ml
c © =
S] m
O C o
S 3 2
4= 17
- >
c o oL AN
or - - ™ -
e —me e g
°F E3TE
™ S v
Ngwo 7
£T o] ~
0.9 S50000 9
..&nm Nsmssm
> 3 c N < & 18
NnEQDT ESST8 o > o
= SNNKNKNKN & 5«
i 0 .
meu mv5555..m NS
o ¥ « 8%
0DOox a e Sz

Fourth Edition (December 1976)

This is a major revision of, and obsoletes, GC21-7579-3 and Technical Newsletter
GN21-5442. Information has been added to support Program Number 5704-SC2 for
the IBM System/3 Model 15. Because the changes and additions are extensive, this
manual should be reviewed in its entirety.

This edition applies to the {BM System/3 Communications Control Program for:

® Version 13, modification 00, of Program Number 5702-SC1 for the
IBM System/3 Model 10

® Version 05, modification 00, of Program Number 5704-SC1 for the
IBM System/3 Model 156

® Version 01, modification 00, of Program Number 5704-SC2 for the
IBM System/3 Model 15

® Version 02, modification 00, of Program Number 5705-SC1 for the
IBM System/3 Model 12

This edition also-applies to all subsequent versions and modifications until otherwise
indicated in new editions or technical newsletters.

Changes to the information herein are made periodically. Before using this publication
to operate an |BM system, refer to the latest /BM System/3 Bibliography, GC20-8080,
for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the 1BM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form

has been removed, comments concerning manual content may be addressed to IBM
Corporation, Publications, Department 245, Rochester, Minnesota 55901.

© International Business Machines Corporation 1973, 1974, 1975, 1976

This publication describes how to write telecommunications
application programs to run under control of the communi-
cations control program (CCP). The CCP is a feature of
disk system management that facilitates the implementation
of telecommunications applications on the Model 10 Disk
System and Models 12 and 15.

This manual is intended for programmers who use one or
more of the following System/3 programming languages:

® RPGII

® Subset American National Standard {(ANS) COBOL

FORTRAN IV

® Basic Assembler

The introduction to this manual summarizes the purpose
and operation of the CCP. Subsequent chapters describe
the standard application program interface to the CCP,
examples of typical application program logic, application
programming in COBOL, FORTRAN 1V, RPG I, and
Basic Assembler, preparing source programs to run under
the CCP, program testing, and use of the optional 3270
display format facility of the CCP.

System/3 Model 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System control programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Model 8, although Model 8 is

not referenced. However, the integrated communications
adapter (ICA) and local display adapter are available on the
Model 8. If you have the ICA or local display adapter, it is
always designated on BSCA line 2. Therefore, you must
specify line 2 whenever it is required, or enter the BSCA
OCL statement (// BSCA LINE-2) at execution time.

It should be noted that not all devices and features which
are available on the Model 10 are available on the Model 8.
Therefore, Model 8 users should be familiar with the
contents of /BM System/3 Model 8 Introduction,
GC21-5114.

Preface

Prerequisites

The CCP application programmer need not have extensive
previous knowledge of telecommunications networks, data
link control, and the characteristics of specific terminal
devices. This manual assumes, however, that the program-
mer has a working knowledge of his programming language
and is familiar with the configuration of the CCP system

in his installation.

This manual has no specific prerequisite publications; however,

many references are made to the following manuals that
are required by the programmer using the Model 10 Disk
System and Model 12, and Model 15 respectively:

® /BM System/3 Models 10 and 12 Communications
Control Program System Reference Manual, GC21-7588

® /BM System/3 Model 15 Communications Control
Program System Reference Manual, GC21-7620

Also, in order to fully utilize the display format facility

of the CCP, the programmer must have a basic understand-
ing of the concepts and operation of the IBM 3270
Information Display System as given in /BM 3270 Informa-
tion Display System Component Description, GA27-2749.

Other publications that are useful to the programmer are
listed in Appendix C: Bibliography.

CHAPTER 1:
CCP Stages
Generation Stage
Assignment Stage
Operational Stage
Terminals and Features Supported

INTRODUCTION

CHAPTER 2: STANDARD APPLICATION PROGRAM

INTERFACETOTHECCP
Communications Service Subroutine .
Parameter List
Return Code (Positions 0-1)
Operation Code (Positions 2-3}
Third Field (Positions 4-5) . .
Maximum Input Length (Positions 6-7)
Address of the Record Area (Positions 8-9) .
CCP Work Area (Positions 10-15) .
Record Area . .
Program Name . . .
Symbolic Terminal Name
Muiticomponent Terminal Consrderatlons
Data Transfer and Translation .
Terminal Attributes .
Input Data Transfer .
Input Data Translation .
Output Data Transfer
Output Data Translation .
Transritting 3735 FDPs on an ASCII Llne .
Recorcl Separators {Variable Length and Spanned
Records) . e
Device Control Characters .
MLTA Typewriter Terminals
BSCA Terminals .
Line Control Characters
Communicating with MLTA Termmals
Communicating with BSCA Terminals
Blocking .
End of Transmrssron (EOT)
BSCA Input Operations
BSCA Output Operations .
3284/3286 Printer Consideration .
Operations
Program Errors
3270 Display Format Facnllty Operatlons
Get Coe .
Function and Use of Get
Specifying the Terminal
Put
Function and Use of Put
Put-Then-Get . . . -
Function and Use of Put-Then Get
Put-No-Wait .
Function and Use of Put No Walt
Invite Input .
Function and Use of Invrte Input
Accept Input
Function and Use of Accept Input
Stop tnvite Input (or Get) . .
Function and Use of Stop Invite Input

1-1
1-1
1-1
1-2

1-3

21
22
2:2
2:2
2:3
2-3
24
24

24
2-4
24
2-5
26
26

2-7
2-8

2-8

29
2-10
2-1
2-12
2-12
2-12

- 2-12

2-12
2-13
2-13
2-15
2-16
217
2-17
2-17
2-18
2-18
2-18
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-26
2-27
2-27
2-29
2-30

Get Terminal Attributes

Special Information Returned in the Parameter Llst

Information Returned in the Record Area
Function and Use of Get Attributes .
Specifying the Terminal
Acquire Terminal
Function and Use of Acqurre Termmal
Chain Task Request (5704-SC2 Only)
Function and Use of the Chain Task Request
Release Terminal ..
Function and Use of Release Termmal
Shutdown Inquiry .
Function and Use of Shutdown Inqurry .
Wait Operation (Mode! 15 Only)
Function and Use of Wait Operation .

CHAPTER 3: COMMUNICATIONS PROGRAMMING

TOPICS.«
Terminal Classes .
Command Terminals
Data Terminals
Program Use of Terminals .
Requesting Terminal
Program-Selected Terminal
Program Types .
Single Requesting Termlnal (SRT) Program .
Multiple Requesting Terminal (MRT) Program .
Special Program Attributes Ce .
Never-Ending Program . .
Serially Reusable Program (Models 10 and 12) .
Dedicated Program {(Models 10 and 12)
Program Request Under Format PR
Sort Programs {5704-SC20Only)
Sorts and Task Chaining P
Examples of Application Program Loglc e
Single Requesting Terminal .
Single Requesting Terminal and Program- Selected
Terminals e
Multiple Requesting Termmals e e e

Contents

2-30
2-31
2-31
2-34
2-34
2-34
2-35
2-35
2-36
2-38
2-38
2-39
2-40
2-40
2-40

31
31
3-1
31
3-2
3-2
3-2
3-3
3-3
3-3
34
3-4
3-6
3-6
3-56
3-7
3-8
3-8
39

3-11
3413

Multiple Requesting Terminals and Program-Selected

Terminals
Symbolic Files

Considerations and Restructlons in Usmg Symbolrc

Files.
Switched Lines
BSCA Switched Line
MLTA Switched Line
Switched Line Disconnect Consnderatrons

CHAPTER 4: COBOLo

COBOL Use of the Standard Interface -

Defining the Record Area and Parameter List . .
Record Area

Parameter List
Setting the Contents of the Parameter Lrst and
Record Area . . R

Setting Fields in the Parameter Llst
Setting the Record Area
Calling the Communications Service Subroutme

3-16
3-16

3-17
317
3-17
3-20
3-20

41
41
41
4-3

4-4
4-7
49

Examining Returned Information .
Return Code .
Examining a Returned Name
Referencing Saved Information
Effective Input Data Length
Count of Outstanding Invite Inputs
Input Data
Using the System Operator Console
COBOL Programming Considerations
3270 Display Format Facility .
Programming Examples
Example 1
Example 2

CHAPTER 5: FORTRANIV .
FORTRAN Use of the Standard Interface
Defining the Record Area and Parameter List

Record Area .

Parameter List . .
Setting the Contents of the Parameter Lrst and

Record Area

Setting Fields in the Parameter Llst

Setting the Record Area
Calling the Communications Service Subroutme
Examining Returned Information .

Return Code .

Examining a Returned Name

Referencing Saved Information

Effective Input Data Length

Count of Outstanding Invite Inputs
Using the System Operator Console
FORTRAN Programming Considerations
3270 Display Format Facility .
Programming Examples

Example 1

Example 2

CHAPTER 6: RPGII . . .
RPG |l Use of the Standard CCP Interface

Communications Interface Using RPG 1l Special Files .

Parameter Array for SPECIAL
Record Area for SPECIAL .
CCP Communications Service Subroutme for
SPECIAL . .
{ndicators Reserved for CCP Use .
Defining SPECIAL Files for Use with CCP
Main File Description for SPECIAL
Continuation Specification for SPECIAL
Defining the Parameter Array .
Extension Specifications
CCP Operation Codes .
Force End of File (SPECIAL Only)
Put With Invite Input (SPECIAL Only)
Put-No-Wait With Invite Input (SPECIAL Only)
Performing CCP Operations with. SPECIAL .
Performing CCP Operations Using Primary,
Secondary, or Demand Input

Performing CCP Operations Using Headmg, Detall

Total or Exception Output
Heading, Detail or Total Output
Put-Then-Get Operation
Non-1/C Operations . .
Operations Issued at Input Tlme .
Operations Issued at Output Time

vi

411
411
413
413
413
413
413
4-15
415
4-15
417
417
4-24

51
51
5-1
51
52

5-3
53
56
5-8
59
59
59
5-11
5-11
5-13
5-13
5-13
5-13
5-16
5-16
5-21

6-1
6-2
6-2
6-2

6-3
6-5
6-5
6-8
6-8
6-9
69
6-10
6-11
6-11
6-11
6-11

6-12

6-15
6-18
6-18
6-19
6-20
6-21

EXIT/RLABL Communications Interface
Parameter Array .
Record Area .
EXIT to SUBR91
EXIT to SUBR90 .
EXIT to SUBR87 and SUBR88
Setting the Parameters for EXIT/RLABL Operatrons
Examining Returned Information .
3270 Display Format Facility .
RPG 1l Programming Considerations .
Specific Restrictions
Programming Examples
Example 1
Example 2

CHAPTER 7: BASIC ASSEMBLER PROGRAMMING
FORCCPo
Symbols Used in Defrnmg Macro Instructrons
Mnotes
Generate Equates for Common Values ($NCOM)
Generate Equates for Parameter List Offsets ($NPLO) .
Generate Operation Code/Modifier Values {($NOPV)
Generate Equates for Return Code Values ($NRTV)
Generate Parameter List {($NPL)
Example . .
Set Control Informatron for Commumcatrons
Operation ($NCIO} . .
Examples of Using $NCIO .
Programming Restrictions .
Assembler Macro Support Mnotes
Programming a User Security Routine —
Models 10 and 12 .
Sample Program — Model 10 or Model 12
Programming a User Security Routine — Model 15 .
Sample Program — Model 15

CHAPTER 8: 3270 DISPLAY FORMAT FACILITY
(DFF) « « « « « «
General Information
Overview .
Prerequisite lnformatron
DFF Routines
Field Concepts
Definition
Field Classes .
Field Types . .
Planning the Prrnter/Dlsplay Layout .
Attributes ..
Qutput Class .
Input and Output/lnput Classes
SPD Class .
Autoskip and Cursor Posrtlomng .
Defining Data
Number of Fields
Record Concepts
Display Output Record Format
Printer Output Record Format
Input Record Format
Display Format Generator .
Printer/Display Layout Sheet .
Display Control Form
Field Definition Form .
Additional Functions for the Fleld Deflmtron
Statement

6-21
6-22
6-22
6-22
6-23
6-25
6-26
6-29
6-29
6-29
6-31
6-31
6-31
6-37

7-1
7-1
7-1
7-1
7-2
7-3
7-3
7-6
7-7

7-8
7-12
7-14
7-14

7-16
7-19
7-22
7-23

81
81
81
82
82
g4

84

8-11
8-11
8-13
8-13
8-14
8-16
8-17
8-19
8-20
8-20
8-20
8-20
8-21
8-21
8-21
8-26

8-28

OCL Considerations for the Display Format
Generator

Display Format Generator Dragnostlc Messages .

Printer Format Generator Routine (PFGR) .
Printer/Display Layout Sheet .
Printer Control Form
Field Definition Form

Printer Control on the Field Deflmtron Statement .

PFGR Line/Partial-Line Duplication .
OCL Considerations for the Printer Format
Generator

Printer Format Generator Dlagnostrc Messages .

Display Format Control Routine (DFCR)
3270 Display Operations .
Operation Considerations Wlth DFF .
Put Message .
Put-No-Wait .
Put Override .
Selecting the WCC
Copy .
Selecting the Copy Control Character
Erase .
Return Codes

Input Operations - Accept Input Get Stop lnvute

Input
User Program Record Area
Display Concepts
New Screens .
Overlay Screens . .
DFF, CCP Considerations .

Assignment Control Statements

Storage Areas .

Terminal Operator Actrons .
Display Format Test Routine ($CCPDT)
Format Find Routine (5704-SC2 Only)
Examples .

Example I—DFF Formattmg Example

Example 2—RPG Il MRT Program Using the

Display Format Facility
Example 3—SRT Inquiry Program

Example 4—RPG |l Order Entry Program (Usmg

PRUF with the DFF) .

CHAPTER 9: PROGRAM PREPARATION . .

Compiling and Link-Editing the Program — Model
15 CCP .
Compiling the Program Model 10 and
Model 12 CCP .
Link-Editing the Program — Model 10 and
Model 12 CCP . .
Overlay Linkage Editor Control Statements —
Model 10 and Model 12 CCP . .
Link-Editing a Program to Run Under DSM -
Models 10and 12 . .
Copying the L.oad Module .
Making Assignments
Unit Record File Consuderatlons - Model 10 and
Model 12 CCP

Unit Record File Conslderatlons - Model 15 CCP .

Disk File Considerations .
Models 10 and 12 Conyderatnons .
Model 15 Considerations
Model 10 and Model 12 CCP File Sharmg

Considerations .

Model 15 CCP File Sharing Consnderatlons -. .

Determining the Disk File Access Value .

8-32
8-32

8-33 -

8-33
8-33
8-36
8-38
8-38

8-40
8-40
8-41
8-43
8-43
8-43
8-44
8-44
8-49
8-50
8-52
8-53
8-53

8-563
8-54
8-56
8-56
8-56
8-58
8-58
8-58
8-59
8-61
8-64
8-65
8-65

8-72
8-95

8-103

9-1

9-2

9-3

9-3

9-4
96
96

97
9-7
9-8
9-8
9-10

9-13
9-13
9-17

CHAPTER 10: PROGRAM TESTING

APPENDIX A: CPU TO CPU CONSIDERATIONS
Attachment Configurations ‘
Programming Considerations
Command Mode .
Data Mode .
Generation Considerations . ..
$EMLA and $EMLD Statements .
$EBSC and $EBSD Statements
Assignment Considerations
Recommendations and Examples .
Example 1: Multipoint Command Mode
Example 2: Point-to-Point Command Mode

Example 3: Point-to-Point Switched Command Mode .

Example 4: Point-to-Point Data Mode
APPENDIX B: GLOSSARY

APPENDIX C: BIBLIOGRAPHY
ccp
General System/3 .
MLTA and MLTA Termmals
BSC and BSCA Terminals/Systems
Programming Language Manuals
General Telecommunications .

APPENDIX D: OPERATION CODES

APPENDIX E: RETURN CODES .
Negative Return Codes .

Use of Data Truncated Return Code in 3270 DFF .

INDEX

. 101

A-1
A-2
A-2
A-3
A-5
A-5
A5
A-5
A-6
A6
A-7
A-8
A9
A-11

B-1

C1
C1
C-1
C1
C1
C-2
C-2

D1
E-1

E-1
E-1

vii

How To Use This Manual

In order to gain an overall understanding of the require-
ments for writing application programs under the CCP,
read chapters 1, 2, and 3 before reading the chapter that
applies to your programming language. These chapters
contain:

Chapter 1: Summary of the purpose and operation of the
CCP.

Chapter 2: Description of the appiication program inter-
face to the CCP, independent of any particular program-

ming language.

Chapter 3: General description of terminal classes, pro-
gram types, and CCP application program logic.

After you have read the first three chapters, read
thoroughly the chapter that applies to your programming
language:

Chapter 4: COBOL

Chapter 5: FORTRAN 1V

Chapter 6: RPG Il ,

Chapter 7: Basic Assembler

viii

If your program will use the 3270 Display Format

Facility of the CCP to communicate with components of
the IBM 3270 Information Display System, read chapter 8
after you have an understanding of CCP application pro-
gramming in your language.

Before attempting to write a CCP application program, be
sure to read Chapter 9: Program Preparation, since that
chapter contains important disk and unit record file con-
siderations you must be aware of,

Reference Aids

The appendixes provide convenient summaries of applica-
tion program operation codes and return codes as well as
a glossary of terms and a bibliography.

Use the index at the end of the manual to locate specific
subjects.

The Communications Control Program (the CCP) is a
system control program feature of the IBM System/3 Model
10 Disk System, |BM System/3 Model 12, and IBM
System/3 Model 15 designed to facilitate the development
and implementation of telecommunications applications.
The CCP serves as the control program of a telecommunica-
tions subsystem, operating in conjunction with disk system
management (referred to by the abbreviation DSM in this
manual).

Under the CCP, an online network of terminals can call
application programs as needed and access a common set
of disk files. If sufficient main storage is available, the
CCP permits several application programs to be executing
concurrently under its control.

Communications application programs to be run under
control of the CCP can be written in any of the high-level
languages available with Models 10, 12, and 15 — RPG II,
COBOL., and FORTRAN IV — and in Basic Assembler.
Individual application programs can be written without
detailed knowledge of the requirements for programming
under a telecommunications system and, with few excep-
tions, as though they are to be run individually, with access
to all system resources.

With the facilities provided by the CCP, the System/3 can
be used either as a host system or as a subhost system:
Host System: The System/3 is the central controller of a
network of start-stop and/or binary synchronous terminals,
Subhost System: The System/3, while directly controlling
a group of terminals, is itself a tributary station to a large
central processor, such as System/370.

Note: For an introduction to the CCP that includes more
detailed descriptions of CCP services and relationships be-
tween the CCP and other System/3 programs, see the CCP
System Reference Manual, GC21-7588 for Models 10 and
12, GC21-7620 for Model 15. If you are not acquainted
with terms and abbreviations used in this manual, you can
find definitions either in Appendix B. Glossary at the end
of this manual, or in /BM Data Processing Glossary,
GC20-1699.

Chapter 1: Introduction

CCP STAGES

Establishing and operating the CCP in a particular environ-
ment is accomplished in three stages:

® Generation
® Assignment

® QOperation

Generation Stage

CCP generation is the process whereby your installation
creates its individual version of the CCP. The purpose

of generation is to establish the required capabilities of the
CCP by creating a set of CCP object modules and sub-
routines, unique to the requirements of your installation.
The process of generation involves:

1. Describing the type of equipment to be used by the
communications system and other permanent features

of the CCP system.

2. Creating a set of control routines whose specific
content may be unique to your installation.

3. Joining the routines by a link-editing process.
4, Copying appropriate additional supporting routines.

5. Initializing the control file that the assignment stage
and the operational stage use (SCCPFILE).

CCP Generation is described in CCP System Reference

Manual, GC21-7588 for Models 10 and 12, GC21-7620 for
Model 15.

Introduction 1-1

Assignment Stage

CCP assignment stage is a brief process by which one or
more sets of specific environments in which the CCP can
run are defined. Each set includes:

® Specific items of information pertaining to the entire
CCP, such as the current password.

@ Programs that may be run under the CCP and the
resources that each requires.

® Files that are accessible to each program.
® The current line/terminal configuration.

® Symbolic terminal names and the actual terminals to
which they apply.

® Terminal attributes.

The assignment run need be repeated only when some of
the specific information given in a previous assignment run
must be changed. For example, CCP assignment must be
repeated when new programs and files are to be used under
the CCP.

As a programmer, you must be familiar with the contents
of the CCP assignment sets, since you must be aware of
characteristics of files, terminals, and communication
lines available to programs you write. You can determine
the contents of assignment sets from the listing produced
by the Assignment List program.

See CCP System Reference Manual, GC21-7588 for Models

10 and 12, GC21-7620 for Model 15, for detailed informa-
tion about CCP Assignment.

1-2

Operational Stage

The operational stage begins with operational startup, when
the CCP is loaded into main storage. During startup, CCP
routines open disk files, adapters, and communication lines
and complete various tables and contro! blocks. During
operation, the CCP supervises the environment in which
your application programs run and provides communi-
cations services to your programs. The operational stage

is concluded by shutdown, which is initiated by the system
operator. During shutdown, the CCP allows programs

that are currently executing, or that are currently scheduled
or chained, to finish processing, then it closes communica-
tion lines, adapters, and files.

See CCP System Operator’s Guide, GC21-7581 for Models
10 and 12, or GC21-7619 for Model 15 for a detailed de-
scription of CCP operation.

TERMINALS AND FEATURES SUPPORTED

The following terminals may be used with the communica-
tions control program.

Through the multiple line terminal adapter:

® 1050 Data Communication System
Switched
Multipoint nonswitched

® 2740 Communication Terminal Model 1
Basic
Checking
Dial
Dial with checking
Dial with transmit control
Dial with transmit control and checking
Station control
Station control with checking

® 2740 Communication Terminal Model 2
Station control
Station control, checking
Station control, buffered receive
Station control, buffered receive, checking

® 2741 Communication Terminal
Basic
Switched

® 3767 Communication Terminal {(when simulating a
2740 Model 1)
Checking
Dial with checking
Station control, checking
(when simulating a 2740 Model 2)
Station control, checking

® 3767 Communication Terminal (when simulating a 2741)
Basic
Switched

® Communicating Magnetic Card SELECTRIC® Type-
writer (appears identical to a 2741 switched)
Point-to-point switched

® System/7 (appears identical to a 2740 Model 1)
Checking
Dial with checking
Station control with checking

® 5100 Portable Computer (when simulating a 2741)
Basic
Switched

e 5230 Data Collection System (appears identical to a 3741
Model 2 or 4)
Point-to-point switched
Point-to-point nonswitched

With the binary synchronous communications adapter:

® 3270 Information Display System
Multipoint nonswitched

® 3275 Information Display Station
Switched

® 3735 Programmable Terminal
Switched
Multipoint nonswitched

® 3741 Data Station Model 2, Programmable Work
Station Model 4 :
Point-to-point nonswitched or switched
Multipoint

® System/3
Point-to-point switched
Point-to-point nonswitched
Multipoint with the CCP as control station
Multipoint with the CCP as a tributary

® System/7 Feature 2074 or RPQ (see Note)
Point-to-point switched
Point-to-point nonswitched
Multipoint with the CCP as control station

® System/360, System/370
Point-to-point switched
Point-to-point nonswitched
Multipoint with the CCP as tributary

Terminals that are equivalent to those explicitly supported
may also function satisfactorily. The customer is respon-
sible for establishing equivalency. 1BM assumes no respon-
sibility for the impact that any changes to the IBM-supplied
products or programs may have on such terminals.

Note: Under BSCA, the System/7 is supported only as

it is supported by the Multiline/Multipoint BSCA |OCS —
see /BM System/7 (RPQ) Binary Synchronous Module Pro-
gramming Guide and Reference Manual, SC34-1510.

Introduction 1-3

1-4

Chapter 2: Standard Application Program Interface To The CCP

The standard interface (that is, the procedures and common
data areas) used by application programs to request the
CCP to perform communications operations with remote
terminals or the system operator’s console is composed of
the following basic elements:

® Communications Service Subroutine
® Parameter List
® Record Area

® A set of communications operations that can be issued
to the CCP :

The details of this interface differ slightly among the
programming languages—RPG II, COBOL, FORTRAN IV,
and Basic Assembler—but the functions performed by the
basic elements remain essentially the same. Where the
interface for a particular language differs from the standard
interface, you are referred to the chapter covering that
language.

In order to perform a communications operation, such as
writing a message to a terminal, an application program
must do the following:

1. Provide storage space within itself for a parameter
list and record area and specify the format of these
areas.

2 Prepare the record area for the operation.
3. Set the contents of the parameter list.

4, Invoke the communications service subroutine to
perform the operation.

5. Check appropriate return codes to determine the
result of the operation.

Since your program may be competing with other programs
for system resources such as terminals, disk files, and unit
record devices, the CCP ensures that these resources are
available to your program before your program is allowed
to run. Each terminal required by your program is allocated
exclusively to your program until your program releases it
(see index entry Release Terminal Operation) or until the
execution of your program has ended. When either of these

events has occurred, the terminal is free to be allocated to
another program {(or to enter commands, if it is a command
terminal). Because the CCP also allocates the use of unit
record devices, you can code |/0 operations using these
devices as though your program has exclusive control of
them. (Exception for Model 15 CCP: Your program can
share use of the 1403 printer with another program running
concurrently if PRINTER—SHR is specified in the
PROGRAM assignment statement for your program [see
CCP System Reference Manual]. You should consider in
the design of your program that you do not have exclusive
control of the printer.)

CCP may receive a request for a program that uses:
® A terminal that is presently allocated to another program.

® A disk file that is allocated to another program in such a
manner that the access methods conflict. For example,
a currently executing program adds consecutively to a
file and the program being requested adds to the same
file.

® Adisk file is specified as NOSHR on the FILES param-
eter of the PROGRAM assignment statement or as
SHARE-NO on the FILE OCL statement.

The CCP rejects such a program request or queues it, depend-
ing on the queue status of the terminal (see /Q and /NOQ
commands in CCP Terminal Operator’s Guide, GC21-7580).
When the previous program has terminated, terminals and
disk files used by that program are available to subsequent
programs.

Note: Model 10 and Model 12 CCPs can also queue (/Q) a
request for a program that uses a unit record device that is
temporarily unavailable. Model 15, however, normally
rejects requests for programs that require a unit record
device that is unavailable. The exception is if the requested
program uses the printer and the printer is either perma-
nently allocated to the CCP partition, or spool is intercept-
ing the CCP partition, and the requested program uses no
other unit record devices or terminals.

Standard Application Program Interface to the CCP 2-1

COMMUNICATIONS SERVICE SUBROUTINE

Since RPG 1, COBOL, and FORTRAN |V, do not include
special statement types for general purpose terminal 1/0
operations and other communications services (see
Operations), the CCP provides one or more communications
service subroutines to application programs written in each
language. (For Basic Assembler Programs, a macro instruc-
tion is provided — see index entry $NC/O macro.) The
communications service subroutine converts the application
program’s request into a standard request to the CCP
communication facilities.

The communication service subroutine (RPG |1 programs
may actually use more than one) must be link edited to
each application program prior to using the program under
the CCP. Thus, the communication service subroutine,
although provided by the CCP, actually becomes a part of
the application object program. See Chapter 9: Program
Preparation for procedures for preparing an application
program to run under the CCP.

In COBOL and FORTRAN 1V, the application program
initiates a communications operation by issuing a CALL
statement to the communications service subroutine.

In RPG Il, the program can initiate an operation and
invoke the communications service subroutine either
through the SPECIAL or EXIT/RLABL facilities of the
language.

PARAMETER LIST

You must provide a parameter list within your program
with each request for a communications operation. The
parameter list specifies the details of the communications
operation and provides locations within itself where the
CCP returns information about the results of the operation.
This chapter describes the parameter list as it is presented
by the communications service subroutine to the CCP
communications facilities. In RPG |1, the parameter list

as defined in the user program is somewhat different (see
Chapter 6: RPG I1).

The parameter list is 16 positions long, consisting of eight
two-position fields, as shown in Figure 2-1.

Return Code (Positions 0-1)
Although this field (see Figure 2-1) must be provided in

the parameter list, the CCP ignores the contents at the
beginning of the operation. At the completion of each

2-2

operation, before returning control to the application
program, the CCP places a value in this field indicating the
status of the operation:

® Operation completed normally (value of zero).

® QOperation resulted in an /O error (negative value).

® Operation resulted in an exception condition {positive
value).

Specific return code values and meanings are given in
Appendix E: Return Codes.

0 11
Return Code
2 3
Operation Code
4 Output Length/ Effective Input/ 5
Attributes Identifier/
Outstanding Invite Inputs
6 7
Maximum Input Length
16 Positions
(8 2-position
8 9 fields)
Address of the Record Area
10 1
12 CCP 13
Work
Area
14 15
J

Note: In RPG |, the format of the parameter list is
somewhat different (see Chapter 6: RPG /).

Figure 2-1. Parameter List

In order to determine the results of a communications
operation, you must include coding in your program to
test the return code. The degree of return code checking
and the actions taken based on return code checking will
vary in different applications, however, it is strongly
recommended that return code checking at the level of
normal completion (zero return code) or abnormal comple-
tion (non-zero return code) be done in all programs.

Examples of testing return codes are given in chapters 4
through 6. Recommended actions to be taken by your
program for each return code are given in Appendix E.
RPG |l programmers should see Chapter 6: RPG 1/ for
additional information concerning handling of return
codes in that language.

Operation Code (Positions 2-3)

For each communications operation (except some RPG Il
operations), this field must contain a code that indicates
the specific operation to be performed. The contents of
this field are the same after completion of the operation
as when the operation began. See Operations, later in
this chapter, for descriptions of the valid operations and
operation modifiers that can be issued to the CCP by an
application program,

Third Field (Positions 4-5)

This field in the parameter list can contain four different
kinds of information: ‘

1. Output Length — provided by your program for
output operations {see Output Operations, following)

2. Effective Input Length — returned by the CCP (see
Input Operations, following)

3. Terminal Attributes Identifier — provided by your
program (see Acquire Terminal Operation, following)

4. Count of Outstanding Invite Input Operations —
returned by the CCP (see /nput Operations and
Release Terminal Operation, following)

Output Operations: This field must contain the length of
the data to be transmitted from your program, that is, the
number of characters of data you wish to write from the
record area in your program, not including the six positions
for the symbolic terminal name and not including line
control characters, which are added to your data by the CCP,
(In RPG Il, the output length is placed in the output record
area; see Chapter 6.)

Input Operations: On each completed input operation, the
CCP calculates and places into this field the actual length of
the input data passed to the application program. This
effective input length does not include the symbolic ter-
minal name, line control characters, backspace characters,
or data which the CCP cannot pass to the application pro-
gram when the amount of data received exceeds the size

of the record area (see Maximum Input Length, the next
field in the parameter list). However, the effective input
length does include record separator characters (see index
entry record separators). The CCP ignores the contents of
this field at the start of an input operation.

If data mode escape is allowed in your CCP system (see
index entry) and a terminal enters the /RELEASE command
after entering the data mode escape characters, your pro-
gram will receive a 08 return code from any of the follow-
ing input operations: Get, Accept Input, Put-Then-Get,

and Stop Invite Input (see index entries). The 08 return
code indicates that the terminal to which the input opera-
tion was issued is no longer available to your program. In
this case, CCP places the current number of outstanding
Invite Inputs for your program (see index entry) in positions
4-5 of the parameter list. This information is important in
multiple requesting terminal (MRT) programs (see index
entry).

Acquire Terminal Operation: \f you issue an Acquire
Terminal operation (see index entry) which sets the attri-
butes of the terminal to be acquired, this field must identi-
fy the attribute set you want to assign to the terminal. The
terminal attribute set is defined in the TERMATTR assign-
ment statement — see CCP System Reference Manual.

Release Terminal Operation: |f your program releases a
terminal (see index entry Release Terminal operation)
and receives a zero return code from the operation, CCP
places the current number of outstanding Invite Inputs
for your program (see index entry) in the third field
(positions 4-5) of the parameter list.

Standard Application Program Interface to the CCP 2-3

Maximum Input Length (Positions 6-7)

On each operation involving input data, you must enter a
value into this field representing the maximum number of
bytes of input data you expect to receive. This value does
not include the six characters for the terminal name. This
value must be greater than zero and no larger than the

size of the record area provided by your program. The CCP
does not alter this value during the operation.

Address of the Record Area (Positions 8-9)

This field is set by the communications service subroutine
(except in Basic Assembler, where this field is set by the
$NCIO macro) to contain the main storage address of the
record area (see Record Area). This field addresses the first
(leftmost) position of the name field in the record area, not
the first position of data; therefore, the data actually begins
at the address given, plus six. For operations not involving
data transfer, this field may point to a record area contain-
ing only the name field.

This field is not present in the parameter list used by
RPG Il application programs.

CCP Work Area (Positions 10-15)

These positions are used for a work area by the CCP. Your
program must not use these positions.

RECORD AREA

With each communications operation your program issues
to the CCP (except Shutdown Inquiry), it must provide a
record area. A record area is an area in the application
program that consists of two parts. The standard record
area for operations involving data transfer consists of a
six-position name field followed by a data area (Figure 2-2).
Exceptions to this standard format occur for RPG !l (see
Chapter 6: RPG /1) and when the 3270 Display Format
Facility (see index entry) is used.

The name field contains either the name of the program (if
a chained task operation), or the symbolic terminal name
that is to be involved in the operation.

The parameter list field containing the record area address
(Figure 2-1) always points to the leftmost position of the
name field. Data transfer, however, always occurs into and
out of the data area segment of the record area. Lengths
specified in the parameter list for operations involving data
transfer refer to the length of the data area portion of the
record area, except in certain RPG |l output operations.

2-4

Name
Field

|
|
| Data Area
|

N~

6 positions Number of positions specified by programmer

Figure 2-2. Standard Record Area

Program Name

The program name is the name of the program to be called
on a Chain Task Request operation (5704-SC2 only). Fora
task chain operation, your program must place the name of
the program to be chained in the first six positions of the
record area (left-justified and padded with blanks if less than
six characters). If data is to accompany the chain request,
the data follows the program name in the record area, and
PGMDATA-YES must be specified on the PROGRAM
assignment statement (see the Model 15 CCP System
Reference Manual, GC21-7620) for the requested program.

Symbolic Terminal Name

The terminal with which a communications operation is
performed is identified by a symbolic terminal name in the
first six positions of the record area (left justified). In most
operations, the application program must place the name
into the name field of the record area to specify the termi-
nal with which to operate; in certain operations, however,
the CCP places the name into the record area to inform the
program with which terminal the operation took place.
Each symbolic terminal name refers to a specific physical
terminal device.

Three classes of terminal names are available for use in
application programs:

1. User-Defined Names: These are the terminal names
defined in TERMNAME statements during CCP
assignment. The structure of these names must
conform to the following rules:

® The first character must be alphabetic {including
#, $, and @),

® Each succeeding character can be either alphabetic
or numeric.

® One to five of the six possible positions in the
name can be blank, but no blanks may be
embedded between other characters. For example,
the following names are valid: TERMIb,

TBdS; the following are invalid: TERMU2,
WTERM2,

® Each terminal name must be unique.

® The names CONSOL, ALL, and a name consisting
of six blanks cannot be user-defined.

CONSOL: On the System/3 Model 10 and Model 12,
the symbolic name CONSOL refers to the system
operator’s 5471 Printer/Keyboard. On the Model 15,
the symbolic name CONSOL refers to the system
operator’s keyboard and 3277 Display Station, re-
ferred to as the CRT/Keyboard. Application pro-
grams can communicate with thé system operator's
console at any time; however, the console is never
allocated to the program. Operations issued to the
console by programs running under the CCP must

be issued as communications operations; if issued in
any other way, the results are unpredictable. The
only operations that can be issued to the console are:

® Pyt

® Put-No-Wait (handled as a Put by the CCP)
© ® Put-Then-Get

® (et Attributes

® Accept Input (to accept only data that accompanies
the program request)

The CCP automatically releases the console from any
program it requests as follows:

® |f the console requested the program and the
PROGRAM assignment statement (see CCP
System Reference Manual) specifies PGMDATA-
NO, the console is released when the program
is loaded.

® |f the console requested the program and the
PROGRAM assignment statement specifies
PGMDATA-YES, the console is released after an
Aiccept Input operation results in the console
program data being passed to the user program.

Note to Model 10 and 12 users: Programs that use
symbolic files (see index entry) must allow data to
be entered with the program request if they could
be requested by the console (see program request
comimand i CCP System Operator’s Guide). These
programs must also open all physical files to be
referenced by a symbolic file prior to issuing an
Accept Input operation. (In RPG I, these files are

automatically opened prior to the first input
operation.)

3. Blanks: Programs that handle only one requesting
terminal per execution (designated single requesting
terminal (SRT) programs, see index entry), can issue
communications operations with six EBCDIC blanks
(hexadecimal 40) in the symbolic terminal name pot-
tion of the record area.. The CCP interprets the blank
name as a reference to the terminal that requested the
program. Upon completion of such an operation, the
CCP sets the first six positions of the record area to
contain the name of the requesting terminal. The
program cannot use blanks after it has released the
requesting terminal (see index entry Release Terminal
operation).

The use of symbolic names for terminals allows programs
to be relatively independent of the specific terminals. How-
ever, the programmer must be aware of the type of terminal
he is using since he must know the record length of the
device; whether the terminal is capable of input only, out-
put only, or both input and output; and other information
(see index entry Get Attributes). The system operator

can reassign a symbolic name of a terminal (perhaps the
terminal is out of order or offline) to a different terminal
during operation of the CCP to allow execution of pro-
grams using that terminal name.

Of those operations requiring a six-position symbolic
terminal name aréa in the record area (only Shutdown
Inquiry does not) only Accept Input does not require that
the area contain a valid symbolic terminal name, The
contents of the terminal name field for that operation are
not used by the CCP,

Whenever you specify a symbolic terminal name other than
CONSOL in an operation, you must ensure that the termin-
al is allocated to your program under that defined name.
The only exceptions to this rule are the Acquire Terminal
operation, (see index entry) which is a request to obtain

a terminal, and Get Terminal Attributes, (see index entry)
which can be requested for any defined terminal name in
the system.

Multicomponent Terminal Considerations

Multicomponent terminals are a special class of terminals
that can have more than one input and/or output device
attached. The 1050 Data Communications System is the
only terminal currently supported by the CCP that is
considered to be a multicomponent terminal. (Each
component of the 3270 Information Display System is
considered a separate terminal and has its own name.)

Standard Application Program Interface to the CCP 25

A 1050 system is treated by CCP as if it were one terminal
regardless of the number of components attached. For
example, the entire 1050 system is always atlocated to a
program; it is impossible for one component to be allocated
to one program white another component of the same 1050
system is allocated to another program. Therefore, any
program in control of a 1050 system has access to a//
components of that particular 1050 system.

As with every other terminal in the CCP system, the 1050
has a symbolic terminal name. However, this symbolic
terminal name has a principal input and principal output
component associated with it. When the symbolic terminal
name is used in an operation, it refers to the principal
components,

You can address other than the principal input and/or
principal output component of a 1050 system. In addition
to the symbolic terminal name, you can assign symbolic
names to a component or pair of components. These are
called symbolic sub-terminal names. To direct an operation
to a specific component, use the symbolic sub-terminal
name associated with that component.

The following special rules apply to use of multicomponent
terminals:

® Only one /nvite Input operation {see index entry) may
be outstanding to the terminal at one time, regardless of
the number of input components attached to the
terminal.

® \When an operation is issued in which CCP returns a
symbolic terminal name, such as Accept Input, the
name returned is always the master terminal name,
never a symbolic sub-terminal name.

® The Acquire Terminal operation must specify a symbolic
terminal name, not a symbolic sub-terminal name.

® The Release Terminal operation must specify a symbolic
terminal name, not a symbolic sub-terminal name.

DATA TRANSFER AND TRANSLATION

The CCP either moves data into your record area or out
of your record area during a communications operation,
according to the operation you specify in the Operation
Code field of your parameter list. In order to know how
data is transferred to or from a specific terminal, what the
CCP does with the data, and what your program must do
with the data, you must know what attributes are assigned
to the terminal (for example, whether or not a 3270 is
using the Display Format Facility).

2-6

Terminal Attributes

TERMATTR assignment statements {(see CCP System
Reference Manual) define terminal attribute sets for ter-
minals used under the CCP. Each attribute set is assigned an
identification number. This number is then referenced

in a BSCATERM or MLTATERM assignment statement

to assign a particular set of attributes to a terminal. A
terminal may have different attributes at different times
and a single attribute set can be used by more than one
terminal. See Get Attributes and Acquire Terminal for
additional information about terminal attributes.

The terminal attribute sets specify the following informa-
tion about terminals:

For BSCA and MLTA terminals:

- ® Whether or not the CCP will translate data sent to or

received from the terminal.

® |f data is to be translated, whether to force the data to
uppercase EBCDIC.

® Whether the terminal is auto or manual answer (if on
a switched line).

For BSCA terminals only:

® Record length

® Block length

® |nput data mode (record, block, or message)

® Whether or not the EBCDIC transparency feature is used
® |TB (intermediate text blocks) used

® Variable length or spanned records used

® 3270 Display Format Facility used

For BSCA terminals on switched lines only:

® Whether or not the CCP will verify exchange identifica-
tion sequences

® Whether the terminal is auto or manual call

Input Data Transfer

Data received from a terminal as the result of an input
operation (see Operations) is moved by CCP from the com-
munication line buffer to your program’s record area. Data

is received in the seventh and succeeding positions of your
record area (the program or symbolic terminal name re-
sides in positions 1-6 of the record area), except in the
following instances:

® |n RPG Il, data may begin in a different position (see
Chapter 6: RPG I1).

® |n 3270 Display Format Facility operations, the format
of the record area varies with different operations (see
Chapter 8: 3270 Display Format Facility).

CCP removes all teleprocessing line control characters from
terminal input data it moves to your record area, except in
the following cases:

1. For BSCA terminals, the ITB (intermediate text
block) character is not removed from input data
unless fixed length records are being processed in
ITB record mode, with the correct record length.
When using variable length records, the record
separator character is returned in the record area
as the last character of data. The effective input
length returned in the third field of the parameter
list includes the record separator character.

2, Programs that communicate with 3270 terminals
without using the Display Format Facility will
receive and must send the actual data and display
control characters necessary for the 3270, such as
Escape Command, Set Buffer Address, Start Field,
buffer addresses, and others (see Example 1 in
chapters 4, 5, and 6 for specific examples in COBOL,
FORTRAN, and RPG I1).

3. For programs not using PRUF (program request
under format) that are requested by 3270 terminals,
the data appended to the program request is not
processed by the Display Format Facility but is
passed directly to the user program. See Chapter 3:
Communications Programming Topics, for further
description of PRUF. The data is provided in the
program record area as a continuous string, but
with no 3270 display control characters.

The length of the data depends on the value specified in the
SYSTEM assignment statement (see Assignment Stage in

the /BM System /3 CCP System Reference Manual for your
system). The maximum length of the data appended to the
program request is the value of the PGMREQL parameter
minus the length of the program name and one blank.

Since 80 is the maximum value of PGMREQL, the maximum
length of data that can be appended to the program request
is 78 characters; any further data in the 3270 buffer at the

time of the program request is not sent to the program. A
positive input return code is pbsted if the data length
exceeds the length specified. The return code can be tested
and appropriate action taken.

For PRUF programs, more than 78 characters of program
request data can be sent to the user program. The length of
the data sent to the program can be up to the maximum
length specified in the PRUFLNG parameter of that pro-
gram’s PROGRAM statement (see Assignment Stage in the
1BM Systermn/3 Models 10 and 12 Communications Control
Program System Reference Manual, GC21-7588, or the
I1BM System/3 Model 15 Communications Control Program
System Reference Manual, GC21-7620). If the program
being requested is a PRUF program, CCP will pass the entire
3270 text stream, control characters and data, to the user
program at program request time. If PRUF$Z was specified
on the PROGRAM statement at assignment time, PRUF
program request data is handled by the display format
facility. See Chapter 3: Communications Programming
Topics for a further description of PRUF.

For chain task requests with data, the maximum amount of
data that can be transferred is determined by the size of the
teleprocessing buffer. If other users are active or the tele-
processing buffer is fragmented, the area for a chain task
request with data can be further reduced. If the chained
task is a sort program, the maximum amount of data that
can be passed by the requesting program is 80 characters.

Input Data Translation

The attribute set associated with a terminal specifies
whether or not data received from that terminal is to

be translated from the line transmission code (if other than
EBCDIC) to EBCDIC., If translation is specified, the
attribute set also indicates whether or not to force to
upper case all alphabetic characters received.

Note: All input, including PRUF input, received from a
terminal in command mode is forced to upper case.

EBCDIC Transmission Code Used or Translation Requested

If the transmission code is EBCDIC, or if translation is
requested, data is presented in EBCDIC in the record area.
(If translation is requested, the data is converted to
EBCDIC by the CCP,) No teleprocessing line control
characters are included in the data except for the BSCA
ITB character mentioned under /nput Data Transfer. For
MLTA, backspace characters sent from the terminal are
not received in the data area; rather, the input data is
received with all backspacing resolved. Also, if the last
character of the input is a carriage return, the CCP removes
it from the input data.

Standard Application Program Interface to the CCP 2-7

All other device control characters (such as 3270 control
characters, tab key, carriage return in the middle of text)
are treated as input data characters. Whether or not lower
case alphabetic characters are translated to their correspond-
ing upper case characters is determined by the attribute set
currently associated with the terminal. If upper case trans-
lation is specified, all alphabetic data input appears in

upper case EBCDIC in your program’s record area.

If the length of the data received is greater than the maxi-
mum input length specified, the excess data is lost
(truncated) and the effective input length equals the maxi-
mum input length. If the data length received is less than
the maximum input length, the effective input length is
set to equal the data length received, and the remainder

of your record area is cleared to blanks up to the maxi-
mum input length.

Transmission Code Not EBCDIC and Translation Inhibited

If the transmission code is not EBCDIC and the terminal
attributes do not specify translation, the CCP places data
into the record area as it is received, including backspace
characters, but not including line control characters. The
application program must be prepared to translate data
to EBCDIC if the data is to be processed by the program.
If more data is received than was specified as maximum
input length in the parameter list, the excess data is lost
and the CCP sets the effective input length equal to the

maximum input length. If the data received is less than
the maximum specified, the CCP sets the effective input
length to the number of input characters received. The
record area positions beyond the effective input length are
set to blanks (X‘40’) (except for MLTA terminals under
Model 10 and Model 12 CCP, when the content is
unpredictable).

Output Data Transfer

On output operations, the CCP moves data from your record
area to the communication line buffer and transmits it to
the terminal you specify. The data must begin in position

7 of the record area, following the symbolic terminal name,
(except in some RPG Il operations and when 3270 DFF is
used). No teleprocessing line control characters are needed,
since CCP adds the necessary line control characters before
transmitting the data. However, you may include in your
data any device control characters you desire (see Device
Control Characters).

Note: For BSCA record mode output operations, if the
output record length is less than the record length specified
in the terminal attributes set, the number of characters
specified as the output length (third field of the parameter

28

list) is sent, followed by the number of blanks necessary
to satisfy the record length specified in the terminal
attributes set.

Output Data Translation

The attribute set associated with a terminal specifies
whefcher or not the data to be transmitted to that terminal
is to be transtated from EBCDIC to the line transmission
code.

Translation

If translation is specified in the terminal attributes, the
CCP converts data from EBCDIC to the appropriate line
transmission code. Any device control characters are treated

as data; thus, if you include device control characters in
your record area, they must be in EBCDIC form. If invalid
characters are found during the translation of the data,
data transfer does not occur and the CCP places a return
code indicating translation error in the parameter list. If
more data is sent in one output operation than the line
buffer for the terminal can hold (in BSCA record mode
operations, if the output length exceeds the record length
specified in the terminal attributes set), then the excess
data is lost (truncated). The return code indicates if there
was either a translation error or a data truncation.

Translation Inhibited

If translation is not specified, output data is taken from
your record area and transmitted as is, except for the addi-
tion of line control characters. If more data is to be

sent in one operation than the size of the line buffer can
hold (in BSCA record mode operation, if the output length
exceeds the record length specified in the terminal attributes
set), then the excess data is lost (truncated). All the data
that can fit into the line buffer (or record area, for BSCA
record mode) is sent and a return code indicating the data
has been truncated is placed in the parameter list.

Transmitting 3735 FDPs on an ASCII Line

You must use a special procedure to transmit FDPs (form
description programs) to a 3735 terminal under the follow-
ing conditions:

® Transmitting on an ASCII line.

® CCP to translate input and/or output data.

This special procedure is necessary because the FDPs, them-

selves, must not be translated, but all other data, including
the FDP header and trailer, must be translated.

The procedure is as follows:

1.

8.

Define two attribute sets for the 3735 terminal at
assignment time (TERMATTR statements), one
specifying TRANSLAT—YES and the other specify-
ing TRANSLAT—NO.

Initially, use the terminal attribute set that specifies
TRANSLAT-YES for all input from the 3735 (until
EOT is received). .

Send the FDP header and an EOT using the same
assignment set (TRANSLAT—YES).

Issue a Release Terminal (Keep-Line) operation
followed by an Acquire Terminal (Set Terminal
Attributes) operation, specifying the attribute set
with TRANSLAT-—NO.

Transmit all blocks of FDPs, followed by an EOT.
Issue a Release Terminal (Keep-Line) operation fol-
lowed by an Acquire Terminal (Set Terminal Attrib
utes) operation, specifying the attribute set with
TRANSLAT-YES.

Transmit the FDP trailer in a block by itself.

Transmit all blocks of data, followed by an EOT.

On switched (dial) lines, sending an EOT to the 3735
causes the lines to be disconnected. Redialing is necessary
to continue operations on the line. |t is necessary to send
an EOT before the attributes of the line can be changed.

If no data is to be read from the 3735, or no data is to be
sent to the 3735 other than the FDPs, you can code the
FDP header and/or trailer in ASCII, thereby eliminating
the need for step 4 or 6 and the EOT in step 3 or 5 of the
previous procedure, This also eliminates the need to redial
after sending EOT.

The data stream to and from the 3735 appears as follows:
Switched Line Only
— — TRANSLAT—-YES — — ~=&—— Djal

Input block 1

| Input block n|
l | Input EOT |

I | Output FDP Header|

|
|
|
|
|
|
|
|
I

| | Output FDP block 1]

|

|

|

| Output FDP block n) !
|

|
|
|
|
L IOutput EOT| o

— —TRANSLAT-YES —

| Output FDP trailer]

| Output data block 1]

[Output data block n]

Record Separators (Variable Length and Spanned Records)

Record separator characters for variable length and spanned
records can be processed by the CCP on record mode input
‘operations and on any mode of output operations (record,
block, message). The BSCA terminal (other than the 3270)
transmitting variable length or spanned records must be

Standard Application Program Interface to the CCP 2-9

defined as supporting record separators at assignment time
(see TERMATTR statement) and must be defined as record
mode for input operations.

The CCP automatically provides record separator
characters at the end of each record to indicate the end

of the record. The normal character provided is X‘1E’;
however, an alternate character may be chosen during CCP
generation (see $EBSC statement in CCP System Reference
Manual). The record separator character is considered a
device control character, not a line control character.

Note: When sending blocks of field descriptor programs to
a 3735 terminal for which RECSEP-YES is specified in the
// TERMATTR assignment statement, you must specify a
block length less than 476, because a record separator
character is automatically added to the end of your data
before it is sent.

Variable Length Records

When using variable length records, no record (including
its record separator character) can be longer than the
block size defined for the terminal. The record separator
must be considered a data position when determining
block sizes and/or line buffer sizes.

Input: When using variable length records, you must
specify a maximum input length in your parameter list
that is equal to or greater than the longest record you
expect to receive. The record separator character is
reflected as part of the effective input length in the
parameter list.

For variable length, nonspanned input records, the last
record separator character may be omitted. In this case,
the ETB/ETX line control character suffices as a record
separator, and is received in the user program record area
in place of the normal record separator.

Output: The CCP automatically adds record separator
characters after each record. Do not include the record
separator in the output length field of your parameter
list.

2-10

Spanned Records

Spanned records can be used under the CCP only if record
separators are used. A spanned record is not completely
contained within a single block, but is continued in the
next contiguous block, as shown in the following example
of a data format (without ITB and without text trans-
parency):

)
Block T] Record 1 R Record 2
1 S
X
lock R E
Bloc Record 4 Record5 | T
2 S B

STX% BSCA control characters - see Components
ETB) Reference Manual.
RS - Record separator.

Record length, including the record separator, may not
exceed block length,

DEVICE CONTROL CHARACTERS

Device control characters are data characters that control
certain aspects of terminal operation, such as carriage return
for typewriter-like terminals and screen formatting for the
3270 terminal. Device control characters must be included
in data that is transmitted to or from certain terminals.
Certain device control characters can be automatically
inserted into output data by the CCP:

® Carriage return and idle characters for control of MLTA
typewriter terminals.

® 3270 screen format characters, when the Display Format
Facility is used (see Chapter 8: 3270 Display Format
Facility).

In all other cases, your program must provide the appropri-
ate device control characters (such as tab characters and
3270 screen format control characters, when the 3270 Dis-
play Format Facility is not used). Therefore, before
writing a program to communicate with any terminal, you
must understand the device control required by the terminal
and the physical characteristics and capabilities of the

terminal as described in the component description manual
for the terminal (see Appendix C: Bibliography). See index
entries for specific terminal types for additional information
about the unique requirements of specific terminals.

MLTA Typewriter Terminals

As part of the operation code in the parameter list, you can
indicate whether you want the CCP to insert special device
control characters into your data for the terminals with
typewriter characteristics. The terminals considered to
possess typewriter characteristics include the following:

® 2740, all models or equivalent (including System/7)

® 2741, all models or equivalent {(including the Communi-
cating Magnetic Card SELECTRIC® Typewriter)

® 1050 with typewriter component (1051/1053).

Note: If the 1050 multicomponent terminal number
specifying all output components is specified, the 1050
is not treated as a typewriter device.

Unless you specify otherwise in your operation code, the
CCP inserts a carriage return and idle characters at the
beginning of an output record (New Line), if needed to
assure the output starts on a new line, and at the end of
an output record (End Line). By means of operation code
modifiers, you can suppress New Line control characters
(Not New Line), End Line control characters (Not End
Line), or both sets of control characters (Not New Line
and Not End Line).

You need not suppress New Line and End Line for non-
typewriter terminals. The CCP ignores the indication in
the operation codes and does not insert the typewriter
control characters. Also, the CCP inserts New Line and
End Line characters, unless suppressed, whether or not
translation is specified.

New Line

New Line causes a transmitted message to begin on a new
line at the typewriter terminal. CCP does this by trans-
mitting a carriage return and 15 idle characters before your
data, if the typewriter is not already positioned at the
beginning of a new line. The idle characters allow the
typewriter time to reposition itself as a result of the
carriage return, It is not always necessary to insert the
typewriter control characters, since the typewriter may
already be positioned at the beginning of a new line, CCP

attempts to keep track of the position of the typewriter
and considers the typewriter to be positioned at a new
line under the following conditions:

® The last operation was an input operation in which the
last character received was carriage return,

® The last operation was an output operation which
specified End Line.

If you specify New Line under either of these conditions,
CCP does not insert the typewriter control characters. |f
your program is exchanging mességes with a typewriter
terminal, the terminal operator can decrease transmission
time by keying a carriage return as the last character of his
input to the program. Thus, when your program responds
with a Put, CCP will not have to insert the additional con-
trol characters at the beginning of your output message.

Note: For a 2740 Model 2 terminal with the buffered
receive feature, CCP sends the carriage return without idle
characters, since this terminal allows for completion of
the carriage return before continuing the printout.

End Line

End Line causes the typewriter to be positioned at the
beginning of a new line after receiving a message. The
CCP does this by appending a carriage return and 15 idle
characters to the end of your data.

\

Message Length Considerations

You should not allow space for New Line and End Line
control characters in your record area. When you provide
an output message in your record area, the CCP must build
the actual output data stream in the teleprocessing line
buffer before transmission can occur. Any additional con-
trol characters added by the CCP must be in the line buffer
along with your message. (The size of the line buffer is
specified at assignment time, in the TERMATTR statement
for BSCA and in the MLTALINE statement for MLTA, see
CCP System Reference Manual.) Thus, if you want to
transmit a 40-character message and you specify New Line
and End Line, a 72-byte data stream is built in the line
buffer by the CCP. If the data stream is larger than the line
buffer, your message is truncated while all typewriter
control characters remain appended to the message.

Standard Application Program Interface to the CCP 2-11

BSCA Terminals

The CCP performs the following device control for BSCA
terminals:

e The CCP inserts record separators for data transmission
involving variable length or spanned records, if specified
in the terminal attribute set associated with the terminals
(see index entry record separators).

® If the 3270 Display Format Facility (see index entry)
is used with 3270 terminals, the CCP provides screen
format control based on the descriptions of fields
in the Display Format Specifications.

In communicating with other communications systems via
the BSCA, you need not provide device control characters;
however, the communications interface between the sending
and receiving programs may require that you provide cer-
tain control data in your program that is understood by both
programs, such as data delimiters and record identifiers.

See Appendix A for additional considerations.

LINE CONTROL CHARACTERS

Line control characters are the signals which control
communication on either an MLTA or BSCA line. Line
control characters are always removed from or added to
data by the MLTA and BSCA communications |OCS
facilities of the CCP. You need not provide space for line
control characters in your record area and you need not
manipulate line control characters in your program.

MLTA line control is described in the MLTA RPQ Program
Reference and Component Description Manual, GC21-7560;
BSCA line control is described in the Components Refer-
ence Manual.

COMMUNICATING WITH MLTA TERMINALS

In this discussion, the term “MLTA terminals” refers to
any of the terminals listed in Appendix A as supported by
the multiple line terminal adapter (MLTA) RPQ or their
equivalents. MLTA terminals perform asynchronous (start/
stop) communications with programs through the CCP and
the MLTA input/ output control system (IOCS), which is
included in the generated CCP if MLTA terminals are to be
used. See MLTA RPQ Program Reference and Component
Description Manual, GC21-7560, for a complete description
of the MLTA 10CS.

212

Programs communicate with MLTA terminals in a record-by-
record manner; that is, each 1/0 operation in a program
results in a record being sent or received. The program

has effective control of the line only while a record is

being sent or received, After the record has been sent or
received, another program and/or terminal can use the line.

COMMUNICATING WITH BSCA TERMINALS

The term BSCA terminals refers to any of the terminals
{including host and subhost systems) listed in Chapter 1:
Introduction as supported by the binary synchronous
communications adapter (BSCA). BSCA terminals perform
binary synchronous communications with the Model 10
Disk System, the Model 12, and the Model 15 through the
CCP and the multiline/multipoint (MLMP) BSCA 10CS,
which is included in the generated CCP if BSCA terminals
are to be used. See /BM System/3 Multiline/Multipoint
Binary Synchronous Communications Reference Manual,
GC21-7573, for a complete description of the MLMP

I0CS. Additional information regarding binary synchronous
communications can be found'in publications listed in
Appendix C: Bibliography.

Note: BSCA conversational line control is not supported
by the CCP.

Blocking

When communicating with BSCA terminals, programs send
or receive blocks of data, A block is the physical unit of
data that is actually sent or received in each individual
transmission on a BSCA line.

A block of data can be composed of one or more data
records (Figure 2-3). Collecting records into blocks saves
time when similar operations are performed on each

record, since it is faster to send and receive more than one
record at a time than to send and receive records individual-

ly.

Block
L
i
n
e
Record 1| Record 2 | Record 3 Record n g
n
t
T
o
|

1 block = n records

In binary synchronous communications, a block of
data can contain one or more records.

Figure 2-3. Blocking in Binary Synchronous Communications

End of Transmission (EOT)

When communicating with a BSCA terminal, your program
must perform Get operations until it receives an end-of-
transmission (EOT) signal from the terminal (Figure 2-4)
or until a transmission error occurs (resulting in a negative
return code — See Appendix E). The EOT signal indicates
the terminal has completed its current transmission, Like-
wise, your program must send an EOT signal when it has
finished transmitting to a BSCA terminal (see Put Message
under BSCA Output Operations), unless a transmission
error has resulted in a negative return code.

CBlock ¢ SBbck 2s LBk 3l // cBiock] & [EOT)

In binary synchronous communications, each block of
data is transmitted separately. The program retains
control of the line until EOT indicates that all
transmission is complete.

Legend: - Direction of transmission

L
Cc

Line control characters

Figure 2-4. Data Transmission on BSCA Lines

A BSCA line is dedicated to a program and a terminal

once communication is initiated and is not freed for use

by another program or terminal until EOQT is transmitted
(or a negative return code is received from an operation).
Other terminals on a multipoint line may be allocated to
other programs; however, a program can only be trans-
mitting or receiving with one terminal at a time. A program
that is receiving data from a BSCA terminal cannot transmit
data to the terminal or communicate with any other term-
inal on that line until the terminal sends EOT (or a negative
return code is received), Likewise, when a program is
transmitting to a terminal on a BSCA line, that line cannot
be used by any other program or terminal until either

EOT is sent by the program or a negative return code is
received by the program.

BSCA Input Operations

The CCP provides three levels (modes) of input operations
for communication with BSCA terminals corresponding

to three basic units of data: record mode, block mode, and
message mode (Figure 2-5). The mode of input used by a
program with a terminal is specified during the CCP assign-
ment stage (see TERMATTR statement in CCP System
Reference Manual). The actual input operations are used
as described under Operations (see index entry).

Standard Application, Program Interface to the CCP 2-13

Message

e —

i N
. Block '
‘M .
: Record : X
| ']
) — A)]
L | : L L v : L L . . L .
c E ‘ c c i : c c ; ! c EOT
S — .
BSCA record mode input operations result in a single record
RECORD being moved from the block in the input buffer to the
MODE program’s record area {each block contains three records in
Program 7] this illustration). The length of the record area must be at
Record least as great as the input record length plus the terminal
Area name (and additional information, in certain RPG |1 oper-
ations).
Message
'/ e
Block ;
PP e N N
[} ']
! Record . .
1 ~—A s : 1
L ; ' L L ! : L L ' ' L EOT
S S S Y N N A - el i i e
T ——T T T ———
\ BSCA block mode input operations result in a block of
BLOCK v v records being moved to the program’s record area (without
MODE ! ' line control characters). Therefore, the length of the record
H i area must be at least as great as the block length plus the
Program Record Area terminal name (and additiona! information, in certain
RPG Il operations).
Message
— T
i Block '
))
e e e ——— .]
[} ' (]
'Record ! '
e ! '
L E E L L : E L L \ Ir L EOT
¢ | : c ¢ i : c c ! ! ¢
T T ——
MESSAGE BSCA message mode input operations result in an entire
MODE ¥ message {all blocks of input data preceding the EOT signal)

P

.

Program Record Area

Figure 2-5. BSCA Input Operation Modes

2-14

)

L
(

being assembled in the input buffer and moved (without
line control characters) to the program'’s record area. The
record area must be as long as the longest message to be
received plus the terminal name (and additional infor-
mation, in certain RPG 11 and 3270 DFF operations),

or the excess portion of the message is truncated.

Blocking has already been described (see Blocking). A
message consists of a limited number of blocks of data,
followed by an EQT, that constitute a complete span of
information that can be received by a program as the
result of a single input operation, In message mode input
operations, the CCP attempts to read all input data until
it receives EOT before moving the data to the program’s
record area. In this way, the BSCA line is freed for use by
another terminal as quickly as possible. Thus, message
mode should be used when a limited quantity of data is
expected (ideally, a single block) on each input operation.

Message mode is always used with the 3270 Display Format
Facility.

Note: Input modes do not affect output operations.

BSCA Cutput Operations

The CCP provides three types of Put operations for use
with BSCA terminals: Put Record, Put Block, and Put
Message. Use of these operations in your program is not
restricted by your program’s mode of input operations
(see BSCA Input Operations). See Operations later in
this chapter, for complete descriptions of all Put opera-
tions.

Your program must always send an EOT when it has
finished transmitting to a BSCA terminal, unless a trans-
mission error occurs (resulting in a negative return code),
when the CCP forces an EOT condition and terminates
the operation. The CCP automatically sends the EOT
after a Put Message operation and after the Put portion
of a Put-Then-Get operation.

Put Record

The Put Record (or Put-No-Wait Record) operation causes
a record to be sent to the terminal you specify in your
program’s record area. If block length equals record
length, each Put Record operation results in a record
being transmitted on the BSCA line. If each block con-
tains several records (specified in the terminal attribute
set), the block is transmitted when it does not have space
for another record. Thus, your program may issue several
Put Record operations before a block of data is actually
transmitted. (The CCP will automatically issue a Put
Block operation when a block is complete — see Put
Block.) In order to send EOT following Put Record oper-
ations, your program must issue a Put Message operation
(see Put Message).

In fixed-length record processing, CCP either pads a record
with blanks or truncates a record if the record length does
not equal the record length specified in the terminal attri-
bute set (TERMATTR assignment statement). For example,
if the attribute set defines the record length as 50, and you
issue a Put Record with an output length of 40, CCP
actually sends 50 characters; the last 10 characters are

blank characters. Similarly, if you issue a Put Record

with an output length of 60, a record of 50 characters

is sent; the last 10 characters are truncated.

Put Block

The Put Block operation causes the current block in the
output buffer to be transmitted, whether or not the block
contains all the records it can hold. The next record Put
by your program starts a new block. A Put Block opera-
tion may either be:

® Accompanied by the final data to be placed in the block
before it is sent, or

® |ssued with a record length of zero, which simply causes
the block to be sent (if there is no data to be sent, the
operation is ignored by the CCP),

When processing fixed-length records (see Put Record), it
the Put Block operation is used to force transmission of a
short block, a data length of zero is suggested. If data is to
accompany the operation, it should be exactly one record
length, as defined by the terminal attributes set, because
the normal record truncating or padding is not performed
by the Put Block operation.

Put Message

Put Message causes all data to be transmitted, followed by
an EOT. A Put Message operation can be:

® Accompanied by the final data to be sent before EOT

® |ssued with a message length of zero, which simply sends
the EQT signal to the terminal.

® Program Request Under Format (PRUF), which
indicates that the Put Message operation is transmitting
a program request format out to the 3270 terminal.

When processing fixed-length records (see Put Record), if
the Put Message operation is used to indicate the end of
data, a data length of zero is suggested. |f data is to accom-
pany the operation, it should be exactly one record length,
as defined by the terminal attributes set, because the normal
record truncating or padding is not performed by the Put
Message operation.

Standard Application Program Interface to the CCP 2-15

Put-Then-Get and Put-No-Wait Operations

These operations have the same basic function as described
under Operations. Put-Then-Get causes data (record, block,
or message) to be transmitted to a specific terminal, follow-
ed by EOT and a Get operation for the terminal. The
result of the Get portion of the operation depends on the
mode of input specified at assignment time (TERMATTR
statement); the result may be the equivalent of a Get
Record, Get Block, or Get Message to the terminal.
Put-No-Wait can be issued at the record, block or message
level. A Put-No-Wait Record or Put-No-Wait Block are
identical to Put Record or Put Block. On a Put-No-Wait
Message, your program neither waits for nor receives a
return code,

3284/3286 Printer Consideration

When issuing operations to a 3284 or 3286 printer (compon-
ents of the IBM 3270 Information Display System), the
following situation should be considered: The user program
issues an operation which starts the printer. Before the
print operation is complete, the user program issues anather
operation to the printer, resulting in a ‘’device busy’’ con-
dition, for which CCP returns a -14 return code.

The user program should be written to recognize a -14
return code from the 3284 or 3286 printer and take some
appropriate action. Some possible courses of action are:

® Retry the print operation a number of times under
control of a counter in the program. If the operation
is not accepted after a number of retries, go on to other
processing or inform the system operator. See index
entry Return Codes, Negative (DFF) for special con-
siderations when using the 3270 Display Format Facility.

2-16

This kind of action makes heavy use of the communication
line and adversely affects the performance of other terminals
using the line.

® Perform other operations in the program, such as disk
1/0 or console /0, to allow some time for the device
busy condition to clear. For example, sending a message
to the system operator requesting a response is a way
of delaying a retry of the printer operation without
using system resources needed by other programs. The
system operator can be asked, for example, to respond
when the printer is free or after a specified period of
time.

® (Model 15 only) After receiving a device busy return

code, set the interval timer via the $SIT macro to pause
your task for a specified amount of time before
retrying your Put operation. This method requires use
of an assembiler.

® (Model 15 only) Use the RPG Il operation code TIME

to obtain the time of day. Repeat the TIME operation
code until the desired time period has elapsed from the
initial TIME operation; then reissue the Put operation
to the printer. This method requires use of the DSM
transient area and may, therefore, adversely affect
system performance through heavy use of the transient
area and disk access mechanism,

Note: Waiting for the ‘’device busy’’ condition to clear by
looping in your program (not issuing CCP operations)
prohibits other user programs from executing during the
loop, and is therefore not recommended.

OPERATIONS

This section describes the valid teleprocessing operations
that can be issued by application programs running under
the CCP. Each description of an opération contains the
following information:

Purpose: A brief description of the purpose of the opera-
tion,

Operation Code(s): Decimal value, hexadecimal value, and
RPG 1l form of each variation of the operation code. A
summary chart of operation code values is provided in
Appendix D.

Additional Requirements: Information your program must
provide in addition to the operation code and record area.

Information Returned: Information the CCP provides to
your program as a result of the operation, including all
positive return code values. Descriptions of all return codes
and a summary chart of return codes by operation type are
provided in Appendix E.

Function and Use: A detailed description of the results of
the operation and rules, considerations, and recommenda-
tions for using the operation.

Program Errors

The CCP checks every operation issued by an application
program for validity before it performs the operation.
Certain conditions are considered to be program logic
errors, which result in termination of the application
program. The CCP informs the system operator of the
termination by printing a message that contains a program
termination code identifying the error condition, the name
of the program, and other information. The contents of
this message and the meanings of the program termination
codes are given in the /BM System/3 Communications Con-
trol Program Messages Manual, GC21-5170.

3270 Display Format Facility Operations

Requests for 3270 DFF operations are issued in the same
‘manner as other requests for terminal operations: that is,
each request is issued through a communications service
subroutine and is accompanied by a parameter list and a
record area. For certain 3270 DFF operations, however,
you must supply additional information in the record area,
besides the terminal name. For example, when the display
format is written to a 3270, the name of the format is
given in the record area following the terminal name.

Three operations are unique to 3270 DFF: Copy, Erase,

and Put Override. These operations are described in

Chapter 8: 3270 Display Format Facility. Considerations
for using other CCP operations with 3270 DFF are summa-
rized in that chapter and are also included in the descriptions
of CCP operations in this chapter.

Standard Application Program Interface to the CCP 2-17

GET

The purpose of the Get operation is to read a unit of data
{record, block, or message) from a specific terminal into
the record area.

Operation Codes:

Hex l Dec IRPGIII Meaning

0001 1 BBBA
0011 17 BBAA

Normal Get operation

Get operation with reverse
interrupt (RV1) (See Func-
tion and Use of Get for an
explanation of RVI.)

Additional Requirements

® Set value of the Maximum Input Length field in the
parameter list.

® Provide a symbolic terminal name (or blanks} in the
record area.

Information Returned
® Effective Length of Input Data, in parameter list.

® |nput data, in record area.

® Count of outstanding Invite Inputs in the third field of
the parameter list, if the 08 return code is received.

® Return Codes:
0 Successful
1 Data truncated
2 EOT
3 Data truncated and EOT
5 Data pending (BSCA)

7 3270 CLEAR (No AID is returned in the record
area)

8 Terminal no longer available (/RELEASE com-
mand was successfully entered by the terminal
operator).

9 Terminal offline

-n Negative return codes (/O errors - see explana-
tions in Appendix E).

2-18

Function and Use of Get

The Get operation, reads a unit of data (record, block, or
message) from a specific terminal and places the data in
the record area. After issuing a Get operation, an appli-
cation program waits for the CCP to complete the opera-
tion. The program resumes execution either after the CCP
has moved the unit of data received from the specified
terminal to the record area or after the CCP has terminated
the operation because data transfer cannot succeed.

If the length of the input data actually received is greater
than the maximum input length allowed, the data is
truncated. If the data received is less than that specified,
the CCP places blanks in the remainder of the record area.

The attributes of the data, which determine how the input
data is handled, and the unit of data (record, block or mes-
sage) are specified by the terminal attribute set currently
associated with the terminal (see index entry terminal
attributes). For an MLTA terminal, the unit of data is
always record.

For BSCA terminals that acknowledge the receipt of
reverse interrupts (RVI), the Get operation can be used

to send an RVI to a terminal while receiving data from that
terminal. RV/ (see index entry) is generally used as a sig-
nal from a receiving device to a device that is transmitting

to interrupt its transmission as soon as possible, usually
because the receiving device wishes to transmit to the
sending device.

Get Operation with 3270 DFF

When you are using the 3270 DFF, you must issue a Put
Message or Copy operation to format the display before
you issue a Get operation to the 3270. See Field Concepts
and Record Concepts in Chapter 8 for special requirements
in handling input data. Also see index entry Get operation,
3270 DFF.

Specifying the Terminal

You may, for a Get operation, specify either a defined
symbolic terminal name or blanks in the record area. A
defined terminal name must be either the name under
which the referenced terminal was allocated to the pro-
gram, or, if this is a multicomponent terminal (see index
entry), a sub-terminal name subordinate to that name.
A symbolic terminal name which is not assigned to a
terminal cannot be used with this operation.

This operation must not be issued to the CONSOL (5471
Printer/Keyboard on Models 10 and 12; CRT/Keyboard
on the Model 15).

A program can use a blank symbolic terminal name for
this operation only if the program is a single requesting
terminal (SRT) program (see index entry). A blank name
references the terminal that requested the currently execu-
ting copy of the program. The CCP returns the name of
the requesting terminal in the record area before returning
control to the program. In the case of an SRT program,
once the requesting terminal has been released (either by
using its symbolic name or a blank name), the use of a
blank terminal name in the record area is no longer valid.

Considerations

® The Get operation must not be issued as the initial
data-transfer operation to a requesting terminal which
entered data as part of the program request. The only
valid operation which may be issued to such a terminal
at that time is an Accept Input (see Accept Input oper-
ation).

® The Get operation must not be issued as the initial data-
transfer operation in a program that was loaded by a
chain task request. The only operation that can be
issued in this situation is an Accept Input operation.

® This operation can be issued only to a terminal capable
of transmitting data.

® A maximum input length greater than zero must be
specified in the parameter list for this operation.

® The Get operation must not be issued to a terminal

which has an Invite Input outstanding to it. Should
it be necessary to read data from such a terminal,
perform a Stop Invite Input operation. If the Stop
Invite Input is successful, the Invite Input is can-
celled and a Get may then be issued to the terminal.
If the Stop Invite Input fails, then the operation is
treated as a Get from the specified terminal.

® When communicating in record or block mode to a
BSCA terminal that is on the same multipoint line
with other BSCA terminals, it is recommended that,
once input is received from the terminal, Get opera-
tions should be issued to that terminal until EOT is
received (or the operation terminates with a negative
return code). This procedure will free the line for use
by other terminals as quickly as possible. An alter-
nate procedure is to issue an Invite Input to the terminal,
followed by Accept Input operations until the transmis-
sion is complete (EOT or a negative return code is
received,

® In message mode, the EOT return code is never

returned.

Standard Application Program Interface to the CCP 2-19

PUT

The purpose of the Put operation is to write a unit of data
(record, block, message) to a specific terminal. Carriage
returns are performed for MLTA typewriter terminals
before and after writing the data (NMew Line and End Line,
respectively), unless a modified form of the operation
code is used to suppress carriage returns. New Line and
End Line are ignored for BSCA operations.

The Put operation may specify that the unit of data is to
be written as the last in the current block (Put Block),

that is, an EOB (end of block) signal is to be issued follow-

ing the data and the next unit of data is to begin a new

Operation Codes

block. The Put operation may also specify that the unit
of data is the last to be Put in the current transmission
(Put Message), that is, the EOT (end of transmission)
signal is to be issued following the data.

Put Block and Put Message are intended for use with BSCA
terminals; however, these operations are valid for MLTA
terminals and have the same effect as a Put operatior with-
out EOB or EOT (Put Record).

Put Message can be followed by additional input or output
operations to the same terminal.

Meaning: Perform Put operation as follows:
Hex Dec RPG Il New Line End Line Unit of Data
0002 2 BBBB yes yes
0102 258 BAEB ves no
Record
0202 514 ¥BYB no yes
0302 770 BCiB no no
0022 34 ¥©BBB yes yes
0062 98 YW FB yes yes
0122 290 3 ABB yes no Block
0222 546 ¥BBB no yes
0322 802 $¥CBB no no
R U S U — e e e e e e e e e ——— —— —— ——]
0032 50 BBCB ves yes
0072 114 BB GB yes yes
0132 306 BACB yes no Message
0232 562 ¥BCB no yes
0332 818 ¥ CCB no no
0832 2098 BHCB yes yes Put overrides message
used only with DFF,
0872 3162 BHGB yes yes

2-20

Additional Requirements

® Set value of output length field in the parameter list
(see exception under RPG |1 for SPECIAL files).

® Provide a symbolic terminal name (or blanks) in the
record area.

® See index entry Put Overrides for special requirements
of that operation.

Information Returned
® Return Codes:

Successful (no exception conditions)

Data truncated

Data pending (BSCA)

Terminal interrupt (MLTA) or RVI (BSCA)
Terminal offline

O o= 0

-n Negative return codes {1/O errors and device status

conditions — see explanations in Appendix E).
Function and Use of Put

The Put operation writes a unit of data to a terminal
(record, block, or message). On Put operations to MLTA
terminals, the application program waits for completion
of the transmission to the terminal. For BSCA devices,
the program resumes execution upon acceptance of the
operation by the CCP, except for Put Message. On Put
Message, control is not returned to the program until
either the data is transmitted successfully and the EOT
sent out, or until an error condition occurs.

Put Operation with 3270 DFF

With 3270 DFF, you must use a Put Message to write
the initial display format to the 3270 terminal. To
override data at the terminal, use the Put Overrides
operation. See index entry DFF operations for
additional information and requirements.

Specifying the Terminal

You can specify either a defined symbolic terminal name or

blanks in the record area for a Put operation. A defined
terminal name must be either the name under which the
terminal was allocated to the program, or, if this is a

multicomponent terminal, a sub-terminal name subordinate

to that name. A symbolic terminal name which is not
assigned to a terminal can not be used with this operation.

A Put operation can be issued to the CONSOL. The maxi-
mum length of output is:

Models 10 and 12 — 80

Model 15 — 107

You can use a blank symbolic terminal name for this oper-
ation only if your program is an SRT program (see index
entry). A blank name references the terminal that reques-
ted the currently executing copy of the program. The
CCP returns the name of the requesting terminal in the
record area before returning control to the program. In
the case of an SRT program, once the requesting terminal
has been released (either by using its symbolic name or a
blank name), the use of a blank terminal name in the
record area is no longer valid.

Considerations

® The Put operation must not be issued as the initial
data-transfer operation to a requesting terminal which
entered data as part of the program request. The only
valid operation which may be issued to such a terminal
at that time is an Accept Input (see Accept Input oper-
ation).

® The Put operation can be issued only to a terminal
capable of receiving data.

® An output length greater than zero must be specified
for this operation if transmitting to an MLTA terminal.
However, a zero output length may be specified on Put
Block operations and Put Message operations to BSCA
terminals (except on the first such operation) to force
sending of the current block or message.

® This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

® Put operations to the console, regardless of the form of
Put operation code used, cause the data (message) to be
sent to the console.

® PRUF Put operations issued to the console are invalid.

® When using block mode or record mode input with BSCA
terminals, the following situation can occur and must be
programmed for:

1. The program issues an Accept Input; two terminals
have outstanding Invite Inputs.

2. The first terminal (T1) provides input data.

3. The program issues input operations to T1 until EOT
is received, then issues a Put to T1.

Standard Application Program Interface to the CCP 2-21

4, Prior to the Put to T1, the second terminal (T2)
provides input data. Since T2 now has control of the
BSCA line, the Put operation issued to T1 results in
a 05 return code (data pending on the BSCA line).

® When transmitting fixed length data to a BSCA terminal
using Put Record, any Put Block or Put Message oper-
ation should not have data specified unless the data is
exactly one record as specified in the terminal attribute
set. Truncation or padding of record data is not per-
formed for Put Block or Put Message operations (see
index entry Put Record).

PUT-THEN-GET

The Put-Then-Get operation transmits a unit of data to a
specific terminal and then reads data from the same ter-
minal. Optionally, carriage returns are performed for
MLTA typewriter terminals before and/or after writing the
data (Mew Line and End Line, respectively). Put-Then-Get
is more efficient than separate Put and Get operations.

Put-Then-Get is the only operation that can be used to

read data from CONSOL except when an Accept Input is
used to receive data entered with the program request.

Operation Codes ‘

Hex Dec RPG 11 Meaning

Put (Record) -Then-Get
operation including New
Line and End Line on Put.

0003 3 BBBC

0033 51 bBCC Put (Message) -Then-Get

Put (Record) -Then-Get
including New Line, but
suppressing End Line.

0103 | 259 BABC

0203 | 5156 BB®C Put (Record) -Then-Get
including End Line, but

suppressing New Line.

Put (Record) -Then-Get
with neither New Line
nor End Line.

0303 | 771 BCHC

New Line and End Line are ignored for
BSCA terminals and the console.

Notes: 1.

2. This operation cannot be used with DFF
terminals.

2-22

Additional Requirements

® Set value of Output Length field in parameter list (see
exception under RPG 1| for SPECIAL files).

® Set value of Maximum Input Length field in parameter
list.

® Provide a symbolic terminal name (or blanks) in the
record area,

Information Returned

® |nput data in the record area.

Effective Input Length value in parameter list.

® Count of outstanding Invite Inputs in the third field of
the parameter list, if the 08 return code is received.

Return Codes:
0 Successful (no exception conditions)

1 Data Truncated - this return code indicates that
input data was truncated

2 EOT - applies to the Get, not returned to the pro-
gram if Get was message mode (input mode is

determined by terminal attributes — see index
entry)

3 Data Truncated and EOT - applies to the Get
(MLTA terminals only)

b Data Pending - BSCA terminals only
6 Terminal interrﬁpt (MLTA) or RVI (BSCA)

7 3270 CLEAR - applies to the Get. No AID is
returned in the record area.

8 Terminal no longer available - applies to the Get
only (/RELEASE command was successfully
entered by the terminal operator)

9 Terminal offline - applies to the Put, since Get is
not performed

-n Negative return codes (1/0 errors and device status
conditions — see explanations in Appendix E)} —
see Error Return Codes under Function and Use
of Put-Then-Get for additional information

Function and Use of Put-Then-Get

This operation is a combination of a Put operation and a
Get operation. First, the Put operation is issued to a
specific terminal. Upon completion of the Put, a Get
operation is issued to the same terminal. The application
program resumes execution upon completion of the Get,
when the input data resides in the record area. The same
record area is used for both the Put and the Get (except
with RPG |1 SPECIAL — see index entry Put-Then-Get,
RPG |1 SPECIAL).

For BSCA terminals, the operation works as follows:

® For Put{Record)-Then-Get, the output data is padded or
truncated according to normal record processing (see
index entry Put Record). After the record is sent, EOT
is sent, followed by the Get operation.

® For Put{Message)-Then-Get, either the output data is
the only data sent (if this is message output only}, or
the output data is the last data sent (if the previous
operation was a Put Record or Put Block operation).
No record padding or truncating is performed by the
Put(Message)-Then-Get operation (see index entry Put
Message). After the output data is sent, EOT is sent,
followed by the Get operation. :

The mode of input (record, block, message) specified by
the terminal attribute set which is currently associated
with this terminal (see index entry terminal attributes)
determines the unit of data received. For an MLTA ter-
minal, the unit of data is always record.

Specifying the Terminal

You can specify either a defined symbolic terminal name or
blanks in the record area for Put-Then-Get. A defined termi-
nal name must be either the name under which the terminal
was allocated to the program or, if this is a multicomponent
terminal, a sub-terminal name subordinate to that name. A
symbolic terminal name which is not assigned to a terminal
cannot be used with this operation.

The use of a blank symbolic terminal name is valid for this
operation only if the program is an SR T program (see index
entry). A blank name references the terminal that requested
the currently executing copy of the program. The CCP re-
turns the name of the requesting terminal in the record area
before returning control to the program. In the case of an
SRT program, once the requesting terminal has been re-
leased (either by using its symbolic name or a blank name),
use of a blank terminal name is no longer valid.

Put-Then-Get is the only operation that can be used to get
data from the system operator’s console (CONSOL), except
when an Accept Input is used to receive data entered with
the program request. The maximum input and output
lengths for this operation are:

Models 10 and 12 — 80

Model 15 — 71

Error Return Codes

When 1/O errors occur on an input operation, the CCP sets
the effective input length in the parameter list to zero and
clears the record area to blanks. When errors occur during
the execution of the Put-Then-Get operation, the operation
is terminated immediately. Thus, if the error occurs on the
Put portion of the operation, the CCP does not perform the
Get, but returns control to your program. In order to deter-

mine whether an 1/0O error (negative return code) occurred
on the Put or the Get, you can examine the effective input

length in the parameter list. |f the value of this field is the
same as the output length value specified for the operation,
then the 1/0 error occurred on the Put. However, if the
value has been set to zero, the 1/0 error occurred on the
Get.

Considerations

® This operation must not be issued as the initial data-
transfer operation to a requesting terminal which enterea
data as part of the program request. The only valid oper-
ation which may be issued to such a terminal at that
time is an Accept Input (see Accept Input Operation).

® This operation can be issued only to a terminal capable
of both transmitting and receiving data.

® A maximum input length greater than zero must be
specified for this operation.

® An output length greater than zero must be specified for
this operation if transmitting to an MLTA terminal or if
this is the initial block being transmitted to a BSCA

terminal.

® This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

® This operation must not be used with the 3270 DFF.

Standard Application Program Interface to the CCP 2-23

PUT-NO-WAIT

The Put-No-Wait operation allows overlap of the output
operation with continued program execution. Put-No-Wait
writes a unit of data (record, block, or message) to a
specific terminal. For MLTA operations and for BSCA
message operations, your program resumes execution
immediately upon acceptance of the operation by the
CCP. Optionally, a carriage return is performed for MLTA
typewriter terminals before and/or after writing the data
(New Line and End Line, respectively). New Line and

End Line are ignored for BSCA operations.

Operation Codes

Meaning: Perform Put-No-Wait as follows:

Hex Dec RPG I New Line End Line Unit of Data

0006 6 BBBF yes yes

0106 262 bABF yes no
Record

0206 518 BB F no yes

0306 774 BCBF no no

0026 38 BB BF ves yes

0126 294 BABF yes no
Block

0226 550 ¥BBF no yes

0326 806 BCBF no no

o e — — — — — s s e e e e — — — — — — et et i e e e vt o

0036 54 BB CF yes ves

0076 118 BBGF yes yes

0136 310 b ACF yes no Message

0236 566 BBCF no yes

0336 822 BCCF no no

0836 2102 BHCF yes yes Put overrides message
used only with DFF

0876 2166 BHGF yes yes

2-24

Additional Requirements

® Set value of Output Length field in the parameter list
(see exception in RPG || for SPECIAL files).

® Provide a symbolic terminal name (or blanks) in the
record area.

Information Returned

® Return codes (see explanations in Appendix E):
0 Operation accepted by CCP
5 Data pending (BSCA)

9 Terminal offline

Function and Use of Put-No-Wait

This operation causes the data in the Put record area to be
Put to a specific terminal. The requesting program resumes
execution upon acceptance of the operation by the CCP.

The Put-No-Wait operation may specify:

® A record is to be written in the current block (see index
entry blocking).

® An EOB (end of block) signal is to be issued following
the record and the next record is to begin a new block
(Put Block).

® A record is the last to be Put in the current transmission;
that is, the EOT (end of transmission) signal is to be
issued following the data (Put Message).

Put-No-Wait with EOB, Put-No-Wait with EOT, and PRUF
Put-No-Wait with EOT are intended for use with BSCA
terminals; however, these operations are valid for MLTA
terminals and have the same effect as a Put-No-Wait
operation without EOB or EOT (Put Record), or without
PRUF.

On Put-No-Wait (record) and Put-No-Wait (block) opera-
tions to a BSCA terminal, the requesting program does not
resume execution until the specified terminal has gained
control of the BSCA line.

Put-No-Wait Operation with 3270 DFF

If Put-No-Wait is used with 3270 DFF to put a format on
the display, the CCP changes the operation to a Put
Message and your program does not regain control until
the operation is complete.

Specifying the Terminal

You can specify either a defined symbolic terminal name or
blanks in the record area with a Put-No-Wait. A defined
terminal name must be either the name under which the
referenced terminal was allocated to the program, or, if

this is a multicomponent terminal, a sub-terminal name
subordinate to that name. A symbolic terminal name
which is not assigned to a terminal cannot be used with

this operation. Put-No-Wait can be issued to the console,
but it is treated as a Put (with wait).

You can use a blank symbolic terminal name for this oper-
ation only if your program is an SRT program. A blank
name references the terminal that requested the currently
executing copy of the program. The CCP returns the name
of the requesting terminal in the record area before return-
ing control to the program. In the case of an SRT program
once the requesting terminal has been released (either by
using symbolic name or a blank name), the use of a blank
terminal name is no longer valid.

’

Considerations

® The Put-No-Wait operation must not be issued as the
initial data-transfer operation to a requesting terminal
which entered data as part of the program request. The
only valid operation which may be issued to such a ter-
minal at that time is an Accept Input (see Accept Input
operation).

® This operation can be issued only to a terminal capable
of receiving data.

® An output length greater than zero must be specified for
this operation it transmitting to an MLTA terminal or if
this is the initial block being transmitted to a BSCA ter-
minal.

¢ This operation must not be issued to a terminal which has
an Invite Input outstanding to it.

& Since control is returned to the user program before com-
pletion of the data transfer, no indication as to the success
or failure or the data transmission is returned to the user
program,

Standard Application Program Interface to the CCP 2-25

INVITE INPUT

The purpose of the Invite Input operation is to make a spe-
cific terminal eligible to send input data. The invited input
is not made available to your program except as the result of
a subsequent Accept Input operation (see next operation).

Operation Code

Hex Dec RPG I Meaning

0005 5 BYBE Invite Input

Additional Requirements
® Set value of Maximum input Length in parameter list.

® Provide a symbolic terminal name (or blanks) in the
record area.

Information Returned
Return Codes:
0 Successful

9 Terminal offline

Function and Use of Invite Input

This operation causes CCP to make a specific terminal
eligible to transmit data to the application program. The
program resumes execution after acceptance of the Invite
Input operation by CCP.

More than one Invite Input may be outstanding at one
time, but not to the same terminal. As each terminal com-
pletes transmission, the data is queued as input to the user
program. An Accept Input operation (see next operation),
causes the first completed input to be made available to
the application program.

The attributes of the data and the unit of data (record,
block, or message) for this operation are those specified in
the terminal attribute set currently associated with the
terminal. For an MLTA terminal, the unit of data is
always record.

2-26

Invite Input Operation with 3270 DFF

This operation must not be issued to a terminal under
3270 DFF until a Put Message or Copy operation has
placed a format on the display.

Specifying the Terminal

You can specify either a defined symbolic terminal name or
blanks in the record area for the Invite Input operation.

A defined terminal name must be either the name under
which the terminal was allocated to the program, or, if

this is a multicomponent terminal, a subterminal name
subordinate to that name. A symbolic terminal name which
is not assigned to a terminal cannot be used with this
operation. This operation must not be issued to CONSOL.

You can use a blank symbolic terminal name for this oper-
ation only if your program is an SRT program. A blank
name references the terminal which requested the currently
executing copy of the program. The CCP returns the name
of the requesting terminal in the record area before return-
ing control to the program. In the case of an SRT program,
once the requesting terminal has been released (either by
using a symbolic terminal name or a blank name), the use
of a blank terminal name is no longer valid.

Considerations

® An Invite Input operation must not be issued as the
initial data-transfer operation to a requesting terminal
which entered data as part of the program request. The
only valid operation which may be issued to such a
terminal at that time is an Accept Input (see Accept
Input operation).

® This operation can be issued only to a terminal capable
of transmitting data.

® A maximum input length greater than zero must be
specified for this operation.

® The maximum input length must not be greater than
the size of the entire teleprocessing buffer (minus 4)
defined in the current assignment set, or redefined dur-
ing Startup (four bytes are required for control infor-
mation used by the main storage allocation routines).

® This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

ACCEPT INPUT

The purpose of the Accept Input operation is to gain access
to the earliest completed record from the terminals to which
Invite Input operations were previously issued, and to ob-
tain the data received with a program request or a chain task
request. Invite Inputs to the other terminals remain in
effect.

Operation Code

Hex Dec RPG 11 Meaning

0004 | 4 BBYB D Accept Input

Additional Requiremenﬁ

® Set value of Maximum Input Length field in the param-
eter list.

Information Returned

® |nput data in the record area.

® Effective length of Input Data, in the parameter list.

® Symbolic name of terminal from which data was re-
ceived, in the record area.

® Count of outstanding Invite Inputs in the third field
of the parameter list, if the 08 return code is received.

® Return Codes:
0 Successful
1 Data Truncated
2 EOT or non-PRUF request to a PRUF program
3 Data truncated and EOT
4 Shutdown requested

7 3270 CLEAR (No AID is returned in the record
area)

8 Terminal no longer available (/RELEASE com-
mand was successfully entered by the terminal
operator)

9 Terminal offline

14 An accept operation for chain task data was
successful

15 Chain task data was truncated

-n Negative return codes (1/0 errors — see explana-
tions in Appendix E)

Function and Use of Accept Input

This operation makes data available to your program from
one of three sources:

1. A terminal to which an Invite Input operation was
previously issued by the program (program invite
operation).

2. A terminal that presents data along with the program
request. In this case, the Invite Input is done by CCP
(system invite operation).

3. A CCP program that presents data along with a chain
task request.

A successful Accept Input operation satisfies the previous
Invite Input to the terminal from which data was received
so that there is no longer an Invite Input outstanding to
that terminal. However, Invite Inputs to other terminals
remain in effect and can be satisfied by subsequent Accept
Inputs.

Your program resumes execution after data from a terminal
has been made available in the record area.

On an Accept Input operation, CCP ignores the data in the
name field of the record area. However, the CCP places the
name of the terminal from which the data was received in
this area before returning control to your program. On a
chain task request operation, CCP places the name of the
requesting program in the name field.

Accept Input Operation with 3270 DFF

For systems without program request under format or
when using the 3270 DFF, you must issue a Put Message or
Copy operation to format the display before you use Invite
Input and Accept Input operations with the 3270. See
Field Concepts and Record Concepts in Chapter 8 for
special requirements in handling input data. See also index
entry Accept Input Operation, 3270 DFF.

Standard Application Program Interface to the CCP 2-27

DFF non-PRUF programs that use the AID byte position

to set record identifying indicators on Accept Input oper-
ations must take into consideration that an Accept Input
that satisfies a system invite operation does not return the
AID byte to your record area. The first byte of the pro-
gram request input data is in the AID byte field (position

15 if using SUBR92) and could duplicate a valid AID char-
acter, causing the corresponding record identifying indicator
to be set on.

Accept Input Operation for Program Request Data

When input data is appended to the program request for
non-PRUF programs, that data is not processed by the
DFF, but is passed directly to the user program. In this
case, the Accept Input must not be preceded by a Put
Message or Copy operation to format the screen,

The input data is entered into the dynamic TP buffer area in
a continuous string. If the data is from a 3270 terminal, the
first 8 bytes are the control unit and device addresses, the
AID byte, and the 3270 control characters. The length
allocated to the dynamic TP buffer is determined by the
PGMREQL value (maximum 80 bytes) of the SYSTEM
assignment statement plus 8 bytes. When the input data is
passed to the program record area, the 8 bytes and the pro-
gram name information are also stripped from the input
data, leaving a maximum of 78 bytes of actual program
data. Any additional data in the 3270 buffer at the time

of the program request is not sent to the program.

When input data is appended to the request for PRUF
programs (identified by the PRUFLNG keyword given on
the assignment PROGRAM statement), that data may or
may not be processed by DFF. The maximum length of
this data may exceed 78 characters, up to the value speci-
fied in the PRUFLNG keyword. This data will be processed
by DFF if the PRUF$Z keyword was included in the assign-
ment PROGRAM statement. The data stream returned to
“the program for PRUF non-DFF program requests differs
from that for non-PRUF programs.

2-28

Program area examples of program request data:
® Non-PRUF:

data) R

position 1. .. (up to 78 chatacters)

(position 15 if RPG I1)
® PRUF non-DFF:

lcu I devl aidl c(l@
position 1 2 3 4-5 6 7-8
(position 15 if RPG II)

|sba| l@@-l

I pgmnambp data sba @@ data...
I I L1 1

9... (up to PRUFLNG parameter)
e PRUF DFF:
|a|d | pgmlnam TleIdIZ |

position 1 2... {up to PRUFLNG parameter)

(position 15 if RPG 1)

See Chapter 3 for an explanation of the 3270 control
characters, aid, sba, etc.

I1f the PRUFLNG keyword was given in the PROGRAM
statement for the requested program, but the last success-
ful user Put was not a PRUF Put, the CCP will return a
02 return code to the PRUF program being requested.
This indicates that non-PRUF data accompanies the
program request.

Accept Input Operation for Chain Task Requests with Data

When data is appended to a chain task request for a DFF
program, the data is not processed by DFF but is sent
directly to the input area in the program. This data does
not contain any 3270 control characters.

When a program has been loaded via a chain task request
with data, the program must issue an Accept Input opera-
tion before attempting any other CCP operation.

Considerations

® You should specify a maximum input length in the pa-
rameter list (and a corresponding record area) large
enough to accommodate the largest amount of data
that can be received from an outstanding Invite Input,
because, if several Invite Inputs are outstanding, you do
not know which Invite Input will be the first to satisfy
the Accept Input.

® Use caution when issuing Accept Input or Get operations
after receiving a Shutdown return code (04), If the
terminal operators do not key in data to satisfy the
operations, the program remains in main storage until
cancelled by the system operator. Stop Invite Input
operations are recommended to cancel outstanding
Invite Inputs and still permit processing of any data
that may be received.

® An Accept Input can be issued only under the following
conditions:

1. There are one or more Invite Inputs outstanding
for the program (including any implied Invite
Inputs due to program requests with accompany-
ing data).

2, There are no outstanding Invite Inputs and

a. The program is defined as a never-ending pro-
gram, and

b. The defined maximum number of requesting
terminals that the program can handle con-
currently is greater than the current number
of requesting terminals the program is
handling.

® An input length greater than zero must be specified
for this operation.

® Accept Input is valid to the console only when issued
for data with the program request. Any subsequent

Invite Input to the console results in program termination.

Shutdown Requested by Operator

A return code indicating that shutdown has been requested
by the System Operator may be returned to this operation.
In this case, the parameter list remains unchanged except
for the return code field; no input data is received. If you
still wish to have the operation performed, you must
reissue the Accept Input. The shutdown-requested return
code can only occur when there are no completed Invite
Inputs to satisfy the Accept Input. A shutdown-requested

return code will be issed to an operation other than Shut-
down Inquiry only once during the execution of the
program.

Every program that uses Accept Input should check for the
shutdown-requested return code.

Note: Only the Accept Input need be reissued if you still
want to have the operation performed, because the Invite
Input is still in effect.

STOP INVITE INPUT (OR GET)

The purpose of this operation is to stop an Invite Input
previously issued to a specific terminal and, if the Invite
Input cannot be stopped, to accept (Get) the input. Stop
Invite Input is used when some event has occurred in the
program such that the program no longer wants input from
the terminal.

Operation Code

Hex Dec RPG || Meaning

0401 | 1025 hDBA Stop Invite Input

Additional Requirements

® Provide a symbolic terminal name (or blanks) in the
record area.

® Set value of the Maximum Input Length field in pa-
rameter list.

Information Returned

® Input data (if Invite Input is not stopped)

e Effective Input Length value in parameter list (if
Invite Input is not stopped)

® Count of outstanding Invite Inputs in the third field of
the parameter list, if the 08 return code is received.

Standard Application Program Interface to the CCP 2-29

® Return Codes:
0 Get successful (no exception conditions)
1 Data truncated
2 Get successful with EOT
3 Data truncated with EOT

7 3270 CLEAR (No AID is returned in the record
area)

8 Terminal no longer available (/RELEASE com-
mand was successfully entered by the terminal
operator)

9 Terminal offline
10 Stop Invite Input successful

-n Negative return codes (1/O errors and device status
conditions — see explanations in Appendix E)

Function and Use of Stop Invite Input

Stop Invite Input causes the CCP to attempt to cance! an
Invite Input that has been previously issued to a specific
terminal. [f the Invite Input is stopped successfully, the
terminal no longer has an Invite Input outstanding. How-
ever, if the Invite Input cannot be stopped, your program
must be ready to handle any data received from the ter-
minal as though your program issued a Get to the terminal.
Thus, when requesting a Stop Invite Input, your program
must present all the information needed for a Get opera-
tion. Your program resumes execution either when the
Invite input has been cancelled or when the Get has been
completed.

This operation can only be issued to a terminal which has
an Invite Input outstanding to it.

If the operation becomes a Get, the attributes of the data
and the unit of data (record, block, message) for this
operation are those specified in the terminal attribute

set currently associated with this terminal (see index entry
terminal attributes). For an MLTA terminal, the unit of
data is always record.

2-30

Specifying the Terminal

You can specify either a defined symbolic terminal name
or blanks in the record area for this operation. A defined
terminal name must be either the name under which the
terminal was allocated to the program, or, if a multicom-
ponent terminal, a sub-terminal name subordinate to that
name. A symbolic terminal name which is not assigned to
a terminal cannot be used with this operation. This oper-

ation must not be issued to the system operator console
(CONSOL).

You may use a blank symbolic terminal name with this
operation if your program is an SRT program. The blank
name references the terminal which requested the currently-
executing copy of the program. The CCP returns the name
of the requesting terminal into the record area before
returning control to your program. In the case of an
SRT program, once the requesting terminal has been
released (either by using a symbolic terminal name or

a blank terminal name), the use of a blank name is no
longer valid.

Considerations for Using Stop Invite Input

® This operation must not be issued as the initial data-
transfer operation to a requesting terminal which enter-
ed data as part of the program request. The only valid
operation which may be issued to such a terminal at
that time is an Accept Input.

® This operation can be issued only to a terminal capable
of transmitting data.

® A maximum input length greater than zero must be
specified for this operation.
GET TERMINAL ATTRIBUTES

The purpose of this operation is to determine the attri-
butes of a specified terminal.

Operation Code :

Hex Dec RPG 1l Meaning

0008 8 BoBH Get Terminal Attributes

Additional Requirements

® Provide a symbolic terminal name (or blanks) in the
record area,

® Set value of the maximum input length field in the
parameter list.

Information Returned

® Effective input length value in the parameter list.

® Special information in positions 10-15 of the parameter
list (see Special Information Returned in the Parameter
List following).

® Terminal attributes, in the record area (see Special
Information Returned in the Parameter List following).

® Return codes (see explanations in Appendix E):

0 Success

1 Data truncated

Special Information Returned in the Parameter List

Get Attributes returns the following information in the
last three fields of the parameter list. This is the only
situation in which you may want to reference information
in these fields. These fields are not returned by the

RPG |l Get Attributes operation.

Positions 10-11: (Work Area A)

Contains the address of the Terminal Unit Block (TUB) for
the terminal specified. The Terminal Unit Block is an internal
CCP control block used to maintain control information for
each terminal defined in the system with a MLTATERM

or BSCATERM statement during the Assignment run.

Positions 12-13: (Work Area B)

BSCA Terminal: Contains the block length specified in the
terminal attributes set associated with this terminal.

MLTA Terminal: Contains the record length specified in
the terminal attributes set for the terminal.

Positions 14-15: (Work Area C)

BSCA Terminal: Contains the record length specified in
the terminal attributes set associated with this terminal.

MLTA Terminal: Contains the record length specified in
the terminal attributes set for the terminal.

Information Returned in the Record Area

As a result of a successful Get Attributes operation, the
following information is returned in the first 21 positions
of the data portion of the record area (all information is
in EBCDIC).

Position 1 - Allocation Status: Position 1 contains a
single character that indicates the following information
about the terminal specified:

EBCDIC

Character Meaning

1 Allocated to this program. All the
attribute data is provided.

2 Allocated to another program. All the
attribute data is provided.

3 Not allocated to a program. All the
attribute data is provided.

J Theispecified name was a sub-terminal

K name. The master symbolic terminal

L name has been returned in record area.
All attribute data applies to the master
terminal.,
J = Master is allocated to this program.
K = Master is allocated to another

program.

L = Master is not allocated to a program.

X The specified symbolic terminal name is
not assigned to a terminal. No other
attribute data isprovided.

z Terminal name not defined in the
system.

Standard Application Program Interface to the CCP 2-31

Position 2 - Terminal Class: Position 2 contains a
single character representing the class of terminal as

follows:

EBCDIC

Character Terminal Class

0 CONSOL

5471 Printer/Keyboard (Models 10
and 12), CRT/Keyboard (Model 15)

1 MLTA terminal other than 1050

2 1050

3 3277M1 (480-character), 3284M1,
or 3286M1

4 3277M2 (1920-character), 3284M2,
or 3286M2

5 3275M1 (480-character), with or
without 3284M3

6 3275M2 (1920-character), with or
without 3284M3

7 3735

8 Another computer system (CPU) on a
BSCA line.

9 3741 Data Station, 5231 Controller
Model 2

2-32

Position 3 - Line Number: Position 3 contains the MLTA
line or BSCA adapter number to which the terminal is
attached. Determine whether MLTA or BSCA by check-
ing position 2.

EBCDIC
Character Meaning
- |
1 MLTA line 1/BSCA adapter 1
2 MLTA line 2/BSCA adapter 2
3 MLTA line 3
4’ MLTA line 4
5 MLTA line b
6 MLTA line 6
7 MLTA line 7
8 MLTA line 8

Position 4 - Online: Position 4 contains a single charac-
ter that indicates whether the terminal is logically online
or offline. This logical status of the terminal can be con-
trolled by the system operator by use of the /VARY com-
mand (see CCP System Operator’s Guide).

The value ‘Y’ indicates the terminal is online; the value
‘N’ indicates that the terminal is offline.

Position 5 - Line Type: Position 5 contains a character
that indicates the type of line on_which the terminal
resides:

EBCDIC

Character Meaning

P Point-to-Point

C Control Station

M Multi-point Tributary (BSCA only)

S Switched

w Control Station - Switched (MLTA only})

Positions 6 - 21 - Terminal Attribute Set:

acters represent the 16 bit settings of the terminal attri-
bute set currently associated with the terminal. (See

index entry terminal attributes,; also see the TERMATTR
assignment statement in CCP System Reference Manual.)

These 16 char-

Record Corresponding
Area Bit in Attribute
Position EBCDIC Character-Meaning Set
6 0 - Translate data 0
1 - Do not translate data
7 0 - Upper case translate 1
1 - Lower case translate
8 0 - Answer switched line 2
1 - Call switched line
9 0 - Manual switched line 3
1 - Auto switched
10 Reserved 4
11 Reserved 5
12 Reserved 6
13 0 - DFF not used for this terminal 7
1 - DFF used for this terminal
14 0 - Data format not record mode 8
1 - Data format is record mode
15 0 - Data format not block mode 9
1 - Data is block mode
16 0 - Data format not message mode 10
1 - Data format is message mode
17 0 - No ITB support 11
1 - Support ITB characters
18 0 - Non-transparency mode data 12
1 - Transparency mode data
19 0 - Verify switched line exchange ID 13
1 - No exchange ID verification
20 0 - No spanned record support 14
1 - Support spanned records
21 0 - No variable length record support 15
1 - Support variable length records
(record separators)

Standard Application Program Interface to the CCP

2-33

Function and Use of Get Attributes

This operation is used to determine the attributes of any
terminal defined by a BSCATERM or MLTATERM assign-
ment statement (see CCP System Reference). It is not
necessary that a terminal be allocated to a particular pro-
gram for that program to issue a Get Attributes request
to that terminal. The attributes of the specific terminal
requested are available in the parameter list and. the record
area when the program resumes execution.

You might use a Get Attributes operation, for example,
to determine which component of a 3270 is being used
or whether or not the attribute set defined specifies
DFEF.

As a result of the Get Attribute operation, 21 characters
of information are returned in the record area. If the
maximum input length in the parameter list is less than
21, then only the number of characters indicated are
returned. The effective input length field in the parameter
list indicates the number of characters of information
returned; the return code indicates data truncation occurs.

Specifying the Terminal

Issuing this operation with a terminal name that is not
defined causes CCP to return a Z in position 1 of the
record area.

You may use a blank symbolic terminal name with this
operation if your program is an SRT program. The blank
name references the terminal which requested the currently-
executing copy of the program. The CCP returns the name
of the requesting terminal into the record area before
returning control to the program.

In the case of an SRT program, once the requesting termi-
nal has been released (either by using a symbolic terminal
name or blanks), the use of a blank terminal name is no
longer valid.

If a sub-terminal symbolic name is given with this opera-
tion, then the attributes of the master terminal are return-
ed along with the name of the master terminal to which
the sub-terminal name is subordinate.

Considerations

® |f an RPG Il program uses position 15 of the input
record area as the AlD byte to set record identifying
indicators, data from a previous operation can be lost
or overwritten when a Get Attributes operation is

performed.

® The PF 1, PF 2, and PF 3 keys return the characters
1, 2, and 3 respectively as the AlD character in position
15 of the record area. A Get Attributes operation can
also return the characters 1, 2, and 3 as valid allocation
status information in the same position of the record

area.

ACQUIRE TERMINAL

This operation enables a program to request a specific
terminal to be allocated to itself and to change the
attributes of the terminal.

Operation Code :

Hex Dec

RPG I

Meaning

0009 9

0019 25

0029 41

BB

BBAI

BB BI

Acquire Terminal — use
the attribute set currently
associated with the
terminal (defined in
TERMATTR statement)

Acquire Terminal —
change the attributes to
the set identified in third
field of the parameter list

Acquire a command-
mode, non-PRUF
terminal (5704-SC2
only)

Additional Requirements

® Provide a symbolic terminal name in the record area.

® Provide an attributes identifier in the parameter list,
if attributes are to be set by the operation.

Information Returned
Return Codes:
(0] Successful
11 Acquire failed
Function and Use of Acquire Terminal

Application programs can issue teleprocessing operations
only to those terminals that are allocated to them. One
way to allocate terminals is to specify the terminals in
the PROGRAM assignment statement (see CCP System
Reference Manual). However, there may be times when a
program wishes to have a terminal dynamically allocated
to it. This can be done with the Acquire Terminal
operation.

The Acquire Terminal operation causes the CCP to
attempt to allocate a specific terminal to a program. If
the terminal is online, not already allocated to a program,
and not in command mode (signed on), it is eligible for
allocation. If operating under control of 5704-SC2, an
Acquire Terminal operation can acquire a command-mode,
non-PRUF terminal. A non-PRUF terminal is a 3277 or
3275 that is not formatted with a PRUF display.

Along with this operation you may identify a specific
set of operational attributes to apply to that terminal
while allocated to your program. If an Acquire Terminal
operation is to set terminal attributes, then the identifier
value of the terminal attribute set (as given in the
TERMATTR assignment statement) must be given in

the third field of the parameter list (in decimal for RPG Ii;
in hexadecimal for other languages). The CCP checks the

attribute set specified against the terminal type for validity.

The Acquire Terminal operation is valid if the terminal is
already allocated to your program only if the Acquire
Terminal with Set Attributes modifier is issued to change
the attribute set. (On a BSCA line, the last transmission
must have completed a message; that is, EOT must have
been sent or received.)

Your program resumes execution upon the completion of
the allocation or upon recognizing that the terminal is not
available for allocation,

Specifying the Terminal

For this operation, you must specify a defined symbolic
terminal name in the record area. The following names
may not be specified for the operation:

® The name of a terminal already allocated to the pro-
gram (except the requesting terminal, immediately
after the first successful Accept Input).

® A symbolic sub-terminal name.

® A symbolic terminal name that is not assigned to a
terminal.

® CONSOL

® Blank terminal name.

Considerations

When both DFF and non-DFF programs can be requested
from the same 3270 terminal, at least two TERMATTR
statements (DFF3270-YES and DFF3270-NO) must be
defined in the assignment set for these programs. The first
terminal attributes set defined in the ATTRID parameter
of the BSCATERM statement is the default attribute set
for the terminal. A program that uses the requesting ter-
minal in a manner other than that defined by the default
attribute set must perform an Acquire Terminal operation
with the appropriate attributes identifier to modify the
terminal attributes.

CHAIN TASK REQUEST (5704-SC2 Only)
This operation allows a program to request a second pro-

gram that is to execute as an unrelated task. Data can
optionally be passed with the request.

Operation Code

Hex Dec RPG 11 Meaning

002A | 0042 B BK Set up a program request

from this program.

Standard Application Program Interface to the CCP 2-35

Additional Requirements

® Provide the name of the requested program in the name
field of the record area.

® Specify either the output length or 0 (if no data with the
chain request) in the parameter list (see exception under
RPG 11 for SPECIAL files).

Information Returned
Return Codes:

0 Successful operation (Chain Task Request
accepted)

12 Request rejected (maximum number of chain
task requests already queued)

13 Request rejected (insufficient TP buffer available)

Function and Use of the Chain Task Request

When successfully executed by a CCP program, the Chain
Task Request operation causes a second program to be
loaded and executed. If the resources (files, terminals, or
storage) required by the second program are not available,
the second program is automatically queued. If data is
presented with the Chain Task Request and PGMDATA-
YES was specified on the PROGRAM assignment state-
ment, the data is passed to the second program when that
program issues its first Accept Input operation.

Following are some examples of Chain Task Request
operations.

Task Chaining from a Program Loaded from the Console:
PGM1 is loaded from the system operator’s console by
entering the program request: PGM1BCPGM2. PGM1
issues an Accept Input operation and receives the data
CPGM2, and sets up the chain request.

Console
PGM1 /O Area CPGM2
® Accept [CPGM24|
® Chain -
Request

Note: The output length is zero in this example because
no data is passed between programs.

2-36

Task Chaining with Data From A Program Loaded From a
Terminal: PGM1 is loaded from a terminal by entering the
program request: PGM16CPG2BBDATA. When PGM1
issues an Accept Input operation, the program receives
CPG2BBDATA as data, sets up and issues the chain request
for CPG2, and passes the characters DATA to the requested
program. When CPG2 is loaded, it issues an Accept Input
operation to receive the characters DATA. If both accept
operations are successful, PGM1 receives a 00 return code,
CPG2 receives a +14 return code.

Terminal
PGM1 CPG2
1/0 Area
® Accept ® Accept
|CPG2bSb$DATA|
® Chain
Request

Note: In this example, the output length is set to four.

Multiple Task Chaining Involving Sort Programs: PG1 is
requested from a terminal in this example. No program
data accompanies this program request. When PG1 re-
ceives control, it sets up and issues the chain request for
SORT1. SORT1 is then loaded and begins executing. PG1
then sets up and issues the chain request for SORT02.
When SORTO2 is loaded, it issues an accept operation to
receive the data passed from PG1, performs the sort func-
tion, and sets up and issues a chain request for PGM2.
PGM2 is then loaded and executed.

Note: It is possible for PG1, SORT1, SORT02, and PGM2
to be executing at the same time, provided the programs do
not have conflicting resource requirements. It is not
necessary that one program end before another can begin
executing.

Terminal r»
SORT1
PG1
1/0 Area
® Chain
Request [SORT1¥/
® Chain [SORTO2PGM2? | SORTO02
Request >
® Accept
® Chain
Request
1/0 Area
I 1

1Output length is zero.
2Output length is four.

Note: CCP/Sort issues a chain request if chaining was spec-
ified during the generation of the sort program.

Multiple Chain Requests Involving both Sort and Nonsort
Programs: PG1 is loaded from the console by entering the
program request: PG1BS1BS2BP1%P2. PG1 issues an
accept operation to receive the program data, and sets up
the chain request. Sort programs S1 and S2, and nonsort
programs operate similarly to the preceding examples.

Console

L» PG1 1/O Area
® Accept |«—CONSOLS1BS21P14P2]
® Chain —->|S1 Wl%%l32h5lp1 BP2 |
Request —-I

I->-S1

® Accept |«—{PG16BYBS2UP11P2|

® Chain —->|S2lz$l6h$léP1l6P2|
Request

S2

® Accept 4—-.|S1lélz$bﬂ6P1$P2|

® Chain —>|P1l6l6lz$l6P2|
Request r—-l

L

® Accept |«—{S2BBY©P2]
® Chain —{P281BK1 |
Request -—I

-

Note: PG1 and P1 must be set up by the programmer to
build the chain requests from the input data and to move
the program name into the name field. S1 and S§2, the sort
programs, are set up to use up to 6 characters of input or
until the first blank (delimiter) is detected, as the name of
the program for a chain request. The remaining characters
are passed as data.

Standard Application Program Interface to the CCP 2-37

Considerations

® Symbolic file. names that are valid for the requesting
program are not valid for the requested program because
the /FILE commands and SYMFILE statements do not
resolve file name references.

® The MAXCHAIN parameter of the SYSTEM assignment
statement must contain a value greater than zero for
programs that use the Chain Task Request operation.
If a Chain Task Request operation is made and
MAXCHAIN-O was specified in the assignment set, the
program is terminated with a 3F termination code. The
MAXCHAIN parameter has a default value of zero.

® Once a Chain Task Request is accepted by CCP and a
return code returned. to the requesting program, any
further diagnostics and messages for that request are
issued to the system operator’s console.

® CCP allocation does not queue requests for unit record
devices other than the line printer. |f a Chain Task
Request operation has been successfully executed, but
the chained task requires a unit record device (other
than the line printer) and is not available, the chained
task is rejected and a message is issued to the system
operator’s console.

® |f a program that issued a Chain Task Request operation
abnormally terminates, the program requested by the
task request is allowed to execute.

® When a series of task chained programs are active when
SHUTDOWN is entered, the chained prograrmns continue
executing to normal end of job.

RELEASE TERMINAL

The Release Terminal operation enables an application
program to give up control of a specific terminal in
order to make the terminal available to the rest of the
CCP system.

2-38

Operation Codes

Hex | Dec | RPGII | Meaning

000A 10 BBBK Release terminal and the
Communication line.

001A 26 BBAK Release terminal - keep
line allocated to the
program (switched lines
only).

Additional Requirements

® Provijde a symbolic terminal name (or blanks) in the
record area.

Information Returned

® Count of Invite Inputs outstanding for this program,
in the third field of the parameter list.

Function and Use of Release Terminal

When issued to a terminal on a nonswitched communica-
tion line, a Release Terminal operation causes the CCP to
release the specified terminal from the program, making
it available to other programs (if it was not the request-
ing terminal) or freeing it to enter commands (if it was
the requesting terminal). When issued to a terminal on

a switched line, Release Terminal can be issued so that

it releases the terminal and either:

1. Keeps the line allocated to the program, or
2. Releases the line, making it available to other pro-
grams.

Keeping the line breaks the connection to the terminal,
but allows the program to acquire any terminal on the
line, since no other application program can gain access
to the line.

After completion of the Release Terminal opetation the
third field of the parameter list contains a count of the
outstanding Invite Input operations for the program,
including any Invite Input operations issued by the CCP
because of data accompanying a program request.

A typical use for the Release Terminal operation is to
release a requesting terminal from a multiple requesting
terminal (MRT) program (see index entry) after the pro-
gram completes its work for the terminal. When an MRT
program is handling its maximum number of requesting
terminals, it must release a terminal before it can accept
a request from a new terminal.

Your program should issue this operation when it no
longer needs a specific terminal, so that the terminal can
be available to other programs. Possibly the terminal has
been yielding negative return codes because of a malfunc-
tion and the program can make no productive use of the
terminal. The terminal cannot be placed in offline status
by the system operator while it is allocated to a program.
Thus, only after an application program releases the termi-
nal can it be placed offline.

Specifying the Terminal

For this operation you may specify either a defined
symbolic terminal name or blanks in the record area. A
defined terminal name must be the name under which the
referenced terminal was allocated to the program.

The use of a blank symbolic terminal name is valid for
this operation only if the program is an SRT program.

The blank name references the terminal which requested
the currently executing copy of the program.

None of the following may be specified as the symbolic
terminal name:

® An undefined name (a name not assigned to a terminal)

® The defined name of a terminal not allocated to this
program

® A defined name which references a terminal allocated
to this program, but which is not the name under
which that terminal was allocated to the program

® A sub-terminal name

® CONSOL. — the console is automatically released by
the CCP at the beginning of execution of a program
requested from it.

Considerations

® This operation must not be issued as the initial data-
transfer operation to a requesting terminal which
entered data as part of the program request. The
only valid operation which may be issued to such a
terminal at that time is an Accept Input.

® This operation must not be issued to a terminal which
has an Invite Input outstanding to it.

® |n order to issue Release Terminal on a BSCA line, the
line must be at EQT,

® (Model 10 and Model 12 CCPs) SRT programs using
symbolic files must open the symbolic file before releas-
ing the requesting terminal. In RPG |l and FORTRAN,
all files are opened before any /O operations can be
performed by the program; however, COBOL and Basic
Assembler programs must explicitly open all symbolic
files prior to issuing a Release Terminal operation to the
requesting terminal.

SHUTDOWN INQUIRY
The Shutdown Inquiry operation is used to determine

whether the system operator has requested CCP system
shutdown.

Operation Code

Hex Dec RPG i Meaning

0000 0 ‘¥ 00 Shutdown Inquiry

Additional Requirements

None.

Information Returned
Return Codes:
0 Shutdown not requested

4 Shutdown requested

Standard Application Program Interface to the CCP 2-39

Function and Use of Shutdown Inquiry

The system operator can request shutdown of the CCP
at any time. When he does, programs currently running
should terminate their own execution in a controlled

manner, rather than be cancelled by the system operator
without warning. The Shutdown Inquiry operation deter-

mines whether or not shutdown has been requested and
sets an appropriate return code in the parameter list.

If you want your program to perform a controlled termi-
nation when shutdown is requested, you may include a
Shutdown Inquiry {or an Accept Input) and a test of
the return code in your program. For example, perhaps
you want your program to inform attached terminals
that the CCP is about to shut down before your program
terminates.

WAIT OPERATION (Model 15 only)

The Wait operation enables an application program to
suspend operation for a specified time period (hours/
minutes/seconds).

Note: To use the Wait operation, the timer option must be

selected at system generation time.

Operation Code

Hex Dec RPG I Meaning

0014 | 20 BB AD Wait Operation

Additional Requirements

® Set output length equal to 10. (If using RPG SUBR92,
set output length to 24.)

® Specify the time limit in the user’s record area.

Information Returned

Return Code O — Successful

2-40

Function and Use of Wait Operation

This operation enables the application program to issue a
wait request for the amount of time specified (in decimal)
in the data area. The data area is specified in the following
format:

Terminal name I B l hhmmss l HHHI
16 7 8-13 14-16
where:
1-6 — Symbolic terminal name

7 — Blank

8-13 — hh = number of hours in decimal
mm = number of minutes in decimal
ss = number of seconds in decimal
Blanks

14-16

Wait Operation Format for RPG SUBR92

output terminal
op code | length I name |) | hhmmssI lélzﬁlél
1-4 5-8 9-14 15 16-21 22-24
where:

1-4 — UBAD

5-8 — 0024

9-14 — Symbolic terminal name

15 — Blank

16-21— hh = number of hours in decimal
mm = number of minutes in decimal
ss = number of seconds in decimal

22-24— Blanks

Your program resumes execution after the wait operation
is completed.

This chapter describes several aspects of communications
programming that are important for you to understand
before you write application programs that use the CCP
communications interface facilities. (The interface
facilities are described in Chapter 2 and are further defined
in later chapters for each programming language.) The
following topics are discussed:

® Terminal classes

® Program use of terminals

® Program types

® Program attributes

® Communications program logic

® Symbolic files

® Switched lines

TERMINAL CLASSES

Under the CCP, terminals are divided into two classes,
based on whether or not they are allowed to enter com-
mands to the CCP:

® Command terminals

® Data terminals

Terminals are designated either command terminals or
non-command (data) terminals during CCP assignment.

(See BSCATERM and MLTATERM assignment statements
in CCP System Reference Manual.)

Chapter 3: Communications Programming Topics

Command Terminals

A command terminal can request the CCP to perform
special services; the most significant service request is a
request to load and initiate a program. Command termi-
nals must be capable of both input and output, since
they must be able to transmit commands to the CCP

and receive messages from the CCP. Once a command
terminal has requested a program, it is capable of sending
and receiving data under direction of the program. The
terminal remains under control of the program until one

of the following occurs:

® The terminal is released by the program.

® The program terminates.

® The terminal operator enters a /RELEASE command,
releasing the terminal from the program.

At that time, the terminal is again allowed to enter com-
mands to the CCP. A command terminal that is not cur-
rently signed on to enter commands may also be used by
a program to send and receive data.

When a switched line with one or more command termi-
nals is not under control of a program, the CCP awaits
calls from command terminals on that line.

Data Terminals

A data terminal cannot request CCP services, but can only
transmit and receive data under control of programs that
use the terminal. When a program releases the terminal,
the terminal is not used until it is required by another
program.

Communications Programming Topics 3-1

A switched line that is connected only to data terminals
is allocated by the CCP to a single application program
at a time. Connections are established (answers or calls)
when the program performs 1/0 operations referencing
the symbolic name of a terminal on the line (see index
entry switched lines).

A data terminal might have only input capability, only
output capability, or both input and output capability.

PROGRAM USE OF TERMINALS

Your communications program differentiates between
terminals with which it communicates based on whether
the terminal requested the program.

Requesting Terminal

A requesting terminal is a command terminal that entered
into communication with your program by entering a
request for your program while in command mode (see
CCP System Operator’s Guide for a description of com-
mand mode and program requesting). Once a reguesting
terminal is in communication with your program, it is in
data mode and is directed by your program to transmit
data, receive data, or both,

From a programming point of view, there are few dif-
ferences between handling requesting terminals and
program-selected terminals. However, the following con-
siderations apply to requesting terminals, but not program-
- selected terminals:

® A requesting terminal can include data with a program
request (if the program is written to handle data with
the program request, see PROGRAM assignment state-
ment in CCP System Reference), therefore, the program
can issue an Accept Input operation as the first opera-

tion to the terminal (the CCP in effect issues the first
invite Input operation to the terminal in this case).

® A program that handles only a single requesting termi-
nal (see Program Types) can use a blank terminal name
as a reference to the requesting terminal.

® The program does not know which terminal will be the
requesting terminal and, therefore, must determine
which terminal is requesting by examining the terminal
name returned with an initial operation.

Program-Selected Terminal

A program-selected terminal is a terminal that has not
requested your program, but is needed by your program
to transmit data, receive data, or both.

A program-selected terminal can be attached to your
program in two ways: it can be either specified at assign-
ment time as required for your program or acquired by
your program during its execution by means of an Acquire
Terminal operation. A program-selected terminal can be
one of the following:

® A data terminal in standby mode.
® A command terminal in initial mode.

® (5704-SC2 only) A command terminal in command
mode and not formatted by a PRUF display.

There are hardware characteristics of certain of the MLTA
terminals that need to be considered in designing and
writing programs that use program-selected terminals:

A request for a program that uses a program-selected
terminal is rejected by the CCP if the terminal is on a
switched line that is already connected.

Data Terminals: No special consideration.

Command Terminals: Command terminals operating
under 5704-SC1 must be in initial mode in order to be
program selected. Command terminals operating under
5704-SC2 must be in either initial mode or in command
mode and not formatted by a PRUF display in order to
be program selected. However, while in initial mode,
command terminals are invited for input by CCP. Thus,
one of the steps in the allocation of a command terminal
in initial mode is a Stop Invite Input request from CCP.
If the Stop Invite Input fails (that is, the read to the
terminal cannot be cancelled), the program selection of
the terminal is considered to have failed. Thus, the
capability of cancelling a read operation is crucial to the
program selection of command terminals.

There are certain terminal types for which reads cannot be
cancelled once they have been issued. Once a read has been
issued to the terminal, no other operation can be started to
the terminal until the input operation completes. The
terminals whose hardware characteristics fall into this
category are:

1. 2741

2. 2741 Dial

3. 2740 Dial with transmit control

4. 2740 Dial with transmit control and checking
5. 3767 simulating a 2741

6. 5100 simulatinga 2741

Therefore, if these terminals are assigned as command
terminals, it will be extremely difficult for them to be
program selected. Application programs using these
terminals should be written so as to handle them as request-
ing terminals. This may require writing a program as a
multiple requesting terminal (MRT) program.

PROGRAM TYPES

Two general types of communications programs can be
written to run under the CCP:

® Single Requesting Terminal (SRT) Program

® Multiple Requesting Terminal (MRT) Program

Programs are designated as either MRT programs or non-
MRT (SRT) programs by the PROGRAM statement dur-

ing CCP assignment (see CCP System Reference Manual).

If the MRTMAX keyword is used on the PROGRAM state-
ment, the program is considered an MRT program. (MRT-
MAX specifies the maximum number of requesters the pro-
gram can handle concurrently.) SRT and MRT programs
have different characteristics and place significantly different
requirements on the application programmer (see Exam-
ples of Application Program Logic, \ater in this chapter).

Single Requesting Terminal (SRT) Program

An SRT program can service the needs of only one
requesting terminal on each execution (that is, from the
time the program is initiated by the CCP until it termi-
nates). A typical example of an SRT program is an
inquiry program that processes one or more messages
from its requester and then terminates, using system
resources only briefly. The program may access or
update several different files in order to complete its
processing. An SRT program might also transmit
batched data to a host system, such as a System/370,
where the host is the requester of the program.

An SRT program can be written to acquire (or require,
by means of the TERMS parameter of the // PROGRAM
assignment statement) one or more program-selected
terminals while servicing the requesting terminal. For

example, perhaps the requester wants information from
several terminal locations or wants to send information
to other locations. An example of such a program might
be an inquiry program that serves a credit office applica-
tion. The requesting terminal asks for information about
a customer from terminals in other offices by issuing a
message to program-selected terminals in those offices
specifying the customer identification. The attached
offices reply with the latest credit information.

If sufficient resources are available, the CCP can load and
initiate separate, duplicate copies of an SRT program, each
copy servicing a different requesting terminal. If resources
are not available, second and subsequent requests for the
program may be placed on a queue by the CCP (see /Q
command in CCP Terminal Operator’s Guide). Multiple
copies of an SRT never-ending program are not permitted
under the CCP.

Multiple Requesting Terminal (MRT) Program

An MRT program can service requests from one or more
terminals each time it is executed. An MRT program
may be written to handle multiple requesting terminals
concurrently. The maximum number is specified by the
MRTMAX keyword of the PROGRAM statement at
assignment time, Requests for the program that are
received while the program is already handling its maxi-
mum number of terminals are queued by the CCP (if the
requester has indicated queuing) to be honored when the
program has released a terminal; therefore, you need not
check this in your program. Only a single copy of any one
MRT program can be in main storage at a time.

New requesting terminals are attached to an MRT pro-
gram by means of Accept Input operations (see index
entry). A program is notified that a new terminal is
attached by receiving a new terminal name from an
Accept Input. '

MRT programs must maintain status information regarding
several requesting terminals in order to remember which

" terminals are attached and the status of each terminal rela-

tive to the program.

You must explicitly release a requesting terminal once
your program has completed the processing required by
the terminal (see index entry Release Terminal operation).
If not released, the terminal remains allocated to the pro-
gram until the program terminates. An MRT program
should be written to terminate when it has no more
requests to service, unless the program is defined as a
never-ending program (see Program Attributes).

Communications Programming Topics 3-3

Many application programs, both order entry and inquiry,
could be written in either single requester or multiple
requester form. If a program is likely to be often requested
from more than one terminal concurrently, it is more
efficient to code the program as an MRT program, since
the MRT version is not as likely to cause resource conflicts
as are numerous requests of an SRT program. Also, an
MRT program should take less main storage space than
separate copies of an SRT program.

An MRT program can be defined as MRTMAX-1 on the
PROGRAM assignment statement. In this case, only one
request is processed at a time, as in an SRT program, but
subsequent requests for the program can be queued to the
same copy of the program if the requesting terminal has
elected to queue requests (/Q command). An MRT program
defined in this way does not have to keep track of multiple
attached terminals; however, the program cannot process
multiple requests concurrently and only one copy of the
program can be in main storage at a time.

If an MRT program is specified as NEVEREND-NO and
MRTMAX-1 (capable of handling only a single requesting

terminal), the program is reloaded each time it is requested,
even if it is in storage at the time of the request.

SPECIAL PROGRAM ATTRIBUTES

The two general communications program types—SRT and
MRT—may have additional special attributes:

® Never-ending

Serially reusable (Models 10 and 12)

Dedicated (Models 10 and 12)

® Program request under format
® Sort

The PROGRAM assignment statement specifies whether a
program has any of these attributes.

34

Never-Ending Program

If a program is to be requested frequently throughout the
CCP run and if sufficient main storage is available, it can
be defined as a never-ending program (NEP). An NEP, once
it has been loaded and initiated by the CCP, does not
terminate (except in an unusual situation) until the CCP is
shut down. Under Model 10 and Model 12 CCP, once an
NEP is loaded, the main storage it occupies is permanently
unavailable for other programs, even if it terminates in an
unusual situation. Under Model 15 CCP, the main storage
occupied by an NEP is released for use by other programs
if the NEP terminates in an unusual situation,

An NEP with no work to do (no outstanding Invite Inputs)
issues an Accept Input operation and waits until it is
requested again. See Disk File Considerations in Chapter 9:
Program Preparation for a Model 15 CCP consideration in
this situation.

When using NEPs, you should be aware of facts concerning
system resource allocation:

® While a particular system resource is allocated to a NEP,
requests for programs that also require the resource will
be rejected, regardless of the queuing status (/Q or
/NOQ) of the requesting terminal.

® When an NEP requires a system resource that is already
allocated to another program, the request for the NEP
will be rejected without regard to the queuing status of
the requesting terminal. Under Model 15 CCP, a request
for a NEP can be queued if CCP is handling the maximum
number of tasks or if user program area is not immedi-
ately available.

An NEP should either check for the shutdown return code
or issue the Shutdown Inquiry operation so that CCP shut
down can be successfully completed.

When writing an SRT program as a never-ending program,
be aware that second and subsequent requests for the pro-
gram are rejected by the CCP,

To ensure that the required main storage is available for
the never-ending program, it is recommended that all
never-ending programs (only one of which can be an SRT
program) be loaded into main storage prior to requesting
any other programs. Main storage fragmentation could
result if never-ending programs are not started as the initial
programs in the system.

Note to Model 10 and 12 Users: 1t is especially important
to load NEPs first if they use the 3270 Display Format
Facility, because the Display Format Facility is loaded into
the user program area for execution.

Note to Madel 15 Users: CCP always loads NEPs at the
opposite boundary of the user program area from non-
NEPs to avoid fragmentation of this area, which could
otherwise severely impair CCP performance.

Serially Reusable Program (Models 10 and 12)

A serially reusable program terminates normally after
executing and can be re-executed without requiring a

fresh copy of the program to be loaded in main storage.

A serially reusable program must restore data areas and
modified instructions to their initial condition prior to
reusing those data areas and instructions when the program
is reinitiated. Only COBOL and Basic Assembler programs
can be written to be serially reusable. Never-ending
programs cannot be specified as serially reusable.

Use of serially reusable programs can increase CCP effi-
ciency, especially if the programs are requested frequently,
since the need for repeated loading of the program can be
avoided in some cases. If other programs are being request-
ed and loaded, however, timing of the requests may be such
that, when a subsequent request for the serially reusable
program is entered, the main storage space previously
occupied by the serially reusable program is already
occupied by another program. In this case, the serially
reusable program must be reloaded.

Dedicated Program (Models 10 and 12)

When a program defined as a dedicated program is running,

it must be the only program running in the CCP program
level, even though multiprogramming is allowed by the CCP.
It may not be initiated while other programs are running
and other programs may not be initiated while it is running.
This program attribute applies only in CCP systems that
allow more than one program to be executing concurrently.

You might want to designate a program as dedicated if it
requires exclusive use of disk files that are otherwise
shareabie, for example, a program that performs summary
operations at a particular cut-off time, such as day-end or
month-end, when concurrent operations on the files are
not desired. A dedicated program might also be used in
applications where fast response time is important and
the program relies on exclusive access to all communica-
tion lines, disk files, and other system resources.

Program Request Under Format

With a non-PRUF request, the maximum amount of data
that can be passed to a user program, as a program request,
is 78 characters. This is not an efficient use of the 3270
terminal buffer. An efficient method of using the 3270
terminal is to write a short SRT program which will put a
display at a terminal, and then go to end of job. The ter-
minal operator can then fill in the display with data, cause
attention (PF key or ENTER key) and have the display at
the terminal essentjally request another program. The
whole display will be used as program request data. This
concept of requesting programs and passing up to a full
screen of data to the requested program is called Program
Request Under Format (PRUF).

The use of PRUF will provide the following capabilities:

® More than one field of data may be passed as program
request data.

® More than 78 characters of data may be accepted as
program request data.

® The AID character is passed as program request data
to PRUF programs, but not to non-PRUF programs.

® The data passed to the user program with the program
request may or may not be processed by DFF under
format control if the program being requested is a
PRUF program. However, DFF does not process non-
PRUF program request data.

® Main storage can be used efficiently, as a program need

not be in main storage during a lengthy terminal
operator keying operation.

Communications Programming Topics 3-5

A program is defined as a PRUF program if the PRUFLNG
parameter is specified in the assignment PROGRAM state-
ment. The PRUFLNG parameter specifies the maximum
length of program request data to be sent by the terminal.
If the PRUF program is also a DFF program, the PRUF$Z
parameter is specified in the PROGRAM statement. This
gives the name of the format which will be used by DFF to
format the program request data. (See the /BM System/3
Models 10 and 12 Communications Control Program
System Reference Manual, GC21-7588, or the /1BM
System/3 Model 15 Communications Control Program
System Reference Manual, GC21-7620, for a complete
description of these keywords.)

To inform CCP that the next program request from a 3270
terminal will be a PRUF program request, user program A
(which may be a PRUF or a non-PRUF program) executes
a PRUF-Put operation to the 3270 terminal as its last
output operation prior to releasing that terminal or going
to end-of-job. If the terminal receiving the PRUF-Put
operation was a requestor of the program issuing the
PRUF-Put, that program must have ENDMSG-NO specified
on its PROGRAM statement,

Before returning the terminal to command mode status,
CCP will reserve an area from the TP buffer, equal in length
to the maximum PRUFLNG, as a temporary hold area for
the program request data from that terminal. It should be
noted that CCP will only reserve a TP buffer area equal in
length to the PGMREQL, as specified in the SYSTEM
statement, if the last user output operation to that terminal
is not a PRUF-Put operation.

The first field received from the 3270 must be the program
name of the PRUF program to be requested and must begin
in row 1, column 2 or later on the screen. The program
name must be either entered in the first field on the screen
(that field defined as an input field) or sent to the screen
(by a PRUF-Put operation) in the first field defined as an
output/input field. The terminal operator then keys in
data to all needed input fields on the screen.

3-6

When all the needed fields have been keyed in, press the
ENTER key, a PF key, or insert a card into the card
reader (this action is device dependent). Now the program
request for program B enters the system. If program B is
a non-DFF program, the following data will be passed as
program request data to program B:

|cu|dev |aid Ic@l lsba E@@. ngm'nan]é pgmldata|. ...
1 2 3 45 6 78 9...

Note: If the program is written in RPG 11, these fields start
in column 15 of the input specifications,

where:
cu = Control unit address of the 3270 terminal
dev = Device address of the 3270 terminal
aid = AID character
c@ = Cursor address
sba = Set buffer address (X‘11’)
@@ = Address of start of pgmnam field
pgmnam = Name of program B
i} = EBCDIC character for a blank (X‘40°)
pgmdata = Remainder of 3270 text stream or the

number of characters specified by
PRUFLNG parameter, whichever is
smaller,

A PRUF program request will return 8 plus PGMNAM length
plus 7 additional character of data more than a program
request for a non-PRUF program. If a program B is a DFF
PRUF program, DFF will attach the PRUF$Z format to the
program using that format for control and move data into
program B's input record area at program request time. (See
Chapter 8 for a description DFF handling of accept input
data.)

The following considerations apply when running CCP
assignment sets with PRUF programs:

® PRUF-Put operations to the system console are invalid.

o |f the 3270 terminal has been formatted by a PRUF-
Put operation, and the program being requested is a
non-PRUF program, CCP will reject the program request.

® |f PRUF is not active on the 3270 terminal, and the
program being requested is a PRUF program, CCP will
issue a 02 return code following the Accept Input
operation. The program request data returned in this
case will begin with the first character of data follow-
ing the program name and a blank. This will not have
been processed by DFF.

® |f PRUF is active on the terminal, all system messages
to that terminal will be output in positions 82 through
160. Therefore, these positions should be used with
caution at program request time to PRUF programs.

® A terminal which had a PRUF-Put format sent to it has
this condition (PRUF-type terminal) terminated by
the next non-PRUF Put operation sent to the terminal,
or if the terminal CLEAR key is pressed.

Sort Programs (56704-SC2 Only)

Sort programs must be generated offline from CCP but can
be executed as user programs under CCP. Multiple sort
programs can be active under CCP at one time providing
each program has a unique name, and unique work and
output files. A minimum of three files must be defined on
the FILES parameter of the PROGRAM assignment state-
ment for a sort program:

® An input file with CG access. Input files can be opened
with CO, 10, and 10U access methods but the opening
program must terminate successfully before the file can
be shared. Up to eight input files can be defined.

® A work file with CA access and specified as nonshareable.

® An output file with CO access and specified as nonshare-
able. After asort program has completed successfully,
the output file can be opened using CA, CG, CO, CU,
DG, or DU access methods.

Note: The sort input file cannot be specified as the sort
output file. The use of SYMFILE statements and /FILE
commands to resolve sort file name assignments is sup-
ported, but do not attempt to overlay the input file with
the output file using the SYMFILE and /FILE facilities.

After a sort program has terminated successfully, the input,
work, and output files are available to other sort and non-
sort programs.

When a sort program is requested from a terminal, addition-
al modules with the prefix $DG are loaded by the sort pro-
gram. These additional modules (initially supplied on the
system pack) must be on the same pack from which the
sort program was loaded. For example, if a sort program
has been placed on the program pack (PACK-PROGRAM
specified on the PROGRAM assignment statement}, the
$DG modules must be copied to the program pack from
the system pack. This can be accomplished using the
following OCL.:

// COPY FROM-nn, TO-nn, LIBRARY-O,RETAIN-P,
NAME-$DG.ALL

Because of space considerations, it may be more convenient
to put the sort program on the system pack.

Communications Programming Topics 3-7

Once a sort program has started, the requesting terminal is
released and is free to perform other operations. All sort
messages indicating the status of the sort program are issued
to the system operator’s console after the requesting ter-
minal is released.

Note: If another program is allowed to update the sort in-
put file at the same time that a sort program is processing
the file, improper results can occur. For this reason, either
specify NOSHR for the sort input file in the assignment
set, or allow input only programs to access the file while
the sort program is executing. See CCP System Reference
manual for your system and the /BM System/3 Disk Sort
Reference Manual, SC21-7522, for additional information
about sorts.

If shutdown is requested, an active sort program is allowed
to complete execution to normal termination.

Sorts and Task Chaining

When a sort program is to issue a chain request, the name of
the requested program and the data (if required) must be
passed to the sort program with the program request. The
sort program interprets the first six characters (or up to the
first blank if the name is less than six characters) as the
name of the program to be requested. The remaining data
is passed as data along with the chain request.

If more than 80 characters of data are passed to a sort pro-
gram, the sort program issues a CCP DATA TRUNCATED
message to the console, and issues the chain request, even
though the data has been truncated.

If CCP is handling the maximum number of chain requests
when a sort program issues a chain request, CCP issues a
TASK CHAIN UNSUCCESSFUL message to the console.

In this case, the sort program is allowed to complete exe-
cution, but the chain request is neither issued nor executed.

For an example of a sort program issuing a chain request,
see index entry: chain task request.

3-8

EXAMPLES OF APPLICATION PROGRAM LOGIC

Programs that do not communicate with online terminals
are most often designed to run in batch processing mode;
that is, one program completely finishes its processing
before the next program begins to run. Often, the pro-
gram processes a large number of data records which con-
tain similar data in similar format. Such a program prob-
ably uses only a few data files; perhaps it builds a tempor-
ary file and updates a permanent file. {Communication
terminals can also be used to advantage in batch process-
ing mode.)

Most communications programs, on the other hand are
designed for a very different environment, characterized
by online processing, that is, data enters the computer
directly from the point of origin and is transmitted
directly to where it is used. The communications environ-
ment often includes several terminals, each making
requests in a random manner, each request requiring the
execution of a different program. Each program might
process only a single transaction at a time for the
terminal, affecting several different files. The majority
of communications programs utilize this type of process-
ing, which requires program logic different from that
required for batch processing.

The following examples illustrate the typical logic
required to deal with:

® A single requesting terminal

® A single requesting terminal and program-selected
terminals

® Multiple requesting terminals

® Multiple requesting terminals and program-selected
terminals

Single Requesting Terminal

Figure 3-1 shows the program logic that might be used in
a program that deals with only a singie requesting termi-

nal on each execution. The numbered notes further ex-

plain aspects of the logic.

0 If data is expected with the program request, no
Invite Input is required, since the first Accept Input
will return the requester’s name and data in the
record area. |f data is expected with the program
request, an Accept Input must be issued.

Q A Put operation with a blank terminal name causes
the name of the requesting terminal to be returned
in the record area. Invite Input can then be issued
to that terminal. If no data is expected with the
program request, a Get operation with a blank termi-
nal name can be used after the Put operation instead
of the Invite Input and Accept Input operations.

@ If data is expected with the program request, the
first input operation is an Accept Input. Subsequent
input operations can either be Accept Input or Get
operations. f Accept Inputis used, Invite Input
must be issued prior to the Accept Input except for
the first Accept Input operation when data is ex-
pected with the program request.

Initiate
Program

Data
expected with
program
request

Put with
blank
terminal

name Q

Accept

Input
©

Process

More data

No

Terminate
Program

Figure 3-1. Program that Communicates with a Single Requesting

Terminal

Communications Programming Topics

3-9

Initiate

Program

Determine which
terminals to
select

Acquire the
program-selected
terminals

Put a

Hello
message to each
terminal capable
of output

Issue an

Invite Input
to each of the
attached input
terminals

9 Identify the
terminal and
locate or establish
the work area

for it

[

Determine the
proper point in e
the message
sequence

Process the
message
sequence

&)~ Want more
data from this
terminal

Yes

More
input data
to
process

Terminate \
Program /

Figure 3-2. Program that Communicates with a Single Requesting Terminal and Program-Selected Terminals

3-10

Single Requesting Terminal and Program-Selected Terminals

Figure 3-2 illustrates the logic that could be used by a
communications program to deal with a single requesting
terminal and one or more program-selected terminals. The
numbered notes further explain characteristic aspects of
this type of fogic.

o These steps (enclosed by the broken line) are per-
formed only the first time through the program. A
program can determine which terminals to select in
various ways:

® The terminals required by the program are
specified at assignment time and the terminals
have been allocated to the program before it
gains control.

® The program knows which terminals it needs,
but must acquire them itself,

® The program does not know which terminals to
select. The program might have to obtain this
information from the system operator, a termi-
nal, or from the data he is processing.

When the program knows which terminals to select,
it can acquire them (if not already allocated by
assignment), Put a ““Hello’” message, and Invite
Input, as required.

(2]

When a program is capable of handling more than
one terminal, it may need to set aside a separate
work area for each. The program would use the
work area to retain enough information to remem-
ber what it has previously received from each termi-
nal. When, for example, input data consists of more
than one part, a separate routine often processes

each different part. A complete input message might
consist of a customer name or number, an order num-
ber, item numbers, quantities, prices, and other infor-
mation, entered as separate lines of input data and, in
fact, as separate transmissions from the terminal. The
program must be able to determine which portion of
the data it is processing, where to store that data in
the work area, and which routine processes that por-
tion of the data.

When a program-selected terminal has completed a
message sequence, the program must determine
whether it wants additional input from the terminal,
For example, if the program has received an end-of-
input signal or if the system operator has issued the
SHUTDOWN command (and the program recognizes
the shutdown return code), the program should not
issue an Invite Input to the terminal.

If any other program-selected terminals have input
messages to transmit (have outstanding Invite Input
operations issued to them)_ the program finishes
processing them. When all input from the program-
selected terminals and the requesting terminal has
been processed, the program terminates.

Communications Programming Topics 3-11

Invite /

Initiate
Program

Accept
Input

Identify the
terminal and
locate or establish
the work area

for it.

Determine the
proper point in
the message
sequence

Process the
message
sequence

data from this
terminal

A Release this
terminal

Any
Outstanding
Invite Inputs

Terminate
Program

Figure 3-3. Program that Communicates with Multiple Requesting Terminals and No Program-Selected Terminals

3-12

Multiple Requesting Terminals

Figure 3-3 shows the program logic that might be used in
a program that deals with multiple requesting terminals.
The numbered notes further describe key steps in the
logic.

0 The Invite Input is bypassed-the first time through
since it is not known which terminal requested the
program until after the Accept Input operation.

Q When the program has received the final portion of
a message sequence from a particular terminal, it
must determine whether it wants additional input
from the terminal. If, for example, the terminal
has indicated that this is the last message it will
send or if the system operator has issued the
SHUTDOWN command to shutdown the CCP
(and the program recognizes the shutdown return
code), the prog-em should not issue an Invite lnput
to the terminal.

If no Invite Input is to be issued to this terminal,
the terminal is released from the program.

If requests from other terminals are in process or
awaiting processing, they must be completed before
the program terminates. The number of remaining
requests can be determined from the count of
outstanding. Invite Inputs, returned in the third
field of the parameter list by the previous Release
Terminal operation.

Communications Programming Topics 3-13

Initiate

Program

o——.——.— e

Determine which
terminals to
select

Acquire the
program-selected
terminals

Put a
Hello
message to each

terminal capable,
of output

|

Issue an
Invite Input
to each of the
program-selected
terminals

\

\

Accept
Input

N

ldentify the
terminal-locate
work area; go to
appropriate
routine

Process the
message
sequence

Put

Finished
with this
requester

Want more
data from this
terminal

) Invite Input
Release this from this
requester terminal
!

Any
Outstanding
Invite Inputs

No

Terminate
Program

Figure 3-4. Program that Communicates with Multiple Requesting Terminals and F;rogram-Selected Terminals

®

Multipie Requesting Terminals and Program-Selected
Terminals

Figure 3-4 shows an example of the general logic of a
communications program that accepts requests concurrently
from several requesting terminals and, in satisfying the
requests, contacts one or more program-selected terminals.
As each requester is satisfied, the program releases it,
enabling the requester to enter other commands to the

CCP. The program-selected terminals in this example are
not released from the program until the last requester has
been served and the program is terminated. The numbered
notes further explain key steps in the logic.

0 The first-time processing required when program-
selected terminals are used is described in Figure 3-2.

@ When a program is capable of handling more than
one terminal, it may need to set aside a separate
work area for each. The program may have to
retain enough information to remember what it
has previously received from each terminal. When,
for example, input data consists of more than one
part, a separate routine often processes each differ-
ent part. A complete input message might consist
of a customer name or number, an order number,
item numbers, quantities, prices, and other informa-
tion, entered as separate lines of input data and, in
fact, as separate transmissions from the terminal.
The program must be able to determine which por-
tion of the data it is processing, where to store that

©

data in the work area, and which routine processes
that portion of the data.

When a program-selected terminal has completed a
message sequence, the program must determine
whether it wants to invite additional input from the
terminal. For example, if the program has received
an end-of-input signal or if the system operator has
issued the SHUTDOWN command, the program
should not issue an Invite Input to the terminal.

If requests from other terminals are in process or

awaiting processing, they must be completed before
the program terminates.

Communications Programming Topics 3-15

SYMBOLIC FILES

Under the CCP, you can write a program using a file name
(symbolic file) which might refer to a different physical

disk file each time the program is executed. The physical
(actual) files must be similar in format (that is, the same file
organization, access method, record length, key length, and
key position), although different in content. For example,
you could write a student report program that generates

a report for a different school on each execution, depending
on which school’s student file is associated with the symbolic
file for a particular run (Figure 3-5).

Student Report Program

~
Requesting Terminals /File command K\ — 4 Symbolic file name
says: “For this run, School X is I~ A used in the program
11" -~
Schoo | school)S'
A e
I~ <

which the symbolic

U file name may refer.
=) o &

The assignment statements for this example might look like this (see CCP System Reference Manual
for explanations of the assignment statements):

) ~
0 o ° Physical files to

// DISKFILE NAME-SCHOOL1, ORG-1, RECL-100, KEYPOS-94, KEYL-7

// DISKFILE NAME-SCHOOL2, ORG-I, RECL-100, KEYPOS-94, KEYL-7

// DISKFiLE NAME-SCHOOL3, ORG-I, RECL-100, KEYPOS-94, KEYL-7

// SYMFILE NAME-SCHOOLX, DISKFILE-"'SCHOOL1, SCHOOL2, SCHOOL3'
// PROGRAM NAME-STURPT, PGMDATA-NO, FILES-"'SCHOOLX/DG’

Figure 3-5. A Symbolic File

The specific physical file to be used on a particular run of names of one or more valid physical files are associated with
the program is determined by the operator of the requesting the symbolic file name by means of the DISKFILE and
terminal by means of a /FILE command prior to the program SYMFILE assignment statements (see CCP System Refer-
request (see CCP Terminal Operator’s Guide or CCP System ence Manual). // FILE OCL statements for the physical
Operator’s Guide for a description of this command.) The files are entered by the system operator during CCP

startup. '

3-16

Considerations and Restrictions in Using Symbolic Files
® An MRT program cannot use symbolic files.

® On the Model 10 Disk System or the Model 12, if your
program releases the requesting terminal prior to the
initial opening of any symbolic file, the CCP will cancel
your program. You must be especially careful in pro-
grams that can be requested from the console, since the
console is automatically released from your program by
the CCP.

To use symbolic files in Model 10 and Model 12 CCP
application programs that can be requested from the
console, you must specify at assignment time {// PRO-
GRAM statement) that data is allowed with the program
request, even if no data will actually be entered. The
CCP releases the console when the first Accept Inputin
the program has resulted in the name CONSOL and
program data being passed to the user program. There-
fore, the symbolic file must be opened before the Accept
Input. In RPG Il all files are opened before any 1/0
operations can be performed.

® On the Model 10 Disk System or a Model 12, a serially
reusable program (COBOL or Basic Assembler) will
access the same physical file when it is reused (executed
without being reloaded) as it was used on its initial
execution.

SWITCHED LINES

A switched line is a communication line on which the
connection between the system and the terminal is established
by dialing a data set {telephone) number either automatically
or manually. After the connection is completed, data can

be transmitted. A terminal on a switched line is disconnected
under control of an application program by means of the
Release Terminal operation {see Operations, in Chapter 2).
This operation can specify whether to keep the line allocated
to the program or to "‘return’’ it to the CCP.

If command mode terminals are attached to a switched
line, the CCP awaits calls from the terminals, rather than
polling the terminals for commands.

Under the CCP, a data set (telephone) number can be
established at assignment time (TERMNAME statement)
for each terminal name assigned to -a terminal that might

be called by an application program running under the CCP.
Also, the attribute set associated with a terminal on a
switched line can assign the attributes auto/manual call

and auto/manual answer.

Auto Call

If a terminal is defined as auto call by the TERMATTR
assignment statement, an 1/0 operation from a user program
to the terminal on a switched line that is not connected
causes the CCP to place a call to the terminal automatically.
Auto call cannot be used with MLTA terminals. In order

to use auto call on BSCA terminals, the Auto Call feature
must be installed on the BSCA hardware.

Manual Call

If a terminal is defined as manual call by the TERMATTR
assignment statement, an 1/0 operation from a user program
to the terminal on a switched line that is not connected
causes the CCP to inform the system operator that he must
dial a data set number on a certain line.

Auto Answer

If a terminal is defined as auto answer, the CCP awaits a
call from the terminal, and automatically answers the call
(if the auto answer feature is activated on the data set).

An |/0 operation from a user program to a switched line
that is not connected causes the CCP to inform the system
operator that the program is awaiting a call on the switched
fine,

Manual Answer

In manual answer, the system operator answers a call from
a terminal. The system operator and terminal operator then
place their data sets in data mode; the CCP waits for input
from the terminal. An 1/0 operation from a user program
to a switched line that is not connected causes the CCP to
inform the system operator that the program is awaiting

a call on the switched line.

BSCA Switched Line

On a BSCA switched line, the CCP allocates the line to the
user program when the first terminal on the line is allocated.
In order to communicate with a terminal on the line, the
program must either already have the line allocated or the
line must be free for allocation (not currently allocated to
another program).

Invite Input operations can be outstanding to multiple
terminals on the same line after a connection has been made.
The CCP determines which symbolic name to return with an
Accept Input operation from the exchange identification
characters, which are associated with a specific terminal

Communications Programming Topics 3-17

name by the BSCATERM assignment statement (see CCP
System Reference Manual).

Note: If a communications operation is issued to a terminal
for which VERIFYID—NO is specified in the TERMATTR
assignment statement and the operation is an answer
operation, then any terminal that calls satisfies the operation.

BSCA Requesting Terminals

The following examples illustrate the use of BSCA switched
lines with requesting terminals. Assume you have the
following switched point-to-point network:

ID1 (TERM1) | ID1
CCP — 1D2 Exchange ID’s
User program ID2 (TERM 2)] 1D3
ID3 (TERM 3) | TERM1
TERM2 g Symbolic terminal names
TERM3

Common Carrier
(telephone)

Exchange
Example 1:
ID1 1. ID2 (TERMZ2) calls, makes connection, signs on,
makes a program request, and communicates with
Pr ID
rogram 2 program under the name TERM2,
ID3
2. Program issues Release Terminal operation, keeping
the line. ID2 is signed off automatically.
ID1
Program ID2 3. Program now has control of the line, can call or ac-
D3 cept calls from ID1, ID2, or ID3 in data mode.
Note: No terminals are allowed to call in and sign on
while the line is in control of the application program.
Example 2: D1 1. 1D2 (TERM2) calls, makes connection, signs on,
makes a program request, and communicates with
Program ID2 program under the name TERM2,
ID3 .
2. Program reaches end of job without issuing a
Release Terminal operation.
1D1
CCP 1D2 3. TERM2 is still connected and can enter other
D3 commands and program requests.
4, TERM2 signs off specifying DROP. The connection
ID1 to TERM2 is broken.
ccp ID2 .
D3 5. ID1, ID2, and ID3 can call and sign on.

3-18

Program-Selected Terminals

The following examples illustrate the use of BSCA switched
lines with program-selected terminals. Assume, again, a
switched point-to-point network.

Example 1 '
P D1 1. Program issues Invite Input operations to ID1, D2,
Program 1D2 and 1D3.
ID3 2 ID3 calls and communicates with program as
TERMS3 (Accept Input operation code).
ID1 3. Program issues Release Terminal to TERM3 with
CGP ID2 or without keeping the line and issues another
D3 Accept Input (the line is disconnected).
4, ID1 and I1D2 can call and communicate with the
program; D3 cannot, since it no longer has an
Invite Input.
Example 2:
D1 1. Program issues Invite Input operations to ID1, 1D2,
Program ID2 and 1D3.
ID3 2. ID3 calls and communicates with program as
TERMS3 (Accept Input operation code).
D1 .3 Program goes to end of job without releasing
CcCk ID2 terminals (programs should issue Stop Invite
ID3 Inputs to terminals with outstanding Invite
Inputs before going to end of job).
4, All Invite Inputs are cancelled; terminals are
available to other programs.
Example 3:
D1 1. Program calls |D2 and communicates with 1D2 as
Program ID2 TERM2.
ID3 2. Program issues Release Terminal to TERM2 with
or without keeping the line (the line is disconnected).
ID1 3. Program can call ID1, ID2, or ID3 and issue
ccpP ID2

Invite Inputs. CCP either automatically calls
D3 the correct data set number (auto call) or
provides the correct data set and line number to
the system operator (manual call).

Communications Programming Topics 3-19

MLTA Switched Line

On MLTA switched lines, there is only one terminal per
line. Both the line and the terminal are allocated to the
program by the CCP. The examples of using a switched
line with command terminals and data terminals given
under BSCA Switched Line apply also to MLTA switched
lines, except that:

® All terminals that call on an MLTA switched line have.
the same symbolic terminal name; they cannot be
uniquely distinguished from each other.

® MLTA terminals on switched lines do not have exchange
identification characters associated with them.
Switched Line Disconnect Considerations

The CCP disconnects a terminal on a switched line in any
of the following circumstances:

® User program issues a Release Terminal operation speci-
fying the keep-line modifier.

® User program issues a Release Terminal operation without

the keep-line modifier to a data terminal (see index entry).

3-20

® User program issues a Release Terminal operation to a
command terminal that is not the requesting terminal.

® The user program terminates While the line is being used
with a program-selected terminal.

® The system operator issues a VARY OFFLINE command
to a terminal connected to the switched line.

® A requesting terminal on the line signs off (/OFF) and
the DROP option is in effect.

The only Release Terminal operation for which the terminal
is not disconnected is a Release Terminal operation to the
requesting terminal without the keep-line modifier. In this
case, the requesting terminal is still in command mode and
can continue to enter commands to the CCP.

When a command terminal is connected on a switched line,
the CCP attempts to maintain the terminal connection as
long as possible. After a program has terminated and the
CCP has sent the “‘ended” or “released’” message (which
can optionally be suppressed by specifying ENDMSG-NO
on the // PROGRAM assignment statement), the CCP
attempts to receive from the terminal for an amount of
time that is based on the error retry count specified by the
NRETRY parameter on the // BSCALINE assignment
statement.

To request CCP communication services, you must write
your COBOL programs using the standard application
program interface described in Chapter 2. This standard
interface is composed of the following elements:

® Communications Service Subroutine
® Parameter List
® Record Area

Note: This chapter assumes that you are familiar with the
COBOL language. For more information on writing and
executing COBOL programs, see the publications /BM
System/3 Subset American National Standard COBOL,
GC28-6452, and /BM System/3 Subset American National
Standard COBOL Compiler and Library Programmer’s
Guide, GC28-6459.

COBOL USE OF THE STANDARD INTERFACE

To use the standard application program interface to the
CCP, the COBOL application program must:

1. Define the record area and the parameter list (see
Defining the Record Area and Parameter List).

2. Set the contents of the parameter list and the record
area (see Setting the Contents of the Parameter List
and Record Area).

3. Call the communications service subroutine, identi-
fying the program’s parameter list and record area, to
initiate the operation (see Calling the Communications
Service Subroutine).

4, Examine information returned by the CCP in the

parameter list and record area and, for input operations,

process the input data (see Examining Returned In-
formation). :

DEFINING THE RECORD AREA AND PARAMETER LIST

Before your COBOL program can perform communications
operations, you must define one or more record areas and
parameter lists.

Chapter 4: COBOL

Record Area

The number of record areas you must define depends upon
the logic of your program. You need not always define
separate record areas for input data and output data, or for
operations with different terminals.

Each record area defined must be large enough to contain
either the program name (if a chained task), or the terminal
name, and the maximum length of data to be either re-
ceived as input in the record area or to be transmitted as
output from the record area. Define the record areas in
the WORKING-STORAGE SECTION of the DATA
DIVISION of your COBOL program.

The name field portion of the record area must be specified
as an alphameric character field. In the following example,
TERM-NAME is the name of a symbolic terminal name
field that has been initialized to blanks:

05 TERM-NAME PIC X(6) VALUE SPACES.

Define the data portion of the record area as required by
your formats. Unless you are using a BSCA line with the
Text Transparency feature (see index entry Terminal
Attribute), you should define all elementary data items as
one of the following types:

® Alphanumeric
® Alphabetic (PIC A).

® Numeric DISPLAY (PIC9...or S9...with USAGE as
DISPLAY or omitted).

® Numeric zoned-decimal (PIC 9 or §9 with USAGE speci-
fied as COMP or COMPUTATIONAL).

Do not define numeric data fields of the record area with a
USAGE specified as COMPUTATIONAL-3, COMP-3,
COMPUTATIONAL-4, or COMP-4 unless data is being trans-
ferred over a BSCA line using Text Transparency.

COBOL 41

Many COBOL application programs require that the same
record areas be used for records with different formats. By
defining each record area at the 01 level, you can redefine
the record area with complete flexibility, using REDEFINES
clause. (If you define record areas at another level, you
must ensure that lengths are identical on any redefinition.)
Because you must define the record area in the WORKING-
STORAGE SECTION of the DATA DIVISION, rather than
the FILE SECTION, you can assign a value to fields in the
record area when you initially define the record area (though
only in the original definition, when using the REDEFINES
clause).

Example: Figure 4-1 shows how to define a record area
whose record may be in either of two formats;
REC-AREA-A-2 redefines REC-AREA-A-1. The symbolic
terminal name field is initialized to blanks.

[¢115) ! ! | |
ofs| | X
ol7 X
o | REFORD AREA| |-I-| REICORD FIORMAT
019 \
o] [y ' | REICI-AREEA|-Al-LL.
Jaa ‘25 | TERM-NAME-A| PITIC] (X[(6D| VIALVE] SIPAICES|.
] Q5] [IRECKA-TIY[PIE[PITICI Al '
1B] 95| [ICulsTl-INo| IPIC! 4/(H)I.
Tl £ ps ClUISTT~NJAME| [PITIC X|(55D].
18 -
1| D E[[RIEICORRD AREA! |--| RE[CloRD| [F[0 2
17)6 !
1| [| @1 [REIC/-AREA-A[-2] RIEDEF] NES| REEC|-AREA-A-L.
bl 1] g5 | [FIILLER] PITC! XI([7D.
2ol 1] I TIRANISACI-ICILASIS| [PIIC [X.
| 105 | [TRANSAIC-|QTlY! [PIC| 19199] [coMB.
; 5 | TRANSAC-AMT PIClS49/9v94] €
| |
1 3.4 evi& iu 16 _ 20 23 8 40 44 48

Figure 4-1. Defining a Record Area

4.2

Parameter List

You must also define one or more parameter lists in the
WORKING-STORAGE SECTION of your program’s
DATA DIVISION (see index entry parameter list). The
first four fields of the parameter list should be defined as
two-byte binary (PIC S9{4), USAGE specified as
COMPUTATIONAL-4 or COMP-4) fields. Because the
parameter list is defined in the WORKING-STORAGE
SECTION of DATA DIVISION rather than the FILE

SECTION, you can also specify initial values for these fields.

The fields are, in the sequence they must be defined in the
parameter list:

. Return code field.

2. Operation code and modifier field.

3. Field used jointly for output data length, actual
input data length, count of outstanding Invite Inputs,
and attributes identifier.

4, Maximum input data length field.

These fields are the only fields you reference in your appli-

cation program. The remaining four fields of the parameter

list are not referenced directly by your COBOL program.
However, they must be defined because space must be

reserved for them. You can define them simply by specifying

FILLER with a PICTURE of X(8). Your program should
never initialize or set these fields.

Example: Figure 4-2 shows how to define a parameter list
in a COBOL program. The operation field is initialized to
2 for a PUT operation. The output data length field is
initialized to 48. This value might be the length of the first

output message. The maximum input data length is initialized

to 60. This value might be the total length of the data
portion of a record area used with this parameter list.

Return Code Values

The CCP ignores the contents of the return code field of
the parameter list at the beginning of a communications
operation. At the completion of each operation, the CCP
places a binary value in this field indicating the status of
the operation. This value indicates:

® The operation completed normally (value of zero) for
nonchained operations; value of 14 for task chained
operations)

® The operation resulted in an 1/0 error (negative value)

® The operation resulted in an exceptional condition
(positive value)

The CCP places this value in the return code field of the
parameter list before returning to the COBOL program. The
COBOL program must check the return code value upon the
completion of each operation. Specific return code values
and their meanings are given in Appendix E. Return Codes.

Operation Code Values

For each communications operation, you must set the
operation code field of a parameter list to a value which
indicates the specific operation being requested. You must
set this value within your COBOL program. This field can
be set by initializing the field in the definition of the
parameter list or by moving an appropriate value into the
operation code field during execution (see Setting Fields in
the Parameter List later in this chapter).

The CCP does not change this field during the communica-
tions operation; the contents of the field are the same after
completion of the operation as they were at the beginning
of the operation. See Chapter 2: Standard Application
Program Interface to the CCP for descriptions of the valid
operation. Appendix D: Operation Codes summarizes the
operation code values.

CoOBOL 4-3

ols| || L !
o7 | B K
olg § PARAMETER [LIST| |-~ [INITILIALIZED| [FOR Al [*PlUT| OPERATLON
g1a | |
o] 1y @k | IPARM-ILIST]-|L]. |
il 5 | IPILL-RITIC| [PIIC] [SYICHD) ICOMP-H],
12l @5 | PLIL-loPlc] [PILC| [SI9[CHD| ICOMPI-/| IVIALVE] 2].
4NN 5 | [PILLI-OUIL] [PIC| [SAIC4D | (COMP-4| VALUE| 43
el [1] 1 '@st [[PLL-EFL] [REDEFINE[S! PILL-OUL] PTIC| [S9ICHD | ICOMPI-1Y].
]] @5 | IPILL-ATZ] REDEFINES] [PLIL-oulL] IPTIC| 59/¢[4D | [CloMp|-H].
el [1[5 [PILUFIINL] PIC! S19/(4D[COMPI-H| VALVE| b
g ?5 FILILER PIC X|(8D.
114]
ikl | |
2| [|
L]
o
-
I |
1 3.4 67 8 12 16 20 24 28 32 40 44 48 52 [60

Figure 4-2. Defining a Parameter List

SETTING THE CONTENTS OF THE PARAMETER LIST
AND RECORD AREA

You must set the contents of the following areas before
performing a communications operation in COBOL.:

1.

44

Parameter list fields, if different from the last
operation.

Symbolic terminal name in the first six positions of
the record area. (This can be omitted if a terminal
name is not required for the operation or if the
name is the same as in the previous operation.)

Output data in the data portion of the record area
if the operation is an output operation.

Setting Fields in the Parameter List

You reference four parameter fields within your COBOL
program:

® Return Code field.
® Operation Code field.

® Field used jointly for output length, effective input length,
count of outstanding Invite Inputs, and attributes identifier.

® Maximum input length field.

You need set only the operation code and the Maximum Input
Length field for input operations. For output operations, you
must set the operation code and the Qutput Length field.

For an Acquire Terminal operation, you must set the opera-
tion code and, if this Acquire Terminal also sets the terminal
attributes, the Attributes ldentifier field. You need never set
the return code field; it is used only by the CCP to return
information about the operation to your COBOL program.

Operation Code

Whenever a communications operation is issued, this field
must contain a value indicating the operation to be performed.
You can set this field when you define it in the WORKING-
STORAGE SECTION of the DATA DIVISION by specifying
a VALUE clause:

05 PL-OPC PIC S9(4) COMP-4 VALUE 4.

You can also set this field with a MOVE statement in the
PROCEDURE DIVISION of your COBOL program. You
can move either a numeric literal or a named numeric value
into the operation code field of a parameter list you defined.
In the following example, the numeric literal 4 {Accept
Input operation) is moved into the operation code field

PL-OPC:
SEQUENCE E: A iB COBOL STATEMENT
(1PAGE:: SERAL ?! 3 113 5 70 73 78 7 % 0 7 3 57 56 5 [
oi]] kS
o2 | K
os] | \DIA[TIA; DT N1ISITON |
oal | K |
os| | R
ob | | WORKING-[STORAGE] [SECTION.
o7 ||) |
o] || E {
o[[| oI, IPARM-~ILIIST
JaRENNBAE
i | ! ,
el ps PILI-lolpc] PIL|C] ISICH])| ICOMPI- 1|
3] | !
AREEREN
‘e[| PROCEDURE DINTISTO
6] | R
12l B
Jaun ; OIVE| | Mol PILI- 0PC
o] ||
2o || |
! I

COBOL 45

The following example sets the Operation Code field by
moving the named numeric field, ACPTIN, into it. ACPTIN
is defined with the value 4.

The CCP never modifies the value in the Operation Code
field. You do not need to reset the field if the operation
to be performed is the same as the last operation using this
parameter list.

For more information on the valid operations, see the
chapter Standard Application Interface to the CCP.

Appendix D: Operation Codes summarizes the operations
and operation code values.

Output Length/Attributes Identifier/Count of Outstanding
Invite Inputs/Effective Input Length

The third field of the parameter list can contain one of four
different values depending on the type of operation:

® Output Length
® Attributes Identifier
® Count of Qutstanding Invite Inputs

® Effective Input Length

46

_SeQueNcE] A is COBOL STATEMENT
1 3 401 6 7?8 iﬂ[S 16 2 24 28 40 44 F___r__
o2| | DIATA| D1\§IISION
O3] || | !
o4] | WIORKING-[STORIAIGE| ISEC[TILION.
os| Iy [177, ACPTIIN PTICI 15/ [ComP~[4 [VALIVE 4
06
ARTEERAREEN
ok | | | 10l PARM-ILIIST
o] | | 4
o [T T8 PIL-0p(C PICT SAICHD [COMPL-H
i 1)
T
| T PROCEDURE DINISToN
T4 q
15 JI I <
J3NN IMovns CPPTIIN| [TO] PILI-0P
107
18 % |
o] | |
20| || |
' T

The first two values you must set; the third and fourth are
returned values set by the CCP for certain operations.

You can set this field when you define it in the
WORKING-STORAGE SECTION of the DATA DIVISION
by means of a VALUE clause, or in the PROCEDURE
DIVISION by specifying a MOVE statement, just as you
set the operation code field. You can move either a
numeric literal or a named numeric value into the field.

Output Length: For task chaining and output operations,
you must place into this field the length of the data you
wish to write from the record area in your program. This
length does not include the six positions for the program
name or the symbolic terminal name. The output opera-
tions you must set a data length for are:

® Put
® Put-No-Wait
® Put-Then-Get

® Chain Task Request

You must reset this value if the output data length differs
from the last operation using this parameter list or if the
field was modified by the CCP. This field is modified by
the CCP for the following operations:

® Get

® Put-Then-Get

® Accept Input

® Get Terminal Attributes
® Acquire Terminal

® Release Terminal

Attributes Identifier: |f your operation code specifies an
Acquire Terminal operation which sets the attributes of
the terminal to be acquired, you must place into this field
the identifier of the attributes set. This numeric value
must correspond to the number you assigned to the desired
set of attributes in an Assignment run.

Effective Input Length: You do not need to set this

value. For each input operation, the CCP places the actual
length of the input data passed to your COBOL program in
this field before it returns control to your program. This
is the Iéngth of the data only, it does not include the
length of the terminal name.

Count of Qutstanding Invite Inputs: On a Release Terminal

operation and on any input operation that results in a 08

return code {terminal entered data mode escape and issued a

/RELEASE command), this field is set by the CCP to the
number of Invite Input operations still outstanding. If this
is a multiple requesting terminal (MRT) program, this
number includes not only the Invite Inputs you have issued

that have not yet been satisfied by an Accept Input operation,

but also the number of additional terminals that have re-
quested your program but are not yet being served by your
program.

Maximum Input Data Length

For each operation involving input data, you must enter a
numeric value into the fourth field of the parameter list,
indicating the maximum amount of input data you expect
to receive. This value must be greater than zero and no

larger than the size of the data portion of the record area
with which this parameter list is used. The value does not
include the six positions at the beginning of the record area
for the name field. The input operations for which you
must place a value in this field are:

o Get

® |nvite Input

® Accept Input

® Put-Then-Get

® Get Terminal Attributes

® Stop Invite Input (in case input cannot be stopped)

You can set the value of this field either when you define
it in the WORKING-STORAGE SECTION of the DATA
DIVISION or by means of a MOVE statement in the
PROCEDURE DIVISION. The CCP never modifies the
value in this field. Therefore, you do not need to reset it
unless the maximum input length for this operation is
different from the value set in this field the last time this
parameter list was used. However, if this parameter list

is used with more than one record area, you may need to
alter this value during execution of your COBOL program.

Example of Setting Fields in the Parameter List

Figure 4-3 shows how you can set the operation, output
data length, and maximum input data length fields of a
parameter list. Each operation code value is assigned a
name. These names are then used on a MOVE statement
that moves the named numeric values into the operation
field of the parameter list. The output data length and
maximum input data length fields are set by moving
literals into them.

Setting the Record Area

The record area consists of a six-position name field and a
data area. For an operation with a terminal, except for
Accept Input and Shutdown Inquiry operations, you must
place the symbolic name of the terminal to be involved

with the operation in the name field. For a Chain Task
Request, you must place the name of the requested program
in the name field. You must also provide the data to be
transmitted in the data portion of the record area when an
output operation is to be performed.

COBOL 4-7

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS [PAGE OF
PROGRAM GRAPHIC CARD FORM # *
PROGRAMMER [DATE PUNCH
(:2‘;”2?;1 %i A is COBUL STATEMENT } |DENT|F|CAT|0|~|1J
1 3la 6{7[8 i 18 20 24 28 36 40 44 a8 52 5 60 Lz 72, 76
o] | DIATA; DIN[TISTON. T) i
CANRNAER ¢ T !
os] | o i j I
ol T : i l; : ! 1
o | | WORKITNG~[5T ORAGE] ISEICTITON. | |, | !
o[[[17, [ACPITITIN PIIC] ISAICHD] COMP -4 NALIVE] H[.| | 1]\ ! I !
oy Ir :7_[; PUTNWT PIC S (wlP) C‘OMH';L‘ VAILUIE 5"[.) Assign names to operation !
a8 b 71 pUT ‘MT PIC 5‘ (I‘I) COMH'H VA LIUE 0 , code values that can later be I
901 1y 007, INVINP PICT 591D COMP}-H \ALLIVE] F,?- 1 used in MOVE statements to [
Wy [ﬁUTGET IC! 1994 COMP'—H VAILIVE 3. | \ set the operation field of the [
QL L T7 RETIRM PTICE 1S9IC4D | ICOMP- 4| |VALIVE] [11@]. | |)] | | parameter tist. !
el 7‘4 STPINV Pg[C 5[41(H) . ICOMP-Y VAILIUE] [(l@}2l5]. [
NS '
1 | !] [
i 1 @l PARM-|LIST]. !
el [IT@5 PIL~RTc PlIlCl [s9l(HD! ICoMP|-Y!.[e Return code field |
12N PIL-0OPlcl IPITIC 1591¢HD COMP NTN Operation code fleld. [
1 | 0)5 PIL[-iouiT IPITIC 941D C()Mp - | |e1—T Output data length field - |
1] |y @5 PIL- TN, PIIC: SHI(4D)| ICOMP|-H|. 8T Maximum input data length field |
2p| [:015 RILILER PIC X(. . Required work area ;
| < IR .
!] / HENNERRRRDRRIRRNRREN :
SEQUENCE %i A iB COBOL STATEMENT | iIDENTIFICATION
(PAGE; -StEmA‘s- o[s) iF2 6 70 74 78 -) 6 - M th d . I w [:Z) 72I 75]
1] | PROCEDURET DINIISITION [T [T LT L for the Accept tnput operation [
gi i j HOVE qA CPITIIN TTol TPIL= inc .//‘:- into the operation field. i
94 i ‘ : OVE| |18 [TIO PIL]I NIL L. - | Move a numeric literal into I
g 2 ; | ; ol the input length field. }
| | "
o7 %MOVE g 10| PILi- OlUT]. Move a numeric literal into !
i | | S | the output length field. l
ol [!) f [
ol MONE| P UTIMWT_[T]0| PIL|-10P|C!. e - Reset the operation to Put. [
IR :movs Yy [Tol [PIL-loluiT] L= U et 0 34 }
12 | h (=~ Heset the output length to . !
13 !) ; t
1la il f OVIEl ITINVIIN Pl [Ti0 LI-l0plC.. e Reset the operation to |
tls i | IOV % TO PL'IN . ° Invite Input.]
- f -y f
: (; !I : } T Reset the input length field T
. f T to 8 T
] 1y I] ! |
ol |7 T T TsToP| RluN i

Figure 4-3. Setting Fields in the Parameter List

48

Name Field

For an operation involving a terminal, the terminal name
you place in a record area must have been assigned to your
program. You may also identify the requesting terminal by
using six blanks as the terminal name if your program is
not a multiple requesting terminal (MR T) program (see
index entry). See Chapter 2: Standard Application Pro-
gram Interface to the CCP for more information on the
valid terminal names.

For a Chain Task Request operation, you must provide the
name of the program to be loaded in the name field.

You may set the name when you define the record area in
the WORKING-STORAGE SECTION of the DATA
DIVISION, or by means of a MOVE statement in the
PROCEDURE DIVISION. You do not need to reset the
terminal name if the terminal to be used is the same that
was named the last time the record area was used, unless
the name was modified by CCP. CCP modifies the name
field of the record area in the following situations:

® Upon completion of an Accept Input operation, CCP
sets the name field to the name of the program or ter-
minal whose data is placed in the record area.

® Upon completion of any operation using the name
field that was set to blanks, CCP sets the name field to
the name of the requesting program or terminal.

Output Data Area

If the operation to be performed is an output operation,
you must provide the data to be transmitted in the data
portion of the record area. You do not need to provide
data in the record area for operations other than output
operations because either the data area is not used or data
is provided to your program by CCP. Data provided to
your program by CCP overlays the information previously
in the data portion of the data area. For example, the
input data transmitted to your program by the Get part
of the Put-Then-Get operation overlays the output data
transmitted from your program by the Put part of the
operation, See the Chapter 2: Standard Application
Program Interface to the CCP for more information on
transferring data.

Note: If the message to be sent is shorter than the total
length of the data area, you need not clear the excess
area to blanks.

Example of Setting the Record Area

Figure 4-4 shows how you can define and set the record

area when it is used for both input and output operations.
Assume the CCP has set the terminal name and data area as
the result of an Accept Input operation. The COBOL program
then resets the data area for an output operation by moving
the message “TRY AGAIN INV DATA" to the data portion
of the record area. This message overlays the input data
transmitted to the record area by the Accept Input operation.
Later in the program, the terminal name is reset to a named
alphanumeric value.

CALLING THE COMMUNICATIONS SERVICE
SUBROUTINE

Since COBOL does not include special statement types

for terminal 1/0 operations and other communications
services, the CCP provides a communications service sub-
routine, ‘CCPCI0O,’ that converts the COBOL program’s
communications requests into a standard request to the
CCP communication facilities. The functions performed by
CCPCIO for the COBOL program are:

® | oads index register 2 with the address of the program’s
parameter list.

® Places the address of the record area into the program’s
parameter list.

® Branches to the CCP.

The CCPCIO subroutine must be linkage edited with the
COBOL application program. See Chapter 9. Program
Preparation.

After you have set the required parameter list fields and
the terminal name in the record area, and have prepared
any output data, you are ready to request the CCP to
perform the operation specified in the parameter list.
You make this request by issuing a CALL statement
specifying ‘CCPCIO’. The names of your parameter list
and record area must be passed as arguments to the sub-
routine.

The format of the CALL statement is as follows:

CALL 'CCPCIO’ USING parameter-list-name, record-area-name.

coBOL 49

COBOL Coding Form
SYSTEM PUNCHING INSTRUCTIONS PAGE OF
PROGRAM) GRAPHIC CARD FORM = *
PROGRAMMER TDATE PUNCH N
SEQUENCE %i" iB COBOL STATEMENT | IDENTIFICATION
2?;\053) SERIAL ?! . {u " 7 =5 =5 -l & 7T aa - a5 57 56 50 & . -,2] 76 K
T T OATA, DINTSTON. 1 1] T 0 | T
02 1 | (: B] i | T
o3 |] [N : I
SC 8 rARe RunE AN RO RERAN] By AR T |
L{op] | WORKIUNG-STIORAGE] [SECTIION . ; | | }
L9 | K ; | s | | . 1 : : ! +
o e L] | ! | t !
t T i y A
T ol I | INJP UT'D U'T PUT- REA . ; [Defining the record area. l
S I gs TIERIM- N'#AMLE - 10 |PIC X (69 . Terminal Name !
ey %A A- IN 1, 7 N |
| o | f 1 TIA-IREC| PIIC X(8‘)‘ . :1 " Data Area defined for input |
UL LI IRTLILER [PITIC] (X6 . J] |] !
Bl ‘o5, TiA-louT REDEIFINES. [DAITA-TIN. Data Area redefined for output !
JINRENEE ATA-ICHAR P Iic] X34 }
H T l N . i i M
s i | ! N | | f
1 iPROC:EDU E. DIVIISILION , i %
8 | |)
BT 1
2l i I {" N !
cil ? ! 1 !
SEQUENCE %iA ia COBOL STATEMENT | IDEnTIFICATION
(npAGEa‘ fEmAGL (7)] 8 iz 5 0 L) 7w/ 32 36 20, 4 — a8 52 5i 0 [Z] (] 72l 78
oy :l b 1] 1 ,HIJHLHHHIIIHH.'H
02| || | L
3 H T) 7 - Move message to record area to
3: E ‘\ | OVE| |'[TIRY Af‘:AI Nl (TINN DATA TQ DATIA- OU[T]. be transmitted 85 output,
ols i i * ' -ttt
| o I 'MOV £l [N TERMIA o TIEIRM - NAME-TI0 I Reset terminal name for next operation,]
o]] X ! +
RICINNARER : !
o[T . !
bl] !) | I
JaRE f Pl T '
IININEEN T T !
3 | l ‘ H i
T ! 3 Bl I
EID3RE ! ' : ; T
ID3EESEEEE ! - I
Ly I| I ! i Ir | L |
T !
10N SuEEARERS A RN NRRRREE !
ol Lyl | !
co 1D ! L o ! . . X

Figure 4-4. Setting the Record Area

410

The CALL statement appears in the PROCEDURE
DIVISION of your COBOL program.

In the following example, the name of the parameter list
is PARM-LIST. The name of the record area is INPUT-
OUTPUT-AREA.

CALL 'CCPCIQ’ USING PARM-LIST, INPUT-OUTPUT-AREA.

Control returns to your COBOL program at the statement
immediately following the CALL statement. When the
return occurs, the following actions have already taken
place:

® For output operations, any output data has been
accepted by the CCP and, depending upon the output
operation specified, has been received by the terminal.
In any case, the record area is now free for you to use
again.

® For input operations, any input data which was to be
received in the record area is now in the record area,
unless ari error condition or one of several exception
conditions occurred.

® For Accept Input operations, the name of the program
or the symbolic terminal name of the terminal that pro-
vided the data in the record area has been set in the
first six positions of the record area.

® For successful task chain operations, the requested pro-
gram is placed on the program request input queue when
control is returned to the requesting program.

® For operations that validly specified a blank terminal
name, the symbolic terminal name of the requesting
terminal has been set in the first six positions of the
record area.

® For all operations, the return code field in your parameter
list has been set indicating the result of the operation.

® For input operations, the actual input data length has
been set in your parameter list.

® For Release Terminal operations or for input operations
where the terminal has released itself from the program,
the count of outstanding Invite Input operations has
been set in your parameter list.

EXAMINING RETURNED INFORMATION

After control has returned to your COBOL program from
the communications service subroutine, you should examine
returned information supplied by the CCP, including one

or more of the following:

® The return code

® The symbolic terminal name (if it was set by the CCP)
or the name of the program that issued the Chain Task
Request operation

® The count of outstanding Invite Inputs, if a Release
Terminal operation was performed, or if the return
code from an input operation indicates the terminal
was released

® The actual input data length, if an input operation was
successfully performed

® The input data, if an input operation was performed

Return Code

The CCP always provides a return code after an operation.
You should never assume that an operation is successful;
you should always check the return code. In certain cases,
you will find that no data transfer has occurred. See

_Appendix E for the meanings of specific return codes and

see Programming Examples, later in this chapter, for
examples of checking return codes.

You may wish to perform certain operations in your COBOL
program depending upon the return code value set by the
CCP. The example in Figure 4-5 assumes that you want to
branch to one of several procedure names depending upon
the value of the return code. The program examines the
return code value for the following conditions:

® The operation was successful and no exceptions occurred

® An EOT was received on a successful operation, or on
an operation in which data was truncated.

® Some other exception condition occurred.
® An |/0 error occurred.

Assume that all data names have been defined earlier in
this program. Note the use of comments in the example.

coBOL 4-11

(i

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS [PAGE OF
PROGRAM T - | GRaPHIC - B CARD FORM # *
PROGRAMMER l DATE [euncn B
SEQUENCE gIA iB o COBOL STATEMENT | IDENTIF|CATIONJ
(upAGEal iERlAls"? 5 17 —6 20 74 78 T 36 a0 Py a8) 56 50]) 721 76
Tl [y | I L l I !
02 Q,AS%UME REQUIRED [ONTRIoL| FTELIDS| BIET] -~] Now| [RE@UESTT THE O EIRATTON |
0j3 i IR - ; !
S [T ORI [[ccpietb]”. USTNG, [PARM-LISIT-L, | REC-AREA-A-[L. !
ofs | ‘ L] - |
op| M EXAMIINE[[RETIURN| [CODE| [FIORl SUCCIEISSIFIUIL] 0P ERATION| | . I %
a7 [i . H !
oo || [T IlF PILL-RTC ZERO, | 160 [T0_NORMAL-l0PER|ATION.. | :
[i . , N J
K EXAMINE [THE RETIURN. ICODE| FOR [1/0] ERROR i ‘I
1 Ll il | u
LY IR PILI-RITC NEGATLVE, G0, 710/ [[]-I0[-EIRRIOR!- OP ERATIION. | | g
13 il
1R Dlg 1"%9‘5 BETWEEN| [EO'T/-RECIEINED AND| |oTHEIR| [EXCIEP[TITONIS }
[; i ;) | N
e[y 16o OTHER~EXCEPTION, . [EIO[T- RIEICE [V[EDL| EO[T|-REECIELVED !
iwr | zli EPENDING ON| :PILL- RTIC|. :
'8 ' ; L
18 ﬁ,Foq VALIVE BREATER THAN [+3, CPrTROL FAILILIS| HERE | l
200 ! ; . : | }
4 \OTHERHEXICEPTION.| . | [[1] ; ; H
Figure 4-5. Examining Return Code Values
E COBOL Coding Form
SYSTEM PUNCHING INSTRUCTIONS PAGE OF
PROGRAM B GRAPHIC CARD FORM # -
PROGRAMMER] DATE PUNCH
(:\EQUENCE %{ A iB - COBOL STATEMENT l IDENTIFICAT|OEJ
1 GEgl ﬁERlAEL L7) 8 !le 13 20 7 28 32 36 a0 a3 a8 57 56 60 [:2] €EI 72 76
T 1\ DATA DIVl []] s J | I A
o 1] | N ! ; ! ; !
o3| [R : : i ‘ | I
o] | WORKINGH-{STORAGE, ISECTION.| 1., ‘ ; ' !
ol [71 1]« i i RN | I !
o I L Ll i ! l
o7 11 | el RECI-IAREA- AL LT !
ol 1y 11,05 TERM-NAME-A PIC XC6). }
i 113 |
INRE rJ; 1! ! I i . |
T T 0L SAVED|-IINFORMATITON. | ! !
1200 105/ [SIAV-EINTIRY| oiclvR]s: |5 TIME[S| [INDEXIED| Bl SlAN|-[T|X]. !
B ; 10| [S|AV- TIERM-INAME| PITICl XICi6D]. }
1;4 : f T !
e PROCFD%RE DIVISTON.. . {
117 :
NINENNARARY]
ol [L[IET] [SIAN-[Tx] Mo, L] | || !
2p| | [1]¢ ! [
| M ? .
([[[MOVE| TIERM-NAME-A| O [SAV|-[TIERM- AMF (Islalvi-IX ;
L ,,,l 1% | : 1

Figure 4-6. Saving the Symbolic Terminal Name

4-12

Examining a Returned Name

On certain operations, the CCP returns the symbolic terminal
name to your program’s record area. You may need to
examine this name.

For example, you may need to examine the name of the
terminal that provided the input data. You can then com-
pare the terminal name in the record area with a saved
terminal name to associate new data with data previously
received from this terminal. You can save a terminal name
for later comparison by specifying the terminal name field
of the record area in a MOVE statement. The field to which
the terminal name is moved must be defined with a
PICTURE of X(6).

The example in Figure 4-6 saves the terminal name the
CCP sets in the name field of the record area, TERM-
NAME-A, by moving it to the field SAV-TERM-NAME.
SAV-TERM-NAME is the name field in a table of saved
values.

If a program can be requested from both a terminal and
another program using the Chain Task Request operation,
you may want to determine how the program was re-
quested. This can be accomplished by checking for a 14
return code, indicating a Chain Task Request operation.
This information is useful if a program communicates with
the requestor since your program cannot communicate
with a chain task requesting program.

Referencing Saved Information

In some of your COBOL programs, you may need to save the
information entered on the terminals and reference it later

in your program. For example, if your program receives
data from several different terminals, you may need to
associate new data entered on a terminal with data previously
entered on the same terminal. To do this, you must save

the significant data received from every terminal you are
using and identify that saved data with the name of the
terminal from which it was received. You can then associate
new data with the saved data by comparing the terminal
name set by the CCP in the record area with the saved
terminal names.

One way you can save information received from each
terminal is to define a table of group items. Specify the
number of terminals from which information must be

saved as the integer in the group item’s OCCURS clause.
For example, if information must be saved from five termi-
nals, specify that the group item OCCURS 5 TIMES. Each
group item consists of a set of elementary items, one of
which is the terminal name. Upon completion of an Accept

Input operation, you can then search the table of saved
information until you find the saved terminal name that
corresponds to the name of the terminal which just trans-
mitted data to your program. Once you have found the
table entry you are searching for, you can address any
field of the save information by indexing that field name
with the index name.

Figure 4-7 shows how to set up a table for saved information
and reference the saved information in your COBOL program.
By searching the table for the saved terminal names that
corresponds to the terminal name in the record area, you

can associate the new data with the data that was saved.

Effective Input Data Length

If the communications service subroutine requested an
operation which transferred data to your program (Get,
Accept Input, Get Attributes, Put-Then-Get, or Stop Invite
Input), the CCP also places the effective length of the

input data into the parameter list. Because this is the length
of the data that was actually received by your program, you
may wish to use this length to control subscripted or indexed
operations in your program. For example, you may need to
scan the input data for a specific character or string of
characters. To do this you must know the length of the
input data you must scan.

Count of Outstanding Invite Inputs

On a Release Terminal operation or on an input operation
where the return code indicates that the terminal released
itself from your program, the count of outstanding Invite
Input operations is returned to your program. You may use
this number to determine whether your program has any
further terminals to serve or whether it can go to end of job.

Input Data

If the operation requested by your program is an input
operation that transfers data, the CCP places the input data
received by your program in the seventh and succeeding
positions of your record area before it returns control to
your COBOL program. Any excess positions, beyond the
end of the actual data received, are filled with blanks by
the CCP, up to the maximum input length you specified
for the operation. The data is then available for you to

use in your program.

CcOBOL 4-13

COBOL Coding Form
SYSTEM PUNCHING INSTRUCTIONS PAGE OF
PROGRAM GRAPHIC CARD FORM = N
PROGRAMMER] DATE PUNCH
SEQUENCE giA iB COBOL STATEMENT | ipenTiFicaTION
(PAGEISERIALIS t3 % 70 7 1 I 5 1) L3 a5 57 58 5] 2} 33 A 78
o)1 : i ‘ ! I
of2 iDATAi(DIVISION L | }
03 | 1 +
CONHEER SN NEEREES ; ! :
Js Monxigm@smnm{g SECTILON.| . ' []] | !
ol || ! ‘
o[| y f? !
oc| [T gL) RECIORD-REA-JA L |
oml [.as TIERM-INAME]- Al PITIC| X[(6) !
] P5| RIEC]-TIYPPE-1Al PIlcl .| .] Tl
il i
ETTT | ;
1 i f
Tl b4 ONE{ SIET] {OlF |[FITIE[LIDIS| [FIOR] EACH] |o[F| [5] [TIERMTI|NAL S {
1y)
e i g1l | 1SllVIED-|INFlORMATIIION. Defines a table of
Wil '@s] | I9ANF [EINTRY| [0ICIClUIRS| [5| TITMEIS| |TINDIEIXIED] [BIY] [SANI-TX. saved values for data
el || ! ig SIAwI- ITEEIR -!NAM{E pIic] XICleD]. received from five
P [BEn SAIVI~Cluls[T]-N[o] |PTIC 94D . | | \ different terminals. |
200 ; } l{g gAV'CUST‘NA JE PIC !)D((S.S The groupfi(tse;n,leV-ENTRY,]
X 1 AN -|LIAISITI-RIEICI- TIYIPIE| PIC| [X]. consists of 6 fields.
i ! j[%__ﬁ V|- NUMBER|~ clsl 1ATlc 94| lcompl These fields can be
L8 SAVETRANSAL - AMTI-S/UBTOTYIL. PlTic] Sl4/(5hvid cowp L[] | reerenced ater i
1 34 87 I 8 lj_ll I l‘_ﬁ 20 24 28 32 38 a0 a1 A 5 l E I -2 e 17 78 m
(Piz(:;f::i %i A iB COBOL STATEMENT I IDENTIFICATIO:IJ
13 1) : s 7E] Em[] 5 70 7 7 : 7 % £0) £ i} 52 5 2] 2] 5 uj 78
oz2| | PRI0CIEDURE DLVISTION I ;
03 |
ofs i E g t
ofs| | SET] ISIANEITXT TTor 1L 1 Search through the table of
osi |1 | [sEARCH-[L0olp!. ; saved entries for the saved
o7 [IIF TERM-INIAMEL- Al [=] Tolavi- TERM- N el [(ISIAM-]1ix terr:inal name that is thehsame
T f ~ - 7T¢ as the terminal name in the
zz t {I F ggv:‘;?x Ff égso ¥£’H’g E ngRY : f name field of the record
o I T I UPl BY 1L - L1 | area (TERM-NAME-A). When you find
ih | t S 2 V = v B the corresponding terminal name
iy : s Y(—}go_';(_) : 3 lEJ?l léc - LOO!P proceed to FOUND-THE-ENTRY.
Bl ! 8 ' ? L]
151 11 | [FOUNDI-THIE]-|[ENTRY!. Once you have found the saved entry you were
e i l (searching for, you can reference the saved
Wil | i i fields by indexing the field name by SAV-IX:
b ! IFL REICI-TIYPE-]A = [SAN-[LASTI-REC|-TIYPE (SAV-IX, ~rr-® Compares input record type field with
P ! } b previous record from this terminal.
20 i !
1! I j ' |__+® Updates the number of transactions field in
I TAD'D| 11 0l SAVI- NIUMBER-TIRANISUAICS| (Islalvi-1T 17 the. saved entry l?y adding the new trans-
il ! I ‘; action from the input record.

Figure 4-7. Referencing Saved Information

414

USING THE SYSTEM OPERATOR CONSOLE

If you wish to communicate with the system operator
through either the 5471 Printer/Keyboard (Models 10 and
12) or CRT/Keyboard {Model 15), you must specify opera-
tions as though the device is a remote terminal. You cannot
address the system operator’s console by either the
DISPLAY UPON console-name or the ACCEPT....FROM
console-name statement. Instead of using these statements,
you must specify either a Put or Put-Then-Get operation to
a terminal named CONSOL. CONSOL is the only name
that can be assigned to the system operator console.

Your program can communicate with the system operator’s
console at any time. To receive data from the console,
you must issue a Put-Then-Get operation, which:

1. Transmits a message to the system operator; and
2. Accepts a reply from the system operator.

Control is not returned to your program until the system
operator has transmitted input data to your program.

The operations that can be issued to the console are:
® Put

® Put-Then-Get

® Get Attributes

The console is available at all times to communicate with

any program or to enter system operator commands.
However, if the console requests a program, it cannot request
another program until the first program is initiated by the
CCP. It is not necessary, nor is it valid, to issue an Acquire
Terminal operation to the console in order to communicate
with it.

Example: The example in Figure 4-8 uses the system
operator console as the terminal for a Put-Then-Get
operation to notify the system operator of an 1/0 error.

COBOL PROGRAMMING CONSIDERATIONS

When writing your COBOL program, remember:

® (Model 10 and Model 12) You cannot use either the
ACCEPT or the DISPLAY statements when addressing
the CONSOL.

® You cannot use the Checkpoint/Restart facility of Disk
Data Management. Therefore, your COBOL program
cannot specify the RERUN statement.

® (Model 10 and Model 12 CCP) You must not issue a
STOP literal statement. Programs running under the
CCP are not permitted to issue halts.

® You should not use the APPLY CORE-INDEX clause in
your COBOL program to create an in-storage index
{master index) for randomly processed indexed files. The
index is built as a result of the MSTRINDX keyword of
the DISKFILE assignment statement (see CCP System
Reference), therefore, if you use an APPLY CORE-
INDEX clause, you will only add unnecessary storage
size to your program.

® (Model 1) You cannot use the COBOL TRACE option
under CCP.

® The DISPLAY statement cannot be used for a printer.

3270 DISPLAY FORMAT FACILITY

You can use the 3270 Display Format Facility (DFF) of the
CCP to aid you in formatting and using the 3270 display.
Chapter 8: 3270 Display Format Facility describes the
programming requirements that are unique to using 3270
DFF, including the unique 3270 DFF operations, additional
information that must be placed in the record area for
certain operations, field types that are unique to the 3270,
and other information.

See Chapter 8: 3270 Display Format Facility for an example

of a COBOL program that uses the DFF to support a single
requesting 3270 terminal.

COBOL 4-15

COBOL Coding Form

SYSTEM PUNCHING INSTRUCTIONS [eace oF
PROGRAM B GRAPHIC CARD FORM # '
PROGRAMMER [oate PUNCH
SEQUENCE %iA ie COBOL STATEMENT | iIoenTIFICATION
(\PAGE;: i Tt fz T8 pid p2] L 56 £ Pz g 57 56 54 o7 i} 72! 76
oy l AEN !
o2| | |DIAITA| DIN[IISIION L] !
93| | MORIK ING~ISTORAGE| |SEICT|IION i l
del by L1l le - !
ofs | B TR , = !
o] M PARAMETER] [LIT/ST :
of7 X - I
ok 1y | gL | PARM-LITIST. ; !
el L1285 | PLI-RMe | PIICH GI9(H) CloMP-14.| | | !
ol 1 5| [PIL-loPc | | IPIE] S19.([4). Clomp- 1| !
IORE PLI-0luT| | | PIC] [S|9:(]4D] ClomPpL-H]. l
el e [IPIL-TINLE T Pl il Isigicl4p] Clomipl-J4]. [;
j : ;é AILLER PILC X (‘3)(Define the parameter list I
s ECIORD| AREA l ! | and the record area. f
1] D [; T : i
T LRl T [TINPUIT-loufrplulT - AIREEA.. !
IINREREN TIERM=-INAME-T0| | [PIiC! I%ICleD]. |
13NN MS,G-DAT _IPTlc] Xi([212] ll
2lo L '
PROCIEDURE DIV ISTION.[| - |
- | rd ‘ . N g J
L e |
SEQUENCE 12| }a COBOL STATEMENT |IDENTIFICATIONJ
(lpAGE:: EERIASL%] 8 T2 18 70 23 78 k7l 36 40 a3 a8 52 56 &0 2] N 72' 76 BC
W i ST T T
oz} [PREP ERRIOR| WMESSIAIGIES| AERIE AN [SIETT |] j HREA
oz o | UP| IPARIAMETIER LTS [FIOR [Pu.T! [TIHEM [GEIT] Tio] [Clo]NS|oLIE {
ofa | : S 1 T ‘ j .
os | | PUT-IGET]. i R | !
ols | ! ovEl 13 To ‘p L[~ 0lPlc]. - Set operation code for Put-then-Get, |~ | |
ol MOVIE 2 [Tol 1plL-lolulT].| &+ — Set output length field. i I
o ; iMO\IE 10! |P|L|~|T NiL e Set maximum input data length field. }
o B[] SRR !
| % JINSERIT] MERMINAL] WAkl colNsolL], AiD| !
P | | ERRIOR] MES[SIAGE| [T/0] [REICORD! [AlR|ElA I
28 3NAN |
12 I i !
el MiolvE] TPl Tiol [ERIROIR| Tiol Mslal- DIAIT] C Set data portion of record area. !
el OIVIE| |*'COINSIOL]’| [T TIERM-IN ~I|0. ®— Set terminal name field of record !
116 A | | | area to CONSOL. [!
171 % Do }PUT THEN, |GET| OPE[RIAT IO [Tlo] ICoINSIolL| | | | | |] ;
18
ol | IClAlLL [MCCPlciTol’ | UsIIN PAJ(R - ILITS(T, | TINPUT|- QUTIPUTI-AIREA|-| e Call the Communications | | |
20 I ' K nEa Service Subroutine to ||
,' I ; perform the Put then Get
| ! T :__ 7 operation, :
ERERE 1] ENSENNTINERNNE

Figure 4-8. Using the Console

4-16

PROGRAMMING EXAMPLES

Two programming examples are explained in this section:

Example 1 — A COBOL program that supports a single
requesting 3270 without using the Display Format Facility.

Example 2 — A COBOL program that supports multiple
requesting terminals.

See Chapter 8 for an example of a COBOL program that
uses the 3270 Display Format Facility to support a single
requesting 3270 terminal.

Example 1

Figures 4-9, 4-10, and 4-11 show the flowcharts, messages,
and listing for a sample single requesting terminal (SRT)
COBOL program. This program transmits two messages to
a 3270 Model 1 Display System (480 character screen).
The first message from the program requests the terminal
operator to enter a room number. The program uses the
room number as the relative record number to access a
disk file whose records contain guest and rate information
about the room. This information is then formatted and
displayed as the second message transmitted to the 3270
terminal. Figure 4-9 also shows how these messages appear
on the 3270 terminal.

Because this program is a single requesting terminal (SRT)
program (see index entry) without any program-selected
terminals, it can receive data from and transmit data to
only one 3270 terminal. However, multiple copies of this
program could be in main storage at the same time, each
communicating with a different 3270 Display System. (If
multiple copies are in core at the same time, the disk file
must be specified as sharable during the Assignment stage —
see index entry disk file sharing.)

Formatting the Messages for the 3270 Display

Because this sample program does not use the Display
Format Facility, this sample program must set all formatting
control characters for the 3270 display screen into the

data portion of the record area and transmit them as part

of the messages to be displayed. Figure 4-10 shows the
messages and the 3270 control characters as they are trans-
mitted to the 3270 terminal. You can find the meanings

of each of the 3270 screen format characters shown in

Figure 4-10 in the publication /BM 3270 Information Display

System Component Description, GA27-3004.

The printable control characters are set by defining them
as part of the message in the VALUE clauses of the record
area definition. Blanks are left in the VALUE clauses
where the unprintable format characters will be set by
MOVE statements later in the program.

The unprintable format characters (hexadecimal vatues

that have no corresponding printable character in 96-column
card code) are set by first coding the hexadecimal format
characters as decimal values and initializing fields to these
values (PSEUDO and PSEUDO2). The fields assigned these
decimal values are then redefined so that the COBOL program
can access these values, which are stored in hexadecimal
internally, as the format characters. These redefined fields
(INSERT-CURSOR, START-FIELD, SET-BUFFER-ADDR,
and ESCAPE) are then moved into the appropriate position
in the message. The notes to the right of the listing in
Figure 4-11 explain the statements used by this program

to format the 3270 display screen. You will also find

the comments in the listing helpful.

Notes Concerning this Sample Program

® |Message Mode was defined during the Assignment Stage
for the 3270 terminal used by this program. (See
TERMATTR statement in CCP System Reference Man-
ual.) This eliminates the need to do repetitive input
operations until EOT is received.

® To run this program using a terminal other than the 3270,
you must remove all coding dependerit on the 3270.
This includes all screen formatting specifications and
3270 screen control characters within the data.

® This program will not accept data with the program
request.

® Two different lengths are used for the output length
field of the parameter list because the two messages
transmitted by this sample program have different
length.

® This program specifies a PUT operation and a GET
operation using six blanks as the terminal name. The
CCP places the name of the 3270 terminal being used
in the terminal name field of the record area after the
first PUT operation is performed.

COBOL 4-17

® To keep this sample program simple, return code

checking is kept to a minimum. You may want to do
more return code checking in your application programs.
For example, when you issue Accept Input you should
check for the Shutdown Requested return code (04).
Also, if data mode escape is allowed in the CCP system,
programs should check for return code 08 (terminal has
released itself from the program). It is recommended
that each installation design its own return code checking
and console communication routines so that a standard
is established that is satisfactory to the installation and
can be used by all application programs.

This program does not check the length of the input
data because the terminal operator is requested to enter
a three-digit room number. If less than three digits are
entered, the program branches to the EXIT-DONE pro-
cedure and the program is canceled. However, you may
want to check the input data length in your application
programs.

4-18

® Since there are only two different screen formats used

by this program, they are both contained within the
program. For more complete applications, you might
store the screen formats on disk and read them when
they are needed by your program.

You could also use the Get Attributes operation in this
program. If you do not know whether the 3270 Model 1
or the 3270 Model 2 will request the program, you can
issue a Get Attributes operation to find out which type
of terminal requested the program.

I this program were coded and specified as a multiple
requesting terminal (MRT) program with a MRTMAX=1
keyword on the PROGRAM assignment statement (see
CCP System Reference Manual), multiple copies of the
program would not be allowed in main storage at the
same time. As the program is written, multiple copies
could be in main storage at the same time and the disk
file must be specified as sharable (FILES keyword of
PROGRAM assignment statement).

(o)

1. Set up parameter list to Put-No-Wait
a message.

2, Format screen for 3270M1.

3. Put-No-Wait the message.
(Enter Room #.)

1. Set up parameter list for Get.
2. Get message (Room #).

Return Code
) =0?

Read disk record. (Room # is relative
record number.)

1. Move disk data: Room #, Rate,
Name, Address.

2. Format screen for 3270M1.

3. Set up parameter list for Put-No-Wait |
message.

4, Put-No-Wait the message. (Room #,
Rate, Name, Address).

C END OF JOB >

Figure 4-9. Program Logic of Example 1 (COBOL SRT Program)

v ’ ENTER ROOM # _

ENTER ROOM # 009

ENTER ROOM # 009
ROOM # - 009
RATE - $18.50

-NAME - JOHN DOE

ADDR - 114 5TH AVE SW
ADDR - STURGIS, MINN. 55101

_JL L

COBOL 4-19

First Message

1 2 3 13[14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
e Rlojop HH§ xxxiF |
{] - ‘. o | _T > | 1‘
Y] I
il ! |l !
EC - SF LATT
cc— ATT SF
WCC— 1C —
SBA——
BA

Second Message

12 34 5 6[7}8 9 1011 12[13]14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34

§§ﬂtﬁ§9oﬂﬂ#ﬁ T XX HSBRAE] - §IXX,
elo00 Ik .
J AT [T
EC BA
cc L—SBA
wcCC
SBA —
BA
35 36 37 38 39 40 41 42 42 /iaj.ﬁjs jw 48 {950 51 52 53 64 55 56 57 S8 §7 §0;5| 62 §3 64.
“agﬂﬂg | XX XXX XXX X xjjxmg
L vl | i
1R ' 1
SBA
BA —
66 66 67 68 69 70 71 72 73 74 7576 77 m 79 8081 82 83 84 85 86 8788 [8Y 90 91 92 93 94
R| =] XXX XXX XX X XXX
| |
1 HERRR
SBA
BA —
95 to 124
L | |
LISIGAIDDR] [~ [x)xxXx X/ XIXIXMXIX XX X ,
o
SBA —
BA —— e
SF — Start Field CC — Command Code
ATT — Attribute Character WCC — Write Control Character
IC - Insert Cursor SBA — Set Buffer Address
X — Data Character BA — Buffer Address of first character
EC —Escape Character position in the field

Figure 4-10. Message Formats for Example 1 (COBOL SRT Program)

4-20

STNO -AcesBees C OB O L

COvD~NGCWmH

-~

11
12

23

24
25
26
27
28
29
30
31

IBM SYSTEM/3 AMERICAN NATIONAL STANDARD COBOL
SOURCE

PROCESS MAP,LIST,GODECK

IDENTIFICATION DIVISION.

PROGRAM-ID. SRCOB1.

REMARKS. THIS IS A SAMPLE SINGLE REQUESTING TERMINAL PROGRAM
DESIGNED TO RUN UNDER CCP. A 3 DIGIT ROOM NUMBER
WHOSE VALUE IS BETWEEN 1 AND 10 IS ENTERED FROM A 3270
TERMINAL. THE ROOM NUMBER IS RECEIVED BY THIS PROGRAM,
AND IS USED TO ACCESS A FILE WHOSE RECORDS CONTAIN
GUEST AND RATE INFORMATION ABOUT THE ROOM. THE PROGRAM
RECEIVES THIS INFORMATION FROM THE DISK AND FORMATS IT
AND THEN SENDS IT BACK TO THE 3270 TO BE DISPLAYED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-S3.

OBJECT-COMPUTER. IBM-S3.

INPUT-0UTPUT SECTION.

FILE-CONTROL.

SELECT GUEST-FILE ASSIGN TO DA-5444-R-GSTFILE
ACCESS MODE IS RANDOM
ACTUAL KEY IS GUEST-KEY.

DATA DIVISION.

FILE SECTION.

P2 S PR RS PR SR R R SRR R R R SRR R R RS S RSS2 RS 22 22 SR R L Ll

* THIS IS THE RECORD THAT CONTAINS THE GUEST AND RATE *
* INFORMATION FROM THE DISK FILE. *
(22223333 TR 2R R RSS2 a2 AR RS R R A2 22 R d * ok Rk Rk kK

FD GUEST-FILE LABEL RECORDS ARE STANDARD
DATA RECORD IS GUEST-REC.
0l GUEST-REC.
02 RPG-DATA PIC X.
02 ROOM-NMBR PIC X(3).
02 ROOM-RATE PIC 99V99.
02 GUEST-NAME PIC X(20}.
02 ADDR-HOME PIC X(20).
02 ADDR-WORK PIC X(20).
02 FILLER PIC X(2).
WORKING~STORAGE SECTION.
ook ohok ok kR kR ok kR oAk ROk Atk ok okl OKOR Kok gk okok Rk Rk ok k
* INDEPENDENT FIELDS AND CONSTANTS AND KEYS *
AR OR R R R R R R R KRR R R RS Rk KRR e oIk S d Rk R RNk
T7T GUEST-KEY PIC S917) COMP.
ook ok kg *xk ok kR
* THESE ARE SPECIAL HEX-DECIMAL CHARACTERS USED FOR FORMATTING *
* THE 3270 SCREEN *
Aol ok K * *kkk *
01 PSEUDO PIC 9999 COMP-4&4 VALUE 4893.
01 IC~SF REDEFINES PSEUDO.%

Rk

05 INSERT-CURSOR PIC X.
05 START-FIELD PIC X.
0l PSEUDO2 PIC 9999 COMP-4 VALUE 4391. &)
01 SBA-ESC REDEFINES PSEUDO2.
05 SEY-BUFFER-ADDR PIC X. g&:)
05 ESCAPE PIC X.

Figure 4-11 (Part 1 of 3). Example 1 — COBOL SRT Program

STATEMENTS caceocneas IDENTFCN SEQ/ND S

@ !nitialize PSEUDO using decimal values
corresponding to the hexadecimal values
for insert Cursor and Start Field. These
values will be internally represented in
binary:

Insert Cursor = X*13’
Start Field = X'1D’
X’131D’ = decimal 4893 (see Note)

@) Redefine PSEUDO to make the resulting
two hexadecimal values available to be
manipulated individually in the program.

€ Initialize PSEUDO2 using decimal values

corresponding to the hexadecimal values
for Set Buffer Address and Escape Char-
acter. These values will be internally
represented in binary:

Set Buffer Address = X'11’

Escape Character = X'27’

X*1127' = decimal 4391 (see Note)

ol Redefine PSEUDO?2 to make the resulting
two hexadecimal values available to be
manipulated individually in the program.

Note: The hexadecimal value to be convert-
ed to decimal must never exceed X‘270F’,
or the resulting decimal value will exceed
four digits and will require a three-byte
field. If this occurs, rearrange the order of
the hexadecimal fields to see if it resuits in

a lower decimal value. 1f it does not, use a
three-byte field and place a X’'00’ filler in
the first byte.

COBOL 4-21

AL EE R 23 22t RS R R R R RS SR R R R RS R PR R LR RS ET2 2 22)

* INPUT=0UTPUT PARAMETER LIST *

R AL LS RS 2 2R 22 S22 2R 2R RS S 2 2 R RS2 R AL R R R R SR SR R R RS S22 2 L T)
32 01 PARM-LIST.

33 05 PL-RTC PIC S9(4) COMP-4.

34 05 PL-OPC PIC $9(4) COMP-4 VALUE S4.

35 05 PL-DUTL PIC S9(4) COMP~4 VALUE 26.

36 05 PL-INL PIC S9(4) COMP-4 VALUE 1l.

37 05 FILLER PIC X(8).
0 o el o e 0 o ol ol o ol o e ol o ok ol o ol ok ook ok * LR L LT
* THIS IS THE INPUT/OUTPUT AREA *

Return Code Field

Operation Code Field

Output Length Field
Maximum Input Length Field
Required CCP Work Area

Terminal Name Fieid

kAol Rk kR kR R Rk kR ok ok Rk KRRk Rk R ok ok kR SRk
38 01 INPUT-OUTPUT-AREA. _________———___________JL._____
39 05 [-0~TERM PIC X{6) VALUE SPACES. Data area for Messages: Initialize the con-

40 05 I-D-AREA.
4l 10 MSG1

PIC X(21) VALUE ' 56 ENTER ROOM # I°.

42 10 ROOM-NUM PIC X(3) VALUE SPACES.

43 10 CHRS1 PIC X{5) VALUE ' 0- s'.

44 10 CHRS2 PIC 99.99.

45 10 NAME PIC X(10) VALUE ' ABNAME - ',

46 10 NAM-CHR PIC X{20) VALUE SPACES.

47 10 ADDR1 PIC X{10) VALUE ' B-ADOR - ¢,

48 10 AD1-CHR PIC X(20) VALUE SPACES.

49 10 ADDR2 PIC X(10) VALUE ' CHADDR - ',

50 10 AD2-CHR PIC X{(20) VALUE SPACES.

51 05 I-0-CHARS REDEFINES I-0-AREA.

52 10 I-0-CHAR PIC X OCCURS 124 INDEXED BY INDX.

53 05 I-0-AREA2 REDEFINES I-0-AREA.

54 10 ROOM PIC X(15).

55 10 ROOM-NM PIC X{3).

c6 10 RATE PIC X(8).

57 10 FILLER PIC X{(98).

58 05 INPUT-AREA REDEFINES I-0-AREA.

59 10 DEVICE PIC X.

60 10 CNTRL-U PIC X.

61 10 AID PIC X.

62 10 CRS-ADD PIC X(2).

63 10 SBA PIC X.

64 10 SBA-ADD PIC X(2).

65 10 RM-NUM PIC X(3).

66 10 FILLER PIC X(113).)
A ARt i it s 22222t R 2RI SR 2R R 2 R R R RSS2 RS2 L)
* NOW BEGIN EXECUTION BY OPENING THE DIRECT ACCESS FILE *

AR AOK ROk ROk RCK R OROR R ROK R OR R R R OR SOR KRR R R ok kok ko ok kR koo
67 PROCEDURE DIVISION.
68 OPEN-THE-FILE.
69 OPEN INPUT GUEST-FILE.
kbR AL L L L L bttt il Ll St il ittt dd
* INSERT THE HEXADECIMAL CONTROL CHARACTERS INTO DATA STREAM *
L AR RS LSRR E RS E2 22222t 22 SRR R R 2 2 s i Rt L]
70 FIRST-CHARS.

71 MOVE ESCAPE TO I[-0-CHARI(1l).

72 MOVE SET-BUFFER-ADDR TO [-0-CHAR(4).

73 NEXT-CHARS.

T4 MOVE START-FIELD TO I-0-CHAR(19).

75 MOVE INSERT-CURSOR TO I-0-CHAR(Z1).
AR AR AR KRR R KRR KRR OROR IOk KRR ROk R ok Rk ok
* THIS FIELD IS DEFINED TO PREVENT DATA FROM BEING ENTERED *
* BEYOND THIS POSITION ON THE SCREEN. *
AR AR KRR IO ORI A KK AR R R NOR ORI R Rk ook K ok ok ok

16 MOVE START-FIELD TO I-0-CHAR({25).

*ttttﬁti#*tttttttttltt###t#*t#***#*t*tt**##***t*t*****#**t*t*t#*##
* DO PUT MESSAGE NO WAIT OPERATION TO 3270 TERMINAL

* REQUESTING THE ROOM NUMBER BE ENTERED *
Adodokok ok ok Aok okok ok ok LT L 2 AR LIS SR L2 SRS L L

Figure 4-11 (IPart 2 of 3). Example 1 — COBOL SRT Program

4-22

tents of message fields to be displayed and
of any printable 3270 formatting charac-
ters. Leave blanks for any unprintable 3270
control characters (characters that cannot
be represented by a character in the COBOL
character set). The blank fields are set by
MOVE statements later in the program.

The first half of this definition is used for
the first message; the second half is used
only for the second message. The first part
of the second message will be added later

by overlaying the first message.

Redefine the data area with an index so

each position in the area can be referenced
separately.

Redefine the data area to set up the first
part of the second message.

Redefine data area for Get operation.

Move the hexadecimal values for the remain-
ing 3270 formatting control characters to
appropriate positions in the data area. These
characters are unprintable.

77

78
79

80

82

84
85
87
89

90

92
93
94
95
96

98
99
100
101
102

103
104

105
106
107
108

CALL *CCPCIO* USING PARM-LIST, INPUT-OUTPUT-AREA.

FAR KRR AR AR AR AR R R R R AR SRR R AR SRR
* DU GET OPERATION FROM 3270 TERMINAL AND OBTAIN ROOM NUMBER *
P e P R R T R LR LI RS PR L e i st bt bl d s

MOVE 1 TO PL-OPC.

CALL 'CCPCIO' USING PARM-LIST, INPUT-OUTPUT-AREA.

Ao R RO R R AR RO R R R R R R R AR RN RN
* IF THE RETURN CODE IS NOT ZERO GO TO END OF JOB *
RO AR K AOK AR R OOR AR O SOOOR R R R R R R R Rk Rk Rk
IF PL-RTC NOT = O GO TO EXIT-DONE.
R AR RO RO KRR R R R R KRR R kR R Aok R Rk ok Rk Kk
* CHECK TO SEE IF THE ENTER KEY WAS PRESSED, IF IT WAS NOT GO *
* TO END OF JOB. *
A AR RO R O ROk Ok Rk oK R R KRR ROk Rk
1F 1-0-CHAR(3) NOT = QUOTE GO TO EXIT-DONE.
Aok kAR R KRR Ok R KRR R R KRR R RO ROk R R ARk R R AR Rk
* VALIDITY CHECK THE ROOM NUMBER IF ROOM NUMBER BAD GO TO END *
* OF JoB *
AR K KKK R AR AR AR KRR AR KRR ORI AR R A AR AR R R RN R Sk

MOVE RM-NUM TO GUEST-KEY.

IF GUEST-KEY LESS THAN 1 GO TO EXIT-DONE.

IF GUEST-KEY GREATER THAN 10 GO YO EXIT-DONE.

MOVE RM-NUM TO ROOM-NM.
t*ttv***t*t*#*******ttttt*t***t**tttt*t*tttt*ttttttm#*ttttt*#ttttt
* READ RECORD FROM DIRECT ACCESS FILE. THE ROOM NUMBER
* REPRESENTS THE RELATIVE POSITION OF THE RECORD IN THE FXLE*
F A AOK K AOR AR R AR K R AR AR A A A KRR AR R ORI R R AR R Rk Rk

READ GUEST—FILE INVALID KEY GO TO EXIT-DONE.

VALELIE 222 22 2) *

* MOVE THE ROOM NUMBER, RATE PER DAY, THE NAME AND ADDRESS OF *
* THE GUEST INTO THE OUTPUT AREA *
P2 L2 2] % LRl 2]] Rk LA 22 L 1]

MOVE ' 1G YROOM # - ' TO ROOM.
MOVE * AGRATE * TO RATE.

MOVE GUEST—-NAME TO NAM-CHR.
MOVE ROOM-RATE TO CHRS2.

MOVE ADDR-HOME TO AD1-CHR.

MOVE ADDR-WORK TO AD2-CHR.

LSRR EE SR AL S 22 22 24 * L2 22 4
* INSERT THE HEXADECIMAL CONTROL CHARACTERS INTO DATA STREAH *
Aok dOltOR R K KOROR Rk ROk ROk ok Rk *k *k

PERFORM FIRST-CHARS.
MOVE SET-BUFFER-ADDR TO I-0-CHAR(19).
MOVE SET-BUFFER-ADOR YO 1-0-CHAR(35).
MOVE SET-BUFFER—ADDR TO I-0-CHAR(65).
MOVE SET-BUFFER-ADDR TO I-0-CHAR(95).
oAk *kk L2 2 PR R TSRS 2R IR SR RS R RE A2 22 S a Al b
* SET UP PARAMETER LIST FOR A PUT MESSAGE NO WAIT *
PTT Errr rr er E P R R PR S L RS RS R RS SR DL R PR Ll St Ll
MOVE 54 TO PL-OPC.
MOVE 124 TO PL-0UTL.
P e e Pt SR R R R R P SRR R R SRS B R R AL Ll bl bl
* DO PUT MESSAGE NO WAIT OPERATION TO THE 3270 TERMINAL *
SIS L PSS LRSS 2L 2280 L2222 E2 L L
CALL *CCPCIO* USING PARM-LIST, INPUT-OUTPUT-AREA.
EX{T-DONE.
CLOSE GUEST-FILE.
STOP RUN.

Figure 4-11 (Part 3 of 3). Example 1 — COBOL SRT Program

Move the message, data, and printable 3270
control characters for the first part of the
second message into the data area of the
record area, overlaying the first message.

Move the hexadecimal values for the 3270
formatting control characters that are not
already set in the data area into the appro-
priate positions of the data area. These are
the unprintable control characters.

COBOL 4-23

Example 2

Figures 4-12, 4-13, and 4-14 show the flowchart, input/
output messages, and listing for a sample COBOL multiple
requesting terminal (MRT) program designed to run under
the CCP. This program handles up to four MLTA re-
questing terminals. The terminal operator enters a seven-
digit number preceded by a +, -, or N. The CCP transmits
this signed number to the COBOL program. The COBOL
program:

® Adds the number to the value in the accumulator field
associated with the terminal that transmitted the data

if the first position is +

® Subtracts the number from the accumulator if the first
position is -

® Releases the terminal if the first position is N

4-24

If a value was either added or subtracted, the new value
accumulated for the terminal is inserted into the message
CURRENT VAL = sxxxxxxxxxx ENTER DATA and the
message is sent to the terminal.

This sample program also checks for several error conditions
and transmits the appropriate error message to the terminal.

This sample program is not designed to show the most
effective way of performing operations. Instead, it shows a
variety of ways to do things. It uses a variety of operation
codes that show how data can be associated with a terminal
by defining a save area for the terminal names and accumu-
lated data. It frequently checks return codes; but you can
do even more return code checking if you wish. Data
entered by the terminal operator must be fixed length. To
allow variable length input fields, you could include a sub-
routine in your program to check the effective input length
returned in the parameter list and align the data correctly.
This program communicates with the console in addition to
the requesting terminals.

The notes to the right of the listing in Figure 4-14 and
the comments in the listing explain each section of the
sample program.

O
B1
1. Set up parameter
list for Accept
Input
2. Accept Input
C1
Shutdown Yes
request
No
D1 .
Terminal No
attached
Yes
E1
Terminal Yes
sancelled
: No
F
Negative

/X

No

G1
Positive return
code (#0)
No
H1
Operator =N
No

return code

c2

Exit to

hutdown

Terminal
cancelled

@ Yes
E2

D3

B4

1. Check input
length = 8

2. Check valid
operator

3. Check valid data

Valid input

Add terminal to
attached list

Find proper
accumulator

Set cancelled

switch

)

G2

1. Set up Put-No-Wait
(Message)
2. Issue Put

2F1

E4

Add or subtract
input to
accumulator

Accumulator

>0

C5

1.

2.

Set up Put-No-
Wait (Message)
Issue Put

. Move ’-" to out-

put area

. Make unit position

printable

. Set up Put, Wait

. Put message

message

H4

Return code
=0

Yes

Figure 4-12 (Part 1 of 3). Program Logic of Example 2 (COBOL MRT Program)

. Set up Invite Input
. Invite input

2B1

COBOL 425

Figure 4-12 (Part 2 of 3). Program Logic of Example 2 (COBOL MRT Program)

4-26

--[Output Error
B1

3B4

Console routine

Retry =
try again

Terminal
cancelled

1. Set up Release
Terminal op.
2. Release terminal

No

1. Clear terminal
name entry in
attached list

2. Clear accumulator

1B1

- Input TP Error
e [1

3B4

Console Routine

Retry = try
again

1. Set ub Put-No-
Wait (Message)
2. lIssue Put

Shutdown Routine

A1l
< ENTER)
8 Console Routine
B4
Set index = 1
ENTER
C
! v Cc4
Check entry in 1. Set up Put-then-
attached list Get to console.
2. lssue Put-then-
Get
D5
D4
Retry = TA No | set on release
(try again) terminal indicator
Yes . l
E4
{ 1. Set up Stop
Invite Input Op ‘ RETURN ’
2. Stop Invite Input

1. Set up Put-No-

F1 ‘No Wait (message)
< Terminal cancelled 2. lIssue shutdown
message

G1
< Effective input

wh =0
()

Add 1 to index

41

Index =6

Yes

K1
< End of job ’

Figure 4-12 (Part 3 of 3). Program Logic of Example 2 (COBOL MRT Program)

COBOL 4-27

Input Data Entered by Terminal Operator

Wureie et

2 345

3 53
1 [
SXIXIX|X[X

7.8

XX A fixed length numeric field where S is a +, —, or N and
X is a numeric digit. All eight postions must be entered,
except when N is entered in the first position,

Data Entered by System Operator on 5471 Printer/Keyboard (Models 10 and 12) or CRT/Keyboard (Model 15)

2 345

A In response to the messages INPUT TP ERROR TNAME-
C ccccee and OUTPUT TP ERROR TNAME-cccccce to the
console, the system operator replies TA if he wants to
try again. Any other reply (cc) causes the terminal to be
released.

7 8 9 10111:

(o) C

O [|-

Output to the Console

8 0 101112131416 7617 18 10 20 21 22 7324 7526 27 2829 30 ¢
TIP| [EIRIROIR| [TINAME|~[c|CiCICICIC These messages are transmitted to the console (ccecce =
terminal name).

112 3 4%
INPVUT

OVTPVIT (TP [EIRRIOR| [TINA|ME|-|CCIC|C|C|C

Output to Terminal

’ le‘l;w::ns 2 7 8 9 1011121314161617 18 19 20 21 222324ﬁi§m

CURRENT VAIL[=SXX[X[XXXX[X|XX| [EINTER [DlATIA Transmitted with value in accumulator associated with
the terminal.

TIR)Y| |Al6/AT Nl |IINV| D/ATA Issued if data is invalid.

TIRY, AlGATIIN [TIP ERROR - Issued if system operator replies TA (negative return
code on Accept Input).

CIClP \SBITDWINI ILAST| REIC-| | [TIP [E[RROR Issued for negative return code on Stop Invite Input.

CICP| ISMITIOWIN| (LIAST REC-| [BlalD] [DAT]A Issued for positive return code other than 10 on Stop
Invite Input.

CICIP |SIHTOMIN| [LAST| [REIC|- SIX|X |X] x| XXX Issued for return code of 0 on Stop Invite Input.

CICPL ISHITDWIN| |LIASIT| [REIc!-| | INIo [DiAITIA Issued for return code of 10 on Stop Invite Input

Figure 4-13. Input and Output Message Formats for Example 2 (COBOL MRT Program)

4-28

IBM SYSTEM/3 AMERICAN NATIONAL STANDARD COBOL
STNO -A...B... C OB OL S OURCE STATEMENTS veeeca-as-IDENTFCN SEQ/NO S

PROCESS MAP,LIST

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. MRCOB1.)
3 REMARKS. THIS IS A SAMPLE MULTIPLE REQUESTING TERMINAL PROGRAM
DESIGNED TO RUN UNDER CCP. A NUMBER CONSISTING
OF UP TO 7 NUMERIC CHARACTERS AND A + OR - OPERATOR IS
TRANSMITTED TO THIS PROGRAM BY ANY ONE OF UP TO 4
TERMINALS. THE ¢ OR ~ OPERATION IS PERFORMED AND THE
RESULTS PLACED IN THE ACCUMULATOR ASSOCIATED WITH THE
TERMINAL THAT REQUESTED THE OPERATION. THE VALUE IN THE
ACCUMULATOR IS THEN SENT BACK TO THE TERMINAL FOR
DISPLAY. IF AN N IS ENTERED AS THE OPERATOR THE
TERMINAL WILL BE RELEASED. IF THIS IS THE ONLY TERMINAL
LINKED WITH THE PROGRAM, THE PROGRAM WILL END
EXECUTION.
4 ENVIRONMENT DIVISION.
5 CONFIGURATION SECTION.
6 SOURCE~COMPUTER. IBM-S3.
7 OBJECT-COMPUTER. IBN-S3.
8 DATA DIVISION.
9 WORKING-STORAGE SECTION,
e o o K K K o KK o KK o kol O Ko KK Ok K ok ROk OK R o K ROR K KKK KKK OROK R KR R R R Rk ok R
* INDEPENDENT FIELDS AND CONSTANTS *
AR K K AR K R oK K o oK o ok ko K A oK K K 3 koK koK OR K AOK K 3 Kok ok koK oKk KOk Rk ok ok ko &
10 77 SWITCH PIC 9 COMP-4,

oo A T oK K R AOK R K K K KOK KK K KK R ROR R AOKOK K KR R KR KO R K OOROKOOR K R O Rk Rk

* OPERATION CODES
KA KO A KR AR KOKK KRR KK KKK KKK OK KOK KKK KRR K KR RO ROR K KR Kk K K

1 77 ACPTIN PIC S9(4) COMP-4 VALUE 4. . . .
12 77 PUTNWT PIC S9(4) COMP-4 VALUE 5. Define a symbolic name for each operation
13 77 PUTMWT PIC S9(4) COMP-4 VALUE 50. used in this program. These names are used
14 77 INVINP PIC S9(4) COMP-4 VALUE 5. . L
15 77 PUTGET PIC 59 (4) COMP-4 VALUE 3. in the !)rocedur.edlwsnon instead of the
16 77 RELTRM PIC S9(4) COMP—4 VALUE 10. numeric operation code values.
17 77 STPINV PIC S9(4) COMP-4 VALUE 1025.

ok o A A o o ok kK Rk oK K KK OK R o K R o ok ok ok R o K Kok R R ROK R kK OKOR R KR Rk ok ook kR R

* TERMINAL DATA STORAGE ARRAY *

Ak Kok K R OK Kk KK K K O K KK RO K RORROK KK K R KORKOR Ok ok K ko ok Rk kR ok Kok

18 01 TERMINAL-STORAGE-ARRAY.
19 05 TERMINAL-ENTRY OCCURS 4 INDEXED BY TERM-X. .
20 10 TERM-NAME PIC X(6). Set up a save area for the four terminals

21 10 ACCUMULATOR PIC S9(11) COMP. used by this program and their accumulators.
/**t**#*tt**it******ﬁ#*#***ﬂt****t******‘#*‘t*#*t**tt‘t#*******‘**
* COMMUNICATIONS AREA *

* CCP-COBOL INTERFACE PARAMETER LIST
KK K AR KK ORI K K R ROK R KRR KK AOKOK K A KK KK AR K OKR K ROR KK KR K

22 01 PARM-LIST. Return Code Field
23 05 PL-RTC PIC S9(4) COMP-4. Operation Code Field
24 05 PL-OPC PIC S9(4) COMP-4. .
25 05 PL-OUT PIC S9{4) COMP-4. Output Length Field
26 05 PL-EFL REDEFINES PL-OUT PIC S9(4) CONP-4. Input Length Field
27 05 PL-INL PIC S9(4) COMP-#. :
%8 05 FILLER PIC X(8). Required Work Area
ook AR e i K OK K OK K ROK ok K A KO R ¥R K ok ok ke kR ok Kk koK K K 0K K 0K K ook oK Kk ok ok ok Rk
* THIS IS THE INPUT OUTPUT AREA *
Ak A o o o oK A o R K 2 ok ok o K ok ok ok o Rl kRO KOK 8 K R Kok o ok o ok ok ok ok RO ok ok K ok Kok ok ok
29 01 INPUT-OUTPUT-AREA.
;(1) gg gfz:_};:?'ﬂ 10 PIC X(6) . Terminal Name Field
32 10 OPERATOR PIC X.
33 10 DIGITS PIC 9(7) COMP. The data portion of the record area is first
34 10 PILLER . PIC X (26). | . . ’
35 05 DATA-IN1 REDEFINES DATA-TN. defined for an eight-position field whose
36 10 DATA-REC PIC X(8). first position is for the operator (+, —, or
37 10 FILLER PIC X (26). . -
38 05 DATA-OUT REDEFINES DATA-IN. N).. It is then redefined for output and
39 10 DATA-CHAR PIC X (34). various messages.
40 05 ACCUM-OUT REDEFINES DATA-IN.
41 10 FILLER PIC X(12).
42 10 ACCUM-VALUE PIC +++424+4449,
43 10 FILLER PIC X(11).
uy 05 MSG-DATA REDEFINES DATA-IN.
45 10 MSG-DATA1 PIC X(22).
u6 10 MSG-DATA2 PIC X(8).
47 10 FILLER PIC X(8).
48 05 MS-DATA REDEPINES DATA-IN.
49 10 MS-DATA1 PIC X (6).
50 10 NS-DATA2 PIC X(17).
51 10 MS-DATA3 PIC X(6).
52 10 FILLER PIC X({5).
53 05 TRY-AGAIN REDEFINES DATA-IN.
54 10 TA PIC X (2).
55 10 FILLER PIC X(32).:

Figure 4-14 (Part 1 of 5). Example 2 — COBOL MRT Program

COBOL 4-29

69

70

79
81
83
8y

85
86
87

89

90
91

92
93

108
109
110
11

/t'tt*t***#**t*t*t**#*ttt#tt#tttt*ttttt#t###*#t*t*##*#*#*#‘#‘ttt#*
* INITIALLY SET UP THE TERMINAL ARRAY IN OBDER THAT THIS *
* PROGRAM BE RE-ENTRANT *
Ak ok ok ok kK R e Kok Kk ok ok e ke ok ook ok R Ok e OR R R K sk OROKOR R R K R ok KoK ok ke ok
PROCEDURE DIVISION.
INIT.
SET TERM-X TO 1.
LOOP.
MOVE ZEROES TO Accunuu’rok(man-x-'.\
MOVE SPACES TO TERM-NAME (TERM-X).
SET TERN-X UP BY 1.
IF TERM-X LESS THAN 5 GO TO LOOP.
o o e o ok ok o K aOK kR kR R ok ok Rk Kok Ok Kok ok ok o8 oORoOK R0k ke sokoR R KoK ok koK ok o0k Kok ok kok ok kok
* SET OP PARAMETER LIST FOR ACCEPT INPUT OPERATION *
ok o agOK ROk BOK R O i ROK KR ROR OK K kK Kk OK KoK i oK 0K K koOROKOR KK OK Sk koK okoRok SoRokok ok Kok
ACCEPT-INPUT.
MOVE 0 TO SWITCH.
MOVE ACPTIN TO PL-OPC.
MOVE 8 TO PL-INL.

R RKOK R KK KRR O OIOK R OKKOKOKOK KKK KKK KK K KRR ok R koK

* DO ACCEPT INPUT OPERATION *

KK AAOK AR KKK KKK AR AR KORAOK KKK KKK OK R ROK IR K KR KKK ORI KR 0k K
CALL 'CCPCIO' USING PARM-LIST, INPUT-OUTPUT~AREA.

KKK KK KKK AOKOR OO KKK AROR K KRR OKOK AR AOKOKKOROR A K KR AOK 0K KRR

* CHECK TO SEE IF SHUTDOWN HAS BEEN REQUESTED *

AR KK A OKOR KRR AROK KK K RO IOK R R AR R RO OKOKR R SOk K R
IF PL-RTC = 4 GO TO SHUTDOWN.

AR RO OK KK KK AR KK AR AR AR R AOK RO K OK R KA K R K K

* DETERMINE IP TERNINAL HAS ALREADY BEEN ATTACHED, IF IT HAS *

* GO CHECK THE RETURN CODE

tttttm**t;m**ttt#*tt*t*tttttttt:tttttt*ttttt#ttttttttttt*tttttttt*
SET TERM-X TO 1.

TERM-SEARCH

33 KRR RO OROK K ORI OK R R K OROR SOK ROR OR OR KRR R RO ROk KR ok ok kR Rk ok Rk

* CHECK TO SEE IF THE TERMINAL HAS BEEN CANCELED, IF IT HAS *
* RETURN TO ACCEPT INPUT IF NO INVITE INPOUTS ARE OUTSTAND- *
* ING. IF INVITES OUTSTANDING GO TO ACCEPT INPUT. *

ok ok ok S OK R ke A RO ok Kk K ok ok ook ok ook ok 3ok o0k ok ook ok i ook Kok ok k kok ook ok ok ok K
IF PL-RTC NOT = 8 GO TO ADD-TERM.
IF PL-EFL = 0 GO TO DONE-EXIT.
GO TO ACCEPT-INPUT.
ADD-TERM.
3k kA ko Rk ok ROk K A o ok R OK Ok ke ROk K ok ok ok o ok koK kokOR KOKR Kk Kk kR ok ok ok Rk k kK
* ADD TERMINAL NAME TO ATTACHED LIST IF NOT ALREADY PRESENT *
* LOCATE A BLANK 6 CHARACTER TERMINAL NAME SPACE IN THE *

* TERMINAL DATA STORAGE ARRAY
‘t‘ﬁ#tt‘***##t*tt*ti*t*t#ttt*t***it*tt*ttt#i*#tttt##**#*tt*t**t*i#

SET TERM-X TO 1.
BLANK-SFARCH.
IF TERM-NAME (TERM-X) NOT = SPACES
SET TERM-X UOP BY 1
GO TO BLANK-SEARCH.
i*#i‘t*#*******#ttt*#**i***‘****I#****#tt‘tt‘#t*t‘#‘#‘***‘********
* NOTE: NO MORE THAN 4 TERMINALS WILL BE ALLOWED TO
* COMMUNICATE WITH THIS PROGRAM IFP ASSIGNMENT SPECIPIES *
* 4 TERMINALS *
A ok o e ol ke e e ke o ke o gk e o ol s o ol ok ko ok oK i R ROK kR K R K ke ok Kk ok o gk kR OK ok ok o koK ok JOoK Ok ok ok
MOVE TERM-NAME-IO TO TERN-NAME (TERM-X).
GO TO VALIDITY-CHK.

VAL A A i DAL DA E e L e i L e et e e e T P T e Y 2 P e
* CHECK TO SEE IF TERNINAL HAS BEEN CANCELLED. IF IT HAS AND *
* THERE ARE WO INVITES OUTSTANDING GO TO EXIT. IF THERE ARE *
* INVITES OUTSTANDING GO RENOVE FROM ACTIVE TERMINAL ARBAY. *
AR AR IO AR AR RO AR OR R 0O R AOK RO ROk Rk

TERM-FOUND.

IF PL-RTC = 8 GO TO CANCEL-CHK.
AR KRR KRR R AR AR R R KK o K ok ok ok ok Rk
* CHECK FOR INPUT ERROR INDICATIONS, ISSUE ERROR KESSAGE IP *
* RETURN CODE NOT = 0, OR IP LENGTH NOT WITHIN RANGE *

* CHECK POR VALID OPERATOR, IF OPERATOR EQUAL TO N GO RELEASE *
* TEREINAL *
04 oo e o oo O oA O R R o o ool o o Rl o e o o o o ok ok o ook

IF TERM-NAME-TO = TERM-NAME (TERM-X) GO TO TERM-FOUND.
SET TERM-X UP BY 1.
I¥ TERM-X LESS THAN 5 GO TO TERM-SEARCH.

VALIDITY-CHK.
IF PL-RTC LESS THAN 0 GO TO PUT-GET.
IF PL-RTC GREATER THAN O GO TO INVALID-DATA.
IF OPERATOR = 'N' GO TO CAMCEL-CHK.

IF PL-OUT NOT = 8 THAN GO TO INVALID-DATA,"

IF OPERATOR = '4' GO TO ADD-ACCUM.

IF OPERATOR = '-' GO TO SUB-ACCUN.
0 o e o e oo o ol R o o oK R O B o o o O ok o o oo o o o oo o ko o K
* ASSUME BAD OPERATOR, ISSUE INVALID DATA MESSAGE *
A A o o ok e e o ool Rl ool ol R ool ol e K R o o o oo o oo o o o o o o o R R K
INVALID-DATA.

MOVE °*TRY AGAIN INV DATA' TO DATA-OUT.
NOVE 18 TO PL-OUT.
GO TO PUT-NO-WAIT.

Figure 4-14 (Part 2 of 5). Example 2 — COBOL MRT Program

4-30

Initialize the accumulators to zeros and the
terminal name save areas to blanks.

Set the value for the accept input operation
in the operation code field of the parameter
list.

Set the input field length to 8, the iength of
the expected input.

Determine if the terminal name for the
terminal that transmitted the input data is

in the terminal name save area. If itis, the
data is added to the value in the accumulator
associated with that terminal. If it is not

in the save area and the terminal is not
cancelled, the terminal name is added to

the save area.

If the terminal name is not already in the
terminal name save area, it is moved to the
first blank terminal name field in the save
area.

If the return code is not equal to 0, indicat-
ing a successful operation, or if the input
length field is not equal to 8, an error
message is transmitted to the terminal.

If the first position of the input field is

+, the data is added to the accumulator
associated with the terminal that transmitted
the data. If the first position is -, the data is
subtracted from the terminal. If the first
position is N, the terminal is checked to see
if it is cancelled.

If the first position of the input data is not
+, -, or N, a message is transmitted to the
terminal.

/ltﬂ*ti*#.t‘##“““t#tii*t‘**‘#*#*“##i#t“#““““‘tltl#t“‘ttt
* NOW ADD THE VALUE RECIEVED AS INPUT TO THE VALUE IN THE *
* ACCUMULATOR *
AR GRE KRR EERERAER R R KRR KRR R RN RRERRRREE R KRR KRR Rk Rk
112 ADD-ACCUN.
113 ADD DIGITS TO ACCUMULATOR (TERH-X).
1184 GO TO DISPLAY-ACCUH.
A0 O o A o o o A o R Kok
* SUBTRACT THE VALUE RECEIVED AS INPUT FRON THE VALUE IN THE *
* ACCUNULATOR .
EERTRRERREREEEER R EREEER ARG E R R AR ARk kR Rk Rk kKR kK
115 SUB-ACCUM.

116 SUBTRACT DIGITS PROM ACCUMULATOR (TERMN-X).
AR AT AR KR AR A AR RO O AR R RO K ROORR R Rk
* SET UP TO DISPLAY THE RESULTS RESIDING IN THE ACCURULATOR *
* TO THE TERNINAL THAT REQUESTED THE OPERATION *

P eI it T e P P AR S SRR RS2 SRR RS R0 R R S22 R 2222 L0 bl it diuhhahahd

117 DISPLAT-ACCON. Insert accumulated value associated with

118 MOVE CURRENT VAL=+ ENTER DATA' TO DATA-OUT.. the terminal in the output message and dis-
119 MOVE ACCUMULATOR (TERM-X) TO ACCUM-VALUE. play on the terminal.
AT ROR AR KRR R ER KRR E KRR R R R KRR KRR KRRk Rk
* SET UP PARN-LIST FOR PUT MESSAGE WAIT *
P L e e e e e R R R PSR SRS SRR RSS2 222222222 22 22 2222 2l
120 NOVE PUTMWT TO PL-OPC,
121 MOVE 3% TO PL-OUT.
e o R K kg K K R R K R R ROR R RO RO Ok R Rk kR kR kR R Rk kR KRRk kR R Rk
* DO PUT MESSAGE WALT OPERATION *
o oA T K o 0o e oo e A e o o oo oo o oo R OK R K K RO RO RO Rk
122 CALL 'CCPCIO' USING PARM-LIST, INPUT-OUTPUT-AREA.
o oKk Ao o K R o R o o e o e R o K R R A o R RO ook ok Ok ok
* CHECK RETURN CODE TO SEE IF OPERATION WAS SUCCESSFPUL, IF *
* RETURN CODE NOT EQUAL TO 0 GO ISSUE ERROR MESSAGE *
0 o 1o R R 3 R e ok 30 o o e o o o ook R o R o o A R OK A ROR R K R ok ok R Kok Kok
123 IF PL-RTC NOT = 0 HOVE 6 TO SWITCH
125 GO TO PUT-GET.
3ok 5 o o ok R o o A K o o R o o o K R R KR R o R OR B ORROR R KR KR R R Rk
* SET UP PARAMETER LIST FOR INVITE INPUT *

KK AR R AR A KR AR HOK OR JOK K KKK KKK KR ARk kO KRR Rk Rk K
126 INVITE-INPUT.

127 MOVE INVINP TO PL-OPC.

128 MOVE 8 TO PL-TINL.
FR AR ROROK KR K K KRR KR ROK ROR FOKORKOR KKK RO O OROR RO KRR Ok K
* DO INVITE INPUT OPERATION *
AR KKK R AR OKOR KRR R OISR KR OK AR OKKORRORSOKOKIORAOK KRR K R K K K

129 CALL 'CCPCIO* USING PARM-LIST, INPUT-OUTPUT-ARERA.

130 GO TO ACCEPT-INPUT.

Figure 4-14 (Part 3 of 5). Example 2 — COBOL MRT Program

COBOL 4-31

131
132
133
134
136

137
138

139

140
142
144
145

146
147

148
150
151
153
154
156
157
158
159

160
161
162
163
165

/RO OR K ROR R OROR R SOKOK 0K CROR UK o K ORI OKOK KRR R R OROR OR ROROROKOROR R Rk kR ok Kk

* HANDLE SHUTDOWN REQUEST BY ISSUING STOP INVITES TO ALL *
* OUTSTANDING INVITE INPUTS PREVIOUSLY ISSUED *
AR OK AR ORI OR AOOKOK AR KK R KOR R R KOR 30K IR R KK K A0OKOKR AR A Rk O KK K
SHUTDOWN.

SET TERM-X TO 1.
STOP-SEARCH.
IF TERM-NAME (TERN-X) = SPACES GO TO INCR-INDEX.
MOVE TERM-NAME (TERM-X) TO TERM-NALME-IO.
A R ok e ok ol K kR R R i KKK o e Ok e ok e R ok e i Ok KR R KR R ROk
* SET UP PARAMETER LIST FOR STOP INVITE INPOT *
o ik ok K o Ok o ok o ko ok ook ok o R R ol R R ok ko e o ok ok ok K i RO R K RO KOk ok ko
MOVE STPINV TO PL-0PC.
MOVE 8 TO PL-TINL.
0 ok ok ok e ok ok ok i ok Ok ok 8k ok Kok K OK ek kR Rk ok kR KOk Rk ok ok ok Kok Kok Kk ok ok ok ook Kok &
* DO STOP INVITE INPUT OPERATION *
e K e koK e ROK R R OK K ok ok e o ol ok ki ook otk ok ok kol ok oK ok ok ook ok ok Kok Rk R ok ok
CALL 'CCPCIO® USING PABM-LIST, INPUT-OUTPUT-AREA.
oAk ok o ok R ok K OK k k R o K ok ok kool ok O K OK ok ok R ok ok ok ok ok ko ok ko

* IF TERMINAL NOT CANCELLED, THEN ISSUE SHUTDOWN MESSAGE *
* IF CANCELLED THEN IF NO INVITES QUTSTANDING GO TO EXIT, *
* OTHERWTSE GO SET UP FOR NEXT STOP INVITE OPERATION. *

AR AR KK KK AHOR AR OKIOK R HOKOKKR AR OKOK R O OR R KK Kk Rk R R KKK oK RO R R KRk ok
IF PL-RTC NOT = 8 GO TOQ SET-UP.
IF PL-EFL = 0 GO TO DONE-EXIT.
GO TO INCR-INDEX.

SET-UP.
AR KOKROIKAOK JOK AR K AOKOK KKK AR AOR R AOKOKROR SK0K OROR R S0K K R ROK K KRK R KRR R ok KoKk ok Kok
* SET UP PARAMETER LIST FOR PUT NO WAIT b

ok Ok o Ok R kR ok ook oK K OR K kR ok ok ok R ok R ok ok Ok ok ROk R R Rk okoR R ROk ok kKo kR K
MOVE PUTNNT TO PL-OPC.

MOVE 30 TO PL-OUT.
A kKR AR KR KK K KK OK ORI ROK K KR ROK R ROK K R 0K K kR RO R Rk oKk K ok

* INSERT PROPER SHUTDOWN MESSAGE TO TERMINAL REFERENCED IN *
* TERMINAL DATA ARRAY. THE MESSAGE IS SET ACCORDING TO *
* THE RETURN CODE *

3 o R o K K K ok o o K R R ok koK K R R ol 3 kok ok ok ook ol ik ok ok koK OR ook oROR KOk kK
IF PL-RTC LESS THAN 0 MOVE 'TP ERROR' TO MSG-DATA2
GO TO DISPLAY-OUT.
IF PL-RTC = 10 MOVE ' NO DATA' TO MSG-DATA2
GO TO DISPLAY-OUT.
IF PL-RTC = 0 MOVE DATA-REC TO MSG-DATA2
GO TO DISPLAY-OUT.
MOVE 'BAD DATA' TO MSG-DATA2.
DISPLAY-OUT.
MOVE 'CCP SHTDWN LAST REC - ' TO MSG-DATA1.
2 ek ok e % KoK Ok OOk OK ko K R o R OK K R ok ook oK e Rk RO ke ko koROR R RO K ook kol ok koo ok
* DO PUT NO WAIT OPERATION *
0K K o R K ORI AR R KOK 0OK K K K kRO koot ok ko ok o e R R KK R R Rk R Ok Ok ROk
CALL *CCPCIO' USING PARM-LIST, INPUT-OUTPUT-AREA.
INCR-INDEX.
SET TERM-X UP BY 1.
IF TERM-X = 5 GO TO DONE-EXIT.
GO TO STOP-SEARCH.

Figure 4-14 (Part 4 of 5). Example 2 — COBOL MRT Program

432

Find every terminal name in the save area
and issue Stop Invite Input to it. If the
terminal has not been cancelled, a shutdown
message is issued to it.

Note: When the last terminal attached to
an MRT program is processed, issue a Re-
lease Terminal operation to that terminal
in order to check the count of outstanding
Invite tnputs. If the count is greater than
zero, the program can issue an Accept Input
operation. For example, suppose an MRT
program is servicing the maximum number
of requestors and one or more additional
requests are queued to the program. If the
program receives a shutdown-requested
return code (04) and goes to end of job
without checking the count of outstanding
Invite Inputs, the program terminates with
a 2C termination code {(going to end of job
with outstanding Invite Inputs), and each
of the queued terminals receives an SO6
message (program cancelled — shutdown).

166
167
168
169

170
171
173
174

175

176
177
179

181
182

183
184

185
186

187
188
190
192

193
194

195
196

198
199
200
201
202
203

/tt*¢#**ti*********#*****t*ttttt******t*t*****t#ttt*#t.**#*t*tt*i*

* PREPARE INPUT OB OUTPUT ERROR MESSAGES HERE AND SET UP *
* PARANETER LIST FOR PUT THEN GET TO CONSOL *
s o e 1k o ok ok K RO K K R OK KK Kok oK i K o o K ok R ok OR R OKOK Ao KoK koK ok ok R Rk ok R ok R ok Rk R
PUT-GET.

MOVE PUTGET TO PL-OPC.
MOVE 29 TO PL-OUT.
MOVE 2 TO PL-INL.

o o o T ok 3K o o o o R K K K K R R OROR A R OKOK kK OR OK oK R OR ok ok ook ok RO BOKOR 30K Aok ki kok ok ok Kk

* INSERT TERMINAL NAME = CONSOL, TERMINAL NAME WHERE ERROR * If an input error occurred, the message

* OCCURRED, AND INPUT OR OUTPUT ERROR NESSAGE * . I

"l*t'*‘K*t*ttt#*;*******t***t**’l*******tt*t‘ttt***t#**#‘k‘t**t*#‘*t* |NPUT TP ERROR TNAME XXXXRX 1S
MOVE * INPUT TP ERROR TNAME =' TO MS-DATA.
IF SWITCH = 6 MOVE 'OUTPUT' TO MS—DATA1.
MOVE TERM-NAME-IO TO MS-DATA3.
MOVE 'CONSOL' TO TERM-NAME-IO,

issued to the console (xxxxxx = terminal on
which the error occurred). |f switch equals
6, a similar output error message is built

SRR KKK K KK K KR KRR OK A ROR KoK R R ROK KKK KK KKK K K KR KK ROR KoK R Rk Kok ROk K KK and issued.
x DO PUT GET OPERATION TO CONSOL ‘ *
ok Aok ok ok K R kOl k3 ok i R o ok kK ok K K Kk ok ok ok R R0k kO Kok kK K K OK K OK KR K R K KKK ok ROk ok ok R
CALL 'CCPCIO' USING PARM-LIST, INPUT-OUTPUT-AREA. If the system operator keys in TA, the ter-
3 ok Ok 3 ROk o K o K KKK K K K K K R KK K K K ok s oK o ok o KK KK R R ROk KOk Rk ok koK ok ok ok koK nﬁna'nanm Oftheter"ﬁna|on m"“chthe
* MOVE TERMINAL NAME BACK TO TERMINAL NAME AREA IN TERMINAL * : : .
* DATA STORAGE ARRAY. CHECK FOR REPLY REQUESTING TO TRY * arror occurred is placed in the terminal
* AGAIN-- TA, IF TA NOT PRESENT THEN GO DISCONNECT * name field of the record area and the
s 3 o 3 o o ok KR KR K K R K K K8 K ko kR 8k ok R R K R R R R KR KO KRR R ROR ok R ROk ok ok ok Operaﬁonisretﬂed.|ftheopeﬁn0rkeys
MOVE TERM-NAME (TERM-X) TO TERM-NAME-IO.) .
IF TA NOT = 'TA' GO TO CANCEL-CHK. in any other characters, the terminal
IF SWITCH = 6 GO TO DISPLAY-ACCUM. name for which the error occurred is
3 ok A K KO K K K K KRR K A K K KR K o o K ROk K Rk K KK K 0K R R 3k R koK ok okokok R Kok pbcedintherecordare d Tth
* IF OUTPUT ERROR MESSAGE THEN GO TRY TO OUTPUT AGAIN * i a and, if the ter-
* TP INPUT ERROR MESSAGE THEN GO TRY TO INPUT AGAIN * minal has not been cancelled, a retease

Ak FOIOK K OK K R OK OK KKK KRR KRR KKK IR KK ORKOKROK R Kk OO K Rk ok Rk Rk

MOVE 'TRY AGATN TP ERROR' TO DATA-OUT.

MOVE 18 TO PL-0U0T.
/tit**tttt*it#**t##**#'*'**t**i*##t*ttt****t*t‘*‘it**‘#t#"ttt*t‘l
* SET UP PUT NO WAIT PARAMETER LIST *
Ak AR oK o K K K K K ROK K K K KK K KK KRR RO KK RO OO R R Kok Rk R R KRk

PUT-NO-WAIT.

MOVE PUTNWT TO PL-OPC.

F KK K R K K K A0OK R o S R KOK ORI O K K O A KRR OROROK K KRk KK R KR R kK
* DO PUT NO WAIT OPERATION *
KKK K oK R K R ROK ROK KK A ROK K kAR K KRR K KKK RORHOKOK KRR KKK AR R koK oKk R kR

CALL *CCPCIO' USING PARM-LIST, INPUT-OUTPUT-AREA.

GO TO INVITE-INPUT.

03 A0 o K R K A oK KK kR R ok R ok ok K K R AR KK A K KK Rk R R KR K KOR
* CHECK TO SEE IF THIS TERMINAL HAS BEEN CANCELLED., IF IT HAS *
*

terminal operation is issued to it.

* AND THERE ARE NO INVITES OUTSTANDING GO TO EXIT,
* OTHERWISE GO CLEAR FROM ACTIVE LIST. IF IT HAS NOT BEEN *
* CANCELLED DO A RELEASE TERMINAL OPERATION, *

o 3 ko KKK R K ok o OK AR K R A R K R R KK RO R R R R OR O KRR K R R R R kR R Rk Rk K
CANCEL-CHK. .
IF PL-RTC NOT = 8 GO TO RELEASE-TERM.
IF PL-EPFL = 0 GO TO DONE-EXIT.
50 TO CLEAR-ENTRY.
o o o oA kK o o R o o o K K K 0K o kKO ok ok o Kok kK ok RoKoRk ok Rk kR ok
* SET UP PARAMETER LIST FOR RELEASE TEBMINAL OPERATION *
ek K K K K A KR KK o R A R Kk o ok R K KK OKR o kR KR R KK OK K K K o Kok ok R ok
RELEASE-TERM.
MOVE RELTRN TO PL-OPC.
s o ok Ok o o 3 o K K K OK K R OR oK o ok ok ok ok Kk o o OR R OK ok o R Ok ok kR Ak K ok ok ok ok
* DO RELEASE TERMINAL OPERATION *
3 K o K KK K K K K K R KK KR K i ok ok KKK R KK K Ak OK o ok R K R OR R RO ROIORROR Rk
CALL 'CCPCIO' USING PARM-LIST, INPUT-OUTPUT-AREA.
IF PL-EFL = 0 GO TO DONE-EXIT.
o 3 e o ok o 3 A o o K ok ok o K o ok ok 3 ok ok R ok ks ok ok ke ol R K R i ok ok ol ko kool ik ok Ok KRR ROk ok kK K

* INITIALIZE THE TERMINAL DATA STORAGE ARRAY ENTRY FOR THE *
* RELEASED TERMINAL TO BLANKS AND ZERO THE ACCUMULATOR AND *
* RETURN TO ACCEPT INPUT *

Fk ok AR KKk K KK R K K HOK 0K R R K R R OR R 30K KRR RO ORI KKK KR X Rk R AR R K
CLEAR-ENTRY.
MOVE SPACES TO TERM-NAME (TERM-X).
MOVE ZEROFRS TO ACCUMULATOR(TERM-X).
GO TO ACCEPT-INPUT.
DONE-EXIT.
STOP RUN.

When a terminal is released, reinitialize the
accumulator to zeros and the terminal name
save area to blanks.

Figure 4-14 (Part 5 of 5). Example 2 — COBOL MRT Program

COBOL 4-33

4-34

To request CCP communication services, you must write
your FORTRAN programs using the standard application
program interface, described in Chapter 2.

-This standard interface is composed of the following
elements:

® Communications Service Subroutine
® Parameter List
® Record Area

Note: This chapter assumes that you are familiar with the
FORTRAN language. For more information on writing and
executing FORTRAN programs, see the publication /BM
System/3 FORTRAN |V Reference Manual, SC28-6874.

FORTRAN USE OF THE STANDARD INTERFACE

To use the standard application program interface to the
CCP, your FORTRAN application program must:

1. Define the record area and the parameter list (see
Defining the Record Area and Parameter List).

2. Set the contents of the parameter list and the record
area {see Setting the Contents of the Parameter List
and Record Area).

3. Call the communications service subroutine, identifying
the program'’s parameter list and record area, to
initiate the operation (see Calling the Communications
Service Subroutine).

4, Examine information returned by the CCP in the
parameter list and record area and, for input operations,
process the input data (see Examining Returned
Information).

'

DEFINING THE RECORD AREA AND PARAMETER
LIST

Before your FORTRAN program can perform communi-
cations operations, you must define one or more record
areas and parameter lists.

Chapter 5: FORTRAN IV

Record Area

The number of record areas you must define depends upon
the logic of your program. You need not always define
separate record areas for input data and output data, or for

“operations with different terminals.

Each record area defined must be large enough to contain
the name field and the maximum length of data to be
received as input in the record area or to be transmitted

as output from the record area. Define each record area
you require as an array using an explicit specification
statement. Define the array as type INTEGER™2. You
may specify an initial value for the elements of your record
area array by using the DATA statement.

Define the data pottion of the record area as required by
your record formats. You should define all data items as
literal or unpacked data unless data is to be transferred
over a BSCA line using Text Transparency (see index entry
terminal attributes), when you can define data fields of
the record area as binary, packed, or hexadecimal.

Many FORTRAN application programs require that the same
record areas be used for records with different formats. By
defining each record area array needed by the program and
using EQUIVALENCE statements, you can redefine the
record area array in a different format. The EQUIVALENCE
statement specifies that the redefined record area format
shares the same storage locations as the original record area
array definition.

Example: Figure 5-1 shows how to define a record area
whose record may be in either of two formats. The
EQUIVALENCE statement assigns the array LTERM to
the same storage locations used by the first six elements

of MAREA, ARRAY1 to the same locations used by the
next 30 elements of MAREA, and ARRAY2 to the same
locations used by the last 20 elements of MAREA. The
DATA statement initializes the six elements of the terminal
name array, LTERM, to blanks.

FORTRAN IV 5-1

FORTRAN Coding Form

PROGRAM PUNCHING GRAPHIC
PROGRAMMER lDATE INSTRUCTIONS| pyncH
£ [sTamemenT| 2 FORTRAN STATEMENT
102 3456 :‘. 7 8 9 101112131415 1617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 b4 55 56 57 58 59 6l
c * i
c % IRIEICORD| |AREA| [ARRIA[Y 1]
C * , N 0l IRREE L
INTE|GE Rix2] MAREIA(56) | ILTERM(6) |, ARRIAY(LI(30)], AIRRAN 2I(120D], | | |
EQUINVAILENCE ((LITERMCILD!, MAREAI(ILDD]I(ARRAYILICLD], MAREA(TI),
L (ARRAY[2|([L)] IMaREAC[31Z])]
DATAl LTERM/ 6% |7)/

Figure 5-1. Defining a Record Area Array

Parameter List

You must also define one or more parameter lists in your
program (see index entry parameter list). Define each
parameter list you require as an eight element array using
an explicit specification statement. Define the array as
type INTEGER*2. The first four fields of the parameter
list should be defined as two-byte numeric elements. You
can initialize these fields by specifying them in a DATA
statement. These fields are, in the sequence they must be
defined in the parameter list:

1. Return code field.
2. Operation code and modifiers field.

3. Field used jointly for output data length, actual
input data length, count of outstanding Invite Inputs,
and attributes identifier.

4, Maximum input/output data length field.

These fields are the only fields you reference in your appli-
cation program. The remaining four fields of the parameter
list are not referenced directly by your FORTRAN program.
However, they must be defined because space must be
reserved for them. Your program should never initialize or
set these fields.

Unless required by your program, you do not need to define
separate parameter lists for each operation type nor per-
manently associate a parameter list with a particular record
area array. The number of parameter list arrays you define
in your program need not be the same as the number of
record area arrays.

5-2

Example: Figure 5-2 shows how to define a parameter list
array in a FORTRAN program. The EQUIVALENCE state-
ment assigns LRTC to the same storage locations as the
first element of the parameter list array, LOPC to the same
locations as the second element. LOUTL to the same loca-
tion as the third element, and LINL to the same location as
the fourth element. The remaining four elements of
LSTPRM are the required work area and are not set by the
FORTRAN program. The operation field, LOPC, is
initialized to 2 for a PUT operation. The output data length
field, LOUTL, is initialized to 48. This value might be the
length of the first output message. The maximum input/
output data length field, LINL, is initialized to 60. This
value might be the total length of the data portion of a
record area used with this parameter list.

Return Code Values

The CCP ignores the contents of the return code field of
the parameter list at the beginning of a communications
operation. At the completion of each operation, the CCP
places a binary value in this field indicating the status of
the operation.

This value indicates:

® The operation completed normally (value of zero for
nonchained operations, 14 for chained operations)

® The operation resulted in an 1/0 error {negative vaiue)

® The operation resulted in an exceptional condition
(positive value)

FORTRAN Coding Form

PROGRAM PUNCHING GRAPHIC
PROGRAMMER IDATE INSTRUCTIONS | puncH
%’ STNAJ;éw:F:w % FORTRAN STATEMENT
102 3 4 5]617 8 9 1011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 €
C fad
C % PAIRAMETIER ILITISIT| ARIRAY| [IINITITALIRZIED| FlOR Al lpluT| |OPERIATIION
C o Ll
IINTE|GERH2| LiSTP|RM/(I8)
EQUI[VALENCE (ILRTIC,LisTPRIW(LY DI, |(Liolpic|, UsTIPRMI(12D DI, i
M (Llojvrrl, LsrieRM (3D], (LT NI, (((Us[TIP/RM (14D])
DIATA| [Lloplc]|LloVT|L],ILINL/ 2] 148, 60]/

Figure 5-2. Defining a Parameter List Array

The CCP places this value in the return code field of the
parameter list before returning to your FORTRAN program.
The FORTRAN program must check the return code value
upon the completion of each operation. Specific return
code values and their meanings are given in Appendix F:
Return Codes.

Operation Code Values

For each communications operation, you must set the
operation code field of a parameter list to a value which
indicates the specific operation being requested. You must
set this value within your FORTRAN program. This field
can be set by initializing the field in the definition of the
parameter list array or by moving constants into the oper-
ation code array element during execution (see Setting
Fields in the Parameter List later in this chapter).

The CCP does not change this field during the communica-
tions operation; the contents of the field are the same after
completion of the operation as they were at the beginning
of the operation. See Chapter 2: Standard Application
Interface to the CCP for descriptions of the valid operations,
Appendix E: Operations Codes summarizes the operations
and operation code values.

SETTING THE CONTENTS OF THE PARAMETER LIST
AND RECORD AREA

You must set the contents of the following areas before
performing a communications operation in FORTRAN:

1. Parameter list array, if different from the last
operation.

2. The program name or the symbolic termjnal name
in the first six elements of the record area array.
(This step can be omitted if a terminal name is not
required for the operation, or if the name is the
same as in the previous operation.)

3. Output data in the data portion of the record area
array if the operation is an output operation.

Setting Fields in the Parameter List

You reference four parameter fields within your FORTRAN
program.

® Return Code field.

® QOperation Code field.

® Field used jointly for output length, effective input
length, count of outstanding Invite Inputs, and attributes

identifier.

® Maximum input/output length field.

FORTRAN IV 5-3

You need set only the operation code field and the maximum
input/output length field for input operations. If you are
doing an output or an Acquire Terminal operation, you

must also set the field used as the output length or attri-
butes identifer. You need never set the return code field;

it is used only by the CCP to return information about the
operation to your FORTRAN program.

Operation Code

Whenever a communications operation is issued, this
field must contain a value indicating the operation to be
performed. You can set this field when you define the
parameter list array by specifying a DATA statement:

DATA OPC/2/

-You can also set this field by specifying an assignment
statement. You can assign it either a numeric value or a
numeric variable. In the following example, the operation
code element of the parameter list, LOPC, is assigned the
value 2,

PROGRAM
PROGRAMMER

STATEMENT] &
NUMBER |8
6

jcomMm|

73 4 5|6/7 8 01011121314 161617 18 1920 2122 2324 25 2627 2855
LioPic| |=| |2 i

54

The following example sets the operation code array
element, LOPC, by moving the numeric variable, PUTOP,
into it. PUTOP is defined with the value 2.

PROGRAM
PROGRAMMER

STATEMENT]|
NUMBER
2345

coMM. |
Oy CONT.

101112 13141516 17 18 19 20 21 22 23 24 25 26 27 28 2!

8 9
QPC| =1 |PTIOP

L

The CCP never modifies the value in the operation code
field. You do not need to reset the field if the operation
to be performed is the same as the last operation using
this parameter list.

For more information on the valid operations, see the
chapter Standard Application Interface to the CCP.
Appendix D: Operation Codes summarizes the operations
and operation code values.

Output Length/Attributes Identifier/Count of Outstanding
Invite Inputs/Effective Input Length

The third field of the parameter list can contain one of
four different values depending on the type of operation:

® Output Length

® Attributes Identifier

® Count of Outstanding Invite Inputs
® Effective Input Length

The first two values you must set; the third and fourth
are returned values set by the CCP for certain operations.

You can set this field when you define the parameter

list array by means of a DATA statement, or by means of an
assignment statement, just as you set the operation code
field. You can assign it either a numeric value or a numeric
variable.

Output Length: For output operations, you must place
into this field the length of the data you wish to write from
the record area in your program. This length does not in-
clude the six elements at the beginning of the record area
array for the name field. This length must be less than or
equal to the output length specified for the fourth field of
the parameter list. The output operations you must set a
data length for are:

® Put

® Put-No-Wait

® Put-Then-Get

® Chain Task Request

You must reset this value if the output data length differs
from the last operation using this parameter list or if the
field was modified by the CCP. This field is modified by
the CCP for the following operations:

® Get

® Put-Then-Get

® Accept Input

® Get Terminal Attributes
® Acquire Terminal

® Release Terminal

Attributes ldentifier: 1f your operation code specifies an
Acquire Terminal operation which sets the attributes of
the terminal to be acquired, you must place into this field
a value that identifies the attributes you want to assign to
the terminal. This numeric value must correspond to the
number you assigned to the desired set of attributes in an
Assignment run.

Effective Input Length: You do not need to set this value.
For each input operation, the CCP places the actual length of
the data passed to your FORTRAN program in this field
before it returns control to your program.

Count of Outstanding Invite Inputs: On a Release Terminal
operation and on any input operation that results in a 08
return code (terminal entered data mode escape and issued
a /RELEASE command), this field is set by the CCP to

the number of Invite Input operations still outstanding. If

this is a multiple requesting terminal (MRT) program, this
number includes not only the Invite Inputs you have issued
that have not yet been satisfied by an Accept Input operation,
but also the number of additional terminals that have re-
quested your program but are not yet being served by your
program.

Maximum Input Length/Output Data Length

For each operation involving input data, you must enter a
numeric value into the fourth field of the parameter list
indicating the maximum amount of input data you expect
to receive. For each operation involving output data, you
must enter a numeric value indicating the maximum amount
of output data you expect to transmit (in this respect, the
FORTRAN communications interface differs from the
standard interface defined in Chapter 2). This output length
must be greater than or equal to the output length specified
in the third field of the parameter list, but no greater than
the size of the data portion of the record area with which
this parameter list is used, or unpredictable results can
occur. The value does not include the six elements at the
beginning of the record area array for the terminal name.
The input operations for which you must place a value in
this field are:

o Get

® Invite Input

® Accept Input
® Put-Then-Get

® Get Terminal Attributes

® Stop Invite Input (in case input cannot be stopped)

The output operations for which you must place a value
in this field are:

® Put
® Put-Then-Get

® Put-No-Wait

FORTRAN IV 55

You can set the value of this field when you define the
parameter list area by specifying a DATA statement or by
specifying it in an assignment statement. The CCP never
modifies the value in this field. Therefore, you do not need
to reset it unless the maximum input/output length for this
operation is different from the value set in this field the

last time this parameter list was used. However, if this
parameter list is used with more than one record area, you
may need to alter this value during execution of your
FORTRAN program.

Example of Setting Fields in the Parameter List

Figure 5-3 shows how you can set the operation, output
data length, and maximum input/output data length fields
of a parameter list. The maximum input/output data length
element is set by initializing it to 125 in a DATA statement.
It does not need to be reset unless you wish to receive (Get)

or transmit (Put) data longer than 125. The operation code

element and the output length element are set by assigning
them numeric values.

Setting the Record Area

The record area consists of a six-position name field and a
data area. For an operation with a terminal, except for
Accept Input and Shutdown Inquiry operations, you must
place the symbolic name of the terminal to be involved
with the operation. For Chain Task Request, you must
place the name of the requested program in the name
field. You must also provide the data to be transmitted

in the data elements of the record area array when an
output operation is to be performed.

Name Field

For operations involving a terminal the name you place in
arecord area array must have been assigned to your program.
You may also identify the requesting terminal by using six
blank elements as the terminal name if your program is

not a multiple requesting terminal (MR T) program (see

index entry). See Chapter 2: Standard Application Pro-
gram Interface to the CCP for more information on the

valid terminal namés.

For a Chain Task Request operation, you must provide the
name of the program to be loaded in this field.

5-6

You may set the name field when you define the record
area array by specifying a DATA statement or by specify-
ing it in an assignment statement. You need not reset the
terminal name array elements if the terminal to be used is
the same that was named the last time the record area array
was used, unless the name was modified by the CCP. The
CCP modifies the terminal name field of the record area in
the following situations:

® Upon completion of an Accept Input operation, CCP
sets the name field to the name of the program or ter-
minal whose data is placed in the record area array.

® Upon completion of any operation using the field name
array element set to blanks, CCP sets the name element
to the name of the requesting terminal.

Output Data Area

If the operation to be performed is an output operation,
you must provide the data to be transmitted in the data
portion of the record area. You do not need to provide
data in the record area for operations other than output
operations because either the data area is not used or data
is provided to your program by CCP in this area. Data
provided to your program by the CCP overlays the infor-
mation previously in the data portion of the data area. For
example, the input data transmitted to your program by
the Get part of the Put-Then-Get operation overlays the
output data transmitted from your program by the Put
part of the operation. See the Chapter 2: Standard
Application Program Interface to the CCP for more infor-
mation on transferring data.

Note: If the message to be sent is shorter than the total
length of the data area, you need not clear the excess area
to blanks.

Example of Setting the-Record Area

Figure 5-4 shows how you can define and set the record area
when it is used for both input and output operations, Assume
the CCP has set the terminal name and data area as the

result of an Accept Input operation. The FORTRAN pro-
gram then resets the data area for an output operation by
moving the message “TRY AGAIN INV DATA" to the data
portion of the record area array. This message overlays the
input data transmitted to the record area array by the Accept
Input operation. Later in the program, the terminal name is
reset.

Figure 5-3. Setting Elements in the Parameter List Array

FORTRAN Coding Form Prnted i U5,
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER [DATE INSTRUCTIONS| punCH CARD ELECTRO NUMBER* |
g SLAJ;;AEE;IT g FORTRAN STATEMENT IDEs’\‘EES'E%'t:EON
112 3 4 516[7 8 9|0]I‘11 1 4151§_1_7_‘ﬂ&‘202|22232425_2_6_2723_&302“32333435m§4041424 44 45 4647 48495051 525354 5@&5&%@61 64 65 66 87 89 70 71 72[7374 75 76 77 78 1!
IINTIE|GIE|RIX|2 plairMmI(18]) o The parameter list is defined as an 8-
EQUTVALENCEE] [([RTIc, PRM (LY, ((lolpic], lPlagM (12D)], (OUTL&ARM(QL element array. Each element is two
i (1IN, PIA RM @HNN S - / L] bytes long. 1t is then redefined in an
DTl I“L/l s/ s Return code Operation code /7 EQUIVALENCE statement.
t |- | Maximum input/output length /
E N Qutput length -4 1 4
S \l Set the maximum input/output length
aelcl =] 2| T | Lfield to 126 : TTITTTT
Y TL |= 2.6(0f Set the operation code field for a Put operation.
(Set the output length to 26, the length of the output message.
44 § |
‘ T
oec| =] 4] |® rReset operation code for Get operation. l
4 L e e e
i IERARRRRRRRERRRERRERR
oPc| = 12 Reset operation code for Put operation.
OUTIL =] 1|25 - Reset output length to length of next output message.
é 4l
7
+ — -

FORTRAN Coding Form Pantedin USA.
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER IDATE INSTRUCTIONS| puncH CARD ELECTRO NUMBER®
Iforarenen] s FORTRAN STATEMENT O SRQUENCE
1“2 3 456 ; 7 8 9 1011121314151617181920 2829 ﬁﬁ_‘ﬂfﬁ Qﬁ Aggg o962l 57@‘ & 737475767 7
IINTEIGERXi2| [LIPIARM(18), REA'SQ), TERM (4141, ILRTIC, [LIOPIC], |LITINIL|, ILI0UTL, ILEIFL]
q o
TINTEGER¥(2] [1],irl1], 7], 717 Ixirls \
NTElc/ER (2| [ERMSBL]¢2) | [ERMs[al2/ C1l6])], ERMsl&3](12))], [ERMSIGI4I(1LB) |, ERMSIG5I(1L &)
DiaTA| TERMCLD], TERM(LI2)], TERM (1213])],TERIM (34 /4| 11/
' I] Define record area array, MAREA,
Dlaftlal ERMslelsl/*TIR)Y| AlGIAILIN LNV DATA]’ error message arrays, and other
’ tnitialize the ERMSGb array to the | | arrays and variables used by the
M IN desired error message. program.
I=1,16 e
I [)|0 25'@%% SM(J’J’ j-) =z A3) l,, Reset the terminal name in the first
coln[TTINVE T 7| six positions of the record area array.
4
5]
)
Dio| gigBsgldl i1l=11].|L18 | | Set the data portion of the record array
MaReRI((TH6ED] |=] [ERMsels(11D | > H to the error message to be transmitted
<_5.+¢ CON[TILINVE as output.
§
2
{

Figure 5-4. Setting the Record Area

FORTRAN IV 5-7

CALLING THE COMMUNICATIONS SERVICE
SUBROUTINE

Since FORTRAN does not include special statement types
for terminal 1/0 operations and other communications
services, the CCP provides a communications service sub-
routine, CCPFIO, that converts your FORTRAN program’s
communications requests into a standard request to the
CCP communication facilities. The functions performed by
CCPFI10 for your FORTRAN program are:

® Loads index register 2 with the address of your pro-
gram’s parameter list.

® Places the address of the record area into your pro-
gram’s parameter list.

® Packs the data from A1 format to A2 before it is
passed to CCP.

® Branches to the CCP.

® Unpacks the data from A2 format back to A1 before
it is passed to the FORTRAN program.

The CCPFIO subroutine must be linkage edited with your
FORTRAN application program. See Chapter 9. Program
Preparation.

After you have set the required parameter list array element
and the terminal name in the first six elements of the record
area array, and have prepared any output data, you are
ready to request the CCP to perform the operation specified
in the parameter list array. You make this request by issuing
a CALL statement, specifying CCPF10. The names of

your parameter list array and record area array must be
passed as arguments to the subroutine.

The format of the CALL statement is as follows:

CALL CCPFIO (parameter-list-array-name, record-area-array-name)

5-8

In the following example, the name of the parameter list
array is PARM-LIST; the name of the record area array is
INPUT-OUTPUT-AREA:

CALL CCPFIO (PARM-LIST, INPUT-OUTPUT-AREA)

Control returns to your FORTRAN program at the statement
immediately following the CALL statement. When the
return occurs, the following actions have already taken place:

® For output operations, any output data has been accepted
by the CCP and, depending upon the output operation
specified, has been received by the terminal. In any
case, the record area array is now free for you to use
again.

® For input operations, any input data which was to be
received in the record area array is now in the record
area array.

® For Accept Input operations, the symbolic terminal
name of the terminal which provided the data in the
record area array has been set in the first six elements
of the record area array.

® For all operations, the return code field in your parameter
list array has been set indicating the result of the
operation.

® For input operations, the actual input data length has
been set in your parameter list array.

® For Release Terminal operations or for input operations
where the terminal has released itself from the program,
the count of outstanding Invite Input operations has been
set in your parameter list.

® For successful Task Chain Request operations, the re-
quested program is placed on the program request in-
put queue when control is returned to the requesting
program.

EXAMINING RETURNED INFORMATION

After control has returned to your FORTRAN program
from the Communications Service Subroutine, you should
examine returned information supplied by the CCP,
including one or more of the following:

® The return code

® The symbolic terminal name (if it was set by the CCP)
or the name of the program that issued the Chain Task
Request operation.

® The count of outstanding Invite Inputs, if a Release
Terminal operation was performed or if the return code
value from an input operation indicates the terminal
released itself.

® The actual input data length, if an input operation was
successfully performed.

® The input data, if an input operation was performed

Return Code

The CCP always provides a return code after an operation.
You should never assume that an operation is successful;
you should always check the return code. In certain cases,
you will find that no data transfer has occurred. See
Appendix E for the meanings of specific return codes and
see Programming Examples, later in this chapter, for
examples of checking return codes.

You may wish to perform certain operations in your
FORTRAN program depending upon the return code value
set by the CCP. The example in Figure 5-5 assumes that
you want to branch to one of several locations depending
upon the value of the return code. The program examines
the return code value for the following conditions:

® The operation was successful and no exceptions occurred.

® An EOT was received on a successful operation.
® Some other exception condition occurred.

® An I/O error occurred.

Assume that all array names have been defined earlier in
this program. Note the use of comments in the example.

Examining a Returned Name

On certain operations, the CCP returns the symbolic
terminal name to your program’s record area array. You
may need to examine this name.

For example, you may need to examine the name of the
requesting terminal or the terminal that provided the input
data to associate new data with data previously received
by comparing the terminal name in the record area array
with a saved terminal name. You can do this by specifying
a DO loop that sets the elements of a six-element save area
array equal to the terminal named elements of the record
area array. The save area array must be defined as an area
of type INTEGER*2,

If a program can be requested from both a terminal and an-
other program using the Chain Task Request operation, you
may want to determine how the program was requested.
This can be accomplished by checking for a 14 return code,
indicating a Chain Task Request operation. This informa-
tion is useful if a program communicates with the requestor
since your program cannot communicate with a chain task
requesting program.

The example in Figure 5-6 saves the terminal name the CCP
sets in the terminal name elements of the record area array,
MAREA, by specifying a DO loop. The terminal name
elements are saved in the array LFEFER.

FORTRAN IV 5-9

FORTRAN Coding Form et U84,

PROGRAM PUNCHING |GRAPHIC ’ PAGE OF
PROGRAMMER I DATE INSTRUCTIONS| puNCH CARD ELECTRO NUMBER*
g STNAJ;;AEE: g FORTRAN STATEMENT 'DESNETQIEL%ACEON
1]2 3 4 516]/7 8 9 1011121314151617 18 19 20 21 2223242_5[2_@&%:" 323334353637383404!42434445464748495051525354555§§Z§§§9‘§_0_\'6;1ﬁ2’g§_§§6_6§l‘6§_697071 727374 75 76 77 78 79 80|
C ¥
C XA SISIVIME| RIEQUIIIRED CO}NTROL ELEMENTIS| ISElT,| N [REQUIE|sT] (OPERAT(ION
C by NEREE
ClALL clCPFiol(LsTe W’Fm EJA)
C % .
C XEXAMINE [RETWIRIN cople! FloRl Tl/0 EIRROR, ISUCCES|SFULl oPERATIIIN,
Cl * OTHER EXCEPTIIOM | | |
C %
I [(ILRTICD| 5]1], /50,52

C ¥DILSTINGUTIISH BETMWEEN EOT| REICEIIVED| |AND| OTHER EIXC IIOINS |.
G XRETVRN| |COPE |=| [2], WHEN EOT| RECEIVED
c X
5| | | 1TF [(ILRTC] [.INEL[2] Gl ITo] [4/9
(o &
c *SET| UP FIOR [E/OT RE|CE/INVED
C ad

$

?
C ¥
C ¥NORIMAL| IOPERATILON |CIONTINUESH HERE
C X
L] CONTITINUIE

g
T 234 616]7 8 0101112131416 1617181020 |zzzxz4252’§ﬁ‘2‘5293031323 343536 37 38 30 40 4142 4344 35 46 47 48 49 50 51 b: q ST 5050 60 61 5763 64 08 66 67 68 6970 71 7173 T4 15 TB TL TB.T

g == 55‘ H GX28-7327
=572 FORTRAN Coding Form Printed in U.S.A.
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER |DME INSTRUCTIONS | puncH CARD ELECTRO NUMBER®
% sTaTEMEN % . FORTRAN STATEMENT IDEs":EESlE%pz‘:TEION
19 70 71 22 73 24 25 26 27 2820 30 31 i3 5656 57 56 53 60 61 62 63 64 65 66 67 68 69 70 71 72|
3 3 5|6]7 B 9 1011121314151617 18 19 20 21 2,__22_4125’_627 B 75 30 3132 3334 3 36 37 % 30 40 41 42 4344 45 46 47 45 4350 15253545j§§5775‘hﬁg7_g§519§§z§g§97071 72[7374 75 76 17 7
C X
C &SET ur FOR [1/|0 [EIRROR EXLT
1/ | | [CoNT|INVE
C ¥
C DESIET| UIP| FIOR |OTHEIR EXCEPTIIONIS
C ¢
49 CIONTINUVE
q
>
¢
T 23 A 5I6lT 50 M IR0 I 2273 7 25 7677 7575 0 3. 327 34,55 50 37 5.1 40 41 47 43 44 45 46 47 48 45 5051 53 55 57 55,50 50 5T 67 53 54 65 58 67 6068 70 T T3 TA TE 16 T 7B 7

Figure 5-5. Examining Return Code Values

5-10

‘Iﬂl"

i
WK,

FORTRAN Coding Form

GX28-7327
Printed in U.S.A.

PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER | DATE INSTRUCTIONS| puncH CARD ELECTRO NUMBER*
e FORTRAN STATEMENT IDENTIFICATION
T2 3456(6l7 89 |0111213141§5161718|92021 222 4;;@242%;9303131333435 37 38 30 40 41 42 43 44 45 46 47 48 49 B0 51 5253§R@rmmﬁiﬁimnvswnv
]
INTE|GERX 2 MAREAI(I56) |, LTERM(6)| |
E uzvg;gmg@ (L{TERM (1)), MARE|A/(4D!)
DATA| |LTERM/I6p¢"| |/ | |
IINTE|cERM2| [LIREFER () !
DATA| ILREFER|([L) [,LREF[ER (12D], LREFERI([3)], LREFER (4], L REFERI(EN,
L LREFER (6])/ g ’ .
4
§
)
(
Do 5ig 1| [1,6
LIREFERI(I])] [=| [ILTERM (LD
50 CIONTIINUE
4
S
3
{
12 4 5|6]7 8 9 10111213 4151617181920 Li« § -: - 6 : 66 1;741;&71737‘5@

Figure 5-6. Saving the Symbolic Terminal Name

Referencing Saved Information

In some of your FORTRAN programs, you may need to
save the information entered on the terminals and reference
it later in your program. For example, if your program
receives data from several different terminals, you may need
to associate new data entered on a terminal with data
previously entered on the same terminal. To do this, you
must save the significant data received from every terminal
you are using and identify that saved data with the name

of the terminal from which it was received. You can then
associate new data with the saved data by comparing

the terminal name set by the CCP in the record area array
with the saved terminal names.

You can save information for each terminal in a two-
dimensional array. Each column of elements in the array
could refer to a set of elements received previously from
each terminal. The number of rows and columns specified
by the array depends upon the number of data items and
terminals. Upon completion of an Accept Input operation,
you would then search the array to find the array entry for
the terminal that just transmitted data to your program.
You can then associate the new data with the saved data by
specifying a DO loop.

Figure 5-7 shows how to set up a two-dimensional array for
saved information and reference the saved information in
your FORTRAN program. By searching the array for the
saved terminal name elements that correspond to the terminal
name elements in the record area array, you can associate

the new data with the data that was saved.

Effective Input Data Length

If the Communications Service Subroutine requested an
operation which transferred data to your program (Get,
Accept Input, Get Attributes, Put-Then-Get, or Stop
Invite Input), the CCP also places the effective length of
the input data into the parameter list array. Because this is
the length of the data that was actually received by your
program, you may wish to use this length to control sub-
scripted operations in your program. For example, you
may need to scan the input data for a specific character
or string of characters. To do this you must know the
length of the input data you must scan.

~

FORTRAN IV 511

GX28-7327

FORTRAN Coding Form Printed in U.S.A.

PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER IDATE INSTRUCTIONS| puncH CARD ELECTRO NUMBER*
%‘sm};r:: ’8; FORTRAN STATEMENT IDES'\‘EEEIE?\:::EON
é2345s*a9wnwwumwnEwmmﬁﬁﬁﬁﬁﬁzﬁwmun%%ﬁﬁmwwuunuwwumm@jﬁ}ﬂﬁﬁ@@@@mmmm@@gg@mﬂnvnmmﬁwmw
c MTERMINAL| TNFIORMATI IO E‘UER— CK ARIRIAY| |-I-| ILREFER | |
d X [THE| [LASIT| ELEMENT| OF| [THE TIERMINAL WAME| LIS [WseD S |] - A
C ¥ EleMINALl WAME ¢ QQE | 7 I Assume that the pa;\rame;er “Zt :)Indd 7
T I8 e Row leelrih (3, i) TvieoucH iereicll o) loprianai) | meciores oy o wen efoes |
c % [THE TERMINAL NAHE| (CoDE terminal name is unique. The first —
C K| T Row CIREFIER(IZ, 11)] [THIRoUGIH LREF&K(2. 15]) CloW7AZN S > subscript of the same are'za array is —
C w SITIORAGE oA A| VIARLABLIE C/?LLED A the row, the second element is the 4
C K |THlel [Rol [LIRelFER3), 1)) [THIRow e ILREAER(]18)] IClow7AlImS column. Thus row 1 of the array -
C by S7lokA6E Flor 4| (VARIABLE L1 D B contains the saved terminal names. -
C X THIE Row LREFERC Y, 1)) TWRoU6IH LIRIEFERCIA,I5) ClIOMTAIWS o
C * SrlokAeE \FolR A (VARIIABLE. ChltitaD) IRERRRRERRNENRRN i
INTIEBIERXL LIREFIeR(, 15)|® 'L Define the save area array.] B
(- L T O A I e e S I A I |
p Compare each element in the first
- row of the save array area to the 7]
Do 128 \ri=11],15]) ; ; -
G (L@EF&'R{I, RRERGED Mﬁlefﬂ(lé W1 Glol Trio 5> last element m.the terminal name.

70 CO/VT Y) When the terminal name is found, 1
C % process the data. I
c K| SE7] VP [ERROR RECOWVERY| 1OR |ADD. WEW TERMINAL
c ¥ WAME 110 THEL KRIRA
C b

§
1 2345[6]7 89 1017121314151617 1819 20 12223242?12 ?7?5 3031373334 35 3637 38 30 40 4142 4344 45 46 47 48 49 ZJ74757B777‘§7§E

FORTRAN Coding Form Pt i US4,
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER lDATE INSTRUCTIONS| punCH CARD ELECTRO NUMBER*
a2 FORTRAN STATEMENT O e ™
123455739wnuwrwwnmm@ﬁiﬁg@&ggmwmnnu%nwwwwuuuMwm#ﬁﬂ%ﬂﬁﬁﬁﬁ@?@@?ﬁ@ﬁﬁﬁ@gggmmn7uwwnww
C ;3 1
C | PRIOCE(SS| [1IN[FlO[RMATII[ON] [FIOIR [TIERMLINAILI |LIO[CIATIED| BJY, |
C B [clolLluMN 1T [OlF] JARIRIAIY L
C . :
= - | When the terminal name is found, set the
5 LREFIE ?(2 + 1) = A+ B — corresponding array element equal to A + B.
{
%
LREFERCZ, D= LREFER|C2], T M MAREACS) MARE O G A e anon
LIREFERI(C(3[I = ILREFER|C3,[TD] 1H MAREAICD] 1o A
LREFER(‘I'I) = MAREA([]) correspc{n ing elements by addition,
+ subtraction, or replacement.
/

Figure 5-7. Referencing Saved information

5-12

Count of Outstanding Invite Inputs

On a Release Terminal operation or on an input operation
where the return code indicates that the terminal released
itself from your program, the count of outstanding Invite
Input operations is returned to your program. You may use
this number to determine whether your program has any
further terminals to serve or whether it can go to end of
job.

Input Data

If the operation requested by your program is an input
operation that transfers data, the CCP places the input

data received by your program in the seventh and succeeding
elements of your record area array before it returns control
to your FORTRAN program. The data is then available

for you to use in your program.

USING THE SYSTEM OPERATOR CONSOLE

If you wish to communicate with the system operator
through either the 5471 Printer/Keyboard (Models 10 and
12) or the CRT/Keyboard (Model 15), you must specify
operations as though the device is a remote terminal. You
cannot address the system operator console by the TYPER
subroutine or accept information from the system operator
. console via the KEYBD subroutine. You also cannot
address the console or a terminal by using the READ or
WRITE statements. Instead, you must specify a Put or
Put-Then-Get operation to CONSOL. CONSOL is the

only name that can be used for the system operator console.

Your program can communicate with the system operator
console at any time. To receive data from the console,
you must issue a Put-Then-Get operation, which:

1. Transmits a message to the system operator; and

2. Accepts a reply from the system operator.

Control is not returned to your program until the system
operator has transmitted input data to your program.

Operations that can be issued to the console are:
® Put
® Put-Then-Get

® Get Attributes

The console is available at all times to communicate with

any program or to enter system operator commands.
However, if the console requests a program, it cannot request
another program until the first program is initiated by the
CCP. It is not necessary, nor is it valid, to issue an Acquire
Terminal operation to the console in order to communicate
with it.

Example: The example in Figure 5-8 uses the system
operator console as the terminal for a Put-Then-Get
operation. Assume that the parameter list array (LPARM),
the record area array (MAREA), the console name array
(CONSOL), and all other symbolic names have been
previously defined.

FORTRAN PROGRAMMING CONSIDERATIONS
When writing your FORTRAN program, remember:

® You cannot use either the READ or WRITE statements
when addressing either the console or teleprocessing
terminals.

® You cannot use the TYPER and KEYBD subroutines to
address the console.

® Use of the GLOBAL and INVOKE statements will lead
to undefined results due to the storage managing charac-
teristic of CCP.

@ (Model 10 and Model 12 CCP) You must not use a
PAUSE statement. Programs running under the CCP
are not permitted to issue halts.

3270 DISPLAY FORMAT FACILITY

You can use the 3270 Display Format Facility (DFF)

of the CCP to aid you in formatting and using the 3270
display. Chapter 8 3270 Display Format Facility describes
the programming requirements that are unique to using 3270
DFF, including the unique 3270 DFF operations, additional
information that must be placed in the record area for
certain operations, field types that are unique to the 3270,
and other information.

See Chapter 8: 3270 Display Format Facility for an
example of a FORTRAN 1V program that uses the DFF to
support a single requesting 3270 terminal.

FORTRAN IV 5-13

=
=
=

= FORTRAN Coding Form Paneed i USA.
::?;2:::%12 IDATE_’* rr:j;imggons (:::Z:Ic :225 ELOET:TRO NUMBER®]
H e FORTRAN STATEMENT O rauEnCE
T2 3 4a5(8l7 839 BWWWRNHNUW7 0]
141 - A

C % PPRIEPARIE INPUT DR UTPUT ERRIOR ME/SISAGE|S| HERE
C gz SE[T] uP| PARAMETER LIS FOR| PU[T le[H]E,[N G{lET TOl CONSOIL |

LOPC| = PUTGET - 4 Set the operation code field.

LOVTL E! 28 - Set the output length field.
C 23 RN | Ll
C TNISERT TERMINAL| INAME ICON/SOIL|,| TERMINAL| NAME| WHERE| ERIRIOR] [olcClURED],
% AND [INPUT| 0] |o[uTPPU[T| ERROR ME|SISIAIGE

f ;

JIJJ =TI L

J = T L - BN

Do 3g0¢I=l.6]

MgggAAgl +55 E;O gg o’gégz J’: Set the terminal name elements to CONSOL.
AREA|(:I[+H2 - =| TIER (JJJ) :/ Set the data portion of the record area array.
= LR LT
JJIJ =] L | |
3000, CIONTITINVE
DO [3;5] =l 4L Ll
AREA|(THL2))] [=[[ERMS|6l2](1ID } Set the data portion of the record area array. j
35 T
12 3v4 §|6S08h9|1011{lgf35 5 61713 §T‘QT1J§7‘T§2_4T§TJ—_‘L_‘§27829&)31 32322_&5353§37$:QI)0|41|42143L4I ‘- 47 48 49 50 &8 60 70 71 72|7374 75 76 77 7 '7§§§
= FORTRAN Coding Form pae |
PROGRAM PUNCHING GRAPHIC PAGE OF _
PROGRAMMER IDATE INSTRUCTIONS| puNCH CARD ELECTRO NUMBER*
H e FORTRAN STATEMENT O ara N
1CZ 345 5%3 9 1011 13143516171 _L[_,__“,‘ﬁrl_;: :.Lr_,_ —.,_‘Fslr_ 40 41 424344454i|514 4 ;2515 53;1?;,5_6[5_7_859&61,_6____&%&5_7_5_0597071 720737475 76 77 18 79
C % 00| [PuT] MHIEN] [GET] [Tlol |CIONISIOILEE]| | N L ' L]
c % -
Call the communication service subroutine
CALL| CCIPFIL o (LiPA + AREA) x -~ |_to perform the Put-Then-Get operation.

NN

T 2345]6[7 80 01112131418 517£T§T95|‘Tgﬁﬁﬁ§ 7 2829 30 31 37 % % 90 47 42 3 44 75 4§ 37 4B 76 50

Figure 5-8. Using the Console

TSR B ETEL. R#Ejﬁﬁ'ﬁn 37476 76 77 187

2l

3]

o]

5-14

PROGRAMMING EXAMPLES

Two programming examples are explained in this section:

® Example T — A FORTRAN program that supports a
single requesting 3270 terminal without using the Display
Format Facility.

® Example 2 — A FORTRAN program that supports
multiple requesting terminals.

See Chapter 8: 3270 Display Format Facility for an example
of a FORTRAN 1V program that uses the DFF to support
a single requesting 3270 terminal.

Example 1

Figures 5-9, 5-10, and 5-11 show the flowcharts, messages,
and listing for a sample hotel reservations inquiry program
written in FORTRAN. This program transmits two messages
to a 3270 Model 1 Display System (480 character screen).
The first message from the program requests the terminal
operator to enter a room number. The program uses the
room number as the relative record number to access a
disk file whose records contain guest and rate informa-
tion about the room. This information is then formatted
and displayed as the second message transmitted to the
3270 terminal. Figure 5-9 also shows how these messages
appear on the 3270 terminal.

This program is a single requesting terminal (SRT) pro-

gram (see index entry) with no program-selected terminals;
it can receive data from and transmit data to only one 3270
terminal. However, multiple copies of this program could be
in main storage at the same time (if your configuration

of the CCP allows this), each communicating with a
different 3270 Display System. (If multiple copies are in
core at the same time, the disk file must be specified as
sharable during the Assignment stage—see index entry disk
file sharing.)

Formatting the Messages for the 3270 Display

Because this sample program does not use the Display
Format Facility, this sample program must set all formatting
control characters for the 3270 display screen into the data
portion of the record area array and transmit them as part
of the messages to be displayed (see Figure 5-10). You

can find the meanings of each of the 3270 screen format
characters shown in Figure 5-10 in the publication /1BM
3270 Information Display System Component Description,
GA27-3004.

The format characters are set by specifying the arrays

LOC1, LOC2, LOC3, LOC4, LOC5, LOC6, LOC7, and LOC8
and initializing these arrays to the required 3270 format
characters (Figure 5-11). The character Z is used to indicate
hexadecimal characters since some of the format characters
can only be specified in hexadecimal. The format characters
are inserted in the data portion of the record area array by
specifying an EQUIVALENCE statement that sets the
format character array elements equal to the corresponding
element in the data portion of the record area array.

The notes to the right of the listing in Figure 5-11 explain
the statements used by this program to format the 3270
display screen. You will also find the comments in the
listing helpful.

Notes Concerning this Sample Program

® Message mode was defined during the Assignment Stage
for the 3270 terminal used by this program. (See
TERMATTR statement in CCP System Reference
Manual.) This eliminates the need to do repetitive
input operations until EOT is received,

® To run this program using a terminal other than the 3270,
you must remove all coding dependent on the 3270,
This includes all screen formatting specifications and
3270 screen control characters within the data.

® This program will not accept data with the program
request.

® Two different lengths are used for the output length
field of the parameter list because the two messages
transmitted by this sample program have different
lengths.

® This program specifies a Put operation and a Get
operation using six blanks as the terminal name. The
CCP places the name of the 3270 terminal being used
in the terminal name field of the record area after the
first Put operation is performed.

FORTRAN IV 5-16

® To keep this sample program simple, return code checking

is kept to a minimum. You may want to do more return
code checking in your application programs. For example,
when you issue Accept Input you should check for the
Shutdown Requested return code (04). Also, if data
mode escape is allowed in the CCP system, programs
should check for return code 08 {terminal has released
itself from the program). It is recommended that each
installation design its own return code checking and
console communication routines so that a standard is
established that is satisfactory to the installation and

can be used by all application programs.

This program does not check the length of the input

data because the terminal operator is requested to

enter a three-digit room number. If less than three

digits are entered, the program is canceled. However, you
may want to check the input data length in your appli-
cation programs.

® Since these are the only two different screen formats
used by this program, they are both contained within
the program. For more complete applications, you
might store the screen formats on disk and read them
when they are needed by your program.

® You could also use the Get Attributes operation in
this program. If you do not know whether the 3270
Model 1 or the 3270 Model 2 will request the program,
you can issue a Get Attributes operation to find out
which type of terminal requested the program.

@ |f this program were coded and specified as a multiple
requesting terminal (MRT) program with a MRTMAX-1
keyword on the PROGRAM assignment statement (see
CCP System Reference), multiple copies of the program
would not be allowed in main storage at the same time.
As the program is written, multiple copies could be in
main storage at the same time and the disk file must be
specified as sharable (FILES keyword of PROGRAM
assignment statement).

(o)

1. Set up parameter list for Put-No-Wait
to send a message.

2. Format screen for 3270M1.

3. Issue Put-No-Wait. (Enter Room #
message).

1. Set up parameter list for Get.
2. Get message (Room #).

Return Code
=0?

No

Read disk record. (Room # is relative
record number.)

1. Move disk data: Room # Rate,
Name, Address.

2. Format screen for 3270M1.

3. Set up parameter list for Put, No
Wait message.

4. Issue Put-No-Wait. (Room #, Rate,
Name, Address message).

<

< END OF JOB >

ENTER ROOM # _

ENTER ROOM #009

ENTER ROOM #009

ROOM # - 009

RATE - $18.50

NAME - JOHN DOE

ADDR - 114 5TH AVE SW

ADDR - STURGIS, MINN. 55101

Figure 5-9. Communications Flow of Example 1 (FORTRAN SRT Program)

FORTRAN 1V

First Message

1 2 3 4 5 6] 718 9 10 11 121

3{14 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Enﬁbn Rlojo ﬂﬂ?txxWﬂﬁ

) L

[TELTETTEERTE L IE |
EC - SF— ATT
CC— ATT- -SF

WCC — 1c —

SBA——

BA

Second Message

12 34 5 6{7]8 9 1011 12|13

14 15 16 17 18 19 20 21 22 22 24 25 26 27 28 29 30 31 32 33 34

o

35 36 37 38 39 40 41 42 42 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6061 62 63 64

L—sBA

XHSZRATIE |- [§IX -ﬂj
L

X

X

MO XXX X[XXX

X

SBA
BA

:L | r rd_

|

o

6566 67 68 69 70 71 72 73 74 7576 77 78 79 B0 81 32 B3 84 85 86 B7[8a 189 90 91 92 93 94
ﬁ§?A§DR -] XXX XXX XXX
' |
T
i . I
sBA
BA —
95 ‘ to 124
| | J,M_JW | .
FIS/SADDR | [xxxixIX]xx XXX XXX XIXpXIX
SBA—
BA ——

SF — Start Field

ATT — Attribute Character

IC — Insert Cursor
X — Data Character
EC —Escape Character

CC — Command Code

WCC — Write Control Character

SBA — Set Buffer Address

BA — Buffer Address of first character
position in the field

Figure 5-10. Message Formats for Example 1 (FORTRAN SRT Program)

5-18

FURTR AN

v

// DAD44 UNITND-8

*¥PRUCESS MAP,G0U0ECK

1

2

~

10

1l

12

13

14
15

16
17

L3
19

20
21

¢

G

PRUGRAM SRFORL

DEFINE FILE 8(LUyTUyLsLAST)

(G %2 e 2 A e e o ol e e bt i R o i et e e e ko a4 e ke o s ol o e 3o e ok ik o ook ok kool ok oKk ok ko e

COMMUNICATIUN AREA
€ % ek oo ok ok kR ol Kok 20k ok ok oo Kok R R R OR 3R RO ROK koK R SR KO R KoK Kok e koK

C

C

C

C

INTEGER * 2 PARM(8) 4RTC,0PCs0UTL, INL

INTEGEK *

INTEGER %

* 3

INTEGER *

*

INTEGER *
INTEGER *

2
2

2
2

EQUIVALENLE

1

EQUIVALENCE

EQUIVALENCE

*x

TOAREA(130) s TNAME(6) 1 DATAL(124)

TOUTL1(124),LOCL(6) +ROOMX(9)4LOC2(3)»RATEX(T),

*

LOC3(3)yNAMEX(T),LOC&(3) yADDRX1(T)y

LOCS(3)yADORX2(7)

LUUT2(26)4L0OCOLE) 4 MESG(121},

LOCT7(3)y IBLANK(3} LUCB(2)

Parameter list array

Record area array

Output area array

IDyRIOM(3)»RATE(4) ,NAME(20),ADDRL(20)+ADDR2(20) e

TDULR IPUINTLENT

(RTCyPARM(L)) o {OPCyPARM(2)), (QUTL»PARM(3)),

(INLyPARM(4))

(TNAME (L) »FOAREA(L))y (DATAL(1) 4+ IOAREALT))

(LUCL(L) »JOUTLLL) by (ROUMX{L)I0UTL(T)),
(LUC2(1)+10UTLL19))»(RATEX(L), 1QUTL(22)),

(IDOLR,I0UTL(29)), (IPUINT,10UT1(32))

£>-

EQUIVALENCE (LOC3(1)10UTL(35)}),(NAMEX{1),10UTL(38)),
* (LOC4(1)yIUUTL{65)) (ADDRXL(1)y10UTLL68)),
* (LUC5(1)»10UTL(95}) y (ADDRX2(1),10UT1(98))

EWUIVALENUE (LOCOG(1)1UUT2(1)),(MESG(L1),I0UT2(7)),

* (LOCTUL)»I0UT2(19)) LIBLANK(L),10UT2(2
* (LuCB8(1)yi0UT2(25))

DAVA LUCL /2274042F14042CT7404211404924040,2E840/

DATA RUUMX /'R U U M # - v

DATA LUC2 /Z1140,2C140425040/

DATA RATEX /'R A T E - v/

DATA LUC3 /Z2114U41C1404+2F840/

DATA NAMEX /'N A M E - v/

DATA LUC4 /Z1140421C240426040/

DATA AUDRX1 /'A D O R - v/

OATA LOCS5 /21140420340,1C840/

OATA ADDRX2 /'A D DR - v/

DATA LOC6 /227404LF540,2CT740,21140924040,424040/

VDATA MESG /'E N T E R RJOM # '/

Figure 5-11 (Part 1 of 2). Example 1 -- FORTRAN SRT Program

M ge area array

Disk fields
Other variables used by the program

Redefine parameter list array-

Redefine record area array

Redefine output area array

Redefine message area array

Initialize 3270 format characters and
variables

FORTRAN IV 5-19

26
27

28

29

30

36
37
38
39
40

41
42
43
44
45

46

47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65

DATA LUCT /Z1040,2C940,721340/

) DATA IBLANK /3%' '/

% DATA LICB /Z1040,ZF040/

¢ DATA TNAME /6%t 1/

¢ DATA LUOLR/ 'S/ IPOINT/ YoV /yENT/E MY/
gv*#*th****#v*##******vt*xxa****vt#t**4**#*#*******##*####*#*##****#***
C A PUT SENDING THE MESSAGE 'ENTER ROOM #' IS SENT TQ THE 3270 *

(R e g o el Ak o ok o o ok e e e e ek Ak koK ol ok o ik e ok A e sk e o Ao ke e o i sk ok ek e o e o oK ook %k oK ok ok
C

0pPC = 54
QuUTL = 26
It = 26

CALL MUVE (I0UT2y1+2690ATALy1)
CALL CCPFIU {(PARM, [OAREA)

C
C g 3ot o ok ok Kok o SRR RO ok ok ok oo SRR S ool R SO RO K
C D0 A GET FUR THE RUOM NUMBER AND CHECK THE RETURN CODE FOR *

C ZERU. IF IT IS NOT, ZERQ GO TO EUJ. *
€ %ok e 3ok e 3¢ e ol sk o e o o ok 40k ol KO OR R R ROR R HOT R R Ok ook ok tok o oK ROl OR KR ol ke
C

uPC =1
QulL = 11
INL = 11

CALL CUPFIU (PARM, [UAREA):
IF (RTC.NE.O) GO TO 20

C

€ ot e oo dotop ook ook ok oK OB ORI R ORI R KR ORI ROKORK Ok JOROKR RO ROk KRR R R
¢ CHECK IF ENTER AID KEY WAS ON AT GeT, IF IT WAS NOT GO TO EOJ *
C CONVERT THE ROUM NUMBER FROM Al FORMAT TQ INTEGER FORMAT

C THEN CHECK TO INSURE IT IS IN THE RANGE OF FROM 001 TO 010. *

Ok 3o A A OR R AOKR AR O K R KRR ORGSR CKOOR A K ORI KR ROR K R Rk ook ok &
c

IF (DATAL(3).NE.ENT) GO TO 20

XRUOM = GET (DATAL+9y11,1.0)

IwROOM = XRUOM

LF (InROOM.LT.L) GO TU 20

IF (INKOOM.GT.10) 60 TO 20

C

G % ko Ao X ol o ok 20K R R K OR JOROKKOR K ORI B O Z0KRI R OR SRR Rk R R R R
C READ A RECUKD FKROM A DIRECT-ACCESS DISK FILE. THE ROUM NUMBER*
C REPRESENTS THE RELATIVE POSITION OF THE RECORD IN THE FILE *

e ool o ok 30K ek o S0 OROR R R R KA R K oK R KoK ORI SRR R OO R
C
READ (8'INROOMs10000) IDyRUOMyRATE ¢NAME,ADDRLyADDR2

C

Attt ol g e oK R R AR RO KRR AR R ORRORIKAORAOKOKR RO A K RO R Rk
c MOVE THE RUOUM WUMBER, RATE PER DAY, THE NAME AND ADDRESS OF *
< THE GUEST [WTO THE GUEST ARRAY, THEN DU A PUT OF IT TO THE *
C 3270 *

1 A 4 e % e A Ao e o el o Rk o o ek ool ol B R ol e S0k o A i kR kiR ok Rk ok ok o otk ok ol KoK KoK
C

CALL MUVE (RJUMy143,10UT1.+16)

CALL MOVE (RATEs1l,2,10UT1l,30)

CALL MUVE (RATE»3,4,10UT1433)

CALL MOVE (NAMcyls20,10UTL,45)

CALL MUVE {ADDR1,+1,20,10UT1,75)

CALL MUVE (ADDR24y1520,10UT1,105)

CALL MOVE (10UTls1y124+DATALy1L)

IRETRY = U

UPC = 54

OUTL = 124

INL = 124

L0 CALL CUPFIJ (PARM, I0AREA)

C
C ootk et e o oot Ak ok R OR R OR R AOR e o Ok A R AR ROk SRR R HORAOK RO SRR
C AFTER THE PUT CHECK THE RETURN CODE FOR ZEROy IF IT IS NOT *
c ZERU RETRY THE PUT UNE TIME. *

(3 e e e ool e ot A0l e e e oo o ok AR kR OB A o R R o e ok ok ot ok e R o ke e
C

IF (RTC.EQ.0) 6O TU 20

1F (IRETRY.EQ.1) GO TU 20

IRETRY = [RETRY + 1

GO TO 10
20 STOP
10000 FURMAT (Al,3A1,4A1,20A1,20A1,20A1)
END

Figure 5-11 (Part 2 of 2). Example 1 — FORTRAN SRT Program

5-20

Example 2

Figures 5-12, 5-13, and 5-14 show the flowchart, input/
output messages, and listing for a sample FORTRAN multiple
requesting terminal (MRT) program designed to run under
the CCP. This program supports up to four MLTA requesting
terminals. The terminal operator enters a seven-digit

number preceded by a +, -, or N. The CCP transmits this
signed number to the FORTRAN program.

The FORTRAN program:

® Adds the number to the value in the accumulator
associated with the terminal that transmitted the data
if the first position is +

® Subtracts the number from the accumulator if the first
position is —

® Releases the terminal if the first position is N.

If a value was either added or subtracted, the new value
accumulated for the terminal is inserted into the message
CURRENT VAL = sxxxxxxxxxx ENTER DATA and the
message is sent to the terminal.

This sample program also checks for several error conditions
and transmits the appropriate error message to the terminal
requesting the operation.

This sample program is not designed to show the most
effective way of performing operations. Instead, it shows
avariety of ways to do things. It uses a variety of opera-
tion codes that show how data can be associated with a
terminal by defining a save area array for the terminal names
and accumulated data. |t frequently checks return codes,
but you can do even more return code checking if you wish.
Data entered by the terminal operator must be fixed

length. To allow variable length input fields you could
include a subroutine in your program to check the effective
input length returned in the parameter list and align the
data correctly. This program communicates with the con-
sole in addition to the requesting terminals.

The notes to the right of the listing in Figure 5-14 and the

comments in the listing explain each section of the sample
program.

FORTRAN IV 5-21

241

Al

‘ START '
©

B1
1. Set up parameter
list for Accept

Input
2. Accept Input

1. Check input
length =8

2. Check valid
operator

3. Check valid data

C2 C5
C4
Shutdown Exitto 2 No |V Set'up Put-No-
request Wait {message)
hutdown 2. lIssue Put
Yes
D3 D4 °
Terminal Terminal a Add termi.nal to Find proper
attached cancelled attached list accumulator
E4
Add or subtract
input to
accumulator
F5
F4 e e -
Terminal Set cancelled <g |!- Move " toout
cancelled switch Accumulator put area
2. Make unit position
printable
>0 |
G4
. 1. Set up Put, Wait
Negative message
return code 2. Put message
H2
H1 , Ha
Positive return™__Yes 1. Set up Put-No-Wait Return code No
code (#0) (Message) =0
. 2. Issue Put e @
‘ Yes 2B1
J4

1. Set up Invite Input
2. Invite input

@

Figure 5-12 (Part 1 of 3). Program Logic of Example 2 (FORTRAN MRT Program)

5-22

-—[Output Error

- -{Input TP Error

B1 B4
3A4 3A4
Console routine Console Routine
C1 y
Retry = Retry = try Q
try again again

1. Set up Put-No-
Wait {message}
2. lIssue Put

—--[Helease Terminal

Terminal
cancelled

O,

1. Set up Release
Terminal op.
2. Release terminal

H2

H1 .
Return i
code = 0 End of job
j——-— No
J1

1. Clear terminal
narne entry in
attached list

2. Clear accumulator

1B1

Figure 5-12 (Part 2 of 3). Program Logic of Example 2 (FORTRAN MRT Program)

FORTRAN IV 5-23

Shutdown Routine
A1l

' ENTER ’
B1

Set index = 1

C1

Check entry in
attached list

Figure 5-12 (Part 3 of 3). Program Logic of Example 2 (FORTRAN MRT Program)

5-24

E1 No

1. Set up Stop
Invite Input Op.
2. Stop Invite Input

F1
Terminal cancelled

G1

Effective input
length = 0

Add 1 to index

Index = 5

Yes

. Set up Put-No-

Wait (message)
Issue shutdown
message

K1

‘ End of job ’

Console Routine
A4

‘ ENTER ’

B4

1. Set up Put-then-
Get to console.

2. lssue Put-then-
Get

Retry = TA
(try again)

Set on release
terminal indicator

|

D4

‘ RETURN ’

Input Data Entered by Terminal Operator

7{8 9 10 11 12[13]14 15 16 17 18 19 20 21 22 23 24

1 2 3 45 6
15 XXX XXX

A fixed length numeric field where Sis a+, -, or N and
X is a numeric digit. All eight positions must be entered,
except when N is entered in the first position.

Data Entered by System Operator on 5471 Printer/Keyboard (Models 10 and 12) or CRT/Keyboard (Model 15)

1 2 34 5 6]7]8 o 1011 12]13[14 1516 17 18 19 20 21 22 23 24

T In response to the messages INPUT TP ERROR TNAME-
CC ccccee and OUTPUT TP ERROR TNAME-cccecee to the
console, the system operator replies TA if he wants to
Try Again. Any other reply (cc) causes the terminal

to be released.

Qutput to the Console

2 6]7[8 o 10 11 121314 1516 17 18 19 2021 222324 25 26 27 28 20 031 32 33 34 353

T2 s
NPT | [Tl [ERRIORR| [TINAME -/clc|cIcicic] These messages are transmitted

| to the console (ccceec = terminal
pulTpluiT [TIP [ERROR [TNAME-C/c/ciciCic] name).

Output to Terminal
Transmitted with value

1 2 3 45 6708 9 10 11 12{13]14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39/ in accumulator associated
IClURIRENT] VIALL [=lsxIx[x[XIXx[xxXx| [ENTIER DATA 1 with the terminal.
TIRY| AGAILM |1 NV DATA Issued if data is invalid
TRY AGAVN TP ERROR Issued if system operator replies TA
(Negative return code on Accept Input)
CICP_SH[T]D LAIS[T| REC-| | TP| ERROR ~~
| \ Issued for negative return code on
CICP ISHIT u{n LIAS|T| |REIC|-| | |BAID| DATA - Stop Invite Input
ClclP| SIHTIDWN [LIAISIT| [REC-| | SIX[XPIXDIXX > ,\ Issued for positive return code other
| s than 10 on Stop Invite Input
CCP SHTDWN LIAIST REC- | N6y DAT ~
Issued for return code of 0 on

RERRRARRRERRREE! T \Stop Invite Input
Issued for return code of 10 on

Stop Invite tnput

Figure 5-13. Input and Output Message Formats for Example 2 (FORTRAN MRT Program)

FORTRAN IV 5-25

PORTRAN IV

*PROCESS MAP

OO ANNEWN o

25
26

27

28

29
30
3

32
33

34

36

37
38
39

PROGRAM MRFOR1

INTEGER*2 LPARM(8),MAREA(40),TERM (44) ,LBRTC, LOPC,LINL, LOUTL, LEFL

INTEGER*2 ACCEPT,PUTNWT,PUTMWT,INVINP,PUTGE
INTEGER*2 CRNTVL(34),CONSOL(6),LBLNK,LPLUS,
INTEGER*2 I,II,J,JJ,JJJ,MSAV(2)

INTEGER*2 ERMSG1(2) ,ERMSG2(16),ERMSG3(12),ERMSGU (18) ,ERMSG5 (18)

INTEGER*2 ERMSG6 (22),ERMSG7 (24)

INTEGER®Y4 LZERO

EQUIVALENCE (LRTC,LPARM(1)), (LOPC,LPARM(2))
1 (LINL,LPARM (4)), (LEFL,LPARN (3))

DATA ACCEPT,PUTNWT, PUTMWT,INVINP,PUTGET,RELTRM/4,54,50,5,3,10/

DATA STPINV/1025/

DATA LPLUS,LMINUS,LNNN,LBLNK/f#! 01 Nt
DATA LZERG/' 00'/

DATA CRNTVL/'C U R R ENT VAL =+
1ER DATA 'Y

DATA CONSOL/'C O N S O L '/

DATA TERM(1),TERM (12) ,TERM(23),TERM(34) /4%’
DATA LINL/34/

DATA ERMSG1/'T A '/

DATA ERMSG2/* T P ERROR T NAMNE
DATA ERMSG3/'T NP UT OUTPUT '/
DATA ERMSG4U/'T R Y A GAIN TP ER
DATA ERMSGS/'T R Y AGAIN INV D
DATA ERMSG6/'C C P S HTDWN LAST
DATA ERMSG7/'T P ER RO RBAD DAT

T, RELTRM,STPINV
LMINUS,LNNN,N

, (LOUTL,LPARN (3)),

s
E
v/
= '/
ROR '/
ATA 'Y/
REC - '/
A KO DATA?'Y

--~‘-~__~

(Rt e Ak KK K O kK K O KOR A R R ROK ROK OK K R ROROK K R ROk R K R R OR R KK R R Rk R kR Rk kR ok

C
C
C
C

IT=INDEX FOR TERMINAL ARRAY, JJ=SWITCH, JJ=1 1T
JJJ=ADDITIONAL INDEX FOR VARIOUS SHORT TERNM PU

SET UP PARAMETER LIST FOBR ACCEPT INPOT

NPUT, JJ=7 OOTPOT.
BRPOSES.

*
*
*
*

C koK AR IR ORI R AOR R ROK 0K R KR KRR ORIOR AR R R K R OO KRR R KRR R K
00100 Ja=1

LOPC=ACCEPT

C Aokt e ROk Ok o K ok K Ak Aok 0K K R R R Rk ok ROk R R R ok R R R KR RO R R Rk ok RO R Rk R Rk

C

DO ACCEPT INPOT OPERATION

x

(C 3 ok ok o O o RO RO RO R R OR- K ORS00 ROk Ok ok O kR R R ook Ok Kok

CALL CCPFIO (LPARM,MAREA)

(€ A ok ok i ki R OR ok OK K K KR KR o ok iR R OR K R KOR R Rk ok ROR Rk R R R kR ok ok

C

CHECK TO SEE IF A SHUTDOWN HAS BEEN REQUESTED

Caokkiokksork Rk ok Rk kR Rk kR Rk ko khkkkk ko kR kb Rk Rk ek Rk

IF (LRTC-4) 00190,02500,00190

C AR AR R R KR R ROR R R R ROROR R R KRR R Aok ok ARk R R R Rk R R R R ok Rk R R ROk R Rk R R R Rk R Rk

c
C
(o}

DETERMINE IF TERMINAL IS ALREADY ATTACHED, NCi
FIRST 6 ELEMENTS IN MESSAGE AREA HATCH A 6
NAME IN THE TEBRMINAL DATA STORAGE ARRAY

OMP IS SET TO O IF
ELENENT TERNINAL

*
*
*

C 30K Bk KK KRR KKK RO AR K A KR 3K K KR R R AR R ARk R R R Rk
00190 DO 00200 ITI=1,34,11

IF (NCOMP(MAREA,1,6,TEBN,IX)) 00200,00

00200 CONTINUE .
C AR R KK RO ORI AR KRR R AR AR R AR R R KRR R R R ER AR RNk

c
C
C

CHECK TO SEE IF TERMINAL HAS BEEN CANCELLED.I
TO ACCEPT INPUT IF INVITES ARE OUTSTANDING
OUTSTANDING GO TO EXIT.

600,00200

P IT HAS RETURN
+ IF NO INVITES ARE

*
*
*

[2222222 SRR S22 R 2l st s RE R R L R e i R Rt R 2R Y 2)

IF (LRTC-8) 00250,00220,00250

00220 IF (LEFL) 00100,09000,00100

C Aok AR KKK AR A KK R ORI ROIK 0K KKK KKK K AR KRR SRR R K ROk R R R
LOCATE A BLANK 6 ELEMENT TERMINAL NAME SPACE IN THE TERNINAL DATA

o
C
C
c

STORAGE ARRAY
NOTE: NO MORE THAN 4 TERMINALS WILL BE ALLOW
WITH THIS PROGRAM IF ASSIGNMENT SPECIF

ED TO COMMOUNICATE
IES 4 TERMINALS

*
*
*
*

o L T T P T)
00250 DO 00300 II=1,34,11

IF (TERM(II).EQ.LBLNK).GO TO 00400

00300 CONTINUE
C 30K OK R ORI OK K K AR OK ORI AOK KR KK 30K KR ORK KRR R KR OK R R RK R RO KR ok &

C
C

INSFRT THE NEW TERMINAL NAME INTO THE SPACE JUST LOCATED AND ZERO

THF ACCUMULATOR ASSOCIATED WITH THIS LOCAT

TON

*
*

C AR KR OKOK A K A KK KK A KRR KKK R OO KKK R KK R R KKK R KRR R R R KK A K KK
00400 CALL MOVE (MAREA,1,6,TERM,II)

CALL FILL(TERM,II+6,ITI+10,LZERO)
GO TO 00610

C A0 0ok KK K KRR KR K R HOK JOK KR KKK KR 4O R R KRRk R Rk R Rk Rk

C
C

CHECK TO SEE IF TERMINAL HAS BEEN CANCELLED.
TERMINAL NAME AREA AVAYLABLE FOR NEW ENTRY

IF IT HAS GO MAKE

*
*

C ok AR Ok ok ok kRO o ok ok ok o Rk 3k R OR o K R K ok RO K K K OKOK RO OR AOR ROROKOR oK ok kR ok ok

Figure 5-14 (Part 1 of 4). Example 2 — FORTRAN MRT Program

5-26

Define parameter list array, record area
array, save area array, console name array,
output message array, error messages, and
other variables used by program.

Set parameter list fields equal to elements
in parameter list arrays.

Initialize operation code fields, output
messages, save area array, error messages,
and other variables used in program.

Set operation code field equal to numeric
variable for Accept Input.

Determine if the terminal name for the
terminal that transmitted the input data is
in the save area array. If itis, the data is
added to the accumulator associated with
that terminal. 1f itis not in the save area
array and the terminal is not cancelled,

the terminal is added to the save area array.

40

41
42
43
4y
45

46
47
48

49
50
51

52
53
54

5%

57

58
59

60
62

63
64

65
66

67

68
69
70

71

72
73

74
75

00600 IF (LRTC-8) 00610,04900,00610
C**‘*t#**t******tt*t**t****#***t#*i‘l***‘tt#t**l*t*‘t******t*“‘t#"#i##
¢ CHECK FOR INPUT ERROR INDICATIONS, ISSUE ERROR MESSAGE IF RETURN *
C CODE NOT EQUAL TO 0, OR IF LENGTH NOT 8 *
C CHECK FOR VALID OPERATOR, IF OPERATOR EQUAL TO N GO RELEASE TERMINAL
C*k**i*#‘l*****#*‘*t(**##“*“t.#‘***t***********t***“**‘#*‘#tﬁ****l###
00610 TF (LRTC) 02800,00650,00700

00650 IF (MAREA(7).EQ.LNNN) GO TO 04800

IF (LEFL-8) 00700,00660,00700
00660 IF (MAREA(7).EQ.LPLUS) GO TO 00900

IF (MAREA(7).EQ.LMINUS) GO TO 00900
C*‘t‘#**#***#‘*‘*t**ﬁ**‘**t‘*‘*tt**‘#*******‘###‘I*i**t******‘*‘*‘*‘*###
C ASSUME BAD OPERATOR, ISSUE INVALID DATA MESSAGE *
C#*ﬁ**‘*t#*****#*‘**‘*t‘*‘&*****t*****t##“#t***‘#tt**#tt*#‘i****t**t*l‘
00700 CALL MOVE (ERMSGS,1,18,MAREA,7)

LOUTL=18

GO TO 04300
C*#*#**#t**t*ﬁ****#********t‘**!****‘t‘#*t*k**ttttt‘*#*“***'*****lﬁt*t#
C CONVERT THE VALUE RECEIVED AS INPUT PROM CHARACTER (A1) TO ZONED *
c DECIMAL (D1) FORMAT *
c IF N NOT EQUAL TO O SET UP INVALID DATA MESSAGE *
C***#****!********t**#***#i***‘*!********#*****t#*t“*t**‘ll"‘#‘#i‘*#‘t
00900 N=0

CALL A1DEC(MAREA,8,14,N)

IF (N) 00700,01000,00700
C#********‘***‘***#ﬁ*##!*******‘*‘*****t'*#*#***#'l***#‘*t‘#‘l‘tttt*tttt
C NOW ADD THE VALUE RECEIVED AS INPUT TO THE VALUE IN THE *

ACCUMULATOR ASSIGNED WITH THE TERMINAL NAME *
C‘**t**#'#**‘*t****#***##******t****ti*‘**ltt#t**lt********t*‘*'***##**‘
01000 JJJI=II+6

N=0

IF (MAREA(7).EQ.LMINUS) GO TO 01500
C*t****t*t*t*'t*t#*#t*ﬁ***‘**##t***t****#‘*t#**‘**tttti*t*tt“‘**#*t‘#'*
C ADD VALDE RECEIVED TO VALUE IN ACCUNULATOR *
C**t*****vt*****k*#***#‘*#*‘t##t*t‘*****‘*‘#***‘*tti**“tt****#‘t““*tt

CALL ADD (MAREA, 11, 14, TERM,JJJ,JJJ+4,N)

GO TO 01600
01500 CALL SUB (MAREA,11,14,TERM,JJJ,J3J+4,N)
Ctii*tt*#***l‘tt#t**t*titt**#ﬂ****#**##***#t****#t*‘*t*‘#t#lt‘*#*iﬁ‘#tt*
C SET UP TO DISPLAY RESULTS IN ACCUMULATOR, TO TERMINAL .
C NOTE: IF OVERFLOW OCCURRED MAX VALUE WILL BE DISPLAYED,ALL 9'S *
Cﬁ*****‘**#"#‘*"t****#t**l"*#t***‘******‘*#***#‘*“*t***“#!*tt"**‘*
01600 CALL MOVE(CRNTVL,1,34,MAREA,7)

CALL MOVE(TERM,JJJ,JJJ+4,NAREA, 25)
C!***!t**ﬁ*t#*tt***********i###tt*t***ttt*‘****ittt‘*‘*t“*t#tt!**t***#*
C SET INDICATOR N ACCORDING TO THE SIGN OF THE ACCUMULATOR VALUE THEN*
c SET LAST DIGIT OF ACCUMULATOR VALDE POSITIVE *
C***#‘t**********il***‘#i#t##‘**'****##***“*#***‘*#*t*****““#"*#‘*‘t

CALL NSIGN (MAREA,29,1,N)

IF {(N) 01800,01900,01900
01800 MAREA(19)=LMINUS
C**ttl‘t*ﬁ#tt***t‘t****ﬁ#‘*“***tttt#*t*t****##**‘*#******“t‘#**“*#*t*
C CONVERT THE ZONED RESULTS TO CHARACTERS IN A1 FORMAT FOR OUTPUT *
C**#**t*#“t**i***#***l****tt#*'****"***t**l#**‘*‘t*‘#**"t‘**t*******.*
01900 N=0

CALL DECA?(MAREA,20,29,N)
C***t*tttﬁ*##****tt***t*tt*!‘*#**ttt###ttitt#ti*****‘*t#“‘i**tt##*#tt*#
C SET UP PARM LIST FOR PUT MESSAGE WAIT *
C***#t********tt#li##l#**ttttt**"t“‘***“'*t*‘*i**‘*'*#t‘****"#i‘*ti‘

LOPC=PUTHWT

LOUTL=304
AR AR KK R KK KK K AOK AR ORI KKK OO AR RO KRR ROK R R RAORRR K
C DO PUT MESSAGE WAIT OPERATION -

C ek R KA TR R K KKK KK KRR R KK RO RO O K R RO O ROR KRR R Rk KRk
CALJL CCPFIO (LPARM,NMAREA)

KRR K OISR AR R OR KA KK KOOI OR K AOK R RO KRR KR RO R R Rk

c CHECK RETURN CODE TO SEE IF OPERATION WAS SUCCESSFUL *

C IF RETURN CODE NOT EQUAL TO ZERO GO ISSUE ERROR MESSAGE *

C Ak AR KK AR K R AR KA R R KO KRR KRR AR AR R SRR

IF (LRTC) 02100,02200,02100

02100 3J=7

GO TO 02800
C‘*tt*t#*t**##*t#*‘#**‘t#!!##**#‘*tt#t##““tt#tt###‘!t*t*l#‘“t*##t‘i‘i
C SET UP PARAMETER LIST FOR INVITE INPUT *

CHARR AR R KRR R KRR R R RO R AR R R KRR KRR RS
02200 LOPC=INVINP
CRR AR AR KRR KA R KRR R RRR AR AR AR ERRERRRARRE RRRR R AR KK
(¢ DO INVITE INPUT OPERATION *
CAKAOR R AT AOK R KR AR OR AR R OK K AR A KR R KO R KRR RO R RN R R R Rk

CALL CCPFIO (LPARM,MAREA)

GO TO 00100
Ittt e e e ey R R L e S R R R R LR R LR s R Lttt Ll AL Lt
C HANDLE SHUTDOWN REQUEST BY ISSUING STOP INVITES TO ALL OUTSTANDING *
[of INVITE INPUTS PREVIOUSLY ISSUED *
i it e e P P S PR L 224 LS LR LRl Rl et Rt il ittt d it it
02500 DO 02600 1I=1,34,11

IF (TERM(IT).EQ.LBLNK) GO TO 02600

CHRoR AR R R KRR AR RN R R AR R AR R KRR R R R SRRk
c SET UP PARAMETER LIST FOR STOP INVITE INPOT *
C AR KA A ROK K KR K K KRR KKK K K AR AR AR R OROR O R KR R R R Rk &

Figure 5-14 (Part 2 of 4). Example 2 — FORTRAN MRT Program

If the first position of the input field is +,
the data is added to the accumulator ele-
ment associated with the terminal that
transmitted the data. 1f the first position
is -, the data is subtracted from the termi-
nal. If the first position is N, the terminal
is checked to see if it is cancelled.

If the first position of the input data is not
+, -, or N, a message is issued to the terminal.

Insert accumulated value associated with
the terminal into the output message and
display it on the terminal.

Note: When the last terminal attached to
an MRT program is processed, issue a Re-
lease Terminal operation to that terminal in
order to check the count of outstanding
Invite Inputs. |f the count is greater than
zero, the program can issue an Accept Input
operation. For example, suppose an MRT
program is servicing the maximum number
of requestors and one or more additional
requests are queued to the program. If

the program receives a shutdown-requested
return code (04) and goes to end of job
without checking the count of outstanding
Invite Inputs, the program terminates with
a 2C termination code (going to end of job
with outstanding Invite Inputs), and each
of the queued terminals receives an S06
message (program cancelled — shutdown).

FORTRAN IV 5-27

76
77

78

79
80

94
95
9%

97
98

99
100
101
102

LOPC=STPINV :
CALL MOVE (TERM,II,II+5,MAREA,1)

C oK o o K o o el ok Ok K ko OR OK R R ik Ok iR i ok Ak R Ok i R R e Rk

C DO STOP INVITE INPUT OPERATION *

C 0k ok ik kR A ok ok ok ook ok ok ok ok ok ok R oK R OR ok R ook ko ROk o ROROK oK KRR IO RO oK ok R OO Rk kR ok

CALL CCPFIO (LPARM,MAREA)

(C Ak ko ok o o oK i KK R K K K K K oK i K K R K 0 K O KR R R KOK R i KR A ROR K R OK R OK R Kk ok o R ok K koK

C IF TERMINAL NOT CANCELLED, THEN ISSUE SHUTDOWN MESSAGE. IF TERMINAL*

c CANCELLED THEN GO TO EXIT IF NO OUTSTANDING INVITES, ELSE GO *

c SEARCH FOR NEXT ACTIVE TERMINAL. *

(C A o ok ok ok o o ke ko ko K ko ok ok ROk ok R ok ok R ke 2 ok ik ok Ok R ROR I R K OR ok ok ok Rk Rk Rk R Rk
IF (LRTC-8) 02510,02508,02510

02508 IF (LEFL) 02600,09000,02600

(C 80K ok ok i ko ok kO Kk gk R K K K KKK ok R R R ROk K K R ok ok R K K kR OK K KRR R R R R K KOROK K Ok K

o SET UP PARAMETER LIST FOR PUT NO WAIT *
K AR AOKOR AR KK KR R KR Kk O R KRR K oK K R AOROR KK AR OO K AR HOK R OROR R KRR R
02510 LOPC=PUTNWT

LOUTL=30

C A AR KRR OKK R R OKOKOKAOR KKK ROR K 0K KKK KK 40K0K KK KRR KKK A AOK K KOK KO Rk K K
c INSERT PROPER SHUTDOWN MESSAGE TO TERMINAL REFERENCED IN TERMINAL *
c DATA ARRAY. THE MESSAGE IS SET ACCORDING TO THE RETURN CODE *
€ R AR R KRR RAOKR HOK KR KOROKOKK KKK K KK 0K 20K 30K JOKOKROIOR SOKOIOR KR KO R R Rk

IF (LRTC) 02520,02535,02525

02520 JJJ=1
GO TO 02528
02525 IF (LRTC-10) 02526,02527,02526
02526 JJJ=9
GO TO 02528
02527 Jag=17
02528 CALL MOVE(ERMSG7,JJJ,JJJ+7,MAREA,29)
GO TO 02558

02535 CALL MOVE (MAREA,7,14,MAREA,29)
02558 CALL MOVE (ERMSG6,1,22,MAREA,7)
oA 3 oK AR O A 2k 3 OK N OK KR R KK o R OK ko K ol ok K Ok R R R OR R OK ROK A K OK K ok ok ok R ok
C DO PUT NO WAIT OPERATION . *
C 20k ok ok ok o o ok o K KK KK ko R OK R OR i K OR R K R R ok ROk kR K K oK ok o Rk ROk Ok kK KoKk & Kk ko
CALL CCPFPIO (LPARM,MAREA)

02600 CONTTNUE

GO TO 09000
C ok ek o sk ok i ROk K o R R o KR ok e ook KR R Rk R R R OKROR R RO R R R RO R R R Ok Rk R R kR Rk Rk R kK
C PREPARE INPUT OR OUTPUT ERROR MESSAGES HERE *
C SET UP PARAMETER LIST FOR PUT THEN GET TO CONSOL *
C koK ok ook ok ok ok sk ok ok ok e kR ok kO KoK kK K ROk K R ko ok Rk R kR kR ok Rk R R Kok R R kR R R Rk ROk R kR ROk R
02800 LOPC=PUTGET :

LOUTL=28
(koK ok ok ok ok o Rk ok o ok oK o ok ok R ok R ok ok K OR ROK K kKR KOK KKK O ROR R ook R kR K Kok R R ROk ok kR
C INSERT TERMINAL NAME=CONSOL, TERMINAL NAME WHERE ERROB OCCURRED, *
c AND INPUT OR OUTPUT ERROR MESSAGE *
(C 2 K o R K o K K K K o ok K ko ok ok ok ko ok R OK ke Rk ok K ok ok Rk K ok ok ok ok 0K 3 8k K ok

CALL MOVE (CONSOL,1,6,MAREA, 1)

CALL MOVE (ERMSG3,JJ,JJ+5,MAREA,7)

CALL MOVE(TERM,II,TI+5,MAREA,29)

CALL MOVE (ERMSG2,1,16,MAREA, 13)
3 A ok o ook K o R o o KK e o K K K A K R R K o ok ok R ok oK ook ok KO ROk R Kok R kR

c DO PUT GET OPERATION TO CONSOLE *
C A A A AOR AR R K A OKOR K KR KOR AOK AKOR KK J0IOK KR 0K A R K KK R HK KKK KK K O OO ok

Figure 5-14 (Part 3 of 4). Example 2 — FORTRAN MRT Program

5-28

If an input error occurred, the message
‘INPUT TP ERROR TNAME xxxxxx' is
issued to the console (xxxxxx = terminal
on which the error occurred). If an output
error occurred, a similar output error
message is built and issued.

103

104
105
106
107

108

109
110

11

12
113

14

115

116

17

118

119
120

CALL CCPFIO (LPARM,MARERA)
C A KRR K K K K R KR OKOR FOKOK O KK KOO ROKOR KKK R O OR ROKOKOKOR K Aok Ok

C MOVE TERMINAL NAME BACK TO TERMINAL NAME AREA IN TERMINAL DATA *
C ARRAY *
C CHECKX POR REPLY REQUESTING TO TRY AGATIN--TA *
c IF TA NOT PRESENT THEN GO DISCONNECT *

C**tt*#****#‘#*t"t‘i"##t‘.i**‘*##i**‘#“““""‘*‘i‘ttltttt‘t#‘#**ttt

MSAV (1) =NAREA (7)

MSAV(2) =MAREA (8)

CALL MOVE(TERN,II,II+5,MAREA,1)

IP (NCOMP(MSAV,1,2,ERASG1,1)) 04800,03800,04800
C*t#tt“*¢##“‘t**tttitt**ti‘ﬁ“*‘tttt#‘#"lt!t*#l#‘*#‘t#tt‘*‘#‘*##‘#*#*
C IF OUTPUT ERROR MESSAGE THEN GO TRY TO OUTPUT AGAIN *
C**t#ltt**l‘.“tl‘*#‘.#‘tt*"‘#‘t*ttttt#**tt*l‘*t‘*#*###*tt#l*#*t**‘t#*t
03800 IP(JJ-7) 03810,01600,03810
C‘t‘**l‘#‘t#“#*##ﬁ‘*ii*‘**‘***i*#‘**tt‘tt#‘*‘l'li##****t*###‘*#t‘*i'#**
C TP INPUT ERROR MESSAGE THEK GO TRY TO INPUT AGAIN *
C*“‘tltt*t‘*t‘#t#***#*‘t“#t“t#‘#‘ﬁt#*t**‘*"ttt‘t‘*l*#t#'**‘#*tt*t**t
03810 CALL MOVE (ERMSGH4,1,18,MAREA,7)

If the system operator keys in TA, the
terminal name of the terminal on which the

LOUTL=18 error occurred is placed in the terminal
C##tti*t#tt#‘t#*t*t#tt!‘l*tlt!tttt**t#tttt‘lt#tt#t*****ttt‘t##*t*##ti**# r
[} e d -
¢ SET UP PUT NO WAIT PARAMETER LIST . name field of the record area and the opera

tion is retried. If he keys in any other char-
acters, the terminal name for which the
error occurred is placed in the record area
and, if the terminal has not been cancelled,
a Release Terminal operation is issued to it.

CREk R AR AR R KRR KA RO R KRR KRR KRR KOk R RO R ROk Rk ok
04300 LOPC=PUTNWT
C A AR AOK ok Aok ko o e A ko R AOR A ROK R KO O KRR O R KRR KR O OIOR R kR Rk
(o} DO PUT NO WAIT OPERATION *
C A AR A ROK A OK KA OK HOK R K IOK R ORI R IR R R R R RO KOk R R Rk Rk Rk Rk ok
CALL CCPFIO (LPARM,NAREA)
GO TO 02200
C AR FOR O KKK KK O AN AR ORI R R KRR RO ORI R R R R Rk kR Xk

C CHECK TO SEE IF THIS TERMINAL HAS BEEN CANCELLED.IF¥ IT HAS GO *
C REMOVE IT FRON THE ACTIVE LIST. IF NOT CANCELLED DO A RELEASE *
[TERMINAL OPERATION. *

C AR ARk A AR OK K A A A R K ORRORROR R R K R K AR OKOR O ROK R OROROR Ok OOk koo Kok

04800 IF (LRTC-8) 04850,04900,04850

C AR AR AR A K K A KK R K KK KKK KK AR K AR KOK KKK KO KK K K KK

c SET UP PARAMETER LIST POR RELEASE TERMINAL OPERATION *

o AR KKK KRR KA KK K KO ORI OKOKOR KKK KK R SR ok & ok

04850 LOPC=RELTRM

© A AR AOK K KKK K HOKOK A KK MK AR R AOK AR K Ak R K ROR KK OR K AOROK RO ROk KK

[of DO RELEASE TERMINAL OPERATION *

(0K A AR AR KK K A AR OKOK KKK HOIOK AR BOR AR R KRR OK K O ORoKOK Rk KRRk

CALL CCPFIO (LPARN,MAREA)

CAAOK K KR A KKK AR KKK ORI R AR OR S AOR JOR KR KK R OKRIK KK KR 3O KRR

(o} SET THE FIRST ELEMENT OF THE TERMINAL NAME AREA OF THE ARRAY TO A *
*

Cc BLANK, SIGNIFYING THAT THIS ENTRY AND ITS ACCUMULATOR ARE
Cc AVAILABLE. RETURN TO ACCEPT INPUT IF MORE INVITES ARE OUTSTAND- *
C ING,OTHERWISE EXIT. *

C kA R R A O AR AR AR AR AR R R K RO R KRR K AR K AR KRR ok O R Kok ok
04900 TERM(II)=LBLNK

IF (LEFL) 00100,09000,00100
09000 sToOP

END

Figure 5-14 (Part 4 of 4). Example 2 — FORTRAN MRT Program

FORTRAN IV 5-29

5-30

Programs written in RPG Il can communicate with terminal
devices via the CCP by means of either or both of the
following two RPG || facilities:

® SPECIAL files - One or more SPECIAL files can be
defined for communications devices; different file
types can be assigned, depending on how the device
is used.

® EXIT/RLABL operations - Terrﬁinal operations can be
requested using EXIT and RLABL operations with sub-
routines provided by the CCP.

You can issue all of the communications operations
described under Operations in Chapter 2 through either
the SPECIAL or the EXIT/RLABL interface. In general,
however, use of SPECIAL files is recommended for opera-
tions involving data transfer, such as Get, Put, Accept
Input, Put-Then-Get, and Stop Invite Input (which may
result in a Get). EXIT/RLABL is best suited for use in
non-1/0 operations, such as Acquire Terminal, Release
Terminal, and Shutdown Inquiry. By following this
general rule, you can eliminate the need for RPG i logic
to move fields from a record area when no data has been
received.

Programming for non-TP devices (console, card devices,
printer, and disk) under the CCP is the same as in RPG Il
programs that are not written to run under the CCP, with a
few exceptions:

® The system operator console is treated as a terminal
device under the CCP. Therefore, you must communi-
cate with the console through.either SPECIAL or
EXIT/RLABL; you cannot use the name CONSOLE
(Model 10 Disk System and Model 12) or CRT77
(Model 15) on File Description Specifications.

® You should not specify a core index for disk files
(columins 60-65 of the File Description Specification).
The CCP builds a core index based on the MSTRINDX
keyword of the DISKFILE assignment statement (see
CCP System Reference Manual). If you also specify a
core index in your program, you will cause unnecessary
code to be generated for your program.

Chapter 6: RPG ||

® You should be aware of how other programs running
under the CCP are using disk files that you use in
your program, especially if records are being added to
the files. See index entry disk file considerations for
detailed information,

® You cannot use magnetic tape files in programs written
to run under the CCP,

Note: You are assumed to be familiar with the RPG i
abject program cycle and the RPG 11 language, including
SPECIAL files, arrays, and EXIT/RLABL, READ, and
EXCPT operations. |f you are not familiar with these
RPG Il facilities and operations, you should consult the
following publications:

® /BM System/3 RPG |l Reference Manual,
SC21-7504

® /BM System/3 RPG Il Additional Topics Programmer’s
Guide, GC21-7567

® /BM System/3 RPG Il Disk File Processing Programmer’s
Guide, GC21-7566

RPG Il Use of the Standard CCP Interface

The interface used by RPG Il application programs for
CCP communications operations differs somewhat from
the standard interface described in Chapter 2. However,
you should read Chapter 2 before reading this chapter,
since most of the information in that chapter also applies
to RPG Il. The differences in the RPG 1l interface are
due mainly to the fixed nature of RPG Il object program
cycle, a characteristic that COBOL, FORTRAN, and
Basic Assembler do not possess. The basic elements of
the interface, although somewhat different in content
and use, remain the same:

® Parameter list
® Record area

® Communications service subroutine

RPG Il 61

COMMUNICATIONS INTERFACE USING RPG Il
SPECIAL FILES

One method of performing operations with terminals under
the CCP is to define one or more SPECIAL files for terminals
in the File Description Specifications. SPECIAL files can
be defined in a variety of ways, depending on the needs of
the particular application. For example, a program that
performs both input and output operations with a single
terminal might define one SPECIAL file as a primary input
file, to be used for input operations with the terminal, and
a second SPECIAL file as a detail output file, for output
operations to the terminal. Thus, two SPECIAL files would
be defined for a single terminal.

‘Suppose, on the other hand, the program communicates
with several terminals. The same two SPECIAL files defined
for communication with a single terminal could be used for
communication with several terminals - one for all terminal
input and one for all terminal output.

It is also possible to define a single SPECIAL file for both
input and output operations with one or more terminals.

For example, a SPECIAL file could be defined as a Combined
Demand Input and Exception Output file to be processed by
READ and EXCPT operations in Calculations.

These are just a few examples of the variety of ways of
defining SPECIAL files for use in terminal operations via
the CCP. Any of the following file types can be defined as
a SPECIAL file to be used for I/O operations with one or
more terminals:

® Primary Input file

® Secondary Input file

® Demand Input file (used with the READ operation)

® Exception, Detail, or Tetal Output file

® Combined Demand Input and Exception Output file
(used with READ and EXCPT)

® Combined Primary or Secondary Input file and
Exception Output file

® Combined Primary or Secondary Input and Detail
Output file

6-2

Parameter Array for SPECIAL

In the RPG Il communications interface to the CCP, using
SPECIAL, each parameter list must be contained in an
RPG |l array consisting of five elements — six positions
each. The contents of the parameter array for SPECIAL
are shown in Figure 6-1. Notice that the contents of the
parameter array are similar to the contents of the standard
parameter list defined in Chapter 2, except that no CCP
work area is provided and, for SPECIAL input operations,
the symbolic terminal name with which the operation is to
be performed is placed in the parameter list.

Unlike the standard interface defined in Chapter 2, certain
parameters for the SPECIAL interface are placed in the
record area, instead of parameter array. See Performing
CCP Operations with SPECIAL, later in this chapter, for
details of using the parameter array and record area in
various operations.

The parameters for an operation can be placed in the para-
meter array during RPG Il compilation, at pre-execution
time, or during execution of the program, depending on how
the array is defined in Extension Specifications (see Defining
the Parameter Array, later in this chapter).

Record Area for SPECIAL

When using RPG 11 SPECIAL, input and output record areas
for CCP operations are defined by coding Input Specifica-
tions and/or Output-Format Specifications. As shown in
Figure 6-2, the formats of the input and output record areas
for SPECIAL are different from the standard record area
format defined in Chapter 2. An additional eight positions,
besides the name field, must be set aside in both input and
output record areas; therefore, data always begins in posi-
tion 15. Figures 6-3 and 6-4 show example RPG Il specifi-
cations for input and output record areas.

Input Record Area

On input operations, the CCP places the following informa-
tion in the record area, as well as in the parameter array:

® Return code for the input operation and the last output
operation

® Effective input length from the input operation

® The program name or the symbolic terminal name

Array
Element Positions Used

not used)

L

Contents

e Return code — two decimal characters returned
by the CCP.
SPECIAL input operations: Return code is placed
in positions 3-4,

SPECIAL output operations: Return code is placed
in positions 5-6.

/\/C—__—L— e Operation code — two alphameric characters.

l——- e Operation modifier — two alphameric characters,

(optional).

rw’Output data length— up to four decimal characters
(qutput operations),

e Effective input data length — up to four decimal
characters (returned by CCP on input operations).

e Count of outstanding Invite Inputs — a four
digit decimal number'(returned by CCP on release
terminal operations and when a 08 return code
occurs on input operations).

®Terminal attributes identifier — up to three decimal

L characters (acquire terminal operation only).

W
L

® Maximum input data length — up to four decimal
characters.

® Program name or symbolic terminal name — up to six
alphameric characters.

Note: See Summary — Performing CCP Operations Using RPG 1] SPECIAL Files, |ater in this chapter, for a summary

of the use of the parameter array.

Figure 6-1. RPG Il Parameter Array for SPECIAL Files.

Because this information is available in the record area, you
can check the contents of these areas without moving array
elements into fields. You can also check the input return
code and effective input length using field indicators. See
Performing CCP Operations with SPECIAL, \ater in this
chapter, for more information about examining the return
code, effective input length, and terminal name.

Output Record Area

On heading, detail, total, or exception (H, D, T, or E) output
operations, you must place the following information in the
output record area:

® Operation code (positions 1-4)

® Qutput length (positions 5-8)

® Symbolic terminal name, CONSOL, program name, or
blanks (positions 9-14)

H, D, T, and E output specifications can be used to issued
either output or non-1/0 operations (such as Release
Terminal and Invite Input -- for Invite Input, the maximum
input length must be provided in the parameter array). See
Performing CCP Operations with SPECIAL, later in this
chapter, for additional information about setting parameters
for various operations.

CCP Communications Service Subroutines for SPECIAL

Two SPECIAL file subroutines, SUBR92 and SUBR93, are
provided by the CCP for terminal operations. SUBR92
is used for processing all requests for terminal operations.
SUBR93 is used only with a ‘““false’” SPECIAL file (see
Defining SPECIAL Files) in order to bypass the record
selection part of the RPG |l object program cycle so that
input operations can be performed in calculations using
the RPG Il READ operation code. The first entry to
SUBR93 returns to your program without data; all sub-
sequent entries to SUBR93 cause the end of the file
condition to be set on for the false SPECIAL file.

RPG Il 6-3

SPECIAL Input Record Area
Program or terminal

name from which
input was received
ya

Input | Previous| Effective /

return | output input Name

code return length field data
code \

1-2 34 56— \-89—-——-~—-—-1415——~———mn
(4096 maximum
Does not include the end position)
first 14 positions

SPECIAL Output Record Area

Operation Output Name
code length field data
A
1———45—\——89———-—14 15 —— — — — = n
\ (4096 maximum
Length of data plus 14 end position)

Note: See Summary — Performing CCP Operations Using RPG /1
SPECIAL Files, \ater in this chapter, for a summary of the use of
record areas.

Figure 6-2. RPG Il Communications Record Area Formats for SPECIAL

RPG INPUT SPECIFICATIONS ISAAR
Printed in US.A.
IBM International Businass Machine Corporation
- 12 75 76 77 78 79 80
i d Electro Number
Program Punching | GroPhic o e e ED . Progem
o b
Programmer Date Instruction | pynch —
8 Record ldentification Codes . . Field
3 Field Location .
£ Indicators
2 1 2 3 & B
2 s | 5
g g § FR A
. . < |= £y o = . = (28] x
Line Filename g |Z| |E8 g %| Field Name 3 |2B| T
g = |<i5l 8 . . |z & g |Lic| g Zero
Z a 522 Position || |B| position || [E| positon || |E|Pe| From To |% J 22| & |rus [Minuslor
e HEE ZlolB Zlol§ ZlalR|2S E g lgE| Blank
£ = =Nl & NI R =lNl&E|R]E 5 £ les| =
o1 ~ ol & o .2
: ST 2|8 31518 ERE 315151512 2 5|28 &
Aln[D :
3 45 7 8 9 10 11 12 13|14 15 |16 {17|18 |19 20 |21 22 23 24|25|26]|27| 28 29 30 31|32|3334]35 36 37 38{39]40|41[42}43]44 45 46 47{48 49 50 51|52|53 54 55 56 57 58|59 60|61 62|63 64|65 66|67 68j68 70|71 72 73 74
o[|=lTlelRM1IN | IAA} | ¥p2| 11 ; |

=)
~

]

1
VoW =

!

ole | Ay . | .
017 ——— e)
R REmE RS +1 T . LI [fields)

S
o
HHlH | H H H[H[HH[H][®

|

Figure 6-3. Input Record Area for SPECIAL

6-4

RPG OuUTPUT

IBM International Business Machine Corporation

SPECIFICATIONS

GX21-9090
Panted nUS A

Figure 6-4. Output Record Area for SPECIAL

Indicators Reserved for CCP Use

Indicators 91 and 92 are reserved for use in communica-
tions operations using the SPECIAL interface.

SUBR92 sets on indicator 91 when an operation results in
a negative return code (error condition). SUBR92 sets on
indicator 92 when an operation results in a positive (greater
than zero) return code (exception conditions) other than a
14 return code (the 14 return code indicates a successful
accept operation of the chain request data). You can use
these indicators to condition operations in your RPG 11
program. For example, you could use indicators 91 and 92
to bypass input field moves, calculations, or to execute a
subroutine that checks return codes when an error or ex-
ception condition occurs on the previous 1/O operation, as
shown in Figure 6-5.

If indicator 91 is on when SUBR92 receives control to
perform an operation, the requested operation is ignored
and control is immediately given back to your program.:

SUBR92 only sets these indicators on. If your program
uses indicator 92 to determine whether an exception
condition occurred, your program must set indicator 92
off after an exception; otherwise, indicator 92 would re-
main on until end of job. It is even more important to
set off indicator 91, because, if it is already on at the time
a communications operation is issued, the operation is
not performed, and a return code of -91 is given even
though the error condition may-no longer exist.

i 75 76 77 78 19 80
Program Punching Graphic Card Electro Number orogram 18 79 W
Programmer Date Instruction | ooy Identification
o [space| Skip Output Indicators Zero Balances X - Remove
M . to Print Plus Sign
'B_ & Field Name Yos Y - Date
S5 . No Field Edit
Line Filename HMEEE] End No Yes 2= Zero
g|4|8|= And And | Ppositon No No Suppress
g i e | £l2| o =
& A o] 2| & | = = 38 G| Output 3 Constant or Edit Word
E o - R B z = *AUTO £ (€] Record |d
ks) Cls o
& b
A
3 4 5f16{7 8 9 10 1112 1314a[15]16f17}18118 20|21 22]23]24}25]|26 |27 |28)29[30 {31 |32 33 34 35 36 37|38)39 40 41 42 43|44}45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 68 70{71 72 73 74
o2l o yl 1| | B .
1] . ’
olsf Jo 2 Record area for detail
-
0 o NAME, .
: i IINAME, L output showing a Put
ols| jo - . .
1017 . L -l operation code with an +
of6 [0} bt
-] output length of 20.
ol7| |o - e
ols| |o F {|ELD N! 2% |
ois| (O
10| |o

DEFINING SPECIAL FILES FOR USE WITH CCP

One or more SPECIAL files can be defined in File Descrip-
tion Specifications for use with the CCP. [f you are a
beginning user of the CCP, it may be easier for you to define
one input and one output file instead of a combined file,
until you gain familiarity with the use of RPG Il for CCP
operations. Combined files, however, are sometimes more
economical in their use of main storage and are the only
file types allowed with the Put-Then-Get operation. Com-
bined files are more economical of main storage if the

size of the input and output are approximately the same,
Separate files should be used (possibly sharing the same
parameter array) if there is a significant difference (53 or
more positions) between the sizes of the two record areas.

Two File Description Specifications are required to define
each SPECIAL file to be used with the CCP, a main file
statement and a continuation statement. Figure 6-6

shows the valid ways of defining a SPECIAL file. Columns
that are unshaded in the figure have valid required or
optional entries.

Note: As shown in Figure 6-6, a continuation specification
is not required for a ““false’” SPECIAL file (using SUBR93),
since a parameter array is not required.

RPG Il 6-5

RPG CALCULATION SPECIFICATIONS Form GX21 2083

Printed in U.S.A,

IBM usions Machine

1 2 75 76 77 78 79 80
Program Punching Graphic Card Electro Number . D:l f rogram
" age of N
Programmer I Date Instruction | p,nop —_
C N Indicators Result Field :Res}xlting
o ndicators
3. ‘ s ‘Avithmetic
JE . 2 | [Plus [Minus] zero
39 And And Factor 1 Operation Factor 2 z|E Comments
K 3 Length $ § Compare
Line 12|35 2 Name enoth |5 s[> el <e[i-2
A - " 5[[Fookup(Factor 215
els 5|2 2 2 &) [High | Low [Equal
3 4 5|67 8| 9oit]12|131a)1s[16[17]|18 10 20 21 22 23 24 25 26 2728 29 30 31 32f33 34 36 36 37 38 39 40 41 4_2J:13 44 45 46 47 48|49 50 5112&2 565]56 57|58 59 |60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
of1] |c L I l [
ol2| [clolR 2] | [[111111 1 SETON Al L] BR — — -
ols| e LIR GaToo! [END! This instruction is required
ole| |c ') 1 to define indicators 91 and
o[s] [e | 1192 to the RPG 11 compiler.
os| le 7 il /" - -
o7 |e JU0 | SETOFL L] 9iL(9 NEEREN
ols| |c E/ND | L ITAG| | 1
ole| fc
tlo| |c
11| fc
112 C
RPG CALCULATION SPECIFICATIONS Form GX21-9093

Printed in U.S.A.

111 R ——

12 75 76 77 78 79 80
i Card Electro Number
Program Punching Graphic Page I:D of Program
Programmer Date Instruction Punch —
i . Resulting
Indicators Result Field Indi 9
- ndicators
3 | | Arithmetic
=N - "
39 And And Factor 1 Operation Factor 2 [Pus [Minus] zero Comments
5% Length F Compare
Line = Name engt glizeli<eliz2
‘E b - = « [Lookup{Factor 2)is
3 512 2 2 £ [High | Low [Equat
3 4 slels 8]olofinfiz13f1a]1s]1e[17}18 19 20 21 22 23 24 25 26 27|28 29 30 a1 32{33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 afas 50 51fs|s3)sa 66|56 57|se safeo 61 62 63 64 65 65 67 68 69 70 71 72 73 74

E|X ClH

iled return)
code checking.) 11 J

xx‘“lvv U\x

o
@
OO0 O ojlojlalo O 0|0 0|00 | O™ FormType

Figure 6-5. Using Reserved Indicators 91 and 92 (SPECIAL Only)

6-6

11 ©dY

L9

File Description Specification

File Type Mode of Processing File Addition/Unordered
F File Designation Length of Key Field or = Extent Exit Number of Tracks
End of Fil of Record Address Field I for DAM for Cylinder Overflow
nd of File
Record Address Type Symbolic g Name of . Number of Extents
Filename Sequence Type of File o Device Device =| Label Exit Tore
File Format Organization & k| Rewind
Line or Additional Area -§ Core Index File
° <} a | Overflow Indicator| 2 Condition
IS = = 9 u1-Us
Sle = i‘:;' mt': Rk Key Field | 2 Continuation Lines 2
HERER x s|s Starting | & 2 E}
O|12|ulz|E] <|3 Location | K Option Entry < <
3 4 5 7 8 9 10 11 12 13 14[15|16|17{18]19]20 21 22 23|24 25 26 27}28129 30]31]32{33 34|35 36 37 38139] 40 41 42 43 44 45 46 La7 48 49 50 51 5253]54 55 56 57 58 59 {60 61 62 63 64 6566167168 69}70]71 72]{73 74]
; : 0|2 P PE L S|y
Primary Input file L E : Ri%
3K
0la
. 0|5 .
Secondary Input file IlS | |F PECIAL SUBR?
ol6
0|7
ols]
Demand Input tile F PE/C SUBRA
ofs
16 ‘
Detail, Total, or Exception __ UBR9
Output file
0|2

Combined Demand Input/ .
Exception Qutput file

Combined Primary Input/
Exception or Detail Qutput — z : CP L SPECLA SUBRT2
file !
Combined Secondary Input/ = =

. . ofs C'S| | IF SPEC| A SUBR¢
Exception or Detail Output ~— 1o

file
False file (used only whena _.
primary file is not used)

Al ([l fm[mimn[m|n]| = |o FormType

[N NSRS NS USRS U WS NS N

F | |
TLIL 0L 6989 /99959 YO EI 79 19 0965 85 (SIS SS VG ES TS IS OS 6V BY LV OV SY PP EV Z¥ Ly OV 6E BE LE SE GE VEEE ZE IE OE 6C 8Z LZ 92 SZ WZ EZ TZ LZ OZ 6L 8L LL 91 GLPLELZL ILOL 6 8 £ 9 S v £ T 1

Figure 6-6. Valid Methods of Defining a SPECIAL File for CCP Operations

Main File Description for SPECIAL

Page and Line (1-5): See RPG /! Reference Manual,
SC21-7504.

Form Type (6): The preprinted character F identifies this
as a file description specification.

Filename (7-14): Enter a name for the CCP SPECIAL
file. Use this name to refer to the SPECIAL file - not to a
specific terminal - in subsequent Input, Calculation, and
Output Specifications. Rules for forming filenames are
given in the RPG /I Reference Manual, SC21-7504.

File Type (15): 1, O, and C are valid entries in this column.
See combinations on Figure 6-6 for valid File Type/File
Designation entries.

File Designation (16): P, S, D, and blank are valid entries
in this column, See Figure 6-6 for valid combinations of
File Type/File Designation entries.

End of File (17): E is a valid entry with Input and Combined
files which are designated as primary or secondary. Leave
this column blank if you need not process terminal input
data to End of File. When using a false SPECIAL file, set
End of File to on during the second and subsequent entries
to SUBRO3. When using a SPECIAL file with SUBR92, you
must set the End of File condition by issuing the Force

End of File operation, even though you may have entered
an E in this column (see CCP Operation Codes, later in

this chapter, for an explanation of the Force End of File
operation),

Sequence (18): See RPG Il Reference Manual.

File Format (19): Enter an F or leave blank (RPG Ii
assumes F). Files must be defined as having fixed-length
records, even though variable length records can be handled
via the CCP (see Record Length and index entry variable
length records).

Block Length (20-23): Enter the same value specified in
columns 24-27 (record length), or leave these columns blank.
If you specify a block length greater than record length,

you will add unnecessary space to your program. Blocking
is allowed with BSCA terminals (see index entry blocking),
but is specified during CCP assignment (see TERMATTR
statement in CCP System Reference Manual).

6-8

Record Length (24-27): Enter a value equal to the maximum
size record or message you expect to receive or send, pius

14. The extra positions are required for the input/output
parameters and terminal name in the first 14 positions of

the record area. (Additional information must be provided
in the record area for certain 3270 Display Format Facility
operations — see index entry.) For SUBR93, a record

length of 7 is suggested.

Columns 28-39: Leave these columns blank.

Device (40-46): Enter SPECIAL.

Columns 47-53: Leave these columns blank.

Name of Label Exit (64-59): Enter SUBR92 for all
SPECIAL files to be used for communicating with terminals.
Enter SUBR93 only if you are defining a fa/se file in

order to bypass RPG 11 record selection logic when using
demand files (see Figure 6-6). See Programming Examples
later in this chapter for an example of using SUBR93.

Columns 60-74: Leave these columns blank.

Continuation Specification for SPECIAL

A continuation specification must follow each SPECIAL
file description, except for a fa/se SPECIAL file. The
purpose of the continuation line is to associate an array
with the SPECIAL file, to be used as a parameter list for
communicating with terminals via the SPECIAL file.

Form Type (6): The preprinted character F identifies this
as a file description specification.

Columns 7-52: Leave these columns blank.

Column 53: Enter K (continuation).

Operation (54-59): Enter the name of the array that is to
be used to pass parameters to the subroutine defined in
the previous SPECIAL file description. This array must
be defined in Extension Specifications.

DEFINING THE PARAMETER ARRAY

One Extension Specification must be provided for each
array associated with a SPECIAL file (SUBR92) in File
Description Specifications and for each array used with
EXIT/RLABL (see EXIT/RLABL Communications Inter-
face). You may use one array for both SPECIAL files and
EXIT/RLABL processing; EXIT/RLABL subroutines
SUBR91 disregards the fifth element.

You can use the same parameter array for more than one
SPECIAL file. Whether you use the same array or separate
arrays for different SPECIAL files can be determined by
which is most convenient for your program.

You can load the parameter array at compilation time,
pre-execution time, or during execution (Figure 6-7). Com-
pilation time arrays are most efficient in terms of the
amount of RPG |l object code generated. You should load
the array at compilation time or pre-execution time if it is
to be used with a primary or secondary SPECIAL file, so
that the proper operation code and maximum input length
are in the array when the file is read on the first program
cycle. See RPG I/ Reference Manual, SC21-7504, or RPG
11 Additional Topics, GC21-7567, for a complete descrip-
tion of loading and defining arrays.

Note: If the array is a pre-execution time array, the card
input device or disk file used to load the array is allocated
to the program until end of job. The card device or disk
file must be defined on the // PROGRAM assignment
statement.

Extension Specifications

Page and Line (1-5): See RPG |l Reference Manual,
SC21-7504.

Extension Specifications

Form Type (6}: The preprinted character E identifies this
as an extension specification.

Columns 7-10: Leave these columns blank,

From Filename (11-18): If the array is to be loaded at
pre-execution time, enter the name of the file from which
it is to be loaded.

Columns 19-26: Leave these columns blank.

Array Name (27-32): Enter the name of an array which is
described on a File Description Continuation Specification
with a SPECIAL file or which is used as an RLABL follow-
ing an EXIT operation. Rules for forming array names are
given in the RPG I/ Reference Manual, SC21-7504.

Number of Entries Per Record (33-35): Make an entry in
these columns only for compilation time and pre-execution
time arrays. Enter 005 for arrays used with SPECIAL files
and SUBR92; enter 004 for arrays used only with EXIT/
RLABL. When loading an array at compilation time or
pre-execution time, the entire array must be loaded from

a single record. An entry is required in these columns when
using primary or secondary files with SUBR92, since you
must use a compilation time or pre-execution time array to
provide parameters for the first operation.

Number of Entries Per Array (36-39): Enter 0005 for
arrays used with SPECIAL files and SUBR92; enter 0004
for arrays used only with EXIT/RLABL.

Length of Entry (40-42): Enter 006, the length of array
elements.

E Record Sequence of the Chaining File
Number
Number of the Chaining Field of Number el el _
- Table or Entries | of tengen | [S(8] Table or Qg | | 5[5
Lice [g) To Filename Array Name |Per | Entries of & <| Array Name | o 3 < Comments
§ i lam 8 Alternati
© i v Record | PerTable | Entry [ecjg| 8 (Akernating) Enuy o |28
H . From Filename) J[g}E| Format) J]E|§
£ or Array I E HEE
$ =88 SEE
3 4 5 678910|||2|31415|G|7IE1920212223242526272829303'3233343536373839404'47“""“4647484950515253545556575859606‘6263646566576869707‘727374
o1 E '
o2 [e Compile time array.
ops] fe LEEETEEEITTT
ajai |Ef; Pre-execution time array.
ols| |E) PLrrrrerrrerre | |
o8 [EL ﬂ H _| Execution time array. 111
o7l 1e EINENENEREENE

Figure 6-7. Entries Required to Define Parameter Arrays Used with CCP SPECIAL Files and EXIT/RLABL Operations

RPG Il 69

Columns 43-74: Leave these columns blank. Note that

the array must be defined as alphameric.

CCP OPERATION CODES

The RPG Il form of the CCP operation codes for SPECIAL
and EXIT/RLABL communications operations is composed
of two parts. The rightmost two characters of the operation
code define the basic operation to be performed. The valid
RPG 11 operation code/modifier combinations are summar-
ized in Appendix D. See Chapter 8: 3270 Display Format
Facility for additional operations and operation codes that

_are used only with the DFF.

The valid CCP operation codes for RPG 11 are:

Code
00

BA

AA
GA
¥B8
BB
DB
EB
FB
CB
GB
BC
CcC
¥D
YE
bF
BF

CF

6-10

Meaning
Shutdown Inquiry

Get (For Stop Invite Input see

modifier Code D below)

Get and Reverse Interrupt

Force End of File

Put

Put Block

Copy (DFF only)

Erase All Unprotected (DFF only)
Put Block — PRUF

Put Message

Put Message — PRUF

Combined Put (Record)-Then-Get
Put (Message)-Then-Get

Accept Input

Invite Input

Put-No-Wait

Put-No-Wait Block

Put-No-Wait Message

Code

GF

BbH

Al

BI

BK

AK

BK

Cs

BWw

Meaning
Put-No-Wait Message — PRUF
Get Terminal Attributes

Acquire Terminal (with present
attributes)

Acquire Terminal (with new
attributes)

Acquire a command-mode
non-DFF terminal

Release Terminal (and release line)
Release Terminal (keep line)
Chain Task Request

Put ((Message) with Invite Input

Put-No-Wait (Message) with Invite
Input

The valid operation modifiers for RPG |l are:

Code

i

BA

¥B

BC

8D

BH

Meaning

Perform carriage-returns at start of
data and at end of data for MLTA
typewriter terminals. (See index
entries new line and end line)

Perform a carriage-return at start of
data, not at end of data.

Perform a carriage-return at end of
data, not at start of data.

Do not perform carriage-return.

Stop an Invite Input for this terminal.
This modifier is only valid with the
Get operation code, that is ‘BDBA’.
(See index entry stop invite input.)

Override (modify) format fields (DFF
only -- used with operation codes CB,
GB, CF, GF, CS, and BW).

Descriptions of the operations listed above are given under
Operations in Chapter 2 and under Display Format Facility
Operations in Chapter 8, except for the following three
operations, which are used only with the RPG Il SPECIAL
interface: Force End of File, Put with Invite Input, and
Put-No-Wiit with Invite Input.

Force End of File (SPECIAL Only)

When using a primary or secondary SPECIAL file, for
communications operations, you may need to inform the
communications service subroutine (SUBR92) when to set
on an end of file indication in order to cause another
secondary file to be processed or to cause your RPG |l
program to perform LR logic. To issue a Force End of
File operation, you need only set the operation code in
the second array element (if issued as an input operation)

or in the output record area (if issued as an output operation).

CCP does not return a return code for this operation. The
information in the parameter list is not changed by this
operation.

Force End of File cannot be issued using EXIT/RLABL and
cannot be issued to the ““False’” SPECIAL file (SUBR93).
The “False’” SPECIAL file will be set at end of file after

the second access of the file.

Put With Invite Input (SPECIAL Only)

Put with Invite Input is the equivalent of a Put Message
operation (treated as Put Record for MLTA terminals)
followed by Invite Input to the same terminal. This opera-
tion allows you to issue a Put and an Invite Input via H, D,
T, or E output specifications in a single operation. To issue
this operation, place the maximum input length for the
Invite Input into the fourth element of the parameter array
(if not there already) and place the following parameters in
the output record area:

® Operation code ‘BYCS’ (‘BHCS’, if DFF overrides are
being put)

® Output length for the Put
® Symbolic terminal name

If Put with Invite Input is being issued at detail output
time, the aperation code for Accept Input (‘BD’) must be
placed in the second element of the parameter array prior

to issuing the Put. This allows the program to accept data at
the next input time in the RPG Il cycle.

The CCP places the return code for this operation in the
parameter list and sets on indicator 91 or 92 if an error or
exception condition results from the operation. The return
code and indicators reflect only the result of the Put portion
of the operation. If indicator 91 is on after the operation,
the Invite Input (and Accept Input, if issued) will have

been ignored and a -91 return code returned to your program.

When you want to Put a message to a terminal and Invite
additional input from the terminal, you can save coding
and possibly save an unnecessary pass through the RPG II
logic cycle by using Put with [nvite Input.

Put-No-Wait With Invite Input (SPECIAL Only)

The function and use of Put-No-Wait with Invite Input
are the same as Put with Invite Input, except that after
the CCP has accepted the operation, your program does
not wait for, and does not receive a return code. The
operation code is ‘BBBW’ (‘bHBW’, if DFF overrides are
being put).

If indicator 91 is on after the operation, the Invite Input
(and Accept Input, if issued) will have been ignored and a
-91 return code returned to your program,

PERFORMING CCP OPERATIONS WITH SPECIAL

Performing a CCP communications operation using
SPECIAL involves one or more of the following steps.
The specific steps required depend on which operation
is being issued and whether the operation is issued as an
input operation (primary, secondary, or demand input)
or an output operation (H, D, T, or E output):

1. Set the parameters for the operation in the proper
location in the parameter array (input) or record
area {output).

2. Specify the name of the program for a chain task re-
quest or the symbolic terminal name for the opera-
tion, if required, in the parameter array (input) or
record area (output).

3. Place any data to be transmitted in the record area
(output operations).

4, Issue the operation during output or input time in
the RPG 11 program cycle (via Output or Input
specifications) or, if demand input or exception out-
put are used, issue a READ or EXCPT operation in
calculations to perform the operation.

RPG Il 6-11

5. Check the result of the operation by testing the
return code and/or using indicators 91 and 92.

6. Examine and/or process other returned information,
such as the effective input length (if a data truncated
return code is received), symbolic terminal name, and
input data.

Operations that involve transfer of either input or output

data are restricted to being issued either as input or output

operations, since either an input or output record area must
be provided. The following operations must be issued as

primary, secondary, or demand input operations via a

SPECIAL input or combined file:

® Get

® Accept Input

® Stop Invite Input {may result in a Get)

@ Get Attributes

The following operations must be issued as output opera-

tions, using H, D, T, or E Qutput Specifications via a

SPECIAL output or combined file:

® Put

® Put-No-Wait

® Put with Invite Input

® Put-No-Wait with Invite Input

® Copy (DFF)

® Chain Task Request

® FErase All Unprotected (DFF)

The following operations can be issued as either input or

output operations, since they do not result in transfer of

data:

® Acquire Terminal

Invite Input

Shutdown Inquiry

Force End of File

Release Terminal

Of these operations, Acquire Terminal, Invite Input, and
Shutdown Inquiry are most logically issued as output
operations; Force End of File is most logically issued as an
input operation. (See Non-1/0 Operations, later in this
section.)

The Put-Then-Get operation, which can be used only with
combined SPECIAL files, is both an input and output
operation and requires both an input and an output record
area (see Put-Then-Get Operation, later in this section).

Performing CCP Operations Using Primary, Secondary,
or Demand Input

To cause an operation to be performed during primary,
secondary, or demand input time in the RPG Il program
cycle, provide an input record area in the appropriate
format (Figure 6-2 and 6-3) and place the following
information in the parameter array:

Maximum Input Length

Symbolic Terminal Name

When using a primary or secondary SPECIAL file, this
information must be placed in the array prior to the first
read from the file. Therefore, you should load the array

at either compilation time or pre-execution time with the
appropriate information for the first operation. For sub-
sequent operations from the file, if any of the array contents
must be changed, they can be reset in calculations, as shown
in Figure 6-8.

In some applications, it is not convenient to perform input
operations at primary or secondary input time in the RPG
Il cycle. Using a demand file, you have more control over
when the file is read, since you cause the file to be read
whenever you issue the READ operation in calculations.
Therefore, demand fites are more flexible for communicat-
ing interactively with terminals.

RPG CALCULATION SPECIFICATIONS Form Gxz1.0083
IBM International Business Machine Corporation '
2 75 76 77 78 79 80
Program Punching Graphic Card Electro Number . [D . Program T
Programmer I Date Instruction | Punch * —_
c o Indicators Result Field :::::i"c:‘i:?s
2‘; - I ! e Arithmetic
56 And And Factor 1 Operation Factor 2 £1Z [Pus [Minus] zoro Comments
g3 % L nl& 3 Compare
Lne {3 2 Name ength (Sl S NSoli<2]1-2
€ EZ & ~ » » s : Lookup(Factor 2)is|
2|8 5|2 2 2 & E [High | Low [Eaual
3 4 51617 8| 9101111213 [14]15/16]17]18 19 20 21 22 23 24 25 26 2728 29 30 31 32|33 34 35 36 37 38 39 40 41 42]43 44 45 46 47 48|49 50 s1f52]53 58 59 |60 61 62 63 64 €65 66 67 68 69 70 71 72 73 74
ol1| [e | TTTTTTT
S 1 EfRL Ll 1 These MOVE operations set
0|3 c
m(’)\\’ltE : A) W + | up the parameter array for a
of4| |c A
olel e 1 oVE A) 5 | Get operation from the ter-
olsl lc ’ 1k) " | minal named in the field
o|7| |e | TNAME, with a maximum
ole| [c input length of 44,
1 |
olot IC [T S T T S R S S S S S SR Y

Figure 6-8. Setting the Parameter Array Contents for a Primary, Secondary, or Demand Input Operation

If the file is used for a series of operations, you may not
need to modify all parameter array elements for every
operation.

Operation Code

In setting or modifying the operation code, you can avoid
having an invalid operation code/modifier combination by
always moving both parts of the operation code into the
parameter array, as is done in Figure 6-8. (See Put-Then-
Get Operation, later in this section, for special considera-
tions.)

Maximum Input Data Length

For operations that can result in input data being received
in the input record area (Get, Accept Input, Get Attributes,
and Stop [nvite Input), set the fourth element of the para-
meter array to indicate the maximum amount of data you
expect from a terminal, including device control characters
your program handles (see index entry device control/ _
characters) and including the 14 characters reserved in the
record area for CCP use. The maximum number you can
enter is 4096.

For the Get Attributes operation, set the value of the
fourth array element to 35, the length of the attributes
data (21) plus the required information in the first 14
positions of the record area.

This element of the parameter array is never modified by
the CCP; therefore, as long as your maximum input length
remains the same, you need not reset this element.

Symbolic Terminal Name

You must place the symbolic terminal name (or blanks)
in the fifth array element when you issue one of the
following operations at primary, secondary, or demand
input time:

® Get

® |nvite Input

® Stop Invite input
® Get Attributes

You can use blanks in the fifth array element for these
operations only in single requesting terminal (SRT/} pro-
grarhs (see index entry). When you use a blank terminal
name, the CCP returns the name of the terminal that
requested the program in the input record area and in the
parameter array after the operation.

You need not specify a name for the Accept Input opera-
tion; however, after the operation, the CCP places the name
of the program or terminal from which the input data was
received in the fifth element of the parameter array and in
the record area.

RPG Il 6-13

See Put-Then-Get Operation, later in this section, for
special considerations.

Testing the Return Code

After any CCP operation, you should test the return code
to determine the result of the operation, since the result
may require special actions in your program. If the opera-
tion resulted in an error condition {negative return code)
or exception condition (positive return code), you might
either take specific actions in your program or inform the
system operator of the condition by issuing a message to
the console,

The CCP places the return code for input operations issued
at primary, secondary, or demand input time in the first
two positions of the input record area as well as in the
middle two positions of the first element of the parameter
array (see Figures 6-1 and 6-2). The return code for the
last output operation is available in positions 5-6 of the
first array element and in positions 3-4 of the input record
area. Also, the CCP sets on indicators 91 and 92 for error
and exception conditions, respectively (see /ndicators
Reserved for CCP Use). Thus, you can test return codes
in a variety of ways:

® Using Calculations to test the contents of the return
code field in the input record area.

® Using indicators 91 and 92 to condition operations in
Calculations and to condition output lines (Figure 6-5).

® Using record identification codes or field indicators
on Input Specifications.

Figure 6-9 shows an example of testing the return code
for plus, minus, or zero by means of a compare operation
and resulting indicators. If you wish, you can test for the
exact return code to determine which exception or error
condition occurred and take appropriate action. Return
codes and recommended program actions are summarized
in Appendix E.

If indicator 91 is on when any input operation is requested,
the operation is ignored by SUBR92 and a return code of
-91 is returned (appears as 9J). This return code may be
used to prevent blanking out of previous input fields (see
Figure 6-10).

Figure 6-10 shows how indicators may be set on for input
operations with SPECIAL files to indicate record type,
normal completion, error or exception return code. In this
example, the record NAM is read with indicator 01; the
record ADR is read with indicator 02. If there is not a

normal completion of the input operation, indicator 03 is
on, the return code is moved into a two-character numeric
field (RTNCOD) for more detailed testing in calculations.

Special considerations are involved when you use the input
return code from positions 3 and 4 of the first element of
the array. |f the correct sequence of operations Is not
followed, the sign of the input return code can be lost.

The procedure requires that the first element be moved into
a four-position alphameric field via a MOVEL Instruction,
and that the same four-position field be moved into a two-
position field via a MOVE instruction. The two-position
field then contains the input return code with the correct
sign.

Although it is possible to do preliminary return code
checking using the method shown in Figure 6-10, that
method is not recommended, since it is much easier to
detect positive and negative return codes using indicators
91 and 92.

Examining the Effective Input Length

On SPECIAL input operations, the CCP returns the effective
input length in positions 5-8 of the input record area

(Figure 6-2). This value includes only the actual length

of data available to your program and does not include the
14 characters preceding the data in the record area or the
length of truncated data. The input data begins in position
15 of the record area.

After you have issued an input operation, you can examine
the effective input length, for example, to verify that the
terminal entered a required number of characters, in order
to detect erroneous input. You might also use the value of
the effective input length as the limiting value in a routine
that scans the input data.

The effective input length may be equal to or less than the
maximum input length you specified for the operation,
depending on the actual amount of data transmitted to
your program by a terminal. If the terminal transmits more
data than the maximum you specified, the excess data is
truncated and your program receives a ‘‘data truncated”
return code. (See index entry data truncated, special use
in DFF, for a special meaning of the data truncated return
code.)

Contents of the effective inbut length field for each opera-
tion code and return code is summarized in Appendix E
(Table E-7).

IBM cnaions Busess ahine Corsoraion

RPG CALCULATION SPECIFICATIONS

Form GX21-9093
Printed in US.A.

Program Punching Graphic

75 76 77 78 79 BO

2
,,
Tl mmnTTTTT)

Card Electro Number

Programmer ,Da(e Instruetion | py e
C 4 Indicators Resuit Field Resalting
—l 3 l | o Arithmetic
Zo Ao And Cnntn- 1 Operation Factor 2 2| T | Plus [Minus] Zoro Comments
é g Compare
Assume RTNCOD is defined in Name | Length S| SlT> a1 <a[1=2
e . . 5 | = |Lookup(Factor 2}is
Input Specifications as the first &) 2 [Fon | Low [Equal
_] . . L&N?QGOM32333435:!637383940414243444546474849505|5253545566515859605|62636465666768697071727374
. | two postions of the input record <
o | area (numeric field). 4
03 [# \ 2
ofa C 3
ofs| Jc RITNC/OD ComP| | ! 24
ofs| |c lid EXS|R E‘ CE I 1
ol7| |e 2 | | [EXSR [ERROR In this example, if the return code is greater ||
il I 1 g than zero, a subroutine that handles excep- —]
o9 [. e . .
S tion conditions is executed; if the return =
e / code is negative, an error-handling subroutine | ——

is executed.

Figure 6-9. Using Calculations to Test the Return Code in the SPECIAL Input Record Area

Examining a Returned Name

For the Accept Input operation and for operations issued
with a blank name field, CCP returns the program name or
a symbolic terminal name to your program (see index entry
operations). For all operations issued at primary, second-
ary, or demand input time, the CCP places this name in
positions 9-14 of the input record area. You may need to
examine this name to determine which program or termi-
nal is communicating with your program.

For example, in a multiple requesting terminal (MRT) pro-
gram (see index entry), you should examine the terminal
name you receive from an Accept Input operation in order
to determine if the terminal is a new requester or if it is
already attached to your program. If the terminal is a
new requester, you might move the terminal name to a
save area. If the terminal has previously provided input to
your program, you may need to associate new data with
data previously received by comparing the terminal name
with a saved terminal name. Example 2 under Programming
Examples shows an example of examining the terminal
name after an Accept Input operation.

If a program can be requested from both a terminal and an-
other program using the Chain Task Request operation, you
may want to determine how the program was requested.
This can be accomplished by checking for a 14 return code,
indicating a Chain Task Request operation. This informa-
tion is useful if a program communicates with the requestor
since your program cannot communicate with a chain task
requesting program.

Performing CCP Operations Using Heading, Detail, Total
or Exception Output

When issuing CCP output operations at H, D, T, or E out-
put time via a SPECIAL output or combined file, you
must place the operation code, output .Iength, and ihe
program or terminal name in the output record area, as
shown in Figures 6-2 and 6-4.

The output length for SPECIAL output operations includes
the 14 positions required in the record area for the opera-
tion code, output length, and terminal name. This length
also includes device control characters you are inserting
yourself and the special information required for certain
3270 DFF operations. Thus, the value of the highest end
position used on the Output Specifications should be used
as the output length. The maximum length is 4096.

After an operation is performed at H, D, T, or E output
time, the CCP places the return code in positions 5-6 of the
first element of the parameter array (Figure 6-1). You can
easily test the return code for a positive or negative value
by using indicators 91 and 92 (see /ndicators Reserved for
CCP Use, earlier in this chapter). In order to test for a
specific return code value, however, you must move the
contents of the first array element to a two-position
numeric field. Figure 6-11 shows how these methods can
be used in combination to test the return code. See
Programming Examples, later in this chapter, for additional
examples of testing return codes.

RPGII 615

RPG INPUT SPECIFICATIONS P UsA,

12
Program
Page of "

Record Identification Codes . . . Field
Field Location .
3 Indicators

IBM ..ccoaonoi susnoss wachine corsoration

Program

75 76 17 78 79 80
Punching Graphic Card Electro Number

Programmer le Instruction Punch

I

NS NN IS SV B S . —

1 2

or*

Line Filename Field Name
Zero
Plus [Minus|or

Blank

Sequence

Position Position Position From To

Record Identifying Indicator

Form Type

Number (1-N}
Option (O}

Not (N}

cizin

Character

Not {N}

C/2/D

Character

Not (N}

C/2/D

Character

Stacker Select
P/B/L/IR

Decimal Positions
Control Level {L1-L9)
Matching Fields or
Chaining Fields

Fiela Record Relation

NID
7 8 9 1011 12 131415 |16

TIEIRM 1 INAILA

3
»

19 20 |21 22 23 2425 27|28 29 30 3132 35 36 37 38[39|40}a1{a2

=
&

44 45 46 47(48 49 50 515263 54 65 56 57 5859 60

2
&
2

63 6465 66(67 68|69 7071 72 73 74

,-
x>
=

Q t
X

2O-C ¢

>0 >
R &
[«]
™
N~ N e g
X e NasNa Xl
'-
[X N
[aN e NaXal el
[~}
’-
-
~

=
W~

M- —x
AN l""'l"zz~|

G| =
HIH A R H H A HHH =N (A H] H] HH e
.
;
A

I
7L 1L 0L 69 3 19 99 GO vO £ 70 10 00 65 65 19 08 53 G €5 ZG 13 0G 6 8v Lb Ov Gv bb TV Zv v Ob 6C 86 LT 9E G€ VL 6 Z€ 1Y OF 62 BC L2 OZ G VC €L CC 12 0Z 61 BL LU O1 G YL EL ZL LLOV 6 8 L 9 § ¥ € ¢

Figure 6-10. Testing the Return Code on Input Specifications (SPECIAL Input Operation)

When performing operations via H, D, T, or E output, you ® On SPECIAL output operations issued with a blank
need only use the parameter list in the following cases: terminal name (valid for SRT programs only), the CCP

returns the name of the requesting terminal in the fifth
@ To test the return code in positions 5-6 of the first element.

element after the operation.

Note: 1f a valid terminal name is given in the output record

j ® To check the count of outstanding Invite Inputs in the area for a SPECIAL output operation, any name in the
third array element after issuing a Release Terminal fifth element of the parameter array is not modified.
operation at output time.

® To specify the maximum input length value in the
fourth element when iss'uing an Invite Input operation
at output time (see Non-//0 Operations, later in this
section).

6-16

RPG CALCULATION SPECIFICATIONS

IBM .crcuions susiness achin corporation

Form GX21-9093
Printed in US.A,

75 76 77 78 79 80

Program Punching Graphic | cord Boctro Number - [j.j . —
Programmer I Date Instruction | Punch R N —
C o Indicators Result Field r::;s:‘c,a‘igfs
g 1) el ot
%9 And And Factor 1 Operation Factor 2 - i SCO:‘:‘:{E <o Comments
Line é ‘;"z Name Length % gzl <2[i=2
el ol - = 5[[Fookup(Factor 218
g8 5|2 2 2 S| [Figh | Low [Equal
4 s)le |7 a| 9011121314 1516|718|9202|222324152827')329303‘3233343536373539604|4243445546474849505|L5_2_i3__5155564&%&&&&65%676&8&7071727374
oj1] Je 9L SETON LR
ole| [e| |] LR | GoTo [E
il I 912 | | | IEXSR| [RETICHK | |
A 'S A
osf |c 11 P4 1 |
ols| [ef | | | END | ||| TN%) 1 |
o|7] IciSKR | RIETICHK BEGQSR]
ols| iR 1 MoviE| ARY|, L TNciolo| | 24 ‘
oo| felSRl ||]]| RTNlc/ap cloMp| |BY4 P5iSHU TIDOWM Reqﬂr-
ol TolSR 5l %QIQ EJQ#&T 1 TERM [cANCE|L/CelD
L
: 12 Z ; i 5 (Other return code testing.)
Lol eS| ENDRET <RIl 1
1a] |ciSR SEITOR 9492
5| |CBR 11| | [ENDS
1ls} |c B
7] c |
HEIRE | |
1]s| [c
2lo0| |c B i
¢ - —
¢ _
sRRE il
c
c _____L___L___.__J___.___, L_L)]
ZlllolﬁQiBLQQQQBVOSSZ9I9099999L9999979€929lgo‘SGVBVLDBPSVVVEVZVIVUVSCGCLQWGEM:EEZEN?OcaﬁLZSZEZVZEZZZ‘ZOZGLBlLIQlQLPLCDZIIlﬂlBELQSVCzI

Figure 6-11. Example of Return Code Testing After a SPECIAL Output Operation

Exception Output

To perform exception output to a specific terminal (via a
SPECIAL output or combined file), place the appropriate
operation code, output length, and program or terminal
name in the output record area (Figure 6-2 and 6-4), and
issue the EXCPT operation in calculations. If the program
or terminal name is less than six characters long, it must
be left-justified and padded with blanks in the name field
of the output record area.

Exception output enables you to check the return code in
calculations immediately after performing the EXCPT
operation.

RPG Il

6-17

If you are sending multiple lines of output to one terminal,
or single lines to more than one terminal during any one
EXCPT operation, you can check the return code for only
the last operation (last line of output). Therefore, it is
suggested that one output record be sent to only one
terminal by each EXCPT operation. This can be controlled
through the use of indicators.

See Programming Examples, Example 2, ater in this
chapter, for examples of exception output.

Heading, Detail or Total Output

In general, using H, D, or T output to issue CCP operations
is similar to using exception output, in that the operation
code, output length, and terminal name are placed in the
output record area rather than in the parameter array and
several lines of data can be sent to the same or different
terminals on each program cycle.

You must be aware that when you send several lines of
output to the same SPECIAL output file using H, D, or
T output, the return code in the parameter list applies
only to the last output line. Therefore, you have no way
of knowing when an exception condition occurred on
output lines previous to the last output line. Also, when
an error occurs, you have no way of knowing on which
output line the error occurred.

See Programming Examples, Example 1, and the MRT

,Programming Example Using the Display Format Facility
in Chapter 8 for examples of H, U, and T output lines.

Put-Then-Get Operation

The Put-Then-Get operation must be issued with a combined

SPECIAL file. The operation is not actuatly performed

via SUBR92 until the input part of the combined operation

is performed.

6-18

Combined Demand Input/Exception Output File
Perform the Put-Then-Get operation as follows:

1. Place the maximum input length in the parameter
array.

2. Place the following information in the output record
area:

® Put-Then-Get operation code (positions 1-4)
® Qutput length {positions 5-8)
® Symbolic terminal name (positions 9-14)

3. Issue an EXCPT operation.

4, Issue a READ operation.

After you issue the READ operation, the input data is
available in the input record area. You need not provide
a terminal name or operation code in the parameter
array for the READ, since SUBR92 assumes that the first
input operation for a combined file following the Put
part of a Put-Then-Get to the file is the Get part of the
operation from the same terminal.

When issuing a Put-Then-Get to a terminal using EXCPT
and READ, you may do output to other terminals after
doing the output part of the combined operation, If
successive Put-Then-Get operations are performed to the
same or different terminals using the same SPECIAL file
before doing the input part of the combined operation,
then only the last output will be sent to the terminal.

See Programming Examples, Example 2, for an example
of using READ and EXCPT to issue a Put-Then-Get opera-
tion,

Combined Primary or Secondary Input/H, D, or T
Output File

You can also issue a Put-Then-Get operation using H, D,
or T output and primary or secondary input with a
combined SPECIAL file. Place the maximum input length
in the parameter array for the combined SPECIAL file.
Place the following information in the output record area:
® Put-Then-Get operation code (positions 1-4)

® Output length (positions 5-8)

® Symbolic terminal name (positions 9-14)

The input data from the Put-Then-Get is available in the
input record area after Primary or Secondary input in the
RPG I} cycle, You need not provide a terminal name or
operation code parameter array for the input part of the
combined operation, since SUBR92 assumes that the first
input from the file is the input part of the operation for the
same terminal.

Considerations for performing other output operations after
the output part of the combined operation and for perform-
ing successive Put-Then-Get operations are the same as
described for EXCPT and READ.

Testing the Return Code After a Put-Then-Get

The return code from a Put-Then-Get is placed in
positions 3-4 of the first array element. Positions 5-6

“of the first array element will be zero if the last output
operation was the Put part of this combined operation.

I an error condition resulted from the operation (this
can be determined using indicator 91) you can determine
whether the error occurred on the Put or on the Get by
testing the value in the third array element. If this value
is the samie as the output length specified for the Put-Then-
Get, then the error occurred on the Put portion of the
operation (the Get was not performed). If the value of
the third array elément is different from the output
length specified for the operation, then the error occurred
on the Get.

Note Concerning the Use of Put-Then-Get

The typical use for Put-Then-Get is to issue a message to
the system operator {CONSOL) and receive instructions.
In an MRT program, the need to modify the parameter
list can be minimized by initializing the array for the
combined file with the ‘PD’ operation code (Accept
Input), a blank terminal name, and the maximum input
length used by the program. Thus, when the Put-Then-
Get operation is issued, the array need not be modified
in order to continue with normal operation, since the Put-
Then-Get operation code was given in the output record
area.

Non-1/O Operations

Non-1/O operations can be issued at either input time

(primary, secondary, or demand) or at output time (H,
D, T, or E), since they do not result in transfer of data
to or from your program. The non-1/0 operations are:

® Acquire Terminal
Release Terminal

® Invite Input

® Shutdown Inquiry

® Force End of File

When issued via SPECIAL files, Acquire Terminal, Release
Terminal, Invite Input, and Shutdown Inquiry are most
logically issued as output operations; Force End of File

is most logically issued as an input operation,

When you issue non-1/O operations at input time using
SPECIAL files, you must provide a “dummy’’ input specifi-
cation to avoid getting an UNIDENTIFIED RECORD

halt, since RPG [l assumes that valid data is contained in
your input record area after the operation. See Program-
ming Examples, Example 2, for an example of a “‘dummy”’
input specification.

While all of the non-1/0O operations can be issued using
SPECIAL files, it is also convenient to use EXIT/RLABL
for these operations, since no input or output record area
is required and there is no requirement for RPG 11 to

move input ot output fields. You must be aware, however,
that using both SPECIAL and EXIT/RLABL for CCP
operations increases the main storage requirement of your
pragram. This can be an important consideration in some
cases.

RPG Il 6-19

SUMMARY — PERFORMING CCP OPERATIONS USING RPG 11 SPECIAL FILES
(see notes on opposite page)

INPUT RECORD AREA

Input Return| Output Return | 1. Effective Input Length Program or
Code Code 2. #Outstanding Invite Inputs | Symbolic Terminal Name Data
/
I4 | 5 | 3 I '6 }
1 2 3 4 5 8 9 14115

PARAMETER ARRAY

Return Code Operation Code/ 1. Effective Input Length Maximum Expected Program or
Modifier 2. Attributes 1D Input Length Symbolic Terminal

3. #0Outstanding Invite Name
Inputs

| L I I T
| ; B i
(|)4 °|5 °|4 - Ole

OUTPUT RECORD AREA

Operation Operation | 1. Output Length Program or Data

Modifier Code 2. Attributes ID Symbolic Terminal Name

”
0 0,4 0, o 1 S
1 4 b 8 9 - 14 | 15

Operations Issued at Input Time

Information Supplied by Programmer:

1 Place the operation code here before issuing the
operation. Exception: On a Put-Then-Get operation,
this element is disregarded on the Get portion of the
operation. Upon completion of the operation, this
element remains unchanged.

| Place the maximum expected input length here
before issuing the operation (includes the first 14
positions in the record area). Upon completion of
the operation, this element remains unchanged.

6-20

Place the symbolic terminal name here prior to
issuing the operation. Exception:

1. Accept Input -- contents are ignored by the CCP

2. Blanks - CCP assumes the requesting terminal
(SRT programs)

3. Shutdown Inquiry -- contents are ignored by
the CCP

This element is changed after Accept Input or a blank
terminal name is used. Exception: When a Put-Then-
Get is issued with a blank terminal name, the name of
the requesting terminal is returned only in positions
9-14 of the input record area.

Information Returned by CCP:

| 1. Contains the effective input length (not

3 including the first 14 positions), after an
input operation {Get, Accept Input, Put-Then-
Get, Get Terminal Attributes, and Stop Invite
Input that fails to stop input.)

2. Contains the count of outstanding Invite Inputs

when:
a. A Release Terminal operation is issued
b. A 08 return code was received

|4 Input operation return code.

| Return code from the last output operation using this

5 array.

|6 If the 3270 Display Format Facility is used, position

15 contains the AID character, except when data is
received with the program request on systems without
Program Request Under Format (PRUF).

I7 After an Accept Input operation, Put-Then-Get
operation, or an operation issued with a blank
terminal name, the CCP returns a symbolic terminal
name or for an Accept Input in a program loaded by
a Chain Task Request, the name of the program that
issued the Chain Task Request operation in these
positions.

Operations Issued at Output Time
Information Supplied by Programmer:

0 Place the operation code here prior to issuing the
operation.

O1 Place the output length here for output operations
(include the first 14 positions of the record area).
Place the attributes identifier here for Acquire termi-
nal with Set Terminal Attributes modifier. CCP
ignores the contents of this field for Release Termi-
nal, Invite Input, Shutdown Inquiry, and Acquire
Terminal without Set Terminal Attributes modifier.

02 Place the requested program name, the symbolic
terminal name, blanks, or CONSOL here. This entry
is ignored for Shutdown Inquiry.

Information Returned by CCP:
03 Output operation return code,

04 These elements are unchanged after the output
operation. Place the maximum input length in the
fourth array element prior to issuing Invite Input,
Put with Invite Input, Put-No-Wait with Invite Input,
and Put-Then-Get.

05 After the Release Terminal operation, this element
contains the count of outstanding Invite Inputs.

06 CCP returns the symbolic terminal name in this
element after operations issued with a blank terminal
name, except Put-Then-Get. On Put-Then-Get opera-
tions issued with a blank terminal name, CCP returns
the symbolic terminal name in positions 9-14 of the
input record area after the Get portion of the opera-
tion is performed.

O7 If the Display Format Facility is used, positions 15-20
contain the format name for the Put Message operation;
position 15 contains the Write Control Character
for the Put Overrides operation.

EXIT/RLABL COMMUNICATIONS INTERFACE

All of the CCP operations described under Operations in
Chapter 2 can be performed using EXIT/RLABL. CCP
provides four subroutines for use with EXIT: SUBR91,
which can be used for all communications operations in-
cluding task chain request operations; SUBR90, which can
be used to move fields to or from a record area; SUBR87,
which is used to issue Chain Task Request operations only;
and SUBR88, which is used to accept both program request
and chain task data. SUBR87 and SUBR88 are best suited
for programs that are primarily used for task chaining
operations.

Note: You must not use SPECIAL subroutines SUBR92
and SUBR93 with EXIT/RLABL.

RPG Il 6-21

Parameter Array

As with the SPECIAL interface, you must place the para-
meters for an operation in a parameter array. The format
of the parameter array for EXIT/RLABL (Figure 6-12) is
the same as for SPECIAL, except as follows:

® CCP always places the return code from an operation
in positions 5-6 of the first array element, not in the
record area,

® The program name or the symbolic terminal name is
always in the record area. Therefore, you may define
an array of four elements if you are using the array only
for EXIT/RLABL. You can use the same array for both
SPECIAL and EXIT/RLABL if the array has five
elements.

The Extension Specifications for defining parameter arrays
are described in Defining the Parameter Array, previously
in this chapter.

Record Area

The record area for communications operations using
EXIT/RLABL must be defined by an RLABL in calcula-
tions (see EXIT to SUBR91). The record area (Figure
6-13) consists of the name field and a data area. Note
that the format is different from the record area for
SPECIAL.

EXIT to SUBR91
The linkage to SUBR91 to perform a CCP operation in-

volves an EXIT operation followed by two RLABLs, as
follows:

RPG CALCULATION SPECIFICATIONS

i Card Electro Number
Punching Graphic

Instruction [oo

The first RLABL is the name of an array (ARY, for
example) which is used as a parameter list by SUBR91. It
may be the same array as used for a SPECIAL file, except
that the fifth element is not used. See Defining the
Parameter Array, earlier in this chapter.

The second RLABL is the record area. The first six posi-
tions of this area must contain the program name or the
symbolic terminal name for which an operation is intended,
followed immediately by the data to be sent or received

to or from a terminal. Since this data may consist of

many fields, the CCP provides another EXIT subroutine,
SUBRY0, to move fields to or from the record area (see
EXIT to SUBR90).

The size of the record area should be large enough to con-
tain the maximum amount of data to be sent or received
plus the six characters for the name field. If the largest
amount of data to be sent or received is greater than 256
{including the name field, then an array must be defined
for this area, since the maximum size of an RPG Il alpha
field is 266. Thus, if 800 characters are needed (for
example with a 3270 Display) plus the symbolic name

(a total of 806), an array could be defined containing four
elements of 202 characters each. This would create a
contiguous area of core of 808 bytes, which is large
enough. If an array is defined as the record area for
EXIT/RLABL linkage, the second RLABL must be a
reference to the first element of the array:

RPG CALCULATION SPECIFICATIONS

Result Field

Factor 1 Operation Factor 2
Name Length

Decimal Positions

o
S
r
&4

Half Adjust (H)

12\1970 21 22 23 24 25 26 27 |28 20 30 31 32133 34 35 36 37 38 39 40 41 41#43444546474849251

Punching Graphic Card Electro Number
Instruction | Punch
Result Field !
Factor 1 Operation Factor 2 2 i!
8¢,
Name Length |2 | 3,
5|3
E|IZ
&%
18 19 20 21 22 23 24 26 26 27'2_8 20 30 31 32133 34 35 36 37 38 39 40 41 42|43 44 45 46 47 4849 50 SIJ;‘SZ 53:
L |
L]] -

1
- - Parameter array J
ElX|1 Y] ISUBRAL A i

i RLABL | | | 1 AIRY|/
RLABIL I RAL '
i
N
7 .. Record area array |
I - bt
| i

L.

+-1 1 Parameter array

SUQ&‘JL ARy)J(

i~ %
e
X

Gl

ol

e

1 N

IN T p = VN
| tPlia—

- Record area |

6-22

Array
Element

Positions Used
not used)

Contents

Setting the Parameters for an Operation

Issuing a non-1/0 operation (such as Release Terminal) in-
volves simply setting the contents of the parameter array
with MOVE instructions and placing the terminal name

| d Ret'urn code — two in the record area. Since only the terminal name is required
. X decimal characters in the record area for non-1/0 operations, you can issue
@ returned by CCP fol- the operation as shown in the following example, specifying
lowing operation (zero, g field that contains the terminal name as the second
positive, or negative). RLABL.
=@ Operation code — two RPG CALCULATION SPECIFICATIONS
@ alphameric characters.
Punching Graphic Card Electra Number
Operation modifier — fretruction | punch
two alphameric charac- e
ters (optional). .
_ . Factor 1 Operation Factor 2 % %
——— | ® Output data length — Neme | Length % Z
up to four decimal 8|5
18 19 20 21 22 23 24 25 26 27|28 20 30 31 32|33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 48149 EOM
characters (output
operations).
® Effective input data I 1 h
length — up to four - MolvE| ['] | | KI'[ARIY]y 2 11
decimal characters [[T Sl BRAL
(returned by CCP on RLABIL ARY] al
input operations. RLABY AME
® Count of outstanding "] -
Invite Inputs — a four Z
digit-decimal number 4
(returned by CCP on -
release terminal oper- If, however, you are issuing an operation that involves a
ations and when a 08 number of fields of input or output data, you will need
return occurs on input o use SUBR90 to move fields to or from the record area,
operations. since there is no facility in RPG Il Calculations to move
® Terminal attributes fields to or from various section of another data field. (A
identifier — up to four series of MOVE or MOVEL operations could be used to
decimal characters move a small number of fields.)
(acquire terminal op-
L eration only).

Figure 6-12,

Maximum input data
length — up to four
decimal characters.

RPG Il Parameter Array for EXIT/RLABL

Name Field

Data K

6 €

7

Exit to SUBR90

You must prepare the record area before doing an output
operation using SUBR91. Therefore, you must move fields
into this area of storage before requesting the 1/0 opera-
tion. For input operations, you are presented with a mass
of data from which you must extract specific fields. When
you use SPECIAL file processing, the input and output
specifications provide this capability. However, in RPG Il
Calculations there is no facility for selecting fields from
various sections of another data field. Thus, SUBR90 is
provided to serve this purpose.

{4096 maximum, including the terminal name)
Figure 6-14 illustrates the coding required to link to SUBR90.

Figure 6-13. Record Area Format for EXIT/RLABL CCP Interface

RPG Il 6-23

RPG CALCULATION SPECIFICATIONS Pume i US4
IBM Business Machine C
. o Gord Erasteo Number 12 7 76 77 78 79 80
rogram Punching | Grate | | |] § . Pragram
Programmer I Date Instruction | p ooy { I Page I:D f_ identification [D:u_]__J
C . Indicators Result Field r:f;iucl;:i
)
3‘ . l a Arithmetic
Ja 5l= -
5 g And And Factor 1 Operation Factor 2 [z P'““gM'““‘l Zero Comments
H 8| & ompare
Line ,ii %’: Name Length =) =oTi<o[1-2
|25 " " £13 [Lookup(Factor 2)is
2|8 5(2 2 2 8|2 [Fign Lowlfqual
3 4 56 |7 8| 9101112 |1314f15[16{17|18 19 20 21 22 23 24 25 26 27)28 29 30 31 3233343536373839404!424344454547484950515&@&;:7556_5753@80&636264§6_6§77»6!3§?'7_0v7‘| 7_27}7“?‘
o1 [[
02 c
o3 c
ofe] Jo i EX\[T SUBRIg
of5) fe RIL 1 INDI f-'i i .| These field can be
bl I EL ’;EELE Rl Lhi(| defined here or else-
0|7 |C 4 X
-IRL (R |) 5 1 where to be the
o I " IRL NFL DS length you desire
ofe| |c RIL FILIDI4 gth y sIre.
1lo] lc R L FILD2 A
i e $
112 Cc) ; B
3] | \IRL FILOIN | | | These field names are used as
Hep e 1 t examples; they are not required
Bl I 1l T names.
116 C
. e PR
Figure 6-14. Coding Required to Use SUBR90
The first four RLABL's following an EXIT to SUBR90 The third RLABL must name the data area used with

provide information to SUBR90 about the fields to be
moved.

“ The first RLABL is an indicator. If you ‘‘set on”
this indicator prior to exiting to SUBR90, the sub-
routine moves the data from the fields specified in

SUBR91. If the data area is larger than 256, an alpha
array may be defined which is at least as large as the
data area needed. In this case, the third RLABL
passed to SUBR90 should be the first element of the
array (indexed by the integer 1).

subsequent RLABL's to the record area. If the E The fourth RLABL must name a field which contains

indicator is off when control is given to. the routine,
data is moved from the record area to the fields
specified.

the number of fields to be moved to or from the data
area. It also defines the number of RLABL's which
follow the fourth RLABL.

B The second RLABL is a field which must contain B The fifth and succeeding RLABL’s name the fields

either the total length of data to be moved, if
moving data to the output area, or the total length
of the record area, if moving data from the input
area to fields. The total length of all the fields which
are to be moved from or to the record area must be
less than or equal to the value contained in the field
named by this RLABL.

6-24

which are to be moved to or from the data area.
These names may refer to fields, or an array indexed
by a constant. The RLABL’s may not name an array
without an index. Fields are moved into the data area
in the order you specify them as RLABL's; therefore,
the fifth RLABL must identify a six-position terminal
name field as the first field in the record area. There
must be a character-for-character correspondence
between the ““from” and “to”’ fields; if blanks are to
occur in the data area, fields containing blanks must
be provided in the list of RLABL's.

Alphameric and Numeric Fields

Alphameric and numeric fields are properly left-justified

or right-justified by your RPG 1l program prior to being
moved to the record area by SUBR90 (SUBR9O treats

all fields as alphameric fields). ‘On input operations, how-
ever, the terminal operator must know whether he should
enter data into a field left-justified (alphameric) or right-
justified(numeric). These instructions may have been
given previously to the terminal operator by means of a
published procedure, preprinted typewriter form, or a
display format (3270). If not, your program should put
out a format to the terminal before any data is requested
from the terminal to indicate to the operator where the
data should appear in the record and how fields should be
justified. For batch terminals, such as other central process-
ing units, this step is unnecessary, since the communicating
programs will be written to expect data in a certain format.

Editing with SUBR90

The standarcl RPG Il editing facilities available with the
SPECIAL file interface to the CCP are not available with
the EXIT/RI.ABL interface. Therefore, SPECIAL is
recommended if edited fields are to be used.

If editing must be performed when using SUBR90, either
you must provide coding in your program to insert and
remove editing characters or edit characters must be shown
on preprinted fields at the terminal. For 3270 terminals, edit
characters may be placed on the display as part of a display
format.

If the 3270 Display Format Facility is used, negative
integer numeric fields (no decimal positions) are automati-
cally converted so that the minus sign is printed to the right
of the value in the field. Likewise, on input operation, the
field is automatically converted by 3270 DFF to its internal
negative form (D zone in the right-most position of the
field -- see negative numbers in the RPG |1 Reference
Manual).

Exit to SUBR87 and SUBR88

SUBRS87, an entry in SUBRS8S, is used to issue Chain Task
Request operations from RPG || programs. SUBR88 is
used to accept both program-request and chain-task data
by RPG Il programs.

Unlike SUBR91, SUBR87 and SUBR88 do not require a
parameter list; instead, you specify two RLABLs. The
first RLABL specifies an output data length (for SUBR87)
or an input data length (for SUBR88). The second RLABL
specifies the record area that consists of a name field and
a data area. The name field is six characters long. When
using SUBR87, you must place the name of the program
to be requested, left-justified and padded with blanks if
not six characters long, in the name field. When using
SUBRS8S8 to accept task chaining data, SUBRS88 places the
name of the program that requested the task chain into
the name field before returning control to the chained
routine. The data field is used to pass data between
programs.

SUBR87 and SUBRS88 set on indicator 91 if the accept
operation resulted in a negative return code, and indicator
92 if the operation resulted in a positive return code other
than a 14 return code. The 14 return code indicates a
successful accept operation of the chain request data.

Figurée 6-15 shows an example program {PGM1) that uses
SUBR87 to issue a chain request and an example program
{PGM2) that uses SUBR88 to accept the task chain data.
SUBR93 is used in both examples to bypass the record
selection in the RPG Il program cycle. Input and output
occurs in calculations using SUBR87 and SUBR88.

RPG Il 6-256

If the Overlay Linkage Editor is entered directly from the
RPG 1l Compiler, and the program being compiled con-
tains exits to SUBR87 but does not contain at least one
exit to SUBR8S, a halt (EO ‘P 25) will occur. This halt
occurs because the linkage editor cannot resolve internal
entry points of subroutines {see the /BM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561 for addi-
tional information on the linkage editor). One method to
avoid this halt is to code a dummy exit to SUBR88 as
shown in the following example:

EXIT SUBR87

RLABL LEN

RLABL DAREA

GOTO BYPASS

EXIT SUBRSS
BYPASS TAG

Another method to avoid this halt is to compile the pro-
gram and place the non-link-edited program in a library
(see object output in the IBM System/3 RPG I/ Reference
Manual, SC21-7504, for additional information). Then
call the linkage editor (JOLINK). The OCL for this pro-
cedure is shown in the following example:

// CALL RPG,R1

// COMPILE SOURCE-rpgchn,OBJECT-nn,UNIT-nn
// RUN
// CALL
// RUN
// INCLUDE NAME-rpgchn,UNIT-nn
// INCLUDE NAME-SUBRS88,UNIT-nn
// INCLUDE NAME-SUBR93,UNIT-nn
// END

OLINK,R1

Notes:

1. Rpgchn is the name of the program containing the task
chain exit.

2. The FILE statements are handled by default in the
example.

3. As with SUBR91, SUBR93 must be included as a
dummy input file when using SUBR88.

6-26

Setting the Parameters for EXIT/RLABL Operations

All parameters for CCP operations are placed in the para-
meter array. The program name or the symbolic terminal
name is always placed in the record area (see EX/T to
SUBRY1).

Operation Code

In setting the operation code, you can avoid having an
invalid operation/modifier combination by always moving
both parts of the operation code into the second array
element. The valid operation and modifier codes are given
in CCP Operation Codes, earlier in this chapter.

QOutput Length

For EXIT/RLABL output operations, place the length of
the output data in the third array element. The output
length includes device control characters which you are
inserting into the data in your program {see index entry
Device Control Characters). The output length should
not include the six characters for the program name or
the symbolic terminal name.

The maximum output length you can specify is 4090. See
RPG 11 Programming Considerations, later in this chapter,
for information about using the third array element with
the Acquire Terminal operation.

Maximum Input Length

The maximum input length in the fourth array element for
an EXIT/RLABL operation must not include the six
characters for the program name or the symbolic terminal
name, but must include the length of any device control
characters you are handling in your program. You must
enter a maximum input length for the following operations:

® Get

® |nvite Input

Put-Then-Get
® Get Attributes

If you also specify a maximum input length for the Accept
Input operation, it will override the length given for the
Invite Input operation. For the Get Attributes operation,
set the value of the fourth array element to 21.

PGM1

File Description Specification

F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field ar s Extent Exit Number of Tracks
- of Record Address Field & for DAM for Cylinder Overfiow
End of File >
s Record Address Type Symbolic |of Name of Number of Extents
Eilename equence Tvpe of File . Device Device i Label Exit Tape
File Format Organization a s Rewind
Line K r Additional Area | - Storage Index Fito
M a E a ~ Overflow Indicator 2 Condition
3| - Block d 5 —15 u1-us
> g -3 § Length E:::o:h X ,3 Key Field | 2 Continuation Lines = —1
£ 28] [elz . £la Starting | & S 5
k3 12|l 3 <= Location |4 K Option Entry 2 =
3 4 Bi6|7 & 9 10 11 12 13 1415|1617 2329&9__311%3334353537333940414243444545474849501525354 iﬂiiﬁ“ei%s76569707|727374
o]2[[FDuMMY P SPEc[1]AlL 3
ofs| |F
ofal |F
ols| |F
0|6 F
07 F \
ofg| [F
ofe F
1 F
F
F
. L 1| |
ZLILOLBQWI.QBQQBWCQZQW095999[59999'799929LQOSGV&VLVQVEVVV&WZVIVOPGCQCLCQIEGEWN:ZEWDﬁﬁzﬂltlslﬁzVZEZZZIEOZSIBlLKQlSlVlELZlIlOIGBLSSPEZ|
; N Resulting
C 9 Indicators Result Field Indicators
S .. @ Arithmetic
Sz 5| [Pius [Minus] z
3 g d And Factor 1 Operation Factor 2 E|Z 5] Zero Comments
AR H L h § H Compare
Line |23 Name ength |5 |5 [>2l1 <2l1-2
Elg 2‘ 8 8 8 s w [Lookup(Factor 2)is
2|8 %2 2 2 & |2 [Figh [tow [Equal
2 4 sl6lr el ohoftijrz[t3]1a]16]16]17|18 19 20 21 22 23 24 25 26 2728 29 30 3t 3233 34 35 36 37 38 39 40 41 42]43 44 45 46 47 48)49 50 51|52]63]54 55 56 57|58 59 60_'___2&&6_5_23__2‘68 69 70 71 72 73 74
o1 |c (
ol2| [e (
03 [{
2 MOVE, |* 5 0 Set up chain request
ols| Je EL|* P6M2Bib|'| | |T : '
] 1 ’
ole| |e MoVE| |' DATA u n
o7 e EX\r 1 ISUBR8 7
ols| |c R /A 0 i
LA ute chain request.
ofo| e KLAB T —_—
1{e| |c -
9} 0 R If unsuccessful, exit
il e J
§ from program.
o[e ¢
13| Jc !
1|al| |e
116 c
118] |c
1171 e
1{8 [
19| |c
2|0| fc)
c
c
Cc
(o]
c
S NS N U O e -
ZL L OL 69 89 (O 9D 99 ¥D €0 IO 19 09 63 89 L9 O QQVEEQZQWDQB'E'LVQV’:IDWCVZ'IIIUvetBﬁLEBS‘Qﬁvi:tSZCISOCBZBZLZSEEZVZCZZZl2036l8L4l9I90PLC!ZIIIOI.BELQQVCZ b

Figure 6-15 {Part 1 of 2). Coding for SUBR87 and SUBR88

RPG Il 6-27

PGM2

File Description Specification
F File Type Mode of Processing File Addition/Unordered |
File Designation Length of Key Field or = Extent Exit Number of Tracks
End of Fil of Record Address Field & for DAM for Cylinder Overflow
nd o ite =
S Record Address Type Symbolic £l Nameof Number of Extents
4 equence . - i
Filename g{pe (.)i F.I|E o Device Device 3 Label Exit Tabe
File Format rganization o L] S Rewind
. torage Index LAl
Line or Additional Area g File
Q Overflow Indicator Condition
3 ale Sl Brock Record S] v
> gl 2 Length Lonath %|° Key Field |2 Continuation Lines - 1
€ 29| 1ol o enaih HE Starting | 5 £
K SEIMELS 3 <= Location | K Option Entry P &
3 4 5|6(7 8 9 10 11 12 13 14 |15116[17{18}19]|20 21 22 23|24 25 26 27}28]29 30{31 (QJ}S 34/35 36 37 :igf&Q_pﬂD 41 42 43 44 45 46 |47 48 49 5.2‘_5_1_152 53|54 5B 56 i&iﬂ%ﬂ,@%iﬁ 66]67{68 69(70171 72|73 74
o2 |rpummy] | [1P| | IF] | 23] | a3 SPECTAL | |sjVelRlaf3] | il
o3| |F
ola| |F
o|s| |F
5 Record Identification Codes i
I] Field Location ::'el,d
2 1 2 3 . e ndicators
£ g 2
4 - 5
8 £1 § S |a 3
. € |= > - 2 . e X1
Line Filename s 3| |£8] 5 FieldName [3 |33| = .
2 =5 k1 wiw ero
3 3 [3|8 position || |8| Position [=| [E] positon |o| |E|%|e| From To |3 § 25| 8 |pus [inus|or
= AR 2|old Hk ESEE‘;: g 352 S Blank
£ k- ML =N HEEE B 2 |1235] 3
& gaEtHE 5|51 5513 5[5)314|2 8 5|88 2
A|IN|D .
3 4 s5]e6|7 8 9 10 11 12 13|14 |15{16|17{18 19 20|21 22 23 24]{25|26)27| 28 29 30 31]32|33|34[35 38 37 38]30|40]a1[42{43|44 45 46 47|48 49 50 51]62|53 54 55 56 57 58|59 60|61 62[63 64{66 66(67 68|69 70(71 72 73 74
o[[zlpluMMY] | | |ala | @1 | RERREN .
ol2
L 1 ; | go :U S| | | Record area
03] |T 2| |[DAREA :
1 4 1 {11 (name field
2 d followed b
) olfowe:
ols| |1 k 4
NARE) data).
o [z) LT
i " Resulting
C o Indicators Result Field Indicators
; — 2 Arithmetic
J& . 81z [Plus [Minus] Zero .
32 And And Factor 1 Operation Factor 2 E{L Comments
3z Lenath 8 3 Compare
Line | 2|3 o Name engt 3|3[iz2li<eli-2
g9 5 - - gl Lookup(Factar 2)is|
8 5|2 2 2 =154
3 4 5 7 8| 901112 [13]14]15]16117]18 19 20 21 22 2_3__21_&&_27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42|43 44 45 46 47 4_BJ49 50 51|52{53]54 55|56 57|58 59|60 61 62 83 54 85 66 67 68 69 70 71 72 73 74
ot ’
ol2 IS O O A A A
o Set up length of Accept

SUBRIGSB | | -+ Execute Accept of chain
‘ request data.

'ddds/’ 1IFltleiLip for chain request data.
v

PmHm
=

=]

>

)

(11

>

LIRI} If unsuccessful, exit
{from program.

[+]

mr
——] P P = < A~~~

=)
ocololeololololololololojojlojolo/ojo|0|0ial0 |0 |0 |® FormType

Figure 6-15 (Part 2 of 2). Coding for SUBR87 and SUBR88

6-28

Examining Returned Information

After you have issued a CCP operation using EXIT/RLABL,
you should examine information returned to your program
by the CCP:

® Return Code (Note: Indicators 91 and 92 are not
reserved or used with SUBR91.)

e Effective input length (if an input operation was
performed)

® The program name or the symbolic terminal name (if it

was set by the CCP, such as for an Accept Input opera-
tion or a Put issued with a blank terminal name)

Testing the Return Code

After an EXIT/RLABL operation, the CCP places the

return cade in positions 5-6 of first parameter array element.

Figure 6-16 shows an example of testing the return code
for plus, minus, or zero by means of a compare operation
and resulting indicators. In this example, a subroutine that
checks for specific return codes is executed when a positive
or negative return code is encountered after a Stop Invite
Input operation. Before checking the return code after an
EXIT/RLABL operation, you must move the return code
from the first array element to a 2-position numeric field.

Note: Notice the use of a MOVEL instruction to move the
terminal name from the field TNAME to the first six
positions of the record area, INREC. This technique is
useful when the record area consists of the symbolic
terminal name and a single field (in this case assume the
input record is a single 10-character field).

Examining the Effective Input Length

After operations that return input data to your program,
you may need to know the actual length of input data
returned to your program, that is, the effective input
length, This value does not include the six characters for
the program name or the symbolic terminal name and
does not include the length of truncated data when a
terminal sends more data than you specified in your maxi-
mum input length for the operation. Special considerations
are involved when you use the 3270 Display Format
Facility {DFF) input operations; see 3270 Display Opera-
tions.

In order 1o use the effective input length, you must first
move the contents of the third array element to a numeric
field.

Symbolic Terminal Name

On EXIT/RLABL operations for which the CCP returns a
terminal name (see index entry Operations), you may need
to examine or otherwise use the terminal name (for example,
to associate the input data with data previously received
from the same terminal). The CCP places the returned
symbolic terminal name in the first six positions of the
record area.

See Programming Examples, Example 2, \ater in this chapter,
for examples of saving and examining terminal names in an
MRT program.

3270 DISPLAY FORMAT FACILITY

You can use the 3270 Display Format Facility (DFF) of

the CCP to aid you in formatting and using the 3270
terminal. Chapter 8. 3270 Display Format Facility describes
the programming requirements that are unique to using the
DFF, including the unique DFF operations, additional
information that must be placed in the record area for
certain aperations, field types that are unique to the 3270,
and other information.

You can compare the programming necessary to use the 3270
without DFF to programming with the DFF by comparing
Example 1 under Programming Examples, later in this
chapter, ta the example in Chapter 8.

RPG || PROGRAMMING CONSIDERATIONS

This section contains some reminders, suggestions, and
restrictions pertaining to writing RPG |l programs to
run under the CCP.

Data Mode Escape and Release Terminal Operation

If data mode escape is allowed in your CCP system (speci-
fied by the ESCAPE keyword in the $EFAC generation
statement—see CCP System Reference Manual) you must
include coding in your program to test for the 08 return
code (terminal has entered data mode escape and released
itself from your program). When the CCP returns a 08 re-
turn code after an input operation (Accept Input, Get, or
Stop Invite Input), a count of outstanding Invite Input
operations is returned in the third element of the parameter
array (effective input length). In an MRT program, you
should check this count to determine how many terminals
are still attached to your program. If you do not check this
count, you might do an Accept Input operation without
having an outstanding Invite Input, causing the CCP to
cancel your program (unless it is a never-ending program—
see index entry).

RPG Il 6-29

RPG CALCULATION SPECIFICATIONS Form 6x21085
IBM International Business Machine Corporation . 78 79 80
2 77
Program Punching Graphic Card Electro Number Program LN 8 79
Programmer J Date Instruction | oo Page D] of__ ldentification
c o Indicators Result Field r:‘:s;::i:?s
3= | | A Arithmetic
3 5 And And Factor 1 Operation Factor 2 2|E[Ples inus] Zero Comments
g 5 gt Name Length £1% Sompae =
Line |Z|3 o s|gh>2li<2]1-2
glewal o . % : Lookup(Factor 2)is
2|8 5 2 2 2 -1 E5 Hiﬂ_\.ow Equal
3 4 518)7 8910111213 [14]15(16{17]18 18 20 21 22 23 24 25 26 27|28 29 30 31 32|33 34 35 36 37 38 39 40 41 424344454647484952_51 525324_5555_575859*50[6_‘2&22&5667685970“ 72 73 74
of1| |c
.. 1- I I . L L
ol2| |c L
o3 C 7 e
o[+ e olv[E] | 4[] Ry, 2 sToP| |1 NV] |1 PuT]
ofs] Je oviel |'lLg JARYL M ||| 1 MAX| [1NPUIT |LIEN
o8| | oVIELTINAME IINREC) | L6
of7] o Epx 1| |SUIBRYL |]
ols| |c RLABL AR|Y
o] Ic RLABL! lwﬁgc |
Het fe Movigl ARY|,|L RTinCoD |28 | |]
T e RITNclonl | | [ComP | | | ided | ,
12| |c L | 1]
2] |c/oR] |2 EXSR| RETICHK !
114} Jc <
18] {c 2T 1
-
fe| [c 7 |
15 olSR RETICH BEGSR | | ||| | HTH T
18] [c ;, g |- {subroutine checks for specific return codes 1l
19| |c . .
é -and takes appropriate action)
2|o0| |{c
. {C N
c -
c 4
c -
[
ZL L oL %EREE?EKEEEETQE&WEEW& v 8 L5 9 ¥ v9 €7 26 v OF 60 BT LE ST ST W EC 20 1€ 0L L 02 (C O BE W EL CE L 0L BV B LI SV G i E1 2V 11 OT 6 8 L 8 6 V€ 2 ¥

Figure 6-16. Checking the Return Code After an EXIT/RLABL Operation

Following a Release Terminal operation in an MRT program,
the CCP also returns a count of outstanding Invite Input
operations in the third array element. You should check
this count to avoid doing an Accept Input operation without
an outstanding Invite Input. (The Release Terminal
operation always returns a 00 return code.)

Using Both SPECIAL and EXIT/RLABL

You should be aware that when you use both SPECIAL
and EXIT/RLABL for CCP operations you are adding
additional code to your program, since at least two sub-
routines must be included. Therefore, if you are concerned
about the size of your program, you can reduce its size by
using only one of these methods of performing CCP
operations.

6-30

You must be sure to specify the correct communications

service subroutines for SPECIAL and EXIT/RLABL. For
example, if you mistakenly use SUBR91 with SPECIAL,

the results are unpredictable.

Multiple Output Lines

When sending multiple H, D, or T output lines in a single
program cycle or when sending multiple output lines with

a single EXCPT operation, you should condition the output
lines with indicator N97 so that you can react to output
errors when they occur. However, even if you use this
technique, it is difficult to determine which output lines
were or were not successfully sent in this case.

End of File with SUBR92

Remember, when using SPECIAL files with SUBR92 you
will never get end of file on a SPECIAL file unless you
issue the Force End of File operation to the file (see CCP
operation codes, earlier in this chapter). Therefore, the
end of file indicator in positions 68-569 of the Calculation
specification for the READ operation is meaningless unless
Force End of File is used.

Host/Subhost Communications

Considerations for communicating with host and subhost
systems via BSCA are given in Appendix A.

Communicating With the Console

You can communicate with the system operator console
only by means of Put and Put-Then-Get operations. The
symbolic terminal name for the console is CONSOL.

You cannot issue an Acquire Terminal operation to the
console (there is no need, since any program can communi-
cate with the console at any time).

You cannot communicate with the system operator console
by specifying CONSOLE (Mode! 10 Disk System and Model
12) or CRT77 (Model 15) as the device in columns 40-46
of File Description Specifications.

Master Index

CCP builds an in-storage index based on either the
MSTRINDX or MIXSIZE keyword of the DISKFILE
assignment statement (see CCP System Reference Manual).
Specify a master index for disk files in the application pro-
gram as follows:

® On a Model 10 or 12, specify at least one master index
entry (key length plus 2) in the application program to
‘make use of a master track index. This improves per-
formance for large index files.

® On a Model 15, a master index entry is not required in
the application program to make use of the master track
index.

Disk File {sage

You should be aware of how other programs running under
the CCP are using disk files that you also use in your pro-
gram, especially if records are being added to the files.

See index entry disk file considerations for detailed in-
formation.

Specific Restrictions

® Do not use multivolume files (columns 68-69 of the
File Description Specifications must be blank).

® Do not use magnetic tape files.
® Do not use look-ahead fields.

® Do not describe a SPECIAL file for CCP operations as
a table file.

® Do not use the RPG Il inquiry feature.

® (Model 10 and Model 12 CCP) Do not use RPG |l halt
indicators. If programs running under the CCP issue
halts, they will be cancelled.

PROGRAMMING EXAMPLES

The following programming examples are explained in this
section.

Example 1—an RPG || program that supports a single
requesting 3270 without using the Display Format Facility.

Example 2—an RPG || program that supports multiple
requesting terminals.

See Chapter 8 for examples of RPG Il programs that use
the 3270 Display Format Facility.

Before attempting to use these examples, you should read
and understand the description of the RPG Il CCP
interface in this chapter.

Example 1

Figures 6-17, 6-18, and 6-19 show the flowcharts, messages,
and listing for a single requesting terminal (SRT) RPG Il
program (see index entry SRT program). This program
transmits two messages to a 3270 Model 1 Display System
(480 character screen). The first message from the program
requests the terminal operator to enter a room number. The
program uses the room number entered by the terminal
operator as the relative record number to access a disk file
whose records contain guest and rate information about

the room. This information is then formatted and dis-
played as the second message transmitted to the 3270
terminal. The program then goes to end of job. Figure 6-17
also shows how these messages appear on the 3270 terminal.

RPG il 6-31

Because this program is a single requesting terminal (SRT) ® This program specifies a Put with Invite Input operation

program (see index entry), it can receive data from and using a blank terminal name as the first operation (1P
transmit clata to only one 3270 terminal. However, output time in the RPG il program cycle). In an SRT
multiple copies of this program could be in main storage program such as this, the blank terminal name refers

at the same time (if the system has sufficient main storage), to the current requester of the program. The name of
each communicating with a different 3270 Display System. the requester is received in the TNAME field of the

(If multiple copies are in core at the same time, the disk input record area after the Accept Input operation.

file must be specified as sharable during the Assignment

stage—see index entry disk file sharing.) ® To keep this sample program simple, return code checking

is kept to a minimum. You should do more return code
checking in your application programs. For example,

Formatting the Messages for the 3270 Display when you issue Accept {nput you should check for the
Shutdown Requested return code (04). Also, if data

Because this sample program does not use the Display mode"escape is allowed in the CCP system, programs

Format Facility, this sample program must provide for- should check for return code 08. It is recommended that

matting control characters for the display screen in the each installation design its own return code checking

data portion of the record area and transmit them as part and/or console communication routines so that a satis-

of the messages to be displayed. Figure 6-19 shows the factory standard is established for the installation that

messages and the 3270 control commands and orders as can be used in all application prdgrams.

they are transmitted to the 3270. See /BM 3270 Informa-

tion Display System Component Description, GA27-3004, ® This program does not check the length of the input

for a description of 3270 system components, concepts, data because the terminal operator is requested to

control commands, and orders. enter a three-digit room number. However, you may
want to check the input data length in your application

The printable format characters are set by defining them programs.

as part of the message in the RPG Il OQutput Specifications

definition. ® Since there are only two different screen formats used
by this program, they are both contained within the

The unprintable format characters (hexadecimal values that program.. For more complete applications, you might

have no corresponding printable character in.96-column store the screen formats on disk and read them when

card code) are in a pre-execution time array (ORDERS) they are needed by your program.

that was loaded by a previous RPG Il program (see comments

in File Description Specifications). Elements of the ® You could also use the Get Attributes operation in this

ORDERS array are then used in appropriate positions in program. For example, if you do not know whether

the output messages. the 3270 Model 1 or the 3270 Mode! 2 will request the

program, you can issue a Get Attributes operation to
find out which type of terminal requested the program.
Notes Concerning this Sample Program
® |f this program were coded and specified as a multiple

® Message Mode was defined during CCP assignment for requesting terminal (MRT) program with a MRTMAX=1
the 3270 terminal used by this program. (Sece keyword on the PROGRAM assignment statement (see
TERMATTR statement in CCP System Reference CCP System Reference Manual), multiple copies of the
Manual.) This eliminates the need to do repetitive program would not be allowed in main storage at the
input operations until EQT is received. same time. As the program is written, multiple copies

could be in main storage at the same time and the disk

® To run this program using a terminal other than the 3270, file must be specified as sharable (FILES keyword of

you must remove all coding dependent on the 3270. PROGRAM assignment statement).

This includes all screen formatting specifications and
3270 screen contral characters within the data.

® This program will not accept data with the program
request.

6-32

(o)

Issue Put with Invite Input operation
to send the initial message to the
requesting terminal.

"ENTER ROOM # _

_/

Accept Input (Room #) from
requesting terminal.

ENTER ROOM # 009 ﬁ

Return Code
=0?

ENTER ROOM # 009

ROOM #- 009

RATE - $18.50

NAME - JOHN DOE

ADDR - 114 5TH AVE SW
ADDR - STURGIS, MINN. 55101

Read disk record. (Room #is
relative record number.)

Issue a Put-No-Wait (message) to
display room #, rate, name, and
address.

(END OF JOB)

Figure 6-17. Program Logic of Example 1 (RPG Il SRT Program)

RPG I 633

First Message

13]

14 1516 17 18 1920 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Second Message

1 2 24 5 6{7]8 9 1011 121314 1516 17 18 19 20 21 22 72 24 26 26 27 B 33 0 N1 ¥ 33 U

E

X ATE] [~ 1$1x, [XIX

5oL - }
ololelel - 1L
H Hike
EC BA
CC SBA
WCC
SBA —
BA —

3 36 37 38 39 40 41 42 42 44 45 46 47 48 49 50 &1 52 53 54 55 56 &7 6B &0 G061 62 63 64

X

Pa!

XXX XXX XXX

i

i

SBA—q ||

S -

1 2 3 4 5 6]718 9 10 11 12|
S ENTER] [Rlo AR
o005 Ldhdl, 4 9
EC - SF— LATT
- CC— ATT- —SF
WCC — IC
SBA——
BA -

BA
8566 67 68 69 70 71 12 71 14 7575 7 7077»78?‘»1] 97 a1 84 85 86 A7{88 B9 90 91 92 93 04
QTQI' -)Gl)dx X XXX XXX [XXX
;
1 B
SBA J
BA —
95 to 124
LI |] 5
il_g_c’lA H - | MW XXIXIRIN x‘xxwXX)d
SBA —
BA ——
SF — Start Field CC — Command Code
ATT — Attribute Character WCC — Write Control Character
IC - Insert Cursor SBA — Set Buffer Address
X — Data Character BA — Buffer Address of first character
EC —Escape Character position in the field

Figure 6-18. Message Formats for Example 1 (RPG Il SRT Program)

6-34

0001
0002
0003
0004
0005
0006

0007
0008

0009
0010
0011
ool2
0013

0014
0015
0olsé
0017
0018
0019
0020

0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

0034

0035
0036

0037
0038
0039

0040

0041
0042

0043
0044

0045
0046
0047

0048
0049

0050
0051
0052
0053
0054
0055

0056
0057
0058

01010H R 4

0102
0103
01 Gt
0104
0106
0108
0109

0110

0111
o112
0201
0203
0204
0205
0206
0207
0208
0301

FTPIN Ip 25 SPECIAL SUBR92

£ KIARR e
FTPOUT O 138 138 SPECIAL SUBR92

F KIARR

FGUEST IC 70 T0R DISK

FORDERS IT 4 4 EDISK

Fx THIS FILE WAS LOADED BY A PREVIOUS RP5 PRO5 SINCE IT CONTAINS HEX-

FxADECIMAL DATA THAT MUST BE AVAILABLE AT 1P DUTPUT.

THAT RPG

F*PROGRAM COULD HAVE CREATED THESE CHARS WITH THE SET BIT

F*INSTRUCTION OR FILE TRANSLATIDN.

E TARR 0050005 06
E DRDERS DRDR 4 4 01
E#x* THE FOLLOWING ORDERS

Ex%* ORDR ARRAY - ORDR,1 -ESCAPE CHAR
Ex% ORDRy2
Exk ORDR+ 3

Ex*

-START FIELD

ORDRy 4 ~INSERT CURSOR

INQUT CCP ARRAY
3270 ORDERS

(1 CHARACTER EACH) ARE CONTAINED IN THE
~SET BUFFER ADDRESS

ITPIN AA 01 17 C*

030101
030201
030211

0306301

AB 02

03040I%* CATCH ALL FDR UNIDENTIFIED RECORD

0308
0309
0310
0311
0312
0313
0314
0315
50305
0306
0307

04010C
04011COR
04012C0R

0402
0403
0405
0406
0408
0409

0412

IGUEST BA 03 1 C6

1

-t b

I B8 05
I*%x CATCH ALL

I*NOTE: POSITION 17 IS AN AID CHAR.
I*ENTER KEY WAS KEYED.

5 80EFL
14 TNAME
250R00M

4 GROOM
82GRATE
28 GNAME
48 GADDR1
68 GADDR2

voowmnNn

2
4

A SINGLE QUOTE MEANS THE

ANY OTHER AID

CHARACTER OR NON-ZERO

I*RETURN CODE ON INPUT CAUSES THIS PROGRAM TO GO TO END OF J0B.

SETON
GOTO END
COMP 1
GOTO END
COMP 10
GOTO END
CHAINGUEST
SETON
SETON
SETOF

C END TAG

0501 00%*FORMAT THE SCREEN FOR DATA ENTRY.
1p

050110TPOUT H

0502
0503

LR BAD AID,RTN COD

LR ROOM # ENTERED

0
o}

050310

0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0701
0702

0 ORDRy 1
O% HEX*27' - ESCAPE CHAR

0

Ox*
0

O*
O* RESET MODIFIED DATA TAGS)

0 ORDRy2
o*
0

0%
0

0 ORDR, 3
O*HEX'1D'-START OF FIELD

0

HEX'F5*' - ERASE/WRITE

HEX'4040' ROW1 COL1 3270 MQD 1

14
4
8

15

16
17

HEX'CT' - WRITE CONTROL CHAR (SOUND

18

HEX*11' -~ SET BUFFER ADDRESS COMMAND

20

32
33

34

' '
[3
1400

15

IGI
ALARM,RESTORE KEYBOARD,

1 L]

TENTER ROOM #°

II!

Q% HEX*C9'-UNPROTECTED ALPHAMERIC INTENSIFIED

0 ORDR ¢ 4
0% HEX'13'=INSERT CURSOR

0

0% AREA FOR ROOM NUMBER

0 ORDR 3
0

0% PROTECT REMAINDER OF SCREEN
0 T LR 04

0

070210

0703
0706
0707

0 TNAME
0 GRDRy 1
0

O7O0710*WRITE ONLY

0708
0709
0710

Q
o] ORDR,y2
0

35
38

39
40

4

8
14
15
16

17
18
20

Figure 6-19 (Part 1 of 2). Example 1 — RPG !l SRT Program

"

WCFY
*138¢

lll

G

In this example, the same array is
used for the input and output
SPECIAL files since it is convenient
and saves space in the program,

The parameter array is a compile
time array in this example, so the
array contents are set when 1P out-
put is performed (see the first
message).

At input time in the program cycle
_an Accept Input is issued. The
Invite Input has been issued at 1P
output time.

The program expects a room number
between 1 and 10. If a different
number is entered, the program does
not attempt to access the GUEST
file for rate, name, and address.
Only the room number is printed on
the T output line, If the operator
enters an incorrect room number
such as 1¥b, the room number is
displayed as 100.

A Put with invite Input operation
with a blank terminal name issued at
1P output time sends the initial
message to the terminal and invites
input from the terminal. The maxi-
mum input length (25) for the Invite
Input is in the parameter array.

RPG Il 6-35

0711 O* 3270 M1 ADDRESS ROW2 COL1
0059 0712 0O 29 'ROCM # - ¢
0060 0712 0 GROOM 32
0061 0714 0 ORDRy 2 33
0062 0715 0 35 'A&!
0716 0% 3270 M1 ADDRESS ROW3 COL1
0063 0801 O 42 'RATE - !
0064 0802 0 GRATE 3 48 '$!
0065 0803 Q ORDRy 2 49
0066 0804 O 51 'A8"
080% 0* 3270 ML ADDRESS ROw4 CCL1
0067 0806 O 58 YNAME - !
0068 0807 O GNAME 78
0069 0808 O CRDRy2 79
0070 0809 O 8l 'B~'
0810 0% 3270 M1 ADDRESS ROW5 (COL1
0071 0811 0 88 'ACCR - !
0072 0812 O GADDR1 108
0073 0813 0 ORDR,4 2 109
0074 0814 O 111 *CH!
0815 0% 3270 M1 ADDRESS ROW6 CTOL1
0075 0901 O 118 *ADDR - ¢
0076 0902 O GADDR2 138
0903 D*x END OF PRDG *x*
(X3
0 25

INDICATORS USED
LR 1P 01 02 03 04 05 91 92

3G 314 UNREFERENCED TABLE/ARRAY NAMES

STMT# NAME
0007 IARR
EXECUTION TIME TABLES AND ARRAYS
STMT# TABLE/ DEC ENTRY NUMBER OF DTT T/A
DEFINED ARRAY POS LENGTH ENTRIES DISP DIsP
0008 ORDR 001 00004 0100 0000
G 314 UNREFERENCED FIELD NAMES
STMT# NAME
0010 EFL

FIELD NAMES USED
STMT# NAME DEC LGTH DISP

0011 TNAME 006 0009
0012 ROOM 0 003 0048
0015 GROOM 003 000C
0016 GRATE 2 004 004F
0017 GNAME 020 0020
0018 GADDR1 020 0034
0019 GADDR2 020 D048

LABELS USED
STMT# NAME TYPE

0033 END TAG
COMPILE TIME TABLES AND ARRAYS
STMT# TABLE/ DEC ENTRY NUMBER OF DTT T/A
DEFINED ARRAY POS LENGTH ENTRIES DISP DISP
0007 TARR 006 0005 0000 0000
TARR
D 25

END OF TABLE/ARRAY - LAST ENTRY WAS BLANK

ERRDOR NUMBER STATEMENT NUMBER

RG 097 0014

RG 097 0020

RG 558 0029

ERROR SEVERITY TEXT

G 097 W NO FIELDS DESCRIBED FOR THIS OR PREVIOUS RECORD.
G 314 W FIELD, TABLE OR ARRAY NAME DEFINED BUT NEVER USED.
G 392 W LAST ENTRY IN ONE DR MORE COMPILE TIME TABLE/ARRAYS WAS BLANK.
G 558 W INVALID USE OFy OR MISSINGy, RESULTING INDICATORS WITH THIS OP CODE.

INVALID RESULTING INDICATORS BLANK.
Figure 6-19 (Part 2 of 2). Example 1 — RPG H SRT Program

6-36

001110

ASSUME

Example 2

Figures 6-20, 6-21 and 6-22 show the flowchart, input/
output messages, and listing for a sample RPG Il multiple
requesting terminal (MRT) program designed to run under
the CCP (see index entry MRT program). This program
handles up to four MLTA requesting terminals. The terminal
operator enters a seven-digit number preceded by a +, -, or
N. The CCP transmits this signed number to the RPG 11
program. The RPG |l program:

Adds the number to the value in the accumulator
associated with the terminal that transmitted the data
if the first position is +.

Subtracts the number from the accumulator if the first
position is -,

Releases the terminal if the first position is N.

If a value was either added or subtracted, the new value
accumulated for the terminal is inserted into the message
CURRENT VAL = sxxxxxxxxxx ENTER DATA and the
message is sent to the terminal. '

This sample program also checks for several error con-
ditions and transmits the appropriate error message to the
terminal requesting the operation.

This sample program is not designed to show the most
effective way of performing operations. Instead, it shows a
variety of ways to do things. It uses a variety of operation
codes that show how data can be associated with a terminal
by defining a save area for the terminal names and accumu-
lated data. It frequently checks return codes; but you can
do even more return code checking if you wish. Data
entered by the terminal operator must be fixed length. To
allow variable length input fields, you could include a
subroutine in your program to check the effective input
length returned in the parameter list and align the data
correctly, This program communicates with the console

in addition to the requesting terminals.

RPG Il 6-37

A1l

‘ START ’

21 @
B1
1. Set up parameter
list for Accept
Input
2. Accept Input
C1
3A3
Return code
checker routine
D1
Shutdown Yes
request
No
E1
Terminal No
attached
Yes
F1
Terminal Yes
canceled
@ No
G1
Negative Yes
return code
No
H1
Positive return Yes
code (#0)
No
J1
Operator = N Yes
No

D2

N

Exit to

hutdown

Terminal
canceled

° Yes

F2

Set canceled
switch

S

H2

1. Set up Put-No-
Wait (message)
2. Initiate Put

2F1

E3

Add terminal to
attached list

OF

B4

1.

2.

3.

Check input
length = 8
Check valid
operator

Check valid data

Valid input

Find proper
accumulator

E4

Add or subtract
input to
accumulator

Accumulator

>0

C5

1.

2

Set up Put-No-
Wait (message)
Initiate-Put

. Move -’ to out-

put area
Make unit position
printable

G4

1.

2.

Set up Put, Wait
message
Put message

H4

Réturn code
=0

Yes

Figure 6-20 (Part 1 of 3). Program Logic of Example 2 (RPG || MRT Program)

6-38

J4

No

1.
2.

Set up Invite Input
Invite input

B1

2B1

~-[Output Error
B1

2F4

Console routine

Retry =
try again

Terminal
canceled

1. Setup Rélease
Terminal op.
2. Release terminal

H2
H1
Return

\ode=o

No

Figure 6-20 (Part 2 of 3). Program Logic of Example 2 (RPG I MRT Program)

J1

1. Clear terminal
name entry in
attached list

2. Clear accumulator

1B1

B4 -{Input TP Error

“2F4

Console Routine

Retry = try
again

1. Set up Put-No-
Wait (message)
2. Issue Put

Console Routine

F4
ENTER
G4

1. Set up Put-Then
Get to console

2. lIssue Put-Then-
Get

H5

H4

Reply = TA
(try again)

Set on release
terminal
indicator

Yes

Ja

‘ RETURN ’

RPG il

6-39

Shutdown Routine Return Code Checker Routine

A1l A3

=D

B1

ENTER

B3 B4
>0
SetN =1 Return code .Set.on 0 T
indicator
c1 - c3 <0
Check entry N in Set on 0
attached list indicator
(TP error) @
D1
Yes Set on invalid
Entry blank data indicator
No =
E1 E3 ¢
1. Set up Stop Invite Set on shutdown
2, Stop Invite indicator
F1 F4

3A3 .
Set on terminal
Return code canceled |
checker routine indicator
>8
G1 G4
N Set on Stop Invite
Terminal
rmin Re“im code successful
canceled =10 indicator
H1 Ha
1. Set up Put, No
Wait message (RETURN)
2, Issue shutdown
message
J1
K1

Add 1 to N

Figure 6-20 (Part 3 of 3). Program Logic of Example 2 (RPG Il MRT Program)

6-40

Input Data Entered by Terminal Operator

118 9 10 11 12|

1 2 3 4 5 6
SIX| X% 3XIX

A fixed length numeric field where Sis at a+, -, or N and
Xis a numeric digit. All eight positions must be entered,
except.when N is entered in the first position.

Data Entered by System Operator on 5471 Printer/Keyboard (Models 10 and 12) or CRT/Keyboard (Model 1)

34 5 6{7]8 9 1011 12

-}A In response to the messages INPUT TP ERROR TNAME-cccece and
clc OUTPUT TP ERROR TNAME-cccccc to the console, the system
operator replies TA if he wants to Try Again. Any other reply (cc)
causes the terminal to be released.

Output to the Console

12 6718 o 10 11 12[13]14 1516 17 18 19 20 21 22 23 24 % 26 27 28 20 B0

'|"PUT TP, ERROR ﬂl E-lcclcicic { These messages are transmitted
ouTPUT! [TIP ERROR TINAME-|cic/clclcle] [to the console (ccceee = terminal

name).

b d

Output to Terminal

1 2 3 a4 5 6]7]18 9 10 11 12[13]14 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 T ans itted Wlth Vall.le
CURRENT [VAL[=iSIxIX|xx|xx[x XX [ENTIER [DATA[1€ — ransm :
in accumulator associated
Y| AGAI N || NV| DATA el ~ with the terminal.
—‘__—‘d
TRY AGA‘IW TP |ERRGR | [Issued if data is invalid
T | |
S - N~ .
CCIR [SHTDWN. HA ST REC TP € - N T~ Issued if system operator replies TA
clclPl lsHTDWN ILAST IRec)- | BAID DIATA N |1 g (Negative return code on Accept Input)
l 1L JERRN N
CCP SH TDHN LIAIST, [REC-| | ISMXIXXX|XX| \\\,‘k\ Issued for negative return code on
. ! N ™ Stop Invite Input
clclP [SHiTDWN [LilST [REC|- | [No [DAT] N \ op Tnvite T
) | N \<: Issued for positive return code other

than 10 on Stop Invite Input

Issued for return code of 0 on
Stop Invite Input

Issued for return code of 10 on
Stop Invite Input

Figure 6-2'1. Input and Output Message Formats for Example 2 (RPG Il MRT Program)

RPG Il 6-41

01010H R 4

0001 02010FDUMMY 1P 1 1 SPECIAL
0002 02020FTPCONSIOCD 52 52 SPECIAL
0003 02030F :

0004 03010E TPRY 5 6
0005 03020& ATRY 4 6
0006 03030E ACMY 4 100

MRRPGL

SUBR93 MRRPG1
SUBR92 MRRPG1
KTPRY MRRPG1
CCP PARM LIST MRRPG1

ATTACHD TERM LISTMRRPGL
ACCUMULATOR LIST MRRPG1

0007 0401010UMMY AA 01 MRRPGL
04020I% DUMMY SPEC FOR PRIMARY FILE (RPG REQUIRES A PRIMARY FILE) MRRPG1
0008 04030ITPCONSIOBB 02 MRRPGL
0009 040401 1 20RETCOD MRRPG1
0010 040501 5 BOEFFL MRRPGL
0011 040601 9 14 TNAME MRRPGL
0012 040701 15 15 OPRATR MRRPG1
0013 040801 16 220TPIPT MRRPG1
00l4 040901 15 17 CONSIP MRRPG1
05010C**% CHECK THE 3RD ELEMENT OF THE PARAMETER ARRY TO DETERMINE IF MRRPG1
05020C#* IF ANY MORE TERMINALS TO BE SERVICED. IF NOT GO 7O EOJ. MRRPGL
0015 05030C ACPIPT TAG MRRPG1
0016 05040C 09 MRRPG1
0017 05050C0R 13TPRY,3 COMP * 0000° LR NO MDR IF O MRRPG1
0018 05060C LR GOTO END GO TO EJ MRRPG1
0019 05070C Q1IN SUB N N 10 CLEAR INDEX MRRPG1
0020 05080C ol MOVE * D! TPRY,y2 ACP IPT OP CODMRRPGL
0021 05090C 0ol MOVE '22° TPRY 4 MAX XPECT LEN MRRPG1
05 1 00 C Aok seake s e o e e e e oo e oo i o ofe e e sk ot ok ok ok oo e st o oo ol ok ok ok dekiok ook ook okok ok ok X K MRRP G
05110C* MRRPG1
05120C* ACCEPT INPUT MRRPG1
05130C* MRRPG1
05 1 4 O C sk et ade e stk ok dok ok ok ek * % Fadofokk ko kkkkkEkEEMRRPGL
0022 05150C 01 READ TPCONSIO ACCEPT INPUT MRRPG1
05 1 60T %k ook e ol deode ol o dojoodol fokoofolok kokokoiokokokaokook ok fooke $okokodokaok ok ok ok dok ok R ok k 0kMRRP G L
05170C* MRRPG1
05180C* GO TO RETURN CODE CHECKER ROUTINE MRRPG1
05190C* MRRPGL

05 200C sk e e ek e s e e oo e ek e e o ol okl o o ARk ok Rk kRO ook ok ok oaok ok ok ok R Kok ok kMRRP G

0023 06010C 02 EXSR RETCHK CHECK RTN CODE MRRPGL
06 02 0C # ook e skt de e ok e ot ok oo e e tok ok R SOk oK o3 ok ook ok ek ok kol ok ok ok ok ORKMRRP G L
06030C* MRRPG1
06040C* IF SHUTDOWN REQUEST RETCOD = 04,IND ON IS 06 MRRPG1
06050C* MRRPG1

060 60C Aok de e dode e e e ook oo e ol ek o oo ol ofodoRol ok olofok Bok ok ok okl ook ok kool ok ok kR ok kR MRRP G L

6-42

0024 06070C 06 GOTO SHTDWN SHUTDOWN CODE MRRPGL
06 08 OC %k ek e o e sk o e o ook e o e oo e o e e o o o o o s ok ol ol e o ok e skl ok ok s ok ok ok ok okokok kXX MRRP G 1
06090C* MRRPG1
06100C* ROUTINE TO DETERMINE IF TNAME IS AN ATTACHED TEMINAL MRRPG1
06110C* IF ATTACHED IND 12 IS ON,IF NOT IND 13 IS ON MRRPG1
06120C* MRRPG1
06130C %%xx* e e e g ok ot e o ok okt kol iR ROk BoRok ok ok ok ok ok Rk okok Rk kkMRRP G L

0025 06140C LUP1 TAG MRRPG1

0026 06150C o1 N ADD 1 N ADD TO INDEX MRRPG1

0027 06160C 01 ATRY N COMP TNAME 12NAME FOUND MRRPG1

0028 06170C 01 12 60TO GOl MRRPG1

0029 06180C 01 N COMP 4 13NAME NOT IN LSTMRRPG1

0030 06190C O1N13 GOTO LUPL KEEP LOOKING MRRPG1

062 00C Ak dot ok ok sk ook ook ook ok ol ok ool dokoalok detokoofoka ok ok ok doktok dctoloolok ko ok ok ROKMRR P G L

07010C*
07020C* TERMINAL NOT ATTACHED AND CANCELED
07030C*

MRRPG1
MRRPG1
MRRPG1

07 040C %otk ook dok sk ofokok ok ok o o ok ook ook ok ok ok Jok ook ok ok ok ke ko ok k% Kk MRRP G

0031 07050C 09 13 GOTO AGPIPT

TERM CANCELLED MRRPG1

070600 Fkokakiok koo dokokokokok o i ok g okl ook ookl ok ook ook ok ok dok ok kol ok ok kR Rk ok MRRP G L

07070C* MRRPG1
07080C* IF TERMINAL NOT ATTACHED AND NOT CANCELED MRRPG1
07090C* ADD TERMINAL TO ATTACHED LIST MRRPG1
07100C* MRRPG1
Q7 1 1 OC eskeodeabe e o e s o e e e e o e o e o ofe e ek e oo e oo o e bl ok ook ok ok L3 MRRPG1

Figure 6-22 (Part 1 of 6). Example 2 -- RPG Il MRT Program

0032 07120C 13 N SuUB N N CLEAR INDEX MRRPG1

0033 o07130C Lup2 TAG MRRPG1
0034 07140C 13 N ADD 1 N ADD TO INDEX MRRPG1
0035 07150C 13 ATRY 4N comp ! ¢ 14THIS NTRY AVAILMRRPG1
0036 07160C 13N14 GDTO LUP2 NO TRY AGAIN MRRPGL
0037 07170C 13 14 MOVE TNAME ATRY,N YES ENTER NAME MRRPG1
0038 07180C 13 GDTO 602 MRRPG1
07 190C #tokd ok e e e ke o ool et e ol ok e ot ol ol ot ool ol doi kol ok dok Sk ko MRR P G 1
07200Cx* MRRPG1
08010C* IF TERMINAL WAS IN THE ATTACHED LIST AND RETURN CODE MRRPG1
08020C* IS CANCEL,GO TO RELEASE TERMINAL ROUTIN MRRPG1
08030C* MRRPG1
08040 ¥ ki koo e ok e de e ke oo et ol e et e ool s oo ek o ol o ok R iR i kR R MRR P G 1
0039 08050C GOl TAG MRRPG1
0040 08060C 12 09 GOTO RELEAS CLEAR TERM MRRPG1
08070 C %kt stk o e ool ol e sk ol ook oot oo ol ool ok ool oo ok ok ok kMR RP G 1
08080C* MRRPG1
08090C* IF NEGATIVE RETURN CODE-IND ON IS 03,60 TO MRRPG1
08100C* INPUT TP ERROR ROUTINE MRRPG1
08110C* MRRPG1
081200 otttk oo ookt oo ok ek oo oot ok ol e ool ook ok ok ok R RO ok kR MR RP G 1
0041 08130C G02 TAG MRRPG1
0042 08140C 03 GOTO IPTER NEG RET CODE MRRPG1
081500 stk s e ok ot ool oo ook ook sololof ol b ook ok oo fofofok ook ok solololo ookt ok MR R P G 1
08160C* . MRRPG1
08170C* IF POSITIVE RETURN CODE(GREATER THAN ZERO) BUT MRRPG1
08180C* NOT EQUAL TO 10 GO TO INVALID DATA ROUTINE MRRPG1
08190C* MRRPG1
08200 C okt ot ook ol ook ok e ot el ok AR o A R 0K A HOK o RO oK R S ol ok ok MRRP G 1
0043 09010C 07 GOTO INVDAT INV DATA ROUTINMRRPGL
090 200 st s ket e dedoodek e oo e ook ool sl sl o o ol ol o o R R R R o SRk kMR R P G 1
09030C* ’ ' MRRPGL
09040C* IF RETURN CODE=0,IND 04 IS ON AND IF MRRPGL
09050C * OPERATOR=N,GO TO RELAEASE TERMINAL ROUTINE MRRPG1
09060C* MRRPG1
090700 ki o ootk ok dodok ot o ok o ks ok ol o ook o Kok ok ROk bk okl ok ok Kk MRR P G 1
0044 09080C 04 OPRATR COMP *N! 13ANY MORE DATA MRRPG1
0045 09090C 04 13 GOTO RELEAS NO,RELEASE MRRPG1
09 100C %k ekt ook o o ol oo o ol oo ok 40K B o ol ok ok e ok ke kK MRR P G 1
09110C* 1 CHECK INPUT LENGTH = 8,IF NOT 8 TURN IND 07 ON MRRPG1
09120C* 2 CHECK VALID DPERATOR ,IF OPERATOR IS + TURN IND MRRPG1
09130Cx* 14 ON,IF OPERATDR IS ~ TURN ON IND 15,1IF OPERATOR MRRPG1
09140C* S IS ANY OTHER VALUE TURN ON IND 07 MRRPG1
09150C* 3 CHECK VALID DATA IF NOT VALID TURN IND 07 ON MRRPGL
09 1600 ¥k ok kot ook o oo deof et st e oo ok e ol ok kool ook ok koK oo ook 4ok ok MRRP G 1
0046 09170C 04 EFFL COMP 8 0707 LEN XACTLY 8 MRRPG1
0047 09180C 07 GOTO INVDAT MRRPG1L
0048 09190C 04 OPRATR COMP '+ 1515141S ADD WANTED MRRPG1
0049 09200C 04 15 OPRATR CoMp ' 0707151S SUBTRACT MRRPG1
0050 10010C 04NO7 TPIPT cCoMP O . - 07 VALID NUMBER MRRPGL
10020 C ok ook ot e oo e s e e e ool ol o o R i i Aok Ao ool ook ook KoKk Kk MRRP G 1
10030C* MRRPG1
10040C* IF INPUT IS NOT VALID GO TO INVALID DATA ROUTINE MRRPG1
10050C* MRRPG1
1006 0C %k ok et ook sk ootk oo o o ok ook e ol o ok Kol ook R ROk Ko Kk MRRP G 1
0051 10070C 04 07 GOTO INVDAT MRRPG1
10080 C ke etk ot dotede e ook ok ok ook ol ool ok ot o ok ok ol Rk R ROk ok ok MRRP G 1
10090C* MRRPG1
10100C* 1 FIND PROPER ACCUMULATOR MRRPG1
10110C* 2 ADD DR SUBTRACT INPUT TO ACCUMULATOR MRRPG1
10120C* MRRPG1
101300 sk skt okt oo e o oot ool ol ool o ke ol e sk ok ook o kol ok MR R P G 1
0052 10140C 04 14 ACMY,N ADD TPIPT ACMY, N ADD TO ACMLATR MRRPG1
0053 10150C 04 15 ACMY, N suB TPIPT ACMY,N SUB FROM ACMLTRMRRPG1
101 60C #ak ki b oo e ek e o e e sk ol e Aol oo ook ok Aot ol Aol ool ok SRk Rk kMR R P G 1
10170C* MRRPG1
10180C* DETERMINE IF THE ACCUMULATOR IS NEGATIVE-LESS THAN 0- MRRPG1
10190C* TURN ON IND 16 WHICH ALLOWS A MINUS SIGN TO MRRPG1
10200C* OVERRIDE THE PLUS SIGN ON OUTPUT SPECIFICATION MRRPG1
11010C* MRRPG1
1102 0C ko ot ot ok ot e oot oot etttk ok ok dok e etk ook okt sl ok kR K MRR P G 1
0054 11030C G4ACMY,N COMP O 16 RESULT NEG MRRPG1
11040C sttt sttt ok ok Sk ok okl ok ok ok ok il oo folololof ok Solololok okl kMR R P G 1
11050C* MRRPG1

Figure 8-22 (Part 2 of 6). Example 2 — RPG Il MRT Program

RPG 1l 643

6-44

0055
0056
0057
0058

0059

0060
0061
0062
0063
0064
0065

0066

0067
0068
0069

0070
0071

0072
0073

0074
0075
0076
0077
0078
0079

11060C* MRRPG1
110 70C s oo oo ot o ok b i Aol o ok ok oo ook ook ok ol R ok ook ok ookl ok ok MRR P G 1

11080C OPTPUT TAG MRRPG1
11090C 18 SETOF 18 MRRPG1
11100C 04 MOVE ¢52¢ TPRY,3 0OUT LEN MRRPG1
11110C 04 EXCPT SEND CURNT VAL MRRPG1
1112 OC %% % 3ok bk ko bk ok ok ok ook ok ok o ek ok ok ok ok ook Kok KR Rk Rk kol ok Rk MRR P G 1
11130C* MRRPG1
11140C* MRRPG1
111 50C %ok g des de ok ok ok ook iR R R Aok Rk ok 3o oo ook Rk ok Rk Sk Rk R Rk ok R kK MRRP G L
11160C 91 GOTO OPTERR NO GO TO ER RTNMRRPG1
111 70C e e oo o e ootk ool e s o oo ok ok oo ok o X oo ook ok ook ool o ook ok kMR RP G 1
11180C% MRRPG1
11190C** IF SUCCESSFUL DO INVITE INPUT FOR THIS TERM AND THEN GO TO ACCEPTMRRPG1
11200C*% INPUT FROM ANY ONE MRRPG1
12010C* MRRPGL
12 02 0C Rk s e e e et dokok ok o o ok 1 oo o ok e o i ook ook ko ool ookl otk ol okl ok KRR XMRR P G L
12030C INVIT TAG MRRPG1
12040C 01 MOVE * E' TPRY,2 INVITE OP CODE MRRPG1
12050C ol MOVE *22° TPRY, 4 XPECTED MAX LENMRRPGL
12060C 01l EXIT SUBR91 INVITE WITHOUT MRRPG1
12070C RLABL TPRY SPECIAL MRRPG1
12080C RLABL TNAME MRRPG1
12 090G % kool dodok ook ok Aok i o A e e e e e ok ok ke i ok ok okl ok ool ololol ook k ook X 0k MRRP G L
12100C* MRRPG1
12110C**0ONLY NAME AND LENGTH NEEDED FOR INVITE.THIS COULD HAVE BEEN DONE MRRPGL
12120C**VIA EXCPT. IF SO SUBR91 WOULD NOT HAVE BEEN NEEDED. MRRPG1
12130C* MRRPG1
121 4 0C koot i st ook ok g s ok s ok et e s ot o ol ook kol ko oK ook ok ook ok ok ok MRRP G L
12150C o1 GOTO ACPIPT GO ACCEPT INPUTMRRPG1
12 160C 3k dokskokok koo kb sodololok ke doolok ok ook o oK 0 b Kol A g ok Aok R RO KK XMRRP G 1
12170C* MRRPG1
12180C*%xx«END OF MAIN LINE.SPECIAL ROUTINES FOLLOW. MRRPG1
12190C* MRRPG1
122000C ¥kt e ek doofok dooRRok ROk Rk R ok kR ok ok ook R RO R R R R R kR kR kR MRRP G L
13010C* MRRPG1
13020C** INPUT ERROR ROUTINE(IPTER)-MINUS RETURN CODE. ENTERED ON INDICA- MRRPG1
13030C** TOR 03 MRRPG1
13040C** SUBRODUTINE MRRPG1
13050C* MRRPG1
13060C Rk dok ko ook dokoddedok ok odolook ot ok e ok g ek d ook okok oKk sk R ok ook Kok R R K R Rk R Rk MRRP G 1
13070C IPTER TAG MRRPG1
13080C 03 EXSR CONSB TALK TO OPERATRMRRPG1
13090C 13 GOTO RELEAS UPON RETURN 13 MRRPG1
131 00 C s oo s oo ok o o e o ook ok Skl otk ool o obolodok ok Aok kol oK Rk o Aok ok K R ok ok Xk k0K MRRP G L
13110C* MRRPG1
13120C*MEANS RELEASE THIS TERMINAL. NOT 13 SAYS SEND MESSAGE AND INVITE. MRRPGl
13130C*) MRRPG1
13 1.4 0 Gtk it ok ook f ok doololoioloR okl okl dololor sok doloiokoroiok ololokooioioi ik lok ikl R Rk 0k MRRP G L
13150C 18 MOVE '36°' TPRY,3 OUT LEN MRRPG1
13160C 18 EXCPT SEND MSG MRRPG1
131 70C ok dokdokosdook ok ok kAo ook ok 2k ook oot oo ok gl ok dofooololoofok ok ok ok ook Kok Rk k kK KMRRP G L
13180C* MRRPG1
13190C* SINCE NOWAIT WAS SPECIFIED NO RETURN CODE 1S AVAILABLE TO CHECK. MRRPGL
13200C* MRRPG1
1401 OC koo ok dodog ok ok A ok ool R ok o ol e ol o ok ok ok ook KRR fOoR R koo kR Rk R Rk MRRP G 1
14020C 18 SETOF 18 MRRPG1
14030C 03 GITO INVIT MRRPG1
14040C** END OF IPTER MRRPG1
14 05 OC 2 e s o o o oo e ook 0k oo ek etttk ol ol ok KoK R ook RROR R ok Kok R ORKMRRP G 1
14060C* MRRPG1
14070C*% QUTPUT ERROR ROUTINE(OPTERR)-NON O RET CODE MRRPG1
14080C* MRRPG1
1409 0F % e o o s o R Ok R OB R ko o R Aol R ook R oK ROR R R R R Rk ko R ok Rk ok kK kMR RP G L
14100C OPTERR TAG MRRPGL
14110C 01 SETON 17 MRRPG1
14120C 17 EXSR CONSB TALK TO OPERATRMRRPG1
14130C 17 SETOF 17 MRRPG1
14140C 13 GOTO RELEAS 13,RELS TERM MRRPG1
14150C 01 GOTO OPTPUT TRY AGAIN MRRPG1
14160C** END OF OPTERR MRRPGL
14 1700 %ot ok dodok Aok oo gk ok ok sk ook e o e s ookl kool ook okl ok Rk R R R ok kR ok KRR MRRP G L
14180C* MRRPG1
164190C%% INVALID DATA ROUTINE(INVODAT)-INPUT LEN NOT 8,INVALID OPERATOR, MRRPG1
14200C*% (NOT Ny+4-)y INVALID DIGITS ENTERED,ETC MRRPG1

Figure 6-22 (Part 3 of 6). Example 2 — RPG Il MRT Program

15010C* MRRPG1
1502 0C %ok s e ok koo e e sk ook ook ok RoR ORIk ROk ok ook ok okl ok ok ook ok ok EMRR PG L

0080 15030C INVDAT TAG MRRPG1
0081 15040C 07 SETON 18 MRRPG1
0082 15050C 07 MOVE '36' TPRY,3 CUT LEN 18 MRRPG1
0083 15060C 07 EXCPT TELL TERMINAL MRRPGl
0084 15070C 07 SETOF 18 MRRPG1
0085 15080C 07 GOTO INVIT INVITE MORE MRRPGL
15090Cx* INPUT FROM THISMRRPGL
15100C* TERMINAL MRRPG1
15110C** END OF INVDAT ROUTINE MRRPG1
15 1 20 C & ook e oo e o ook o e o e o e o o oot o oo e e e o ok Aok 3ok R ok ok ok Rk kR ke ok kR kR Rk MRRPGL
15130C* MRRPG1
15140C**RELEASE TERMINAL ROUTINE(RELEAS) RELEASES TERMS, CLEARS ATTACHED MRRPG1L
15150C**LIST AND ACCUMULATOR LIST ENTRIES AND DETERMINES WHEN TO GO TO EOJMRRPGL
15160C* MRRPG1
1517 OC % ik ok s o e e ok o e e o b o oo e e ool sk ook s st ok s ool ekl koo ok sk e o o o ok ok ook ok ok Rk MRRP G L
0086 15180C RELEAS TAG MRRPG1
0087 15190C 09 GOTO RELCLR CLEAR LISTS MRRPG1
15200C* MRRPG1
16010C* NOTE 09 MEANS A TERMINAL ATTACHED TO THIS PROGRAM HAS ENTERED MRRPG1
16020C* COMMAND INTERRUPT MODE AND ENTERED THE RELEASE COMMAND. MRRPGL
16030C* : MRRPG1
0088 16040C 13 MOVE ' K! TPRY,2 REL TERM 0P CODMRRPG1
0089 16050C 13 EXIT SUBR91 MRRPG1
0090 16060C RLABL TPRY MRRPG1
0091 16070C RLABL TNAME MRRPG1
0092 16080C RELCLR TAG MRRPGL
0093 16090C 09 MRRPG1
0094 16100COR 13 MOVE * * ATRY,N CLEAR THIS NTRYMRRPG1
0095 16110C 09 MRRPG1
0096 16120COR 13 MOVE '000000*' ACMY,N MRRPG1
0097 16130C 09 MRRPG1
0098 16140CO0R - 13 GOTO ACPIPT MRRPGL
1615 0C % ok koo ook kool o ook ko e e otk ook ook sokolotokolokok ok folorsokoaaloiooiok oo okoR kR OREMRR PG L
16160C* MRRPG1
16170C*«SHUTDOWN ROUTINE (SHTDWN) 04 RET CODE. ISSUES STOP INVITES AND MRRPG1
16180C**SHUTDOWN MESSAGE TO ALL ATTACHED TERMS BEFORE GOING TO EOJ MRRPG1
16190C* MRRPG1
1.6 200G ok ok stk e e ek e b ok e e o e e e ke oo ok oo sl o o ok e o ok i ok ok ok ok ok ok ok kR X &MRRP G L
0099 17010C SHTDWN TAG MRRPG1
0100 17020C 06 SETON 11SHUTDOWN IND MRRPGI
0101 17030C SHDWNO TAG MRRPG1
0102 17040C 1IN ADD 1 N ADD TO INDEX MRRPGL
0103 17050C 11ATRYN come ! ' L9TERMINAL HERE MRRPG1
0104 17060C 19 GOTO SHDWN1 NO CHECK NEXT MRRPG1
0105 17070C 11 MOVE ATRY; N TPRY,y 5 TNAME TO ARY MRRPGL
0106 17080C 11 MOVE ' D A* TPRY,2 STOP INVITE MRRPG1
0107 17090C 11 MOVE ‘22 TPRY. 4 MAX XPECTO LEN MRRPGL
0108 17100C 11 READ TPCONSIO MRRPG1
0109 17110C 11 EXSR RETCHK CHECK TRN CODE MRRPG1
0110 17120C 09 GOTD SHDWN1 TERM CANCELLED MRRPG1
0111 17130C 11 MOVE ‘'48° TPRYs3 OUT LEN MRRPG1
0112 17140C 11 EXCPT APPROPRIATE MSGMRRPG1
0113 17150C SHDWN1 TAG MRRPGL

Note: When the last terminal attached to an MRT program is processed, issue a Release
Terminal operation to that terminal in order to check the count of outstanding Invite

Inputs. |f the count is greater than zero, the program can issue an Accept Input operation.

For example, suppose an MRT program is servicing the maximum number of requestors
and one or more additional requests are queued to the program. |f the program receives
a shutdown-requested return code (04) and goes to end of job without checking the
count of outstanding Invite Inputs, the program terminates with a 2C termination code
(going to end of job with outstanding Invite Inputs) and each of the queued terminals
receives an S06 message (program cancelled — shutdown).

Figure 6-22 (Part 4 of 6). Example 2 — RPG Il MRT Program

RPG Il

6-45

6-46

0llé4
0115
0116
0117

0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132

0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144

0145
0l46
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
o161
0162
0163
Ol64
0165
0166
0167
0168
0169
o170
0171
0172
0173
0174
0175
0176
0177
o178

17160C 11N comMP 4 LRDONE MRRPG1
17170C NLR GOTO SHOWNO NOyNEXT TERM MRRPG1
17180C LR GOTO END YES,EOQJ MRRPG1
17190C END TAG MRRPGL
17 200C st abe st oo s o e e e e e ook e ok o o oo ook e e o ok ok s o ook sk kol o sl ool ok otk ek ok ok ok ok ok ook MRRP G L
18010C* MRRPG1
18020C** RETURN CODE CHECKING ROUTINE(RETCHK) MRRPG1
18030C* MRRPG1
18040 C % %ok % i oo o ook e ook ol ke e ok ok gk ol s o e il ok ok ok oo ok ooakolokolkadok ok Kok Rk kKRR (MRRPGL
18050CSR RETCHK BEGSR MRRPG1
18060CSR 01 SETOF 060708 MRRPGL
18070CSR 01 SETOF 0910 MRRPG1L
18080CSR O1RETCOD COMP 00 050304 MRRPG1
18090CSR 03 MRRPG1
18100C0OR 04 GOTO ENDRET MRRPG1
18110CSR OSRETCOD COMP 04 080706SHUT DOWN MRRPG1
18120CSR 06 MRRPG1
18130COR 07 GOTO ENDRET . MRRPG1
18140CSR OBRETCOD COMP 08 09TERM CANCELLED MRRPGL
18150CSR NO9RETCODD COMP 10 10STOP INVITE OKMRRPGL
18160CSR NO9 MRRPG1
18170C0R N1O SETON O7CATCHALL MRRPG1
18180CSR ENDRET TAG MRRPGL
18190CSR ENDSR MRRPG1
18200C**END OF RETCHK MRRPG1

190 1 OC % s skdeofoofe st e ok o oo e ook e 3o Xk e feofe e ool o oo ok gk ok kR ok koo okok ok ok ko ok ok ok)k Xk MRRPG L

19020C* MRRPG1
19030C** CONSOLE I/0 ROUTINE. MRRPG1
19040C* MRRPG1
1905 QG % sk s s e o e e e oo o ke o o e e e o o ol e o o e e e ok ok bl e ol ol e e ook ok el o ol ook ol ok ok ok ok Rk ok ROk R MRR PG
19060CSR CONSB BEGSR MRRPG1
19070CSR 01 MOVE TNAME SAVE 6 SAVE TNAME MRRPG1
19080CSR 91 SETON 8l CONSLD EXCPT MRRPG1
19090CSR 91 SETOF 91 CLEAR NEG RETCDMRRPG1
19100CSR 0ol MOVE '47°' TPRY,3 OUT LEN MRRPG1
19110CSR 01 MOVE *l6! TPRY, 4 MAX INPUT LEN MRRPG1
19120CSR 01 EXCPT PUT CONSOLE MRRPG1
19130CSR 01 READ TPCONSIO GET CONSOLE MRRPGL
19140CSR 01 MOVE SAVE TNAME RESTORE TNAME MRRPG1
19150CSR O1CONSIP COMP 'TA! 131318D0ES OPERATOR -MRRPG1
19160CSR 81 SETOF 8l MRRPG1
19170CSR CONSE ENDSR WANT TO MRRPG1
19180C**END DOF CONSB SUBROUTINE TRY AGAIN MRRPG1
200100TPCONSIDE 8l MRRPGL
200200 TPRY 43 08 MRRPG1
200300 04 *C! MRRPG1
200400 14 'CONSOL! MRRPG1
200500 03 40 'INPUT TP ERROR TNAME-' MRRPGL
200600 17 40 'OUTPUT TP ERROR TNAME-! MRRPG1
200700 TNAME 47 MRRPG1
200800 3 18 MRRPG1
200900 TPRY,3 08 MRRPG1
201000 04 'CF! MRRPG1
201100 TNAME 14 MRRPG1
201200 36 'TRY AGAIN® MRRPG1
201300 o7 26 'INV DATA! MRRPG1
201400 03 26 'TP ERROR!® MRRPG1
201500 E 04NL7NO7 MRRPG1
201600 TPRY,3 08 MRRPG1
201700 04 'CB! MRRPG1
201800 TNAME 14 MRRPG1
201900 30 'CURRENT VAL-! MRRPG1
202000 31 '+ MRRPG1
210100 16 31 ' MRRPG1
210200 52 'ENTER DATA! MRRPG1
210300 ACMY,4N3 41 MRRPG1
210400 E 11 MRRPG1
210500 TPRY,3 08 MRRPG1
210600 4 'CF! MRRPG1
210700 ATRY 4N 14 MRRPG1
210800 28 'CCP SHTDWN® MRRPG1
210900 38 'LAST REC-! MRRPG1
211000 03 48 'TP ERROR! MRRPG1
211100 07 48 'BAD DATA! MRRPG1
211200 040PRATR 41 MRRPGL
211300 04TPIPT 48 MRRPG1
211400 10 48 ' NO DATA! MRRPG1
211500% END OF PROG MRRPG1

Figure 6-22 (Part 5 of 6). Example 2 — RPG Il MRT Program

INDICATORS USED
LR 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 81 91

EXECUTION TIME TABLES AND ARRAYS

STMT# TABLE/ DEC ENTRY NUMBER DF DTT T/A
DEFINED ARRAY POS LENGTH ENTRIES DISP DISP
0004 TPRY 006 00005 0100 002D
0005 ATRY 006 00004 0108 0048
0006 ACMY 0 010 00004 0110 0009
FIELD NAMES USED
STMT# NAME DEC LGTH DISP
0009 RETCOD © 002 006F
0010 EFFL 0 004 0073
0011 TNAME 006 0063
0012 OPRATR 001 0064
0013 TPIPT 0 007 007A
0014 CONSIP 003 0067
0019 N 0 001 0078
0134 SAVE 006 006D
LABELS USED
STMT# NAME TYPE
0015 ACPIPT TAG
0025 LUPL TAG
0033 LuP2 TAG
0039 G6O1 TAG
0041 GO2 TAG
0055 OPTPUT TAG
0060 INVIT TAG
0067 IPTER TAG
0074 OPTERR TAG
0080 INVDAT TAG
0086 RELEAS TAG
0092 RELCLR TAG
0099 SHTDWN TAG
0101 SHDWNO TAG
0113 SHDWN1 TAG
0117 END TAG
0118 RETCHK BEGSR
0131 ENDRET TAG
0133 CONSB BEGSR
0144 CONSE ENDSR
ERROR NUMBER STATEMENT NUMBER
RG 097 0008
RG 558 0022
RG 558 0108
RG 558 0140
ERROR SEVERITY TEXT
RG 097 W NO FIELDS DESCRIBED FOR THIS OR PREVIOQUS RECORD.
36 558 W INVALID USE OF, OR MISSING, RESULTING INDICATORS WITH THIS JP CODE.

INVALID RESULTING INDICATORS BLANK.

Figure 6-22 (Part 6 of 6). Example 2 — RPG Il MRT Program

ASSUME

RPG Il

6-47

6-48

As an Assembler programmer, you must be familiar with
the information included in Chapter 2: Standard Appli-
cation Program Interface to the CCP. To assist you in
supplying codes needed for your source program, the CCP
provides six macro instructions, each of which generates
information needed by the source program.

Four of these macros generate equates for values significant
to communications under CCP: $NCOM, $NPLO, $NOPV,
and SNRTV. The fifth macro — $NPL — generates a
parameter list, and the sixth macro — $NCIO — generates

a request for a communications operation.

Each of the supplied macro-definitions is a member of
the Source Library on your program-preparation pack.

Note: Because several of these macros use macro processor
facilities not available prior to version 08, modification
level 00 of System/3 Modei 10 Disk System Management,
they should not be used for program preparation with an
earlier. version of the Macro Processor on that system.

Symbols Used in Defining Macro Instructions

The symbols|[] and{ }are used in this publication to help
define the macro instructions. You do not code these
symbols; they are only used to indicate how a macro in-
struction may be written.

[1 indicates an optional operand. The operand enclosed
in the brackets may or may not be coded, depending
on whether or not the associated option is desired.

If more than one item is enclosed in brackets, for

exarmnple GET] either one or none of the items may be"

“LPUT S
coded.

{ } indicates that a choice must be made. One of the
operands from the vertical stack within braces, for
examp!e,{;\/,gs} must be coded, depending on which
of the associated services is desired.

Options that are underlined are the default values used by
the CCP if you do not provide an operand. For example,
for \N(SS}' YES is the assumed value.

For cases in which YES is appropriate, Y may be coded: for
cases in which NO is appropriate, N may be coded.

Chapter 7: Basic Assembler Programming for CCP

For more information concerning the coding of macro
instructions, see the following manuals:

® /BM System/3 Models 10 and 12 Control Programming
Macros Reference Manual, GC21-7562

® /BM System/3 Model 15 System Control Programming
Macros Reference Manual, GC21-7608

Mnotes

Mnotes applicable to the supported Assembler macros are
described at the end of this chapter. Each mnote descrip-
tion addresses the severity of the problem, the issuing
macro, an explanation of the problem, system action,
and suggested programmer action.

GENERATE EQUATES FOR COMMON VALUES
($nCOom)

The $NCOM macro generates a set of symbolic equates,
each of which represents a value commonly used in CCP
Assembler language communications programming. The
symbols generated and the values they represent are:

Symbol Decimal Value Value Represented

SNIXR1 1 Index register 1

$NIXR2 2 Index register 2

$SNSENT 4 Address of General Entry

$NSCCR 1 DSM RIB for CCP

$NSCCS 0 CCP sub-RIB for com-
munications operation

$NLPL 16 Length of a parameter
list

SNLPLF 2 Length of a parameter
list field

SNLSTN 6 Length of a symbolic

terminal name

This macro need be used only once in an assembly to
generate the desired symbols. However, if this macro is
used more than once in an assembly, duplicate symbols
are not to be generated and no assembly error or error
mnote is generated. A warning mnote is issued, however,
each time this macro is used after the first use.

Basic Assembler Programming for CCP 7-1

The symbols generated by this macro are used by the
$NCIO macro. If the SNCIO macro is issued in an assembly
and the $NCOM macro has not previously been issued, the
$NCIO macro generates the symbols. However, each sub-
sequent time the $NCOM macro is issued, a warning mnote
is issued.

The format of the $NCOM macro is:

1 8 14
$NCOM

Notes:
® This macro has no operands.

® The name field of this macro is not used; any symbol
entered in this field is ignored.

GENERATE EQUATES FOR PARAMETER LIST
OFFSETS ($NPLO)

The $NPLO macro generates a set of symbolic equates.

Each symbol generated represents a field in a parameter
list, and is equated to the displacement (offset from the
first byte of the parameter list) of the rightmost byte of
that field.

The symbols generated, and the fields they represent are:

Symbol Decimal Value Field Represented

$NPRTC 1 Return code field

$NPOPC 3 Operation code/modifier
field

$NPOUL. 5 Output data length field
{see note)

SNPEFL 5 Effective (actual) input
data length field (see note)

$NPATI 5 Attributes identifier
field (see note)

SNPINL 7 Maximum input data
length field

$NPRAA ! 9 Record area address field

SNPWKA 11 Internal work field

SNPWKB 13 Internal work field

$SNPWKC 15 Internal work field

Note: Symbols $NPOUL, $NPEFL, and $NPATI represent
the same field within a parameter list and are equated to
identical displacements.

7-2

This macro need be used only once in an assembly to
generate the desired symbols. If used more than once, it
does not cause duplicate symbols to be generated and no
assembly error or error mnote is generated. A warning
mnote is issued, however, each time this macro is issued
after the first.

The symbols generated by this macro are used by the
$NCIO macro. If the $NCIO macro is used in an assembly
but the $NPLO macro has not been previously issued, the
$NCIO macro generates the symbols itself. However any
subsequent use of the SNPLO macro only causes a warning
mnote to be issued (duplicate symbols are not generated).

The format of the $NPLO macro is:

1 8 14

$NPLO

Notes:
® This macro has no operands.

® The name field of this macro is not used; any symbol
entered in this field is ignored.

GENERATE OPERATION CODE/MODIFIER VALUES
(SNOPV)

The SNOPV macro generates a set of symbolic equates.
Each symbol generated represents the value of a CCP com-
munications operation code or operation modifier (see
Appendix E for the hexadecimal values of the operation
code/modifier combinations). The symbols generated,
and the operation code or modifier each represents, are:

Symbol Operation defined

$SNCAQC Acquire Command-mode Terminal

SNCGET Get

$SNCPUT Put

SNCPTG Put-Then-Get

SNCPNW Put-No-Wait

$SNCINV Invite Input

$NCACC Accept Input

$NCSPI Stop Invite Get

SNCGTA Get Terminal Attributes

$NCACQ Acquire Terminal

$NCREI. Release Terminal

SNCSHQ Shutdown Inquiry

$NCCPY Copy (3270 DFF only)

$NCEAU Erase All Unprotected (3270 DFF only)

$NCTCH Chain Task Request
Modifier defined

$SNMMSG Send end-of-transmission

$NMBLK End of current data block

SNMRVI Send Reverse Interrupt

SNMKPL Keep control of communications line

SNMSTA Set Terminal attributes

SNMNNL Record does not start a new line (not New
Line)

SNMNEL Record does not end the current line (not
End Line)

SNMOVR Override/Selected Field List (3270 DFF only)

$NMPRF Program request under format

This macro need be used only once in an assembly to
generate the desired symbols. If used more than once, this
macro does not cause duplicate symbols to be generated

and no assembly error or error mnote is generated. However,
a warning mnote is issued each subsequent time this macro

is issued in the assembly.

The symbols generated by this macro are used by the
$NCIO macro. If the $NCIO macro is issued in an assembly
but the $NOPV macro has not previously been issued, the
$NCIO macro generates the symbols itself. However, any
subsequent use of the $NOPV macro only causes a warning
mnote to be issued {duplicate symbols are not generated).

The format of the SNOPV macro is:

$NOPV

Notes:
® This macro has no operands.

® The label field of this macro is not used; if a symbol
is specified in the label field, it is ignored.

GENERATE EQUATES FOR RETURN CODE VALUES
(SNRTV)

This macro generates a set of symbolic equates. Each
symbol generated represents the two-byte signed numeric
value of a return code issued by CCP. The symbols gen-
erated, and the meaning and value of the return code
specified by each, follow:

Basic Assembler Programming for CCP 7-3

Return

Type of Code
Return Code Symbol Value Meaning
No error or SNOK Successful operation
exception $NACTC 14 Successful chain task data accept operation
Exception $NXDTR 1 Data truncated
SNXEOT 2 EOT received/non-PRUF data returned to PRUF program
SNXEDT 3 EOT received and data truncated
$NXSHD 4 Shutdown requested
SNXDPD 5 Data pending on BSCA line
$NXRVI 6 RVI/Terminal Interrupt received
SNXCLR 7 3270 CLEAR key
SNXNAV 8 Terminal no longer available
SNXOFF 9 Terminal offline
SNXSPI 10 Stop Invite Input successful
SNXNAQ 11 Acquire terminal failed
$NXMAX 12 Maximum number of chain task requests already queued
SNXTCP 13 Insufficient TP buffer available for this request
SNXADT 15 Chain task data was truncated
Error $NRDCK -1 Data check
SNRTRN -2 Invalid character
SNRLST -3 Lost data
$NRPBS -4 Permanent BSCA error
$NRABN -5 Abnormal response
SNRXRA -6 Transmit/Receive abort
$NRATO -7 No response to polling/addressing
$NRTTO -8 Text timeout
$NRWTO -9 Wait time exceeded
$NRNOC -10 No connection
$NRIID -1 Invalid {1D
SNRABD -12 Abort, disconnect
$NRADC -13 ‘Adapter check
SNRNAK -14 Negative response to addressing
Error $NR2DU -20 Device unavailable or not ready
(3270 only) $NR2ED -22 Equipment check, device end
$NR2TE -23 Terminal control unit detection of BSCA error
$NR2CD -24 Control check, data check
$NR2PD -25 Data check on Copy command
$NR2PO -26 Operation check on Copy command
$NR2PB -27 Device busy on Copy Command
$NR2PC -28 Control check, operation check, data check on
Copy Command
$NR2PI -29 Invalid data received from 3270 using DFF
(Get, Accept Input, Stop Invite Input operations)

7-4

Return

Type of Code

Return Code Symbol Value Meaning

Error $NRESR -40 Attempted send before receive

(3735 only) $NR5IC -4 invalid character
$NREBF -42 3735 buffer overflow
$NR5DF -43 Disk full
$NR5RF -44 Directory full
$NR5UH -45 Undefined header
$NR5SDE -46 3735 disk error

Error $NR7TE -b0 Transparency error occurred

(3741, 5234, SNR7NA -51 No activity in 20 seconds

and 5235) $NR7DC -52 Data check
$NR7LB -53 Received line bid error
SNR7WL -54 Wrong length error
$NR7RP -55 Reset was pressed on 3741
$NR7SC -56 Security check
$NR7DO -57 Disk overflow
$NR7BE .58 Bad extent error
$NR7BT -59 Both stations transmit
$NR7LE -60 Length error
SNR7NF -61 No record found on disk
$NR7SE -62 Seek error
$NR7RE -63 Read error
SNR7WE -64 Write ervor
$NR7NR -65 3741 not ready
$NR7WP - 66 Diskette is write-protected

For more information concerning these return codes, and
recommended user actions, see Appendjx E: Return
Codes.

This macro need only be used once in an assembly to
generate the desired symbols. If it is used more than once,
duplicate symbols are not generated and no assembly error
is forced. However each subsequent time this macro is
used, a warning mnote is issued.

The format of the SNRTV macro is:

$NRTV

Notes:

1. This macro has no operands.

2. The label field of this macro is not used; if a symbol is
specified in the label field, it is ignored.

Basic Assembler Programming for'CCP

7-5

GENERATE PARAMETER LIST ($NPL)

The $NPL macro generates a communications parameter
list. You can specify the initial value of each field of
this list. This macro may be used any number of times in
an assembly; a separate parameter list is generated each
time this macro is used. When the parameter list is gen-
erated, the operand values specified are not checked for
validity; therefore, care must be taken that only valid
operands are specified.

The format of the $NPL macro is:

1 8 14
[label | | SNPL [OP—valuex]
,OUTLEN-valuex
[{,ATTRID-vaIuex} |
[,INLEN-valuex]
[,RECA-addrx |

See Note under $NCIO macro for the meaning of valuex
and addrx.

If you specify a label with the $NPL macro, an EQUATE

is generated. This EQUATE sets the specified symbol equal
to the address of the first byte of the parameter list
generated.

OP-valuex specifies an initial value for the operation/
modifiers field of the parameter list. If this operand is
omitted, a value of X’0000' is generated for the operation/
modifiers field.

The operand value should represent a valid CCP operation.
Any valid absolute expression may be used, but it is
recommended that operation and modifier values generated
by the $NOPV macro be used.

OUTLEN-valuex specifies an initial value for the output
data length field. If this operand is omitted (and the
ATTRID operand is also omitted), a value of X‘0000’ is
generated for the output data length field.

Because the output data length field (generated by OUTLEN)
and the attributes identifier field (generated by ATTRID)
occupy the same locations in the parameter list, both
operands cannot be specified in one macro instruction.

If both are specified, an error mnote is generated.

The operand value may be any valid absolute expression.
Note that a data length entry does not include the six-
byte symbolic terminal name found at the beginning of a
record area.

7-6

ATTRID-valuex specifies an initial value for the attributes
identifier field of the parameter list. If this operand is
omitted and the OUTLEN operand is also omitted, a value
of X'0000’ is generated for the attributes identifier field.

Because the attributes identifier field generated by ATTRID
and the output data length field (generated by OUTLEN)
occupy the same locations in the parameter list, both
operands cannot be specified in one macro instruction. |f
both are specified, an error mnote is generated. The operand
value, which may be any valid absolute expression, should
represent a positive number that corresponds to the
identifier of a terminal-attributes set that has been defined
for your installation. This definition is performed in a CCP
Assignment Build run by a // TERMATTR statement.

INLEN-valuex specifies an initial value for the maximum
input data length field of the parameter list; if this operand
is omitted, a value of X'0000’ is generated for that field.

This operand, which may be any valid absolute expression,

should represent a positive number which is no greater than
the length of the data portion of the record with which this
parameter list will initially be used. The six-byte symbolic

terminal name at the beginning of the record area is not in-
cluded as part of the input data length.

RECA-addrx specifies an initial value for the record area
address field in the parameter list; if this operand is omitted,
a relocatable value equal to the beginning of the parameter
list plus 16 is generated for that field.

This operand, which may be any valid relocatable expression,
should represent the high-order (leftmost) byte of the record
area. Note that the high-order byte of the record area is

the leftmost byte of the name field in the record area, not
the address of the first byte of the data portion of the record
area.

Each time this macro is used, a 16-byte parameter list
{composed of eight successive 2-byte DC fields) is generated.
Any fields which will not be affected by the operands of
this macro are set to X'0000’. If you specify a label in this
macro instruction, the specified symbol is equated to the
address of the high-order (leftmost) byte of the generated
parameter list. No additional symbols are generated by this
macro. You can cause symbols to be generated for offsets
of fields within a parameter list by issuing a SNPLO macro
instruction or by issuing a $NCIO macro instruction without
issuing a SNPLO macro instruction.

Example

In the following example, initial values are placed in a
parameter list using the $NPL macro:

1BM System/3 Basic Assembler Coding Form

PROGRAM PUNCHING GRAPHIC
PROGRAMMER DATE INSTRUCTIONS PUNCH

STATEMENT

Name Operation Operand Remarks
1 2 3 4 5 6|718 9 10 11 12[13]14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41_42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 szgﬂeﬁssﬂﬂeemn 72 73 74 7

$NPlL | olPl-$iNclaleld] [t INILEN- 218 . [REEIcIA-- 1 NPlulT!

A N s

As a result of issuing the $NPL macro as shown above, a
parameter list is generated with the operation code set to
Accept Input, the maximum input length set to 20, and
the address of the record area set to the address of INPUT
(a record area defined elsewhere in the program).

Basic Assembler Programming for CCP 7-7

SET CONTROL INFORMATION FOR COMMUNICATIONS

OPERATION ($NCIO)

The $NCIO macro provides control information needed to
identify a communications operation and request CCP to

perform that operation.

The format of the $NCIO macro is:

1 8

14

$NCIO

[PLIST—

[.oP—

OUTLEN

[, YATTRID

[.INLEN —

[.RECA—

[, TNAME—

[.EXEC—

5

addrx
- J(1)
(addrx)

|
|
i

addrx

dispx(,regx)

(1)]
(2)

(addrx)
(dispx{,regx))

GET [,RVI]
PUT 2[';BLK
PNW) (MSG
PTG[,NNL] [,NEL]

INV

ACC

SPI

GTA

CMD

ACQ[’%STA

REL[,KPL]
CPY

EAU

SHQ

TCH

WAT

valuex

(1)

(address)
(dispx(,regx)}

b

(dispx(,regx)}

valuex
(1
(addrx)

]
(dispx {, regx))%

addrx

(1)

(addrx)
(dispx(,regx))

]

chars
(addrx)
(dispx{,regx}))

YES}

%][NNL]LNEL] [LOVR] [,PRF]

Note: The following operand forms
must be enclosed in apostrophes:

‘operation,modifier’ (OP — operand)
‘chars’ (TNAME — operand)
“(dispx(,regx))’

7-8

Notes:

All operands in this macro are optional.

Several syntactic classes are included in these descriptions,
and are defined as follows:

an absolute expression representing a number
whose assembled value will fall in the range
0 < value < 32,767

valuex —

an absolute expression (representing a dis-
placement from a base address) whose
assembled value will fall in the range 0 <
value < 255.

dispx -

an absolute expression (representing the
number of an index register) whose assembled
value will be either 1 or 2.

regx —

addrx —~ arelocatable expression representing a main-

store address in your program.
chars — one to six alphameric characters,
Certain operand values may be written with surrounding

parentheses to specify indirect addressing. If the first
character of such an operand value is a left-parenthesis,

the last character of that value must be a right-parenthesis.

If this is not the case, an error is issued and the macro
instruction is not generated.

If an operand value is written enclosed in parentheses,
the total number of characters within the parentheses
must not exceed 16; if the number of characters exceeds
16, an error is issued, and the macro instruction is not
generated.

The $NCIO macro can be used any number of times
within an assembly. ‘

If you specify a label in the $NCIO macro instruction,
an equate is generated. This equate sets the specified
symbol equal to the address of the first byte of the
first instruction generated.

® The first time a $NCIO instruction is used in an assembly,

any or all of three sets of symbolic equates may be
generated. If any of three macros (SNCOM, $NPLO, or
SNOPV) had not been issued before in that assembly,
any equates which would have been produced by that
macro are generated by the $SNCIO macro. Any sub-
sequent issuance of any of these macros produces a
warning mnote,

® In the generation of the $NCIO macro, no check is made

that any expression is syntactically valid to the Assembler,
nor that the value generated is valid for its intended use.

addrx

dispx(,regx)
[PLIST (1)]

(2)

(addrx)

(dispx(,regx))

The PLIST operand specifies the address of the high-order
(leftmost) byte of the communications parameter list being
used.

When a request is made of CCP to perform a communications
operation, the address of the parameter list used with this
operation must be in index register 2. Therefore, you must
either ensure that the address of your parameter list is in
index register 2 when the instructions generated by this
macro are executed, or code this operand in order to set’
index register 2 to the appropriate operand.

Basic Assembler Programming for CCP 7-9

Omit this operand or code (2) to signify that index register
2 already contains the address of the parameter list.
Specifying a value of other than (2) causes an instruction
to be generated which loads index register 2 with the para-
meter list address you specify. The source of this address
is determined by the form in which you specify the
operand:

Form Index Register 2 set to:

addrx The value of the expression itself,

dispx(,regx) An address equal to the value of the
specified displacement added to the con-
tents of the specified index register.

(1) The contents of index register 1.

(addrx) The contents of a 2-byte field in main

storage whose rightmost byte is located
at the specified address.

The contents of a 2-byte field in main
storage whose rightmost byte is located
at the specified displacement from an
address contained in the specified index

(dispx{,regx))

register.

GETI[,RVI]

PUT BLK
{PNW}['{MSG}] [LNNL] [NEL] [,OVRI [.PRF]
PTG [,NNL] [,NEL]
1INV

ACC

SPI

GTA

ACO[,{ CMD}]

LOP 4 STA

REL[,KPL]

CPY

EAU

SHQ

TCH

WAT

valuex

(1)

{address)
{dispx{,regx)) J

Note: If one (or more) modifiers is specified, the entire
operand must be enclosed within apostrophes (for example,
OP-'PUT,MSG’).

The OP operand specifies the setting of the operation field

of your parameter list. If this operand is omitted, no
instructions are generated to set the operation field.

7-10°

This operand can identify the actual value to which the
field is to set, by specifying:

® an abbreviation of an operation code, and any desired
associated modifiers (see Appendix D for meanings of
the abbreviations).

® an absolute expression

® the name of a location from which the field’s value can
be obtained when the instruction is executed.

If the abbreviation of an operation code is used, the field is
set to the proper numeric value for that operation (and
associated modifier). If one or more modifiers are specified,
each must be preceded by a comma;‘in addition, the entire
operand must be enclosed within apostrophes to prevent
the Macro Processor from interpreting the operation code
and the (first) modifier as a delimiter of the operand. For
example, if you specified NNL for the PTG operand, it
would be coded OP-‘PTG,NNL’.

If several modifiers are used'they may be specified in any
order after the operation code. In the generation of this
macro, no check is made to determine if a valid modifier
is used with the operation code.

If the operand value begins with a left-parenthesis, it
indicates that the value to be set into the operation field
is to come from a specified location when the generated
instruction is executed. This location is determined as
follows:

If the form is The field is set to

(1)

The contents of index register 1.

(addrx) The contents of 2-byte field in main
storage the rightmost byte of which
is located at the specified address.

(dispx(,regx)) The contents of a 2-byte field in

main storage, the rightmost byte of
which is located at the specified dis-
placement from the specified index
register.

If the operand value is neither a 3-character operation code
abbreviation {with or without modifiers) nor an expression
beginning with a left-parenthesis, it is assumed to be an
absolute expression, the assembled numeric value of which
is to be set into the operation field.

valuex
[,OUTLEN} -]
ATTRID (addrx)

(dispx(,regx))

These optional operands allow you to specify either the
setting of the output data length field (if OUTLEN is
specified). If both operands are omitted, no instructions
are generated to set the field (the attributes identifier

field and the output data length field are the same field in
a parameter list). If both OUTLEN and ATTRID are
specified in the same macro instruction, an mnote is issued,
and the macro instruction is not generated.

The operand may specify either the actual value to be set
into the field, or a location from which the value can be
obtained at the time the instruction is executed. The
source of the value is determined by the form in which the
operand value is specified:

If the form is The field is set to

valuex The value of the expression itself.
(1) The contents of Index Register 1.

{addrx) The contents of a 2-byte field in
main storage, whose rightmost byte is
located at the specified address.
(disp(,regx)) The contents of a 2-byte field in main

storage, whose rightmost byte is located
at the specified displacement from an
address contained in the specified index
register.

valuex

(1)]
[,INLEN —(addrx)

(dispx({,regx))

This operand specifies the setting of the maximum input
data length field of your parameter list. If this operand is
omitted, no instructions are generated to set this field.

The operand may specify either the actual value to be set
into the field, or a location from which the value can be
obtained at the time the instruction is executed. The source
of the value is determined by the form in which the operand
value is specified. The possible forms and the resultant
setting of each follow.

Operand form Resultant setting

valuex The value of the expression itself.

(1) The contents of Index Register 1.
(addrx) The contents of a 2-byte field in
main storage, whose rightmost byte is
located at the specified address.

The contents of a 2-byte field in main
storage, whose rightmost byte is
located at the specified displacement
from an address contained in the
specified index register. '

(dispx(,regx))

addrx

(1)]
[[RECA —(addrx)

(dispx{,regx))

This optional operand specifies the setting of the record area
address field of the user’s parameter list; if this operand is
omitted, no instruction is generated to set that field.

The operand may specify either the actual address to be
set into the field, or a location from which the address can
be obtained at the time the instruction is executed. The
source of the address is determined by the form in which
the operand value is specified. The operand forms used,
and the field setting for each follow.

Operand form Field set to

addrx The value of the expression itself,
(1) The contents of Index Register 1.

(addrx) The contents of a 2-byte field in
main storage, whose rightmost byte is
located at the specified address.

(dispx(,regx)) The contents of a 2-byte field in main

storage, whose rightmost byte is lo-
cated at the specified displacement
from an address contained in the
specified index register.

Basic Assembler Programming for CCP 7-11

chars
[,TNAME — < (addrx)]
{dispx (,regx))

This optional operand specifies the setting of the name of
the program to be requested or the symbolic terminal
name in the name field of the user’s record area. When
this operand is specified, instructions are generated to set
the field; these instructions make use of the record area
address in the parameter list as a pointer to the leftmost
byte to which the specified name should be moved. ifa
RECA operand was specified in this macro instruction,
the record area address specified by that operand is used;
if a RECA operand was not specified in this macro instruc-
tion, the address presently contained in the record area
address field of the parameter list is used. If this operand
is omitted, no instructions are generated to set the pro-
gram or the symbolic terminal name in the name field.

The operand can specify the program or symbolic terminal
name to be set into the field, or a location from which

the name can be obtained at the time the instruction is
executed. The source of the name is determined by the
form in which the operand value is specified. The possible
forms of these operands, and the field setting generated
by each follow.

Operand form Field set to

chars The character string specified.

(addrx) The contents of a 6-byte field in
main storage, whose rightmost
byte is located at the specified
address.

(dispx(,regx}) The contents of a 6-byte field in

main storage, whose rightmost byte
is located at the specified displace-
ment from an address contained

in the specified index register.

<
w

LEXEC —
[0

z22Z2<

This optional operand specifies whether or not (after
setting any control fields specified in other operands of

the SNCIO macro instruction) instructions are generated to
cause control to be transferred to CCP to perform the oper-
ation. If YES (or Y) is specified, or if this operand is
omitted (YES is the default value), instructions are genera-
ted to request the CCP to perform the operation specified
by the programmer, using information either set by this
macro instruction or already available in your parameter
list and record area.

1f a NO (or N} is specified, no branch is made to General
Entry, and no RIB and sub-RIB generated. You might
choose to specify this option when you only want to set
certain fields in your parameter list or record area, but you
won’t be performing the operation until a later point in
your program. '

Examples of Using $NCI10

Figure 7-1 shows several examples of valid $NCIO macro
instructions as you might code them in a program. The
examples show various ways of specifying keyword operands
for the macro. After issuing the $NCIO macro instruction,
your program should test the return code to determine
whether the operation was successful or whether it resulted
in an error or exception condition. Return codes are
summarized in Appendix E.

Use of the $EOJ system macro instruction is also shown in
Figure 7-1. You can use non-CCP System/3 macro instruc-
tions in your CCP programs. These System/3 macro in-
structions are described in:

® /BM System/3 Models 10 and 12 Control Programming
Macros Reference Manual, GC21-7562

® /BM System/3 Model 15 System Control Programming
Macros Reference Manual, GC21-7608

BM System/3 Basic Assembler Coding Form Forn X21-9107

IBM Prnted n US A
[rrocmam Tomeme Lo T 1 1 1 1 [[[o B
| PROGRAMMER OATE] INSTRUCTIONS |l’uNcu | I l I] | I [cnkbuzcmoqusea I
1 ZN;m: 5 6] 7 aogpe:eom‘z‘n 12[13}14 1516 17 18 1920 21 Qfgg’;:dﬁ 26 27 2B 29 30 31 32 33 34 35 36 37 ::A:Nd:)ﬂ 42 a3 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59‘"6“;';?62 63 64 65 66 67 68 6970 71 72 73 74 7576 77 78 79 80 81 82 83 84 86 86 B7}88)] 8595{%29:‘;::;;“:4 95 6]
PROGX | [S|TARM i i '
NClOM | R i
\og I i
alply i 1 ! 1
T, aa i !
PILTSTY [$NPIL , - T i
& Acicle ntur FlRloM 1A TEERMINAL [(MAX] [UENGTH |9]) o
{ 1
Acmm#ncno PL ST~ PLIUSITIL olR~ACd 1 NLEIN-, REIA-| NPl 7] | ;
1
. - } 1
B IISSUE [PuT MesSIAGE |Tiol TERMAMAL| [FIRomM Wi ik |iuPlulT +\s EcenvED ||]!
- . St} - = l i
My | | loulm3alc sk, Mels MESIBAGE] LENGTTW:=(3u | | | | i
MFQ oju|TH5l(|l) 1 e TH{5] ! !
oluTPTILl $clila PiLtSiT-ALYSTIL,lolP=|'elulT] MisG! | JolulTiLelN- 34, EcA-louT !
o VA [TE] MolRE|) Mipult] FlRom| frine| FTiElRM: A i !
|
VLT *J}T;lo PILI ST =PI USITIL 0PN, [T 11 -[8),[RECIA-I Pu‘rlf r
| < L 1 [
1 T
3 | | ; i
¢ 1isislulg] A Plu/t-[TiHEeN-GE) i |
L 1
I $Nclio [z#mzq,qem-csuo X ||
- bl } i
. 4 I A j
7 ARE '
4 Md-WjA1 T :JE SAGE) LY
e 1
$Nci o -p) ulT, lolulriiEn-/Liel | | || X ||
TTx [) | I
& + 1
i P4 i |
,‘; ! ' i
) LA NEqI[MEGlTﬂER N E\ecA) |
. I N | L 1
N |o P TILEM-12%, RIEICA-I'[AACl LD T[]
181t L i
2| | e !
7 | !
, PAEHnsrgas) , i
, , |
_m:ﬁc L | [l
5 i !
$Mcli [o] P tlels | i ""
2 ‘ il !]
1 [1
LLLL] ! i
I/sisule ﬁ A RLM'TM on,,1$ucm) !
[- . - ! I
L Uils T, , AR RRERRRNAES i
$Nc/1 /o o RELL| N ! | i :
i , , : ;
1 ||SSulE YSTEWM, END o/F |Jog MACR i | !
I 1
BN , L | | i
n, \:L 1’
TNPlUfT | [EGU I ;
D/ Wl elF[INE [1|MplufT| |REE/c/orD AR, A '
olaT | | | Elqv | | J{ LT T 7
Dl gicial| v ﬂ%ﬂns uTlPlult IREICORD AqeLA] r
E DR L34 'Y|ou Y| Nio NTEIR DATA [Tio [PRieGX|"| |1 | !
csiLliia | [elq ! 11 ! i
s | |] cleia 1 , 1 !
L8| | | ole HRAENED | IclosiTlaM TS| uls UN ISTIATIEME|NTIS| |AlHaY| !
PNWMSIG! Dl HL(2 5yl T T ﬁkf !
Edip | | P X : : ’
1234 5 6[7]8 o ro1r 1214151617 10192020 2223242 2 27 28 %9 D 3) 32 32 34 B 36 37 3 I A 41 42 40 44 % 46 &7 43 49 60 51 5253 54 56 66 57 58 50 6001 62 63 64 65,65 67 65 69 70 71 73 73 74 7575 77 76 79 50 61 2 53 04 80 54 07|9a U0 90 &1 97 83 4 05 96

Figure 7-1. Examples of $NCIO Macro Instructions

Basic Assembler Programming for CCP 7-13

PROGRAMMING RESTRICTIONS

The following restrictions apply when programming for
the standard interface to CCP using Assembler Language.

Input/Output cannot be performed on either the 5471
Printer/Keyboard (Model 10 Disk System and Model 12)
or the CRT/Keyboard (Model 15) using the standard
DSM Data Management; instead, the console must be
addressed as the ““terminal’’ CONSOL, governed by the
standard CCP restrictions concerning operations that
may be performed on that device. (See the Standard
Communications Interface for a description of these
restrictions.)

If the (dispx(,regx)) operand format is used in the $NC-

10 macro with index register 1 as regx, the original value
of index register 1 is not returned after using the macro.
Therefore, you should save and restore the register when
using $NCIO.

User DTFs and 10Bs must be placed in the first 24K of
the user program.

ASSEMBLER MACRO SUPPORT MNOTES

Mnotes are error messages pertaining to macro instruction
formats. They are included in your assembly listing, printed
beneath the macro instruction to which each applies.

The Mnotes which follow are issued if an error is encountered

when using the Assembler Language support macros.

N2001 CONFLICTING OPERANDS—OUTLEN/ATTRID

Severity: Error (08)
Issuing macro(s): $NPL,$NCIO
Explanation: If a $NPL or $NCIO macro

instruction, you have specified
both the OUTLEN and the
ATTRID operands. Because the
output data length field (speci-
field by OUTLEN) and the
attributes identifier field
(specified by ATTRID) are the
same field in a parameter list,
they are mutually exclusive,
and only one can be specified at
a time.

System Action:

Programmer Action:

This macro instruction is not
generated.

Correct the macro instruction by
using only one of the two oper-
ands, and repeat the macro-
generation/assembly run.

N3001 INVALID OPERATION CODE SPECIFIED

Severity:
Issuing macro:

Explanation:

System Action:

Programmer Action:

Error (08)
$NCIO

The parameter specified in the
OP operand is in the form which
indicates an operation code
followed by operation modifiers.
However, the first element of
the list is not a valid operation
code abbreviation.

This macro instruction is not
generated.

Correct the parameter by using

a valid operation code and repeat
the macro-generation/assembly
run.

N3002 INVALID OPERATION MODIFIER SPECIFIED

Severity:
Issuing macro:

Explanation:

System Action:

Programmer Action:

Error (08)
$NCIO

The parameter of the OP
operand is in the form which
signifies an operation code
followed by one or more oper-
ation modifier. However, an
operation modifier specified is
not a valid abbreviation.

This macro instruction is not
generated.

Correct the parameter by speci-
fying a valid operation modifier
abbreviation and repeat the

macro-generation/assembly run.

N3003 PARAMETER MISSING FINAL RIGHT-PAREN

Severity:
Issuing macro:

Explanation:

System Action:

Programmer Action:

Error (08)
$NCIO

An invalid form for a parameter
was specified. The first character
was a left parenthesis, but the
last character was not a right
parenthesis.

This macro instruction is not
generated.

Correct the parameter by enclosing
it properly with a right parenthesis
and repeat the macro-generation/
assembly run.

N3004 PARENTHESIZED PARAMETER TOO LONG

Severity:
Issuing macro:

Explanation:

System Action:

Programmer Action:

Error (08)
$NCIO

A parameter enclosed by
parentheses was composed of
more than 16 characters (ex-
cluding the parentheses).

This macro instruction is not
generated.

If the error was due to a key- -
punching error, correct the
parameter and repeat the macro-
generation/assembly run. If the
error was due to an overly
complex expression being coded
within the parentheses, simplify
that expression (by creating an
equate for it), use the newly
created symbol with the paren-
theses, and repeat the macro-
generation/assembly run.

N6001 OFFSET VALUES PREVIOUSLY GENERATED

Severity:

Issuing macro:

Explanation:

System Action:

Programmer Action:

Warning (04)
$NPLO

A $NPLO macro instruction was
used but the offset equate values
to be generated from it had
previously been generated in this
assembly (either by another
$NPLO macro instruction or by a
$NCIO macro instruction).

The offset equates are not
generated; to avoid creation of
duplicate symbols in this
assembly.

None required.

N6002 OPERATION VALUES PREVIOUSLY GENERATED

Severity:
Issuing macro:

Explanation:

System Action:

Programmer Action:

Warning (04)
SNOPV

A $NOPV macro instruction was
used, but the values to be gen-
erated by it had previously been
generated in this assembly (either
by a SNOPV macro instruction

or by a $NCIO macro instruction).

Operation code and modifier
value equates are not generated
by this statement; to avoid crea-
tion of duplicate symbols in the
assembly.

None required.

Basic Assembler Programming for CCP 7-15

N6003 RETURN-CODE VALUES PREVIOUSLY

GENERATED
Severity
Issuing macro:

Explanation:

System Action:

Programmer Action:

Warning (04)
$NRTV

A $NRTV macro instruction was
used, but the return code value
equates to be generated from it
had previously been generated in
this assembly.

Return code value equates are
not generated; to avoid creation
of duplicate symbols in this
assembly.

None required.

N6004 COMMON VALUES PREVIOUSLY GENERATED

Severity:
Issuing macro:

Explanation:

System Action:

Programmer Action:

7-16

Warning (04)
$SNCOM

A $NCOM macro instruction
was used, but the common equate

‘values to be generated from it

had been generated in this
assembly (either by a SNCOM
macro instruction or by a $NCIO
macro instruction).

Common equate values are not
generated by this macro instruc-
tion; to avoid creation of dupli-
cate symbols in this assembly.

None required.

PROGRAMMING A USER SECURITY ROUTINE —
MODELS 10 AND 12

The user of CCP may, if he chooses, write his own terminal
sign on security routines rather than use the CCP password
facility supplied with his system. To implement and use
such routines, the following must be considered.

This option must be selected at generation time by the
“SECURE-USER"’ operand of the $ESEC statement.

The security data which will be used at terminal sign
on time by the security routines must have been
previously written to the security module $CC4Z9
by User Security Data Program, $CCPAU (see CCP
System Reference Manual).

The user security routines must be written in Basic
Assembler Language (or an equivalent machine-level
language) and must be structured such that they comprise
four basic parts (statement numbers refer to the sample
program, Figure 7-2):

1. System equates. They provide the necessary
offsets and pointers to various system tables, as
well as other common equates.

2 The transient prologue and equates. The function
of this code is to provide the following:

a. atemporary two-byte offset value pointing to
the relocatable address constants (statement
1087)

b. a one-byte offset to the first executable instruct-
ion (1091)

c. a one-byte ID with a binary value of 1, which
defines the CCP transient area in which this
transient will be running (1092)

d. a two-byte field of hex 0000 to permit the
7 passing of a parameter from this transient
to another (1094)

e. a two-byte displacement from the beginning
of this module pointing to the first character
past the 1D of the transient to be called next
(1095)

f. the two-character ID of the transient to be
called next (last two characters of the module
name) (1097)

g. three bytes for disk control which are used
when this transient is read from disk (1098-
1099); the first byte is always 7, the second
and third bytes are set by CCP startup with
the cylinder/sector address of the transient
specified by the two-character transient 1D.

A one-character delimiter ($) and the two-byte
ID of this transient follow (1100-1101).

The main body of code, which in this example
begins with statement 1108 and ends with state-
ment 1191. This sample code will: determine the
length of, and move the sign-on data to an area
within this transient; determine which terminal

is attempting to sign on and then verify the sign-
on data for that terminal, as found in the user
security work area; pass the result of the verifica-
tion to the CCP sign-on transient, $CC4S0, by
setting a value in “TAXPRM" prior to exiting from
this transient. The “TAXPRM" field of any CCP
transient (at relative locations 4 and 5 of the
transient) is the field in which one transient passes
information to another. The total length of parts
2 and 3 cannot exceed hex length 1FF.

Relocation Address Table.

Because any sign-on security routine you write

is a CCP transient, your routine must conform to
the special way in which the addresses in CCP
transients are established and relocated.

In this special relocation method, any (two-byte)
address, used in an instruction, which refers to a
location within your transient itself requires an
entry in a table, at the end of your transient,

called the Relocatable Address Table. This method
also allows you to address elements, outside your
transient, which are in the CCP Communications
Area; it also permits you to use any of a selected
set of addresses which refer to routines or areas
within the remainder of the CCP resident code.
Any use of either of these types of addresses also
requires an entry in the Relocatable Address Table.
In effect, any use of a two-byte address which does
not refer to an absolute location requires an entry
in this table.

In this method, any address you code in an
instruction is entirely replaced, when CCP begins
to run, by an address derived from an entry in
the Relocatable Address Table. There must be
exactly as many entries in this table as there are
relocatable addresses in your transient. Further
the first relocatable address in your transient

is replaced by an address derived from the first
Relocatable Address Table entry, the second
relocatable address by an address derived from the
second entry, and so forth, Thus, if you wish to
make any of the three kinds of address references
described in the previous paragraph, it does not
matter whether, in an instruction, you code an
appropriate relocatable address, but only that
you code an appropriate entry in the table.

Each Relocatable Address Table entry is of one
of three types, depending on the type of address
you need to use in the corresponding instruction:

a. Address within the transient
b. Address within the CCP Communications Area
c. Address of a special routine or area

Each entry is two bytes long. The form of each
entry is as follows:

Address within transient: The entry must contain
the displacement of the location within the trans-
ient being referred to. For example, the entry

at statement 1198, corresponding to the address
within the instruction at statement 1144, repre-
sents a reference to the location 0042 within the
transient. The two-byte displacement is formed in
table entry by subtracting the address value of

the beginning of the transient (§CC4YA) from the
address within the transient being referred to
(YA0100).

Address within CCP Communications Area: The
entry must contain the hex value COxx, where xx
is the displacement within the Communications
Area of the element being addressed. In this
example, the symbol “COM’’ has been equated to
the value X'C000’, and the symbol “@TUSTG"
has been defined (by the macro $ECOM) as repre-
senting the displacement of that field in the
Communications Area which contains the address
of the Terminal Unit Block for the terminal
attempting to sign on. Thus, the table entry at
statement 1196, corresponding to the address used
in statement 1108, is formed by defining a two-
byte constant of AL2({COM+@TUSTG).

Basic Assembler Programming for CCP 7-17

Special Address of CCP Routine or Work Area:

The entry must contain the hex value 80xx, where
xx is a number used by CCP to signify which special
address is to be referenced. Two such entries are
used in this example. The symbol “PGM’’ has been
equated to the value X'8000’, and the symbols
"#CCATX" and ““USI” have been generated by

the macro $ETRC, and represent the numbers

for the special addresses, respectively, of:

a. $CC4TX -- the location to which you must
branch at the completion of execution of
your transient.

b. The first byte of the user security information

{from the module $CC429) which you will
use for checking the validity of the terminal’s
sign on data.

The last entry in a Relocatable Address Table
must be followed by a one-byte constant of hex
FF (statement 1201).

The Relocatable Address Table is used only at

the beginning of a CCP run to establish the
addresses used in your transient. Therefore, it
does not have to be present in main storage during
each execution of your transient. Because of this,
the table may extend beyond the 512 bytes which
is the maximum size of the executable portion of
a transient,

® The first user transient to which control will be
passed must be named $CCAYA. The first
transient, (5CC4YA), may pass control to other
user written transients, providing such addition-
al transients are written and named according
to established conventions. Any user-written
transient receiving control after $CC4Y A must
be named such that the 1st five characters of
the name are $CC4Y. The sixth character of
the name may be any character in the range
B-Z.

® The last transient to be called, (or $CC4YA if it

is the only one used), must transfer control to
 the transient area scheduler after setting the

desired parameter value in location “TAXPRM".
The transfer of control is performed by
branching to the CCP routine $CC4TX. Refer-
ence sample program statements 1160, 1167,
and 1176,

® The security data which was previously written
in the modules $CC4Z79, will be available for
reference by any user written transient in a
user security work area. The leftmost byte of
this work area will contain the first byte from
the module $CC4Z9. The size of the work area
and the size of $CC429 is specified at Genera-
tion by the operand “LUSI" in the $ESEC
statement. The address of the leftmost byte
of this work area is available to the user’s
transient by the value P + USI". See the sample
sample program, statement 1129.

Sample Program — Model 10 or Model 12

Figure 7-2 is an example of a user sign-on security routine.
The following notes explain the logic of the example:

@ A total of six macros must be included in the source
code. These macros produce equates used elsewhere in
the program. Their names are as follows:

1. $EEQU
2. $ECOM
3. $ECPL

4, $ETUB
5. SETNT
6. $ETRC

These macros are available only on the CCP distribution
disk cartridge (PID001). Either copy these to your own
source library or perform the macro processing step

by loading SMPXDV from the distribution pack.

® This sample program expects sign-on data in the form
JONKSSSSSS, where SSSSSS is the security code to be
checked by $CC4AYA,

® As used by this program, the security data found in
$CC4Z9 must be of the following form:

c.cc,ccc,s,s,55,55.58.:5,.¢6,,C,C,.C,C,SS,5,5,,

1711 T 1T TN 7272272727272 27272722

CC ... represents a six-character symbolic terminal name
and SS ... represents a six-position security field. There
should be as many sets of CC ... SS ... data residing in
$CC4Z9 as there are terminals to be used by an assign-
ment set for CCP. The intent of this data is to provide
a vehicle by which $CC4YA can verify a unique six-
character sign-on code for each terminal so specified by
the symbolic terminal name.

Statement 1129 loads XR2 with the address of the left-
most byte of the security data residing in the security
data work area.” Statement 1151 compares the data
entered from the terminal after the ‘ON’, and the data

in the security data work area that is associated with one
symbolic terminal name.

Statement 1140 compares the symbolic terminal name
to the names in the security data area. The program
loops between statements 1137 and 1144 and is exited
when the end of the security data area is reached
(1139), or when the name of the terminal signing on
compares equal to one in the security data area (1 142).

Statement 1160 puts ‘01‘ in symbolic location
"TAXPRM’. This value indicates that the security data
for the selected terminal verified correctly. After
control is returned to $CC4TX and given to the CCP
transient $CC4S0, a message will be sent to the selected
terminal which will indicate that the sign on was success-
ful.

Statement 1167 puts ‘FF‘ in symbolic location
‘TAXPRM’. This value indicates that the security data
for the selected terminal did not verify correctly. After
control is returned to $CC4TX and given to the CCP
transient $CC4S0; a message will be sent to the selected
terminal which will say that the sign on was unsuccess-
ful.

Statement 1176 causes the control to be passed to the
CCP transient $CC4S0. This is accomplished as follows:

a. The field TAXTID (at relative location 6 in the
transient) contains the displacement from the
beginning of the transient of the first three bytes
(location OA-0OC of the transient) which address
the transient $CC4S0. At CCP startup, the bytes
at locations OB and OC are set to the disk address
of that transient.

b. The branch at statement 1176 gives control to the
CCP Transient Area Scheduler, requesting it to
pass control to the transient ($CC4S0) pointed
to by the TAXTID field.

Basic Assembler Programming for CCP 7-19

$CCaYA

ERR LOC

0000

0002
0003

0004
0006

0008
000A
0008
000D
000E
0010

oo11l
0015
0018
ooic
001F

0022
0026
002A
0020

0031
0034
0037

0038
003F

OBJECT CODE

0084

OE
[+23

0000
000A

E206
01
C3E2
58
E8C1
03

75 02
6C 0%

c2 02
E2 02

78 05
78 6F

79 00

83
81 05

001D
05

ADDR

0001

0001
0003
0005
0007
0008
000A
0005

0000
0001

0002
0003

0005
0007

0009
000A
oooC
0000
000F
0010
0011

STMT
1072

1074
1075
1076
1077
1078
1079
1080
1081
1082

1084

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

1097
1098
1099
1100
1101
1102
1103

1105
1106

1108
1109
1110
1111
1112

1114
1115
1116
1117

1119
1120

1122
1123
1124

1126
1127

1129
1130

1132
1133
1134
1135

SOURCE
*

TARLD2
*
TAJUMP
TAID
TAXPRM
TAXTID
TAXCID
TAXNCS
TAXCLN

YASD

YAGO

*
*

##0010

##0020

* % * ®

STATEMENT

CCP TRANSIENT ROUTINE EQUATES

EQU 1

EQU TARLD?
EQU TARLDA+2
EQU TAID+2
EQU TAXPRM+2
EQU TAXTID+1
EQU TAXCID+2
EQU 5

TRANSIENT PROLOG

USING 3CC4YA,XR1
nc AL2({YAQRLC~$CC4YA)

DC AL1(YAGD~$CC4YA~3)
ocC XLivie

oC XL2'0°
De AL2(YASD-$CC4YA)

DC cL2'so
DC AL1(1)

]9 CL2*Cs?
DC CLL*S*

DC CL2'YA!
oC XL1'03*
EQU hd

OFFSET TO TRANSIENTY

CCP RELDCATION CONSTYANTS
DISPLACEMENT FOR JUMP OP + Q
OFFSET TO TRANSIENT PROGRAM
DISPLACEMENT TO PARM BYTES
OFFSET TO NCS VALUE?

OFFSET TO TRANSIENT XCTL TABLE
OFFSET TO FIRST NCS PARAMETER
LENGTH DF AN XCTL TABLE ENTRY

DEFINE BASE REGISTER

DISPL OF CCP RELOCATE ADCONS
NOTE, THESE BYTES ARE OVERLAID
WITH A JUMP OP CODE AND Xx*87°
Q-BYTE BY $CC4TA

OFFSET TO FIRST INSTRUCTION
TRANSIENT AREA ID, USED BY
TRANSTENT RELOCATION ROUTINE
PARAMETER BYTES

DISPLACEMENT TO FIRST XCTLEE

SPECIFIES XCTL TO $CC4SO

N. BYTE FOR DISK

DISK C/S BYTESy SET BY CCP START
END OF XCTL TABLES FIELD

$CC4YA EYECATCHER CONSTANT

LEVEL NUMBER

BEGINNING OF EXECUTABLE CODE

CHECK THE LENGTH OF THE TERMINAL MESSAGE AND IF CORRECT
THEN MOVE IT TO THE TRANSIENT DATA AREA,

L C+aTUSTGXR2

ST YATUB (s XR1}sXR2

MVC YAENDP{2,XR1),TPRECA(,XR2)
CL1 TPEFFL(,XR2), 10

JNE YAERR

ALC YAENDP{ 2y XR1) 4 TPEFFL{ 4 XR2)
sLe YAENDP (24 XR1)y YAXONE (4 XR 1)
L YAENDP(4XR1) 4 XR2

MVC YAENDD(10sXR1)+0(4 XR2)

LOAD POINTER TO TUB
SAVE TUB PDINTER

SAVE BEGINNING @ OF MSG.
TEST FOR CORRECT INPUT LENGTH
JUMP IF NOT

ADD LENGTH OF MESSAGE
DECREMENT POINTER
XR2 POINTS TO END OF INPUT
MOVE SIGN ON DATA TO TRANSIENT

MOVE THE 6 CHARACTER NAME OF THE TERMINAL ATTEMPTING
TO SIGN ON INTO AN AREA WITHIN THIS TRANSIENT,

L YATUB(yXR1}yXR2 LOAD YuB POINTER
L TUBTNT (4 XR2) yXR2 LOAD ADDRESS OF TERMINAL NAME T.
Mve YANAME (64 XR1) s TNTNAM(4 XR2) MOVE TERMINAL NAME

LOAD XR2 WITH THE ADDRESS OF THE LEFTMOST BYTE OF THE
SECURITY DATA FOUND IN THE SECURITY DATA WORKAREA.

LDAD POINTER
BUMP POINTER

LA P+UST,XR2 T0 SECURITY DATA

LA Sty XR2) 4 XR2

COMPARE THE 6 BYTE TERMINAL NAME PREVIOUSLY SAVED AND THE
6 BYTE TERMINAL NAMES FOUND IN THE SECURITY DATA WORKAREA,
KEEP COMPARING TILL A MATCH IS FOUND OR TILL THE END OF
THE SECURITY DATA AREA IS REACHED

Figure 7-2 (Part 1 of 2). Sample User Security Routine for Models 10 and 12

7-20

$CC4YA

ER LDC OBJECT CODE ADDR STMT SOURCE STATEMENT
0042 1137 YAO0100 EQU *
0042 BD 00 00 1138 CcLI 019XR2)4+0 TESY FOR END QF DATA
0045 F2 81 18 1139 JE YAERR JUMP IF END HAS BEEN REACHED
0048 60 05 81 00 1140 cLe YANAME{(64XR1} ,0(4XR2) COMPARE NAME ENTERED € NAME IN
1141 * SECURITY DATA AREA
004C F2 81 07 1142 JE YAOL10 JUMP IF A MATCH IS FOUND
004F E2 02 OC 1143 LA 121 4XR2)y XR2 STEP POINTER TO NEXT NAME FIELD
0052 CO 87 0042 1144 ##0030 8 YA0100 TO TEST NEXT NAME
1146 * COME HERE WHEN A POSITIVE MATCH HAS BEEN MADE BETWEEN THE
1147 * TERMINAL NAME AND THE NAME IN THE SECURITY DATA AREA,
1148 * NOW COMPARE THE SIGN ON DATA ASSOCIATED WITH THE TERMINAL NAME,
0056 1150 YAO110 EQU *
0056 9D 05 06 79 1151 cLc 6164 XR2) Y AENDD(4 XR1) COMPARE SIGN ON CODE FOR
1152 * TERMINAL WHO®S NAME WAS JUST
1153 * FOUND AND CODE IN SECURITY
1154 * DATA FIELD
005A £2 01 06 1155 JINE YAERR JUMP TD ERROR EXIT IF CODE DOES
- 1156 * NOT COMPARE
1158 * THE SIGN ON DATA HAS COMPARED OK, SO PUT A X'01* IN 'TAXPRM?!,
0050 7C 01 05 1160 Mvi TAXPRM{,XR1),YAEQU1 PUT *01' IN PARAMETER
0060 F2 87 03 1161 J YAQUT TO EXIT FROM THIS -TRANSIENT
1163 * THE SIGN ON DATA DID NOT COMPARE CORRECTLY,
1164 * SO PUT A XTFF!' IN *TAXPRM',
0063 1166 YAERR EQU *
0063 7C FF 05 1167 MVI TAXPRM{,XR1),YAEQUF PUT 'FF' IN PARAMETER
1168 * THIS SIGNIFIES THAT THERE HWAS
1169 * AN ERROR IN THE SIGN ON
1170 * VALIDATION .
1172 * COME HERE TO EXIT FROM THIS TRANSIENT
0066 1174 YAQUY FEQU *
0066 3A CO 0500 1175 ##0260 SBN C+$CPWK+SCPFLG,$CPIT+SCPFR
0D06A CO 97 0009 1176 ##0270 BC P+#CC4TX,BRRI7 T0 XCTL
1178 * CONSTANTS AND DATA AREAS
006E 0001 006F 1180 YAXONE DC XL2'01° CONSTANT
0070 0000000000000000 0079 1181 YAENDD DC xiLi0'o0* INPUT DATA GOES HERE
0078 0000 1181
007A 0000 0078 1182 YAENDP DC XL2¢0°* LENGTH OF MESSAGE
007C 000000000000 0081 1183 YANAME DC XL6t 0 TERMINAL NAME GDES HERE
0082 0000 0083 1184 YATUB DC XL2'0° SAVE AREA FOR TUB POINTER
OOFF 1186 YAEQUF EQU XFF?
0001 1187 YAEQULl EQU 1

8000 1188 PGM
C000 1189 COM
0000 1190 C
0000 1191 P

1193 =*

0084 1195 YAaRLC
0084 €038 0085 1196 330010
0086 801D 0087 1197 230020
0088 0042 0089 1198 a3a0030
008A C500 0088