Systems Network Architecture
Distribution Services

SC30-3098-3

Reference

[

I
ol

Systems Network Architecture

Distribution Services

Reference

Fourth Edition (June 1989)

This is the fourth edition, SC30-3098-3; it applies until otherwise indicated in a new edition. Consult
Part 3 of the latest edition of IBM System/370, 30xx, and 4300 Processors — Bibliography, GC20-0001, for
current information on this communication architecture,

The following sentence does not apply to the United Kingdom or any country where such provisions
are inconsistent with local law: International Business Machines provides this publication “As Is”
without warranty of any kind, either express or implied, including, but not limited to, the implied war-
ranties of merchantability or fitness for a particular purpose. Within the United States, some states do
not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement
may not apply to you.

Order publications through your IBM representative or the IBM branch office servmg your locality.
Publications are not stocked at the address given below.

A form for your comments is provided at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation
Department E74
P.O. Box 12195
Research Triangle Park, North Carolina 27709, U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the infor-
mation in any way it believes appropriate without incurring any obligation to you or restricting your use
of it.

Note to US Government users - Documentation related to Restricted Rights - Use, duplication, and dis-
closure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

© Copyright International Business Machines Corporation 1984, 1985, 1989
All Rights Reserved

§;;ecial Notices

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this publica-
tion is not intended to state or imply that only IBM’s program or other product
may be used.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license
to use these patents. You can send license inquiries, in writing, to the IBM
Director of Commercial Relations, IBM Corporation, Purchase, New York 10577.

IBM is a registered trademark of the International Business Machines Corpo-
ration.

Special Notices il

Iv SNA/Distribution Services Reference

Preface

This manual describes Systems Network Architecture/Distribution Services
(SNA/DS) at the implementation level. This manual does not describe any spe-
cific machines or programs that may implement SNA, nor does it describe any
implementation-specific subsets or deviations from the architectural description
that may appear within any IBM SNA product. These matters, as well as infor-
mation on SNA product installation and system definition, are described in the
appropriate publications for the particular IBM SNA machines or programs to
be used.

Prerequisite Publications
* SNA Concepts and Products, GC30-3072
» SNA Technical Overview, GC30-3073

* SNA Transaction Programmer’s Reference Manual for LU Type 6.2,
GC30-3084

Related Publications
* SNA Formats, GA27-3136

* SAA Common Programming Interface: Communications Reference,
§C26-4399 :

* SNA LU 6.2 Reference: Peer Protocols, SC31-6808
*» SNA Type 2.1 Node Reference, SC30-3422

Preface V

vl SNA/Distribution Services Reference

Contents

Chapter 1. Concepts and Facilities 1
Introduction L e 1
The Interface to the Distribution Service 2
Agents . .. e 2
Agent Requests 2
The Agent Protocol Boundary 3
AgentNames 3
The Transfer of Responsibility 4
Distribution Service Users 4
UserRoles e 5
User Names e 5
User’s View of the Distribution Service 6
Distributions e 6
Distribution Copies 7
Types of Information in a Distribution 7
Distribution Transport Message Units 7
Distribution Report Message Units 8
The Distribution Identification 8
DS FormatSets e e 8
Distribution Service Unit (DSU) 8
DSURoles e 9
DSU Names e 9
The DSU/User Relationship 9
Environmentofthe DSU 9
DSU Directories and Routing Tables 10
ADSU’sDirectory e 10
ADSU'sRoutingTable 12
Simple Networks e 12
Fully-Connected DS Networks 13
Simple Directing in Fully-Connected Networks 13
Simple Routing in Fully-Connected DS Networks 14
MU Flows for Typical Distributions 15
DS Networks with Intermediate DSUs 18
Simple Directing in Networks with Intermediate DSUs 19
Simple Routing in Networks with Intermediate DSUs 20
MU Flows for Typical Distributions 21
Advantages of Using Intermediate DSUs 22
Full-Function DS Networks 23
Distribution Service Parameters 23
Service Parameters and Service Levels 24
Default Service Levels 25
Combinations of Service Levels 26
Uses of Distribution Service Parameters 26
Sublayeringin DS Networks, 32
Processes Performed in the DS Sublayers 32
Sublayer Diagrams 34
Redirection 35
Default Directing e e e e e e e e e e 36
Default Routing 38

Contents Vil

vili

Alternate Routing 39

The Intervention List 40
Serversand Objects e 40
Introduction e 40
General and Specific Servers e e 42
Server Exceptions and Reporting e e e 45
Early Acceptance of the Server Object 46
Direct Fetchand Store 47
Exception Handling with Direct Fetchand Store 48
Server Access Descriptors and Specific Server Information 48
Agentvs. ServerObjects 49
The Server Protocol Boundary 50
DS and LUB.2 e 51
The Distribution Transport Sublayer 51
DS’s Use of LU 6.2 Verbs -- Format Set 2 Implementations 53
Levels of Integrity for Distributions 54
DS’s Use of LU 6.2 Verbs -- Format Set 1 Implementations 54
Agent Protocol Boundary Verbs, 55
Verb Overview--Originating Distributions 55
Verb Overview--Receiving Distributions and Reports 55
Sending Sequences e e e 55
Sample Sending Sequences, 56
Receiving Sequences e e e 61
Sample Receiving Sequences 61
Exception Occurrences and Conditions 63
Exception Analysis e 64
Exception Handling 65
Mid-MURestart e 66
Distribution Reporting 66
Distribution Report Message Units 66
Service Parameters inthe DRMU 67
The Report-ToAgent 67
Third-Party Reporting 68
Operations e e e e 68
Managing Distributions L 68
Managing Connections © e e 68
Maintaining DSU Definitions 69
Managing Logs e e 70
Chapter 2. Overview of SNA/DS Protocols 71
The DS Distribution Transport Sublayer 71
Data Structures atthe SendingDSU 72

Data Structures at the ReceivingDSU 73

The MU_ID Registries i 73
Defining Connections 74

DS Protocol for Transmitting Distributions 74
Integrity of Distributions o 75
Use of LU 6.2 Verbs—-High Integrity 76
Use of LU 6.2 Verbs--BasicIntegrity 78
Parallel Sessions e 79
ThroughputControl 179
Management of Message UnitIDs 81

SNA/Distribution Services Reference

States and State Changeso oL, 81

States of MU_IDs atDS_Send 82
States of MU_IDs at DS_Receive 83
MU_ID States--Active and Inactive 85
MU_ID States and DSU Responsibility 85
MU_ID Instance Numbers oo 86
Removing MU_IDs from the MU_ID registry 86
The MU_ID registry 86
Synchronization of MU_ID Registries at Sender and Receiver 88
Exceptions Detected by the Distribution Transport Sublayer 89
Exceptions Detected by DS Send, 89
The Sender-Exception Message Unit (SEMU) 89
Effects of a Sender-Detected Exceptionon DS _Send 90
Actions of DS_Receive in Response to Send_Error 91
Actions of DS_Receive in Responsetoa SEMU 91
Actions of DS_Send in Response to a Conversation Failure 91
Actions of DS_Send in Response to an Operator Purge 92
Exceptions Detected by DS_Receive 92
The Receiver-Exception Message Unit (REMU) 92
Effects of a Receiver-Detected Exception on DS_Receive 92
Actions of DS_Send in Response to Send_Error 93
Actions of DS_Send in Responsetoa REMU 93
Actions of DS_Receive in Response to a Conversation Failure 94
Other Control MUs (CQMU, CRMU,PRMU) 94
Completion Query Message Unit (CQMU) 94
Actions of DS_Receive in Responsetoa CQMU 95
Completion Report Message Unit (CRMU) 95
Actions of DS_Send in Responsetoa CRMU 85
Purge-Report Message Unit (PRMU) 96
Actions of DS_Receive in Responsetoa PRMU 96

Lost MesSSages o o i i e 97
Mid-MU Restart 98
Example 99
Formal Description of MU_ID State Transitions 102
DS_SEND_MU_STATE_DESCRIPTION 102
DS_RCV_MU_STATE_DESCRIPTION 104
Chapter 3. ImplementationModel 107
Introduction 107
The StructureofaDSU o . 107
Examples of DSU Activity 110
Origin of Distribution with Local Destinations 110
Origin of Distribution with Remote Destinations 112
Destination of Distribution 114
Processing a Received Distribution with a Routing Exception 116
Accessing Logged Exception o L. 118
Presentation Services Sublayer e e e e e e e 119
Send_Distribution Lo o 118
Query_Distribution_Sending, 119
Sending_Sequence_Completed 120
Receive_Distribution, Receive_Distribution_Report 120
Receiving_Sequence_Completed 120

Contents X

Obtain_Local_Server Report 121

Operations Verbs e e 121
Routing and Directing Sublayers, .. 121
Routing and Directing Overview 121
FSM_ROUTING DIRECTING_ MGR 124
Directing FSMs e 128
FSM_DIRECTING_MGR it 128
FSM_LOCAL_SCHED 132
Routing FSMs e e 136
FSM_ROUTING_MGR i i 136
FSM_REMOTE_SCHED 140
Routing and Directing Utility FSMs 144
FSM_ORIGIN_CHECK it 144
FSM_DEST DSU CHECK 144
FSM_DIR_LOOKUP e e e 144
FSM_LOCAL CHECK i, 144
FSM_NEXT_LOCAL QUEUE, 145
FSM_COUNT_EXCEPTS i 145
FSM_DSU CHECK i 145
FSM_RTG_LOOKUP e 145
FSM_NEXT_DSU i e e e et e 146
Distribution Transport Sublayer—FormatSet2 146
DS Send FSMs e e 146
Data Structures 146
Program Structure 146
DS_SEND_MANAGER i 154
DS_SEND_SENDING it 156
DS_SEND _SEND DIST e 159
DS SEND BUILD_SEND DMU, 163
DS _SEND CLEANUP. DMU 166
DS_SEND_DMU_EXCEPT_NOT_SENDING 168
DS_SEND_DMU_ENCODE_EXCEPT 170
DS_SEND_CLEANUP_EXCEPT 172
DS_SEND_PROG_ERROR RECEIVED 174
DS_SEND_DMU_PROTOCOL ERROR 176
DS_SEND_MU_ID_STATE_ ERROR 178
DS_SEND_SEND_ DMU_NO MU ID 181
DS_SEND_EXCEPT_NO_ MU ID 185
DS_SEND_SEND_CONTROL MU 188
DS SEND RECEIVING i 180
DS_SEND_CRMU_HANDLER, 192
DS _SEND_RELEASE ON CRMU 196
DS_SEND_PURGE_ON_CRMU 198
DS_SEND_RETRY ON CRMU 200
DS_SEND_ISSUE_SEMU ON_ CRMU 202
DS_SEND_REMU HANDLER 204
DS_SEND_QUERY_ON_REMU 208
DS_SEND_RETRY_ ON REMU 210
DS_SEND _CHECK_CONV_FAIL 212
DS_SEND_TERMINATE DIST it 214
DS _SEND_RETAIN DIST i 216
DS SEND DISCARD DIST i, 218

X SNA/Distribution Services Reference

DS_SEND_SEND_CONVERSATION_MGR
DS_SEND_CONVERSATION_CONTROL
DS_SEND_MU_ID_REGISTRY
UPM_CHECK_DUP_CONV_FAIL_ REPORT
DS Receive FSMs e
Data Structures e
Program Structure
DS_RCV_MANAGER
DS_RCV_SENDING
DS_RCV_RECEIVING
DS_RCV_RECEIVE.DMU
DS_RCV_MU_ID HANDLER
DS _ RCV_SEND ERR
DS RCV_SEND ERR_ REMU
DS_RCV_SUSP_TERM i
DS_RCV_SEND_ERR_SUSP_TERM_REMU
DS_RCV_REMU SUSP_TERM
DS_RCV_SEND ERR_ CRMU
DS_RCV_RECEIVE DMU NO MU ID
DS_RCV_ENQ_SCHED,
DS_RCV_CQMU_HANDLER
DS _RCV_SEMU_HANDLER
DS_RCV_PRMU_HANDLER,
DS _RCV_SUSP.DIST i
DS_RCV DISCARD DIST i
DS_RCV_SEND_CONVERSATION_MGR
DS_RCV_MU_ID_REGISTRY
PREPARSER e
FSMs Providing Common Services for FS2 Transport
RCV_BUFFER_MGR e
IDLE_DETECTOR e e e
UPM_EXCEPT_RECOVERY_ACTION
Distribution Transport Sublayer—FormatSet1
DS Send FSMs e e
DS Send Overview e
Program Structure
FSM_SEND_MGR e
FSM_DIST_ENCODE_CONTROL
FSM_SRVR_OBJECT READ
FSM_SEND_CONVERSATION_ MGR
FSM_SEMU_ENCODE
FSM_REMU DECODE
DS Receive FSMs e
DS Receive Overview
Program Structure
FSM_RECEIVE_MGR e
FSM_DIST DECODE_CONTROL,
FSM_RCV_ENQ SCHED
FSM_SRVR_OBJECT WRITE
FSM_RCV_CONVERSATION MGR
FSM_SEMU DECODE i
FSM_REMU ENCODE

Contents

xi

ComMmON SeIVICES i it i e e e e e e e e e e e 340

Operations e e e e 341
FSM_OPERATIONS_MGR it 342
FSM_EXCEPT_TYPE it 348
FSM_QUEUE_CONTROL« .. i 348
FSM_MESSAGE e e 348
FSM_REPORT e e e 349
FSM_LOG e e e 349

Scheduler e e e 350
FSM_SCHED_MGR i e 351
FSM_CHECK_TP e e e e e 354
FSM_CHECK_TOD i e 354
FSM_CHECK_QUEUE_DEPTH 354
UPM_START_ TP e e e 354

SERVER_MGR e e 354

QUEUE_MGR 357

BUILDER e e e e e e 359

PARSER e 359

Appendix A. Acronyms and Abbreviations 361
Appendix B. Introduction to Finite-State Machines 363
Introductionto FSMs 363
Appendix C. Implementation Alternatives 365
Categories of Choices 365
Protocol Boundary EXposure i .. 366

The Choice of OpenorClosed 366

Rules for Closed Protocol Boundaries 366

Rules for Open Protocol Boundaries 367

ROl . e e e e e e 368

Rules for Origin Role it 368

Rules for DestinationRole 368

Rules for Intermediate-only Role 369

Base and Option Sets of Functions 370

Base and Option Set Diagram 370

General Rules for Base and Option Sets 370

RulesfortheBaseSet 371
Base PBVerbs 371
Base Service Parameters 371
Base Reporting 372
Base Encoding Support o 372
Base Scheduling e e e e e e 373
Base Protocol 373
Base Routing and Directing 373
Base Operations 374
Base Receive-time Checks 375
Base Up-level Co-existence Capabilities 375

Enhanced Character Strings OptionSet 375

Format Set 1 Support OptionSet 376

Security Option Set 376

Operator Rerouting OptionSet 376

SNA/Distribution Services Reference

Enhanced Connection Operations Option Set 377

Distribution Logging OptionSet 377
Electives e 377
Electives within Base Function 377
Electives within the Format Set 1 Support Option Set 379
Specializations e 380
Optimizations e e 381
Appendix D. FS1/FS2 Coexistence 383
General Introduction to the Coexistence Strategy 383
General Actions for Handling Format Set 1 and Format Set 2
Coexistence 383
Coexistence Plan Constraints 384
Existing Functions 384
TOPpoIOgY . . o e e e e e e 384
End-User to End-User Connectivity 385
DSU-to-DSU Connectivity 385
Determining Partner’s Encoding Level 385
Detailed Actions for FS1/FS2 Coexistence 386
Inputs . . . e 386
Next Hop e 387
Actions . . . e 387
Placement of Conversion Actions 389
Transport Mapping e e 389
DS Report Mapping e 391
FS1 Specific DSReports 383
DIA Report Mapping e 395
Null RGN Handling it 397
FS1 Atomic Structures Not Presentin FS2 401
FS2 Atomic Structures Not Presentin FS1 402
Appendix E. ExceptionHandling 405
Introduction 405
Types of Reporting Actions 405
Local-Agent Reporting 405
MU-Level Reporting 405
Distribution Reporting 405
Local-Operator Reporting 406
Characteristics of Exception Conditions 407
Retriable Conditions L 407
Non-Retriable Condition 407
Condition Scope e 407
SNACR Usage, DS Report Codes, and Reports 408
DS Usage of SNACR e 408
SNA-Registered DS Conditions 409
Generating a Distribution Report 413
Bilingual Node: Mapping SNA Report Codes and FS1 Condition Codes . 414
Exception Handling and Analysis 416
Exception Conditions Detected During the Sending Process 417
Exception Conditions Detected During the Receiving Process 421
Exception Conditions Detected while Performing Routing and Directing 427
Exception Handling for FormatSet1 4239

Contents Xiii

Exception Conditions 429
Exception Actions e e 430
FS1 Exception Conditions Detected by DS Send 431
FS1 Exception Conditions Detected by DS_Receive 434
Exception Codes for a SEMU (Type FS1) 436
Exception Codes fora REMU (Type FS1) 437
Appendix F. Protocol Boundary Definitions 439
Introduction e 439
Verb Description Table 439
Column Descriptions e e 439
Supplied Parameter Name 439
Returned Parameter Name 439
Parameter Reference Page (Parm RefPage) 440
Length e 440
OCCUITENCES . . . o i o it e e e e e e e e e e e e e 440
Children e 440
Parameter Description e 440
Distribution Verbs 441
VERB: Obtain_Local_Server Report 441
VERB: Query_Distribution_Sending 442
VERB: Receive Distribution 444
VERB: Receive_Distribution_ Report 446
VERB: Receiving_Sequence Completed 448
VERB: Send_Distribution 449
VERB: Sending_Sequence_Completed 450
Operations Verbs e 451
VERB: Add_DSU Data, 451
VERB: Get_Distribution_Info, 452
VERB: Get_Distribution_Log Entry, 453
VERB: Get_Exception_Log Entry 454
VERB: Hold_Distribution_Copy 454
VERB: List_Adjacent DSUs 455
VERB: List_Connections 456
VERB: List_Control MU Queue 457
VERB: List_Conversations 457
VERB: List_Distributions_Being_Received 458
VERB: List_Distributions_Being_Sent 458
VERB: List DSU Data 459
VERB: List Queue Entries 460
VERB: List_Queues_Containing_Distribution 461
VERB: Modify DSU Data, 462
VERB: Purge_Queue Entry 463
VERB: Release_Distribution Copy 463
VERB: Remove DSU Data 464
VERB: Reroute_Distribution_Copies 464
VERB: Reset_ MU_ID_Registry 465
VERB: Start_Connection 465
VERB: Terminate_Connection P e 466
VERB: Terminate_Conversation 466
Server Verbs L 467
VERB: Assign_Read_Access P 467

Xiv SNA/Distribution Services Reference

VERB: Backout_Server Object 468
VERB: Initiate_Read 469
VERB: Initiate_ Write oo oL 470
VERB: Query_Last Byte Received 471
VERB: Read e 471
VERB: Release_Read_Access 472
VERB: Terminate_Read 472
VERB: Terminate_Restartability 473
VERB: Terminate_Write 473
VERB: Write e 474
Subtables 474
SUBTABLE: Agent List Entry 474
SUBTABLE: Connection_Definitions Entry 475
SUBTABLE: Date 476
SUBTABLE: Destination 476
SUBTABLE: Directory Entry 477
SUBTABLE: Distribution_ID 478
SUBTABLE: DSU_Definition Entry 479
SUBTABLE: Intervention_List Entry 479
SUBTABLE: MU_ID_Registry Entry 480
SUBTABLE: Next-DSU_Queue_Definitions_Entry 481
SUBTABLE: Queue_ID 482
SUBTABLE: Report_Service_Parms 482
SUBTABLE: Reported-On_Destination 483
SUBTABLE: Routing_Table Entry 484
SUBTABLE: Server_List Entry 485
SUBTABLE: Service_ Parmsc...... 485
SUBTABLE: SNA_Condition_ Report 486
SUBTABLE: Time e 487
Parameter descriptions 487
Appendix G. Encodings 555
Introduction e 555
Structure Classifications 555
Length-bounded Structureso oL 555
Atomic Structures - o 555
Parent and Child Structures, 555
Length-Bounded Parent Structures 556
Delimited Parent Structures 556
Implied Parent Structures 556
Segmented Structures o 556
Properties of Parent Structures 556
Order e 556
Unrecognized Children 557
Number of Children 557
Header Description Table 557
Structure Name 557
Structure Reference (StructRef), 557
Structure Class (StructClass) 557
ID/T e 558
Length e 558
OCCUITENCES v i o e e e e e e e e e e e e e e 558
Contents XV

xvi

CHIlArEN .« o o oo e e e o 558

Structure Description L. e e 559
Header Description Tables for FS82 Message Units o 560
DISTRIBUTION TRANSPORT MESSAGE UNIT(DTMU) 560
DISTRIBUTION REPORT MESSAGE UNIT(DRMU) 562
DISTRIBUTION CONTINUATION MESSAGE UNIT(DCMU) 563
SNA CONDITION REPORT it e et 564
SENDER EXCEPTION MESSAGE UNIT(SEMU) 565
RECEIVER EXCEPTION MESSAGE UNIT(REMU) 565
COMPLETION QUERY MESSAGE UNIT(CQMU) 566
COMPLETION REPORT MESSAGE UNIT(CRMU) 566
PURGE REPORT MESSAGE UNIT(PRMU) 566
RESET REQUEST MESSAGE UNIT(RRMU) 567
RESET ACCEPTED MESSAGE UNIT(RAMU) 567
FS2 Structure Descriptions 568
Header Description Tables for FS1 Message Units 606
DISTRIBUTION MESSAGE UNIT(DIST_ MU) 606
DISTREPORT OPERANDS i e, 608
SENDER EXCEPTION MESSAGE UNIT(TYPEFS1) 609
RECEIVER EXCEPTION MESSAGE UNIT(TYPEFS1) 609
FS1 Structure Descriptions 610
Graphic Character Sets 1134and 930 629
Transaction Program and Server Names 631
Code Points Used by SNA/DS FS2 632
Code Points Used by SNA/DS FS1, 633
Terminology Mappings 635
Glossary e e e e 639
Index e 645

SNA/Distribution Services Reference

Figures

-—
ComeNOOTAwWN

QU QN QIR QT QU G |
NoOGOhA WD =

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.
38.
38.
40.
41.
42,
43.
44.
45.
46.
47.

SNA/Distribution Services Network 2
A DS Network Showing Agents 4
User’s View of the Distribution Service 6
Structure of the Distribution Transport Message Unit 8
Environmentofthe DSU 10
Sample Network #1 e 13
Directories and Routing Tables for Sample Network #1 15
Single-Destination Distribution 16
Multiple-Destination Distribution with Origin Fan-out 17
Multiple-Destination Distribution with Destination Fan-out 18
Sample Network #1 Showing Underlying Path Control Network 19
Directories and Routing Tables for Sample Network #2 20
Single-Destination Distribution Through an Intermediate DSU 21
Multiple-Destination Distribution with Intermediate Fan-out 22

Sample Network #3 Showing Different Routes for Different Priorities . 27
The Paris DSU’s Directory and Routing Table for Sample Network #3 28
The Paris Section of Sample Network #3 Showing Two Queues for One

Connection e 30
The Paris DSU’s Routing Table with Two Queues for One Connection 31
DS Sublayering Diagram--Intermediate Routing 34
Directories lllustrating Temporary Redirection 35
DS Sublayering Diagram--Redirecting 36
Sample Network #4--Directories with Default Entries 37
Routing Table with DefaultEntries 39
Simple Agent-Server-DSU Interaction 42
DS’s Use of Servers--General Model 44
The General Server at an Intermediate DSU 45
Flow of Agent and Server Objects 50
Multiple Instances of DS_Send and DS_Receive 53
Distribution Report Message Unit Structure 67
Parallel Session Usage Between TwoDSUs 71
Components of the DS Distribution Transport Sublayer 72
The Three-Step Flow for High-Integrity Distributions 76
Protocol for Transmitting High-Integrity Distributions 78
Protocol for Transmitting Basic-Integrity Distributions 79
Use of the Terminate_Conversation Flag--One DMU Sent per

Conversation e 80
The MU_ID Registry at DS_Receive for a Multiple-session Connection 87
Example--Mid-MU Restart e e e e e e 100
Structureof aDSU 108
Processing at the Origin of a Distribution with Local Destinations .. 111
Processing at the Origin of a Distribution with Remote Destinations 112
Processing a Received Distribution at the Destination 114
Processing a Received Distribution with a Routing Exception 116
Accessing a Logged Exception 118
DS_Router_Director FSM Hierarchy 123
DS_Send Logical Structure 153
DS_Receive Logical Structure, 231
DS_Send FSM Hierarchy 287

Figures Xvii

xviii

48.

49.
50.

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

Classification of NOT-OK Return Codes by
FSM_SEND_CONVERSATION MGR.
Ds_Receive FSM Hierarchy
Classification of NOT-OK Return Codes by
FSM_RCV_CONVERSATION_MGR
Operations FSM Hierarchy
Scheduler Manager FSM Hierarchy
Syntax of an FSM State-Transition Matrix and Output Codes
Base and Option Set Diagram
Effect of PB and Role Choices on Specialization Potential
Summary of Detailed Actions of a Bilingual DSU
FS2 to FS1 Mapping for Transport MUs
FS1t0 FS2 DS Report Mapping
Groupings of DS FS81 ConditionCodes
FS2 DTMU to FS1 Dist_MU type Report (DIA Report) Mapping
Coexistence Mapping of FS1 DIA Report to DTMU Server Object

Null RGN Handling Example—Network, DSUs, and Users
Null RGN Handling Example--Data Structures
Null RGN Handling Example—Distribution Flow

SNA/Distribution Services Reference

Tables

—

NGO ALD

1.
12.
13.
14.
15.
16.
17.
18.
18.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

41.
42.
43.
44.
45,
46.
47.

Portion of the Distribution Affected by a Reportable Condition and the

Detecting TP e 408
SNA-Registered Report Codes for DS and SNACR Contents 409
FS2 SNA Report Code to FS1 Condition Code Mappings 414
FS1 Condition Code to FS2 SNA Report Code Mappings 416

Exception Processing When Conditions Are Detected by DS_Send . 417
Exception Processing When Conditions Are Detected by DS_RECEIVE. 421
Exception Processing While Performing Routing and Directing 427
FS1 Exception Processing When Conditions are Detected by DS_Send 431
FS1 Exception Processing When Conditions Are Detected by

DS_Receive 434
Obtain_Local_Server Report 441
Query_Distribution_Sending 442
Receive Distribution e e e e e e 444
Receive_Distribution_Report 446
Receiving_Sequence_Completed 448
Send_Distributiono o 449
Sending_Sequence_Completed 450
Add_DSU Data 451
Get_Distribution_Info oL 452
Get_Distribution_Log_Entry L. 453
Get_Exception_Log Entry o L. 454
Hold_Distribution_Copy 454
List_Adjacent_ DSUs, 455
List_Connections 456
List Control_MU_Queue 457
List_Conversations 457
List_Distributions_Being_Received 458
List_Distributions_Being_Sent 458
List DSU Data 459
List Queue Entries oo L 460
List_Queues_Containing_Distribution 461
Modify DSU Data, 462
Purge_Queue Entry 463
Release_Distribution_Copy 463
Remove DSU Data 464
Reroute_Distribution_Copies 464
Reset MU_ID Registry, 485
Start_Connection 465
Terminate_Connection 466
Terminate_Conversation 466
Assign_Read_Access 467
Backout_Server Object 468
Initiate Read 469
Initiate_Write 470
Query Last Byte'Received, 471
Read e 471
Release_Read_Access 472
Terminate_Read 472

Tables XiX

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

Terminate_Restartability 473

Terminate_Write 473
Write e 474
Agent_List Entry 474
Connection_Definitions_Entry 475
Date e 476
Destination e 476
Directory Entry 477
Distribution_ID 478
DSU Definition_Entry 479
Intervention_List Entry oo oo 479
MU_ID Registry Entry 480
Next-DSU_Queue_Definitions Entry 481
Queue ID e 482
Report_Service Parms 482
Reported-On_Destination 483
Routing_Table Entry 484
Server_List Entry o 485
Service_Parms 485
SNA_Condition_Report, 486
TIMe . e e e e e e e e 487
Distribution Transport Message Unit 560
Distribution Report Message Unit 562
Distribution Continuation Message Unit 563
SNA Condition Report o 564
Sender Exception Message Unit 565
Receiver Exception Message Unit 565
Completion Query Message Unit 566
Completion Report Message Unit 566
Purge Report Message Unit 566
Reset Request Message Unit 567
Reset Accepted Message Unit 567
Distribution Message Unit (DIST MU) 606
Distribution Report Operands 608
Sender Exception Message Unit (type FS1) 609
Receiver Exception Message Unit (type FS1) 609
Graphic Character Sets 1134and 930 629
Terminology Mappings e 635

XX SNA/Distribution Services Reference

Chapter 1.

Co.ncepts and Facilities

Introduction

SNA/Distribution Services (SNA/DS, or simply DS) provides a general-purpose,
connectionless communications service to applications that use it. A
connectionless service is one in which communication is performed without the
establishment of a direct connection between (or among) the communicating
parties. Such a service is also commonly known as a messaging service. In
contrast, a connection-oriented service is one that does provide a direct con-
nection between the communicating parties. DS is connectionless at the trans-
action services layer of SNA; from the DS perspective, an SNA session (or more
precisely, an LU 6.2 conversation) between two application programs is an
example of a direct connection between those programs.

DS allows application programs to communicate without requiring that the
origin and destination of the communications both be active simultaneously.
The architecture allows the nodes at which the origin and destination applica-
tion programs reside (not those application programs themselves) to communi-
cate via direct sessions. Alternatively, those nodes may communicate via
intermediate nodes that provide a store-and-forward function. Traffic is queued,
if necessary, before being sent from one node to the next.

The connectionless nature of the service does not necessarily imply long delays
in completing the processing of requests. It does imply that the communicating
application programs do not interact and therefore that responsibility for the
unit of work cannot be shared but must be shifted. The originating application
program transfers responsibility for a request to the distribution service, which
subsequently transfers the request to the destination application program.

Once the distribution service has accepted the request, it is independently
responsible for carrying it out, perhaps within milliseconds, perhaps not for
hours.

The distribution service (Figure 1 on page 2) consists of a network of nodes
known as distribution service units (DSUs). This network may be thought of ini-
tially as occupying a geographic area of no particular shape. The entities that
use the distribution service are outside the boundary of that area. The service
accepts requests from, and makes deliveries to, those entities across that
boundary.

The unit of work performed by the service is termed a distribution. A distrib-
ution begins at one DSU and may spread out to many. The work performed on
a distribution includes the acceptance of the request at the origin, the gener-
ation and movement of copies of the distributed material across the network,
and the delivery of those copies to the specified destinations. Various levels of
service may be requested for distributions: for example, higher or lower priori-
ties.

Chapter 1. Concepts and Facilities 1

SNA/DS utilizes and complements the services provided by the lower layers of
SNA. Distribution service units communicate with one another via LU 8.2 basic
conversations. Users of DS perceive the distribution service as just part of the
overall SNA services.

DsU I I DsU

DSU

T Distribution Services
. Network

Figure 1. SNA/Distribution Services Network

The Interface to the Distribution Service

Agents

Agent Requests

DS performs services in response to requests issued by application transaction
programs, These application transaction programs are known as agents.
Agents exist outside the boundary of the DS network (Figure 2 on page 4), and
provide users and/or service functions with access to DS services. Agents may
send distributions, receive distributions, or issue operations commands on
behalf of their users. There is a many-to-many relationship between users and
agents; that is, an agent is typically capable of acting on behalf of a variety of
users, and users typically make use of a variety of agents.

The originating agent requests that DS perform a distribution. The request
specifies the data object (or objects) that is to be distributed, and specifies the
name of the agent that is to be invoked at the destination(s) to process the dis-
tribution.

The request also specifies one or more destinations, which may be either users
or DSUs or a mixture of both. (Similarly, a user (or a DSU) could receive dis-
tributions originated on behalf of other users or on behalf of DSUs.) An origi-
nator would specify a user as a destination to send information to that
particular user. The originator need not know the locations of users; DS deter-
mines the location of each destination user specified. The originator would
specify a DSU as a destination in order to send information to a particular
location in the network, perhaps to a service function (not a user) at that
location.

2 SNA/Distribution Services Reference

If the originator supplies a user name as a destination, the destination is
referred to as a user destination. If the originator supplies a DSU name as a
destination, the destination is referred to as a node destination.

Small objects to be distributed may be imbedded directly in the originator’s
request. Larger objects are typically not passed directly to DS by the agent, but
are referred to by name or location so that DS can access them when needed.

Several other parameters are included in the request, some required, some
optional. This chapter introduces certain key parameters. For a complete
description, refer to Appendix F.

The Agent Protocol Boundary

Agent Names

The interfaces across which DS interacts with non-DS entities are called pro-
tocol boundaries (PBs). The particular interface across which DS interacts with
agents and operators is called the agent protocol boundary. Other protocol
boundaries defined by DS are the server protocol boundary and the queue pro-
tocol boundary. In addition, DS communicates with LU 6.2 via the LU 6.2 basic
conversation protocol boundary.

A protocol boundary defines the functions provided by and expected by the
components on either side of that boundary. It does not necessarily define the
precise syntax of requests issued across it. For more information on the pro-
tocol boundaries defined by DS, see Appendix F. For more information on the
LU 6.2 basic conversation protocol boundary, see the Transaction Programmer’s
Reference Manual for LU Type 6.2.

The information contained in requests made by agents across the agent pro-
tocol boundary is formally defined in DS by several protocol boundary verbs.
The two basic verbs are:

1. Send_Distribution. This verb is issued by an agent to request that a distrib-
ution be performed. lts parameters include the destination users or DSUs
and the name of the agent to be invoked at the destination to receive the
distribution.

2. Receive_Distribution. This verb is issued by an agent that is activated at
the destination to accept delivery of a distribution.

In addition, several other verbs provide variations of the basic sending and
receiving capabilities. Refer to “Agent Protocol Boundary Verbs” on page 55
and to Appendix F for further information about agent protocol boundary verbs.

Agents have names. At any given location in the network, an agent name
uniquely identifies a specific application program. (There may, however, be
multiple instances of a particular agent at a particular location.) Typically, a
given agent name is known at multiple locations, and there are many instances
of that particular agent throughout the network. Agents may be either user-
written or architecturally defined.

A requesting agent must specify the name of the destination agent that will be
activated to receive the distribution on behalf of the destination users or DSUs.

Chapter 1. Concepts and Facilities 3

There is only one destination agent per request, no matter how many destina-
tions are specified.

The Transfer of Responsibility
When the originating agent requests that DS perform a distribution, the agent
transfers responsibility for the distribution to DS. Once the distribution service
has accepted responsibility for a request, it performs the distribution independ-
ently; the originating agent is no longer involved.

While DS has responsibility for the distribution, exceptions may occur. If the
originating agent has so specified, exception reports will be generated and sent
to a specified user or DSU. When the report arrives, an agent will be invoked
to handle it; this agent may be a different instance of the originating agent or a
completely different agent. Reporting is thus performed asynchronously. This
contrasts with synchronous exchanges that occur between transaction pro-
grams that communicate entirely within one conversation.

Agent| |Agent| |Agent

X Y X
Agent| |Agent
sessessssssssesAgent,, . Protocol...Boundary....e0us. Y X
Agent Agent| |Agent| . DsU teesesensensanense
X Y A . .
. DsSu .
. Dsu —-———J———— DSu .
. Dsu .
DSU .
. T Distribution Services .
. Network .

...

Figure 2. A DS Network Showing Agents

Distribution Service Users
Users of DS are defined as addressable entities on whose behalf agents can
originate or accept delivery of distributions. Users may include individuals,
departments, application programs, and data bases. Users of DS may include
individuals or application programs with responsibilities for system and network
operations or for installation and maintenance of network definition information.

4 SNA/Distribution Services Reference

User Roles

User Names

Users are referred to as originating users or originators when they request (via
their agents) that a distribution be performed, and as destination users when
distributions are delivered to them. Most users are capable of either role;
however, it is possible for a user such as a data base to serve only as a desti-
nation.

DS users have names that are unique within the DS network. A user name
consists of two parts, each of which can be up to eight bytes long. The two
parts are known as the distribution_group_name (DGN) and the
distribution_element_name (DEN). Each element name is unique within its
group, and each group name is unique within the network.

Users, or their agents, must know the names of all the other distribution service
users to whom they wish to send distributions. To facilitate this, user names
could be publicized throughout an organization, exchanged over the phone, and
included on letterheads.

An organization assigns group names based on whatever structure is most
natural for it. Divisions or departments might be convenient group names; last
names might be convenient element hames. For example, Harry Chase in the
Operations department could be ops.CHASE, and Ellen Piaf in the Marketing
department could be MKT.PIAF.

Users, however, are not necessarily people. For example, there might be a sta-
tistics data base in manufacturing to which various plants routinely ship data. It
could have MFG.DBASE as its user name. Other user names might identify
departments (BIGBANK.LOANS), applications {(ACCTG.PAYROLL), or titles of positions
(DEPTX.MGR).

Users in the same group (i.e., with the same DGN) need not be located near
one another in the network. Furthermore, members of several groups might
reside at the same location in the network. For example, at Paris, there might
be users in the loans (LOANS.PIERRE), payroll (PAYROLL.PORTER), and personnel
(PER.PEDRO) departments. Other users in these same departments could be
located throughout the network; for example, PAYROLL.CHARLES might be located
in Chicago, and PAYROLLNORTON might be located in New York.

DS user names are location-independent. When installations select user names
with no suggestion of location, users can be moved from one computer system
to another without needing to change their names. Since DS does not tie user
names to particular locations, users with location-oriented names could also be
moved without changing their names, but it would be confusing to continue to
refer to someone as CHICAGO.SMITH after he had moved to Atlanta.

Chapter 1. Concepts and Facilities 5

User’s View of the Distribution Service

Distributions

The user’s view of the distribution service is shown in Figure 3. The user
names are all unique, and are scattered around the periphery of the network
with no regard to location. The agent names are not unique; numerous agent
instances exist for each agent name.

When users request distributions with no server objects (a concept discussed
later), user names and agent names are the only names of which users need
be aware. When server objects are involved, the users (or their agents) must
be aware of certain other additional names. These are discussed in “Servers
and Objects” on page 40.

USER USER USER
B.4 c.2 USER A.2
USER A.3 USER USER USER
A.5 USER USER C.1 A.4 B.3
USER B.2 A.l
B.1 USER Agent| |Agent| [Agent
c.3 X Y X
Agent| |Agent
............... Agent...Protocol...Boundary......... Y X
Agent Agent| |Agent DSU 3 iiiieieiiireinens
X Y Y
. DsSU .
. DSU ————r—_—_— DSu
. DSU
DsSU

T Distribution Services
Network

Figure 3. User’s View of the Distribution Service

A distribution is the unit of work performed by DS. The distribution starts as a
request made by the originating agent, and continues through when the distrib-
uted material is delivered. If the agent requests notification on the status of the
distribution, DS generates distribution reports to provide such notification. Dis-
tribution reports are considered part of the same unit of work (i.e., the distrib-
ution) as the agent’s request.

Agents may make distribution requests on behalf of either users or the DSUs at
which the agents reside, and may specify destinations that are either users or
DSUs. When multiple destinations are specified, DS provides, or arranges
access to, a copy of the distributed material in a machine-readable form (on
disk storage, for example) for each of the named destinations.

6 SNA/Distribution Services Reference

Distribution Copies

From the perspective of the originator, a distribution includes the delivery of a
copy to every destination on the destination list. From the perspective of a par-
ticular destination, the distribution consists of one delivery. Different points in
the DS network may deal with different subsets of the original list of destina-
tions. In summary, therefore, a distribution refers to work being done upon
one, some, or all of its copies, depending on the perspective.

Types of Information in a Distribution

A distribution contains essentially two types of information: the "application”
information that the agent has submitted to DS for distribution, and the DS
control information that flows along with and encloses the application informa-
tion. The distinction between these two is analogous to the distinction between
the pages of a letter and the envelope that encloses them. The DS control
information is analogous to the name, address, and handling instructions
written on the envelope. When the distribution flows across the network, the
application information is clearly separated from the control information; that is,
it is contained inside the “envelope.”

Distribution Transport Message Units

DS uses Distribution Transport Message Units (DTMUs) to transport the origina-
tor’s information to the destinations named in the distribution request. Whereas
a distribution is thought of as flowing through a network, possibly through
several DSUs, a DTMU is thought of as existing only between adjacent DSUs.
That is, the DTMU is "born” when it is encoded at a particular DSU,; it is then
transmitted to an adjacent DSU, and “dies” when it is decoded by that DSU and
converted to an internal format (such as a data structure).

The structure of a DTMU is shown in Figure 4 on page 8. The DTMU is intro-
duced by a prefix and concluded by a suffix. The DS control information for the
distribution is contained in the command; the names of the users or DSUs for
which this particular copy of the distribution is destined are encoded in the des-
tination list.

The information submitted for distribution by the originator is contained in the
agent and/or server objects. The agent object is intended for small amounts of
data that can be stored by DS and passed directly to the destination agent.
Larger amounts of data, or data that requires a particular kind of handling
{encryption, for example, or specialized parsing) usually flow in the server
object. Agent and server objects will be discussed further under the section
“Servers and Objects” on page 40.

A detailed description of the encoding for DS message units is given in
Appendix G.

The layers of SNA below DS may divide DS message units (MUs) into smaller
pieces or assemble several small DS MUs into a single large piece, but DS is
unaware of such manipulations. No direct relationship exists between seg-
menting performed by DS and the techniques used by lower layers of SNA.

Chapter 1. Concepts and Facilities 7

Prefix Command Destination Agent Server

/ / Suffix
List Object Object / /

Figure 4. Structure of the Distribution Transport Message Unit

Distribution Report Message Units
As part of the distribution request, the originator may ask that DS provide feed-
back on the status of the distribution. For example, the originator might wish to
be informed if DS is unable to deliver the distribution. DS sends such feedback
information in distribution reports, which flow through the network in Distrib-
ution Report Message Units (DRMUs). The structure of DRMUs differs from that
of DTMUs. DS reporting and DRMUs are discussed in the section “Distribution
Reporting” on page 66.

The term distribution message unit (DMU) is sometimes used to refer to either a
DTMU or a DRMU.

The Distribution Identification
Each distribution in the DS network is uniquely identified by a combination of
fields carried in the DTMU. These fields are known collectively as the distrib-
ution identification (dist_ID). The dist_ID is composed of the name of the origi-
nating agent, the name of the DSU at which the distribution was originated, the
name of the user, if any, on whose behalf the distribution request was made,
the date of the distribution, and a sequence number.

Sequence number counters are maintained for each user-agent combination;
that is, a different sequence number counter is kept for each combination of
local user and local agent name. An additional counter is kept for each local
agent that may originate distributions on behalf of the DSU itself (with no origin
user involved).

DS Format Sets
Previous implementations of DS have used a different set of encoding rules for
distribution message units. The earlier encoding for DMUs is referred to as DS
Format Set 1; the current set of encodings is referred to as DS Format Set 2.
Both sets of encodings are documented in Appendix G. The rules that allow
these two format sets to coexist are documented in Appendix D.

Distribution Service Unit (DSU)
A distribution service unit (DSU) is the collection of transaction programs and
data structures that provide the distribution service at any given location in a
DS network. These transaction programs are distinct from application trans-
action programs such as those that issue requests to DS. The DS transaction
programs are examples of SNA service transaction programs.

8 SNA/Distribution Services Reference

DSU Roles

DSU Names

DSUs have roles that vary with each distribution they service. The DSU at
which a distribution request originates is the origin DSU for that distribution.
The same DSU would have the role of destination DSU for a distribution sent to
users located at that DSU. Alternatively, the DSU may perform a purely inter-
mediate role. In this case, distributions are received and stored at the interme-
diate DSU, then forwarded to other DSUs.

A DSU may perform multiple roles for a distribution. For example, a user at a
DSU might send a distribution to another user at the same DSU. The DSU, in
that case, would be both the origin and the destination of that distribution.

DSU names consist of two parts, each of which can be up to eight bytes long.
The two parts are known as the routing group name (RGN) and the routing
element name (REN). Each element name is unique within its group, and each
group name is unique within the DS network. Typically, the names will be
assigned to be meaningful to systems programmers and operations people, not
to the user population. A DSU includes its unique DSU name in all distributions
it originates.

The DSU/User Relationship

Every DS user attaches to the DS network at a DSU. Typically, a DSU has
several users, although it is possible for DSUs to have no users.

The DSU is not aware of anything above the protocol boundary it has with appli-
cation transaction programs other than the names of its users, agents, and
certain control information used to deliver distributions to them. The users
themselves may be physically remote from the processor containing their DSU,
but as far as DS is concerned they are located at that DSU.

Environment of the DSU

Figure 5 on page 10 illustrates the various entities with which a DSU interacts.
Pictured above the DSU are those entities that issue commands to it. The
agent is an application program that requests DS services. The operator issues
commands to perform system or network maintenance functions.

DS interacts with servers in order to access large data objects for distribution.
The server provides storage of objects that the DSU receives in distributions; it
retrieves objects to be sent in outbound distributions.

DSUs communicate with one another via LU 6.2 basic conversations; they rely
on the local operating system for facilities such as queue handling.

Subsequent sections of this chapter will explore the DSU’s relationship to each
of these components. A detailed description of the various protocol boundaries
is given in Appendix F. DS’s usage of LU 6.2 basic conversation verbs is docu-
mented in Chapter 2.

Chapter 1. Concepts and Facilities 9

AGENT OPERATOR

Send_Distribution Modify_System_
Receive_Distribution — Data, etc.

vy v
Server

DsSU

m<2oMmMmw

R
<t+—}—— Read, Write, etc.
P

B
PB = Protocol

Read Queue, etc. Send_Data, etc. Boundary
QUEUE PB } LU 6.2 BCPB
Operating LU 6.2 (APPC)
System, v Lower Layers v

Queue Manager

Figure 5. Environment of the DSU

DSU Directories and Routing Tables

A DSU’s Directory

The DSU directory inciudes certain information for each DS user. (Directories
shared with other functions might contain other information of which DS would
be unaware). The directory entries for local users contain information used for
DS delivery to those users (for example, a local queue name). Entries for users
at other DSUs usually contain the name of the DSU at which they are located.
Exceptions to this are discussed in “Redirection” on page 35.

The number of users in the network can be much larger than can be conven-
iently contained in the directory of a particular DSU. See “Default Directing” on
page 36 to learn how distributions can be directed in cases where the origin
DSU’s directory does not contain entries for the destination users.

Users need not be aware of the names of DSUs at which other users reside.
Users specify only the user names to which a particular distribution is to be
sent; DS uses the directory to map those user names to DSU names.

When organizations set up their user names appropriately (that is, with no
location or DSU implications), users can be moved from one DSU to another
without having to change their names. For example, in large networks, groups
of users are often shifted from one computer system to another because of
office space rearrangements, or in order to balance loads on computing equip-

10 SNA/Distribution Services Reference

ment. The impact of such changes is confined to the directories. The DSU
name for each affected user is changed, but the user name itself is not
changed. This means that user names can be completely insulated from the
DSU name change and can be published or otherwise disseminated throughout
an organization without concern for obsolescence due to system changes.

User names themselves may change from time to time. However, if they are
appropriately assigned, those changes would be the ones of which other users
should normally be aware. For example, if a user’s department were part of a
user name and the user changed departments, then the user's name would
have to be changed. Users throughout the network would have to be notified,
but it is likely that those users would need to know about the job change
anyway (and change their distribution requests accordingly).

Implementations may allow directory entries to be subdivided by agent name.
That is, instead of one entry per user, the directory might have several entries
per user, each of which identifies a different combination of user name and
agent name. At a destination DSU, such entries might allow distributions for a
particular user to be delivered to different local delivery queues, based on the
destination agent name.

In addition to the entries for users, directories may contain an entry for the
omitted user name. During the directing process, any destination for which no
user name is specified (i.e., a node destination) would match such an entry.
Like user name entries, an entry for the omitted user name may be subdivided
by agent name.

User Aliases: To DS, user names represent only entries in the directory.
Installations can assign user names to entities in any manner they wish. Ali-
asing is an interesting illustration of how such assignments could be made.

An individual can be given more than one user name. DS cannot tell when this
has been done. It "sees” different users because each name has its own inde-
pendent entry in the directory. When the two entries have the same local
delivery information, distributions for either name are delivered to the same
individual. For example, DEPT72.MGR and EMPNO.X12345 could both be defined in
the directories so that local delivery was made to Harry Jones. Other users
interested in the work of department 72 would probably use DEPT72.MGR. Users
in Personnel or Payroll would probably use EMPNO.X12345.

If Harry Jones were to be transferred to another job at another location, the
EMPNO.X12345 directory entries would be updated with his new DSU name. The
DEPT72.MGR name, on the other hand, would probably be reassigned to the
person who replaced him.

User Names vs. Nicknames: DS user names are not to be confused with nick-
names. For reasons of convenience, or perhaps some system limitation, it is
often desirable to refer to users by other, usually shorter, names. For example,
an originating user might not wish, or might not be able, to logon to his system
with a 16-byte name. Also, he might not wish to enter 16-byte names for the
destination users, particularly those to whom he sends things frequently. In
such cases, nickname files can be used. Such files are not part of DS. The

Chapter 1. - Concepts and Facilities 11

nicknames would not flow in DS MUs, except perhaps as part of the user’s data.
The nicknames would be unique only within a DSU or perhaps only for one
user.

Nickname files are not defined by the DS architecture, but they would need to
contain the full network-unique DS user name for each nickname. The origin
agent might access the nickname file to obtain the DS user name that would be
included in the distribution request. DS, however, would be unaware that such
files existed. The complete DS user name flows over the network and is used
in exception reporting. The users are aware, not only of local nicknames, but
also of complete user names, both their own and those of others to whom they
wish to send distributions.

The overall responsibility for the creation and maintenance of the directories
would usually be the system administrator’s. In a large organization, this could
be a major task. The two-part user name and default directing (see “Default
Directing” on page 36) can be used to allocate this responsibility by group
name. For example, if the DGNs were departments, each department could be
made responsible for its own set of DENSs.

A DSU’s Routing Table
In the simplest case, the routing table consists of one entry for each destination
DSU. Each entry identifies the connection to be used to send distributions to
that particular destination. The routing table and the directory serve distinctly
different purposes. The directory indicates where a user is located; the routing
table indicates how to get there--that is, which direction to go.

Refer to “Distribution Service Parameters” on page 23 and "Default Routing”
on page 38 for a more complete description of the routing table entries.

The creation and maintenance of routing tables is the responsibility of the
system administrator. Like directory maintenance, this is a significant task.
Although a typical network could have 10 to 100 times more users than DSUs,
the number of routing tables in which each DSU name appeared would be
much greater than the number of directories in which the typical user name
appeared. Default routing allows the number of entries in the routing tables to
be considerably reduced. With default routing, a distribution may be routed to a
larger DSU which would have a more complete routing table. The use of
default routing is described in “Default Routing” on page 38.

Simple Networks

A DS network is a collection of two or more DSUs and the connections between
them. A DS connection is the set of actual or potential LU 6.2 conversations,
using a particular LU 6.2 mode name, between two DSUs. DS connections
share the underlying path control network with sessions belonging to other
applications. A DS connection may consist of one or more than one LU 6.2 con-
versation.

12 SNA/Distribution Services Reference

Fully-Connected DS Networks
A fully-connected DS network is one in which every DSU has a connection to
every other DSU. Networks can be set up this way if the underlying layers of
the SNA network provide total interconnectability. We will use a very simple
fully-connected network (Sample Network #1, Figure 86) to illustrate the con-
cepts of simple directing and routing.

There are four users in sample network #1, located in three cities. Their names
are listed by department under their cities. The boundary of the DS network is
shown intersecting three boxes, one in each city. The boxes represent
processors; the portion of each processor that is inside the DS boundary
includes a DSU. Each DSU is labeled with its DSU name.

The small boxes inside each DSU represent a user directory and a routing
table. The portion of the DS boundary that intersects each processor is the
agent protocol boundary in that processor. The lines connecting the DSUs are
DS connections, and are identified in Figure 6 by the pair of names of the two
DSUs they connect.

o NEW YORK
Marketing Dept.
Neff
o PARIS
o CHICAGO Marketing Dept.
Manufacturing Dept. Piaf
Child Agent
Operations Dept.
Chase ... F—Agent PB——— .. ieeieennnnns Agent
User Dir.} | ...l ——Agent PB
Agent
User Dir.
.. —Agent PB Rty Table
. User Dir. Rtg Table .
. US.NYCSYS1
. Rtg Table (US.NYCSYSI-EUR.PARSYSI)——*J EUR. PARSYS1
. US.CHISYS2 SNA Distribution Services
: Sample Network #1
(US.CHISYS2-US.NYCSYSL)—] i

(US.CHISYS2-EUR. PARSYS1)

Figure 6. Sample Network #1

Simple Directing in Fully-Connected Networks
The directing function is the process of associating a destination location name
with a destination user name. In the mail analogy, it would be the process of
adding the address to the addressee’s name on the envelope. In DS, it is the
process of associating either a DSU name or local delivery information with
every user name in the distribution.

Chapter 1. Concepts and Facilities 13

The simplest kind of directing occurs when every DSU has a complete directory
of all users. The following discussion presumes that. In practice, such a
simple situation would probably never occur. The more sophisticated kinds of
directing are described in “Redirection” on page 35 and “Default Directing” on
page 36.

At the origin, the directory is used to obtain the corresponding destination DSU
name for each destination user name in the distribution. Both the user names
and the corresponding DSU names are then included in the control information
that flows in the distribution. Directing is bypassed at the origin for node desti-
nations.

At the destination, the directory is used to obtain the information needed to
deliver the distribution. This information is used locally only; therefore, it is not
defined by the DS architecture. Typically, it would consist of a queue identifier;
different queues would be used to deliver distributions to different users.
Directing is performed at the destination DSU for both user and node destina-
tions.

Figure 7 on page 15 illustrates the directories and routing tables for sample
network #1. Recall that directories may contain an entry for the omitted user
name; note the entry at us.NyCsys1 for “omitted.” The significance of this entry
is that a distribution with an entry in the destination list specifying us.NvyCsYS1
{no destination user name), when received at New York, would be delivered to
the local queue sysQ1.

Simple Routing in Fully-Connected DS Networks
Routing is the determination of the next route segment on which a distribution
is to be sent, and the scheduling of or enqueuing for the sending activity.

The simplest kind of routing occurs when every DSU’s routing table contains
entries for all other DSUs. The following discussion presumes that to be the
case. More sophisticated routing is described in “Default Routing” on page 38.

Each entry in the routing table identifies the DS connection over which distrib-
utions are to be sent in order to reach a particular destination DSU. In this
illustration (Figure 7), with only one type of DS traffic, the connections can be
uniquely identified by the pair of names of the DSUs they connect; however, in
the routing table of one DSU only the name of the other DSU is required. This
is contained in the column labeled "Next DSU.” There is no particular DS defi-
nition of connection identifiers, so implementations may use different identifiers.

14 SNA/Distribution Services Reference

CHICAGO NEW YORK

USER DIRECTORY USEK DIRECTORY
Destination|Destination Destination|Destination
User Name |{DSU Name User Name |DSU Name
MFG.CHILD |Tocal-UserqQl MFG.CHILD |US.CHISYS2
MKT.NEFF US.NYCSYS1 MKT.NEFF local-UserQl
MKT.PIAF EUR.PARSYS1 MKT.PIAF EUR. PARSYS1
OPS.CHASE |local-UserQ2 OPS.CHASE |US.CHISYS2
(omitted) |local-SYSQl (omitted) |local-SYSQ1

ROUTING TABLE

ROUTING TABLE

PARIS

USER DIRECTORY
Destination|Destination
User Name |DSU Name
MFG.CHILD |US.CHISYS2
MKT.NEFF US.NYCSYS1
MKT.PIAF local-UserQl
OPS.CHASE |US.CHISYS2
(omitted) |local-SYSQl

ROUTING TABLE

Destination|Connection Destination|Connection Destination|Connection
DSU (Next DSU) Dsu (Next DSU) DSU (Next DSU)
EUR.PARSYS1|EUR, PARSYS1 EUR, PARSYS1|EUR, PARSYS1 US.CHISYS2 |US.CHISYS2
US.NYCSYS1 [US.NYCSYS1 US.CHISYS2 |US.CHISYS2 US.NYCSYS1 |US.NYCSYS1
US.CHISYS2 US.NYCSYS1 EUR. PARSYS1

Figure 7. Directories and Routing Tables for Sample Network #1

MU Flows for Typical Distributions
A Single-Destination (Non-Local) Distribution: In Paris, Piaf in Marketing wishes
to send a message to Chase in Operations. Her agent requests a distribution,
identifying the originating user as MKT.PIAF, the destination user as OPS.CHASE,
and the destination agent as agent X. The DSU at Paris consults its directory
and determines that oPS.CHASE is at US.CHISYS2. The destination Us.CHISYS2 is
then used to determine from the routing table the connection for which the dis-
tribution should be enqueued. In Figure 8 on page 16, the box labeled DTMU-A
represents the DTMU that flows. Only the control information pertinent to this
discussion is depicted in DTMU-A.

Chapter 1.

Concepts and Facilities 15

NEW YORK

PARIS
CHICAGO ceeene Agent PB teerssacasans Agent
. User Dir. vesen r‘\g:llt PB—..
Agent X . .
. User Dir, .
. Agent PB N Rtg Table .
. User Dir. Rtg Table .
. US.NYCSYS1 .
. Rtg Table EUR.PARSYS1| .
. US.CHISYS2 .
. —DTMU-A [N
. <+———— .. from MKT.PIAF at EUR.PARSYSl... to .
. OPS.CHASE at US.CHISYS2..Dest Agent=X .
. Sample Network #1 .

Figure 8. Single-Destination Distribution

A Multi-Destination Distribution Fanned Out at the Origin: In Paris, Piaf
requests that a message be sent to Chase in operations and Neff in Marketing.
As in the single-destination example, the DSU at Paris determines the destina-
tion DSU names and uses them to determine the routing. In this case,
however, there are two destination DSUs. The DSU at Paris therefore sends
two copies of the distribution as shown in Figure 9 on page 17. Notice that the
control information in the DTMUs depends on the destination. The process of
creating additional copies of a distribution is known as “fan-out.”

16 SNA/Distribution Services Reference

NEW YORK

PARIS
Agent X
CHICAGO coes Agent PB——.ceeeeeecaacannns Agent
User Dir. “es Agent PB—..
Agent X
. User Dir.
Agent PB—.... Rtg Table
User Dir. = Rtg Table
US.NYCSYS1
Rtg Table EUR. PARSYS1
—DTMU-B
<« ..from MKT.PIAF at EUR.PARSYSI..to
US.CHISYS2 MKT.NEFF at US.NYCSYS1..Dest Agent=X
—DM-A——mMmMmMm™Mm ™ e
<+—,.from MKT.PIAF at EUR.PARSYS1...to
OPS.CHASE at US.CHISYS2..Dest Agent=X
. Sample Network #1 .

Figure 9. Multiple-Destination Distribution with Origin Fan-out

A Distribution Fanned Out at the Destination: In Paris, Piaf requests that a
message be sent to the DSU at New York, with copies to Child in manufacturing
and Chase in operations. The Paris DSU consults the directory for the two user
destinations (MFG.CHILD, OPS.CHASE) and discovers that MFG.CHILD is at the same
DSU as ops.CcHASE. It therefore sends only one DTMU to us.cHISYS2 and includes
both user names in it. Refer to Figure 10 on page 18 and notice the contents of
DTMU-A.

No directing is performed at the origin for node destinations, since the origi-
nator has already supplied the DSU name. Thus for the destination us.NYCSYS1,
no directing is necessary. The routing table is consulted to determine the con-
nection to use for US.NYCSYS1.

Since Child and Chase each have their own queues, the Chicago DSU creates
an extra copy of the distribution. It places one copy in queue USERQ1 and the
other in queue USER®@2. In some systems, users might be able to share the
same copy of the distribution and there would be no need for the copying step.
If Child and Chase happened to share the same queue, DS would make a single
delivery containing both user names.

At New York, the distribution copy destined for us.NvyCSYS1 is received. Directing
is invoked; since there is no user name for this destination, the entry for
“omitted” is matched. The distribution is placed in queue sysQ1, the destination
agent X is started, and the distribution is passed to it.

Chapter 1. Concepts and Facilites 17

NEW YORK

PARIS
Agent X
CHICAGO oo g Agent PB—— . iiieiienenneas Agent
User Dir.| | seeus Ag:ut PB—..
Ag.X||Ag.X
. User Dir.

.o Agent PB—... th Table
. User Dir. r |[Rtg Table

US.NYCSYS1

Rtg Table EUR.PARSYS1

. US.CHISYS2 —DTMU-B .
. <, .from MKT.PIAF at EUR.PARSYSI..
. ..to US.NYCSYS1.... Dest Agent=X
. —DTMU-A
. <+—,.from MKT.PIAF at EUR.PARSYS1..to OPS.CHASE, .
. «MFG.CHILD at US.CHISYS2...Dest Agent=X tesseersen
.) ‘ Sample Network #1 .

..... 006 80 0 0 0 0 8 0000000000000 00000 0000000008000 000000000800 000000000t 0000 000NN

Figure 10. Multiple-Destination Distribution with Destination Fan-out

DS Networks with Intermediate DSUs
This type of DS network differs from the simple type discussed above in that the
DSUs are not fully connected. In order for distributions to travel between
certain DSUs, other DSUs must perform an intermediate role. The use of inter-
mediate DSUs to forward distributions provides functional and performance
advantages.

The sessions used by DS connections sometimes span multiple path control
{PC) intermediate routing nodes (IRNs). In these cases, the PCIRNs are often
geographically close to a node containing a DSU. For example, consider
sample network #1 in Figure 6 on page 13. The processor in New York that
contains the DSU is a System/370. Directly attached to that processor is a com-
munication controller, through which the sessions used by the
(EUR.PARSYS1-US.CHISYS2) connection pass. This is illustrated in Figure 11 on
page 19. The components of the path control network are depicted by dotted
lines. The presence of the PCIRNs is transparent to DS; the DSU sees only the
direct session to its partner DSU.

18 SNA/Distribution Services Reference

New York

Paris
Agent
Chicago
Agent PB— Agent
Agent User Dir. Agent PB—
Agent PB— User Dir.
Rtg Table
User Dir.
US.NYCSYS1 Rtg Table
Rtg Table . PC in node . EUR. PARSYS1
. with DSU . o | ———
US. CHISYS2 ceofloovecssncenane . PC in node
| | —] — . with DSU
Path Control. e P I
(PC) in node. e —.
with DSU . S e
............. PC .
b— IRN| “—(US.NYCSYS1-EUR. PARSYS1) O | ET T
F——(US.CHISYSZ-EUR.PARSYSI)—I I
......... PC
IRN
B 1 T N .
.Control | —(US.CHISYS2-US.NYCSYS1)- |,
. (PC) .
Intermediate...civeeiiiiiiiinniienne
.Routing Node.
. (IRN)

Figure 11. Sample Network #1 Showing Underlying Path Control Network

In the case of the distribution from Piaf at Paris to Neff at New York and Chase
at Chicago, two copies of the one distribution travel across the same
transatlantic link (the dotted connection between the PCIRNs in Figure 11). For
large distributions, such duplication is rather wasteful.

To avoid this inefficiency, large distributions destined for us.cHisys2 are sent
first to us.NYCsYS1, where they are received completely and then forwarded.
The direct DS connection between EUR.PARSYS1 and US.CHISYS2 in sample
network #1 is broken into two shorter ones. The two-connection version of the
network is shown as sample network #2 in Figure 13 on page 21.

Simple Directing in Networks with Intermediate DSUs
Directing in this type of network at the origin and destination DSUs is the same
as in fully-connected networks. In the simple case, directing is not invoked at
intermediate DSUs. The routing function is all that is involved at a DSU per-
forming a purely intermediate role. An exception to this is described in
“Redirection” on page 35.

Chapter 1. Concepts and Facilities 19

Simple Routing in Networks with Intermediate DSUs
In this type of DS network, the structure of the routing tables is the same as in
a fully-connected one. That is, each entry identifies the connection over which
distributions are to be sent in order to reach a particular destination DSU. The
difference is that, for a route involving intermediate nodes, the connection iden-
tified in the entry does not connect the origin and destination DSUs. For
example, refer to Figure 12. In Chicago, the entry for EUR.PARSYS1 identifies a
connection with us.NyCcsys1; in Paris, the entry for us.cHISYS2 identifies a con-
nection with us.Nycsys1. The New York routing table remains the same as in
sample network #1.

CHICAGO NEW YORK PARIS

USER DIRECTORY USER DIRECTORY USER DIRECTORY
DEST USER |DEST DSU DEST USER |DEST DSU DEST USER |DEST DSU
MFG.CHILD |local-UserqQl MFG.CHILD |US.CHISYS2 MFG.CHILD |US.CHISYS2
MKT.NEFF US.NYCSYS1 MKT.NEFF local-UserQl MKT.NEFF US.NYCSYS1
MKT.PIAF EUR. PARSYS1 MKT.PIAF EUR. PARSYS1 MKT.PIAF local-UserQl
OPS.CHASE |local-UserQ2 OPS.CHASE |US.CHISYS2 OPS.CHASE |US.CHISYS2
(omitted) [local-SYSQL (omitted) [local—-SYSQ1 (omitted) |{local-SYSQ1

ROUTING TABLE ROUTING TABLE ROUTING TABLE
Destination|Connection Destination|Connection Destination|Connection
DsSu (Next DSU) psu (Next DSU) DsSu (Next DSU)
EUR. PARSYS1|US.NYCSYS1 EUR.PARSYS1|EUR, PARSYS1 US.CHISYS2 |US.NYCSYS1
US.NYCSYS1 [US.NYCSYS1 US.CHISYS2 |US.CHISYS2 US.NYCSYS1 |US.NYCSYS1

US.CHISYS2 US. NYCSYS1 EUR.PARSYS1

Figure 12. Directories and Routing Tables for Sample Network #2

This slight difference in content reflects a significant difference in concept. In
DS, a route is defined as the sequence of DSUs through which a distribution
has traveled when it arrives at its destination DSU. The routing function is per-
formed independently at each DSU. At any particular DSU, the routing function
does not select a route in its entirety (except where there happens to be a
direct connection). The routing function actually selects a route segment. The
notion of route segment differs from the notion of connection in that segments
of more than one route may use the same connection. In sample network #2,
the connection EUR.PARSYS1-US.NYCSYS1 is used by segments of two routes, one
from EUR.PARSYS1 10 US.NYCSYS1 and the other from EUR.PARSYS1 tO US.CHISYS2.

Because, in some implementations, operators could change routing tables as
distributions move through the network, the route for any particular distribution
cannot be reliably predicted at its origin DSU. Each distribution finds its own
way across the network, one route segment after another. Two distributions
from the same origin might find different routes to the same destination.

20 SNA/Distribution Services Reference

MU Flows for Typical Distributions
Single Destination Through an Intermediate DSU: Figure 13 shows the two-
connection network (sample network #2) with a single-destination distribution
flowing from Paris to Chicago. The DSU at Paris determines that distributions
for Chicago should be sent on the connection to New York. When the DSU at
New York receives the distribution, it examines the destination list and dis-
covers that there is no local destination. It then uses its routing table to
forward the distribution on the connection to Chicago.

NEW YORK
PARIS
CHICAGO Agent PB— ... Ceseerans Agent
----- Agc lt PB—-— .
Agent X
. User Dir.
Agent PB—.... — |Rtg Table
User Dir. Rtg Table
US.NYCSYS1
Rtg Table EUR. PARSYS1
. US.CHISYS2 DTMU-A
. ..from MKT.PIAF at EUR.PARSYSl...to
. OPS.CHASE at US.CHISYS2..Dest Agent=X
DTMU-B
..from MKT.PIAF at EUR.PARSYS1..to Sample Network #2 .
OPS.CHASE at US.CHISYS2...Dest Agent=X| L iieees

Figure 13. Single-Destination Distribution Through an Intermediate DSU

Distribution Fanned Out at an Intermediate DSU: In the two-connection network
(sample network #2), the distribution from Piaf in Paris to the DSU in New York
and Chase and Child in Chicago is not fanned out by the Paris DSU. When the
DSU determines that distributions for us.cHisys2 should be sent to us.NyCsYSY, it
sends only one copy over the transatlantic link (see Figure 14 on page 22). In
New York, the DSU delivers one copy of the message (for the node destination
us.NyYcsys1) to the destination agent X, and forwards another copy to US.CHISYS2.

Notice how the control information in DTMU-B differs from that in bTMU-A. The

US.NYCsYs1 destination information is stripped out when the distribution goes
through the intermediate DSU.

Chapter 1. Concepts and Facilities 21

NEW YORK

PARIS
Agent X
CHICAGO ese r‘\gcuf PB—eetvevenneonnns Agent
User Dir.| | ciees Agcut PB—..
Ag.X||Ag.X
. User Dir.
Agent PB—... - |Rtg Table
User Dir. Rtg Table
US.NYCSYS1
Rtg Table EUR.PARSYS1| .
. US.CHISYS2 DTMU-A
. ..from MKT.PIAF at EUR.PARSYSl..to US.NYCSYS1; .
OPS.CHASE, MFG.CHILD at US.CHISYS2..Dest Agent=X| .
DTMU-B: .
..from MKT.PIAF at EUR.PARSYS1..to OPS.CHASE, .
. MFG.CHILD at US.CHISYS2...Dest Agent=X | i iiiees

Figure 14. Multiple-Destination Distribution with Intermediate Fan-out

Advantages of Using Intermediate DSUs
Reduced Connectivity Costs: The number of possible direct connections in a
network is (n(n-1))/2, where n is the number of DSUs. If it is desired that direct
sessions be used for all DS communication, this is the number of connections
required.

DS networks could contain thousands of DSUs. If full interconnection is desired,
millions of sessions would be required. Each DSU would need to have thou-
sands of sessions. Only a small fraction would be active at any given time, but,
nonetheless, the resources required would be unreasonably large.

Intermediate DSUs can be used to reduce this cost. If, instead of a fully inter-
connected network, all DSUs are connected to just one intermediate DSU, the
total number of connections is n-f. When n is large, the savings in connection
resources are dramatic. With 1000 DSUs the number of sessions needed is
reduced from 499,500 to 999, a factor of 500 (i.e., n/2). In practice, rather than
one intermediate DSU, a backbone network of 10 or 20 intermediate DSUs
would be used and more sessions, perhaps another 200, would be needed.
Even so, the resource savings are dramatic.

Improved Link Utilization: It is expected that some types of DS traffic will travel
on sessions having lower transmission priority than the sessions that handle
interactive traffic. Interactive loads fluctuate; the low-priority sessions serving
DS traffic are expected to use whatever link capacity is available during lulls in
the interactive loads.

22 SNA/Distribution Services Reference

When low-priority DS sessions span multiple links, the lulls in the interactive
loads on all those links must be concurrent, or nearly so, for significant
amounts of the DS traffic to flow. If one link spanned by the session is heavily
utilized, it sets a limit on the throughput of the low-priority session over its
entire length, and may prevent the low-priority traffic from using otherwise
available capacity on the other links. Path control intermediate routing nodes
(PCIRNs) have some buffering capacity, and can usually handle short delays
caused by bursts of interactive traffic on a link. For longer delays, however, the
PCIRNs may have to reduce the flow on the low-priority session.

The throughput between two DSUs may be increased by adding intermediate

DSUs between them, so that low-priority DS sessions need not span so many
links. Traffic is then able to flow over a particular session to an intermediate

DSU while there is a lull on that session, even if the next “hop” to the destina-
tion happens to be busy because of interactive traffic. When there is a lull on
the next "hop,” the low-priority traffic can continue on its way.

In other words, the more links spanned by a low-priority session, the smaller is
the probability that there will be concurrent lulls on all of them. If any link is
fully utilized by high-priority sessions, the flow on the low-priority session is
slowed to a trickle. The use of intermediate DSUs that provide a store-and-
forward function may reduce transit times and increase throughput compared to
direct connections.

Full-Function DS Networks

Distribution Service Parameters
DS is designed to provide a variety of types and levels of service. Originators
may specify, as parameters on the verb by which they request a distribution,
the levels of each type of service that the particular distribution requires. The
values are included in the DS control information that flows through the
network, and are used to condition the processing of the distribution at each
DSU through which it flows. Each type of service requested is specified as a
service parameter.

Service parameters may be used to map particular types of DS traffic to partic-
ular classes of service offered by the lower layers of SNA. They may be used
to map different types of traffic to different routes through the DS network. At a
particular DSU, the service parameters may be used to determine how to
handle a distribution--for example, whether it must be safe-stored on nonvola-
tile storage.

Implementations are allowed to select, according to architecturally defined
rules, those portions of the DS architecture that they implement. The subsetting
rules for the architecture are defined in Appendix C. Certain implementation
choices may resuit in networks in which the DSUs offer different levels of capa-
bility. The distribution service parameters are used to route distributions
through only those DSUs capable of providing the requested service.

Chapter 1. Concepts and Facilities 23

Service Parameters and Service Levels
DS allows the specification of many different service parameters. Certain
parameters are defined by the architecture; others may be defined by particular
implementations. Up to 10 different service parameters may be carried in one
distribution.

Each service parameter is specified as a triplet. The triplet consists of
* the parameter type--architecturally defined parameter types are

priority
protection
capacity
security

¢ a comparison operator--the only comparison operator used by Format Set 2
implementations is REQUIRE_LEVEL_GE. Format Set 1 implementations use an
additional comparison operator, REQUIRE_SUPPORT_FOR.

¢ a value--architecturally defined values vary by parameter type. They are
discussed below.

The combination of comparison operator and value describes the level of
service required by the distribution. For example, the originator might request
a certain level of service (priority, perhaps) as a minimum, but be quite happy if
the distribution traveled at a higher level. This request would be expressed as
a comparison operator of REQUIRE_LEVEL_GE and a value indicating the minimum
level acceptable.

The service parameters defined by the architecture are listed below, with a
description of the comparison operators and values that may be specified for
each.

The priority service parameter allows an originator to specify the relative
urgency of a particular distribution. DS favors higher priority distributions when
there is contention for resources. For example, when distributions are queued
for sending, the higher priority ones are serviced first. In some cases, higher
DS-priority distributions may flow on (path control layer) virtual routes with
higher transmission priority. In general, the higher the DS priority, the more
quickly the distribution flows through the network.

Any one of 16 different DATA priority values (DATA_1 through DATA_16, with
DATA_16 being the highest priority) may be specified for ordinary distributions.
Some implementations group DATA_1 through DATA_8 as DATALO and DATA_9
through DATA_16 as DATAHI. Above the DATA priority values are other values. In
order of increasing priority, they are: CONTROL, which is used only for distrib-
ution reports (i.e., it may not be specified on an agent’s request), and FAST,
which is used for short, urgent types of messages.

The protection service parameter is used to specify whether the distribution
must be stored on nonvolatile storage while a DSU has responsibility for it.
One of two values may be specified--LEVEL1 or LEVEL2. LEVEL2 indicates that the
distribution is safe-stored in nonvolatile storage; LEVEL1 indicates that safe-
storage is not performed.

24 SNA/Distribution Services Reference

If the distribution needs to be protected in case of processor failure, the distrib-
ution request specifies protection (REQUIRE_LEVEL_GE LEVEL2). If the distribution
does not require this level of protection, the request specifies protection
{REQUIRE_LEVEL_GE LEVEL1).

An implementation may choose the level of protection it provides. The advan-
tage of requesting a less demanding level of protection for a distribution is that
there may be more DSUs capable of providing it, and therefore more routing
possibilities. In addition, the processing time within a DSU might be decreased.

Some DSUs are able to handle only distributions whose DMU lengths are less
than some specified maximum. The capacity service parameter allows DSUs
with larger capacity to route large distributions around smaller-capacity DSUs
that may not be able to handle them. Any route that passes through a size-
limited DSU is appropriate only for distributions no larger than the maximum
that the most limited DSU on the route can handle. This smallest maximum is
the capacity of the route.

The values that an originator may specify for the capacity parameter indicate
the minimum capacity of the DSUs through which the distribution should be
routed. Often, all distributions generated by a particular agent specify the same
capacity. If the distributions vary widely in size the agent would specify an
appropriate capacity for each distribution.

The architecturally defined values are

ZERO

1MB (one megabyte)
4MB
16MB

The capacity parameter indicates the size of the server object contained in the
distribution. Although a distribution with no server object might specify a
capacity requirement of zero, the distribution could still contain an agent object.

The security service parameter is used to specify that the distribution is to be
safeguarded from unauthorized access while it is being sent through the DS
network. Two levels, LEVEL1 and LEVEL2, may be specified. LEVEL1 indicates that
security is not required for the distribution. LEVEL2 indicates that DS should
route the distribution only on sessions that are designated secure. (Typically,
LU 6.2 session-level security would be used on such sessions.) When a distrib-
ution specifying LEVEL2 as the security value is stored at a particular DSU, the
DSU and its general server (see “Servers and Objects” on page 40) ensure its
security.

Default Service Levels
Any or all of the service parameters may be omitted from the DMU, The archi-
tecture defines a default service level for each parameter. A DSU processing a
distribution uses the default service level for any parameter that is omitted from
the DMU. The default values for each service parameter are given in
Appendix G.

Chapter 1. Concepts and Facilities 25

Combinations of Service Levels
The DS architecture allows a level to be specified for each service parameter,
independent of the levels specified for other parameters. Applications may
choose either to specify service parameters independently on a per-distribution
basis or to routinely use certain combinations of parameters.

Uses of Distribution Service Parameters
From the time DS accepts responsibility for a distribution request until the dis-
tribution is delivered, the distribution service parameters may, and in some
cases must, be used by all the DSUs to condition their processing of the distrib-
ution. The effects of the service parameters are apparent both in the routing of
the distribution and the local handling of it.

Service Parameters in the Routing Table: Each entry in a DSU’s routing table
includes the levels of service that the route is able to provide. Each distribution
carries the levels of service specified by the originator. When the distribution is
routed, the requested levels are compared to the levels available.

To illustrate this process with a sample network, assume that a connection
between EUR.PARSYS1 and US.CHISYS2 is to be reserved for small, high-priority
traffic. Another connection, also reserved for small, high-priority traffic, is
required between us.NYCsys1 and UsS.CHISYS2. The resulting five-connection
network appears as shown in Figure 15 on page 27. Notice that there are two
connections between the same pair of DSUs, EUR.PARSYS1 and US.NYCSYS1. In
order to distinguish between them, their identifiers must be qualified by a char-
acterization of their service level capabilities. In this illustration, FAST and DATA
are used.

26 SNA/Distribution Services Reference

New York

Agent Paris
Chicago Agent PB—
Agent
User Dir.
Agent Agent PB——
Agent PB— Rtg Tahle User Dir.
User Dir, US.NYCSYS1
— EEE— Rtg Table
. PC in node .
Rtg Table . with DSU . EUR. PARSYS1
US.CHISYS2 —. T . PC in node .
| . . . with DSU
. PC in node . . . vee | feeeeens eeeee
. with DSU . ceene cees . —_—
R 1 N .PC e eieiereeiiii s ieiaseeacerans e
—. T . IRN “(US.NYCSYS1-EUR. PARSYS1-DATA) R T .
A1 . —{US.NYCSYS1-EUR. PARSYS1-FAST)— {...
. . -(US.CHISYSZ-EUR.PARSYSI-FAST)]l
. . . R o .
..... . s . IRN B
. “(US.CHISYS2-US.NYCSYS1-DATA)- | |.
. —(US.CHISYS2-US.NYCSYS1-FAST)— |.
. . PC = Path Control
T S 1 N IRN = Intermediate Routing Node

Figure 15. Sample Network #3 Showing Different Routes for Different Priorities

The routing table in EUR.PARSYS1 contains entries as shown in Figure 16 on
page 28. In addition to the connection identification of next-DSU name, the
table entries include route service capabilities, queue identifiers, and the LU
name and mode name (symbolized by "Fast” or “Slow”) that identify the group
of sessions used by the connection.

Each entry represents a route segment. The service capabilities describe the
minimum capabilities that will be found along the route of which this particular
route segment is part. Several route segments can share one queue. Several
queues can share one connection. Generally, there is a one-to-one corre-
spondence between a connection and the mode name of the session or group
of sessions it uses.

When a distribution is to be routed, the combination of destination DSU and
requested service parameters are used to scan the routing table in a serial
fashion. The first entry for the destination DSU that provides acceptable service
is used to identify the next-DSU queue into which the distribution is placed.
After the distribution is placed in the next-DSU queue, a DS transaction
program will retrieve it and send it on the connection to which that particular
queue maps.

Chapter 1. Concepts and Facilities 27

PARIS

USER DIRECTORY

Destination{Destination
User Name [DSU

MFG.CHILD |US.CHISYS2
MKT.NEFF US.NYCSYS1
MKT.PIAF local

OPS.CHASE |US.CHISYS2

Routing Table

Destination Route Segment Information
DSU

Route Service Parm Capabilities Next—|Connection Session(s) used

Dsu
Prot- Queue [Next DSU- LU name—Mode name

Priority|ection |Capacity|Security Connection Name
US.CHISYS2 FAST LEVEL1 ZERO LEVELL US.CHISYS2-FAST |US.CHISYS2-Fast
US.CHISYS2 1-16 LEVEL2 16MB LEVEL2 US.NYCSYS1-DATA [US.NYCSYS1-Slow
US.NYCSYS1 FAST LEVEL1 ZERO LEVEL1 US.NYCSYS1-FAST |US.NYCSYS1-Fast
US.NYCSYS1 1-16 LEVEL2 16MB LEVEL2 US.NYCSYS1-DATA |US.NYCSYS1-STow

DSU name: EUR.PARSYS1
LU name: EUR.PARSYS1

Figure 16. The Paris DSU’s Directory and Routing Table for Sample Network #3

These entries do not represent a formal definition of what is included in the
routing table. Implementations arrange their table structures in whatever way
is most appropriate for them. In particular, the network-unique DSU names and
LU names shown in the illustration are not required. Local values such as
pointers and offsets may be used.

The DSU name and the LU name need not be the same. For example, to facili-
tate network changes, it may be desirable to give one DSU multiple DSU
names, but it would still have only one LU nhame. When the same value is used
for the DSU name and LU name, installation and operations complexities are
reduced.

Selecting Next DSU with Service Parameters: Notice the two entries for
us.cHIsYs2 in Figure 16. The first entry describes a route segment of a route
with a priority capability of FAST connecting directly to the destination DSU.
The second entry describes a route segment with a priority capability of DATA_1
through DATA_16 connecting to an intermediate DSU. If Piaf requests FAST for a
single destination distribution to Chase in Chicago, the distribution is routed
directly to us.cHIsYs2. If, on the other hand, Piaf requests a priority between
DATA_1 and DATA_18, the distribution is routed via the intermediate DSU
US.NYCSYS1.

A multi-destination distribution sent from Piaf at EUR.PARSYS1 tOo US.NYCSYS1 and

to Chase in Chicago is fanned out at the origin if priority FAsT is specified, as
shown earlier in Figure 9 on page 17. On the other hand, if priority DATA_4 is

28 SNA/Distribution Services Reference

specified, the fan-out occurs at the intermediate DSU. This comparison illus-
trates how the use of direct sessions that bypass intermediate DSUs may
shorten transit times but increase the amount of duplicate transmission. DS
connections using sessions assigned to multi-link virtual routes should there-
fore be used sparingly, except for high-priority traffic. The larger the object
being distributed, the greater is the benefit of intermediate fan-out.

Selecting a Session Using Service Parameters: In many cases, parallel (2 or
more) sessions will exist between DSUs. The sessions will typically offer dif-
ferent classes of service. DS uses the LU 6.2 mode name to distinguish
between the various kinds of sessions. For example, at the basic LU 6.2 layers
of SNA, the session to Us.NYCSYS1 with mode name “Fast” would be assigned a
higher transmission priority than the session with mode name “Slow.” DS
would take advantage of the higher transmission priority by mapping a DS route
of priority FAST to an LU 6.2 session with mode name “Fast.”

Selecting Send Order Using Service Parameters: In some cases, only one
session is available for a connection. Even when parallel sessions are avail-
able, it is generally desirable to limit the number of sessions used, particularly
for low-priority, high-volume traffic. With limited numbers of sessions, in times
of heavy loads on the network, the DS distributions will build up in queues for
whatever next-DSU they must be sent to. These queues are called next-DSU
queues.

The DS processes that access the routing table and put the distributions into
next-DSU queues belong to the routing sublayer of DS. The processes that
service the queues by sending the distributions out on the conversations belong
to the distribution transport sublayer. The queues themselves can be viewed
as straddling the protocol boundary of these two sublayers. Figure 17 on

page 30 illustrates this.

Chapter 1. Concepts and Facilities 29

PARIS

Routing
US.NYCSYS1 US.NYCSYS1 US.CHISYS2 Sublayer
slow queues fast queue fast queue

A A B ¢
- - - - lll- -12f- - - - - 1[------ lll- T R
[____J Distribution
Transport

— Sublayer
EUR. PARSYS1
. Path Control in .
. node with DSU .

sess0sessestsssesesns P R RN

.
.

Jevreriitetieiintiisiiicnioiieiinces e
.

/-(US.NYCSYS1-EUR. PARSYS1-DATA) . cerveafllevees
/-(US.NYCSYSI-EUR.FARSYSI-FAST)—~1_;;....

/- (US.CHISYS2-EUR. PARSYS1-FAST) (TPFa)— .
Jeeereiitnininteniesncncnsecnnes (TPF2)— .
. (TPF2)— .

ceveneness PC .

. IRN .

Figure 17. The Paris Section of Sample Network #3 Showing Two Queues for One Con-
nection

Managing the next-DSU queues is an important part of the DS function.
Requests specifying the same priority are queued on a first-in, first-out basis.
Requests of higher priority may be assigned to the same sessions but are sent
before those of lower priority.

One way this can be achieved is to maintain multiple queues for each con-
nection and assign different priorities to separate queues. In the example
shown in Figure 17, two queues exist for the DATA connection to us.NYCsYS1.
The number suffix in the queue name represents the order in which the queues
are serviced; that is, all the distributions in queue A1 are to be sent before any
from queue A2. The routing table for EUR.PARSYS1 showing the next-DSU queue
identifiers is given in Figure 18 on page 31.

30 SNA/Distribution Services Reference

PARIS

USER DIRECTORY

Destination|Destination

User Name |DSU

MFG.CHILD |US.CHISYS2

MKT.NEFF US.NYCSYS1

MKT.PIAF Tocal

OPS.CHASE |US,CHISYS2

Routing Table
Destination Route Segment Information
DSU
Route Service Parm Capabilities Next—|Connection Session(s) used
Dsu
Prot— Queue |Next DSU- LU name-Mode name
Priority|ection [Capacity|Security Connection Name

US.CHISYS2 FAST LEVEL1 ZERO LEVELY | C1 |US.CHISYS2-FAST |US.CHISYS2-Fast
US.CHISYS2 9-16 LEVEL2 16MB LEVELZ | Al |US.NYCSYS1-DATA |[US.NYCSYS1-Slow
US.CHISYS2 1-8 LEVEL2 16MB LEVEL2 | A2 |US.NYCSYS1-DATA |US.NYCSYS1-Slow
US.NYCSYS1 FAST LEVEL1 ZERO LEVELL | Bl |US.NYCSYS1-FAST |US.NYCSYS1-Fast
US.NYCSYS1 9-16 LEVEL2 16MB LEVEL2 | Al [US.NYCSYS1-DATA |US.NYCSYS1-Slow
US.NYCSYS1 1-8 LEVEL2 16MB LEVEL2 | A2 |US.NYCSYS1-DATA |US.NYCSYS1-Slow

DSU name: EUR.PARSYS1
LU name: EUR.PARSYS1

Figure 18. The Paris DSU’s Routing Table with Two Queues for One Connection

The connection and session information shown in Figure 18 are not truly
needed in the routing table. The queue name alone would suffice. The
required relationships to connections and groups of sessions could be estab-
lished by various additional tables and pointers. The example illustrates how
distributions with DATA_N priorities flow over sessions with a mode name of
"slow,” which, in turn, can be assigned (at the path control level) to a virtual
route with a transmission priority field (TPF) value of 0, the lowest of the three
TPF values available.

Implementation Alternatives: The above example shows one way of ordering
the sending by priority. Various implementations might choose other ways,
such as maintaining one queue but keeping the entries in it sorted by priority.

Some implementations delay the decision of which connection to use for a dis-
tribution. Distributions can be queued by routing table entry. The determi-
nation of which connection should be used to service which queue can be
deferred. In other words, the static relationships depicted in the routing tables
illustrated here would be partly replaced by a dynamically determined relation-
ship. The determination could be triggered by some event or condition. For
dial-up networks, the determination might be triggered by the activation of the
connection.

Chapter 1. Concepts and Facilities 31

Local Handling of Distributions: Service parameters are also used to condition
the DSU’s local handling of distributions. For example, if a distribution request
specifies protection (REQUIRE_LEVEL_GE LEVEL2), the DSU is required to store it in
nonvolatile storage before accepting responsibility for it. If a distribution
request specifies security (REQUIRE_LEVEL_GE LEVEL2), the DSU may use additional
parameters on the commands it issues to the server to access the distribution
(see “Servers and Objects” on page 40 for a discussion of servers). Complete
information on the actions taken by DSUs in response to specified service
parameters is given in Appendix C.

Sublayering in DS Networks
DS is modeled as part of the transaction services layer of SNA, but is itself
composed of sublayers. The notion of the distribution transport and routing
sublayers was introduced in Figure 17 on page 30. Two more DS sublayers
are defined: an uppermost sublayer that handles requests from agents, called
the DS presentation sublayer, and a sublayer between DS presentation and
routing that provides the directing process. Hence, DS consists of four sub-
layers existing network wide, each sublayer existing in every DSU. The sub-
layers are:

DS Presentation
Directing

Routing

Distribution Transport

Most implementations of DS employ queues at the boundaries between the
presentation and directing sublayers, and between the routing and transport
sublayers. There is less need for queuing between directing and routing, and it
is not considered in this document.

Processes Performed in the DS Sublayers
The processes that perform the DS functions can be placed in, or in some
cases across, the sublayers. Each DSU contains instances of the various proc-
esses, provided by a collection of service transaction programs. A detailed
model of the internal structure of a DSU is given in Chapter 3.

* The processes in the DS presentation sublayer are called DS presentation
services (PS).! Agents interact with PS to use DS services. The following
interactions are supported:

— A Send_Distribution verb initiates a distribution to one or more destina-
tions. PS validates the request before accepting it. If PS accepts the
request, it enqueues the distribution for processes in the directing sub-
layer.

— A Receive_Distribution verb provides the destination agent with access
to the distribution.

1 The DS presentation services (PS) sublayer is distinct from the SNA layer below the transaction services layer
(in which DS resides), which is also called presentation services. The latter layer processes the LU 6.2 basic
conversation verbs issued in DS, whereas DS PS processes DS verbs issued by application transaction pro-
grams. In this book, ”PS,” unqualified, generally refers to the DS sublayer.

32 SsNA/Distribution Services Reference

Other variations of the basic send and receive verbs provide agents with
additional capabilities. The other verbs are discussed in “Agent Protocol
Boundary Verbs” on page 55 and Appendix F.

— Operations verbs provide access to enqueued distributions or to DS
resources, such as the routing table, to display or change them. Oper-
ations verbs also provide access to logged exception information. The
operations verbs are described in “Operations” on page 68 and
Appendix F.

Verbs and parameters are passed across the protocol boundary to DS.
Return codes are passed back indicating that the function has been com-
pleted, successfully or not, as indicated by the code.

The processes in the directing sublayer perform the following functions:

— Determine the destination DSU names corresponding to destination
user names and add them to the distribution--this is done at the origin
of the distribution.

— Determine the local queues and application program identifiers for dis-
tributions at their destinations.

— Change the destination DSU names for users whose destination DSU is
the local one, but who are not, in fact, local users--the redirection case
(see “Redirection” on page 35).

Directing then invokes routing for nonlocal destinations.

When a distribution is to be placed on more than one local queue, it is
“fanned out” by directing.

The processes in the routing sublayer perform the following functions:

— ldentify inbound distributions for which at least one destination DSU
name is local. Directing is invoked for these destinations.

— Use the routing table to select appropriate next-DSU queues for out-
bound distributions. Routing may perform “fan-out” in the case where
the distribution is placed on more than one queue.

The processes in the distribution transport sublayer manage the communi-
cation between DSUs to send a distribution from one DSU to the next. The
queues into which the routing processes place distributions are accessed in
predetermined order. This sublayer performs the encoding of the distrib-
ution into a distribution message unit and handies the DS protocol for the
transmission of the message unit. Protocols to exchange exception infor-
mation are handled by this sublayer as well. LU 6.2 basic conversation
verbs are issued and return codes and parameters are analyzed to accom-
plish the transmission.

The processes in the distribution transport sublayer invoke a facility known
as a server to gain access to the server object when sending, and to store
the received server object when receiving. The concepts of servers and
server objects are explained in “Servers and Objects” on page 40.

Processes in this sublayer manage the transfer of responsibility for a DMU.
The sending DSU is responsible until the receiving DSU has signaled via a
DS protocol that it has accepted responsibility.

Chapter 1. Concepts and Facilities 33

Sublayer Diagrams

All the sublayers of DS exist as part of the transaction services layer of SNA.
The upper edge of DS is the DS agent protocol boundary (agent PB). This PB
makes up only a part of the total PB offered to users by SNA services. The
lower edge of DS is the basic conversation protocol boundary of LU 6.2.

DS uses the basic conversation protocol boundary of LU 6.2 for sending and
receiving its DMUs. DS shares the use of this PB with other service transaction
programs. In the following diagrams, that protocol boundary is depicted as a
solid line labeled LU 6.2 BCPB. It should not be confused with the mapped con-
versation protocol boundary used by application transaction programs. A more
detailed illustration of the structure of a DSU can be found in Chapter 3.

As an example, once again assume that Piaf wants to send a low-priority dis-
tribution (single destination) to Chase. The distribution is sent through
US.NYCSYs1, where only the routing function is involved. From a sublayering
standpoint, the distribution is handled as shown in Figure 19.

CHICAGO NEW YORK PARIS

Agent Agent

- —p——Agent PB— — — — — Agent PB—-
Presentation

- Agent PB

Directing
Routing
Distribution
US.CHISYS2 US.NYCSYS1{ Transport EUR. PARSYS1
- LU 6.2 BCPB—{— LU 6.2 BCPBH — — — — LU 6.2 BCPB—{—

Lower Layers
of SNA

DTMU-B DTMU-A
..from MKT.PIAF at EUR.PARSYS1.. ..from MKT.PIAF at EUR.PARSYS1..
+.to OPS.CHASE at US.CHISYS2... ..to OPS.CHASE at US.CHISYS2..

Figure 19. DS Sublayering Diagram--Intermediate Routing

34 SNA/Distribution Services Reference

Redirection

Looking once again at sample network #2, particularly the directories in
Figure 12 on page 20, assume that Neff in marketing is transferred to Chicago
for a brief assignment, not long enough for the network administrators to want
to change all the directories in the network. The redirection capability of the
DSU in New York simplifies the required directory changes. Only the directo-
ries at Neff's old and new locations need be changed. Refer to Figure 20 and
contrast the directory entries for MKT.NEFF with those in Figure 12 on page 20.

CHICAGO NEW YORK PARIS

USER DIRECTORY USER DIRECTORY USER DIRECTORY
Destination|Destination Destination|{Destination Destination|Destination
User Name |DSU User Name |DSU User Name |DSU
MFG.CHILD [local MFG.CHILD |US.CHISYS2 MFG.CHILD |US.CHISYS2
MKT.NEFF Jocal MKT.NEFF US.CHISYS2 MKT.NEFF US.NYCSYS1
MKT.PIAF EUR. PARSYS1 MKT.PIAF EUR. PARSYS1 MKT.PIAF local
OPS,CHASE |local 0PS.CHASE |US.CHISYS2 OPS.CHASE |US.CHISYS2

ROUTING TABLE ROUTING TABLE ROUTING TABLE
Destination|Connection Destination|Connection Destination|Connection
DSU (Next DSU) DsSu (Next DSU) DSU (Next DSU)
EUR. PARSYS1{US.NYCSYS1 EUR. PARSYS1|{EUR.PARSYS1 US.CHISYS2 [US.NYCSYS1
US.NYCSYS1 |US.NYCSYS1 US.CHISYS2 |US.CHISYS2 US.NYCSYS1 |US.NYCSYS1

US.CHISYS2 US.NYCSYS1 EUR. PARSYS1

Figure 20. Directories lllustrating Temporary Redirection

Suppose that Piaf in Paris sends a distribution to McT.NEFF. The DSU in Paris
associates the destination DSU us.Nycsys1 with MKT.NEFF. When DTMU-A
arrives at US.NYCsYs1, the routing function there recognizes its own name, pre-
sumes that it is the destination DSU, and passes the distribution up to the
directing sublayer. The directing function accesses the user directory and
finds, instead of local delivery information, another DSU name. It then replaces
US.NYCSYS1 with the new name, Us.CHISYS2, and passes the modified control
information back down to routing. Routing then queues the distribution for
US.CHISYS2.

From a sublayering standpoint, the distribution is handled as shown in

Figure 21 on page 36. The routing process invokes the directing process
because the destination DSU name is local. Directing, after determining that
the destination user is not local and after changing the destination DSU name,
invokes routing.

Chapter 1. Concepts and Facilities 35

Default Directing

CHICAGO NEW YORK PARIS
Agent Agent

- Agent PB———— — Agent PB——— — — — — Agent PB——
Presentation
Directing
Routing
Distribution

US. CHISYS2 US.NYCSYS1| Transport EUR. PARSYS1

- LU 6.2 BCPB—— — —1iU 6.2 BCPBH{ — — — — LU 6.2 BCPB——
Lower Layers
of SNA

DTMU-B
4—{??from MKT.PIAF at EUR.PARSYS1.

TMU-A
..from MKT.PIAF at EUR.PARSYS1.
..to MKT,NEFF at US.CHISYS2.. ..to MKT.NEFF at US.NYCSYS1..

Figure 21. DS Sublayering Diagram--Redirecting

The redirection processing at the intermediate DSU, us.Nycsys4, should be com-
pared to Figure 19 on page 34, which depicts pure routing at the intermediate
DSU.

In the example above, the redirection occurred at the most convenient point.
Suppose, however, that Chase had moved to New York. A message from Piaf
to him would be redirected at us.CHISYS2 back to us.Nycsys1, the DSU through
which it had just been routed. In networks of reasonable complexity, some
occurrences of redirection may result in routing inefficiency. System adminis-
trators must use care to keep this to a minimum.

A DSU refers to its directory for any distribution whose destination list includes
that DSU’s name. A DSU also refers to its directory if the destination list
includes any of the DSU names in the DSU’s intervention list (see “The Inter-
vention List” on page 40). In either case, redirection may result.

In large networks, the number of users makes it impractical o have an explicit
entry for every user in every DSU’s directory. Instead, default “tokens” (the ~*~
in this documentation) can be used in place of parts of the user name; that is,
either the DEN, or both the DGN and the DEN. The default token is like a wild
card that can assume any value. User names for which a complete explicit
match (that is, an exact match on both DGN and DEN) cannot be found are
matched against the entries with explicit DGNs and * for DENs. User names
that fail to match any DGN.* entry must by definition match the *.* entry, which is

36 SNA/Distribution Services Reference

simply the equivalent of “unable to find any match.” In other words, assuming
that the directory is in collating sequence and the search algorithm is serial,
the default tokens mean "none of the preceding” matched.

Whatever DSU name is found at a default entry is used exactly the same way
as the DSU name found at an explicit entry. That is, it is associated with the
user name and is used for routing through the network. In some cases, the
DSU name assigned by default will prove to be correct. In other cases, redi-
rection will occur at the default DSU. In properly defined networks, the directo-
ries at the default DSUs would have more explicit entries and, therefore, would
be better able to direct distributions explicitly--that is, to direct them to the DSU
where the user really is.

The sample networks discussed earlier in this chapter have all had only four
users, an extreme simplification employed to minimize table sizes in the exam-
ples. To illustrate default directing, it is helpful to imagine a network with the
same three DSUs, but serving more users. This network is only slightly larger
than sample network #1. The following example is a complete network and not
a fragment of a larger one.

o CHICAGO o NEW YORK o PARIS
Manufacturing Dept. Manufacturing Dept. Marketing Dept.
Child North Piaf
Marketing Dept. Marketing Dept. Operations Dept.
Chapin Neff Place
Operations Dept. Nelson
Chase Nesbit

Chalk

USER DIRECTORY

USER DIRECTORY

USER DIRECTORY

Destination|Destination Destination|Destination Destination{Destination

User Name |DSU User Name [DSU User Name |DSU
MFG.CHILD |local MFG.CHILD |US.CHISYS2 MKT.NEFF US.NYCSYS1
MFG.* US.NYCSYS1 MFG.NORTH |local MKT.NESBIT [US.NYCSYS1
MKT.CHAPIN {local MFG, * error MKT.PIAF local
MKT.NEFF US.NYCSYS1 MKT.CHAPIN |US.CHISYS2 MKT, * US.NYCSYS1
MKT.PIAF EUR. PARSYS1 MKT.NEFF Tocal OPS.CHASE |US.CHISYS2
MKT. * US.NYCSYS1 MKT.NELSON |local OPS.PLACE |local
OPS.CHASE |local MKT. NESBIT {local 0PS.* US.CHISYS2
OPS.CHALK |local MKT.PIAF EUR. PARSYS1 * US.NYCSYS1
OPS.PLACE |EUR.PARSYS1 MKT. * error

OPS. * error OPS.PLACE [EUR.PARSYS1

* K US.NYCSYS1 OPS.* US. CHISYS2 ROUTING TABLE

* * error

Destination|Connection
ROUTING TABLE DSU (Next DSU)
ROUTING TABLE

US.CHISYS2 |US.NYCSYS1
US.NYCSYS1 |US.NYCSYSL

Destination|Connection
DSU (Next DSU) Destination|Connection

DSU (Next DSU)

EUR. PARSYS1|US.NYCSYS1
US.NYCSYS1 |US.NYCSYS1

EUR. PARSYS1

EUR. PARSYS1|EUR. PARSYS1
US.CHISYS2 |US.CHISYS2

US.CHISYS2

US.NYCSYS1

Figure 22. Sample Network #4--Directories with Default Entries

Chapter 1. Concepts and Facilities 37

Default Routing

Figure 22 depicts the directories for sample network #4. The directory at
EUR.PARSYS1 contains default DEN entries for two DGNs, MKT and ors, pointing
to us.NYCsYsS1 and US.CHISYS2, respectively. The directory at us.NyCsys1 contains
default DEN entries for all three DGNs. At us.NYCSYS1, however, MFG.* and MKT.*
are errors. This means that the lists of explicit entries for those DGNs are
exhaustive. If a DEN other than those listed occurs, it must be in error. The
ops.* points to us.CHISYS2 where the directory for ops is exhaustive. In this
example, therefore, there is a complete set of DENs for every DGN in at least
one DSU’s directory.

The directory at EUR.PARSYS1 contains no explicit entry for the DGN MFG. Any
user names beginning with MFG (or any DGN other than MkT or ops) will match
the ** entry at the bottom of the directory and be directed to us.NyCcSYs1. The
directory at EUR.PARSYS1 will never detect an invalid user name. The directory
at us.cHIsYs2 will detect invalid DENs within the ops DGN but any unrecognized
DGNSs will be directed to us.NYCSYs1. Because the directory at us.NyCsYs1 is the
only one with a ** error entry, it is the only place at which completely invalid
user names will be detected.

Customers should define their networks so that every DGN has a complete set
of explicit entries--that is, every DEN for that DGN--in a directory somewhere in
the network. Similarly, at least one directory should contain a complete set of
DGNs. Also, every DSU’s directory should be complete in the sense that any
valid user name not explicitly matched will be redirected. Thus, the service can
distribute from any DS-defined user to any other DS-defined user, always
detecting invalid user names (for example, misspelled names) as such.

Note that a ** default entry is different from an entry for omitted user names (as
shown in Figure 7 on page 15). The latter matches destinations for which no
user name was specified in the distribution request (i.e., node destinations).
The former matches user destinations (those for which a user name was speci-
fied in the request) that cannot be found in the local directory.

In large networks, it is also impractical to maintain routing tables in every DSU
with explicit entries for every other DSU. Default tokens can be used in the
routing table in exactly the same way as in the directory. It would not be an
error or even unusual to have an explicit entry in the directory that returned a
destination DSU for which no explicit entry exists in the routing table.

Looking again at sample network #3, Figure 17 on page 30, and the routing
table in Figure 18 on page 31, it can be seen that the routing table has six
entries, although EUR.PARSYS1 has only four queues for three sessions. The
routing table could be shortened by the use of default routing tokens as shown
in Figure 23 on page 39.

38 SNA/Distribution Services Reference

PARIS

USER DIRECTORY

DestinationiDestination
User Name |DSU

MFG.CHILD [US.CHISYS2
MKT.NEFF US.NYCSYS1
MKT. PIAF local

OPS.CHASE |US.CHISYS2

Routing Table

Destination Route Segment Information
Dsu
Route Service Parm Capabilities Next—|Connection Session(s) used
DsuU
Prot- Queue {Next DSU- LU name—Mode name
Priority|ection |[Capacity|Security Connection Name

US.CHISYS2 FAST LEVEL1 ZERO LEVELYL | C1 [US.CHISYS2-FAST |US.CHISYS2-Fast
US.NYCSYS1 FAST LEVEL1 ZERD LEVEL1 | Bl |US.NYCSYS1-FAST |US.NYCSYS1-Fast

us.* 9-16 LEVEL2 16MB LEVEL2 | Al [US.NYCSYS1-DATA |US.NYCSYS1-Slow
us.* 1-8 LEVELZ 16MB LEVEL2 | A2 |US.NYCSYSI-DATA |US.NYCSYS1-Slow
*x any any any any error

DSU name: EUR.PARSYS1
LU name: EUR.PARSYS1

Figure 23. Routing Table with Default Entries

Notice that there is an explicit entry for fast priority traffic to us.cHisYs2, but no
other explicit entries for us.cHIsYs2. The us.* entries will cause any distribution
with an unrecognized REN (the low order part of the DSU name), and a priority
of DATA_1 to DATA_16 to be routed to us.NyCsys1. The ** entry catches any unrec-
ognized DSU names. Since this routing table is complete (i.e., any distribution
for either of the other DSUs in the network will be handled by one of the
entries), the ** entry maps to an error condition. Alternatively, the *= entry
could be used to route all distributions destined for unrecognized DSU names
elsewhere, just as a ** entry in the directory causes distributions for unrecog-
nized user names to be directed elsewhere.

Network administrators should ensure that every routing table is complete in
the sense that it contains either an explicit match or a default match for every
destination DSU.

Alternate Routing

Implementations may provide a mechanism to perform alternate routing when
connections are unavailable. For example, the routing table might contain two
entries for the same destination DSU and service parameter combination, with
each entry identifying a different next-DSU. Assuming that the routing table is
scanned in a serial fashion, the first entry would normally be matched, and all
distributions would be sent to that next-DSU. If the connection to that next-DSU
became unavailable, the DSU could mark its routing table entry unavailable.

Chapter 1. Concepts and Facilities 39

The routing lookup process could then bypass that entry, and subsequent dis-
tributions would be routed to the next-DSU named in the second entry. Since
the specific contents of an implementation’s routing table are not defined by
DS, such a mechanism is outside the scope of the architecture.

The Intervention List

A DSU may intervene in traffic destined for other DSUs. The intervention list
specifies the names of other DSUs for which the DSU is to process traffic.
These DSU names may or may not be the names of other DSUs in the network.
A DSU name may appear in the intervention list of one or more DSUs.

A DSU checks the intervention list when a distribution is received. The DSU
invokes the directing process for traffic addressed to any of the DSU names in
its intervention list, just as it does for traffic addressed to its real name. This
feature can be used to facilitate network rearrangements. For example, when
DSUs are combined, the resulting DSU would have the names of the eliminated
DSUs in its intervention list.

Another use of the intervention list is to facilitate “"Big Brother/Little Brother”
implementations. For example, suppose that a particular implementation has
only very limited resources to allocate to a directory and routing table, and that
it supports only a small number of local users. The directory can be set up to
define only the local users, and to route traffic (by default) for all other users to
a partner DSU whose directory contains information for remote users.

Since its directory would not contain information for remote users, redirection
performed by the smaller DSU would be inefficient. An effective solution is to
define the small implementation in the intervention list of the adjacent partner.
The partner then processes all traffic destined for the smaller DSU as it does its
own; the partner can perform redirection as necessary before sending traffic to
the smaller DSU.

Servers and Objects

Introduction

Large amounts of data that are to be distributed through the DS network are
typically accessed via application programs called servers. Such data is
encoded in the DTMU as the server object.

When an agent issues a distribution request that is to contain a server object, it
normally does not include the object itself in the request, but rather points to
where the object can be found. The pointer to the object is stored by the DSU
as part of the control information for the distribution. When the DSU is ready to
send the distribution, it uses the server to read the object, one piece at a time.
As each piece is retrieved, the DSU issues LU 6.2 basic conversation verbs to
feed it into the network. The partner DSU receives the object, one piece at a
time, and uses a server to store it away. The origin agent is responsible for
specifying a server appropriate for the object to be distributed.

40 SNA/Distribution Services Reference

Server Names: The name of the server to be used at the origin and destination
DSUs is specified as part of the request when the request refers to a server
object. Server names are taken from the same name space as agent names.

DS is unaware of an implementation’s internal packaging of servers. A single
piece of implementation structure might be able to responsibly store and
retrieve objects for a wide variety of server names. From the DS perspective,
that single piece would be viewed as multiple servers.

Origin Servers: DS uses the origin server to access the object for sending. No
direct interaction takes place between the requesting agent and the origin
server it specifies, either when the request is made or when the DTMU is sent.
(The requesting agent stores the object using the origin server before issuing a
distribution request to DS.) DS acts as the intermediary while processing the
distribution. DS is unaware of interactions that take place between agents and
servers when distribution requests are not involved.

Destination Servers: The server name is put into the DTMU and flows through
the network to all the destinations. Only one server name exists for the server
object, no matter how many destinations are specified. The destination server
is used at the destination DSU to store the object in application space (for
example, a library shared by several users).

Server Implementations: Servers may be of a unique kind implemented as part
of the same application as the agent, or they may be general-purpose servers
included in the supporting environment.

Reversible Servers: A reversible server is one that can be invoked either for
storing or retrieving. When instructed to retrieve an object that it has previ-
ously stored, it retrieves the same byte stream it stored earlier. This does not
mean that the byte stream must actually be stored in a byte-stream image, but
it does mean that the server is able to reverse any transformations it might
have performed upon the byte stream. Typically, servers would be reversible.
An example of a nonreversible server would be one that printed hard copy.

A DSU invokes a nonreversible server only if it has determined that the object
will never need to be retrieved for forwarding or delivering multiple copies.

Use of Servers: Figure 24 on page 42 gives a simple illustration of the inter-
actions among the agent, server, and DSU. At some point before issuing a dis-
tribution request, the agent interacts with the server to store an object (arrow
1). The agent then issues a request to DS, specifying the server name (arrow
2). When a connection is available to the next-DSU, DS invokes the server to
read the server object {(arrow 3), builds the DTMU, and sends it.

The adjacent DSU receives the DTMU from its partner, invokes a server to store
the object (arrow 4), and subsequently starts the destination agent. When the
agent receives the distribution, which includes the destination server informa-
tion (arrow 5), DS’s responsibility for the distribution is fulfilled. The agent may
use the server information to access the object at a later time (arrow 6).

Chapter 1. Concepts and Facilities 41

— Agent) : Agent D —

(6) (1)
(5) (@

Server I (4) DSy DsSU (3) Server
] —]

L]

A

Figure 24. Simple Agent-Server-DSU Interaction

DS considers the server object to be the byte stream passed across the server
protocol boundary via the Read and Write verbs. DS numbers the bytes in this
stream beginning at 1. A server object may be presented to the user or stored
in safe storage in a form very different from that seen by DS, but these other
forms are irrelevant to DS. For example, a 10-character text string might be
compressed into six bytes when stored on disk, and encrypted into a 20-byte
string for transmission. DS knows nothing of the 10-character text message, or
the 6-byte compressed form stored on disk; it knows only about a 20-byte
server object. DS numbers the bytes in this object from 1 to 20.

General and Specific Servers
Specific servers store and retrieve objects into and from users’ or applications’
private space. They are so named because they often perform some type of
application-specific handling of the objects on which they operate; for example,
a specific server might provide encryption and decryption of data, or it might
perform specialized parsing of the objects passed to it. A specific server may
be closely affiliated with one particular agent that uses it, or it may provide ser-
vices to several agents.

Specific servers may be sensitive to the contents of the byte stream passed to
them. They may reject the object because it violates application-specific rules.
They are not expected to cope with byte streams other than those defined for
them.

The general server is a server that DS uses 1o store server objects in DS’s
storage space. It is a reversible server that is completely insensitive to the
contents of the objects it stores.

DS perceives the objects it transports as no more than streams of bytes.
Whenever a DSU is uncertain as to whether or not an object will have to be
retrieved for forwarding or creating additional local copies, the DSU stores the
object with a reversible server. If the DSU has available to it the destination
server named in the distribution, and if that server is reversible, the DSU may
use it to store the object without having to determine its role for the distribution.

42 SNA/Distribution Services Reference

In general, however, there will be distributions received with destination server
names that the DSU does not have. (This implies that the DSU’s role for the
distribution in question is purely intermediate, since it could not make any local
deliveries.) In such cases, the DSU invokes a general server, totally ignoring
the destination server name. In some implementations, the program invoked
might be the same as that used to provide a specific server function. The name
specified in the server protocol boundary verbs, however, would be that of the
general server. To DS, therefore, it would be a different server.

The general server is not sensitive to the contents of the byte stream passed to
it. It cannot reject an object because of its contents. Typically, the space into
which a general server stores its objects is associated with the system rather
than a particular user or application.

The general server’s name is used in server protocol boundary verbs but
usually does not flow in DTMUs. The server name specified in the distribution
request (which then flows in the DTMU) is usually a specific server name. The
originating agent might, however, choose to specify the general server name
for objects that have no significant internal structure and can conveniently be
accessed by the destination agent as a serial byte stream. This implies that the
space into which the general server stores objects is accessible to the origin
and destination agents.

The most general model of DS’s use of servers is illustrated in Figure 25 on
page 44. In this model, the agent’s request (arrow 1) names a specific server
to be used at the origin and destination. (Arrow O indicates the agent’s inter-
action with the server before invoking DS.) The DSU copies the server object
from the user’s {or agent’s) private space (arrow 2) into system space (arrow
3), invoking the origin specific server to read the object and the general server
to write it. Depending on parameters specified on the agent’s request, the DSU
may or may not make this copy before returning control to the agent. Once the
object has been copied into DS space by the general server, DS has responsi-
bility for the distribution request. When a connection is available to send the
distribution to the adjacent DSU, DS invokes the general server to read the
object (arrow 4), builds the object into the DTMU, and sends it to the partner
DSuU.

The partner DSU, upon receiving the DTMU, stores the server object into
system (DS) storage space using the general server (arrow 5). If the DSU dis-
covers, during the routing and directing process, that the distribution contains
destinations local to the DSU, it copies the server object into the destination
user’s (or agent’s) private storage space, invoking the general server to read
the object (arrow 8) and the destination specific server (named in the distrib-
ution) to write it (arrow 7). The destination server information is passed to the
destination agent when it receives the distribution (arrow 8). The agent may
then access the object using the specific server at a later time (arrow 9).

At an intermediate node, the DSU receives the DTMU and stores the object
using its general server. When the distribution is to be sent to the next DSU,
the general server is invoked to retrieve the object for sending (Figure 26 on
page 45). Since the DSU is not a destination for the distribution, the object is
not copied to the specific server.

Chapter 1. Concepts and Facilities 43

NEW YORK PARIS

> Agent Agent | &
(8) (1) (e)
- ——|—Agent PB—m——M— — — — — Agent PB—— — —y—
Presentation
Specific < (2) Specific
Server :n:----(a)zsssass Server
"yyy" B R B T B it I R - " xxx"
(Dest) |4====(7)== (Origin)
== (§) ==> Directing
General Routing =>| General
Server |== Server
Distribution
=== (5)===== Transport (4) ==
US.NYCSYS1 EUR. PARSYS1
————— -l 6.2 BCPB— — — — —}—|{—1U 6.2 B(PB{— — — —
Lower Layers
of SNA

DTMU-A
.. from MKT.PIAF at EUR.PARSYSl..........
..to MKT.NEFF at US.NYCSYSl..using server yyy..

Figure 25. DS’s Use of Servers--General Model

44 SNA/Distribution Services Reference

NEW YORK

_______ r\y:llt ro - T - T
Presentation
Directing
General Routing
Server
xa (2) sxx=zunp Distribution
Transport
«(1) -
US.NYCSYS1
——————— -LU 6.2 BCPB— — — — — —
Lower Layers
of SNA
DTMU-B: DTMU-A
..from MKT.PIAF at EUR.PARSYSI1.. ..from MKT.PIAF at EUR.PARSYS1..
..to OPS.CHASE at US.CHISYS2... ..to OPS.CHASE at US.CHISYS2..
«ooUSTNG SErVer YYY..eeieonso. v USTNG SErVer YYY.eeeeeosos

Figure 26. The General Server at an Intermediate DSU

Server Exceptions and Reporting
Errors or exceptions may occur during any of the server operations that are
performed as part of a distribution. The actions that DS takes and the excep-
tion reports that it generates vary, depending on which server detects the
exception. Specific servers are viewed as belonging to a using application (as
are agents); the general server is viewed as belonging to DS. DS8’s actions in
response to an exception indication from a server reflect this notion.

The most general model of DS’s use of servers is illustrated in Figure 25 on
page 44. At the origin, the server object is copied from the origin specific
server to the general server. At the destination, the object is copied from the
general server to the destination specific server. These copy-making steps are
referred to as auxiliary server operations.

Auxiliary server operations are performed by DS as a service to the application
program, prior to accepting responsibility for the request at the origin and after
receiving the distribution at the destination. An exception that occurs during an
auxiliary operation is reported via either a distribution report or a local server
report, depending on whether the general or the specific server detects the
exception.

Chapter 1. Concepts and Facilities 45

An exception that involves DS or the general server is reported via a distrib-
ution report. An exception that involves the specific server is reported to the
local agent via a local server report.

At the origin, an exception detected by the specific server results in the delivery
of a local server report to the local agent. The distribution is aborted (it could
not be accepted by DS, since the server object could not be read).

Once the object has been successfully copied to the general server at the origin
and DS has accepted responsibility, any exceptions detected by the general
server or DS are reported via distribution reports. Whether at an intermediate
DS8U or at the destination DSU, if the general server is unable to store the
object upon receipt of the distribution, DS generates a report and sends it to the
"report-to” destination specified by the originator (see “Distribution Reporting”
on page 66).

After the distribution has been received by the destination DSU and the server
object has been successfully stored by the general server, an auxiliary opera-
tion is performed to copy the object from the general server to the specific
server (arrows 6 and 7 in Figure 25 on page 44). An exception during this
operation is treated similarly to a failure during the auxiliary operation at the
origin. If the exception involves DS or the general server, the exception is
reported via a distribution report, and the distribution is terminated. If the
exception involves the specific server, it is reported via a local server report to
the local agent, and the distribution is delivered to the destination agent.

The rules for reporting server exceptions reflect the notion that the specific
server belongs to the application and the general server belongs to DS. Since
a successful general-server operation means that DS has been able to trans-
port the object through the network to the destination, a subsequent specific-
server exception during the auxiliary server operation is deemed to be the
responsibility of the application; it is thus reported locally to the destination
agent on the Receive_Distribution verb.

Early Acceptance of the Server Object :
The essence of the reporting rules described above is that, at both the origin:
and the destination, specific servers report exceptions to their agents, through
DS. A specific server could have' a variety of reasons for reporting to its agent.
Even if the auxiliary operation is completely successful, a report might be
required.

A more general case is that of a partially successful operation. For example,
the origin server might be unable to find all the items listed in the distribution
request. If the origin server decides to send the distribution despite the
missing items, it simply indicates to DS a normal completion of the server oper-
ation. Only the server would know that the DTMU contains less than the
Send_Distribution verb requested. A responsible origin server would then
report its partial failure to the origin agent via a local server report. Such a
report has nothing to do with DS, except that DS delivers it to the agent across
the agent protocol boundary.

46 SNA/Distribution Services Reference

At the destination as well, the specific server may encounter a partially suc-
cessful operation. It may then choose whether or not to continue receiving the
object.

If it chooses to continue the operation, perhaps discarding whatever portions of
the server object it cannot handle, DS is unaware of any abnormality. Only the
server knows that the original Send_Distribution is not completely successful. It
is responsible for reporting this to the destination agent via a local server
report.

Alternatively, the specific server may choose to notify DS of the partially suc-
cessful operation. It does so by returning an “early acceptance” indication
{more precisely, a SPECIFIC_SERVER_EXCEPTION return code) followed by a server
report. Upon receipt of this indication, DS continues processing the distribution
normally, but terminates the auxiliary server operation. DS delivers the server
report to the destination agent on the Receive_Distribution verb.

DS does not terminate the distribution because of a specific-server exception at
the destination. Since DS has succeeded in transporting the distribution
through the DS network, termination of the distribution because of an applica-
tion (server) condition is not appropriate. DS continues processing the distrib-
ution normally, and reports the specific-server exception to the local agent.

Direct Fetch and Store ‘
Implementations may choose not to perform auxiliary server operations at the
origin and destination. At the origin, the copy-making step from the specific
server to the general server may be bypassed, so that the server object is not
retrieved from the specific server until DS is ready to send the distribution into
the network. This implementation elective is referred to as direct fetch. ‘
Because of the potential reporting complexity, direct fetch is performed only for
distributions that do not require fan-out at the origin. If a distribution requires
origin fan-out, the origin DSU copies the server object to the general server
before sending the distribution.

An implementation elective corresponding to direct fetch may be performed by
a destination DSU. The destination DSU may choose to store an incoming
object directly into an application’s (or user’s) private space as the DTMU is
being received. This elective is referred to as direct store.

The time during which a DTMU is being received at a DSU is referred to as
receive time. The corresponding time at the sending DSU is referred to as send
time. If any type of direct storing is to be performed, the command portion of
the DTMU must be analyzed at receive time to determine the destination server
name. If direct storing by a nonreversible server is to be performed, the desti-
nation list must also be analyzed at receive time to determine whether or not
all the destinations are local. This implies that both the routing and directing
functions are at least partially performed while the DTMU is being received.

For some DSUs, such an analysis might be difficult. For others, such as a DSU
with only one user, it might be trivial.

Chapter 1. Concepts and Facilites 47

If the destination server name is not supported by the DSU or, for nonreversible
servers, if some of the destination users turn out not to be local, then direct
storing is unachievable and the general server is invoked at receive time.

Exception Handling with Direct Fetch and Store
If direct fetch or direct store is used in place of an auxiliary operation, DS
reports exceptions based on the same rules that apply to auxiliary operations.
Specific-server exceptions are reported via local server reports; DS exceptions
result in distribution reports.

At the origin, an exception detected by the specific server results in a local
server report; the distribution is aborted (it could not be accepted by DS, since
the server object could not be obtained). An exception detected by DS results
in a distribution report.

At the destination, an exception detected by DS results in the termination of the
distribution and the generation of a distribution report. An exception detected
by the specific server results in a local server report; the distribution is not ter-
minated, but is delivered to the destination agent.

The destination server returns an "early acceptance” indication (i.e., a
SPECIFIC_SERVER_EXCEPTION return code) during direct store to inform DS that an
exception has occurred and that the server does not wish to receive the
remainder of the server object. The receiving DSU may then choose whether
or not to inform the sending DSU. If the receiving DSU does not inform the
sending DSU, the receiving DSU discards the server object as it is received
rather than writing it to the server. Alternatively, the receiver may inform the
sender via a Receiver Exception Message Unit. The two DSUs then use
mid-MU restart protocols to continue the transfer of the remainder of the DTMU.
If the remainder of the DTMU is transferred successfully, the destination DSU
passes the server report to the destination agent as part of the
Receive_Distribution verb.

Server Access Descriptors and Specific Server Information
If a specific-server object is to be included in the distribution, the originating
agent inciudes the specific server name in the distribution request. The agent
also includes one of two additional parameters: server_access or
specific_server_info. The server_access parameter is used to specify a “pointer”
to the server object. The specific_server_info parameter is used to specify
instructions for the specific server to use to process the object prior to pre-
senting it to DS.

DS uses server_access or specific_server_info in much the same way, pre-
senting the parameter to the specific server on the Initiate_Read verb. The
server uses the parameter to return a stream of bytes (the object) to DS. If one
or more of the destinations of the distribution are local to the origin DSU,
however, DS may treat the server object differently depending on whether
server_access or specific_server_info is supplied.

The server_access parameter implies that the operation performed by the origin

specific server is one of simple retrieval. If the distribution contains destina-
tions local to the origin DSU, DS may choose to bypass the specific server

48 SNA/Distribution Services Reference

operation for those destinations, and merely supply the server_access param-
eter to the destination agent on the Receive_Distribution verb. No specific
server operation would be performed to store the specific server object on
behalf of the local destinations.

The specific_server_info parameter implies that the specific server performs
some sort of application-specific processing of the object prior to presenting it
to DS. If this parameter is specified, DS does not bypass the specific server
operation for local destinations. DS invokes the specific server to “read” the
object and perform the application-specific processing indicated by
specific_server_info. (In some cases, the specific_server_info might contain all
the data returned on the Read verb.) DS then invokes the specific server again
to store the object for the local destinations.

DS issues access-management verbs to control access to specific server
objects described by server_access. No access-management verbs are used
when specific_server_info is supplied in the distribution request.

Agent vs. Server Objects
Small amounts of data that the origin agent wishes to transfer directly to the
destination agent are encoded in the agent object. Although the destination
server is allowed read-only access to this data, the agent object is not deliv-
ered directly to the destination server nor to general servers at intermediate
DSUs. The server object is intended for larger objects, or objects that require
application-specific processing by servers. The origin application program may
use both the agent and server objects to achieve a “double-barreled” flow to
the destination agent and server: the origin agent sends information to the des-
tination agent in the agent object; the origin server sends information to the
destination server in the server object. This is illustrated in Figure 27 on
page 50.

Chapter 1. Concepts and Facilites 49

NEW YORK PARIS

Agent Agent
A\

————— ———|—Agent PB _———— - = Agent PB—— — — —
Specific Specific
Server r Server
"yyy" "xxx"

(Dest) (Origin)
US.NYCSYS1 SNA/DS EUR. PARSYS1
————— -lu 6.2 BCPB4/— — — — - —f—|-|—LU 6.2 BCPB{— — — —
Lower Layers
171 of SNA l"

o |
Agent |Server
— Object|Object

Figure 27. Flow of Agent and Server Objects

The Server Protocol Boundary

Servers are outside the DS architecture. Between the servers (there could be
several) and the DS processes is a protocol boundary much like the agent pro-
tocol boundary. Instead of requests and deliveries, the server protocol
boundary has server objects and certain control information passed across it.

The verbs that define the functions of passing the server object across the
server protocol boundary are:

* Initiate_Read

* Read

¢ Terminate_Read

* Initiate_Write

* Write

e Terminate_Write
If an exception occurs after an object has been completely stored (and
Terminate_Write has been issued), the DSU may have to instruct the server to

delete the object previously stored and back out any application-specific proc-

essing performed during the storing operation. The DSU issues this instruction
via the verb

50 SNA/Distribution Services Reference

* Backout_Server_Object

Before DS accepts responsibility for distributing an object, it establishes
"access rights” to prevent any rewriting or deletion of the object before DS is
finished sending it out. Two access verbs provide this capability:

* Assign_Read_Access

* Release_Read_Access

These access verbs are used by DS and the agent (originator or destination) to
accomplish the transfer of responsibility for the server object, and to ensure
that the object is maintained by the server while the agent or DS requires
access to it.

Once a server object has been created and the first read-access rights have
been assigned, the object cannot be modified or deleted until all read-access
rights have been released. The general server automatically deletes a server
object in its space when the object’s read-access list becomes empty. The
deletion action for specific server objects depends upon the specific server.

DS uses two additional verbs to exchange information with the server regarding
mid-MU restart of the server object:

* Query_Last_Byte_Received

¢ Terminate_Restartability

DS implementations capable of byte-count restart (see “Mid-MU Restart” on
page 66) specify a restartability parameter on the Initiate_Read and
Initiate_Write verbs to request that the server maintain a count of the number of
bytes processed. The DSU queries the restart information by using the
Query_Last_Byte_Received verb. When the restart information is no longer
needed, the DSU issues Terminate_Restartability to allow the server to discard
it.

DS and LU 6.2

The Distribution Transport Sublayer
The DS distribution transport sublayer consists of two transaction programs:
DS_Send and DS_Receive. These transaction programs issue LU 6.2 basic con-
versation verbs to control the sending and receiving of DMUs over LU 6.2 con-
versations. DS_Send is specialized to act as the sender of DMUs; DS_Receive
is specialized to act as the receiver of DMUs.

Each instance of DS_Send or DS_Receive acts as the endpoint of a single LU
6.2 conversation. DS is designed to operate efficiently on a single-session con-
nection, but to exploit parallel sessions if they are available. If the LU at which
a DSU resides offers parallel sessions, the DSU may activate multiple instances
of DS_Send and DS_Receive to make use of all the available sessions.

Chapter 1. Concepts and Facilities 51

The DS transaction program that performs the directing and routing functions is
called "DS_Router_Director.” As the router-director operates on outbound dis-
tributions, it places those distributions on next-DSU queues. For the purposes
of this discussion, all the distributions that are awaiting transmission to a par-
ticular LU using a particular LU 6.2 mode name may be viewed as residing on a
single next-DSU queue for that LU name, mode name combination (see
“Selecting Send Order Using Service Parameters” on page 29 for more about
next-DSU queues).

When DS_Router_Director places a distribution on a next-DSU queue, it checks
that an instance of DS_Send is available to send the distribution to the partner
DSU. Depending on the implementation, the number of sessions available for
use by DS, and the number of instances of DS_Send already active, a new
instance may or may not be started. Implementations monitor the number of
active instances of DS_Send so that a session is available before activating an
additional instance.

When an instance of DS_Send is started locally (i.e., rather than via an Attach
from DS_Receive) for a particular LU name, mode name connection, it allocates
a conversation with an instance of DS_Receive at the partner DSU. DS_Send
then scans the next-DSU queue serving that LU name and mode name, and
retrieves the highest-priority distribution from the queue. It encodes the distrib-
ution as a DMU and sends it to DS_Receive. If it is able to successfully send
the distribution and if DS_Receive accepts responsibility for it, DS_Send returns
to the next-DSU queue, retrieves the next-highest-priority distribution, and con-
tinues the process.

DS_Send’s algorithm for selecting entries from the next-DSU queue means that
distributions of higher priority are serviced before distributions of lower priority,
and that distributions of the same priority are serviced in first-in, first-out (FIFO)
order. DS_Send continues sending distributions until the next-DSU queue is
empty or until an exception causes the conversation to be deallocated.

If multiple instances of DS_Send are active for the same LU name, mode name
combination, each one returns to the next-DSU queue independently to retrieve
and ship the next waiting distribution. Figure 28 on page 53 illustrates this
parallel-session scenario, with several instances of DS_Send serving the
next-DSU queue for a connection,

DS traffic flow is normally “push oriented.” In other words, the flow of DMUs is
normally initiated by DS_Send, when new traffic arrives at a DSU. A new
instance of DS_Send is started, if necessary; DS_Send then allocates a conver-
sation and begins sending DMUs.

It is also possible, however, for DS_Receive to "pull” traffic from a partner
DS_Send. To do so, DS_Receive simply allocates a conversation to DS_Send
and enters receive state. When DS_Send is placed in send state, it begins
sending any traffic on its next-DSU queues. DS_Receive is responsible for
soliciting traffic in this manner after it has reported a recoverable exception to
DS_Send. The recoverable exception causes DS_Send to stop sending traffic;
DS_Receive starts the traffic flow again when the exception condition has been

52 SNA/Distribution Services Reference

remedied. DS_Receive might also choose to solicit traffic in other situations,
such as when a switched connection is being used.

DS_Send and DS_Receive issue LU 6.2 basic conversation verbs according to

precise protocols defined by the DS architecture. The protocols differ for
Format Set 1 and Format Set 2 implementations.

NEW YORK PARIS

e [r‘\gcnt PB_—'— -

Distribution
Transport

DS DS DS

RCV RCV RCV SEND| |SEND| |SEND

\
_— — -LU 6.2 BCPB- — _— =
Lower Layers
of SNA

Figure 28. Multiple Instances of DS_Send and DS_Receive

DS’s Use of LU 6.2 Verbs -- Format Set 2 Implementations
DS Format Set 2 implementations use a three-way flow to transfer responsibility
for a high-integrity distribution from DS_Send to DS_Receive. This protocol not
only allows DS_Receive to confirm receipt of the DMU, but also allows the two
cooperating DSUs to prevent the generation of duplicate transmissions in cases
of network or processor failure. In simplified terms, the protocol works as
follows. DS_Send transmits the distribution to DS_Receive, and DS_Receive
returns a report confirming that it was received successfully. This report indi-
cates DS_Receive’s acceptance of responsibility for the distribution. DS_Send
then discards its copy of the distribution, and sends a notification to
DS_Receive that the distribution has been discarded. DS_Send may then
retrieve and send another distribution, or it may deallocate the conversation.

DS_Send transmits the DMU to DS_Receive by means of one or more LU 6.2
Send_Data verbs. The number of Send_Data verbs required depends on the

Chapter 1. Concepts and Facilities 53

size of the DMU and the size of the implementation’s buffers. DS_Receive
issues Receive_And_Wait verbs to receive the DMU. When DS_Send has sent
the last part of the DMU, it issues a Receive_And_Wait verb to place
DS_Receive in send state. DS_Receive then issues Send_Data to send a Com-
pletion Report MU to DS_Send. The Completion Report indicates that
DS_Receive has accepted responsibility for the distribution. DS_Receive then
returns to receive state by issuing Receive_And_Wait. DS_Send issues
Send_Data to transmit a Purge Report MU, confirming that it has discarded its
copy of the distribution, and may then begin sending the next distribution.
When there are no more distributions to send, DS_Send issues Deallocate
Type(FLUSH).

The DS protocol allows for a wide range of throughput. Implementations may
send varying amounts of traffic per conversation, depending on choices made
by the sender and receiver. The protocol used varies slightly from that
described above, depending on those choices.

Levels of Integrity for Distributions
Originators may request one of two levels of integrity for distributions--basic or
high. The three-way flow is used for distributions that specify high integrity.
For this type of distribution, DS_Send assigns a number to the DMU before
beginning to send it to DS_Receive. This number, known as the MU_ID, is
unique for the LU name, mode name combination on which the DMU is being
sent. It is used for recovery of aborted transmissions and for the prevention of
duplicate transmissions in case of network failures. A new MU_ID is used for
each connection on which the distribution is sent.

If the distribution specifies basic integrity, DS_Send does not assign an MU_ID
to the DMU before beginning transmission, and DS_Send and DS_Receive do

not exchange the Completion Report MU and the Purge Report MU. DS_Send
transmits the DMU on a "best-effort” basis, and the handling of lost messages
or duplicates is left to the using application (the agents).

DS’s Use of LU 6.2 Verbs -- Format Set 1 Implementations
Format Set 1 implementations use a protocol similar to that described above.
However, instead of confirming the transmission of a DMU with the three-way
flow, they use the LU 6.2 Confirm/Confirmed (two-way) flow. That is, after
issuing the Send_Data verbs to transmit the DMU, DS_Send issues Confirm. If
DS_Receive accepts the DMU, it replies with Confirmed. DS_Send then pro-
ceeds with the next DMU.

Format Set 1 implementations do not use the MU_ID for distributions. They use
the Confirm/Confirmed protocol for all DMUs.

The use of Confirm/Confirmed normally provides a reliable transfer of responsi-
bility for the DMU from DS_Send to DS_Receive. Some resource failure cases,
however, may result in the generation of duplicate distributions. The use of the
MU_ID and control MUs by Format Set 2 implementations allows these imple-
mentations to detect and prevent duplicate transmissions.

54 sNA/Distribution Services Reference

A complete discussion of DS’s use of LU 6.2 basic conversation verbs is given
in Chapter 2.

Agent Protocol Boundary Verbs

The agent protocol boundary allows use of two types of verbs: those for sending
and receiving distributions and those for controlling operations. This section
discusses the verbs used by agents to send and receive distributions. The
verbs used by agents and operators to control traffic and perform network defi-
nition are discussed in “Operations” on page 68.

Verb Overview--Originating Distributions
Agents originate a distribution by issuing a sequence of one or more of the fol-
lowing verbs: '

e Send_Distribution initiates a distribution. It is issued either by an origin
agent directly on behalf of a user, or by an origin agent performing higher-
level function for the DSU. All sending sequences initiated by the origin
agent include a Send_Distribution.

¢ Query_Distribution_Sending is issued by a sending agent to determine the
current state of a distribution. In particular, the information returned on this
verb informs the agent whether the sending DSU has completed any neces-
sary auxiliary server operations.

* Sending_Sequence_Completed is issued by a sending agent to complete
the sending sequence for a high-integrity distribution.

Verb Overview--Receiving Distributions and Reports
Agents use the following verbs to receive distributions and reports from DS:

* Receive_Distribution is issued by the agent to receive a distribution. The
distribution is returned to the agent in response to the Receive_Distribution
verb.

¢ Receive_Distribution_Report is issued by an agent to receive a distribution
report.

* Receiving_Sequence_Completed is issued after the receiving agent has
completed any application-specific processing necessary to store the
received distribution.

» Obtain_Local_Server_Report is issued by an agent to obtain a report gener-
ated by a local specific server.

Sending Sequences
The sequence of verbs that an agent issues to originate a distribution is called
a sending sequence. The verbs and parameters included in a sending
sequence vary depending on the level of integrity requested for the distribution
and the type of server object involved (if any).

The originating agent initiates a sending sequence by issuing Send_Distribution.
On the Send_Distribution verb, the agent includes all the control information for

Chapter 1. Concepts and Facilities 55

the distribution. DS processes the Send_Distribution verb and returns control to
the agent.

The remainder of the sending sequence varies depending on the level of integ-
rity requested for the distribution and the type of server object involved. If no
specific-server object is involved (e.g., the distribution contained a general-
server object or no server object at all), DS is able to take responsibility for the
distribution immediately. It indicates this by returning sending_state COMMITTED
on the Send_Distribution verb. If a specific-server object is involved, DS returns
sending_state SPEC_SERVER_PENDING instead, because DS cannot “commit” itself
to delivering the distribution until the specific-server operation to read in the
server object is completed. The sending_state for the distribution is changed to
COMMITTED after the server object has been successfully retrieved from the spe-
cific server.

If the sending_state returned on Send_Distribution is SPEC_SERVER_PENDING, the
agent must query DS to find out when sending_state has been changed to com-
MITTED. It does so by issuing Query_Distribution_Sending. The sending state is
returned to the agent in response to Query_Distribution_Sending. For a high-
integrity distribution, the originating agent is expected to finish the sending
sequence by issuing Sending_Sequence_Completed after DS has returned
sending_state COMMITTED in response to either Send_Distribution or
Query_Distribution_Sending. Sending_Sequence_Completed completes the
high-integritv transfer of the distribution from the agent to DS. When the agent
issues Sending_Sequence_Completed, DS changes sending_state to COMPLETED,
indicating that DS has responsibility for the distribution and that the sending
sequence is complete.

For a basic-integrity distribution, the agent does not issue
Sending_Sequence_Completed. When the specific server operation has been
completed, the sending_state for the distribution is changed from
SPEC_SERVER_PENDING to COMPLETED. The agent may issue
Query_Distribution_Sending to inquire about the state of the distribution.

The agent supplies the distribution identification and includes it on each verb of
the sending sequence. The distribution identification (origin DSU; origin user, if
any; origin agent; date; and sequence number) uniquely identifies the distrib-
ution.

Sample Sending Sequences
This section presents sample sending sequences for basic- and high-integrity
distributions with various types of server objects.
Basic-Integrity Distribution with No Server Object
1. The agent issues Send_Distribution specifying

* distribution_identification
* integrity BASIC

2. DS returns from Send_Distribution immediately with

* return_code OK
* sending_state COMPLETED

56 SNA/Distribution Services Reference

Since the distribution specifies basic integrity, the agent does not issue
Sending_Sequence_Completed. Responsibility for the distribution has been
transferred to DS.

Basic-Integrity Distribution with General-Server Object

1.

The agent writes the object into the general server’s space using the
Initiate_Write, Write, and Terminate_Write verbs.

The agent allows DS to have access to the server object by issuing
Assign_Read_Access (Ds). Eventually the agent will issue
Release_Read_Access (agent_name) to allow the general server to free the
storage space.

The agent issues Send_Distribution specifying

» distribution_identification

e server GENERAL

* server_access (access_descriptor)
* integrity BASIC

DS prevents the server object from being prematurely deleted by issuing
Assign_Read_Access (Ds).

DS returns from Send_Distribution with

e return_code oK
* sending_state COMPLETED

Responsibility for the distribution has been transferred to DS. The agent
does not issue Sending_Sequence_Completed.

. The agent issues Release_Read_Access (Ds), since it can assume DS

issued Assign_Read_Access for itself before returning control from
Send_Distribution.

7. After sending the distribution, DS issues Release_Read_Access (Ds).

Basic-integrity Distribution with Specific-Server Object

1.

The agent stores the object using‘the specific server, and makes the object
available to DS by issuing Assign_Read_Access (Ds) to the specific server.

. The agent issues Send_Distribution specifying

 distribution_identification

* server (specific_server_name)

* server_access (access_descriptor)
* integrity BASIC

. DS prevents the server object from being prematurely deleted by issuing

Assign_Read_Access (DS) to the specific server.
DS returns from Send_Distribution with

e return_code OK
e sending_state SPEC_SERVER_PENDING

DS performs an auxiliary operation to copy the server object from the spe-
cific server to the general server. After acquiring access to the object in
the general server, DS issues Release_Read_Access (Ds) to the specific

Chapter 1. Concepts and Facilities 57

58

server. When the copy is completed, DS changes the sending state to com-
PLETED.

Alternatively, DS may perform direct fetch, deferring its invocation of the
specific server until it sends the DTMU. The sending state is not changed
to coMpPLETED until after the object has been read from the specific server.

The agent does not issue Sending_Sequence_Completed. It may issue
Query_Distribution_Sending to inquire about the state of the distribution.

The agent issues Release_Read_Access (Ds) to the specific server.

DS issues Release_Read_Access (Ds) to the appropriate server after the
distribution has been sent.

Basic-Integrity Distribution with Specific-Server Information

1.

The agent, by application-specific means, makes the server object (if any)
available when needed. No access verbs are issued when specific server
information is supplied instead of an explicit access descriptor (i.e., the
server_access parameter) for a server object.

. The agent issues Send_Distribution with

* distribution_identification

* server (specific_server_name)

» specific_server_info {(information)
s jntegrity BASIC

. DS returns control from Send_Distribution immediately with

* return_code OK
* sending_stale SPEC_SERVER_PENDING

. DS performs an auxiliary server operation to read the specific server object

from the specific server and write it to the general server. When the auxil-
iary operation has completed, DS changes the sending state to COMPLETED.
DS issues access management verbs to the general server, but not to the
specific server. If DS performs direct fetch instead of an auxiliary operation,
the sending state is not changed to COMPLETED until the direct fetch is com-
pleted.

The agent does not issue Sending_Sequence_Completed for the basic integ-
rity distribution. The agent may issue Query_Distribution_Sending to
inquire about the state of the distribution.

High-Integrity Distribution with No Server Object

1.

The agent issues Send_Distribution specifying

* distribution_identification
* integrity HIGH

2. DS returns from Send_Distribution immediately with

* return_code OK
» sending_state COMMITTED

3. The agent completes the transfer of responsibility for the distribution by

issuing Sending_Sequence_Completed.

SNA/Distribution Services Reference

4.

DS returns from Sending_Sequence_Completed with

e return_code oK
* sending_state COMPLETED

High-Integrity Distribution with General-Server Object

1.

9.

The agent writes the object into the general server’s space using the
Initiate_Write, Write, and Terminate_Write verbs.

. The agent allows DS to have access to the server object by issuing

Assign_Read_Access (Ds). Eventually, the agent will issue
Release_Read_Access (agent_name) to allow the general server to free the
storage space.

. The agent issues Send_Distribution specifying

* distribution_identification

* server GENERAL

e server_access (access_descriptor)
* integrity HIGH

DS prevents the server object from being prematurely deleted by issuing
Assign_Read_Access (Ds).

. DS returns from Send_Distribution with

* return_code OK
* sending_state COMMITTED

. The agent completes the transfer of responsibility for the distribution by

issuing Sending_Sequence_Completed.

. D8 returns from Sending_Sequence_Completed with

* return_code oK
* sending_state COMPLETED

. The agent issues Release_Read_Access (Ds), since DS has issued

Assign_Read_Access for itself.

After sending the distribution, DS issues Release_Read_Access (Ds).

High-Integrity Distribution with Specific-Server Object

1.

The agent stores the object using the specific server, and makes the object
available to DS by issuing Assign_Read_Access (Ds) to the specific server.

The agent issues Send_Distribution specifying

* distribution_identification

* server (specific_server_name)

e server_access {access_descriptor) -
e jntegrity HIGH

. DS prevents the server object from being prematurely deleted by issuing

Assign_Read_Access (Ds) to the specific server.
DS returns from Send_Distribution with

e return_code OK
e sending_state SPEC_SERVER_PENDING

Chapter 1. Concepts and Facilities 59

5. DS performs an auxiliary operation to copy the server object from the spe-
cific server to the general server. After acquiring access to the object in
the general server, DS issues Release_Read_Access (Ds) to the specific
server. When the copy is completed, DS changes the sending state to com-
MITTED.

Alternatively, DS may perform direct fetch, deferring its invocation of the
specific server until it sends the DTMU. The sending state is not changed
to coMMITTED until after the object has been read from the specific server.

6. The agent determines the state of the distribution by issuing
Query_Distribution_Sending, specifying the distribution_identification. The
agent may have to issue Query_Distribution_Sending more than once, until
sending_state is returned as COMMITTED.

7. When DS returns sending_state COMMITTED in response to
Query_Distribution_Sending, the agent completes the high-integrity transfer
of responsibility by issuing Sending_Sequence_Completed.

8. DS returns from Sending_Sequence_Completed with

* return_code oK
* sending_state COMPLETED

9. The agent issues Release_Read_Access (Ds) to the specific server.

10. DS issues Release_Read_Access (Ds) to the appropriate server after the
distribution has been sent.

High-Integrity Distribution with Specific-Server Information

1. The agent, by application-specific means, makes the server object (if any)
available when needed. No access verbs are issued when specific server
information is supplied instead of an explicit access descriptor for a server
object.

2. The agent issues Send_Distribution with

* distribution_identification

s server (specific_server_name)

» specific_server_info (information)
* integrity HIGH

3. DS returns control from Send_Distribution immediately with

* return_code OK
* sending_state SPEC_SERVER_PENDING

4. DS performs an auxiliary server operation to read the specific server object
from the specific server and write it to the general server. When the auxil-
iary operation has completed, DS changes the sending state to coMMITTED.
DS issues access management verbs to the general server, but not to the
specific server. If DS performs direct fetch instead of an auxiliary operation,
the sending state is not changed to COMMITTED until the direct fetch is com-
pleted.

5. The agent determines the state of the distribution by issuing
Query_Distribution_Sending, specifying the distribution_identification. The

60 SNA/Distribution Services Reference

agent may have to issue Query_Distribution_Sending more than once, until
sending_state is returned as COMMITTED.

6. When DS returns sending_state COMMITTED in response to
Query_Distribution_Sending, the agent completes the high-integrity transfer
of responsibility by issuing Sending_Sequence_Completed.

7. DS returns from Sending_Sequence_Completed with

* return_code oK
* sending_state COMPLETED

Receiving Sequences
The sequence of verbs that an agent issues to receive a distribution is called a
receiving sequence. The agent initiates a receiving sequence by issuing
Receive_Distribution. DS passes the distribution to the agent in response to the
Receive_Distribution verb. After performing any necessary handling and
storage of the distribution, the agent issues Receiving_Sequence_Completed.
The Receiving_Sequence_Completed verb completes the transfer of responsi-
bility for the distribution from DS to the agent.

Distribution reports are received using a similar receiving sequence. The agent
issues Receive_Distribution_Report to obtain the distribution report. After
storing the report, the agent issues Receiving_Sequence_Completed to com-
plete the transfer of responsibility.

Sample Receiving Sequences
The two-verb receiving sequence described above is used for both basic- and
high-integrity distributions. Sample sequences are given below for the various
types of server objects that may be involved in a distribution. Distribution
reports are received using a sequence similar to that for a distribution with no
server object.

Distribution with No Server Object

1. The agent issues Receive_Distribution. The agent specifies the identifier of
the local queue from which the distribution is to be received. The agent
may also specify the distribution_identification of a particular distribution to
be received. If no distribution_identification is specified, the first entry in
the queue is returned.

2. DS returns from the Receive_Distribution with the control information (i.e.,
the DS command and the destination list) for the distribution and the agent
object (if present).

3. After performing the appropriate agent-specific actions for handling and
storing the distribution, the agent issues Receiving_Sequence_Completed.
Responsibility for the distribution has been transferred to the receiving
agent.

Chapter 1. Concepts and Facilities 61

Distribution with General-Server Object
1. The agent issues Receive_Distribution specifying

* queue_identifier
» (optionally) distribution_identification

2. DS returns from Receive_Distribution with the control information for the
distribution (including the server access information).

3. The agent issues Assign_Read_Access (agent_name) so that the object is
not deleted prematurely. DS has previously issued Assign_Read_Access
{agent_name) to allow the agent to access the object.

4. The agent issues Receiving_Sequence_Completed to complete the transfer
of responsibility.

5. After the last copy of the distribution has been accepted by the agent (there
could be multiple copies if destination fan-out has been performed), DS
issues Release_Read_Access (agent_name), since DS can assume that the
agent acquired access for itself before issuing
Receiving_Sequence_Completed. DS issues Release_Read_Access (Ds) to
notify the server that DS no longer requires access to the object.

Distribution with Specific-Server Object
1. The agent issues Receive_Distribution specifying

* queue_identifier
» (optionally) distribution_identification

2. DS returns from Receive_Distribution with the control information for the
distribution (including the server and access control information). DS has
previously stored the object using the specific server.

3. The agent issues Assign_Read_Access (agent_name) to acquire access to
the object. DS has previously issued Assign_Read_Access (agent_name) to
allow the agent to access the object.

4. The agent issues Receiving_Sequence_Completed to complete the transfer
of responsibility.

5. After the last copy of the distribution has been accepted by the agent (there
could be multiple copies if destination fan-out has been performed), DS
issues Release_Read_Access (agent_name), since the agent has acquired
access for itself. DS issues Release_Read_Access (Ds) to notify the server
that DS no longer requires access to the object.

Distribution with Specific-Server Information

1. The agent issues Receive_Distribution specifying

* queue_identifier
¢ (optionally) distribution_identification

2. DS returns from Receive_Distribution with the control information for the
distribution (including specific_server_info). The specific server has previ-
ously returned specific_server_info to DS in response to the
Terminate_Write verb.

62 SNA/Distribution Services Reference

3. Access management verbs between the server and DS are not used when
specific_server_info is returned instead of server_access.

4. The agent issues Receiving_Sequence_Completed to complete the transfer
of responsibility.

Exception Occurrences and Conditions

In DS, exception occurrences include both conditions detected by various enti-
ties at a DSU and intervention by operators. Most types of exceptions consist-
ently produce particular observable conditions.

Some types of exceptions have results that depend on timing conditions or con-
currency of events. Such results are difficult to reproduce or even to detect.

An example of a timing-dependent exception condition is the generation of
duplicate distributions, which is possible in Format Set 1 implementations
(Format Set 2 protocols allow implementations to prevent duplicate generation).

DS exception conditions can be classified according to the layer in which they
are detected or caused:

* Application--agents and servers
* DS--the DSU itself
* LUG6.2

Application Exceptions: Because of DS’s interaction with the application, DS is
often aware of exception conditions that are detected or caused at the applica-
tion layer. For example, a specific-server exception is considered, from the DS
perspective, to be an exception at the application layer. If a server exception
occurs while DS has responsibility for the distribution, DS may have to termi-
nate the distribution (if told to do so by the server) and, perhaps, report the
exception.

DS Exceptions: Exception conditions detected by the DS layer fall into two cat-
egories:

¢ Exceptions detected in the verbs at the protocol boundaries

* Exceptions detected, or operator intervention performed, after DS has
accepted responsibility for the distribution.

Exceptions are detected when the control information in the distribution cannot
be reconciled with the information in a DSU’s tables, or when a resource fails.
The exceptions that may be detected are

¢ Routing exception

* Directing exception

* Format exception

¢ Function not supported
* System exception

* Others

Chapter 1. Concepts and Facilities 63

DSUs are required to perform certain minimal checks before accepting a dis-
tribution. These checks are performed by DS presentation services before
accepting a distribution from an agent across the agent protocol boundary, and
by DS_Receive before accepting a distribution from another DSU. Implementa-
tions may choose to perform additional checks before accepting responsibility
for distributions. The minimal set of required checks is described in

Appendix C.

See Appendix E for a complete list of the exceptions that may be detected by
DS.

LU 6.2 Exceptions: DS is aware of LU 6.2 exception conditions because DS
must be prepared to accept a variety of responses to the LU 6.2 basic conver-
sation verbs it issues.

Exception Analysis
Within the DSU, exception conditions may be detected at any of the four DS
sublayers. As discussed above, an exception may originate within the DSU
itself, in the application (the agent or server), or in the LU. The actions taken in
response to a particular exception depend on the nature of the exception, the
detector of the exception, and the scope of the exception.

Detector: Any of four DS components may detect an exception:

¢ DS presentation services: The exception is detected at the protocol
boundary, while DS is processing a request from an agent.

* DS_Router_Director: The exception is detected while DS is performing
routing or directing functions.

e DS_Send: The exception is detected during the sending process.

* DS_Receive: The exception is detected during the receiving process.
Responses to exceptions detected by DS presentation services are discussed in
Appendix F. Responses to exceptions detected by other DS sublayers are dis-
cussed in Appendix E.

Scope: The scope of the exception condition may be any of the following:

e The DSU: The condition affects all distributions at the DSU.

* The connection: The condition affects all distributions being transmitted, or
enqueued for transmission, on a certain connection (LU name, mode name).

» The distribution copy: The condition affects one entire distribution copy and
is unrelated to the destination list.

« Some but not all destinations of the DMU: One or more destinations are
directly affected by the exception, and one or more destinations are unaf-
fected.

* All destinations of the DMU: All destinations in the destination list are
equally affected. This is different from a scope of the distribution copy only
because the exception is per destination; all destinations happen to be
affected.

64 SNA/Distribution Services Reference

* Local destinations only: The condition affects only destinations that are
local to the DSU.

* To be determined: A temporary condition has occurred that will not affect
the distribution (or DSU) unless, after an implementation-defined number of
retries has been attempted, the condition is deemed unrecoverable.

As a result of implementation choices concerning role, electives, and optimiza-
tions, as described in Appendix C, the exception information generated for a
particular condition may vary slightly from one implementation to another. All
implementations must be prepared to receive any of the valid report codes, as
listed in Appendix E.

Exception Handling
Exception conditions detected by the DS presentation services sublayer are
generally reported to the agent as returned parameters on a protocol boundary
verb. For exception conditions detected by the routing, directing, or transport
sublayers, exception handling procedures may include any of several actions:

¢ Hold or release the next-DSU queue for the connection, so that transmission
to the adjacent DSU is stopped or started. The hold condition placed on the
next-DSU queue in response to an exception is termed an exception-hold.
An exception-hold is released by operator action or by the initiation of a
new instance of DS_Send. This contrasts with an operator-hold, which is
placed on a distribution or a queue by an operator and is released only by
operator action.

* Perform MU-level reporting to inform the adjacent DSU, possibly termi-
nating the DMU transmission. For DS_Send, this means sending a Sender
Exception MU. For DS_Receive, this means sending a Receiver Exception
MU.

¢ Log the exception condition and notify the operator.

* Abort the distribution, generate a distribution report describing the excep-
tion condition, and send it to the report-to DSU or user specified in the dis-
tribution.

e Abort the distribution and return a specific-server report to the local agent.
* Purge the distribution from the queue and purge the associated server
object, if any.

Any of these actions may be allowed, required, or precluded for a particular
exception condition. The tables in Appendix E give the prescribed actions for
exceptions detected at various points during the processing of a distribution.

The DSU may perform any of several types of reporting in handling an excep-
tion condition. The types of reporting performed by DS are

¢ Local-agent reporting

¢ MU-level reporting

¢ Distribution reporting

* Reporting to the local operator

The types of reporting are described in more detail in Appendix E.

Chapter 1. Concepts and Facilities 65

Mid-MU Restart
Conversation failures or resource failures may occur during the transmission of
a DTMU. Format Set 2 DS implementations are capable of restarting a failed
DTMU at or near the point of failure, rather than having to retransmit the entire
DTMU. The term for this capability is mid-MU restart.

DS implementations provide two types of mid-MU restart. All Format Set 2
implementations provide the capability to resume the transmission of a failed
DTMU at the beginning of any of the highest-level structures following the agent
object. Since the highest-level structures of a DTMU are sometimes referred to
as LLIDs {because of the format of their encoding) this type of mid-MU restart is
referred to as LLID restart.

DS implementations may elect to provide an additional type of mid-MU restart
called byte-count restart. A DSU that provides byte-count restart is capable of
restarting a transmission at any byte position within the server object.

To provide mid-MU restart, DSUs maintain knowledge of the high-level struc-
tures of the DTMU already received. Implementers of byte-count restart, in con-
junction with their servers, also maintain knowledge of the number of bytes of
the server object already received. After a failure during the transmission of a
DTMU, the receiver notifies the sender of the last structure it received and,
optionally, of the last byte within the server object it received. The sender then
continues the transmission based on that information.

Further information on the mid-MU restart elective is given in the implementa-
tion model in Chapter 3 and in Appendix C.

Distribution Reporting
In DS, two kinds of reports are returned to agents. One kind is the local server
report, which is generated by a specific server and given to the local agent by
DS. Local-server reports inform the agent of an application-specific condition
detected by the specific server.

The other kind of report is the distribution report. The originator may specify, in
the distribution request, that DS is to report on the condition of the distribution.
For example, the originator may wish to be informed if DS is unable to deliver
the distribution. Then, if an exception occurs, DS generates a report and
delivers it to the report-to user (or DSU) named in the request.

Distribution reporting may be requested for high-integrity distributions only (not
for basic-integrity distributions).

Distribution Report Message Units
When distribution reports are sent through the network, DS encodes them as
distribution report message units (DRMUs). The structure of a DRMU is shown
in Figure 29 on page 67. Like a DTMU, a DRMU is introduced by a prefix and
concluded by a suffix. The command contains the control information for the
DRMU; the report information and SNA Condition Report describe the particular
condition being reported. The report-to DSU/user is the DSU or user to which
the report is being sent.

66 SNA/Distribution Services Reference

Prefix Command Report-To Report SNA Condition Suffix
DSU/User Information Report

Figure 29. Distribution Report Message Unit Structure

Service Parameters in the DRMU
Like the DTMU, the DRMU carries service parameters that specify handling
instructions for the distribution report. The parameters that may be specified in
the DRMU are priority, protection, and security. There is no capacity parameter
in the DRMU because the DRMU does not carry a server object. Any or all of
the service parameters may be omitted from the DRMU. Default service levels
are defined {see Appendix G) for each service parameter; DSUs processing the
DRMU assume the default values for any parameters that are omitted.

The originator of the distribution may specify report service parameters explic-
itly in the distribution request. If report service parameters are specified, they
are used as the service parameters in any DRMUs that are generated as part of
the distribution.

If the originator does not specify one or more of the report service parameters,
a DSU that generates a report derives appropriate service parameters for the
DRMU from the service parameters in the DTMU. For the protection and secu-
rity parameters, the comparison operator and value derived are the same as
those specified (either explicitly or via defaults) in the DTMU. For example, if
the DTMU specified protection (REQUIRE_LEVEL_GE LEVEL2), the same parameter is
used in the DRMU.

For the priority service parameter, the value derived is either FAST or CONTROL.
FAST is used if the DTMU specified FAST priority; CONTROL is used if the DTMU
specified a DATA_N priority. CONTROL priority is used only in DRMUs; it may not
be specified for the priority service parameter in a DTMU.

The originator explicitly specifying a report service parameter for priority may
specify a value of FAST, CONTROL, Or DATA_N.

The Report-To Agent
If the originating agent requests reporting on a distribution, it may specify the
particular agent that is to be invoked to receive any distribution reports. If no
report-to agent is specified, the agent invoked will be the same as the origin
agent for the distribution.

A report-to agent might be specified if the origin agent is not appropriate for
receiving report information. For example, if a large number of destinations is
specified, it might be desirable to have a special registry agent keep track of all
the destinations, noting any errors encountered as reports are received. The
originator could then get a consolidated report on the entire distribution.

Chapter 1. Concepts and Facilities 67

Third-Party Reporting

Besides specifying the destination of the distribution, the originating agent may
specify a third party to which all distribution reports are to be sent. This
report-to party may be a user or a DSU. If no report-to user or DSU is speci-
fied, reports are sent to the originating user or DSU. The originator specifying
a third party for reporting should be reasonably confident that both the report-to
DSU/user and a route to that DSU/user exist.

Operations

The agent protocol boundary consists of two types of verbs. Verbs used to
send and receive distributions are discussed in “Agent Protocol Boundary
Verbs” on page 55. The architecture also defines operations verbs, which are
used by agents and operators to manage DS traffic, manage DS connections,
and maintain DSU definitions. The operations verbs are listed below.

Managing Distributions

Operations verbs permit agents to manage the distributions they have origi-
nated or that have been queued for delivery to them.

* List_Queues_Containing_Distribution returns the queue identifier of every
queue that contains a copy of the specified distribution.

» List_Queue_Entries returns a list of the entries in a specified queue.

* Get_Distribution_Info returns the control information for a specified distrib-
ution.

* Purge_Queue_Entry deletes a copy of a given entry from a given queue.

* Hold_Distribution_Copy places a hold on a given copy of a given distribution
on a given queue.

* Release_Distribution_Copy releases the hold on a given copy of a given dis-
tribution on a given queue.

Managing Connections

Some DS implementations choose to exercise close control over the nhumber
and usage of a connection’s conversations (and underlying sessions). These
verbs for managing connections are limited to operations agents; they are not
meant to be issued by ordinary user agents.

* List_Conversations lists the number of active conversations, both sending
and receiving, for a connection, or an adjacent DSU, or for all adjacent
DSUs.

» List_Distributions_Being_Sent lists the IDs, including size of the yet-to-be
sent portion of the server object, for all the distributions currently in the
process of being sent on a connection, or on all connections to an adjacent
DSU, or on all active connections.

» List_Distributions_Being_Received lists the IDs and attributes, including the
size of the already-received portion of the server object, for all distributions
currently in the process of being received on a connection, or on all con-
nections to an adjacent DSU, or on all active connections.

68 SNA/Distribution Services Reference

List_Adjacent_DSUs lists selectively the DSUs adjacent to the local DSU.
List_Connections lists selectively the connections available to the DSU.
List_Control_MU_Queue lists the entries on a specified Control MU queue.

Start_Connection causes the appropriate number of DS_Send instances to
be started. A parameter of this verb can be used to set the maximum
number of instances of DS_Send that the DSU is allowed to start.

Reset_MU_ID_Registry allows an operator to resynchronize the MU_ID reg-
istry for a connection.

Terminate_Connection causes every conversation on the connection to be
stopped, either abruptly, or with a suspend, or as the MU in progress com-
pletes.

Terminate_Conversation causes a particular conversation to be stopped,
either abruptly, or with a suspend, or as the MU in progress completes.

Reroute_Distribution_Copies causes all, or a selection of, the distribution
copies found on a next-DSU queue to be reprocessed through the routing
logic. Typically, the next-DSU queue will have been placed in the inactive
state and the rerouting will queue the distributions for alternate next-DSUs.

Maintaining DSU Definitions
The DS system-definition verbs are used to create and maintain the various
tables and miscellaneous values that constitute the definition of a particular
DSU. The verbs are described below as they would be issued at the local oper-
ations protocol boundary.

The verbs used to support DSU definition are the following:

List_ DSU_Data is used to display to the operator the value of a specified
system parameter or the entries in a defined table.

Add_DSU_Data is used to add an entry containing one or more data param-
eters to a data structure that can contain a list of entries.

Remove_DSU_Data is used to remove an entry containing one or more data
parameters from a data structure that can contain a list of entries.

Modify_DSU_Data is used to change the value of one or more data parame-
ters in a data structure. This verb is used for mandatory parameters of the
DSU definition, such as the DSU name. It may also be used to modify a
portion of an existing list entry.

The DS data-structures that constitute the definition of a DSU and are main-
tained by the above verbs are the following:

Directory

Routing table

Intervention list

DSU definition

Connection definitions
Next-DSU queue definitions
Agent list

Server list

Chapter 1. Concepts and Facilities 69

e MU ID registry

Managing Logs

¢ Get_Exception_Log_Entry returns a g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>