Program Product

SC38-0261-1
File No. S370-30

Advanced Communications
Function for VTAM
(ACF/VTAM)

Macro Language Reference
ACF/VTAM Release 1

Program Numbers 5746-RC3 (DOS/VS)
5735-RC2 (OS/VS)

Second Edition (December 1978)

This is a majorrevision o;‘, and obsoletes, SC38-0261-0 and Technical ‘Newsletters
SN31-0624W ited” Janinary “30,'1978) and ‘SN31-0820 (dated June 30, 1978). This
edition a«pvphes to.tie ‘initial DOSIVS version of ACF/VTAM (Program Number 5746~
RC3) »andwto ‘the .initial ‘OS/VS:version of ACF/VTAM for. OS/VS1; OS/VS2 SVS, and
0S/VS2 MVS ‘(Program :Number 5735-RC2). Information about the optional Multi-
system ,Negwo;l&y thty of ACF/VTAM is included. lnformatlon about the optional
#CF/VTAM EncryPt ecrypt Feature, available for OS/V $1 and 0S/VS2 MVS only, is

‘Changgs are- é&%\tﬁ‘l&lﬁ madéi to' the information in IBM system pubhcahon; Before
using this publication in connection with the o Qn of J*B t%s, ﬁ‘qnsult the
IBM System/[370 szlxography, GC20-0001 to f% gniﬂw 1cli* jgphcable
and current. R

The program product described in this manual, and all license materials available for it,
are provided by IBM under terms of the Agreement for IBM Licensed Programs. Your
branch office can advise you on the ordering procedures.

A form has been provided at the back of this publication for readers’ comments.
Address additional comments to IBM Corporation, Department 63T, Neighborhood
Road, Kingston, New York 12401. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any oblications
whatever. You may, of course, continue to use the information you supply.

©Copyright International Business Machines Corporation 1977, 1978

Summary of Amendments (December, 1978)
to SC38-0261-0 by Revision SC38-0261-1

Advanced Communication Function for VTAM
(ACF/VTAM) for DOS/VS, 0S/VS1, OS/VS2 SVS,
and OS/VS2 MVS

This revision incorporates Technical Newsletters SN31-0694 (dated
January 30, 1978), and SN31-0820 (dated June 30, 1978).

Minor technical and editorial changes have also been included in this
revision.

Summary of Amendments (June 30, 1978)
to SC38-0261-0 by TNL SN31-0820

Advanced Communication Function for VTAM
(ACF/VTAM) for DOS/VS, OS/VS1, 0S/VS2 SVS,
and OS/VS2 MVS

New Program Function

For secondary logical units, ACF/VTAM specifies a new default RU
size.

Summary of Amendments (January 30, 1978)
to SC38-0261-0 by TNL SN31-0694

Advanced Communication Function for VTAM
(ACF/VTAM) for DOS/VS, OS/VS1, OS/VS2 SVS,
and OS/VS2 MVS

New Program Feature

Information about the optional Encrypt/Decrypt Feature is in-
cluded. This feature applies to OS/VS1 and OS/VS2 MVS only.

Changed Documentation
Correction and clarification of the TS usage field description in
Appendix J.

Minor technical and editorial changes have been included in this
TNL.

Preface

This book is a reference manual that contains detailed information on the macro
instructions used with the Advanced Communications Function for the Virtual
Telecommunications Access Method (ACF/VTAM). The macro instructions are used to
write the data communication portions of application programs that communicate with
terminals and logical units within an ACF/VTAM domain, in a TCAM domain, or in
another ACF/VTAM domain. This manual provides the specifications needed to code
such programs.

This reference manual has been designed to be used in conjunction with the ACF/VTAM
Macro Language Guide, SC38-0256, which further describes the various macro
instructions and explains programming uses and considerations. Additional information
may be found in another companion publication, the ACF/VTAM Program Operator
Guide, SC38-0257.

The beginning of this book lists the services provided by ACF/VTAM and indicates the
macro instructions that are used to request each service. The beginning of the book also
explains the conventions used throughout the book to indicate how the macro
instructions are to be coded.

The rest of the book (except for the appendixes) contains detailed descriptions of the
‘macro instructions, arranged in alphabetic order. Each description is presented in a fixed
format with the information about each macro instruction presented in the same
sequence.

With few exceptions, ACF/VTAM macro instructions can be coded without regard for the
particular operating sytem (DOS/VS, OS/VS1, OS/VS2 SVS or OS/VS2 MVS) under
which the program will be running. When there is an exception to this, that exception is
identified in the macro instruction description.

Appendix A is a summary of the control block fields you use with each macro
instruction. Once you have become familiar with the macro instructions, you will be able
to use this appendix as a quick reference source.

Appendix B indicates the communication control characters that ACF/VTAM inserts into
outgoing data and recognizes in incoming data. This information is shown for each BSC
and start-stop device supported by ACF/VTAM.

Appendixes C and D describe the return codes that are passed to the apphcatlon program
upon completion of each ACF/VTAM macro instruction.

Appendixes E and F describe the operand formats and special forms of the GENCB,
MODCB, SHOWCB, and TESTCB macro instructions.

Appendix G summarizes the contents of the general-purpose registers upon cbmpletion of
ACF/VTAM macro instructions.

Appendix H shows the format of the application program control blocks and the DSECTs
needed to access these control blocks with assembler instructions.

Appendix I contains information relating to specific devices and the way the ACF/VTAM
macro instructions should be used with the devices.

Appendix J describes the session parameters and shows the format of the bind area and
the DSECT needed to access the information in it.

The appendixes are followed by a glossary and an index. The index includes page
numbers for all of the macro instruction operands and all of the fixed values that can be
supplied with the operands.

The reader should be familiar with ACF/VTAM General Information, GC38-0254, and
with those parts of OS/VS and DOS/VS Assembler Language, GC33-4010, that explain
the rules for coding assembler expressions. The reader should also be familiar with the
characteristics of the devices with which the program will be communicating, with the
SNA protocols (if SDLC) or the line discipline (if start-stop or BSC) that will be used
with each one, and with data communication concepts in general. Those unfamiliar with
data communication concepts can read Introduction to Data Communications Systems,
SR20-4461. The back of that manual contains a bibliography.

A few portions of the ACF/VTAM language cannot be fully utilized without a working
knowledge of the network control program of the communications controller.

This publication refers to. an NCP Generation and Utilities Guide to obtain that infor-
mation. Because ACF/VTAM can operate with either the ACF version of the network
control program (ACF/NCP/VS) or with the latest current level of NCP/VS, this ref-
erence is an abbreviation for one of the following books, depending on the NCP being
used. : .
For ACF/NCP/VS users: IBM 3705 Advanced Communications Function for Network
Control Program/VS Generation and Utilities Reference Manual, SC30-3116.

For NCP/VS users: IBM 3704 and 3705 Control Program Generation and Utilities
Guide and Reference Manual, GC30-3008.

Contents

Part 1. Introduction 1
Functions Provided by the ACF/VTAM Macro Instructions 1
Macro Instructions Used to Establish and Terminate a
Session 1
Macro Instructions Used Only in Record-Mode Sessions 1
Macro Instructions Used Only in Basic-Mode Sessions 2
Macro Instructions Common to Record-Mode and Basic-Mode
Sessions 2
Declarative and Manipulative Macro Instructions 2
Network Operator Macro Instructions 3
Categories of ACF/VTAM Macro Instructions 3
Register Restrictions on ACF/VTAM Macro Instructions 3
Similarities between ACF/VTAM and VSAM 3
Manipulation of ACF/VTAM Control Blocks 5

Part 2. The ACF/VTAM Macro Instructions 7
How the Macros Are Described 7
Assembler Format Table 7
Operand Descriptions 10
Examples 11
Return of Status Information 11
ACB-—Create an Access Method Control Block 12
CHANGE-Change a Terminal’s PROC Options or USERFLD
Data (Basic Mode Only) 16
CHECK—-Check Request Status 18
CLOSE—-Close One or More ACBs 20
CLSDST-Disconnect Terminals or Logical Units from the
Application Program 22
DO-Initiate LDO-Specified 1/O Operations (Basic Mode Only) 27
EXECRPL—Execute a Request 30
EXLST—Create an Exit List 32
GENCB-Generate a Control Block 37
INQUIRE-Obtain Terminal Information, Logical Unit
Information or Application Program Status 41
INTRPRET-Interpret an Input Sequence 48
LDO—Create a Logical Device Order (Basic Mode Only) 51
MODCB-Modify the Contents of Control Block Fields 58
NIB-Create a Node Initialization Block 60
OPEN-Open One or More ACBs 80
OPNDST-Establish Connection with Terminals or Logical
Units 83
OPNSEC—Accept the Session Parameters from an Application
Program (Record Mode Only) 90
RCVCMD-Receive a Message from ACF/VTAM 92
READ-Read Data into Program Storage (Basic Mode Only) 95
RECEIVE—Receive Input from a Logical Unit (Record Mode
Only) 99
REQSESS—-Request That Another Application Program Initiate
Connection (Record Mode Only) 110
RESET—Cancel an I/O Operation (Basic Mode Only) 113
RESETSR-Cancel RECEIVE Operations and Switch a Logical
Unit’s CA-CS Mode (Record Mode Only) 117
RPL—Create a Request Parameter List 122
SEND-Send Output to a Logical Unit (Record Mode Only) 150
SENDCMD-Send a Network Operator Command to
ACF/VTAM 161 :
SESSIONC-Send an SDT, RQR, Clear, or STSN Command or Send
a Response to a Bind or STSN Command (Record Mode
Only) 163
SETLOGON-Reset an ACB’s Logon Status 171
SHOWCB—Extract the Contents of Control Block Fields 175
SIMLOGON-Generate a Simulated Logon 178
SOLICIT—-Obtain Data from a Terminal (Basic Mode Only) 182

TERMSESS—Request That a Connection to a Primary
Application Program be Terminated (Record Mode Only) 185

TESTCB-Test the Contents of a Control Block Field 187

WRITE-Write a Block of Data from Program Storage to a
Terminal (Basic Mode Only) . 192

Appendix A. Summary of Control Block Field Usage A-1

Appendix B. Communication-Control Character Recognized or
Sent B-1

Appendix C. Return Codes for RPL-Based Macro Instructions C-1
Return Code Posting C-1

Types of Return Codes C-1

Specific Error Return Codes (FDBK2) C-7

The FDBK Field C-31

Return Codes for the Losterm Exit Routine C-33

Return Codes for TPEND Exit Routine C-35

ACB’s ERROR Field Set by the OPEN Macro Instruction C-35
ACB’s ERROR Field Set by the CLOSE Macro Instruction C-37
The SENSE Field (Basic Mode Only) C-38

The Logical Unit Sense Fields C-39

Appendix D. Return Codes for Manipulative Macro
Instructions D-1 ‘

Appendix E. Summary of Operand Specifications for the
Manipulative Macro Instructions E-1

Address E-1

Quantity E-2

Fixed Value E-3

Name E-3

Registerdndirect Value E-3

Indirect Value E+4

Appendix F. List, Generate, and Execute Forms of the
Manipulative Macro Instructions F-1
Optional and Required Operands F-3

Appendix G. Summary of Register Usage G-1
Appendix H. Control Block Formats and DSECTs H-1

Appendix 1. Start-Stop, BSC, and Local Non-SNA 3270
Considerations I-1

IBM 1050 Data Communication System I-1

IBM 2740 Communication Terminal, Model 1 I-2

IBM 2740 Communication Terminal, Model 2 I-3

IBM 2741 Communication Terminal [-3

IBM Communicating Magnetic Card Selectric Typewriter 1-4

IBM World Trade Telegraph Station (WITY) I4

IBM System/7 CPU 14

AT&T 83B3 Selective Calling Station I-6

CPT-TWX, Model 33 and 35 (TWX) I-6

Western Union Plan 115A Station 16

IBM 2770 Data Communication System I-7

IBM 2780 Data Transmission Terminal I-8

IBM 2972 General Banking Terminal System, Models 8 and 11 I-8

BSC and Local non-SNA IBM 3270 Information Display System
(Record Mode) 19

BSC and Local non-SNA IBM 3270 Information Display System
(BasicMode) 1-12

IBM 3735 Programmable Buffered Terminal I-15

IBM 3740 Data Entry System I-16

IBM 3780 Data Communication Terminal I-16
INM System/3CPU 1-17

IBM System/370 CPU I-18

Appendix J. Specifying Session Parameters J-1
Session Parameter Fields J-1
Function Management Profile J-3
Transmission Services Profile J-6
Function Management Usage Field J-8
Transmission Services Usage Field J-10
Logical Unit Presentation Services Profile J-10
Logical Unit Presentation Services Usage Field J-11
The Bind Area Format and DSECT J-16
IBM-Supplied Session Parameters for Logical Units J-26

Glossary Glossary-1

Index Index-1

Figures

Figure 1.
Figure 2.

Figure 3.
Figure 4.

Figure S.
Figure 6.

Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.

Figure 15.
Figure 16.

Figure 17.
Figure 18.

Figure 19.
Figure 20.

Figure 21.

Figure 22,

Figure B-1.
Figure B-2.

Figure C-1.
Figure C-2.

Figure C-3.
Figure C-4.

Figure C-5.

Figure C-6.
Figure D-1.
Figure D-2.

Figure E-1.

Categories of ACF/VTAM Macro Instructions 4
Basic Structure of the Description of Each Macro
Instruction 8

Parameter List for the EXLST Exit Routines 33
Permissible Option Codes in the INQUIRE Macro
Instruction 43

ACB-Oriented and NIB-Oriented Exit Routines 63
Determining Session Parameters for an INQUIRE
Macro Instruction 65

Determining Session Parameters for an OPNDST
ACCEPT Macro Instruction 66

Determining Session Parameters for an OPNDST
ACQUIRE Macro Instruction 67

Determining Session Parameters for a SIMLOGON or
CLSDST PASS Macro Instruction 68

Determining Session Parameters for a REQSESS
Macro Instruction 68

The Effect of BLOCK, MSG, TRANS and CONT on
Solicitation 73

Devices Applicable to Each NIB Processing

Option 78

The Major RECEIVE Options 100

How RECEIVE Macro Instructions Are Satisfied by
ACF/VTAM 101

The Major RESETSR Options 117

The RPL Fields Applicable to the Macro Instructions
That Can Modify RPLs 148

The Major SEND Options 151

How the POST Operand in the SEND Macro
InstructionIs Used 156

The SESSIONC Options 164

Types of STSN Commands and Their Possible
Responses 166

Control Block Fields That Can Be Extracted with
SHOWCB 177

Control Block Fields That Can Be Tested with
TESTCB 190

Communication Control Characters Used with
Start-Stop Devices B-2

Communication Control Characters Used with BSC
Devices B-3

Posting Return Codes for Synchronous Requests C-1
Posting Return Codes for Asynchronous Requests
(with CHECK) C-2

Posting Return Codes for Asynchronous Requests
(with an RPL Exit Routine) C-3

Completion Conditions Applicable for Initial
Completion of Asynchronous Requests C4
Completion Conditions Applicable for Completion of
Synchronous Requests or for CHECK (after
Asynchronous Requests) C-5

RTNCD-FDBK?2 Combinations Possible for Each
Macro Instruction C-10

Register 0 Return Codes for Manipulative Macros
When Register 15 IsSet to 4 D-2

Register 0 Return Codes for Manipulative Macros
When Register 15 Is Set to 12 (DOS/VS Only) D-3
Manipulative Macro Instruction Operands Exclusive of
Control Block Field Operands E-5

Figure E-2.
Figure E-3.
Figure E-4.
Figure E-S.
Figure F-1.
Figure F-2.
Figure F-3.
Figure F-4.
Figure F-S.
Figure G-1.
Figure H-1.
Figure H-2.
Figure H-3.
Figure H-4.

Figure H-5.
Figure H-6.

Figure H-7.
Figure H-8.
Figure H-9.
Figure H-10.

Figure H-11.
Figure H-12.

Figure H-13.
Figure H-14.
Figure I-1.
Figure J-1.
Figure J-2.
Figure J-3.

Figure J-4.
Figure J-5.

Figure J-6.
Figure J-7.

Figure J-8.
Figure J-9.

Figure J-10.

Manipulative Macro Instruction Operands for ACB
Fields E-5

Manipulative Macro Instructions for EXLST

Fields E-6

Manipulative Macro Instruction Operands for RPL
Fields E-7

Manipulative Macro Instruction Operands for NIB
Fields E-8

The Forms of the Manipulative Macro

Instructions F-1

Optional and Required Operands for the

Nonstandard Forms of GENCB F4

Optional and Required Operands for the Nonstandard
Forms of MODCB F-§

Optional and Required Operands for the Nonstandard
Forms of SHOWCB F-6

Optional and Required Operands for the Nonstandard
Forms of TESTCB F-7

Register Contents Upon Return of Control G-1
Alphabetical List of Control Block Labels H-3

The Format of the DOS/VS ACB H-12

The Format of the OS/VS ACB H-13

The DOS/VS and OS/VS ACB DSECT

(IFGACB) H-14

The Format of the DOS/VS and OS/VS EXLST H-15
The DOS/VS and OS/VS EXLST DSECT
(IFGEXLST) H-16

The Format of the DOS/VS RPL H-17

The Format of the OS/VS RPL H-19

The DOS/VS and OS/VS RPL DSECT

(IFGRPL) H-21

The RPL’s RTNCD-FDBK-FDBK2 DSECT
(ISTUSFBC) H-24

The Format of the DOS/VS and OS/VS NIB H-28
The DOS/VS and OS/VS NIB DSECT
(ISTDNIB) H-29

The NIB’s DEVCHAR DSECT (ISTDVCHR)
The NIB’s PROC DSECT (ISTDPROC) H-33
Handling Input/Output for 1050 Components
under DOS/VS and OS/VS 12

Bit Settings in the Function Management Usage
Field for Each Function Management Profile J-6
Data Flow Control Commands for Each Function
Management Profile J-7

Session Control Commands for Each Transmission
Services Profile J-7

The Format of BNDAREA (ISTDBIND) J-17
Mapping Information for the BNDAREA DSECT
(ISTDBIND) J-18

The BNDAREA DSECT (ISTDBIND) J-19

The BINPSCHR Field of the BNDAREA DSECT for
Logical Unit Profile 1 J-21

The BINPSCHR Field of the BNDAREA DSECT for

H-30

Logical Unit Profile 2 J-25
The BINPSCHR Field of the BNDAREA DSECT for
Logical Unit Profile 3 J-25

LOGMODE Entries in the IBM-Supplied Logon Mode
Table (ISTINCLM) J-26

Part 1. Introduction

Functions Provided by the ACF/VTAM Macro Instructions

The Advanced Communications Function for the Virtual Telecommunications Access

Method (ACF/VTAM) provides an application program running under a virtual storage

operating system with the ability to do the following:

e Establish a session with a terminal or logical unit (including another application
program)

e Communicate with the terminal or logical unit

e Terminate the session with the terminal or logical unit

e Use the program operator function to display and control the status of the network

Macro Instructions Used to Establish and Terminate a Session
ACF/VTAM provides macro instructions (OPEN, SIMLOGON, SETLOGON, INQUIRE,
OPNDST, OPNSEC, REQSESS, TERMSESS, CLSDST, and CLOSE) to enable the appli-
cation program to do the following:

e Identify the application program to ACF/VTAM and the data communication network
(OPEN)

* Simulate a terminal’s or logical unit’s request for session establishment, so that a user-
written routine that handles such requests will be invoked (SIMLOGON)

‘e Allow logons to be directed at the application program or allow an application pro-
gram to issue a request for session establishment to another application program;
notify ACF/VTAM that the application program is no longer accepting logons or
receiving session parameters in its SCIP exit routine (SETLOGON)

e QObtain the device characteristics, session parameters, or logon message of a terminal or
logical unit requesting session establishment, or find out how many terminals or logical
units are currently in session with the program and how many are waiting for a session
to be established (INQUIRE)

¢ Establish a session with one or more terminals or logical units (OPNDST)

e Accept the session parameters received from an application program and by accepting
them establish a session (OPNSEC)

¢ Request a session with application program (REQSESS)
¢ Request the session with an application program be terminated (TERMSESS)

o Terminate a session with a terminal or logical unit; optionally request that a session
be established to another application program (CLSDST)

® Disconnect the application program from ACF/VTAM and the data communication
network (CLOSE)

Macro Instructions Used Only in Record-Mode Sessions
ACF/VTAM provides four I/O macro instructions to communicate with logical units in
record-mode sessions. These macro instructions (SEND, RECEIVE, RESETSR, and
SESSIONC) enable the application to:

o Send data, a data flow command, or a response to a logical unit (SEND)
® Receive data or a response from a logical unit (RECEIVE)

e Cancel a RECEIVE prematurely; switch a logical unit from continue-any to
continue-specific mode or vice versa (RESETSR)

® Send a Request Recovery (RQR), Clear, Set and Test Sequence Number (STSN), Start
Data Traffic (SDT), a negative response to a Bind, or a response to an SDT or STSN
command to a logical unit (SESSIONC)

Macro Instructions Used Only in Basic-Mode Sessions
ACF/VTAM provides macro instructions (READ, WRITE, RESET, SOLICIT, DO, LDO,
and CHANGE) to communicate with non-SNA devices. The basic-mode macros enable
the application program to do the following:

e Obtain data from one or a group of terminals and keep the data in ACF/VTAM

buffers; repeat this action until a specified amount of data has been received
(SOLICIT)

e Using data already obtained from any terminal or from a spec1ﬁed termmal move the
data from ACF/VTAM buffers to an area in user storage (READ)

¢ Obtain data from a specific terminal and move it directly into user storage (READ)
® Transmit data from an area in program storage to a specified terminal (WRITE)

® Automatically follow an output operation with an input operation (WRITE)

e Cancel an I/O operation prematurely; reset an error lock set for a device (RESET)
¢ Initiate one or more I/O operations using logical device orders (DO)

e Perform I/O operations that are unique to the System/3, System/376v, and certain
3270s that cannot be performed using READ and WRITE (LDO)

¢ Change the processing options (CHANGE)

Macro Instructions Common to Record-Mode and Basic-Mode Sessions
The macro instructions that are common to record and basic mode enable an application
program to:

e Check the status of asynchronous requests (CHECK)
e Execute any request defined by an RPL (EXECRPL)
e Interpret an input sequence (INTRPRET)

Declarative and Manipulative Macro Instructions
ACF/VTAM provides macro instructions that build control blocks and that test, extract,
and modify the fields of the control blocks that describe specific I/O operations. These
macro instructions enable an application program to:

o Create a control block that identifies the application program to ACF/VTAM and the
data communication network (ACB)

e Create a control block containing entry points for routines to be entered when certain
events occur, such as attention interruptions, hardware errors, or requests for
connection to the application program (EXLST)

¢ Create a control block that contains the parameters for a connection or data transfer
operation (RPL)

e For each terminal and logical unit, create a control block that contains information
that affects subsequent conversations with that particular logical unit (NIB)

o Generate any of the above control blocks during program execution rather than
program assembly; optionally generate them in dynamlca]ly allocated storage
(GENCB)

o Test, extract, or modify the fields in these control blocks (TESTCB, SHOWCB,
MODCB)

It is a good programming practice to set control block fields in user-written application
programs to zero after they are used if the control block is to be reused. Desired
operands should be specified or left to system default. ACB, NIB, and RPL fields that are
not used by a macro instruction should be set to zero unless otherwise indicated.

Network Operator Macro Instructions
ACF/VTAM provides macro instructions that display and control the status of the
network. These macro instructions enable an application program to:

o Send a network operator command to ACF/VTAM (SENDCMD)

® Receive an ACF/VTAM message in reply to a network operator command or receive
an unsolicited ACF/VTAM message (RCVCMD)

Categories of ACF/VTAM Macro Instructions

Throughout the macro instruction descriptions and the appendixes of this book, you will
encounter the terms manipulative, declarative, RPL-based, and ACB-based, macro
instructions. These terms refer to categories of ACF/VTAM macro instructions that have
related functions. Figure 1 shows these categories and identifies the macro instructions
that are included in each one.

Register Restrictions on ACF/VTAM Macro Instructions

Registers 2-12 (and only these registers) can be used with the macro instructions
described in this book. This restriction applies both to registers used for the macro
instruction itself (register notation for macro instruction operands) and to registers the
programmer sets and expects to remain unmodified by the macro instruction.

The restriction to registers 2-12 applies regardless of the type of operating system, and
regardless of whether the macro is an RPL-based, ACB-based, or manipulative macro
instruction.

In addition, register 1 can be used to supply an RPL address for any RPL-based macro
instruction. Example: SEND RPL=(1)

Before issuing an executable macro instruction, register 13 must contain the address of an
18-word save area. ACF/VTAM will not modify the contents of register 13. (An
executable macro instruction is any ACF/VTAM macro instruction other than ACB,
EXLST, RPL, NIB, or LDO.)

There is no error return code that indicates an attempted misuse of registers; ACF/VTAM
does not enforce the register restriction in any way. The results of using registers 0, 1, 14,
or 15 (other than for the exception cited above) are unpredictable.

Readers interested in a description of how ACF/VTAM uses the restricted registers should
refer to the table in Appendix G.

Similarities between ACF/VTAM and VSAM

The Virtual Storage Access Method (VSAM) is an access method for direct access storage
devices (DASDs). Like ACF/VTAM, it is available to programs running under virtual
storage operating systems. There is considerable similarity between the two access
methods with regard to control block names and fields, control block manipulation, and
general approach to request handling.

Both access methods use an ACB. The ACF/VTAM ACB essentially represents an
application program. In VSAM, however, where the user has no need of an application
program control block, the ACB represents the data set and is analogous to a DCB or
DTF. Both types of ACBs are, however, objects of the OPEN macro instruction, and
VSAM and ACF/VTAM ACBs can be opened with the same macro instruction.

Declarative Macros

ACB These build control blocks during program
EXLST assembly. They are the only nonexecutable
RPL macro instructions.

NIB

LDO (Basic Mode Only)

Manipulative Macros

GENCB These build and manipulate control blocks
MODCB blocks during program execution.
SHOWCB

TESTCB

ACB-Based Macros

OPEN These open and close the application pro-
CLOSE gram’s ACB.

RPL-Based Macros

These are used to request connection and data
transfer. They all use an RPL and, with the

~ exception of CHECK, permit RPLmodifications|
to be specified in the macro instruction itself.

Session Establishment Macros

Primary Application Programs Only

OPNDST
CLSDST

Secondary Application Only

REQSESS
OPNSEC
TERMSESS

Macros That Support
Session Establishment
or Communication

Communication Macros

Record Mode Only

CHANGE (Basic Mode Only)
SEND CHECK
RECEIVE : EXECRPL
RESETSR INQUIRE
SESSIONC INTRPRET (Primary Application Programs
Only)
SETLOGON
Basic Mode Only SIMLOGON (Primary Application Programs
Only)
SOLICIT .
READ Network Operator Macros
WRITE '
RESET : SENDCMD
DO RCVCMD

Figure 1. Categories of ACF/VTAM Macro Instructions

Both types of ACBs can contain pointers to an exit list. Both VSAM and ACF/VTAM
exit lists contain addresses of routines to be entered when error conditions occur
(LERAD and SYNAD exit routines) and addresses of routines to be entered when special
situations occur. The exit list named in a VSAM ACB must contain the names of VSAM
exit routines only; the exit list named in an ACF/VTAM ACB must contain the names of
ACF/VTAM exit routines only.

Both access methods follow the same general I/O-request procedure: An I/O macro
instruction is issued that indicates an RPL. The RPL in turn contains information about
the request, such as the location of the I/O work area or whether the request is to be
handled synchronously or asynchronously.

Finally, both access methods use the same macro instructions—GENCB, MODCB,
TESTCB, and SHOWCB—to generate and manipulate their respective ACB, EXLST, and
RPL control blocks.

Although the control blocks are similar in name, function, and (to some extent) content,
the control blocks of one access method are not interchangeable with the corresponding
control blocks of another.

To make control blocks unique, a special ACF/VTAM operand is used when the control
block is generated. By specifying AM=VTAM on the ACB, EXLST, or RPL macro
instruction, the control block is generated in ACF/VTAM-compatible form. Omitting this
operand causes a VSAM-compatible control block to be built.

Manipulation of ACF/VTAM Control Blocks

The application program control blocks (ACB, EXLST, RPL, and NIB) can be examined
and modified in two ways during program execution: The application program can use
the manipulative macro instructions (MODCB, TESTCB, or SHOWCB) or it can use
IBM-supplied DSECTs.

The manipulative macro instructions are essentially branches to access method routines
that perform the control block manipulations specified on the macro. Their advantage is
their ease of use and the freedom from reassembly they provide should control block
formats be changed in future releases of ACF/VTAM or should you change from one
operating system to another. (To avoid reassembly, GENCB must be used in place of
ACB, EXLST, RPL, and NIB declarative macros; MODCB, rather than RPL-based macros,
must be used to modify all RPLs.)

The DSECTs provide labeled overlays for each of the control blocks for each operating
system (the OS/VS1, OS/VS2 SVS, and OS/VS2 MVS ACB, EXLST, and RPL control
blocks are identical, and the NIB is identical for all four operating systems). Their
advantage is the improved performance (less system overhead) available through
user-written assembler instructions. (Their disadvantage is that reassembly may be
required for future releases of ACF/VTAM. The impact of reassembly can be lessened,
however, by keeping the teleprocessing portions of the application program — that is, the
ACF/VTAM macro instructions — separate from the processing portions.) The general use
of DSECTs is described in “The DSECT Instruction™ in OS/VS and DOS/VS Assembler
Language, GC33-4010.

The manipulative macro instructions are described alphabetically in this manual; tab-
ulated information about them is contained in Appendixes E and F. The formats and
DSECTs for control blocks are described in Appendix H.

Part 2. The ACF/VTAM Macro Instructions

How the Macro Instructions Are Described

Assembler Format Table

First, for an understanding of how macro instructions descriptions are arranged in this
book, see Figure 2. The balance of this section explains the conventions used in this
figure.

Following each macro instruction description is a three-column table that shows how the
macro instruction is to be coded. Since macro instructions are coded in the same format
as assembler instructions, the three columns correspond to an assembler instruction’s
name, operation, and operand fields. This table is subsequently referred to as the macro
instruction’s assembler format table.

Name Operation Operands

The macro instructions are arranged alphabetically. Each macro has its own section. At
the beginning of each section are the name of the macro instruction and a description of
its function and use. The remainder of each section contains: an assembler format table,
an operand-by-operand description, examples where necessary, and a summary of status
information. On each page that pertains to a particular macro instruction, the operation
code is shown in the upper left-hand or upper right-hand corner.

Name: The macro instruction name provides a label for the macro instruction. The name,
if used, can be specified as any symbolic name valid in the assembler language.

Operation: This field contains the mnemonic operation code of the macro instruction. It
is always coded exactly as shown.

Operands: The operands provide information for the macro expansion program in the
assembler. Generally, the information provided by the operands is made part of a
parameter list provided to ACF/VTAM during program execution. All of the macro
instruction’s operands are indicated in the operands column of the assembler format
table.

Types of Operands: All operands are either keyword or positional operands. Most of the
ACF/VTAM macro instruction operands are keyword operands.

Keyword operands consist of a fixed character string (the operand keyword), an equal
sign, and a single or multiple operand value. The presence of the equal sign distinguishes
keyword from positional operands. Keyword operands do not have to be coded in the
order shown in the operands column. For example, a macro having a LENGTH=data
length operand and an AREA=data area address operand (as indicated in the operands
column) could be coded as either

AREALEN=132,AREA=WORK
or
AREA=WORK,AREALEN=132

The mnemonic operation code is
shown as a page identification.

The above instruction is named
and its basic purpose shown,

An explanation tells what the
macro instruction does.

A table arranged in assembler
format depicts the manner in
which the macro instruction
is coded.

The table is followed by descrip-
tions of each operand of the
macro instruction. Each
operand'’s function is explained.

Following the explanation, special
coding restrictions, examples of Example:
use, and special programming
notes may appear.

Example
The operand descriptions are

followed by an example of the >
macro instruction. L

Return of Status Informdtion
The location of returned in-
formation is specified here,) N
and the meaning of the re-
turned information is ex- g
plained.

*If the macro instruction or operand applies only to logical units,
“Record Mode Only” is shown. If the macro instruction or
operand applies only to BSC or start-stop terminals, “Basic Mode
Only” is shown. If neither is shown, the macro instruction or
pperand applief to all three types.

Figure 2. Basic Structure of the Description of Each Macro Instruction

Keyword operands must be sepérated by commas. If a keyword operand is omitted, the
comtuias that would have been included with it are also omitted.

There are a few instances in the ACF/VTAM macro instructions where more than one
value can be coded after the keyword, but parentheses are required to do this. For
example, an operand specified as

FIELDS= {field name|(field name,...)}
can be coded as

FIELDS=RECLEN
or
FIELDS=(RECLEN)

when only one field name is used. When more than one field name is used, however, the
names must be enclosed in parentheses:

FIELDS=(RECLEN,RTNCD,FDBK 2)

The field names must be separated by commas. If a field name is omitted, the comma
that would have been included with it is also omitted. For example, omitting the first
field name from the previous example would result in:

FIELDS=(RTNCD,FDBK?2)

Positional operands (used in OPEN and CLOSE macros only) must be coded in the exact
order shown in the operands column. Positional operands are separated by commas, as are
all operands, but if a positional operand is omitted, the surrounding commas must still be
entered. For example, consider a macro that has three positional operands DCBI,
INOUT, and ACBI. If all three are used, they are coded as

DCB1,INCGUT,ACB1
but if only DCB1 and ACBI1 are wanted, they are coded as
DCB1,,ACB1

If the last positional operand or operands are omitted, the trailing comma or commas
should not be coded.

Operand Notation: A notational scheme is followed in the operands column to show

how, when, and where operands can be coded. The notational symbols are never coded.

e A vertical bar (l) means “exclusive or.””) For example, AIB means that either A or B
(but not both) should be coded. Such alternatives can also be shown aligned vertically,
as shown in the next paragraph.

e Braces ({}) are used to group alternative operand values. One of the alternative values
enclosed with the braces must be chosen. The alternatives may be shown vertically:

COND
OPTCD=%UNCOND‘
LOCK

or they can appear on one line:
OPTCD= {CONDI|UNCONDILOCK}

Both expressions are equivalent. Note how the vertical bar is used to separate
alternative values that appear on one line. When the grouping of alternatives on one
line is unambiguous, the braces are usually omitted:

OPTCD=COND |UNCOND|LOCK

Opmnd Descriptions

. 10

® An underscored value means that if the operand is omitted, the macro will be ex-
panded as though the underscored value has been coded. This alternative is called
the assumed value, or default value. For example:

OPTCD=COND | UNCOND | LOCK

Here COND is the assumed value. If the OPTCD operand is omitted, OPTCD=COND is
assumed by the assembler. ‘

® Brackets ([]) denote optional operands. In the following example, the ERET operand
is optional.
AM=VTAM
[ERET=error routine address]

® An ellipsis (...) indicates that whatever precedes it (either an operand value or an entire
operand) can be repeated any number of times. An operand appearing as

PROC=(processing option,...)
could, for example, be coded as:
PROC=(CONFTXT ,DFASYX,RESPX)

e Parentheses, equal-signs, and uppercase characters must be coded exactly as shown in
the operands column. Lowercase words represent values that the user must supply.

Comments and Continuation Lines: Comments may contain any characters valid in the
assembler language. Comments can be continued on more than one card by placing an
asterisk in column 1 as shown in the example below. In this publication, the comments
field is not shown in the macro’s assembler format table.

Operands can also be continued on additional cards as shown below. Note that if the
operands are not extended to column 71, they must be separated after a comma. The
continuation character in column 72 can be any nonblank character, but it cannot be a
character of an operand. Comments must by separated from operands by at least one
blank. Throughout the rest of this publication, the continuation characters are not
shown.

LABEL1 OP1 OPERAND1,O0PERAND2,OPERAND3 ,OPERX
AND4 OPERANDS THIS IS ONE WAY

LAREL2 OP2 OPERANDI1,OPERAND2, AND THIS X
OPERAND3,0PERAND4, IS ANOTHER

* WAY

l—cqumn 1 column 16 column 72

Following the assembler format table, each operand is named and described. Every
operand description begins with an explanation of the operands function. If the operand
has more than one fixed value that can be supplied with it, the operand description also
explains the effect that each value has on the action performed by the macro instruction.

Operand Format: The operand description may include a description of the format in
which the operand should be coded. This description is provided when the format is an
exception to these general rules:

e When a quantity is indicated (for example, RECLEN=data length), you can specify ('i¢
value with unframed decimal integers, an expression that is equated to such a value
(for example, RECLEN=TEN, where, TEN EQU 5*2), or the number of the register
(enclosed by parenthese) that will contain the value when the macro instruction is

Examples

Return of Status Information

executed. The value cannot exceed 32,767. Registers 1-12 can be specified to
designate an RPL (that is, to supply the address of an RPL to be modified). Register
notation for all other operands is restricted to registers 2-12.

® When an address is indicated (for example, ACB=acb address) and the macro
instruction is a declarative macro instruction (see Figure 1), you can specify any
relocatable expression that is valid for an A-type address constant. If the macro
instruction is an RPL-based or ACB-based macro instruction, you can use any
expression that is valid for an RX-type assembler instruction (such as an LA
instruction). Registers 1-12 can be specified for any operand that designates the
address of an RPL. Register notation for all other operands is restricted to registers
2-12,

If any of the terms used in the format descriptions are unclear, refer to the OS/V'S and
DOS/VS Assembler Language publication.

The valid notation for the operands of the manipulative macro instructions (GENCB,
MODCB, SHOWCB, and TESTCB) are not as straightforward. The rules of syntax for the
manipulative macro instructions are defined and tabulated in Appendix E.

An example showing how the operand is coded or used may also be included in the
operand description. Since there is an example elsewhere showing how the macro
instruction as a whole might be coded, an operand example is provided only if the
operand is unusually complex, or if its function can be better explained with an example.

Following the operand descriptions are one or more examples. These examples show
possible ways that the macro and its operands might be coded.

The way a macro can be specified can often be understood more readily from an example
than it can from the assembler format table, since the latter must show all possible ways
to specify the macro. A macro that appears to be complex in the assembler format table
usually appears far simpler when it is actually coded.

All of the macro instructions post return codes in registers and most indicate status
information in various control block fields when they are executed. Descriptions of this
status information, when applicable, can be found at the end of the macro instruction
description. Here you will often find references to Appendixes C and D, where the status
information is tabulated.

11

ACB

ACB-Create an Access Method Control Block

12

The ACB identifies the -application program to ACF/VTAM and to the data
communication network.

Each application program must be defined by the user before the program can use
ACF/VTAM to communicate with terminals and logical units throughout the network.
An application program is defined by coding an APPL statement for the program among
the ACF/VTAM definition statements, The application program must then create an ACB
that points to the same symbolic name of the program as the name specified by the APPL
statement. When the ACB is opened, ACF/VTAM finds the APPL information for the -
program and associates that information (that is, associates the application program) with
the ACB.

After the ACB has been opened, requests for connection and then requests for I/O
operations can be made (all connection and I/O requests indicate an ACB). When the
ACB is closed (with the CLOSE macro instruction), requests can no longer be made, and
any connections that were established are broken.

After an ACB has been opened (and independent of any I/O operations), an application
program can issue SENDCMD and RCVCMD macro instructions.

Using the ACB, the application program can provide an address of a list of exit routine
addresses. The various routines represented in this list are invoked by ACF/VTAM when
special events occur, such as error conditions, logon requests, and attention interruptions.
The exit list pointed to in the ACB is created with the EXLST (or GENCB) macro
instruction. Certain exit routines identified in an ACB exit list can be overridden by exit
routines identified in an exit list specified in the NIB when connection is made with a
particular terminal or logical unit (see the description of the EXLST operand below).

Using the ACB, the application program can also prevent or allow ACF/VTAM to queue
logon requests that are directed to the ACB.

Each application program that uses ACF/VTAM must define and open an ACB. An
application program can contain more than one ACB (thus breaking itself down into
“subapplications™), but each ACB must indicate a different application program name
(that is, identify a separate APPL definition statement). For example, the use of more
than one ACB enables an application program to specify that one set of exit routines is to
be used for all basic-mode terminals and another set be used for all record-mode logical
units. - '

An' ACB macro instruction causes an ACB to be built during program assembly. The
control block is built on a fullword boundary. (The ACB can also be built during program
execution with the GENCB macro instruction. See the GENCB macro for a description of
this facility.) The ACB can be modified during program execution with the MODCB
macro instruction, but only before it has been opened. The ACB cannot be modified
while the ACB is open.

ACB

Name Operation Operands

[symbol] | ACB AM=VTAM

[, APPLID=address of application program’s symbolic
name]

[,PASSWD=password address]

[LEXLST=exit list address]

[, MACRF={ LOGON | NLOGON } |

ACB Fields Set by the Application Program

AM=VTAM
Identifies the ACB built by this macro instruction as an ACF/VTAM ACB. This operand
is required.

APPLID=address of application program’s symbolic name
Links the ACB during OPEN processing with a particular APPL entry in the resource
definition table. This both identifies the application program to ACF/VTAM and
associates the application program with any options that might be indicated in the APPL
entry.

If you omit this operand, the APPLID field is set to 0. If this field is still set to O when
OPEN is executed, the job step name specified on the program’s EXEC statement (in
0S/VS) or the job name (in DOS/VS) is used as the application program’s symbolic name.

Format: Expressions involving registers cannot be used with the ACB macro instruction.

Note: The area pointed to by this operand must begin with a 1-byte length indicator,
followed by the application program’s symbolic name in EBCDIC. This is the symbolic
name that appears in an APPL statement and must conform to the rules for coding this
operand described in the appropriae system programmer’s guide. The length indicator
specifies the length of the name. Any name that is longer than 8 bytes is truncated to 8.
You can either pad the name to the right with enough blanks to form an 8-byte name
(length indicator of 8), or you can set the length indicator to the actual length of the
name you are providing and let ACF/VTAM do the padding. In the example at the end of
this macro instruction description, the first method is used.

PASSWD=password address

Allows an application program to associate its ACB with an APPL entry that is password
protected. If a password is included in an APPL entry, any application program wanting
to link its ACB to that entry must specify the entry’s password in the ACB. The two
passwords are compared when the application program opens the ACB. If the passwords
do not match, the ACB is not opened. (The purpose of this password protection is to
prevent a program from running as one of the installation’s predefined application
programs without the authorization of the installation.) If you omit this operand, the
PASSWD field is set to 0.

Format: Expressions involving registers cannot be used with the ACB macro instruction.
Note: The area pointed to by this operand must begin with a 1-byte length indicator,
followed by the EBCDIC password (in alphanumeric characters only). This is the

password that is specified using the PRTCT operand of the APPL statement. It must
conform to the rules for coding this operand described in thee appropriate system

13

ACB

programmer’s guide. The maximum length is 8 bytes. The truncation and use of the
length indicator are the same as described above for the APPLID operand.

EXLST=exit list address

Links the ACB to an exit list containing addresses of routines to be entered when certain
events occur. This list is created by an EXLST (or GENCB) macro instruction. See that
macro for descriptions of these events.

More than one ACB can indicate the same exit list. While the use of an exit list is
optional, any application program that is to participate as a secondary end of a session
must specify a SCIP exit routine in the EXLST associated with the ACB. For more
information, see the EXLST macro instruction. If no exit list is used, the application
program is not notified that the events described in the EXLST macro instruction
occurred.

The exit list identified in an ACB applies to all connections made by the application
program. A separate exit list can be identified in the NIB used at connection to specify a
DFASY, RESP, and/or SCIP exit routine to be used for that particular connection. With
one exception, the DFASY, RESP, and SCIP exit routines identified in a NIB exit list
have precedence over similar exit routines identified in an ACB exit list. This exception is
in the processing of a Bind command, for which the ACB-specifies SCIP exit routine is
always scheduled.

Format: Expressions involving registers cannot be used with the ACB macro instruction.

MACRF=LOGON|NLOGON

ACB Fields Set by ACF/VTAM

14

In a primary application program, this operand indicates whether or not the application
program wants ACF/VTAM to queue logons for it. MACRF=LOGON allows ACF/VTAM
to queue logons for the application program as they occur. When SETLOGON
(OPTCD=START) is issued, the scheduling of the LOGON exit routine begins.
SETLOGON (OPTCD=START) will not work unless MACRF=LOGON is specified for
the ACB. MACRF=NLOGON indicates that no queuing of logons can occur. Until an
application program opens an ACB that specifis MACRF=LOGON and issues
SETLOGON with either the START or STOP, any logons that may have been directed at
the application program are canceled. MACRF=NLOGON serves to notify all application
programs issuing INQUIRE (OPTCD=APPSTAT) that logons cannot be directed at the ACR

In a secondary application program, MACRF=LOGON must always be specified in the
ACB. After SETLOGON=START is issued, it indicates that the application program is
allowed to issue a request for connection (REQSESS) to a primary application and is also
allowed to have its SCIP exit routine scheduled to receive the session parameters in a Bind
command.

The following ACB fields are set by ACF/VTAM and can be examined by the application
program during program execution. ACF/VTAM uses these fields to return information
to the application program upon completion of OPEN or CLOSE processing.

Example

Field Name
OFLAGS

ERROR

ACB

Contents

Indicates whether or not the ACB has been opened successfully. By
specifying OFLAGS=0PEN on a TESTCB macro instruction, you
can determine whether the ACB has been opened.

Indicates why the ACB has not been opened or closed successfully.
You can use either SHOWCB or TESTCB to examine the codes in
this field. The possible codes, along with their meanings, appear in
the OPEN and CLOSE macro instruction descriptions.

See the description of the OPEN and CLOSE macros for more information on these

fields.

ACB1 ACB

NAME DC
DC

PASFLD DC
DC

AM=VTAM,APPLID=NAME PASSWD=PASFLD,
MACRF=LOGON,EXLST=EXLST1

X‘08’
CL8‘PAYROLL’
X008
CL8‘SECRET’

ACBI generates an ACB that will be associated with the PAYROLL APPL entry when the
ACB is opened. SECRET is the password protecting that APPL entry. MACRF=LOGON
means that once the application program has issued SETLOGON with OPTCD=START,
logons are to be queued for processing by the application program. When logons are
received, ACF/VTAM will note that ACB1 is the ACB providing access to the application
program representing PAYROLL, and will invoke the LOGON exit routine indicated in

EXLST1.

15

CHANGE

CHANGE—Change a Terminal’s PROC Options or USERFLD Data (Basic Mode Only)

16

This macro instruction causes modifications to the PROC and USERFLD fields to
become effective for a local 3270, BSC, or start-stop terminal. Since this means changing
the ground rules under which all I/O requests for the terminal are processed, all pending
I/O requests for the terminal are canceled when CHANGE iss executed.

When an OPNDST macro instruction is executed, the contents of these NIB fields are
moved into internal ACF/VTAM control blocks. If the application program later wants to
change the fields in effect for the terminal, altering the NIB to reflect these changes will
not suffice since ACF/VTAM is referring to its internal control blocks, not to the NIB.
Internal equivalents of the PROC and USERFLD fields must be changed as well. This
latter function is provided by the CHANGE macro instruction.

The RPL pointed to in the CHANGE macro instruction must indicate (in its NIB field)
the NIB whose PROC or USERFLD field is to be changed. The MODE field of the NIB to
be changed must specify BASIC. The CID of the session with the terminal must be set in
the NIB’s CID field. RPL fields (but not the NIB fields) can be set with the CHANGE
macro instruction itself.

To change the NIB fields, this procedure should be followed:
1. Modify the fields in the NIB with MODCB. For example:

MODCB AM=VTAM,NIB=NIB4,USERFLD=NYC,
PROC=(TRANS,CONFTXT,MONITOR)

2. Issue the CHANGE macro instruction to make these changes effective. CHANGE can
simultaneously be used to make the RPL’s NIB field point to the modified NIB, if it
does not already do so:

CHANGE RPL=RPL1,NIB=NIB4

Name Operation Operands

[symbol] | CHANGE RPL=rpl address
[, rp! field name=new value] ...

RPL~rpl address .

Indicates the RPL whose NIB field contains the address of the NIB that has been
modified.

rpl field name=new value

Indicates an RPL field to be modified, and the new value that is to be contained within it.
If you wish to avoid the possibility of program reassembly following future releases of
ACF/VTAM, set the RPL field with MODCB macro instructions rather than with the
CHANGE macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand

that corresponds to the RPL field being modified. The new value can be any value that is
valid for that operand in the RPL macro instruction, or it can indicate a register.

The following RPL operands apply to a CHANGE macro instruction:

ACB=acb address
Indicates the ACB used when the terminal was connected.

Return of Status Information

CHANGE

NIB=nib address
Indicates the NIB whose CID field identifies the terminal whose PROC or USERFLD
attributes are being changed.

Note: After the CHANGE operation is completed, the NIB/ARG field in the RPL is
unchanged and still contains the address of the NIB that was changed. If the RPL is
used for subsequent I/O operations with the same terminal, the CID of the session
must be placed in the RPL.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
CHANGE macro instruction is completed. If EXIT is specified, the RPL exit routine is
scheduled. Otherwise the ECB is posted, and CHECK or WAIT must be used to determine
when the posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

OPTCD=SYNI|ASY

When the SYN option code is set, control is returned to the application program when
the CHANGE operation has been completed. When ASY is set, control is returned as soon
as ACF/VTAM has accepted the request. Once the operation is completed, the ECB is
posted or the RPL exit routine is scheduled, as indicated by the ECB-EXIT field.

OPTCD=CS|CA

When CA is set, data obtained from the terminal can satisfy a READ (OPTCD=ANY or
OPTCD=SPEC) macro instruction. When CS is set, only READ (OPTCD=SPEC) macro
instructions can obtain data from the terminal.

After the CHANGE operation is completed, the following RPL fields are set:
The value 25 (decimal) is set in the REQ field, indicating a CHANGE request.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

17

CHECK

CHECK—-Check Request Status

18

When asynchronous handling has been specified for a request (ASY option code in
effect), the application program receives control when the request has been accepted by
ACF/VTAM and the requested operation has been scheduled. A CHECK macro
instruction must be issued for the RPL used for the request. (CHECK should not be

issued for synchronous requests.)

When CHECK is executed for an RPL that specifies an internal or external ECB, the
following actions occur:

* If the operation being checked has not been completed, execution of the application
program is suspended until it is completed.

o If the operation being checked has been completd successfully, control is returned to
the application program.

e If the operation being checked has been completed unsuccessfully, the LERAD or
SYNAD exit routine is invoked, if available.

¢ The ECB (internal or external) is cleared before control is returned to the application
program. (Clearing the ECB is necessary before the next or first RPL-based macro
instruction using this RPL is issued.)

Note: The ECB specified in the RPL-based macro instruction must not be cleared
between the time the RPL-based macro instruction is issued and the corresponding
check is issued. If the ECB is cleared during this interval, control may not be returned
to the application program after the CHECK is issued.

® The RPL being checked is marked available for reuse by another request. (CHECK is
the only way this can be done for asynchronous requests.)

When CHECK is executed in an RPL exit routine, the following actions occur:
o If the operation being checked was completed unsuccessfully, the LERAD or SYNAD
exit routine is invoked, if available.

e The RPL being checked is marked available for reuse by another request.

Note: When an RPL exit routine is used, the CHECK macro instruction should be issued
only in the RPL exit routine. If the CHECK is issued outside of the exit routine and the
CHECK is executed before the RPL exit routine is invoked, the CHECK will fail with a
return code of X‘18’in register 0.

See the description of the CHECK macro instruction in the ACF/VTAM Macro Language
Guide for more information.

Name Operation Operands

[symbol] | CHECK RPL=rpl address

RPL=rpl address J

Indicates the address of the RPL associated with the connection or I/O request whose
completion status is being checked.

Format: Register notation (for registers 1-12) is valid.

Example

Return of Status Information

CHECK

Note: See the ECB and EXIT operands in the RPL macro instruction description for
more information about the RPL exit routine and the ECB.

CHK1 CHECK RPL=RPL1

If CHK1 is in the routine indicated by RPL1’s EXIT field, and the operation requested
via RPL1 ends with a logical or other error, the LERAD or SYNAD exit routine is
scheduled.

If there is no RPL exit routine for RPL1, CHK 1 causes program execution to stop until
the operation requested via RPL1 has ended. If the operation ends with a logical or other
error, CHK 1 causes the LERAD or SYNAD exit routine to be invoked.

When CHECK processing has been completed, registers 0 and 15 are set as indicated in
Appendix C. If an error occurred and a LERAD or SYNAD exit routine was invoked,
these registers contain the values set in them by the exit routine. Otherwise, ACF/VTAM
places a general return code in register 15 and a recovery action return code in register 0
(see Figures C-4 and C-5 in Appendix C).

19

CLOSE

CLOSE—Close One or More ACBs

Example

20

There are three significant results of executing the CLOSE macro instruction:

e ACF/VTAM no longer accepts any connection or I/O requests that refer to the ACB
specified in the CLOSE macro. This ACB is effectively disconnected from
ACF/VTAM.

¢ ACF/VTAM no longer maintains the association between the APPL entry in the
resource definition table and the ACB specified in this macro instruction. CLSDST
(PASS) logons that are directed towards the application program cannot cause the
LOGON exit routine to be scheduled, but are queued awaiting the next OPEN. Insofar
as terminals or logical units requesting logons are concerned, the portion of the
application program represented by the ACB ceases to exist when CLOSE is executed.

* ACF/VTAM breaks every connection that exists between the ACB and other terminals
and logical units. Before CLOSE breaks a connection, all I/O activity is stopped and all
pending I/O requests are canceled.

The CLOSE macro instruction can be applied to more than one ACB. CLOSE must be
issued in the main program or in the LERAD or SYNAD exit routine if the routine has
been entered directly from the main program. Never issue CLOSE in the RPL exit routine
or in any of the other EXLST exit routines, such as the TPEND exit routine.

In OS/VS, where the privileged user can manage multiple tasks in the same application
program, all I/O requests must be completed before CLOSE can be issued in the main
part of the mother task.

Name Operation Operunds

[symbol] | CLOSE acb address[, acb address]...

This form of CLOSE is valid in DOS/ VS only.

[symbol] | CLOSE (acb address{ ,, acb address]...)

This form of CLOSE is valid in OS/VS only.

acb address .

Indicates the ACB that is to be disconnected from ACF/VTAM.

Format: If more than one ACB is specified, separate each with a comma if the program is
going to be run under DOS/VS. Separate each ACB address with two commas if the
program is going to be run under OS/VS. The parentheses for the OS/VS CLOSE can be
omitted if only one address is coded.

Note: One CLOSE macro instruction can be issued to close VSAM ACBs in addition to
ACF/VTAM ACBs. DOS/VS users can also include DTFs with this macro instruction, and
OS/VS users can also include DCBs.

CLOSE123 CLOSE ACB1,ACB2,(7) mos/vs) '
CLOSE123 CLOSE (ACBL1,,ACB2,,(7)) (OS/VS)

CLOSE123 closes ACB1, ACB2, and the ACB whose address is in register 7 All terminals
and logical units connected via these ACBs are disconnected.

Return of Status Information

CLOSE

When control is returned to the instruction following the CLOSE macro, register 15
indicates whether or not the CLOSE processing has been completed successfully.
Successful completion (meaning that all ACBs specified in the macro instruction have
been disconnected from ACF/VTAM) is indicated by a return code of 0 (for DOS/VS
users, register 15 is left unmodified). Unsuccessful completion is indicated by the follow-
ing register 15 values:

For DOS/VS Meaning
nonzero One or more ACBs (or DTFs or VSAM ACBs) were not successfully
closed.
For OS/VS Meaning
04 One or more ACBs were not successfully closed. Depending on the

type of error, the OFLAGS field may indicate that the ACB is
closed even though the CLOSE has failed (for example, the ACB
may never have been opened).

08 One or more ACBs were not successfully closed. Inspect the
ERROR field for the cause of the failure. Another CLOSE macro
instruction may be used.

12 One or more ACBs were not successfully closed. Another CLOSE
macro instruction may not be issued.

If unsuccessful completion is indicated, the application program can examine the
OFLAGS field in each ACB to determine which ACB was not closed. If you use the
OFLAGS=0PEN operand on a TESTCB macro instruction, an “equal” PSW condition
code will result if the ACB was not closed.

For each ACB, you can use either the SHOWCB or TESTCB macro instruction to check
the ERROR field and determine the cause of the error. For example:

SHOWCB AM=VTAM,ACB=ACBI1 FIELDS=ERROR,AREA=SHOWIT,
LENGTH=4

ERROR field values are shown in Appendix C.
Note: If the ACB address specified in the CLOSE macro instruction does not indicate an

ACB or lies beyond the addressable range of your application program, nothing is posted
in the ACB’s ERROR field.

21

CLSDST

CLSDST-Disconnect Terminals or Logical Units from the Application Program

22

The CLSDST (close destination) macro instruction requests ACF/VTAM to break or not
make a connection between the application program and a specified terminal or logical
unit. CLSDST cancels any pending I/O requests for the terminal or logical unit, and any
unread data from it is lost. The CLSDST macro instruction can be issued only by an
application program acting as the primary end of the session.

The terminal or logical unit to be disconnected is specified with either the ARG field or
the NIB field of CLSDST’s RPL:

e If the ARG field contains the CID of a session, that session is terminated.

e If the NIB field contains the address of a NIB, the terminal or logical unit whose
symbolic name has been placed in that NIB’s NAME field is disconnected.

(The RPL cannot contain both a CID and a pointer to a NIB, because the ARG and NIB
fields occupy the same area in the RPL control block.)

Using a CID is easier following normal communications with the terminal or logical unit,
since the CID is used by all of the I/O requests and thus should be readily available. Using
a NIB address and symbolic name is necessary if you are issuing CLSDST for a terminal or
logical unit that was never connected to your application program. For example, you
must issue CLSDST in order to reject a logon request, and you can cancel a pending
OPNDST (OPTCD=ACCEPT) macro instruction by issuing CLSDST. In both of these
situations, only the symbolic name of the terminal or logical unit is available to you.

If, at the time CLSDST is executed, ACF/VTAM buffers hold data from the terminal or
logical unit, the data is not saved for the next application program that becomes
connected to the terminal or logical unit, but is discarded.

The CLSDST macro instruction can optionally be used to request that ACF/VTAM
reconnect the terminal or logical unit to another application program (specified by you)
in addition to disconnecting it. This option is implemented by setting the PASS option
code in CLSDST’s RPL. If this option is used (it must be authorized by the installation),
ACF/VTAM first generates a logon for the terminal or logical unit and then disconnects
it. Your application program must indicate which application program is to receive the
logon. A logon mode name may be specified in the NIB (if none is specified, the default
logon mode name for the terminal or logical unit is used). A logon message from a data
area in your program can also be sent with the logon. (The data area containing the logon
message can be reused as soon as CLSDST has been completed.) A terminal or logical unit
cannot be passed to the same application program (ACB name) that issues the CLSDST
macro instruction.

If a logon is going to be generated after the disconnection, the RPL’s PASS option code
must be set, and the RPL’s AAREA field must point to the symbolic name of the
receiving application program. This name must be placed in an 8-byte field, left justified,
and padded to the right with blanks. If a logon message is also to be sent with the logon,
the AREA and RECLEN fields must indicate the location and length of the message. If a
message is not to be sent, the RECLEN field must be set to 0.

CLSDST (OPTCD=PASS) will fail if the receiving primary application program is not
defined in the same domain as the secondary logical unit, has not been activated, has not
yet opened its ACB, has opened its ACB with MACRF=NLOGON specified, or has issued
SETLOGON (OPTCD=QUIESCE) to close its logon queue. However, 'CLSDST
(OPTCD=PASS) will cause a logon to be queued if the receiving primary application
program has issued SETLOGON (OPTCD=STOP), even though this indicates that the

CLSDST

application program temporarily does not want any logons directed at it. For logons
generated by CLSDST (OPTCD=PASS), an INQUIRE (OPTCD=APPSTAT) macro
instruction normally should be issued before CLSDST (OPTCD=PASS) is issued. The
return code from INQUIRE indicates the status of the receiving program.

If the RELEASE option code is used instead of the PASS option code, the terminal or
device-type logical unit is simply disconnected as the application program is concerned. If
another application program has requested connection to the terminal or device-type
logical unit, or if the user has indicated (either in a definition statement or by means of a
VARY LOGON command) that automatic logons are to be generated, ACF/VTAM
reconnects the terminal or device-type logical unit to the appropriate application
program.

If an application program has completed its processing and is ready to disconnect all of
the terminals and logical units connected to it, a CLSDST macro instruction for each
terminal or logical unit need not be used. The CLOSE macro instruction may be used; it
disconnects all of the terminals and logical units connected via a given ACB (as though
CLSDST with the RELEASE option had been issued for each one).

See the description of the CLSDST macro instructions in the ACF/VTAM Macro
Language Guide for performance considerations.

Note: When a CLSDST (OPTCD=PASS) is issued to pass a logical unit, the Unbind
command sent by ACF|/VTAM specifies (by the Unbind Hold indicator) that the logical
unit should expect a Bind command and should not go into a mode which could not
process that Bind. (An example of such a mode is the 3790 mode of offline operation
called local mode.) To allow the logical unit to be released if the expected Bind cannot be
sent, an OPNDST followed by a CLSDST (OPTCD=RELEASE) must be issued. This can
be done (1) in the LOGON exit routine of the receiving application program if that
application program does not wish to establish a connection with the logical unit, or (2)
in the NSEXIT exit routine of the application program issuing the CLSDST PASS macro
instruction. The NSEXIT is scheduled if a Bind command is not sent to the logical unit
by the receiving application program.

Name Operation Operands

[symbol] | CLSDST RPL=rpl address
[rpl field name=new value] . ..

RPL~rpl address
Indicates the location of the RPL to be used during CLSDST processing. Either the ARG
field of this RPL must contain a session’s CID or the NIB field must be set to point to the
NIB containing the symbolic name of the terminal.

rpl field name=new value
Indicates an RPL field to be modified and the new value that is to be contained within it.
If you wish to avoid the possibility of program reassembly following future releases of
ACF/VTAM, set the RPL field with MODCB macro instructions rather than with the
CLSDST macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. ARG can also be coded. The new value
can be any value that is valid for that operand in the RPL macro instruction, or it can
indicate a register. The value supplied with the ARG keyword must indicate a register.

23

CLSDST

The following RPL operands apply to a CLSDST macro instruction:

ACB=acb address
Indicates the ACB from which the terminal or logical unit is to be disconnected.

NIB=nib address

If OPTCD=RELEASE is specified, it indicates the NIB whose NAME field identifies the
terminal or logical unit to be disconnected. If OPTCD=PASS is specified, it indicates a
NIB whose NAME field identifies the terminal or logical unit that is to be disconnected
and reconnected to another application program and, optionally, whose LOGMODE field
specifies the session parameters to be used for the reconnection. If the NIB field does not
indicate a NIB address, the ARG field must contain the CID of the session.

ARG-=(register)

Indicates the register that contains the CID of the session with the terminal or logical unit
to be disconnected. This register notation must be used if the CID is to be placed into the
ARG field with this CLSDST macro instruction. ARG and NIB provide two mutually
exclusive methods of identifying the terminal or logical unit.

AREA=address of logon message

Indicates the location of the data to be sent to the application program receiving the
terminal or logical unit. The content and format of the data is determined by the sending
and receiving application programs. The logon message is equivalent to the data portion
of an Inijtiate Self command or a character-coded logon. A logon message is sent only if
OPTCD=PASS is set.

RECLEN-=length of logon message
Indicates how many bytes of data are to be sent to the application program receiving the
terminal or logical unit. No data is sent if RECLEN is set to 0.

AAREA=address of receiver’s symbolic name

Indicates the name of the application program that is to be connected to the terminal or
logical unit you are disconnecting. You can specify the application program that is to
receive the terminal or logical unit only if OPTCD=PASS is set. The name must be 8 bytes
long and padded to the right with blanks.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
CLSDST macro instruction is completed. The macro instruction is completed when 1/0
has been canceled and the terminal or logical unit has been disconnected; completion
does not depend on the receiving application program’s issuing OPNDST. If EXIT is
specified, the RPL exit routine is scheduled. Otherwise the ECB is posted, and CHECK or
WAIT must be used to determine when posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

CLSDST

OPTCD=SYNIASY

When SYN is set, control is returned to the application program when the CLSDST
operation is completed. When ASY is set, control is returned as soon as ACF/VTAM has
accepted the CLSDST request. Once the operation has been completed, the ECB is posted
or the RPL exit routine is scheduled, as indicated by the ECB-EXIT field.

OPTCD=RELEASE|PASS

When RELEASE is set, ACF/VTAM determines the identity of the terminal’s or
device-type logical unit’s next owner (if any). When PASS is set, a logon is directed-at the
application program whose symbolic name is indicated in the AAREA field of the RPL
used by CLSDST. If the AREA and RECLEN fields are also set, a logon message is sent to
the application program. The use of PASS must be authorized by the installation.

Examples
CL1 CLSDST RPL=RPLI,
ACB=ACBI,
NIB=NIB3, (LOGICAL UNIT TO BE DISCONNECTED)
AAREA=APPLNAME, (APPLICATION TO RECEIVE LOGON)
AREA=LGNMSG,RECLEN=60, (LOGON MODE AND MESSAGE)

ECB=POSTIT1,0PTCD=(ASY,PASS)

POSTIT1 DS I

NIB3 NIB NAME=LU1,LOGMODE=BATCH
APPLNAME DC CL8‘PLOTTER’

LGNMSG DC CL60‘LOGON FROM LU’

CL1 disconnects the logical unit represented in NIB3 (LU1) and generates a logon for it;
the logon is directed at the application program named PLOTTER. This macro
instruction also specifies a logon mode (BATCH) and 60 bytes of information containing
a logon message (LGNMSG) with the logon. The logon message and the session
parameters that ACF/VTAM derives from the logon mode can be accessed (using
INQUIRE) by the application program receiving the logon before it issues an OPNDST. If
it is desired to send the actual logon mode name (BATCH, in this example) to the
application program receiving the logon, the logon mode name can be specified as part of
the original logon message; the NIB LOGMODE parameter would still be required.

cL2 CLSDST RPL=RPL2,

ARG=(3), (TERMINAL TO BE DISCONNLECTED)
ECB=POSTIT2,0PTCD=(ASY,RELEASE)

CL2 disconnects the terminal whose session CID has been placed in register 3. Unlike the
first example above, CL2 does not generate a logon request for a specified application
program, nor does it send a logon mode or a logon message.

CL3 CLSDST RPL=RPL3,
NIB=NIB6, (LOGICAL UNIT TO BE DISCONNECTED)
AAREA=APPLNAME, (APPLICATION TO RECEIVE LOGON REQUESTS)
RECLEN=0, (NO LOGON MODE OR MESSAGE)

ECB=POSTIT3,0PTCD=(ASY,PASS)

APPLNAME DC CL8‘PLOTTER’

POSTIT3 DC F0’
NIB6 NIB NAME=LU3

CL3 disconnects the logical .unit represented by NIB6 (LU3), and generates a logon for it
that is directed at the PLOTTER application program. Since the RECLEN field is being
set to 0, no logon message is sent to PLOTTER. The default logon mode of 8 blanks is
assumed.

CLSDST

Return of Status Information
After the CLSDST operation is completed, the following RPL fields are set:

The value 31 (decimal) is set in the REQ field, indicating a CLSDST request.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

DO-Initiate LDO-Specified I/O Operations (Basic Mode Only)

If an application program uses logical device orders (LDOs) to request I/O operations, it
must use the DO macro instruction to initiate the operations. The special I/O operations
initiated with DO are described in the LDO macro instruction.

The user of the DO macro instruction specifies an RPL whose AREA field contains the
address of an LDO or list of LDOs, and whose ARG field contains the CID of the session
with the BSC or start-stop terminal that is to be the object of the I/O operations. Changes
to the RPL can be specified in the DO macro instruction itself.

When DO is completed, the AAREA field of the RPL indicates the address of the last
LDO used by DO. If an error occurs, AAREA contains the address of the LDO that was
being processed when the error occurred.

Name Operation Operands

[symbol] | DO RPL=rpl address
[, rpl field name=new value]...

RPL~=rpl address
Indicates the location of the RPL whose AREA field contains the address of an LDO or
list of LDOs to be used, and whose ARG field contains the CID of the session with the
terminal that is to be the object of these LDOs.

mpl field name=new value
Indicates a field of the RPL to be modified and the new value that is to be contained
within it. If you wish to avoid the possibility of program reassembly following future
releases of ACF/VTAM, set the RPL field with MODCB macro instructions rather than
with the DO macro instruction.

Format: For rpl field name code the keyword of the RPL macro instruction operand
that corresponds with the RPL field to be modified. ARG can also be coded. The new
value can be any value that could have been supplied with the keyword had the operand
been issued in an RPL macro instruction, or it can indicate a register. The value supplied
for the ARG keyword must indicate a register.

The following RPL operands apply to the DO macro instruction:

ACB=acb address
Indicates the ACB that was used when the terminal was connected.

ARG=(register)

Indicates the register containing the CID of the session with the terminal. This register
notation must be used when the CID is placed into the ARG field with this DO macro
instruction.

AREA-=ldo address
Indicates the LDO or list of LDOs to be used by this macro instruction.

t

27

Example

Return of Status Information

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken when an asynchronous (OPTCD=ASY) DO macro
instruction is completed. The macro instruction is completed when the last LDO has been
processed. If EXIT is specified, the RPL exit routine is scheduled. Otherwise the ECB is
posted, and CHECK or WAIT must be used to determine when the posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

OPTCD=SYNI|ASY

When the SYN option code is set, control is returned to the application program when
the DO operation has been completed. When ASY is set, control is returned as soon as
ACF/VTAM has accepted the Once the DO operation has been completed, the ECB is
posted or the RPL exit routine is scheduled, as indicated by the ECB-EXIT field.

OPTCD=CSICA

When CA is set, data obtained from the termmal can satisfy a READ (OPTCD=ANY or
OPTCD=SPEC) macro instruction. When CS is set, only READ (OPTCD=SPEC) macro
instructions can obtain data from the temunal See the RPL macro instruction for more
information. :

DOLDO DO RPL=RPL1,
AREA=(2),ARG=(3),
EXIT=DONE,OPTCD=(SPEC,ASY)

DOLDO initiates whatever operations are indicated by the LDO (or list of LDOs) pointed
to by register 2. In this example, register 3 must contain the CID of the session with the
terminal to be involved in the LDO-specified I/O operation or operations. Since the ASY
option code is specified, control is returned to the instruction following DOLDO before
the operation is actually performed. Since EXIT is specified, the routine located at DONE
will be scheduled when the DO macro insiruction is completed.

Once DO processing is finished, the following RPL fields are set:
The address of the last LDO used by DO is placed in the AAREA field.

When a NIB is used by OPNDST, the user has the option of specifying an arbitrary
value in the USERFLD field of that NIB. When the DO macro instruction is
subsequently issued for the terminal associated with that NIB, whatever was placed in
USERFLD by the user is placed in the USER field of the RPL by ACF/VTAM.

If DO is processing a READ or LDO or READBUF LDO, the RECLEN field is set to
indicate the number of bytes of data obtained from the terminal.

The value 19 (decimal) is set in the REQ field, indicating a DO request.

If DO is processing a READ or WRITE LDO, the SENSE field is set as indicated in
Appendix C.

DO

If DO is processing a READ LDO, the FDBK field is set as indicated in Appendix C.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

29

EXECRPL

EXECRPL—Execute a Request

Example

30

When a request fails for a temporary reason and the request might succeed if reissued,
ACF/VTAM returns a recovery action return code of 8 in register 0 and in the RPL’s
RTNCD field. The portion of the application program receiving control (the SYNAD exit
routine or the next sequential instrucion) has the address of the RPL available to it in
register 1. The program can issue an EXECRPL macro instruction to retry the request
without having to modify the request’s RPL.

The operation performed by EXECRPL depends on the request code that is set in the
RPL’s REQ field. If the REQ field indicates a RECEIVE request, for example, the effect
of EXECRPL is identical to that of a RECEIVE macro instruction. (The REQ field is
described in the RPL macro instruction.) EXECRPL can be used to execute any
RPL-based request except CHECK or another EXECRPL macro.

When EXECRPL is used for its intended purpose—that is, to reexecute a request that has
failed with a recovery action return code of 8—the application program need not concern
itself with the RPL contents when EXECRPL is issued. But if EXECRPL is used to retry
a request that has failed with some other recovery action return code (or to repeat a
request that has not failed at all), close attention must be paid to RPL fields that can be
set by the application program and then modified by ACF/VTAM while the request is
being processed.

For example: The RPL’s RESPOND field for a SEND request is set by the application
program (to indicate whether a response is to be returned) and is then reset by
ACF/VTAM (to indicate the type of response returned). EXECRPL should not be issued
for this RPL unless the RESPOND field is reset to its intended setting.

Figure 16 at the end of the RPL macro instruction description identifies those fields that
can be set by the application program and then reset by ACF/VTAM, These fields are
identified with an ‘AV’ under the appropriate macro instruction.

Name Operation Operands

[symbol] | EXECRPL | RPL=rpl address
[. rpl field name=new value]...

RPL=rpl address

Indicates the location of the RPL defining the request to be reexecuted.

rpl field name=new value

Indicates a field of the RPL to be modified and the new value that is to be contained
within it. If you wish to avoid the possibility of program reassembly following future
releases of ACF/VTAM, set the RPL field with MODCB macro instructions rather than
with the EXECRPL macro instruction.

Format: For mpl field name, code the keyword of the RPL macro instruction operand
that corresponds with the RPL field to be modified. The new value can be any value that
could have been supplied with the keyword had the operand been issued in an RPL macro
instruction, or it can indicate a register.

RETRY1 EXECRPL RPL=(1)

Return of Status Information

EXECRPL

A SYNAD exit routine has been entered for a retriable error (register O is set to 8). The
request is reexecuted and defined by the current contents of the RPL.

Once the EXECRPL macro instruction is completed, the action taken by ACF/VTAM
depends on the type of request that EXECRPL has processed. The manner in which the
application program is notified of completion (ECB or EXIT), the RPL fields and return
codes that are returned, and the data areas (if any) that are used depend on the contents
of the RPL when EXECRPL was executed. If the request is successfully accepted or
completed, then registers 0 and 15 at the next sequential instruction after EXECRPL are
set exactly as expected when the original request was issued.

31

EXLST

EXLST—Create an Exit List

32

The EXLST macro instruction builds a list of routine addresses during program assembly.
Each operand in this macro instruction represents an event for which an exit routine is
invoked by ACF/VTAM. The address supplied for each operand indicates the user-written
routine to be given control when the event that it handles occurs. The SYNAD operand
supplies the address of a routine that handles exception conditions (other than logical
errors), the ATTN operand supplies the address of an attention-interruption handler, and
so forth.

When you examine your program listing, you may discover that the assembler has
reserved space for exit list addresses that you never specified. Unspecified exits will not,
however, be used by ACF/VTAM, and you cannot use MODCB to insert an address in a
field you never specified in the EXLST (or GENCB) macro instruction. An address of 0
can never be specified.

When the LERAD and SYNAD exit routines are invoked, register 1 contains the address
of the failing request’s RPL. When the other exit routines are invoked, register 1 contains
the address of a parameter list. The contents of the parameter lists vary somewhat among
exit routines. The parameter lists are summarized in Figure 3.

For all exit routines except LERAD and SYNAD, the last instruction must be a branch
to the ACF/VTAM address that is in register 14 when the routine receives control. (For
LERAD and SYNAD, this branch is required only if LERAD or SYNAD is invoked by a
macro instruction issued within an RPL exit routine or other EXLST exit routine.) The
exit routines are not provided with a save area for the general purpose registers. The
application program may use and change registers as desired, but the register 14 address
must be saved. The address of the exit list created by the EXLST macro instruction is
placed in the EXLST field of an ACB by the application program (see the ACB macro
instruction for details). More than one ACB can point to the same exit list. In this
situation, however, the routines indicated in the exit list should be reenterable.

A few of the exit routines apply only to BSC and start-stop terminals or only to logical
units. These are noted as “basic-mode only” or “record-mode only” respectively.

Note: Only those exit routines that can be recognized by ACF/VTAM may be specified
with the ACF/VTAM EXLST macro instruction. In addition, only ACF/VTAM requests
are permitted in ACF|VTAM asynchronous exit routines. See the ACF/VTAM Macro
Language Guide for more information about using these exit routines.

Name Operation Operands

[symbol] | EXLST AM=VTAM

, [,LERAD=
[,SYNAD=
[, DFASY=
[, RESP=
[,scIp=
[, TPEND=
[,RELREQ=
[, LOGON=
[, LOSTERM=
[, ATTN=
[, NSEXIT=

exit routine address]

EXLST

Exit Routine

Register 1 Parameter List

1st Word 2nd Word 3rd Word 4th Word 5th Word
1 . I
LERAD None (Register 1 contains the RPL address for the request that failed)
[Il 4
T | '
SYNAD None (Register 1 contains the RPL address for the request that failed)
DFASY ACB address CiD . USERFLD data Unused ‘Read-only RPL
address
RESP ACB address CiD USERFLD data Unused Read-only RPL
address
scip! ACB address CID USERFLD data Unused Read-only RPL
address
TPEND ACB address Reason-
terminated
code
RELREQ ACB address Address of the
terminal’s
symbolic name
LOGON ACB address Address of the Unused Length of
terminal’s logon message
symbolic name
LOSTERM ACB address CiD USERFLD data Reason-lost
code .
ATTN ACB address CiD USERFLD data
NSEXIT ACB address Contents depend on the type of Read-only
network services request unit RPL address
received. i

L1f the SCIP exit routine is entered as a result of a Bind command, the 2nd and 3rd words are reserved, and the 4th
word contains the address of the session parameters.

Figure 3. Parameter List for the EXLST Exit Routines

AM=VTAM
Identifies the exit list generated by this macro instruction as an ACF/VTAM exit list (as
distinguished from a VSAM exit list). This operand is required.

LERAD-=exit routine address
Indicates the address of a routine that will be entered when the application program
makes a connection or I/O request that results in a logical error.

Before the LERAD exit routine is given control, ACF/VTAM sets a recovery action
return code. These codes are explained in Appendix C.

SYNAD-=exit routine address -
Indicates the address of a routine that is entered if an unrecoverable input or output error
(physical error) or other unusual condition occurs during an I/O operation. (Errors that
result from invalid requests are handled by the LERAD exit routine.) The SYNAD exit
routine is entered for all recovery action return codes of 4, 8, 12, and 16 (decimal).
Before the SYNAD exit routine is given control, ACF/VTAM sets a recovery action
return code. These codes are explained in Appendix C.

33

EXLST

DFASY=exit routine address (Record mode only)
The EXLST containing a DFASY exit routine address can be pointed to by a NIB, as well
as by an ACB (see the EXLST operand of the NIB macro instruction).

The DFASY operand indicates the address to be entered when an expedited data flow
control command is received. Commands received by the primary end of the session are
SBI, QEC, RELQ, Signal, RSHUTD, and SHUTDC. Commands received by the secondary
end of the session are SBI, QEC, RELQ, Signal, and SHUTD. ACF/VTAM handles the
input in this manner:

DFASY
input

Is there
a NIB DFASY
exit

Yes

Invoke
NIB
DFASY
exit!

RECEIVE SPEC

Input
will

satisfy What
the is CA/CS mode
RECEIVE - Qf the sessiop
SPEC Queve
DFASY .

input

for the

next

2
RECEIVE Yes DFASYX No
specified in
NIB
Yes Is there No Is there a No

RECEIVE ANY
DFASY

an ACB DFASY
exit

Invoke Queue Input Queue

ACB input will input

DFASY for the satisfy for the

exit3 next the next
RECEIVE RECEIVE RECEIVE
SPEC SPEC or ANY
DFASY DFASY

1The exit routine is scheduled if no other exit routine (including the NIB DFASY exit routine) is currently running; if there is an exit
routine running, the input is queued for the NIB DFASY exit routine.

2The input will satisfy a RECEIVE SPEC DFASY. The input can also be obtéined by a RECEIVE ANY DFASY if the receive mode
has been switched to CA.

3Tl'm exit routine is scheduled if no other exit routine (including the ACB DFASY exit routine) is currently running; if there is an
exit routine running, the input is queued for the ACB DF ASY exit routine.

[4

EXLST

RESP=exit routine address (Record mode only)
The EXLST containing the RESP exit routine address can be pointed to by a NIB, as well

as by an ACB (see the EXLST operand of the NIB macro instruction).

The RESP operand indicates the address of a routine to be entered when responses to
requests arrive from a logical unit. ACF/VT AM handles the response in this manner:

RESP
input

Is there
a NIB RESP
exit

Yes

Invoke

NIB
RESP Yes Is there a
exit! RECEIVE SPEC

RESP

Input
will
satisfy
the is CA/CS mode
RECEIVE of the sessiol
SPEC
RESP Queue
input
for the
next
RECEIVE? Is
Yes RESPX
specified in
NIB
Yes Is there No Is there a

RECEIVE ANY
RESP

an ACB RESP
exit

Invoke Queue Input Queue
ACB input will input
RESP for the satisfy for the
exit3 next the next
RECEIVE RECEIVE RECEIVE
SPEC SPEC or
RESP ANY RESP

1The exit routine is scheduled if no other exit routine (including the NIB RESP
exit routine) is currently running; if there is an exit routine running, the input
is queued for the NIB RESP exit routine.

2The input will satisfy a RECEIVE SPEC RESP. The input can also be obtained
by RECEIVE ANY RESP if the receive mode has been switched to CA.

3The exit routine is scheduled if no other exit routine (including the NIB RESP
exit routine) is currently running; if there is an exit routine running, the input
is queued for the ACB RESP exit routine.

35

EXLST

36

SCIP=exit routine address (Record mode only)
Indicates the address of a routine to be scheduled when a Bind, Unbind, Clear, Set and
Test Sequence Numbers (STSN), Start Data Traffic (SDT), or Request Recovery (RQR)
command is received by an application program. The Request Recovery (RQR) command
can only be received by an application program acting as the primary end of the session.
The other commands can only be received by an application program acting as the
secondary end of a session.

The EXLST containing the SCIP exit routine address can be pointed to by a NIB, as well
as an ACB (see the EXLST operand of the NIB macro instruction).

) %
Note: A Bind command does not cause a NIB-specified SCIP exit routine to be
scheduled. Any application program that is to receive session parameters in a Bind
command must therefore have a SCIP exit routine defined in the EXLST associated with
the program’s ACB.

TPEND-=exit routine address
Indicates the address of a routine to be entered when the network operator issues a
HALT command, when ACF/VTAM detects an internal problem that necessitates halting
itself, or when ACF/VTAM abnormally terminates.

Note: CLOSE cannot be issued in an exit routine, but the TPEND routine could cause a
CLOSE in the main program to be executed (by posting an ECB upon which the main
program is waiting, for example).

RELREQ-=exit routine address v
Indicates the address of a routine that is entered when another application program (or
TOLTEP) requests connection to a terminal or device-type logical unit that is currently
connected to your application program. This can occur when the other application
program issues. a SIMLOGON macro instruction (with the RELRQ and Q options
specified) on behalf of your terminal or device-type logical unit.

LOGON=exit routine address
Indicates the address of a routine to be entered when ACF/VTAM has queued a pending
logon for the application program.

LOSTERM=exit routine address
Indicates the address of a routine to be entered when contact with a terminal has been
lost, when the logical unit has requested a logoff, when certain errors are detected in
transmission, or when the terminal is temporarily unavailable.

ATTN=exit routine address (Basic mode only)
Indicates the address of a routine to be entered when a start-stop terminal connected to
the application program causes an attention interruption and no read or write operation is
pending or in progress for the the terminal.

NSEXIT=exit routine address (Record mode only)
Indicates the address of a routine to be entered when the application program receives a
Network Services request unit.

GENCB

GENCB—Generate a Control Block

The GENCB macro instruction builds an ACB, EXLST, RPL, or NIB. The advantage of
using the GENCB macro instruction is that the control blocks are generated during
program execution. (With the ACB, EXLST, RPL, and NIB macro instructions, the
control blocks are built during program assembly.) If GENCB, MODCB, TESTCB, and
SHOWCB are used to build and manipulate the control blocks, program reassembly
should not be required should control block formats be changed during any future
releases of ACF/VTAM.

GENCB not only builds the control block during program execution, bt can also build the
control block in dynamically allocated storage. One advantage of this technique is that it
can remove application program dependencies on the length of each control block.

The GENCB user specifies the type of control block to be built and the contents of its
fields. The operands used to specify the field contents are exactly the same as those used
in the macro instruction that builds the control block during assembly. For example,
these macro instructions build the same exit list:

GENCB BLK=EXLST,SYNAD=SYNADPGM,AM=VTAM
EXLST SYNAD=SYNADPGM,AM=VTAM

The control block is built either in storage that ACF/VTAM obtains via the OS/VS
GETMAIN or DOS/VS GETVIS facility, or in the application program’s storage. To
accomplish the latter, the application program should either reserve enough storage
during program assembly to accomodate the control block, or perform its own
GETMAIN or GETVIS operation to obtain the necessary storage. If the application
program is providing the storage, the location and length of this storage must be coded in
the GENCB macro instruction. Dynamic storage allocation for the control block occurs
automatically if the location and length operands (WAREA and LENGTH) are omitted.
The application program can issue FREEMAIN or FREEVIS macro instructions to free
the storage obtained by GENCB. (If FREEMAIN is used, return the storage to subpool 0.
If GENCB is issued in a task running in privileged state, return the storage to subpool
252)

Dynamic storage allocation can be successful only if (1) the program is operating in
virtual mode and (2) enough unallocated virtual storage remains in the program’s
partition or region to build the control block. See the description of the LENGTH
operand for an explanation of how control block lengths are determined.

List, generate, and execute forms of the GENCB macro instruction are available; they are
designated by the MF operand. These forms must be used in reenterant routines such as
the LERAD and SYNAD exit routines (see the ACF/VTAM Macro Language Guide.

Because there is a large variety of formats in which the GENCB operands can be specified,
format specifications have been tabulated in Appendix E and do not appear in this macro

Name Operation Operands
[symbol] | GENCB BLK= { ACB |EXLST |RPL |NIB }
,AM=VTAM

[, keyword=value] ...
[, COPIES=quantity]
[, WAREA=work area address,
LENGTH=work area length]
[, MF=list, generate, or execute form parameters]

37

GENCB

38

BLK=ACBI|EXLST IRPL|NIB

Indicates the type of control block to be generated.

AM=VTAM

Identifies this macro instruction as an ACF/VTAM macro instruction. This operand is
required.

keyword=value

Indicates a control block field and the value that is to be contained or represented within
it.

For keyword, code any keyword that can be used in the macro instruction corresponding
to the BLK operand. If BLK=ACB is used, for example, code the keyword of any
operand that can be used in the ACB macro instruction. One exception: ARG=(register)
can also be coded if BLK=RPL.

For value, indicate a register or code any value that could be used if the operand were
being specified in the ACB, EXLST, RPL, or NIB macro instruction, or use one of the
formats indicated in Appendix E.
Note: If no keywords are included, the following types of control blocks are built:

ACB: All fields are set to 0, and the MACREF field is set to NLOGON.

RPL: All fields are set to their default values (as indicated in the RPL macro
instruction description).

EXLST: All fields are set to 0.

NIB: All fields are set to their default values (as indicated in the NIB macro
instruction description).

COPIES=quantity

Indicates the number of control blocks to be generated.

The copies are identical in form and content. With the exception of an exit list, they are
placed contiguously in storage, whether that storage is the area indicated by the WAREA
operand or is dynamically allocated storage.

The length returned in register 0 is the total length of the generated control blocks. The
length of each block (the total length divided by the number of copies) can be used to
determine the location of the beginning of each block.

Note: If this operand is not used, one control block is built.

WAREA=work area address

Indicates the location of the storage area in the application program where the control
block is to be built. The work area must be aligned on a fullword boundary. If this
operand is specified, the LENGTH operand must also be specified.

If the WAREA and LENGTH operands are omitted, ACF/VTAM obtains dynamically
allocated ‘storage via the GETMAIN or GETVIS facility and builds the control block
there. Assuming that GENCB is completed successfully (this is indicated by a return code
of 0 in register 15), the address of the generated control block (or blocks) is placed in
register 1, and their total length is placed in register 0.

Examples

LENGTH=work area length

Indicates the length (in bytes) of the storage area designated by the WAREA operand.

If this length is insufficient, register 15 will contain the value 4, and register 0 will contain
the value 9.

To avoid having to recode your application program should you wish to run it under a
different operating system, use the manipulative macro instructions to obtain the control
block lengths. You do this by specifying ACBLEN, EXLLEN, RPLLEN, or NIBLEN in
either a SHOWCB or TESTCB macro instruction. For example, to obtain the length of an
ACB in your particular operating system, the following SHOWCB could be coded:

SHOWCB FIELDS=ACBLEN,AREA=WORKAREA,LENGTH=4,AM=VTAM

Or, to test the length of an exit list in your particular operating system, the following
TESTCB could be coded:

TESTCB EXLLEN=(7),AM=VTAM

If you are generating more than one control block, remember that the total length of
each control block is the length indicated by the control block’s length field (ACBLEN,
EXLLEN, RPLLEN, NIBLEN) plus the number of bytes required for fullword alignment.
(EXLSTs are variable in length; when no specific EXLST is specified, the length returned
by SHOWCB or tested by TESTCB is the maximum possible length for your operating
system.)

MF+=list, generate, or execute form parameters

Indicates that a list, generate, or execute form of GENCB is to be used. Omitting this
operand causes the standard form of GENCB to be used. See Appendix F for a
description of the nonstandard forms of GENCB.

GEN1 GENCB AM=VTAM,BLK=ACB,
APPLID=(3),EXLST=(6),
WAREA=BLOKPOOL,LENGTH=(4)

BLOKPOOL DS 32D

GEN1 builds an ACB in statically reserved storage (BLOKPOOL). When GEN1 is
executed, register 3 must contain the address of an application program’s symbolic name,
and register 6 must contain the address of the exit list to be pointed to by the ACB.

L 10,WORKAREA (REG10=ACB LENGTH)

GETMAIN R,LV=(10)

LR 51 (REG5=ACB ADDRESS)
GEN2 GENCB AM=VTAM,BLK=ACB,

WAREA=(§),LENGTH=(10)

In this example, the application program is building an ACB in dynamically allocated
storage obtained by itself. Using the procedure described above in the LENGTH operand
description, the application program has obtained the length of an ACB and placed itina
fullword called WORKAREA. The instructions preceding GEN2 obtain the correct
amount of storage, and GEN2 builds the ACB in that storage.

GEN3 GENCB BLK=RPL,COPIES=10,AM=VTAM

39

GENCB

Return of Status Information

40

GEN3 creates 10 RPLs in dynamically allocated storage obtained by VSAM (OS/VS) or
ACF/VTAM (DOS/VS). The address of the beginning of these RPLs is returned in register
1, and the total length is returned in register 0. This length includes all padding for
fullword alignment; the RPLLEN field indicates the length of each unpadded RPL. Each
RPL is built as though an RPL macro instruction with no operands had been issued.

After GENCB processing is finished and control is returned to the application program,
register 15 indicates whether or not the operation was completed successfully. If the
operation was completed successfully, register 15 is set to O; if it was completed
unsuccessfully, register 15 is set to either 4, 8, or 12 (DOS/VS only). If it is set to 4 or
12, register 0 is also set indicating the specific nature of the error (see Appendix D).

INQUIRE

INQUIRE—-Obtain Terminal Information, Logical Unit
Information or Application Progrum Status

There are ten types of INQUIRE. The setting of the RPL’s option code determines
which one is used. The following descriptions indicate the purpose and use of these
options; see the operand descriptions for details regarding how each is specified. For
restrictions on the use of the operands, see Figure 4.

LOGONMSG: INQUIRE obtains the data portion of a logon from a terminal or logical
unit that logged on to the application program.

Note: The data portion of a logon can only be obtained using INQUIRE prior to issuing
OPNDST and as long as CLSDST has not been issued.

DEVCHAR: INQUIRE obtains the device characteristics of a terminal, as they are
defined by the user in the resource definition table. These device characteristics can be
used to define which processing options the program wants to be in effect for the NIB
used to connect that terminal. For a logical unit, the only indication that isreturned is

" that of logical unit; the specific type of logical unit is not identified. This type of
INQUIRE is also appropriate for use in LOGON exit routines where the program is
establishing connection with terminals whose identities are not known during program
assembly.

‘TERMS: For a given PU, LU, TERMINAL, LINE, or CLUSTER entry in the resource
definition table, INQUIRE builds a NIB or list of NIBs in the application program.

The purpose of this type of INQUIRE is this: During ACF/VTAM definition, the user
can define a PU, LU, TERMINAL, LINE, or CLUSTER entry and associate a set of
terminals and device-type logical units with that entry. If the application program
builds one NIB that indicates this entry in its NAME field, it can then issue INQUIRE to
generate NIBs for all of the terminals and device-type logical units associated with the
entry. Thus, the application program need not be aware of the identities or the number
of these terminals and device-type logical units before establishing connection with them.
This allows the user, via the network operator or ACF/VTAM definition procedures, to
vary the set of terminals and device-type logical units after the application program has
been assembled.

COUNTS: For the ACB specified, INQUIRE provides the number of active sessions for
the application program (both primary and secondary) and the number of queued logons
(for primary end of session requests) and pending Bind commands (for secondary end of
session requests) that are waiting to be processed.

APPSTAT: INQUIRE checks a specified application program arid determines whether
the application program is accepting logons, never accepts logons, is temporarily not
accepting’ logons, no longer accepts logons, or has not yet opened its ACB. A code
representing each situation is returned in the RPL’s FDBK field.

CIDXLATE: Given a session CID, INQUIRE provides the symbolic name of that
terminal or logical unit. Conversely, given the symbolic name of a terminal or logical unit
at the other end of the session, INQUIRE provides the corresponding CID of that session.

SESSKEY: INQUIRE provides the cryptographic session key and the initial chaining
value.

When a terminal or logical unit is connected to an application program, its symbolic name
is converted into a 32-bit value called the CID. This CID must subsequently be used for

all I/O requests for the terminal or logical unit.
41

INQUIRE

42

TOPLOGON: When a terminal or logical unit directs a logon at an application program
(ACB) or when a logon is made on its behalf, the application program may or may not
immediately accept or reject the terminal or logical unit. Until the logon is accepted or
rejected, it is said to be queued to the ACB. More than one can be queued to the ACB.
The TOPLOGON option supplies the symbolic name of the terminal or logical unit that is
currently at the head of the logon queue for a given ACB.

BSCID: This version of INQUIRE is used when a BSC terminal with an ID verification
feature dials in and causes a logon to be generated for the application program. If the
application program determines that the terminal’s name is one that was associated with
an IDLST having NOMATCH=PASS in effect (see your system programmer), INQUIRE
with OPTCD=BSCID supplies the terminal’s ID verification sequence.

SESSPARM: Depending upon the parameters specified for the LOGMODE operand of
the NIB, INQUIRE obtains the session parameters that are associated with a pending
logon from a logical unit or obtains the session parameters associated with an entry in the
logon mode table defined for the logical unit named in the NIB.

To determine whether a particular option code is applicable to a particular domain or
session protocol, see Figure 4.

Name Operation Operands

[symbol] | INQUIRE RPL=rpl address
[, rpl field name=new value]...

RPL=rpl address

Indicates the location of the RPL that indicates which kind of processing INQUIRE is to
perform.

rpl field name=new value

Indicates an RPL field to be modified and the new value that is to be contained or
represented within it. If you wish to avoid the possibility of program reassembly
following future releases of ACF/VTAM, set the RPL field with MODCB macro
instructions rather than with the INQUIRE macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. The new value can be any value that is
valid for that operand in the RPL macro instruction, or it can indicate a register.
ARG=(register) can also be specified.

The following RPL operands apply to the INQUIRE macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program.

ARG=(register)

Indicates the register containing the CID of the session with the terminal or logical unit.
Register notation must be used if the CID is to be placed in the ARG field with this
INQUIRE macro instruction. = This operand applies to the DEVCHAR, CIDXLA™E,
and SESSKEY forms of INQUIRE. ‘

INQUIRE

OPTCD= Same-Domain Cross-Domain Issued by Issued by

keyword Request Request Primary Secondary
LOGONMSG! Yes Yes Yes No?
DEVCHAR Yes Yes! Yes Yes
TERMS Yes Yes! Yes Yes
COUNTS Yes Yes Yes Yes
APPSTAT Yes Yes Yes Yes
CIDXLATE "Yes Yes Yes Yes
TOPLOGON Yes Yes Yes No2
BSCID Applies to BSC and TWX terminals only
SESSPARM Yes Yes! Yes No
SESSKEY3 Yes Yes Yes Yes

lMay be issued only after the LOGON has been queued and before the OPNDST or CLSDST macro
instruction is issued to accept or reject the pending logon.

2Mav be issued, but ACF/VTAM may return RTNCD=0, FDBK2=7 indicating that no information is
available.

3May be issued only after the session has been established. If the session has not yet been established,
ACF/VTAM returns RTNCD=0, FDBK2=7 indicating the requested information is not available.

Figure 4. Permissible Option Codes in the INQUIRE Macro Instruction

NIB=nib address

Indicates the NIB whose NAME field identifies the terminal, device-type logical unit or
application program. This operand applies to the LOGONMSG, DEVCHAR, TERMS,
APPSTAT. BSCID, SESSPARM, and CIDXLATE forms of INQUIRE. For DEVCHAR
and CIDXLATE, NIB=address and ARG=(register) are mutually exclusive methods of
identifying the terminal. For the SESSKEY form of INQUIRE, NIB=nib address is
invalid.

AREA=address of data area

Indicates where the information produced by INQUIRE is to be placed.

AREALEN=length of data area
Indicates the maximum number of bytes of data that the data area can hold; if the data
to be placed there exceeds this value, a special condition results (RTNCD=0, FDBK?2=5)

and the RECLEN field indicates the required length. The INQUIRE can be reissued using
the correct length.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
INQUIRE macro instruction is completed. The macro instruction is completed when the
information has been placed in the application program’s storage area. If EXIT is
specified, the RPL exit routine is scheduled. Otherwise the ECB is posted, and CHECK or
WAIT must be used to determine when the posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field of the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

43

INQUIRE

44

OPTCD=SYNI|ASY

When the SYN option code is set, control is returned to the application program when
the INQUIRE macro instruction has been completed. When ASY is set, control is
returned as soon as ACF/VTAM has accepted the request. Once the INQUIRE operation
has been completed, the ECB is posted or the RPL exit routine is scheduled, depending
on the setting of the ECB-EXIT field.

OPTCD=LOGONMSG |DEVCHAR | COUNTS | TERMS | APPSTAT | CIDXLATE |
TOPLOGON |BSCID | SESSPARM

See Figure 4 for possible restriction on the use of the GPTCD operand.

LOGONMSG
INQUIRE obtains a logon message from a terminal or logical unit that has requested
logon for the application program.

The RPL’s ACB field must indicate the ACB to which the logon is directed. The NIB field
must point to a NIB whose NAME field contains the symbolic name of the terminal or
logical unit issuing the logon. The AREA and AREALEN fields must indicate the location
and length of the storage area where the logon message is to be placed.

Note: The information required for the ACB, NAME, and AREALEN fields is passed to
the LOGON exit routine in a parameter list.

ACF/VTAM indicates the length of the logon message in the RPL’s RECLEN field. If the
message is too long to fit, RECLEN is posted with the required length. Conditional
completion is indicated (RTNCD=0 and FDBK2=5), and no data is supplied to the
application program.

Note: The data portion of a logon cannot be obtained after an OPNDST or CLSDST has
been issued.

DEVCHAR
INQUIRE obtains the device characteristics of a terminal or logical unit, as they are
defined by the user in the resource definition table.

The RPL must indicate the terminal or logical unit in one of two ways: either the RPL’s
NIB field must indicate a NIB containing the symbolic name of the session, or the RPL’s
ARG field must contain the CID of the session with the terminal or logical unit at the
other end of the session.

The device characteristics are placed in an 8-byte program storage area whose location is
set in the AREA field. The AREALEN field must be set to 8. The bits that are set in this
area indicate whether the device is an input, output, or input/output device. The specific
device type (for example, 2741 communications terminal) is also indicated, along with
additional information. See the description of the ISTDVCHR DSECT in Appendix H for
a complete description of the DEVCHAR information.

TERMS »
For a given PU, LU, TERMINAL, LINE, CLUSTER, or entry in the resource definition
table, INQUIRE builds a NIB or list of NIBs in the application program.

The RPL’s NIB field must point to a NIB whose NAME field contains the name of an
entry that exists in the resource definition table at the time INQUIRE is executed. A NIB
is built for each terminal represented in the entry.

INQUIRE

The AREA and AREALEN fields designate the location and length of the work area
where the NIBs are built. The work area must be set to binary zeroes by the application
program before INQUIRE is issued.

ACF/VTAM indicates the total length of the NIBs in the RPL’s RECLEN field.

If the application program wants the NIBs to be built in dynamically allocated storage
(obtained by the application program), INQUIRE should be issued twice. For the first
INQUIRE, set AREALEN to 0. This INQUIRE will be completed with RTNCD=0 and
FDBK2=>5 (insufficient length) and RECLEN will indicate the required length. Obtain the
storage and issue INQUIRE with AREALEN set to the proper length.

Each NIB contains the symbolic name of the terminal or logical unit, with flags for the
LISTEND field set in such a way as to group the NIBs together into a NIB list. In
addition, device characteristics are placed in each NIB. These characteristics can be used
to reset the PROC options of the NIB to values that are appropriate for the terminal or
logical unit.

After the user has set each NIB’s MODE field to BASIC or RECORD and other NIB fields
to their desired values, the NIBs are ready to be used for connection.

COUNTS

For the ACB specified in the RPL, INQUIRE provides the number of active sessions for
the application program (both primary and secondary) and the number of queued logons
(for a primary end of session requests) and pending Bind commands (for secondary ends
of session requests) that are waiting to be processed.

The RPL’s ACB field must contain the address of the ACB. The AREA and AREALEN
fields must indicate a 4-byte area where the information is to be placed. ACF/VTAM
places the number of connected terminals or logical units in the first 2 bytes and the
number of logons and Bind commands in the second 2 bytes.

APPSTAT
INQUIRE checks a given application program and returns a value in the RPL’s FDBK
field (refer to Appendix C).

The RPL’s ACB field must contain the address of an opened ACB.

The RPL’s NIB field must point to a NIB whose NAME field contains the symbolic name
of the application program. Although the NIB is generally used as a ferminal control
block, note that here it is being used to identify an application program. The symbolic
name in the 8-byte NAME field must be left-justified and padded to the right with blanks.

CIDXLATE

Given a session CID, INQUIRE provides the symbolic name of that terminal or logical
unit. Conversely, given the symbolic name of a connected terminal or logical unit,
INQUIRE provides the corresponding CID of the session with that terminal or logical
unit. CIDXLATE is valid only for terminals or logical units that are in session, and an
error cord is returned if no session exists.

To convert that CID back into its equivalent symbolic name, the RPL’s ARG field must
contain the CID when the INQUIRE macro instruction is executed. The symbolic name is
returned in the data area that you indicate in the RPL’s AREA field. The AREALEN
field must be set to 8.

45

INQUIRE

To use INQUIRE to convert the symbolic name into a CID, the RPL’s NIB field must
contain the address of a NIB and the named terminal must be currently connected.
The NAME field of that NIB must in turn contain the symbolic name to be converted.
The CID is placed in the data area that you indicate in the RPL’s AREA field. The
AREALEN field must be set to 4. If the terminal is not currently connected, a CID is
not returned, and an error code is set.

Note: The NIB and the ARG field occupy the same physical field in the RPL. If the last
macro instruction operand used to set or modify this field was ARG=(register), or if the
field has been left unchanged since ACF/VTAM inserted a CID into it, ACF/VTAM
recognizes that this field contains a CID. If the last operand used to set or modify this
field was NIB=address, A CF/VTAM recognizes that the field contains a NIB address.

TOPLOGON

INQUIRE returns the symbolic name of the terminal or logical unit that has directed a
logon at the application program and has spent the greatest amount of time waiting to be
connected. If no logons are queued, an error return code results (see Appendix C).

The ACB field of INQUIRE’s RPL must indicate the ACB whose logon queue is to be
examined. The symbolic name is returned in the data area indicated by you in the RPL’s
AREA field. The AREALEN field must be set to 8.

BSCID

INQUIRE returns the BSC terminal’s ID verification sequence. The RPL’s NIB field must
point to a NIB whose NAME field contains the symbolic name of the terminal (as
provided in the LOGON exit routine’s parameter list). The sequence, which can be up to
20 bytes long, is placed in the storage area pointed to by the AREA field. Set the
AREALEN field to 20.

SESSPARM

INQUIRE returns the session parameters associated with a specified logon mode name or
obtains the session parameters from a pending logon. The NIB field of the RPL must
point to a NIB whose LOGMODE operand identifies the logon mode name to be used.
The logon mode name that is specified in the NIB is used to search the logon mode table
defined for the logical unit named in the NIB. If a match is found, the session parameters
associated with the logon mode name are returned in the AREA field of the RPL. The
logon mode name may be explicitly stated in the NIB, or the NIB may indicate that the
session parameters (including logon data) specified in a pending logon are to be returned.
See the description of the LOGMODE operand of the NIB macro instruction for more
information. For more information on specifying session parameters, refer to
Appendix J.

SESSKEY (Encrypt/Decrypt Feature only)

INQUIRE returns a 16 byte field containing the cryptographic session key (the first 8
bytes) and the Initial Chaining Value (ICV) (the second 8 bytes). The AREA field in-
dicates the location of this 16 byte field. The AREALEN field must be set to 16
(decimal).

Examples

Return of Status Information

INQUIRE

INQ1 INQUIRE RPL=RPL1,0PTCD=APPSTAT ,NIB=NIB1
TST1 TESTCB RPL=RPL1,FDBK=0

BE ACTIVE
NIB1 NIB NAME=PGM1

INQ1 determines whether PGM1 is active and accepting logons. The answer is returned
in RPL1’s FDBK field. TST1 and the branch instruction cause a branch to ACTIVE if the
application program is active and accepting logons.

INQ2 INQUIRE RPL=RPL2,0PTCD=LOGONMSG,
'ACB=ACB1,NIB=NIB2,
AREA=LGNMSG,AREALEN=100

NIB2 NIB NAME=LU2
LGNMSG DS CL100

INQ2 obtains the data portion of the logon that was sent from te logical unit whose
symbolic name is contained in NIB2 and that was directd to the application program
represented by ACB1. This data is placed in the area designated as LGNMSG.

When the INQUIRE operation is completed, the following RPL fields are set:

If INQUIRE (OPTCD=APPSTAT) has been completed normally, as indicated in
register 15, the FDBK field is set as shown in Appendix C.

If INQUIRE (all versions except OPTCD=APPSTAT) has been completed normally,
the RECLEN field indicates the number of bytes of data that have been placed in the
work area designated by the AREA field. If INQUIRE was completed successfully but
the FDBK2 field indicates that the work area was too small (FDBK2=5), RECLEN
indicates the required length.

The value 26 (decimal) is set in the REQ field indicating an INQUIRE request.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

47

INTRPRET

INTRPRET-Interpret an Input Sequence

48

For each terminal or device-type logical unit, INTRPRET allows an application program
acting as the primary end of the session to use interpret tables that are specified by the
user and maintained by ACF/VTAM, rather than tables that are created and maintained
by each application program.

During ACF/VTAM definition, the user identifies each terminal or device-type logical
unit in its network and optionally associates an interpret table with each one. The
interpret table contains one or more variable-length sequences that the terminal is capable
of sending—such as graphic characters, tab characters, or program function key
characters. With each of these sequences, the user specifies a corresponding 8-byte
sequence (or the address of a user-written routine that generates an 8-byte sequence). An
application program issuing INTRPRET identifies the terminal or logical unit and
provides a particular sequence received from it; ACF/VTAM, if it finds that sequence in
the interpret table for that terminal or logical unit, returns the corresponding sequence to
the application program. An interpret table cannot be defined for other application
programs, nor can such a table be used to interpret data from a terminal or device-type
logical unit in another domain.

As an example, assume that the user defines the following interpret tables for two
terminals, T2741 and T3270:

T2741’s interpret table J T3270’s interpret table
_Logon. LOGON LGN LOGON
Repeat last xmission. REPEATLT # REPEATLT
Stop. STOP @ LIST

If an application program receives the sequence ‘“Repeat last xmission.” from T2741,
INTRPRET (if provided with the sequence and the identity of the terminal) would return
the sequence “REPEATLT” to the application program. If the application program
specifies T3270 and provides the sequence “#” to INTRPRET, INTRPRET would return
the corresponding sequence—in this case, another “REPEATLT”—to the application
program.

Name Operation Operands

[symbol] | INTRPRET | RPL=rpl address
[. rpl field name=new value]...

RPL=rpl address

Indicates the location of the RPL from which INTRPRET obtains needed information
from the application program, and into which it returns completion status information.

rpl field name=new value

Indicates an RPL field to be modified and the new value that is to be contained or
represented within it. To avoid the possibility of program reassembly following future
releases of ACF/VTAM, set the RPL field with MODCB macro instructions rather than
with the INTRPRET macro instruction.

INTRPRET

Format: For rpl field name code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. The new value can be any value that is
valid for that operand in the RPL macro instruction or it can indicate a register.
ARG=(register) can also be coded.

The following RPL operands apply to an INTRPRET macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program.

ARG=(register)
Indicates the register containing the CID of the session. ACF/VTAM looks for an
interpret table for this terminal or device-type logical unit.

NIB=nib address

Indicates the NIB whose NAME field identifies the terminal or device-type logical unit.
ACF/VTAM looks for an interpret table for this terminal or device-type logical unit. If
the NIB field does not indicate a NIB address, the ARG field must contain a CID.

AREA=data address
Indicates the data area containing the sequence being submitted to ACF/VTAM for
interpretation.

RECLEN=data length
Indicates how many bytes are being submitted to ACF/VTAM for interpretation.

AAREA=data area address
Indicates the data area where ACF/VTAM is to place the interpreted sequence.

AAREALN=data area length
Indicates the capacity of the data area where ACF/VTAM is to place the interpreted
sequence. This value should be at least 8.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
INTRPRET macro instruction is completed. If EXIT is specified, the RPL exit routine is
scheduled. Otherwise the ECB is posted, and CHECK or WAIT must be used to determine
when the posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor the EXIT keywords are specified,
ACF/VTAM treats the field as if ECB=INTERNAL had been specified. See the RPL
macro instruction for more information.

OPTCD=SYNI|ASY

When the SYN option code is set, control is returned to the application program when
the INTRPRET macro instruction has been completed. The macro instruction is
completed as soon as the data has been placed in the application program’s storage area.
When ASY is set, control is returned as soon as ACF/VTAM has accepted the request.
Once the INTRPRET macro instruction has been completed, the ECB is posted or the
RPL exit routine is scheduled, depending on the setting of the ECB-EXIT field.

49

INTRPRET

Example

Return of Status Information

50

INT1 INTRPRET RPL=RPL1,
NIB=NIB6,AREA=INSEQ,RECLEN=(3),
AAREA=OUTSEQ,AAREALN=8

RPL1 RPL

INSEQ DS CL180
NIB6 NIB NAME=TERM1
OUTSEQ DS CL8

An application program has read a block of data from TERMI1 and issues INT1 to
interpret that data. NIB6 identifies the terminal, (and therefore, the interpret table to be
used), AREA indicates the data area containing the data to be interpreted (INSEQ), and
RECLEN indicates the amount of data to be interpreted. Note that if INTRPRET uses
the same RPL that was used to read the data, the NIB-ARG field, the AREA field, and
the RECLEN field are already correctly set.

Upon completion of INT1, the corresponding sequence is placed in the data area
identified by the AAREA field (OUTSEQ). Although two separate data areas have been
provided in this example for the “input” data (INSEQ) and the “output” data
(OUTSEQ), there is no reason why the same data area could not be used.

When the INTRPRET operation is completed, these RPL fields are set:

If the FDBK2 field indicates that INTRPRET failed because the data to be placed in
the AAREA work area would not fit (FDBK2=5), the RECLEN field contains the
number of bytes required to hold the data. If INTRPRET was completed successfully,
the RECLEN field indicates how many bytes of data have actually been placed in the
AAREA work area.

The value 27 (decimal) is set in the REQ field, indicating an INTRPRET request.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

LDO

LDO—Create a Logical Device Order (Basic Mode Only)

With the READ, WRITE, SOLICIT, and RESET macro instructions, the application
program can perform all but a few of the I/O operations provided by ACF/VTAM. To
request any of the following I/O operations, however, the application program must use
the DO and LDO macro instructions:

Copy the contents of a remotely attached 3277 Display Station buffer to the buffer of
any printer or display unit attached via the same control unit. Use the COPYLBM or
COPYLBT LDOs.

Read the entire contents of a 3270 display unit’s buffer. (To simply read the data that
the terminal operator sends, use the READ macro instruction.) Use the READBUF
LDO. .

Send a positive or negative acknowledgment accompanied by leading graphic
characters, to a System/3 or System/370 CPU, and then read a block of data from it.
Use the WRTPRLG or WRTNRLG LDOs.

Write data beginning with a block of heading characters to a System/3 or System/370
CPU. Use the WRTHDR LDO.

End an NCP session with a terminal. Use the DISCONCT LDO.

Erase the entire display screen of a 3270 display station (or a 2265 display station
attached to a 2770 Data Communication System) and write a block of data, or erase
only the unprotected portion of a 3270 display station screen and write no data.
Although these operations are available through the WRITE macro instruction, the
latter does not allow erasure to be combined with a conversational WRITE operation.
If the ERASELBM or ERASELBT LDOs are followed by a chained READ LDO,
however, a combined erase-write-read operation can be achieved. If the EAU LDO is
followed by a chained READ LDO, a combined erase-read operation can be achieved.

The LDO macro instruction generates a control block during program assembly that
indicates one of the above I/O operations. The actual operation is performed when a DO
macro instruction is executed.

Some LDOs can be combined to form a series of operations, much like channel command
words can be combined to form a channel program.

An LDO has four parts:
A B c D
> 1byte [* & 2 bytes — P& 4 bytes L
- 1byte =&

A command indicator. This indicates the specific 1/0O operation to be performed.

A chaining indicator. A flag can be set in some ot the LDOs that cause DO
processing to also use the next cantiguous LDO in storage.

A fength indicator. This indicates the length of the data or data area. (The RPL also
has corresponding data address and length fields, but these indicate the LDO address,
not the data address, when the RPL is used by DO.)

A data address or a data area address. Depending on the command, this address
indicates an area containing data, or a storage area where data is to be placed.

51

LDO

52

Although the operands corresponding to these parts are optional when the LDO mactro
instruction is coded, the command and usually the data address and length indicator must
be set before the DO macro instruction is executed. The LDO command descriptions
below indicates whether these fields must be set. Assembler language must be used if you
want to set LDO fields during program execution. You cannot use the manipulative
macro instructions to modify LDO fields.

Name Operation Operands

[symbol] | LDO [CMD=command]

[, ADDR=data address or data area address}
[, LEN=data length or data area length]

[, FLAGS=C|D]

CMD=command

Format: After the CMD keyword, code any of the following values:

COPYLBM WRITE WRTNRLG EAU
COPYLBT WRITELBM WRTPRLG DISCONCT
READ WRITELBT ERASELBM

READBUF WRTHDR ERASELBT

Function: Indicates the specific I/O operation to be performed.

COPYLBM :
This LDO causes the entire contents of a 3277 Display Station buffer to be copied to a

_ printer or another display unit in the same remotely attached information display system.

ACF/VTAM sends the copy request as a message by adding an ETX line control character
at the end. This LDO applies only to remotely attached 3270 terminals.

The ADDR and LEN operands of this LDO must indicate the location and length of a

data area containing (1) a 3270 copy control character and (2) the rightmost 2 bytes of
the “from” device’s CID. For an explanation of the copy control character, refer to IBM
3270 Information Display System Component Description, GA27-2749.

The ARG field of the DO macro instruction’s RPL must contain the CID of the *“to”
device.

o

COPYLBT

The COPYLBT LDO performs like the COPYLBM LDO, except that after the data has
been copied, ACF/VTAM waits for the receiving device’s acknowledgment, and sends an
EOT character after the acknowledgment is received. (The LBM and LBT in the
COPYLBM and COPYLBT LDOs stand respectively for “last block in message” and “last
block in transmission.”)

READ . :
The READ LDO obtains a block of data from a System/3 or System/370 CPU and places
it in a storage area in the application program.

The READ LDO causes ACF/VTAM to perform the same action that a READ macro
instruction does. However, a READ LDO can be command-chained after a WRTPRLG or
WRTINRLG LDO. This allows the application program to either (1) send a negative
acknowledgment to the device and then reread the data sent by it or (2) send a positive

LDO

acknowledgment to the device and then read the next block of data (or EOT character)
sent by it. By generating its own responses in this manner, the application program can
send leading graphic characters along with the response.

If, at the time DO is executed, no solicited data is in ACF/VTAM buffers from the
terminal, ACF/VTAM first solicits data from the terminal. This “implicit” solicitation
operates as if a SOLICIT macro instruction had been issued.

The ARG field of the DO macro instruction’s RPL must contain the CID of the device.
The ADDR and LEN fields of the READ LDO must indicate the location and length of
the storage area where the data is to be placed.

If the data to be placed there is too long to fit, and the TRUNC option code is in effect,
the excess data is discarded. If the KEEP option is in effect instead of TRUNC, as much
data as will fit is placed in the input area, and the length of the moved data is placed in
RECLEN (so RECLEN=LEN), and the LDO’s address is placed in the RPL’s AAREA
field. The excess data can be obtained with another READ LDO or with a READ macro
instruction.

READBUF

The READBUF (read buffer) LDO causes the entire contents of a 3275 or 3277 Display
Station’s buffer to be placed in an area in the application program. ACF/VTAM sends the
device-control characters required to distinguish this kind of input operation from a
normal read operation (which obtains data only when the terminal operator enters data
and presses ENTER). This LDO applies to both locally and remotely attached 3270
terminals.

The ARG field of the DO macro instruction’s RPL must contain the CID of the sending
device.

The ADDR and LEN operands of this LDO indicate the address and length of the storage
area where the data is to be placed. The action taken when the data is too long to fit is
the same as described above for READ.

WRITE

The WRITE LDO writes a block of data to a System/3 or System/370 CPU. For these
devices, the WRITE LDO works exactly like a WRITE macro instruction with a BLK
option code; an STX character is added to the beginning of the data, and an ETB line
control character is added to the end. However, if a WRITE LDO is command-chained
after WRTHDR LDO (by specifying FLAGS=C on the WRTHDR LDO), this sequence is
written:

S S E
0 heading T text T
H X B

The ADDR and LEN operands of the WRITE LDO must indicate the location and length
of the text data to be written. The ARG field of the DO macro instruction’s RPL must
contain the CID of the receiving device.

WRITELBM

The WRITELBM LDO writes a block of data to a System/3 or System/370 CPU. For
these devices, WRITELBM works exactly like a WRITE macro instruction with an LBM
option code; an STX character is added to the beginning of the data, and an ETX
character is added to the end. However, if a WRITELBM LDO is chained after a
WRTHDR LDO, this sequence is written:

53

LDO

54

S S E
0 heading T text T
H X X

The ADDR and LEN operands of the WRITELBM LDO must indicate the location and
length of the text to be written. The ARG field of the DO macro instruction’s RPL must
contain the CID of the receiving device.

WRITELBT

The WRITELBT writes a block of data to a System/3 or System/370 CPU. For these
devices, WRITELBT works exactly like a WRITE macro instruction with an LBT option
code; the data is preceded with an STX character and followed with an ETX cha}acter,
and when an acknowledgment is received from the device, an EOT character is sent.
However, if a WRITELBT LDO is chained after a WRTHDR LDO, this sequence is
written:

S S E E
(0] heading T text T T (6]
H X - X I T

|

acknowledgment |

received — — — —— -

The ADDR and LEN operands of the WRITELBT LDO must indicate the location and
length of the text to be written. The ARG field of the DO macro instruction’s RPL must
contain the CID of the receiving device.

WRTHDR

The WRTHDR LDO writes a block of heading characters to a System/3 or System/370
CPU. The heading characters are provided by the user; ACF/VTAM inserts an SOH
character at the beginning of the block and an ETB character at the end.

If a WRITE, WRITELBM, or WRITELBT LDO is chained to a WRTHDR LDO (by
specifying FLAGS=C on the WRTHDR LDQ), the ETB character is not inserted after the
heading. See the above descriptions of the WRITE, WRITELBM, and WRITELBT
commands.

The ADDR and LEN operands of this LDO must indicate the location and length of the
heading characters to be written. The ARG field of the RPL being used by the DO macro
instruction must contain the CID of the receiving device.

WRTNRLG

The WRTNRLG LDO (write negative response with leading graphics) sends a NAK
character, accompanied by up to seven leading graphic characters, to a System/3 or
System/370 CPU. WRTNRLG can be used only if it is command-chained before a READ
LDO (by specifying FLAGS=C on the WRTNRLG LDO) and if BLOCK has been
specified for the device’s NIB.

The ADDR and LEN operands of the WRTNRLG LDO must indicate the location and
number of graphic characters to be used. The ARG field of the DO macro instruction’s
RPL must contain the CID of the receiving device.

WRTPRLG

The WRTPRLG LDO (write positive response with leading graphics) sends an ACKO or
ACK1 sequence, accompanied by up to seven leading graphic characters, to a System/3 or
System/370 CPU. WRTPRLG can be used only if it is command-chained before a READ
LDO (by specifying FLAGS=C on the WRTPRLG LDO) and BLOCK has been specified
for the device’s NIB.

LDO

The ADDR and LEN operands of the WRTPRLG LDO must indicate the location and
number of graphic characters to be used. The ARG field of the DO macro instruction’s
RPL must contain the CID of the receiving device.

ERASELBM

The ERASELBM LDO (erase, write last block of message) erases the screen of a 3270
display station or the screen of a 2265 display station attached to a 2770 Data
Communication System. It then writes a block of data ending with STX to the terminal.
A READ LDO can be chained after an ERASELBM LDO.

The ADDR and LEN operands of the ERASELBM LDO must indicate the location and
length of the data to be written. The ARG field of the DO macro instruction’s RPL must
contain the CID of the terminal.

ERASELBT

The ERASEBLT LDO (erase, write last block of transmission) works exactly like the
ERASELBM LDO, except that after the data is sent to the terminal and an
acknowledgement is received, an EOT character is sent. A READ LDO can be chained
after an ERASELBT LDO.

EAU

The EAU LDO (erase all unprotected) erases the unprotected portion of a 3270 display

station’s screen. No data is written to the terminal. A READ LDO can be chained after an
- EAU LDO.

The ARG field of the DO macro instruction’s RPL must contain the CID of the terminal.

DISCONCT

The DISCONCT LDO (disconnect) sends an EOT to the terminal and terminates the NCP
session with the terminal. The ARG field of the DO macro instruction’s RPL must
contain the CID of the terminal.

ADDR=data address or data area address
Indicates the location of the data or data area to be used when the LDO is processed.

For COPYLBM and COPYLBT LDOs, ADDR points to a 3270 copy control character
and rightmost 2 bytes of the “from” device’s CID. For the READ and READBUF LDOs,
ADDR indicates where the data obtained by these LDOs is to be placed. For the output
LDOs, ADDR indicates the location of the data that is to be written to a device.

If you omit this operand, the ADDR field is set to 0. Register notation is not permitted.

LEN=data length or data area length
Indicates the length (in bytes) of the data or data area specified in ADDR.

For COPYLBM and COPYLBT LDOs, this value should always be set to 3. For READ
and READBUF LDOs, ACF/VTAM uses this value to determine whether the data to be
placed there is too big to fit. For all output LDOs, LEN indicates how many bytes of data
are to be written.

Format: The maximum length you can specify is 32,767 bytes. If you omit this operand,
the LEN field is set to 0.

Register notation is not permitted.

5§

LDO

Examples

56

FLAGS=CID

Indicates the action that the DO macro instruction is to take after it has used this LDO.
The presence of this operand indicates that DO is to continue with the next contiguous
LDO in storage. FLAGS=C (command chaining) indicates that the entire LDO is to be
used. FLAGS=D (data chaining) indicates that only the ADDR and LEN fields of the
next LDO are to be used. The absence of this operand indicates to DO that no further
LDOs are to be used. A maximum of 100 LDO’s may be chained together.

Note: A WRTNRLG or @ WRTPRLG LDO must be command-chained to a READ LDO;
a READ LDO cannot be command-chained to another READ LDO, and a COPYLBM or
a COPYLBT LDO cannot be command-chained to any other LDO.

The following example illustrates the use of the COPYLBM LDO.
Assume that the CID of the ‘to’ device is already in the ARG field of the DO macro’s

RPL, and that the CID of the ‘from’ device (the CID that must be manipulated) is in the
CID field of NIB1.

PRIME SHOWCB NIB=NIB1,AREA=TEMP,LENGTH=4,FIELDS=CID
‘ MvC CPYSCRN1+1(2), TEMP+2

CPYSCRN DO RPL=RPL1,AREA=LDO1

LDO1 LDO CMD=COPYLBM,ADDR=CPYSCRN1,LEN=3

TEMP DS F (TEMP=WORK AREA FOR ‘FROM’ CID)

CPYSCRN1 DC X‘630000° (63=A COPY CONTROL CHARACTER,

* 0000=FINAL AREA FOR RIGHT

* HALF OF ‘FROM’ CID)

The purpose of the two instructions at PRIME is to obtain the CID of a ‘from’ device
(from NIB1 into TEMP) and place the rightmost 2 bytes of the CID into a data area
pointed to by LDO1. When CPYSCRN is executed, the device whose CID is in RPL1’s
ARG field will be the recipient of the copy operation.

The next example shows how a READBUF LDO might be used.

READ2 DO RPL=RPL2,ARG=(7),AREA=READLDO
READLDO LDO CMD=READBUF,ADDR=WORKAREA,LEN=480
WORKAREA DS CLA480

When READ?2 is executed, register 7 must contain the CID of a 3270 display unit.
ACF/VTAM will obtain the entire contents of that device’s buffer and place it in
WORKAREA.

The following example illustrates the use of the WRTHDR LDO.

WRITEIT DO RPL=RPL3,ARG=(8),AREA=HDRLDO

HDRLDO LDO CMD=WRTHDR,ADDR=HDRBLOK,LEN=5 ,FLAGS=C
TXTLDO LDO CMD=WRITE,ADDR=TXTBLOK,LEN=16

HDRBLOK DS CLS

TXTBLOK DS CL200

LDO

When WRITEIT is executed, ACF/VTAM sends a heading block from AHDRBLOK
combined with a text block from ATXTBLOK. The line control characters added by
ACF/VTAM make the sequence look like this:

S data S data E
0] from T from T
H AHDRBLOK X ATXTBLOK B

The following example shows how a- WRTPRLG LDO can be command-chained to a
READ LDO.

POSRSP DO RPL=RPL4,ARG=(9),AREA=RSPLDO

RSPLDO LDO CMD=WRTPRLG,ADDR=GRAPHICS,LEN=7,FLAGS=C
THENREAD LDO CMD=READ,ADDR=INAREA,LEN=480

GRAPHICS DC C‘CPU3003’

When POSRSP is executed, register 9 must contain the CID of a device. ACF/VTAM
sends a positive response (ACKO or ACK1) to the device, accompanied by seven leading
graphic characters from GRAPHICS. The next LDO causes ACF/VTAM to read the next
block of data from the device.

57

MODCB

MODCB-Modify the Contents of Control Block Fields

MODCB modifies the contents of one or more fields in an ACB, EXLST, RPL, or NIB
control block. MODCB works with control blocks created either with declarative macro
instructions or with the GENCB macro instruction.

The user of the MODCB macro instruction indicates the location of the control block, the
fields within the control block to be modified, and the new values that are to be placed or
represented in those fields.

Any field whose contents can be set with the ACB, EXLST, RPL, or NIB macro
instruction can be modified by the MODCB macro instruction. The operands used to do
this are the same as those used when the control block is created.

The following restrictions apply to the use of MODCB:
e An ACB cannot be modified after an OPEN macro has been issued for it.

® An exit list (EXLST) cannot have exits added to it with the MODCB macro
instruction. If an exit list field is not specified in the EXLST macro instruction, do not
attempt to modify that field with a MODCB macro instruction. MODCB can, however,
be used to change dummy exit addresses to valid addresses.

¢ An RPL cannot be modified while a request using that RPL is pending, that is, while
the RPL is active.

o A NIB should not be modified while its address is in the NIB field of an active RPL.

o The AM field of the ACB, EXLST, and RPL control blocks cannot be modified. Once
a control block has been generated in an ACF/VTAM-compatible form, it cannot later
be modified for use with another access method.

List, generate, and execute forms of the MODCB macro instruction are available; they are
designated by the MF operand.

Because there are a large variety of formats in which the various MODCB operand values
can be specified, the operand format specifications have been tabulated in Appendix E,
and do not appear here.

Note: For terminals that use basic mode, PROC and USERFLD data in the NIB can be
changed with MODCB; however, ACF/VTAM must also be notified of these changes with
CHANGE macro instructions. See the description of the CHANGE macro instruction for
more information.

Name Operation Operands

[symbol] | MODCB AM=VTAM .
, ACB=acb address]
, EXLST=exit list address (
, RPL=rpl address
_, NIB=nib address
, field name=new value ...
[, MF =list, generate, or execute form parameters]

Example

Return of Status Information

MODCB

AM=VTAM

Identifies this macro instruction as an ACF/VTAM macro instruction. This operand is
required.

ACB=acb address
EXLST=exit list address
RPL~rpl address
NIB=nib address

Indicates the type and location of the control block whose fields are to be modified.

field name=new value

Indicates a field in the control block to be modified and the new value that is to be
contained or represented within it.

For field name, code the keyword of any operand that can be coded in the macro
instruction corresponding to the ACB, EXLST, RPL, or NIB operand. If RPL=RPLI1 is
coded, for example, the keyword of any operand in the RPL macro instruction can be
coded. ARG=(register) can also be coded.

For new wilue, code any value that could be used in an ACB, EXLST, RPL, or NIB macro
instruction, or use one of the formats indicated in Appendix E.

MF=list, generate, or execute form parameters

Indicates that a list, generate, or execute form of MODCB is to be used. Omitting this
operand causes the standard form of MODCB to be used. See Appendix F for a
description of the nonstandard forms of MODCB.

MOD1 MODCB RPL=(5),0PTCD=(ASY,SPEC,CS),AM=VTAM

MOD1 activates the ASY, SPEC, and CS option codes in an RPL. The settings for the
other option codes are not affected. The address of this RPL must be in register 5 when
MOD1 is executed.

After MODCB processing is completed, register 15 indicates whether or not the operation
completed successfully. If the operation completed successfully, register 15 is set to O; if
it completed unsuccessfully, register 15 is set to either 4, 8, or 12 (DOS/VS only). If it is
set to 4 or 12, register 0 is also set indicating the specific nature of the error (see
Appendix D).

59

NIB

NIB—Create a Node Initialization Block

60

The NIB generated by the NIB macro instruction (1) is used to identify which terminal or
logical unit is to be connected to or disconnected from the application program or (2) is
used to identify the object of an INQUIRE macro instruction. It also indicates how
ACF/VTAM is to handle communication between the application program and the
terminal or logical unit. For example, if MODE=RECORD is specified in the NIB when
the session is established, all subsequent communication with that logical unit must be in
record mode.

For certain macro instructions, NIBs can be grouped together into lists. When requests are
directed towards a NIB that is the first in a NIB list, ACF/VTAM considers all of the
terminals or logical units represented in the NIB list to be the objects of the request, not
just the terminal or logical unit represented by the first NIB.

A field called the CID field is part of every NIB. When the terminal or logical unit is
connected to the application program, ACF/VTAM generates the CID to identify the
session and places it both in the NIB’s CID field and in the ARG field of the RPL being
used by the OPNDST macro instruction. (For NIB lists, the CID placed in the ARG field
is not meaningful.) Subsequent I/O requests directed toward that specific terminal or
logical unit must have the CID of the associated session in the I/O request’s RPL.

The NIB macro instruction causes the NIB to be built during program assembly; the NIB
macro instruction is not executable. The NIB is built on a fullword boundary. A NIB can
be built during program execution with a GENCB macro instruction.

Name Operation Operands
[symbol] | NIB [NAME=name in resource definition table]
[,USERFLD=fullword of data]
[,LISTEND=YES|NO]

[, MODE=BASICIRECORD]
[,SDT=APPL|SYSTEM]
[EXLST=exit list address]
[ENCR=REQDISELINONE]
[, RESPLIM=1| response limit]
[, LOGMODE=0|C* ’|logon mode]
[, BNDAREA=0| bind area address]
[CAICS|IRPLC]]
[,NDFASYX|DFASYX]
[, NRESPX/RESPX]
[, NCONFTXT|CONFTXT]
[, KEEPTRUNC]
[, SYSRESP|APPLRESP]
[, ORDRESPNORDRESP]
[, BLOCK|MSG|TRANS|CONT]
[,LGOUTI|NLGOUT]
[, LGININLGIN]
, PROC=(|, TMFLLINTMFLL])
[, NEIBIEIB]
[, TIMEOUT|NTIMEOUT]
[, ERPIN/NERPIN|
[. ERPOUT|NERPOUT]
[, NMONITOR [MONITOR]
{.NELCIELC]
[, NBINARY|BINARY]

NIB

NAME=name in resource definition table
Associates the NIB with a resource represented in the resource definition table. (The
resource definition table is built by the user during ACF/VTAM definition.)

Format: Use the name of the PU, LU, CLUSTER, TERMINAL, LINE, COMP, LOCAL,
CDRSC, or APPL entry that represents one or more terminals or application programs in
the resource definition table. Using unframed EBCDIC characters, code this name as it
appears in the input to the ACF/VTAM network definition. See the ACF/VTAM System
Programmer’s Guide for your operating system.

Example: NAME=LU13

Note: Although this operand is optional, the NAME field should be set by the time a
CLSDST, OPNDST, SIMLOGON, INTRPRET, REQSESS, TERMSESS, OPNSEC, or
INQUIRE macro instruction is issued for this NIB. One exception: When OPNDST with
an ACCEPT processing option and an ANY option code is issued, the NAME field need
not be set, since ACF/VTAM will place the name of the connected terminal or logical
unit in this field.

If you omit this operand, the entire 8-byte NAME field is set to EBCDIC blanks.

USERFLD=full word of data
Indicates any 4 bytes of data that the application program wants to associate with the
terminal or logical unit represented by this NIB. When you subsequently issue I/O
requests for the terminal or logical unit, ACF/VTAM will place whatever data you have
set in USERFLD into the USER field of the I/O request’s RPL.

The 4 bytes of data can be anything the application program chooses to associate with
the terminal or logical unit. It can be the program’s own version of the terminal’s or
logical unit’s symbolic name. This would be useful in the case of a RECEIVE or READ
macro with OPTCD=ANY, since the setting of the USER field in the macro’s RPL
provides an efficient way for the program to establish the identity of the terminal or
logical unit from which the data was just obtained.

Format: Code the 4 bytes of data in either character, fixed-point, or hexadecimal
format, or, if an address is desired, code it as an A-type or V-type address constant.
Register notation cannot be used.

Examples:
USERFLD=C‘LU0OY’
USERFLD=F‘100’
USERFLD=X‘00043E0Q’
USERFLD=A(RTN1)
USERFLD=V(EXTRTN)

Note: For basic mode only, use the MODCB and CHANGE macro instructions to change
the contents of the USERFLD field after an OPNDST macro instruction has been issued
for the NIB.

If you omit this operand, the USERFLD field is set to zero.

LISTEND=YESINO
Allows the application program to group NIBs into lists. LISTEND=YES indicates that
this NIB is the last in a list (or is an isolated NIB not part of a list). LISTEND=NO
indicates that this NIB and the NIB immediately following it in storage are part of a NIB
list. Any number of NIBs can be grouped together by specifying LISTEND=NO for each

61

NIB

62

one except the last. LISTEND=YES must be specified for an OPNSEC, REQSESS, and
TERMSESS macro instruction.

Example: The following use of the LISTEND operand effectively groups the Boston
NIBs into one group, the Chicago NIBs into another, and defines the Portland NIB as a
“list” of one.

BOSTON NIB NAME=BOSTON1,MODE=RECORD,LISTEND=NO
NIB NAME=BOSTON2,MODE=RECORD,LISTEND=YES
CHICAGO NIB NAME=CHICAGO1,MODE=RECORD,LISTEND=NO

NIB NAME=CHICAGO2,MODE=RECORD,LISTEND=NO
NIB NAME=CHICAGO3,MODE=RECORD,LISTEND=YES
PORTLAND NIB NAME=PORTLAND,MODE=RECORD,LISTEND=YES

MODE=BASIC|RECORD

Indicates whether basic-mode macro instructions (such as READ and WRITE) or
record-mode macro instructions (such as SEND and RECEIVE) are to be used to
communicate with the terminal or logical unit. Except for the 3270, the application
program has no choice; MODE=BASIC must be specified for all BSC and start-stop
terminals, and MODE=RECORD must be specified for all logical units. The 3270 can be
handled in either mode.

The application program that will act as the primary end of the session can be designed to
handle both modes, since the INQUIRE macro instruction (OPTCD=DEVCHAR) can be
used before connection to determine which mode is permissible. A simpler and better
procedure, however, would be to maintain one ACB (application program, in effect) for
BSC and start-stop terminals and another ACB for logical units. Using separate ACBs
eliminates the need to repeatedly test and set the mode type.

Note: This field must be filled in before the NIB can be used.

SDT=APPLISYSTEM (Record mode only)

For a primary application program, this operand indicates whether the application
program or ACF/VTAM is to send the first Start Data Traffic (SDT) command to the
logical unit. If SDT=SYSTEM is used, ACF/VTAM automatically sends an SDT command
as part of the connection process before posting the OPNDST RPL complete. If
SDT=APPL is coded, ACF/VTAM does not send an SDT command until the application
program tells it to do so (by issuing a SESSIONC macro instruction with CONTROL=
SDT). The use of this operand is determined by the transmission services profile that is
specified in the session parameters used for connection (see Appendix J).

For a secondary application program, this operand (when coded) and the NIB are used
when executing an OPNSEC macro instruction and indicate whether the secondary appli-
cation program or ACF/VTAM will respond to a Start Data Traffic (SDT) command.

EXLST=exit list address

Indicates an EXLST control block that contains the address of a DFASY, RESP, or SCIP
exit routine (or contains the addresses of any combination of these exit routines). '

Exit routines indicated by a NIB (NIB-oriented exit routines) are scheduled when
ACF/VTAM receives input (with the exception of a Bind command) from the logical unit
associated with the NIB. If input is received and no NIB-oriented exit routine is specified,
ACF/VTAM then satisfies any pending RECEIVE macros or schedules the appropriate
ACB-oriented exit routine (if any). See the A CF/VTAM Macro Language Guide for more
information on the scheduling of these exit routines.

NIB

Figure 5 shows two sets of NIB-oriented exit routine addresses and one set of
ACB-oriented exit routine addresses. When input from the logical unit associated with
NIBI arrives, the appropriate EXLST1 exit routine is scheduled. When input from the
logical unit associated with NIB2 arrives, ACF/VTAM checks EXLST2 for the
appropriate exit routine. If there is no exit routine specified (which in this example
would be true if the input was a response, since EXLST2 has no RESP entry),
ACF/VTAM satisfies any pending RECEIVE macros or checks for an ACB-oriented exit
routine address in EXLSTA. When input from any other logical unit arrives, ACF/VTAM
uses EXLSTA.

Note: If you omit this operand, the NIB's EXLST field is set to 0.

ENCR=REQD| SEL|NONE (Encrypt/Decrypt

Feature only)
Indicates the level of cryptography for the session. If either REQD or SEL is specified,
the session will not be established unless both ends of the session are capable of crypto-

graphy.

If REQD is specified, all data requests (STYPE=REQ, CONTROL=DATA) will be sent
enciphered.

If SEL is specified, data requests will be enciphered on the basis of the RPL’s CRYPT
field setting. See RPL for a further description of the CRYPT field.

If NONE is specified or the default taken, no enciphering by ACF/VTAM will occur
unless required by the receiving logical unit. If this is the case, ACF/VTAM will do
all of the enciphering and deciphering transparently to the application program.

RESPLIM=1|response limit (Record mode only)
Indicates the maximum number of responded output requests that can be pending at one
time. (A responded output request is a SEND with POST=RESP, STYPE=REQ, and
CONTROL specifying data or a normal-flow, data flow control command.) If
RESPLIM=0 is coded, ACF/VTAM imposes no limit on the number of pending responded
output requests.

Note: If this operand is omitted, the RESPLIM field is set to 1. The maximum value
that can be coded is 65535.

ACE EXLSTA : NIB1 EXLST1
DFASY=DFASYA DFASY=DFASY1
RESP=RESPA RESP=RESP1
SCIP=SCIPA SCIP=SCIP1
NiB2 EXLST2

DFASY=DFASY2

SCIP=SCIP2

Figure 5. ACB-Oriented and NIB-Oriented Exit Routines

63

NIB

LOGMODE=0|C* ’| logon mode name (Record mode only)

The LOGMODE field in a NIB that is pointed to by the NIB field of an RPL is used by
the INQUIRE with OPTCD=SESSPARM, OPNDST, REQSESS, CLSDST with
OPTCD=PASS, and SIMLOGON macro instructions. If a bind area is used with an
OPNDST macro instruction, it will override any logon mode that is also present. Figure 6
through 10 summarize the use of the LOGMODE and BNDAREA operands.

When used by the INQUIRE OPTCD=SESSPARM macro:

e LOGMODE indicates that ACF/VTAM is to take the session parameters associated
with a pending logon and any logon data, if present, and place them in the field
pointed to by the AREA field of the RPL. The AREALEN field of the RPL must
specify the length of the area.

Return codes are returned if a match is not found (RTNCD=20, FDBK2=75) or if
there is no pending logon (RTNCD=20, FDBK2=76).

o LOGMODE=C* ’ indicates to ACF/VTAM that the default session parameters for the
logical unit are to be returned in the field pointed to by the AREA field. The
AREALEN field of the RPL must specify the length of the area.

¢ LOGMODE=logon mode name indicates to ACF/VTAM the logon mode name with
which it is to search the logon mode table defined for the logical unit named in the
NIB. If a match is found, the session parameters are returned in the field pointed to
by the AREA field of the RPL. The AREALEN field of the RPL must specify the
length of AREA. If a match is not found, return codes are returned (RTNCD=20,
FDBK?2=75).

When used by OPNDST (OPTCD=ACCEPT) macro instruction:

o LOGMODE=0 and BNDAREA=0 indicate the ACF/VTAM is to take the session
parameters from a pending logon and construct a Bind command which will be sent to
the logical unit establishing the connection. If there is no pending logon, return codes
are returned (RTNCD=20, FDBK2=76).

e LOGMODE=C* ’ and BNDAREA=0 indicate the ACF/VTAM is to take the default
session parameters (those making up the first entry in the logon mode table for the
logical unit named in the NIB) and construct a Bind command which will be sent to
the logical unit. If there is no pending logon, return codes (RTNCD=20, FDBK2=76)
are set.

* LOGMODE=logon mode name and BNDAREA=0 indicate to ACF/VTAM the logon
mode name with which it is to search the logon mode table defined for the logical unit
named in the NIB. The logical unit must be in the same domain as the application
program that issued the OPNDST macro instruction. If a match is found, the session
parameters associated with that logon mode name are used to construct a Bind
command, which is sent to the logical unit establishing the connection. Return codes
are returned if a match is not found, if the logical unit is in another domain
(RTNCD=20, FDBK2=75) or if there is no pending logon (RTNCD=20, FDBK2=76).
The BNDAREA operand must be O.

¢ LOGMODE=0IC* ’llogon mode name and BNDAREA=bind area address indicate that
the session parameters in the specified bind area are to be used to construct the Bind
command. The LOGMODE operand is ignored. Return codes are returned if there is
no pending logon (RTNCD=20, FDBK2=76).

When used by the OPNDST (OPTCD=ACQUIRE) macro instruction:

® LOGMODE=0IC‘’ and BNDAREA=0 indicate to ACF/VTAM that default session
parameters (those making up the first entry in the logon mode table defined for the

logical unit named in the NIB) are to be used to construct the Bind command, which is
sent to the logical unit establishing the connection.

S9

NIB specifies INQUIRE with OPTCD = SESSPARM issued for a logical unit in'

LOGMODE = BNDAREA = the same domain a different domain
0) 0 The session parameters associated with the first pending Iogon1 are placed in the RPL's Same as
AREA field?. same domain
c'’ 0 The session parameters associated with the default logon mode2 table associated with Invalid option

the logical unit are placed in the RPL's AREA field.4

logon mode 0 The session parameters are associated with the logon mode specified are placed in the Invalid option
RPL’s AREA field. If the logon mode is not in the logon mode table associated with
the logical unit, an error code is returned.

bind area This field is ignored3. ‘ This field is ignored3.
address

1A pending logon can originate from:
A LOGAPPL specification in a definition statement
A VARY LOGON command entered by the network operator {automatic logon)
An Initiate command issued by the logical unit
A logon entered by a terminal user
A CLSDST with OPTCD=PASS macro instruction
A SIMLOGON macro instruction
A REQSESS macro instrcution
Note that ACF/VTAM is unable to determine the source of a pending logon. The application programmer must know in advance the source of the pending logons and the logon modes that
are possible and code the program accordingly.
The default logon mode is the first entry in the logon mode table associated with the logical unit; however, if DLOGMOD was specified in a definition macro for the logical unit, the default
logon mode specifies the logon mode table entry named in the DLOGMOD keyword.
The bind area address is ignored, and the session parameters are determined by the LOGMODE value. The logon mode table is associated with the logical unit named in the' NIB.
If there is no pending logon or the session parameters cannot be determined, an error code is returned.

Figure 6. Determining Session Parameters for an INQUIRE Macro Instruction

qIN

NIB specifies OPNDST with OPTCD = ACCEPT issued for a logical unit in
LOGMODE= BNDAREA= the same domain a different domain
0 1) The session parameters associated with the first pending Iogonl are useds. Same as
same domain
c’ (4] The session parameters associated with the default logon mode3 table associated Invalid option
with the logical unit are usads.
Logon mode 0 The session parameters associated with the logon mode specified are used. If the Invalid option
logon mode is not in the logon mode table associated with the logical unit, an
error code is returned. '
bind area The session parameters associated with the bind area specified are used. Same as
address same domain

1A pending logon can originate from:
A LOGAPPL specification in a definition statement

A VARY LOGON command entered by the network operator {(automatic logon)

An Initiate command issued by the logical unit

A logon entered by a terminal user

A CLSDST with OPTCD=PASS macro instruction
A SIMLOGON macro instruction

A REQSESS macro instruction

Note that ACF/VTAM is unable to determine the source of a pending logon. The application programmer must know in advance the source of the pending logons and the logon modes that

are possible and code the program accordingly.

The default logon mode is the first entry in the logon mode table associated with the logical unit; however, if DLOGMOD was specified in a definition macro for the logical unit, the default
logon mode specifies the logon mode table entry named in the DLOGMOD keyword.
If the session parameters cannot be determined, an error code is returned.

Figure 7. Determining Session Parameters for an OPNDST ACCEPT Macro Instruction

4IN

L9

NIB specifies

OPNDST with OPTCD = ACQUIRE issued for a logical unit in

LOGMODE= BNDAREA= the same domain or in a different domain
0 0 The session parameters associated with the default logon mode! in the logon mode
table for the logical unit are used”.
c’ 0 Same as specifying LOGMODE=0 and BNDAREA=0.
logon mode 0 The session parameters associated with the logon mode specified are usedz.
bind area The session parameters associated with the bind area specified are used.
address

1The default logon mode is the first entry in the logon mode table associated with the logical unit; however, if DLOGMOD was specified in a definition macro for the logical unit, the default

logon mode specifies the logon mode table entry named in the DLOGMOD keyword.
If the logon mode is not in the logon mode table associated with the logical unit, an error code is returned.

Figure 8. Determining Session Parameters for an OPNDST ACQUIRE Macro Instruction

89

NIB specifies : SIMLOGON or CLSDST with OPTCD=PASS issued for a logical unit in
LOGMODE= BNDAREA= the same domain or in a different domain
0 0 The session parameters associated with the default logon mode! in the logon mode

__table for the logical unit are used”.

c’ 0 Same as specifying LOGMODE=0 and BNDAREA=0.
logon mode 0 The session parameters associated with the logon mode specified are usedz.
bind area This field is ignored>.
address .

lThe default logon mode is the first entry in the logon mode table associated with the logical unit; however, if DLOGMOD was specified in a definition macro for the logical unit, the default
logon mode specifies the logon mode table entry named in the DLOGMOD keyword.

2If the logon mode is not in the logon mode table associated with the logical unit, an error code is returned.

3The bind area address is ignored, and the session parameters are determined by the LOGAODE value. The logon mode table is associated with the logical unit named in the NIB.

Figure 9. Determining Session Parameters for a SIMLOGON or CLSDST PASS Macro Instruction

NIB specifies REQSESS issued for an application program in
LOGMODE= BNDAREA= ‘the same domain or in a different domain
0 1] The session parameters associated with the default logon mc:ade1 in the logon mode
table associated with the application program issuing the REQSESS macro instruc-
tion are used.)
c’ 0 Same as specifying LOGMODE=0 and BNDAREA=0.
fogon mode 0 The session parameters associated with the logon mode specified are usedz.
bind area This field is ignored>.
address

1The default logon mode is the first entry in the logon mode table associated with the logical unit; however, if DLOGMOD was specified in a definition macro for the logical unit, the default
logon m9de is the DLOGMOD entry.
If the logon mode is not in the logon mode table associated with the application program issuing the REQSESS macro, an error code is returned.
The bind area address is ignored, and the session parameters are determined by the LOGMODE value. The logon mode table is associated with the application program that issued the
REQSESS macro instruction and not the application program named in the NIB (the primary application program).

Figure 10. Determining Session Parameters for a REQSESS Macro Instruction

gIN

NIB

e LOGMODE-=logon mode name and BNDAREA=0 indicate to ACF/VTAM the logon
mode name with which it is to search the logon mode table defined for the logical unit
named in the NIB. If a match is found, the session parameters associated with that
logon mode name are used to construct a Bind command, which is sent to the logical
unit establishing the connection. The BNDAREA operand must be 0. If a match is not
found, return codes (RTNCD=20, FDBK2=75) are returned.

® LOGMODE=0IC* ’| logon mode name and BNDAREA=bind area address indicates that
the session parameters in the specified bind area are to be used to construct the Bind
command. The LOGMODE operand is ignored.

When used by the SIMLOGON or CLSDST with OPTCD=PASS macro instruction:

e LOGMODE=0IC*’ indicates to ACF/VTAM that the default session parameters for
the logical unit are to be used as a part of the pending logon which eventually results
from the request.

e LOGMODE=logon mode name indicates to ACF/VTAM the logon mode name with
which it is to search the logon mode table for the logical unit named in the NIB. If a
match is found, the session parameters associated with that logon mode name are to be
used as a part of the pending logon.

When used by a REQSESS macro instruction:

e LOGMODE=0IC*’ indicates to ACF/VTAM that the default session parameters for the
secondary application program are to be used as a part of the pending logon which will
be queued as a result of the REQSESS macro instruction.

¢ LOGMODE-=logon mode name indicates to ACF/VTAM the logon mode name with
which it is to search the logon mode table for the application program that issued the
REQSESS macro instruction. If a match is found, the session parameters associated
with that logon mode name are to be used as part of the pending logon.

BNDAREA=0| bind area address (Record mode only)
Permits the application program to explicitly specify a set of session parameters that
ACF/VTAM is to use in constructing a Bind command that will be sent to a logical unit.
The BNDAREA field in a NIB that is pointed to by the NIB field of an RPL is used by
the OPNDST (OPTCD=ACCEPT or ACQUIRE) macro instruction. Session parameters
specified in a bind area override session parameters available from any other source.
Figures 6 through 10 summarize the use of the LOGMODE and BNDAREA operands.

When used by the OPNDST macro instruction:

¢ BNDAREA=0 indicates that there is no bind area defined and that ACF/VTAM should
use the LOGMODE field in the NIB to determine the session parameters to be used or
use those session parameters associated with a pending logon. See Figures 6 and 7.

e BNDAREA=bind area address indicates the location of a bind area that contains the
session parameters that are to be used by ACF/VTAM to construct the Bind
command, which is sent to the logical unit to establish the session. The application
program is responsible for placing the appropriate session parameters into the bind
area. When the BNDAREA operand specifies an address, the LOGMODE operand is
ignored.

PROC=processing option|(processing option,...)

Indicates options ACF/VTAM is to follow for subsequent I/O requests involving the
terminal or logical unit connected using this NIB.

69

NIB

70

Format: Code as indicated in the assembler format table above. The parentheses can be
omitted if only one option code is selected.

NIB NAME=TERM13,MODE=RECORD,
PROC=(DFASYX,RESPX CONFTXT)

NIB NAME=TERM14,MODE=BASIC,
PROC=BLOCK

Note: Not all processing options are valid for all types of devices. See Figure 12 at the
end of this macro instruction description to see which processing options are valid for the
devices supported by ACF/VTAM.

CAICSIRPLC

Applies for a logical unit or terminal when input received from it satisfies a RECEIVE.
This operand is useful for differentiating terminals and logical units by the type of re-
quest they may respond to. It overrides the CS/CA option codes that may have been
specified in the RECEIVE’s RPL, but not the RPL of any other type of macro
instruction.

CS specifies that the connection should be put into continue-specific mode after this re-
ceive is completed for the input type that satisfies this RECEIVE. It can be used when a
terminal or logical unit may not respond to any subsequent RECEIVE (OPTCD=ANY)
macros. This might be the case if the terminal or logical unit normally sends multiple
lines per transaction.

CA specifies that the connection should be put into continue-any mode after this receive
is completed for the input type that satisfies the RECEIVE. It can be used when a ter-
minal or logical unit can always respond to a RECEIVE (OPTCD=ANY) macro. This
might be the case if the terminal or logical unit normally sends no more than one line per
transaction.

RPLC, the default, specifies that the CS/CA option code in the RECEIVE RPL should be
used when switching continue modes.

NDFASYXI|DFASYX (Record mode only)
Indicates whether a DFASY exit routine is to be scheduled when expedited-flow requests
arrive in ACF/VTAM’s buffers from a logical unit.

When DFASYX is set for the logical unit’s NIB and no other restrictions prevent the
scheduling of the DFASY exit routine, the exit routine is scheduled. (Even if the exit
routine cannot be scheduled, a RECEIVE OPTCD=ANY, RTYPE=DFASY will never be
satisfied if the connection was established with PROC=DFASYX.) If NDFASYX is
specified, the exit routine is not scheduled.

NRESPX|RESPX (Record mode only)

Indicates whether a RESP exit routine may be scheduled when responses arrive in
ACF/VTAM’s buffers from a logical unit. When RESPX is set for the logical unit’s NIB
and no other restrictions prevent the scheduling of the RESP exit routine, the exit
routine is scheduled. (Even if the exit routine cannot be scheduled, a RECEIVE

- OPTCD=ANY, RTYPE=RESP will never be satisfied if the connection was completed

with PROC=RESPX.) If NRESPX is set, the RESP exit routine is not scheduled.

NCONFTXT|CONFTXT

Indicates whether or not the data sent to or received from this terminal or logical unit is
to be considered as “confidential.” If CONFTXT is specified, the buffers used to hold the
data are cleared before they are returned to their buffer pools. For NCONFTXT, no such
clearing is done.

NIB

KEEP|TRUNC
Indicates whether overlength input data is to be kept or discarded.

When TRUNC is used, ACF/VTAM fills the input data area and discards the remainder.
No error condition is raised. When KEEP is used, ACF/VTAM fills the input data area and
saves the remainder for subsequent RECEIVE or READ macro instructions.

In the record mode, the presence of excess data can be determined by comparing the
RPL’s AREALEN field (input area size) with the RECLEN field (amount of incoming
data). If the value in RECLEN exceeds the value in AREALEN, excess data has been kept
(and will be used to satisfy the next appropriate RECEIVE). Note that when data is kept,
the RESPOND field of the RPL is always set to NEX, NFME, NRRN.

In the record mode, the NIB’s TRUNC-KEEP processing option is overridden if the KEEP
TRUNC-NIBTK option code of the RECEIVE’s RPL is set to KEEP or TRUNC. That is,
the NIB’s TRUNC-KEEP processing option is effective only if the NIBTK option code is
set in the RPL.

In the basic mode, the RPL’s FDBK field indicates the presence of excess data. If the
EOB flag is set on (DATAFLG=EOB for a TESTCB macro instruction), the entire block is
in the input data area and no excess data remains. If the EOB flag is set off, there is
excess data.

SYSRESP| APPLRESP (Record mode only)

Indicates whether or not the application program is to respond to an expedited data flow
control request (for example, a DFASY request). If PROC=SYSRESP is specified,
ACF/VTAM responds to the request.

If PROC=APPLRESP is specified, the application program must respond to the expedited
data flow control request using a SEND STYPE=RESP macro instruction. While either a
positive or negative response may be sent, a definite response type 1 (FME) must be used
in either case. The sequence number and command type (CONTROL) used in the
response can be obtained from the RECEIVE RPL or the ACF/VTAM read-only RPL
supplied in the applicable exit routine.

ORDRESPINORDRESP (Record mode only)

Indicates whether or not certain designated normal-flow responses are to be handled by
ACF/VTAM in a manner similar to normal-flow (DFSYN) requests. The ORDRESPI
NORDRESP option is used in conjunction with the QRESPINQRESP option in the RPL.

When an application program issues a request to a logical unit, it can specify how
ACF/VTAM is to return the response. If the application program issues a SEND macro
instruction with POST=SCHED, RESPOND=QRESP to a logical unit with the NIB option
PROC=ORDRESP, ACF/VTAM, in effect, queues the response with other incoming
normal-flow (DFSYN) reqeusts from that logical unit. This response cannot\ satisfy a
RESP exit routine or a RECEIVE macro instruction with RTYPE=RESP. This, queued
response can only satisfy a RECEIVE RTYPE=DFSYN macro instruction but causes the
RTYPE field to be set to DFSYN,RESP, thereby notifying the application program this
RECEIVE was satisfied by a response and not by a normal-flow (DFSYN) request. See
the ACF/VTAM Macro Language Guide for an additional description and possible uses of
this option. '

71

NIB

72

The response to a normal-flow request is not queued if any of the following fields are set:

¢ If the SEND macro instruction specifies POST=RESP. The response to this request is
posted directly into the RPL fields of the SEND RPL.

e If the SEND macro instruction specifies RESPOND=NQRESP. The response is
delivered to tpe application program before normal-flow (DFSYN) requests and

satisfies either a RECEIVE RTYPE=RESP macro instruction or the RESP exit routine.

e If the NIB (specifying the name of the logical unit) specifies PROC=NORDRESP. The
response is delivered to the application program before normal-flow (DFSYN) requests
and satisfies either a RECEIVE RTYPE=RESP macro instruction or a RESP exit
routine.

BLOCKIMSGITRANS!|CONT (Basic mode only)

These control how many blocks of data are to be obtained from a BSC or start-stop
terminal for a solicit operation and how acknowledgments are to be handled as each
block arrives.

Solicit operations are all operations conducted by ACF/VTAM to transfer data from a
terminal to ACF/VTAM buffers. Solicitation does not involve the transfer of data from
ACF/VTAM buffers to the application program.

ACF/VTAM solicits data from a terminal when (1) the application program issues a
SOLICIT macro instruction or (2) the application program issues a READ macro
instruction with the SPEC option code in effect for the RPL. Solicitation is not
performed in the latter case, however, if ACF/VTAM already holds data obtained from
the terminal.

Before reading the descriptions of BLOCK, MSG, TRANS, and CONT that follow,
examine Figure 11. This figure illustrates a typical data transmission from a terminal and
shows how much of it is obtained each time a SOLICIT (or READ, as qualified above) is
executed.

BLOCK

Either a line control response is sent to acknowledge receipt of the previous solicit
operation, or polling is started. One block of data ending in an EOB line-control
character (for start-stop devices) or an ETB or ETX line-control character (for BSC
devices) is obtained. No response is sent when data is obtained as a result of the
current solicit request. The data obtained by the current solicit request is
acknowledged only when the next solicit request is issued.

If the terminal represented by this NIB is a BSC device, an authorization test is made
when an OPNDST macro instruction is issued for this NIB. If the installation did not
authorize the use of BLOCK by the application program (by so indicating in the
application program’s APPL entry during ACF/VTAM definition), the OPNDST macro
instruction will not be executed successfully. (The use of BLOCK is restricted this way
because it can result in line throughput that is very low compared to MSG, TRANS,
and CONT. The low throughput results because the CPU, rather than just the
communications controller, must be interrupted for each block.)

MSG

Blocks of data are continuously obtained until an EOT character (for start-stop
devices) or a block containing an ETX character (for BSC devices) is received. In
effect, this means that data is solicited from the terminal until an entire message has
been received. For BSC devices, line-control responses are sent as each block is
received, except for the last block. Its receipt is not acknowledged until the next
solicit request is issued. ’

BLOCK

When BLOCK is in effect, each
SOLICIT obtains only a block:

USER ACF/VTAM
SOLICIT
o Acknowiedge
previous block,
or start polling
o Obtain data:
BLOCK First BLOCK
of message
SOLICIT

o Acknowledge

o Repeat process
(obtain another
block)

MSG

When MSG is in effect, each
SOLICIT obtains a message:

USER ACF/VTAM

SOLICIT

A @ ' Acknowledge
previous block,
or start polling

o Obtain data:

First BLOCK
of message

® Acknowledge

e Obtain data:
MESSAGE

BLOCK
of message

® Acknowledge

o Obtain data:

Last BLOCK
of message

\)
SOLICIT
e Acknowledge

e Repeat process
(obtain another
message or EOT)

TRANS

When TRANS is in effect, each
SOLICIT obtains a transmission:

USER ACF/VTAM

SOLICIT

A e Acknowledge
previous block,
or start polling

e Obtain data:]

First BLOCK
of message

e Acknowledge

o Obtain data:

BLOCK
of message

TRANS—
MISSION

o Acknowledge

o Obtain data:

Last BLOCK
of message

o Acknowledge

o Obtain data:

First block of
new message or

EOT

\i
soLicIT

e Start polling

o Repeat process
(obtain another
transmission)

" Figure 11. The Effect of BLOCK, MSG, TRANS, and CONT on Solicitation

NIB

CONT

When CONT is in effect, one
SOLICIT obtains blocks of data
continuously:

USER ACF/VTAM

SOLICIT

A o Acknowledge
previous block,
or start polling

e Obtain data:

First BLOCK
of message

o Acknowledge

o Obtain data:

BLOCK
of message

® Acknowledge

o Obtain data:

NO

uMIT Last BLOCK

of message

® Acknowledge
e Obtain data:

EOT

(or first block of
new message)

@ Start polling

@ Repeat process
(continue to
obtain blocks
until stopped
by RESET)

73

NIB

74

For start-stop devices, line-control responses are sent for each block, including the last.
The procedure used to solicit data from start-stop devices when the MSG processing
option is specified is identical to that used when the TRANS processing option is
specified. : ;

TRANS

Blocks of data are continuously obtained until an EQT character is received. In effect,
this means that data is solicited from the terminal until an entire transmission has been
received. Line-control responses are sent as each block is received, including the last
block. Polling is not resumed until the next solicit request is issued.

CONT

Blocks of data are continuously solicited from the terminal. Line-control responses are
sent for each block received. This solicitation continues indefinitely, unless the solicit
operation is canceled with the RESET macro instruction or the terminal is
disconnected from the program.

LGOUTINLGOUT (Basic mode only)

Indicates whether or not an output operation with this terminal should be considered to
be in error if the terminal acknowledges receipt of the data with a response that is
preceded by leading graphic characters.

When LGOUT is specified, a code is posted in the FDBK field of the WRITE request’s
RPL, and the leading graphic characters are held by ACF/VTAM. A READ request
directed at the terminal causes the characters to be moved into the application program’s
storage (in the data area indicated by the AREA field of READ’s RPL). If leading graphic
characters are received during a conversational write operation, the characters are passed
to the application program as the input data.

When NLGOUT is specified, the output operation is completed in error if leading graphic
characters are received in return.

LGININLGIN (Basic mode only)
Indicates whether or not an input operation with this terminal should be considered to be
in error if leading graphic characters are received.

If LGIN is specified, the presence of leading graphic characters does not constitute an
error condition; the application program is notified of their presence by means of a code
set in the FDBK field of the input request’s RPL.

When NLGIN is specified, the input operation is completed in error if leading graphic
characters are detected.

TMFLLINTMFLL (Basic mode only)

Indicates whether or not the communications controller is to insert idle device control
characters into the data sent to this terminal. TMFLL allows the communications
controller to insert these characters. NTMFLL suppresses the insertion of these
characters, implying that the application program will be supplying its own time-fill
characters. Time fill is only performed for start-stop devices, which require special timing
considerations following a carriage return and horizontal tab characters. See the
INHIBIT=TIMEFILL operand in the NCP Generation and Utilities Guide.

NEIB!EIB (Basic mode only)

Indicates whether or not the system is to insert an EIB error information byte (EIB) after
every intermediate transmission block (ITB) received from this terminal. EIB indicates
that an EIB is to be inserted with each intermediate transfer block; NEIB suppresses the
insertion of EIBs.

NIB

If you specify insertion of EIBs, you should scan the input data for ITB characters, and
analyze the next byte (which will be the EIB) to determine whether an error occurred in
the intermediate block. Insertion of EIBs is appropriate when you expect that many ITBs
will be required for a data block. If a transmission error occurs and you are not using EIB,
you cannot determine in which ITB the error occurred, and so would have to request a
retransmission of the entire block.

Note: The presence of ITB characters in the input data does not depend on the
EIB-NEIB processng option; this option only governs the presence of the EIB. The
presence of the ITB character is a function of the terminal itself. See the XITB operand in
the NCP Generation and Utilities Guide.

TIMEOUT|NTIMEOUT (Basic mode only)

Indicates whether or not the communications controller should suppress any text timeout
limitation that might otherwise be used with this terminal. TIMEOUT permits normal
timeouts to occur; NTIMEOUT suppresses them.

When TIMEOUT is in effect, the communications controller imposes a text timeout
limitation as indicated by the installation in the terminal’s TERMINAL entry. (A timeout
limitation means that if the interval between two successive characters sent by a terminal
exceeds a set limit, the I/O operation is terminated with an error condition.) NTIMEOUT
provides the application program with a means of overriding this limitation and allowing
the terminal an indefinite time period between characters. See the INHIBIT=TEXTTO
operand in the NCP Generation and Utilities Guide.

ERPIN|NERPIN (Basic mode only)

Indicates whether or not system error recovery (retry) procedures are to be used if an I/O
error occurs during an input operation with this terminal. ERPIN means that the error
recovery procedures are to be used; NERPIN means that they are not. See the
INHIBIT=ERPR operand in the NCP Generation and Ultilities Guide.

ERPQUTINERPOUT (Basic mode only)

Indicates whether or not system error recovery (retry) procedures are to be used if an I/O
error occurs during an output operation with this terminal. ERPOUT means that the error
recovery procedures are to be used; NERPOUT means that they are not. See the
INHIBIT=ERPW operand in the NCP Generation and Utilities Guide.

NMONITOR |MONITOR (Basic mode only)

Indicates whether or not ACF/VTAM is to invoke the ATTN exit routine (see EXLST
macro) when this terminal causes an attention interruption. MONITOR means that the
communications controller will monitor the terminal for attention interruptions while the
terminal is not engaged in pending or actual I/O operations, and invoke the routine when
an interruption is detected.

MONITOR is valid only if the user indicated during ACF/VTAM definition that the
communications controller is to react to attention interruptions. If an attention
interruption is received during an I/O operation, the I/O request ends with the RPL’s
FDBK?2 field posted to indicate why. MONITOR does not apply to attention
interruptions issued during an I/O operation.

If NMONITOR is specified, no monitoring occurs (the attention interruption is ignored).

75

NIB

Example

NIB Fields Set by ACF/VTAM

76

NELCIELC (Basic mode only)

Indicates whether communication control characters are to be generated for the data sent
to this terminal communication. ELC signifies that the application program is embedding
its own communication control characters in the data; its use prevents the system from
doing so. NELC means that the application program is relying on the system to insert
appropriate communication control characters. See Appendix B for a list of the
communication control characters that are normally inserted. ELC can only be used if the
NBINARY option code is in effect for the RPL. For basic-mode 3270 devices, NELC
must be used.

NBINARY I BINARY (Basic mode only)

Indicates how data is to be handled when a WRITE macro instruction is used to write to a
BSC device. When BINARY is specified, the data is sent in transparent text mode. This
means that each of the communication control characters normally inserted by the
communications controller is preceded by a DLE line control sequence. Any bit patterns
can thus be sent, including communication control characters and object code.
NBINARY means that the data is not sent in transparent text mode. Since the data will
be screened for communication control characters, no bit patterns that happen to be
communication control characters should be in the output data. (See “Transmission in
Transparent Mode” in the NCP Generation and Utilities Guide for a description of
transparent text mode.)

NIB1 NIB NAME=KBD3270,USERFLD=A(KBDRTN),
MODE=BASIC,LISTEND=YES

NIB1 could represent the keyboard component of a 3270 whose entry in the resource
definition table is labeled KBD3270. When OPNDST is issued to connect this terminal to
the program, the NIB field of the OPNDST’s RPL must point to NIBI. Since
LISTEND=YES is coded, only this terminal can be connected with the OPNDST macro.
Responses from the logical unit are not queued with other normal requests, and
ACF/VTAM responds to all expedited data flow control commands sent from the logical
unit.

All of the operands described above are supplied by the application program and cause
the NIB fields to be set when the NIB macro instruction is assembled. There are
additional NIB fields that cannot be set by the application program, but are set by
ACF/VTAM, and they can be examined by the application program during program
execution. ACF/VTAM uses these fields to return information to the application program
upon completion of OPNDST and OPNSEC processing. These fields are:

Field Name Content
CID If the terminal or logical unit named by the NAME field in the NIB is

connected, this field contains a 32-bit value representing the session just
established. This communication ID, or CID, is also placed in the ARG
field of the RPL used by the OPNDST macro instruction. Subsequent
1/0 requests for the terminal or logical unit must have this CID in the
ARG field of the RPL used for the I/O request. When NIB lists are.
used, the CID placed in the ARG field is not meaningful. The CID can
be examined with the SHOWCB and TESTCB macro instructions. (If
the terminal or logical unit is not connected, the CID field is not
modified.)

Field Name
CON

DEVCHAR

NIBNACLQ

Devices Applicable for Each NIB Processing Option

NIB

Content

An indicator that is set to show that the terminal or logical unit
represented by this NIB has been connected. You can examine this field
following OPNDST or OPNSEC by coding CON=YES in a TESTCB
macro instruction; an “equal” PSW condition code indicates that the
CON field is set to YES, and the terminal or logical unit is connected.
This field is useful if you are using OPNDST to establish connection
with more than one terminal or logical unit. Should connection be
established with some of the terminals or logical units and not others,
examination of each NIB’s CON field will tell you which terminals or
logical units are connected. This field must be reset before the NIB can
be reused. (If the terminal or logical unit is not connected, the CON
field is not modified.)

An 8-byte field describing the type of terminal or logical unit that has
been connected and what optional features it has. (If the terminal or
logical unit is not connected, the DEVCHAR field is not modified.)
This field can be examined with either the SHOWCB or TESTCB macro
instruction or with the ISTDVCHR DSECT. The DEVCHAR DSECT
(ISTDVCHR) is described in Appendix H (Figure H-13).

An indicator that is set to show whether or not a logon is still pending
after an OPNDST ACCEPT macro instruction fails to accept that logon.
If this bit is on (1), it means that the pending logon was canceled by
ACF/VTAM. The logon must be repeated; for example, a terminal
operator has to log on again. If the bit is off (0), the logon is still
pending, and the application program can retry the OPNDST macro
instruction.

Figure 12 shows, for each device supported by ACF/VTAM, the processing options
applicable to that device. An X indicates that the PROC operand value is meaningful for

the device.

77

NIB

x

x
x

x
x

Sy
v S
s o008
Y S
(é” T/S//0
AT
Start—Stop Devices

IBM 1050 Data Communication System X X| X X
IBM 2740 Communication Terminal, x | x X
Model 1
IBM 2740 Communication Terminal,
Model 1 with checking X XX X
|1BM 2740 Communication Terminal, x| x X
Model 1, with station control
IBM 2740 Communication Terminal, Model X x| x X
1, with checking and station control ‘
IBM 2740 Commiunication Terminal,
Model 2 X1 X X
IBM 2741 Communication Terminal X1 X X
IBM Communicating Magnetic Card x| x X |
Selectric Typewriter
IBM World Trade Telegraph Station X | X X
IBM SYSTEM/7 XX X
AT&T 83B3 Selective Calling Station x| x X
CPT-TWX, Models X | X X
33 & 35
Western Union Plan 115A Station X| X X

x| x | xIx|xX| %X |x
x| X Ix|x[|x]| x | x! x
x| x [xIxIx] x |x]| %

BSC and 3270 Local Devices

IBM 2770 Data Communication System XX X|X X XX X
IBM 2780 Data Transmission Terminal XX XX X

IBM 2972 General Banking Terminal, x| x X

Models 8 and 11

IBM 3270 Information Display System, X X

locally attached to controller (channel)

IBM 3270 Information Display System, re- X X

motely attached to controller {basic mode)

1BM 3270 information Display Systém,
locally or remotely attached, treated as X
an SNA device (record-mode)

IBM 3735 Programmable Buffered

Terminal XXX} X X X X | X XXX X
IBM 3740 Data Entry System XiX]IX|X X X XX X X[X X
IBM 3780 Data Transmission Terminal X|X|X]|X X X X| X X| XX X
IBM System/3 XIX[X|X|X|X]X X XX XXX X
IBM System/370 XIX|XIX|X|X]X X X | X X X|X X

Figure 12 (Part 1 of 2). Devices Applicable to Each NIB Processing Option

78

NIB

A < 23
A
/;\- o° A /9 A& ‘g“ Q@O/J
& é‘ Y & 6b $ & é Q‘“/ Q
Y ON S288 I ~ <
s FE L£TES 8588 0 &9
SESE, FEFTe 885858
~ NS K N AR Q Q
v o, SERJESISEEII T S 64
(&) SA I DKV < SIS TS AR AAS
SIS 181 SIS S SIS 8 S S
/G’é“/\ o/vvo/\«?&‘wwé*w«tz?oq- /S
SNA Devices

IBM 3270 Information Display System X X XIX| X X|X
IBM 3600 Finance Communications X X x| x| x| x| x
System
IBM 3650 Retail Store System * X X XXX | X]|X
IBM 3660 Supermarket System * X X X| XX | X|X
1BM 3767 Communication Terminal X X X XEX [XX
IBM 3770 Data Communications System X X XX X|X|X
1BM 3790 Communication System X X XX |[x | X|[X
IBM System/32 Batch Work Station X X XXX |{x|x

* Not available with OS/VS2 SVS

Figure 12 (Part 2 of 2). Devices Applicable to Each NIB Processing Option

79

OPEN

OPEN-Open One or More ACBs

80

The OPEN macro instruction opens (or ‘“‘activates™) the ACB so that the ACB and all
subsequent requests referring to it can be identified by ACF/VTAM as representing a
specific application program. The programmer coding the OPEN macro instruction
indicates the ACB (or ACBs) that are to be opened.

An ACB represents an application program, as defined by the user. This application
program that the ACB represents is neither a primary nor a secondary application
program. When the application program later establishes a session with a terminal or
logical unit and follows primary protocols, it becomes a primary application program for
that session. If the application program establishes a session with another application
program and follows secondary protocols, it becomes a secondary application program
for that session.

The ACB’s APPLID field must contain the address of ACF/VTAM’s symbolic name for
the application program. (A symbolic name is generated during ACF/VTAM definition
from the user-specified symbolic name on an APPL definition statement.) It is during
OPEN processing that the association between the ACB and the symbolic name is actually
made. Terminals and logical units directing logons to this symbolic name are in effect
directing their logons to the associated ACB.

If you do not specify an address of a symbolic name in the ACB’s APPLID field,
ACF/VTAM assumes that the symbolic name will be identified via JCL. In OS/VS, the
name specified on the application program’s EXEC statement is used; in DOS/VS, the job
name is used. If you fail to indicate a symbolic name through either the APPLID field or
by JCL, OPEN will not be completed successfully; and, in DOS/VS, if more than one
ACB is opened by a single task, the OPEN will fail if more than one of the ACBs named
has no name specified for APPLID. For this reason, the application program should
always supply an address of a symbolic name in the APPLID field for DOS/VS.

OPEN (and also CLOSE) must be issued in the mainline program (or in the LERAD or
SYNAD exit-routines if they have been entered directly from the main program). Never
issue OPEN in the RPL exit-routine or in any of the other exit-routines.

After an ACB is opened, the application program can then issue SENDCMD and
RCVCMD macro instructions to display and control the status of the network.

Privileged OS/VS2 MVS programs can issue OPEN macro instructions in any task, but all
OPENs must be issued in the same task. In DOS/VS, OS/VS1 and OS/VS2 SVS, programs
can issue OPEN macro instructions in more than one task.

If the APPL entry created by the installation contains a password, the ACB being opened
must also specify that same password, or OPEN will not be completed successfully.

Opening an ACB with MACRF=LOGON allows a primary application program to have
logons queued for it. When SETLOGON (OPTCD=START) is subsequently issued,
queued and new logons cause the LOGON exit routine to be scheduled.

Opening an ACB with MACRF=LOGON allows a secondary application program to
request connection to a primary application program and to participate in the connection
processing. When SETLOGON (OPTCD=START) is subsequently issued, a connection
request (REQSESS) can be issued and the secondary application program’s SCIP exit
routine is enabled to receive session parameters.

Example

Return of Status Information

OPEN

Name Operation Operands

[symbol] | OPEN acb address| , acb address] ...

This form of OPEN is valid in DOS/VS only.

[symbol] | OPEN (acb address[,,acb address]...)

This form of QOPEN is valid in OS/V'S only.

acb address

Indicates the ACB that is to be associated with an APPL entry.

Format: If more than one ACB is specified, separate each with a comma if the program is
going to be run under DOS/VS. Separate each ACB address with two commas if the
program is going to be run under OS/VS. (The same assembler handles both ACF/VTAM
and non-ACF/VTAM macro instructions. An extra operand can be supplied with each
address for the latter, and so an extra comma is required for the ACF/VTAM OPEN.)

Note: VSAM ACB addresses can also be used in the OPEN macro instruction. DOS/VS
users can also code DTF addresses, and OS/VS users can also code DCB addresses. The
addresses of different types of control blocks can be combined in one OPEN macro
instruction, although DOS/V'S users are limited to a total of 15 addresses.

OPEN123 OPEN (ACB1,ACB2,7) (DOS/VS)
OPEN123 OPEN (ACB,,ACB2,,(7))(0S/VS)

OPEN123 opens ACB1, ACB2, and the ACB whose address is contained in register 7.
Each of these ACBs is linked with an APPL entry in the resource definition table.

When control is returned to the instruction following the OPEN macro instruction,
register 15 indicates whether or not the OPEN processing was completed successfully.
Successful completion means that all ACBs specified in the OPEN macro instruction were
opened; unsuccessful completion means that at least one ACB was not opened. Successful
completion is indicated by a return code of 0 in register 15. For DOS/VS users, register
15 is unmodified if the OPEN is completed successfully and so should be set to O before
OPEN is executed. Unsuccessful completion is indicated by the following register 15
values:

Register 15
Return Code
For DOS/VS Meaning
Nonzero One or more ACBs (or DTFs or VSAM ACBs) were not successfully
opened.
For OS/VS Meaning
4 All ACBs (or DCBs) were successfully opened, but warning messages

were issued for one or more VSAM ACB:s.

81

OPEN

82

For OS/VS Meaning

8 One or more ACBs (or DCBs) were not successfully opened. If the
error condition indicated by the unopened ACB’s ERROR field can
be eliminated, another OPEN macro instruction can be issued for the
unopened ACBs.

12 One or more ACBs (or DCBs) were not successfully opened. Another
OPEN macro instruction cannot be issued for the unopened ACBs.

If unsuccessful completion is indicated, the application program should examine the
OFLAGS field in each ACB to determine which one (or ones) could not be opened. Test
each OFLAGS field by coding an ACB address and OFLAGS=0PEN in a TESTCB macro
instruction; if the resulting PSW condition code indicates an equal comparison, that ACB
has been opened:

TESTCB ACB=ACB4,0FLAGS=0PEN
BE OPENOK

If an unequal comparison is indicated, meaning that the ACB has not been opened,
another field in that ACB can be checked to determine the reason. This field is the
ERROR field. Like OFLAGS, ERROR is not a field that the application program should
modify (that is, there is no ERROR operand for the ACB macro, and thus none for the
MODCB macro), but the application program can obtain the contents of this field with
the SHOWCB or TESTCB macro instruction. For example:

SHOWCB ACB=ACB1,FIELDS=ERROR,AREA=SHOWIT,LENGTH=4,AM=VTAM

Note: If the ACB is already open, or if the address specified in the OPEN macro
instruction either does not indicate an ACB or lies beyond the addressable range of your
application program, nothing is posted in the ACB’s ERROR field. Thus if you find one
of the following return codes in the ACB’s ERROR field and none of the specified causes
apply, perhaps you are actually examining a field whose contents have not been modified
by OPEN. An already-open ACB or an invalid ACB address will result in register 15’s
being set to a non-zero value, however.

For the values that can be set in the ERROR field of an ACB, see Appendix C. Since
most of the error conditions described in Appendix C result from an error in your
application program or in the installation’s definition of ACF/VTAM, there is little that
can be done during program execution when these return codes are encountered. If,
however, you are attempting to open more than one ACB, you may wish to check the
ERROR field of each ACB. All ACBs whose ERROR fields are set to zero have been
opened successfully, and your application program can proceed using those ACBs.

Although the return codes following a DOS/VS OPEN are not identical to those following
an OS/VS OPEN, the following procedure can be used to produce a system-independent
determination of a successful or unsuccessful OPEN:

® Zero register 15 before issuing OPEN.
Issue OPEN for only one ACF/VTAM ACB at a time.
If register 15 is zero, consider the OPEN successful.

If register 15 is nonzero, consider the OPEN unsuccessful. Examine the contents of the
ACB’s ERROR field.

OPNDST

OPNDST-Establish Connection with Terminals or Logical Units

The OPNDST (open destination) macro instruction requests ACF/VTAM to establish a
connection (session) between the application program which will act as the primary end
of the session and one or more terminals or logical units. While an OPNDST must always
be used to establish a connection, there are two fundamentally different ways an
OPNDST can be used to request that connection.

Acquiring a Terminal or Logical Unit
An application program can request that a terminal or logical unit be connected to it.
This process is called acquiring a terminal or logical unit. Such a request is satisfied if the
terminal or logical unit is available; that is, is not connected to another application
program and does not have a pending logon. This type of request is implemented by
setting the ACQUIRE option code in the RPL used by OPNDST. The use of ACQUIRE
must be authorized by the user.

If a BSC or start-stop terminal has been defined as dial-out by the user, the connection
request is completed immediately if the terminal is available, but the terminal is dialed
only when an I/O request is issued for the terminal. If a logical unit has been defined as
dial out, it is dialed when OPNDST is issued for it.

Accepting a Terminal or Logical Unit
In the second way of using OPNDST, the application can request that a terminal or
logical unit be connected to it only if the terminal or logical unit requests connection
with that application program or if a connection request is made on its behalf. This
process is called accepting a terminal or logical unit.

This type of connection request can be embedded in a LOGON exit routine (see the
EXLST macro) that is automatically entered when a terminal or logical unit logs on. This
arrangement means that logon requests can, in effect, invoke the type of OPNDST which
will complete the connection.

This type of request is implemented by setting the ACCEPT option code in the RPL.

Note: When a terminal or logical unit logs on, ACF/VTAM first checks for a matching
outstanding OPNDST requests (that is, OPNDSTs with ACCEPT and Q that have not yet
been completed because no logon has been made by the terminal operator). If there are
no outstanding OPNDST requests, ACF/VTAM checks for a LOGON exit routine and
schedules it if it is active. Thus a logon will not cause a LOGON exit routine to be
scheduled if there is a pending OPNDST with OPTCD=ACCEPT. If no LOGON exit
routine exists, the logon is queued. See the Macro Language Guide for more information.

There are three versions of OPNDST with OPTCD=ACQUIRE. These versions are
specified with two RPL option codes, CONALL and CONANY, and the LISTEND field
of the NIB, which govern whether multiple terminals or logical units, only one, or one
specific terminal or logical unit is to be connected. OPNDST with ACCEPT likewise has
two versions, specified with two more RPL option codes, SPEC and ANY. These govern
whether a specific terminal or logical unit or any eligible terminal or logical unit is to be
connected. There are therefore a total of five general types of OPNDST. The following
five sections indicate how you must prepare for each and what happens when the
connection occurs.

OPNDST with ACQUIRE, CONALL, and a NIB List: Set the RPL’s NIB field to point to

a list of NIBs (described in the LISTEND operand of the NIB macro instruction), and set
the ACQUIRE and CONALL option codes in the RPL.

83

OPNDST

When OPNDST is issued, ACF/VTAM connects the program to all of the terminals and
logical units represented in the NIB list that are avallable when OPNDST is executed.
ACF/VTAM also:

. ® Generates a CID for each connected terminal or logical unit. Each CID is placed in its

respective NIB in the CID field, where it can be obtained with the SHOWCB macro
instruction when it is needed. The CID is not placed in the RPL’s ARG field. (In the
other forms of OPNDST, the CID is placed in the NIB and in the RPL.)

® Sets a flag in each NIB indicating that the terminal or logical unit is connected. This
flag can be tested by specifying CON=YES in a TESTCB macro instruction.

® Places the address of the first NIB of the NIB list in the AREA field of the RPL. (This
is the same address you supplied in the RPL’s NIB field; it is returned to you because
the contents of the NIB field are modified by ACF/VTAM during connection.)

OPNDST with ACQUIRE, CONANY, and a NIB List: Set the RPL’s NIB field to point
to a list of NIBs, and set the ACQUIRE and CONANY option codes in the RPL.

When OPNDST is issued, ACF/VTAM connects the program to the first (and only to the
first) available terminal or logical unit (regardless of type) represented in the NIB list. If
none is available, ACF/VTAM terminates the OPNDST request. A terminal or logical unit
is available if it is not connected to any application program and does not have a pending
logon. ACF/VTAM also:

® Generates a CID for the connected terminal or logical unit and places it in the ARG
field of the RPL and in the CID field of the NIB.

® Sets a flag in the NIB that represents the connected terminal or logical unit. The
application program can locate this NIB by issuing a TESTCB macro instruction with
the CON=YES operand for each NIB. An “equal” PSW condition code is set following
the TESTCB macro instruction if the NIB being tested represents the connected
terminal or 10g1ca1 unit.

® Places the address of the first NIB of the NIB list in the AREA field of the RPL. This
is the same address you supplied in the RPL’s NIB field; it is returned to you because
the contents of the NIB field are modified by ACF/VTAM during connection.

OPNDST with ACQUIRE and One NIB: Set the RPL’s NIB field to point to one NIB
{LISTEND field set to YES). ACF/VTAM connects the ‘terminal or logical unit whose
symbolic name is in the NIB to the application program. ACF/VTAM completes the
request immediately; if the terminal or logical unit is not immediately available, it is not
connected. ACF/VTAM also:

e Generates a CID for the connected terminal or logical unit and places it in the ARG
field of the RPL and in the CID field of the NIB.

® Sets a flag in the NIB indicating that the terminal or logical unit is connected.
e Places the address of the NIB in the AREA field of the RPL.

OPNDST with ACCEPT and ANY: Set the RPL’s OPTCD field to ACCEPT and ANY,
and set the NIB field to point to a NIB. This NIB need not have any symbolic name in it,
but it must at least have the MODE field set to RECORD or BASIC and the LISTEND
field set to YES.

When OPNDST is issued, ACF/VTAM attempts to connect the program'to any terminal
or logical unit that has directed a logon to the program. ACF/VTAM also:

® Places the symbolic name of the connected terminal or logical unit into the NAME
field of the NIB.

OPNDST

e Generates a CID for the connected terminal or logical unit and places it in the CID
field of that NIB and in the ARG field of the RPL.

e Places the address of the NIB in the RPL’s AREA field.

Note: In a network that contains SNA and non-SNA terminals, the mode set in the NIB
may not apply to the terminal or logical unit that logs on (for example, the MODE
operand is set to BASIC and a logical unit is the first to log on). Therefore, it is advisable
to use a LOGON exit routine and OPNDST with ACCEPT and SPEC in this situation.

OPNDST with ACCEPT and SPEC: Set the RPL’s OPTCD field to ACCEPT and SPEC,
and set the NIB field to point to a NIB. The NAME have its LISTEND field of this NIB
must identify the terminal or logicahave its LISTEND field set to YES.

When OPNDST is issued, the result will be this: ACF/VTAM connects the program to the
specific terminal or logical unit represented in the NIB if (or when) that terminal or
logical unit has directed a logon to the program. ACF/VTAM also:

® Generates a CID for the connected terminal or logical unit and places it in the CID
field of the NIB and in the ARG field of the RPL.

o Places the address of the NIB in the RPL’s AREA field.

If the OPNDST fails, the NIB is set to indicate whether the logon is still pending or
another logon must be generated to establish the connection.

Besides the SPEC-ANY option code, other RPL and NIB options and fields affect how
the OPNDST request is handled. Generally, their effect is the same as it is for other macro
instructions that point to an RPL; see Figure 16 in the RPL macro instruction description
for a list of these codes and fields.

Name Operation Operands

[symbol] | OPNDST RPL=rpl address
[rpl field name=new value] . ..

RPL=rpl address
Indicates the location of the RPL to be used during OPNDST processing.

rpl field name=new value
Indicates an RPL field to be modified and the new value that is to be contained within it.
If you wish to avoid the possibility of program reassembly following future releases of
ACF/VTAM, set the RPL field with MODCB macro instructions rather than with the
OPNDST macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field to be modified. The new value can be any value that is
valid for that operand in the RPL macro instruction, or it can indicate a register.

The following RPL operands apply to an OPNDST macro instruction:

ACB=acb address

Indicates the ACB that identifies the application program to which the terminal or logical
unit is to be connected.

85

OPNDST

86

NIB=nib address

Indicates the NIB whose PROC, MODE, and USERFLD attributes are to be assigned to
the connected terminal or logical unit. The LOGMODE and, optionally, the BNDAREA
field of the NIB specify the session parameters to be used (by ACF/VTAM) in creating an
SNA Bind command. If OPTCD=ACQUIRE or OPTCD=SPEC, the NIB also identifies (via
its NAME field) the terminal or logical unit to be connected.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
OPNDST macro instruction is completed. The macro instruction is completed when the
connections between the application program and the terminals specified are established.
If EXIT is specified, the RPL exit routine is scheduled. Otherwise the ECB is posted, and
CHECK or WAIT must be used to determine when the posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

OPTCD=SYNIASY

When the SYN option code is set, control is returned to the application program when
the macro instruction has been completed. When ASY is set, control is returned as soon
as ACF/VTAM has accepted the request. Once one or more connections have been
established (that is, once the macro instruction has been completed), the ECB is posted or
the RPL exit routine is scheduled, as indicated by the ECB-EXIT field.

OPTCD=ACQUIRE | ACCEPT

When ACQUIRE is set, ACF/VTAM connects the terminals or logical units indicated via
the RPL’s NIB field. Only those available are connected. When ACCEPT is set, a terminal
or logical unit for which there is a logon for the application program is connected.

OPTCD=CONANY|CONALL o
When CONANY is set and OPNDST (OPTCD=ACQUIRE) is issued, connection is made
to the first available terminal or logical unit of the NIB list indicated in the RPL’s NIB
field. When CONALL is set, connection is made to all the available terminals or logical
units in the list.

OPTCD=SPEC|ANY

When SPEC is set, the terminal or logical unit identified by the NIB’s NAME field is
connected if and when it directs a logon to the application program. When ANY is set,
any terminal or logical unit that has issued a logon for the application program is
connected.

OPTCD=CSICA
Specifies the initial setting of the connected terminals’ or logical units’ CS-CA mode for
all data types (DFSYN, DFASY, and RESP). When CA is set, data obtained from a
terminal or logical unit can satisfy a READ or RECEIVE (OPTCD=ANY or SPEC) macro
instruction. When CS is set, only READ or RECEIVE (OPTCD=SPEC) macro instructions
can obtain data.

Examples

OPNDST

OPTCD=QINQ

When Q is set, ACF/VTAM connects the terminal or logical unit when it becomes
available, no matter how long that might take. When NQ is set, ACF/VTAM terminates
the OPNDST macro instruction immediately if the terminal or logical unit is not
immediately available. This option applies only when OPTCD=ACCEPT is in effect; when
OPTCD=ACQUIRE is in effect, this option is ignored.

Note: To avoid obscuring the differences between the basic types of OPNDST, the same
technique is used to set the RPL fields in each example (namely, inserting RPL-modifiers
on the OPNDST macro instruction). RPL fields could just as well have been set with the
MODCB macro instruction, with assembler instructions, or with the RPL macro
instruction itself.

This is an “ACQUIRE CONALL” OPNDST

ACQALL OPNDST RPL=RPLI,NIB=NIBLST1,ACB=ACBI1,
OPTCD=(ACQUIRE,CONALL)

NIBLST1 NIB NAME=TERM1,MODE=BASIC,LISTEND=NO
NIB NAME=TERM2 ,MODE=BASIC,LISTEND=NO
NIB NAME=TERM3,MODE=BASIC,LISTEND=YES

ACQALL connects all of the available terminals of NIBLST1 (TERM1, TERM2, and
TERM3) to the application program represented by ACB1.

This is an “ACQUIRE CONANY” OPNDST

ACQANY OPNDST RPL=RPL2NIB=NIBLST2,ACB=ACBI,
OPTCD=(ACQUIRE,CONANY)

NIBLST2 NIB NAME=LUX,MODE=RECORD,LISTEND=NO

NIB NAME=LUY ,MODE=RECORD,LISTEND=NO
NIB NAME=LUZ MODE=RECORD,LISTEND=YES

ACQANY connects one of the logical units of NIBLST2 (LUX, LUY, or LUZ) to the
application program. The CON and CID fields are set in the NIB containing the name of
the connected logical unit. RPL’s ARG field also contains the CID of the connected
logical unit.

This is an “ACQUIRE One NIB” OPNDST

ACQONE OPNDST RPL=RPL3,NIB=NIB3,ACB=ACBI,
OPTCD=ACQUIRE

NIB3 NIB NAME=TERM35,MODE=BASIC

ACQONE connects TERM3S5 to the application program if TERM3S5 is available.

87

OPNDST

Return of Status Information

88

This is an “ACCEPT ANY” OPNDST

ACPTANY OPNDST RPL~=RPL4,NIB=NIB6,ACB=ACBI,
OPTCD=(ACCEPT,ANY,NQ)

NIB6 NIB MODE=RECORD

ACPTANY connects any one logical unit that has issued a logon to the application
program. The symbolic name of this logical unit (along with its CID) is placed in NIB6.
Since NQ is specified, the request will be terminated if no logical unit has issued a logon.

This is an “ACCEPT SPEC” OPNDST

ACPTSPC OPNDST RPL=RPL5,NIB=NIB7,ACB=ACBI,
OPTCD=(ACCEPT,SPEC,Q)

NIB7 'NIB NAME=LU77,MODE=RECORD

ACPTSPC connects LU77 to the application program when a logon is queued from the
logical unit to the application program.

After the OPNDST operation is completed, the following NIB fields are set:
The connected terminal’s CID is placed in the CID field.
The CON field is set to YES if the terminal or logical unit was in fact connected;
otherwise this field is not modified. If it is set, the CON field must be reset before the
NIB can be reused. This field can be examined by coding CON=YES on a TESTCB

macro instruction.

If the ACCEPT and ANY options were in effect, the symbolic name of the connected
terminal or logical unit is placed in the NAME field.

The characteristics of a connected terminal are indicated in the DEVCHAR field. The
DEVCHAR codes are explained in Appendix H.

An indicator (NIBNACLQ) is set indicating whether the logon is still pending or was
canceled by ACF/VTAM.

The following fields are set in the RPL:

If one (and only one) terminal or logical unit has been connected, the CID is placed in
the ARG field.

An indicator showing whether the logon is still pending or was canceled by
ACF/VTAM.

The address of the NIB or NIB list (as supplied by you in the NIB field) is returned in
the AREA field. The NIB field is overlaid when the CID is placed in the ARG field,
since the NIB and ARG fields occupy the same physical location in the RPL.

OPNDST

The value 23 (decimal) is set in the REQ field, indicating an OPNDST request.

The RTNCD and FDBK2 fields are set as indicated in Appendix C. If the return codes
indicate that the OPNDST has failed, do not issue a CLSDST for the terminal or
logical unit.

The SSENSEI, SSENSMI, and USENSEI fields are set if RTNCD=16 and FDBK2=1
are set in the RPL (OPNDST for a logical unit failed).

Registers 0 and 15 are also set as indicated in Appendix C. (Note that the USERFLD field
is not set for OPNDST.)

89

OPNSEC

OPNSEC—Accept the Session Parameters from an
Application Program (Record Mode Only)

The OPNSEC macro instruction is used by an application program to accept the session
parameters that were directed to it by another application program and by doing so,
establish a session with that application program. If an application program approves of
the session parameters it receives in its SCIP exit routine, the application program issues
an OPNSEC macro instruction. By issuing the OPNSEC, a session is established by
ACF/VTAM between the application program that sent the session parameters (which
becomes the primary end of the session) and the application program that issued the
OPNSEC (which becomes the secondary end of the session).

Name Operation Operands

[symbol] | OPNSEC RPL=rpl address
[, rpl field name=new value] ...

RPL~rpl address
Indicates the location of the RPL to be used during OPNSEC processing.

mpl field name=new value
Indicates an RPL field to be modified and the new value that is to be contained within it.
If you wish to avoid the possibility of program reassembly following future releases of
ACF/VTAM, set the RPL field with MODCB macro instructions rather than with the
OPNSEC macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field to be modified. The new value can be any value that is
valid for that operand in the RPL macro instruction, or it can indicate a register.

The following RPL operands apply to the OPNSEC macro instruction:

ACB=acb address

Indicates the ACB that identifies the application program that is issuing the OPNSEC
~ macro instruction. This ACB must be the same ACB associated with the SCIP exit routine

that was scheduled when the Bind command was received.

NIB=nib address

Indicates the NIB whose NAME, MODE, and USERFLD field are associated with the
primary application program. The SDT field specifies whether ACF/VTAM (SYSTEM) or
the secondary application program (APPL) will respond to SDT commands.

ECB=ecb address

ECB=INTERNAL

EXIT=exit routine address

Indicates the action to be taken when an asynchronous (OPTCD=ASY) OPNSEC macro
instruction is completed. If EXIT is specified, the RPL exit routine is scheduled when the
macro instruction is completed. Otherwise, the ECB is posted, and CHECK or WAIT must
be used to determine when the posting occurs.

If ECB=INTERNAL is specified and synchronous handling (OPTCD=SYN) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (OPTCD=ASY) is used, ACF/VTAM will also use the ECB-EXIT
field as an internal ECB, but the user must issue a CHECK macro instruction to check and

Examples

Return of Status Information

OPNSEC

clear it. If neither ECB nor EXIT is specified, ACF/VTAM treats the field as if
ECB=INTERNAL had been specified. See the RPL macro instruction for more
information.

OPTCD=SYNI|ASY

When the SYN option code is set, control is returned to the application program when
the OPNSEC macro instruction has been completed. When ASY is set, control is returned
as soon as ACF/VTAM has accepted the request. When the macro instruction has been
completed, the ECB is posted or the RPL exit routine is scheduled, as indicated by the
ECB-EXIT field.

OPTCD=CAICS

Specifies the initial CA-CS setting of all input types (DFSYN, DFASY, and RESP) for the
session. When CA is set, data received will satisfy a RECEIVE with OPTCD=ANY or
SPEC. When CS is set, data received will only satisfy a RECEIVE with OPTCD=SPEC.

OPNS1 OPNSEC RPL=RPL1,0PTCD=CA,NIB=NIB1
RPL1 RPL AM=VTAM
NIB1 NIB NAME=APPLPRI

Executing OPNS1 signifies acceptance of the session parameters received as a result of a
Bind command and agreement to act as the secondary end of the session with APPLPRI.

After the OPNSEC macro instruction is completed, the following RPL fields are set:
The value 42 (decimal) is set in the REQ field, indicating an OPNSEC request.

The address of the NIB that was specified in the NIB field is returned in the AREA
field. The CID is placed in the NIB-ARG field. (The NIB field is overlaid by the ARG
field that contains the CID. The NIB and the ARG fields occupy the same space in the
RPL.) The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

After the OPNSEC macro instruction is completed, the following fields in the NIB are
set:

The CID field contains the CID.

The CON field is set to YES if the connection is completed; otherwise, it is not
changed.

91

LCVCMD

RCVCMD—Receive a Message from ACF/VTAM

92

After an application program issues a network operator command (VARY, DISPLAY,
MODIFY, and REPLY) using a SENDCMD macro instruction, a RCVCMD macro
instruction is used to receive the requested information. In addition, unsolicited
ACF/VTAM messages such as those indicating an unexpected failure in the network can
be received with this macro instruction.

The RCVCMD macro instruction points to an RPL whose AREA field points to the
location in the application program that is to receive the message. Every message received
from ACF/VTAM consists of a header followed by the message ID (ISTxxxx for OS/VS
or 5xxxx for DOS/VS) and the text. The general format of the header and message is:

Header Message ID and Text

¢ 4 Bytes—P=t n Bytes -

If a message requires a reply, an additional reply ID is inserted between the header and
the message ID. A REPLY command can then be returned to ACF/VTAM using the
SENDCMD macro instruction (see the description of the SENDCMD macro instruction
for more information). The general form of the header, reply ID, and message is:

Header Repl‘y ID Message ID and Text
_ (optional)
¢ 4 Bytes —={-a— 4 Bytes o]t — 2N ——

For information on using the data area and writing an application program that can issue
network operator commands and receive ACF/VTAM messages, see the publication,
ACF/VTAM Program Operator Guide, SC38-0257.

The use of the RCVCMD macro instruction must be authorized when the application
program is defined to ACF/VTAM. There are two levels of authorization available,
primary and secondary. An application program that is designated as a primary program
may receive responses to ACF/VTAM network operator commands issued using
SENDCMD and unsolicited ACF/VTAM messages. An application program designated as
a secondary program can receive only responses to network operator commands that it
issued. If a primary program is not active, unsolicited ACF/VTAM messages are sent to
the system console.

Name Operation Operands

[symbol] RCVCMD RPL=rpl address
' [rpl field name=new value] . ..

RCVCMD

RPL~rpl address
Indicates the location of the RPL that describes the RCVCMD operation.

rpl field name=new value
Indicates an RPL field name to be modified and the new value that is to be contained or
represented within it. To avoid the possibility of program reassembly following future
releases of ACF/VTAM, set the RPL field with MODCB macro instructions rather than
with the RCVCMD macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. The new value can be any value that is
valid for that operand in the RPL macro instruction.

The following RPL operands apply to the RCVCMD macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program.

AREA=message address

Must contain the address of the area in the application program where the incoming
header, optional message identification, and the message text are to be placed. After the
message has been moved to this area, the RPL’s RECLEN field is set by ACF/VTAM with
the total number of bytes of received data. The AREA field is ignored if AREALEN=0.

AREALEN-=length of message area

Contains the length (in bytes) of the message area pointed to by AREA. The length
specified should be 8 bytes longer than the longest message anticipated to provide enough
space for the message header and optional reply ID. The AREA field should be no less
than 4 bytes and no longer than 130 bytes.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
RCVCMD operation is completed. The RCVCMD request is completed when the message
or reply has been received, the data (if any) has been placed in the input area, and the
appropriate information has been set in the RPL. If NQ is specified and no input is
available, RCVCMD is completed immediately. If EXIT is specified, the RPL exit routine
is scheduled. Otherwise, the ECB is posted and CHECK or WAIT must be used to
determine when posting occurs.

If ECB-INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

OPTCD=SYNI|ASY

SYN specifies that control is returned to the application program when the RCVCMD
operation is completed. ASY specifies that control is returned as soon as ACF/VTAM has
accepted the RCVCMD request; once the operation has been completed, the ECB is
posted or the RPL exit routine is scheduled as indicated by the ECB-EXIT field. See the
RPL macro instruction for more information.

93

RCVCMD

Example

Return of Status Information

94

OPTCD=QINQ

Indicates the action to be taken if no input is available when the RCVCMD macro
instruction is executed. OPTCD=Q means that the macro instruction is to be completed
when the requested input eventually arrives. OPTCD=NQ means that the macro
instruction is to be completed immediately with RTNCD=0 and FDBK2=6 if the input is
not available.

OPTCD=TRUNC

- Indicates that overlength input data is truncated whenever the RCVCMD macro

instruction is issued. It is advisable to specify this option since overlength data is always
truncated.

Note: After a CLOSE macro instruction has been issued and messages are still queued for
the application program, RCVCMD macro instructions may still be issued but they will
not be queued. Therefore, these RCVCMD macro instructions must be issued with
OPTCD=NQ. After the last message has been received, the return code for RCVCMD
(RTNCD=0 and FDBK2=6) will indicate that no more messages are queued.

RCVCMD1 RCVCMD RPL=RPL1,AREA=MSGBUF,AREALEN=126,0PTCD=(TRUNC,Q)

RCVCMD1 is completed when an incoming message is received from ACF/VTAM. After
RCVCMD1 is completed, the application program can examine the contents of MSGBUF
to determine the message received. Any messages that exceed 126 bytes are truncated to
126 bytes.

After the RCVCMD operation is completed, the following RPL fields may be set by
ACF/VTAM:
The RECLEN field indicates the length of the message placed in the input area pointed
to by the AREA field. The length specified includes 4 bytes for the header and 4
additional bytes (if required) for the reply identifier. The reply-requested bits in the
status field of the header can be tested to determine if this field is present.
The value 40 (decimal) is set in the REQ field, indicating a RCVCMD request.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

READ

READ-—Read Data into Program Storage (Basic Mode Only)

The READ macro instruction obtains data from ACF/VTAM buffers and moves it into a
designated area in program storage. It may or may not cause physical I/O to be
' performed. If OPTCD=ANY is in effect, the READ operation involves no I/O operation,
but simply moves data already obtained from a terminal into program storage.

If READ is being used to obtain data from a specific BSC or start-stop terminal which
means that the SPEC option code is in effect in the RPL—and no data from that terminal
is available, READ first causes data to be solicited. This implied solicit operation works in
the same manner as the solicit operation explained in the SOLICIT macro instruction
description. (For 3270 terminals, this use of READ applies only for the first READ; the
data for subsequent read operations is unsolicited.)

As soon as ACF/VTAM has moved the data into program storage, it sets the RPL’s
RECLEN field to indicate how many bytes of data were moved.

If the return code posted in register 15 indicates that the read operation was completed
successfully, the application program should check the RPL’s FDBK field to determine
whether the data received represents the end of a message or transmission. (The read
operation may obtain a block of data ending with an end-of-transmission indicator, or the
indicator may come separately with the next read operation. In the latter case, the
RECLEN field is set to O when the next read operation is completed.)

The user of the READ macro instruction codes the address of the RPL that will govern
the read operation. Various fields in the RPL determine from which terminal the data is
to be obtained, the location of the area in the program where the data is to be placed, and
other information regarding how the read request is to be handled. The RPL fields can be
modified with the READ macro instruction itself. The operands used to set these fields
are indicated below.

The TRUNC-KEEP option determines how excess data is to be handled. When TRUNC is
in effect and there is too much incoming data to fit in the input area, the data is
truncated and the excess is lost. If KEEP is in effect instead, and there is too much data,
the excess is held for the time being and moved into the storage area when the next
READ is issued. Flags set in the RPL’s FDBK field (explained in Appendix C) indicate
when the last of the excess data has been read.

Name Operation Operands

[symbol] READ RPL=rpl address
[xpl field name=new value] . . .

RPL=rpl address
Indicates the location of the RPL that governs the read operation.

rpl field name=new value
Indicates an RPL field to be modified and the new value that is to be contained or
represented within it. If you wish to avoid the possibility of program reassembly
following future releases of ACF/VTAM, set the RPL field with MODCB macro
instructions rather than with the READ macro instruction.

95

READ

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. ARG can also be coded. The new value
can be any value that is valid for that operand in the RPL macro instruction, or it can
indicate a register. The value supplied for the ARG keyword must indicate a register.

The following RPL operands apply to a READ macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program.

ARG=(register)

If data is to be read from a specific terminal, the ARG field of the RPL must contain the
CID of the session with that terminal. Register notation is required if the CID is to be
placed in the ARG field with this READ macro instruction.

If data is to be read from any terminal, the ARG field’s content when the macro is issued
is irrelevant. After the data has been read, ACF/VTAM obtains the CID of the session
with the terminal from which the data originated and places it in the ARG field.

AREA=input data area address

The AREA field must contain the address of the area in the program where the data is to
be placed. Once the data has been moved, the RPL’s RECLEN field is posted by
ACF/VTAM with the number of bytes that were placed there.

AREALEN=length of input data area

The AREALEN field must contain the length (in bytes) of the data area pointed to by
AREA. This value is used by ACF/VTAM to determine whether there is too much
incoming data to fit. If there is too much, the action indicated by the TRUNC-KEEP
processing option is taken.

ECB=ecb address ¢

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
READ macro instruction is completed. The macro instruction is completed after the
input data has been moved into the application program’s storage area. If EXIT is
specified, the RPL exit routine is scheduled. Otherwise the ECB is posted, and CHECK or
WAIT is required to determine when the posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

OPTCD=SYNI|ASY

When the SYN option code is set, control is returned to the application program when
the READ macro instruction has been completed. When ASY is set, control is returned as
soon as ACF/VTAM has accepted the request. Once the macro instruction has been
completed, the ECB is posted or the RPL exit routine is scheduled, as indicated by the
ECB-EXIT field.

Examples

READ

OPTCD=SPEC|ANY

When the SPEC option code is set, data is obtained from the specific terminal identified
in the ARG field, and the data is placed in program storage. If no previously solicited data
from that terminal is being held in ACF/VTAM buffers, a solicit operation is performed
and the data is moved into program storage. If data is available in ACF/VTAM buffers,
the READ macro instruction merely moves the data from the buffers to program storage.

When ANY is set, only data already available from a terminal is moved to program
storage. The user does not identify a terminal; the data can originate from any terminal
connected to the application program. ACF/VTAM obtains the CID of the session with
the terminal from which the data originated and places it in the ARG field of the RPL.

A READ macro instruction with QPTCD=ANY can be issued when no terminals are
connected if the application program has opened an ACB. The read request is queued
until one or more terminals are connected and data arrives from any of them. If a read
request with OPTCD=ANY has not been completed and the application program issues a
CLSDST macro instruction disconnecting all of its terminals but does not close the ACB,
the read request does not have to be reissued after a subsequent OPNDST is issued.

OPTCD=CAICS
When the CA option code is set, there is no restriction on subsequent retrieval of data
from the terminal that is the object of this READ macro instruction.

When CS is set, however, any subsequent input operation will exclude that terminal from
the group of terminals eligible for input operations. This exclusion applies only if the
ANY option code is in effect for the subsequent operation. See the RPL macro
instruction for more information. '

READ1 READ RPL=RPL1,AREA=INFO,AREALEN=132,
OPTCD=(ANY,SYN)

INFO DS CL132

READ1 scans ACF/VTAM buffers for data previously obtained from any connected
terminal, and if none has yet been obtained, waits until data arrives. READI1 then places
the data into INFO. The CID of the session with the terminal from which the data
originated is placed into the ARG field of RPL1. Control is not returned to the program
until the read operation has been completed.

READ2 READ RPL=RPL1,ARG=(3),AREA=INFO,AREALEN=132,
OPTCD=(SPEC,SYN)

NIB1 NIB NAME=TERM1,MODE=BASIC
INFO DS CL132

READ2 operates much like READ1 except that data is being read from a specific
terminal. When the terminal was originally connected, the CID for that terminal was
placed both in NIB1 and in the RPL used for the connection macro (OPNDST). This
example assumes that the CID will be in register 3 when READ?2 is executed.

97

READ

Return of Status Information

98

Once the READ operation is completed, the following RPL fields are set:

The RECLEN field contains the number of bytes of data that were received by
ACF/VTAM. :

The ARG field contains the CID of the session with the terminal from which the data
originated. '

The USER field is set. When a NIB is established, the user has the option of specifying
any value in the USERFLD field of that NIB. When the READ macro instruction is
subsequently issued for the terminal associated with that NIB, whatever had been
placed in USERFLD by the user is placed in the USER field of the RPL by
ACF/VTAM.

The value 29 (decimal) is set in the REQ field, indicating a READ request.

If READ is completed normally, as indicated by register 15 and the RTNCD field, the

- FDBK field is set indicating various attributes of the data just read. See Appendix C.

The SENSE field is set as indicated in Appendix C.

The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

RECEIVE

RECEIVE—Receive Input from a Logical Unit (Record Mode Only)

The RECEIVE macro instruction moves data from an ACF/VTAM buffer to an input area
in the application program or sets RPL fields to indicate a data flow control command or
a response. The data, data flow control command, or response was previously sent from a
logical unit. If data is received, it is placed in the input area designated by the application
program. Figure 13 illustrates the major options for a RECEIVE macro instruction.
Figure 14 illustrates how RECEIVE macro instructions are completed by ACF/VTAM.

The application program designates which of the following types of input can cause the
RECEIVE macro instruction to be completed (any combination can be selected):

® Normal-flow requests (such as data requests or a Ready to Receive command
e Expedited-flow requests (such as Release Quiesce)
® RESP responses (responses that can be received with RTYPE=RESP)

Only one type of input can satisfy the RECEIVE macro instruction. When the macro
instruction is completed, the RPL’s RTYPE field indicates the type actually received. If
more than one type of input is available to satisfy a RECEIVE, the following priorities
determine which type of input will satisfy the RECEIVE:

1. Expedited data flow control requests
2. RESP responses
3. Normmal-flow requests and DFSYN responses

See Figure 14 for an illustration of how the application program can receive the different
type of input.

When a logical unit receives a series of requests and responses from a logical unit and
either the NIB specifies PROC=NORDRESP or the requests from the application program
specify RESPOND=NQRESP, all of the requests arrive in the same order in which they
are sent and all of the responses arrive in the same order they were sent, but the order of
the combination of requests and responses may be changed. For example, request 1
always arrives before request 2, and response 2 always arrives before response 3; however,
a response sent after a particular request may arrive before it. As an example, the logical
unit sends the following:

Response 1
Request 1
Request 2
Request 3
Response 2
Response 3
Request 4

They could arrive at the application program as follows:
Response 1
Response 2
Request 1
Response 3
Request 2
Request 3
Request 4

RECEIVE

A RECEIVE macro instruction can obtain any one of the following types of input (when the RECEIVE is issued, the application pro-
gram designates the type or types that can satisfy the macro instruction):

Receive Normal Flow Requests
RTYPE=DFSYN
Data Messages DATA Discard excess data -
- OPTCD=TRUNC ')
Cancel Commands . CANCEL Retain excess data From anylogical unit -
Chase Commands CHASE OPTCD=KEEP OPTCD=ANY
Quiesce Complete Commands Qc Discard or retain as From a specific logical
. i indicated in NIB unit
Ready to Receive Commands RTR OPTCD=NIBTK OPTCD=SPEC
Logical Unit Status Commands LUS
Bid Commands) BID
Bracket Initiation Stopped Commands BIS ‘ Wait until input is
available T
OPTCD=Q
. - Terminate RECEIVE if [~
Receive Expedited Flow Requests) . : input not available
RTYPE=DFASY ' OPTCD=NQ
Quiesce at End of Chain Commands QEC
Release Quiesce Commands RELQ
Shutdown Complete Commands SHUTC
Request Shutdown Commands RSHUTD
Signal Commands i SIGNAL
Shutdown Commands SHUTD
Stop Bracket Initiation Commands SBI
Receive Responses.
RTYPE=RESP | DFSYN, RESP
Positive Response Negative Response
Definite Definite Definite Definite
response 1 response 2 - response 1 response 2
Definite Definite
responses 1 & 2 responses 1 & 2

Figure 13. The Major RECEIVE QOptions

100

Input received

SYSRESP

\

APPLRESP

ACF/VTAM Application program
responds to must send the appropriate
this request response

ORDRESP

RECEIVE

NORDRESP

Satisfies: N \
ormal
253?5\;5 Normal or RPL NQRESP
(DFSYN x,x) (DFSYN) Expedited RESPOND=
Flow
Sets:
RTYPE=
DFSYN Expedited
Can switch CA/CS (DFASY)
mode for ! | |
DFSYN data Satisfies: Satisfies: Satisfies:
RECEIVE RECEIVE RECEIVE
RTYPE= RTYPE= RTYPE=
(DFASY x,x) (DFSYN x,x) (RESP x,x)
or or
DFASY exit Sets: RESP exit
routine RTYPE= routine
(DFSYN, RESP)
Sets: Can switch CA/CS Sets:
RTYPE= mode for RTYPE=
o DFASY DFSYN data RESP
Application program Can switch CA/CS Can switch CA/CS
must send the appropriate mode for mode for
response DFASY data RESP data

lSim:e ACF /VTAM processes all expedited-flow responses, the application program only receives normal-flow responses. |f the applica-
tion program has a pending SEND POST=RESP macro instruction specified, the response information is set in the SEND's RPL fields and
does not satisfy any RECEIVE macro instruction or cause entry to any RESP exit routine.

Figure 14. How RECEIVE Macro Instructions Are Satisfied by ACF/VTAM

101

RECEIVE

102

If the NIB specifiecs PROC=ORDRESP and the requests from the application program
specify RESPOND=QRESP, all the responses and normal-flow requests arrive in the
identical order they were sent as a combined group. (In effect, ACF/VTAM handles the
response similar to a normal-flow request.) For example, if the logical unit sends the
following:

Response 1
Request 1
Request 2
Request 3
Response 2
Response 3
Request 4

They will arrive at the application program as follows:
Response 1
Request 1
Request 2
Request 3
Response 2
Response 3

Request 4

Name Operation Operands

[symbol] | RECEIVE RPL=rpl address
[, rpl field name=new value]...

RPL=rpl address

Indicates the location of the RPL that describes the RECEIVE operation.

1pl field name=new value

Indicates an RPL field to be modified and the new value that is to be contained or
represented within it. If you wish to avoid the possibility of program reassembly
following future releases of ACF/VTAM, set the RPL field with MODCB macro
instructions rather than with this RECEIVE macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. ARG can also be coded. The new value
can be any value that is valid for that operand in the RPL macro instruction, or register
notation can be used.

The following RPL operands apply to the RECEIVE macro instruction:
ACB=acb address

Indicates the ACB that identifies the application program and through which the sending
logical unit was connected.

RECEIVE

ARG=(register)

If a specific logical unit is to be read (OPTCD=SPEC), the ARG operand specifies the
register containing the CID of the session with that logical unit. If the ARG field is not
modified, the CID already in the RPL’s ARG field is used.

AREA-=input data area address

The AREA field must contain the address of the area in the application program where
the incoming data is to be placed. If a data flow control command is received instead of
data, the CONTROL field is posted with a value other than CONTROL=DATA, and the
input data area is not used. If a response to data is received, the AREA field is not used.
Once the data has been moved, the RPL’s RECLEN field is set by ACF/VTAM with the
total number of bytes of data received by ACF/VTAM. The AREA field is ignored if
AREALEN=0.

AREALEN-=length of input data area

The AREALEN field contains the length (in bytes) of the data area pointed to by AREA.
This value is used by ACF/VTAM to determine if there is too much incoming data to fit.
If there is too much, the action indicated by the TRUNC-KEEP-NIBTK option code is
taken.

AREALEN=0 with OPTCD=KEEP can be used to determine the amount of incoming
data (the total length is set in RECLEN). A data area can be obtained and the RECEIVE
macro instruction reissued. AREALEN=0 with OPTCD=TRUNC can be used to eliminate
unwanted data messages that are queued for the application program.

BRANCH=YESINO

If RECEIVE is to be issued in an application program that is running in privileged state
under a TCB (OS/VS2 MVS only), BRANCH can be set to YES. See the RPL macro
instruction for more information.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous RECEIVE
request (OPTCD=ASY) is completed. A RECEIVE request is completed when the request
or response has been received, the data (if any) has been placed in the input data area,
and the appropriate information has been set in the RPL. If NQ is specified and no input
is available, RECEIVE is completed immediately. If EXIT is specified, the RPL exit
routine is scheduled. Otherwise, the ECB is posted and CHECK or WAIT must be used to
determine when posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

OPTCD=SYNI|ASY

When SYN is set, control is returned to the application program when the RECEIVE
operation is completed. When ASY is set, control is returned as soon as ACF/VTAM has
accepted the RECEIVE request; once the operation has been completed, the ECB is
posted or the RPL exit routine is scheduled as indicated by the ECB-EXIT field. See the
RPL macro instruction for more information.

103

RECEIVE

104

OPTCD=CAICS

When the RECEIVE operation is completed successfully, the logical unit is placed into
continue-any mode (CA) or into continue-specific mode (CS). This mode determines
whether the next RECEIVE (OPTCD=ANY) can be satisfied by the logical unit’s next
transmission.

This option code has no effect if OPTCD=NQ and the RECEIVE is completed with no
input.

With the exception of a RECEIVE that is completed with RTYPE=(DFSYN,RESP), the
switch of continue-any and continue-specific modes applies only to the type of input
(specified by the RTYPE field) that actually satisfied the RECEIVE. In a RECEIVE this
is completed with RTYPE=(DFSYN,RESP), the mode switch only applies to normal-flow
(DFSYN) input.

OPTCD=SPEC|ANY

Indicates whether the RECEIVE macro instruction can only be satisfied by input from a
specific logical unit (SPEC) or whether it can be satisfied by input from any connected
logical unit that is in continue-any mode (ANY).

‘When OPTCD=SPEC is used, the logical unit’s CID must be in the RPL when the macro

instruction is executed. When OPTCD=ANY is specified, input from a logical unit in
continue-any mode can satisfy a RECEIVE issued with RTYPE=DFASY or RTYPE=
RESP only if PROC=NDFASYX or PROC=NRESPX (respectively) is specified in the NIB
and if there is no outstanding RECEIVE with OPTCD=SPEC for this logical unit. See the
descriptions of DFASY and RESP exit routines for more information.

A RECEIVE macro instruction with OPTCD=ANY can be issued when no logical units
are connected to the application program if the application program has opened an ACB.
The receive request is queued until one or more logical units are connected and data
arrives from any of the logical units in continue-any mode. If a receive request with
OPTCD=ANY has not been completed and the application program issues CLSDST macro
instructions disconnecting its logical units but does not close the ACB, the receive request
does not have to be reissued after a subsequent OPNDST is issued.

At the completion of the RECEIVE macro instruction, the ARG field contains the CID
of the session with the logical unit whose input satisfied the RECEIVE.

OPTCD=TRUNCIKEEPINIBTK

Indicates whether overlength input data is to be truncated (TRUNC), kept (KEEP), or
whether the PROC=TRUNCIKEEP setting in the logical unit’s NIB is to be used to
determine whether the input is to be truncated or kept.

Overlength input data is data whose length exceeds the value set in the AREALEN field
of the RECEIVE macro instruction’s RPL. When overlength data is truncated, the macro
instruction is completed and the excess data is lost.

When overlength data is kept, the macro instruction is completed normally, and RECLEN
is set to indicate the total amount of data received by ACF/VTAM. One or more
additional RECEIVE macro instructions are required to obtain the excess data. After
each RECEIVE, the value of RECLEN is decreased by the amount of data received. When
AREALEN=0 is set and OPTCD=KEEP is specified, the entire input is kept.

Example

Return of Status Information

RECEIVE

OPTCD=QINQ '

Indicates the action to be taken if no input (of the type specified by the RTYPE
operand) is available when the macro instruction is executed. OPTCD=Q means that the
macro instruction is to be completed when the appropriate input eventually arrives.
OPTCD=NQ means that the macro instruction is to be completed immediately with
RTNCD=0 and FDBK2=6 if the input is not available.

RTYPE=(DFSYNINDFSYN,DFASY |NDFASY ,RESP| NRESP)

Indicates the types of input that can satisfy this RECEIVE macro instruction. DFSYN
means that the RECEIVE macro instruction can be satisfied by (1) a data message
(request), (2) a normal-flow control command (request), or (3) a response to either 1 or 2
if RESPOND=QRESP is specified in the RPL and PROC=ORDRESP is specified in the
NIB.

DFASY means that expedited data flow control requests can satisfy the RECEIVE macro
instruction.

RESP means that the RECEIVE macro instruction can be satisfied by: (1) a response to a

data message (request) with RESPOND=NQRESP, or (2) a response to a normal-flow

control command (Cancel, for example) that was issued with POST=SCHED and
RESPOND=NQRESP, or (3) any normal-flow responses (RESP responses) if the NIB
specifies PROC=NORDRESP.

The negative settings (NDFSYN, NDFASY, and NRESP) indicate that the corresponding
type of input cannot satisfy the RECEIVE macro instruction. For explanations of
normal-flow and expedited-flow requests (messages), see ACF/VTAM Concepts and
Planning.

RCV1 RECEIVE RPL=RPL1,AREA=INBUF,AREALEN=128,
RTYPE=(DFSYN,DFASY ,NRESP),
OPTCD=(ANY,Q,NIBTK)

Assuming that the NIB specifies PROC=ORDRESP, RCV1 is completed when an
incoming request (normal-flow or expedited-flow) is available from any logical unit that is
in CA mode for that RTYPE. RCV1 can be also completed by a response that causes
the RECEIVE to be completed with RTYPE=(DFSYN,RESP) and RESPOND=x,x,x,
QRESP. Other responses cannot cause RCV1 to be completed. After RCV1 is
completed, the application program can examine the CONTROL field of RPL1 to
determine the type of input received. If data is received (CONTROL=DATA and
RTYPE=DFSYN), the data is placed in INBUF. The TRUNC-KEEP setting in the logical
unit’s NIB determines what will be done with any data that exceeds 128 bytes.

After the RECEIVE operation is completed, the following RPL fields may be set by
ACF/VTAM:

If RECEIVE was issued with OPTCD=ANY, the ARG field contains the CID of the
session with the logical unit whose input causes the macro instruction to be
completed. If RECEIVE was issued with OPTCD=SPEC, the ARG field still contains
the CID that was placed there prior to the execution of the macro instruction.

The RTYPE field indicates the type of input that satisfied the RECEIVE macro

instruction. Other RPL fields may be set depending on the type of received input, as
shown below:

105

RECEIVE

106

Value of RTYPE
Field DFSYN DFASY RESP or DFSYN,RESP
ARG X X X
RECLEN X -
SEQNO X X
RESPOND X X X
USER X X X
REQ X X X
RTNCD X X X
FDBK2 X X X
CODESEL X } -
CHNGDIR X x!
BRACKET X x! ;
CHAIN X ; ;
SIGDATA ; X-
CONTROL X X -
OPTCD X) X
USENSEI x2 ; X
SSENSEI x2 ; X
SSENSMI x2 ; X

1Although ACF/VTAM and certain logical units support this RTYPE, it is not
supported by SNA.

2For exception requests and Logical Unit Status commands only.

The RECLEN field indicates the number of bytes of data received by ACF/VTAM.
ACF/VTAM has moved as much of this data as possible into the input data area
pointed to by the AREA field. If KEEP is in effect and the value in the RECLEN field
exceeds the value in the AREALEN field, there is excess data present that can be
obtained with more RECEIVE macro instructions. The value in RECLEN will decrease
by an amount equal to the amount of data moved by each RECEIVE macro
instruction.

The SEQNO field contains the sequence number of the request or response.

The RESPOND field indicates the type of response that has been received (if
RTYPE=RESP or DFSYN,RESP) or the type of response that the logical unit expects
in reply (if RTYPE=DFSYN or RTYPE=DFASY and the NIB specifies PROC=
APPLRESP), or that ACF/VTAM has already sent a response (if RTYPE=DFSYN and
the NIB specifies PROC=SYSRESP).

Note: If the value in RECLEN exceeds the value in AREALEN and excess data is to
be kept, the RESPOND field is set to NEX,NFME,NRRN.

When a response is received, the RESPOND field for each RPL used to receive the
request (if more than one is used) indicates the following:

RESPOND=(x,x,x,QRESP) and in All normal-flow (DFSYN) requests sent before

the NIB PROC=ORDRESP this response have been received.)
RESPOND=(x,x,x, NQRESP) orin This response may or may not have been
the NIB PROC=NORDRESP received out or order with respect to normal-

flow requests sent before this response.
RESPOND=(EX ,FME,RRN, x) This is a negative response with response type 1

and 2 set.

RESPOND=(EX,FME,NRRN, x) This is a negative response with response type 1
set.

RESPOND=(EX,NFME,RRN, x) This is a negative response with response typs 2
set.

RESPOND=(EX,NFME,NRRN, x) Invalid.
RESPOND=(NEX,FME,RRN, x) - This is a positive response with response type 1
and 2 set.

RECEIVE

RESPOND=(NEX,FME,NRRN,x) This is a positive response with response type 1
set.

RESPOND=(NEX,NFME ,RRN,x) This is a positive response with response type 2
set.

RESPOND=(NEX ,NFME NRRN,x) Invalid.

When a request is received, the RESPOND field indicates the type of response that is
required (the value in the RTNCD field indicates whether the request was received
successfully).

RESPOND=(x,x,x,QRESP) (DFSYN Return the appropriate response along with

response) and in the NIB other normal-flow (DFSYN) requests.
PROC=0ORDRESP

RESPOND=(x,x,x,NQRESP)(RESP Return the appropriate response along with
response) or in the NIB other responses.

PROC=NORDRESP

RESPOND=(EX ,FME ,RRN ,x) If the request is processed successfully, no
response is sent; if the request is not processed
successfully, return a negative response with
response type 1 and 2 set.

RESPOND=(EX ,FME NRRNx) If the request is processed successfully, no
response is sent; if the request is not processed
successfully, return a negative response with
response type 1 set.

RESPOND=(EX,NFME,RRN,x) If the request is processed successfully, no
response is sent; if the request is not processed
successfully, return a negative response with
response type 2 set.

RESPOND=(EX,NFMENRRN,x) Invalid.

RESPOND=(NEX,FME RRN x) Return a positive or negative response, as
appropriate, with response type 1 and 2 set.

RESPOND=(NEX,FME,NRRN,x) Return a positive or nor negative reprocessed
sponse, as appropriate, with response type 1
set.

RESPOND=(NEX,NFME ,RRN,x) Return a positive or negative response, as
appropriate, with response type 2 set.

RESPOND=(NEX ,NFME NRRN,x) Return no response.

See the Macro Language Guide for more information.

The USER field contains the value that was originally set in the USERFLD field of the
logical unit’s NIB.

The CRYPT field indicates whether or not the normal-flow data request received was
sent through the network in an enciphered format. For more information on the
CRYPT field see RPL.

The value 35 (decimal) is set in the REQ field, indicating a RECEIVE request.

The RTNCD and FDBK?2 fields are set as indicated in Appendix C. Registers 0 and 15
are also set as indicated in Appendix C.

The CODESEL field indicates whether the input is in the standard (STANDARD) or in
some other code (ALT) agreed upon by each end of the session (such as EBCDIC or
ASCII). ASCII is the only other type of code presently supported.

If ACF/VTAM receives a data request or. data response that indicates an FM header is
present, OPTCD=FMHDR is set.

107

RECEIVE

The CHNGDIR field indicates whether a Change Direction Request or a Change
Direction Command indicator is present:

CHNGDIR=(CMD,NREQ) A Change Direction Command indicator is
present; the logical unit was the sender and it
has changed direction so that the application
program can now transmit normal-flow requests
(DFSYN only).

CHNGDIR=(NCMD,REQ) A Change Direction Request indicator is pre-
sent; the application program is currently send-
ing and the logical unit is requesting the

- application program to change direction by
returning a Change Direction Command
indicator and permit the logical unit to send.
(Although ACF/VTAM and certain logical units
allow this use of a Change Direction indicator,
this is not an SNA protocol. Change direction
makes use of an indicator that may be used in
the future for some other purpose of SNA.)

CHNGDIR=(CMD,REQ) Invalid.
CHNGDIR=(NCMD,NREQ) Neither indicator is present.
The BRACKET field indicates whether the current bracket is beginning, ending, or
continuing (DFSYN only):
BRACKET=(BB,NEB) The input is the first of a new bracket.
BRACKET=(NBB,NEB) The input is a continuation of the current
bracket. This indicator is also set when brackets
are not being used.
BRACKET=(NBB,EB) The input is the end of the current bracket.
" BRACKET=(BB,EB) The input itself constitutes an entire bracket.

The CHAIN field indicates the message’s relative position within the chain being sent
to the application program (DFSYN only):

CHAIN=FIRST The message is the first of a new chain.
CHAIN=MIDDLE The message is a continuation of the current
V chain.
CHAIN=LAST The message is the last of the current chain.
- CHAIN=ONLY The message itself constitutes an entire chain.

The SIGDATA field contains 4 bytes of signal information. This field is set when the
RECEIVE is completed with CONTROL=SIGNAL.

The CONTROL field indicates the presence of data or data flow control commands in
thq message:

CONTROL= RTYPE= Meaning

BID DFSYN A Bid command has been received.

BID RESP The response to a Bid command has been
received.

DATA DFSYN A data message (request) has been received.

DATA RESP Theresponse to a data message has been received.

QEC DFASY A Quiesce at End of Chain command has been
received.

RELQ DFASY A Release Quiesce command has been received.

QC DFSYN A Quiesce Complete command has been received.

108

RECEIVE

CONTROL= RTYPE= Meaning
QC RESP The response to a Quiesce Complete command
has been received.

CANCEL DFSYN A Cancel command has been received.
CANCEL RESP The response to a Cancel command has been
received.

CHASE DFSYN A Chase command has been received.

CHASE RESP The response to a Chase command has been
received.

LUS DFSYN A Logical Unit Status command has been
received.

LUS RESP The response to a Logical Unit Status command
has been received.

SIGNAL DFASY A Signal command has been received.

RTR DFSYN A Ready to Receive command has been received.

RTR RESP The response to a Ready to Receive command
has been received.

RSHUTD DFASY A Request Shutdown command has been

received from a logical unit acting as the
secondary end of a session.

SHUTC DFASY A Shutdown Complete command has been
received from a logical unit acting as the
secondary end of a session.

SHUTD DFASY A Shutdown command has been received from
an application program acting as a primary end
of a session.

SBI DFASY A Stop Bracket Initiation command has been
received.

BIS DFSYN A Bracket Initiation Stopped command has
been received.

BIS RESP The response to a Bracket Initiation Stopped

command has been received.

When a negative response or Logical Unit Status (LUS) command has been received,
the SSENSEI field may contain a system sense value or it is set to 0. See Appendix C
for an explanation of the SSENSEI codes.

When the SSENSEI field is set, the SSENSMI field may also be set. The SSENSMI field
contains a system sense modifier value; when combined with the SSENSEI value, a
specific type of error is identified. The SSENSMI value is tested as a 1-byte binary
value. See Appendix C for a list of the SSENSMI values.

When a negative response or Logical Unit Status (LUS) command has been received,

the USENSEI field contains a 2-byte user sense value. This value is tested as a 2-byte
binary value.

109

REQSESS

REQSESS—Request That Another Application Program
Initiate Connection (Record Mode Only)

110

The REQSESS macro instruction is used by an application program to request another
application program to establish a connection (session) between the two programs in
which the application program which issued the REQSESS will act as the secondary end.
In effect, the REQSESS macro instruction gives the issuing application program the
ability to create a logon and have it sent to the receiving application program, just as a
terminal or logical unit can create a logon and have it sent to an application program. The
application program issuing the REQSESS macro instruction must adhere to secondary
protocols. Before an application program can issue the REQSESS macro instruction, it
must have issued a SETLOGON OPTCD=START macro instruction. If the application
program has not previously issued a SETLOGON macro instruction or if it issues a
REQSESS without first opening an ACB, the REQSESS macro instruction will fail.

Requesting connection to multiple application programs, requires a separate REQSESS
macro instruction for each application program. If a list of NIBs is specified in REQSESS
macro instruction, only the application program specified in the first NIB is sent a logon.
The remainder of the NIBs are ignored.

Name Operation Operands

[symbol] } REQSESS | RPL=rpl address
[, tpl field name=new value] ...

RPL=rpl address

Indicates the location of the RPL to be used duzing REQSESS processing.

rpl field name=new value

Indicates an RPL field to be modified and the new value that is to be contained within it.
If you wish to avoid the possibility of program reassembly following future releases of
ACF/VTAM, set the RPL field with MODCB macro instructions rather than with the
REQSESS macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction operand
that corresponds to the RPL field to be modified. The new value can be any value that is
valid for that operand in the RPL macro instruction, or it can be a register that contains
the value.

The following RPL operands aply to the REQSESS macro instruction:

ACB=acb address
Indicates the ACB for the application program that issues the REQSESS macro
instruction and will act as the secondary end of the session.

NIB=nib address

Indicates the NIB whose NAME field contains the symbolic name of the primary
application program with which the secondary application program wishes to be
connected. In addition to NAME, the following NIB fields are used by REQSESS:

LOGMODE

Specifies the suggested logon mode to be used in the session being established. This
logon mode applies to the logon mode table associated with the application program
issuing the REQSESS macro instruction.

REQSESS

LISTEND
Must be set to YES to indicate that the NIB is a single entry in the list.

MODE
Must be set to RECORD.

ECB=ecb address

ECB=INTERNAL

EXIT=exit routine address

Indicates the action to be taken when an asynchronous (OPTCD=ASY) REQSESS macro
instruction is completed.

If EXIT is specified, the RPL exit routine is scheduled. Otherwise, the ECB is posted, and
CHECK or WAIT must be used to determine when posting occurs.

If ECB=INTERNAL is specified and synchronous handling (OPTCD=SYN) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (OPTCD=ASY) is used, ACF/VTAM uses the ECB-EXIT field as
an internal ECB, but the user must issue a CHECK macro instruction to check and clear
it. If neither the ECB nor EXIT keyword is specified, ACF/VTAM treats the field as if
ECB=INTERNAL had been specified. See the RPL macro instruction for more
information.

AREA=address of user data
Indicates the location of the user logon data that is to be sent to the other application
program as a part of the logon. This data is treated like the user data that may accompany
a logon that originates from a terminal or logical unit. If this field is used, the RECLEN
field must also be specified.

RECLEN=user data length

Indicates the number of bytes of user logon data (located at the AREA address) to be
sent to the receiving application program. If the RECLEN field is set to 0, the AREA
field is ignored.

AAREA=0
The AAREA field msut be set to 0 whenever the REQSESS macro instruction is issued. If
avalue other than 0 is present in this field, the REQSESS macro instruction will fail.

OPTCD=SYNI|ASY

When SYN is set, control is returned to the application program that issued REQSESS
when the REQSESS macro instruction is completed and the logon is queued. When ASY
is set, control is returned as soon as ACF/VTAM has accepted the REQSESS. Once the
REQSESS macro instruction is completed, the ECB is posted or the RPL exit routine is
scheduled, as indicated in the ECB-EXIT field. See the RPL macro instruction for more
information.

OPTCD=NQ

The NQ option must be set whenever the REQSESS macro instruction is issued. If
OPTCD=Q is specified, or the default (OPTCD=-) is taken, an error will result. If the
application program to which the REQSESS is directed is not available (that is, has not
opened its ACB, has an opened ACB that specifies MACRF=NLOGON, is in the process
of closing its ACB, has issued SETLOGON=QUIESCE, or is unavailable because of an
error condition), the REQSESS macro instruction will be rejected. If the application
program to which the REQSESS is directed has opened an ACB that specifies
MACRF=LOGON but has not issued a SETLOGON with OPTCD=START, the logon will
be queued and the REQSESS macro instruction will be completed successfully.

111

REQSESS

Example

Return of Status Information

112

CALLPRI

RPLA1
NIBPA1

LOGMSG

REQSESS

RPL
NIB

DC

RPL=RPLA1,NIB=NIBPA1,0PTCD=(ASY,NQ),
EXIT=RQEXRTN,AREA=LOGMSG,RECLEN=L'LOGMSG,
AAREA=0

ACB=ACB1,AM=VTAM
NAME=GRACIE,LISTEND=YES,
LOGMODE=MODE1,MODE=RECORD
C‘LOGON REQUEST FROM USER 09’

CALLPRI requests a session between the application program (USER09) associated with
ACB1, which will act as the secondary end of the session, and application program
GRACIE, which will act as the primary end of the session. When the REQSESS macro
instruction is completed, RQEXRTN will be scheduled.

After the REQSESS macro instruction is completed,‘the following RPL fields are set:
The value 41 (decimal) is set in the REQ field, indicating a REQSESS request.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

If the REQSESS macro instruction returns an error code, the SSENSEI, SSENSMI,
and USENSEI fields are set indicating system sense information, system sense
modifier, and user sense information. There is more information about these fields in
Appendix C.

RESET

RESET—Cancel an I/0 Operation (Basic Mode Only)

The RESET macro instruction can be used to:

e Cancel an I/O operation that is pending, but is not yet in the process of being
completed (that is, no data transfer activity has yet begun). This form of RESET is
selected by setting the COND option code.

e Cancel an I/O operation, whether it is pending or in the process of being completed,
and in addition reset any error lock that may have been set for the terminal. This form
of RESET is selected by setting the UNCOND option code.

® Reset any error lock that may have been set for the terminal, without canceling any
pending I/O operation. This form of RESET is selected by setting the LOCK option
code.

When a request is canceled, ACF/VTAM “‘completes” the canceled request (that is,
returns control, posts the ECB, or schedules an RPL exit routine, as indicated by the
SYN-ASY option code and the ECB-EXIT field) with a return code indicating that a
RESET caused the request to be terminated. (The completion of the canceled request and
the completion of RESET occur independently of each other; it is impossible at assembly
time to know which will complete first.)

Name Operation Operands

[symbol] | RESET RPL=rpl address
: [, rpl field name=new value]...

RPL=rpl address
Indicates the location of the RPL that governs the execution of the RESET macro
instruction.

1pl field name=new value
Indicates an RPL field to be modified and the new value that is to be contained or
represented within it. If you wish to avoid the possibility of program reassembly
following future releases of ACF/VTAM, set the RPL field with MODCB macro
instructions rather thawith the RESET macro instruction.

Format: For rpl field name code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. ARG can also be coded. The new value
can be any value that is valid for that operand in the RPL macro instruction, or it can
indicate a register. The value supplied for the ARG keyword must indicate a register.

The following RPL operands apply to a RESET macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program.

ARG=(register)

Indicates the register containing the CID of the session. The ARG field of RESET’s RPL
must contain the CID of the session with the terminal whose I/O operation is to be
canceled or whose error lock is to be reset. Register notation is used to place the CID into
the ARG field with this RESET macro instruction. Note that you do not issue RESET for
a particular request; you issue RESET for a specific terminal, and let ACF/VTAM deal
with any requests that may be outstanding for that terminal.

113

RESET

114

ECB=ecb address

ECB=INTERNAL ,

EXIT=rpl exit routine address ,

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
RESET macro instruction is completed. For OPTCD=LOCK, the macro instruction is
completed when the error lock has been reset. For OPTCD=COND or OPTCD=UNCOND,
the macro instruction is completed when all outstanding I/O requests to the terminal have
been posted complete. If EXIT is specified, the RPL exit routine is scheduled. Otherwise
the ECB is posted, and CHECK or WAIT must be used to determine when the posting
occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

OPTCD=SYNI|ASY

When the SYN option code is set, control is returned to the application program when
the macro instruction has been completed. When ASY is set, control is returned as soon
as ACF/VTAM has accepted the request. Once the macro instruction has been completed,
the ECB is posted or the RPL exit-routine is scheduled, as indicated by the ECB-EXIT
field.

OPTCD=CAICS

When CA is set, data obtained from the terminal can satisfy a READ macro instruction.
When CS is set, only READ (OPTCD=SPEC) macro instructions can obtain data from the
terminal. See the RPL macro instruction for more information.

OPTCD=COND|UNCOND|LOCK

COND
RESET cancels any I/O operation that has been initiated, but for which no data has
been transferred. If data transfer is in progress when RESET is executed the RPL’s
RTNCD and FDBK2 fields are set to indicate that cancelation did not occur
- (RTNCD=0, FDBK2=1). If an I/O operation is pending, that operation is posted as
completed (IO=COMPLETE if an internal ECB was used), and the RTNCD and
FDBK2 fields of that request’s RPL indicate that RESET caused the premature com-
pletion of the operation. The RESET RPL itself is posted to indicate normal comple-
tion. The RESET RPL is also posted to indicate normal completion if there is no I/O
in progress to be canceled.

OPTCD=COND cannot be used if an error lock has been set for the terminal. Use one
of the other forms of RESET to reset the error lock. (FDBK2 codes returned from
the I/O request indicate whether the I/O operation failed and, if so, whether an error
lock was set.) OPTCD=COND is appropriate when the application program wants to
write to a terminal only if no data is being sent (and can tolerate a resulting delay).

The RESET operation is completed when all of the pending I/O operations for the
terminal have been canceled (or is completed immediately if ACF/VTAM determines
that I/O is in progress).

RESET

UNCOND

RESET cancels any I/O operation, pending or otherwise, that is being performed with
the terminal. If an internal ECB was used, the RPL is set to IOSCOMPLETE. (If there
is no I/O operation to be canceled, RESET completes normally.) Any data that a
canceled solicit operation has already brought into ACF/VTAM storage buffers is
available for retrieval by the application program. Data that is being sent or is about to
be sent, however, may be lost. When a solicit, read, or write operation is canceled, that
operation is posted as completed, and the RTNCD and FDBK2 fields of its RPL
indicate that RESET caused the premature completion of the operation. OPTCD=
UNCOND also causes RESET to perform the same resetting operation indicated below
with OPTCD=LOCK. OPTCD=UNCOND is appropriate when a terminal is being
solicited for input, but the application program wants to immediately write to the
terminal without delay (and can tolerate a possible loss of data).

OPTCD=UNCOND causes the communications controller to do the following: For
start-stop devices with the break feature a reset immediate is sent, and for other start-
stop devices, a reset ahead-of-command is sent; for BSC devices, a reset orderly (RVI)
is sent. Any outstanding WRITE operations to the terminal are posted completed,
with their return codes indicating that the operation was canceled by RESET. The
OPTCD=UNCOND will not necessarily always perform the reset unconditionally when
issued to a BSC device the first time. An unsuccessful return code may occur. When
this occurs, reissue the RESET until it is successful.

The RESET operation is completed when all of the I/O requests for the terminal have
been canceled.

Note: If a RESET macro instruction is issued to cancel an 1/O operation, an EOT must
be sent to release the line.

If a read request is pending for a binary synchronous device at the time RESET is
issued, the application program must continue to issue read requests until an EOT is
received. (The FDBK field is set upon receipt of an EOT.) If a read request is pending
for a start-stop device without the break feature, the application program must
continue to issue read requests until the amount of data solicited from the device has
been obtained. That is, if PROC=TRANS is in effect for SOLICIT, reads must be
issued until an EOT is received; if PROC=MSG is in effect, reads must be issued until
EOM is received, and so forth. If a read request is pending for a start-stop device with
the break feature, the application program must allow that read to complete before
issuing RESET, but no further reads need be issued. (If that read results in excess
data being received, a second read to obtain that excess data would have to be issued,
however, before RESET could be issued.)

LOCK

RESET resets an error lock that has been set for the terminal. The RESET operation
i completed as soon as the error lock is reset. Error locks are set by a communica-
tions controller when it determines that is should not or cannot continue to communi-
cate with a terminal until the application program determines the next action to be
performed.

If several WRITE requests have been issued and an error lock is set before all have been
completed, resetting the error lock restarts the remaining WRITE operations.

Note: This type of RESET should not be used if the error lock was set while a DO

macro instruction involving more than one LDO was being executed. Use RESET with
OPTCD=UNCOND instead.

115

RESET

You can determine that an error lock has been set by examining the RTNCD and FDBK2
fields of each I/O request’s RPL. The error lock is set if any of the following
RTNCD-FDBK2 codes are returned (see Appendix C):

RTNCD FDBK2 Type of Error

4 0 RVI received .
4 1 Attention or reverse break received
12 (X‘0C”) 0 Error lock set
12 (X‘0C) 1 Terminal not usable
12 (X0C) 2 Request canceled by TRM
12 (X‘0C) 6 NCP abended, restart successful
12 (X‘0C") 15 (X0F) Yielded to contention
16 (X‘10%) 4 ACF/VTAM/NCP incompatibility
16 (X‘10”) 11 (X‘0B”) Dial-out disconnection
16 (X‘10%) 12 (X‘0C”) Dial-in disconnection
20 (X‘14%) 47 (X2F) Too many leading graphic characters
20 (X‘14) 48 (X‘30") Invalid LEN field
20 (X‘14’) 49 (X‘31%) Invalid data area
20 (X‘14”) 50 (X‘32°) Request invalid for specified device
20 (X‘14”) 51 (X33 WRITE canceled (input arriving)
20 (X°14%) 52 (X34°) First I/O not READ or SOLICIT
20 (X‘14") 53 (X35%) Terminals not attached to same control unit
20 (X‘14%) 54 (X‘36%) RESET (LOCK) invalid
20 (X‘14%) 55 (X37%) Terminal not connected (copy LDO)
20 (X‘14") 57 (X‘39%) Invalid PROC option
-~ Example) ,
: RESET1 RESET RPL=RPL1,ARG=(3),ECB=ECBWORD,
OPTCD=(ASY,UNCOND)
ECBWORD DC F(0) ’
RPL1 RPL ACB=ACB1,AM=VTA

RESET1 cancels any I/O operation pending or in. progress for the session whose CID has
been loaded into register 3. As soon as the cancellaiion has been scheduled, control is
returned to the next instruction after RESET1. To verify that the cancellation has been
completed, a CHECK macro instruction must be issued to determine if ECBWORD has
been posted.

Return of Status Information : ‘
: After the operation is completed, the following RPL fields are set:

The value 18 (decimal) is set in the REQ field, indicating a RESET request.
The USER field is set.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

]

Registers 0 and 15 are also set as indicated in Appendix C.

116

RESETSR

RESETSR—Cancel RECEIVE Operations and Switch a
Logical Unit’s CA-CS Mode (Record Mode Only)

The RESETSR macro instruction is used to change the continue-any or continue-specific
mode of a specified logical unit and to cancel RECEIVE with OPTCD=SPEC macro
instructions that are outstanding for the logical unit. Figure 15 summarizes the functions
of RESETSR and their associated operands.

Changing CA-CS Mode
RESETSR changes a logical unit’s continue-any (CA) or continue-specific (CS) mode in
the same manner as do SEND and RECEIVE macro instructions.

When the CA-CS option code is set to CA, RESETSR places the logical unit into
continue-any mode if it is not already in that mode. Continue-any mode means that
RECEIVE macro instructions issued in the any-mode (OPTCD=ANY) as well as in the
specific-mode (OPTCD=SPEC) can be satisfied by input from the logical unit.

When the CA-CS o ption code is set to CS, RESETSR places the logical unit into
continue-specific mode, if it is not already in that mode. Continue-specific mode means
that only RECEIVE macro instructions issued in the specific-mode can be satisfied by
input from the logical unit.

RESETSR is used to switch CA-CS mode

Continue-any mode: OPTCD=CA

For which type(s)
of input ?

Normal-Flow Requests: RTYPE=DFSYN
Expeditied-Flow Requests: RTYPE=DFASY
Responses: RTYPE=RESP

To what ?

Continue-specific mode: OPTCD=CS

For which type(s)
of input ?

Normal-Flow Requests: RTYPE=DFSYN
Expedited-Flow Requests: RTYPE=DFASY
Responses: RTYPE=RESP

And to cancel RECEIVE macro instructions.

For which type(s) Normal-Flow Requests: RTYPE=DFSYN

f input ?

ot npu Expedited-Flow Requests: RTYPE DFASY
Responses: RTYPE=RESP

Figure 15. The Major RESETSR Options

117

RESETSR

Canceling RECEIVE Requests

118

A logical unit’s CA-CS mode does not apply generally to all input from the logical unit,
but applies individually for the three types of input from the logical unit—normal-flow
requests, expedited-flow requests, and responses. The application program selects the
type or types of input by setting the RPL’s RTYPE field.

For example, suppose that RESETSR is issued with the CA-CS option set to CS (change
to CS mode), and the RTYPE field set to DFASY (expedited-flow requests). When the
RESETSR macro instruction is completed, the logical unit is placed in continue-specific
mode for expedited-flow requests. This would mean that expedited-flow requests sent by
the logical unit could not satisfy a RECEIVE issued in the any-mode; they could only
satisfy a RECEIVE macro instruction issued in the specific-mode.

If a RESETSR, issued to change a logical unit’s CA-CS mode, completes successfully (that
is, actually changes the mode) and there is a pending SEND or RECEIVE, the SEND or
RECEIVE may not complete successfully. The mode specified in the RESETSR may
conflict with the OPTCD=ANY or OPTCD=SPEC that is specified in the pending SEND
or RECEIVE.

Note: If program performance is a critical factor, it may be more efficient to change the
CA-CS mode in the SEND macro for the last response.

The RTYPE field of the RESETSR’s RPL indicates, for the designated logical unit, the
type or types of RECEIVE requests that are canceled. For every RTYPE specified in the
RESETSR macro, ACF/VTAM sets the corresponding RTYPE operand to its negative
value (NDFSYN, NDFASY, NRESP) in each pending RECEIVE with OPTCD=SPEC for
the logical unit. A RECEIVE is canceled if the combination of input types specified in
its RPL is included in those specified in the RESETSR macro instruction.

For example, suppose that these three specific RECEIVE macro instructions are pending:

RCV1 RECEIVE RPL=RPL1,RTYPE=(DFSYN,NDFASY ,NRESP)
RCV2 RECEIVE RPL=RPL2,RTYPE=(DFSYN,DFASY ,NRESP)
RCV3 RECEIVE RPL=RPL3,RTYPE=(DFSYN,DFASY,RESP)

The following RESETSR macro instruction would change all DFSYN values to NDFSYN
and all DFASY values to NDFASY:

RST RESETSR RPL=RPLA4,RTYPE=(DFSYN,DFASY)

Since the three RECEIVE macros would in effect now be set as follows, RCV1 and RCV2
would be canceled (all three RTYPE operands are negative), but RCV3 would not be
canceled:

RCV1 RECEIVE RPL=RPL1,RTYPE=(NDFSYN,NDFASY NRESP)

RCV2 RECEIVE RPL=RPL2,RTYPE=(NDFSYN,NDFASY,NRESP)
RCV3 RECEIVE RPL=RPL3,RTYPE=(NDFSYN,NDFASY,RESP)

When a RECEIVE is canceled, its RPL is posted complete (that is control is returned, its
ECB is posted, or its exit routine is scheduled) with RTNCD=12 and FDBK2=10. The
OPTCD=CAICS setting of each canceled RPL is ignored.

Note: If a CA-CS mode is also specified, it may change the CA-CS mode as described
above.

RESETSR

Name Operation Operands

[symbol] | RESETSR | RPL=rpl address
[,rpl field name=new value] . ..

RPL~rpl address
Indicates the location of the RPL that describes the RESETSR operation.

rpl field name=new value
Indicates an RPL field to be modified and the new value that is to be contained or
represented within it. If you wish to avoid the possibility of program reassembly
following future releases of ACF/VTAM, set the RPL field with MODCB macro
instructions rather than with this RESETSR macro instruction.

Format: For rpl field name code the keyword of the RPL macro instruction operand
that corresponds to the RPL field being modified. ARG can also be coded. The new value
can be any value that is valid for that operand in the RPL macro instruction, or register
notation may be used.

The following RPL operands apply to the RESETSR macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program and was used when the logical
unit was connected.

ARG=(register)

The RESETSR macro instruction is always directed toward a specific logical unit. The
ARG operand specifiés the register containing the CID of that session. If the ARG field is
not modified, the CID already in the RPL’s ARG field is used.

ECB=ecb address

ECB=INTERNAL

EXIT=rpl exit routine address

Indicates the action to be taken by ACF/VTAM when an asynchronous (OPTCD=ASY)
RESETSR request is completed. A RESETSR request is completed when the appropriate
macro instructions have been canceled, and the logical unit’s CA-CS mode has been set. If
EXIT is specified, the RPL exit routine is scheduled. Otherwise the ECB is posted and
CHECK or WAIT must be used to determine when posting occurs.

If ECB=INTERNAL is specified and synchronous handling (SYN option) is used,
ACF/VTAM uses the ECB-EXIT field in the RPL as an internal ECB and clears it. If
asynchronous handling (ASY option) is used, ACF/VTAM will also use the ECB-EXIT
field in the RPL as an internal ECB, but the user must issue a CHECK macro instruction
to check and clear it. If neither the ECB nor EXIT keywords are specified, ACF/VTAM
treats the field as if ECB=INTERNAL had been specified. See the RPL macro instruction
for more information.

BRANCH=YES | NO (0S/VS2 MVS only)

If RESETSR is to be issued in an application program that is running in privileged state
under a TCB, BRANCH can be set to YES. See the RPL macro instruction for more
information.

119

RESETSR

‘120

OPTCD=SYNI|ASY

When SYN is set, control is returned to the application program when the RESETSR
operations have been completed. When ASY is set, control is returned as soon as
ACF/VTAM has accepted the RESETSR request; once the operations have been
completed, the ECB is posted or the RPL exit routine is scheduled, as indicated by the
ECB-EXIT field. See the RPL macro instruction for more information.

OPTCD=CAICS

This option code determines whether the logical unit is placed in continue-any (CA) or
continue-specific (CS) mode. The new CA-CS mode applies to the type of input specfied
in the RTYPE field. CA-CS mode is explained in the RPL macro instruction and in
ACF/VTAM Macro Language Guide.

RTYPE=(DFSYNINDFSYN,DFASY INDFASY,RESP|NRESP)

The RTYPE operand indicates the type of input to be affected by the resetting of the
logical unit’s continue-any or continue-specific mode and which outstanding RECEIVE
macros are to be canceled. (Continue-any mode means that input from the logical unit
can satisfy a RECEIVE issued in the any-mode; continue-specific mode means that it
cannot.)

DFSYN
The logical unit’s CA-CS mode applies to normal-flow requests; NDFSYN means that
the logical unit’s CA-CS mode for normal-requests is not affected.

DFASY
The logical unit’s CA-CS mode applies to expedited-flow requests; NDFASY means
that the logical unit’s CA-CS mode for normal-requests is not affected.

RESP
The logical unit’s CA-CS mode applies to response units; NRESP means that the logical
unit’s CA-CS mode for responses is not affected.

The RTYPE operand also designates the type of pending RECEIVE to be canceled. A
RECEIVE request is canceled, however, only if all of the input types specified for the
RECEIVE requests’s RTYPE field are also included among those specified on the
RESETSR request’s RTYPE field. When the RECEIVE request is canceled, its RPL is
posted complete with RTNCD=12 and FDBK2=10.

DFSYN

Any pending RECEIVE macro instructions that would receive normal-flow requests
and queued responses are canceled; NDFSYN means that RECEIVE requests for this
type of input are not canceled.

DFASY

Any pending RECEIVE macro instructions that would receive expedited-flow requests
are canceled; NDFASY means that that RECEIVE requests for this type of input are
not canceled.

RESP
Any pending RECEIVE macro instructions that would receive normal-flow responses
are canceled; NRESP means that RECEIVE requests for responses are not canceled.

RESETSR

Example
RST1 RESETSR RPL=RPL1,0PTCD=CA,
RTYPE=(DFSYN,NDFASY,NRESP)

RST1 cancels pending RECEIVE (OPTCD=SPEC, RTYPE=DFSYN) macro instructions
for the logical unit identified in RPL1’s ARG field. RST1 also switches the terminal’s
CA-CS mode for normal-flow requests to continue-any (CA) mode. That is, a RECEIVE
macro instruction (RTYPE=DFSYN) can obtain normal-flow input from the logical unit.
The logical unit’s CA-CS mode for DFASY and RESP input is not affected; RECEIVE
macro instructions for these request types are also not affected.

Return of Status Information
After the RESETSR operation is completed, the following RPL fields are set:

The value 36 (decimal) is set in the REQ field, indicating a RESETSR request.
The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

121

RPL

RPL—Create a Request Parameter List

‘122

Every request that an application program makes for connection or for I/O operations
must refer to an RPL. A request parameter list, or RPL, is a control block used by the
application program to describe the requests it makes to ACF/VTAM. The application
program may, for example, simply issue a RECEIVE macro and indicate an RPL; it is the
RPL that shows ACF/VTAM which logical unit the input is to be obtained from, where
the input data is to be placed, how the application program is to be notified when the
operation is completed, and a variety of other options to be followed while the request is
being processed. If the RPL already contains a request code in its REQ field, an
EXECRPL macro can be used in place of the RPL-based macro indicated in REQ.

An application program can create many RPLs; a separate RPL can, in fact, be created for
every connection and I/O request in the application program. Or, at the other extreme,
one RPL could serve for all connection and I/O requests in the program (assuming that all
the requests were synchronous—that is, issued with OPTCD=SYN set). This multiple use
of an RPL is possible because each connection and I/O request can itself modify fields of
the RPL to which it points. The RPL can thus be thought of as the list form of all of the
connection and I/O macros.

If the same RPL is used for multiple requests, it is good programming practice to reset
the RPL control block fields after the request has completed. All ACB, NIB, and RPL
fields that are not used by a particular macro instruction should be set to zero unless
otherwise indicated.

The RPL macro instruction builds an RPL during assembly. The RPL is built on a
fullword boundary. An RPL can also be generated during program execution with the
GENCB macro instruction. See GENCB for a description of this facility.

Requests for RPL modification can be made as part of a connection or I/O macro, or by
the MODCB macro instruction. Either way involves naming an RPL field and specifying
its new value. It is useful to keep in mind that every operand of the RPL macro represents
a field in the RPL it generates. Subsequent requests to modify any RPL field use the
keyword of the operand corresponding to the field being modified.

Assumed (default) values for most of the RPL fields are set by ACF/VTAM when the
RPL is initially assembled or generated. These assumed values are noted in the operand
descriptions below. Once an RPL field has been set, however, the field is never reset by
ACF/VTAM to its original value (three exceptions to this rule—the SSENSEO,
SSENSMO, and USENSEO fields—are noted below).

Although all of the RPL operands are optional (with the exception of AM=VTAM) and
may be specified with any of the RPL-based macro instructions, all of the RPL-based
macro instructions require that certain RPL fields be set when the macro instruction is
executed. These fields are identified in Figure 16 at the end of this macro instruction
description.

Name

Operation

Operands

[symbol]

RPL

AM=VTAM

[, ACB=acb address]

[, NIB=nib address]

[, AREA=data area address]

[, AREALEN=data area length]

[, RECLEN=data length]

[, AAREA=alternate data area address)

[, AAREALN=alternate data area length]

L,ECB=INTERNAL
D ,ECB=event control block address g]
JEXIT=rpl exit routine address

[, BRANCH=YES' [NO]

{, SEQNO=sequence number]

[, POST=SCHED|RESP]

[, RESPOND=(EX|NEX FMENFME RRNNRRN,

QRESP|NQRESP)]

[, CONTROL=(DATA|QEC|RELQ|QC|CANCEL|
CHASE [SHUTD|BID|LUS|SDT]|
CLEAR|STSN|RTR|RSHUTD|
SHUTC|RQR |BIND|UNBIND|SBI|
BISISIGNAL)]

[, CHAIN=FIRST|MIDDLE|LASTIONLY]

[, CHNGDIR=(CMD INCMD REQ INREQ)]

[. CRYPT=YESINO]*

[, BRACKET=(BB|NBB, EB|NEB)|

[, RTYPE=(DFSYN|NDFSYN, DFASY|NDFASY,

RESP|NRESP)]

|, STYPE=REQIRESP]

[.SSENSEO=0| CPM|STATEFI|RR]?

[, SSENSMO=system sense modifier value} 2

[, USENSEO=user sense value |2

(. IBSQAC=SET|TESTSET|INVALID|IGNORE |

[, OBSQAC=SET|TESTSET|INVALID|IGNORE]

[, IBSQVAL=inbound sequence number]

[, OBSQVAL=outbound sequence number}

[, SIGDAT A=signal data]

[, CODESEL=STANDARD|ALT)

[, NIBTK|TRUNC|KEEP}

|, NFMHDR|FMHDR |

[, CONALLICONANY]

| . ACCEPTIACQUIRE]

[.SPECIANY]

[. QUIESCEISTOPISTART)

[, RELEASE|PASS|

[, LOGONMSG|DEVCHAR|
COUNTS|TERMS|APPSTAT]

, OPTCD=(CIDXLATE|TOPLOGON|)

BSCID ISESSPARM; ISESSKEY 4 |
[.SYNIASY] '
[.CAICS]
[, BLKILBM|LBT?]
[, NCONV|CONV]
[, COND|UNCOND|LOCK]
[, NERASE|ERASE|EAU]
[, RELRQINRELRQ]
| [,QINQ]]

1 The BRANCH=YES operand is valid only in OS/VS2 MVS.

2 These fields are cleared by ACF/VTAM each time the RPL is reset to its
inactive state.

3 Since OPTCD=BLK is invalid for 3270 terminals, the default for those

devices is OPTCD=LBT.

4 Applies only to the Encrypt/Decrypt Feature of ACF/VTAM.

RPL

123

AM=VTAM
Indicates that an ACF/VTAM RPL is to be built, This operand is required.

ACB=acb address
Associates the request that will use this RPL with an ACB.

Format: Expressions involving registers cannot be used with the RPL macro instruction.
If you omit this operand, the ACB field is set to 0.

NIB=nib address
Identifies the NIB whose NAME field indicates the terminal or logical unit that is to be
the object of an OPNDST, OPNSEC, REQSESS, TERMSESS, CLSDST, INQUIRE,
INTRPRET, CHANGE, or SIMLOGON macro instruction.

Although these macro instructions use a NIB address to indicate a terminal or logical unit,
the READ, RECEIVE (OPTCD=SPEC), SEND, RESETSR, TERMSESS, SESSIONC,
WRITE, SOLICIT, RESET, and DO macro instructions use a CID to indicate a terminal
or logical unit (and INTERPRET and CLSDST, along with some forms of INQUIRE,
work either way). CIDs (communication identifiers) are supplied to the application
program upon completion of an OPNDST or OPNSEC macro instruction. The CID and
the NIB address occupy the same physical field in the control block. ACF/VTAM can
distinguish between a NIB address and a CID only through a particular bit set in the field.
For this reason, the field is called the NIB field when a NIB dddress is being inserted into
it, and an ARG field when a CID is being inserted into it. When NIB=address appears on a
CHANGE macro instruction, for example, the bit is set to indicate that the field contains
a NIB address. When ARG=(register) is coded on 2 READ macro instruction, for example,
the bit is set to indicate that the field contains a CID. (Note that register notation must
be used with ARG, since CIDs are not available until program execution.)

The point to remember when dealing with the NIB-ARG field is this: Since only one
physical field is involved, always use the NIB keyword to insert a NIB address and always
use the ARG keyword to insert a CID. This rule also applies to the GENCB and MODCB
macro instructions.

If the NIB operand is coded in an RPL macro for a DO, RESET, SOLICIT, READ,
RECEIVE, RESETSR, SEND, SESSIONC, or WRITE request, the request will be
completed with an error code.

Format: Expressions involving registers cannot be used with the RPL macro instruction.
If you omit this operand, the NIB field is set to 0.

AREA=data area address
When used by a SIMLOGON, REQSESS, INTRPRET, or a CLSDST with OPTCD= PASS
macro instruction, AREA indicates the address of an area containing a logon message.

When used by a SEND, RECEIVE, READ, or WRITE macro instruction, AREA indicates
the address of an area in program storage into which data is to be read or from which data
is to be written.

When used by an INQUIRE macro instruction, AREA indicates where the data obtained
by INQUIRE is to be placed.

When used by a DO macro instruction, AREA contains the address of an LDO.

RPL

When used by a RCVCMD macro instruction, AREA contains the address of an area into
which a header and an ACF/VTAM network operator message will be placed.

When used by a SENDCMD macro instruction, AREA contains the address of an area
containing a header and an ACF/VTAM network operator command.

The AREA field is also set upon return from an OPNSEC or OPNDST (OPTCD=
ACQUIRE) macro instruction, indicating the address of a NIB or list of NIBs. The AREA
field is not set by the application program before OPNDST or OPNSEC is issued.

Format: Expressions involving registers cannot be used with the RPL macro instruction.
If you omit this operand, the AREA field is set to O.

AREALEN=data area length
Indicates the length (in bytes) of the data area identified by the AREA operand. The
AREALEN operand is meaningful only for input operations or for the INQUIRE macro
instruction; ACF/VTAM uses this length to determine whether the data it is placing in the
area is too long to fit. For the RECEIVE macro instruction, AREALEN=0 means that no
input data area is available.

Format: Expressions involving registers cannot be used with the RPL macro instruction.
If you omit this operand, the AREALEN field is set to 0.

RECLEN=data length
When used by a REQSESS, SIMLOGON or INTRPRET macro instruction, or by a
CLSDST macro with the PASS option code, RECLEN indicates the length (in bytes) of a
logon message or sequence contained in the area indicated by the AREA operand.

When used by a SEND, SENDCMD, or WRITE macro instruction, RECLEN indicates the
length (in bytes) of the data that begins at the address indicated by AREA. RECLEN
provides the application program a means of telling ACF/VTAM how much data is to be
transferred. Users of SEND should take a particular care to insure that the RECLEN field
is not improperly set when the macro is issued. The possible consequence of an excessive
RECLEN value is described in the SEND macro instruction under RECLEN.

For RECEIVE and READ operations, the RECLEN operand has no meaning; but the
4-byte field in the RPL corresponding to RECLEN is set by ACF/VTAM when the input
operation is finished to indicate the length of data that ACF/VTAM has just placed into
AREA (for READ) or the total length of available data (for RECEIVE). For a
conversational WRITE, which includes both an input and an output operation, RECLEN
indicates the amount of data to be written. ACF/VTAM will post the length of the
incoming data in an RPL field called the ARECLEN field.

When a RECEIVE operation is completed and excess data is available (that is, KEEP is in
effect and the message is too long to fit in the input area), RECLEN contains the total
length of the message. The application program can reissue the RECEIVE until the value
in RECLEN is less than or equal to the value in AREALEN.

The RECLEN field is also set upon return from the SETLOGON macro instruction,
indicating the number of logon requests currently queued for the application program.
The RECLEN field is not set by the application program before SETLOGON is issued.

When a DO macro instruction for a READ LDO or a READBUF LDO is completed, the
RECLEN field indicates the amount of data obtained from the terminal and placed in the
data area in the LDO.

125

RPL

126

When an INQUIRE macro instruction is completed, the RECLEN field indicates the
amount of data placed into AREA. If the amount of data is larger than the AREA field,
RECLEN indicates the total length of the data. The INQUIRE can be reissued with the
correct length specified.

The application program can obtain the value in the RECLEN field by issuing a SHOWCB
macro, or it can test the contents of RECLEN against a fixed value with the TESTCB
macro instruction. For example:

SHOWCB RPL=(1),AM=VTAM OBTAIN THIS RPL’S. ..
FIELDS=RECLEN, ...RECLEN FIELD. ..
AREA=WORKAREA, ...AND PLACE IT IN WORKAREA. ..
LENGTH=4 ...WHICH IS FOUR BYTES LONG.

Format: Expressions involving registers cannot be used with the RPL macro instruction.

If you omit this operand, the RECLEN field is set to 0.

AAREA=alternate data area address

When used by a CLSDST macro instruction with a PASS option code, AAREA indicates
the location of an 8-byte area containing the symbolic name of the application program
to which a logon request is to be directed. The EBCDIC name should be left-justified and
padded to the right with blanks. This name is the same as the name of the application
program’s APPL entry in the resource definition table.

When used by an INTRPRET macro instruction, AAREA indicates a work area where
ACF/VTAM places the interpreted data sequence. See the INTRPRET macro instruction
for details. ’

When used by a WRITE macro instruction with a CONV option code, AAREA indicates
an input area in the application program into which data is to be placed. This type of
operation is called a conversational write operation and is described in the WRITE macro
instruction description.

When used by the DO macro instruction, AAREA indicates the address of the last LDO
used.

When used by the REQSESS macro instruction, AAREA must be set to zero.
Format: Expressions involving registers cannot be used with the RPL macro instruction.

If you omit this operand, the AAREA field is set to 0.

AAREALN-=alternate data area length

Indicates the length (in bytes) of the data area identified by the AAREA operand. When
AAREA is used as an input area for a INTRPRET or conversational WRITE macro
instruction, ACF/VTAM uses this length to determine whether the data to be placed
there is too long to fit.

Format: Expressions involving registers cannot be used with the RPL macro instruction.

If you omit this operand, the AAREALN field is set to 0.

ECB=event control block address
ECB=INTERNAL

Indicates the location of an event control block (ECB) to be posted by ACF/VTAM when
the connection or I/O request associated with this RPL is completed. The ECB can be any
fullword of storage aligned on a fullword boundary.

RPL

Format: Expressions involving registers cannot be used with the RPL macro instruction.

The ECB field and the EXIT field share the same RPL field. If asynchronous handling of
the connection or I/O request has been specified (ASY option code in the RPL), the
ECB-EXIT field is used in this manner:

e If you specify ECB=address, ACF/VTAM uses the field as the address of an external
ECB; you check and clear this ECB yourself (with CHECK, for example).

e If you specify EXIT=address, ACF/VTAM uses the field as the address of the RPL exit
routine, and schedules the routine as indicated below (under EXIT operand).

¢ If you specify ECB=INTERNAL or specify neither ECB=address nor EXIT=address
ACF/VTAM uses the ECB-EXIT field as an internal ECB; you must issue CHECK for
the RPL to check this ECB.

If synchronous handling has been specified (SYN option code in the RPL), the ECB-EXIT
field is used in this manner:

e If you specify ECB®address, ACF/VTAM uses the field as the address of an external
ECB; ACF/VTAM checks and clears this ECB itself.

e If you specify EXIT=address, ACF/VTAM uses the field as an internal ECB, thus
destroying the exit routine address; ACF/VTAM checks and clears this ECB itself.

o If you specify ECB=INTERNAL or specify neither ECB=address nor EXIT=address
(this is the normal procedure for synchronous request handling), ACF/VTAM uses the
ECB-EXIT field as an internal ECB; ACF/VTAM checks and clears this ECB itself.

ACF/VTAM clears internal ECBs (1) when it begins processing any RPL-based macro and
(2) when the RPL is checked. However, ACF/VTAM clears external ECBs only when the
RPL is checked. (RPL checking is done at request completion by ACF/VTAM for
synchronous request handling, and is done by the user issuing CHECK for asynchronous
request handling.) Users of external ECBs must therefore be sure that the external ECB is
cleared (with CHECK or with assembler instructions) before the next RPL-based macro is
issued.

EXIT=rpl exit routine address ,
Indicates the address of a routine to be scheduled when the request represented by this
RPL is completed.

If the SYN option code has been specified, the exit routine is not used; should you
specify an address anyway, the address is overwritten before the synchronous request
completes. (ACF/VTAM uses the ECB-EXIT field as an internal ECB in this situation—see
the ECB operand description above). The RPL exit routine is scheduled only if
asychronous handling of the request has been specified.

When the routine receives control, it is passed the address of the RPL in register 1. The
RTNCD and FDBK2 fields will indicate the status of the request.

The RTNCD-FDBK2 examination could reveal that the request was completed with a
logical or physical error. You should issue CHECK in the RPL exit routine; this will
schedule the LERAD or SYNAD exit routines, if appropriate, as well as set the RPL to an
inactive state. (LERAD and SYNAD exits are discussed in the EXLST macro instruction
description.) Never issue the CHECK in your main program unless you are sure that
CHECK will be executed after the RPL exit routine is scheduled.

127

RPL

When the RPL exit routine receives control, these general purpose registers contain the
following (registers 0 and 2-13 are unpredictable):

Register 1: The address of the RPL associated with the request whose completion has
caused the RPL exit routine to be entered.

Register 14: The address in ACF/VTAM to which the RPL exit routine must branch
when it is through processing. (For programs running under OS/VS2 in a privileged
state, the address is an address in the OS/VS2 dispatcher, not in ACF/VTAM.)

Register 15: The address of the RPL exit routine.
No register save area is provided upon invocation of the RPL exit routine.

If the EXIT operand is specified, the ECB operand must not be specified. (The EXIT field
and the ECB field occupy the same field in the RPL.)

BRANCH=YESINO
For OS/VS2 MVS application programs running in privileged state under a TCB,
BRANCH indicates the type of processing to be used when a SEND, RECEIVE,
RESETSR, or SESSIONC macro instruction is issued.

YES (0S/VS2 MVS only)

When the macro instruction is issued, ACF/VTAM processes the macro instruction in an
optimized high-priority manner. (For OS/VS2 MVS programs running in privileged state
under an SRB, rather than under a TCB, the macros are processed in this manner
automatically regardless of the actual setting of the BRANCH field.

NO

When the macro instruction is issued, ACF/VTAM does not process the macro instruction
in an optimized high-priority manner. For DOS/VS, 0S/VS1, and OS/VS2 SVS programs,
all requests are handled as though BRANCH=NO had been specified, regardless of the
actual setting of the BRANCH field.

SEQNO=sequence number (Record mode only)

Indicates the sequence number of a request or response. When an application program
issues a SEND (STYPE=REQ) macro instruction, ACF/VTAM sets the sequence number
sent with this request at the completion of the macro. If an application program is to
respond to a request, it must set the SEQNO field for the SEND (STYPE=RESP) with the
appropriate sequence number to identify the request it is responding to. This field is also
set by ACF/VTAM on completion of a RECEIVE macro instruction to identify the
number of the request or response that was received.

Format: Specify any decimal value that does not exceed 65535 or specify a register
(only the rightmost 2 bytes are used).

Note: If the logical unit to which the application program is responding is a BSC or
local 3270 in record mode, specify any decimal value that does not exceed 255 or specify
a register (only the rightmost byte is used).

POST=SCHED| RESP (Record mode only)
This field is set when the application program sends a data request to a logical unit and
requests a definite response. It is ignored for STYPE=RESP or if no response or only an
exception response is requested of STYPE=REQ. When POST=SCHED is used (scheduled
output) the SEND operation is completed as soon as the output data area is free. The
application program must issue a RECEIVE to obtain the response to the request. When

128

RPL

“POST=RESP is used (responded output) the send operation is not completed until a
response to the request is returned. The response information is posted in the RPL fields
of the SEND RPL.

RESPOND=(EX|NEX FME [NFME RRN|NRRNI|

QRESPINOQRESP) (Record mode only)
When a response is sent, the RESPOND field indicates the type of response—positive
(NEX) or negative (EX)—and, whether it is response type 1 (FME) or response type 2
(RRN) or both.

When a request is sent, the RESPOND field indicates the expected response—definite
(NEX) or exception only (EX)—and the type of the expected response—response type 1
(FME) or response type 2 (RRN) or both (FME,RRN).

If the NIB for the responding logical unit specifies PROC=ORDRESP and the request
specifies QRESP, the response is returned in order with the normal-flow requests and will
satisfy only an outstanding RECEIVE RTYPE=DFSYN macro instruction. If NQRESP is
specified in the request or if the NIB specifies PROC=NORDRESP, the requestor receives
the response with either a RECEIVE RTYPE=RESP, a RESP exit routine, or an
outstanding macro instruction with POST=RESP specified. See the SEND and RECEIVE
macro instructions for more information.

CONTROL~(DATA | QEC| RELQ! QCI CANCEL| CHASE | SHUTD| BID| LUS| SDT| SHUTC|

CLEARISTSNISIGNALI RTRI RSHUTD! RQR| BIND! UNBIND | SBI|

BIS) (Record mode only)
Indicates whether data, data flow control commands and responses, or session control
commands and responses are to be sent to a logical unit. Data and data flow control
commands (QEC, RELQ, QC, Cancel, Chase, SHUTD, Bid, LUS, RTR, RSHUTD, BIS,
SBI, SHUTC, and Signal) are sent with the SEND macro instruction. The session control
commands (SDT, RQR, Clear, and STSN) are issued by the SESSIONC macro instruction.
Session control responses (BIND, SDT, and STSN) are also sent using the SESSIONC
macro instruction. CONTROL=UNBIND is specified in a read-only RPL when the SCIP
exit routine is scheduled for an application program acting as the secondary end of a
session. The SCIP exit routine is scheduled as a result of a CLSDST macro instruction
being issued by a primary application program. See ACF/VTAM Macro Language Guide
for an explanation of the commands designated by CONTROL,

CHAIN=FIRST |MIDDLE | LASTIONLY (Record mode only)
This field is set when a message is sent to a logical unit. It denotes the message’s relative
position within the chain currently being sent. ONLY means that the message is the sole
element of the chain.

CHNGDIR=(CMD INCMDINREQ) (Record mode only)
This field is set when a request or response is sent to a logical unit. When CMD is set, a
Change Direction Command indicator is included in the request or response. When REQ
is set, a Change Direction Request indicator is included. (Although ACF/VTAM and
certain logical units allow this use of the Change Direction Command indicator, this is not
a SNA protocol. This indicator may be used by SNA for other purposes in the future.)

CRYPT=YES|NO (Encrypt/Decrypt Feature only)
Indicates whether data is to be enciphered before it is sent to the logical unit.

When YES is specified in a SEND macro instruction for a session that is capable of

cryptography, the data sent to the logical unit is enciphered. If YES is specified for
a session that is not capable of cryptography, ACF/VTAM assumes that the sender is

129

using a private (user-defined) form of enciphering and ACF/VTAM sends the data to the
logical unit without further enciphering.

When ACF/VTAM receives an enciphered data request, ACF/VTAM sets CRYPT=YES in
the RPL specified by the RECEIVE macro instruction. If this is a cryptographic session,
ACF/VTAM has already deciphered the data. If this is not a cryptographic session, it is
assumed that the application program will decipher the data (private enciphering).

When CRYPT=NO is specified in a SEND macro instruction, it indicates that the data
is not to be enciphered by ACF/VTAM. When ACF/VTAM sets CRYPT=NO in a
RECEIVE RPL, it indicates that the data received by ACF/VTAM was not sent en-
ciphered. ‘

BRACKET=(BBINBB ,EBINEB) (Record mode only)
This field is set when a request is sent to a logical unit. When BB is set, a Begin Bracket
indicator is included in the request. When EB is set, an End Bracket indicator is included.
Note that both indicators can be included in one message. When chained messages are
. being sent in a bracket, the Begin Bracket and End Bracket indicator must be included in
the first or only message of the last chain. For more information, see the description of
these indicators in the sections describing the SEND and RECEIVE macros.

RTYPE=(DFSYN|NDFSYN,DFASY | NDFASY,RESP!NRESP) (Record mode only)
When a RECEIVE macro instruction is issued, the RTYPE field designates the type or
types of input eligible to satisfy the macro instruction (only one type can actually satisfy
the RECEIVE). When a SEND or RESETSR macro instruction is issued, the RTYPE field
indicates the type or types of input for which the logical unit’s CA-CS mode is to be
switched.

DFSYN

Designates normal-flow requests. These include input data and the Quiesce Complete,
Cancel, Chase, Bid, Logical Unit Status, Bracket Initiation Stopped and Ready to Receive
commands.

DFASY

Designates expedited-flow requests. These include the Quiesce at End of Chain, Release
Quiesce, Shutdown, Request Shutdown, Stop Bracket Initiation Shutdown Complete,
and Signal commands.

RESP
Designates normal-flow responses.

Note: Expedited-flow responses cannot be received by the application program. They are
intercepted by ACF/VTAM to post complete SEND macro instructions that send
expedited requests.

STYPE=REQ! RESP (Record mode only)
This field designates the type of output to be sent to a logical unit. The application
program uses STYPE=REQ to send a request. STYPE=RESP is used when a response is to
be sent. STYPE=REQ must be set when a SESSIONC macro instruction is issued.

RPL

SSENSE=0| CPM| STATE | FI| RR (Record mode only)
This field is set when a negative response or Logical Unit Status command is sent to a
logical unit. Its purpose is to tell the logical unit the type of error that caused the
exception condition. These error types are described in Appendix C.

CPM
Designates a request header error condition.

STATE
Designates a state error condition.

FI
Designates a request error condition.

RR
Designates a request reject condition.

If this operand is omitted, the SSENSEO field is set to 0.

Note: When an RPL is assembled or generated, and each time the RPL is reset to its
inactive state (that is, after each synchronous request with OPTCD=SYN or CHECK
macro instruction), the SSENSEO field is cleared.

SSENSMO-=system sense modifier value (Record mode only)
This field is set-when a negative response or a Logical Unit Status command is sent to a
logical unit. The value set in this field is used in conjunction with the SSENSEO setting to
describe the specific type of error that caused the exception condition. The meanings
assigned to the SSENSMO values are described in Appendix C. If this operand is omitted,
the SSENSMO field is set to 0.

Format: Specify any decimal value defined in Appendix C, specify a register (only the
rightmost byte is used), or specify a 1-byte hexadecimal constant.

Examples: SSENSMO=1
SSENSMO=(7)
SSENSMO=X‘1B’

Note: When an RPL is assembled or generated, and each time the RPL is reset to its
inactive state (that is, after each synchronous request with OPTCD=SYN or CHECK
macro instruction), the SSENSMO field is set to 0.

USENSEO=user sense value (Record mode only)
This field may be set when a negative response or Logical Unit Status command is sent to
a logical unit. The user sense field is user-defined and may be used to inform the logical
unit that an exception condition is being raised by an application-program-related error
that is not a SNA defined error or it can be used to further modify the SNA defined
system sense and system sense modifier values. See Appendix C for more information. If
this operand is omitted, the USENSEOQ field is set to 0.

Format: Specify any decimal value that does not exceed 65535, specify a register (only
the rightmost 2 bytes are used), or specify a 2-byte hexadecimal or character constant.

Examples: USENSEO=13
USENSEO=(7)
USENSEO=X‘4F4F’
USENSEO=C‘ZZ’

131

RPL

132

Note: When the RPL is assembled or generated, and each time the RPL is reset to its
inactive state (that is, after each synchronous request with OPTCD=SYN or CHECK
macro instruction), the USENSEQ field is set to 0.

IBSQAC=SET| TESTSET | INVALID| IGNORE (Record mode only)
OBSQAC=SET! TESTSET| INVALID | IGNORE (Record mode only)

These fields are used by a SESSIONC macro instruction to designate which type of Set
and Test Sequence Number command is being sent to a logical unit. The setting of the
IBSQAC field relates to the inbound sequence number; the OBSQAC field relates to the
outbound sequence number. See the SESSIONC macro instruction for the responses that
can be returned for each of the following:

SET
The sequence number is reset. The logical unit is made aware of the number, but possible
responses are limited.

TESTSET :
The sequence number is reset. The logical unit is made aware of the number and returns a
response regarding the validity of that number.

INVALID
The sequence number is not reset (the application program has lost its version of the
sequence number). The logical unit returns the sequence number.

IGNORE
The sequence number is not reset. No response is possible.

IBSQVAL~=inbound sequence number (Record mode only)
OBSQVAL=outbound sequence number (Record mode only)

When SESSIONC is used to send an STSN command and SET or TESTSET is set in the
IBSQAC or OBSQAC field, these fields contain the sequence number being reset or
transmitted.

Format: With the exception of a BSC or local 3270, specify any decimal value that does
not exceed 65535, any hexadecimal value that does not exceed FFFF, or specify a
register (only the rightmost 2 bytes are used). For a BSC or local 3270, specify any
decimal value that does not exceed 255 or specify a register (only the rightmost byte is
used).

If this operand is omitted, this field is set to 0.

- SIGDATA=signal data (Record mode only)

When the SEND macro is used to send the SIGNAL command to a logical unit, thls field
contains the signal data to be sent.

Format: Specify a decimal, hexadecimal, or character constant of from 1 to 4 bytes, or
specify a register (the value in the register is used). ‘

If this operand is omitted, this field is set to O.

RPL

CODESEL=STANDARD! ALT (Record mode only)
This field indicates which data code is to be used in the request associated with the RPL.
The application program and logical unit must have previously agreed what type of code
will be recognized as the standard code (such as EBCDIC) and what code will be
recognized as the alternate code (such as ASCII).

STANDARD
Indicates that the standard code agreed on is to be used.

ALT
Indicates that the alternate code agreed on is to be used.

OPTCD=option code! (option code, . . .)
Indicates options that are to affect the connection and I/O requests made using this RPL.

Format: Code as indicated in the assembler format table. If only one option code is
specified, the parentheses can be omitted.

RPL ACB=ACB1,0PTCD=(SPEC,SYN,CS),AM=VTAM
RPL ACB=ACB1,0PTCD=SPEC,AM=VTAM

Note: The MODCB macro instruction can be used to change the option codes set in the
RPL after it has been built.

NIBTK! TRUNCI| KEEP (Record mode only)

Indicates the action to be taken when a RECEIVE macro instruction is completed with
input that is too large to fit in the input data area. TRUNC causes the excess data to be
discarded. The application program is not notified that truncation occurred. KEEP causes
the excess data to be saved for subsequent RECEIVE macro instructions. The application
program can compare the value set in the RPL’s RECLEN field (the amount of incoming
data) with the value in the AREALEN field. If the RECLEN field is larger, excess data is
present. NIBTK allows the TRUNC-KEEP processing option (see the NIB macro
instruction) to determine whether excess data is to be kept or discarded.

NFMHDR| FMHDR (Record mode only)

This option code indicates to ACF/VTAM how the format bit in the request header (RH)
is to be set. This option applies only to data requests and data responses and should be
used to notify the logical unit that the request or response contains or does not contain
(FMHDR and NFMHDR, respectively) a user-defined function management header. If
FMHDR is set, the format bit is set on in the request header and is delivered to the
receiver.

CONALL | CONANY
When an OPNDST macro instruction (with an ACQUIRE option) is issued and the NIB
field of its RPL indicates a list of NIBs, this option code indicates the following:

CONALL
Connection is to be made to all the available terminals and logical units in the list. The
connections are made immediately.

CONANY

Connection is to be made to the first available terminal or logical unit (if any) of the
NIB list indicated by the NIB field. The request is completed when one connection has
been made.

When a SIMLOGON macro instruction is issued and the NIB field of its RPL contains the
address of a list of NIBs, this option code indicates the following:

133

RPL

134

CONALL

Logons are to be generated for all the terminals and logical units represented in the
NIB list. The SIMLOGON operation is completed immediately. If Q is set, logons are
generated as each terminal or logical unit becomes available. If NQ is set and all the
terminals and logical units are available, the logons are generated immediately; if all are
not available, however, no logons are generated.

CONANY

A simulated logon is to be generated for the first available terminal or logical unit of
the NIB list. Control is passed to the application program’s LOGON exit routine, if
one exists, when this one logon has been generated. The parameter list passed to the
LOGON exit routine can be used to determine the identity of the terminal or logical
unit for which the logon was generated. (See the EXLST macro instruction
description.) If Q is set, a logon is generated when the first terminal or logical unit
becomes available. If NQ is set, and a terminal or logical unit is available, the logon is
generated immediately. If no terminals or logical units are available, a logon is not
generated.

ACCEPT| ACQUIRE
Indicates whether OPNDST is being issued to accept a terminal’s or logical unit’s logon or
whether it is being issued to acquire that terminal or logical unit.

ACCEPT

ACF/VTAM connects the application program to a terminal or logical unit that has
issued a logon. If the ANY option code is set and more than one terminal or logical
unit has issued a logon and is waiting to be accepted, the first one that issued a logon is
connected. The symbolic name of that terminal or logical unit is placed in the NIB
pointed to be OPNDST’s RPL. If the SPEC option code is in effect, the NIB must
already contain the symbolic name of a terminal or logical unit; connection is
established only if that particular terminal or logical unit issues a logon.

ACQUIRE

ACF/VTAM connects the application program to the terminal or logical unit
represented by this NIB if it is available (that is, not connected to an application
program or does not have a pending logon). The CONALL-CONANY option code
determines which of the terminals or logical units represented in the list (that have not
issued logons) are connected. If CONALL is in effect, all of the available terminals and
logical units represented in the list are connected. If CONANY is in effect instead,
only the first available terminal or logical unit represented in that list is connected.

The use of ACQUIRE must be authorized for the application program by the user.

SPEC| ANY
When the RPL is used by an OPNDST macro with an ACCEPT option code, these option
codes indicate the following:

SPEC

Connection is to be made to a specific terminal or logical unit if it issues (or has
issued) a logon to the application program. The terminal or logical unit is identified by
placing its symbolic name in a NIBand placing the address of that NIB in the RPL’s
NIB field.

RPL

ANY
Connection is to be made to any terminal or logical unit that has issued a logon for the
application program.

When the RPL is used by a READ, SOLICIT, or RECEIVE macro instruction, these
option codes indicate the following:

SPEC
Data is to be obtained from the specific terminal or logical unit whose session CID is in
the RPL’s ARG field.

ANY

For READ, data already obtained from any one terminal is to be moved to the
application program’s input area, subject to the setting of the terminal’s CS-CA option
code. For SOLICIT, data is to be obtained from all of the terminals connected to the
application program, subject to the setting of the CS-CA option code. For RECEIVE,
data arriving from any one logical unit is to be moved to the application program’s
input area, subject to the setting of the logical unit’s CS-CA option code and the
RTYPE field of the RECEIVE macro instruction.

QUIESCE!| STOPISTART

Indicates how a SETLOGON request is to affect (1) the queuing of logons for a given
ACB and (2) the codes returned by INQUIRE (OPTCD=APPSTAT) issued by other
application programs. This option code applies only if the ACB has been opened with
MACRF=LOGON specified.

QUIESCE

No more logons can be directed at the ACB whose address is in the RPL’s ACB field.
Application programs issuing INQUIRE (OPTCD=APPSTAT) for the application
program will receive a return code indicating that the application program cannot
accept logon requests, presumably because it is about to close the ACB.

STOP

Application programs issuing INQUIRE (OPTCD=APPSTAT) for the ACB receive a
return code indicating that no logons should be directed at the ACB (but implying that
logons will be accepted later). The use of this option, however, does not prevent
logons from being queued if the other application programs ignore this indicator and
issue CLSDST (OPTCD=PASS) anyway. SETLOGON (OPTCD=STOP) should be used
to temporarily halt logons; use SETLOGON (OPTCD=QUIESCE) to permanently bar
logons to the ACB.

START

Application programs issuing INQUIRE (OPTCD=APPSTAT) receive a return code
indicating that the application program represented by the ACB is accepting logons.
This version of SETLOGON also causes ACF/VTAM to commence queuing automatic
logon requests if this is the first such SETLOGON request since the ACB was opened.
SETLOGON (OPTCD=START) reverses the effect of a previous SETLOGON
(OPTCD=STOP).

RELEASE| PASS

Indicates whether or not a logon is to be generated when a CLSDST macro instruction is
issued.

135

RPL

136

RELEASE \
No logon is generated; the terminal or device-type logical unit is simply disconnected
from the application program.

PASS

ACF/VTAM generates a simulated logon on behalf of the terminal or logical unit being
disconnected and directs this logon to the application program whose symbolic name
is pointed to by the RPL’s AAREA field. If the RPL’s AREALEN field contains a
value other than 0, ACF/VTAM also sends a logon message with the logon.
ACF/VTAM obtains the message from the storage area identified in the AREA field,
and sends the number of bytes indicated in the AREALEN field. The use of CLSDST
with PASS must be authorized by the user.

LOGONMSG! DEVCHAR | COUNTS | TERMS | APPSTAT | CIDXLATE!|

TOPLOGON | BSCID| SESSPARM | SESSKEY

Indicates the action ACF/VTAM is to take when an INQUIRE macro instruction is
issued.

LOGONMSG
INQUIRE retrieves the logon message of a terminal that has issued a logon for the
application program.

The RPL’s NIB field must point to a NIB whose NAME field contains the symbolic
name of the terminal. The RPL’s ACB field must indicate the ACB to which the logon
was directed. This information is provided in the parameter list passed to the LOGON
exit routine.

The AREA and AREALEN fields must indicate the location and length of the storage
area where the logon message is to be placed.

DEVCHAR

INQUIRE obtains the device characteristics of a terminal, as they are defined by the
user in the resource definition table at the time INQUIRE is executed. These device
characteristics can be used by the application program to determine which processing
options the program wants to set in the NIB used to connect the terminal.

The RPL’s NIB field must point to a NIB containing the symbolic name of the
terminal, or the RPL’s ARG field must contain the CID of the session with the
terminal (see the description of the NIB field for more information on the NIB-ARG
field). The device characteristics are placed in the program storage area whose location
and length are indicated by the AREA and AREALEN fields of the RPL. See the
INQUIRE macro instruction for details.

COUNTS

For the ACB specified, INQUIRE provides the number of active sessions for the
application program (both primary and secondary) and the number of queued logons
(for primary ends) and the number of pending Binds (for secondary ends) that are
waiting to be processed. These two numbers are placed in a 4-byte area in program
storage whose location and length are indicated by the AREA and AREALEN fields of
the RPL. ACF/VTAM places the number of connected sessions in the first 2 bytes and
the number pending sessions in the second 2 bytes.

The connections and logons counted by INQUIRE are those directed to the ACB
indicated by the ACB field.

5 RPL

TERMS
Wren this operand is specified, node initialization blocks (NIBs) are built by
INQUIRE.

The RPL’s NIB field must point to a NIB whose NAME field contains the name of an
entry that exists in the resource definition table at the time INQUIRE is issued. This
entry must be a PU, LU, LINE, CLUSTER, or TERMINAL entry that represents
several terminals or logical units. A NIB is built for each terminal or logical unit
represented in the entry.

Each generated NIB contains the symbolic name of the terminal or logical unit. The
flags for the LISTEND field are set to group the NIBs together into a NIB list. In
addition, device characteristics are supplied in the DEVCHAR field of each NIB. These
characteristics can be used to reset the processing options of the NIB to values that are
appropriate for the terminal.

The user must set each NIB’s MODE field to BASIC or RECORD before the NIBs are
ready to be used for connection.

APPSTAT

This type of INQUIRE determines whether a given application program is available or
unavailable. An available application program is one whose ACB is active (open) and
indicates that logons are to be accepted (OPEN with MACRF=LOGON and
SETLOGON with OPTCD=START or STOP have been issued).

The RPL’s NIB field must point to a NIB whose NAME field contains the symbolic
name of the application program whose status is being checked. A value returned in
the RPL’s FDBK field indicates whether the application program is available or not.
" See the INQUIRE macro instruction description for the codes that can be returned.

CIDXLATE

INQUIRE provides the symbolic name of the terminal or logical unit whose session
CID you provide, or provides the CID of the session with the terminal or logical unit
whose symbolic name you provide.

If the RPL’s ARG field contains the CID of the session, the 8-byte symbolic name is
returned in the data area indicated in the AREA field. If the RPL’s NIB field contains
the address of a NIB, the CID for the session is placed in the RPL’s ARG field, which
replaces the NIB field.

TOPLOGON

For a given ACB, INQUIRE provides the symbolic name of the terminal or logical unit
that is currently at the top of the logon queue queue for that ACB (that is, the
terminal .r logical unit that has spent the greatest amount of time waiting for its logon
to be satisfied).

The RPL’s ACB field must indicate the ACB whose logon queue is to be used. The
8-byte symbolic name of the terminal or logical unit is returned in the data area
indicated in the RPL’s AREA field.

BSCID

INQUIRE returns the ID verification sequence of the terminal logging on. This form of
INQUIRE is appropriate if the terminal’s name (as provided in the LOGON exit
routine’s parameter list) is one of the names established during ACF/VTAM definition
as an unidentified terminal with an ID verification feature.

137

138

The RPL’s NIB field must point to a NIB whose NAME field contains the symbolic
name provided in the LOGON. parameter list. The sequence is placed in the work area
defined by the AREA and AREALEN fields (set AREALEN to 20).

SESSPARM

INQUIRE returns the session parameters associated with a specified logon mode. The
NIB field of the RPL must point to a NIB whose LOGMODE field identifies the logon
mode to be used. The logon mode name that is specified in the NIB is used to search
the logon mode table defined for the logical unit named in the NIB. If a match is
found, the session parameters associated with the logon mode name are returned in the
field pointed to by the AREA field of the RPL. INQUIRE may also be used to obtain
the session parameters and logon data associated with a pending logon. The session
parameters for the default logon mode may also be returned for the logical unit. See
the description of the LOGMODE operand of the NIB macro for more information.

SESSKEY (Encrypt/Decrypt Feature only)

INQUIRE returns a 16 byte value pointed to by the AREA field. The first 8 bytes
contain the enciphered cryptographic session key. The second eight bytes contain
the Initial Chaining Value (ICV) that will be used to encipher the data sent to the
logical unit.

SYNI| ASY
Indicates whether ACF/VTAM should synchronously or asychronously handle any
request made using this RPL.

SYN

Synchronous handling means that when a request is made, control is not returned to
the application program until the requested operation has been completed (success-
fully or otherwise). The application program should not use the CHECK macro
instruction for synchronous requests; ACF/VTAM automatically performs this
checking (which includes clearing the internal ECB; an ECB address or an exit routine
address should not be specified in the RPL or an RPL-based macro instruction should
specify ECB=INTERNAL). When control is returned to the application program,
registers 0 and 15 will contain completion codes.

ASY

Asynchronous handling means that after ACF/VTAM schedules the requested
operation, control is immediately passed back to the application program. When the
event has been completed, ACF/VTAM does one of the following:

e If the ECB address is specified for the RPL, ACF/VTAM posts a completion
indicator in the event control block indicated by this operand. The application
program must issue a CHECK (or a system WAIT) macro to determine whether the

RPL

ECB has been posted. If the ECB-EXIT field is not explicitly specified or an internal ECB
is specified, the application program must also issue a CHECK macro instruction to check

this ECB.

o If the EXIT operand is in effect for the RPL, ACF/VTAM schedules the exit
routine indicated by this operand. This exit routine should issue the CHECK macro
so that the RPL can be reused, and also to cause automatic entry into a LERAD or
SYNAD exit routine if the requested operation ends with a logical or other error.
CHECK should be issued in the exit routine if the application program has no
LERAD or SYNAD routine, since CHECK will return a code indicating whether or
not a logical or other error occurred.

Note: After an asynchronous request has been accepted and before that request has
been completed, do not modify the RPL being used by the request. This restriction
also applies to a NIB during OPNDST processing. A modification during this interval
could cause ACF/VTAM to be unable to complete the request in a normal manner,
which in turn would cause ACF/VTAM to terminate the application program.

CAlCS
The CS (continue specific) and CA (continue any) option codes determine which type of
input request is required to obtain data from the terminal or logical unit.

CA
Places the terminal or logical unit in a status wherein it’s data is subject to RECEIVE
or READ and SOLICIT macro instructions. This status is termed continue-any mode.

Although the CS-CA option code affects only RECEIVE, SOLICIT, or READ
operations, you can switch a terminal or logical unit from one status to the other by
specifying the CS or CA option code in any OPNDST, OPNSEC, SEND, RECEIVE,
RESETSR, SOLICIT, READ, WRITE, DO, or RESET macro instruction. The change
from one status to another is effective for the next I/O operation directed at the
terminal or logical unit, not when this macro instruction is executed. The terminal or
logical unit that is the object of the macro instruction is the one whose CS-CA status is
changed. (For RECEIVE or READ with OPTCD=ANY, the terminal or logical unit
whose status will be changed is the one whose data is moved by the READ or
RECEIVE operation.) If an error occurs and a macro instruction that specifies a
change in a terminal’s or logical unit’s CA-CS mode is not completed successfully, the
mode is not changed.

Ccs

Places the terminal or logical unit into a status wherein only input requests that are
directed specifically at the terminal or logical unit can be used to obtain data from it.
These are the RECEIVE, READ, and SOLICIT macro instructions with OPTCD=SPEC
specified. Looking at CS another way, it “immunizes” a terminal or logical unit from
input requests that are not specifically directed at the terminal or logical unit—namely,
RECEIVE, READ, or SOLICIT macro instructions issued with OPTCD=ANY. The
status into which the terminal or logical unit is placed is termed continue-specific

mode.

For example, while CS is in effect, the arrival of data from a logical unit that is in
continue-specific mode does not trigger the completion of a RECEIVE (OPTCD=
ANY) macro instruction that may have already been issued.

Continue-any and continue-specific modes can be set individually for a particular type of
input. For example, a terminal or logical unit can be placed in continue-specific mode for
normal-flow requests while it is in continue-any mode for expedited-flow requests and for
responses.

139

RPL

140

BLK!| LBM| LBT (Basic mode only)

Indicates that the block of data to be transferred on a WRITE operation represents a
block (BLK), the last block of a message (LBM), or the last block of a transmission
(LBT). Appendix B shows the line-control characters sent when each of these three
option codes are in effect. BLK is invalid for a 3270 Information Display System.

NCONV/|CONYV (Basic mode only)
Indicates whether or not a WRITE macro instruction is to be handled as a conversational
write request.

NCONV -
Only the output operation is performed.

CONV
Following the output operation, data is obtained from the terminal and placed in the
area in program storage indicated by the RPL’s AAREA field.

CONDI UNCONDI LOCK
Indicates the action to be taken when a RESET or TERMSESS macro instruction is
issued.

COND

RESET cancels any I/O operation that is pending for a specific terminal, but does not
affect an I/O operation if data transfer has begun. This form of RESET cannot be used
if an error lock is set.

If TERMSESS specifies OPTCD=COND, the application program acting as the primary
end of the session determines if and when to terminate the session.

UNCOND

RESET cancels any I/O operation with a specific terminal, whether or not data
transfer has begun. Any data that has already been brought into ACF/VTAM buffers is
kept by ACF/VTAM for subsequent retrieval by the application program (with a
READ macro). Any data being sent or about to be sent by the terminal may be lost.
RESET also resets any error lock that has been set for the terminal.

If TERMSESS specifies OPTCD=UNCOND, ACF/VTAM will terminate the session.

LOCK (Basic mode only)
RESET resets any error lock that has been set for the terminal.

NERASE| ERASE| EAU (Basic mode only)
Indicates the action to be taken when a WRITE macro instruction is issued.

NERASE
WRITE performs an ordinary write operation with no display screen erasure. Use this
option for all devices other than 3270 and 2770 devices.

ERASE

WRITE erases the screen of a display device attached to a 3270 Information Display
System or a 2770 Data Communication System, and then sends a block of data to the
device.

EAU
WRITE erases only the unprotected portion of the screen of a display device attached
to a 3270 Information Display System. No data is written.

RELRQI!NRELRQ
Indicates the action to be taken when a SIMLOGON macro is issued, and the terminal or
logical unit that is the object of this simulated logon request is already connected to

another application program—that is, already connected to an ACB other than the one
being used for the SIMLOGON macro.

The effect of this option is to determine whether or not the application program that is
connected to the terminal or logical unit is to be notified of your request. The NRELRQ
option, for example, allows you to release a terminal or logical unit to another
application program, and then immediately request reconnection to assure its eventual
return to your program without notifying the receiving application program.

Note the difference in spelling between the RELRQ-NRELRQ RPL option, and the
related exit routine. The latter is coded in the EXLST macro instruction as RELREQ.

RELRQ
If the application program to which the terminal or logical unit is connected has a
RELREQ exit routine, that routine is invoked.

NRELRQ
No RELREQ exit routine is invoked.

QINQ

Indicates the action ACF/VTAM is to take when the application program issues
SIMLOGON, REQSESS, or OPNDST (ACCEPT) and the terminal or logical unit that is
the object of this request is unavailable.

Q

For SIMLOGON, ACF/VTAM is to schedule the LOGON exit routine when the
terminal or logical unit is finally available and complete the SIMLOGON request when
it has done so. For OPNDST with ACCEPT, ACF/VTAM completes the OPNDST
when the terminal or logical unit logs on to this application program. If a logon is
already queued, the OPNDST is completed immediately. Q cannot be specified in a
REQSESS macro instruction.

Note: If during processing of the OPNDST (ACCEPT) request, an error is detected
and error recovery processing is invoked, the pending logon may be canceled.

NQ

ACF/VTAM is to immediately return control to the application program. (Without the
NQ option, a connection request or simulated logon might remain pending
indefinitely, until another application program releases the terminal or logical unit.)
NQ must be specified when issuing a REQSESS macro instruction.

The Q-NQ option also indicates the action ACF/VTAM is to take when the application
program issues a RECEIVE or RCVCMD macro instruction and no input that is eligible to
satisfy the request is at that moment in ACF/VTAM’s buffers.

Q
ACF/VTAM is to satisfy the request when the input is finally available and complete
the RECEIVE or RCVCMD when it has done so.

NQ

ACF/VTAM is to terminate the request and return control to the application program
immediately without performing any CA-CS mode switching.

141

RPL
RPL Fields Set by ACF/VTAM

142

All of the RPL fields described above are fields that can be supplied by the application
program and cause the RPL fields to be set when the RPL macro is assembled or when
the RPL-based macro is executed. Some of the fields described above that are initially set
by the application program may be (for certain macro instructions) reset by ACF/VTAM
before the macro instruction is completed. There are additional RPL fields that cannot be
set by the application program but can be examined by it during program execution.
ACF/VTAM uses both types of fields to return information to the application program
upon completion of RPL-based macro instruction processing. (See Figure 16 for a
description of these fields.)

In some cases, fields set by ACF/VTAM prior to the completion of one macro;instruction
will cause erroneous results if the application reuses the same RPL for another macro
without again initializing the field. (Only the SSENSEI, SSENSMI, USENSEI, SSENSEOQ,
SSENSMO, USENSEO, FDBK, FDBK2, RTNCD, and SENSE fields are cleared by
ACF/VTAM, and no fields are reset to their original values by ACF/VTAM.)

For example: Before a RECEIVE is issued, the RTYPE field is set by the application
program to indicate the types of input (DFSYN, DFASY, RESP) that are eligible to
satisfy the RECEIVE. The application program might indicate all 3. When the RECEIVE
is completed, ACF/VTAM uses the same field to indicate the type of input that actually
satisfied the RECEIVE; if a RESP response was received, for instance, ACF/VTAM would
reset the RTYPE field to RTYPE=(NDFSYN, NDFASY, RESP). Should the application
program issue another RECEIVE with the same RPL and fail to reset the RTYPE field to
its intended setting, the second RECEIVE could only receive responses.

RPL
Field Name Content

ARECLEN The number of bytes of data returned by the WRITE (OPTCD=
CONV) and INTRPRET macro instructions. See WRITE and
INTRPRET for details.

RTNCD A general return code returned by all of the RPL-based macro
' instructions. This field is cleared by ACF/VTAM when the processing
of the macro instruction begins. This is one of the feedback fields

described in Appendix C.

FDBK2 A specific error return code returned by all RPL-based macro
instructions that are accepted by ACF/VTAM but are not completed
successfully. This field is cleared by ACF/VTAM when the processing
of the macro instruction begins. This is one of the feedback fields
described in Appendix C. A DSECT containing labeled EQU instruc-
tions for each FDBK2 return code is described in Appendix H
(ISTUSFBC). These DSECT labels can be used instead of the numerical
values that are cited for FDBK2 throughout this manual.

FDBK Status information for INQUIRE, READ, conversational WRITE, or
DO macro instructions. For example, if the data ended with an EOM
line-control character, this field is set to indicate this. This field is
cleared by ACF/VTAM when the processing of the macro instruction
begins. This is one of the feedback fields described in Appendix C.

SENSE The SENSE field contains status or sense bytes obtained from certain
devices. The SENSE field applies only to DO, READ, and WRITE
macro instructions, and is set following these macro instructions only if
the RPL’s FDBK2 field so indicates. This field is cleared by
ACF/VTAM when the processing of the macro instruction begins.
There is more information about the SENSE field in A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>