process 1-3 Method of Operation 2-33

Installation Stage (Model 4 Only) 1-3
Functions Supported . . 1-3 CHAPTER 3. SCP GENERATOR (MODELS 8, 10,

Assignment Stage and Other Preparatory Programs 1-4 AND 12 ONLY) 31
Assignment Build Program . 1-5 INTRODUCTION 3-1
Assignment List Program 1-6 System Requirements 3-1
User Security Information Build Program (Models 8 Storage Requirements 31

10, and 12 Only) 1-6 Prerequisite Publications 3-1
Display Format Generator Program 1-8 METHOD OF OPERATION . 3-2
Printer Format Generator Program 19 Phase-to-Phase Communication and File Usage . 3-2

The Operational Stage . 1-10 Phase-to-Phase Communication Tables - 3-2
Startup 1-10 Register Conventions 3-2
Execution . 1-11 Work File ($WORK?2) 3-2
Operational Shutdown . 1-12 Source File ($SSOURCE) 3-2

Auxiliary Programs . . 113 Object File (SWORK) 3-2
Disk-to-Printer Dump of Mam Storage Trace 1-13 Illustrated Qverview . 3-2
Standalone Main Storage Dump Programs 1-13 PROGRAM ORGAN|ZAT|0N 3-6
Instaltation Verification Program . 1-13 Processor Initialization Phase ($CGNIN — PID Name
Listing of $CCPLOG 1-13 is $CGDRV) 3-6

Source Compression Phase ($CGNCM) 3-6

CHAPTER 2. CCP GENERATION (MODELS 8, 10, Symbol Table Build Phase (SCGNSB) 39

AND 12 ONLY) AND INSTALLATION (MODEL Symbol Table Overflow Phase (SCGNSF) 39
4 ONLY) . . 241 Symbol Substitution Phase (SCGNSS) 3-10
INTRODUCTION TO CCP GEN ERAT|ON ESL Output Phase (JCGNPE) 3-11
(MODELS 8, 10, AND 12 ONLY) 2-1 Source/Object Output Phase (FCGNPS) . . 3412
Function . 2-1 Build Cross Reference (XREF) File Phase ($CGNBX) . 313
Procedure 2-1 Merge and List Cross Reference Phase ($CGNSX) 3-13
Restrictions . . 2-2 Compiler Access Method (CAM) 3-14
METHOD OF OPERATION (CARD ORIENTED
GENERATION) . 2-4 CHAPTER 4. ASSIGNMENT BUILD 4-1

Steps in Card-Oriented CCP Generatlon 24 INTRODUCTION . 41
Step 1 (Card Oriented) . 2:4 METHOD OF OPERATION 4.1
Step 2 (Card Oriented) . 2-4 Control Statement Processors . 4-3
Step 3 (Card Oriented) . 24 Diagnostics 4-3
Step 4 (Card Oriented) . 2.5 PROGRAM ORGANIZATION 4-3
Step 5 (Card Oriented) . 28 .

Step 6 (Card Oriented) . 2.9 CHAPTER 5. ASSIGNMENT LIST 5-1

METHOD OF OPERATION (CARDLESS-ORIENTED INTRODUCTION 5-1

GENERATION) . 2-10 METHOD OF OPERATION 5-1

Steps in Cardless-Oriented CCP Generatlon . 2-10 Program Initialization (Diagram 5M. 01 00 and
Step 1 (Cardless Oriented) . 2-10 Figures 5-1 and 5-2) 5-1
Step 2 (Cardless Oriented) . 2-10 Functional Determination (Dlagram 5M 0100) . 5-1
Step 3 (Cardless Oriented) . 2-10 $CCPFILE Configuration Display (Diagrams
Step 4 (Cardless Oriented) . 2-12 5M.0100 and 5P.0100) 5-1
Step 5 (Cardless Oriented) . 2-14 $CCPFILE Directory Display (Duagrams 5M 0100
Step 6 (Cardless Oriented) . . 2-14 and 5P.0200) . . 5-2

CCP Generation Global Variables . 2-18 PROGRAM ORGAN|ZAT|ON 5-4
First Pass . 2-19 $CCPAL Set Display (Diagrams 5M.0100 and
Second Pass . . 2-24 5P.0300) . 5-4

PROGRAM ()RGANIZATION . 2-27 Program Statistics (PGMSTAT) and Reset Program
CCP Generation Utility ($CC1PP) 2-27 Request Counts (RESETPS) — (Diagrams
Build Initial Contents of $CCPFILE ($CC1BF) 2-28 5M.0100 and 5P.0400) 5-4
Create the $CCPLOG File ($CC1BL)} . 2-28

Page of SY21-0631-2
Issued 24 June 1977
By TNL: SN21-5530

CHAPTER 6. USER SECURITY INFORMATION
BUILD (MODELS 8, 10, AND 12 ONLY) .
INTRODUCTION .
METHOD OF OPERATION
OCL Statements .
Data Input Records . .
PROGRAM ORGANIZATION
$CCPAU Module Description .

CHAPTER 7. FORMAT GENERATOR
DISPLAY FORMAT GENERATOR .
Introduction . PP
METHOD OF OPERATION
Functions
Components — For Smgle and Multlple Format Bunlds
Read From Sysin or the Source Library
$CCPDF .
$CC2CR .
$CC2CF
$ccacep
PROGRAM ORGANIZATION .
Display Format Generator Build Common Area
{(LOMMON), Read from Sysin, the Source Library,
and Open Files ($CCPDF) .
Display Format Generator Read Single or Multlple
Formats from the $SOURCE File ($CC2CR)
Display Format Generator Print and Diagnose
Display Specifications ($CC2CF) .
Display Format Generator Print and Copy to Dlsk
($ccacp) .. .
DISPLAY FORMAT TEST ROUTINE
Introduction .
Method of Operation
OCL Statements .
Data Input Records .
Program Organization .
$CCPDT Module Description .
PRINTER FORMAT GENERATOR . .
introduction
Method of Operation
Functions . . ., .
Components for Single and Mu|t|ple Format Builds,
Read from Sysin or the Source Library
$CCPPF
$ccacs
$cc2ca .
$ccaca .
Program Organization .
Printer Format Generator Bunld Common Area
(LOMMON), Read from Sysin, the Source Library,
and Open Files (SCCPPF)
Printer Format Generator Read Single or Multlple
Formats from the $SOURCE File ($CC2CS)
Printer Format Generator Print and Diagnose Display
Specifications ($CC2CG) .
Printer Format Generator Print and Copy to Dlsk
(¢cc2c) L. L.

CHAPTER 8. STARTUP
INTRODUCTION
Operational Considerations
OCL Restrictions
User Security Information (Models 8, 10 and
12 Only)
System Requirements
METHOD OF OPERATION

vi

6-1
6-1
6-2
6-2

6-6
6-6

741
7-1
7-1
7-2
7-2

7-2
7-2
7-2
7-3
7-3
7-10

7-11

7-11

7-11

7-12
7-28
7-28
7-28
7-28
7-28
7-31
7-31
7-32
7-32
7-32

.7-32

7-33
7-33
7-33
7-33
7-33
7-40

7-41

7-41

7-41

7-42

8-1

8-3

8-3

8-3

8-3
8-4

Operational Overview
DPF System Determlnatvons
Initial Determinations for Any System
$CCPFILE Processing
Keyword Mode Processing .
Disk 1/O Errors . .
Termination of Startup by the Operator .

Phase Overviews . .
Loader Routine for Startup Phases
Phase $CC3CR: Initialize Disk Addresses of Transuents
Phase $CC3RT: Relocate CCP Transients .
Phase $CC3US: Clear AH Suppression indications .
Phase $CC3FS: Suppress Selected Facilities
Phase $CC3IP: Initialize PCT . .
Phase $CC3LD: Initialize Resident Control Module
Phase $CC3TB: Build Line Control Blocks .
Phase $CC3DF: Build Short DTFs for Disk Files
Phase $CC3MV: Load and Initialize

$CCADF and $CC4#3 .

Phase $CC3EJ: Final Processing Wlthm Startup
Other Functions . .

PROGRAM ORGANIZATION

CHAPTER 9. CCPEXECUTION

INTRODUCTION . .

METHOD OF OPERATION

Hierarchical Structure

Post Startup Resident Code

Base SCP Extension to DSM
Getmain/Freemain .
CCP Transient Area Handler

CCP Teleprocessing 1/0 interface .
System Task Requests .
User Task Requests .

CCP Control Tasks .
Communication Management Task
Command Processor Task ..
Command Processor Return Routine ($CC4PR)
Allocation Task .
Termination .

Base SCP Replacements
Pseudo Open and Pseudo Allocate

Pseudo Close .
CCP End of Job .
Halt/Syslog

“User Interface to CCP

Basic Assembler L.anguage Program lnterface
RPG Il Program Interface
COBOL Program Interface (Models 8, 10 and
12 Only)
FORTRAN Program !nterface (Models 8, 10 and
12 Only)
CCP Execution Timelines
Accept Timeline .
Get Timeline .
Command Timeline (/Q Command)
Concurrent File Sharing Timeline .
PROGRAM ORGANIZATION
Resident Startup Initialization Routme (CPINIT)
Console Interrupt Intercept ($CC4IC)
BSCA Interrupt Intercept ($CC41B)
Common Interrupt Handler ($CC41H)
MLTA Interrupt Intercept (§CC4IM) .
CCP Task Dispatcher ($CC4DP)
CCP Wait Routine (SCCAWT) .
Task Post Routine (8CC4PS)
CCP Disk 1/0 Intercept ($CC410)

8-4
8-4
8-4

85
8-5
8-6
8-6
8-6
8-6

8-10
8-10
8-11
8-12
8-14
3-15

8-15
3-15
8-16
8-17

9-1
9-1
9-1
9-1
9-2
9.7

9-10

9-12

914

914

9-14

917

9-18

9-36

9-38

9-44

9-46

9.49

9-49

9-53
9-65
9-57
9-58
9-68
9-63

9-66

9-68
9-70
9-70
9-71
9-73
9-76
9-80
9-80
9-80
9-80
9-81
9-81
9-81
9-82
9-82
9-82

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

CCP Disk 1/O Wait Intercept ($CC4IW) 083 Method of Operation 118
CCP File Sharing Enqueue—Dequeue Routines OCL Required 118

($ccapty+ . . . 983 Program Organization . . . 118
General Entry Intercept ($CC4IG) v e . . . 984 Disk-to-Printer $CCPLOG Fne Program ($CCPLL) . 118
CCP Transient Area Handler ($CC4PI, $CCATX,

$CC4TR) 984 CHAPTER 12. STAND-ALONE DUMP PROGRAMS
Program Request Queue Test ($CC4PQ) '. . . . 985 (MODELS 8,10, AND12ONLY) 121
CCP Register Save and Restore Routine (CCPSAV) . 0.85 INTRODUCTION 121
CCP Trace Interface Routine ($CC4TT) 986 Main Storage Requirements 1241
CCP Stand Alone Halt Routine (CPHALT) 986 Machine Requirements 121
Generalized Move-Service Routine . . . 986 METHOD OF OPERATION 121
Getmain/Freemain Service Routine ($CC4MS) . . 9487 PROGRAM ORGANIZATION . . . oL 122
Main-Storage Supervisor (Getmain/Freemain Service) Card-Loadable Main Storage Dump Programs

($ccamm) o988 (CCPDAN, CCPDHN, CCPDPN, CCPDTN) 122
Command Processor Mamhne ($CC4CP) A . 9-89 . - .

Allocation Task Resident Control Routine ($CC4AM) . 989 CHAPTER 13. INSTALLATION VERIFICATION
Open/Close/Allocate Mainline (§CC40C) 989 PROGRAM (CCPIVP) 131
Termination Interface Routine ($CC4TI) . . .- . 989 INTRODUCTION 1341
Termination Task Mainline Routine ($CC4TM) . . . 990 METHOD OF OPERATION 133
1/0 Interface Mainline (§CC411/$CC41X) 990 Functions Verified 133
Display Format Control Routine (§CC4DF) 991 CCPIVP Halts . . .~ C e e oo 134
CCP Trace {CCTR) 9092 PROGRAM ORGANIZATION 135
TRACE Halt Service Aid (CCSA) 993 Installation Verification Program (CCFIVP) . . . 136
Reschedule the TP Line (CMRSCH) 993

Op End Analysis (CMOPND) 994 CHAPTER 14. FILE RECOVERY PROGRAM

Accept TP Requests (CMFRMN) 995 ($CCPRB)+ v 4 . 141
Invite Buffer Analysis Routine (CMIVGM) 997 INTRODUCTION 141
Getmain Size Determination Routine (CMSTOR) . . 9-97 METHOD OF OPERATION 141
‘Format Pui-No-Wait Area Routine (CMSET) . . . 997 PROGRAM ORGANIZATION 144
Post TP Scheduled (CMPSRQ) P .. 997 File Recovery Program (§CCPRB) 144
Operation Input Length Determination Routme '

(CMGINL)} 998 APPENDIX A. SYSTEM DIRECTORY e e e A1
BSCA Trace Interface ($CC4BT) 998 Generation/Installation A2
BSCA Set Polling Skip Bit Routine (CMBSKP) .. 998 SCP Generator (Models 8, 10, and 12 Only) L. A2

$ccavt . . . L . L L L9180 AssignmentBuild A4
$ccav294180 Assignment List ASb
User Security Information Bunld (Models 8 10 and
CHAPTER 10. SHUTDOWN 101 120nly) . . . e o« o+ . .« . . . ASb
INTRODUCTION . . e e L 101 Display Format Generator A6
METHOD OF DPERATION S [Printer Format Generator As
Build and Close Disk DTFs 101 Startup A7
Restore DSM EntryPoints 106 CCP Execution A9
CloseBSCA Lines 106 User Subroutines A28
Close MLTA Lines . . . S [o] Shutdown . . -)
Update Program Usage Counts . .« .+« 106 Disk-to-Printer Dump .o . A-30
Write Out Last Disk TraceEntry 106 Standalone Dump Programs (I\/Iodels 8 10 and 12
Print Final Messageand Exit 106 Only) A-30
PROGRAM ORGANIZATION 107 Standalone CCP Support Program P e
CCP Shutdown ($CC5SH) 107 Installation Verification Program FR - 5 1 |

CHAPTER 11. DISK-TO-PRINTER $CCPFILE DUMP
PROGRAM AND LOG LISTPROGRAM 111

INTRODUCTION 141
METHOD OF OPERATION 111
OCLRequired 11
Program Options . . P B B
PROGRAM ORGANIZATION . . 114 APPENDIX D. MACROS USED BY CCP GENERATION . D-1
Disk-to-Printer $CCPFILE Dump Program ($CCPDD) . 114 FirstPass. D1
Introduction to $CCPLL (Model 4Only) 118 SecondPass Dt

vii

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5630

APPENDIX F. FLOWCHART AND HIPO
CONVENTIONS

Flowcharts

HIPO .

INDEX

viii

F-1
F-1
F-3

X-1

Addr
AID
AM
Arith
ARR

ASCII

Bin
Bool
BSCA
calcs
CAM
cce
CCPIvP
CDE
CEFE
CH
Char
Charn

CHRD

Cc™M
CMD
COMARA

COMCOM

A main storage address.
Attention 1D.
Allocation manager.
Arithmetic variable.
Address recall register.

American national standard code for infor-
mation interchange.

Binary number.

Binary (Boolean) variable.

Binary synchronous communication adapter.

Calculations.

Compiler access method.
Communications control program.
CCP installation verification program,
Contents directory entry.

Customer Engineer Field Engineering.
Disk address (cylinder/head).
Alphameric characters.

Character variable.

Disk address {cylinder/head/record/displace-
ment).

Communications manager.
Command.
Communications area.

Common communication area.

COMMON
cpP

CPU
CSor C/S

CsD

CsDD

“CSN

DC
Dec
DFCR
DFGR
DFF
DFT
Disp
distrib

DME

'DPF

DSM

DTF

DTT

EAU

EBCDIC

Abbreviations

Common area.

Command processor.
Processing unit.

Disk address {cylinder/sector).

Disk address {(cylinder/sector/byte displace-
ment within sector).

Disk address (cylinder/sector/byte displace-
ment from the beginning of that sector).

Disk address and length (cylinder/sector/
number of sectors).

Define constant.

Zoned decimal characters.
Display format control routine.
Display format generator routine.
Display format facility.
Display format table.
Displacement.

Distribution.

Data mode escape.

Dual program feature.

Disk system management.
Define the file.

Define the table.

Erase all unprotected:. .

Extended binary coded decimal interchange
code.

Abbreviations ix

CCP (Communications Control Program) is a feature of
System/3 Disk System Management (DSM). CCP operates
in conjunction with DSM and with MLMP (Multiline/Multi-
point) and/or MLTA (Multiple Line Terminal Adapter)
1OCS to provide the control required for a communications-
based operating system. '

CCP includes not only those modules used during the time
that a communications network is being controlled, but also
modules that are used to prepare for the operation of an on-
line communications network and several auxiliary programs
that enhance the serviceability of CCP. Apart from auxiliary
service programs and subroutines incorporated into user pro-
grams that execute under CCP, the modules that form CCP
function in one of four stages:

1. Generation Stage. The stage in which a generalized
set of modules distributed as the CCP feature are
tailored to form a system appropriate to the user’s
needs.

2. Installation Stage (Model 4 only). The stage in which
the desired version of CCP is copied to the production
pack and to the RPG 1l program preparation pack.

3. Assignment Stage. The stage in which preparatory
programs operating directly under Disk System
Management are used to establish contro!l information
that is used by CCP when controlling an online com-
munications network.

4. Operational Stage. The stage in which CCP controls
a communications network. The Operational Stage
consists of:

® QOperational Startup. The control information
created during the Assignment Stage is gathered
to initiate the control of the communications
network.

® CCP Execution. CCP controls communication
with terminals of the network and runs user pro-
grams requested by operators.

® Operational Shutdown. CCP is terminated and
control is returned to Disk System Management.

Chapter 1. Introduction to the Components of CCP

GENERATION STAGE (Models 8, 10, and 12 Only)

The user receives a Model 8 or 10 CCP on a 5444 disk pack
or a Model 12 CCP on a 3348 disk module. As distributed,
CCP is not suitable for immediate production use because

. the modules must be tailored to the user’s hardware config-

uration and to the functions required in the communication
system. Tailoring the distributed modules and recording
that tailored system on a disk pack are the functions of the
CCP Generation Stage. Figure 1-1 is an overview of CCP
Generation.

CCP Generation is not required on Model 4.

Results of Generation

The distribution pack received by the user contains
both the modules to be tailored and the programs to
perform that tailoring. The output of CCP Generation
is a set of modules which may be split among several
packs if the user so specifies:

® Production pack. Contains those modules which are
used in the Assignment and Operational Stages of
CCP, as well as certain service aid programg. This is
the pack which must be online when executing
any component of CCP beyond generation.

® Program preparation pack. Pack to be used when
compiling and link editing user programs which are
to run under CCP control. The communications
service subroutines (macros, in the case of Basic
Assembler programs) and those subroutines which
must be incorporated in a user program which
accesses unit record devices are copied to the
program preparation pack. There may be as many
program preparation packs as there are languages
to be supported by CCP; or the support for several
languages may be directed to the same program
preparation pack. A program preparation pack could
be the same pack as the production pack.

® Assignment file pack. The Assignment File (SCCPFILE)
is allocated and initialized on this pack. This pack may
be the same as the production pack. The assignment
file pack must be online during the Operational
Stage and during the running of several of the
preparatory programs, as indicated later in this
chapter.

Introduction to the Components of CCP 1-1

Distribution
pack

® Operational stage
——>| modules —

® Modules to be

tailored ——————">| Generation

® Tailoring process
programs
User
specifications
[
y4
pa
Generation
listing

Figure 1-1. Generation (Models 8, 10, and 12 Only)

Program Preparation
Pack(s)

For
compile/link-edit
of user programs

® Communications
service subrou-
tines or macros
¢ Unit record
intermediary
subroutines

Proa uction
pack

O

N—

® Preparatory
/auxiliary
programs

Assignment file For preparatory

pack —> runs and
P ' operational use

___'/
ko SCCPFILE _

® Standalone storage dump programs

® Example assignment set

Tailoring Process

Tailoring during CCP generation takes place at several
levels. According to user specifications:

® Load modules are selectively copied to the user’s
packs.

e Relocatable modules are selectively chosen to be
included in a link edit.

@ |Individual instructions are selectively chosen to be
included in the execution-time resident control
module.

The last level of tailoring requires the use of the Macro
Processor to selectively form the individual instructions
in the resident control module, and the use of a language
translator — called the SCP Generator — to convert
those instructions to machine Iahguage.

The user’s CCP, once generated, is limited to the set of
functions and device types that were specified during
generation. Any addition to the hardware types or
the functions expected of CCP requires a new genera-
tion.

On the other hand, within that set of functions and
hardware types, any number of specifics in the user’s
operating environment may be changed without requiring
a new generation to support them. For example, while

a new terminal type cannot be supported without a regen-
eration, the user can vary the configuration of those
terminals among lines, the terminal addresses, and the
number of terminals attached. Further, while the user
has possibly limited the types of disk file support,

the generation has not bound him to any specific

set of disk files or to any specific set of programs.

The specifics of terminals, disk files, and programs are
established by a brief preparatory run known as
Assignment Build.

INSTALLATION STAGE (MODEL 4 ONLY)

Installation stage on Model 4 consists of a set of procedures
that copy the desired version of CCP to the production pack
and RPG Il program preparation pack.

Functions Supported

The CCP installation stage is eliminated for Model 4. Instead,
two versions of CCP are pregenerated and shipped to the
users; one version that supports only 3270 on control station
line and a second version that supports all BSCA devices and
all BSCA line configurations.

The following CCP generation control statements are used to
pregenerate the two versions:

Minimum Maximum
Version Version
$EIOD CARD- NO NO
PRINTER- 5203 (note 1) 5203 (note 1)
N3741- NO NO
DISKS- ‘R2, F2’ ‘R2, F2'
D5445- NO NO
$EFAC MAXEUP- 4 4
DPF- NO NO
ESCAPE- I Y1
PGMCNT- YES YES
FSHARE- YES YES
SYMFIL- YES YES
FORMAT- YES YES
PRUF- YES YES
$EPLG LANG- RPG I RPG Il
$ESEC SECURE- NO {(note 2) NO (note 2)
LUSI- 0 0
$EFIL SETS- (note 3) (note 3)
PROGS- (note 3) (note 3)
DFILES- (note 3) (note 3)
TERMS- (note 3) (note 3)
DUMPS- (note 3) {note 3)
CORE- (note 3) (note 3)
TRACE- 1 1

Introduction to the Components of CCP 1-3

1-4

Minimum Maximum
Version Version
$EBSC BSCA- 2 2
DIAL- NO YES
PP- NO YES
MP- NO YES
Cs- YES YES
GETMSG- YES YES
ITB- NO YES
RECSEP- - 1E
ASCII- NO YES
EBCDIC- YES YES
XPRNCY- NO YES
RESPOL..- YES YES
AUTORS- NO YES
TYPE- 3277M1/M2 3277M1/M2
TYPE- 3275M1/M2 3275M1/M2
TYPE- 3284M1/M2 3284M1/M2
TYPE- 3286M1/M2 3286M1/M2
TYPE- - 3735
TYPE- 3741
TYPE- CPU
$EGEN MINRES- NO NO
Notes:

1. The 5203 indicator will be used to indicate 5213.

ASSIGNMENT STAGE AND OTHER PREPARATORY
PROGRAMS

Because many of the specifics of the user’s operational
environment are deliberately not bound at generation,
additional programs are provided to permit the user to
establish the necessary specifics preparatory to the
operational use of CCP. These programs are:

® The Assignment Build Program: $CCPAS and
related modules.

® The Assignment List Program: $CCPAL.

® The User Security Information Build Program:
$CCPAU.

® The Display Format Facility (DFF) Programs:
Display Format Generator Program: $CCPDF.
Printer Format Generator Program: $CCPPF.
Display Format Test Routine: $CCPDT.

® | OG Build Program (Model 4 only): $CC1BL is provided
on Model 4 to create the required $CCPL.OG file.

2.

Even though no security is specified on the pregen-
erated versions, a user can make use of CCP security
by specifying the PASSWORD parameter on the
SYSTEM statement during the assignment stage.

. These parameters are used to determine the size of

$CCPFILE. Therefore, they are not applicable here.

Assignment Build Program ® The disk data files to be accessed by user programs.
Assignment Build (Figure 1-2) creates, deletes, and
replaces user-defined assignment sets in $CCPFILE,
An assignment set is a set of control information
which defines the specifics (not defined at generation)
of an environment in which the execution of CCP will
occur. An assignment set defines:

® The set of user programs which may run and the
system resources required by each.

® QOptional password security {(Model 4 only).

A number of different assignment sets may be defined
in $CCPFILE. Upon each run of the CCP Operational
Stage, one assignment set is chosen by the system
operator to apply to the entire run.

® A line and terminal configuration.

® A set of names by which user programs will refer
to terminals.

® The characteristics of each terminal.

Production
pack

Assignment : J

file pack

v
(] $CCPAS: Assign-

v ment build program

$CCPFILE ;
v Assignment

L__/ file pack

Assignment Set
specifications

Va

/-
P

Figure 1-2, Assignment Build

Assignment
build

N

-$CCPFILE

N

N~—

Assignment
build list

Introduction to the Components of CCP

Assignment List Program

The Assignment List Program ($CCPAL) lists on the system
print device those portions oi $CCPFILE specified by the
user. This program can be used to list, in tabular form,

the contents of any assignment set currently in $CCPFILE.
It can also be used to list the configuration record of
$CCPFILE, in which are recorded the system functions

and hardware configuration specified by the user during
CCP generation. Figure 1-3 is an overview of Assignment
List.

One of the system functions which can be requested at
CCP generation is the maintenance of a count of
requests made for each user program during operational
runs of CCP. If this function was specified at CCP
Generation, Assignment List can be used to list the
number of times each program of an assignment set

has been requested since the last time the cumulative
counts were reset. Assignment List will, upon the
user’s request, reset those counts after listing them.

16

User Security Information Build Program (Models 8, 10,
and 12 Only)

At CCP generation, a user-written routine to check the
validity of every sign-on of a terminal during a CCP execu-
tion can be provided. To perform this check, the user’s
routine must have access to a set of information (prepared
by the installation) that defines what information must
accompany each sign-on in order for the sign-on to be con-
sidered valid.

The User Security Information Build Program ($CCPAU)
accepts installation-defined security information and
records that information in a module ($CC42Z9) in the
object library of the production pack (Figure 1-4). The
contents of this module will be accessible to the user's
security routine during the execution of CCP.

The User Security Information Build Program is not
supported on Model 4.

Production
pack

Assignment © Assignment

file pack v file pack

AN $CCPAL: ©
N Assignment
list program
Program request

$CCPFILE $CCPFILE counts cleared

N— N] if specified

List specifications

Assignment

// , 1> list

Requested

listing(s)

Figure 1-3. Assignment List

Production
pack

Y
N

$$CPAU: User

security infor-
mation build

Production
pack
Security /_———-x
data v

Jpa
- User security N
> information :"> $CC47Z9: User
build security data
odule A

N—

List of user
security

information

Figure 1-4. User Security Information Build (Models 8, 10, and 12 Only)

Introduction to the Components of CCP

1-7

Display Format Generator Program

A significant feature in the ease of use of CCP is the Display
Format Facility (DFF). DFF permits user programs, dur-
ing the execution of CCP, to access and manipulate pre-
defined screen formats to be displayed or printed on a 3270
Information Display System.

The Display Format Generator Program ($CCPDF) constructs
pre-defined formats and initial data contents from specifica-
tions provided by the user and records them in an object
library as load modules named $Zxxxx. The modules are
accessible to user programs which make use of DFF during

the execution of CCP. Figure 1-b is an overview of the Display
Format Generator Program.

Production
pack

>
~—

$CCPDF: Display
format generator

\\h
N
Format
definition
ya
//
Display
> format
generation
N Tnput
Source information
library addresses

~

Figure 1-5. Display Format Generator

18

> $Zxxxx: Display

Production pack
or system pack

Y
A

Ne—

format

N—

Printer Format Generator Program

DFF permits user programs, durjng the execution of CCP,
to access and manipulate pre-defined printer formats to be

printed on a 3270 Information Display System Printer.

The Printer Format Generator Program ($CCPPF) con-
structs pre-defined formats and initial data contents from
specifications provided by the user and records them in
an object library as load modules named $Zxxxx. The
modules are accessible to user programs that use DFF
during the execution of CCP. Figure 1-5.1 is an overview
of the Printer Format Generator Program.

Format
definition

generator
/7
\‘_
\ — Output
Source information

library
N

Figure 1.5.1. Printer Format Generator

| E— format

Production
pack

Y
(A

l $CCPPF: Printer
format generator

Printer

addresses

Production pack
or system pack

5O

N—

$Zxxxx: Printer
format

N—

lntroductioﬁ to the Components of CCP

19

THE OPERATIONAL STAGE

Startup

The Operational Stage begins with the startup of CCP,
initiated by the system operator via OCL. Under the
direction of Startup (Figure 1-6), the system operator
selects from $CCPFILE the assignment set defining

the environment which applies to the current execution
of CCP. The system operator then may make minor
modifications to the specifications in the assignment
set.

Production pack

Assignment file pack P
/"

System op

input

Execution-time

MNe._modules

$CCP start-up

N modules
User programs
\“_.g—/

Display formats

startup

System
pack

Display formats .

Figure 1-6. Operational Startup

1-10

CCP Startup then prepares for the execution of CCP by:

Locating and initializing all CCP transient routines.
® Locating all user programs and writing required
information about those programs from the object
library directory to $CCPFILE.

® Aliocating and opening all disk files to be used in
this execution of CCP.

® Loading the execution-time resident control routine
$CC4.

® Building control blocks in main storage which
reflect the specifics of the defined environment.

® Opening communication lines.

® Turning control over to the resident control routine.

Production pack

Prepared for
Execution transientgl execution

Assignment file pack

- Program characters
filled in

—— Operational _————__> Display formats

~ located

Disk data files

Allocated/opened

Execution

CCP enters Execution (Figure 1-7) at the completion
of Startup. During execution CCP monitors the user’s
terminal network to accept commands and program
requests from those terminals authorized to issue them.
CCP loads user programs as required and provides an
interface for those programs to the terminals with
which they communicate. During execution CCP
schedules all communications operations and manages
contention for the use of communications lines.

CCP Execution is primarily controlled by the resident
control routine, which was tailored at the source
program level to the user’s specifications during CCP
generation. In order to respond to commands, to
schedule, initiate, terminate programs, and to react
to exceptional conditions in the communications
network, however, transient routines are used in
addition to the resident control routine.

Production pack

System pack /_,_\

Execution time

N—transients

v

User programs

Display formats

Display formats

Terminal operator
input

— I\: CccP
execution
System
operator
input

ure 1-7. CCPP Execution

During CCP execution, any user program which is running

under CCP co-resides in the program-level partition with
the resident control routine and its transients. Main
storage, both for user programs and communications
buffer space, is managed by CCP. If the user chose

the capability at generation, multiple user programs
may be concurrently loaded and executing; that is,

CCP provides for multitasking.

When a user program is requested, all resources required
by that program — main storage, files, terminals, and
unit record devices — are allocated by CCP to the user
task before that task is initiated. Similarly, upon
termination of a user task, CCP de-allocates the
resources of that task.

Access to disk data files is controlled by CCP during
CCP execution. To provide for satisfactory program
initiation and termination performance, CCP opens
and closes the DTFs in user programs from information
previously obtained from the open of the disk file at
Startup. In a multitasking system, the user may have
elected at generation to support the sharing, across
several tasks, of files being updated; if so, CCP controls
the concurrent access to such files.

Disk data files

Output to operator

>

Output to
system
operator

Introduction to the Components of CCP

1-11

During CCP execution the system operator has ultimate
control over the actions of the system and has the ability
to display on the system console typewriter the status of
a number of elements of the system. in addition, the
system operator has control over the triggering of

several service aid traces.

CCP execution is terminated by request from the system
operator that the system shutdown. After all user

programs currently running and scheduled go to comple-
tion, CCP Shutdown begins.

Operational Shutdown

The function of Shutdown (Figure 1-8) is to systemat-
ically terminate the execution of CCP and return
control to Disk System Management. To accomplish
this, Shutdown:

® Terminates all communications operations.

® Closes communications lines.

e Updates program request counts in $CCPFILE if
that option was in effect.

® Closes disk data files opened at Startup.

® Goes to end-of-job.

Production pack

AN

_______/
__/‘
$CCHSH:
Shutdown
-/
System
operator
input ccp
shutdown

Figure 1-8. Operational Shutdown

Assignment
file pack

3

N

$CCPFILE

N—

N—

Program
request
counts
updated

Disk data
files closed

AUXILIARY PROGRAMS

Several auxiliary programs are provided with the CCP
feature as service aids.

Disk-to-Printer Dump of Main Storage Trace

Space in $CCPFILE is set aside during the execution of
CCP to accommodate dumps of main storage and the
recording on disk of the entries made by a CCP trace.

If a user task terminates abnormally, CCP writes all of
main storage to disk if space is available. If the CCP
trace facility was included in the current CCP run and
the system operator requested the recording on disk of
all trace entries, the trace entries are also recorded in
$CCPFILE.

The Disk-to-Printer Dump Program ($CCPDD) can be
used to dump to the system print device any or all of the
main storage dumps taken during the preceding CCP

execution as well as any trace entries from that execution.

The Disk-to-Printer Dump Program (Figure 1-9) runs
directly under control of Disk System Management.

O

N

Assignment
file pack
Main storage
d N | Trace
umps .
entries
$CCPFILE
Dump
specifications
P Dump of
s main storage/trace
:::> to printer

Figure 1-9. Disk-to-Printer Dump of Storage/Trace

Standalone Main Storage Dump Programs (Models 10
and 12)

If CCP itself terminates abnormally during execution,

it is possible that the DSM CEFE main storage dump
might not be operable. Therefore, four MFCU-loadable
main storage dump programs are provided — one for
each possible print chain image:

1. AN or LC (standard 48 character)
2. HN (COBOL/FORTRAN 48 character)
3. PN (60 character)

4, TN (120 character)

Installation Verification Program

As an aid in determining if a generated CCP is truly
operable with the user’s configuration, an installation
verification program (CCPIVP) is included as part of
the CCP feature. Immediately after generation and an
Assignment Build run, CCP may be started up and this
program run as a verification of the generation, even if
the user has no user programs prepared to test the
generation of the system.

Listing of $CCPLOG

The Log List Program ($CCPLL) can be used tq list the
contents of $CCPLOG on the printer.

Production
pack

$CCPDD:
Dump program

| Main storage
dumps

Trace
dumps

Introduction to the Components of CCP

113

EOJ

EOT

ERP

ESL

FCT

FDT

FSB

FT

HDB

HPL

IAR

ICA

IFT

1/0

10B

10CSs

10S

IPL

ITB

LCA

LCB

LCT

Len

MDT

MFCU

MLMP

MLTA

End of job.

End of transmission.
Error recovery procedure.
External symbol list.

File control table.

Field descriptor table.
File specification block.
Format table.

High density buffer.

Halt program level.

Instruction address register.

Integrated communications adapter.

ldentification.

Input format table.
Input/output.

Input/output block.
Input/output control system.
Input/output supervisor.
Initial program load.

Intermediate text block.

Local communications adapter.

Line control block.

Line control table.
Length.

Modified data tag.
Multi-function card unit.
Multiline/multipoint

Muiltiple line terminal adapter.

MPX
MRT
NEP
oCL
OHA
OLE
OLT
parm
PAS

PCT

PFGR
PID
PLCA
PRUF
PSR
PTAM

PTTC/EBCD

RAT
reorg
REQ
RIB
RLD
R4
SBA
SCA
SCB
SCP

SDF

Macro processor.

Multiple requesting terminal.
Never-ending program.
Operation control language.
Output hold area.

Overlay linkage editor.
Online test.

Parameter.

Program appended storage.

Program control table or Program
characteristics table.

Printer format generatqr routine.
Program information department.
Program level communication area.
Program request under format.
Program status register.

Pseudo tape access method.

Perforated tape and transmission code/ex-
tended binary coded decimal.

Relocation adcon table.

Reorganization.

Request.

Request indicator byte.

Relocation list dictionary.

R4 hold queue; associated with $CC4R4.
Set buffer address.

System communication area.

Storage control block.

Systemn contro'll program,

Short disk.

SDR

SI0

SIT

sQB

stmt

STT

SWA

SYSBFR

SYSCOM

TAS

TAT

TCB

™

Statistical data recording.
Start input/output.
System information table.
Sector queue block.
Statement.

Switched terminal block.

Scheduler work area.

Control statement input buffer.

System communication region.
Terminal attribute set.
Terminal attributes table.

Task control block.

Termination manager.

TNT

T

TT

TUB

TUT

UPA

UPSI

vTOC

wcce

XCTL

XDT

XREF

Terminal name table.
Teleprocessing.
Terminal table.
Terminal unit block.
Terminal used table.

User program area.

.User program switch indicator.

Volume table of contents.
Writer control character.
Transfer control.
Symbolic file table.

Cross-reference.

Abbreviations

xi

Chapter 2. CCP Generation (Models 8, 10, and 12 Only) And Installation (Model 4 Only)

Introduction to CCP Generation (Models 8, 10,
and 12 Only)

Function

The function of the Generation Stage of CCP is to:

o Generate (using the SCP Generator — see Chapter 3)
modules of the execution-time resident control routine
that require tailoring at the source level.

® Link edit the generated modules and certain other
relocatable modules to form the execution-time

resident control routine.

® Copy this module and other load modules to the
designated CCP production pack.

® Allocate and initialize the CCP Assignment File
($CCPFILE) on the designated assignment file pack.

® Copy selected relocatable modules (subroutines for
user programs) to one or more designated program

preparation packs.

CCP Generation is not supported on Model 4.

Procedure

There are two methods for doing the CCP generation. The
first method uses cards as the primary input medium. The
second methocl, a cardless-oriented procedure, uses the

source and procedure libraries as the primary input medium.

The basic procedure for card-oriented CCP Generation is:

1. A sample control statement deck is punched from
the source library of the distribution pack.

2. The sample deck is modified by the user to fit
specifications and reentered as input to the next
step of Generation.

3. A full job stream to accomplish the necessary
functions is punched out for the useér.

4, The job stream is entered. At conclusion of the job,
CCP is generated and the CCP Assignment File ‘
{$CCPFILE) is ready for the user’s initial Assignment
run. CCP generation may be accomplished on a
Model 10 Disk System whether the CCP generated
is to be used on that particular system or not.

The basic procedure for the cardless-oriented CCP genera-
tion is:

1. Source and procedure members are printed from the
distribution pack.

2. The user modifies the sample procedures to the user’s

system configuration. This is input to the next step
of generation.

3. The user enters the CCP specifications to create source
and procedure members which are used to generate
" the user's version of the CCP. The CCP assignment
file (JCCPFILE) is now ready for the user’s initial
assignment run.

For more information, refer to Method of Operation \ater
in this chapter.

Note: The printer paper resulting from generation should
be saved in case of required maintenance by IBM Field
Engineering. This paper is the only documentation of

the user’s unique system and the precise sequence of

events during this particular CCP generation. The user
should also consider back-up procedures in case the CCP
distribution pack or the CCP production packs are inadvert-
ently destroyed.

Introduction to CCP Generation (Models 8, 10, and 12 Only) 2-1

Restrictions

The following restrictions apply to CCP Generation:

2-2

System/3 Disk System Management, including the
appropriate BSCA and/or MLTA 10CS, must have
already been generated.

An appropriately sized object library and source library
must have been allocated on the designated CCP pro-
duction pack (5444 for Model 10, or the simulation area
on the 3348 for Model 12). The libraries may already
contain non-CCP modules. The production pack may be
any pack other than the distribution pack. It may or may
not be a DSM system pack, and might even be the system
pack used during CCP generation.

The object library on the production pack must have
been reorganized since the last deletion or replacement
of a module in that library. In order to ensure optimum
execution-time performance, it is important that all

CCP load modules copied to the object library of the
production pack be contiguous,

The assignment file pack must contain sufficient space
for the allocation of $CCPFILE,

A program preparation pack to be used for the com-
pilation of RPG |1 programs must already contain, in
its object library, the DSM data management routines
(relocatable modules) for any unit record devices to
be supported by CCP.

Sufficient work file space must be available, on 5444
packs online during generation, for SCP Generator
and Overlay Linkage Editor runs.

User receives
CCP distribution
pack

System
pack reorg
without
delstions

Reorg system
pack

Macro
processor
an system

Load the
Macroprossor
module $MPXD
on system pack

Overlay
linkage editor
on system
pack

Load the overlay
linkage editor module
$OLINK on system
pack

No

BsCA
required

MLTERFIL
already
initialized

BSCA
modutes on

tnitialize MLTA
error statistics file
(MLTERFIL) on F1

system
pack

Load BSCA 1/0
macros on
system pack

Card-
oriented
generation

deck from
$CGSMP

Punch generation

Print instructions
and procedures

Initialize
BSCA error
statistics file
{MLTERFIL) on
F1 (if required)

require-

ments

Modify deck
to system

Modify procedures
to system require-
ments

MLTA
required

MLTA
modules on
system
pack

Load MLTA 1/0
macros to
system pack

Load MLTA micro
code on system
pack $MLMC1

Punch out
generation deck
from $CGSMP

Modify deck
t0 system
required

CCP generation

cecp

generated
pack

|

TO CCP operations

CCP generation
listing

i
|
|
\

Filed by user for reference

These steps are shown in greater detail in the
Mathod of Operation section.

Figure 2-1. General Procedures for a CCP Generation (Models 8, 10, and 12 Only)

Introduction to CCP Generation (Modeis 8, 10, and 12 Only)

Page of SY21-0531-2
lssued 24 June 1977
By TNL: SN21-5530

Method of Operation (Card-Oriented Generation)

Card-oriented CCP Generation requires two passes through

the system. The first pass consists of preparatory operations:

® Copying to the distribution pack certain DSM modules
which must be located there during the generation
process (Models 4, 8, and 10 only)

® Evaluation of the user’s Generation control statements
® Creation of input to the second pass of Generation

As an aid to the user in preparing his input to the first
pass of Generation, a sample input deck is provided in
the source library of the distribution pack. During the
second pass of Generation, the output from the first
pass is processed to form a usable CCP tailcred to the
user’s specifications.

STEPS IN CARD-ORIENTED CCP GENERATION

There are six required steps in generating CGP. (Figure

2-2 shows several of the six steps and Figure 2-3 is an
overview of all the steps.) A seventh step is recommended:
testing the generated CCP using the Installation Verification
Program CCPIVP. CCPIVP is a distributed program that
uses the generated CCP system to make sure it has been
correctly generated.

Step 1 (Card Oriented)

The user enters the following statements from the system
input device:

// LOAD $MAINT dsunit

// RUN

2-4

// COPY FROM-diunit, TO-PRTPCH,LIBRARYS,
NAME-$CGSMP

// END

dsunit — The unit on which the DSM system pack is
mounted.

diunit — The unit on which the CCP distribution pack is
mounted.

Step 2 (Card Oriented)

The system prints and punches from the source library
the sample first pass input deck ($CGSMP). (Part 1 of
Figure 2-2.) This deck consists of three parts (for
Model 12) or four parts (for Models 4, 8, and 10):

1. Instructions to the user for modifying the punched
deck.

2. OCL and COPY control statements to copy the
Macro Processor (SMPX.ALL) and parts of the
Overlay Linkage Editor ($OLYNX and $OLBO)
from the DSM system pack to the distribution pack
{(Models 4, 8, and 10 only).

3. OCL to call the Macro Processor followed by sampie
$E Generation control statements to generate a
CCP system.

4, OCL to call $CC1PP {CCP Generation Print/Punch
Utility).

Step 3 (Card Oriented)

The user modifies the sample deck to reflect the require-
ments of his CCP system. This step can be performed
gither by modifying the punched deck or by keying

the required OCL and Generation control statements

on the console typewriter.

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

(oo

(// COPY

ﬂ/ RUN s

// LOAD $MAINT,

DSUNIT

© See note

v $SMAINT

CCpP | Prints and punches

distribution \M:E“E/_:> CCP generation

pack] sample deck
Source

w‘l/

List of data Filed for

:———_—J——\> punched out > customer reference

(

il

/ Sample OCL to invoke
$CC1PP (Chart AA) the CCP

// LOADSCCIPP ##

/ disk-to-print and punch
utility.

(|

-

4

=

ﬂLOAD$MA|NT,$$ /
e
!

(A

Instructions /

to user %/

Figure 2-2 (Part 1 of 4). Card-Oriented CCP Generation Step 2
Step 4 (Card Oriented)

This step (Figure 2-2, Part 2) consists of the following
| operations:

1. The Library Maintenance Program (SMAINT) copies
from the system pack the Macro Processor
($MPX.ALL) and parts of the Overlay Linkage
Editor (JOLYNX and $OLBO) to the CCP

| distribution pack (Models 4, 8, and 10 only).

[Instructions to user

Sample CCP generation deck.
Made up of OCL followed

by $E macro statements to
generate a CCP system.

Note: See /BM System/3 Models 8
and 10 System Control Programming
Reference Manual, GC21-7512.

The system invokes the Macro Processor to expand
the CCP Generation control statements ($E macro
statements). All statements are diagnosed for errors
and global variables are set to record options speci-
fied by the user. During processing of the last
statement (BEGEN), records which represent input
to the second pass of Generation are written to

the work file $SOURCE if no errors were encoun-
tered in user specifications, The content of these
records will vary according to the values of the global
variables set by user specifications.

Method of Operation (Card-Oriented Generation) 2-5

Page of SY21-0631-2
Issued 24 June 1977
By TNL: SN21-5530

Distribution /

pack

\ $SOURCE
\' | @ SCPsource
\ statements

e OCL

ments

control

pack (Note 3)

® |inkage editor
control state-

® Disk utility

Modified generation
deck from step 3

¥ See Note 1

SMAINT (Note 3)

Copy macro pro-
cessor and overlay
linkage editor
modules to distribu-
tion pack

{} See Note 2

Macros feature

Writes the required
control statements
and directions for pro-
ceeding with the final
generation on
$SOURCE file

Figure 2-2 (Part 2 of 4). Card-Oriented CCP Generation Step.4

Three types of errors can occur during step 4:

1.

The first type of error is noted by the Macro Processor.
For each error detected a Macro Processor error message

A syntax error such as a misspelled keyword,
invalid operand format, invalid continuation

card, etc.

An error in statement seguence or the omission

of a required statement.

Specification of a valid keyword with an invalid

value or the omission of a required keyword.

is written into $SOURCE after the macro statement

containing the error. The Macro Processor immediately

terminates processing of that generation statement
without any further checking.

The last two error types are noted by diagnostics internal
to the macro definitions themselves. An error switch
is set on, and an error record is written into $SOURCE

for each macro statement containing an error.,

2-6

Note 1: See /BM System/3 Models 8 and
10 System Control Programming Reference
Manual, GC21-75612.

Note 2: See Chapter 3. SCP Generator.,
Note 3: Used for Models 4, 8, and 10 only.

If an error of any type is encountered, no input to the
second pass of Generation is created and the diagnostic
messages are printed during step 5 by the program

$CC1PP,

If no errors have been detected, the following records

are generated into $SOURCE during the processing of
the $EGEN statement:

1. The records required to generate the module which
initializes $CCPFILE:

® OCL to invoke the SCP Generator to read card
input and generate relocatable module $CC1FC.

® Statements for generating the initialization data
for $CCPFILE as a relocatable module.

® OCL to invoke the Overlay Linkage Editor.

® QOverlay Linkage Editor statements for link
editing the provided relocatable module $CC1BP,
and the new relocatable data module $CC1FC

together to form the load module $CC1BF.

The records required to generate the CCP execution-
time resident module:

® QCL to invoke the Macro Processor to read
card input and write output to $SSOURCE.

® Source statements and macro statements creating
the first source-generatable portion of the
execution-time resident module.

® OCL to invoke the SCP Generator to read input
staternents from $SOURCE and generate a
relocatable module ($CC4#1) which will be
the first part of the execution-time resident
load module $CC4.

® QOCL to invoke the Macro Processor to read card
input and write output to $SOURCE.

® Source statements and macro statements
creating the second source-generatable portion
of the execution-time resident module.

® OCL to invoke the SCP Generator to read input
statements from $SOURCE and generate a
relocatable module ($CC4+#2) which will be
the second part of the execution-time resident
load module $CC4.

® OCL to invoke the Overlay Linkage Editor.

® OQverlay Linkage Editor statements to link edit
$CCA#1, $CC4#2, and other distributed relocat-
able modules to form the CCP execution-time
resident module $CC4.

If remap is requested (FORMAT-PL1), the following
records are required to create a second execution-time
resident module:

® OCL to invoke the Macro Processor to read card
input and write output to $SOURCE.

® Source statements and macro statements creating
source-generatable execution-time resident module
(SCCaA#3).

® OCL to invoke the SCP Generator to read input
statements from $SOURCE and generate a
relocatable module ($CC4#3).

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

® OCL to invoke the Overlay Linkage Editor.

® OQOverlay Linkage Editor statements to link edit
$CC4#3 to form the CCP execution-time resident
module ($CC4#3).

The records required to generate the necessary
10CS loadable trace module(s). One trace module
is created for BSCA, if supported, and one for
MLTA, if supported. The following are generated
for each module:

® OCL to invoke the Overlay Linkage Editor.

® Overlay Linkage Editor statements to link edit
the loadable trace module.

The records required to copy Assignment Stage
modules, Startup modules, CCP execution-time
transient modules, the Shutdown module, and
service aid programs to the source and object
libraries of the production pack:

® OCL to run SMAINT.

. COPY statements to copy the above load
modules from the CCP distribution pack to the
production pack.

® A// END statement.

Optionally, the records required to build (but not

enter information into) the initial data load module

for the user terminal sign on security information:

® OCL to invoke the SCP Generator to read card
input and generate relocatable module $CC4Z9.

® Statements for generating a module of the re-
quired size, containing all hex zeros.

® OCL to invoke the Overlay Linkage Editor.
® Link edit statements to link edit the user

terminal sign on security data into a load
module $CC429.

Method of Operation (Card-Oriented Generation) 2-6.1

Page of SY21-0531-2

Issued

24 June 1977

By TNL: SN21-5530

6.

2-6.2

OCL to invoke load module $CC1BF to initialize
$CCPFILE,

The records required to copy to each program pre-
paration pack the Communications Service Sub-
routines (macros for Basic Assembler Language),
and to copy (and rename if necessary) the unit
record intermediary data management subroutines:

® OCL to run $MAINT.

® COPY statements to copy the above modules to
the user’s program preparation pack(s) and for
RPG to rename the DSM unit record data
management modules.

® A // END statement.

The records required to punch out modules used
to service and verify the generated system:

® The card loadable storage dump programs.
® The OCL linkage edit statements and a sample

assignment set for running the Installation
Verification Program (CCPIVP).

Page of SY21-05631-2
Issued 24 June 1977
By TNL: SN21-5530

This page intentionally left blank.

Method of Operation (Card-Oriented Generation) 2-7

Step 5 (Card Oriented)

The OCL for running $CC1PP (the CCP Generation Utility)
modified during step 2, is now run (Figure 2-2, Part 3).

$CC1PP prints the user’s input to the previous step and
any diagnostic messages generated during that step.

If any errors were detected, an additional message is issued
directing the user to correct the errors and repeat step 4.

= [

KV

If no errors were detected, $CC1PP performs its second
function. The user determines this function by responding
to the keyword CARD on the $EGEN macro control state-
ment. In a card-oriented generation, the response is CARD-
YES. When CARD-YES is specified, the input to the
second pass of generation (step 6) is printed and punched.
Also, a message is issued directing the user to proceed to
the second pass of generation.

If CARD-NO is specified, refer to the cardless generation
step 5 for a description of the second function of $CC1PP.

Modified deck of

sample $CC1PP cards

/I LOAD from step 2
$CC1PP ##
/‘\
v
N—
- Chart AA
\ISOURCE_/ SCCIPP I£ no errors,
ccp _____—__> CCP generation List of ___ listing is filed
distribution utility contents :—:> $SOURCE for future
pack of $SOURCE ’ reference
v

Any
errors
?

Card deck contains
control statements
‘and final directions
for CCP generation

Figure 2-2 (Part 3 of 4). Card-Oriented CCP Generation Step 5

2-8

Correct
the
errors

When errors
corrected,
return to
step 4.

Step 6 (Card Oriented) 6.
The user places the punched output from the previous 7.
step without modification into the system input device

(Figure 2-2, Part 4). This produces the following:

1. Creation of a load module which contains the initial 8.

contents of $CCPFILE and the instruction code to

initialize that file (SCC1BF).

2. Source generation and linkage edit of the CCP
execution-time resident module ($CC4).

3. Linkage edit of the execution-time loadable |0CS

trace modules,

4, A copy of the load modules for the Assignment and

Operational Stages and of service aid modules.

Page of SY21-0531-2
Issued 24 June 1977

By TNL: SN21-
Initialization of $CCPFILE. y 8530

A copy of subroutines {(and macros) to be used in

compiling and link editing application programs which

are to run under CCP.

The following punched output cards:

a. Stand alone storage dumps.

b. OCL and Overlay Linkage Editor control state-
ments that will link edit the Installation Verifica-

tion Program (CCPIVP).

¢. OCL and control statements for an Assignment
Build run.

On successful completion of step 6 the user has a CCP

pack that is ready for an Assignment Build run.

5. Initialization of module $CC429 if SECURE-USER

was specified in the $ESEC statement.

A
—

N
_SSOURCE__/

Cccp
distribution
pack

N—

—
_
______/

CCP
production
pack

Card deck
containing control
statements for
CCP generation

\

N~

Macros feature See Note 1
$CC1BF (Chart AB)
MAINT See Note 2
3 Note 1: See Chapter 3. SCP Generator.
‘} Note 2: See /BM System/3 Models 8 and
10 System Control Programming Reference
Manual, GC21-7512.
Deck consists of User checks out
® Standalone storage > CCP system
dump programs
® QOCL + linkage editor
control statements
for the installation
verification program
® OCL + sample control

statements for
assignment

Figure 2-2 {Part 4 of 4). Card-Oriented CCP Generation Step 6

Method of Operation (Card-Oriented Generation) 29

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Method of Operation (Cardless-Oriented
Generation)

Cardless CCP Generation requires only one pass through
the system. To aid the user in preparing input for this
generation pass, two source members and five procedures
(for Models 4, 8, and 10) or four procedures (for Model
12) are provided in the source library of the distribution
pack. Source members provided are:

$CG1G! Cardless CCP generation instructions.

$CG1GM Sample $E macro control statements.

Procedures provided are:

$CG1G1 Controlling procedure for CCP cardless
generation.

$CG1G2 Prepares the CCP distribution pack (Models
4, 8, and 10 only).

$CG1G3 Processes the user’'s CCP generation specifica-
tions.

$CG1G4 Prints results of user’s specifications and pre-
pares the $SOURCE file for procedure
$CG1G5.

$CG1G5 Using the contents of the $SOURCE file,

creates the source and procedure members
that will complete the CCP generation.

STEPS IN CARDLESS-ORIENTED CCP GENERATION

Six steps are required in cardless-oriented CCP Generation.
(Figures 2-2.1 ~ 2-2.3).

Step 1 (Cardiess Oriented)

The user enters the following statements from the system

input device:

// LOAD $MAINT dsunit

// RUN

// COPY FROM-diunit, TO-PRINT,LIBRARY-S,
NAME-$CG1.ALL

// COPY FROM-diunit, TO-PRINT,LIBRARY-P,
NAME-S$CG1.ALL

// END

dsunit — The unit on which the DSM system pack is
mounted.

diunit — The unit on which the CCP distribution pack is
mounted.

2-10

Step 2 (Cardless Oriented)

The system prints, from the source library, the source
and procedure members provided. The listing has three
parts:

1. Instructions to the user.

2. Sample $E macro control statements.

3. The procedures that control the CCP generation.

Step 3 (Cardless Oriented)

Optionally, following the printed instructions, the user
modifies the five provided procedures to reflect the require-
ments of the system. The user modifies the sample source
member, $CG1GM, or creates a new source member to re-
flect the CCP system requirements.

CcCP
distribution
pack

-

$CG1GI

$CG1GM
M

Source
library

$CG1G1
$CG1G2
$CG1G3
$CG1G4
$CG1G5
N—

Procedure
library

LUsec for Models 4, 8, and 10 only.

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

L.oad
$SMAINT
\
SMAINT
Print provided
source and
procedure
members |
________ - $CG1GlI
[optional | $CG1GM
$CG1G1
| | $CG1G2!
Load $CG1G3
|
SMAINT | $CG1G4
: | $CG1GH
| - |
| |
| SMAINT {
’ Modify i
{ procedures |
| r
| N ——
l ! $CG1G1
| $CG1G2!
} | $CG1G3
| Load $CG1G4
| SMAINT : $CG1G5
e A
| | | $SOURCE
i | LIBRARY
Y N —— e
| SMAINT : N—
I Set up $E macro |
l control state- l
| ments in source
l member :
I I
To Step 4
4

Figure 2-2.1. Cardless-Oriented CCP Generation Steps 1-3

Method of Operation (Cardless-Oriented Generation) 2-11

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Step 4 (Cardless Oriented)
| This step consists of the following operations:

1. The user calls the procedure $CG1G1 from the CCP
distribution pack. This procedure controls all of
step 4 and step b of the cardless CCP generation.

| 2 For Models 4, 8, and 10 only, the procedure $CG1G1
calls procedure $CC1G2. This procedure copies,
from the system pack, the macro processor and parts
of the overlay linkage editor.

3. The procedure $CG1G1 calls procedure $CC1G3.
This procedure invokes the macro processor which
expands the CCP generation control statements ($E
macro statements). The generation control state-
ments are read from the described source member, or
the macro processor requests the generation control
statements from the system input device.

All statements are checked for errors, and global
variables are set to record options specified by the
user. If no errors are found in the user specifications
and the keyword CARD-NO has been specified in the
$EGEN statement, records which represent input to
step 6 are written to the workfile, $SOURCE, during
processing of the last statement (BEGEN). The con-
tents of these records vary according to the values of
the global variables set by user specifications.

Three types of errors can occur during step 4:

1. A syntax error such as a misspelled keyword, invalid
operand format, invalid continuation card, etc.

2. An error in statement sequence or the omission of a
required statement.

3. Specification of a valid keyword with an invalid value
or the omission of a required keyword.

The first type of error is noted by the Macro Processor. For
each error detected a Macro Processor error message is
written into $SOURCE after the macro statement contain-
ing the error. The Macro Processor immediately terminates
processing of that generation statement without any further
checking.

The last two error types are noted by diagnostics internal to
the macro definitions themselves. An error switch is set on,
and an error record is written into $SOURCE for each
macro statement containing an error.

2-12

If an error of any type is encountered, no input to step 6
is created and the diagnostic messages are printed during
step 5 by the program $CC1PP.

If no errors have been detected, the following records are
generated into $SOURCE during the processing of the
$EGEN statement:

1. The records required to generate the module which
initializes $CCPFILE:

® OCL to invoke the SCP Generator to generate re-
locatable module to $CC1FC.

® Statements for generating the initialization data
for $CCPFILE as a relocatable module.

® OCL to invoke the Overlay Linkage Editor.

® Overlay Linkage Editor statements for link editing
the provided relocatable module $CC1BP and the
new relocatable data module $CC1FC together
to form the load module $CC1BF.

2. The records required to generate the CCP execution-
time resident module:

® QOCL to invoke the Macro Processor and write
output to $SOURCE.

® Source statements and macro statements creating
the first source-generated portion of the execution-
time resident module.

® OCL to invoke the SCP Generator to generate a
relocatable module {$CC4#1), which will be the
first part of the execution-time resident load
module $CC4.

® OCL to invoke the Macro Processor to write out-
put to $SOURCE.

® Source statements and macro statements creating
the second source-generatable portion of the
execution-time resident module.

® OCL to invoke the SCP Generator to read input
statements from $SOURCE and generate a relocata-
ble module ($CCA4#2) which will be the second
part of the execution-time resident load module
$CC4.

® OCL to invoke the Overlay Linkage Editor.

® OQverlay Linkage Editor statements to link edit
$CC4#1, $CC4#2, and other distributed relocat-
able modules to form the CCP execution-time
resident module $CC4.

If remap is requested (FORMAT-PL.1), the following
records are required to create a second execution-
time resident module:

® OCL to invoke the Macro Processor to read card
input and write output to $SOURCE.

® Source statements and macro statements creating
source-generatable execution-time resident module

($CCa#3).

® OCL to invoke the SCP Generator to read input
statements from $SOURCE and generate a re-
locatable module ($CC4#3).

® OCL to invoke the Overlay Linkage Editor.

® Overlay Linkage Editor statements to link edit
$CC4#3 to form the CCP execution-time module
($CCA#3).

The records required to generate the necessary OCS
loadable trace module(s). One trace module is creat-
ed for BSCA, if supported, and one for MLTA, if
supported. The following are generated for each
module:

® (OCI. to invoke the Overlay Linkage Editor.

® Overlay Linkage Editor statements to link edit the
loadable trace module.

The records required to copy Assignment Stage
modules, Startup modules, CCP execution-time
transient modules, the Shutdown module, and service
aid programs to the source and object libraries of the
production pack:

® OCL. to run $SMAINT.
® COPY statements to copy the above load modules
fromn the CCP distribution pack to the production

pack.

® A // END statement.

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-6530

Optionally, the records required to build (but not
enter information into) the initial data load module
for the user terminal sign on security information:

® QOCL to invoke the SCP Generator to generate
relocatable module $CC429.

® Statements for generating a module of the re-
quired size, containing all hex zeros.

® OCL to invoke the Overlay Linkage Editor.

® Link edit statements to link edit the user terminal
sign on security data into a load module $CC42Z9.

OCL to invoke load module $CC1BF to initialize
$CCPFILE.

The records required to copy to each program prep-
aration pack the Communications Service Subroutines
(macros for Basic Assembler Language), and to copy
(and rename if necessary) the unit record intermediary
data management subroutines:

® OCL to run SMAINT,
® COPY statements to copy the above modules to
the user’'s program preparation pack(s) and for

RPG to rename the DSM unit record data manage-
ment modules.

® A // END statement.
The records required to print the sample assignment

set control statements, and copy them to the CCP
production pack.

Method of Operation (Cardless-Oriented Generation) 2-13

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Step 5 (Cardless Oriented)

This step consists of the following three operations:

1.

2-14

Procedure $CG1G1 calls procedure $CG 1G4 which
executes the generation utility $CC1PP. $CC1PP
prints the user's input to the previous step and any
diagnostic messages generated during that step. If
any errors are detected, an additional message is
issued directing the user to correct the errors and re-
start the ger’{eration.

h
If no errors are detected, $CC1PP performs its second
function. The user determines this function by res-
ponding to the keyword CARD on the $EGEN macro
control statement. In a cardless generation that
response is CARD-NO. If CARD-NO is specified, the
input to step 6 is printed and the $SOURCE workfile
is reorganized to eliminate the user’s specification
statements.

CARD-NO specified on the SEGEN statement causes
the SEGEN macro to insert the necessary // COPY
and // CEND statements required for the following
SMAINT file-to-library run. The first // COPY state-
ment inserted by $EGEN macro is recognized by
$CC1PP and causes $CC1PP to reorganize the file.

If this // COPY statement is not recognized, $CC1PP
assumes a card-oriented generation and punches the
step 6 records.

If the user specified CARD-YES, refer to card-
oriented generation step b for a description of the
second function of $CC1PP.

Procedure $CG1G1 calls procedure $CG1G5 which
executes SMAINT file-to-library function. SMAINT
copies the $SOURCE workfile to the source library
on the CCP distribution pack. This, in turn, creates
all necessary source and procedure members to com-
plete the CCP generation.

Step 6 (Cardless Oriented)

Procedure $CG1G1 calls the gerierated procedure, $CCPSA,
now in the source library on the CCP distribution pack.
$CCPSA controls the remaining portions of the CCP genera-
tion which produces the following:

1.

Creation of a load module which contains the initial
contents of $CCPFILE and the instruction code to
initialize that file ($CC1BF).

Source generation and linkage edit of the CCP execu-
tion-time resident module ($CC4).

Linkage edit of the execution-time loadable 10CS
trace modules.

A copy of the load modules for the Assignment and
Operational Stages and of service aid modules.

Initialization of module $CC429 if SECURE-USER
was specified in the $ESEC statement.

Initialization of SCCPFILE.
A copy of subroutines (and macros) to be used in
compiling and link editing application programs which

are to run under CCP.

Printed output of control statements for an Assign-
ment Build run.

On successful completion of step 6 the user has a CCP pack
that is ready for an Assignment Build run.

$E macro
control
statements

Source
member
contain-
ing$E |
macro
control
state-

.._.ments J

If from source,
correct them

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Step 4

From Step 3
4
Call
$CG1G1
/’—\
] sccia2! - >
$SMAINT? . i
Prepare CCP
distribution
pack
P
$CG1G3
Macro N
processor $SOU‘RCE
workfile
$CC1G4
$CC1PP - —_—
List generated Generated
records and pre- .
pare $SOURCE recor
workfile listing

1Used for Models 4, 8, and 10 only.

_/—

Punch pass
two records

$SOURCE
workfile

Figure 2-2.2. Cardless-Oriented CCP Generation Steps 4 and 5

Step
5
¥ $CC1GH
SMAINT
Create source
and procedure $SOURCE
Library
Yy 7o Step 6
6
Method of Operation (Cardless-Oriented Generation) 2-15

-

Generated

From Step 5

6

Controlled by generated
procedure $CCPSA

$CG1FC [§CGDRV

source

member
$CCI1FC

N

Supplied

Assembler
$CCI1FC

$CC1LC |$OLINK

R-module
$CC1FC

MN—

Generated

Create
$CCI1FC

$CC1#1 |$SMPXDV

source

AV

member
$CC1#1

Me—

MNe—]

Generated

Expand
$CCa#1

$CC1#A |$CGDRV

Assemble
$CCa#1

$CC1#2 [$MPXDV

source

member
$CC1#2

Ne—

Generate
R-modules

Expand
$CCa#2

$CC1#B |$CGDRV

Assemble
$CCa#2

$CCILE | $OLINK

$CC4#1 and
$CCA#2,
other selec-

ted R-module:

Selected

-

Create CCP
resident code

$CCIBT |$OLINK

>

R-modules

N——

Selected

BSCA only —
create BSCA
trace module

$CCIMT [$OLINK

=N

R-modules

M—

Selected

MLTA only —
create MLTA
trace module

>

$CC1C1 | $MAINT

O-modules

SN—

Legend:

procedure | program

Called Executed

function
performed

> Data flow of

Figure 2-2.3 (Part 1 of 2). Cardless-Oriented CCP Generation Step 6

Copy required
CCP load
modules

>

/'—\
M]

R-module

$CC1FC

MNo—

O-module

$CC1BF

MN—

$SOURCE
Workfile

Me——]

R-module

$CC1#1

M—

$SOURCE
Workfile

Me——

R-module

$CCa#2

O-module

$CCa

MN—— 1

O-module

CCBS

M——

O-module

$CCEML

e

Selected

O-modules

S

CCP Distribution Pack

CCP Production Pack

-

Selected

O-modules

e A

Selected

O-modules

Mo

Selected

@

$CC1C2 [SMAINT

MLTA only — Copy
load modules

-

> Selected

$CC1C3 |$MAINT

Copy load
modules

O-modules

N

$CC1Ca [SMAINT

O-modules

N

Generated

Copy load
modules

> Selected
O-modules

M]

source

member
$CC1US

e

Ne——]

Generated
load

$CC1US [$CGDRV

Assemble user
security code
(optional)

Selected
> O-modules

N

R-module

$CCIVL J$OLINK

Create user security
module

> $ccazo
(CCP distri-
bution pack)

e

O-modules
Dy

module
$CC1BF

~—— e —

Selected

R-modules

Ne—]

Selected

R-modules

N

Selected

source

member
and
R-modules

Selected

R-modules

M

Source

member
$CGSST

Figure 2-2.3 (Part 2 of 2). Cardless-Oriented CCP Generation Step‘G

——

$CC1BF | $CC1BF

Create $CCPFILE

$CC4Z9

N

$CCPFILE
>

$CC1CO [SMAINT

Copy COBOL
modules

(file pack)

N A

Selected

> R-modules

$CCIFC | SMAINT

Copy FORTRAN
modutes

{COBOL
pack)

e A

Selected

$CC1AS |SMAINT

> Copy Assembler

modules

> R-modules
(FORTRAN
pack)

M

Selected
source

$CC1RG [$MAINT

> Copy RPG 11

modules

> member
and R-
modules
(assembler
pack)

e]

Selected

$CCIND |SMAINT

> Print sample

assignment

J> R-modules

(RPG I
pack)

N—

Source

> member

$CGSST

~—

CCP Distribution Pack

Method of Operation {Cardless-Oriented Generation)

CCP GENERATION GLOBAL VARIABLES

The following tables define the global variables used
during Macro Processor runs in the first and second passes
(Figure 2-3) of CCP Generation. The tables contain the

First pass

OCL to print
and punch $CGSMP

(Key punch
Step 1

following information about each global variable:

® Name. Name of the global variable.

e Type. Data type of the variable, as follows:

Step 2 3

$MAINT
print and punch
$CGSMP

Arith — arithmetic variable.
Bool — binary (Boolean) variable.

Charn — character variable. The digit n after char
(for example char4) specifies the number of
characters in the character variable.

Step 3 %

Modify
sample deck
to user
requirements

Second pass

Create a CCP
production

pack with

input from Step 5

cce
production
pack

Y

® Stmt. Indicates the Generation control statement
which contains the parameter from which the global
variable is set.

Copy Macro Processor
and parts of overlay
linkage editor to

® Keywd. Indicates the keyword in the Generation control Ld‘s“‘b- pack.
statement whose parameter is used to set the global
' . , .Step 4
variable’s value. \
® Value and Meaning. Indicates the values that the Expand and write
global variable may have and the meaning of each value. the $E macros to
$SOURCE
$CC1PP print and
punch (if no errors)
$SOURCE
Step 5
No
Punched
deck to
Step 6

Figure 2-3. Card-Oriented Generation Passes

2-18

Step 6

First Pass

Name Type Stmt Keywd Value and Meaning
&SEQ Arith ALL Sequence Control.
Advances in value from 0 to 10 as each type of Generation control
statement is processed.
&TERR Bool ALL Termination error switch.
&URDEV Char4 $EIOD CARD Unit record support.
PRINTR Position Value. Meaning
1-2 00 CARD—NO (card not supported)
10 CARD—MFCU
01 CARD—1442
1 CARD-'MFCU,1442
3-4 00 PRINTR—=NO (printer not supported)
10 PRINTR—5203
01 PRINTR—1403
&DISK Char4 $EIOD DISKS Disk support.
Position Value Meaning
1-2 00 DISKS—NO (only F1 and R1 supported)
10 DISKS—R2
11 DISKS—'R2,F2’
34 00 D5445—-NO (no 5445 disk support)
10 D5445—-D1
" D5445-'D1, D2’
&N3741 Bool $EIOD N3741 1 =N3741-YES (3741 as unit record device).
0 = N3741—NO (3741 not supported).
&NUTSK Arith $EFAC MAXEUP MAXEUP—# Number of concurrently executing user programs that can
be run under CCP as specified by the user.
Minimum = 1, maximum = 8.
&FDPF Bool $EFAC DPF 1 = DPF—YES, DPF support.
0= DPF—NO, no DPF support.
&FDME Bool $EFAC ESCAPE 1 = String specified in the Data Mode Escape keyword ESCAPE—value.
0 = ESCAPE—NO, no terminal can interrupt a program and talk directly to CCP.
&X1DME Char $EFAC ESCAPE The Data Mode Escape string (except for the closing apostrophe) as specified
: (character or hex):
&X2DME CL6' cccece
XLB' XXXXXXXXXXXX
&FPGC Bool $SEFAC PGMCNT 1= PGMCNT—YES, a count to be kept of the number of times a user program
was requested.
0 = PGMCNT—NO, no count to be kept.
&FSHR Bool $EFAC FSHARE 1= FSHARE—YES, shared file update supported.

0 = FSHARE~NO, shared file update not supported.

Method of Operation (Cardless-Oriented Generation) 2-19

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Name Type Stmt Keywd Value and Meaning

&FSYM Bool $EFAC SYMFIL. 1 =SYMFIL-YES, symbolic file supported.
0= SYMFIL—NO, symbolic files not supported.

$FDFF Bool $EFAC FORMAT 2= FORMAT—PLA1, Display Format Facility moved to PL1.
1= FORMAT-YES, 3270 Display Format Facility supported.
0=FORMAT—NO, Display Format Facility not supported.

&FSRT Bool $EFAC SORT 1=SORT-YES.
0=SORT-NO.

&FPL1 Arith SEFAC FORMAT 2= FORMAT—PL1, Display Format Facility moved to PL1.

&FRUF Bool $EFAC PRUF 1 =PRUF-YES, Program Request Under Format supported.
0 = PRUF—NO, Program Request Under Format not supported.

&PLG Char4 $EPLG LANG Programming language support, LANG—xxxxx.

Position Value Meaning

14 1000 COBOL supported.
1-4 0100 FORTRAN supported.
1-4 0010 Assembler supported.
1-4 0001 RPG [I supported.

More than one language can be supported, therefore there can be many
character combinations for &PLG. Check the SRL for the restrictions.

&UPCBL Char2 $EPLG PPUNIT PPUNIT—R1/F1/R2/F2. Unit to which COBOL support routines are
to be copied.

&UPFOR Char2 $EPLG PPUNIT PPUNIT—R1/F1/R2/F2. Unit to which FORTRAN support routines
are to be copied.

&UPASM Char2 $EPLG PPUNIT PPUNIT—R1/F1/R2/F2. Unit to which Assembler support routines
are to be copied.

&UPRPG Char2 $EPLG PPUNIT PPUNIT—R1/F1/R2/F2. Unit to which RPG Il support routines are
to be copied.

&CPW Bool $ESEC SECURE 1=SECURE—CCP, CCP password checking included.
0 = CCP password checking not included.

&UPW Bool $ESEC SECURE 1= SECURE—USER, user security routine supported.
0 = User security routine not supported.

&LUS Arith $ESEC LUSI LUSI—value. Length of the user security information if &UPW = 1.

&NS Arith $EFIL SETS SETS—value. Maximum number of assignment sets in $CCPFILE.

&NPM Arith $EFIL PROGS PROGS—value, Maximum number of user programs in any one assignment set.
&NDF Arith $EFIL DFILES DFILES—value. Maximum number of disk files in any one assignment set.

2-20

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Name Type Stmt Keywd Value and Meaning
&NT Arith $EFIL TERMS TERMS—value. Maximum number of terminals in any one assignment set.
&DMP Arith $EFIL DUMPS DUMPS—value. Space reserved in CCPFILE for the specified number of
dynamic main storage dumps.
&COR Arith SEFIL CORE CORE—nnK. Object CPU size.
Value Meaning

24576 Storage—24K (Model 10 only)
32768 Storage—32K (Model 10 oniy)
49152 Storage—48K

0 Storage—64K
1 Storage—80K
2 Storage—96K
&TRC Arith SEFIL TRACE TRACE—value. Number of tracks reserved in $CCPFILE for CCP trace
entries.

&UFIL Char2 S$EFIL FLUNIT FLUNIT—-R1/F1/R2/F2. Disk drive on which $CCPFILE is to be
allocated.

&PFIL Char6 S$EFIL FLPACK FLPACK~packname. Name of the SCCPFILE pack.

&TFIL Arith $EFIL TRKLOC TRKLOC—value. Beginning track location for SCCPFILE.
TRKLOC—-0. Operand not specified.

&MLA Arith SEMLA LINES LINES—value. Number of teleprocessing lines in the user's MLTA support.
LINES—0. No MLTA support.

&MNOX Bool $EMLA XLATE 1= XLATE-YES, translation between EBCDIC and line code always to occur.
0= XLATE-NO, additional code to be included to inhibit translate when so
requested in user programs.

&MT40 Bool $EMLD TYPE 1=TYPE—2740, 2740 device supported.
0 = 2740 device not supported.

&MT41 Bool $EMLD TYPE 1=TYPE—-2741, 2741 device supported.
0 = 2741 device not supported.

&MT50 Bool $EMLD TYPE 1=TYPE-1050, 1050 device supported.
0 = 1050 device not supported.

&VFSC Bool $EMLD TYPE 1 = Station control supported.
0 = Station control not supported.

&MFSW Bool $EMLD TYPE 1 = Switched lines supported.
0 = Switched lines not supported.

&MFBR Bool $EMLD TYPE 1 = Buffer receive supported.
0 = Buffer receive not supported.

Method of Operation (Cardless-Oriented Generation) 2-21

Page of SY21-0531-2
issued 24 June 1977
By TNL: SN21-5530

Name Type Stmt Keywd Value and Meaning
&MFTC Bool $EMLD TYPE 1 = Transmit control supported.

0 = Transmit control not supported.
&MFCK Bool $EMLD TYPE 1 = Checking terminal supported.

0 = Checking terminal not supported.
& MFNK Bool $EMLD TYPE 1 = Non-checking terminal supported.

0 = Non-checking terminal not supported.
&XM4E Bool $EMLD TYPE 1= 2740 PTTCEBCD code supported.

0= 2740 PTTCEBCD code not supported.
&MD1 Char8 S$SEMLD TYPE MLTA device support.

Position Value Meaning

1 1 TYPE—-1050

2 1 TYPE-1050D

3 1 TYPE-2740

4 1 TYPE-2740S

5 1 TYPE-2740C

6 1 TYPE—2740SC

7 1 TYPE-2740D

8 1 TYPE-2740DT

Zero value indicates that the device is not supported.
&MD2 Char8 $EMLD TYPE MLTA device support.

Position Value Meaning

1 1 TYPE—-2740DC

2 1 TYPE—-2740DTC

3 1 TYPE—2740M2S

4 1 TYPE—2740M2SB

5 1 TYPE—2740M2SC

6 1 TYPE—2740M2SCB

7 1 TYPE-2741

8 1 TYPE-2741D

Zero value indicates that the device is not supported.
&MD3 Char4 S$EMLD TYPE MLTA device support.

Position Value Meaning

1 1 TYPE-SYS7C

2 1 TYPE-SYS7SC

3 1 TYPE-SYS7DC

4 1 TYPE-CMCSTD

2-22

Zero value indicates that the device is not supported.

Page of SY21-05631-2
Issued 24 June 1977
By TNL: SN21-5530

Name Type Stmt Keywd Value and Meaning
&MXC Chard SEMLD XMCODE MLTA line transmission code support.
Position ~ Value Meaning
1 1 XMCODE—-CORR
2 1 XMCODE—-PTTCEBCD (2740/1)
3 1 XMCODE-PTTCBCD
4 1 XMCODE-PTTCEBCD (1050)
Zero value indicates that the code is not supported.
&BSC Arith SEBSC BSCA BSCA—value. Number of BSCA lines to be supported.
BSCA-0. BSCA is not supported.
&BLT Char4 $EBSC PP BSCA line type support.
MP
CS Position Value Meaning
DIAL
1 1 PP—-YES (point to point)
2 1 MP—-YES (multipoint)
3 1 CS—YES (control station)
4 1 DIAL—-YES (switched line)
Zero value indicates that the control logic for the line type is not included.
&BFA Char8 $EBSC GETMSG BSCA features supported.
ITB
RESPOL Position Value Meaning
AUTORS
EBCDIC 1 1 GETMSG-YES (get message)
ASCII 2 1 ITB—YES (intermediate text block)
XPRNCY 3 1 Always 1
4 1 RESPOL—YES (storage resident polling)
5 1 AUTORS-YES (automatic response to polling)
6 1 EBCDIC—YES (EBCDIC transmission code)
7 1 ASCII-YES (ASCII transmission code)
8 1 XPRNCY-YES (text transparency feature)
Zero indicates that the feature is not supported.
&RSB Char2 $EBSC RECSEP RECSEP—value. Value of the record separator character {(1E if not specified).
&BD1 Char8 $EBSD TYPE BSCA device support.

Position Value Meaning

TYPE—-3275M1
TYPE-3277M1
TYPE-3284M1
TYPE-3286M1
TYPE—-3275M2
TYPE—-3277M2
TYPE—3284M2
TYPE—-3286M2

ONOOOIRWN=
P N Gy

Zero value indicates that a device is not supported.

Method of Operation (Cardless-Oriented Generation) 2-23

Page of SY21-0531-2

Issued 24 June 1977

By TNL: SN21-5530

Name Type Stmt Keywd Value and Meaning
&BD2 Char8 $EBSD TYPE BSCA device support.
Position Value Meaning
1 1 TYPE-3735
2 1 TYPE—-CPU
3 1 TYPE-3741
4-8 - Unused
Second Pass
Name Type Stmt Keywd Value and Meaning
&DPF Bool $EFAC DPF 1 = Dual programming feature supported.
0 = Dual programming feature not supported.
&MTK Bool $EFAC MAXEUP 1 = Multiple user tasks supported.
0 = Single user task supported.
&MVLTA Bool $EMLA LINES 1 = MLTA supported.
0 = MLTA not supported.
&NOM Bool $EMLA LINES 1 = MLTA not supported.
0= MLTA supported.
&BSCA Bool $EBSC BSCA 1 = BSCA supported.
0 = BSCA not supported.
&NOB Bool $EBSC BSCA 1 = BSCA not supported.
0 = BSCA supported.
&ONE Bool $EMLA LINES 1 = Single adapter support for MLTA or BSCA.
$EBSC BSCA 0= Both MLTA and BSCA supported.
&DME Bool $EFAC ESCAPE 1 = Data Mode Escape support.
0 = Data Mode Escape not supported.
&NDME Bool $EFAC ESCAPE 1 = No Data Mode Escape support.
0 = Data Mode Escape support.
&DFF Bool $EFAC FORMAT 1 = Display Format Facility supported.
0 = Display Format Facility not supported.
&FPL1 Arith $EFAC FORMAT 2 = Display Format Facility moved to PL1.
&SRT Bool $EFAC SORT 1 = Sort Facility supported.
0 = Sort Facility not supported.
&NDFF Bool $EFAC FORMAT 1 = Display Format Facility not supported.

2-24

0 = Display Format Facility supported.

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Name Type Stmt Keywd Value and Meaning V

&MIN Bool $EGEN MINRES 1 = Minimum core system supported.
0 = Minimum core system not supported.

&CL Bool $EGEN CARD 1 = Card-oriented generation.
0 = Cardless-oriented generation.
&OR Arith $EFIL CORE Value Meaning
49152 Storage—48K
0 Storage—64K
1 Storage—80K
2 Storage—96K

&SHR Bool $EFAC FSHARE 1 = Update file sharing supported.
0 = Update file sharing not supported.

SUSEON Bool $ESEC SECURE 1 = User sign on routine used.
0 = User sign on routine not used.

&SYSON Bool $ESEC SECURE 1 = CCP password security required.
0 = CCP password checking not required.

&PUCNT Bool SEFAC PGMCNT 1 = Program request count supported.
0 = Program request count not supported.

&URMFU Bool $EIOD CARD 1 = MFCU supported.
0 = MFCU not supported.

&UR142 Bool $EIOD CARD 1= 1442 supported.
0 = 1442 not supported.

&URPRT Bool $EIOD PRINTR 1 = 5203/1403 supported.
' 0 = 5203/1403 not supported.

&UR41 Bool $EIOD 3741 1 = 3741 supported.
0 = 3741 not supported.

&NSCTL Bool $EMLA TYPE 1 = Station control not supported.
0 = Station control supported.

&NSW Bool $EMLA TYPE 1 = Switched line not supported.
0 = Switched line supported.

&N1050 Bool $EMLA TYPE 1 = 1050 not supported.
0 = 1050 supported.

&N2741 Bool $EMLA TYPE 1 = 2741 not supported.
0= 2741 supported.

&NBFR Bool SEMLA TYPE 1 = Buffered receive not supported.
0 = Buffered receive supported.

Method of Operation (Cardless-Oriented Generation) 2-26

Page of SY21-0631-2

Issued 24 June 1977

By TNL: SN21-55630

Name Type Stmt Keywd Value and Meaning
&NMOVE Bool $SEMLA XLATE 1 = Move without translate not supported.
0 = Move without translate supported.
&NCPU Bool $EBSD TYPE 1 = CPU-to-CPU not supported.
0 = CPU-to-CPU supported.
&NITB Bool $EBSC ITB 1 = Intermediate text block not supported.
0 = Intermediate text block supported.
&NTSP Bool $EBSC XPRNCY 1 = Text transparency not supported.
0 = Text transparency supported.
&N32 Bootl $EBSD TYPE 1 = 3270 not supported.
0 = 3270 supported.
&N37 Bool $EBSD TYPE 1 = 3735 not supported.
0 = 3735 supported.
&N41 Bool $EBSD TYPE 1 = 3741 not supported (terminal).
0 = 3741 supported (terminal).
&NAS Bool $EBSC ASCII 1 = ASCII not supported.
0 = ASCI! supported.
&NPP Bool $EBSC PP 1 = Point to point not supported for BSCA.
0 = Point to point supported for BSCA.
&NMP Bool $EBSC MP 1 = Multipoint tributary not supported for BSCA.
0-= Multipoint tributary supported for BSCA.
&NSWL Bool $EBSC DIAL 1 = BSCA switched line not supported.
0 = BSCA switched line supported.
&NCS Bool $EBSC SC 1 = Control station not supported for BSCA.
0 = Control station supported for BSCA.
&EBIDA Bool $EBSC DA 1 = DA-YES, display adapter supported.

2-26

0 = DA—NO, display adapter not supported.

Program Organization

CCP Generation Utility ($CC1PP)

CHART: AA
FUNCTIONS:

ENT

INPUT: 96-byte records in the $SOURCE file which were:

OouUT

Print the user’s input to the first pass and any
messages from the CCP Generation macros.
Determine if, on the first pass of CCP Generation,
any errors were detected.

If any errors, summarize the extent of errors and
exit.

If no errors, print that output from the first pass
of Generation which serves as input to the second
pass of Generation.

If card-oriented generation, punch the past two
records.

I cardless-oriented generation, reorganize the
$SOURCE file to eliminate the user input records.
RY PCINT: PPEXEC

Input from the user

Error message output directly from Macro Processor

Messages (error and warning) from the Generation

macros

Second pass input produced by the Generation

macros

Trailer record from the Generation macro $EGEN

Slash-asterisk record representing end of $SOURCE
PUT:

Printed listing of all input from the user {(whether

errors or not).

Printed listing of all messages from the Generation

macros (whether errors or not).

Printed listing of all error messages directly from

Macro Processor. The converted Macro Processor

error messages, the number and abbreviated text

are as follows:

MPX Error CCP Error CCP Abbreviated Text

Halt issued if user specification error.

Punched cards or reorganized $SOURCE file (if no
errors were detected) to serve as input to the second
pass of generation:

— OCL, source, and link-edit control statements

to establish the initial contents of SCCPFILE.
(A load module, $CC1BF, is created and stored
on the distribution pack to be used to initialize
$CCPFILE according to the user’s input.)
OCL, source, and link-edit control statements to
generate the tailored CCP execution-time resident
supervisor ($CC4, written as a load module to
the production pack).
OCL and utility control statements to copy the
required load modules of Assignment, Startup,
Shutdown, and transients of the CCP Execution
Stage to the production pack.
If the user chose the user-security option, then
OCL, source, and link-edit control statements to
create the (empty) user-information module
$CC4Z9 as a load module on the production pack.
OCL to cause the initialization of $CCPFILE
(by execution of the load module $CC1BF).
OCL and utility control statements to copy the
modules for the support of each language {(macros
for Assembler, relocatable modules for the other
languages) to the pack(s) specified by the user.
OCL and utility control statements to punch out:
— Overlay Linkage Editor control statements
for the link edit of the Installation Verification
Program
— A sample assignment deck
— $OLINK traces
— The stand-alone storage dumps (card oriented
only)

" NF CC901E Invalid stmt id or misplaced source lib
(0[] CC902E Invalid stmt format or previous err
1K CC903E A keyword used is not valid
IR CC904E Parameter missing or has invalid form
ID CC905E Invalid delimiter or delimiter placement
IC CC906E Comma after last OPND, but no continuation
CE CCO07E On continuation of statement, cols. 1-13

are not blank

OTHER CC909E Error xx from Macro Processor — possible

CCP error

Program Organization 2-27

EXTERNAL REFERENCES:

— Program level communication area for date (NPDATE).

CAM for input/output from the $SOURCE file.
— Printer data management routine ($$LPRT) for
printed output.
— System punch routine for punched output.
EXIT, NORMAL: DSM end-of-job routine.
EXITS, ERROR:
— DSM end-of-job routine after halt.
— Halt/syslog to a U— halt with following subhalts:
— PU — punch unallocatable
— HE — disk file permanent error
— CC — CCP internal error
— F2 — User specification error

Build Initial Contents of $CCPFILE ($CCI1BF)

CHART: AB
FUNCTIONS: Write the configuration and directory
sectors of SCCPFILE as specified by the user. (The
encoded version of those specifications (the configuration
and directory sectors of $CCPFILE) is contained within
this load module, having been link-edited from relocatable
module $CC1FC.) '
ENTRY POINT: EXECBF
INPUT: NONE
OUTPUT:
— Configuration and directory sectors of $CCPFILE.
— Completion message on the system log device.
EXTERNAL REFERENCES:
— Disk data management module $$DAUB for disk
output
— Halt/syslog routine for printing of the completion
message.
— Module $CC1FC created previously and link-edited
with this module.
EXIT, NORMAL: DSM EOJ routine.
EXIT, ERROR: Halt/syslog to a halt with subhalt AF
on permanent disk error.

2-28

Create the $CCPLOG File ($CC1BL)

FUNCTION: Create the file needed by CCP on Model 4
for a console log file.

ENTRY POINT: $CC1BL

INPUT: OCL file statement for the $CCPLOG file.

OUTPUT: The $CCPLOG file exists as specified on the
file statement,

EXIT, NORMAL: End of job.

EXTERNAL REFERENCE: Aliocate, open, and close.

PPEXEC
Aok A] ok ek okok Kok

* ENTER *
AR ok ok oKk ROk LET 1] *okkk
* - * *
* B2 * * BS *
* * Aok * *
ok Aok * * kK
* B4 &—=m
—————— -—— ey * *
.V AR
PPOKPC SEE NOTE PPGET1 AA/03/A2 PPEOF1 o ¥e PPUNSY Vv AA/03/A1 PPART2 AA/03/A1L
Sk Kok R} L Ak AR H KKK K *t**tﬁzm:****»ttt B3 *e Aok ook B4 ok Aotk Aok X ek ok kB 5 Rk ok Kk kKK
* % ALLOCATE * % *PPGETS ok e *PPRTXT * *PPRTXT *
* %® AND OPEN % X W o o o v o t ok LAST *e YES o e o e e e 2o *————----——----—*
* *INPUT FILE * * *GET RECORD FRDM* REC VERIF o%=~=- tPRlNT CDUNT 0F % * 1SSUE *“NO
: * $SOURCE % % * $SOURCE e RECDRO? ok ERRORS : *#ERRORS " MESSAGE:
* * % ' .
ok AR RR KR K KRR K tt****l*“***t#a#m P *a******u***ttt*t S AR KR R Rk KK
NO
PPJMPL e ke V AA/03/A1 AA/Z03/A1% SEE NOTE
‘(:l**l***#*** cz Xe ‘****CJ********** *t***cl}‘t*#*l#*#* Aok okok KT 5ok Rk R dkok kK
. . *PPRTXT *PPRTXT * k CLOSE * *
'ESTAE)LISH FDRMS* ¥ EOF OR *e YES *--———-—-———-——‘—* *---——-——-—-————* * * SSOURCE * %
SIZE IN PR!NTER! *eo /%72 o R * 1SSUE ERROR * * PRINT * * %k PEN * X
* DT *e ok *DIAGNOSTIC 990 * * CORRECTIVE * * X QSOURCE * ok
* # *a ok * * * ACTION MSG * * K * &
AR KRR R R KRR e ok sk ARk FOKA KR K R koK ook ok ok KRR Ok sk ok A ek AR KRR KK R
* NO
P 2SS
—————
v v
SEE NOTE ko oke \4 PPGET AA/03/A2
ok ok () 1 KOOk K oKk K D2 LX) D3 *o R I L EL L EE L L L **#ttDSt*i*******
* % * ok *e ok ANV *e * * *PPGETS
* % ALLOCATE * * o ¥ USER *s YES ¥ ERI *s YES * * !—--------—---——*
* % AND OPEN * % *. INPUT ek ——mmaoy *e DlAGNDST!CS oekmmm *SET SUBHALT F2 * * GET RECORDS *
t t PRINTER # * *e RECORD? o% *e * b * FROM S$SSOURCE *
*o ok *e .* * * * *
tt**tw****#*t**t* *e o X e ok v Aokt Aok ok kKRR K R AR Aok RO AR R KR
* NO * NO kAR
* *
* Ba&4 *x
v * *
ok kK Ak kok
v * *
v e ke * BS * oke
K AR E | ARk KKK kK E2 ¥ * * Aok oK E 4 Rk sk K% KKK ES *o
* MOVE SYSTEM * ok *e *ok ok * ¥ .
* DATE AND * ND o% CCP/MPX ke *SET FOR OPTION * YES o% USER *e
*RELEASE NOs TO * ~==%¢ DIAGNOSTIC % * 3 ONLY * —-——e INPUT
PRINT HEADING * A *o RECORD? o% * * %o RECORD o*
*e ok * * . ok
attt*tu* *t*tt*:t e oX ok e ok ok Aok ook oK K ok K He ok
* YES * NO
v
———————— HAAKA
v v *002% v
PPMSG1 o ¥e PPINR1 eke * BSx ke
Aok ok] ok dokok ok Rk Rk F2 e F3 *ao * ok FS *e
* * o* ERROR %o ok * * ok *e
% SET FOR EJECT * % (RATHER *, NO « *EXTRAMEOQUS *, NO YES o% acL *e
*0ON FIRST PRINT * *, THAN o K *e STATEMENT? ek mm— e ————— ey —————ky RECORD ok
* * *o WARNING)? o % *q ok *e L
* * *o ok *e ok *e ok
Aok Kok ok ok KK KK K K *e ok LI Ko oF
YES *® YES * NO
wkkE
* *
* B2 * V AA/03/A1 PPINOQU AA/Z0Q03/A1 v
* * AR o G 2 0 ROk Kk kK KOk *t***GBt*‘**#*ttt *ﬁ#**GQl#ttl#t**# Ak ok kK G S ok Kok dok dok Kok
*okkok * * *PPRTXT *PPRTXT *
INCREMENT ERROR *-----—--------—t *------'—--——-—-'—l' *SET CARD DUTPUTX
* COUNT * * PRINT USER * * PRINT USER * *® FLAG *
* * * STATEMENT * * STATEMENT * *
* * * * * * * *
ok ok A KR KR AR Rk K ok K ek KK K kKR oK Aok A KA R KRR RK K Aok R K K R oK K K
K
kXK
* *
PPRNER AA/03/A1 - VvV AA/03/7A1 * B2 *
R kAR RA KRR **t**ﬂat*****:ttt * * A AKHS kR R
*PPRTXT * *PPRTXT KRR * *
* * * * USE $$STF2 TO *
* PRINT THE *® *® ISSUE ERROR * * ALLOCATE SYS %
% DIAGNOSTIC * *DIAGNOSTIC 991 : * PUNCH *
* * * * *
*tttatt*Ttttttttt AR RO AOK AR AR ROK KRR KK
v
| A v
ok,
!#tt#JA***ttx**tt JS *e
*PPRT XT x,
R e YES -*SUCCESSFUL *.
% Issys PART 2 * ———=-%, ALLOCATION .*
MESSAGE * *, ok
* *. ok
tat*t:axx:*** *e oX
* NO
NOTE: SEE IBM SYSTEM/3 DISK SYSTEMS
SYSTEM CONTROL PROGRAM LOGIC
MANUAL, SY21-0502, FOR ALLOCAYION
ROUTINES. SEE IBM SYSTEM/3 DISK i
SYSTEMS DATA MANAGEMENT AND EE LI TS L LR L b Ak ok KIS ok R Rk ok Kk
INPUT/DUTPUT SUPERVISOR LOGIC * * * *
MANUAL , SY21-0512+ .FOR OPEN *PREPARE PART 2 * * *
AND CLOSE ROUTINES. * HEAD ING * *SET SUBHALT PU %
* * *
* * * *
AR AR AR R RR AR R AR R
v
LELE L EEELE S
*Qo2*x *002%
* Bl * BS%x
*x * *

Chart AA (Part 1 of 3). CCP Generation Utility ($CC1PP) (Models 8, 10, and 12 Only)

Program Qrganization 2-29

2-30

Ok P
001 * *
* Ka* * B2 *
* % * *
axxk
v v
ke PPNOT 2 ke
81 *e B2 .
. *. ok
«%x EOF DR % YES ¥ mam N “w. ND
. o kmmony *e IST POSN? e%=~==n
. B *.
*e ox l *e o’
e ok v *e oX
* NO Rk YES
* *
* B4 *
* *
oK
v
o ke
c1 *e AR C 28 4R AR K
o . * *
YES o% USER *. * SET FOR PRINT *
———y INPUT ox * EJECT ON NEKT *
* RECDRD? ok * PRINT *
. ok * *
o ok B T
* NO
l P
v
ke PPNT2 AA/03/A1
o1 * lt#ttoatnttt*mttt
o* *o *PPRTXT
YES o% CCP/MPX %, ARt S
~==%. DIAGNOSTIC .* * *
*. RECORD? o% *PRINT THE NOTE *
. . * *
*e % AR AR kR Ak
* NO
FokAn
v * *
o ke ® Bl *
El *o * *
+%0CL _OR %o ok LR
% CONTROL *. YES *
*s STATEMENT? ok~===>% B3 %
. ok * *
*o ox *kkk
. ok
I ND
v
. ke
F1 *.
ok . Ak
% VERIF %. YES *
*o RECORO? ek===e>k B2 *
*e o * *
*. ok L
*e ok
NO
T
* *
->% E3 %
* *
Aok
....... SO,
PPERCC

i‘*‘*ﬂl#!*ﬁtl*ﬁ**
SET SUBHALT
neen

LT XY
LT RN

e ok ok ok ok ok ok e o ek ok

01-KS

01-E4
P PEetLd
* * *003%
* B3 * * F2%x
* * L] * ¥
LT
* B4
*
Aok
PPOCL2 ok, PPEOF2 V AAZ03/A1 PPHALT v
l*tttﬂhlttnt*#**# MR KD S KA AR AR AK
*PPRT X * *
------------- - XSET SUBHALT IN *
: RRINT * *PARAMETER LIST *
* SUCCESSFUL * * *
*o L * CDNPLETIDN * * *
*e ok A AR AR K AR AR AR AR
YES
PPEOJ SEE NOTE 2 SEE NOTE 1
AR AKC SRR RN AR AR C AR AR R AN AN A ARG S A
* * % * x * .
*REPLACE m+u BY * * % CLOSE * # * *ISSUE "u-ﬁ *e
* ngn * * % SYSPUNCH * * * £ HALT *
* * * x * x " tHALT/SVSLDG' *
* * o * x * x .
e T T ™ AR AR A kR ARk ok AR Rk
SEE NOTE 2 SEE NOTE 1
AR KD 3Kk K KA DA A AR K
* * * x AAKDS Ak Aok &
* SET NEW GROUP * * ok CL * x =
* 10 FOR COLS. * * % PRINTER * * * END OF J0B *
* 76577 * * % * % * *
* * * x - % SRR KRR AR K
Aok *okk et *
ok
* I E -—-
* E3 x->
* *
Rk
PPREC2 SEE NOTE 2
FRRLRETHERRRRE RRY A OR K KRRk K
* * * x
ID AND % * k CLOSE * %
SEQUENCF NDo TO# * * $S0URCE # x
S« 73-80 * * * *
* * * x
kKK AR KOK R AR KRR AR K X
A/03/A1 SEE NOTE 1
tttttF3tt#####tlt
*PPRTX Y e)
--——-~-—_—_--—-* *
* PRINT THE # * END OF JOB *
* QUTPUT RECDRD * *
* * HA KRR AR
L T T M
v
ok,
G3 ¥, HERKRGE KK BAAAAKK
. e *
«® CARD *. NO *WRITE RECORD TO*
*o ouUTPUT ek=—mm———o-b>% $SOURCE FILE *
. o* * *
*a ok * *
*e ok A AR AR Ak K
YES
SEE NOTE 1
AR Rk K K
o
* *x PUNCH THE * *
* *x DUTPU * x
* % RECORD * %
*

* »x
ROk Rk ok R kR

<

EE L R NEES SRS E)
*

* INCREMENT THE *
SEQUENCE NUMBER
* -

* *
A ook ok ok Rk ok ok ok
v
EEEL]
* *
* Bl *
* * NOTE
LR
NOTE

12 SEE [BM SYSTEM/3 DISK SYSTEMS
SYSTEM CONTROL PROGRAM LOGIC
MANUAL+ SY21-05024

SEE IBM SYSTEM/3 DISK SYSTEMS

DATA MANAGEMENT AND INPUT/QUYPUT
SUPERVISOR LOGIC MANUALs SY21-0512e

23

Chart AA (Part 2 of 3). CCP Generation Utility ($CC1PP) (Models 8, 10, and 12 Only)

PPRTXT
AR A] ARk ROk Rk
* *
* ENTER *
*
K Rk oK

v
o ke
e *e

*e
*e NO

K

ok
+%* END OF
*e PAGE?
*e .
*q .k

*e o ¥
YES

v
Aok ol € o ok ok ok ok ko ok
*
* ADVANCE PAGE
* MUMBZR

* R

*
Ao e ke o ok ok R ROk kR

Aok Rk DT ok Rk ok ok

PRINT PAGE
HEADER

LXT 2]
* %% %K

s A ook T ok Aok sk ok kolok &

ok k] koo

* PRINT COLUMN
* HEADER

* % % %%

*
HOK R 3 1k R 6 ok Kok ok R

&=

SEE NOTE
kot ol KT L ok ok ok ok ok ok ok
* % *

*
* XUSE $SLPRT * *
* & TO PRINT % %

* X LINE * %
* * * ok
ook KKKk K R K

v
ARG e Aok ok ok
*
* RETURN :
o e koK A ok sk ok sk ok ok

Chart AA (Part 3 of 3).

PPGETS
Aok A 20k ok ook ok e kok
* *
* ENTER *
AR R OR KR RAOK K kK

ok kB 2 ok ok ok ok koK
*

*

* RESET RECORD *
*TYPE INDICATOR *
* *

* *
ok e kol ok ook KRk Aok ok

v
Rk C20 Kok k ok
* *
* CLEAR LOGICAL *
* RECORD AREA ;

* *
ok ook o o ok skl ek koK ok

SEE NOTE
ook kD 2k ok ke deokokkok
* * ¥

* ¥*READ RECORD* *
* k VIA CAM * %
* ok *® ok
* &

ok k kK

v
AR R 20 R OR ok oKk
SET SUSBHALT
nEEn

LR L 2
* W% ®

koK KKKk oKk

v
Aok ok ok
*002%
* (5%

————————— J—

v
PPGTEF o %o
H2 e

ok
«* EOF OR
*q 7%?
. .
e ok

¥e o
* YES

v
Aok kKoK § 20k Aokokok KK R Kk
* *
* LEAVE RECODRD *
* TYPE CODE *
:INDICATING EQF *
*
ok ook ok A kok ok R R Rk &
o’k ok
* *
=>% HS %

* *
*dokk

.
*e NO
o Kmm—
*

* k%
* *
* B3 *
*

kKK

T
* *
* B3 *
* *
ni*x
v
ok
83 *o
. *e
% GEN'D %4 YES
*. RECORD? ek=momm—mmeem—se—ee -
*e .
e o*
Ko ok
* NO
v v
e PPGGRC ke
€3 % ca . kA KC S AR KK
. o *e *
MPX *e NO ok ccP *e YES *x INDICATE TYPE %
*e ERRDR okmmmo %. ERROR MSG? o%==——====>% AND MOVE TQ *==--
¥ MESSAGE? o% *. ok * LOGICAL AREA *
. ok e o *
*e ok v e ok T T T e T T
* YES RN * NO
* *
* G5 *
* *
o
v v
ok PPGGR2 oo
D3 %. D& *. kAR AD S AR A AK A A
o* *e o* . * INDICATE TYPE *
% _USER %+ NO o ocL *o YES * AND MOVE TQ *
*. ERROR? oHmmm— *e TYPE e¥mmmmm=—e>kLOGICAL RECORD #==--n
o %o RECORD? ok * AREA *
*o o *e o *
e ok Ko ok AR R KRR KK
* YES * N
v
v PPGGR3 ok
FH R AE Dk 4K KKK JE4 e R AKES KA AN AR
* . *e c *
#SET SUBSTITUTE * o* VERIFY *s NO * MISCELLANEOUS *
* CCP ERROR * %e RECORD? ekm—~=—w==>k TYPE}] K
* MESSAGE * *e B * RECORD
* * *e ok M *
AN KA KA AOR A K *e ok ARk K KKK KR
) * YES
K
—>k HS %
HAA
Aotk KE S oK KRR K Aok
* INDICATE TYPE %
* AND MOVE TO *
----- memmmeeem=>*L0GICAL RECORD *====
* AREA *
* *
AR Rk AORK KRR K
)
* *
* GS K=o
- * *
| HARK
v PPGMVR v
Aok ok K G Kk ok Kk ok G5 A K ARk
* * USER INPUT _ *
* SET MESSAGE % *RECORD: MOVE TO%
*INDICATING CCP * *LOGICAL RECORD *
* ERROR * * AREA *
* *
ok R AR RRRORK K S AR AR
kR AR
* * * *
->% HS * * HS *=>
* *
kK Ak
PPGRTN
A SRR AR
*
* RETURN *
* *
AR KKK RR KR
NOTE: SEE IBM SYSTEM/3

CCP Generation Utility ($CC1PP) (Models 8, 10, and 12 Only)

DISK SYSTEMS DATA
MANAGEMENT AND
INPUT/0UTPUT
SUPERVISOR LOGIC
MANUAL, SY21-0512

Program Organization

2-31

2-32

EXECRF

Hool ok A 3 ekl ook ook
* *
* EMTFR *
* *
ookt ol o e el o Rk ok ok

RFLONP

v
FRRARCS AR A A o
* GET SECTNR *
* {DUMMY GFT *
* REQUIRED RY x
*ACCESS METHNDY} %
* *
oot ok ok R ROk ok

vV SEE
Aok o N R ok oo okl ok ok
* WRITF RACK

* SECTOR r *
*6CCLFC DATA TN %
VAN STORAGE *
e o o 3 e o ofe o ol e ok ook ok ok

*

v
Ao ol K R o ok ok ook ke ok ok
*
POINT TN NFXT *
SECTOR *
%

EX X 2%

* *
ok 0l kR ok Bk o o e o

r<

N
*® &
* *
* F1LASF *
% §CCOFIIE %
* *
* *
* *

%

e ARk ok R R K

| SFF nATE 2

At A 3 o ko ek
* *

* END OF ynm *
*

*
RELEE LTI L LS T

SEE NOTES
ANA 2

NOTE 2
*

NATF 1t
NNTE 23

NATE 23

NPENTNC THTG ETLE AS NTRECT NUTONT
CAURFS NDEN TN CLEAP FILF ™ RLANK S,
FIRPST SFCTNR TS CANFISIIPATINN
RECARN, SECNNN SECTAR TS NIRFCTARY,
ASM ALLACATE AND EMN AE AP PNITTNES
APF NESCRIREN TN [RM SVYSTEM/2 NTSK
SYSTEMS "QVCTEM CNNTRNL PRAGRAM { NATC
MANUAL, SYP1-NERD, MPEN ANR C{NEE
OAYTTINMES ARF NESCRYRFN [N [AM
SYSTFM/3 NTRK CSYSTEMS NATA MANAGFE-
MENT AND TNDUT/AUTPUT SUPFOyTEAP
LPETIC MANUIAL, SY21-F813,

Chart AB. Build Initial Contents of $CCPFILE ($CC1BF)

Introduction to CCP Installation (Model 4 Only)
Function
The Installation Stage of CCP on Model 4:

® Copies the necessary load modules for the designated
version of CCP to the CCP production pack.

® Copies the necessary relocatable modules (subroutines
for user programs) to the designated program prepara-
tion pack.

® Allocates and initializes the CCP assignment file
($CCPFILE) and CCP log file ($CCPLOG).

® Sets up the correct printer intermediary module, which
is used by the RPG 1l compiler when compiling and link-
editing user programs that require the printer.

Procedure

To perform CCP installation:

® Call procedures that copy the necessary moduies.

® Load the programs that initialize the $CCPFILE and
$CCPLOG.

METHOD OF OPERATION

To get the desired version of CCP from the distribution

pack to the CCP production pack, the system pack must

be on F1 and include the overlay linkage editor, the CCP

distribution pack must be on R1, and you must run the
following procedure:

Keywords Response
READY- CALL
CALL NAME— verVxx
UNIT-—- R1
MODIFY
RUN

ver specifies the desired version which is either:
MIN: 3270 only on the control station line
MAX: all supported BSCA devices and all BSCA
line configuration

xx is F1, R2, or F2 that specifies the unit on which the
desired CCP production pack is placed. For example:

Keywords Response
READY-- CALL
CALL NAME— MAXVF2
UNIT— R1
MODIFY

RUN

This copies the maximum version of CCP from the distribu-
tion pack on R1 to the production pack on F2.

To transfer the CCP subroutines used with RPG 1l to the
desired RPG |11 program preparation pack, the RPG Il
program preparation pack must be in a non-CCP mode and
you must run the following procedure:

Keywords response
READY-— CALL
CALL NAME— RPGVxx
UNIT— R1
MODIFY

RUN

xx is F1, R2, or F2 that specifies the unit on which the
desired RPG |l program preparation pack is located.

To create the file for SCCPFILE, you must run the
following job:

Keywords Response
READY— LOAD
LOAD NAME—- $CC1BF
UNIT— nn
FILE NAME— $CCPFILE
UNIT— code
PACK-— name
TRACKS— number
LOCATION— track number
RETAIN— P
MODIFY

RUN

Introduction to CCP Installation (Model 4 Only) 2-33

To create the file for $CCPLOG, you must run the following

job:

Keywords

READY—
LOAD

FILE

MODIFY
RUN

NAME—
UNIT—
NAME—
UNIT—
PACK—
TRACKS—
LOCATION—
RETAIN—

Response

LOAD
$CC1BL
nn
$CCPLOG
code
name

number
track number

2]

nn is the unit that the CCP production pack is on: F1,

F2, or R2.

2-34

Page of SY21-0531-2
Issued 24 June 1977
By TNL: SN21-5530

Chapter 3. SCP Generator (Models 8, 10, and 12 Only)

Introduction

The IBM System/3 Models 8, 10, and 12 System Control
Program Generator (SCP Generator) is a language processor
that generates relocatable object modules from input to
the CCP Generation Stage (see Chapter 2 for a description
of the Generation Stage). This language processor is always
used to generate at least three relocatable object modules,
and may be used to generate an optional fourth module:

® $CC1FC, initialization data for the assignment file
($CCPFILE). See Chapters 4 and 5 for a description
of the CCP Assignment Programs.

® $CC4#1, $CC4#2, and $CCA# 3 containing resident
CCP code.

® $CC4Z9, a null module required only for user-written
security routines.

All input for the language processor resides in a disk source
file ($SOURCE). The source file is processed by the
following phases:

$CGNIN Processor Initialization Phase. Initializes the
processor.

$CGNCM Source Compression Phase. Reads source
file ($SOURCE) and generates intermediate
text in the work file (SWORK?2).

$CGNSB Symbol! Table Build Phase. Reads the inter-
mediate text and builds symbol table in main
storage.

$CGNSF Symbol Table Overflow Processing Phase.
Called only if symbol table overflows. Tests
intermediate text following the overflow for
previously defined symbols.

$CGNSS Symbol Substitution Phase. Places values from
last (or only) symbol table into the intermediate
text term records (see index entry Data Area
Formats, Term Records). Builds an ESL
(External Symbol List) table.

$CGNPE ESL Output Phase. Writes ESL records in the

object file (SWORK) and prints the ESL.

$CGNPS Source/Object Output Phase. Generates object
code and source/object listing, and writes the

object code in the object file (SWORK).

$CGNBX Build XREF File Phase. Builds a cross-reference
file in the work file ($WORK2).

$CGNSX Merge and List Cross Reference. Sorts the file

built by SCGNBX, generates the cross-reference
listing, and fetches the Overlay Linkage Editor
to put the object module in the object library.

A detailed account of each phase is contained in Program
Organization in this chapter.
SYSTEM REQUIREMENTS

Listed below is the minimum system configuration for the
SCP Generator:

® A processing unit with a minimum of 24K bytes of
main storage (to contain DSM and the SCP generator).

® |BM 1403 or 5203 Printer with Universal Character
Set Feature PN (60 character set) Interchangeable
Chain Cartridge.
Note: A 48 character chain can be used with the SCP
Generator. However, the user must be willing to

accept substitute characters.

® |BM 5444 Disk Drive.

STORAGE REQUIREMENTS

The SCP Generator requires 16K bytes of main storage
for execution.

PREREQUISITE PUBLICATIONS

Effective use of SCP Generator requires an understanding
of the following manuals:

® /BM System/3 Basic Assembler Reference Manual,
SC21-75009.

® /BM System/3 Models 4, 6, 8, and 10 Disk Systems
System Control Program Logic Manual, SY21-0502.

® /BM System/3 Disk System Data Management and
Input/Output Supervisor Logic Manual, SY21-0512.

Introduction 3-1

Method of Operation

This section describes the functional flow of logic and
data through the various phases of the language processor.

PHASE-TO-PHASE COMMUNICATION AND FILE USAGE

Phase-to-Phase Communication Tables

Phase-to-phase communication during execution of the
processor is accomplished by using communication tables:

1. $CGNIN Communication Tables. The following
communication tables are loaded with $CGNIN
and remain in main storage until the processor
completes execution:

® Communications Area (COMARA). Contains
a transfer vector for all data management routines,
address tables for any working storage that must
be addressed but exists outside an execution phase,
and the name of the current execution phase.
Disk DTFs and IOBs for the source, work, and
object files are also in COMARA.

® Common Area (COMMON). A working storage/
constant block used by all phases of the processor
for intraphase and interphase communication.

Note: The Compiler Access Method (CAM) is also
loaded with $CGNIN. CAM is described in detail
in the Program Organization section of this chapter.

2. $CGNPE Communication Tables. The following
communication tables are loaded with $CGNPE
and remain in storage until the processor completes
execution. For more information about the follow-
ing tables, see index entry Data Area Formats.

® Header Area. Used for passing the header of the
listing from phase to phase. Accessed through
COMARA.

® Printer DTF. Used by all output phases.
Accessed through COMARA.

® Printer Buffer. Used as a properly aligned print
buffer (X'7C’) boundary.

Register Conventions

1. The processor uses Index Register 1 as the communica-

tions register. XR1 points either to the Communica-
tions Area (COMARA) or to the Common Area
(COMMON}) at all times. When it points to COMARA,

3-2

XR1 has the symbolic name CAP; when it points to
COMMON, XR1 has the symbolic name CMP. Each
of these two communications tables contains the
displacement of the other, so XR1 can be switched
from one to the other with one instruction. At the
entry to each phase except SCGNIN, XR1 points to
COMARA. The first instruction of each phase moves
the phase name to COMARA so that COMARA
always contains the name of the current execution
phase.

2. Index Register 2 is used as a DTF pointer, base

register, and work register. The symbolic name of

XR2 for each case is DTF, BR2, and WK2, respect-
ively. The content of XR2 at the entry to a phase

is unpredictable.

Work File (SWORK2)

The work file is a scratch file used by the processor for
intermediate storage (on disk storage drive). Data is
passed back and forth between the work file and processor
phases throughout execution of the processor.

Source File ($SSOURCE)

The source file is used by the processor for storing the
source program. |t provides source records for §CGNCM
and $CGNPS. The source file is loaded before execution
of the processor.

Object File (SWORK)

The object program produced by the language processor
is written to the object file by SCGNPE and $CGNPS.
$CGNSX passes control to the Overlay Linkage Editor to
put the object file (module) in the object library.

ILLUSTRATED OVERVIEW

Diagram 3M.0010 shows the main storage load structure
for each phase in the processor. It also indicates which
areas remain the same from one phase to the next and
which areas are overlaid with different code.

Diagram 3M.0020 illustrates the overall flow of logic and
data through the processor. The logic flow is traced from
phase to phase, with the major functions of each phase
listed under the name of the phase. The data flow is
traced between phases and the work, source, and object
files. Any output produced by a phase is indicated as
data flow.

uofiesadQ 40 POyl

€€

Load Order me—————

area

$CGNPE
code

S

Disk
1/0
buffers

area

$CGNPS
code

Disk
1/O
buffers

| EE—
COMARA COMARA COMARA COMARA COMARA COMARA COMARA COMARA COMARA
COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON
CAM CAM CAM CAM CAM CAM CAM CAM CAM
$CGNIN $CGNCM $CGNSB $CGNSF $CGNSS Printer Printer Printer Printer
code code code code code data data data data
_ ~ F management management management management
Disk Disk Disk Disk Disk .
1/0 1/0 /0 - 1/0 1/0 Printer Printer Printer Printer
buffers buffers buffers buffers buffers communication communication communication communication
area area

———
$CGNBX
code

Disk

/0
buffers

$CGNSX

code
I—————
Disk
1/0
buffers

Note: Two dark lines are shown in each phase. The area between the lines is newly
loaded by the phase. The area above the first line and below the second remains
the same as it was for the preceding phase.

{AlUQ ZL Pue ‘0L ‘S SIOPOIN) 403eIeUaE) dOS BY). 10} 8an3oNAS peoT ebieioig ule “0L00'INE weibeiq

A

(AIUO Z| pue ‘L ‘8 SIBPOW) 403e48USD) JIS BY2 Ul MO|4 BIEQ PUE [00U0D *(Z 4O | MEd) 0ZOO'WE weibeig

Source
file
\ ($SOURCE) \ Work Work
file ‘—7 file
Work (SWORK2) l (SWORK2)
file ’ l ‘
i ($WORK2) i (I J | /N
\ V4 \
[———>| SCGNIN $CGNCM $CGNSB SCGNSF SOGNSS
Start ® Initializes the ® Reads and proc- ® Reads intermediate ® Reads and proc- ® Substitutes
generator processor. esses all source text and builds esses intermediate symbol values
via ® First phase statements. symbol table. Symbol text after point of into term records
//LOAD i table overflow in SCGNSB. in intermediate
$CGDRV o galnl ® Decodes and tests . ® Assigns location text on the
atement control. source statements. counter values. ® Adds symbol table <1':.‘> Symbol work file.
found to work file if table
® Builds interme- ® Updates control cross reference 7S ® Builds an
diate text on the records and requested. ESL table.
work file. error records on
work file. ® Output to work ® Adds symbol
ol i —_—
AN file. téblg to work
file if cross
ference
Symbol Last {or only) symbol table found : eurested
table a :
Legend
wemmm—p Control flow Note: If an unrecoverable error occurs in any phase,

end of job (EQJ) is called.

———— > Data flow

uogetedQ o poyiely

g€

(Ajuo 21 pue

‘01 ‘8 SISPOW) 101818USD dOS 843 U} MO|4 EIe Pue [013U0D *(Z JO Z Med) 0Z00'WE wesbelq

From

$CGNSS
ﬁ

~ ' 7 7 / 7 7/ 7
Work Source V\.lork Work Work
file file file file file
(SWORK2) ($SOURCE) (SWORK2) (SWORK2) (SWORK2)
$CGNPE $CGNPS $CGNBX $CGNSX Overlay linkage

® Prints ESL table. ~

® Puts out ESL
records to object.

ESL listing

Legend

) Control flow
————> Data flow

Reads source file
to generate source
portion of listings.

Reads the work
file intermediate
text to generate
object program.

I

Builds a cross
reference from the
intermediate text
and the symbol
table in the work
file.

Sorts the file built
by $CGNBX.

Generates Cross
reference listing.

editor ($OLYNX)
@ (Catalogs object program . @

as requested.

i

Source object
listing

Object file
($WORK)

Obiject file
(SWORK)

Cross reference
listing

Note: If an unrecoverable error occurs in any phase,

end of job (EQJ) is called.

Program Organization

This section describes in detail each of the phases and
routines that perform the functions of the SCP Generator.
The description of each phase consists of a main storage
map, appropriate flowcharts, and supporting text derived
from prologues in the phase listings. This text is intended
only to supplement the flowcharts (some of the simpler
routines within each phase do not have flowcharts).

Processor Initialization Phase (3CGNIN — PID Name is
$CGDRYV)

ENTRY POINT: INI00O — entered from DSM scheduler.
(See IBM System/3 Disk Systems System Control
Program Logic Manual, SY21-0502.)

MAIN STORAGE MAP: Figure 3-1.

CHART: BA

FUNCTION: Initializes the processor {INIOOO — Chart BA).

INPUT: Opened files — $SOURCE, $WORK, and $WORK2.

OUTPUT: Communications Area (COMARA) and Compiler
Access Method (CAM).
EXITS:
— Normal: Control is passed to $CGNCM.
— Error: Control is passed to the DSM scheduler via
Halt/Syslog or EOQJ transients. (See /BM System /3
Disk Systems System Control Program Logic Manual,
SY21-0502.)

Resident supervisor

$CGNIN
Communications area (COMARA)
Common area (COMMON)
Compiler access method (CAM)

INI000

Working storage/constants

Disk buffers

Figure 3-1. Main Storage Map of $CGNIN

36

Source Compression Phase (CGNCM)

ENTRY POINT: CMIOO00 — entered from $CGNIN via
Fetch. (See /BM System /3 Disk Systems System
Control Program Logic Manual, SY21-0502.)

MAIN STORAGE MAP: Figure 3-2.

CHARTS: BB - BH

FUNCTIONS:

— Initializes $SCGNCM for processing (CMI000 -
Chart BB).

— Controls $CGNCM processing of source records,
including sequence checking if requested {CMP0OO —
Chart BB).

— Tests name field (CMNOOO — no chart).

~ Writes a control record and a name record if a valid
symbol is present (CMUOOO — no chart).

— Performs actions required when $CGNCM processing
is completed (CMLO0OO — Chart BG).

— Fetches $CGNSB (CMLO0O — no chart).

— Determines the operation code specified on the
current source statement (CMOOO00 — no chart).

— Determines if a referenced byte contains either a
valid alphabetic or numeric character (CMCO000 —
no chart).

— Searches a source record; records following informa-
tion in COMMON.

1. Length of name (if present).

2. Column number of rightmost byte of operation
code.

3. Length of operation byte.
4, Column number of leftmost byte of operand.
5. Length of operand field.

6. Column number of rightmost byte of operand
{CMS000 — no chart).

— Converts zoned decimal strings to binary equivalents
(CMV000 -- no chart).

— Decodes and tests the syntax of the operand field of
the current source statement for proper syntactical
coding (CMY000 — Chart BC: see also Figure 3-3.
Syntax Checking).

— Determines if the operand format set by CMYO000.is INPUT:

valid for the current type of source statement — Source file ($SOURCE). Source records are read
{CMX000 — no chart). from $SOURCE with disk data management.
— If operand format is valid, sets up operand byte in — Common Area (COMMON). This area remains in
the intermediate text control record build area main storage from $CGNIN.
{CMX000 — no chart). — Operation Code Table. Contains information about
— Determines object length (in bytes) of current all instructions supported by the processor. This
machine source statement (CMR0O0O — no chart). table is divided into five sections, each of which can
— Prepares each term in the operand field for CMD0O0O be accessed by means of pointers containing the
by searching for the end of the current term and address of the rightmost byte of the first mnemonic
temporarily placing a blank in that byte (CMKO000 — in that section. (Each pointer also contains a one-
Chart BE). byte count of the number of mnemonics in the
— Creates intermediate text term record for each valid section.)
term in the operand field of the current source
record (CMDOOO — Chart BF). 1. Section 1, all one-character mnemonics.
— Processes all assembler operations (CMAOQO —
Chart BD). ' 2. Section 2, all two-character mnemonics.
— Creates intermediate text term records for the
operand field of the TITLE and DC statements 3. Section 3, all three-character mnemonics.
(CMAOQ00 — Chart BD).
— Provides interfaces with data management for disk 4, Section 4, all four-character mnemonics.
operations (CMW000, CMW010, CMW020, CMWO030,
CMW100 — Chart BH). 5. Section 5, all five-character mnemonics.
Resident supervisor _ The operation code table is loaded with $CGNCM.
It is included as input here because it is used by the
Communications area (COMARA) phase as a model to which source records are compared.
Common arza (COMMON) OUTPUT:
Compiler access method (CAM) — Intermediate text in the work file (SWORK2).
Intermediate text records are written in SWORK2
$CGNCM with disk data management.
— Parameters stored in COMMON.
CMI000
CMP000O 1. TITLEN, name from the first title statement.
CMNOOO
CMUO000 2. MODULE, module name from the start statement.
CMLO000
CMOO000 3. SEQCNT, count of sequence errors.
CMCO000
CMS000 4. ESLCNT, count of ESL table entries.
CMV000 '
CMYO000 EXITS:
CMX000 — Normal: Control is passed to $CGNSB.
CMRO0Q0 — Error: Control is passed to the scheduler via Halt/
CMKO000 Syslog or EQJ transients. (See /BM System /3 Disk
CMDOO00 Systems System Control Program Logic Manual,
CMAO000 SY21-0502.)
CMWO000

Operation code table

Disk buffers

Figure 3-2, Main Storage Map of SCGNCM

Program Organization 3-7

Acceptable syn-
tactical possi-

bilities for
currently
loaded
Any non-
Branch sible syntactical End of Left Right
table 2 Expression(s) element field parentheses comma parentheses
1 START "Record element | Error Error Error Error
start. Load
branch table 2
2 X Continue Compute and Compute and Compute and Error
store element store element store element
length return length load length load
branch table 3 | branch table 1
3 X(Record element | Error Error Load branch Error
start. Load table 4
branch table 7
4 X{, or Record element | Error Errof Error Error
X(X, start. Load
branch table 5
5 X(X,X Continue Error Error Error Compute and
or store element
X{,X length. Load
branch table 6
6 X{X,X) Error End of Error End of Error
or unless DC/DS | operand, unless DC/DS | operand,
X(,X) end of field not end of
or X{X) field
7 X{X Continue Error Error Compute and Compute and
store element store element
length. Load length. Load
branch table 4 | branch table 6
Notes:

(1) Acceptable syntactical possibilities are listed across the top of the table.
(2} Reading across from each Branch table number the action taken is indicated in the case of each syntactical
possibility. (Example: In Branch table 1, only a non-syntactical element is acceptable. All other possibilities
will cause an error bit to be turned on in the error record build areas.
(3) For each Branch table number, the Possible expression column shows the format that the operand being tested
will be in up to that point.
(4) A non-syntactical element in an operand is a character or series of characters other than the parentheses and
commas which form the syntactical elements. (Example: X(X,X) ... The Xs are non-syntactical elements.)

Figure 3-3. Syntax Checking

3-8

Symbol Table Build Phase ($CGNSB)

ENTRY POINT: SBIO00 — entered from $CGNCM or

$CGNSF via Fetch. (See /BM System/3 Disk Systems
System Control Program Logic Manual, SY 21-0502.)

MAIN STORAGE MAP: Figure 3-4.
CHARTS: CA —-CK
FUNCTIONS:

Initializes phase for processing (SBI000 — Chart CA).
Controls processing of the intermediate text file
until end of data is found (SBPO0O — Chart CB).

Performs functions associated with phase termination
(SBLOOO — no chart).

Performs $CGNSB processing of machine instructions.

Symbols are placed in symbol table (SBM00O —
Chart CC).

Test DC/DS specification for valid length and for
duplication; stores symbol (if present) in table
(SBD0OOCO — Chart CD).

Performs $CGNSB processing of ORG and EQU
statements (SBO000 — Chart CE).

Processes START statements (SBSO00 — Chart CF).
Processes EXTRN statements (SBEOQO — Chart CJ).
Updates location counter by object length of current
statement (SBCO00 — no chart).

Checks for overflow of storage {SBC000 — no chart).
Checks maximum location counter value (SBC000 —
no chart).

Evaluates all expressions in the operand field of the
current source record (SBV00O — Chart CG).
Performs multiplication calculations (SBX000 — no
chart).

Moves symbol and its attributes to symbol table
(SBY00C — Chart CH).

Counts symbols in table; controls calling of $CGNSF
when table overflows (SBY000 — Chart CH).
Searches symbol table for a given symbol (SBRO0CO —
Chart Cl).

Provides interfaces with data management for disk

operations (SBW000, SBW010, SBW100-— Chart CK).

INPUT: Intermediate text in $WORK2,

1.

2.

Name Records. Used to build symbol table.

Control Records. Used to obtain lengths for
location counter assignments and to assign symbol
lengths, attributes, and values.

Term Records. Used to obtain length allocation
for DC/DS statements, location counter changes
for ORG statements, and symbol length,
attributes, and values for EQU statements.

OUTPUT:

Symbol Table. Built in lower main storage and
designed to fill all space between phase code and
disk buffers.

— Symbol Table Parafneters in COMMON. Used by
$CGNSF and $CGNSS to access symbol table.

EXITS:
— Normal:

1. Control is passed to $CGNSF on symbol table

overflow.

2. Control is passed to $CGNSS when last (or
only) symbol table is processed.

— Error: Control is returned to scheduler via Halt/

Syslog or EOJ transients. (See /BM System/3 Disk

Systems System Control Program Logic Manual,
SY21-0502.)

Resident supervisor

Communications area (COMARA)
Common area (COMMON)
Compiler access method (CAM)

$CGNSB

SBI000
SBP00O
SBLOOO
SBMO00
SBD000
SBO000
SBS000
SBE00O
' SBC000
SBVv000
SBX000
SBY000
SBR0O0OO
SBWO000O

Symbol table

Disk buffers

Figure 3-4. Main Storage Map of $CGNSB
Symbol Table Overflow Phase ($CGNSF)

ENTRY POINT: SFI000 — entered from $CGNSB via
Fetch. (See /BM System/3 Disk Systems System
Control Program Logic Manual, SY21-0502.)

MAIN STORAGE MAP: Figure 3-5.

CHARTS: DA -DD

FUNCTIONS:

— Controls processing of the intermediate text in
SWORK2 (SFPO0O0 — Chart DA).

Program Organization

39

— Processes intermediate text term records, resolving Symbol Substitution Phase ($CGNSS)
all symbols defined in the current symbol table

(SFTO0O — Chart DB). ENTRY POINT: SSI000 — entered from $CGNSB via
— Tests name records for previously defined symbols Fetch. (See /BM System/3 Disk Systems System
(SFNO0O — Chart DC). Control Program Logic Manual, SY21-0502.)
— Searches the symbol table for a given symbol MAIN STORAGE MAP: Figure 3-6.
{SFS000 — no chart, but same as SBROQO in CHARTS: EA — EE
$CGNSB — Chart Cl). FUNCTIONS:
— Provides interface for disk data management — Initializes phase for processing (SS1000 — Chart EA).
(SFWOO00 — Chart DD). — Controls phase processing (SSPO00 — Chart EB).
INPUT: — Performs functions associated with termination of
— Intermediate text in $WORK2. ' $CGNSS (SSLOOO — Chart EC).
— Symbol table.

— Tests term records for unresolved symbols and

— COMMON symbol table parameters. resolves those symbols in the current symbol

OUTPUT: All output is to WORK2. table (SSTO0O — no chart, but same as SFT000 in
. $CGNSF -- Chart DB).
1. Intermediate text. — Builds ESL. table entries for valid EXTRN and
ENTRY statements (SSE000 — Chart ED).

a. Symbols in the term records that are defined in — Adds EXTRN and ENTRY entries to ESL (SSUOOO _
the present symbol table are updated with the no chart).
symbol’s value and attributes.) — Searches symbol table for a given symbol (SSS000 —

b. Name records containing previously defined no chart, but same as SBRO0O in $CGNSB — Chart Cl).
symbols are updated with a previously defined — Provides interface for disk data management (SSW000 —
symbol indicator. Chart EE). =

INPUT:

2, Symbol Table Entries. If a cross reference has — Symbol table in main storage.

been requested, all symbol table entries are added — Associated symbol table parameters in COMMON.
to the end of SWORK2. — Intermediate text in SWORK2.
EXITS: OUTPUT:
: . - . — All term symbols that are defined in the current
- gz\:’;‘::;gz:::ﬂgw passed to SCGNSB for continued symbol table are updated with their values and
— Error: Control is returned to the scheduler via Halt/ attributes in the intermediate text,

- bol Table Entries. If -ref e has been
Syslog or EQJ transients. (See /BM System /3 Disk Symbol Table Entries a cross-reterenc

A) requested, all symbol table entries are added to the
Systems System Control Program Logic Manual, end of SWORK2.

SY21-0502 — ESL table passed to $CGNPE.
Resident supervisor EXITS:
— Normal: Control is passed to $CGNPE.
Communications area (COMARA) — Error: Control is returne.d to the scheduler via
Common area (COMMON) H?It/Syslog or EQJ transients. (See /BM S){stem/.?
Compiler access method (CAM) Disk Systems System Control Program Logic Manual,
SY21-0502.)

$CGNSF

SFP0O00

SFT000

SFNOO0O

SFS000

SFWO000
Symbol table
Disk buffers

Figure 3-5. Main Storage Map of $CGNSF

3-10

Resident supervisor

Communications area (COMARA)
Common area (COMMON)
Compiler access method (CAM)

$CGNSS

SS1000

SSP00O

SSLO00

SSTO000

SSE000

SSU000

SSS000

SSwW000

ESL table build area

Symbol table

Disk buffers

Figure 3-6. Main Storage Map of $CGNSS

ESL Output Phase (SCGNPE)

ENTRY POINT: PEI000 — entered from $CGNSS via
Fetch. (See /BM System/3 Disk Systems System
Control Program Logic Manual SY21-0502.)

MAIN STORAGE MAP: Figure 3-7.

CHARTS: FA — FF

FUNCTIONS:

— Initializes SCGNPE (PE1000 — Chart FA).

— Sorts, builds, and writes out ESL object records
(PEPOO0 — Chart FB).

— Prints the ESL table (PES000 — Chart FC).

— Performs functions associated with termination of
the phase (PELO0OO — Chart FD).

— Prints the printer listing header and counts pages
(PEGOQD — no chart).

— Provides interface for disk data management
(PEWO00 — Chart FE).

— Provides interface for printer data management
(PEROQO — Chart FF).

INPUT:

_ ESL table moved below phase end by SCGNSS.
— Parameters in COMMON.

1. ESLCNT, contains a count of ESL table
entries.

2. MODULE, module name.
3. TITLEN, TITLE name.

4, ESLTBA, ESL tap!’evadg:iress.

OUTPUT
ER 'ESL object records are placed in the $WORK.
= ESL table is sorted, then printed.
"= The following information is passed to $CGNPS
“via COMMON:

X 1 v PAGCNT, current printer page size.
2, LPSIZE, current printer line size.

3. Other miscellaneous areas of COMMON are
e - initialized.

e Llstlng header in the printer communications area is
mltlahzed for the source/obiject listing done in SCGNPS.

CEXITS:

** ~-Normal: Control is passed to $CGNPS.

- Error: Control is returned to the scheduler via
";‘Halt/Syslog or EOJ transients. (See /BM System/3
Dlsk Systems System Control Program Logic Manual,
’f'WORKING STORAGE BLOCK: Contains all working
storage and data constants that are required by
$CGNPE and are not in the communications area.

Resident supervisor

- Communications area (COMARA)
| Common area (COMMON)
- Compiler access method (CAM)

o Pfinter data management

$CGNPE
- " Printer DTF

" -~ Header block
- .Printer buffer
PEI000
PEP00O
: PES000

- PELO0O
- PEG000
~-PER00O
. PEW00O
“* Working storage

: Disk buffers

re 3-7. Main Storage Map of $CGNPE

Program Organization ~ 3-11

Source/Object Output Phase ($CGMPS)

ENTRY POINT: PSI000 — entered from $CGNPE via

Fetch. (See /BM System /3 Disk Systems System
Control Program Logic Manual, SY21-0502.)

MAIN STORAGE MAP: Figure 3-8.
CHARTS: GA — Gl
FUNCTIONS:

Initializes $CGNPS for processing {(PSI000 — Chart GA).

Controls processing of intermediate text file until end
of data or end of file is reached (PSCO00 — Chart GB).
Searches for control records; puts error code in

listing if any errors are found (PSK000 — no chart).
Performs functions associated with termination of
phase (PSTO00 — Chart GC).

Puts object code in $WORK (PSH000 — Chart GD).
Converts binary data to hexadecimal representation
{PSX000 — no chart).

Evaluates the expressions in the operand field of the
current source record (PSE000 — no chart, but the
same as SBV00O in $CGNSB — Chart CG).

Initializes PSZ000 at the start of the phase and for
every ISEQ start request (PSY000 -- Chart GE).
Performs all editing of the print image required by
the line printers: 132 column printer, 120 column
printer, and 96 column printer (PSZ000 — Chart GE).
Controls page size of printed output (PSPO00 —

no chart).

Counts pages (increments page count parameter) and
prints current header (PSG0O00 — no chart).

Performs binary multiplication operations (PSM00O —
no chart).

Processes machine instructions, translating them into
object code (PSS000 — Chart GF).

Processes Group 1 instructions: DROP, ENTRY, EQU,
ORG, START, USING (PSB000 — Chart GG).
Processes Group 2 instructions: DG, DS, EJECT,
END, EXTRN, ISEQ, PRINT, SPACE, TITLE
(PSA000 — Chart GH).

Provides interface for printer data management
(PSRO00 — no chart, but same as PEROQO in
$CGNPE — Chart FF).

Provides interface for disk data management
{PSW000 — Chart Gl).

INPUT:

$SOURCE
Intermediate text in $WORK?2,

OUTPUT:

Printer listing of the source statements and any
object code generated by them if LIST is specified.
Object deck is placed in $WORK.

EXITS:

3-12

Normal: Control is passed to $CGNBX if XREF, to
$CGNSX if NOXREF,

— Error: Control is passed to the scheduler via Halt/
Syslog or EOJ transients. (See /BM System /3 Disk
Systems System Control Program Logic Manual ,
SY21-0502.)

WORKING STORAGE BLOCK: All required working
storage that is not in the communications area
resides in this block.

CONSTANT BLOCK: The constant block is loaded into
the area immediately following the initialization
routine (PS1000); it is moved into COMMON when
the phase is initialized.

Resident supervisor

Communications area (COMARA)
Common area {COMMON)
Compiler access method (CAM)

Printer data management

Printer DTF
Header block
Printer buffer

$CGNPS
PS1000/working storage®
Constant block
PSC000 .
PST000
PSK000
PSH000
PSX000
PSE000
PSY000
PSZ000
PSP0O00O
PSG000
PSM000
PSS000
PSB000O
PSAO000
PSR0O00
PSW000

Disk buffers

*PS1000 and its associated constant block occupy the same
storage as SCGNPS working storage.

Figure 3-8. Main Storage Map of SCGNPS

Build Cross Reference (XREF) File Phase ($CGNBX)

ENTRY POINT: BXI000 — entered from $CGNPS via

Fetch. (See /BM System/3 Disk Systems System
Control Program Logic Manual , SY21-0502.)

MAIN STORAGE MAP: Figure 39.
CHARTS: HA -- HF
FUNCTIONS:

Initializes phase for processing (BX1000 — Chart HA).
Controls the building of the XREF sort file (BXP0OOO —
Chart HB).

Performs functions associated with termination of the
phase (BXLOOO — Chart HC).

Moves records from the work area to the XREF file
build area (BXMO0O — Chart HD).

When XREF file build area is full, branches to BXS000
for sorting, then branches to BXW100 to write blocks
to the XREF sort file (BXM000 — Chart HD).

Sorts the contents of current block in XREF sort

file build area (BXS000 — Chart HE).

Provides interface for disk data management

(BXWOO00 — Chart HF).

INPUT:

Intermediate text contained in $WORK2.
Symbol tables contained in SWORK2.

QUTPUT:

XREF sort file.
COMMON fields:

1. XRPIMG, print image area blanked.
2. XRBLKC, count of blocks in sort file.

3. XRPASC, count of passes required to merge
the file.

4, XRFRST, relative sector address of first block
in file,

5. XRLAST, relative sector address of last block
in file.

6. XRAVL1, sort file availability table is cleared.

Listing header area is initialized for cross reference
listing.

EXITS:

Normal: Control is passed to SCGNSX.

Error: Control is returned to the scheduler via
EOJ. (See /BM System/3 Disk Systems System
Control Program Logic Manual, SY21-05602.)

Resident supervisor

Communications area (COMARA)
Common area (COMMON)
Compiler access method (CAM).

Printer data management

Printer DTF
Printer buffer
Header block

$CGNBX

B8X1000
BXP0O0O
BXLO0O
BXMO000
BXS000
BXWO000
Constant block
Working storage

Disk buffers

Figure 3-9. Main Storage Map of $CGNBX

Merge and List Cross Reference Phase (3CGNSX)

ENTRY POINT: SX1000 — entered from $CGNBX via

Fetch. (See /BM System/3 Disk Systems System
Control Program Logic Manual, SY21-0502.)

MAIN STORAGE MAP: Figure 3-10.
CHARTS: 1A - |E
FUNCTIONS:

Initializes phase for processing (SX1000 — Chart 1A).
Controls the merging of the X REF sort file (SXS000 —
Chart 1B).

Controls the moving of records from the input areas
to the output area (SX0O000 — Chart IC).

Controls the writing and chaining together of output
strings and the reading of chained input strings
(SX0000 — Chart IC).

Creates the XREF listing at the last pass of the sort
file merge (SXLO0O — Chart D).

Performs functions associated with termination of
the phase (SXT000 — Chart IC).

Provides the interface for reading to and writing
from the sort file (SXW000 — Chart 1E).

Program Organization 3-13

— Prints the header for the printer listing and counts r

pages (SXGO0O - no chart). | Resident supervisor
— Controls page size of printed output (SXP0O0O — o
no chart). | Communications area (COMARA)
— Converts binary numbers to decimal (SXV000 — . Common area (COMMON)
no chart). | Compiler access method (CAM)
— Provides interface for printer data management
{SXR0O00 — no chart). | Printer data management
INPUT: .
— XREF file. : =] Printer DTF
— COMMON parameters: AL Printer buffer

Header block
1. XRPIMG, print image area blanked.

SCGNSX
2. XRBLKC, count of blocks in file.
e SX1000
3. XRPASR, number of passes required to merge SXS000
file. S SX0000
: . . SXL000
4 XRFRST, C/S address of first block in file. - . e SXT000,
- SXW000
b. XRLAST, C/S address of last block in file. SXG000
SXP000
— Listing header in block. SXV000
OUTPUT:) SXR000
— Cross reference listing. Constant block
— Error summary statements of error counts, ‘ Working storage
EXITS:
— Normal: Co Disk buffers
1. If object output exists, control is passedto- Figure 3-10. Main Storage Map of $CGNSX
$OLYNX of the Overlay Linkage Editor. (See
IBM System/3 Overlay Linkage Editor and =~
Checkpoint/Restart Programs Logic Manual, - Compiler Access Method (CAM) -
SY21-0530.) - o
. ENTRY POINT: CAMOO1 — can be accessed through
2. If no object output exists, control is returned © COMARA by any phase (CAM resides in $CGNIN).

to the scheduler via EQJ. (See /BM System/3”~ "
Disk Systems System Control Frogram Logic .
Manual, SY21-0502.) : :

CHART: JA

- Retrieves up to 255 sectors at a time according to
RS Tt a library relative sector number.
WORKING STORAGE BLOCK: All required working - — Loads up to 255 sectors at a time according to a

storage not in COMMON resides in this block. = ... binary relative sector number.
CONSTANT BLOCK: All required constants that are not - INPUT: $SOURCE and $WORK2.
in COMMON reside in this block. - OUTPUT: $WORK and $WORK2.

"o+ BXIT: Returns to caller.

INTI000
Rk AR KRRk KR
* *
* ENTER :
Fokok A ok Rk KK

P S L L L L LE L
* *
* COMPUTE FILE *
* PBLOCK SIZES :
*

*
tﬁ**l#*##!#t*t**t

SE
e LI 2
* %

* *$SOPEN O

)4
* *THE_SOURC
* x FILE

* X
ok ook oK kKK Kok KK

*Q
=)
w
-

T

*

E
*
EN
E

FXE R LS

*

sk kK] ok Rk KR fok KKK

*
*PREPARE SOURCE
: DTF FOR CAM

* % %W

* *
ok AR R R KRR K

ﬁ***‘E‘]**#**’K#*#*
*

*
% PREPARE WORK
* DTF FOR CAM

% K ®

*
ok sk ok ook Aok okook %

Sk & AKP PROR R koK K

*
*PREPARE OBJECT *
: DTF FOR CAN :.

* *
sk ok o A AOK Sk ROk K

‘*G‘I*t***t*
H EXIT b
e 3k o ok Aok ok oK ok Rk
PETCH: __$CGNCH

FETCH IS IN BN SYSTEM/2 DISK SYSTEMS
SYSTEM CONTROL PROGRAN LOGIC MANURL, SY21-0502.

Chart BA. $CGNIN Initialization Routine (IN1000)

Program Organization 3-15

CMI000
HEAKR Rk ok KK ok
*
* ENTER *
*

*
ok ok ek oK R KK ko

Ak kKB] kKK Rk ko kK

* *
* INITIALIZE *
* PHASE *
* *
* *
R KR ok KKK
* kK
* *
* C1 %>
* *
* ok
CHMPOOO H/01/B4
ttt#*c1*tt***t *kK
"'CH 100 *
*

* READ A SOURCE
RECORD

*
t‘*t‘**‘tt*#*

HEARKD | ko okok Rk KKk
* *
* CLEAR CONTROL *
* RECORD *

* *
i*“***##**‘#**t*

ti#ttg1ttttttmtt*

.
‘CHECK SEQUENCE :
*tt**ttl*t*t**#*#
CMPO10 cMp
FEARKE 1A R ok
* *
* COUNT THE *
* SOURCE *
: STATEMENTS :
KA A AR K Kok K
o ¥, NO CHART
G1 . A G kKK KOk
-* *. "CHUOOO *
o *, YES A ——————k
, COMMENT o K) "RITE CONT‘?OL *
- ok RECORD *
*, o %
¥ FHRER AR A AR g
* NO
Rk
* *
=>% C1 *
xRk * *
* * ook
: A3 : CHMPOUO
ok KR 24K K K
*
M ENTER e .
AR AR K K
NO
y
HoARR
*
* F5
*
L L 1]

ok ok
*
* AT x
*
k&

NO CcHppm
v ELLL PR TS
"CMGOOO :

]’DFH"‘IFV SOURCE
: BPECORD FTELDS *

#******t*****t-ﬁ**

V_NO CHpp™
FodOK kK B Y ok ok ok ok Aok K
*cnoooo *

SLATE
*OPFRATION CODE *

t******ﬁ*****

B
*
*
*

AR AR C ek Kok
*CHNOOO

R

*

*

*

"‘ PROCES‘; NA"IF‘ *
FIELD *

t *
*

A KRR KOk K

& BC/01/A1 CHMEQQO
HHAKAD Tk dk Rk B
*CMYO 0 * Ak K D) 6 okokoR ok Hee ek ok
............. * *
*DECODENODFRAVD : : ENTER
A A AR Ak
AR AR KK K R
i Rk
* *
* B[S kad
* *
l Rk
¥ NO cHaPT
E3" Tx, b T EEE T T T M HEIAKES Kk kA RA KR K
o ¥ *, *CHUOOO *
«* SYNTAX *e JBS keeeodo & "‘ WRITE EPROR
*, ERROP D)‘K“TTF CONTROL/ *—-*-----)* RECORD
“.* *.‘ NAMF RECORD * *
T AR R KAk oK K KA A KA AR A K
* ¥O
kx|
* *
, * F5 %>
* *
v Ak
030 X, HART cHP0S0 ¥,
R T, AR Bl AR AR K K F5 %,
o *. 0 o* *.
. MACHINE *_ YFS m— . % END *.
., OPERATION [#-=lo—___ > TEST OPERAND * *. STATEMENT
*. . * FORMAT * *, o
*, . * *. o*
% R AR A A KA AAA A *, %
* NO l * YES
BD/01 /A1 NO CHART
bbb R L L L T T T 4 AKEARG U Aok A
*CHA00D * *CHROGO * KKK G ok Ak Kk
e e e K -----—‘Q--—-W-* *
‘ PROCESS * "‘ FIND * * EXTT
* ASSEMRLER * " TNSTRUCTTON * *
X INSTRUCTTON LENGTH * A A A AR AR A K
HRRE K HAK oA AR K t***t#*#lt*t**tt*
TO: CMLO00 ROUTINE
NO CHART
AR Kok K oAk ok Kk
*CHT!OOO :
mem————D "'F‘RT"'E CONTROI/ *
: NAKE RECOPDS :
FAAAAAK A AR K A K
|
‘l 1
¥, l BE/O1/A2
a3 Tk, bbbt ELE T Ay
. *, *CHKOOO *
ox ANY AT o =t -*
. ERRCRS ‘.(—--*--—-*UV"ACKI%PERA"D *
. L
L at#*tttt*tt*tt***
* YTS
* Aok ok
* l *
* =>% ES %
*
Kk

Chart BB. $CGNCM Initialization Routine (CM1000) and Main Control Routine (CMP000)

3-16

*

*

LEE T2

*

i

*

cMyY000
Fokok] R kool Kok K
* ENTER z
kR ok ok oK Kok ok

Hok kKR R ok SRRk

* %

* INITIALIZE

»*
2 X2

*
st ok ok ok teokokoK ok Rk Kok K

*lti*cﬂ******#**#

SET POINTERS TO
: OUTPUT TABLES *

*l**#t****#******

ok dok R) 3 RAORAOK K oK K

LOAD BRANCH
TABLE 1

EXT T2 X
% R

st o ok ok Ak Aok ok fokokok K

t#*#tE1*it*tw# *

*:
*SET POINTER TO
: OPERAND FIELD

*
*
*
*
e
* *
ek ok ko Aok ook ok ok ok R
ok k

*002%

1GH >

***ﬁ

SYNTAX

AN; OTHER LINE 1
CONDITION

END OF | JLINE 2
FIELD

LEFT ,LINE 3
PAFEN

COHHA |LIHE 4
RIGET ILIHE 5
N |

- b oty

BPAWCH TABLE 1

LINE CHAFT
NOMBER (REF

i 5 "i‘ﬁ%-ci'

——————

BRANCH TAHLE 2

1IN, |CHART
FUMBER (REF

Chart BC (Part 1 of 2). $CGNCM Operand Syntax Ch

EEE L]

ok R 2K K R AR ROk K
* SAVE ELEMENT
: START

¥ ¥ ¥ H

*
s ok ok ek ok ROk ok Kok K

kR 2k A AR
LOAD BRANCH
TABLE 2

* % K *

*
*
*
*
*
*
*

o e ok e ok et ok ok e ek ok

ARk

* KAk

ok koA kT 2 ROR Rk kKRR R

INDICATE R
ELEMENT

EXZ 22
KRN

koK KR R AR K KK K
* Rk

* *

L=S% GR *

PErTs

..... m——————

'BRANCH TABLE_R_

LINE CHAR*
NUHBFF FEF

Hok kK
*

* R3 *

EEAE

t*njt**tx##
INDICATF A OR I
ELENE

*
t**********

*****c?**x*i*:t*r
COHPUTW FLFHFNT
LENGTH

*
*******'i*******t

o ek ok ok

*kkk
*
* F3 %
LEE L

Aok ok K P 3Kk Kk KK
LOAD BRANCH
TABLE U

EZ X2
IR TR

ok ok gk ROk R K KK

——m———————

ecking Routine (CMY000)

*****Bu*‘**t***t*

I“DICATE L OR I
* ELEMENT *

* *
otk AR AR AR K

v
#tklcu HRAKARE
COMPUTE ELEHFNT

LENGTH

****l#i******t*i*

#**ttgq*tt*x****t
* SAVE EkEHBNT

X T 2]

*
ok ok KA R R OROR R ROk

sekokokok T Aok dokokoR R koK

* *
* LOAD BPANCH *
* TABLE 5 *
* *
* *
R KOK Aok KOO Ok
v
Kk Ak
002
* GUx
x *
*
------ ~mm—m—n
BRRNCH rrlABL
LINV

NUHHFR

FoR AR G KRk KRR AR KK
* SAVE ELEMENT
* START

*ERER

*
ek ke Aok ok kR ok KKK KK R K

LY LI TR L L]

LOAD BRANCH *
TABLE 7 :
*

I XX

sk Aok sk ok K ROk Rk ok KK

Kook kK

1,

Aok KR T AR KOk Ak Rk K
* *
TNDICATE L OR TI
* ELEMERT *

* *
o AR OKOR KR AR KR
ARRE
* G5 *=>

* *

EEEL]
#*t**(stt***xk*tt
COHPU”E EhEHENT

*
#‘*l****'#**l*t!t
*t***ﬂs**t**##*t.
* *
* LOAD BRANCH *
* TABLE 6 *
* *
* *
Aok R AR K AR Aok Aok ok Rk
A koK
%00 2%
* GU*
* %
*

Program Organization

317

3-18

Hookok k.

bl REE DT

* *
* INDICATE D *
* ELEMENT *
* *
* *
AR RO ROk ok K

A RC TR AR R ok
*

COMPUTE ELEMENT
: LENGTH :

* *
Ak ok Ak Aok ok ok ok kR ok
xR
* *
* D1 >
* *
kK
Aok D) K ok ko Kok Kok K
* *
* LOAD BRANCH *
* TABLE 3 *
* *
* *
okl R OR oK e ok Kok K

kK k

* *

* G4 *

* *

okok ok

ok

* *
X G2 Kmmma
* *

L L]

*
>x
*

Kok

TO: CMPOOO

. *.
¥ *. YES
*! DC Rl
*, Lk
, o
*, Lk
* NO Hoekok
* *
* D1 *
*
Kk
l*l
c2 *o
ok *-
* *. YES
*. DS Keala
*. .
*, oE
*, %
* N0 kXK
* D1 %
* *
Rk EETTS
* *
* G2 *
* *
ok
01-H1kkkk%01-HY
01~Hg*001*01-K1
01-H3* K3*01-K2
* x
*
Aok A G DAk Ak
* *
SET_SYNTAX *
ERROR *
*
* *
KSR AR KKK Aok
Aok
* *
* HZ *=>
* *
ETITY
AR H 2K KAk Aok
: EXIT
AR AR RO Kok

kK

EE L L

*
* GY Kemm=>
* *

* ¥ RO

D ¥
RO
W #OY
**XW

*

Pt
*

BU *.
¥ *.
« YES «* OPERAND *,
Hmmy *. TABLE FULL .x*
* *, X
*, oK
L
kKK * NO
* * 1
* D1 o*
* *
EETT]
AR CL R A Ak K
* *
« YES * *
.‘---? :COUNT OPERANDS :
* *
& AR AOR K KA K
ER T
* *
* Dt *
* *
Rk

AR D) ko ok ok ok ok ok o o ok
M .

*
*MOVE_IN OPFRANDX
: FORMAT :

* *
ARk Ak Aok o koK ok ok

I -,

.*" END OF

*, *
o FIELD |

*

at

H 0k ok B 1 ok 2 ok ok ok K
*

*
* LOAD BRANCH *
* TABLE 1 *
* *
* *
AR ROR o e ok e e s o ok oK ok
ok
*00 1%

i L]
* INCREMENT

*

*

A A G oK Kk kK

*x

*

* POINTER TO
OPERAND

LE X X X

*
ko X *
ok ok ok kK ROk ok ok K

et
*00 1%
* Pk

Chart BC (Part 2 of 2). $CGNCM Operand Syntax Checking Routine (CMY 000)

Ak Ok
YES _*
Y
*
ok Kk

YES

Dela

ok ok

A kK

*
*
*

CHMAO00

Ao ok koK kK
*
* ENTER *
* *
HeRORoK S0k SR Ak ok ok
¥,
B1 *.
oK *o
NO .* OPERAND -
«=-=%, REQUIRED o X
.. =
*, %
1 YES
. *,
c1 *y *****cz*t********
¥ *a
. OPERAND *, NO SE ROR
*, PRESENT **-—---**)* INDICBTOR FOR ‘--—ﬂ
*. " NO OPERAND
, , *
x, % o AR RO AOK AR R K K
1 YES
-*-
D1 *,
. .
¥ *, YES
*, e o Hmmm o m
*, v
*, ¥ Aok
*, .k *003*
* NO * B1x
l * %
l*-
E1 *
- *a
* *. YES
x, Ds -*-———---q
“x, s vk
*, ok *003%
* NO B1
1 *
4*-
F1 *, Aok feko F 2K Kk ok KRk
¥ * *
. *, YES * *
*. EXTRN T ¥=sam-e=e>% PROCESS EXTRN *
*, ok * *
*, o * *
*, Lk Aok AR AR KA AR KK
* NO
kKK
P Y * *
>% B4 *
*
* ARk
¥,
61 *, ****tgz*tt###t*tt
ox *, *
o* VALID *, NO ERROR *
*, OPERARD **‘------)* INDICAT R_FO
*.*PORHAT *.* *INVALID OPERAND‘
R Aok Aok KRk Kok 3Ok ok
* YES
l DSN—
%,
H1 *, Atk oK] 2% K AR R AR OR
X *, * *
o* *. NO * SET BFROR *
*, EQU o Koy * SWITCH *
N ox * *
*, o * *
*, K FoA kR A K Aok kKoK
* YES ook
*002%
* B1*
* %
* *okorok
* *
* BU *
Aok A KR] koo ok ok K * *
* * Ak

* *
*PROCESS EQUATE *
* *

* *
ek o ok Rk ok Rk ok ok ek ok

*
*

CMAU60
kAR R Bl K
*CMU000

K e = *
>% WOITE CONTROL %
I- * NAME PECORD *
* *
EL e

ot ok ok ok otk kokok ok ok
*

*
BLY *
*
EEESS

ok ok KDl Kok K
*C‘"HOZO

* WRITE SPECTAL
: TERM FTIELD

e ook ook ok ok ek o KoK KKk kK

O s

o *, AR 5k A Aokok Kk K
*

YES *
K teemea >k EXTIT *
*, ok * *
*, K Aok Aok R KK R K
T0: CMEQOO

AR GY K
‘CHKOOO —t

*UNPACK OPERAND *
* FIELD *

o4k e koK ok ok R K K KK K

Qe e

o "%, YES
* pC A

v
ok ok kA

X, % *005%
* NO * A1k
* %

v
AR T)RR KRR AR
*
* EXIT :
o s e ok ok ok ok A ok ok

Chart BD {Part 1 of 5). $CGNCM Assembiler Instruction Processing Routine (CMA000)

Program Organization

319

Hokokok sk

*001%
* Hi%
* x
*
%
B1 *, Ak KKk B 2k ok ok o ook
¥ *. * >
*. YES * PROCESS USING *
* USING .#=-==---->* TINSTRUCTION i
*, X * * K &
*, % A AR AR KR AR *001%
* RO * BY*
* %
1 -
-‘.
c1 *, R Ak (T 2ok Rk oK Aok
-* *. * *
»¥ *. YES ¥ DPROCFSS ORG *
* ORG e¥om——e——=d>% INSTRUCTION Hememmean
. X * * v
*, % * * Aok bk
*, % A R R KOK Rk K *001 %
* NO * BUX
1 *x Xk
PN
D1 *, AR T) 2K KRk ok
o* * *
*. YES * PROCESS TITLE *
, TITLR ‘.---~-~--): INSTRUCTION :—
*, ' * *
L AR AR KK KKK
I NO
¥
E1 *, Ak kKR 28 ok K ok K
% * *
*. YES * PROCESS SPACE *
*, SPACE o ¥mmoecce=>% TNSTRUCTION *-
. ox * * v
*, o * * ook
L AR AR R KKK x007*
* NO * BUx*
* %
1 .
K
Ft *, kAR 20K Ak K ROk
o* *, * *
. ¥ *, YES * *
. EJECT o ¥mw=coow->% TGNORE EJECT H-—vem=w -
*, . * * v
*, ¥ * * K
*, L% ARk R KRR KK KK R *001*
* NO * BY*
* %
l x
. ¥,
G1 *, Aok ok G 2% ok s ok o Rk
) * * *
*. YES * PPOCESS PRINT *
* PRINT sH==memee=dk INSTRUCTION Hmemmme—n
. .* * * v
*, % * * A K
*, % AR AR AR KKK *001*
* NO * R
* %
1 x
-‘.
H1 *, AAORIOKH 200K Aok ok ok
ok *, * x
* *, YES * *
* ENTRY o ¥mmmeemee>% PROCESS ENTRY *m—mm-eca
*, ok * * v
*, X * * ok K
L. AR K K Kk *001*
* NO * BY*x
l * K
LEETS
* *
* By *
* *
ok

Aok
* *
* R4 *
* *
Rk K
.i.
1% *, Aok K D G Ao o ok o AR
oF *, * *
o * *. YES * PROCESS END *
*2 END o¥mmmmeeeed>% INSTRUCTION Hemen
*, o ¥ x *
*, ok * * L
*, o * 3 e okl ok iR ok ok ok ok skeok
* NO ok ok ok
! *001%
* Bk
L]
H
cu” Tk, AR AR RO S Ak AR KR ek
¥ * * *
oK *. YES * PROCESS START *
] START e > "INSTRUCTION *
*, oK * *
*, oF * *
L. 0o ok o o 0K oKk K R
? No
‘ ok
v *00 1%
ok, * Blx
D" Tw, o
¥ *, *
=kl 1580 ok
Tx, S
L
* YES

HR R K R ok KRk K K
*

*
* PROCESS ISEQ *
X INSTRUCTION %e--m---n

v
* * ARk
Ao oK ok Ak kK ok o Ok *00 1%
* BYX

* %
*

A LY K KKK ok K
*

*

* PROCESS DROP *
L==>% INSTRUCTION *
* *

&

*
o Ak K K K oK kK ok ek ok ok K
. !

ke ok ok
*00 1%
* Rlk

Chart BD (Part 2 of 5). $CGNCM Assembler Instruction Processing Routine (CMA0Q0)

3-20

01-D1
Aok ok K
*001%
* B1*
* %
*
CHMAOQ4Y oK.
1 *,
- *,
o * ONE *, NO
*, OPERAND o Kmm————— -;
Tx, Y Aok dok &
* *004*
* YBS * RO*
* *
*

e Ao kG ok ok ko kok koK

* *
* *
* SEARCH TO L *
* *
* *
PP
p1” x,
- .

o* *, NO
*. L FOUND ok=—=—===>
* *

*, o
o X

*,
1 YES
_*

*,

HARAK
00u
* B2*
*

.*’ VAL “*. NO
B S T
*, o ¥ v
x, Lk P
. e X *00u*
* YES * B2*
* &
*
FAK R R ORR R R AOK
* *
* SAVE TYPE IN *
* TERM RECORD *
* *
* *
AR AR R KR K
61" Tx, oK KRG 2 KRR KK AR
ok *o * *
- * *
*, L ~=>%SET VALUE TO 1 *
F D * *
*. o * * M
*, L * e e e ook koK o R K KOk ok ok
* YES
¥O CHART
*****HI*?*‘***‘*‘
*CHVOOO :
' CONVERT TO *
* BINARY :
oA ke ok ok ok o et ok el ok R
x,
J1 *.
o* .,
. VALID *, NO
2 D'JDLIC’\TI gormTmms
ACTOR . v 1
T, Tt 1
w0, % 004 * 1
* YES * B2* \
* K |
1 : |
1
$<_-----_------_-_--------J
*Q
F1 *,
* LEE L]
vps o * *

*FY“PESSIOW *,
*, IENG"H o
.*

*e" N0

___—)t AU x

**#i

Aok A R L ok ook R ko X
*

Kok &k *
* * * SEARCH_TO *
% A4 *—--=D>XEXPRRSSION F¥D *
* * * *
Stk * *
ok Aok e ek ook sk dok ROk ok
¥
BY *.
. *.
VALTD *. NO
#, BYPRESSION g ¥====== -;
Sk, 2 Ak KK
. *00Uu*
* YES * B2
* ok
*
l#l*tcut*********
Aok ok
SAVF EXPRESSION * *
START AND *----)* Gh *
* ENGTH
* ’l**
#*t#****##t
EELEE S VELEEL LEL L LS
Sk * *
* * * SEARCH_TO *
* Dy *w—~-~>% LENGTH FIELD *
* * * END *
ok ok * *
e koK o ok SOK K AOR R ROk oR ok
v
By
E4 *o
. *.
o X VALID *. NO
*. LENGTH oKy
#, FIELD . v
* o¥ ook kK
*, WX *00Uu*
* YES * B2
* *
*
ﬁw:*tput ***t*t*k
SAVE _LENGTH *
FTELD START RND
LENGTH
#******t**#****l*
ok
G *.
EEE L] L .
* * . DC
* Gl k- DC/DS Hmmmmmm
* * . v
Aok kK *, ¥ Aok ok ok
e ok *0NU*
* DS * Rix
] * ®
v
. *,
H4 .
. %o
LI AT .
----- --%, OPFRAND EKND .*
*, o ¥
Hkk Kk *, L
00U L
* R2* * YES
* K \
* |
oK ek
*QQ U *
* FP1%
% ok ok e T 0 okOR KOk ROk K
* * *
1 * SET SPECTAL *
Lommmem > TFbM SWITCH *
* *
* *
k% A ok Kok ok KOk Rk ok &k
at***?ﬂ****i**k**
q“T ”HF "WPAPK '
WT'T K -
v
* * LR RS
ok KRR SRRk ROk YR *ON 1%
* nU*
* K

Chart BD (Part 3 of 5). $CGNCM Assembler Instruction Processing Routine (CMA000)

Program Organization

3-21

AR ARG T ok ok K
. *
* TEST CONSTANT *
: FIELD SYNTAX *
* *
AR AR AN K

*
AR ok ok o o ok e ok ok

SokoRok R

003

* Jix
* %
*

e e ok

*003%)3-R1
J1*02-BY

* % 02-D1

* 03-E1

03-~EU

03-Hy
Aok AR 2k ko ok ok X ok kK
* *
* SET EPROR *
>* INDICAT™OR *
* *
* *
Ao o Sk o ok e o o o o ok ok 4Ok K

AR KK Dk ARk KKk ok
*

SET_ERROR
SWITCH

LZ X}
L2 X 2R

*x
At koK A e ek e sk ok ok kK

Sk Ak
*00 1x
* BlUx

frm—m e —

. v

KA A C L 2 Aok oK K
* *
PUT_A CHARACTER
: IN RECO®D :

By Tk,
x *.
NO .* RECORD .
L~==*.. FILL o
*, 3
*, oE
LI
*"YES
#*#!*Fu*i‘EE{Q;{E
*CHv020 x

L.

- *
:HRTTE A RECORD :
AR ROKAOK R KK K

Chart BD (Part 4 of 5), $CGNCM Assembler Instruction Processing Routine (CMA000)

3-22

* *
FK AR A K KRRk KK
v
ok,
D4 *.
- *,
o % MORE *, WO
*, DATA D it
*, o *
*, X
*, Lk
YES

KA 5 KAk Kok
* *

* *
~-->: SFT ERROR BIT :

* *
e e R K kRO K

AR K G Aok KKK K

: EXIT ;

FRAAA AR Ak A
TO:CME000

BH/01/C1
AR KD G AR R Rk Rk
*CHW020 *

i e e e e

>* *
:HRITE A RFCORD :
A o kR ok o ok ok ok ok

HAKAES KA AR AR K
* *
* EXIT *
* *
AR AARAAORR Ak

TO:CMPOUO

‘-v
.th1 *, Fodokok) 2Ok K AR R R K
.* ADDRESS *. YES * *
~>%, CONSTANT ..*--‘---;->* EXIT :
{ T, L l KRR KRR
L
* O *REK C:CMPOU0
* W * *
001 i * B2 %
o HL* * *
kR k kK
¥
B1 L
o X *.
YES
%, CHARACTER . Hk-====- ‘;
Tk, S Aok K
*, N *004*
* NO * BU*
ok
l *
o ¥ NO CHART
c1 *, FedoHok K C 2K KR ROk KR
o * *CHVOOO *
Lk *, YES [P
, INTEGER o km—mocma=> CONVERT TO *
*. S * BINARY *
*, L * *
. ok P S LI T T
* WO
LS
* *
->% J1 *
* *
LEE L
o ¥,
D1 *.
. *, EE T
ok *, YES _* *
*, DECIMAL o Kmme=Dk ER X
*, * *
*, o ahEk
o
I NO
.*.
_* '* SRR
. NO
* HEX W80k pa k
. . * 0T %
*, oE T
*"YES
———————
*****F1***$****** *‘**#Fﬂ********‘t
* * S
*CONVERT HEX TO * * *CO“VY“T PIN\PY *
* BINARY : : F2 *‘-——>* ‘CONST
* * orxx
ok ARk KRR Rk K ko KRR Ak
o BH/01/C1 ¥,
G1 *, stk G 2 K Rk R Kok G2 *.
. *, *CHWOZO * ¥ *.
«% RECORD *. YES * --------- —-—————k .* RECORD *.
*. FULL oK ——— *, FULL ¥
*, ¥ *“PTTE A RECORD * *, .
*, o % * * *, o ¥
*, ¥ ok o ok ok e o oKk o ok ok ok *® *
* WO N
1{—---- ————————————————— -
.*-l
"1 *,
ok *.
YES .* MORE *,
-—= ATA ix
Tl A
*x, %
* NO
S
* J1 *—>
* *
Hokkk
B4/01/C1 ¥,
Aok gk ok (J] Kok ok ok Kok K J3 -
*CH“020 * * *
Kem o e o mm wrm w am mm K . HIGH .
* URITB LAST * *, ORDEP RYTE .*
ECO ¥ * *"
sk ok R O R kR ok Cw, %
* YFS
Aok KK ‘ Rk
* * *
~>¥ K2 * =% J1 %
* * * *
LEE 1] ook ok

*t***ES***#*it#t‘
Rk K
* * CONVFRT DECIHAL*
x ES :---->* CONSTANT
dokokok *
‘!i‘t*l******
{
v
*
P&k,
-* *,
.* RECORD *. NO
*, FULL Sk
*. -
* o
.k
*"YFS
BH/01/C1 01/C1
*****Gu*****(* 41 *#**!GS#*** 4* (*
*CMW020 * *cuwozo *
H o ot o e e e e B B e
>x * *
XUPTTE A RECORD * *VRITF A RECORD *
3k ok e o sk ok KOk 0k Kok ok ok ok sk ok kol A Kok ok RORIOR R
P ——
LR
* *,
| YES -* MORE *,
—lx DATA o
. X
*, %
*, Gk
* NO
Aok R
{* «
~>% J1
*
ET T
BH/01/C1
kool ok J U ok ook ek ROk R
*CHR020 x
) *
*WPTTE R RECORD *
Kok e e o ok sk okoRok sk ok ok ok K
LEE 2
* *
—-ydk J1 *
* *
3 KoKk

Chart BD (Part 5 of 5). $CGNCM Assembler Instruction Processing Routine (CMA000)

Program Organization

3-23

CMK000
FAR R DR kb ok e
*
* ENTER *
* *
KKK Ak KK R

feokkk
* *
* B2 *=>|
* *
EEE 2
ks K R 2Ok R KK
* *
*GET EXPPESSION *
A*STARTING COLUMN*
: AND LENGTHE =
A AR AR KK RO KoK
ot kok
* *
* C2 *->
ook
kR DK AR KRR K
* *
* SEARCH FO
H

* "afrfeT
AR SRR
2" "« R KD 3Rk AR
. *, * *
o ¥ VALTID *. NO * *
*. ARITHMETIC e Kmmmaam) X SET RPROR *
., SYNTAX . * *
*. % * M
P A R AR KK
’I" YFS
v 1/a1
erenanzsL2(2IE !
*CMDOOO * Aok R R Jokokeokok okok & ok
W e ek * *
* CREATE A TERM * * EYIT *
* RECO * *
AR KRR K K
KR AR & KAk K
’ TO: CHEQO0O
I*.
F2 *,
* *

L+ END OF Tk, MO
*. EXPRESSION I4---o

&y ¥
*, L% v
* YES * ARk
* *
‘ * C2 %
* *
l s
ok,
G2 *,
o* *.
% END OF . NO
*, OPERAND oK
. FIELD . I
*, o ¥
*, Lk
* YES Kook ok
* R)
ok ok

AR H 2o R KR Kk
* x

* RETURN *
* *
AAHHAOR A AR K kK

Chart BE. $CGNCM Prepare Operand for Unpack Routine (CMK000)

3-24

CH¥DO0O
LEL R RELIEES L LS

x ENTER x
AR KRR K KK
SRR, 7 ok ok KR KK Y R L L
“‘ DETERMINE AND * * *
SET SIGN * *
* INDICATORS "‘ * SET ERROR Ky
PO : :
Sk AR Aok KK KRR K ok Aok AR KA K l
A RoAK K
*
* G2 *
*
oo
X NO
c1’ T*. c2” Tk, ook KR AR R AR Kk
+* CHAR, *. * PUT VALUF AND *
«*_ HEX br "%, YES ok VALID *, YES * ATTRTIBUTES TN *
, BINAR’ SELF o ¥k=——=———w= > SELF ke e >%* TERM RECORD. ¥-—=n
* DEFINING . *,DEFINING .* * SET IMPLIED *
*.TERM . * *, s * LENGTH TO 1 *
K, ok *, .k Aotk Aok KRR Ok R Kok
* NO kA
Aok ok * *
* g1 *
* D3 Keoma * *
Fodkokok
1 *okok ¥k v
~*- « .
D1 *, D3 * *****DQ**********
. *, o X *, * PUT VALUE AND
. A *. YES ¥ VALID *, IES % ATTRIRUTES TN *
*, DECIMAL o Koo *, DECIMAL aFmmm e >* TERM RECORD. Hmm ey
*, NUMBER _. *, NIMBER .* SET IMPLIED *
*, L x *, S LENGTH 70 1 %
*, ok *, Lk IR0 R U
* NO EE R * N0 Aok
* *) * *
l * D3 * | * J1 %
* #* * *
Aok K EX L)
« ke l
E1 *, sk ROk T 2 ke Kok ok o KoK ok Fok ok RO R Y ok ko ok ko Kok Ok
A *, * SET LOCATION * * *
.* LOCATION *. YES COUNTER * * *
W R IO B XREFESSNCEL SET * * SFT ERROR *
.\?EPERB“CE. :IHPLI%%]i.ENG'!‘H * : :
“x, ot t*#tt*****#*****t K KR ok KK KK K A kK
** No
N i. **** ****
)' J1 ‘ I--)* G3 “
* *
#* **
TEKKKR THEE KK HRKE
*
SET EF *
POSSIB CHANGE
* INDT ATOR *
ok AR AR RO K oK o
o ¥ BH/01/D1
G1 . A AOKK G 2Kk KRR Ak Hokok ARG 3ok Kok ok
o *. * * *CMWO30 *
o* Is *, NO * * Kemmmmmmmm————— -
. SYMBOL o Rmmmmem—eD X SET ERROR Ko >% WRITE ERROR ¥—===
i VALID . : :‘ A * RECORD J’
.*. .*. 2 e e o o Rk ok kR ok ok ok ok ok ok ke sk 3 o oK ROk K ok Ok K R Rk
* YES . *odok
* * * *
£ G3 * X Ju
* * * *
{ ok ok dok k&
Fkok kR Ok KRk K
* *
*PUT SYMBOL AND *
* ATTRIBUTES IN *
* TERM RECORD :
SRR A AR KAk R K K
Rk
* J1 *=>
EELT
JH BH/01/C1
J1 *, *‘*‘*Jz‘t******#* ek koK T 3 okokok ok kR OROR KK
% LAST %, * *CP‘IHOZO * T LEREEET PR
. TERM IN *_ YES SET LAST TERM * Koo m = -* * *
, EXPRESSTON '--‘--'°‘> RIT INDICATOR *-“----‘-)* WRITE b ¥ pmm— =Dk RETURN *
- . * R RECORD * *
LN .k * * * ‘ o ok o e e A ok ok ok Ok ok kR
*, % e 3 st Kok ok Rk okok ok R ok K ‘ k****ﬁ*****‘#**** l
* NO , o Kok
* *
_—— 3 * Ju *
* *
ook K

Chart BF. $CGNCM Operand Unpack Routine

(CMD000)

Program Organization

3-25

CHL 000
HhRk R Yk AR K
*

*
« ENTEP *
A RHROR SRR AR RO R

Aok HOKR 3 Ak KRR K
* *
SET MISSING ENC
: ERROR :

* *
Tk e ok KRRk K Al ok o K

CHML 005 P
k . R RAOK C U A0 ki ek Aok ok
* *

c3 *
.*" MODULE %, NO *SET MODILE NAMEX
NAHED .‘—-—---t~>: MTSSING ERRORW :

* *
3k e K ko ok ok ok

|

Cmmmmam B T ———

kKR D) 3R A ORAOK K R
* *
SET END OF
SOURCE
INDICATOR

ok AR OOk ek koK ok ok ok Rk

& *
R

NO CHART
Aok ok R E KRR K Rk
*

AR AORORE ok ok
:CAH001

- ————————
* WRITE LAST *
: BLOCK ™0 WORK :

AR Ak R A ok ROk KOk ROk

SEE NCTE

AR RKG 3 Aok AR kK

* *

* EXIT *

L] *

A ok o ok o ok ok ok ok R

FETCH: SCGNSB

K SYSTEM

NOTE = FETCH I 3 DIS STEMS
SYSTE LOGIC MANUAL, SY21-0502

Chart BG. $CGNCM Termination Routine (CML000)

3-28

CMW000
Fo K] Ak R R Rk
*
* ENTER *
* *
Kok ol ko ok Aok ok Kok

CHWO010
KAk B A ok o ok kK
*
* ENTER
ook ok ok e ek ek dele ok koK

*
*

CHMWO020
FARAKC KKK KRR
*
* ENTER *.
* *
AR R AR Aok Kk

CcCMW030
AAOKRD 7 A AR A ROK KK
*
* ENTER :
ek ek AR R o koK

ok KK R Rk Rk R
*

*

* RETUHN *
* *
ek ok AR AR ok Aok

Seokok Aok [D K A Kk Kok ok K
* *
AMOVF _IN CONTROLX*

>: RECORD :’

* *
Aok ok e ek ok ok ok ok kOR Kok ok

Aok Aok B 2% kR Kok ok ok
*

* MOVE_IN NAME *
-‘---—-->; RECORD

* *
Aok ok AoloROR Ok ok ok ok

sk Aok R C 2ok AR AOR R K

* *

* MOVEF_IN TERM *
--q—----): RECORD

* *
sk e Aok ook ook ol ook

ook ok T) 2k s kAR K K

*

* MOVE_IN ERROR *
> RECORD *

* *
SRR AR R ROk K

SRk K 2K kKK kK
* *

* *
XSET UP LINKAGE R

* *
ke e ook e sk A ok oK ok Kok K K

A "%, YES
N ike-Ia
S *

HKAKK G 2 A

*
RECORD IN
RENT BLOCK

ARk kAR
* *
* *
* *
* *
* *
sk sk Ak ROk ok K ROk

*
: WRITE PLOCK :
ok ot R AR RO R kK K

NO %

ot e B —_——-

koo AR 3ok koK otk b K

* *

CLEAF NAME *
RECORD

* *
oo o e e e e ol ok oK Kk KOk

Sl R D 3 Rk AOKOROKOR Kok
* *

* CLEAR ERROR
FECORD

* *
ok o ok ok o ok KoKk ok Rk

JAZ01/
okok K 3 ok ok Ak KOk K
*CAM001

it RN

A
*
*
————>% WAIT FOR *
*# CURRENT WRITE :
e e ook ok Ao OOk Rk K R K

Hem

[,

1

............ e ——— - —————

'

SEE NOTE 1

Sk H 3 okok dokorokoR
* *
* EXIT *
* *

SRR KRR R AOR KRR K

TO: EOJ

SEE NCTE 1

dokok R R 3 ek ok ok Rk

BXIT

ok e ok ok ROk Rk kKK K
TO:

%

Chart BH. $CGNCM Disk Data Management Interfaces (CMWG00)

HALT/SYSLOG

cCMU100
ok R R R ROk
*

* ENTER *
* *
AR KOROR KR R RORR

koo K Oy ek ok ok Kok X K
® *
* *
*SET UP LINKAGE *
* *

* *
ool ok ke oo kR kok

ok JB/01/01
ot *, ARHOROKD) G KRR ROk oK
o* *. *CAMO001 *
READ A *, YES Kmm e mm =
* RLOCK IN o Kmmmmmm D WAIT FOR *
.*PROCESE . ¥ : CURRENT RERD :
Tw. ok ook R RORK AR oK oK
* NO
Lmmm e ey
dok Aok & R) Aok KRRk kR OoKR R F5 %,
* * 13 *,
* GRT A RECORD * NO % *a
*FRON THE BLOCK * Lm—=-=%, PERMANENT .*
* * *, FRROR _ .*
* * *, K
AR RO A KK K K *, %
I YFS
. SEE NOTE 1
FU *.
. *, HAAOKF G o R Kok K
NO .* BLOCK *. *
=% EMPTY *.* * EXIT :
Tx. % ook kR AR K
*, % TO: b
* YES
JA/01/7A1
doko Rk Gl Rk KRR Aok K
*CAMO001 *
K o o et o e K
* *
: READ A BLOCK :
SR AR AR AOK Rk KKk
. SEF NOTE 1
HY *,
oK R AOKH 5 koK kK KoK
.% FND OF *. YES *
*. FILE o Hmmmm e >x EXIT *
*, . * *
*, oF FR R KRR AR OK
L T™0: BALT/SYSLOG
* NO
o ———
Aok ok J) Kok Aok A Kk
* *
* RETURN :
koK ok ARk o
NOTE 1: %OJ AND HALT/SYSLOG ARE TN TBM SYSTEM/3 DISK
g%g:?g;ogVSTEM CONTROJ. PROGRAM LOGIC MANURL,

Program Organization

3-27

kR

* *
* A5 %
* *
EES 3]
SBT00
B 0 KA K G o ok e ok ol sk ok koK
EEEE T W E LTI Y * *
* * INITIALTZE *
* ENTER * * LOCATION *
*$**‘t‘**$t**‘*#‘ : COUNTFR :
A AR AR AR A AR K
ok ok
* *
* B5 ¥=>
| * *
! * dokk
v $BI030
ARHK KR Y Ak AR WK KR 6Kk Ak e ok
* * * BLANK OUT *
* ESTABLYSH * * SYMBOL TABLE, *
*COMMUNICATIONS * * 2ERPQ SYMBOL #
: : : COouwNT :
AR AR K K o ROR KR KK Rk F0 o S kR ok o ok o Kk ko Ok
¥
€ ., KEARACS S Hexrrrs
.*" SCGNSF "#. YES *TORN_OFF RECALL*
¥. PRECALLING ,%==-= * SWITCH *
. FCaNsR | * :
T v FA AR AR KA AR KK
*"NO ok ok
* *
’ * BG %
* *
oKk
KR D) Dok ok kK ko KK
* * FAK K) G A A A
* PREPARE FOR_ % * . *
:UPD%gEKP%§§PU‘ : : EXTT *
* o * AR KRk Kk
AR Ok KR K OR Ok Aok Rk ooo
TO: SBP
Rk RRE Ik ko hok ¥k
* *
* INITIALIZF *
* SYMBOL TABLF *
: PAFAMETERS :
Aok ko K kK RO KKK Kok

bkt d R L L E L L EE Y Y
*

* ESTABLISH
* SYMBOL TABLE
BOUNDARTES

LEE LRI 2L LT TEE Y

* %
*

* *
* RS &

*
ok k ok

Chart CA. $CGNSB Initialization Routine (SBI1000)

3-28

SBPOOO

Aok ok] Rk ok R KK
*
* ENTER :
ek ok ok ok ok ok Kok
ok
* *
* B1 *=>
* *
* ko
- ¥, SBPQ10 CK/01/81 o ¥ SBLOOO JA/01/01
31 * R KR DR KK ok KR 3 Aok Kook Rk BY S ¥, Aok oKD 5 KRk KOk
. * PLACE CUFPEC"' " *SBWO10 * ¥ *. *(‘lHOO‘l *
" *conrroL " #. YES ¥ LOCATI B % . LAST %, YBS = Hmmmmmmm—m—e——ee
-] RECORD o Kmm——— ~==>% COUNTER VALUE *—- ----- ->% W o ->%, PECORD - ------*-)* HFTTF LRST *
*, *.* * INF RECORD : : UPDATE RECORD : *'* *.* : BLOCK *
.*. .XK.' ok ook ke ok ok ke o ok ook OOk k ok s ok ok ok Aok o ROl R kK .*_ *' ok e s bk koK kKoK kR KoK Kok
* W0 «" N0
K/01/A4 ‘!’ CK/01/AN SEF NOTE 1
ti**tc‘ltttt#***tt Al ok C 4 ok ik RoR ok ok
*SBH100 : xE 1oo % *#**Cﬁttt***t*ﬂ*
e ——— ———— btishh Y M x
---* READ NEXT * * PEAD NEX"‘ * * EXTT *
RECORD * * RECORD * * *
* * * A ok o ok ke ok oK ok K o X
M T R L R T T L T T T T
; FETCH: SCGNSS
i
Kok DU kKKK R K
* *
* Z2ERO SYMROL *
* TCATORS *
* *
* *
ok oA o Ok ok KoKk ok kKoK Ok
*o cC/01/A1
B4 . ok Aok ok) 6 KAk oK ok
¥ x, "SBHOOO *
.+ MACHINE *. YES Ko o e =
*, TNSTRUC"'ION *'—-‘—---)*PFOCFSS MACHINE*
e t. TNSTRUCTION *
T AP
* NO
Sk
* *
~>% B1 *
* *
v Kokok R
¥,
FU *,
X *
¥ ERROR *, YES
%, PECORD Hmm s
Tk, o
*, %
* N0 ook
* *
: * B1 %
* *
1’ Aok Ak
¥ cD/01/A1
13 *, T AR ARG G KRR KRR AR
o* *5BDOOO *
*. YES lﬁ---.--_---_—-—--t
* pS/DC e *
x . * * PROCESS DC/CS :
Tk, ok ok Ak kAR Ok KK
® N0
Aok K
* *
\ L->% B1 *
* *
v *EEE
TN E/01/A1
vy Tk, *#*t*ﬂs*tt**ttltt
. ¥ *. *SPOOOO
.#" 0PG QR x. YES S
* EQU .*‘-“-’-‘)*PROCFSS ORG OR "‘
. X EQU
*. . ¥ a
*, ¥ #*t**l**!#*#*tttt
* NO
LR
| o,
| ->* B1 *
* *
& kK
oK cJ/01/A2
Ju *, Aok kAT G ok ok kR KR ok
o* *. *SBE0OO *
. . YES it PR 4
*2 XTPN THe—ae ———% *
- - * PROCESS EXTRN *
*. ox * *
*, ¥ At AR AR K KRR Ok KK
* N0
L2 2 L]
| R
NOTE 1: FETCH IS IN IBM SYSTE¥/3 DISK SYSTE¥S ‘ L~>% BT *
YSTEM CONTPOL PROGRAM LOGIC MANORL 5Y21~-0502. ¥ t‘*‘**
¥ P/01/A1
vy Cw, i*t#*xst!tt**t*tt
o* *. *98*000 *
N YES ~— Kemem———— - i K
-, sTA®T e *
I - . * PROCESS START *
“w, % T LILIE TE P LS
LR 2T *
* ¥ EETT]
¥ n1 % * *
* * ->% B1 *
& kokk * *
& kK

Chart CB. $CGNSB Main Control Routine (SBP000)

Program Organization

3-29

3-30

SBM00O
AR OK R ROROK R ok K K
*

*
* ENTER *
* *
ok RO ok ok kK
- ¥ ¥,
B1 *, r2" "%, AR KB 3R K ke
ok * * x, * *
. ok *. NO *OREPARE SYMROL *
*, SYMBOL o ¥=mweec—adk, DREVIOQUSLY . *we—wem—e- >% TABLE ENTRY *
- . « DEFINED .* *
*, o * », oK * *
x, % ¥ A ROk R HOOKF K ok
* NO * YES
. N - ——- e

Chart CC. $SCGNSB Machine Instruction Processing Routine (SBM000)

SBMO10 oK
Ry

-3

Hk AR KL KK S
:SBCOOO

—————————————

* INCREMENT

K B KD

Atk ok D Uk ok ok ook ok &
* *

SET SYMBOL
RESOLVE RIT

L X 3
*

e oo e e ok Ok ok ol ke Kok koK

P—
o*-
Eu .
o ¥ *,
. NO
*, SYMROL o Kmmea
w. o ‘L
. .*
* YES * Ak
#* *
* G4 *
* *
Aok kk

ok ok P LY ok ok otk kR ok
*

*
* ADD SYMROL TO *
* TABLE *

* *
e s 3k o e o kel Stk ok ok ok Ok
4k K

* *
* QU >

* *
Foxkok

SRN030

Fok kG 1§ 3ok Fok OOk B0K
*

* EXIT *
* *
SRR AOR A KR Bk

TO: SRPOOO

SBD0OO
Aok K K K ok koK KK
*

* ENTER :
kR kR oK ok T
* *
* BRI X
* *
ok Ok
o cG/01/01
B1 *, A EERD AR :u«(**‘i
ok *, *SBY 000 *
NO . * *, e S
-y SYMBOL ¥ * RYALUATE ™HE *
*, oK XPPESSTOV *
*. ¥ Ao ok
*, X ek o sk Kok sk ok oKk K ok KOk * *
kKA * YES * Cu ®
* * * *
x g1 * o Hok
* *
*Ak i
-*- . n*.
c1 *, Cc3 *, cu *.
ok *, ok * *,
YES .* *, * VALID *, NC . SYMBOL *. WO
c—--=—=%, PREVIOQUSLY .* *, LENGTHS JHemmmem—=d% ., TO STORE o Kmmon
, DEFINED . . . *.SWITCH CN.*
. o * *, o ¥ . o*
X, % K, ok *, ¥
* NO * yPS 'y ok
ko kok *
l * H3 *
->% G3 * *x
* KokEk
ook
CI/01/A2 V 8O CHART
Aok KKK D)] Kok ko ok ok t**a*ggnu*****x**
*SBRO : :SBXO :
* SEARCH SYMBOL * * COMPUTE TOTAL *
* TABLE * * LENG™H :
ke o 3 ok ok ko Kok Kok koK K o e o ok ok ok ok koK ook ok ok
R NO CHART
E1 *, Fokkok R 3 Aok ok kkokok Kok
- % *. *3BC000 *
NO % *, Komm mmm e mmmm = K
~=--%, PREVIOUSLY .* * INCREMENT *
, DFEFINED . * LOCATION *
*, ¥ * COUNTER VALUE *
x, * SRR K AOKK KRR R R Kk
* YES
Fokok R KAk kKR Fa T,
* * ¥ *.
*SET PREVIOUSLY * o* *. NO
* N * *, SYMROL o Hmmn
* INDICATOR - * *. o ¥
* * *, ok
ok e Aok Rk ok Rk Kok K ®, K
* YRS *k Aok
KKk * *
* * * HY *
* G3 %e> * *
* * SRRk
Adokk
CK/01/81
ok koG Kok ok ok ok ok Ao ARG 3R A AR K KK
*SBWO10 * * *
Aom e e e e e K * ADD SYMBOL TO *
* * * TABLE *
* UPDATE RECORD : : b
ok ko ok ok ok RokOlok ok K R RR KRRk kKK K
| ork
——————) * *
* H3 *=>
* *
Aokk kK
SBDQ30 CK401/MO
koK KR Rk Rk Rk
*SBW10 * Aok E] 3 Kkok Rk ok K
R * *
LoDk READ NEXT * * EXIT *
* RECORD * * *
* Fokok Rk AR kRO
otk KRR RAORR kR ok
TO: SEP0OO
* Kk
*
* J1 *=>
* *

koK
SBDO35S 1.*.

J *,
¥ *, Aok ok
. ERROR *. YES _* *
*. RECORD Tk——ced>k Cl X
. X * *
*, . ¥ AKX
*, %
*" N0
kK
* *
* B3 %
Hokk ok

Chart CD. $CGNSB DC/DS Processing Routine (SBD000)

Program Organization 3-31

SBOONO

FARRR PRk Rk KKK
* *
* ENTER *
* *
. oK ok R KK KK
|
i
i
%,
B1" "x, SRR KRB 2 KRk kKK
¥ * SET LOCATION *
«%* CONTROL *. YES * COUNTER VALUE #*
*. RECORD o Mmmmme e =>% TO MAXIMON *
. *.* *PREVIOUS VALUE *
R *******tk#*uttl**
I Yo
SB0010 . ¥e
1 *.
* * ook
«* ORG OR *. ORG * *
* EQU Tre=lo>x By ok
L% * *
x, Lx Ak
 ox
I EQU
¥
D1 *,
* *
N
*, SYMBOL oK
“x. o
L%
*"YES rr
* *
* B3 %
* *
l T
o,
E1 *,
o .
¥ *. YES
*. PREVIOUSLY Kooy
. DEFINED .x
*, . *
L
«"No T
* *
* B3 *
* *
xn
01
T I T4 Y
*SBROOO *
‘ S!lRCﬂ S!HBDL *
TABLE
F RO Kk
c*'
G1 . tt**igzttt#*tnilt
¥ *, SET
*. YES ' PREVIOUSLY *
*. PREVIOUSLY . *=cceeeao>x* EFINE *
.*DEPINED*. : INDICATOR *
R HR A KRR KR KA KR KOk
ND

HAORAOR] 1R OK ok Kok K
*

ADD SYMBOL TO *
SYMBOL TABLE :

LA R 2 2]

*

AR AR AOK A K ok ok
ok kK

* *
—~>% B3 *

* *
xRk

KKK R 3ok ok kK
: EXIT i
Ak A KA KKK KR K

TO: SBPOOO

—mmmmacadk

A

1.
*

*
* B3 %
* *
HoR Aok

*SBHO10

: OUPDATE RECORD z
A KOK KRR R KAk K
*t#t

->* B3 *

*
tﬂt*

Chart CE. $CGNSB ORG/EQU Processing Routine (SBO000)

3-32

*
SBOQ70 i
*

* EVALUATE THE
: EXPRESSYON

ek OOk ok ok ok ok Ak

Aok
*

*
*K kK

5B0120
Ak DY kKRR ok ok
* *

", SBolggi*gstt*gs{gléé1
*, *SBHOOO *

ER k. NO [t

g «¥-wmee—eo>% GPDATE RECORD ‘

*

Y

¥ ¥ WITH BRROR *
FEA AR AR KR R AOR

v
#ttttpu* Aok kKK
*
* SET LOCATION *
t COUNTER VALUE :
*
ttltt#tt**ttt#*tt

* kK
* *
* GY4 *k->
* *

Commmm e memea
Rk

SB0200

EERKGY *

*

* EXIT *

* *

FdA R AR KRRk K

TO: SBPOOO

Aok Aok ko

SBS000
okokok f R ok ko skekok ok
*
* ENTER *
* *
o o ke g loOKRK ek ok

koK
o ¥ *, NO * *
*, SYMBOL oH==m=Dk BY %
x, L * *

*, -¥

*, ¥
* YES

Aok kK

ke
c1 *.
* ™

o *.
. PREVIQUSLY _o=-==
, DEFINED .
R

" NO ti#t
* H1 *
* *
*kkk
CT/01/A2
*****ga*kt*t*#‘
*SERO

4
*

* SEARCH SYHBOL *
TABLE

*
ke ook ek o ke ok stk ok ok

“x,

NO . * -

~=~%, PREVIOUSLY .*
*. DEFINED

* ,*

o ¥

Y

*,
*ok ok ﬁ
* *
* BT *
* *
koo

ES

o AokokE ok dedodok ok ko ok
*
*SET PREVIOUSLY

: INDICATOR
sk s s Aok AR ok Kk K

* 9 % *

-

- CK/01/B
ook ARG ko ok ok koK
*

*SBWO10
--__--___-___-_.
‘ UPDATE RECORD :
ok Rk ok KRRk %
ELT T
* *
* H1 *=>
* *

i
SBSQ20

* RBAB NEXT *
* RECORD *
* *

ke o o ook ol Aok ok ok ok ok

Chart CF. $CGNSB START Processing Routine (SBS000)

Ak AK
* *
* BY *
* *
Hkokk
SRS030 oEy
*, SR AR ARG KA AR KK KK
¥ . * *
<% LOCATION YES * SET ERROR *
*, COUNTE® *--"'=-->* INDICATOR *
. SET . * :
“w, % l ii*it**lﬁ****tt**
* NO *
k ' RS *
*
*kok ok
L. CK/01/2
Aokok ARG 3ok KKK Rk cy *, ok R G ok ok K Rk ek
* * o* *, *SBWOOO *
*LEAVE LOCATION * NO .* START %, B
COUNTER AT ZERQ<-=======%. OPERAND _.* * *
* * . o * UPDATE RECORD *
* * x, ok * *
ke e sk ke o o ool o ok ok K K K koK L. Aok e e ok o A ok ok ROK O Ok
* YES
1 kK ¥ forkk
* * * *
-5k BU 1 * DS *=>
* * * *
kK Rk
o, X,
DY *, D5 *,
ok *, ¥ *,
No * SINGLE NO .
- SE[P-DEPINI“G; e SYMROL o*
[TERM . .
T, . *, ¥
v *, *, o *
kK *° YES *kk K * YES
kAN * * FEE
* BS * * * HOu & { * *
* * B4 *=> * * ->% Gl *
I * kK * M
kK kK
FRRRRBURERRERRRR
*
* SET LOCATION *
* COUNTER *
* VALUE :
o s ook o Ok kR R R kR K K
P4 TH,
o* *,
K -
*.‘ SYMBOL o Kmm——
‘e, " i
*, x
* YRS Rk
e * *
* * * HU *
* Gl *=> * *
* * kK
P
EXHKKGU RRREE KRN
STORE SYMBOL IN
TABLE
t
*
*‘*********t****t
ek ok
* *
* HU *=>
* *
AR
S$85080
kK R OR KoK R KK
* *
* EXIT *
* *
ke e ok ook ok o koK ok KK
T0: SBPNOO

Program Organization

1

LEX L]
*
'EYE
* *
,kk R

SBY000 ¥
A2 *, oK I kR Ak ok Ok
ko] ok ok ok koK 0Kk oE *, * ADJUST *
* * * * P . v * EXPRESSION *
* ENTER * * A3 *-—-=>%, RELOCATABLE .*-=======>* RELOCATION #
* * * . . * COUNT *
e AORR R R ek Ak K KoK Aok kK *, ok *
*, ok A AR R AOK K ROk K
L [e] 1
Hokek ok]
{
* B3 *=>| J
[{mmmmmm e e e e ————
Ak & v
¥
Aok kKB] Aok ok oKk K p? *, Ao ok U Ak Aok K K ROR R
* -* FIRST *. * *
*ZERQ OUT TOTAL * .* TERM OF *, YES SET IHPLTFD *
* WORK AREA * *, OPERAND e ¥rm———— % LEY Hmm
: : " ONF . OPERAND ONE :
AR ok Aok ok kAR k Y LR e T
* NO XKk
Ak * *
* * * D3 *
* C1 *=> *
* * ook
Rk
SBVO10 . ¥, ¥,
c1 *, c3 *, kK C G ok kKR KORok
<*ANOTHER*. AHOHORC 2 ROk Rk ok & L% FIRST *, * *
«*EXPRESSION *, NO * -* TFRM OF *, YES * SET TMPLTED *
*. N Bt et RETUPN * *. OPERAND B e LPNGT oF *
. OPERAND . *o THO - * PERAND TWO *
*, o * | LELL LT T TR TT P *, LK * *
*, Lk L *, L * Ak kKKK KRR Ok Ok R
* YES LEL L * NO]
* * ok Kok
* C2 % *
* * * D3 *->
Fkkk T e e —— e ———————— -———
LT
Ak kKD Aok ok kokoOkoRok ARk]) 3 AR AR Ok K bk
INITIALIZE REF. * PERFO *
* WORK AREA AND * * ARITHHETIC *
* RELOCATION * * RATION *
* COUNT : : REO"'STED :
ok ok ok ok ok K Sk K AR AOKOK R ARk KK
koK
*
* E2 ke—n
* *
ok
SBV0O30 /01/au o*. ¥
E1 *, bbbl Vb L L T 2 2] 3 *, E4 *, AR KK E S bokok ek Ak A K
. - *SBW100 * <% LAST_ *, ok *, SET ERRO! *
¥ FIRST *. NO Aumemmmt o dd e K NO .* TERM IN %, YE VALID B * INDICA "g AND *
*, TME B > READ NEXT * ~=#%. EXPRESSION _.#em=m=—ac>k. RELOCATABLE e * N D *
*. THROUGH . ORD * *. B *. USAGE . * RELOCATABLE *
. *, o* *. o* * EXPRESSION *
- ol kAR OK R dOR KKKk *, ¥ *, % Aok koK Aok ook
* YES ook * * YES 1
| : *] *okok
* E2 * l
l * ~>% C2 *
< Aok dk
EEZT]
SBVO40 ¥,
*, tttt*pztttt*tttt* AR T ok koRok ok ok
* * SET 0P FINAL *
% TERM NO SET_ ERRO i VAL
* RECORD ‘——------)* INDTCATOR ON o *EKDRESSION AND *
'.* ‘. :: ATTRIBUTES *
*, % mnmtmu*tttt*-u-: Aok AR Ak HOR K Kok OK
" YES ERkk
* * dokokk
& ® C2 & * *
ok, * * ~>% C1 *
G1 ok * *
ok *, EEE TS
% *, YES
.SELF-DEFINING,.-~=m
*. TERNM % i
o« ¥
* NO LEE T
* *
* B3 %
* *
RS
o ¥,
;” *, *t*k*ﬂz*tttt*#ttt FOHK KK J koo Aok KoK bk
* * koK
L LOCATION *, YES * SET LOCATION * * TEPM VALUE * * *
. OUNTER o Hommmeee “> R Mommm e e m > X ERUAL CURRENT *-——-=>% Al %
.EEPBRBNCE. 'INITIALIZED BITH * VALUE OF L.C. * *‘****
* *#****ttl#*****#ﬁ AR KKK KK KKK ek
CI/01/A2 X CK/01/R1
Hok K T 0k Kk KoK J3 x, Aok ok J 1 0kook ok oK Rk Aok kR T 6 ok Aok ok skok B0k
*SBROOO * ¥ . * SFT UNDEFINED * *ﬁBWOO *
-------------- * <% SYMBOL . NO * MBOL AND * Koo e mmm ek
——--—-)* SEAPCH SYMAOL #-m-——=eme >*, RESQOLVED IN . #~-——ee- ->* EXPRBSSIOW ¥=~wm==<=>% UPDATE RECORD *
TA *, TABLE . * ERROR * TH ERROR
*. ok * INDICATORS * *
A Ak koK K KOk o x, % kK kK ok Rk KR & Fodokok ook ok koK KoKk Kk
*
YES Kook
* *
->% C2 *
* *
‘& Aokkok
okl R D KRRk Ok ok ok m**ux3***k*ttttt
* *
- * EXTRN * *HOVE VALUE AND *
, EXTRN P ESas => NOMBER AND el * ATTRIRUTES TOQ #*-===
. - : ATTRIBUTES * : TERM FIELD *
*. .
*, . * kKo K A K kK Ao ROROKR K KKK Kk
* NO Aok okk *ok kK
* * * *
’ * C1 * * K1 %
v * * * *
ok ok *ok kK Aok Ak
* *
* B3 %
* *
kK

Chart CG. $CGNSB Expression Evaluation Routine (SBV000)

3-34

SBY000
Kook | 2k RRAK R
* *
* ENTER *
* *
e ok ok s o ek o ok KOK o KK

Sokokok B 2K R ok R KRRk
*

*

*MOVE _SYMBOL ANDX
ATTRIRMNTES INTO
* SYMBOL TABLE :

*
e o ke ok Ok ok ek ok kK ok
ko SBYQ10 Cc®/01/04 .
c2 *, Aok RC TRARRRE R KK cu *.
o* *, *SRW100 * ¥
%" TABLE *. YES Kmmmmmm e me e =k " CONTROL *.
*, FOLL *2Zl.coo>% PEAD NEXT A-m-momsm>¥. FECO
*, oF [RECORD * *. .
* o * * *, o*
* * **i**t******i#*#* *k, ¥
* N0 NO
#**#Dz***#*****
*
* RETURN *
ek Ak Ak koK ok ok ok
NOTE 1: PETCH IS IN THE IBN SYSTEN/3 DISK SYSTENS
gﬁ;z&ggmnon PROGRAM LOGIC MANUAL,

Chart CH. $CGNSB Store and Count Symbol Routine (SBY000)

Y
K-

*t**ﬁcs****#*ii**
* *

ES * SET OVERFLOW
———————% INDICATOR

EX X 2

*
sk kAR R ok oKok dokokok

* %D
-

*SBHO10
*.

i
]
1
1
[}
]
]
i
1

b

{nd

O

=
EEZ X X4

SEE NOTE 1
Hokok R B S AR KKK
* *
* EXIT *
* *
e L L L
PETCH: $CGNSF

Program Organization

3-35

SBRRO00
AR 2K kKR K ok
: FENTER :
F R KRR AR K ROk

bl P XL R
* *

* *
iHASﬂ THE SYHBOL:

* *
Aok ok e oo o KK ok ok K

AKRAAC 2R AR ko
*

*
CONVERT HASH TO
TABLE ADDR. AND
» SAVE *

* *
A A kKK kKA Kk

v

r--------->

D2 *,
I‘ ‘-
¥ EMPTY *, YES
*. LOCATION o ¥om—m
*, o *
*, X
*, L%
* No Rk
* *
* B4 *
* *
*knk
P
E2 Tx, ARARE Y dok Aok Aok Kok A
o *, * * FAR KR Ak AR Ak
<% SYMBOL ¥, YES * SET SYMBOL * * *
* MATCH Pt e EFINED B Dk RETURN *
*, ¥ * INDICATOR * * *
x, ok * * ok AR OR kK
€, L * AR AR AR OR K 1
*"No PE T
* *
* By *x
* *
T
v
AR P 2R RN Ak ok
* x
* INCRENENT *
* POINTER *
* *
* *
F ROk RO

A O o0 R o ok ok
*SET POINTER TO *
START SEARCH AT
~=<% BEGINNING OF *
* TABLE

ok ok ok ok ok ok ok oK Kk K

Chart Cl. $CGNSB Search Symbol Table Routine (SBR000)

3-36

SBE00O

ok 2k ko koK
* *
: ENTER *
Aot RO ORROR R Ak

RHAORKC 2Kk Kok R Kook
*
MOVE NAME
RECORD TO
SYMBOL AREA
AR ARk A Ok ok

* % % ¥

*
*
*
*
*
»*
*

AR) ok
¥CLEAR ATT
* BY E

T
E
* R
N
*

FETII

*
Al ok o ok ok ok KoK

TORN
« DPREVIOUSLY x
EFINED *
3 TEDICATOR 1v 3
"‘!‘g‘*&' *&2‘**

SBWO 10

*
i T ———-Y

!t#*tﬂz*'125<21<£
*
*

P e

habbd LT EP T EY
* *
* ADD SYMBOL TO *

TAELF :

* *
Ao o K RO R Kk Rk

v
HRRR 2 ko KRk
*
* EXIT *
* *

AR ok Kok Rk
TO: SBPOOO

Chart CJ. $CGNSB EXTRN Processing Routine (SBE000)

SBWO0O
ke | 2K kAR ROk K
Aok ok koK ok * HOVE ERROR *
*RECORD TO WORK *
* ENTER #eme-o————>% AREA, CLFAR *
* * * ekroR *
e e okl ok ok Aok ok otk
FETTTET SRS L2 22 22 8
——— e —————)
SBWO10
*kokkk B2k ok ok ok ok oK
ARRRD ARk oR Rk * *
* * *
* ENTER b XSET UP LINKAGE ¥
e o ok ek oot ook ook ok kK

* *
ok ok ke ol ok e ok ok

Aok AR 2K AR ROk Bk
* *
*UPDATE CURRENT *
: RECORD *

* *
ok Aok Ok Ok ook KON e okok
Aok kR
*
->% Ju *
* *
kR

Chart CK. $CGNSB Disk Data Management Interfaces (SBW00O)

SRU100
ook | 1 otk ok ok ko
*

*

* ENTER *

* *
sk KO OKKOR R K

oAk R Rk KA KKK
*
* *
*SET UP LINKAGE *
* *

* *
et e ok ok ok ok koK ok Rk R

*cu' *,
NO_.*' LAST *,
-=-%., FECORD .*

Aok ok ok Dl dKk
:CAH001

* QRITE CURPENT
* BLOCK

Ak Ak KR R Aok koK &

awsuspysnsTREieR!
:CI!001 *

o o s e e om om

* *
*PEAD NEXT BLOCK:
oKk ROk KRR R Kk

'.* SER NOTE 1

o “x, ERRRGSRARE KRR
*, YEBS * *

LI EXIT *

* *

o* SRR AR AR
TO: EOJ

e

Aok ok G Rk ARk dokoR Kk
*

GET_CURRENT
RECORD

EX X2 2]
* % %%

kol e ok ok Kok ok ok

Aok

* *

gy ke>

* *

Ll il

Aok ko J 0 kR ok ok
*

*

* RETURN *

* *
e ok ok koK ok Aok ek

WOTE 1:

Program Organization

3-37

SPI000

AAKH B DK Kk Ak K kok
AORAKR Aok R Kok * *
* * * INITIALIZE *
* ENTER Koo > PHASE *
* * * *
kR KRR K KK * *
AR R OR KR K k k
ok
®002%
* H2* SFPOOO DD/01/AS
R Ak B D ok Kk R ok
* *SFW200 :
l------)t *
: READ A RECORD :
HCHOR A RO R ORR Kok ok
ok, DB/O1/B1
c2 *, AR RRC Jkok KA Ak Tk
o * *, *SFTOOO * ok
*" TERM *. YBES = kmmoaioa - * *
*. RECORD *—------->* PPOCESS TEP" ¥-ceud* B2 ¥
*, . PECORD » * *
>, ok * hkx
*, % ttittt##tt**ttt##
I NO
« ¥ ¥,
D2 *, 03 *.
ok *, . *, *a**
¥ PAST *. YES ok CONTPOL *, WO
‘.‘FND OF TEXT*.*-—-—----->*.‘ RECORD . "‘—---)* B2 ‘
“x. e %, T Y nkn”
*, % X, Lk
I NO I YES
E1 *. E2 %, E3 *.
¥ . s *, oK *, Aok &
NO .* LAST *, NGO .* NAME *. ¥ *. NO * *
~=%, TEXT RECORD .*{wommmmmek] RECO®RD ¥ *, OVERFLOW o¥=w—=d% B2 %
*, o ¥ *. ¥ *., RECO3RD ,* * *
l *, o *, L ® *, ¥ ook
*oLx L *, %k
“"‘*“ * YES * YES * YES
* *
* B2 *
Lt
JAZ01/h1
SEE NOTE DC/01 /A?
ACK A P Ak ok Kook KR E tti*it* o AAKRORF 3 ko Rk ok ok
*CAH001 ® *SFNOO * * *
Mo e e R Koo e e * SET QVERFLOW *
* *HRITB LAS‘l‘ * % * PROCESS NAME * * INDICATOP OPF *
* * CK : : * RECORD M : :
ol ok R K KK K A KK RO Rk AR ARk Kk ok
ARk
* *
oK, * B2 *
G1 *, * * ARG 3 A A ANk Kk
oK *, EETTS * *
I CROS S *, NO * TURN RECALL *
*] REF A mm——— * SWITCH ON *
. . v * *
*, & Aok ok * *
¥, % *002% Aol 3ok ok ko ok o o Rk
* YES * G2*
*
S ok K
*002%
‘Be SEE NCTE
« LLE L URET TRy
* *
: EXIT *
koo AR Ak
FETCH: ¥CGWS®
NOTE ¢ PETCH IS IN IBM SYSTEM/3 DISK
SYSTEMS SYSTEM CONTRgL PROGRAN
LOGIC MANUAL, SV21-0502.

Chart DA (Part 1 of 2). $CGNSF Initialization Routine (SF1000) and Main Control Routine (SFP000)

3-38

ook ok X
*00 1%
* G1*
* %

Em— %

*kk Kk B 2K
*CAH001

READ LAST BLOCK
OF FILE

##ﬁ*####*****

SFP020 ¥,
Cc2

o
*, SYMBOL
x*

DD/01/A1
#*#Dgt*tt*#*
*SFH10 b
* ADD SYNBOL_TO *

WORK FILE :
*tt**ttt#t*ttitt*

***t*PZ*#t* :
*CAHOO :
*

* HRITE LAST
* BLOCK

*
oo o A R ROR KK KR Ok

AERE
*00 1%
* Gl K>
* %
KA

SFP030 JA L0
ARG 2K KRR K

A

*

*CAH001 *
*

*

* RE!D FIRST
* BLOCK

*
ok oK ARK K kokok Kk K

*****Hztit****t**

*
*SBT END SWITCH :

*#**##******t**#*

*. NO
e POINTE
* *

SFPO10

*ttt*c3tlt**x**tt
* INCREHPN*

EX R X X

*
l********t*****i‘

Chart DA (Part 2 of 2). $CGNSF Initialization Routine (SF1000) and
Main Control Routine (SFP000)

Program Organization

3-39

SPT000 SFNOOD

AORAKR 1 4ok ok ok o *****Aak***t**k#*
* *
* ENTER * : ENTER *
‘t****ﬁ*#*‘**#*t KA RAAA KA KA
* NO CHART
c1” " HAKAKD ok ok ko Rk
¥ “x, *SFS000 by
o *. NO e
*. SYMBOLIC o Ky ARCH SYHROL
*, TERM « * TABLE :
° - HAAACKHA A A K Kok
‘% yES e
* *
* HT1 *
* M
T
* ¥
-Te 7 *
L1 * .«CJ Tk, T
o *, .*_sy#ROL . *
. s“ﬁgggg .*‘—{E:Sq *.' IN TABLE .*—---): E3 *
..TERH L “x, o ook
*, Lk -
* NO Aok * YES
* 1 %
TIT
AHHRRE T Hdk AS G R RT :****D3***lt#*ti:
Sy g P
* SEARCH SYMBOL * N
* TABLE * : DEFINED :
AR Ak Rk o ko AR OK R KK
%,
F1 *,
J*SYNBOL® * ‘**m«* *m&tg;ntmt*t**t*
<+ IN TABLE "*. No A S ExTm ¥
*: AND C4eoan MRENL ¥ by
.EESOLVBD.* ook ok ok K ek ok
Tw, %" .
* YES EEETY TO: SFPOOO
* *
*x H1 *
* *
FHEE Chart DC. $CGNSF Name Record Processing Routine (SFN000)

Ak ok ARG ok Kk ek koK
*

*
: RESOLVE TE®RM

EX F XY

*
A AR ok KoK ok ok

AR AROKE]] K Aok Kok ok

*
-): EXIT *
I AR kK ok ok Kok
bkl TO: SFP0O0O
* *
* g1 *
* *

sokkok

Chart DB. $CGNSF Term Record Processing Routine (SFT000)

3-40

SFW000 S¥W100 SFW200
Sk} 1R R Rk ROk kKR 3Rk Rk KK FowR R B ok ok Aok K
* * * * *
* ENTER * * ENTER : * ENTER *
*
etk kK K ok Rk ok ok KRR KRR K K koo AR oK Aok ok K
i
ok KR 4 KR ok P kL LL L L L s %,
* * * * o
* * * * %7 LAST *. NO
:S_E'l‘ UP LINKAGE : :SB'T‘ UP LINKAGE : *.* RECORD oKy
* * * * “x, K
T T L LT L e L L L L T 1] . WX
* YES
H. JA/01/21 JA/01/A1
Rk ARG Aok ok sk ok c3” Tx. qok AR C L koK ok Ak K una:gswn*u**u
* * o* *CAMO01 * *CAMOO01 *
*JPDATE CURRENT * +% VRITE_A Mmoo e e i * Ko am o b e - K
* RECORD * %, BLOCK IN b d WAIT FOR * * WRITE CURRENT *
: : .‘PBOCESS* : CURRENT WRITE : : BLOCK :
sk ok AR R ORK TR k. ok kKRR AR R KK M L TR LT L
* NO
*oHkok |
* *
->% H3 *
* * {mmrm———————
Aok | v
*. x,
ook ok D) 3 AR K R R KK l by T, p5" %,
* * o *. oE *,
* PUT RECORD IN * NO . * *a YES .* *,
* CURRENT BLOCK * Le==m=%, PDERMANENT . —e—=-=-%, PERMANENT _.*
* * . ERROR . + FERROR _.
* * *, L *, ¥
ek kR RO K KK x, K *, %
: * YES * NO
ko v JA/01/A1
B3 %, P LT T T A
kK ¥ * *CAM001 *
* * WO .* BLOCK * g K e
* H3 RC--—=k, FULL ¥ * *
*, o * *READ NEXT BLOCK*
*okkk *, ¥ *
*, ok e e L LT L
* YES
|
v
JA/01/R1 SEF NOTE 1 ¥,
t?a***t****## *5 *,
*CAM001 * Aok T 4 Aok Aok ok ROk K ok *,
K e e m = o * * ¥ -
* WRITE_CURRENT * * EXIT #mmmum—==k, PERMANENT . %
* BLOCK * * *, PBRROR .
* * Aok RO K *, K
ok o ok ok o ok ROk ok kKoK RO T0: EOJ *, .k
* NO
mmmmmmmemd
R SEE NOTE 1
63~ % Aok AR (G 5 K AR Ak KK
* *. Akokok Gl ARk R RO * *
.*" END OF %, YES * * GET CURRENT *
¥ ERTENT | (#--m--omod EXIT * * RECORD *
%, o Aotk K AR K ROk * -
¥ 70t HALT/SYSLOG AR KRR KRR AR KK
* N
P ° AR
* * »
* H3 *=> ->% H3 *
* *
KK T
Il ELI LS L]
* *
* RETURYN *
* *
P e T L
NOTE _1: EOJ AND HALT/SYSLOG ARE_ IN_TIBM SYSTEM/3 _DISK
SYSTEMS SYSTEM CONTROL PROGRAM LOGIC MANUAL, 5Y21-0502.

Chart DD. $CGNSF Disk Data Management Interfaces (SFW000)

Program Organization

3-41

342

SSY 000

#i*!ha#*tt‘*‘kl
* *
* ENTER *
*

Ak Ak R e kK ok ok ok R

AR RR J Aok KoK K
*

* ESTABLISH
:COMHUNICATIONS

EX TR

* x
AR AR AR KK &

p

JA/N1y
t*t*tc%* LEET RS 1Y
*CAMOO

[T
* READ FTesT *
* BLOCK *

*
ok Nk A Ok A K oK ok K ok

A
*
*

AAAOR KD 3 Aok kK ko ok
*

*INITIALIZF ESL
: TABLF

%W

* *
A ROk e ok ok ok ok ok ok Kk

HAOKKE JAkAok ook KK b
* *
: FXIT *

Aok AOK Kk ok Ok

TO: SSPOOO

Chart EA. $CGNSS Initialization Routine (SS1000)

S5P000

AR R 20 kKR Kk
* *
: ENTER *

FRA A A KK ok

tttttgztt*gg{gl4
:SSHZOO

* READ A WORK

* RECORD

AR AR ek ok ok kK Kk

. *.
* TERM *.
*. RECORD .
* *

YES ety
*=S--=-->X PROCESS THE 4

yo o
AR A KORC 3 dokok ok
:SSTOOO

CHRR
kK kK
*

: TERM RECORD

———

*, L
*, FAA AR AR R kK K i
*" No R Rk
* *
* B2 %
* *
. ok
0‘.
D2 *,
-‘ *-
«* CONTROL *, NO
*. RECORD *.*—--~
.‘- -*‘
%
* YES
*
*
*
-‘. e
E2 *. E3 *,
¥ *. o ¥ *,
% LAST *. NO ¥ EXTRN *. NO
*, RECORD o ¥=wm—e—m=d%, OR ENTPY e]
*, . *, o ¥
*, ok *, o*
L o TE, Lk \l
*"yES *"VES Aok
* *
* R2 *
* *
ok
ED, A1
tt!ltr3#**tt{21{*
ook 2R Ak Ak ok *SSE000 *
* * K m e —————
* EXIT * * DPROCESS EXTRN *=w-nq
* * OR ENTRY *
A RACKR R K AOK Kk * *
FAAR AR KKK Kok
TO* SSLO0O kR
* *
* B2 *
* *
ok

Chart EB. $CGNSS Main Control Routine {SSP000)

SSL000
EAARR QR RAAR
* ENTER x
PTTITI et 2L 224
‘*‘i*g%‘ 32}422‘&1
*CANO p
STRRITE_IAST %
x BLOCK *
Aok ok oKk ok K
' ¥, SEE NOTE
c2 ' *‘*ttcaltt#*t*#tt
" . RAARC YRR AR
.*° CROSS " *. WO vnovz oS gk TARLE : * *
+. REFERENCE _.#-==—====>¥ e BXIT *
. o) * TostFion * M *
, o L] * ook ok e skl Rk ARk Rk
*, ¥ 1 Aok e Ak R KRR KR kR ¥ETCH: SCGNPE
* YBS EL L L]
* C3 *
LL]
AAAARD 2R AR ERRE §OTE ; PETCH IS IN IBN SYSTEN/3 DISK SYSTENS SYSTEM
* %% ROL DROGRAN LOGIC MANUAL, SY21-0502.

% ADD SYMBOL *
* TABLE_TO WORK *
FILE *

‘tllt‘t"ttttﬂt*t

tt‘.ts?t#tittw“t
*CIH 01 ok

e
* HRITB LAST Homooy
3 Bk 3
ttt*ttttttttmt‘t.
ek

c3
LR

* * %
%* * %

Chart EC. $CGNSS Termination Routine (SSL00)

SSE000
AR AOKR PR Rk Ak
*
* ENTER :
Aok kR ROk ok Rk
!

kK kKB ook ok koK ko ok
* *

* *
*SAVE TYPE BYTE *
* *

* *
ko ke skok koK ok ok Kok

BE/01/AS
tt*#t81t***lt*it:

*55W200

i
* READ NBXT *
* CORD *
* *
******#*t##**t**t

Sokotok KR 1Ak R Rk kR K

*
* MOVE NAME TO
* ESL RECORD

EXE 2R

*
st ok ok ok Aok ok Rokok

oE “%. YES
. ENTRY P e
* *

ok T 2% Aok kR Ok
BUILD_ENTRY ESL
‘ RECORD :

, o * *
*, X SRR AR R AROR KKK
* NO
]
* »
* G2 *=>
* *
Ak
SSEQ60 ¥O CHART

Aok ok G AR Rk ok Kok K *i*iisgitttttittt
* *SSUOO *

*SET EXTRN TYPE *
INDICATOR :

‘**#*#***‘*t*'***

tt***ﬂa*t*ti4214 5
*SSWZO b
* B!PASS NAME *
* RECORD :

A
*
*

*
sk ko ok ekl ok ok Kok K

Aok kA AR koR ok KOk K
*ADD SUBTYPE AND‘

ON
*INFOFHATION T0 *

‘*##**'*t*!#*****

ﬁ##t*[(‘l*t‘gg{ *4&1
*

*55W000

i--——--——_—---_—*
* *
* UPDATE TERM :
Aok ok kKOO ok Aok K

ok kK
* *
-D% G2 *
* *

Hokokk

e e e R
*IDD ESL RECORD *
TO ESL TABLE :

PRI TR LSS R LA L]

okook [240K R AR AR
* *
* EXIT :

ok ok ROk R KoK
TO: SSP00O

Chart ED. $CGNSS EXTRN/ENTRY Processing

Routine (SSE000)

Program Organization 3-43

SS¥000
AR KR] ROk ok

*
* ENTER *
* *
ARk oK R Rk ok Kok

bk d R E T 28 TR TY
” *
* *
:SET UP LINKAGE :

* *
o K ke ok ko Aok ok

Ak kR C ok ok ook ok
* *
*UPDATE CURRENT *
: RECORD :

* *
AR AR A RO
ko
* *
~>* H3 *
* *
ok

Ak
*

* N0,
* H3 KCmmemkl
* * *

LR L 2]

S5W100

HAAAR T Aok ok Ak ok
"
* ENTEP *
* *
HRR A R AR

btk K ELE EE TP rY
* *

* *
*SET UP LINKAGE *
* *

* *
AAORAOR KKK AR Ak Kk
¥, 1
c3’ Tx t*t##cq#*igi‘g*‘k
¥ * CAM001 bl

Tx. YES

Kmmmmm ey

AR KD ARk ok ok ko
* *
* PUT RECORD IN *

* CURRENT BLOCK * RMANENT %
* * *. TERROR .*
* * *, o*
HARARR R ARk A LI
* YES
e mman
¥, SEE NOTE 1
F3 *,
ok *, R AEY Rk kR
* BLOCK *, * *
FOLL - * EXIT *
. A * *
, o AR A K R
*, Lx TO: EOJ
Z YES
“‘**P3l'i££(22‘21
*CAMOO1 :
* T
: WRITE BLOCK :
AR AOR R RK Ak
-k, SEE NOTE 1
G3 *,
o* *, FRREGY wH ARk
. END OF *, YES * »
%, EXTER™ p Rt EYIT *
“x, a R ACRK KR
*, . TO: HALT/SYSLOG
* NO
kK
* H3 =D
T
LETE T LT T
* *
* RETURN *
* *
L LT e
NOTE 1; ECJ AND HALT/SYSLOG ARE IN TBM SYSTEM/
SYSTEMS SYSTEM CONTROL PROGRAM LOGIC MNANOUAL, S

Chart EE. $CGNSS Disk Data Management Intarfaces (SSW000)

3-44

5 M
S *

N
~——-=%] PE

*
T

WAIT FOFP *
: CURRENT WRITR *
Aok dok KRR K ROk R K

¥,
*

1

S5W200

SRk Aok ok ko
* x
: ENTPR *

R o kR KRR

¥, .
*
.*BS .
¥ LAST *. NO
*, RECORD o Koo
*, X
*, X
x, ¥
* YES

v IA/01/01
AR AAORC Gk kd ok ko ox

*CAMO01
LY

* WRITF THIS *
* BLOCK *

*
A oA ok KK ko ok

hipdedhy SEEL EETT 22
*CANO001

W o et v e e B

* *
:RBAD NEXT BLOCK*
RO Rk Kok

JA/01/01
*

* N0 J

L ST ——

hiubabd 1L L2 ST T T Y

*

GET CURRENT
RECORD

LT XY
* %

ok o oo o o K ko ok
R
* *
~>% H3
* *
ok

PETO000
FRARR TERKAERK AR
: ENTEP :
#*‘***lt'**ﬁkt#*

P E LI T L L]
*

* ESTABLISH *
:COHH“IIICATIOHS ’:

* *
dor ok Aok KRR ROk KK

=z
»0
]
o
-

EZEX 22 22

E N
*
*

»O
-3
=]
~

*
EN
M

FYT I Y2

*
*
*
*
*

PRI RIS L L L]

*
*
s ok Ok AAOK KK OKOR R R

Nk KF 3R RRR AR
*

*INITIALTZE THE
: HEADER FIELD

EX R 2]

* *
ke o A AR KK

¥
G3 *.
* *

% OBJECT *. NO
*. ouTPUT o Koo
x, ¥
*, E
*- -

*"YES RAE
* *
* g3 *
*
R

Soorokr [3k dck kKA kR
*
*SET UP OVERLAY *
*LINKAGE EDITOR *
* OPTNS RECORD :
SRR KA R R
L2l L]
* *
* J3 A<D
* *
el
PEIOBO ke
J3 * e ek 3) e ARk ok &
*

'R *
E *, NO % (SE DEFAOLT
*.“‘---'-’-->: MODTLE NAMWE

T

*
e dokoR ok kKR AOK &

(e mmm——————————
FAR R AR KRR
*

* EXIT *
* *

Kk kR A KOk &
TC: PEPO0O

Chart FA. $SCGNPE Initialization Routine (PE1000)

Program Organization - 3-45

PFDO0N PES000

AR D Aok R ok K ‘tt*#ﬂ1**mtt*#***
* *
* ENTER * : ENTER *
* *
AR ok A AR AOK ek A AR AR A AR K KK
ok,
Fok Ao B 2K oKk A K KK B1 *.
* L x *, AORKK R DAk KAk K Kk
* SORT THE * *, YES *
* TABLEESL * *, NOLIST oKDk EXIT *
* ® . X A x *
* * *, ok | AR KKK K KA
ARk A AR KA R KK ¢ *, % 1
* NO * koK
* *
, * B2 *
* *
% * ARk
¥, NO CHART
c2 *, AR AR KoK Aok ok
¥ :PEGOOO x
NO .#* OBJECT . S ettt T
__gt_ TpgT * * PRINT ESL *
r *. * HEADERS *
*. P *
.o o X bbb L L LSS LT L
* YES

ek Aok) 2K Aok oK kK ok
*

*
* ADD _ESL TO *
*¥ ORJECT FILE *
* *
* *
AR AR HOK

v
H AR E D4 Kok oK o ok K
*

*

* EXIT *

* *

FAR AR AR A K
TO: PES000

Chart FB. SCGNPE ESL Object Qutput Routine (PEP000)

3-46

FHERRD DK AR Ak R

*
*SET POINTER TO *
* START OF ESL *
* TABLE *

*
Feske ok ok sk ke ok ook ok koK K

r-------—o

PESQ10
Aok KRR | koK ok koK ok
*

* SET UP PRINT
: LINE

% %

*
Ak oo kR & ok ok koK K

PESQ40 FFP/01/A1
AR AAOKE] Sk ok Rk ok
*PER0O0OO *
s T Y

* *
:PRINT THE IMAGE*
R AR A A K K

¥,
61"
«* ERD OF *. YES
*, TABLE *.*'--ﬂ
Tx, o
L
* NO Kok
i
it T, * B2 *
* *
ook ok

Chart FC. $SCGNPE ESL Table Print Routine (PES000)

PELOOO PEWOOO
Aok | 2% KRRk kK Aok | 2K R OB KK ROk
*
* ENTER : * ENTER *
ook o ok o ok ROk K KKK t#***#ﬁ******"*

'

:*t**gzt**ﬁw*i**: kKo B 240K KRR R KoKk
* *
Do : :
*SET x
: SOURCE /OBJECT : *SE' UP LINKAGE *
o Lt L L L :*un"ﬂunu:

.*o L
kARG 2R AR KKK c2’ "x. t*t**c3¥*ti§{2:(:1
* d o . *CAM001 *
*SET UP PRINTER * %" WRITE A *. YES Bt
* CONTROL SIZES * *, OCK IN L Hmmem—m—e=D> X WAIT FOR *
: : *. PROCESS*.* : CURRENT WRITE :
‘#***#*#****i**** .*. .ll. ek ko R ok Ak KOk Rk R KOk

* NO

Kmmmmmmemmn
K
:uupznuu*n: Jor Ak D 24 R AR KK D3~ %,
* * *
* INITIALIZE % *PUT A RECORD IN* no ¥ Tx,
* MISCELLANEOUS * * * —— o*
’; COMMON FIELDS : * CURRENT BLOCK * *,Ppgg%gg‘”,*
* * *, ¥
e L L L L P LT L T L L x, ¥
* YES
SEE NOTE 1 ¥ SEE NCTE 1
*
*uugz*umuu* .*Ez "%, Jdok AR 3R AR R K
] *. *
* EXIT x ._!9.,* glll.ggx o * EXIT *
* *
oKk AR ROR Kk Tx. o Aok AR R AR K
*, M
FETCH: SCGNPS “%x"YES TO: EOJ
0 1
‘##**F%t**‘li(*l{g
*CANOO *
Wt e o s e o *
* x
* WRITE A BLOCK :
Aok AR ok AR AR KR
NOTE 1: PETCH IS IN THE IBM SYSTBH{B
PISK SYSTEMS SYSTEM CONTRO
PROGRAM LOGIC MANDAL,
§Y21-0502. e SEE NCTE 1
,*G Tk, KAk R G JHAK Ak K
o - .* END _OF *, YES * *
Chart FD. $CGNPE Termination Routine (PEL00O) «f BRENr leme----o>k EXTT x
“x, o AR R ROR K K
*, o * T0: HALT/SYSLOG
i. * NO
B it d
NRRRE 2k
* *
* RETURN *
* *
P e T
NOTE 1: EOJ AND HALT/SYSLOG ARE IN e SYSTEH63
. DISK SYSTEMS SYSTEN CONTROL PROGRAM LOGIC MAN AL, SY21-0502.

Chart FE. $CGNPE Disk Data Management Interfaces (PEW000)

Program Organization 3-47

PEROOO PER100 PER200 PERICO
HAORKR TRk ok ok ok FRKA D Dk XK Kok LEAL S KL LT e AR LI VR P
* * » * * * *
* ENTER : : ENTER : * ENTFP : * ENTER *
* *
AR A R Kok Aok K L T] oK ok ok KRR KK ok K XOHOR FoRdoK K
1
|
ttg1mtl*i**ﬂ** ttt**nz#*#tt*m ****tagt#t*ttm*t* t**utaut#llk***#t
* *
‘SBT FOR SPACE 1" *ST"T FOR SPACE 2% *‘iAVE RET"PN A‘II* "‘?AVB RETURN AND*
AFTER PRINT : AFTER PRINT :’ TF REGISTER : DTF REGISTEP :
* * * * *
#tt#**ttt#*x***** KRR O Ok K Kk oK ‘****t**#**mﬂttt* *k*t*tm*ttt#ﬂr*t*
!
e e)
PER105
t**#tczt*****!*it *ta*tc'}#ttt**t*at AR K C ok Ak ok ok &
* * * *
GET PRINT I"M"E * SET . * * SET RFG. *
ADDR : PR]"‘ITEP D"'F : : PRINTER D"‘F :
* * * * *
t**#*******n# FAOAOK KK R KK ok Kk K OR FOK R K OKHOK KOk K
|
! !
t*:«p;*t***w:t BRKOR) T Aok ok ok ok Kk KK HOR KoK D ok koK ok koK
* * * *
SAVE RETURN AND * * *SET SKIP BEFORE*
* DTF REGISTER *TURN OFF PRINT * * IN DTF *
t * * * * *
* * * * *
t*##**l*t*#**#w*t AR AOK R SR KRk K Rk ARk AKX KOk Ok K
* ok ok ok
* *
* E4 *->
* *
ARk
v PER4OO o* SEE NOTE 2
R KR Dk ok ook dORok K t*ttt[‘?t#**t*tti# FY *,
* Lk *, t##ins*t*#*tt*t
* SET REG. TQ * "‘QE’I‘ FOR SINGLE * o* ‘¥, YES *
* PRINTER DTF * * SPACE PEFORE *.UNRECOVERABLE *—-*---—-)* EXIT *
* * " * *.PRT FRROR,* *
* * * . ok H A AR Kk Aok K
RO KK Kok R ok oKk Kk K **t#t**t*t:mc«ttt L. TO: EOJ
* NO
i
SEE NOTE 1 PERYOS v
xt#*tr}u*t***tttt AR R ook KRR ok Kok AR A K P AR KR kKK
* % &FIDPRT x % * *
"‘SET SPACE AFTEI«" * % PRINTER * * * *
*AND IFACE ADDR, * * k DATA MGMT * * * RESTORE *
IN DTF X XTHRD TRANS * * * *
t t * x ywcT X * *
AR AR AR AR K K R AR A KOk KKK K AR K SOk R Kok o ok

SEE_NOTE 1
Ak ROK (G 2% 3 ok ok ok ok Ok Aok oK (G 3K K ok ko ok ok
L 3 SinRT * % *x * AR G ok ok ook ok Aok
* % PRINTFR * K * * * *
* ok DATA MGHT * * * TORN ON PRINT * * RETURN *
* XTHRU TRANS * * * * *
* X VECT * x * * K Ok R R KOk ok
A0k e ke o sk o g ok oK Kok ok K Ao ok Kk ok K OK 0K KO koK
1
*#‘l*ﬂz*l‘##t***)& Ak K R 3ok oKk ok ok ko
* *
* RESET SKIP = * ZERO SPACF x
* BEFORE IN DTF = * BEFORE *
A * *
* * * *
Ak ok Ok ok ok ok ok ok o Aok K o sk ok ok ok Kk o ok ok ok
Rk ok ok ok
* * * *
L->% By * ->% B4 %
* * *
ok kxR
NOTE 1: $¥MFPY AND $SLPRT ARE IN IBM SYSTSH/3
DISK SYSTEM DATA MANAGENMENT AND INPOT/QuTOg™
SUPERVISOR LOGIC MANUAL, SY21-0512.
NOTE 2: EOJ IS TN TPY SYSTEM/3 DISK SYSTEMS
SYSTEN CONTROL PROGRAM LOGIC WANUAL, SY21-0502, -

Chart FF. $CGNPE Printer Data Management Interface (PER000)

3-48

PSI000
FoRR AR R Rkl kA kR
* *
* ENTER :
SR kK ek Aok KK

Aok AR KD KRR Rk Rk R
* *
* ESTABLISH *
:CONHUNICATIONS :

* . *
st ok ok ok ok ok Bk Kok K

ok R AR R KR RAORE R K
* *
*

: PREPARE DTFS

EXE X

*
ook e sk Ak Aok ok K ok

ok A KD) AR AORK oK Rk K
pUT DC BLOCK IN
: ASMCON :

* *
ook s ok ok koK Kk ok KK K

Sl O
* TNITIALIZE *
* PRINT CONTROL :

*
o ok ok ol KoK oK ok ok

kARG R
*pPSHE00

K e e =

* INITIALIZE *
* OBJECT CARD *
* RECO! *
ok kA ok ok ok ook Aok

EEI TR R L L
* *
* EXIT :
Ak ok Aok OR Ak ok Rk

T0: PSCO00

Chart GA. $CGNPS Initialization Routine (PS1000)

Program Organization 3-49

PSC000
LA LI S PRy P
*
* ENTER *
* *
FRAAR AR AR ARk

bbbt b R E L L T 2T
*

* SAVE CONTROL
: RECORD

EE X E X

*
HeAR ok Rk ok ko Rk Kok k

AS
tttttc1tttlt‘tt‘t

*PSWZOO ‘
t

: R!lD l SOURCB
*
““ll#l‘t‘tt‘it‘

l!!t!p]ttttltt!tt
‘ ADJUST SOURCE ‘

* STHT NONBER *
* *
* *
RERARA AR AR A Kk
o*,
E1 .
¥ *,
o - N
*. SEQUENCE o Koo
, RROR _.»
.
“a,
*" !IS
hasdid A RS R L]

*
* PUT SEQ ERROR *
‘CDDE IN l.!:Sl'Il!G"l

’!I‘It‘t‘#‘.tt*#‘

PSS

PSC005 o
G1 *, P bbb VLLL]
* *, *PSH1 0

SR
. comMENT "x. YES ————

- K

".'l STAT --------)* GET l CONTROL “
s, . o
L. *!ttiv*#tlttt##ﬂﬂ
* NO
LY
l * ®
->* H3 %
l:
t#
X, /Bu
&} *, #t‘liﬂ2tttl#ﬁtt
¥ *, *PSH100
NANME *, YES K crmmacnawk
*, RECORD B R READ NAME *
- - RECORD *
*, ok *
. FR AR R K KK K
NO
l kK
> B3 *x
*
ERE
tttt*aztttlt‘!ttt
*
* SAVE POSSIBLE *
* EXTRN NOUMBER *
* *
* *
AR AOR KRR AR K Ak

"ok
*
* A3 X
*
ok

Chart GB. $CGNPS Main Control Routine (PSC000)

3-50

A3 *, AR K Rl ook ok kK K
o *, * *
-* MULTIPLY %, YF¥S *
. DEFINED *-—------)* SET ERROR *
. SYMBOL ’. :
“x, %" #t*tt#tt##t**lttt
*"NO
kK
*
* B3 *->l J
Cmmmmae ———————— ———————
pPsc GI/01/D4 k.
HRERKR JHk kR Rk Bu " ‘%,
*PSW100 * «*MACHINEX, Kk
e * -*INSTRUCTION®. YES *
Homoemaoo>s] RITH SH-m=>k DI &
* READ A RECORD * *, LENGTH .* *
* * *. L Aok
A AOR A Ok R R Ok R K * .
*"NO
.i.
c4 *.
* *,
YES .* ERROR .
r--‘. RECORD o ¥
Kk & ‘%, o
* * o oox
* D3 % 2T *"NO
* * * *
han * G3 %
x ox
L2 13
ok, 1/A1
psc gléklnatttﬁeﬁggkgr ps" "k, ****‘88"' L4974 5
*PSEQ * ok * *PSA0
L .- YES .*° GROUP 1 “*. MO 2222200 ek
* EVALOATE #C(---~-==ak, ASSEMBLER *-*--*---)‘PROCBSS GROUP 2‘
: EXPRESSIONS * *-. JPS. '.* INSTR. *
AR A AR KA AR A A K Tk, o ERRRARR KRR A AR
Rk
* *
->% *
>. G3 :
ok
* ¥
E3" "x, E4 %, *t#ttg5**tt#‘2t{k‘
P '.‘ - *. Yo ‘PSBOOO J
MACHINE - NO i
*, IHS%RU TION’.‘ ----- =Dk, ERROR *—-------)*PROC%SE GNOUP 1'
S x. 'y *_ .t'
. .k R A AR
x *
YES YES o
- »
GF/01/B1 =>% G3 *
HRRRKP Tk oAk o x
‘PSSOOO :
‘PROCESS HACHIIE*
INSTROCTION :
HRR RO R
L)
* *
* G3 *->
* LI K ST
Rk
PSC025 NO SHART
tt‘rtg3tt*t*l 5k
*PSK000 :
* *
:PLIG ANY ERRORS*
LLLT LT DT
ARk
* *
* g3 %>
- *
kK
PSC600 ¥,
H3 *.
- *-
. SKIP YES
*. PRINT o Hmmmy
.. I l
-
* NO ok
* *
* K4 *
* *
l L
5C605 ¥
F 337 Tx, TS TTRTRT L.
ok *, ‘PSXOOO *
%" PRINT "%, YES ek
. LOC COUNTER . --““) CONYERT LOC *
.)'.“l COUNTER TO HEX *
T, k" titt#!*tt*t*tt*ta
* KO
o e e m
PSC61 GE/01/23 ok,
tt!l*[gt#tr#t*ttt Ko™ Tx,
*pS * * . L POORS Rk kAR
e | LAST YES *
A=-=e-s-o>%] RECORD? b------->- EXYT *
*PR[NT THE LINE * A *, ok
* *, oK t#tit#***t#tttt
F AR AR K AR Ak K l P
oAk .
. . P TO: PST000
* gg % l *
* * ~>% B1 %
e *
LTI

PSTO00

Rk]] RAOR KK kK
* *
: ENTER :
Rk R ARk KK K
¥,
Bl &, oKk B 2 ARk Aok kK
oE *, * *
. END *, YES *SET MISSING END*
%, STATEMENT . *========>% STHT ERROR *
. MISSING .* * *
*. ¥ * *
L * A AR AR AAOR R Ak
* NO
1{
PST005 ¥, PST010 GD/01/G4
c1” “x, mnucgnnunu
.* *, *PSHT0 *
.*" OBJECT *. YES Koo mmmmmmmm s K
*, QUTPUT - Mo -==>% DPUT OUT ANY *
‘.gPECIFIER.* : OBJECT CODE :
R kR AR KKk K
* NO
PST025 GI/01/B1
R R kD) AR ok A Aok Ok Ak D 2Rk AR AR
* * *PSW000 *
* * Fommm o = K
* CLOSE FILES *<=-=== * PyUT OUT END *
: * * RECORD
*!

* *
o o ok Rk Ak oK Aok kR e sk ok e okok ok ok ok Kok ok

oK

E1 *, t*##tgztza&#ttittk
¥ . *

.* MNODULE *, NO -*% WRITE LAST *

*, ME ¥me=n L---*BLOCK TO OBJECT*
o PRBSBHT.* . * FILE *

. . *
. ok ok AR K KRRk KRk K
* YES
l P —
*. NO CHART
P1 *, Aok otk Aok dokokok KoKk
ok *, *pSpO00 *
.% MISSING * Hmr om e o o o o am m m m *

. YES —a e
. END ERROR _u=—====-=>%PRINT LAST STHT%
*., SET % * AGAIN *

. .

* *
NO

- i

*
ok ook Aok R koK Aok Kok ok ok ok

T x
i(
*

- SEE NCTE 1
G1 *,
¥ *, Foekok G 2K KA KRR K
- *. YES ® *
* XREF P dmelaeamdk EXTT :
*o o X * *
*. o ¥ . ok ok Kk ok AOK RO
*, %
* no PETCH: *CGNBX
SEE NOTE 1
bt AL bl L
* EXIT *
ook KKKk Aok Aok

FETCH: $CGNSX

3 DISK
PROGRAM LOGIC MANUAL,

Chart GC. $CGNPS Termination Routine (PST000)

Program Organization 351

PSHO0O
HRRKD TR AR K
* *
: ENTER *
FA A AR AR

¥

c1 *,

. *,
«* NODECK *. YES
.‘ & NOOBJ ‘.---ﬂ

TeLouE
L .
NO *%
*
* K1
*
Li i

“x, '*#ttb2t#*l242 430
¥ *, *PSHSO *

*k

=% %

o NO ---_----------*
, RELOCATABLB .------—-> UT oUT Kooy
. . * ABSOLUTB CODE * l

*, #l*ti#t"‘#'l!tﬂ#
YBS Aok e

"
* *

1 g1 %
* *
LT

.,

PSHO06 17w, #t*ltgztttg2<glélu

-“l '. ‘PSHSO *

o YES - %
x, ADCO“ t-s_--——_) PUT OUT ADCO" W e gy
* * DE *

. . *
*, ¥ * l
, % ¢¢:x¢att::~t*mmt
«" No LI

* *
* 71 %
* *
EE LT

PSHOS50 GD/01/A4

kRO] ook ok kordkok

*

e LT p—-

PUT OQUT OP CODE

: AND Q BYTE *

AR A RO A ok ROk

[PSH600
HKH G KK Ak AR AR
*

TR ARG | RER
*PSH§00

*
:PUT OUT10PERAND* : ENTEFR *

AR Nk Ok o Kok Kok ok
1*‘!*‘!‘1**‘**‘*#

KRR kK
*PSH500

*
*
*
PUT ouTr OPBRAND * 0
2 x
*

#l*'lt*.##tl‘*#*\i 0ROk ok ok ok ok ok Rk
ok
* *
* g1 %>
* PY
e LT
PSHUO N
31" T«
. *, AR T AR ok ek Kok
o* pup *. YES * *
*. FACTOR TAe=za * RETU®N *
*. G.T.0. L% * *
* *

T 4
* NO T
*

*
* D1 *

*
T

LAREL LT TR T
ook
* *
* K1 *=>
* *
ok

LEEES SEELE LT T

*
: RETURN *
ook K ok o ok oK

Chart GD. $CGNPS Put Object Code in Punch File Routine {PSH000)

3-62

PSHS500

Y€ et TRIMIALIZE
* OBJECT RECORD ¥

EREK DY R AR AR R
*
* ENTFR *
* *
e ok e ok ok ok oK ok
prm=m—————a>
¥,
B *.
< "roon 18*"s. wo
, RECORD ‘.---ﬂ
.*. “. i
® &
* YES ook
* *
* DS &
* -
ok
v
:#t!tcatﬁtt#!#lt:
* DUT CODE IN *
* RECORD *
* *
* *
AR A ARk
! S S GI/01/B1
D&° T, tztttbszntt£4t14#
. *. *PSWO00 *
.x noOM NO ————— -
L SLEFT IN *-*------>*PUT OUT OBJBCT *
‘.*RECORD Y A RECORD *
“x, " R AR AR R Ak K
* YES LR
*
* D5 #*
* M
Ak
TS L4
*DSH600 *
*

v*-tttm*attttttt*
PSHS40 i
X T, AR AKE G KK AR Ak
YES .* MORE *. NO * *
L===%_ NATA TO DT L k=-eeamoadk RETURN *
*, our % *
*, o AR K AR K Rk
%
*
PSH700
HRARGU KRk Rk ok
* *
* ENTER *
* *
LA LET EEY E e
.i.
H4 *.
* *
«* NODECK Yss
*, £ NOOBJ ————
‘.. e
*, %
*"Na Rk
* *
J * Ry %
* *
horn
v
¥ GI/01/B1
J4 *, Ak Ak AT 5ok ook e ke ko K
L * x, *DSW000 x
¥ ANY *, veg *----------
*. CODE IN '-----'-->‘“U” on™ OBJFCm *
-‘VECOFD *. RECO
Tw, o KR b
* NO 1
Rk ‘
*
= Kl *->
* A mmmmcmc——an ‘
e I & 91/G2
t*##tkﬁtt!ggéité*~
R LAk e K l *DSHAQD *
* et cm——— ek
* PETIRY « ~—-=-% TNTTIA *

LIZP
* OBJECT WECORD *
tttttitttt#titttt

*
e ok kR ok Rk

PSY000
HARKD PRAKRR KR ER
* ENTER :
oMok A R ORK K K

*

B1 *,
ox *.
%" 132 coL *. YES
*., PRINTER SH——e
*, ok
* %
*" §O REK
* *
Tk G %
*

AR
1!**tc1t#*#*t**tt
a

‘CL!AR WORK AR!A‘

#
‘###l‘(!#l#*#*l

FRARKD PRAEAR HhAKE
*

*IﬂITIALIZE HOVB

A REAS LBNGTHS*

##it#lt***!*t#tlt

*. *#*tlgzttttll#*tt
*
COL *. NO *SET PAF%HBTERS *
TER _i#=------->% FO
, . PRINTER :
*. X l*i##**tt#*'#*ttt
ok kR
* *
->% G1 *
* *
T
by ARt kbt
*
'SE'I‘ PAR METERS *
FO 0 COL *
‘ P x
* *
*t#tt**#*#ti*t#*'
ARk
* *
* G1 *=>
* *
AR
kG Rk Rk KK
*

*
* RETORN :
AR A Rk R ok Rk

PS7000
Rk) 3 RAKA AR AKX
* *
* ENTER :'
AROR RO KRR KK K
oo ¥
B3 . Bu" k.
o *T ANY_ %, YES
*, NOLIST Harmmwm e DK SOURCE o Hmomm
- . « ERRORS . l
*, ox *, ¥
*, % *, . *
* NO * NO LR L
* D3 %
* *
ok
o,
‘ca Lo AR ARl AR AR KK
. - *
¥ PRINT *. NO % CLEAR_PRINT X
* on B ARERA f
B oK *
*, o * * l
Ko X e LL L L T L L L
* YES *ok Kk
*kk * *
1 * H3 %
* D3 *=> * *
Ak
KK
o*a
p3° “*. ook R DU K AARORR AR K
. *, * *
* 132 *, NO * ADJUST_FOP 2
*. COLUNN e ——— >*L‘NPS OF PRINT *
*-*PBINTER*.
Tx, o **##t*t##**t***i*
* YES
(----_-------------------]
NO CHART
Wk R KE 3 R ROk K KK
*PSPOOO *
*--—- -------- --
*
* PRINT A LINE :
ok AR ARk KA
¥
F3 .
132 *. YES
*, COLMMYN o K=o
%, PRINTER . !
'u -
- 4
* NO Ak
* *
* HI *
*
ook X
o ¥ ¥O CHART
63 *, Hok Rk Gl KRR Rk RK R
*n50000 *

o *,
o* 28D *.
*, LINE PLRANV
* *"

‘. e
“+"yFS

PYTT]

* *

* 3 t->‘

* *

L L]

Sk K 3R AR AR
*

* PETHON *
*

P LT L T L

Chart GE. $CGNPS Print Image Edit Initialization Routine (PSY000) and

Print Image Edit Routine (PS2000)

X

e i

M
* PRTNT A LINE *
* *
*****t****t#t'**‘

Program Organization

363

* *
* A3 %
* *
PSS000 kK
RERKD Pk Kk ok ok ‘l
*
* ENTER * ¥
* A3 *.
Aok Aok K Aok Rk R . *
. TYPRE 1
-‘- .“-
¥, L%
* NO
uutcuuuun#
‘Cl.ll!! lSSBHBLY ¥
AREA
t :
*
t‘#lttt!ﬂltttl*‘tt
%,
.‘m .
- ARY
*, BXPRBSSIO Hemmmmmaa ¥,
*. ERRORS . v Cc3 *,
“w, o A K ok *
*, L% *00 2%
* RO * Hix* *. TYPE 3
* *x - -
*, K
%
* NO
HUARRE 2ok ok A kA
: *
SET NOUMERIC *
"'PAR'I' OF op CODE:‘l
*
nuuunnun*
F1° %
¥ *.
2" apsorure a0
- o Kmm————— - .
-. REGS - v E3 *,
*, P et .k *,
*, WX *002% ox TYPE *
*"YES * B5x *. 7,8, OR 9
* K *, ¥
* *, X
*, x
l * NO
* Rk
. %, * *
* F3 *=>
. G1 *, . F .
ok VALID *. NO KK
*, EG # B - o,
. . v F3 *,
*, o Ak * *,
*, *00 2% VALTD *
* YES * Fix * VALUF
* X - .
* *. . *
* o ¥
* N0
Ak AR ok ok Rk Kk v}
* P et
* SET ZONF PART * *002%
* OF OP CODF * * Dlux
* * * *x
* * *
R KR Aok ok
oK,
J1 .
¥ *, LEE Y
- *. WO *
*, TYPE 0O *'*'--->* A3 *
Tk, o oAk
*, Lk
l‘ YES
%, ¥
K1 *. K2 *, **#**F3kt*****‘#t
- *, oF *.
. . _YES . VALID %, XSET g CODa FOR *
*. ABSOLUTE Ko mmme *, LENGTH - -—->*
+ LENGTH . % *
* - * o ¥ # *
*, X *, ok AR A Ao KR ok ok
*° N0 J: NO
ﬁ‘i** ko ok ok ke e ok %
*002% *002% *002%
* BR* * RiE * AT
* x * ok *

*. -*n
Al *, AS *,
X *, ok *
*, YES MVX . NO
#omoems=o>¥. ABSOLUTE (#-=Co——me>kl VALID Q= o#o0un
. LENGTH .#° *, CODE -]
*, ok *, oK
x, K *, % &
*" o * YES il
l l *002%
* - Dij*
*
HEE A *
*00 2%
* RS o,
* % BS *,
*
- VALID . NO
*. LENGTH Hetmmm
.*. o l
* YES *n*w*
02%
* Bitx
* ok
*
*. v
cy *, bbb £ Lol 3 £ 22 2 T PO
o x *, * *
OPERAND *, YES *SET g CODE FOR =*
Hemmameed] 2 SPECIFIED [#---- * YPE 1 :
Tx. o * *
*, Lk AR AR KA KA KK
* NO * ok
* F3 %
LT Rk K
*002%
* AT%
t*%bu*t*t*t*t * %
*
ADJUST ODERAVDS
0
U *
ttit**’ﬁ#**ttt*k#
LT
* *
=>* F3 *
* *
EEr T
%
HAAA N ELYRA KKK A K ES *,
* * B *.
YES *SE’!‘ g CODE FOR * o* ¥o
B] Lt DR S TYPE R o« Xm———
*, .
, o
*tttta**w*zttt*t* o, %"
“x YES Ak ik
] *okek R *ooz*
!. * A1k
- % * t *
*
Kok
o
Fu *.
o H *.
s «* ABSOLUTE *, WO
eHmmomoomedk] TMMEDTATE o #=<mmmmeny
*. BYTE .
*, oK Ak Ak
X, #002%
* YES * RS
* &
t!##*gu#**t******
"qE"‘ CODE FOR "
: TYPES 2,4,5,6 *
* *
HAAK K K KA K ok ok
}
o %, -k,
HY *, HS *,
ok * oK *,
¥ TYPE *, VES OPND 1 *. NO
*2 b L 4 MBSOLUTE C4-c-on
R W “x, o
*, L% oWk
* N0 * YES ok ok oKok
kK *002%
* * I * RS5%
* J& k-> * *x
ook i
¥ ok,
J4 m,* Js *,
o “x. vES . VALTD %,
*. TYPE 5 LRSS, >*I OPND 1 b
N ot Tk, ox°
*, % T
* NO * YES Aok ok
l | *002*%
* D5%
* K
ok koK *
*00 2%
* A H
L] x****xst**t*****t

Chart GF (Part 1 of 2). $CGNPS Machine Instruction Procassing Routine (PSS000)

3-54

"‘SE"‘ OPND 1 _FOR "'

TYPES 4,5,B *=emn
*
* * '
*****i*!*******#* v
Ok gk ok
*002%
* H1*
* %k
*

o¥a K ok,
A1 *, A2 *, A3 *,
¥ * ok *. ¥ *, Q1-Al
o* REG *, YES ¥ b ¥ VALID *, NO 01-F1
D%, USED IN *--—-----)* ABSOLUTE .*-—----~->*. VALUE o Koy 01-F4
*, OPND 1 o *, DIS .* *. . 01-B5 01-H5
*, o * *, *, X HoAA kK ok
*, L * L *, *00 1> *001*
* NO * NO * YES EES L * K2% * K%
30‘ * * % * *
#001%01-C * D5 * * *
sORliizeR | 220
wnrkx01-J0 Rk l
e
Aok Aok KB] Aok ok ok ok *, Aok AR KR AR AR KR K Aok KR G K KR A KRRk
* * *, * * * *
* SET OPND 1 * . USING ~*. NO * SET ERROR % * SET ERROR *
* ADPRESS * %, TN EFFECT .%--== *INVALID LENGTH * ->% INVALID *
* * *, o * * *RELOCATABILITY *
* * *, ¥ * * * *
SRR R o ok ok *, ., Aok KRR KRR KK AR AR ROk R
) * YES kR LT T
* * * *
| * BS * * RS *
* * * *
LR Hok Aok AR Hok Rk
* * * *
- ¥ * H4 * * H4 *
c2” “x, H KRG 3 ARk KRR K * * * *
T o . * * Aok L
* * NO .* VALID *, YES * SET OPND 1 *
* PS5 K(m——nk, DISP g Rt DISP. *
Aok *, .k * * K PET
, % KRR ROAR R AR 01-A5%00 1% x001
* * F3x * J
L * %
* *
< |
. h-
D1 O *, u:npu"nunu SRR AKD G AR AR KR KR
L * * * * *
¥ YPE *, NO * SET ERROR * SET ERROR *
. ¥ 0,1, o Ho——= INVALID - D% INVALID *
L *.‘ ‘IHHBDIATE PIELD* : DISPLACEMENT :
®, L% uuuu*uunu AR KRR KR R
*"YES koK *
* * *
* H1 % * D5 *
* * v * *
ok ok K Aok kK Aok ok
* *
¥ % ¥ * HU *
E1 *, E2 *. E3 *. * *
ok *, - * o ¥ * ook
¥ REG *, YES ok *, YES ok VALIL *. NO
*, USED 1IN *--—----->" ABSQTUTE W Hmmm—m =D, VALUF Ko
*, OPND ? o *, DTSN, L% *. "
*, o . * *, oE Ak K ARRK
., *, *, ¥ *00 1% * *
*" NO w” * YES e * G1* * F5 %
* * * ok * *
* D5 * * xRk
* *
ETEes
%
Aok kR KE Rk ARk w2 Tk, R L Aok A AR R SRR 5 AR KRR R Ko
* * ok *, * * ‘ * *
* SET OPND 2 * . 0SING *. N * SET EPROR * * SET ERROR *
*® ADDRESS * #, IN EFPPECT . *===o INVALID e tuind *ADDRESSIBILITY *
: : ‘. . *RBGISTER USAGE : : ERROR *
oo ok ROk ok Rk K *, X *nnunuuuu S AR AR
*"YES e
* *
* BS *
* *
ARk
i
G2 *, *uuca: -uunu
Rk .
* % NO .* VALID %, YES
X FS RCmmokl DISP. KT >*sm~ OPND 2 DISE*
AR *, ok HkA AR
*, % *uuunnnuu 00 1%
* - * D1*
Aok * %
*001% *
* K5 %=)>
* - <
ok Kk
2/01
S AR % lum uu P e e S L L]
»PSﬁOOO ok koK * *
———— .._---.-.t * * * ZERQ OBJECT *
->% _PUT CODE * HY kooeedX CODE *
* oBJECT REcoRD t * * * *
* Fokokok * *
uuunuuuun PRI T TR LA A
xRk
* *
* HY *
*
Rk
o ¥ NO CHART o
J1 *, Sogokokok J 2% ARk kKR Kk J4 *,
¥ L *PSXOO *
o X *. RO o e e e K +% LENGTH *, YES
, NOLIST .-----*—~>*CONVERT OBJECT * . T. oy
*. ¥ DE TO HEX * . .]
*, . *, o
*, Lk AR AR AR KRR *, ok !1
YES NO **
ok PEE TR *
* * l * * & H1 %
* K1 %> ~>% K1 * * *
* * * *k kkokE
KRRk EE 2]
SAOROKR 2K KRR ARk
AR RARRRRRK * *
* puT OBJECT CODE*
: BXIT *<--------* LISTING :
RO R oK o oK
tuuuununu
TO: PSCO25

Chart GF (Part 2 of 2). $CGNPS Machine Instruction Processing Routine (PSSTO0)

Program Organization

3-55

PSB0OOOQ

Aok R dokok ok ok ok
* *
* ENTER *
* *®

Ak ok koK ek ok ok Kk

o X,
B1 *,
ok *, Aokek &
.*"_DRoP *, YES * *
*. INSTR. T¥emso>x 3 x
*, . * *
, o LR
*, ¥
* NO
.l.
c1® .
. RY *. YES
¥ OR EQU . #--mn
Tx. 3
*, L%
* NO ook
1 * *
* E3 %
* *
l koK
ok,
D1 s,
. *, Fook
. ¥ *. YES * *
*; orG TSk ok
* ¥ * *
* . ok ok
*, .k
*"No
|
i
Sk
E1T T,
.k *, ko
LT START Tk, yES a *
*. TNSTR. DHesZo>x p5 ok
*, - * *
* . % & ok ok
*, %
? NO
A
F1° s, P27 Tk,
«® *_ ¥ *
" USING k. vEs VALID *.
* INSTR (Hmoeeeo>l REGISTER .
. o* . SPEC . L%
* ¥ * ok
*, Lk *, %
** No ** YRS
{ Kk kK 1
->% Dy * !
Aok Kok i
FAK ko (7D o K ok iRk
* *
*SET BASE VALUE *
* AND USTING *
* SWITCH ON
L2 * *
* x* A ok o ok ke ok ok ko R
* g1
* * 1 ok
* ok ok *
f L=3% B3 %
* *
xRk
NO CHART
KAk R ARk KK Kok
*PSK000 *

o e e e
* SEARCH TO *
:CONT&OL RECORD :
kA ok ok Aok ok ok o ok K

————

Aok ok k(T Tk ok ok ok Kok ko
* *
* SET NEW *
* LOCATION *
% COUNTER VALUE *
A K KR oK K ok ok

G
tt*x]*!g
*PSHTO0
K ek
* PUT OUT ANY *
:CODE ON OBJECT ;
FAAK K A A A A KK K

‘ ok k
* *
->% C8 *
* *
Aok ok

3-56

LR
* *

<t

ke o K T)] ol o e Ak R oK
* *

SET NSING
SWITCH OF®

* XX
* % %

et ok ook o of ke O O o ok

LRt
*

* *
:CONVEPT TO HEY :
KR AR ok KRRk K Kk
1
'

v
Rk ok kT s kol R ROKOK
x *

* DUT YALOF TH
* LISTING ADDP
: FIFLD

LX)

A AR AOK R KK N
kK

* *

L=>% Dl %

* *

LT

Chart GG. $CGNPS Group 1 Assembler Instruction Processing Routine (PSB000)

* ok
* *
* CU Hmmm
* *
kR k
Aok kol (1 ek ok ok ok ok X
* *

* FRPOR INVALTD :
*

. NO
I e¥=cree—wo>% ORG, USAGE
* *

* *
2k R K Kok ROk Sk ek Kok koK
ko
*

Rk R DY Aok oKk Ko
*

: EXIT *
AKX K K K

TO: PRCO2S

ok ook
*
* BE ok
X ok ke ok

Aok sk KR G ok oK Rk ok sk ok
* *
* SET LOCATION *
* "COUNTFR To
X START VALUE *
AR ek e ook ok ok oK ok kX

e kokok
* *

* 05 %->|
* *

* kK
Aok Kk R 5 ok otk ek ok ok ok
*

SET_START
ADDRESS IN
OBJECT CARD
ek o ok ok Ak koK ok ok

%%
EEE XY)

PSA000
FokdokR TR ARk

* ENTER :
P LI T T
ok,
B1 *,
" pc/DS *ommemon
Tl ¥ b
, . *003%
* NO * Bi%
%
L *
¥
c1 *,
. *, P
¥ END *, YRS _* *
*, INSTR. *.*----)* c3 :
S, N AHKK
'c -

T

D1 *, Aolook KD 2R R AR AR K
ok *, * *
¥ EXTRN *, YES GET EXTRN *
*, INSTR. o K=o = > ¥ NUMBER *
*, - * *
*, ok * *
*, K ok kKRR ROk ROk
* NO
XLl
* *
* E2 k=)
* *
AR
. ¥ R
E1 *, Tl PLEL *
*PSXOO *
. 1s *, YES e ——ammoet
*, INST o K=
L . *CONVERT TO HEX *
®, Lk **t*ttttt***t****
* NO L1
* *
* BU *
* *
hokk
0*.
F1 *, *it**Fz#****#*tt*
. *o *
*, YES * PUT VALUE IN *
*, NOLIST Rmm—— RDDR. *
- o ¥ *
*, o X *
*, L F **t******#tt*****
*" N0 »hAk
* * AR
l * G2 * % * 4
* * * G2 *=>|
ook *RkR * 1
*002% P
* Bi%* !
* * v
* ARG 2R KKK KK
*
* EXTT x

e ok K ok o oK ok kR

03

Chart GH (Part 1 of 3). $CGNPS Group 2 Assembler Instru

Aok Ak

*de K

t*t**cat*#t##*k**

*
* SET DEFAULT *
*ENTRY POINT T *
TFFFF! *

'#***!**#**t*

*
* VALUATE *
: EXPRESSIONS :
PR EI LELL L AL

v
#**k*r}#ﬁ****t*#*
SET FNTWY UOIWT

SPPCIFTED
* *
T e T TR L L L
| EE 2R

|

L=>% E2 *

* *
ok A

Rk
*
Bl Ke=n
*okok K
.
R:U
. CONTROL *. YES
*1 RECOR S
Tx. o
*, %
= N0 Frres
*
l r G2 *
*
kR
NO CUART
Sk R C 1 ARk KK
*pSY060 *

[---_----_*
* INIT TALIZE
* PRINT ROUTINE *
!#!ﬂ***‘**#!**'#*
Ak
* *
->% G2 *
* *
ok kK

LE AL
*

EEE TS

ction Processing Routine (PSA000)

Program Organization

3-67

et td
001
* P1%
*
*
ok, .
Bt *, AR 1) el ok ek K K
o* * Rk * *
. *. YES * * * CLEAR TITLE
LN EJECT PR * BO ¥—meod¥ FIELD *
. . * * * *
*, o ok K * *
*, Lk AR AR AR KR K
* NO Rk
» * Rk R
* B4 * *
* * * CU *=>
LTt
Rk
. ¥,
c1 *, tttttcz*t*tk*t*tﬁ B d L 1ol E BT E TR
. *, * *
*. YES SET P * POT RECORD IN *
, PRINT ‘~-—~--->‘ PARAHETERS AS *---w * HEADER *
. REQUESTED * *
5 ¥ - ok * *
L AR R K Ok AR Rk * * AR KK KRR AOR o
*"No koK * D3 *
* * * t#tt
* P % ko
* * ! ' c4 *<-w
Hodokok * *
& * ok
¥ L . %, 1/01/B
D1 *, D3 *, D4 *, it**#sst at*tttt
o¥ *, . * *, ox *, *pgy *
*. YE . ¥ DRINT *. YES . MORE *. YES ittt el]
*, SPACE o E *. OFF Hemmm . DAT2 .t—--—~-——> *
¥ * * . . « - ‘* READ A RECORD *
*, oK kK m, ox *, ok
L ox x, % ttttt#*l*t*#*ttl*
*° N0 “x"No kK *"No
* * LTS
* G4 x *x *
* * & Blh ked>
LEET * *
oAk k
ok, %,
E1 *, t*n#!E3tt*t#l#*l* E4 *,
ok *, ok * . *
¥ *. YE * INE COUNT * o PRINT *. YES
*, TITLE o ¥mmoodk BY % *BY SPACE COUNT * *. OFF o Kooy
*, * * * * . X
*, o x KA w * *, L%
L AR AOR K AOK H K %
NO * NO *m**
T
* * * F1 t
* F1 *x=> *
* * ok
LR T v
%, CHART
F3 *, mt***?u#i*******t
HAAAP] ok ok ok Rk ok o lpSPOOO *
* oK INE *, YFS e ———— e K
* EXIT * *. CT. > DPAGE *-—-~----> *
* * *. ZE *START NEW PAGE *
LALELE T e *, oE * *
*, % FAAA AR AR AR Ak K K
TO: PSC025 *"No
Aok
* *
* Gl *=>
* *
& *Hokk
ARAOKKG 3 AA KK AKX K ARG L Ao ARk
* * * *
* TNSERT BLANK * * SET NO PRINT *
* LINES * * SWITCH *
* * * *
KKK AR oK Aok Ak AR R R ARk
LLETY #**#
* *
~>% F1 *x -)* F1 aor
* * *
kK & *t*t

Chart GH (Part 2 of 3). $CGNPS Group 2 Assembler Instruction Processing Routine (PSA000)

3-58

* %%

* ON
* WO*
s W
%* * ¥

RolokoAoR B ook sk ok ok
* *

* *
:SAVE PARA HETERS:

* *
A e kA RK R R o Ok

. NO CHART
Aok o e 1#**#*&‘**#

* VALUATE *
* EXPRESSIOES :

AR AR AR R AR
ok,
p1" . HRARR) 2R KKK R
o *. * *
o * VALID . NO * SET INVALID *
". LENGTH '--'--*>: LENGTH ERROR :
Tk, o * *
HRAAA AR AA KA
* YES
S
—)‘ H1 *
*
P
ART
e SRk
*PSH 0 *
’HUITIPLY LENGTH*
BY DUP. FACTOR ;
———
o ¥, NO CHART
P10 *, et AL e
- * *, *PSXUOO
. VALID % O ek
, DUP., FACTOR . >*C0“VERT L.C. TO¥*
*o o X HEX *
*. *
*, ¥ o s e e ok ok ROk Ok ok ok
"% No
|
1 JE, GD/01/G4
HHAKAG THRKFR AR 2" . P L L LT
* ok *. *PSH700 *
* sz'r meaLID x & *. YES o rm e m e
* DpUP. VAL * *o DS L Hecmemeie>k PUT OUT ANY %
* * *, ¥ * QOBJECT CODE *
* * *, o * *
ok ok AR R ok *, ok FoR A ARAOR AR K
* W
HoHokk 1 ° | annn
* * l L3 *
* HY1 *=> l ->% H1 *
* * * *
kK ok ok
¥
H2 *,
ok KRk KK * *. Aok k
* * .* ADDRESS *. WO * *
* EXIT * %, CONSTANT o Hmmm=D% AY X
* * *, L% * *
ook koK KR ROR AR Rk ok *, o E kK
. *
TO: PSC025 i YES
M
HERRAT HkE RS RARRS 32" "x, ARRERTIRRRTRRA RS S
oK
*PUT ADDRESS IN * YES .* VALID *, WO '
* ASSEMBLY AREA *(-"--‘——* ADDRESS *---"'-">* SET ERROP BTT *-—=--
* *.EONSTBNT*. *
Kk o xRk Tw, PP
*
sohdok
*
~>% D4 *
* *
Aok K

ETTT

* *

* AL *
kKK

1/01 u

#tt**hu*#*#*t#*
*pSH100 *

t—-———_-----—--_t

* READ A RECORD :
M e L L L]
|

kR K Bl R KRRk A K
* *
* STORE TN *
: ASSEMBLY AREA :

* *
st ok o Rk Kok Aok ok KOk

tlt!*nutit**t*t*t
*pPSK000 *

y-¢---_---------*

:TEST FOR ERRORS:
AR AR oK Rk R

WO CHART
K AOR T I Rk Aokok ko ok ok ok
:vsvooo *

_____ —————k

'COKVERT DATA TO*

*#i#****‘*******‘

Aedokokok Pij ko &Rk dokok K
* *

* *
*PUT IN LISTING *
* *

* *
ook e e s o i ok ke e ok ek

GE/01/123
Aok K G AR Tk K
*pS7%000 *

D

*
: PRINT DATA :
Ao kool R RoR R R

*
* DOUT DATA IN *
* OBJECT CRRD :

*

ok ko R Ak A0k &
*r**

—>* LA] 4

*

ko
*****Jut*#***t***
#

*CLEAR ASSEFRTY *

ARE

— A ey

*
*
***************** L

ek ok
* *
* DI *
*® *
ok ok

Chart GH (Part 3 of 3). $CGNPS Group 2 Assambler Instruction Processing Routine (PSA000)

Program Organization

3-59

PSRO00
EEEL) AR S TR

*
: ENTER *
HAOKKR ok Kk Rk Kk

A AR RO Rk ok Rk ok
* *

* *
:SBT UP LINKAGE :

- *
AR KRR KK K K
B J&/01/A1
D1 %, g 2*0**:*#‘*1
¥ *, *CAMO *
«* WRITE A *, YES R, ————
*. BLOCK_IN PR e e L] FON *
- PROCES : CURREHT WRITE *
* . ok S b AR R
* NO
Commm ey
c*'
b b E2" "x.
* *

*
* PUT RECORD IN *

NO .*
* CURPENT BLOCK * ~—==~~¥_, PERMANENT
: *, RROR .
*t*t#tt#t*t‘t‘*k* R
* YES
¥ SEE NOTE
P1 *,
HoR oK AR AR KKk
WO .* BLOCK *. * *
r--' FULL *.* : EXIT *
'*, o F R KR O ok
L. TO: EOJ
* YES
J 1
ARG Pk ¢t£42t<§1
'CAFOO’ :
‘ WRITE_CURRENT *
* BLOCK *
ek o R ok ok ok
¥, SEE NOTE
H1 *.
x *, HRRRH 2 4ROk Kk ok
«* END OF *, YES d *
*, EXTENT P L] EXIT *
*, .x * *
'R L * AR K AR R
*, .x TO: HALT/SYSLOG
T NO
——————>

AR PRk Rk ook
*
* RETURN *
* *
KA RO R R

PS¥100
LA LS TET EE LTS
*

*

* ENTER *

* *
HACK KRR AR KRR

Fok Ak R I AR AR AR
* *
* *
:SEW UP LINKAGE :

* *
AR AR e ok K

PSW200

AR G Aok kKRR

*
: ENTRR *
R AR R AR

ek Ak B 5 ok o o ok ok Kok
* *

* *
*SET UP LINKAGE *
* *

* *
e sk ook o Aok K OK Aok

*.
*,

S ——

fab b TR DL E TR Y
* *
GET RECORD FROM
* BLOCK *

* *
Aok o O RRok ok K

i
t*tt#qut!*
*CAH001

_-__--_-_-__---*

*
: READ A PLOCK :
KKK Rk ok ROk

Lo >
|
!

Kk U ok Kok Kk ok
* *
* RETURN *
x *

oK AR K OR A k K

Chart GI. $CGNPS Disk Data Management Interface {PSWO000)

3-60

YE
P oA
*

.%o,

IBM SYST®4/3 DISK
com AL

01/M1
Aok KAk 5#*:*#4:#42

*

IT FOR *

' CURRBNT READ :
tt#ttt#it#t#tt#*t

L3 *,
PERMANENT .*
. ERROR .

x, X
* YES

SEF NOTE
LR LS LER T P
*
* EXIT *
* *

A AR AR KK KK K
T0: EOJ

BXTIO000
Sk) kAR KK R
®

* ENTER :
et ok oKk kR Rk K

Aok kB 3R koK Rk

*
* ESTABLISH *
:COHHUHICATIO“S :

* *
Fote ok ook Rk ok R dROK Rk

* Frokok dokkokR Rk
* A

*

*

*

*

*®

o ook ok ok kR R Aok K

:itttn3t1***‘#t*:
* DPREPARE_WORK *
DTF FOR READING
* WORK BLOCKS :

*
FEIIEIE2 R L2222 b

P L Lt L E L L]
*

* INITIALIZE *
:HORKING STORAGE:

* *
ek ook Rk ok K kR AR

Aok JARRER AR K

* *

* EXIT *

* *
Stk R ROk R R K
TO: BXPOOO

Chart HA. $CGNBX Initialization Routine (BX1000)

Program Organization ~ 3-61

BXP000O

Ak Rk Rk ok
*
* ENTER *
KR ok ROK
ok
* *
* B1 %->
* *
ok 1
BXP010 HF /0 1
Pgtttta ttttl‘*‘{é
tsx t
‘ GET HORK PILE ‘
RECORD
t *ohokok
i AR ok ok ol ok ok ok K * *
! * C3 *
| * *
, Ak
- BXP020 ¥
c1 *,
ok . A Lk
¥ TERM *. KO * * .* CONTROL *, NO
*, RECORD o¥m=e=D%k C3 * *, RECORD Hmmmmy
*x, . * * * - ¥
*, ok LI *, .
*, % LA
*"YES * YES Rk kK
* * ko
X Bl * *x *
* * Kk DY H—emy
& kK Xk
o ¥ K BXP0O30 HF/01/21
D1 *_ D3 *, KOk D) ok e ok ok K ok ok
¥ *, o ¥ *, *BXW000 *
ok *. NO ¥ LAST %, YRS e T -k
*, SYMBOLIC o Kooy *. TNTERMED. o oo * GET_SYMBOL *
. TERNM .k ‘.IEXT PBC;. ’ * RE :
- *, %" v AR o A ROK R OK Kk K
* YBS KK * NO ok kK
* * * *
* B1 * l * DU *
* * * *
Rk * koK
ok
Pahah b AL L ETTTT TS #!l**g3t#ttt*#!*t EU .
* * s x, F ARG KAk ok Rk
* ADD STHMT. WO. * *SAVB STATEH“NT * ok LAST *. YES * *
* TQ TERM FIELD * ¥BFE * *. RECORD o Ko vm e Dk EXIT *
* x t *, ¥ * *
* - *, LK Aok ok oK Rk ok
AR A AR *t#tt‘#ttttt*ttt# x, K
* NO TO: BXLOOO
]
1
i
v
HD/01/A1 ¥,
“1&1381#‘**!‘###* F3 * **k**Flj* t**t****
*BXHO| * . *,
el * NAME *. NO * SET TYPE BYTE *
STORE SBCORD IN *, RPECORD P T * FPOR_SYMBOL *
*, ¥ * RECORD *
t * ¥ * *
t#ttt#i*tt*##***t *, L * A OK K R OR KKk
* YES Rk
Aok ok * *
* * * B1 *
~>% B1 % * *
* ok ok
ko
HF/01/A1 ok,
AR K ARG Tk *ti‘gtéi ay *,
*BXW00D * o *,
S * 0
* *, EXTPN Koy
:GET NAME RECORD* *.* *.*
AR AR AR AR Ok ok Tw. %
* YFS
HD/01 /A1
o K T ook ok ok ok KOk ok Ak ol K 1 ok ol e ol o ok ok
*“XHOOO * *
-~—-~--~----—--‘ * SRT LENGTH TO *
MOVE NAM * ONE *
‘R?CORDQ'O BUTLD* M x
i*****#***‘*****ﬁ W o o ok 3 o ok okl kel o ok kO o
L2 LTS |
* * Crmmmenmen
~>% BT K
* *
LA R
HD/01/A1
ol ok K T deokokok ok okok ok &
*FXHOOO :

* MOVE SYMBOL *
:FECORD TO BUILD:

Ak R e sk e ok o s ko okok & ok

Chart HB. $CGNBX Cross Reference Build Routine (BXP000)

3-62

BXLOT0

R Ak
BXLO80O

BXLO00O

Aok Kook oK
*

* ENTER :
SRR AR AR K
.*.
Bt *.
¥ *.
.* CURRENT *, YES
%, BUILD AREA . ¥=-==
, ENPTY . l
*, ot
'. - .
* no AR
* *
* D1 *
* *
Kk

ook e ok Aok R ko

*
* PUT QUT LAST *
* BLOCK *
»* *
* *
Sk R R RO K
wree
*
* D1 u->
* "
LT
X RS ok Aok) 20 ROk HokoR KK
o* * *

4 WQ %, YES

* SET NOXREF *
Ml
*

* *
*, L% sk ok KKK K kRO

BXLO50 HF /01/A3

R AR Kk ok kK
*BXHOJO *

o e e e o o e o e K

* WAIT ON LAST *
* DISK WRITE :

*
stk o IR ok AR ROK K ok K

Aok kol R % dokokok ok ok ok
*

SAVE LAST BLOCK
: ADDRESS :

* *
sk ok ek ook ok ko ok &

Ao e RG] A R ok ok
* *
* COWPUTE PASS *
* COUNT *
*
*
*

*
ok Ok ook ok Kok ok koK

#tt#ﬁﬂ1*h****t#**

* INITIALIZE
*PRINT ARBA AND *
* HEAD!

sk sk ok sk ko dekok R K

v
* ok ok ok K

*
*

*

*

*

*

*

Aok e ok

*okhk

* *

* K1 *=>

* *

SEE NOTE 1

AR] A ARk Kok kK

x *

* EXIT *

* *

sk okl ok skl o Kok ok Kok
FETCH: $CGNSYX

INDICATOR Koy
* !

y

*k
*

* K
*k

AQue
<
=X
Pl
=z
ame<

*%
1 *
* %k

STEMY,
Cco

Chart HC. $CGNBX Termination Routine {8XL000)

4ROL

BXNOOO
Aok Aok oK KRR

*
* ENTER *
* *
e ook ok KoK ok ok

ook RR A ok ok K
* *

* *
*NOVE IN RECORD *
* »*

* *
ok g ok otk kol Kok ok &

AR R C] Rk ok ok ok ok
*

*
: CCUNT RECORD

EX 2R 2

*
* s o ok Kk ok ok ko kok ok

Aok Aok R] %Ak
*BX5000

_--———-n-————--t

*
'SORT THE BLOCK :
Ak Rk ok oK ok KoK K

ttttt?1*{*2342142u
*

*BXH100

Mo o s o o o

*
:HRITE THE BLOCK:
ok ok Aok kR Kk Kok ok K

v
HRAR G DRORERR SR AR S

*SET RECORD AND '
: BLOCK COUNTS :

* *
ek ok ok ok ko ok ok ok Kok &

Cmmmmmm]

BXM090
Aok ok H 1 RRORK Kk ok
* *
: RETOURN :
R AR oK ok kK

Chart HD. $CGNBX Build Area Move and
Output Routine (BXMO000)

Program Organization

3-63

3-64

BXS000
RAEY PRk K Rk k K
*

*
: ENTER *
A kol ok oKk Aok koK

bkt RELEELT T TEY
* *
*MOVE IN RECORD *
: COUNT :

» *
Ak 3 ok o Kok ok ol ok Kok K

*c1' N
.*" COUNT 4. YES
*. LESS THAW 2 l#---=

Y *

*, ox
* NO
BXS010

ARk KD | Kook Rk Rk
* *

* *
:SORT THE BLOCK :

* *
ok ok koK ok ok Kok K

PR

v
RAKE 1 koK ok ook

*
: RETORN *
AN A R oK ok ok oK

Chart HE. $CGNBX Cross Reference File
Block Sort Routine (BXS000}

BXWO000
ook 4ok kol ok kok
*

* ENTER :
ootk Rk ok ok ok ok

:t#*#51*##*w**t*:
* *
:S!T UP LINKAGE :

* *
ok ek okl sl ook el s koK %

¥, JA/01/A1
c1 *, Aok C 2Rk H AR K kK K
ok *, *CAM0OO T *
«* READ A *, YES K o s e o o om e
%, BLOCK IN . %==o-m===D>k
*, PROCESS .+ * WAIT POR READ *
“w, o ttt#*tt**##**#**#
*" §O
P,
. ¥
#t*#tn1t*t*m#**tt D2 .
tcn'r RECORD FROH* NO_.* R
BLOCK ~w=—=%, DPERMANENT _.*
* <, ERROR .
##tt*#**t#t#t**#t Sk, %
*"YES
¥ SEF NOTE
E1 *,
o *, HRRKE ARk kAR Kk
. BLOCK *, N *
LN EMPTY PR * EXTT *
*, o ¥ * *
*, L * i AR KKK R
* TQ: EOJ
*"yES *