
o
Reference Manual Distribution No.1

This is the first in a series of distributions of material which, when complete, will
constitute the reference manual for the SHARE 709 System. Each distribution will
contain pages to be inserted into a loose-leaf binder, and may consist of basic
material for one or more of the sections of the manual and/or replacement pages
which correct previously published material. In addition, each distribution will
contain a list of current pages of the manual, a list of the form numbers of all
previous distributions, and, if necessary because of new included sections or
extensive changes, an updated table of contents.

A three-ring loose-leaf binder, SOS Reference Manual - SHARE System for the
mM 709, form X28-1213, will be supplied to 709 installations to hold the pages
issued in these distributions. A set of index tabs will also be "provided with the
binder to facilitate reference to a particular part of the system. The set of tabs
will be printed with titles and section numbers of the various parts of the system,
as follows:

01 Introduction
02 SCAT Language
03 Compiler
04 Lister
05 Modify and Load
06 Debugging System
07 Input/Output System
08 m Monitor
09 SHARE Monitor
10 Programming and Operating Notes
11 Glossary
12 Appendices
13 Index

This, then, will be the arrangement of the manual. In connection with the above
outline of the SOS reference manual, it should be noted that Section 10, Programming
and Operating Notes, was included as a means whereby programming techniques,
operating methods, etc., which have been found useful by one user of SOS, could be
conveniently included in this manual and thereby communicated to the other users
of the system. Material of this sort, which is intended for inclusion in the manual,
should be addressed to: .

SHARE System for the IBM 709
© 1959 by InternationalhsiliessMacltines Corporation

SOS Group
704/709 Applied Programming
International Business Machines Corporation
590 Madison Avenue
New York 22, New York

It is also anticipated that a companion manual, the SHARE-709-System General
Information Manual, will be published in the future. That manual will approach
SOS on a more basic level and will be intended primarily for persons who are
unacquainted with SOS.

In order to facilitate updating of the manual, all pages will specify the distribution
number and will include a date, consisting of the month and year published, and a
page number. All page numbers, except those for the appendices, will be six digits
separated into three groups of two digits by a decimal point. The first two digits
will be the section number, the next two digits the chapter number within that
section, and the last two digits will be the number of the page within the chapter.
For example, 05.02. 04 will be the number of the fourth page of the second chapter
in the Modify and Load Section (05). The page numbers of the appendices will be
eight digits long. The first two will be 12 (the section number of the appendices),
the next three groups of two digits will be (in order), appendix number, chapter
number, and page number.

o
Reference Manual Distribution No.2

This distribution contains additional reference material for the SHARE 709
System. The attached pages include both new material and pages to replace
some previously published. The new material consists of: Section 01: Intro­
duction; Section 08: IB Monitor; and four appendices (Section 12). It will be
noted that the appendices included in this distribution are not consecutively
numbered. The spaces in the numbering have been left so that the series of
appendices presently planned will be numbered in an orderly fashion. The
replacement pages include an updated Table of Contents and listing of current
pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques, operating
procedures, etc. which have been found useful by them may be communicated
to other users of the system. Such material should be addressed to:

SOS Group
704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas
New York 20, New York

SHARE System for the IBM 709

o
Reference Manual Distribution No.3

This distribution contains additional reference material for the SHARE 709
System. The attached pages include both new material and pages to replace
some previously published. The new material consists of Section 06:
Debugging System; one chapter of Section 07: Input/Output System; and initial
pages for Section 13: Index. The replacement pages include an updated
Table of Contents and listing of current pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques,
operating procedures, etc., which have been found useful by them may be
communicated to other users of the system. Such material should be
addressed to:

SOS Group
704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas
New York 20, New York

SHARE System for the IBM 709

o
Reference Manual Distribution No.4

This distribution contains additional reference material for the SHARE 709
System. The attached pages include both new material and pages to replace
some previously published. The new material consists of five chapters of
Section 07: Input/Output System; and Section 09: SHARE Monitor. The re­
placement pages include an updated Table of Contents and Index, and a listing
of current pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques, operating
procedures, etc., which have been found useful by them may be communicated
to other users of the system. Such material should be addressed to:

SOS Group
704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas
New York 20, New York

SHARE System for the IBM 709

o
Reference Manual Distribution No.5

This distribution contains material for inclusion in the SHARE 709 System
Reference Manual. The attached pages include both new material and pages to
replace some previously published. The new material consists of Section 02:
SCAT Language; Section 03: Compiler; two chapters of Section 07: Input/Output
System; and two appendices. The replacement pages include an updated Table
of Contents and listing of current pages, and index pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques, operating
procedures, etc., which have been found useful can be communicated to other
users of the system. Such material should be addressed to:

SOS Group
704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas
New York 20, New York

SHARE System for the IBM 709

ACKNOWLEDGEMENT TO THE SHARE ORGANIZATION

The SHARE 709 System described in this manual was developed under the
auspices of the SHARE organization of 704 and 709 users. The specifications
for the various components of SOS were developed over a period of eighteen
months by the SHARE 709 System Committee which was established in December
1956. This committee originally consisted of:

Chairman:

Mr. Donald L. Shell

Members:

Miss Elaine M. Boehm
Mr. Ira Boldt
Mr. Harvey Bratman
Mr. Vincent DiGri
Mr. Irwin D. Greenwald
Miss Maureen E. Kane
Miss Jane E. King
Mr. Owen R. Mock
Mr. Stanley Poley
Mr. Thomas B. steel
Mr. Charles J. Swift

General Electric Company, Cincinnati, Ohio

IBM, New York
Douglas Aircraft Corp., Santa Monica, Calif.
Lockheed Aircraft Corp., Los Angeles, Calif.
IBM, New York
Rand Corporation, Santa Monica, Calif.
IBM, Poughkeepsie
General Electric Co., Schenectady, New York
North American Aviation, Los Angeles, Calif.
Service Bureau Corp., New York
System Development Corp., Santa Monica, Calif.
Convair, San Diego, Calif.

Subsequently, during implementation of SOS by IBM, the numerous modifications
and clarifications which have become necessary and desirable have been worked
out through liaison with the current SHARE 709 System Committee.

00.00.01
2 (2/60)

PREFACE

In writing this manual, it has been assumed that readers are familiar with the
material contained in two IBM manuals:

General Information Manual: IBM 709 -7090 Data Processing System,
form D22-6508

Reference Manual: IBM 709-7090 Data Processing System, form A22-6503.

In particular, a knowledge of methods of symbolic programming is assumed.
Those readers who are unfamiliar with symbolic programming are referred to
the sections of the above manuals which deal with that subject. It is anticipated
that a primer on symbolic programming and assembly programs in general
and on SOS in particular will become available in the near future. At such time
as it is available, notice will be given in this manual.

00.00.03
2 (2/60)

TABLE OF CONTENTS

ACKNOWLEDGEMENT TO THE SHARE ORGANIZATION

PREFACE

TABLE OF CONTENTS

CURRENT PAGES

SECTION 0'1: INTRODUCTION

SCAT
Compiler
Lister
Modify and Load

Debugging System
Input/Output System
Monitor

SECTION 0'2: SCAT LANGUAGE

Operation Codes
Symbols
Integers
The Location Field
The Location Counter
Arithmetic Expressions
The Use of H*H as a Term
Sense Indicator Instructions
Boolean Symbols and Expressions
The Variable Field
Comments Field
Remarks

SECTION 0'3: COMPILER

Classification of SOS Operations
Machine Operations
Pseudo-Operations
Pseudo-Operations which Control the Location Counter

ORG (Origin)
BSS (Block Started by Symbol)
BES (Block Ended by Symbol)

{)o. 00. 05
5 (6/61)

0'0'.0'0'.0'1

0'0'.0'0'.0'3

0'0'.0'.0.0'5

0'0.0'0'.15

0'1.0'0'.0'1

0'1. 0'0'.0'2
0'1. DO'. 0'2
0'1. 0'0',. 0'2
0'1.00'.0'3
0'1.0'0'.0'3
0'1.0'0'.0'3
0'1.0'0'.0'4

0'2.0'0'.0'1
0'2.0'0'.0'1
0'2.0'0'.0'2
0'2.0'0'.0'2
0'2.0'0'.0'3
0'2.0'0'.0'3
0'2.0'0'.0'6
0'2.0'0'.0'6
0'2.0'0'.0'7
0'2.0'0'.0'8
0'2.0'0'.11
0'2.0'0'.11

0'3.0'0'.0'1
0'3.0'0'.0'1
0'3.0'0'.0'1
0'3.0'0'.0'1
0'3.0'0'.0'1
0'3.0'0'.0'3
0'3.0'0'.0'5

Pseudo-Operations for Relating Symbols
EQU (Equals)
SYN (Synonym)
BOOL (Boolean Equals)

Pseudo-Operations for the Introduction of Data
DEC (Decimal Data)
OCT (Octal Data)
BCI (Binary Coded Information)
VFD (Variable Field-Definition)

DUP (Duplicate)
LBR (Library Program)
EXEMPT (Exempt from Relativization)
Macro-Operations

MACRO (Macro-Instruction Definition)
BEGIN (Begin Subroutine)
RETURN (Return)

HEAD (Heading)
ETC (Et Cetera)
SQZ (SQUOZE)
END (End)
TCD (Transfer Card)

SECTION 04: LISTER

Chapter 1: SCAT Listings

Compiler Error Listing
Modifications Listing
Symbol and Pseudo-operation Error Listing
Program Listing
Symbol Listing

Chapter 2: Reference Systems

Relative Numbering
Alter Numbering

Chapter 3: Pseudo-operations

00.00.06
5 (6/61)

UNLIST
LIST
DETAIL
TITLE
SPACE
EJECT

03.00.06
03.00.06
03.00.08
03.00.08
03.00.10
03.00.10
03.00.14
03.00.16
03.00.17
03.00.20
03.00.21
03.00.24
03.00.26
03.00.27
03.00.34
03.00.37
03.00.40
03.00.44
03.00.45
03.00.46
03.00.47

04. 01. 01

04. 01. 02
04. 01. 02
04.01. 03
04.01. 04
04.01. 04

04.02.01

04.02.01
04.02.02

04.03.01

04.03.01
04.03.01
04.03.02
04.03.03
04.03.04
04.03.04

SECTION 05: MODIFY AND LOAD

Chapter 1: Main Features

Chapter 2: Pseudo-Operations

CHANGE
ALTER
ERASE
SYMBOL
ASSIGN

SECTION 06: DEBUGGING SYSTEM

Chapter 1: General Features

Chapter 2: Information Macro-Instructions

PANEL
CORE
TAPE
DSC
TRAP
UNTRAP

Chapter 3: Modal Macro-Instructions

USE
POINT
BUFFER
NUCASE
FORMAT
ON
OFF

Chapter 4: Conditional Macro-Instructions

WHEN
UNLESS
AND
OR
EVERY
Combining Conditional Macro-Instructions

Chapter 5: Expansions of Debugging Macros

00.00.07
5 (6/61)

05.01. 01

05.02.01

05.02.01
05.02.06
05.02.09
05.02.12
05.02.14

06.01. 01

06.02.01

06.02.02
06.02.03
06.02.05
06.02.08
06.02.09
06.02.10

06.03.01

06.03.02
06.03.03
06.03.04
06.03.05
06.03.06
06.03.07
06.03.08

06.04.01

06.04.04
06.04.05
06.04.06
06.04.07
06.04.08
06.04.09

06.05.01

SECTION 07: INPUT/OUTPUT SYSTEM

Chapter 1: The Input System - INTRAN

Rules for Specifying INTRAN Macros
Special Registers and Indicators
Purpose of the Input System
IIMAGE
Modal I-Macros
INTRAN
The Read-In Macros

ISCRIB
IREADY
IBRNCH
IFILE
IREDUN

The Internal Processing I-Macros
The Column Counter

ICOLR
ICOLIN
mcc
mcw

Rules for Use of N in the Conversion macros
IOCTAL
IBIN
lINT
IF LOAT
IFIX
ISCAN
lMASK
ICHAR
ISPILL
Error Return: ICHAR8; ISPILL
ISCALE
IOVPCH
IEOR
IRPT

Expansions of INTRAN macros

Chapter 2: The Output System-OUTRAN

00.00.08
9 (6/61)

Rules for Specifying OUTRAN Macros
Special Registers and Indicators
Purpose of the Output System
OIMAGE

07.01.01

07.01. 01
07.01.03
07.01. 03
07.01. 05
07.01.06
07. 01. 07
07.01.07
07.01. 07
07.01.16
07.01.19
07.01. 20
07.01. 21
07.01. 22
07.01.23
07.01.24
07.01. 24
07.01.24
07.01.25
07.01. 26
07.01.27
07.01. 28
07.01. 30
07.01.31
07.01. 34
07.01. 38
07.01.39
07.01.43
07.01.46
07.01. 47
07.01.49
07.01. 50
07.01.52
07.01.52
07.01.54

07.02.01

07.02.01
07.02.02
07.02.03
07.02.05

OUTRAN 07.02.05
Macro Classifications 07.02.05
The Internal Processing Macros 07.02.07

The Column Counter 07.02.07
OCOLR 07.02.07
OCOLIN 07.02.07
OCOLC 07.02.08
OBCC 07.02.09
OBCW 07.02.10

OOCTAL 07.02.10
OBIN 07.02.12
OINT 07.02.13
OFLOAT 07.02.14
OFLFIX 07.02.16
OFIX 07.02.18
OFXFLO 07.02.20
OMASK 07.02.21
OSPILL 07.02.25
OPOINT 07.02.28
OZERO 07.02.29
OOVPCH 07.02.30
ORPT 07.02.32

The Write-Out Macros 07.02.34
OSCRIB (SHARE Monitor System) 07.02.34

Output Modes 07.02.35
Special Conditions 07.02.37

OSCRIB (IB Monitor System) 07.02.40
Output Types 07.02.41
Special Conditions 07.02.42

Use of the Buffer Area 07.02.45
OREADY 07.02.49
OSPACE 07.02.52
OHEAD 07.02.52
OREDUN 07.02.55
OTPEND 07.02.57

Expansions of the OUTRAN Macros 07.02.58

Chapter 3: Input Editor 07.03.01

Input Data Package 07.03.01
Control Cards 07.03.02

ENDRCD 07.03.02
ENDGRP 07.03.02
ENDFILE 07.03.02
ENDTAPE 07.03.02

00.00.09
5 (6/61)

NOMORG 07.03.02
FORMAT 07.03.03
ETC 07.03.04

The $ Class 07.03.04
Format Statements 07.03.04

Basic Field Specifications 07.03.05
Other Specifications 07.03.06
General 07.03.07
Data Conversion 07.03.08

Error Analysis 07.03.09
Type 1 Errors 07.03.09
Type 2 Errors 07.03.09
Type 3 Errors 07.03.09

Error Messages 07.03.09
Type 1 Errors 07.03.09
Type 2 Errors 07.03.10
Type 3 Errors 07.03.10

Chapter 4: Output Editor 07.04.01

Macro-Instructions 07.04.01
XFORM 07.04.01
XPRINT 07.04.02
XPUNCH 07.04.03
XHEAD 07.04.03
XFOOT 07.04.04
XSPACE 07.04.04
XEJECT 07.04.04
XCOUNT 07.04.04

Format Statement Specifications 07.04.04
Basic Field Specifications 07.04.06
Line Spacing 07.04.07
Counter Control by Format Statements 07.04.07

Expansion of Output Editor Macros 07.04.09
Example 07.04.10

Chapter 5: S HARE Monitor Transmission Macros 07.05.01

READ 07.05.02
STEPR 07.05.02
STEPF 07.05.03
WRITE 07.05.03
WEOF 07.05.03
BACKR 07.05.03
BACKF 07.05.03

00.00.10
5 (6/61)

BACKT
IN
OUT
RUSH
DISP
Expansions of SHARE Monitor Transmission Macros

07.05.03
07.05.04
07.05.05
07.05.06
07.05.06
07.05.07

Chapter 6: SHARE Monitor Buffering Routines 07.06.01

General Purpose Routines
Add Buffer - SYSBFD
Write Logical Records - SYSNPT
Read Logical Records - SYSRTK
Backspace Logical Record - SYSBKS
Rewind Tape - SYSRWD

Buffering Routine Flags
General Purpose Flags

Block Flag
Logical End of Record Flag
Logical End of Group Flag
Logical End Flag

Special Purpose Flags
Nominal Origin Flag
Immovable Block Flag
Symbol Flag
Sequence Flag

Special Purpose Routines
Read Word - SYSWTK
Write a Block Flag - SYSBLK
Write a Data Word - SYSINF

07.06.03
07.06.04
07.06.05
07.06.06
07.06.08
07.06.09
07.06.10
07.06.10
07.06.10
07.06. 10
07.06.10
07.06.10
07.06.10
07.06.10
07.06.11
07.06.12
07.06.12
07.06.13
07.06.14
07.06.17
07.06.18

Write a Terminating or Non-Data Fhig - SYSWHT07. 06. 19
Dispatching Routines 07.06.21

Dispatching Initiation - SYSDIS 07. 06. 22
Normal Dispatching - SYSDIS 07. 06. 23
Dispatcher Suppression - SYSDPS 07. 06. 24

Chapter 7: m Monitor Transmission Macros 07.07.01

00. 00. 11
5 (6/61)

Operation of the Transmission Macros
Transmission Macros

READ
WRITE
WRITEF
REWIND
BACK

07.07.02
07.07.03
07.07.03
07.07.03
07.07.04
07.07.04
07.07.04

RUSH
IN
OUT
DISP
CLEAR
CUT
CSKIP

Expansions of the m Monitor Transmission Macros

Chapter 8: Data Sentences

Data Sentence Processing
Punching Data Sentences
Error Conditions
Example

SECTION 08: IB MONITOR

Chapter 1: Input
Compilation
List
Punch a New SQUOZE Deck
Punch Absolute Deck
Execution

Chapter 2: Control Cards

00.00.12
5 (6/61)

JOB
DATE
CPL
CPLRB
SQZ
LS
LIST
PS
PA
LG
MOD
ENDMOD
DS1
GO
PAUSE
STOP

07.07.05
07.07.05
07.07.06
07.07.07
07.07.08
07.07.08
07.07.08
07.07.09

07.08.01

07.08.01
07.08.02
07.08.02
07.08.03

08.01.01
08.01. 01
08.01.01
08.01.01
08.01.01
08.01. 01

08.02.01

08.02.01
08.02.02
08.02.02
08.02.02
08.02.03
08.02.03
08.02.04
08.02.04
08.02.05
08.02.05
08.02.06
08.02.06
08.02.06
08.02.06
08.02.07
08.02.07

Chapter 3: Job Deck Arrangement

SECTION 09: SHARE MONITOR

Chapter 1: Introduction

Conver sion and Input/Output Routines

Chapter 2: Control Cards

JOB
LOAD
SCAT
Single Text SQUOZE Decks
IDENT
ASSIGN
DATA

Chapter 3: Input Deck Arrangement

08.03.01

09.01. 01

09.01. 01

09.02.01

09.02.01
09.02.02
09.02.03
09.02.03
09.02.04
09.02.05
09. 02. 06

09.03.01

Chapter 4: Communication Region Transfer Points and Associated 09. 04. 01
Standard Routine s

Chapter 5: Execution Coordination Utility Routines

Comment Attached Printer - SYSCAP
Mediary Tape Loader - SYSMTL

Chapter 6: Availability of Machine Components

SECTION 11: GLOSSARY

SECTION 12: APPENDICES

Appendix 1: Table of Permissible Characters

Appendix 2: SQUOZE Operation Codes

Appendix 3: SQUOZ E Deck Format

Chapter 1: General Arrangement

Chapter 2: Preface

Chapter 3: Heading Table

00.00.13
5 (6/61)

09.05.01

09.05.02
09.05.03

09.06.01

11.00.00

12. 01. 00. 01

12.02.00.01

12. 03. 01. 01

12.03.02.01

12.03.03.01

Chapter 4: Macro-Instruction Name Table

Chapter 5: Blank Card

Chapter 6: Macro-Instruction Skeleton

Chapter 7: Introduction

Chapter 8: Dictionary

Chapter 9: Footnotes

Chapter 10: Text

Appendix 10: 32K IB Monitor Operating Notes

Chapter 1: Equipment Requirements

Chapter 2: Operating Instructions and Programmed Halts

Appendix 12: SHARE Monitor System and Library Tape
Generation and Updating

System Tape Format
Use of System Tape Writer

Appendix 13: SHARE Monitor Operating Notes

Chapter 1: Control Cards

Chapter 2: Input Deck Arrangement

Chapter 3: Starting Operation

Chapter 4: System Tape Reassignment

Chapter 5: Restart Procedure

, SECTION 13: INDEX

00.00.14
5 (6/61)

12.03.04.01

12.03.05.01

12.03.06.01

12.03.07.01

12.03.08.01

12.03.09.01

12.03.10.01

12. 10. 01. 01

12.10.02.01

12.12.00.01

12.12.00.01
12.12.00.02

12.13.01.01

12.13.02.01

12.13.03.01

12.13.04.01

12.13.05.01

00.00.01
00.00.05
01.00.01
02.00.01
03.00.01
04.01. 01
04.01. 03
04.01. 05
05.01. 01
05.02.01
05.02.03
05.02.05
06.01. 01
06.02.01
06.02.03
06.02.05
06.02.07
06.03.01
06.04.01
06.04.05 '
06.04.07
06.04.09
06.05.01
07.01. 01
07.02.01
07.03.01
07.04.01
07.04.03
07.04.05
07.05.01
07.05.05
07.05.07
07.06.01
07.07.01
07.08.01
08.01. 01
08.02.01
08.02.03
08.02.05
08.02.07
08.03.01
08.03.03
09.01. 01
09.02.01

00.00.15
5 (6/61)

- 00. 00. 04
- 00.00.17
- 01.00.04
- 02. 00. 11
- 03.00.47
- 04.01. 02
- 04.01. 04

- 05.01. 02
- 05.02.02
- 05.02.04
- 05.02.16
- 06. 01. 02
- 06.02.02
- 06.02.04
- 06.02.06
- 06.02.10
- 06.03.08
- 06. 04. 04
- 06.04.06
- 06.04.08
- 06.04.10
- 06.05.04
- 07.01. 57
- 07.02.62
- 07.03.11
- 07.04.02
- 07.04.04
- 07.04.11
- 07.05.04
- 07.05.06
- 07.05.08
- 07.06.24
- 07.07. 10
- 07.08.03

- 08.02.02
- 08.02.04
- 08.02.06

- 08.03.02

- 09. 01. 04
- 09.02.02

2 2/60
5 6/61
2 2/60
5 6/61
5 6/61
3 1/61
2 2/60
1 11/59
1 11/59
2 2/60
4 3/61
1 11/59
5 6/61
5 6/61
3 1/61
5 6/61
3 1/61
3 1/61
3 1/61
5 6/61
3 1/61
5 6/61
5 6/61
5 6/61
5 6/61
4 3/61
4 3/61
5 6/61
4 3/61
4 3/61
5 6/61
4 3/61
4 3/61
4 3/61
4 3/61
5 6/61
5 6/61
3 1/61
5 6/61
3 1/61
3 1/61
5 6/61
4 3/61
4 3/61

09.02.03 - 09. 02. 04 5 6/61
09.02.05 - 09.02.07 4 3/61
09.03.01 4 3/61
09.04.01 - 09.04.04 4 3/61
09.05.01 - 09.05.03 4 3/61
09.06.01 - 09.06. 02 4 3/61
11.01.,01 5 6/61
11.02.01 5 6/61
11.03.01 5 6/61
11.04.01 5 6/61
11.05.01 5 6/61
11.06.01 5 6/61
11.07.01 5 6/61
11.09.01 5 6/61
11.12.01 5 6/61
11.13.01 5 6/61
11.15.01 5 6/61
11.,16.01 5 6/61
11.lS.01 5 6/61
11.19.01 5 6/61
11. 20. 01 5 6/61
11. 21. 01 5 6/61
12. 01. 00. 01 2 2/60
12. 02. 00. 01 - 12. 02. 00. 02 2 2/60
12. 03. 01. 01 2 2/60
12. 03. 02. 01 - 12. 03. 02. 02 2 2/60
12.03.03.01 2 2/60
12.03.04.01 2 2/60
12.,03. 05. 01 2 2/60
12. 03. 06. 01 - 12. 03. 06. 03 2 2/60
12.03.07.01 2 2/60
12. 03. 08. 01 - 12. 03. 08. 04 5 6/61
12. 03. 09. 01 - 12. 03. 09. 03 5 6/61
12. 03. 10. 01 - 12. 03. 10. OS 5 6/61
12.10.01.01 5 6/61
12. 10. 02. 01 - 12. 10. 02. 02 5 6/61
12. 12. 00. 01 - 12. 12. 00. 05 5 6/61
12. 13. 01. 01 - 12. 13. 01. 02 5 6/61
12.13.02.01 5 6/61
12. 13. 03. 01 - 12. 13. 03. 02 5 6/61
12 .. 13. 04. 01 - 12. 13. 04. 05 5 6/61
12.13.05.01 5 6/61
13.01. 01 5 6/61
13.02.01 - 13.02.02 5 6/61
13.03.01 - 13.03.03 5 6/61

00.00.16
5 (6/61)

13.04.01 - 13.04.03
13.05.01 - 13.05.03
13.06.01
13.07.01
13.08.01
13.09.01 - 13. 09. 04
13.10.01
13.12.01 - 13.12.02
13.13.01 - 13. 13. 02
13.14.01
13.15.01 - 13. 15. 04
13.16.01 - 13.16.02
13.18.01 - 13.18.02
13.19.01 - 13.19.05
13.20.01
13.21.01
13.22.01
13.23.01
13.24.01
13.26. 01

Total number of current pages:

00.00.17
5 (6/61)

5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
4 3/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
5 6/61
4 3/61
5 6/61

461

INTRODUCTION

The SHARE 709 System is designed to provide all the advantages of symbolic
assembly, and, at the same time, eliminate most of the disadvantages associated
with other symbolic assembly systems. For example, the use of most assembly
programs permit only two options for making changes to an assembled program:

A. Changes may be made in symbolic form, and inserted into the symbolic
source deck, which must then be reassembled. Thus, each time changes
are made in a program there is a resulting loss of machine time.

B. The changes may be made in machine language and "patched" into a program.
This method, while conserving machine time, does require tedious record
keeping to relate machine language patches to the symbolic listing.

The SHARE 709 System provides the advantages of making changes in symbolic
form with little increase of machine time over the loading of binary punched
cards. The method by which this is accomplished is described in the various
parts of this manual as the need arises.

An additional feature of SOS is the facility for listing debugging information in
symbolic form, rather than actual or machine language as was previously required.

The SHARE 709 System also includes provisions for:

A. The use of mnemonic operation codes (including a large group of pseudo­
operations) .

B. Arbitrarily chosen location symbols.

C. Relative and complex addressing.

D. The definition of special purpose macro-instructions for use in a given
program.

Further details are given in the discussion which follows of the various parts
of SOS.

Although SOS is in reality an integrated system, it has for convenience and easy
reference been divided into the following subsystems:

A. The SHARE-Compiler-Assembler-Translator (SCAT). This subsystem has
also, for convenience of discussion, been subdivided into three parts:
1. Compiler

01. 00. 01
2 (2/60)

2. Lister
3. Modify and Load

B. The Debugging System

C. The Input/Output System

D. Monitor. (Two monitor programs are described in the manual: the IB
Monitor and the SHARE Monitor.)

SCAT

As indicated above, this subsystem will be described in three different parts:
Compiler, Lister, and Modify and Load. These three parts together perform
all the functions associated with symbolic assembly. In addition, SCAT produces
symbolic listings, performs all the mechanics of incorporating modifications
into a program, and loads programs for execution.

A. Compiler

The Compiler performs the first part of the assembly of a symbolic source
program. This consists of reading symbolic cards, translating the in­
formation contained in them into, and producing, a compact binary-coded­
symbolic (SQUOZE) form of the program. This SQUOZE form of the program
contains all the information supplied in the source program, including
remarks cards, and comments from instruction cards. (For detailed in­
formation concerning the composition and form of the SQUOZE program,
the reader is referred to the appropriate appendix.)

The SQUOZE deck produced by the Compiler may be used in either of two
ways:
1. It may be used with a symbolic deck and other SQUOZE decks as input

to subsequent Compiler passes, and incorporated with the symbolic
deck to form one SQUOZE program as output. This feature makes it
possible to write a program in parts and debug each part before combining
them.

2. It may be used as input to Modify and Load, which completes assembly
and loads the program for execution.

B. Lister

The SCAT Lister is in reality a part of the Modify and Load program.
However, since the Lister is used by the Compiler as well as by Modify
and Load, and because knowledge of certain features of the listing produced

01. 00. 02
2 (2/60)

by SCAT are required for the understanding of the discussion of Modify and
Load, the Lister is considered separately in this manual.

The Lister provides the counterpart of an assembly listing of a program.
The listings produced include all the symbolic information, including
remarks and comments, from the original source program deck as modified
by subsequent changes, and the machine language program generated.

c. Modify and Load

Input to Modify and Load is a SQUOZE program and, when necessary,
symbolic cards which indicate changes to be made in the program. Modify
and Load completes the assembly of the input, incorporates symbolic
modifications (if included with the input) and loads the program into storage
for execution.

Modify and Load also provides the following features:
1. A new SQUOZE program, which incorporates symbolic changes, can

be prepared when desired. (A new listing of the program will also
be prepared.)

2. An absolute binary deck can be punched from a SQUOZE program.
3. A new listing of a program in SQUOZE form can be prepared when

required.

DEBUGGING SYSTEM

The Debugging System consists of a group of closed subroutines and their
associated macro-instructions, which may be written into a program at strategic
points, or included as program changes through Modify and Load. These sub­
routines provide the instructions necessary to print-out symbolic information
which will aid in debugging.

INPUT/OUTPUT SYSTEM

The Input/Output System consists of a set of macro-instructions which cause
the generation in a program of the instructions necessary for input and output
conversion of several types. These macro-instructions are a general purpose
type and are intended to be interspersed with machine instructions as necessary
to achieve special purpose input/output for a given job.

01. 00. 03
2 (2/60)

MONITOR

The input to the Monitor program consists of one or more "job decks." A job
deck, as the term is used in this manual, is a program deck to be processed
by SOS (symbolic, 8QUOZE, or a combination of the two), together with control
cards to indicate the functions to be performed on the program, i. e., compile,
list, load, etc. The processing of each program is controlled by the Monitor
as specified in the control cards included in a job deck.

When a job deck is used as input to the Monitor, the Monitor reads the control
card(s) included in the deck, determines the part of SOS required for the pro­
cessing of the deck and loads the required part. Control is then transferred to
the processor loaded by the Monitor. That program then processes input until
the end of the job deck is reached, or a new control card is encountered, or an
error occurs. When the end of the deck is reached or a new control card is
encountered, the Monitor is reloaded into storage and the process is repeated.
If an error occurs, the Monitor will print a message indicating the error and will,
if possible, continue the processing of the job. If it is not possible for the Monitor
to continue, it will skip to the next job.

This manual describes two Monitor programs which can be used with 80S; for
detailed information on each, see the appropriate sections of the manual.

01. 00. 04
2 (2/60)

SCAT LANGUAGE

A symbolic program consists of an ordered set of symbolic instructions. These
instructions are punched into IBM cards. one per card, keeping the same order.
The resulting (ordered) deck is then used as input for the Compiler.

An instruction consists of an ordered string of Hollerith characters. (For a list
of the allowable characters, see Appendix 1.) An instruction is divided into
four fields. From left to right they are:

a. the location field (always 6 columns)
b. the operation field (1 to 7 columns)
c. the variable field (variable length)
d. the comment field .(variable length)

The fields are separated by the character "blank. "

Since only 72 of the 80 columns of an mM card can be used for an instruction, the
length of an instruction is limited to 72 characters (except for three cases; see
page 03. 00. 44).

Every instruction should specify an operation in the operation field. However, it
will often happen, depending on the operation, that the location field and/or the
variable field may be left blank. The comment field is provided merely as a
means for improving the readability of program listin,gs, and may always be
omitted. All comments are retained and included in program listings. Each will
appear with its associated instruction(s). For further provisions for writing
comments, see page 02.00. 11 concerning the use of "*" for remarks.

Operation Codes

Each operation which SOS recognizes, including all of the 709/7090 machine
operations, is abbreviated by a mnemonic operation code placed in the operation
field. (A blank operation field is equivalent to PZE; see page 03. 00. 01.) This
code is a string of from one to six alphabetic characters. Indirect addressing
of an operation, where permitted, is indicated by placing an asterisk (*) at the
end of the code. The asterisk is then considered part of the operation code. The
operation code may be as long as seven characters when indirectly addressed.

Symbols

A symbol is any string of from one to six non-blank Hollerith characters. At
least one character must be non-numeric, and ~ may be:

02.00.01
5 (6/61)

+ - * / $ =

For example, "A", "AI", "(1)", "12345X" are all legal symbols. However,
"123456A", "AbB" where b represents a blank, "A = B", "123H , "A, B" are not
symbols.

"=" is not allowed because it is reserved for a special purpose. Leading zeros
are considered legitimate characters of a symbol.

It is important to distinguish between operation codes and symbols. An operation
code must be taken from a fixed set of codes which is the code-vocabulary of SOS.
This vocabulary may be expanded, within a given program, by means of the operation
MACRO (see page 03. 00. 27). Symbols, on the other hand, are chosen arbitrarily
by the programmer. An operation code is recognized as such by the fact that it
appears in the operation field. Symbols cannot appear in the operation field, but
may appear either in the location field or the variable field.

Integers

An integer is a string of numeric characters. Integers will usually be interpreted
as decimal (base 10), but sometimes as octal (base 8), depending on the operation
code in the instruction where they appear.

By this definition, integers are always positive. There are certain restrictions
on the maximum size of an integer. These depend on its use, and are described
on pages 02. 00. 05, 02. 00. 06, and 03. 00. 18.

The Location Field

The location field of an instruction should either be blank or else contain a symbol.
The use of an integer in the location field is an error. It is ignored and flagged
as a possible error in the output listing (see page 04. 01. 02).

The normal purpose of a location symbol is to give a name to an instruction, so
that the instruction may be referred to by this name in other instructions of the
program. However, for the location symbol of some "pseudo-instructions, " this
is not true (see page 03. 00. 06). In fact, placing a given symbol in the location
field of some instruction is the only way of establishing this symbol as a name.

Every.symbol used in a program should appear exactly once in the location field
of some instruction in the program. If it does not appear as a location symbol,
the symbol is said to be undefined. If it appears more than once, it is said to
be multiply defined and of course is ambiguous as a name. The listing produced
by the assembly process will contain, for a given source program, a list of all
undefined symbols and also a list of all multiply defined symbols (see page 04. 01. 04).

02.00.02
5 (6/61)

Although there is nothing logically wrong in naming an instruction without ever
using the name, it is generally desirable to use a location symbol for an instruction
only if a symbol is needed to refer to the instruction elsewhere in the program.
The reason for this is that the Compiler, processing the source program, constructs
a "dictionary" of location symbols in core storage. The amount of core storage
which can be allotted for this purpose, although reasonably large, is limited and
the extra symbols may cause compilation to be stopped. An error will be flagged
on the output listing if this occurs.

The Location Counter

Each entry in the dictionary contains a location symbol and the "value" of the
location symbol. This value is an absolute binary number denoting an actual
machine cell. The instruction with the given location symbol will finally occupy
this cell when the object program is later loaded by Modify and Load (however,
see page 04.02. 01).

In order to assign the proper value to each location symbol used in the source
program, the Compiler uses a special cell called the location counter. The
location counter can be initially set to an arbitrary value by the source program
(see page 03.00.02).

For each machine instruction processed in the source program, the location
counter is increased by 1. Certain pseudo-instructions, on the other hand, may
result in no increase or an increase of more than 1 (see page 03. 00. 04).

Whenever a location symbol occurs with an instruction being processed, the
symbol is entered in the dictionary with the current value in the location counter
as the value of the symbol. For certain pseudo-instructions, a dictionary entry
is not made (see page 03.00. 20 and following).

Arithmetic Expressions

A reference by one instruction to another instruction of a program may be made
by using the symbolic name (location symbol) of the instruction. For example,
suppose that the following instruction appears in a program:

Location Operation

START CLA

Control may be transferred to this instruction by:

Location

02.00.03
5 (6/61)

Operation

TRA

Variable Field

L(1)

Variable Field

START

However, sometimes a programmer must refer to an instruction that does not
have a name. If he wishes, he may go back and give a name to the instruction.
This, however, is not necessary. Suppose he wishes to transfer control to the
instruction CLA GAMMA in the following sequence.

Location Operation Variable Field

ALPHA TRA BETA
CLA GAMMA
SUB L(1)

STGAM STO GAMMA
TPL DELTA

This may be done by either of the following instructions:

TRA
TRA

ALPHA+1
STGAM-2

Thus, an unnamed instruction may be referred to by using the name of an
instruction somewhere in its vicinity and adding or subtracting an integer or
symbol.

The combination "ALPHA+l" or "STGAM-2" is called a relative expression. A
relative expression is the sum or difference of not more than two symbols or
constants. The presence in an expression of a $, *, /, or more than one plus or
minus sign defines the expression as complex. A negative symbol or constant in
an address field is treated as relative, i. e., is treated as zero minus the symbol
or constant.

Relative expressions should be used with care, since a later insertion or deletion
of instructions between X and X+n (or X-n) changes the instruction to which "X+n"
(or "X-nil) refers. This is the outstanding disadvantage of a so-called "relative
coding" system. It i,s theoretically possible, though rarely advis~ble, to use
only one name in an entire program and make all references relative to that name.

Occasionally it may be found useful to combine symbols and integers in more
complicated ways than in a relative expression. For example:

A*B
A/B
A*B/C+D*2-E

The Compiler recognizes and correctly interprets, according to the ordinary
rules of arithmetic, any meaningful arithmetic expression which can be constructed
from symbols, integers, and the four arithmetic operations:

02.00.04
5 (6/61)

+ (addition)
(subtraction)

* (multiplication)
/ (division)

Since left and right parentheses can occur as legitimate characters in a symbol,
they cannot be used as grouping marks in an expression. Thus, "A multiplied
by (B+C)" must be written as "A*B+A*C". Most, but not all, expressions using
parentheses can be written without parentheses. Note that A/ (B+C) cannot be
written without using parentheses, and hence cannot be used.

The evaluation of an arithmetic expression is carried out as follows: First,
all symbols must be defined and all integers appearing in the expression are taken
as decimal. Integers must be less than 235. The whole expression will be indicated
as an error on the output listing for either of the following violations:

a. Any of the symbols in the expression are not defined.
b. An integer exceeding 235_1 occurs in the expression.

The evaluation proceeds by first scanning the expression from left to right and
performing all multiplications and divisions. (In division, only the integral part
of the quotient is retained; the remainder is discarded.) Then another left-to-right
scan is made and all additions and subtractions. are performed.

All arithmetic is carried out using 35 binary bits and a sign. If, at any point in
. these operations, the numeric part of the result exceeds 235_1, only the rightmost
35 binary bits are kept, i. e., the number is reduced modulo 235. If the result,
R, after the second scan is negative, R is replaced by the 2s complement of the
absolute value of R, i. e., R becomes (235_IRI). When the expression has been
completely processed, the value taken for the expression is the rightmost 15 bits
of R, i. e., R is reduced modulo 215.

Ordinarily, none of the computations should result in more than 15 bits, but the
expression is still considered meaningful if 15 bits is exceeded.

Note the term expression is meant to include not only relative and complex
expressions, but also simple expressions consisting of a single symbol or integer.
Thus "A" and "7" are expressions, as are "-A·" and "-7".

According to the rules given above, "-7" would yield the 15-bit value (77771)8'

02.00.05
5 (6/61)

The Use of "*,, as a Term

An important and extremely useful convention is another meaning for the asterisk
(*) in an expression. When the Compiler encounters an "*,, as a term in an
expression (i. e., in that part of the expression where a symbol or integer should
logically be), it interprets the "*,, as the current value of the location counter.
For example, assume the location counter contents are 155 when the following
instruction is processed:

Location Operation Variable Field

TRA *+2

Then the relative expression "*+2" is evaluated as 155+2=157, so that a transfer
to the second instruction after the TRA instruction is indicated. An "*,, employed
in this way represents a kind of "floating address, " and by it judicious use in a
program one can often avoid introducing superfluous names. For instance,
TRA *-2 always means "transfer control to the second instruction preceding this
instruction" and that instruction need not be named. There is no confusion between
the use of "*,, as a term and its use to indicate multiplication in an expression,
e. g., the expression "***" means "the current value of the location counter
multiplied by the current value of the location counter. "

Sense Indicator Instructions

Special provisions are made in the SCAT language for dealing with sense indicator
instructions. Unlike the 15-bit address of ordinary instructions, a sense indicator
instruction has a "mask" of 18 bits, which is really a string of 18 independent
logical (Boolean) hits.

The mask field (which corresponds to the address field of an ordinary symbolic
instruction) of a sense indicator instruction written in the SCAT language must
contain a single octal number or a single symbol. If this condition is violated,
the mask will be evaluated as zero and an error will be indicated on the output
listing. The same treatment is given to an integer mask for any of the following
violations:

a. The integer representation contains the character "8" or "9" so that it is
clear ly not octal.

b. The integer value exceeds 218_1.

c. The integer representation uses more than 12 characters.

02.00.06
5 (6/61)

Boolean Symbols and Expressions

If a symbol is used in the mask field of a sense indicator instruction, this symbol
should be defined by means of a special pseudo-operation whose sole purpose is
to define such symbols. Such symbols are called "Boolean" symbols and have an
l8-bit range, as distinct from "ordinary" symbols with a 15-bit range.

An expression involving Boolean symbols and/or octal integers is called a "Boolean"
expression. A Boolean expression which does not consist simply of an octal
number or a (Boolean) symbol must occur only in a BOOL pseudo-instruction
(see description of BOOL, page 03. 00. 08). An expression should never be "mixed, "
i. e., if one of the symbols in an expression is Boolean or one of the integers is
octal, then all symbols should be Boolean and all integers should be octal in this
expression. Similarly, if there is one ordinary symbol or decimal integer in an
expression, then all symbols should be ordinary and all integers decimal.

The rules for constructing a Boolean expression resemble those for an arithmetic
(ordinary) expression. However, the meanings of the four operations, "+", "_",
"*", and "/" are Boolean rather than arithmetic. They are simply:

"+,, ("or" , "-" ("exclusive or",
"inclusive or", "symmetric difference ")
"union")

0-0=0
0+0=0 o - 1 = 1
0+ 1 = 1 1 - 0 = 1
1 + 0 = 1 1 - 1 = 0
1 + 1 = 1

"/" ("ones complement",
"*" ("and", "complement" ,

"inter section") "not")

o * 0 = 0 /0=1
o * 1 = 0 /1=0
1 * 0 = 0
1 * 1 = 1

Note that the operations "+", "-", and "*,, are ordinarily operations connecting
two terms, whereas the operation "/" ordinarily involves one term. However,
by convention, "A/B" is taken to mean "A*/B." Thus the table for "/" as a two­
term operator is:

02.00.07
5 (6/61)

0/0 = 0
0/1 = 0
1/0 = 1
1/1 = 0

Other conventions are:

+A = A+ = A
-A = A- = A
A = A = A
A/ = 0

+=0
-=0
* = (777777) 8
/=0

} one operand missing

both operands missing

The above tables completely define the four Boolean operations for one-bit
quantities and hence for the 18-bit Boolean quantities in SCAT. For if A and B
are 18-bit Boolean quantities, each can be regarded as a string of 18 independent
one-bit quantities. Thus C = A *B (for example) is simply obtained by 18 parallel,
independent "AND" operations, where each "AND" is performed between one bit of
A and the corre sponding bit of B.

For example,

(123456)8 * (234567)8 = (020446)8
(123456)8 + (234567)8 = (337577)8
(123456)8 - (234567)8 = (317131)8

/ (123456)8 = (654321)8

The evaluation of a Boolean expression proceeds as described for an arithmetic
expression, but the four operations are interpreted as Boolean in the sense defined
above, rather than arithmetic. First, the operations "*,, and "/" are carried out
from left to right, and then the operations "+" and "_". Eighteen-bit Boolean
arithmetic is used in all stages, and the final value of the expression is 18-bit
Boolean.

For restrictions on integers in a Boolean expression, see page 03. 00. 10.

The Variable Field

In order to specify a 709/7090 machine instruction completely, the programmer
can, and sometimes must, specify a certain combination of address, tag, and
decrement (or count), depending on the operation used in the instruction. For
example, a TIX instruction requires an address, tag, and decrement; LXD requires
an address and tag but must not have a decrement; CLA requires an address and
may have a (operative) tag, but must not have a decrement; PXD requires a tag,
must not have a decrement, but may have an (inoperative) address; CLM must not
have any address, tag, or decrement; etc.

02.00.08
5 (6/61)

The complete details for all 709/7090 operations can be found in the 709 and 7090
reference manuals.

The address A, and/or the tag T , and/or the decrement D, of an instruction are
specified in the instruction's variable field, in that order (i. e., A, T, D). The
subfields A, T, D are separated by commas. For example, the following instruction
specifies an address ALPHA, tag of 4, decrement of 1.

Location Operation Variable Field

TIX ALPHA, 4, 1

The end of the variable field is signalled by the occurrence of the first blank
'character in scanning from left to right. Hence, there must be no blanks left
between the subfields of the variable field, nor within the subfields themselves.
The sole exception to this is the pseudo-operation Bel (see page 03.00. 16).
For those operations which require a tag but no address, the address zero should
be used, e. g. ,

Location Operation Variable Field

PXD 0,4

Two very useful conventions in specifying variable fields are provided:

a. If one or more of the subfields of a variable field is to be zero, the programmer
may omit writing the "0" character and use only the separating comma. For
example:

Operation Variable Field

TXL ALPHA, 0, 5
can be written: TXL ALPHA"5

TXH 0,0,5
can be written: TXH , ,5

PXD 0,4
can be written: PXD ,4

Notes: 1. In a subfield which is not the last subfield of the variable field, never
replace the "0" with a blank, since the blank signals the end of the
variable field.

02.00.09
5 (6/61)

2. If zero subfields are omitted, messages are printed to indicate that
they are possible errors, and zeros are inserted in the subfields.

b. If the programmer wishes to specify the value ° in the last subfield, or
subfields of the variable field, he may do so by omitting these fields along
with their separating commas. For example:

can be written:

can be written:

Operation

TXL
TXL

TXL
TXL

TXH
can be written: TXH

PXD
can be written: PXD

Variable Field

ALPHA,4, °
ALPHA, 4

ALPHA, 0, °
ALPHA

0,0,0

0,0

Certain pseudo-instructions in SOS require more than three subfields in the variable
field. The same convention applies to these; i. e., if the last n subfields are to
contain zeros, they may all be omitted along with their separating commas. The
restrictions on the address (mask) field of sense indicator instructions have already
been stated. With the exception of this special case, the subfields of the variable
field of a 709/7090 machine instruction may contain any arithmetic expression.
F or instance:

Location Operation Variable Field

TIX A*B+C,D/E-F,G*29+H

is perfectly legal, so long as the symbols A, B, ... , H are all defined and are
arithmetic.

The use of Boolean symbols in other than a sense indicator instruction is not
strictly prohibited but can result in errors which will not be flagged in the output
listing. A Boolean symbol used by itself as an address or decrement, can change
the tag or operation field, respectively. For example, if A and B are Boolean
symbols with value (777777)8, then the instruction TIX A, 1, B will result in the
absolute machine word (7 77777 7 77777)8 which has an undesired prefix and tag
of 7. Such an error will not be detected and indicated to the programmer. However,
if A and B (in the example) did not exceed 15 bits (i. e., were less than 215), the

02.00.10
5 (6/61)

correct prefix and tag would result. A Boolean symbol occurring in a relative
or complex expression will be detected and indicated as a possible error on the
output listing. The expressions in the address and decrement subfields will be
evaluated as previously described, i. e., the rightmost 15 bits of the results
will be placed in the address or decrement. However, only the rightmost three
bits of a result will be placed in the tag, i. e., the result is reduced modulo 23.
Certain pseudo-operations in SOS will be described later which require variable
fields in different forms. In an instruction using such operations, the subfields
of the variable field have special restrictions. The rules for specifying the
variable field depend on the given pseudo-operation. These rules are set down
in the following sections with the description of the pseudo-operation.

Comments Field

Any non-blank characters found after the blank that signals the end of the variable
field will be regarded as comments and will appear unaltered in the output listing.

The start of this field must be separated from the end of a preceding non-blank
variable field by at least one blank. However, if the variable field is blank, the
comments field must not start to the left of column 17. It ends in or before
column 72. This field may contain blanks. It does not affect execution of the
instruction, but it is retained by SOS for inclusion in program listings.

Remarks

Any card with "*,, in column 1 is called a "remarks" card. When such a card
is encountered, columns 2 through 72 are treated as commentary. This
commentary is saved and printed out as a single line on the output listing, exactly
as it is written. Such a card has no other effect on the processing of the source
program.

Remarks cards can be extremely useful in producing a readable output listing.
One or more such cards might be placed at the beginning of the program for
different descriptive purposes, or inside the program to include pertinent
information for the reader of the program.

02.00.11
5 (6/61)

THE COMPILER

Classification of SOS Operations

Every operation in the SOS language belongs to one of two classes: 709 machine
operations (e. g., CLA, LXD, RDS, or IOCD) and non-machine operations. A
non-machine operation is called a "pseudo-operation." Instructions using
pseudo-operations are called "pseudo-instructions. "

The 15 operations associated with the Data Synchronizer Channels are put in the
same class as ordinary operations and the "commands" in which these operations
appear are specified in the same way as ordinary machine instructions.

Note that SOS provides the following 12 codes, which can be used in a convenient
mnemonic way to specify only the prefix (leftmost three bits) of the instruction,
accompanied by the usual variable field pattern of address, tag, decrement.

PZE (Plus zero) PTH (Plus three)
MZE (Minus zero) MTH (Minus three)
PON (Plus one) FOR (Four)
MON (Minus one) FVE (Five)
PTW (Plus two) SIX (Six)
MTW (Minus two) SVN (Seven)

Machine Operations

A machine instruction (i. e., an instruction using a machine operation) always
generates one 36-bit binary machine word in the object program. The rules for
specifying the location field and the variable field of a machine instruction have
already been given in Section 02.

Pseudo-Operations

Unlike machine instructions, some pseudO-instructions may generate more than
one machine word in an object program o"r may generate no words at all. The
pseudo-operations of SOS have a variety of functions which will be seen in the
following pages.

Pseudo-Operations Which Control the Location Counter

The function of the following three pseudo-operations is principally to control
the contents of the location counter (see page 02. 00. 03).

A. ORG (Origin)

If a programmer wishes the origin of his program (i. e., the location of the
first word in his object program) to be (3490)10, he may simply preface his
source program with the pseudo-instruction:

03.00.01
5 (6/61)

Location Operation Variable Field

ORG 3490

No word is generated in the object program by this instruction. Its effect is to
cause the Compiler to set the location counter to the value (3490)10- If the
instruction immediately following the ORG is ALPHA CLA BETA, then the
symbol ALPHA will receive the value (3490) 10 when placed in the dictionary_
The binary word which results from the CLA BETA part will be ear-marked for
location (3490)10, and subsequently assigned to this location by Modify and Load.
(However, see page 04.02.01.)

ORG instructions may appear anywhere in the program. Moreover, the expression
in the variable field need not be an integer as in the above example. It may be
any arithmetic expression. For example:

Location Operation Variable Field

ORG ALPHA+BETA*GAMMA-l

Thus, the variable field of an ORG instruction consists of a single subfield. If
more than one subfield is used (e. g., ORG A, B), only the first, in this case A,
will be used. The remaining subfields will be ignored, and an error flagged in
the program listing. The effect of the above instruction (and, in general, any
ORG instruction) is to cause the location counter to be set to the value of the
expression in the variable field. Of course, any symbols used in the variable
field expression of the ORG must be eventually capable of receiving values, i. e. ,
they must be defined in the sense given on page 02. 00. 02. However, they need
not have been assigned values before they are used. In the above example, ALPHA
and/or BET A and/or GAMMA need not have appeared as location symbols before
the ORG instruction itself.

A location symbol can meaningfully appear in an ORG instruction, for example.

Location Operation Variable Field

ALPHA ORG 3490

This instruction will cause the symbol ALPHA to be entered in the dictionary
of symbols with the associated value of (3490)10. If the variable field had been
a symbol or some non-simple expression, then the value of ALPHA in the
dictionary would have been the value of that symbol or expression. Note that,
in this example, if the next instruction were

03.00.02
5 (6/61)

Location Operation

CLA

Variable Field

BETA

then the same effect cO\lld also have been obtained by writing

Location

ALPHA

Operation

ORG
CLA

Variable Field

3490
BETA

On the other hand, if the programmer were to write

Location

ALPHA
GAMMA

Operation

ORG
CLA

Variable Field

3490
BETA

Then ALPHA and GAMMA would both be entered into the dictionary, with the
value (3490)10' Another way of achieving such an effect will be seen in the
pseudo-operation EQU. .

The Compiler does not require the presence of an ORG at the beginning of the
source program, nor anywhere within the source program. If the programmer
fails to use an ORG instruction to set the location counter to an initial value,
the Compiler will assume that the program is to begin at a location to be
determined later.

Lower core storage will ordinarily contain a part of the SHARE Monitor. For
this reason, a source program with no initial ORG instruction will not be started
at location (00000)8' Instead, the initial location is assigned by the monitor as
the lowest available location.

Since a certain part of lower core storage is normally required for the function­
ing of SOS, the programmer should not specify a program origin which is so low
that the object program will conflict with this required part. An error will be
indicated on the output listing if a· program origin which is too low is specified.

B. BSS (Block Started by Symbol)

A programmer will often need to reserve a block of one or more words of core
storage for such purposes as "erasable storage, " input and output buffers, etc.
If, for example, in writing his source program, he needs to reserve the next
50 words, he may write:

03.00.03
5 (6/61)

Location Operation Variable Field

BSS 50

When encountered, this instruction will cause the location counter to be
increased by (50)10.

If it is desired to given the name ALPHA to the first word of the block, the
instruction can be written:

Location Operation Variable Field

ALPHA BSS 50

With BSS, it is not possible to associate location symbols with any words of
the reserved block except the first word. This, however, can be accomplished
by EQU.

Like ORG, the variable field of a BSS instruction may contain any arithmetic
expression, for example:

Location Operation Variable Field

ALPHA BSS BETA/GAMMA+4*DELTA-3

The effect of the above instruction is to enter ALPHA in the dictionary with
the current value of the location counter, and then to increase the location
counter by the value of the arithmetic expression in the variable field. The
general comments about ORG also apply to BSS.

Unlike ORG, the variable field of a BSS instruction may have a second subfield
which can be used to provide information for later use by the Debugging
System. The programmer can specify this information by placing, in the
second subfield, an alphabetic format code which he can choose from one
of the following list of seven codes:

Code

C
F
H
o
S
V
X

Format Intended

Command (DSC control word)
Floating point number
Hollerith (binary coded decimal) information
Octal integer
Symbolic instruction
Variable Format
Fixed point number

For example, suppose a programmer writes the following instruction:

03.00.04
5 (6/61)

Location Operation Variable Field

ALPHA BSS 50, F

By use of the F, he specifies that the 50 words in the block beginning Oat
ALPHA are to be interpreted as floating point numbers. Subsequently,
whenever the Debugging System is to dump information from this block,
the words will appear in the output as floating point numbers.

If the programmer does not intend to use the Debugging System, he will, of
course, have no need for specifying a second subfield in a BSS instruction.

For further information on the meaning and use of the seven format codes,
see page 06. 01. 02 and following.

C. BES (Block Ended by Symbol)

This pseudo-operation has exactly the same properties as BSS, except that
when it is used with a location symbol, the symbol is associated with the
first word following the reserved block (rather than with the first word of
the block). For example, suppose a programmer writes

Location

ALPHA

Operation

BES
CLA

Variable Field

50
BETA

Then the symbol ALPHA becomes associated with the instruction CLA BETA.
Thus, the programmer could with equivalent results, have written

Location

ALPHA

Operation

BES
CLA

On the other hand, if the programmer writes

Location

ALPHA
GAMMA

Operation

BES
CLA

Variable Field

50
BETA

Variable Field

50
BETA

then ALPHA and GAMMA would both be entered into the dictionary, each with
the value of the location counter at the time the CLA instruction is. processed.

03.00.05
5 (6/61)

Thus, the effect of the instruction ALPHA BES 50 is to increase the location
counter by (50)10 and then to enter ALPHA into the dictionary with the
resulting value in the location counter. Note that ALPHA BES 50 is equivalent
to ALPHA ORG *+50.

As with BSS, a second subfield can be used in the variable field of a BES
instruction to specify one of the seven possible formats for the reserved block.

Pseudo-Operations for Relating Symbols

The following three pseudo-operations serve the sole function of equating two
or more symbols, or of assigning a value to a symbol.

A. EQU (Equals)

When writing a source program, a programmer may want to use a name for
something, the precise nature of which he does not yet know. For example,
he might wish to refer to some instruction which he has not written down,
and does not yet want to decide on the name of this instruction. For example,
he may be at a point such as:

Location Operation

CLA
SUB
TZE

Variable Field

ALPHA
BETA

where he knows what he wants to do next if c(AC) is not zero but he would
like to leave the address of the TZE instruction unspecified until later. He
may, of course, leave this address blank temporarily. He may want to
write something arbitrary such as TZE Xl, just to make the instruction
complete (especially if his program is being punched in batches). Later
when he decides what the instruction Xl is to be, he may be satisfied to use
the name (location symbol) Xl for this instruction. If he is not satisfied
with the name Xl, he may go back and replace it with the symbol he has
decided on wherever he has used it. However, for one reason or another,
this replacement may be impractical, e. g., if instruction cards referring
to Xl have already been punched.

In the above example, suppose the programmer has actually written Xl
and later decides that what he has called Xl should be called NOGOOD.
Then he could simply write

03.00.06
5 (6/61)

Location

NOGOOD
Xl

Operation

CLA
SUB
TZE

PXA
EQU
AXT

Variable Field

ALPHA
BETA
Xl

where the PXA and AXT instructions are two instructions of the NOGOOD
subroutine. Xl EQU NO GOOD specifies that the symbols NO GOOD and
Xl are to be equivalent.

The above situation is one of many examples where the pseudo-operation
EQU can be used very conveniently and effectively. Even if, in this example,
the name Xl had occurred in many places, before or after the EQU instruction,
Xl would still be equated to the symbol NOGOOD.

Moreover, the EQU instruction could have been put anywhere in the program,
before or after the instruction named NOGOOD. The general comments about
ORG also apply to EQU. As with ORG, the variable field of an EQU instruction
can contain any arithmetic expression, subj ect to the restrictions described
under ORG. For example, one can write

Location Operation Variable Field

ALPHA EQU BETA *GAMMA-DELTA/9+17

The effect of the above instruction is to enter ALPHA in the dictionary with
the value of the arithmetic expression in the variable field. Unlike ORG,
BSS, and BES, the pseudo-operation EQU does not affect the value in the
location counter.

An EQU instruction is meaningless if it does not have a location symbol. An
EQU instruction without a location symbol will have no effect and an error
will be indicated on the output listing.

03.00.07
5 (6/61)

Like ORG, the variable field of an EQU instruction should contain only one
subfield, namely an arithmetic expression. If more than one subfield
appear s in the variable field of an EQU instruction, only the first will be used .

. The remaining subfields will be ignored and an error indicated on the output
listing.

In the example given above, the variable field of the EQU instruction in each
case contains a symbolic expression. The variable field expression may
also be completely numeric. For example:

Location Operation Variable Field

LLS SHIFT

SHIFT EQU 35

Here, the symbol SHIFT receives the value 3510 by virtue of the EQU instruction.

B. SYN (Syn~nym)

In the SCAT language, SYN is simply another code for EQU, and they may
be used interchangeably. The reason for providing two codes is purely
historical.

C. BOO L (Boolean Equals)

If the programmer uses the Sense Indicators in a program, he may often
need to write instructions in which the 18-bit address ("mask") corresponds
to the 18 leftmost or 18 rightmost bits of this special register. If he cannot
conveniently predetermine what particular sense indicator positions he would·
like to use, he might write, for example:

Location Operation Variable Field

RIR SENSX

Later, when he has decided that SENSX should be, say, the rightmost four
positions (i. e., positions 32, 33, 34, and 35 of the Sense Indicator register),
he can write:

03.00.08
5 (6/61)

Location

SENSX

Operation Variable Field

BOOL 17

where the 17 is interpreted as an octal number equivalent to
000 000 000 000 001 1112' The effect of the instruction SENSX BOOL 17 is
similar to the effect of SENSX EQU 17. However, they differ in two important
respects:

1. For EQU, the 17 would be interpreted as decimal, while for BOO L, the
17 is taken as octal.

2. For BOOL, the symbol SENSX would be entered into the dictionary with
a special indication that this symbol is "Boolean, " while with EQU, the
symbol SENSX receives no such special indication.

In the above example, the variable field of the BOOL instruction contains an
octal integer t which is a special case of a Boolean expression (see Section 02).
The variable field of a BOOL instruction can in general contain any Boolean
expression. For example, one might write:

Location Operation Variable Field

A BOOL B*C+D-707070

where the variable field expression is Boolean, i. e., B, C, D are Boolean
symbols, 707070 is an octal integer, and the operations (*, +, and -) are
Boolean (see Section 02).

It is not necessary that the symbols used in the variable field expression
should already have received values when the BOOL instruction is first
encountered. However, the symbols should all be defined in the sense that
each symbol in the expression should occur once in the location field of some.
other BOOL instruction, since all symbols used must be Boolean and a
Boolean symbol can be defined by a BOO L instruction.

As in ORG and EQU, the variable field of a BOOL instruction should contain
only one subfield. If more than one subfield appears, only the first will be
used. The remaining subfields will be ignored and an error indicated on the
output listing.

The variable field expression of a BOOL instruction will be evaluated as zero,
and an error will be indicated on the output listing, for any of the following
reasons:

1. An integer appears in the expression using the character 8 or 9, so that
the integer is clearly not octal.

03.00.09
5 (6/61)

2. An integer appears in the expression, and the value of the integer exceeds
235_1.

3. An integer appears in the expression and the representation of the integer
uses more than 12 numeric characters.

If the variable field of a BOO'L instruction uses some non-Boolean (i. e. ,
ordinary) symbol, this symbol will be treated as. though it were Boolean
and a possible error will be indicated on the output listing.

Pseudo-Operations for the Introduction of Data

The following four pseudo-operations can be used to introduce decimal, octal,
binary-coded-decimal, or mixed data from the source program into the object
program.

A. DEC (Decimal Data)

This pseudo-operation causes the decimal numbers specified in the variable
field to be converted to binary, and assigned to successive locations
beginning with the current value of the location counter. If there is a location
symbol, it is entered in the dictionary with the current value of the location
counter. The first (i. e. , leftmost) decimal number specified in the variable
field can be referred to by this location symbol.

Example:

Suppose the value in the location counter is (3900)10' when the following
instruction is encountered:

Location Operation Variable Field

CONST DEC 1,-3,5,-7,9

The effect of this instruction is to enter the symbol CONST in the dictionary
with the value 3900. The five integers 1, -3, 5, -7, 9 are converted to binary
and assigned to locations 3900, 3901, 3902, 3903, 3904, respectively. The
value of the location counter upon completion will be 390510'

If the programmer desires to add the integer 9 to the contents of the AC,
he may now write:

03.00.10
5 (6/61)

Location Operation

ADD

Variable Field

CONST+4

Every decimal number must be represented by a string of characters from
the following set of 15 characters:

0
1
2
3
4
5
6
7
8
9

(numeric
characters)

+ (plus sign)
(minus sign)
(decimal point)

E (exponent)
B (binary point)

In order to represent a valid decimal number, the composition of the string
must satisfy the rules given below.

There are three types of decimal numbers which can be specified in the
variable field of a DEC instruction:

1. Integers
2. Fixed point numbers
3. Floating point numbers.

A given decimal number is recognized as belonging to one of these three
types by the representation of the number itself.

The sign of any decimal number is always specified by the first character,
"+" or "_". If no initial "+" or "-" is given, the sign is assumed to be "+".

Integers are represented by a string of numeric characters only (with possibly
a leading sign character). For example, -31 is an integer, but -31. is not.
An integer is converted to a 35-bit binary number with sign and stored in
positions S, 1-35 of the 709 binary word cell, the position of the binary point
in the cell being at the right-hand end of the word. For instance, -31 would
convert to (400 000 000 037)8'

The term "integer" as used here differs from the term "integer" defined in
Section 02, where it essentially means a non-negative whole number to be
dealt with according to the rules for evaluating a symbolic expression. For
example, the instruction PZE -1 converts to (000 000 077 777)8, while
DEC -1 converts to (400 000 000 001)8' On the other hand, PZE 1 and
DEC 1 both convert to (0'00 000 000 001)8. The reader can always determine
which meaning of integer is intended by considering the context.

03.00.11
5 (6/61)

A fixed point number or a floating point number may have a decimal point
and/or a signed decimal scale factor. The scale factor is indicated by the
character E and is placed after the principal part of the number. If the
decimal point is not present, it is assumed to be at the right-hand end.
For example, the strings 314159. E-5 and 314159E-5 each represent the
number (3. 14159)10 (i. e., 314159. 0 x 10-5). The sign of the scale factor
may be omitted if it is +. Thus, for example, the number (3. 14159)10
might be presented by . 314159E+l or .314159El. The character E, which
indicates a decimal scale factor, may also be omitted, but only if the scale
factor is signed. Thus, (3. 14159)10 could be represented by 314159-5 or
.314159+1 (but not, of course, by .3141591).

A number is recognized as being floating point and will be converted to a
normalized floating point binary number if and only if its principal part
contains a decimal point and/or it has a decimal scale factor, but not if it
uses the character B. Thus, all the examples given in the previous paragraph
(i. e., 314159. E-5, 314159E-5, .314159E+l, .314159El, 314159-5, .314159+1)
are floating point numbers. Another representation of 3. 1415910 in floating
point form would be simply the string 3. 14159.

A number is recognized as being fixed point if and only if the string representing
it contains the character B. The B must be followed by a signed integer (as
usual, if the sign is +, it may be omitted). This integer specifies the position
of the binary point in the cell in which the fixed pOint binary number resulting
from the conversion is ,to be stored. The B-integer is used to count from the
left-hand end of the binary word cell from left to right. Thus, B = 0 specifies
a binary point between positions Sand 1, and B = 35 specifies a binary point
immediately to the right of position 35. The B-integer can thus be thought
of as the number of integral places.

It is not necessary for the B-integer to be positive. A negative value means
the binary point is positioned outside of the left-hand end of the cell. The
B-integer may also exceed 35, e. g., 2. OB+36 would convert to (000 000 000 001)8.
Here the binary point is one position outside the right-hand end of the word cell.

Note that it is possible to lose bits on the left-hand end of the number if the
B-integer is improperly chosen. For example, 1. 5BO results in the loss
of the integral bit of the converted result (1. 1)2. If such a loss on the left
occurs, the number will be taken as zero and an error indicated on the
output listing.

It is also possible, and generally unavoidable, to lose bits on the right for
a fixed point decimal number. For example, 3. OB+36 would cause the
rightmost I-bit in (11)2 to be lost, because the word cell has only 35 bits.
This loss could have been avoided by specifying a B-integer of 35 instead

03.00.12
5 (6/61)

of 36. However, numbers like (0.4)10 which equals (.314631463146 •.. ')8
do not have a finite binary representation, so that O. 4BO will result in an
unavoidable loss of bits on the right. If bits are lost from the right-hand
end, no error will be indicated, and the best possible result will be obtained.

A fixed point number may have a decimal point and/or a decimal scale factor;
e. g., 314159E-5B2, 31415~. E-5B2, and 3. 14159B2 are all fixed point numbers.
However, the presence of the B alone is sufficient to define a number as fixed
point; e. g., 32B6 is fixed point.

Note that an integer can always be represented equivalently by using a fixed
point representation with a B-integer of 35, e. g., -31 is equivalent to
-31B35.

If the string repre senting a fixed point number contains both Band E, the
B-part and the E-part should both be placed after the principal part of the
number, but their relative order is unimportant. For example, 314159B2E-5
is equally as acceptable as 314159E-5B2.

A 709/7090 word cannot accommodate integers whose absolute value exceeds
235_1 or floating point numbers whose absolute value exceeds approximately
1038. Hence no decimal numbers outside of these ranges should be specified
in a DEC instruction.

If an integer exceeding 235_1 or a floating point number exceeding approximately
1038 (in absolute value) is specified in a DEC instruction, the number will be
taken as zero and an error indicated on the output listing. There is no
restriction on the number of numeric characters which may be used in
representing a number, so long as these rules are followed.

The number of decimal numbers which may be specified in a si~le DEC
instruction is limited only by the number of subfields which can be written
in the variable field (this depends on the le~gth of the variable field and the
lengths of the strings representing the numbers).

Any combination of types -of numbers is allowable in a single DEC instruction;
for example, CONST DEC 2,3, 1, O. 9B5. However, it is generally preferable
for all numbers in a given DEC instruction to be the same type.

The reason for this is that a DEC instruction location symbol has an associated
format code which is entered into the dictionary along with the location symbol
itself. This code is retained and later used by the Debugging System to
determine how numbers are to be interpreted, whether as fixed point (format
code X) or as floating point (format code F). The format code used is determined
by the type (format) of the first decimal number appearing in the variable

03.00.13
5 (6/61)

field of the DEC instruction (in the above example, this would be X). The
remaining decimal numbers in the variable field will be assumed to be of
the same format, and if they are not, they will not appear on the debugging
output list a s originally written.

B. OCT (Octal Data)

This pseudo-operation causes octal integers in t he variable field to be
converted to binary, and aSSigned to successive locations beginning with
the current value of the location counter. If there is a location symbol,
the symbol is entered in the dictionary with the current value of the location
counter. Thus, the octal integer specified in the leftmost subfield of the
variable field can be referred to by this symbol.

For example, suppose the value of the location counter is 390010 when the
following instruction is encountered:

Location Operation Variable Field

OCTDAT OCT 777777777777, -77,66,-55,44

The effe'ct of this instruction is to enter the symbol OCTDA T in the dictionary
and to convert the five octal integers in the variable field to binary. The
numbers are assigned to locations 3900, 3901, 3902, 3903, 3904, respectively,
leaving the value of the location counter at 390510. Thus, the symbol
OCTDAT+2, for example, may be used to refer to the number 668 specified
by this instruction.

Every octal integer must be represented by a string of characters from the
following set of 10 characters:

o
1
2
3
4
5
6
7

+

numeric character s

(plus sign)
(minus sign)

An octal number may consist of up to 12 numeric characters and may be
preceded by a sign.

03.00.14
5 (6/61)

If more than 12 digits are used in representing the number, or if an 8 or 9
is included, then the number is converted as zero and an error is indicated
in the output listing.

The. sign of the octal number provides an easy way to specify the sign of the
binary result. + and - specify a O-bit or I-bit, respectively, in the sign
position. An alternative way of specifying the leftmost bit of the binary result
is by using twelve octal digits in representing the number. If the leftmost
octal digit is 4, 5, 6, or 7, this implies that the leftmost binary bit of the
result is 1 (i. e., a - sign). For small octal integers such as -778, it is
easier to write -77 than to write 400000000077 (these two strings are equivalent
and convert to (400 000 000 077)8). However, the 12-digit, signless
representation can always be used for any 3S-bit binary number and is
preferable if 12 octal digits must be used in any case.

If a sign and 12 octal digits are used to represent an octal number,
redundancies or inconsistencies arise (unless the leftmost octal digit is
regarded as base 4 instead of base 8). For example, +700000000000 and
-300000000000 are inconsistent, while -700000000000 and +300000000000
are both redundant. If an octal number is represented by 12 octal digits
and an explicit sign, and the leftmost digit is 4, 5, 6, or 7, then an error
is indicated in the output listing. The following conventions are then used
in conversion:

sign and leftmost octal digit

03.00.15
5 (6/61)

+0
-0
+1
-1
+2
-2
+3
-3
+4
-4
+5
-5
+6
-6
+7
-7

binary result (bits S, 1, 2)

000
100
001
101
010
110
011
111
100
100
101
101
110
110
111
111

C. BCI (Binary Coded Information)

One to ten words of binary coded information can be provided in the object
program by means of a BCl instruction. The variable field of a BCl
instruction has two subfields.

The first subfield specifies the number of words of information. This first
subfield must contain a number from 1 through 9 t or else consist only of the
comma which is used to separate the two subfields. In this case the number
of words of information is taken as ten.

The second subfield specifies the BCl information and must consist of a
continuous string of Hollerith characters, including comma, blank, etc.
The number of characters taken from the second subfield is six times n,
where n is the specification of the first subfield.

If a BCI instruction has a location symbol, the symbol is entered in the
dictionary with the current value of the location counter. The n words of
Hollerith information are converted to n words, consisting of six binary­
coded-decimal characters each. These n words are assigned to the n
successive locations beginning with the current value of the location counter.
Thus, the first word of BCD information can be referred to by the location
symbol name.

For example, suppose the location counter value is 390010 when the following
instruction is encountered:

Location Operation Variable Field

IDENT BCI 3, THISbISbAbBCI

(where "b" indicates the character, blank)

The effect of this instruction would be to enter the symbol IDENT into the
dictionary with the value (3900)10' and to store the BCD representation of
the three Hollerith words. The words would be stored as follows:

3900
3901
3902

THISbI
SbAbBC
Ibbbbb

where b represents a blank, i. e., the core storage BCD character 1100002'

The value of the location counter would be 390310. The programmer could
then refer to the first word in, say, an IOCD command by means of the
symbol IDENT.

03.00.16
5 (6/61)

D. VFD (Variable Field-Definition)

The preceding three pseudo-operations describe means of introducing decimal,
octal, or Hollerith information into the object program in units of words.
However, it will often be found desirable to prescribe information in smaller
units of a word.

It is, of course, possible (though sometimes not convenient) to use the
prefix, decrement, tag, address format of a word by specifying a proper
machine instruction, e. g., SVN 9, 1, 127 results in a prefix (bits 0-2) of 7,
a decrement (bits 3-17) of 127" a tag (bits 18-20) of 1, and an address
(bits 21-35) of 9. Even in such cases, the use of VFD may be found easier,
because its basic unit of information is a bit, instead of a word. It allows
the programmer to specify a continuous string of bits. from left to right,
starting at the left-hand end (O-bit) of a word.

As an example, suppose the programmer would like to break up a single
36-bit word into four subfields: positions 0-9, positions 10-14, positions
15-29, and positions 30-35. Suppose also that he would like to have placed
in these four subfields, respectively, the following four pieces of information:

1. The binary equivalent of the decimal integer 895.
2. The binary equivalent of the oct~l integer 37.
3. The binary value of the symbol ALPHA.
4. The binary coded value for the character C.

Then he may simply write:

Location Operation Variable Field

VFD 10/895,05/37,151 ALPHA, H6/c

The four subfields of the variable field of the above instruction are, as usual,
separated by commas a·nd the variable field itself is terminated by a blank.

The term "variable field" of the symbolic instruction is not to be confused
with the name VFD meaning "variable field-definition;" this latter term is
meant to indicate that the binary words of the converted result have been
broken up into the "variable field" format.

From the above sample instruction would be generated a machine word which
contains (assuming ALPHA is location 185638):

03.00.17
5 (6/61)

Specification Bits Contents

10/895 0-9 15778 (89510)
05/37 10-14 378
15/ALPHA 15-29 185638
H6/C 30-35 238

Note that the number preceding the "/" in the instruction subfield defines the
length (number of bits) of the binary subfield. If the letter 0 precedes this
number, this indicates that the information to follow the "/" is an octal
integer, while the letter H indicates Hollerith information.

The absence of any letter indicates that the information following the "/"
is to be regarded as an ordinary (arithmetic) expression, and is to be evaluated
according to the standard rules, except that only the rightmost n bits of the
result are to be used, where n is the length of the subfield.

Hence, an integer is treated as in an arithmetic expression, not as an integer
in the sense of DEC, where it is converted to a signed binary number. For
example, VFD 18/-1, 18/1 converts to (777 777 000 001) 8. The restrictions
on the arithmetic expression here are those given in Section 02. Hence,
no integer should exceed 235_1. Integers larger than 215_1, but less than
235, ~ allowable and will be properly converted.

If the binary result requires less than n bits, the result will be placed in the
right-hand end of the binary subfield, and zeros will be filled in on the left.
This is also true of octal fields. For example, VFD 36/8 and VFD 036/10
both convert to (000 000 000 010)8.

The examples given thus far specify information to be packed into a single
binary word, and the sum of the lengths of the binary subfield is 36. This
is not a requirement. Any number of binary words can be specified, using
any number of binary subfields. (See the description of ETC.) Moreover,
subfields may overlap the binary words. For example;

Location Operation Variable Field

PACKIN VFD 30/1,012/777

is allowable and converts to the ~o binary words:

03.00.18
5 (6/61)

000 000 000 1078
770 000 000 0008

Note in the above example that the sum of the two subfield lengths is 42,
which is not a multiple of 36. As implied, this results in the unspecified
bits of the last-used word being taken as 0' s. (In the example, there are
30 such bits.) Thus, the example could equally well have been written
PACKIN VFD 30/1,.012/777,30/0. The number of words generated by a
VFD instruction is, of course, always the smallest integer greater than
or equal to the sum of the lengths of all the subfields divided by 36.

Note in the above example that the location symbol PACKIN appear s in the
instruction. As in the three previously described pseudo-operations, such
a symbol is entered into the dictionary with the current value of the location
counter, so that the first word of information generated by the VFD instruction
can be referred to by this symbol. The value of the location counter is then
increased by the number of words generated. In the above example, if the
location counter value had been 390010 when the instruction was· encountered,
the symbol PACKIN would have received the value 390010 and the final
value of the location counter would have been 390210.

The length of a subfield must not exceed 6310• If a binary subfield length
exceeding 6310 is specified, this length is taken as 6310 and an error is
indicated in the output listing.

Although decimal integers (i. e., integers in an ordinary subfield) should
not exceed 235_1, there is no limit on the number of octal digits that can
be specified in an octal (0) subfield,beyond the limitation mentioned in
the previous paragraph and the limitation imposed by the length of the
instruction card.

The length specified in a Hollerith (H) subfield should, in general, be a
multiple of 6, since one Hollerith character converts to six binary bits.
However, it is not required. If the bit-length specified is too small to
accommodate the character s specified, the resulting string of bits is
truncated, on the left, to that length. If the bit-length is too large, the
string is right-justified, 1. e., placed in the right-hand end of the binary
subfield. However, the left-hand Wlused bits in this case are filled out
with the binary code for blank, i. e., 1100002. If the Hollerith subfield
bit length is too large and is not a multiple of 6, a terminal segment of
this six-bit code is used to fill out the subfield on the left.

Any Hollerith characters, except blanks and commas, can be used in an H
subfield. Blanks and commas are, of course, not permitted because they
are used to terminate the variable field and to separate subfields of the
variable field, respectively.

03.00.19
5 (6/61)

DUP (Duplicate)

The instruction DUP M, N causes the next M instructions to be duplicated N times.
For example, suppose that the current value of the location counter is 390010
when the following instructions are encountered:

Location Operation Variable Field

DUP 3,30
DEC 1
DEC 2
DEC 3

The effect of these four instructions will be to assign the 90 integers 1,2,3,1,
2,3, ... ,1,2,3 to the 90 locations 3900, 3901, 3902, 3903, ... 3988, 3989,
respectively. The value of the location counter will be left at 399010.

Exactly the same effect could have been obtained by writing

Location Operation

DUP
DEC

Variable Field

1,30
1,2,3

Note, as in this example, that some or all of the instructions to be duplicated
may be pseudo-instructions, which may in turn generate more than one word
in the object program. DUP M, N increases the location by the quantity: N
times (the number of machine instructions plus the number of words reserved
by principal pseudo-operations).

No more than ten principal pseudo-operations (BSS, BES, TCD, HEAD, ORG)
may appear within the range of a DUP instruction.

If a location symbol is used with a DUP instruction, this symbol will be entered
in the dictionary with the value of the location counter at the time the DUP
instruction-is encountered. Thus, this symbol can be used to refer to the first
word generated by the DUP instruction (in the above example, this would be
location 390010).

If an instruction to be duplicated has a location symbol, this symbol is associated
with the first, and only the first, occurrence of the duplicated instruction.

No instruction which a DUP instruction specifies is to be duplicated may itself
be a DUP instruction or an END instruction.

03.00.20
5 (6/61)

If; in the instruction DUP M, N; M and/or N are missing, zero, non-numeric,
or complex, an error will be flagged on the output listing and M will be replaced
by 1 and/or N will be replaced by 2.

LBR (Library Program)

Normally, each installation using SOS will have available, during the execution
of the Compiler, one (or possibly more than one) tape containing a set of library
programs. Each of these library programs will normally conform to SHARE
standards and will exist on the tape in SQUOZE (binary-coded-symbolic) form.
Moreover, each library program on the tape will have an identification
recognizable by the Compiler, so that the Compiler can search the library tape
for a specified program, and incorporate it into the source program being processed.

The identification label is not to be thought of as a symbol. It is simply an
identifying string of alphanumeric characters.

The library program itself, being in SQUOZE form, will ordinarily use certain
location symbols. The programmer is provided with means for incorporating
all, some, or none of these symbols in the object program. Usually he will
probably prefer to eliminate all symbols except possibly the first one used in
the library program by specifying that the library program is to be "relativized. "

A program is said to be "completely relativized" if only one iocation symbol is
used and all references are made relative to this symbol. For example, consider
the following "unrelativized" program:

Location

USEPI

EXIT
UNITY
PI

Operation

TZE
FAD
FDP
TRA
DEC
DEC

Variable Field

EXIT
UNITY
PI
1,4
1.0
3.14159

The above program will be completely relativized with respect to the symbol
"USEPl" if it appears in the form:

03.00.21
5 (6/61)

Location

USEPI

Operation

TZE
FAD
FDP
TRA
DEC
DEC

Variable Field

USEPl+3
USEPl+4
USEPl+5
1,4
1.0
3. 14159

A program may also be "partially relativized" in the sense that more than one,
but not all symbols are retained.

Now suppose that the programmer is at a point in writing his source program
where he would like to specify incorporation of a certain library program. Suppose
that his program is on the standard library tape and that the program has
identification IDENT. Suppose further that the programmer. would like to have
the program relativized with respect to the first symbol of the program. Then
he can simply write:

Location Operation Variable Field

LBR IDENT

When the instruction is encountered, the Compiler will search the standard
library tape for the program labeled IDE NT, relativize this program, and
incorporate the resulting program into the source program. The first word
of the generated program will be assigned the value in the location counter at the
time the LBR instruction is encountered. The number of words generated by
an LBR instruction will be the total number of words generated by all the
instructions of the library program itself, and the value in the location counter
will have been increased by this number when the Compiler has finished processing
the LBR instruction. Thus the effect is just as if the original symbolic instructions
for the library 'program had been inserted into the source program in the place
of the single LBR instruction (except for the relativization which will result in
the omission of symbols as illustrated above). Of course none of the omitted
symbols will be entered into the dictionary. All retained symbols, like USEPl
in the example above, will be entered into the dictionary.

It will often be the case that the programmer, in using a library program, will
not want to retain any of the symbols in the library program in his final object
program dictionary, because of possible conflicts with his own source program
symbols. He may also not want to know (nor be forced to refer to the library
program description) the symbol to which he must refer when he calls for the
library program in his main program (normally, he does this with a TSX to
the library program). All he really needs to know is the identification and
the tape. In the above example, "LBR IDENT", he did not even have to specify
the tape, since he knew it was the standard library tape. The identification
label IDENT in this case mayor may not be the same as the name of the program,
i. e., the symbol of the starting instruction of the program (to which the main
program must transfer). In this case, he may construct a symbol, say SUBRI,
and write:

03.00.22
5 (6/61)

Location

SUBRI

Operation Variable Field

LBR IDENT

The effect of this instruction will be to enter the symbol SUBRI into the dictionary.
The value used for SUBRI will be the same as the value assigned to the first
word generated by the LBR instruction, i. e., the value of the location counter
when the LBR instruction is encountered. If this first word already has an
associated symbol because such a symbol appears within the library program
itself, then this symbol will be omitted and relativization will occur with respect
to the programmer's symbol SUBRI, unless the symbol is specifically "exempted
from relativization" (see the description of EXEMPT following). Thus the
programmer, by specifying relativization and by using his own location symbol
SUBRI, has effectively omitted all the symbols used in the library program. He
may then enter the library program by the instruction:

Location Operation Variable Field

TSX SUBRI, 4

The programmer may not want to relativize the library program. In this case,
he can write:

Location Operation Variable Field

SUBRI LBR IDENT, U

where the second subfield, U, means "Wlrelativized." In this case, all of the
original symbols used in the library program are entered into the dictionary,
and the programmer must be careful not to use these symbols in his own program
as location symbols. Even in this case, the symbol SUBRI might be used to
enter the library program, since it will still be in the dictionary with the value
assigned the first word generated by the LBR instruction. If the first word
already has an associated location symbol because such a symbol appears in
the library program itself, then either this symbol or SUBRI can be used,
since both have the same value.

If the first subfield of the variable field of a LBR instruction (i. e., the identification
subfield) is zero or blank, then the instruction must have a location symbol,
and this location symbol will also be used to serve as the identification label.
Thus, SUBRI LBR is equivalent to SUBRI LBR SUBRI, and SUBRI LBR 0, U is
equivalent to SUBRI LBR SUBRI, U.

If the second subfield of the variable field is omitted, or contains anything
except the single character U, then the program will be relativized.

03.00.23
5 (6/61)

EXEMPT (Exempt from Relativization)

This pseudo-operation has meaning only when used in a source program which
is intended to be a library program. It is used to specify which symbols in
the library program are to be exempted from relativization.

Since the Compiler has no means of distinguishing a source program intended
to be a library program from a source program which is not, the Compiler
always generates a list of exempt symbols specified by an EXEMPT instruction,
even though this list will have no meaning unless it is to be part of a program
on a library tape.

The variable field of an EXEMPT instruction may have one or more subfields.
Each subfield must contain a symbol which occurs as a location symbol somewhere
in the library program in which the EXEMPT instruction occurs. When the
instruction occurs the symbols given in the variable field are arranged in a list
of exempt symbols. If more than one EXEMPT instruction is used, the additional
symbols are also added to this list. The order of the symbols is unimportant.
The list is retained with the compiled library program when the program is placed
on the library tape. When the library program containing this "exempt list" is
cailed in by an LBR instruction which specifies relativization (i. e., does not
use the character U in the second subfield of the variable field) all exempt symbols
are entered into the dictionary. That is, they will be exempt from relativization
and will not disappear from the library program when it is incorporated into the
main program. (See page 03.00.21.)

Actually, a special list is not used, an exempt symbol in the library program is
indicated as exempt by the use of a bit in the dictionary entry for this symbol.

Of course, if the U (specifying "unrelativized") is used in the LBR instruction,
all.symbols are retained and the exempt list is ignored.

As an example, suppose that a library program whose identification is "SINCOS"
is planned to be used in two ways, one to evaluate the Sine function where the
user must enter the program by TSX SIN, 4 and the other to evaluate the Cosine
function where the user must write TSX COS,4. Suppose that the library program
is arranged as follows:

03.00.24
5 (6/61)

Location Operation Variable Field

SIN xxx xxxx

COS xxx xxxx

ERROR xxx xxxx

EXIT xxx xxxx

EXEMPT SIN, COS

where the two symbols SIN and COS have been exempted.

Now if LBR SINCOS is included in a source program, the library program, when
incorporated into the source program, will be relativized using the symbols SIN
and COS. Thus, both of these symbols will be retained, but all other location
symbols (ERROR, EXIT, etc.) will be removed.

If the instruction SINE LBR SINCOS is used, both the symbols SIN and SINE
would be entered into the dictionary with the same value, namely the location
value assigned to the first word generated by the library program. In such
a case, the internal library symbol, SIN, not the external symbol" SINE, will
be used for relativization. However, since SIN and SINE both have the same
value, the programmer could enter the subroutine by either TSX SIN, 4 or
TSX SINE, 4.

To illustrate relativization with respect to more than one symbol, suppose that
the following library program has been processed by the Compiler, and placed
on the library tape with identification IDENT:

03.00.25
5 (6/61)

Location

USEPI

EXIT
UNITY
PI

Operation

TZE
FAD
FDP
TRA
DEC
DEC
EXEMPT

Variable Field

EXIT
UNITY
PI
1,4
1.0
3.14159
USE PI, UNITY

When the instruction LBR IDENT is encountered during processing some program,
the following will be incorporated:

Location Operation Variable Field

USE PI TZE USEPI+3
FAD UNITY
FDP UNITY+l
TRA 1,4

UNITY DEC 1.0
DEC 3.14159

If no symbols in a library program are specifically exempted from relativization
and an LBR instruction is used to incorporate the program into a source program,
where the LBR instruction specifies relativization but has no location symbol,
then it is necessary that the first instruction of the library program which
generates a machine word have a location symbol. If this condition is violated,
an error will be indicated on the output listing, the first symbol will be considered
to be exempt, and complete relativization will be done using this symbol.

A location symbol should not be used with an EXEMPT instruction itself, since it
would be logically meaningless because EXEMPT generates no machine words.
If a location symbol is used in an EXEMPT instruction, it will be ignored and
an error indicated on the output listing.

Macro-Operations

A macro-operation is a special type of pseudo-operation. An instruction whose
operation is a macro-operation is called a macro-instruction. The most significant
property of a macro-instruction is that it generates n machine words where n
is greater than or equal to 1 (ordinarily, n is greater than 1, hence the term
"macro") .

03.00.26
5 (6/61)

The instructions generated by a macro-instruction are what is often called an
"open subroutine". Unlike a "closed subroutine", whose use is ordinarily
independent of its location in storage, the instructions generated by a macro
are executed "in-line", i. e., serially with the rest of the main program.

A macro can be regarded as an abbreviation for a block of instructions (or
words resembling instructions). The block of instructions generated by a
macro is determined by its definition and the items used in the variable field.
The definition consists of a "skeletal pattern" of instructions. This skeleton
is filled in with the items in the variable field of the macro.

Two classes of macro-operations are provided for by SOS. The first class
consists of macros which the programmer himself can define, these are called
"programmer macros." The second class consists of a large set of permanent
macros comprising the vocabularies of the Input/Output System, Debugging
System and SHARE Monitor routines. In addition, there are two special macros:
BEGIN and RETURN (see below). This set is called "system macros. "

A. MACRO (Macro-Instruction Definition)

This pseudo-operation is not itself a macro-operation and does not generate
any machine words. It is used to define programmer macros.

Suppose that the programmer has written a source program with the following
structure:

03.00.27
5 (6/61)

Location Operation

CLA
ADD
STO

CLA
ADD
STO

Variable Field

FEDTAX
STATAX
TOTAX

XSUBI
YSUBI
ZSUBI

CLA
ADD
STO

PART I
PART2
TOTAL

The pattern of three instructions (which in this particular example appears
three times in the source program) might be abbreviated by some alphabetic
name, e. g., QSUM. This abbreviation could then be defined as follows:

Location Operation Variable Field

QSUM MACRO VI, V2, V3
CLA VI
ADD V2
STO V3
END

The above sequence of five instructions itself generates no words in the
obj ect program - the sequence constitutes the definition of the programmer
macro called QSUM. This definition is then inserted in the source program
before the first place the three instructions are required. The programmer
could replace each of the three blocks in his source program as follows:

03.00.28
5 (6/61)

Location Operation Variable Field

(5-instruction definition occurs somewhere here)

QSUM FEDTAX, STATAX, TOTAX

QSUM XSUBI, YSUBI, ZSUBI

QSUM PART1, PART2, TOTAL

Note, as in the above simple example, the following points:

1. QSUM, which appears in the location field of the instruction whose
operation is MACRO, is not a symbol. It is a name for the program­
mer macro-operation defined. This name is not entered in the dictionary
as a symbol. Instead it is retained in a special table of programmer
macros along with its skeletal definition. When the name appears in
the operation field of an instruction, the definition in the table of
programmer macros is generated in the program. Since the name
is used as an operation code, it must be no more than six alphabetic
characters long, and must not coincide with any other operation code.

Since the macro-name is not a symbol, it may be identical to a true
location symbol (appearing elsewhere in the source program) without
confusion between the one and the other.

A useful fact to remember is that none of the operation codes in SOS
(machine or pseudo, including system macros) begin with the character
Q. Thus, as in the example, the use of Q as the first character in the
name of a programmer macro insures non-ambiguity.

2. The variables (V1, V2, and V3 in the example) which appear in the
variable field of the instruction whose operation is MACRO, and also

03.00.29
5 (6/61)

in the skeleton which immediately follows, only indicate the order items
must be specified and the places each is to be inserted. For example,
suppose a programmer defines the macro QSUM as above and then writes:

Location Operation Variable Field

QSUM TOTAX, FEDTAX, STATAX

Then the following block is generated in the source program:

Location Operation

CLA
ADD
STO

Variable Field

TOTAX
FEDTAX
STATAX

On the other hand, if his definition had b~en written QSUM MACRO
V3, Vl, V2 with the skeleton the same as in the original definition,
then the instruction QSUM TOTAX, FEDTAX, STATAX would expand
into the same instructions as before.

3. The end of the macro-definition must always be indicated by the use
of an END instruction immediately following the last instruction in
the skeleton. The location and the variable fields of the END instruction
should be blank. (For another meaning of END, see description following.)

As in the case of LBR, DEC, etc., a location symbol used in a programmer
macro-instruction will be given the same value as the value assigned to the
first word generated by the instruction. For example, using the above
definition of the macro QSUM, the instruction

Location Operation

TAX QSUM

would generate the instructions

Location

TAX

Operation

CLA
ADD
STO

Variable Field

FEDTAX, STATAX, TOTAX

Variable Field

FEDTAX
STATAX
TOTAX

In the example given above, the elements of the skeleton required to be
filled-in were simply address subfields of the skeleton instructions, and in
the example using the defined macro, these address subfields were filled
in by symbols. In general, a variable used in any skeleton instruction may
appear in the location field, the operation field, or in any of the subfields
of the variable field. Moreover, the variables may take on values which are
expressions (symbols, integers, or non-simple expressions) or Hollerith
characters. For example, the following definition is possible.

03.00.30
5 (6/61)

Location

QPOLY

LOOP

Operation

MACRO
AXT
LDQ
FMP
OP
XCA
TIX
END

Variable Field

COEFF,LOOP,DEG,T,OP
DEG,T
COEFF
GAMMA
COEFF+DEG+l, T

LOOP, T, 1

Note that the variable LOOP appears in a location field, OP appears in an
operation field, and COEFF and DEG appear combined and uncombined in
address subfields. Note also that GAMMA is a symbol, not a variable,
and presumably will be defined (in the sense of being assigned a location
value) elsewhere in the program. Of course, any use of the operation
QPOLY in a macro-instruction must be accompanied by appropriate
specifications for values of the variables. For example, LOOP must be
given a value which is a pure symbol, and this symbol, being a location
symbol, can be used only once in the program - otherwise it would be
multiply defined. OP must be some legitimate operation code, like FSB.
(The "value" of the operation code in such a case as this might also contain
a final * to specify indirect addressing in the instructions in which it
appears, e. g., FSB*.)

Having written the above definition of QPOLY, suppose that the programmer
now writes:

Location Operation Variable Field

QPOLY C1-4, FIRST, 5,4, FAD

Then this macro-instruction will expand into the following block of six
instructions:

Location

FmST

Operation

AXT
LDQ
FMP
FAD
XCA
TIX

Variable Field

5,4
Cl-4
GAMMA
C1+2,4

FmST,4, 1

Notice that these instructions are the result of simple replacement in the
definitional skeleton, except for the expression "Cl+2", which results from
the skeleton address "COEFF+DEG+l", where COEFF=Cl-4 and DEG=5.
Unlike the examples given thus far, the definitional skeleton of a programmer
macro may also use pseudo-operations which generate one or more machine
words, i. e., "VFD", "BCI", system macros, etc.

Moreover, the definition of a programmer macro may itself contain one or
more programmer macros, which in turn may be defined using programmer
macros, etc., with no restriction as to depth. Note, however, that a
programmer macro may not contain itself since this would lead to the
generation of infinitely many instructions. For example, suppose we define:

03.00.31
5 (6/61)

Location

QADD

Operation

MACRO
CLA
ADD
STO
QADD
END

Now if the programmer were to write

this would expand to

QADD

CLA
ADD
STO
QADD

which would in turn expand into

and so on.

CLA
ADD
STO
CLA
ADD
STO
QADD

Variable Field

A,B,C'
A
B
C
A,B,C

ONE,TWO,X

ONE
TWO
X
ONE,TWO,X

ONE
TWO
X
ONE
TWO
X
ONE, TWO, X

The pseudo-operation LBR could be used in the definitional skeleton, but
this will generally make sense only if the identification (and location symbol,
if any) is variable, and if different uses of the macro-operation specify
different library programs to be incorporated. Otherwise each use would
result in the same library program being incorporated more than once.

Suppose that the following definition is given:

03.00 .. 32
5 (6/61)

Location

QCSEQ

Operation

MACRO
TSX
VFD
END

Variable Field

SUBR, T, LABEL, SCALE
SUBR,T
H36/LABEL, 36/SCALE

Then if the programmer writes:

Location Operation Variable Field

QCSEQ PRINT, 4, SECOND, 35

he will effectively obtain the following block of instructions:

Location Operation

TSX
VFD

Variable Field

PRINT, 4
H36/SECOND, 36/35

The last example illustrates how, by using an appropriate definition, the
programmer can write a calling sequence in a single instruction. There
may be many places in his program where he requires a calling sequence
of this particular form, and in each place, he can use his established
definition of the operation QCSEQ. By thoughtful use of programmer macros,
much writing can be saved and the readability of the source program itself
may be improved.

The maximum number of definitions (i. e., number of different programmer
macro-operations) -which can be used in a single source program is 100.
However, there is no limit on the length of any single definition, i. e., the
number of instructions in the skeleton, nor to the sum of the lengths of all
definitions used.

Because of internal space considerations, the maximum number of variables
which can be used in the definition, and hence the use, of a programmer
macro-operation is 32. However, any instruction whose operation is MACRO
and any instruction using a defined macro-operation can be extended to more
than one symbolic card by means of the pseudo-operation ETC.

The use of * (current contents of the location counter) as the "value" for
a parameter used as an address in a macro-skeleton is permissible and will
be interpreted in the natural way; e. g., given the definition:

03.00.33
5 (6/61)

Location

QLDTR

Operation

MACRO
CLA
TRA
END

Variable Field

X,Y
X
Y

then the instruction

QLDTR

would generate the instructions

CLA
TRA

ALPHA, *+1

ALPHA
*+1

where *+ 1 would refer to the instruction following the TRA instruction.

The use of a programmer macro-operation with an indirect address
indication e. g., SUMMAC* will result in the use of an indirect address in
the fir st instruction of the expansion.

In addition to symbols, integers, non-simple expressions, etc., another
kind of "value" that a variable in a macro-definition can take on is a
heading character. (See description of HEAD following.)

If a programmer macro which uses a given name is defined in the source
program, and if a new definition using the same name occurs later in the
program, then any use of this name as a macro-operation which appears
after the new definition is referred to the new definition, not the old one.

B. BEGIN (Begin Subroutine)

BEGIN and RETURN (see below) are related special-purpose system macros.
They have been provided in SOS as an aid in specifying basic linkage within
a closed subroutine, particularly within library programs.

A standard SHARE library program requires a calling sequence with the
following structure:

03.00.34
5 (6/61)

Operation Variable Field

TSX LmPG,4

}
(transfer to error routine)

Transfer to library program.
N words of information deter­
mined by LmPG specifications.

(mayor may not be required)
Place of normal return.

The library program itself must provide for a normal return to the fir st
instruction following the calling sequence by means of, say, "TRA K, 4"
where K is the total number of words in the calling sequence, including the
TSX instruction and the error transfer which may appear as the last word
of the calling sequence.

Since index register 4 (XR4) is used in the return transfer, the library
program must initially save and finally restore the contents of XR4 before
TRA K, 4 is executed if it employs XR4 in another connection. Another
SHARE convention requires that the contents of XR4 be saved regardless of
whether it is used. (This is for debugging purposes.) As will be seen,
BEGIN does not require that this convention be followed, but the use of
RETURN does require it.

The general form of a BEGIN instruction is:

Location Operation Variable Field

FIRST BEGIN K,T,I,E

where FIRST is a location symbol associated with the first instruction
generated by BEGIN and K, T, I, and E have the following meanings:

1. K is as defined above, i. e., the location of the normal return relative to the
TSX instruction in the calling sequence.

2. T specifies the set of index registers which are to be initially saved and
finally restored. T is interpreted just as a tag in an ordinary machine
instruction. That is, T = 0 specifies saving no XR's, T = 1 specifies
XRl, T = 2 specifies XR2, etc.

If the SHARE convention of always saving XR4 is adhered to, T must
be 4,5,6, or 7. On the other hand, T = 0, 1, 2, or 3 are acceptable,
and each of these values results in the desired instruction expansion.
Note, however, that RETURN cannot be used in this case.

3. I specifies whether the contents of the Sense Indicators are to be saved.
If I = 0, then the indicators are not saved and restored; if I = 1, then the
contents of the indicators are saved and restored. I = 0 is the normal
case, and, of course, can be indicated by simply omitting the I-subfield.

4. E is used to indicate whether to save and restore the conditions for data
channel trapping. If E = 0, or is omitted then the conditions are not saved
and restored. If E = 1 the conditions will be saved and restored.

03.00.35
5 (6/61)

Trapping will be disabled within the closed subroutine unless the routine
enables its own trapping conditions. *

The number of machine instructions into which a BEGIN macro-instruction
expands is a function of the values of T, I, and E. The maximum number is
20, obtained by using T = 7, I = 1 and E = 1. For example

Location

LIBPG

expands into

Location

LIBPG

Operation

BEGIN

Operation

TXL
AXT
AXT
AXT
LDI
STI*
LDI
XEC
TRA
PZE
PZE
XEC
SXA
SXA
SXA
STI
LDI*
STI
STZ*
LDI

Variable Field

2, 7, 1, 1

Variable Field

*+11
**,4
**,2
**,1
*+5
SYSENB
*+4
SYSENB
2,4

SYSDSB
*-11,4
*-11,2
*-11,1
*-5
SYSENB
*-8
SYSENB
*-9

Second set executed

Fir st set executed

The first set of instructions ("first" from the standpoint of execution) saves
the index registers and the sense indicator register, and disables all channel
traps. The second set restores these special registers and then returns (by
TRA 2,4) to the main program. The first instruction of the expansion,
TXL *+11, skips over this second set, and the first instruction of the second
set, AXT 0,4, will presumably be transferred to from some later instruction
in the subroutine. It will be seen that this transfer can be affected by the
macro-operation RETURN.

* This option is available only with the SHARE Monitor.

03.00.36
5 (6/61)

If the SHARE convention of saving XR4 is followed, the smallest number of
instructions obtainable from a BEGIN macro-instruction is four. For example:

Location

LIBPG

expands into:

Location

LIBPG

Operation

BEGIN

Operation

TXL
AXT
TRA
SXA

Variable Field

3,4

Variable Field

*+3
0,4
3,4
*-2,4

The logical minimum is two instructions, LIBPG BEGIN 1 expands into:

Location

LIBPG

c. RETURN (Return)

Operation

TXL
TRA

Variable Field

*+2
1,4

Often a library program will be written to detect one or more possible kinds
of errors during its execution, e. g., unacceptable input, overflow, etc.
As mentioned under BEGIN, the SHARE convention, in case of an error,
will be to cause a return to the main program one location before the place
of normal return. In order to distinguish between different 'kinds of errors
in the same library program, the standard SHARE procedure will involve
placing an error code (by means of instructions executed within the library
pro6'ram) in the decrement part of the first instruction of the library program,
which, as seen above, is a TXL instruction with a zero tag. The programmer
who writes the library program chooses these error codes for his particular
program as he pleases. In the calling sequence for this library program, he
can write a transfer, as the last instruction, to a subroutine to analyze the
kind of error, making use of the error code stored within the library program.

The macro-operation RETURN is designed to provide the programmer with
means for specifying, within the subroutine:

1. instructions to effect a normal return
2. instructions to effect an error return using a certain error code.

03.00.37
5 (6/61)

In both cases 1 and 2, it is assumed that a BEGIN instruction, or machine
instructions equivalent to the expansion of a BEGIN instruction, with an
associated location symbol of, say, "LmPG", has been written.

Then, as an illustration of case 2, the macro-instruction:

Location Operation Variable Field

BACK RETURN LffiPG

will expand simply into:

Location Operation Variable Field

BACK TRA LIBPG+1

The specified transfer to LIBPG+ 1 is the desired link to the restoring set
of instructions associated with the BEGIN instruction.

Since this use of RETURN results in a single instruction, the programmer
could as well write BACK TRA LmPG+l, instead of using the macro,

As an illustration of an error return, suppose that the error code is 8.
Then the programmer may write this error code in a second subfield of
the variable field, as follows:

Location Operation Variable Field

ERRI RETURN LIBPG, 8

The specification, as in this example, of any expression except zero (or
blank) in the second subfield of the variable field always results in a four­
word expansion. The expansion for this example would be:

Location Operation Variable Field

ERRI AXT 8,4
SXD LIBPG,4
LXA LmPG+1,4
TXI LffiPG+2,4, 1

As can be seen, the effect of these four instructions will be to:

1. place the error code, "8", in the decrement part of the instruction at LmPG
2. restore XR4
3. increase the contents of XR4 by 1

03.00.38
5 (6/61)

4. transfer to the second instruction after LffiPG.

Note that the above instructions assume that XR4 has been saved in the
manner prescribed by a BEGIN instruction, and also that the exit instruction
is TRA K,4, which when executed will result in a return to the location one
less than the normal return (since the contents of XR4 have been increased
by 1 by the TXI instruction).

As an illustration of the joint use of BEGIN and RETURN, consider the following
sequence:

Location Operation Variable Field

SR BEGIN 2,7,1
TPL SR2

SRI RETURN SR,l
SR2 DVP ALPHA

STQ BETA
SR3 RETURN SR

The instruction named SRI specifies an error return with an error code of
1, while the instruction named SR3 specifies a normal return. This six­
word sequence would be expanded into the following 19-word set of
instructions:

03.00.39
5 (6/61)

Location

SR

SRI

SR2

SR3

Operation

TXL
AXT
AXT
AXT
LDI
TRA
PZE
STI
SXA
SXA
SXA
TPL
AXT
SXD
LXA
TXI
DVP
STQ
TRA

Variable Field

*+7
0,4
0,2
0,1
*+2
2,4

*-1
*-5,1
*-7,2
*-9,4
SR2
1,4
SR,4
SR+1,4
SR+2, 4,1
ALPHA
BETA
SR+l

HEAD (Heading)

It is frequently convenient, and sometimes necessary, to construct a source
program by writing it in pieces, where these pieces are finally put together
and compiled as a total program. Different pieces of the program may be
written by different programmers, or by the same programmer with considerable
time elapsing between the writing of the pieces.

Suppose, in such a situation, that a program block, say B1, has been written,
that another program block, B2, is in the course of being written, and that B1
and B2 eventually are to be joined together into a single program. Certain
location symbols have already been used in writing block B1, and certain other
location symbols, different from the location symbols used in B1, must now
be used in writing block B2. Otherwise, such symbols would be multiply defined.
This seems to mean that the programmer who is writing the block B2 must be
concerned with the symbols used in B1, even though B2 might be quite independent
of B1.

If B1 and B2 are completely independent of each other in the sense that neither
makes reference to the symbols defined in the other, then it might be convenient
to have B1 and B2 processed independently. On the other hand, such a procedure
might be more time-consuming and even very inconvenient in certain situations.
For example, if B2 is eventually to be loaded into core storage immediately
following B1, and the size of the B1 object program is not easy to compute.

However, if the symbols he is using in block B2 which might conflict with the
symbols in B1 are all less than six characters in length, the programmer can
completely ignore the symbols in B1 by prefacing B2 with the following pseudo­
instructions:

Location Operation Variable Field

HEAD x

where the single character X may be any non-blank character allowable in symbols
(see Appendix 1).

This pseudo-instruction, HEAD X, generates no words in the obj ect program.
When such an instruction is encountered, the symbols of all following instructions,
until another HEAD is encountered, whether they appear in the location field or in
the variable field, are treated as though they were "headed" by the character X
provided that these symbols are five or less characters in length. Thus the
symbols used in block B1 which are less than six characters long cannot
possibly conflict with the symbols used in block B2. Six-character symbols are
not affected, i. e., they are immune from "heading".

03.00.40
5 (6/61)

A symbol, ALPHA, headed by a non-blank heading character, X, is not to be
thought of as identical with the symbol XALPHA. On the contrary, the heading
character is essentially on a different level from the characters which make up
the string representing the symbol. The property, belonging exclusively to
six-character symbols, of being immune from heading, will also be seen to be
useful.

A symbol is said to be "unheaded" if and only if its representation uses exactly
six characters. For example, the symbol COMMON is unheaded. Every
symbol, e. g., ALPHA, whose length is less than six characters, is considered
to be headed, whether or not it is under control of a HEAD pseudo-instruction
as described above. If ALPHA is under control of HEAD X (where X is some
non-blank heading character), then ALPHA is said to be "headed by X". If
ALPHA is under control of a HEAD instruction with a blank variable field or is
not under control of any HEAD instruction, then ALPHA is said to be "headed
by blank". Hence, ALPHA headed by a blank should be regarded as identical
to the symbol ALPHA.

Of course, if a HEAD instruction with a non-blank variable field does not occur
in the entire source program, all considerations of heading can be ignored.
This is the reason for not introducing the concept of headed symbols earlier.

A HEAD instruction with a blank variable field must be used if the programmer
desires to discontinue the heading process. For example, note that the instruction
HEAD and the instruction HEAD 0 are quite different. "0" is an allowable
heading character and must be distinguished from the character blank. In the
ease assumed above, where the blocks BI and B2 are joined together in one
program, suppose that B2 must be put somewhere in the middle of BI, as follows:

Location Operation Variable Field

} first part of block Bl

HEAD X J block B2

HEAD

} second part of block Bl

Here, the second HEAD instruction effectively serves the purpose of nullifying
the instruction HEAD X.

03.00.41
5 (6/61)

In this example, the entire program might have been prefaced by a HEAD with a
blank variable field. As implied above, however, such a HEAD instruction would
be superfluous, since the symbols in the first part of block B1 are automatically
headed by blank, being under the control of no HEAD instruction at all.

As a concrete illustration, consider the following sequence:

Location Operation Variable Field

ORG 3000
(3000) ALPHA CLA GAMMA1 (3001)
(3001) GAMMA1 CLA ALPHA (3000)

HEAD X
(3002) ALPHA CLA DELTA1 (3003)
(3003) DELTA1 CLA ALPHA (3002)
(3004) BETA CLA GAMMA1 (3001)

HEAD
(3005) BETA CLA DELTA1 (3003)

The value assigned to each location symbol is given by the parenthesized number
to the left of the instruction in which this location symbol appears, and the value
corresponding to the address symbol is given by the number to the right of the
instruction.

Notice in this example that the symbols ALPHA and DELTA each appear twice
in a location field, once headed by blank, and once headed by X, and that each
different appearance results in a different value. ALPHA headed by blank is
entered into the dictionary with value 3000, and ALPHA headed by X, and BETA
headed by blank receive values 3004 and 3005, respectively.

Because of the different headings, these two appearances constitute two different
symbols, so that this is not a case of multiple definition. On the contrary, the
address symbol in the instruction GAMMA1 CLA ALPHA, not being under control
of a HEAD instruction, is headed by blank and is given the value 3000, whereas the
address symbol in the instruction DELTA1 CLA ALPHA is under control of
HEAD X, and is given the value 3002.

Notice also in the above example that GAMMA1 and DELTA1, being six-character
symbols, are unheaded, and can be used for reference either inside or outside
the headed region in which they appear as location symbols.

The device of referring in one headed region to a symbol defined in another
headed region by making this symbol six characters long, is often inconvenient.
In order to facilitate cross-referencing between headed blocks, the following
convention can be used:

03.00.42
5 (6/61)

Suppose that a headed symbol, say ALPHA headed by X, has been defined by
some instruction. Suppose further that this symbol is to be referred to in an
instruction under the control of the instruction HEAD Y. Then the desired
reference can be made by writing the string X$ALPHA.

In general, if the two-character string "C$", where C is any allowable heading
character, is placed in front of the head~d reference symbol ALPHA, then the
result is ALPHA headed by C. To specify ALPHA headed by blank, one simply
writes $ALPHA, with no character preceding the $ character. (A blank must
}lot be used ahead of the $, since this always indicates the end of the variable
field.)

Note that location symbols cannot beheaded by means of "$".

As an illustration of the use of $, consider the following:

Location

(3000) ALPHA
(3001) BETA

(3002) ALPHA
(3003) BETA

(3005) ALPHA

(3007) GAMMA

Operation

ORG
CLA
CLA
HEAD
CLA
CLA
CLA
HEAD
CLA
CLA
HEAD
CLA
CLA

Variable Field

3000
BETA (3001)
X$ALPHA (3002)
X
BETA (3003)
$ALPHA (3000)
Y$ALPHA (3005)
Y
X$BETA (3003)
$GAMMA (3007)

ALPHA (3000)
Y$ALPHA (3005)

where the value assigned to each loc~tion symbol is given by the parenthesized
number to the left of the instruction in which this location symbol appears, and
the value corresponding to the address symbol is given by the number to the
right of the instruction.

All symbols which occur in the instructions generated by a macro-instruction
are affected by a controlling HEAD instruction in the same way as symbols in
ordinary instructions are affected. This is also true of the .symbols in instructions
generated by a library program if the library program is called for incorporation
into the source program by means of an LBR instruction which specifies relativization.
On the other hand, if the program is called for by an LBR that specifies no
relativization, all headings internal to the library program will be retained and

03.00.43
5 (6/61)

will take precedence over any previous external HEAD instructions. These
internal HEAD instructions, however, will be effective only in the scope of the
incorporated library program. Thus, an external heading control preceding the
LBR instruction will be nullified only temporarily by internal HEAD instructions.
Since every library program is considered to be headed by blank the programmer
must refer to the beginning of the library prpgram by $ whenever the reference

. is within a headed region. For example, suppose the programmer wants to use
the library program LIBPG by entering it via a TSX. If he is within a region
headed, say, by X, he must enter the program by a TSX $LmPG, 4.

In defining a programmer macro (see MACRO), it is permissible to use a
variable which can take on a heading character as a value. For example:

Location Operation Variable Field

QMOVE MACRO V1, V2, va
CLA V1$V2
STO va
END

defines a macro-operation where V1 is a heading character. With this definition,
if one writes:

Location Operation

QMOVE

then one obtains the expansion:

Location Operation

CLA
STO

Variable Field

X,ALPHA+BETA*GAMMA+1,DELTA

Variable Field

X$ALPHA+X$BETA*X$GAMMA+1
DELTA

Note that a heading character applied to a non-simple expression (e. g. ,
ALPHA+BETA*GAMMA+1) affects all the symbols used in the expression.

A location symbol should not be used in a HEAD instruction. If a location symbol
is used in a HEAD instruction, it is ignored and an error is indicated on the output
listing.

ETC (Et Cetera)

With three exceptions, all instructions in SOS must be limited to a single instruction
card, i. e., 72 columns. The purpose of ETC is to provide for extending this
72-character limit in the following three cases:

03.00.44
5 (6/61)

1. a VFD instruction
2. a MACRO instruction (used to define a programmer macro)
3. a system or programmer (defined) macro-instruction.

Suppose that the variable field of an instruction whose operation is VFD, MACRO,
or any system or programmer macro-operation, is too long to fit on a single
card. Then the variable field of this instruction can be broken off after some
subfield, say the nth subfield, and continued in the variable field of a second
card, beginning with the n+1th subfield of the instruction, by writing ETC in
the operation field of the second card. The comma which ordinarily separates
the nth from the n+ 1th subfield must appear as the last character in the variable
field of the first card, not the first character in the variable field of the second
card.

The omission, on the first card, of the separating comma between the two
subfields will cause an error to be indicated on the output listing, but the
comma is assumed to be present.

The location field in an ETC card should be left blank. If a location symbol is
used in an ETC card, this symbol will be ignored and an error will be indicated
on the output listing.

If one ETC card is' still not sufficient to specify the variable field of the instruction,
additional ETC cards can be used, without limit.

As an illustration, consider:

Location Operation

VFD
ETC
ETC

Variable Field

18/1, HIS/ABC, 18/2,
H18/DEF, 18/3,
H18/GHI

Note that this is an. example of a single pseudo-instruction (which generates
three words in the object program) although it requires three cards.

SQZ (SQUOZE)

SQUOZE decks produced by 80S can be combined with symbolic coding during
compilation. The place at which a SQUOZE deck is to be included is indicated
by an SQZ instruction. If the symbolic input component and SQZ input component
are the same, the SQZ deck is inserted in the symbolic deck following the SQZ
card. If they are different, the SQZ deck must be immediately available at the
input component when the SQZ card is encountered.

03.00.45
5 (6/61)

The location symbol of an SQZ card has the value it would receive if the SQZ
card were an instruction. An SQZ deck loaded on-line is assumed to be column
binary unless the variable field contains the symbol RB, in which case it is
treated as a row binary deck.

The deck cannot contain symbolic modification cards, cannot be preceded or
followed by blank cards and must be in the form produced by the system.

In the 32K IB Monitor system the programmer macros in the deck (see page 03. 00. 27)
are combined and may be used thereafter. In the 8K IB system programmer
macros are' not combined. All symbols in the SQ Z deck retain their original
heading. No heading characters introduced within the SQUOZE deck affect
symbols used after the point where it is inserted. If both texts are in the
SQUOZE deck, commentary text is combined (if present) and non-commentary
text is ignored. If only non-commentary text is present, it is combined.

Cards are checked for checksum agreement, sequence number, and presence
of the SQZ punch (minus sign for control word).

Note: A symbolic deck may consist solely of SQZ cards with SQZ decks and
an END card.

Additional details are given in Chapter 3, Section 08.

END (End)

This pseudo-operation has two distinct applications:

1. END is used to indicate the end o~ a skeleton for a programmer macro.
This application has already been mentioned under MACRO. In this case,
the operation END should appear by itself, with a blank location field and
blank variable field.

2. END must also be used at the physical end of every source program, to
indicate the end of the source program. Here, the variable field is pertinent
and should consist of a single subfield. This subfield should contain the
address which constitutes the starting-point of the program. This address,
as usual, may be any legal arithmetic expression, but will ordinarily be an
integer or the symbol used to name the fir st executed instruction of his
source program, e. g., START.

Suppose that the Compiler encounters the pseudo-instruction:

03.00.46
5 (6/61)

Location Operation Variable Field

END ALPHA

This instruction will produce two effects:

1. The Compiler assumes that there are no more instructions to be processed.

2. The symbol ALPHA, which presumably apPears with its assigned value in
the dictionary, is saved in a special way. Later, when the MOdify and Load
program has finished loading the object program, the information is used
to transfer control to the core storage location corresponding to ALPHA
to begin execution of the object program.

In case the programmer has requested his object program in absolute binary
form, the result of END ALPHA will be a transfer card containing the absolute
address corresponding to ALPHA.

Although an END instruction generates no words in the object program, a location
symbol used in an END instruction is processed in the usual way, i. e., entered
into the dictionary with the current value in the location counter. This value
will be, of course, one greater than the value corresponding to the final word
generated by the source program.

TCD (Transfer Card)

This pseudo-operation will have the same effect as the second application of the
pseudo-operation END described above, except that it will not cause the Compiler
to assume that the source program is at an end. That is, the pseudo-instruction:

Location Operation Variable Field

TCD ALPHA

causes ALPHA to be saved as control information for later use by the Modify
and Load program, as in the case of END ALPHA. After processing the TCD
instruction, processing continues with the next instruction.

The rules governing the location field and the variable field of a TCD instruction
are the same as for an END instruction.

In case the programmer requests his object program in absolute binary form, the
result of TCD ALPHA will be simply an ordinary transfer card containing the
absolute address corresponding to ALPHA. This is the reason for the code
"TeD". This pseudo-operation is provided, for example, to allow programs
which are too large to fit in core storage to be loaded in pieces, each piece being
terminated by a transfer card.

03.00.47
5 (6/61)

LISTER

CHAPTER 1: SCAT LISTINGS

Symbolic listings of a program reproduce, with some exceptions, the symbolic
source program deck. The exceptions which are never reproduced are:

1. Invalid operation codes, which are replaced in the listing by I II.

2. Invalid symbols, such as those longer than six characters, which are
replaced by 1111//.

3. The shortened forms of extended operation codes, which are changed to,
and listed in their extended forms, e. g., the instruction WRS 1169 is listed
as WTBB 1.

In addition to the above, words generated by the BCI, DEC, DUP, LBR and
OCT instructions or by macro-instructions are not normally listed in detail
(see Chapter 3). Instead, only a "title line" and the first word generated by
these instructions are printed. (The "title line" reproduces the card containing
the BCI, DEC, DUP, LBR, OCT, or macro-instruction.) All generated words
may, however, be listed by exercising one or more of the options available.

When a SQUOZE deck is listed, comments are aligned with the first comment
in the program, and therefore may not be aligned as in the source deck.

Symbolic listings produced by SCAT may consist of four main parts:

A. The first part may be either of two items depending on whether the program
is being processed by the Compiler or by Modify and Load.

1. During Compiler processing, this part is a listing of errors found in the
program (see "Compiler Error Listing" below).

2. During processing by Modify and Load, this part is a listing of the
modification cards (if any) for the program and any errors found in those
cards (see "Modifications Listing" below).

B. The next part produced is a listing of all inconsistently defined principal
pseudo-operations and of all undefined and doubly-defined symbols in the
program. (See "Symbol and Pseudo-Operation Error Listing. ")

C. The third part of the listing will be the symbolic program with absolute
(octal) equivalents. (See "Program Listing. ")

04.01. 01
3 (1/61)

D. The final part is a (dictionary) listing of all symbols in the program which
have been defined at least once. (See "Symbol Listing. ")

Each of these four parts of the listing is described in more detail in the following
paragraphs.

COMPILER ERROR LISTING

The list of errors detected during the processing of a program will be headed
by the statement

COMPILER ERROR LIST XX/XX/XX

where XX/XX/XX is the date of compilation, if supplied to the Compiler; other­
wise it will be 0/ 0/00. This statement will be followed by a list of all instructions,
including comments and alter numbers (see Chapter 2) in which errors were
found. Messages which indicate the type of errors found will be given following
each instruction. If no errors are found by the Compiler, this part will consist
of merely the statement

NO ERRORS FOUND BY COMPILER

MODIFICATIONS LISTING

A listing of all modification cards is always produced during processing of a
EQUOZE deck, if the deck includes such cards. If no modification cards are
included, this listing will, of course, be omitted.

The modifications listing may also include messages indicating errors found in
modification cards. These messages will follow immediately after the cards
in which the errors were found. Error messages (when using 32K SOS only) will
be indicated by a row of asterisks to make them easily distinguishable.

04. 01. 02
3 (1/61)

A sample of a modifications listing is given below.

CHANGE CRTl+16,CRTl+17
ClM
llS 35
ALTER 45,46
ClM
llS 35
CHANGE ST AF<T+14
TIX

MISSING ADDRESS FIELD
TAG AND/OR DECR EXPECTD

CHANGE CRTl+21,CRTl+22
Cll'Vl
llS 35

SYMBOL AND PSEUDO-OPERATION ERROR LISTING

This part of the listing is always given during processing of a program if errors
of the types described below are detected.

The symbol and pseudo-operation error listing may consist of up to five parts
as indicated below. Anyone or more of these parts will be omitted when no
items are found which fall into the given category.

1. The first list which may appear in this part will be labelled "INCONSISTENTLY
DE FINED PRIN PSEUDO OPS" and will be a list of all the principal pseudo­
operations (BES, BOOL, BSS, END, EQU, HEAD, ORG, SYN, TCD), which
have caused a circular definition of a symbol(s) in the program. A given
principal pseudo-operation may appear more than once in the list if that
pseudo-operation occurs in more than one instruction which has caused a
circular definition. All items in the list are given in the order in which they
are encountered.

2. The next list which may occur in this part is a list of all undefined symbols
which occur in the program in connection with a principal pseudo-operation,
i. e., in the variable field of a principal pseudo-instruction. This part is
labelled "UNDEF SYMBOLS IN PRIN PSEUDO OPS. II

This list will also show the value which has been arbitrarily assigned to each
symbol in the list.

3. The third list which may appear in this part is a list of all symbols which
appear in the program in connection with principal pseudo-operations and

04.01.03
2 (2/60)

are defined more than once in the program. Each symbol listed will also
show the arbitrary value assigned to it.

This list will be labelled "DOUBLY DEF SYMBOLS IN PRIN PSEUDO OPS."

4. Next may appear a list of all symbols in the program, other than those
described in 2 above, which are undefined. The symbols given in this part
also will be shown with the arbitrary values assigned them.

This list will be labelled "UNDEF SYMBOLS IN TEXT. "

5. The final list which may be given in this part is labelled "DOUBLY DEF
SYMBOLS IN TEXT." This will be a list of all symbols, other than those
described in 3 above, which are defined more than once in the program.
The arbitrary values assigned each symbol will also be shown.

PROGRAM LISTING

The third part of listings produced by SCAT will be a listing of the program
itself. This part will occupy as many pages as is necessary.

Each page of this part will show the job identification, page number, and date
in the upper right-hand corner. Page numbers will be assigned beginning with
the first page of this part. The job identification and date will be given only if
supplied with the program. (See the Monitor sector for information on how these
are supplied.) If no date is supplied, 0/ 0/00 will be printed where the date
would appear.

Up to fifty lines of the program will be printed on each page, and will include
the symbolic program instructions and octal equivalents. These instructions
will be given numbers from two reference systems (i. e., relative and alter
numbers) which are assigned as described in Chapter 2.

SYMBOL LISTING

The last part of listings produced by SCAT will be a list of all defined symbols
in the program, whether they are defined once or more than once. Six-character
symbols will be listed first, followed by symbols less than six characters long
which are not explicitly headed, followed by symbols which are explicitly headed.
The symbols will be listed in five columns and will be arranged alphabetically
within each category. Symbols which are doubly-defined will be listed at the end
in the order in which they were encountered, and will appear once for every
appearance in a location field in the program.

04.01. 04
2 (2/60)

Any symbol in this list which is defined (whether once or more than once) but
not used in the variable field of any instruction is indicated by an "*".

The number of the page on which a symbol appears in the location field of the
program listing will be shown with the symbol. Thus, since doubly-defined
symbols appear in the list once for each definition, all page numbers for doubly­
defined symbols are shown.

A sample symbol listing is shown below.

PRCOMM 0001
RESTOR 0002
STRTWD 0001
SWITCH 0002

04.01.05
1 (11/59)

1S1811 0002
WKAREA 0001

CLEAR 0001
CON6 0001

EXIT
IMAGE
MASK
PRINT

0002
0002
0002
0002

WRITE 0002
lNUM 0002

NUMBER *0002
NUMBER *0002

ZERO
ZERO

*0002
*0002

LISTER

CHAPTER 2: REFERENCE SYSTEMS

The two numbering systems previously mentioned, relative numbering and alter
numbering, are used by SCAT in order to facilitate references to words in a
program. These numbers are initially assigned by the Compiler, and are
changed, if necessary, by Modify and Load only when a new SQUOZE deck is
pWlched.

RELATIVE NUMBERING

A relative number is an integer used to indicate the position of a machine word,
not assigned a location symbol, relative to the last preceding word in the program
with which a location symbol is associated. The positions thus indicated are
the relative positions of instructions the last time a SQUOZE deck was pWlched.
However, if unaffected by modifications to the current SQUOZE deck, relative
numbers also indicate the relative storage locations to be occupied by the machine
words of the program.

Since relative numbers, in a sense, indicate storage locations occupied by
machine words, they are assigned only to those instructions which will occupy
locations when loaded for execution. Thus, relative numbers are never assigned
to principal pseudo-instructions (BES, BOOL, BSS, END, EQU, HEAD, ORG,
SYN, TCD), generative pseudo-instructions (BCI, DEC, DUP, LBR, OCT), or
programmer macro-instruction definitions. However, the words generated by
the generative pseudo-instructions and by macro-instructions are assigned
relative numbers.

Relative numbering is begWl when the first location symbol of a program is
encoWltered. The word associated with this symbol is numbered +0 (although
not shown on listings), the next word is numbered +1, and so forth Wltil either
another word with a location symbol, or an instruction with a principal pseudo­
operation, is encoWltered. When a new symbol is encoWltered the process is
begun again. If, however, relative numbering is suspended by one of the
pseudo-operations, it is not begWl again Wltil a new symbol is encountered.
Words for which a positive relative number cannot be computed, will be given
a negative relative number, 1. e., a number relative to a succeeding symbol, if
that can be computed. If neither can be computed no relative number will be
shown.

Although only one relative number is shown on the listing for a given word,
there exists, in general, many other equivalent relative numbers, both positive

04.02.01
1 (11/59)

and negative, anyone of which may be used when referring to that word. For
instance, in the list

82 RESTOR AXT ~H~O, 1 RESTORE
83 +1 AXT -1~~~ 0 , 2 INDEX REGISTERS
84 +2 AXT ~H~O 4 CONTENTS
85 +3 1m~11t.t 2,4 ' RETURN
86 +4 SLN 1 TURN SENSE LIGHT 1 ON
87 +5 TRA PRINT
88 MASK OCT 373737373737
89 +1 OCT 377737773777
90 WRITE PZE WKAREA , ,24
91 IMAGE BSS NUMBER,O
92 NUMBER EQU 24
93 ZERO EQU 0
94 TSTBIT PZE STORAGE FOR TEST BIT
95 END PRCOMM

the word numbered +1 relative to the symbol MASK, has the equivalent numbers:

+7 Relative to RESTOR
-1 Relative to WRITE

and so forth. Note, however, that there is no number for a word relative to a
symbol which is separated from that word by a principal pseudo-operation. For
example, in the listing, the words preceding the BSS with the location symbol
IMAGE, have no numbers relative to the symbol TSTBIT.

ALTER NUMBERING

Alter numbers are essentially numbers for the symbolic cards in a source
program deck. Alter numbers are assigned to remarks cards and to all cards
except those which:

1. contain ETC, EXEMPT, and MACRO instructions
2. define programmer macro-instructions
3. fall within the range of a DUP instruction.

Generative pseudo-instructions, including defined programmer macro-instructions,
are assigned alter numbers although the words generated by the instructions are
not. Modify and Load pseudo-instructions are never listed and, therefore, not
assigned alter numbers.

04.02.02
1 (11/59)

LISTER

CHAPTER 3: PSEUDO-OPERATIONS

As was mentioned in Chapter 1, SCAT listings normally include only a title line
and the first word generated by BCI, DEC, DUP, LBR and OCT instructions and
by macro-instructions. This mode of printing is called the normal or Title mode.
It was also indicated that all words generated by these instructions could be
listed, if desired. This is accomplished by using one of the pseudo-operations
described in this chapter. The remaining instructions, of which there are five,
are used to control the format of a listing. The features provided permit:

A. suppression of printing for part or all of the listing, if desired
B. inclusion of extra spacing at strategic points
C. printing of various parts of a program on separate pages.

The six listing pseudo-operations may be inserted in a source deck or incorporated
subsequently by Modify and Load. A location symbol used in connection with
any of the pseudo-operations is meaningless and should be omitted.

UNLIST

~* FOR REMARKS
~ I I

~ LOCATION OPERATION I IADDRESS,TAG,DECREMENT/COUNT
I

I I I
I I I

112 678 1411~116

: I I)
IUIN,L II,S T I I

I , . I I , , , , I , I I I I J ~ _J II I I , I ,I
I I I
I I I
I I I I I , , , • I , I I , _1 11 1 I I _1 I I , I , . ,

The UNLIST pseudo-instruction causes printing to be suppressed until a LIST
pseudo-instruction is encountered. This pseudo-operation makes it possible to
skip over parts of a program for which a listing is not desired, such as portions
which have been completely debugged and no longer require attention until a
final listing of the program is produced.

LIST

~* FOR REMARKS -,
LOCATION OPERATION
I
I

I 12

:
I , , , .
I
I
I

04. 03. 01
1 (11/59)

•

678

L,I,S.TI ,

I

I I

(: IADDRESS,TAG, DECREMENT/COUNT
1 I
I I

1411~116

I I

~ I I
I I , , , , I I I • • I , I

I I

• I(
I I
I , . , . , J L 1 1 I I 1 • I I I ,

This pseudo-instruction causes printing to be resumed in the normal mode.

The LIST pseudo-instruction is effective until an UNLIST or DETAIL instruction
is encountered. LIST has no effect unless an UNLIST or DETAIL instruction
appears prior to it in the program.

Note: A LIST pseudo-instruction at the beginning of a program is redundant,
since the listing program operates as though a. LIST were present. Thus,
if the first part of a program is not to be listed, an UNLIST must be
included.

DETAIL

The DETAIL pseudo-instruction may be used in either of two forms. The first is:

~* FOR REMARKS -I 1

{ LOCATION OPERATION IADDRESS,TAG, DECREMENT/COUNT
I I

1
I

~: 16 I 12 678 14

:
;Q.ELT~ALI L

I I) I
1 .1 1 ..1.1 I I I I I I

I 1 J 1 1
I I I I 1 I 1 I 1 I I I I 1 I 1 I I I 1 I I I 1

This form causes printing, if in progress, to be continued in complete detail,
i. e., all machine words generated from macro-instructions and BCI, DEC, DUP,
LBR, and OCT instructions will be listed.

The second form which is permitted is

I 1 ~
* FOR REMARKS

LOCATION OPERATION: I ADDRESS, TAG, DECREMENT/COUNT
I I 1

1 :2 6 7 8 14:1~:16

DET A I L

where NAME1, NAME2, ... , NAMEN
may be one or more of the symbols
BCI, DEC, DUP, LBR, MACRO, and
OCT.

This form causes printing to be continued in partial detail. The appearance of
MACRO in the variable field causes detail printing of macro-instructions; the
appearance of BCI, DEC, DUP, LBR, or OCT causes detail printing of those

04.03.02
1 (11/59)

types of pseudo-instructions. If all the permissible symbols appear in the
variable field of a DETAIL instruction, that instruction has the same effect as
the first form above.

A DETAIL instruction does not cancel the effect of a previous DETAIL which
has not been cancelled by a TITLE, LIST or UNLIST instruction; rather, it adds
to the effect of that DETAIL instruction. For example,

1 1 ~
* FOR REMARKS

LOCATION OPERATION: I ADDRESS, TAG, DECREMENT/COUNT
I 1 I

112 6 7 8 14:1!S:I6

might appear at the beginning of a program to cause macro-instruction to be
printed in detail. A subsequent

~
* FOR REMARKS

LOCATION OPERATION: i ADDRESS, TAG, DECREMENT/COUNT
I 1 1

112 6 7 8 14:1!S:16

will then cause detail printing of LBR instructions as well.

The DETAIL pseudo-operation has no effect unless printing is in progress when
it is encountered.

TITLE

~* FOR REMARKS ",",
1 iADDRESS, TAG, DECREMENT/COUNT

~
LOCATION OPERATION
I 1 1
I I I 1 12 678 14 1115,16

1 1 : I T I,T.L,E I I
1 I I I I 1 1 i L il I I • I I I i -.l ~
I 1 I
1 1 1

I .} 1 1 I I I I I 1 I I I I I I 1 I I I I I I I I

A TITLE instruction causes printing in the Title mode. The instruction will
have no effect if printing has been suspended, or if printing in the Title mode is
already in progress.

04. 03. 03
1 (11/59)

TITLE is useful when it is desired to change printing from the Detail to the Title
mode if printing is in progress, and printing is not to be resumed if it has been
suspended.

SPACE

G* FOR REMARKS ~

! I ADDRESS, TAG, DECREMENT/COUNT) LOCATION OPERATION ,
1 I ~ 1 I I

1 12 678 1411~,16

: , ,) S PAC,E
, :n I . I I 1 • 1 I 1 I I I • I I I .

I I 1
I I I
, I I I I I I I . I I 1 I I I

where n is any valid character.

This pseudo-instruction will cause the printer to space a number of lines equal
to the decimal equivalent of the octal representation of n in storage, e. g., if n
is A, the printer will space 17 lines since A is represented in storage as 218,
However, if n is a blank or is zero, it will be taken to be 1. SPACE is effective
only when printing is in progress.

EJECT

F* FOR REMARKS

"LOCATION OPERATION I ADDRESS, TAG, DECREMENT/COUNT

1 '
112 14 ~:16

The EJECT pseudo-instruction causes the printer to skip to the beginning of the
next form. EJECT is not effective if encountered while printing is suspended.

04.03.04
1 (11/59)

MODIFY AND LOAD

CHAPTER 1: MAIN FEATURES

The SCAT Compiler uses as input a symbolic source program. From this input
the Compiler produces a compact binary-coded-symbolic (SQUOZE) program
which contains all of the information supplied in the source program, including
remarks cards and comments from instruction cards.

SQUOZE decks produced by the Compiler may be used with symbolic decks as
input to subsequent Compiler passes, and incorporated with the symbolic deck
to form one SQUOZE output deck. Thus, a program can be written in parts and
each part debugged before all are combined.

Detailed information concerning the composition and form of the SQUOZE deck
is included in the appendices.

SQUOZE decks produced by the Compiler are also used as input to Modify and
Load. Since all symbolic information is available to Modify and Load, three
major advantages over previous assembly systems are provided:

A. Changes can be specified in symbolic form for incorporation into the program
by Modify and Load.

B. Symbolic changes do not require the source deck to be reprocessed by the
Compiler.

C. Symbolic information is available and may be retained for printing during
debugging runs, thus making debugging easier.

The main functions performed by Modify and Load are:

A. Modification of a SQUOZE program on the basis of symbolic information
supplied with the SQUOZE deck.

B. Loading the modified version of a program into storage in preparation for
execution of the program.

In addition to the above, Modify and Load also provides the following features:

A. When desirable, a new SQUOZE deck, incorporating symbolic modifications,
may be prepared. (A new SQUOZE deck is automatically prepared when a
modification affects a heading card.) Generally, it is desirable to exercise
this option when the number of modification cards is approximately equal to

05.01.01
1 (11/59)

the number of cards in the SQUOZE deck, since many symbolic cards will
add a significant amount of time to loading and assembly.

B. A symbolic listing of a program can be prepared from a SQUOZE deck which
includes no modifications. (A new symbolic listing is automatically prepared
when a new SQUOZE deck is punched.)

c. An absolute binary version of a program may be obtained from a SQUOZE
deck. Although this option is available to the user, little benefit is derived
by exercising the option until a program has been completely debugged,
because the debugging and modification features of SOS can only be used with
SQUOZE program decks.

05.01.02
1 (11/59)

MODIFY AND LOAD

CHAPTER 2: PSEUDO-OPERATIONS

The SCAT language includes five pseudo-operations by which changes can be
effected through Modify and Load in a program in SQUOZE form; the use and
effect of these pseudo-operations are described below.

To accomplish modifications, the modification instructions and any words to be
inserted into a program are punched in symbolic form and used as input with
the SQUOZE deck. (See the appropriate Monitor description for operational
details.) The changes indicated in these cards are made in the program before
it is loaded into storage but do not effect the SQUOZE deck until a new deck is
punched. At that time, the changes are physically incorporated into the SQUOZE
deck.

The effects of the modification pseudo-operations when loading a program into
storage and when preparing a new SQUOZE deck are equivalent to, and could be
accomplished by, making the required changes in the original symbolic source
program, reprocessing with the Compiler, and then loading the new SQUOZE
deck. Therefore, in the discussion that follows only the effect which the pseudo­
operations have on the SQUOZE deck will be indicated.

It should be remembered throughout the discussion that each change must be
indicated as though it were the only one affecting the program, regardless of the
actual number. That is, all changes must be indicated in terms of the current
deck and the associated listing.

CHANGE

The CHANGE pseudo-operation can be used to delete words from a program,
insert additional words in a program, or both depending on the form of the
instruction. When using CHANGE, the modifications are specified in terms of
relative numbers.

CHANGE instructions may be used to delete or insert words with which location
symbols are associated, in which case, the location symbol is also deleted or
inserted. When a word which has a location symbol is deleted, the symbol is
deleted from the Dictionary, and may, therefore, be used subsequently as a
location symbol for another word.

No location symbol is required with CHANGE. If one is present, it will be
ignored.

05.02.01
2 (2/60)

Two forms' of the CHANGE instruction are permissible. The first is:

~
* FOR REMARKS

LOCATION OPERATION: i ADDRESS, TAG, DECREMENT/COUNT
, I I

112 6 7 8 14:1!S:16

I I I I

where, A + nand B + m represent
relative expressions, i. e., A and B
are symbols and m and n are integers
which may be positive, negative, or
zero.

This form indicates that all words in locations A + n to B + m, inclusive, are to
be deleted from the program. If, in addition, symbolic instruction cards
immediately follow an instruction in this form, the instruction also indicates that
the words in the symbolic cards are to be inserted beginning with location A + n.
Since insertions are made as in an assembly, the words following location B + m
are automatically adjusted and the number of insertions and of deletions need
not be equal.

When any, but not all, of the words generated by either BCI, DEC, DUP, LBR,
MACRO or OCT are deleted by a CHANGE, each of the subfields remaining from
the original instruction is carried as a separate word and assigned a separate
alter number. In the listing, however, only the absolute word, and relative and
alter numbers are shown. No symbolic information is shown in the operation,
variable and comments fields. In all other cases to which a CHANGE can apply,
the comments associated with deleted words are deleted from the SQUOZE deck;
remarks cards falling within the range of deletion by a CHANGE are not deleted
from the program.

When a CHANGE instruction of the form shown above affects a headed area, it
must be written as follows:

F* FOR REMARKS

! ,LOCATION OPERATION! ADDRESS, TAG, DECREMENT/COUNT

I 12 6 7 8 14 5: 16

05.02.02
2 (2/60)

or alternatively

IT
* FOR REMARKS

LOCATION OPERATION I ADDRESS, TAG, DECREMENT/COUNT
1

I I I

112 14:115:16

where H represents a heading character
(the Hs must not be different) and A + n
and B + m are as previously described.

When this latter is used, B is assumed to be also headed by H.

Note: The heading character H is required even when the symbol(s) are six
characters long.

The second form permitted is:

IT* FOR REMARKS I I
LOCATION OPERATION I I ADDRESS, TAG, DECREMENT/COUNT 1 1
I 1 I
1

14:115:16 1 12 6 7 e
: I I

C gA.N,GE I :A + n I I I I I I I I I I I

I I I
I I I
I I I I I I

\
,
I

where A is a symbol and n is an integer
which may be positive, negative, or zero.

This form of a CHANGE instruction indicates that the symbolic instruction cards
which immediately follow it are to be inserted between the words in locations
A + n and A + n + 1. No deletions are caused by this form. If no symbolic cards
follow an instruction in this form the instruction is ignored.

When a generative pseudo-operation is inserted into a program by means of a
CHANGE instruction, the individual terms are not assigned separate alter numbers.

When insertions are to be made in a headed area, the second form of the CHANGE
instruction must be written:

IT* FOR REMARKS
LOCATION OPERATION
I
I

112

:
t I I I I

t
I
I I

05.02.03
4 (3/61)

I

6 7 e

ICHA.N,GE

I I

: I

I lADDRESS,TAG, DECREMENT/COUNT
J I I

I I
14tllStl6

I I

~ I :K,$ A + n I I Iii I _I I
I t I
I I
t I I I 1 I _1 1 I I I I I I I I I I

where K represents a heading character
and A + n is as previously described.

Here also K is required even if A is a six character symbol.

In the following list of restrictions all statements are made in terms of the
headed forms of CHANGE. These restrictions can be applied to the unheaded
forms by considering an unheaded symbol to be headed by the character "blank. "

Restrictions:

1. In a CHANGE instruction of the first form, H$A + n must be either less
than or equal to H$B + m; otherwise the CHANGE and the symbolic cards
following it will be ignored.

2. No principal pseudo-operation (BES, BaaL, BSS, END, EQU, HEAD, ORG,
SYN, TCD) may appear within the range of the lesser and the greater of
HA, HA + n, H$B, and H$B + m. If this restriction is violated an instruction
in the first form shown will cause deletion of only those words in the range
H$A + n to H$B + m, if any, which precede the pseudo-operation. In no case
will any insertion be made.

3. No principal pseudo-instruction, listing pseudo-instruction, or remarks card
may appear as an insertion by means of a CHANGE. Any insertion which
violates this restriction will be ignored.

4. Remarks cards and listing pseudo-operations cannot be deleted by a CHANGE.
When remarks c.ards or listing pseudo-operations appear between H$A + n
and H$B + m, inclusive, they will not be affected by the CHANGE.

5. No CHANGE instruction should specify the deletion of only part of the words
generated by a VFD pseudo-operation.

6. If a programmer macro-instruction is inserted by means of a CHANGE, the
definition must also be included with the group of modifications. This does
not mean that the definition must be included with the same CHANGE that is
to insert the macro-instruction. Instead, it may be included by an ALTER
or by another CHANGE. The definition may also be placed in front of the
group of modifications and need not be preceded by a Modify and Load pseudo­
operation.

7. A modification by a CHANGE instruction must not overlap another modification
by an ALTER (see below) or by a CHANGE.

05.02.04
4 (3/61)

Examples

1. Assume that in the following listing the instructions with alter numbers 79
and 80 are indicated to be in error.

78 +1
79 EXIT
80 +1
81 ~~

TRA
AXT
III

CLEAR-4
,1

1

RETURN

IF SENSE LIGHT 1 IS ON
DONT RESTORE IR 1

In order to remove the error indication by means of CHANGE, the following
instructions are necessary:

~
* FOR REMARKS

LOCATION OPERATION' : ADDRESS, TAG, DECREMENT ICOUNT
I : :

112 6 7 8 14:1!5:16 ,
:E

I I

E:XIT : * * 0 ,1" , I I , , I

78
79
80

Note: "**0" was arbitrarily selected to indicate modified addresses.

Assuming there were no modifications which affected the alter numbering
of previous instructions in the listing, the instructions would appear in a
listing of the modified deck as:

+1
EXIT

+1

TRA
AXT
SLT

CLEAR-4

1

RETURN

DONT RESTORE IR 1

(The octal absolute has been omitted for the sake of clarity; however, the
absolute equivalents would also be changed.)

2. Assume that it is desired to insert the instruction SLT 1 following the
instruction in the list below which has alter number 9, without deleting any
instructions.

05.02.05
3 (1/61)

6 PRCOMM CLA 1,4 GET PRINTER CONTROL WORD
7 +1 TMI ~~+3

8 +2 WPDA DOUBLE SPACE PRINTER IF
9 +3 WPDA CONTROL NEGATIVE, SINGLE IF +

10 +4 SXA RESTOR,l SAVE INDEX
11 +5 SXA RESTOR+1,2 REGISTER

The required modification cards are:

~* FOR REMARKS - 1 1

~
LOCATION OPERATION 1 I ADDRESS, TAG, DECREMENT/COUNT

1
1 I 1
1 1 I

1 12 6 7 8 14 d5,16

: 1 1

I) CHAIN,GE
, :PR C,Ol\I,M + 3 1 I 1 ~ .~ -.11

,
1 1 ,
1 S LIT~ 1

: 11 , , i 1 I 1 1 I 1 1 , 1 I 1 IL-.L I , 1 I I I I 1 1 ,
I , ,
1 1 ,

'--'-_.1 , I I .1. 1 , I I I 1 1 1 I I I 1 I I I , 1 I I I 1 I I 1 I I I 1 1 1

After this change is made, the listing will appear as

6 PRCOMM CLA 1,4 GET PRINTER CONTROL WORD
7 +1 TMI ~~+3

8 +2 WPDA DOUBLE SPACE PRINTER IF
9 +3 WPDA CONTROL NEGATIVE, SINGLE

10 +4 SLT 1
11 +5 SXA RESTOR,l SAVE INDEX
12 +6 SXA RESTOR+1,2 REGISTER

assuming that there are no changes which affect previous instructions.

ALTER

The ALTER pseudo-operation is analogous to CHANGE, in that it Inay occur in
two forms similar to those of CHANGE and may be used to make insertions,
deletions, or both. ALTER, however, inserts and/or deletes the equivalents
of symbolic source program cards, instead of machine words.

There are two permissible forms for ALTER. The first is:

~* FOR REMARKS - : 1
LOCATION OPERATION

I
IADDREss,TAG, DECREMENT/COUNT

1 I I
1

1 12 678
1 1

14 115,16

: 1 1 ,

\
l

IF +

1 I ALTIER 1 :N1. N .. I , I ..1. I I II I
1
1
1

05. 02. 06
3 (1/61)

1
1

i ...l i I

1 - -
1 , 1 I I 11 I .1 I I 1 I I , , I

where N 1 and N 2 represent alter
numbers.

This form indicates that the information corresponding to alter numbers N 1
through N 2, inclusive, is to be deleted from the program. If symbolic cards
are associated with an ALTER instruction in this form, the instruction also
indicates that the cards are to be inserted into the program between Nl - 1 and
N 2 + 1. As with CHANGE, the number of insertions need not be equal to the
number of deletions since the words following N2 are automatically adjusted.

The second form is:

~* FOR REMARKS - 1 1

LOCATION OPERATION 1 ~ADDRESS,TAG, DECREMENT/COUNT
1

I 1 1
I 1 1

I 12 678 1411~116
1 I I (
1 A,LTE.R I :N I • J 1 • 1 • • I . I I I •

1 1 1
1 1 1 (1 I I • I . 1 I I I . . . , •• I I I I I I I I

where N is an alter number.

This form indicates that no deletions are to be made, and that the associated
program modification cards are to be inserted between the symbolic instructions
numbered Nand N + 1.

Restrictions:

1. In an ALTER instruction in the first form, Nl must be less than or equal to
N2; otherwise the instruction and the symbolic cards to be inserted will be
ignored.

2. Remarks cards, and DETAIL, EJECT, LIST, SPACE, TITLE, and UNLIST
pseudo-instructions cannot be deleted by an ALTER. When an ALTER specifies
alter numbers which include one of these in their range, the ALTER does not
affect the remarks cards or listing pseudo-instructions.

3. An ALTER instruction cannot delete an END card without also inserting an
END card.

4. An ALTER cannot insert an END instruction without deleting an END instruc­
tion. If an ALTER includes an END and does not specify the deletion of an
END, the END to be inserted is ignored.

5. If a programmer macro-instruction is inserted by means of an ALTER, the
definition must also be included with the group of modifications. This does

05.02.07
1 (11/59)

not mean, however, that the definition must be included with the same ALTER
that is to insert the macro-instruction. Instead, it may be included by a
CHANGE or by another ALTER. The definition may also be placed in front
of the group of modifications and need not be preceded by a Modify and Load
pseudo-instruction.

6. A modification by an ALTER must not overlap a modification either by
another ALTER or by a CHANGE.

Examples

1. Assume that it is desired to correct the instruction with alter number 5 in
the following listing.

5X
6 PRCOMM

ORG
CLA

START
1,4 GET PRINTER CONTROL WORD

The instructions necessary to accomplish the correction are:

~
* FOR REMARKS

LOCATION OPERATION: ! ADDRESS, TAG, DECREMENT/COUNT
I I I

1:2 6 7 8 14:1!5:16

After this correction is incorporated, the listing, assuming no changes
affecting the preceding remarks cards, will appear as follows:

4~(-

5
6 PRCOMM

ORG
CLA

3000
1,4 GET PRINTER CONTROL WORD

2. Assume that in the following listing the instructions with alter numbers 92
and 93 are to be deleted.

91
92
93
94

NUMBER
NUMBER
ZERO
TSTBIT

05.02.08
1 (11/59)

EQU
EQU
EQU
PZE

24
12
o

STORAGE FOR TEST BIT

The required instruction is:

~* FOR REMARKS
" I I

{ LOCATION OPERATION : lADDRESS,TAG, DECREMENT/COUNT
1 1 ,
1 , ,

1 12

: ,
I
I ,

91
92

678 14,1~,16 , ,
~LTER

,
:9 2 • ,9,3. , • 1 1 I t I I , • t , I

1 t (
, ,

• I • I I I I I til I I I 1 I 1 I t

The listing after this change is made will appear (assuming no modifications
affecting preceding instructions) as:

NUMBER
TSTBIT

EQU
PZE

24
STORAGE FOR TEST BIT

ERASE

The ERASE pseudo-operation is provided in order that commentary information,
i. e., comments, remarks cards, and listing pseudO-instructions, may be
deleted from a SQUOZE deck. No insertions can be made by means of this
operation. An ERASE modification may overlap those of CHANGE and ALTER
without error. Four forms of ERASE are permissible. The first is:

-~* FOR REMARKS

! iADDRESS, TAG, DECREMENT/COUNT (LOCATION OPERATION
1 1 I
1

112 678
I I

1411~116

: I ,
ER1A.S,E I :N1 • N" I ~ 1 I

I ,
I - -

I I I
, t I I I I , I

~

• I

, t I I I , t I I , • I .)

where N1 and N2 represent alter numbers
and N1 S N2. (Note that two alter
numbers must appear in the variable
field.)

This form causes the deletion of all commentary corresponding to alter numbers
N1 through N2, inclusive.

05.02.09
1 (11/59)

The second form of ERASE is:

~* FOR REMARKS

1 : ADDRESS, TAG, DECREMENT/COUNT LOCATION OPERATION
I

1
1
1

I 1
5h6 1 12 678 14

1 :
L~RA,S,E I

I i I 1 i1 I J 1 I I I 1 I 1 l-'- 1 I I I
1 1

-) 1 1
1 .1 I I 1 1 I 1 1 1 1 I 1 --'- 1 I I I I I I 1 I .J

and specifies the deletion of the Macro-instruction Name Table and the Macro­
instruction Skeletons (see the appendix which describes the ~UOZE deck format)
and of all information in the ~UOZE deck which is not essential to the execution
of the program.

Since this form of ERASE does the work of all other forms, its presence will
cause any other ERASE instruction to be ignored.

The third form is:

~* FOR REMARKS -I 1 1
LOCATION OPERATION 1 I ADDRESS, TAG, DECREMENT/COUNT 1
1 1 1
1 1 1

1 12 6 7 8 14115116

: 1 I
BaA.S IE I :MACIR10 1 1 1 I I I 1 I I 1 J I I I I

I 1 1
1 I I I l-.....l----1--L-.L _ .1 I I I 1 I I 1 I I I I 1 1 I 1 I 1 1 1 1 1 1 1 1

1

This form causes the deletion of the entire Macro-instruction Name Table and
all Macro-instruction Skeletons from the ~UOZE deck.

Finally, the fourth form for ERASE is:

1 1 ~
* FOR REMARKS

LOCATION OPERATION I 1 ADDRESS, TAG, DECREMENT/COUNT
1 I

1 I 1

112 6 7 8 14:15:16

I I

where NAME represents the name of
a programmer macro-instruction.

i)
I

This form causes the name of the specified macro-instruction to be deleted from
the Macro-instruction Name Table, and the definition of the macro-instruction
to be deleted from the Macro-instruction Skeletons.

05.02.10
1 (11/59)

The first two forms shown above provide the only means of deleting remarks
cards and listing pseudo-operations from a EQUOZE deck.

When the commentary of generative pseudo-instructions is deleted, each word
generated by such instructions is assigned a separate alter number. The words
generated by BCI, DEC, and OCT are shown in the absolute portion of the listing
and the alter and relative numbers for the words are shown in the symbolic portion.
The operation, variable, and comments fields are left blank.

The third and fourth forms cause deletions only in the Macro-instruction Name
Table and the Macro-instruction Skeletons of the ~UOZE deck. The information
in the Text remains in the EQUOZE deck; however, the deletions made prevent
further use in the program of the macro-instructions deleted.

Examples:

1. Assume that it is desired to delete the remarks cards at the beginning of
the following listing.

1 ~1..

"
2 " /\"

4~~

5X

THIS IS ONLY A SAMPLE LISTING INTENDED TO ILLUSTRATE
THE FORMAT OF LISTINGS PRODUCED BY SOS.

6 PRCOMM
ORG
CLA

START
1,4 GET PRINTER CONTROL WORD

The instruction for doing this is:

~* FOR REMARKS r- 1 1

LOCATION OPERATION 1 iADDRESS,TAG, DECREMENT/COUNT
1

I 1 1
1 1 1

1 12 6 7 e 141 15"6

: 1 ,
ERASE 1 :1,. 4 1 . 1 I I I , , I ,

1 1 1
1 1 1

(
~

,
I I I I I I I 1 1 I I ---L-~ 1 I 1 I~~.L. 1 I 1 I I 1 1 ~_L-L-l.'

The listing of the program would then appear as follows:

IX
2 PR(OMM

05.02.11
1 (11/59)

ORG
CLA

START
1,4 GET PRINTER CONTROL WORD

2. Assume that it is desired to delete the comments associated with the
instruction with alter number 75 in the following listing.

~~+2 74
75
76

+7
+8
+9

TRA
TRA
TIX

STRTWD
CLEAR+3,4,1

NEW WORD
TRANSFER IF HALF DONE

The following instruction is used.

~
* FOR REMARKS

LOCATION OPERATION I I ADDRESS, TAG, DECREMENT/COUNT
I 1

1 1 I

1 :2 6 7 8 14:15:16
I

r===~~E~~~~:~7~S~~7~S~~~~~~~LJ-~~~~~~~~~~

The instruction would appear in subsequent listings as:

~~+2

STRTWD
74
75
76

+7
+8
+9

TRA
TRA
TIX CLEAR+3,4,1 TRANSFER IF HALF DONE

SYMBOL

The SYMBOL instruetion permits the assignment of a location symbol to a word
without requiring the deletion and subsequent insertion of the word. There is
one form for a SYMBOL instruction:

~
* FOR REMARKS

LOCATION OPERATION: I ADDRESS, TAG, DECREMENT/COUNT
I 1 I

112 6 1 8 14:15:16

os. 02.12
1 (11/59)

BY

where B represents a symbol of 1-6
characters which is to become associated
with the word previously assigned the
relative location expression A + n.

If SYMBOL is used to associate a location symbol with a word which already has
a location symbol, the new symbol does not replace the old; instead, the two are
made synonymous by an EQU instruction. However, if the symbol in the location
field of the SYMBOL instruction has been previously defined in the program, it
is defined again with the new value and becomes a doubly-defined symbol.

It should be noted that if the location field or the variable field of a SYMBOL
instruction is blank, the instruction is ignored.

When a SYMBOL instruction is to assign a symbol to a word in a headed area,
i. e., when A is headed, the instruction is written

~
* FOR REMARKS

LOCATION OPERATION: i ADDRESS, TAG, DECREMENT ICOUNT
I , I

I : 2 6 7 8 14: I~: 16

SY

Restrictions:

I

OL , :H,$,A,+ In, I I I I

where H is the character by which A is headed,
and B and A + n are as described previously.

If a principal pseudo-operation appears in the range H$A and H$A + n, inclusive,
(or, if A is unheaded, A and A + n, inclusive) the SYMBOL pseudo-instruction
has no effect on the program.

Example

Assume that a symbol must, for convenience, be assigned the instruction with
alter number 25 in the follOwing listing.

16
17
18
19X
20
21
22
23
24
25
26
27
28
29X
30X
31

CON6
+1
+2
+3
+4
+5
+6
+7
+8
+9

+10
+ 11
+12
+13
+14

CLEAR

05.02.13
1 (11/59)

PDX
LGR
ADD
STO
CLA
TOP
ARS
STA
CLA
LLS
STO
AXT
TCOA
NOP
STZ
TIX

6,2
18
1,4
IIIIII
CON6
~~+2

1
STRTWD+2
SWITCH
o
SWITCH
24,1

WKAREA+23,1
WKAREA+24,1
~~-1,1,1

COMPUTE # INSERT WORDS +
START ADDRESS AND
STORE.
INITIALIZE FOR OCTAL IF TAG
OF PRINT CONTROL IS 4.
IF OUTPUT IS OCTAL STORE
3 IN CONVERSION ADDRESS

DELAY UNTIL CHANNEL AVAILABLE

CLEAR WORK AREA
FOR CONVERSION

The instruction:

F* FOR REMARKS

.ILOCATION OPERATION
,
lADDRESS,TAG, DECREMENT/COUNT
1

1
1 12 6 7 8 14 5:16

1

SH I FT SY OL :CO

would cause the instruction to appear in a subsequent listing (assuming no other
changes) as:

16 CON6 PDX 6,2
17 +1 LGR 18 COMPUTE # INSERT WORDS +
18 +2 ADD 1,4 START ADDRESS AND
19X +3 STO ////// STORE.
20 +4 CLA CON6 INITIALIZE FOR OCTAL IF TAG
21 +5 TQP ~~+2 OF PRINT CONTROL IS 4.
22 +6 ARS 1 IF OUTPUT IS OCTAL STORE
23 +7 STA STRTWD+2 3 IN CONVERSION ADDRESS
24 +8 CLA SWITCH
25 SHIFT LLS 0
26 +1 STO SWITCH
27 +2 AXT 24,1
28 +3 TCOA ~~ DELAY UNTIL CHANNEL AVAILABLE
29X +4 NOP WKAREA+23,1
30X +5 STZ WKAREA+24,1 CLEAR WORK AREA
31 CLEAR TIX ~~-1,1,1 FOR CONVERSION

ASSIGN

The ASSIGN pseudO-instruction is provided in order that symbols may be defined
or redefined by insertion of EQU, SYN, or BOOL cards. The form of an ASSIGN
instruction is:

~* FOR REMARKS r-

LOCATION OPERATION
1
1

1 12

:
1 , ,
1

05.02.14
1 (11/59)

678

. ASS,IGN

I 1

1 , ,
1 ADDRESS, TAG, DECREMENT/COUNT , 1 ,
1

1 ,
14,15 1 16

1 1
1 :H 1 , , ,
1 ,
1 I I 1 ,

I I , , I

1 • 1 1 1 I I IlL ~ .~ j 1 1 ./
where H represents a heading character
which may be a blank.

This instruction must be followed by at least one EQU, SYN, or BOOL instruction
to perform one of the following functions:

1. To define new symbols and undefined symbols in a program.

2. To redefine symbols originally defined in a program by EQU, SYN, or BOOL
instructions.

An ASSIGN instruction may not be immediately followed by any instruction other
than EQU, SYN, BOOL, or SYMBOL. (Note that a SYMBOL following an ASSIGN
does not terminate the effect of the ASSIGN.)

If an ASSIGN instruction specifies a non-blank heading character, all the symbols
used in the following EQU, SYN, and BOOL instructions are headed by that
character. (In addition, the only EQU, SYN, and BOOL instructions processed
are those for which the location symbol has been previously defined by an EQU,
SYN, or BOOL card and is not doubly-defined. Under these conditions the new
definition replaces the old one.)

When an ASSIGN instruction specifies a blank heading character, the EQU, SYN,
and BOOL instructions are treated as follows:

1. If the symbol in the location field of a SYN, EQU, or BOOL instruction is
undefined, or is new to the program, the symbol becomes defined as usual.
The EQU, SYN, or BOOL instruction defining the symbol is inserted at the
beginning of the program, preceded only by remarks included at the beginning
of the source program deck.

2. If the symbol in the location field of a SYN, EQU, or BOOL instruction is
defined in the program by a SYN, EQU, or BOOL and is not doubly-defined,
the new definition replaces the old one at the same point in the program.

3. In all other cases, the symbol in the location field of a SYN, EQU, or BOOL
instruction will be doubly-defined in the program.

When a SYMBOL card follows an ASSIGN, the location symbol will be headed by
the heading character of the ASSIGN, providing the location symbol is less than
six characters long.

The symbol in the variable field of the SYMBOL will also be considered headed
under the same condition.

05.02. 15
1 (11/59)

Example

Assume that the symbols WKAREA and IMAGE are to be equated in a program.
The instructions necessary are:

I I ~
* FOR REMARKS

LOCATION OPERATION I I ADDRESS, TAG, DECREMENT/COUNT
I I

I I I

1:2 6 7 8 14:15:16

The listing might then appear as follows (assuming no modifications affecting
four remarks cards at the beginning of the source program):

4X
5 WKAREA
6

05.02.16
1 (11/59)

EQU
ORG

IMAGE
START GET PRINTER CONTROL WORD

DEBUGGING SYSTEM

CHAPTER 1: GENERAL FEATURES

The Debugging System provides a set of system macros which will produce, in
the terms of the source program, the status of the machine at any point in the
object program, with or without specific intermediate results. The execution of
the debugging macros does not affect program continuity or operation in any way;
therefore, they may be ignored when considering operation of the program. The
macros may be inserted by the Compiler or by Modify and Load. They can, and
probably should, be deleted when the object program operates correctly.

The debugging macros fall into the following general categories:

1. Information. These are macros which cause the actual dumping of information.
The macros are PANEL, CORE, TAPE, DSC, and TRAP with its corresponding
UNTRAP. Of these, TRAP and UNTRAP are included as part of the m Monitor
System only.

All information is written in its most compressed form on an intermediate
tape. Execution of an object program must be terminated by a TRA SYSTEM
(or, in the m System, TRA 110) for the monitor to resume control. In its
output phase, the debugging translator expands and prints the information.

2. Modal. These are macros which permit a program to specify the mode to be
used in interpreting subsequent information. or to reset certain parameters
used by the Debugging System.

The modal macros are USE, FORMAT, NUCASE, BUFFER, and POINT.
(The m System also provides the ON and OFF macros to designate printing - ---on- or off-line.)

3. Conditional. These macros may be used to control the execution of the
information and modal macros.

The conditional macros are WHEN. UNLESS, AND. OR, and EVERY. These
macros set up and examine the conditions under which information and modal
macros will be executed.

Although the expansion of a macro may not be changed during the running of the
object program, the programmer is not necessarily confined to the specific
parameters in the variable field of the macro. In every macro where feasible,
provision has been made for indexing and indirect addressing which permits
a program to change the parameters of a macro without changing its expansion.

06.01.01
5 (6/61)

The information produced by the Debugging System will normally be printed under
the format controls generated in the dictionary by the Compiler or Modify and Load.

Since the dictionary contains only those locations which have attached symbols,
it behooves a programmer to give a location symbol to any pseudo-op where a
particular format is desired.

In the information macros (see Chapter 2), the format codes listed below may
be specified and will override any dictionary information. Such a specification
is effective only for execution of the macro in which it is coded.

The alphabetic codes are:

BH BCI information, written in the binary mode. This format may
only be used in the TAPE macro.

C Data Channel command.

F Floating point decimal number.

A number is printed as a signed fraction followed by a signed
characteristic.

H Hollerith (BCI) information.

o Octal number.

S Symbolic instruction with symbolic location.

The variable field will be in symbolic where applicable.

X Fixed point decimal number.

A number is printed as a signed integer in which the
fractional part is normally zero and not printed. That
is, in conversion from binary, the binary point is
as sumed to fo~low the last bit. The binary point may be
moved by the POINT macro, and returned to normal by

I .

the NUCASE macro.

V A mixed format defined by a FORMAT macro (see page 06. 03. 06). V
may only be used in a CORE macro which is preceded by the defining

06.01.02
5 (6/61)

. FORMAT macro.

DEBUGGING SYSTEM

CHAPTER 2: INFORMATION MACROS:
Share Monitor - PANEL, CORE. TAPE, DSC
IB Monitor - PANEL, CORE, TAPE, DSC, TRAP, UNTRAP

The information macros cause the Debugging System to save information for sub­
sequent printing. PANEL, DSC, TRAP, and UNTRAP do not require or use in­
formation in the variable field. In the remaining macros, CORE and TAPE, the
variable field controls the amount of information and its form. The coding of
these fields will be discussed with each macro ..

A PANEL macro is executed automatically prior to the execution of any other
information macro, and is not repeated in any given set.

06.02.01
5 (6/61)

PANEL

This macro causes the following information to be printed:

1. Contents of the P and Q bits of the AC.

2. Contents of the AC, excluding P and Q, in octal and in floating point decimal.

3. Contents of the MQ in octal and in floating point decimal.

4. Status of the sense indicators, as an octal number.

5. Status of the AC overflow, divide check and I/O check. "ON" or "OFF"
is printed for each.

6. Contents of each index register, in octal and decimal.

7. Status of sense lights, as a binary number in which 0 indicates that the
corresponding light is Off, and 1 indicates that it is On.

8. Settings of sense switches, as a binary number in which 0 indicates that the
corresponding switch is Up, and 1· indicates that it is Down.

9. SHARE Monitor: . The location at which the debugging macro was encountered.
m Monitor: The setting of the entry keys, as an octal number.

Example of PANEL output (IB Monitor):

DT8A+1 PANEL

AC 00 + 002000 001511 +.00000000+00 MQ - 002200 000000 -.29381359-38 51 000000 300000 OVfL OFF DC OFF IOC OFF
IR1 11112 32162 IR2 11400 32512 IR4 76570 32120 5L 0000 SW 100100 EK+ 011200 001001

06.02.02
5 (6/61)

CORE LOCI, LOC2, Q, ITl, IT2

This macro dumps a section of memory according to the subfields which are
interpreted as follows:

LOCI
and
LaC 2

Q

IT!
and
IT2

These subfields designate the first and last locations of the area
to be dumped. They may be symbolic references or decimal
numbers, and are subject to conventional address modification by
the ITI and IT2 subfields, if coded (see below).

If LOCI and/or LOC2 is omitted, the range of the dump will be
interpreted as follows:

LOCI = system origin
LOC2 = top of memory

LOCI must be less than or equal to LOC2.

This represents the format code to be used in printing the dump.
This field should be coded only if the dictionary format is inadequate.
The CORE macro may use the entire range of formats, X, F, S,
0, C, Hand V. V, of course, must be preset by a FORMAT macro
(page 06. 03. 06).

These subfields apply to LOC! and LOC2 respectively. In each,
I may be coded before or after T, and either or both may be omitted.
Tl, for example, is coded as the index register modifying LOCI,
and It coded as "I", causes the effective location to be indirectly
addressed.

Examples of the CORE macro, and their results are:

CORE

system origin through top of memory, in dictionary format

CORE TINKER

location TINKER through top of memory, in dictionary format

CORE t EVERS

06.02.03
3 (1/61)

system origin through location EVERS. in dictionary format

CORE EVERS, CHANCE, X

location EVERS through location CHANCE, as fixed point decimal numbers

CORE TINKER, TINKER, F

word in location TINKER, as a floating point decimal number

CORE EVERS, EVERS+99, X

100 words, beginning at location EVERS, as fixed point decimal numbers

CORE 0, 1, S

locations 0 and 1, as symbolic instructions

CORE TINKER, EVERS" I

location TINKER, indirectly addressed, through location EVERS, in
dictionary format

CORE EVERS, CHANCE" 2, 4

location EVERS, modified by index register 2, through location CHANCE,
modified by index register 4, in dictionary format

CORE TINKER, EVERS, X, 12, 41

06.02.04
3 (1/61)

location TINKER, modified by index register 2 and indirectly addressed,
through location EVERS, modified by index register 4 and indirectly
addressed, as fixed point decimal numbers

TAPE

SHARE System: TAPE
m System: TAPE

T, M, R, W, Q, N
T,R,W, Q, N

This macro records the contents of a tape record, or records, in whole or in
part. The subfields specify the tape from which information is to be dumped,
the amount of information to be dumped, how it is to be printed, and whether
the tape should be repositioned prior to return to the object program. Variable
length records do not affect the operation of this macro. The uppermost 25610
words of memory will be used as temporary storage, unless a BUFFER macro
has changed the length and location of available storage. The storage is not
restored.

This macro will re-read a record which results in a redundancy check. A
second failure will cause a comment to be printed before the printout of the record.

Note that there are incompatibilities between the requirements of this macro for
the SHARE System and for the m System.

The initial subfields are interpreted as follows

in the SHARE System:

T This is the symbolic name of the tape which has been assigned by the
SHARE Monitor. See Section 09 for tape names and assignment~.

M This field specifies the mode in which the symbolic tape was written.

The field is coded:

D for decimal, that is, BCD
B for binary

Omission of the field is interpreted as binary.

in the IB System:

T This field is coded as a decimal number which specifies both the physical
~it and the mode in which the tape was written. For example:

65710 (12218) = tape A1, in the binary mode
115410 (22028) = tape B2, in the BCD mode

The remaining subfields are common to both systems.

06.02.05
5 (6/61)

R This field specifies the number of tape records to be processed by this
macro. The number is ignored and processing terminates if an end-of­
file, or beginning-of-tape is encountered.

The number will be interpreted as follows:

n the n records following the initial position.

-n the n records which precede the initial position. Records
are printed in inverse order relative to their position on
tape. For example, record 3 is printed before record 2.

o all records following the initial position until an end-of-file
is encountered.

-0 all records which precede the initial position until an end­
of-file or beginning-of-tape is encountered.

If this field is omitted, it will be interpreted as 0, that is, read forward
until end-of-file.

W This field specifies the number of words to be dumped from each record.
If this field is omitted, is coded 0 or -0, or if it exceeds the number of
words in a record, the entire record will be printed. Otherwise, the
number is interpreted as follows:

n the first n words in a record.

-n the last n words in a record, in their proper sequence.

Q This specifies the format to be used in printing the record. The TAPE
macro may only specify F, X, H, BH, or O. Any other format, or
omission of this field, will be interpreted as octal.

N This field indicates whether or not the tape is to be returned to its initial
position after execution of this macro. The normal case is to repOSition,
so, while this field may be coded 0, it is usually omitted .

. If no repositioning is desired, the field is coded 1.

Examples:

SHARE Monitor:

06.02.06
5 (6/61)

TAPE SYSAR1, D, 2, , X

All words in next 2 records on tape SYSAR1 are read in the decimal mode and
the tape is repositioned. The information is printed as fixed point numbers.

IB Monitor:

TAPE 658,-0,2

The tape is backspaced a record at a time and the first 2 words are saved
from each record. Processing is terminated by beginning-of-tape signal.
or by end-of-file. The tape is repositioned. The information is printed in
octal.

06.02.07
3 (1/61)

DSC

This macro records the register contents of each Data Synchronizer Channel.
The information is expanded and printed to show, for every channel:

1. location of the last command processed

2. octal representation of the command

3. symbolic location of the command

4. symbolic operation code of the command

5. symbolic address, which is 1 greater than the address of the last word
processed by the command

6. channel designation

Example of printed results:

DSC

C 06231 +2 00000 0 05670 C1 IORP TP1 CHANNEL
C 02032 +0 00000 0 02036 -1050 IOCD 1054 CHANNEL
C 77777 +0 00000 0 00000 +29502 IOCD 0 CHANNEL
C 77777 +0 00000 0 00000 +29502 IOCD 0 CHANNEL
C 77777 +0 00000 0 00000 +29502 IOCD 0 CHANNEL
C 77777 +0 00000 0 00000 +29502 IOCD 0 CHANNEL
C 77777 +0 00000 0 00000 +29502 IOCD 0 CHANNEL
C 77777 +0 00000 0 00000 +29502 IOCD 0 CHANNEL

Note that the information clearly indicates that channels C-H are not attached
to the 709 on which the problem was run. There is, at present, no way to
suppress printing of this information.

06.02.08
3 (1/61)

A
B
C
D
E
F
G
H

TRAP

This is the only macro which causes the printing of information but does not
also produce a PANEL, and which requires another macro, the terminating
UNTRAP.

The 709 manual specifies fully the operation of the machine in the trapping mode.
This macro keeps a table of any transfer instruction that the machine is able to
trap, with the exception of transfers within the Debugging System. The entrance
into, and the exit from, the Debugging System are included in the table.

The table is automatically dumped on a system intermediate tape only when
TRAP is not able to make the next entry. Therefore, a complete transfer trace
can only be obtained by using the UNTRAP macro to dump remaining entries.

The trapped instructions are printed as a 50-entry table which shows the location
at which an instruction was trapped, the octal representation of the instruction
and the instruction in symbolic. The table is printed after any information
printed by those debugging macros which lie within the range of that table.

The TRAP macro offers another device which can aid in locating errors in the
flow of a program. Except at the initial entry into the TRAP macro, all debugging
macros which immediately follow a TRAP are executed every time an instruction
in the obj ect program is trapped by the machine. For example:

TRAP
PANEL

would produce every branch of flow in a program, and the status of the machine
at that point.

06.02.09
3 (1/61)

UNTRAP

This macro causes the 709 to revert to its normal mode of operation; the
remaining entries in the table of trapped instructions are written on the inter­
mediate tape for subsequent printing.

06.02.10
3 (1/61)

DEBUGGING SYSTEM

CHAPTER 3: MODAL MACROS:
SHARE System: USE, FORMAT, POINT, NUCASE, and BUFFER
IB System: USE, FORMAT, POINT, NUCASE, BUFFER, ON, and OFF

The modal macros reset parameters used by the Dubugging System either during
execution of the object program or during translation of debugging data. During
the execution phase, BUFFER allocates storage to the TAPE macro and NUCASE
nullifies prior modal macros and resets the counts of conditional macros. The
other modal macros, USE, FORMAT, and POINT, have no effect during the
running of the object program, but rather are used by the debugging translator
in expanding data recovered by the information macros. These macros modify
certain aspects of that data which cannot be controlled by a format indication
in the dictionary, for instance, choice of symbols for locations common to several
sections of a program; refinement of format control to apply to groups of bits
rather than whole words; and rescaling of the fraction in interpretation of fixed
point number s.

Only NUCASE does not require or use information in the variable field.

06.03.01
3 (1/61)

USE At B, C,

This macro designates those symbols in the dictionary which are to be associated
with locations common to two or more segments of a program. The macro
influences information in all subsequent printing until another USE supercedes it.

The variable field should contain at least one symbol which is unique to the common
segment currently being dealt with by the debugging macros. Usually, a common
segment should have location symbols at the first and last locations, and if these
two symbols are given in a USE macro, there will be no ambiguity of symbols
in the printing.

For instance, the program which deals with the storage block JONES to TINKER,
and then reads over it the block ·EVERS to CHANCE, should have:

USE EVERS, CHANCE

coded before any information macros are permitted to record information from
the last block.

06.03.02
3 (1/61)

POINT n

In the information macros which follow a POINT macro, the words to be converted
to fixed point decimal are first considered as fractions in which the binary point
lies between the nth and the n+ 1th bits.

n is a decimal number ranging from 0 to 35; the sign of the word is not considered.
The effect of this macro may be reset by another POINT. NUCASE will also
return it to normal conversion which is effectively POINT 35.

06.03.03
3 (1/61)

BUFFER LOC1, LOC2, IT1, IT2

The subfields of this macro specify the temporary storage to be used by a
subsequent TAPE macro. Temporary storage is not restored. This macro
must be used when it is necessary to prevent TAPE from reading into the
uppermost 25610 words of memory. For records exceeding standard buffer
size (25610 words), considerable time will be saved if the block reserved by
BUFFER is at least as long as the maximum record being recovered by TAPE.

This macro affects allocation of storage until another BUFFER macro is
encountered. The NUCASE macro will reset the allocation to the top 25610
words of memory.

The subfields are interpreted as follows:

LOC1
and

LOC2

IT!
and
IT2

06.03.04
3 (1/61)

These subfields designate the first and last locations of a temporary
storage buffer. They may be symbolic references or decimal
numbers, and are subject to conventional address modification
by the IT1 and IT2 subfields, if coded.

These subfields apply to LOC! and LOC2, respectively. In each,
I may be coded before or after T, and either or both may be omitted.

T1, for example, is coded as the index register modifying LOC1,
and I (coded as "I"), causes the effective location to be indirectly
addressed.

NUCASE

This macro initializes parameter s of certain debugging macros. POINT n is
restored to POINT 35; BUFFER allocates the uppermost 25610 ~ords of memory
as temporary storage for any TAPE macro; and the counts generated by the
count type conditional macros (see Chapter 4) are all reset to zero.

In the m System only, execution of NUCASE terminates anyon-line printing
initiated by the ON macro.

06.03.05
3 (1/61)

FORMAT nl, Ql, n2, Q2, ... , ni, Qi

This macro defines the pattern to be used in printing the blocks of words to be
dumped by a subsequent CORE macro which has been coded with V in its format
subfield.

The block may have been compiled by a VFD pseudo-op, or in a heterogeneous
format, and its length is limited to the number of words in memory which will
just contain the number of bits being specified.

In this macro, n1 specifies the number of bits at the beginning of the block
which are to be printed in format Ql (see below), n2 specifies the next number
of bits to be printed in format Q2, etc.

No subfields may extend into the next word and unspecified bits in the terminal
word of the block will not be printed. The pattern will be repeated for the next
block of words beginning with the first nl bits of the first word of the block. The
formats which may be specified by Q in this macro are limited to S, X, 0, and H.
These are further limited as follows:

(1) X will always cause POINT 35 format regardless of a previous POINT macro

(2) if any Q is H, the corre.sponding n should be a multiple of 6

(3) S will only be interpreted as a location symbol or relative to a location symbol.

06.03.06
3 (1/61)

ON

This macro causes subsequent debugging output to be printed on-line when finally
converted to the output form.

The effect of ON is terminated by an OFF or a NUCASE macro-instruction.

06.03.07
3 (1/61)

OFF

OFF is used to terminate the effect of an ON without executing a NUCASE and
thereby affecting other macros which it is not desired to change.

06.03.08
3 (1/61)

DEBUGGING SYSTEM

CHAPTER 4: CONDITIONAL MACROS: WHEN, UNLESS, EVERY
AUXILIARY CONDITIONAL MACROS: AND, OR

The conditional macros are a means of restricting the conditions under which
modal or information macros will be executed, and thus of ensuring the relevance
limiting the quantity, and controlling the form of debugging output.

A conditional macro proper (WHEN, UNLESS, and EVERY) is effective only if
the condition specified by its variable field is satisfied. When effective, WHEN
and EVERY permit the execution of the next macro in sequence; UNLESS prevents
the execution of all subsequent macros in the set. When the condition is not
satisfied, the effect of a conditional macro is reversed. AND and OR are auxiliary
to, and governed by, a preceding WHEN or UNLESS (not EVERY). They specify,
respectively, an additional or an alternative condition for the WHEN or UNLESS.
AND and OR are logically a part of the preceding WHEN or UNLESS and should
not be considered independent macros.

Thus, for instance, a WHEN followed by ANDs and ORs must be considered a
WHEN with a complex condition, and the "next macro in sequence" would then
be the UNLESS, EVERY, modal or information macros immediately following
the last AND or OR attached to the WHEN.

The control exercised by a conditional macro extends to the end of the continuous
set of debugging macros in which it occurs. The control is terminated by any
instruction which is not a debugging macro.

The condition specified by the variable field may be a simple count expressed by a
decimal number. This number is compared with the contents of a counter which is
maintained for each macro and incremented on each execution of the macro. The
interpretation of the result of this comparison depends on the macro concerned and
is discussed below under the heading for the particular macro.

A second form of the variable field is provided for all conditional macros except
EVERY. This form uses five subfields to specify two values and the relationship
which must exist between them in order for the macro to be effective.

This second form is:

COMP1, R, COMP2, IT1, IT2

The variable subfields are interpreted:

06.04.01
3 (1/61)

COMP1
and

COMP2

R

IT1
and
IT2

These fields designate the items to be compared. The description
which follows for COMP1 applies equally to COMP2.

1. If COMP1 is zero or is omitted, or is a symbol whose value is
zero, and IT1 is omitted, the designated value is +0.

2. If COMP1 is any number from 1 to 7, or a symbol with such
a value, and IT1 is omitted, then the designated value is obtained
from the index register(s) specified. "or'" of index registers
is possible. The contents of the index register is treated, for
purposes of comparison, as a positive 36-bit fixed-point
number less than 215.

3. If neither of the two conditions above are met, then COMP1
denotes the location in memory from which the value is to be
obtained, and this sub field is subj ect to conventional address
modification by the subfield IT1.

This field states the relationship which must exist between the
values specified by COMP1 and COMP2 in order for the condition
to be satisfied.

This subfield is coded:

L - less than
E - equal to
G - greater than
LL - logically less than
LE - logically equal to
LG - logically greater than

These subfields apply to COMP1 and COMP2, respectively. I may
be coded before or after T, and either, or both, may be omitted.
T1 is coded as a number from 1 to 7 and denotes the index register
modifying the address shown in COMP1, and I, coded simply as I,
causes indirect addressing.

In the examples below, C signifies "the contents of" and IC "the indirect contents
of." Thus, IC(X,2) is that number obtained in the accumulator by the execution
of the instruction CLA* X,2 (or CAL* X,2 for a logical comparison).

06.04.02
3 (1/61)

1. 4,E,

The condition is: C(ffi4) equal to zero.

2. 2, L, 2, I

The condition is: 1C(2) less than C(ffi2)

3. A, LO, B, 2,41

The condition is: C(A,2) logically greater than 1C(B, 4)

4. 1000, E, X, ,4

The condition is:

06.04.03
3 (1/61)

C(1750S) equal to C(X, 4)

WHEN

A WHEN specifies a condition which must be satisfied to allow execution of sub­
sequent macros. Thus, WHEN (Cl) may be read as "proceed to execute the next
macro when the condition (Cl) is satisfied but not otherwise. II In other words,
if the condition is satisfied, the WHEN is effective and the next macro in
sequence is executed; otherwise all subsequent macros in the set are bypassed.

WHEN n where n is a decimal number

The condition is satisfied, and the WHEN is effective (in the absence of
qualifying ANDs and ORs), on the nth execution of the WHEN and on every
execution thereafter.

WHEN COMPl, R, COMP2, IT!, IT2

If the condition is satisfied, as described on page 06. 04. 02, then (in the
absence of qualifying ANDs and ORs) the WHEN is effective.

06.04.04
3 (1/61)

UNLESS

An UNLESS specifies a condition which must be Wlsatisfied to allow execution
of subsequent macros. Thus, UNLESS (Cl) may be read as "proceed to execute
the next macro Wlless condition (Cl) is satisfied. "

In other words, if the condition is satisfied, the UNLESS is effective and all
subsequent macros in the set are bypassed; otherwise, the next macro in
sequence is executed.

UNLESS n where n is a decimal number

The COWlt for the UNLESS is increased by one each time ONE of the set of
information macros following it is executed. When the count reaches n,
the set of information macros then being executed is completed, and the
UNLESS becomes effective.

UNLESS COMPl, R, COMP2, ITl, IT2

If the condition is satisfied, then (in the absence of qualifying ANDs and
ORs) the UNLESS is effective.

06.04.05
5 (6/61)

AND

An AND specifies a condition, in addition to all previous conditions for the
governing WHEN or UNLESS, which must be satisfied before the governing
macro becomes effective.

AND n where n is a decimal number

The condition is tested according to the rule for the governing macro
(WHEN, UNLESS). Thus, for instance, the condition specified by an
AND n following a WHEN is satisfied on the nth execution of the WHEN
and on all subsequent executions.

AND COMP1, R, COMP2, ITl, IT2

The condition is tested as described on page 06. 04. 02.

If the condition specified by an AND is satisfied and, in addition, the governing
macro is effective in the absence of the AND, then the governing macro remains
effective. In all other cases, the governing macro is ineffective.

06.04.06
5 (6/61)

OR

An OR specifies a condition which is alternative to all conditions previously
specified for the governing WHEN or UNLESS. The satisfaction of the OR makes
the governing macro effective, whatever its previous status.

OR n where n is a decimal number

The condition is tested according to the rule for the governing macro.

OR COMP1, R, COMP2, IT1, IT2

The condition is tested as described on page 06. 04. 02.

If the condition specified by an OR is not satisfied, and, in addition, the governing
macro is ineffective in the absence of OR, then the governing macro remains
ineffective. In all other cases the governing macro is effective.

06.04.07
3 (1/61)

EVERY

The variable field of EVERY has only one form. The macro provides a means
of preventing output, or modal control, except at predetermined intervals.

EVERY n where n is a decimal number

The condition is satisfied, the EVE·RY is effective, and the next macro in
sequence is executed, only on the first execution of the EVERY and on
every nth execution thereafter; that is, on the 1st, (n+1)th, (2n+1)th, etc.

On all other executions, all subsequent macros in the set are bypassed.

06.04.08
3 (1/61)

COMBINATIONS OF CONDITIONAL MACROS

1. An UNLESS may precede or follow a WHEN (in fact, pairs of these macros
may be interchanged without affecting output), but no conditional macro may
follow an EVERY.

2. The counter for a macro is incremented on every execution of that macro
(except as noted for the case of an UNLESS macro), and not necessarily on
every entry to the set of macros.

3. Any number of ANDs and ORs may follow WHEN or UNLESS. Every time
the governing WHEN or UNLESS is executed all the conditions thus specified
are tested, in sequence, and the "effective" status of the governing macro is
modified continually in accordance with the results of the tests. For example,
consider the sequence:

WHEN (Cl)
AND (C2)
OR (C3)
OR (C4)
AND (C5)

where Ci is a condition to be tested.

Let Bi equal 1 if Ci is satisfied; and otherwise zero. Then the WHEN is
effective if ««Bl x B2)+B3)+B4) x B5) is equal to 1 (where the algebraic
operators are Boolean).

It will be seen that the limitations of the language prevent the representation
of certain combinations of conditions; for instance (Cl AND C2) OR (C3 AND C4).

Examples of combinations of conditional macros.

1.

2.

WHEN
UNLESS
CORE

3
3
A,B

The WHEN is effective, and the UNLESS is executed, on the third execution
of the WHEN and thereafter. Thus, the CORE is executed on the third,
fourth, and fifth entries to the sequence.

UNLESS
WHEN
CORE
CORE

3
3
A,B
C,D

06.04.09
5 (6/61)

3.

4.

5.

6.

7.

The CORE macros are executed only on the third and fourth entries to the
sequence.

FORMAT (F1)
WHEN (C1)
UNLESS 5
FORMAT (F2)
NOP
CORE A,A,V

The contents of location A are always printed. On the first five times
condition (C1) is satisfied, format (F2) is used; on all other occasions
format (F1) is used.

WHEN
UNLESS
EVERY
PANEL

10
2
10

The PANEL is executed only on the 10th and 20th entries to the sequence.

WHEN
OR
AND
EVERY
CORE

(C1)
(C2)
(C3)
5
A,B

The CORE is executed on the 1st, 6th, 11th, etc., times that condition
(C3) and either condition (Cl) or condition (C2) are satisfied.

UNLESS
AND
OR
WHEN
PANEL

(Cl)
(C2)
(C3)
4

The PANEL is executed every time, after the third, that neither condition
(C3) nor both conditions (Cl) and (C2) are satisfied.

UNLESS
CORE
CORE
CORE

8
A,B
C,D
E,F

The CORE macros are executed on the first, second, and third entries to
the sequence.

06.04.10
5 (6/61)

CHAPTER 5: EXPANSIONS OF DEBUGGING MACROS

The expansions of the Debugging Macros given below are those produced when the
SHARE Monitor version of SOS is used. * In the expansions produced by the
m Monitor version, the symbol SYSDB1 is replaced by 216910, and SYSDB2 is
replaced by 181910•

(1) WHEN L1,R, L2, IT l' IT 2

STL SYSDB1
TXL SYSDB2, 0, 1
PZE L1, 0, L2
VFD H12/R, H12/IT l' H12/IT2

(2) UNLESS L1,R, L2,IT1,IT2

STL SYSDB1
TXL SYSDB2, 0, 2
PZE L1, 0, L2
VFD H12/R, H12/IT l' H12/IT 2

(3) AND L1, R, L2, IT1, IT2

STL SYSDB1
TXL SYSDB2, 0,3
PZE L1, 0, L2
VFD H12/R, H12/IT l' H12/IT 2

(4) OR L1, R, L2, IT l' IT 2

STL SYSDB1
TXL SYSDB2, 0,4
PZE L1, 0, L2
VFD H12/R, H12/IT l' H12/IT 2

(5) EVERY N

STL SYSDB1
TXL SYSDB2, 0, 5
PZE N

* In some instances, PZE will be replaced by HTR.

06.05.01
5 (6/61)

(6)

(7)

(8)

(9)

(10)

(11)

06.05.02
5 (6/61)

CORE

STL
TXL
PZE
VFD

TAPE

STL
TXL
VFD
VFD
BCI

TAPE

STL
TXL
VFD
VFD

DRUM

STL
TXL
VFD
VFD

PANEL

STL
TXL

DSC

STL
TXL

L1, L 2, F, IT l' IT 2

SYSDBl
SYSDB2, 0, 7

L1' 0, L2
H12/F, H12/IT l' H12/IT 2

T, M, R, W, F, N (SHARE Monitor)

SYSDBl
SYSDB2, 0, 8
H3/M, 15/T, 6/0, H12/F
l/N, 2/0, 15/W, 3/0, 15/R
1, T

T,R, W, F, N (m Monitor)

LOC
STPAN, 0, 8
6/0, 12/T, 6/0, H12/F
l/N, 2/0, 15/W, 3/0, 15/R

D, LIt L2, F, IT1, IT2 (m Monitor)

LOC
STPAN,0,9
3/D, 15/L2' 3/0, 15/L1
H12/F, H12/IT l' HI2/IT 2

SYSDBI
SYSDB2, 0,10

SYSDBI
SYSDB2, 0, 11

(12)

(13)

(14)

(15)

(16)

(17)

06.05.03
5 (6/61)

USE

STL
TXL
PZE
BCI
PZE
BCI
PZE

BCI
PZE

FORMAT

STL
TXL
PZE
VFD

POINT

STL
TXL
PZE

BUFFER

STL
TXL
PZE
VFD

ON

STL
TXL

OFF

STL
TXL

A1,A2,·· ,An

SYSDB1
SYSDB2, 0, 12
2n+3
1,A1
A1
1,A2

A2

1,An
An

B1,F1,B2,F2,··· ,Bn,Fn

SYSDB1
SYSDB2, 0, 13
(no. words in this calling seq.)
6/B1,H6/F1,···,6/Bn,H6/Fn

N

SYSDB1
SYSDB2, 0, 14
N

L1, L 2, IT1, IT2

SYSDB1
SYSDB2, 0, 15
L1 , 0, L2
12/0, HI2/IT1, H12/IT2

(m Monitor)

LOC
STPAN, 0, 16

(m Monitor)

LOC
STPAN, 0,17

(18)

(19)

(20)

06.05.04
5 (6/61)

NUCASE

STL
TXL

TRAP

STL
TXL

UNTRAP

STL
TXL

SYSDB1
SYSDB2, 0, 18

(m Monitor)

LOC
STPAN, 0, 19

(m Monitor)

LOC
STPAN, 0, 20

INPUT/OUTPUT SY~TEM

CHAPTER 1: THE INPUT SYSTEM - INTRAN

This chapter deals with the INTRAN vocabulary of SOS. This vocabulary consists
entirely of system macros.

INTRAN provides the programmer with two tools:

1. A large set of fundamental subroutines, each of which performs one of the
basic input functions required for a general class of external information.

2. An easy means of specifying that one of these fundamental subroutines is
to be used, i. e., by a single macro.

These basic subroutines may in turn be used as building blocks to construct
higher-level subroutines. Such a higher-level subroutine might be designed to
cover part or all of the input processing required in a very large class of problems,
and thus be made a standard input program. The nature and range of these input
programs will vary widely and may be chosen to suit the particular needs of the
installation. By using the INTRAN macros the programmer will find that the
task of constructing such programs is greatly simplified.

On the other hand, for a given production problem with certain input requirements
(perhaps peculiar to the problem), the programmer may choose to write his own
subprograms, as part of his total source program. In such a case, he will find
that the direct use of the INTRAN macros in his program will be of great value.

RULES FOR SPECIFYING INTRAN MACROS

The general rules for specifying any SOS instruction (see Section 02) apply to
all INTRAN macros. For example, the location field of a macro may contain a
symbol, the variable field is divided into subfields separated by commas, etc.

As is the case of all macro-instructions, a location symbol of an INTRAN macro
will be associated with the first word generated by the instruction, i. e., the
location symbol will be entered into the dictionary of symbols with the value
assigned to the first word generated by the macro-instruction.

A list of all the INTRAN macro-operations and their expansions is given on page
07. 01. 53. Those macro-operations for which indirect addressing is permissible
are so indicated. Indirect addressing is, as usual, specified by placing the
character "*,, at the end of the operation code.

07.01. 01
5 (6/61)

The list of macros also indicates the pattern of the variable field of each macro.
As is evident, the number of subfields which must be specified in the variable
field is fixed for each macro, but- among all the macros, this number varies
from zero to at most six. The programmer may, of course, specify zero
values for the last n subfields, along with their separating commas. The roles
played by these various subfields and the rules for specifying the subfields
depend, in general, on the operation, and are discussed below.

By definition, a macro-instruction always generates, or "expands into", one
or more machine words. The number of words in the expansion of any macro
depends only on the macro-operation used in the instruction, and not on the
values of the expressions in the variable field. In fact, every SOS macro (whether
a programmer or a system macro) has this property, i. e., its use in a macro­
instruction always results in a fixed number of generated words, where this
number is determined solely by the macro-operation itself .

. The expansions for the different Input macros vary in size from two to at
most five words. For example, the INTRAN macro will always generate
two words, whereas the IFLOAT macro will always generate five words. The
number of words generated by a given INTRAN macro and the number of sub­
fields required in the variable field of such an instruction are directly related.
The relation between these two numbers is due to the fact that the set of words
generated by a macro-instruction is simply a calling sequence, which, of course,
must contain all of the information specified in the variable field of the mac.ro­
instruction.

It can be seen that the first two words generated by any INTRAN macro are an
STL instruction and a TXL instruction. When these two instructions are later
executed, their effect will be to save the contents of the instrqction location
counter and to transfer control to the INTRAN program. The INTRAN program
consists of a set of subroutines which are executed at object program time.
These subroutines carry out the functions prescribed by the particular macro,
using the information which it finds in the words, if any, immediately following
the TXL instruction in the macro expansion. Finally, control will be transferred
back to the first word immediately following the expansion, and execution of the
object program will continue. Note: For certain macro-operations, and under
certain conditions (such as error conditions, etc.) which will be discussed later,
control may be transferred to some special location.

07.01.02
5 (6/61)

SPECIAL REGISTERS AND INDICATORS

Whenever the INTRAN program is entered by a calling sequence generated by
a macro, the contents of the AC and MQ, and the statuB of the AC Overflow
indicator are destroyed. However, the INTRAN program will not disturb the
contents of any of the three index registers, the Sense Indicator register, the
status of the Sense lights, or any of the special indicators on the 709/7090.
However, it is possible that the status of the Tape Check indicator, the End-of­
Tape indicator, or the End-of-File indicator associated with a given Data
Synchronizer Channel will be affected by an ISCRffi or ffiEADY instruction
which uses that channel for tape operations.

PURPOSE OF THE INPUT SYSTEM

The Input System was designed to simplify the problem of obtaining information
to be processed by an object program. This information will usually originate
from Hollerith punched cards, and processing of the information will usually
require conversion, particularly from decimal to binary.

The external information which can be processed by the Input System must
consist of one or more "unit records." A unit record may take on any of the
four following physical forms:

1. A card punched with 72 columns of Hollerith information to be read on-line
by a 709 card reader. (Hollerith cards, when read, are automatically
converted to BCD form.)

2. A BCD tape record consisting of n words (i. e., 6n characters), where n is
a positive integer. The usual case will be n = 14 (i. e., 84 characters),
arising from an 80-column card written on tape by off-line card-to-tape
operation.

3. A 72-column column binary (rather than row binary) card to be read on-line
by a 709 card reader. *

4. A binary tape record consisting of 28 words. Such a record normally
originates from a column binary card which has been written on tape by
off-line card-to-tape equipment.

* By convention, a card punched in column binary must contain 7- and 9-punches in column 1 to

distinguish it from a Hollerith card. This simultaneous occurrence of 7- and 9-punches, which may

be accompanied by punches in any of the other rows of column 1, is of course impossible in a card
punched in Hollerith code.

07.01.03
5 (6/61)

The binary information contained in a unit record of form 3 or 4, above, can be
quite arbitrary. Since this information is already represented in binary, there
is no conversion problem. The only concern of the Input System with such a
record will be to read it into core storage.

The maj or part of the Input System is devoted to the problem of extracting
strings of BCD characters (six-bit groups) from a record of the form 1 or 2, and
converting these strings (which may represent floating point decimal numbers,
fixed point decimal numbers, decimal integers, octal integers, or binary integers)
to an appropriate binary representation.

The rules for representing these various' kinds of numbers by forming such
character strings conform to the rules for DEC and OCT (see Section 03), but
are more inclusive. These rules are described below with the appropriate macro.

Hollerith cards or BCD tape records might also contain information which requires
no conversion when read. Such information may consist of any of the set of 50
allowable Hollerith characters, including the character "blank." Two macros
(IBCC and mCW) are provided to treat such information.

The INTRAN language is designed around the principle of processing a single
unit record at a time.

There are two stages which, in general, the programmer must specify for the
processing of every unit record:

1. Read-in Stage:

The unit record is read, from a card reader or a tape unit, into a region of
core storage in its external form. No conversion will have been done at
the end of this stage, except for a standard Hollerith-to-BCD conversion if
the record is a Hollerith card, i. e., the conversion which would be performed
automatically by the card-to-tape peripheral equipment when used to produce
a 12-word BCD tape record from a 72-column Hollerith card.

2. Internal Processing Stage:

The information, after passing through the read-in stage, is processed
according to the format specified by the programmer. If the information is
from a column binary card or a binary tape, it is simply moved to some
other region in core storage. If the information is from a Hollerith card
or a BCD tape, it will generally be broken up into sub-strings which are
converted to binary and moved to specified core storage locations.

07.01. 04
5 (6/61)

The programmer is provided with five macros which apply to the read-in stage.
With the exception of the two macros llMAGE and INTRAN, which apply to both
stages, all remaining macros are directly concerned with the internal processing
stage.

The remainder of this chapter is devoted to detailed descriptions of the INTRAN
macros. Note that, with a few exceptions, the subfields of the variable field
can be any arithmetic expression, just as in an ordinary symbolic instruction.
The exceptions will be specifically stated in the descriptions.

!IMAGE Y, T, C

The I-region of core (so-called because it contains the "image" of the external
record) is essentially a "buffer" area which links the read-in stage with the
internal processing stage. A fixed part of the storage occupied by INTRAN is
automatically set aside for the I-region, and normally the programmer need not
make any reference to it. The I-region consists of two adjacently located
regions, 11 and 12' each of length 28 words. The reason for the dual regions
will be seen under the description of the ISCRID macro.

28 words is sufficient to accommodate a unit record of any of the four possible
forms described above, with the exception of a BCD tape record consisting of
more than 28 words. In this case, the programmer must specify a non-normal
I-region of his own. To do this, he may simply write an instruction of the form
llMAGE Y, T, C. The effective address Y-c(T) is the location of the first word
of the I-region, and C is one-half the length of the total I-region (i. e., the length
of either one of the two buffers 11 and 12 making up the I-region). For example,
the instruction

Operation Variable Field

llMAGE ALPHA, 0, 100

specifies that the I-region is to begin at cell ALPHA and end at cell ALPHA+ 199,
with 11 comprising cells ALPHA through ALPHA+99 and 12 comprising cells
ALPHA+100 .through ALPHA+199.

All macros* which require an I-region and are executed after the above instruction
will automatically use the 100-plus-100 word region specified, rather than the
normal I-region, until another llMAG E instruction, or the INTRAN instruction
(see below), is executed.

* In particular, the read-in macros ISCRIB and IREADY, and the internal processing macros IBee,
IBeW, IOCTAL, etc.

07.01. 05
5 (6/61)

If a non-normal I-region has been specified, and the programmer wishes to
switch back to the normal buffer, * he may specify this by writing the instruction:

Operation Variable Field

IIMAGE o

The treatment of large BCD tape records is not the only application for IIMAGE.
For example, if the programmer wishes to apply some of the internal processing
macros to a region in his own program, he may write an IIMAG E instruction
specifying this region. Any subsequent instructions using an internal processing
macro will operate on the region defined, until the I-region is redefined (by
IIMAGE or INTRAN).

MODAL I-MACROS

Ten of the I-macros** to be described below are active macros in that they are
used to specify some dynamic operation, e. g., the operation of reading a unit
record into the I-region, or of converting a number from decimal to binary.
Eleven other of the I-macros*** have the passive function of specifying the mode
of operation of the active macros, and hence are called "modal" macros. For
example, the macro ITMAGE is modal since it is used to specify the destination
region (in the case of ISCRm and ffiEADY) or source region (in the case of the
active internal processing macros, like lINT, etc.) and hence controls the
operation of all the active macros.

For a given modal macro, there is a certain set of active macros controlled by
it. This set may consist of a single macro (for instance, the modal macro IPOINT
controls only IFIX), or of more than one macro (e. g., IIMAGE controls all ten
of the active I-macros). In the following descriptions of the modal macros, a
list of all the macros controlled by each will be included. Conversely, the
description of each active macro will list all modal macros which control it.

* See also the macro INTRAN.

** mcc' lINT
mcw IOCTAl
IBIN IREADY
IFlOAT IS CAN
IFIX ISCRm

*** IBRNCH
ICHAR
IEOR
IFIlE
IIMAGE
IMASK

07.01. 06
5 (6/61)

IOVPCH
I POINT
IREDUN

ISCAlE
IS PILL

Just as the modal macro IIMAGE has a normal mode (i. e., the use of the
standard 28-plus-28 word buffer), every modal macro has a unique normal mode
which in each case will be defined in the description of that macro.

The device of setting the mode associated with IIMAGE to normal (mentioned
above) by using the instruction IIMAG E 0 can be used for any modal macro.
That is, if the operation code of a modal macro is OPCOD, its mode may be
returned to normal by execution of the instruction

Operation Variable Field

OPCOD o

INTRAN

This macro sets the modes of all 11 modal I-macros to normal.

The variable field of INTRAN should be left blank. Thus, the instruction

Operation Variable Field

INTRAN

is equivalent to a complete set of modal macros with a zero variable field.

Every program using the Input macros should include INTRAN as its first Input
macro to insure normalization of all the modal I-macros.

THE READ-IN MACROS

The following five macros are concerned with the read-in stage. The first two
are active macros and the remaining three are modal macros.

ISCRm Y, T, C, L

ISCRIB can be used to read a unit record in any of the four permissible forms
into the I-region. Y -c(T) is the effective address of a cell which contains the
standard 709/7090 "address" of the desired tape unit or card reader (i. e., the
709/7090 unit address, including channel number). * In the case of a tape unit,
the address used must indicate BCD mode, not binary mode, regardless of
whether the tape record to be read is in BCD or binary form.

* See 709/7090 Reference Manual for standard unit addresses.

For the SHARE Monitor System, Y would normally contain the symbolic unit name, and T would be

zero. These symbolic unit nameS specify locations containing the standard 709/7090 designation and

do not require defining by the programmer.

07.01. 07
5 (6/61)

The L-parameter indicates the presence or absence of look-ahead information.
(See 709 reference manual, form A22-6536 and 7090 Operator's Guide, form
A22-6535.)

If a card reader is to be used, the C-subfield of the variable field is ignored by
the ISCRm subroutine, and may be coded as zero, or be omitted. Thus, if the
address of the word in location UNIT is (01321)8, the following instruction will
cause a card to be read by the Channel A card reader:

Operation Variable Field

ISCRm UNIT

A card read by an ISCRIB instruction may be punched either in Hollerith code
or in column binary code. If the information on the card is Hollerith, it will
undergo a standard Hollerith-to-BCD conversion and produce 12 words (72
characters) in the I-region. If the card is column binary, it will produce 24
words in the I-region, in row binary form.

As in the case of a card, a tape record read by ISCRm may also be either BCD
or binary.

All binary tape records will be assumed to have the constant length of 28 words.
If an ISCRm reads such a tape record, the C-subfield is again ignored by the
ISCRm subroutine* and may be coded as zero or omitted.

A BCD tape record, on the other hand, may be of any length, and in this case,
the C-subfield is used to specify the number of words of the record to be read
into the I-region. If the C-value is coded as zero, or is omitted, in the case of
a BCD tape record, C will be taken as 14 (the usual length of a· BCD record).
Thus, the following two instructions are equivalent:

Operation

ISCRm
ISCRm

Variable Field

UNIT
UNIT, 0,14

If the address of the word in location UNIT is 022038, the execution of either of
the above instructions would cause a record to be read from tape B3, producing
14 words in the I-region, if the record is BCD, or 28 words, if the record is binary.

* However, as described below, in the event that "look-ahead" information is not available for this

record, the ISCRIB subroutine will first attempt to read the record in BCD. In this case, it will use
the C-value in the manner described subsequently.

07.01. 08
5 (6/61)

If the record were 100 BCD words, the programmer must give the following
instruction in order to read the full 100 words into the I-region. *

Operation Variable Field

ISCRm UNIT, 0, 100

Thus, the number of words, N, which a given ISCRm instruction prescribes are
to be read from a given tape record into the I-region can be characterized as
follows:

1. If the record is binary, N = 28 (regardless of the C-subfield).
2. If the record is BCD and

a. C is 0, N = 14.
b. C is not zero, N = C.

The number of words read, N, should ordinarily be the same as the length, M,
of the tape record. However, no error will be indicated if these two numbers
are not equal. If N is less than M, only the first N words 'Of the record will be
used; if N exceeds M, then only M words (one record) will be read into the
I-region. In no case will an ISCRm cause more than one tape record to be read.

An error condition will occur if the number of words to be read exceeds one-half
the total length of the I-region. For example, the execution of the following
instruction will result in an error unless an associated I-region of at least
loo-pius-100 words has been provided~

Operation Variable Field

ISCRm UNIT, 0,100

where the 'address part of UNIT contains a tape address and the tape record to
be read is BCD.

Such an error condition can never occur if all ISCRIB instructions have an N S 28
and if the normal I-region is always used. However, if an ISCRIB instruction
causes this kind of error, the error w11lbe detected by the ISCRm subroutine
before anything else is done. Upon detection 'Of this error, the subroutine will
..!!2!. initiate the prescribed data transmission; instead it will

1.. load the ,number 1 into the MQ

* A sufficiently large I-region (at least lOO-pius-100 words) must have been previously specified by an

lIMAGE ~nstruction.

07.01.09
5 (6/61)

2. load the input unit address for the current ISCRm into the decrement of
the AC

3. load the input unit address for the last ISCRm executed into the address
of the AC

4. transfer to the location determined by the current mode of mEDUN.

Note: The "1" placed in the MQ can be used to distinguish the kind of error,
since there are other error conditions which will cause a transfer to the
same location.

Example:

Assume that the instruction ISCRm UNIT, 0, 100 is currently being executed with
c(UNIT)21_35 = (02203)8 and that the last ISCRm executed was ISCRm UNIT1
with c(UNIT1)21_35 = (01321)8. Suppose also that the normal I-region is currently
in use, and that the record to be read is in BCD. Then, because the cqrrent
ISCRIB instruction specifies reading of 100 words, the error condition will
oocur. In this case, before transferring control to the location determined by the
current mode of mEDUN, the ISCRm routine will set the AC and MQ as follows:

c(MQ) = 1
c(AC)3-17 = (02203)8
c(AC)21-35 = (01321)8

Note that the mode (BCD or binary) of the tape record is not specified in the
ISCRm instruction. The mode is determined by the ISCRm subroutine from
the information on the tape itself. The procedure is described below.

The tape to be read may contain some records in BCD and other s in binary, and
records mayor may not include look-ahead information to specify the mode of
the next physical record on the tape. The presence of look-ahead information
is specified in the L-parameter. A non-zero value indicates the information
is provided. A zero or blank L indicates that it is absent.

If the look-ahead information has not been provided in the tape records, * an attempt
is first made to read the records in the BCD mode. If the attempt is unsuccessful
because of a tape redundancy error indication, two additional attempts will be made.
If a redundancy error persists after three attempts, up to three attempts are
made to read the record in the binary mode (which is presumably the correct

* Even if the look-ahead information has been provided elsewhere, it can, of course, never exist for
the ~ record of any tape, since this record has no predecessor.

07.01.10
5 (6/61)

mode, since the BCD mode did not work). If a redundancy error persists after
these three attempts, the number "0" is loaded into the MQ, the input unit
addresses used by the current and last executed ISCRm instructions are saved as
described above and control is transferred to the location determined by the
current mode of mEDUN. *

If the look-ahead information exists, an attempt is immediately made to read in
the specified mode. If the read is unsuccessful, up to two more attempts are
made. If all three attempts are unsuccessful, control is transferred to the
location determined by the mode of mEDUN (as before, with c(MQ) = 0, etc.).

When a successful binary mode transmission occurs (whether or not preceded
by attempts to read in BCD mode), the tape record image is checked for the
characteristic marking of a column binary record (bits 9 and 11 of word 1
both 1). If bits 9 and 11 are not both 1, the ISCRIB subroutine transfers control
to the location determined by ffiEDUN. When the transfer occurs, c(MQ) = 2,
and the decrement and address of the AC will contain the current and previous
input unit addresses.

If an ISCRIB instruction specifies that a record is to be read from an unassigned
unit (the contents of the address of Y-c(T) equal zero), control will be transferred
to the location determined by mEDUN. When this transfer occurs the address
of the AC will contain the octal location of the ISCRIB instruction referring to the
unassigned unit, and the contents of the MQ will be 3.

If an ISCRIB specifies reading from a card reader, the ISCRIB subroutine will
first transmit the image of the card in the standard row fashion into a special
24-word card buffer region. During the execution of the next ISCRIB (or
ffiEADY) instruction, this image will be examined for the characteristics of a
column binary card. If bits 9 and 11 of the first word are both 1, the 24-word
image will be moved to the I-region (after a column-to-row-binary conversion).
If the card is found to be a Hollerith card, a standard Hollerith-to-BCD conversion
is used to produce 12 BCD words in the I-region.

When an attempted transmission of either a card or tape record results in an
end-of-file condition, the ISCRIB subroutine will detect this condition** and
transfer control to the location determined by the current mode of IFILE.

* As described below, the data transmission specified by a given ISCRm instruction is merely initiated

by the ISCRm subroutine at the time the instruction is executed, and it is only at the time the next

ISCRm (or IREADY) instruction is executed that transmission is checked for completion and all ~
the processes are carried out which must necessarily follow the completion of the transmission, e. g. ,
testing tape redundancy errors, backspacing and re-attempting the read in case of redundancy error.

** In the case of a tape record, the special end-of-file record will first undergo the usual redundancy
check.

07.01. 11
5 (6/61)

When the transfer occurs, the AC will contain the input unit addresses used by
the current and previous ISCRm instructions in the same way as for an mEDUN
transfer. *

In addition to the transfer specified by mEDUN and IFILE, there is a transfer
used with ISCRm which is specified by mRNCH (see below). When an ISCRm
specifies reading of a binary card or a binary tape record, and reading does
not result in an error or end-of-file condition, control is transferred to the
location specified by the current mode of mRNCH. Before the transfer occurs,
the current and previous input unit addresses are saved in the same way as for
mEDUN or IFILE. *

As described above, the I-region consists of a pair of adjacently located regions,
11 and 12. For the sake of simplicity in what has been said so far about ISCRm,
the destination region, into which a given ISCRm instruction causes a record to
be read, has been characterized simply as "the I-region," and no mention has
been made of 11 and 12.

To enable the programmer to make use of the simultaneous input and computing
facilities of the 709/7090, these dual "buffers" work in conjunction with the
ISCRIB subroutine as described below.

The destination region for a record read by a given ISCRm instruction may be
either 11 or 12' and successive ISCRm instructions will use 11 and 12 alternately. **
For example, consider the following sequence:

Operation

ISCRm
ISCRm
ISCRm

Variable Field

UNIT
UNIT
UNIT

and suppose that c(UNIT)21_35 == (02203)8. Then if the first ISCRm instruction
reads the tape record into 11' the second ISCRm would read the next record into
12, the third into 11' and so on.

* As described below, the data transmission specified by a given ISCRm instruction is merely initiated
by the ISCRm subroutine at the time the instructi0n is executed, and it is only at the time the ~
ISCRm (or IREADY) instruction is executed that transmission is checked for completion and all of
the processes are carried out which must necessarily follow the completion of the transmission, e. g. ,
testing tape redundancy errors, backspacing and re-attempting the read in case of redundancy error.

** Unless IREADY or IIMAGE instructions intervene (see below).

07.01. 12
5 (6/61)

When an ISCRIB instruction, which specifies reading of a certain record, is
executed, the actual "reading" (i. e., the physical transmission) of the record
into the 11 or 12 region is not completely carried out. It is merely initiated by
the ISCRIB subroutine. Nothing further is done for this current record until the
execution of the next ISCRIB (or ffiEADY) instruction. At that time, the ISCRIB
subroutine checks the transmission, and if the transmission is not completed,
waits until it is completed. Meanwhile, the ISCRm subroutine initiates the
transmission required by this next ISCRm instruction, as soon as possible, into
the alternate buffer.

Thus, immediately after the execution of any ISCRIB instruction (i. e., after the
ISCRm subroutine has completed the previous transmission, initiated the present
transmission, and transferred control back to the main program) one buffer is
being loaded and the other is available for use. In particular, the latter buffer
is available for use by all the active internal processing macros. For example,
suppose in the illustration above that each ISCRm instruction is followed by some
internal processing macro-instructions, as shown below:

07.01.13
5 (6/61)

Operation

ISCRm

ISCRm

ISCRm

Variable Field

UNIT

UNIT

UNIT

Initiate transmission into 11.

Internal processing macros
automatically use 12 while
11 is being loaded.

Initiate transmission into 12.

Internal processing macros
automatically use 11 while
12 is being loaded.

Initiate transmission into 11.

Internal processing macros
automatically use 12 while
11 is being loaded.

Hence, by this method of automatic alternation in the ISCRm subroutine, one
buffer can be loaded simultaneously with the processing of the other, without
specific mention of either buffer by the programmer.

The above example states, in the comment following the first ISCRIB instruction,
that 12 is to be processed, and therefore assumes that 12 has been loaded by
some previously executed ISCRIB instruction which is not shown. At the initial
stage of any input processing using the simultaneous feature, it is of course
necessary first to load one of the buffers before the simultaneous activities (i. e. ,
reading in record n+ 1 while processing record n) can begin. This means that
two ISCRm instructions should be executed at the beginning of the program
before the execution of any of the internal processing macro-instructions.

In using ISCRm, the programmer must keep in mind that the alternation of the
buffers 11 and 12 will always take place whenever the transmission specified by
an ISCRIB instruction is initiated. * However, if no ISCRIB (or ffiEADY)
instructions are used in the source program, i. e., if the programmer uses some
means other than ISCRm to supply a source region for the internal processing
macros, the internal processing macros will always take 11 as their source
region. This can be seen to be a consequence of the following rules which
determine the alternation procedure:

1. Prior to execution of the first ISCRIB (or ffiEADY) instructions, the source
region, S, for any internal processing macro-instructions is set to 11.

2. If S is 11 just before the execution of an ISCRm instruction, then S is 12
just after the normal execution of the ISCRm instruction. "Normal
execution" here implies that the ISCRIB subroutine either has returned
control to the next instruction after the ISCRIB instruction or has transferred
control to the location specified by mRNCH. Transfers to the locations
specified by ffiEDUN or IFILE are specifically excluded. The alternation
procedure in these special cases is discussed below.

3. If S is 11 just before the execution of an ffiEADY instruction, then S is
12 just after the execution of the IREADY instruction. (No exceptions.)

4. The execution of an IIMAGE instruction always sets S to 11, regardless of
its previous state.

Of course, the execution of an llMAG E instruction usually will change the
definition of the I-region, and this rule means that of the two new buffers,
11 and 12' the former will be used first.

* There are some circumstances (see page 07.01. 15) in which the ISCRm subroutine will ru:!. perfonn
the alternation because the transmission specified by the instruction will not be initiated.

07.01. 14
5 (6/61)

An INTRAN instruction will also set S to 11 (using the normal I-region).

5. The destination region for a record read by a given ISCRIB instruction is
the same as the source region (S) which was in effect just prior to the
execution of the ISCRIB instruction.

The ISCRm subroutine will initiate the transmission required by the present
ISCRIB instruction (and hence will alternate 11 and 12) whenever possible, even
if the previous transmission results in an error or end-of-file condition, provided
in this latter case that the input unit used by the current ISCRm instruction is
different from the input unit used by the previous transmission. The only
conditions under which the present transmission will not be initiated, and the
buffers 11 and 12 will not be alternated are:

1. The I-region is too small to accommodate the size of the record prescribed
by the current ISCRm instruction. This error will cause an immediate
transfer of control according to the current mode of IREDUN with c(MQ) = 1.
The ISCRm subroutine will not check the previous transmission.

2. The input unit used by the present and previous transmission are the same,
and a redundancy error in the previous transmission is detected. This
error causes a transfer of control according to the current mode of IREDUN
with c(MQ) = O.

3. The input units used by the present and previous transmissions are the same
tape unit, the previously transmitted record was a binary record, but the
standard indication for column binary does not appear. This error condition
causes a transfer of control according to the current mode of ffiEDUN
with c(MQ) = 2.

4. The input units used by the present and previous transmissions are the same,
and an end-of-file condition is detected for the previous transmission. This
condition causes a transfer of control according to the modal IFILE.

5. An unassigned unit has been specified by ISCRm. This causes a transfer
of control according to the current mode of ffiEDUN with c(MQ) = 3.

One further point concerning the logical treatment of 11 and 12 by the ISCRm
subroutine should be noted:

As already indicated, the ISCRIB subroutine must wait until the appearance of the
next ISCRIB (or ffiEADY) instruction to check the transmission for the current
ISCRm instruction. When the transmission is checked (by either the ISCRm or
ffiEADY subroutine), it will be assumed that the definition of the I-region has

07.01.15
5 (6/61)

not meanwhile been changed. Therefore, if an IIMAGE instruction is executed
at any time after the execution of an ISCRIB instruction, then the execution of
an ffiEADY instruction must occur between the ISCRIB and llMAGE instructions.

Normally, a programmer need not be concerned with the locations of 11 and 12"
However, if it is found necessary to be aware of which buffer is current (available
for use by the internal processing macros), this information can be found as
follows:

The decrement of SYSIT2 contains the address of a word which in turn
contains the location of the first word of the current buffer, e. g., if
c(SYSIT2)3_17 = (27000)8 and c(27000)21-35 = (27777)8' then the
current buffer starts at (27777)8. When the current buffer is changed by
an ISCRIB or IREADY, this address is also changed to give the location
of the alternate buffer"

ffiEADY

The variable field of any ffiEADY instruction should be left blank.

The programmer will ordinarily use an IREADY instruction at any point in his
program where he does not wish to initiate any further transmission (by means
of ISCRIB) but where he wishes to make use of the information for which transmission
was already initiated by a previous ISCRIB instruction. Thus, an mEADY
instruction will usually be used after a series of ISCRIB instructions to check
the completion of the transmission caused by the last executed ISCRIB instruction,
and make the transmitted information available for use.

For example, suppose that it is required to process the first 100 records on
tape unit (01201) 8' each record is a normal 14-word BCD record, and no special
error or end-of-file routines are to be used. A sample program might be as
follows:

Location

START

READ

*

07.01.16
5 (6/61)

Operation

REWA
INTRAN
ISCRIB
AXT
ISCRIB

Variable Field

1 Rewind tape 1, channel A.
Set all modes to normal.

START Initiate reading record n=1.
99,1
START Initiate reading record

n=2, 3,4, ... ,100

J
Process record n (using internal
processing rna cros) while reading
in record n+ 1
(n = 1, 2, 3, ... ,99)

TIX
mEADY

TRA

READ, 1, 1

}
SYSTEM

Count records.
Check transmission of record 100

Process record 100 (using
internal processing macros)

Finish.

Note that the first !SCRm instruction is used to initialize the simultaneous process
of reading in record n+ 1 while processing record n. The mEADY instruction
checks the transmission of the final record n = 100. This final record is
processed without initiating further transmission.

As indicated in the description of ISCRm, the execution of an mEADY instrootion
will automatically produce an alternation of the buffers 11 and 12. As in the
above sample program, this necessary alternation will cause the internal processing
macros to use that buffer which was loaded by virtue of the last ISCRIB blstruction.

In the above example, the buffer which was loaded by the execution of the last
(100th) ISCRm instruction was 12. Since the execution of the.l.K'EADY, instruction
caused an intervening alternation of 11 and 12, it follows that i£'another· ISCRm
instruction were then executed, the buffer to be loaded would again be 12.

If the programmer so chooses, he may avoid the alternation and: use only the
single buffer 11 by the simple device of following the execution.of every ISCRIB
instruction by the execution of an mEADY instruction, before the execution of
any internal processing macro-instructions preceding the next, ISCRm instruction.
In general, of course, the use of this device will defeat the purpose of the alter­
nation logic, i. e., the overlapping of reading and processing"; For example, the
job done by the sample program above might have been done as follows:

Location Operation Variable Field

START REWA 1 Rewind tape 1. ,channel A.
INTRAN Set all modes to normal.
AXT 100,1

READ ISCRm START Initiate readin~nec_d

* n = 1,2,3, .. , 100
mEADY and check transmtssmn of

* this record.

} Process record n (using
internal processing macros)

TIX READ, 1, 1 Count records.
TRA SYSTEM Finish.

07.01.17
5 (6/61)

In this program, the transmission initiated by each of the 100 executions of the
ISCRffi instruction is checked at once by the IREADY instruction. The double
alternation of the buffers 11 and 12 (one arising from ISCRm and one from IREADY)
results in the continual use of 11. The logic of this latter program is of course
simpler than that of the former one, but the relative loss of time entailed by the
serial transmission and processing (rather than parallel, as in the former case)
may be considerable.

The IREADY subroutine can best be characterized by noting that it performs the
same work as the ISCRffi subroutine (see description of ISCRffi) except the
initiation of a new transmission (with which IREADY is not concerned).

In particular, the execution of an IREADY instruction, as with an ISCRffi, may
result in:

1. A transfer to the instruction following the IREADY. This is the normal case,
i. e., when the previously initiated transmission, having been checked by the
IREADY subroutine, does not result in an error or end-of-file condition and
where the record transmitted is not binary.

2. A transfer according to the current mode of ffiRNCH. This is the case when
the previously initiated transmission, having been checked by the IREADY
routine, does not result in an error or end-of-file condition, and where the
record transmitted is binary. *

3. A transfer to the location specified by the current mode of IFILE. This is
the case when the previously initiated transmission results in an end-of-file
condition. *

4. A transfer to the location specified by the last ffiEDUN, with c(MQ) = o.
This is the case when the previously initiated transmission is unsuccessful
because of a persistent tape redundancy error. *

5. A transfer to the location specified by the last IREDUN, with c(MQ) = 2.
This is the case when the previously initiated transmission is successful
and involves a binary tape record, but the test for column binary is not
satisfied. *

However, unlike the ISCRffi subroutine, there are 1!2. circumstances under which
the IREADY subroutine will fail to alternate the buffers 11 and 12 (even in the
eventuality of a special transfer of control according to IREDUN or IFILE).

* In the description of ISCRIB, it is noted that when the transfer of control occurs, the address part of
the AC will contain the address of the input unit for which the condition occurred. In the case of
IREADY, this is still true, but the decrement part of the AC (which for ISCRm contains the address
of the "present" input unit) is irrelevant, since IREADY does not initiate a new transmission.

07.01. 18
5 (6/61)

If an ffiEADY instruction occurs but there is no "previous" transmission, e. g. ,
before an ISCRm instruction has ever been executed or immediately after the
execution of another mEADY instruction, the only action taken will be to alter­
nate the buffers 11 and 12. Control will be returned to the instruction following
the IREADY instruction.

mRNCH Y,T

mRNCH is used to establish a mode which relates to ISCRIB and IREADY, and
which has already been discussed in the description of these macros.

When an instruction of the form mRNCH Y, T is executed, the mRNCH subroutine
computes the effective address Y -c(T). Later, if an ISCRm instruction initiates
the transmission of a binary (card or tape) record, then, after this transmission
is checked by a subsequent ISCRm or mEADY instruction, control will automatically
be transferred to Y -c(T). The established address (mode) will continue to be
used until the execution of another mRNCH instruction, or INTRAN instruction,
establishes a new mode.

As indicated under ISCRm and IREADY, the situation when an ffiRNCH type of
control transfer occurs is as follows:

The binary record in question has already been transmitted into the I-region
and, in case of tape, this transmission has been checked. Moreover, the
control transfer occurred in the final stage of the execution of the ~
ISCRm (or ffiEADY) instruction following the ISCRm instruction which
initiated the transmission of the binary record. If this next instruction was
an ISCRm instruction, the transmission prescribed by it has already been
initiated; and whether the next instruction was an ISCRIB or ffiEADY
instruction, the usual alternation of buffers 11 and 12 has already been
performed. In addition, the address and decrement parts of the AC, at
the time of the transfer of control, contain the input unit addresses for the
previous and present transmission, respectively.

The normal mode associated with mRNCH results in a message being printed on
the debugging output unit. The message specifies which macro in the object
program encountered the mRNCH condition. The contents of the AC and the MQ
are also printed out for analysis. The object program is terminated at this point
and control transferred to the monitor. *

As an aid to writing the special routine which may be required to provide for an
mRNCH type of control transfer, attention is called to the following:**

* With the IB Monitor, the nermal mode results in a recognizable stop.

** This fact applies equally in programming routines for the IREDUN and IFll.E control transfers.

07.01.19
5 (6/61)

The macro-expansion of an ISCRm instruction is a 4-word calling sequence
beginning with the instruction STL SYSIT1 followed by a TXL instruction
which transfers control to the ISCRm subroutine. Thus, when a special
transfer of control takes place in the ISCRm subroutine, the location of
this TXL instruction is available for use by the programmer in location
SYSIT1, i. e., the location of the next instruction following the ISCRm
instruction expansion would be c(SYSIT1)21_35 + 3.

IFILE Y, T

This modal macro is used to establish a mode which relates to ISCRm and
mEADY, and which has already been discussed in the description of these macros.

When an instruction of the form IFILE Y, T is executed, the IFILE subroutine
computes and establishes the effective address Y -c(T). If an ISCRIB instruction
subsequently initiates a transmission of either a card or tape record which
results in an end-of-file condition, this condition is detected when the next ISCRm
or mEADY instruction occur s and control will automatically be transferred to
this established address. The established address (mode) will be used until the
execution of another IFILE instruction (or INTRAN instruction) establishes a
new mode.

As indicated under ISCRm and ffiEADY, the situation when an IFILE type of
control transfer occurs is as follows:

If the end-of-file condition is for a tape unit, the redundancy check was
satisfactorily made. Moreover, the control transfer occurs during the
execution of the ISCRm (or mEADY) following the ISCRm w~ich initiated
the transmission leading to an end of file. If this next instruction was an
ISCRm, the transmission prescribed by it has already been initiated (and
the buffers 11 and 12 alternated) if and only if the input unit used is different
from that unit on which the end-of-file condition occurred. If the next
instruction was an ffiEADY, the usual alternation of the buffers 11 and 12
has already been performed. In addition, at the time of the transfer of
control, the address and decrement of the AC contain the input unit addresses
for the previous and present transmission, respectively.

The normal mode associated with IFILE results in a message being printed on
the debugging output unit. The message will specify which macro in the obj ect
program encountered the IFILE condition. The contents of the AC and the MQ
are also printed out for analysis. The object program is terminated at this
point and control given to the monitor. *

* With the IB Monitor, the normal mode results in a recognizable stop.

07.01. 20
5 (6/61)

The final remarks for mRNCH, page 07. 01. 19, should also be noted.

IREDUN Y, T

This modal macro is used to establish a mode which relates to ISCRm and
ffiEADY, and which has already been discussed in the description of these macros.

When an instruction of the form ffiEDUN Y, T is executed, the ffiEDUN subroutine
COlnputes and establishes the effective address Y-c(T). Control is automatically
transferred to this established address in anyone of the following three situations:

1. During the execution of an ISCRm or ffiEADY instruction, when the trans­
mission initiated by the previous ISCRm instruction was for a tape record
and a persistent tape redundancy error is detected. In this case, c(MQ) = o.

2. During the execution of an ISCRm instruction which prescribes the trans­
mission of a record which is too large to be accommodated by the I-region.
In this case, c(MQ) = 1.

3. During the execution of an ISCRm or ffiEADY instruction, when the trans­
mission initiated by the previous ISCRm instruction is successful and
involves a binary tape record, but the test for column binary is not satisfied.
In this case, c(MQ) = 2.

4. During the execution of an ISCRm instruction which attempts to read an
unassigned unit. In this case c(MQ) = 3.

The established address (mode) will continue to be used until the execution of
another ffiEDUN instruction (or INTRAN instruction) establishes a new mode.

The normal mode associated with mEDUN results in the printing of an error
message on the debugging output unit. This message will specify the macro
which encountered the error, and will include the contents of the AC and MQ.
Control is transferred to the monitor. *

As indicated under ISCRm andmEADY, the situation when an mEDUN type of
control transfer occurs is as follows:

If c(MQ) = 0 or c(MQ) = 2: The control transfer occurred during the execution
of the ~ext ISCRm or ffiEADY instruction following the ISCRm which initiated
the transmission that led to the error condition. If this next instruction was
an ISCRm, then the new transmission prescribed by it has already been

* With the m Monitor, the normal mode results in a recognizable system halt.

07.01.21
5 (6/61)

initiated (and the buffers 11 and 12 alternated) if and only if the input unit
used is not the one on which the error condition occurred. If this next
instruction was an mEADY instruction, the usual alternation of the buffers
11 and 12 has already been performed.

If c(MQ) = 1 or c(MQ) = 3: The transfer occurred in the initial stage of the
execution of the ISCRm instruction specifying the illegal (large) record.
The present (illegal) transmission has not been initiated (consequently
no buffer alternation has been performed) and the previous transmission
(if any) has not been examined.

In any case, the address and,decrement parts of theAC, at the time of the
transfer of control, contain the input unit addresses for the previous and
present transmissions, respectively.

THE INTERNAL PROCESSING I-MACROS

As indicated above, the internal processing macros are provided to operate on
the record image, i. e., the information in the I-region. (The information is
normally placed in the I-region by an ISCRm instruction.) All of the rest of
the I-macros to be described below are of this type.

There are eight active internal processing macros. Six of these, which involve
conversion to binary, share certain common properties and will be called
"conversion macros." The other two (mCC and mCW) involve no conversion.

Associated with the eight active macros, are seven modal macros whose
description follows that of the active macros.

In addition, there are three other internal processing macros: Two of these,
ICOLR and ICOLIN, are discussed immediately below; the third, ffiPT, is
discussed at'the end of this section.

All eight of the active internal processing macros require a variable field of the
form Y, T, C, N. Y and T together specify a core storage address, and C and N
together specify a subfield of the I-region. The I-region here is always thought
of as divided into six-bit groups called "columns" (or BCD character positions)
which are numbered 1, 2,3, ... ,M, where M (the number of characters in the
I-region) is determined by the current mode of the macro IIMAGE. The normal
value of M is 6 x 28 = 168.

The C-value defines the beginning column of the subfield and the N-value defines
the length in characters (except with mcw, for which N is the length in words)
of the subfield. Thus, for example, C = 49, N' = 10 would refer to the subfield
of the I-region consisting of columns 49, 50, 51, ... , 58.

07.01.22
5 (6/61)

As will be seen below, C = 0 or N = 0 are given a special interpretation, and
are equivalent to specifying some positive C-value or N-value, respectively.

The Column Counter

A record image is processed, one sub field at a time, from left to right. Each
subfield is processed by the execution of a single active (internal processing)
macr'o-instruction. For example, if an 80-column record image is divided into
eight subfields of ten columns each, then eight successive macro-instructions
would ordinarily be executed. Such a sequence would appear as follows:

Operation

OPCOD
OPCOD
OPCOD

OPCOD

Variable Field

Y, T, 1, 10
Y, T, 11, 10
Y, T, 21, 10

Y, T, 71, 10

Process 1st subfield.
Process 2nd subfield.
Process 3rd subfield.

Process 8th subfield.

where OPCOD stands for one of the active internal processing macros.

In such a case, to avoid the necessity of always specifying the beginning column
in the macro-instruction, an automatic feature called the "column counter, "
with the following properties, is provided:

1. If C = 0 in the macro-instruction, then the contents of the column counter
will be used as the C-value for this instruction.

2. If C -:f. 0 in the macro-instruction, then the column counter will be set to C.

3. After either 1 or 2 has taken place, the column counter will be increased
by the number of characters in the image subfield processed.

Thus, in the above example, the sequence could be simply:

07.01. 23
5 (6/61)

Operation

OPCOD
OPCOD
OPCOD

OPCOD

Variable Field

Y, T, 1, 10
Y, T, 0, 10
Y, T, 0,10

Y, T, 0, 10

Process 1st subfield.
Process 2nd subfield.
Process 3rd subfield.

Process 8th subfield.

ICOLR Y, T

This macro is provided to set the column counter to the value Y-c(T). For
example, suppose index register 4 contains 10 when the following instruction is
executed.

Operation Variable Field

ICOLR 71,4

The effect would be to set the column counter to the value 61. Note that the value
Y -c(T) is always non-negative since, like an effective address, the twos complement
is used if Y -c(T) is negative. In general, Y -c(T) should not be zero, since the
columns of the image are numbered beginning with 1.

As explained above, the execution of an active macro-instruction will also serve
to set the column counter (e. g., the instruction lINT Y, T, 1, 10 would set the
column counter to 1 + 10 = 11) in addition to carrying out the processing which
the instruction specifies.

ICOLIN Y, T

The purpose of this macro is to increase the contents of the column counter by
the value Y-c(T). For example, suppose the column counter contains 20 and
index register 4 contains 10 when the following instruction is executed.

Operation Variable Field

ICOLIN 15,4

The effect would be to change the contents of the column counter to 20 + 5 = 25.

This macro is especially useful in cases where the programmer desires to skip
over subfields of the record image during internal processing.

IBCC Y, T, C, N

This active macro-instruction causes N characters (N six-bit groups) to be
extracted from the record image beginning with column C. This is inserted
into the destination region beginning, normally, * with the first (leftmost)
character position of the word whose effective address is Y -c(T). Note that
the modal macro IMASK may be used to change positioning of the string inserted.

* IINormally," as used here, means that the current mode for IMASK is normal.

07.01. 24
5 (6/61)

The I-region is left undisturbed, as are all positions of the destination region
which do not receive transmitted characters.

Example:

Suppose that the record image contains, in columns 21 through 28, the (BCD­
coded) string ABCDEFGH, and that c(3000) = c(3001) = (777 777 777 777)8'
Then the execution of the instruction

would result in:

Operation Variable Field

IBCC 3000,0,21,8

c(3000) = (ABCDEF)BCD
c(3001)0_11 = (GH)BCD
c(3001)12_35 = (77 777 777)8
c(column counter) = (29)10

It is not necessary that the record image contain legal BCD characters. The
mcc macro will move any binary information (in groups of six bits) from the
I-region to an arbitrary region. This property makes mcc particularly suitable
for use with binary records.

The execution of mcc Y, T, C, N with N = 0 will lead to a transfer of control to
the location determined by the current mode of ISPILL, with c(MQ) = 6.

Besides IMASK and ISPILL, the modal macro IEOR (see below) also applies to
mcc.

mcw Y, T, C, N

This macro has exactly the same properties as mcc except for the meaning of
N, which is the number of words, rather than the number of characters as in
mcc. Thus, the two instructions

Operation

mcw
IBCC

Variable Field

Y,T,C,N
Y, T,C, 6*N

are equivalent. (The column counter is, of course, increased by 6*N, rather
than by N.)

07.01. 25
5 (6/61)

mcw is provided only for convenience, and cannot be used if the number of
characters to be moved is not a multiple of six.

The modal macros lMASK, ISPILL, and IEOR apply to mcw.

Rules for the Use of N in the Conversion Macros

For the six conversion macros to be described below, the programmer is not
required to specify an N-value (image subfield length). Instead, he may specify
N = 0, in which case the subfield used will begin, as usual, at the column
specified by the C-value, and extend to the right until a field-terminating
character is encountered. The characters which will terminate the field are,
in general, different for each of the conversion macros, but will always include
the following:

1. blank
2. comma
3. all non-numeric characters other than plus (+), minus (-), decimal point (.),

E, and B.

The exact rules for field termination are given for each macro.

A conversion macro-instruction wi th N = 0 is said to use a "variable length field. "
After the successful execution of such an instruction (by the conversion subroutine),
the terminating character, in BCD, and the column number are loaded into the
address and decrement of the AC, respectively. These two items are then
available for possible use by the object program on the normal return to the
next instruction. Since the terminating character is regarded as belonging to the
subfield, the column counter will then contain the column number of the character
following the terminating character (i. e., 1 + c(AC)3-17).

Example:

Suppose the record image contains +0, +1 in columns 21-25, and the following
instruction is executed

Operation Variable Field

OPCOD Y, T, 21,0

where OPCOD stands for one of the conversion macros.

The number in columns 21 and 22 (+0) would then be processed, and return
made to the next instruction with:

07.01. 26
5 (6/61)

c(AC)21-35 = BCD code for", "
c(AC)3-17 = (23)10
c(column counter) = (24)10

Thus, the N-value specified by a conversion macro-instruction is defined as
follows:

If N = 0, then the N-value = the specified N.
If N = 0, then the N-value = [(column number of first terminating

character) - (C-value) + D .
In no case should the N-value (in a conversion macro-instruction) exceed (31)10.
The violation of this condition will lead to generally unpredictable results.

If a conversion macro-instruction is defined with N = 0, and the scan goes past
the last column of the I-region as established by IEOR (see IEOR - the normal
value for the last column is 120), it will terminate with the last column number
in the decrement and (77) 8 in the address of the AC. The number will be
converted. Another conversion macro-instruction following with N = 0 will cause
a transfer according to IEOR.

IOCT AL Y, T, C, N

N characters of the I-region, beginning with column c are assumed to contain a
BCD-coded octal integer. The execution of the instruction causes this integer
to be converted to binary and stored in the cell Y -c(T).

An octal integer must be represented by a string of characters from the set
[0, 1, 2, 3,4, 5,6, 1] , and mayor may not be preceded by a + or -. The appear­
ance of an irregular character in the subfield will, if N =I- 0, cause control to
be transferred according to the current mode of the modal macro ICHAR (see
below). When N = 0, an irregular character is treated as a field-terminating
character.

Thus, if columns 21, 22, 23 of the image contain -77, the execution of the
instruction

would cause:

07.01. 27
5 (6/61)

Operation Variable Field

IOCTAL 3000,0,21,3

c(3000) = (400 000 000 077)8
c(column counter) = (24)10

However, if columns 21-23 contain -78, then, because of the illegal 8, the
execution of the above instruction would result in a transfer of control according
to the mode of ICHAR, without disturbing c(3000). For further information, see
page 07. 01. 42.

On the other hand, if columns 21-23 contain -78, and the instruction

Operation Variable Field

IOCTAL 3000,0,21,0

is executed, then the result would be:

c(3000) = (400 000 000 007)8
c(column counter) = (24) 10
c(AC) 21-35 = BCD code for 8
c(AC)3-17 = (23)10

If the representation of the octal integer to be processed by an IOCTAL instruction
begins with a - sign, then the numeric part of the integer must not exceed 235-1
(i. e., 377 777 777 7778). In no case may the numeric part exceed 236-1. If
either of these conditions is violated, then the attempted execution of an IOCTAL
instruction will result in a transfer of control to the location determined by the
current mode of ISPILL, with c(MQ) = o.

The "0" in the MQ can then be used to distinguish the kind of spill error, since
there are other conditions which will cause a transfer to the same location.

To illustrate:

1. The strings -400000000000 and 1000000000000 are illegal and result in a
transfer of control according to ISPILL.

2. The strings -377777777777, 777777777777, +777777777777, 00777777777777
are all legal and all convert to (777 777 777 777)8.

Besides ICHAR and ISPILL, the modal macros lMASK, IEOR, and 10VPCH also
apply to 10CT AL.

mIN Y, T, C,N

The image subfield defined by C, N in this macro-instruction is assumed to contain
a BCD-coded binary integer. The execution of the instruction causes this integer
to be converted to binary and stored in location Y -c(T).

07.01. 28
5 (6/61)

A binary integer must be represented by a string of characters from the set
[0, 1], and mayor may not be preceded by a + or -. Unlike the case of IOCTAL,
the use of a - sign with an integer to be processed by an mIN instruction does
not specify that the sign bit of the result is to be a 1. Instead it indicates that the
ones complement of the integer is to be taken with respect to a 35-bit binary field;
the sign bit of the converted result will always be a "0". The absolute value of the
integer in any case cannot exceed 31 bits (or 30 bits, if a "_,, sign is used),
because of the restriction that the N-value of an mIN instruction must be less
than 32 (see above).

The appearance of an irregular character in the image subfield will, if N :f: 0,
cause a transfer according to the current mode of ICHAR. If N = 0, the
irregular character is treated as a field-terminating character.

Examples:

Assume that columns 21 through 24 of the image contain -101. Then the execution
of the instruction

would cause:

Operation Variable Field

mIN 3000,0,21,4

c(3000) == (377 777 777 772)8
c(column counter) = (25)10

However, if columns 21 through 24 contain +112, the execution of the above
instruction, because of the illegal 2, would result in a transfer of control
according to the mode of ICHAR. The contents of location 3000 would be unchanged.

On the other hand, if columns 21 through 24 contain +112, then the execution of
the instruction

would cause:

07.01. 29
5 (6/61)

Operation Variable Field

IBIN 3000,0,21,0

c(3000) = (000 000 000 003) 8
c(column counter) = (25)10
c(AC)21-35 = BCD code for 2
c(AC)3_17 = (24)10

In addition to ICHAR, the modal macros lMASK, ISPILL, IEOR, and IOVPCH
also apply to IBIN.

lINT Y, T J C, N

The image subfield defined by C, N in this macro-instruction is assumed to contain
a BCD-coded decimal integer. The execution of the instruction causes this integer
to be converted to binary and stored in location Y -c(T).

A decimal integer must be represented by a -string of characters from the set
[0, 1, 2,3,4, 5,6, 7, 8, 9J and mayor may not be preceded by a + or -. The
appearance of an irregular character in the subfield will, if N ~ 0, cause a
transfer according to the current mode of ICHAR. If N = 0, the irregular
character is treated as a field-terminating character.

Example:

If columns 21, 22, 23 of the image contain -31, the execution of the instruction

would cause:

Operation Variable Field

lINT 3000,0,21,3

c(3000) = (400 000 000 037)8
c(column counter) = (24)10

However, if columns 21-23 contain -9+, the execution of the above instruction,
because of the illegal +, would result in a transfer of control according to the
mode of ICHAR. The contents of location 3000 are unchanged.

On the other hand, if columns 21-23 contain -9+, the execution of the instruction

would cause:

07.01. 30
5 (6/61)

Operation Variable Field

lINT 3000,0,21,0

c(3000) = (400 000 000 011) 8
c(column counter) = (24)10
c(AC)21-35 = BCD code for +.
c(AC)3_17 = (23)10

If the absolute value of a decimal integer to be processed by an lINT instruction
exceeds 235_1, an attempt to execute the instruction will result in a transfer of
control to a location determined by the current mode of the modal macro ISPILL,
with c(MQ) = 1.

In addition to ICHAR and ISPILL, the modal macros IMASK, IEOR, and IOVPCH
also apply to lINT.

IFLOAT Y,T,C,N,D*

The image subfield defined by C, N in this macro-instruction is assumed to contain
a BCD-coded decimal number, possibly specified with a decimal point and/or an
exponent. The execution of the instruction causes this number to be converted to
a normalized floating point binary number (i. e., 1-bit sign, 8-bit characteristic,
27 -bit fraction) and stored at location Y -c(T).

A decimal number to be processed by an IFLOAT instruction must consist of a
string of characters from the set [9, 1, 2,3,4,5,6,7,8,9, . ,+, -, EJ. This string
must begin with a "principal part" composed of a possible + or - sign followed
by a string of numeric characters, possibly containing a decimal point. If the
sign is omitted, a + is understood; if the decimal point is omitted, it is understood
to be at the right-hand end. The principal part may be followed by an "exponent
part" consisting of the character E followed by a + or - sign, and a string of not
more than four numeric characters. The + or the E of the exponent part may be
omitted, but not both.

For example, the strings 3. 14159, +.314159E1, .314159+1, 314159-5, +314159E-5
all are permissible representations of numbers for processing by an IFLOAT
instruction and each will convert to the floating point binary representation of
the number 3. 1415910.

The rules given above conform to the rules for representing a floating point
decimal number as required by DEC (see page 03. 00. 11) except that, for IFLOAT,
an integer is also acceptable.

The D-parameter* specifies a nominal decimal scale factor. It is employed to
alter the data, for a given IFLOAT macro, by a decimal scale factor equal to D.
It will be ignored if there is a decimal point in the data.

* The D-parameter is not recognized when used with the IB Monitor. Use of the IFLOAT subroutine
with the IB Monitor assumes a D-value (nominal decimal scale factor) of zero. Therefore, all
comments here pertaining to the D-parameter may be ignored.

07.01. 31
5 (6/61)

For example, if the string +7090 starts in colunm 40 and is operated upon by
the instruction

it would cause:

Operation Variable Field

IFLOAT 3000,0,40,5,2

c(3000) = the floating point binary representation
of (709000)10

If the data contains an exponent part, the D-value is additive to this exponent
part.

The normal value for the D-parameter is zero, thus not affecting the data value
as given.

It is important to note that an additional decimal scale factor may be introduced
by the modal macro ISCALE (see below). This value is additive to the decimal
scale factors specified by an exponent part of the data and/or the D-parameter
(unless there is a decimal point in the data, in which case a D-parameter is
ignored). Thus, the effective scale factor is the sum of the exponent part in
the data, the D-value (if given), and the current ISCALE value (normal case is
zero).

For example, if columns 45 through 52 contain +7090E-3 when operated upon
by the instruction

would cause:

Operation Variable Field

IFLOAT 3001,0,45,8

c(3001) = the floating point binary representation
of (7. 090)10

but for the same string, the instruction with aD-parameter

07.01. 32
5 (6/61)

Operation

IFLOAT

Variable Field

3002,0,45,8,-2

would cause:

c(3002) = the floating point binary representation
of (.07090)

The appearance of an irregular character in the image subfield to be processed
by an IFLOAT instruction will, if N 1: 0, cause a transfer according to the
current mode of the modal macro ICHAR. If N = 0, the irregular character is
treated as a field-terminating character.

Thus, if columns 21 through 27 of the image contain +. 25E+l, then the execution
of the instruction

would cause:

Operation Variable Field

IF LOAT 3000,0,21,7

c(3000) = (202 500 000 000) 8 (i. e., the floating point
binary representation of
(2. 5)10)

c(column counter) = (28)10

However, if columns 21 through 27 contain +. 25Z+1, the execution of the above
instruction would, because of the illegal Z, result in a transfer of control
according to the mode of ICHAR, without disturbing c(3000).

On the other hand, if columns 21 through 27 contain +. 25Z+ 1, the execution of
the instruction

would cause:

07.01. 33
5 (6/61)

Operation V'ariable Field

IFLOAT 3000,0,21,0

c(3000) = (177 400 000 000) 8

c(column couI\ter) = (26)10
c(AC)21-35 = BCD code for Z
c(AC)3_17 = (25)10

(i. e., the floating point
binary representation of
(0. 25)10)

There are four restrictions with respect to size on a decimal number to be
processed by an IFLOAT instruction:

1. The string of numeric digits in the principal part of the number, considered
as a decimal integer (i. e., disregarding the decimal point), must not exceed
235_1, e. g., the number -090. 000000000 is illegal since the corresponding
integer (90 000 000 000)10 is too large. Note that the number -090. OOOOOOOOEI
would be acceptable. If such an illegal number is encountered by the IFLOAT
subroutine, control will be transferred to the location determined by the
current mode of ISPILL, with c(MQ) = 2.

2. The exponent part of the number (if any) should use no more than four
numeric characters. Thus, 1. 5E00004 is illegal. If this restriction is
violated, the IFLOAT subroutine will transfer control according to the
mode of ISPILL, with c(MQ) = 3.

3. The absolute value of the number must not exceed the limit of approximately
1038 (the maximum size representable in standard floating point form).
If the IFLOAT subroutine encounters a number exceeding this limit, control
will be transferred according to the current mode of ISPILL with c(MQ) = 8,
indicating floating point overflow.

4. If the IFLOAT subroutine encounters a number smaller than approximately
10-38, a floating point underflow condition will result and control will
transfer according to the current mode of ISPILL with c(MQ) = 7.

Note that in 3 and 4 above, the possible effect of the D-parameter (not applicable
with IB Monitor) and a decimal scale factor introduced by the modal macro ISCALE
(described below) must also be included in the value of the number.

In addition to ICHAR and ISPILL, the modal macros ISCALE, IEOR, and IOVPCH
also apply to IFLOAT (see below).

IFIX Y,T,C,N,D,P*

The image subfield defined by C, N in this macro-instruction is assumed to contain
the same kind of number as for IFLOAT (i. e., a decimal number, possibly
specified with a decimal point and/or a decimal scale factor), except that an
additional part may be present, called the "B-part." The execution of the
instruction causes the number to be converted to a fixed point binary number
(i. e., I-bit sign, 35-bit numeric part) and stored in location Y-c(T). The position

* The D- and P-parameters are not recognized when used with the IB Monitor. Use of the IFIX sub­
routine with the IB Monitor assumes a D-value (nominal decimal scale factor) and P-value (nominal
binary scale factor) of zero. Therefore all comments here about D and P can be ignored if INrRAN
is being used with the IB Monitor.

07.01. 34
5 (6/61)

of the binary point in Y -c(T) is defined by the B-part (as possibly modified by
the P-parameter or IPOINT).

The B-part is a data string consisting of the character B followed by a signed
integer using at most four numeric characters. If the sign is +, it may be omitted,
but the B must always be present. The B-integer is used to count from the left­
hand end of the binary word (which consists, of course, of a sign position and
positions 1, 2, 3, ... ,35). Thus, a B-integer of 0 indicates that the binary point
is to be regarded as immediately to the left of position 1, while a B-integer of
35 indicates that the binary point is to be regarded as immediately to the right of
position 35.

Ordi~arily, the binary point will be specified to lie inside the 35-bit word cell,
corresponding to a B-integer of 0, 1, 2, ... ,35. However, the B-integer can be
negative, in which case it implies counting to the left (instead of to the right) so
that, for example, . 25B-l would convert to (200 000 000 000)8. The actual
number is, of course, (0. 01)2 and the binary point is one position outside the
left-hand end of the word.

The B-integer may also exceed 35; for example, 2. OB+36 would convert to
(000 000 000 001) 8. Here, the binary point is one position outside the right-hand
end of the word cell.

In addition to the B-part discussed above, there are two other methods of specifying
the location of the binary point. They are:

1. The modal macro IPOINT (see below).
2. The value of the P-parameter in the IFIX instruction.

The following table shows the relationships between the three methods of binary
point specification. *

IN EFFECT

1. Only one of the three modes

2. Combination of IPOINT and B in the
data, or of IPOINT and the P-parameter

3. B in data and P-parameter

4. All three modes are specified

RESULT

That mode will be effective

Result is the sum of the two
values

The P-parameter is ignored

Result is the sum of the B-part (in
the data) and the IPOINT value.
The P-parameter is ignored.

* For use with the IB Monitor, the P-parameter is not available. The two methods of binary point location

are IPOINf and a B- value in the data. If the two are used together, the IPOINT value is ignored.

07.01. 35
5 (6/61)

Example:

If columns 21 through 25 contain 14B10 and are being processed by

Operation Variable Field

IFIX 3000,0,21,5,0,25

the position of the binary point will be following bit 10. However t if the IPOINT
modal macro established a current non-zero value for the binary point location,
the effective location would be the sum of this IPOINT value and the 10 from the
B-part. In both cases, the P-value of 25 from the IFIX expansion would be
ignored because of the presence of the B10 in the data.

Further, if the instruction were given:

Operation Variable Field

IFIX 3000,0,21,2,0,25

(thus converting only the 14, and not examining the BIO), the position of the
binary point will be after bit 25. If the IPOINT modal macro established a current
non-zero value, the effective binary point location would be the sum of the IPOINT
value and 25 from the P-parameter.

The D-parameter represents a nominal decimal scale factor and behaves exactly
as the D-parameter described for IFLOAT. (Note again that D is ignored if the
data has a decimal point.)

The normal value of both D and P is zero, which is the equivalent of no scale
factor at all.

If the number to be converted by an IFIX instruction uses both a B-part and E-part
("exponent part"), both parts should be placed after the principal part of the
number, but their relative order is unimportant. For example, 314159B2E-5 is
equally as acceptable as 314159E-5B2.

The appearance of an irregular character in the image subfield to be processed
by an IFIX instruction will, if N , 0, cause control to be transferred according
to the current mode of ICHAR. If N = 0, the irregular character is treated as
a field-terminating character.

Example:

Suppose that columns 21 through 27 of the image contain 25B5E-1. Then the
execution of the instruction

07.01. 36
5 (6/61)

would cause:

Operation Variable Field

IFIX 3000,0,21,7

c(3000) = (024 000 000 000) 8 (i. e., the fixed point
binary representation of
(2. 5) 10 regarding the
binary point between bits
5 and 6)

c(column counter) = (28)10

However, if columns 21 through 27 contain 25B5Z-1, the execution of the above
instruction would, because of the illegal Z, result in a transfer of control according
to the mode of leHAR, without disturbing c(3000).

On the other hand, if columns 21 through 27 contain 25B5Z-1, then the execution
of the instruction

would cause:

Operation Variable Field

IFIX 3000,0,21,0

c(3000) = (310 000 000 000)8

c(column counter) = (26)10
c(AC)21-35 = BCD code for Z
c(AC)S-17 = (25)10

(i. e., the fixed point
binary representation of
(25. 0)10 regarding the
binary point between bits
5 and 6)

There are four restrictions with respect to size on a decim.al number to be pro­
cessed by an IFIX instruction:

1. The string of numeric digits in the principal part of the number, considered
as a decimal integer (1. e., disregarding the decimal point) must not exceed
235_1, e. g., the number .. 090. 000000000 is illegal since the corresponding
integer (90 000 000 000)10 is too large. Note that the number -090. 00000000E1
would be acceptable. If such an illegal number is encountered by the IFIX
subroutine, control will be transferred to the location determined by the
current mode of the modal macro, ISPILL t with c(MQ) = 2.

07.01. 37
5 (6/61)

2. The exponent and B-parts of the number (if any) should use no more than
four numeric characters each. Thus, 1. 5E00004 and 1. 5BOOOOl are illegal.
If this restriction is violated, the IFIX subroutine will transfer control
according to the mode of ISPILL, with c(MQ) = 3.

3. The specified B-integer must lie in the range: -128~B-integers127. The
violation of this restriction will lead to generally unpredictable results.

4. The position of the binary point must not be such as to cause the loss of
high-order (leftmost) I-bits in the converted result of the number. (Note
that the possible effect of a decimal scale factor introduced by the modal
macro ISCALE and the D-parameter must also be considered.) For example,
1. 5BO results in the loss of the integral I-bit of the converted result (1. 1)2.
However, 1. 5Bl is acceptable. If this restriction is violated, the IFIX
subroutine will transfer control according to ISPILL, with c(MQ) = 4.

In addition to ICHAR, ISPILL, and IPOINT, the modal macros ISCALE, IEOR,
and IOVPCH also apply to IFIX.

ISCAN Y, T, C, N

The image subfield defined by C, N is assumed to contain any number which is
composed according to the rules for lINT, IFLOAT, or IFIX. Thus, the rules
of composition are exactly the same as for decimal numbers specified in a DEC
instruction (see page 03.00. 11). Moreover, the manner of treatment (integer,
fixed point, or floating point) is determined by the same rules as for DEC so
that:

1. If the number has no exponent part, no B-part, and no decimal point, it is
treated as though the ISCAN instruction were lINT Y, T, C, N except that
lMASK does not apply.

2. If the number has a B-part, it is treated as though the ISCAN instruction
were IFIX Y, T, C, N.

3. If the number has no B-part, but has a decimal point or exponent part, it
is treated as though the ISCAN instruction we're IFLOAT Y, T, C,N.

Just as for lINT, IFLOAT, and IFIX, the appearance of an irregular character
in the image subfield to be processed by an ISCAN instruction will, if N t:- 0,
cause control to behave according to the current mode of ICHAR. If N = 0, the
irregular character is treated as a field-terminating character.

07.01. 38
5 (6/61)

Here, the term "irregular character" means a character which does not conform
to the rules of representation of any of the three possible forms. For example,
if columns 21-28 contain "+5E-1BO, ", then the execution of the instruction

Operation Variable Field

ISCAN 3000,0,21,0

would cause the comma in column 28 to be taken as the terminating character,
and the number to be treated as fixed point, producing (200 000 000 000)8 in
location 3000. With the IB Monitor, the modal macro IPOINT is not applicable
to ISCAN, since the explicit appearance of the character B is necessary to
ISCAN to indicate a fixed point number.

The restrictions on the size of a decimal number to be processed using lINT,
IF LOAT , and IFIX also hold as restrictions for numbers to be processed by
ISCAN. The violation of anyone of these restrictions will, in each case, lead
to action indicated for the appropriate macro.

The modal macros applying to IINT, IFLOA T, and IFIX apply equally to ISCAN
except for the modal IMASK which applies to IINT only.

lMASK Y, T, C, N

This modal macro is used to establish a mode of execution for the five macros:

IOCTAL
IBIN
IINT
IBCC
IBCW

If the mode associated with lMASK is normal, the above five macros will function
as already described. (As mentioned previously, either of the instructions
lMASK 0 or INTRAN will set this mode to normal.)

The execution of the instruction IMASK Y, T, C, N defines a binary subfield,
where Y -c(T) is the length in bits of the subfield, and C specifies the number of
the first bit of the subfield. (N, which is normally specified as zero, will be
described below.) The subfield here is taken with respect to a binary word whose
bits are numbered 1, 2,3, ... ,36 (not 0, 1, 2, ... ,35). Thus, if index register 4
contains 1 when the instruction lMASK 16,4,22 is executed, then the subfield is
the address part of the word (i. e., bits 22 through 36).

07.01. 39
5 (6/61)

After the instruction IMASK Y, T , C is executed, any subsequent instructions of
one of the forms

Operation

IOCTAL
IBIN
IINT

Variable Field

ALPHA, TAG, COL, LENGTH
ALPHA, TAG, COL, LENGTH
ALPHA, TAG, COL, LENGTH

will have the same effect as usual, except that, in each case, the 36-bit converted
result will not be stored in the cell ALPHA-c(TAG). Instead, the converted
result, or the twos complement of its rightmost 35 bits in the case the sign bit
is 1 (negative), will be stored in the -subfield defined by the controlling IMASK.
If the result (or its twos complement) is too large to fit in the subfield, only the
rightmost Y -c(T) bits will be used. No other positions in core storage except
the specified subfield positions will be disturbed.

For example, if columns 21, 22 of the image contain -2, then the execution of

Operation

IMASK
IINT

Variable Field

15,0,4
3000,0,21,2

would set the decrement of c(3000) == (77776)8' without disturbing the other bit
positions in -cell 3000.

If IMASK is to be applied to an IOCT AL, IBIN, or IINT instruction, the subfield
defined by the IMASK should lie entirely within a single cell.. For example, the
instruction IMASK 15,0,31 would not be allowable. If this restri<!tion is violated,
an attempt to execute the IOCT AL, IBIN, or IINT will lead to 'a transfer of 'control
to the location determined by tbe current mode of ISPILL, with c(MQ~ == 5.

However, the instruction

Ope~ation Variable Field

IMASK 15,0,58

would be legal. SUppose it w'ere followed by the instruction

07.01. 40
5 (6/61)

Operation

IOCTAL

Vartable Field

3000,0,21,7

and columns 21 through 27 of the image contained +654321. The result would be

c(3001)address = (54321)8

Note, as implied in the above example, that the C of IMASK may exceed 36. Thus,
the specified subfield, although defined in this case with respect to location 3000,
is not in location 3000, but in location 3001.

After the instruction IMASK Y, T, C is executed, any subsequent instructions of
one of the forms

Operation

mcc
IBCW

Variable Field

ALPHA, TAG, COL, LENGTH
ALPHA, TAG, COL, LENGTH

will have the same effect as usual. However, the destination region for the string
of characters to be moved by the IBCe or mcw instruction does not begin with
the first character position in ALPHA-c(TAG). Instead, the region begins with
bit position C (considering C = 1 as the leftmost bit position of ALPHA-c(TAG».
Thus, if columns 21 through 27 of the image contain the string ABCDEFG, the
execution of the instructions

would cause:

Operation

IMASK
IBCC

Variable Field

0,0,31
3000,0,21,7

c(3000)30_35 = (A)BCD
c(3001) = (BCDEFG)BCD

with c(3000)0_29 undisturbed.

In the above example, C = 31 happens to correspond to the leading bit of a character
position (of which there are six: 1,7, 13, 19, 25,31). This is not required. C is
quite arbitrary and a character (six-bit group) may overlap two words.

Note that Y and T in the instruction IMASK Y, T, C are irrelevant when applied
to mcc or mew.

In the instruction IMASK Y, T, C, N; N must have one of the two values ° or 1.
The specification of N = 1 indicates a "floating mask, " so that each time the
IMASK instruction is applied (by the execution of an instruction using one of the

07.01. 41
5 (6/61)

five macros controlled by IMASK), the C-value is increased by the length,
Y -c(T), of the subfield.

Example:

Suppose that columns 21 through 28 of the image contain +1+2+3+4. Then the
execution of the instructions

would result in:

Operation

lMASK
lINT
lINT
lINT
lINT

Variable Field

12,0,1,1
3000,0,21,2
3000,0,0,2
3000,0,0,2
3000,0,0,2

c(3000) = (0001 0002 0003)8
c(3001)0_11 = (0004)8

c(3001)12_35 would be undisturbed.

Note that the same effect could be achieved (at more cost in space) by the following
sequence of instructions:

Operation Variable Field

IMASK 12,0,1
lINT 3000,0,21,2
IMASK 12,0,13
lINT 3000,0,0,2
IMASK 12,0,25
lINT 3000,0,0,2
lMASK 12,0,37
lINT 3000,0,0,2

A floating mask can also be applied to IBCC and IBCW. For example, suppose
columns 21 through 23 of the image contain the string ABC. Then the execution
of the instructions

07.01.42
5 (6/61)

Operation

lMASK
IBCC
IBCC
IBCC

Variable Field

36,0,31,1
3000,0,21,1
3000,0,0,1
3000,0,0,1

would result in storing the BCD codes for A, B, and C in the rightmost six bit
positions of cells 3000, 3001, and 3002, respectively, without disturbing any
other bit positions in these cells.

ICHAR Y, T, C

This modal macro, which applies to the six conversion macros, actually embodies
four different independent modal macros:

ICHAR
ICHAR
ICHAR
ICHAR

Y, T, 1
Y, T, 2
Y,T,4
Y, T, B

The C-value in ICHAR Y, T, C can be any non-zero sum of the set [l., 2,4, BJ .

Thus, 1 SC S15, and provides a convenient abbreviation for the corresponding
combination of ICHAR instructions, e. g., executing the single instruction

Operation

ICHAR

is equivalent to executing the three instructions

Operation

ICHAR
ICHAR
ICHAR

Variable Field

Y, T, 11

Variable Field

Y, T, 1
Y, T, 2
Y,T,B

Consequently, it suffices to discuss ICHAR Y,T,C for C = 1,2,4, and B.

1. ICHAR Y, T, 1

When an instruction of the form ICHAR Y, T, 1 is executed, the ICHAR sub­
routine computes and establishes the effective address Y-c(T). Later, if
a conversion macro-instruction with a non-zero N-field specifies conversion
of an image subfield which begins with one or more blank characters and
contains at least one non-blank character, control will be transferred auto­
matically to location Y-c(T). The core location specified by the conversion
macro-instruction will remain undisturbed, although the column counter
will be increased as usual.

07.01. 43

5 (6/61)

Example:

Suppose the instruction

Operation Variable Field

ICHAR 5000,0,1

has been executed, and columns 21 through 24 of the image contain the
string bb+ 1, then the execution of the instruction

Operation Variable Field

IINT 3000,0,21,4

will result in a transfer of control to location 5000, with c(column counter)
= 25. Location 3000 is unaffected.

The normal mode for ICHAR Y, T, 1 is to ignore the leading blanks and
continue processing as usual. Thus, in the above example, the IINT
instruction would set c(3000) = (000 000 000 001)8"

2. ICHAR Y, T, 2

The remarks for C = 1 hold here also, except that the condition which will
cause the control transfer is a completely blank image subfield.

The normal mode here is to treat the completely blank subfield as though it
contained all zeros, thus yielding the value 0 for the converted result in all
cases.

3. ICHAR Y, T,4

The remarks for C = 1 hold here also, except that the condition which will
cause the control transfer is a non-blank subfield which ends with one or
more blanks, e. g., +lbb.

The normal mode here is to ignore the trailing blanks and continue processing
as usual.

4. ICHAR Y, T, 8

The remarks for C = 1 hold here also, except that the condition which will
cause the control transfer is a subfield which contains an irregular character,
i. €., a character which does not conform to the rules of representation for
the conversion macro in question.

07.01. 44
5 (6/61)

Examples:

If the string 1. 2 is referred to by lINT, then the ". " is irregular.
If the string 1B1 is referred to by IFLOAT, then the "B" is irregular.
If the string IB1Eb-l is referred to by IFIX, then the blank (b) is irregular.

In addition, before the transfer, the irregular character (in BCD code) and its
column number are stored, by the conversion macro subroutine, in the
address and decrement of the AC, respectively. Thus, these two items are
available for possible use by an error routine which the programmer may write.

Example:

Suppose the instruction

Operation Variable Field

ICHAR 5000,0,8

has been executed, and columns 21 through 24 contain +787. Then the
execution of the instruction

Operation Variable Field

IOCTAL 3000,0,21,4

would cause a transfer to the location 5000, with

c(AC)21-35 = BCD code for 8
c(AC)3-17 = (23)10
c(column counter) = (25)10
c(3000) unchanged

The normal mode* of ICHAR is a transfer to the system and results in the
printing of an error message on the debugging output unit. The location of
the conversion macro which encountered the illegal character is included in
the message. The contents of the AC and the MQ are printed out for analysis.
The remainder of the job is deleted, and control is then transferred to the
monitor.

An error return has been provided in the event the programmer desires to
return to his program when an irregular character is encountered; i. e., an
ICHAR 8 condition (see below).

* With the IB Monitor, the normal mode results in a recognizable stop.

07.01. 45
5 (6/61)

The four modes associated with the four different ICHAR conditions can be set to
normal simultaneously by using the instruction ICHAR 0 (or by INTRAN). Combin­
ations of the four can be set to normal by using ICHAR 0, 0, C with a proper choice
of C. Thus, the execution of the instruction

Operation Variable Field

ICHAR 0,0,7

will cause leading and trailing blanks in a subfield to be ignored, and a completely
blank subfield to be treated as zero, until a subsequent ICHAR instruction changes
one or more of these three modes.

ISPILL Y, T

This modal macro is used to establish a mode which relates to the six conversion
macros, and which has already been mentioned in the description of each of these
macros.

When an instruction of the form ISPILL Y, T is executed, the ISPILL subroutine
computes and establishes the address Y-c(T). Subsequently, control is transferred
to this address in anyone of the following situations:

1. When the numeric part of an octal integer being processed by an IOCTAL
instruction exceeds 236_1, or the octal integer has a "-" sign and its
numeric part exceeds 235_1.

Control is transferred with c(MQ) = O.

2. When the absolute value of a decimal integer being processed by an lINT or
ISCAN instruction exceeds 235_1.

Control is transferred with c(MQ) = 1.

3. When a floating point or fixed point decimal number being processed by an
IFLOA T, IFIX, or ISCAN instruction is represented in such a way that
the string of numeric digits in its principal part, considered as an integer,
exceeds 235_1.

Control is transferred with c(MQ) = 2.

4. When a floating point or fixed point decimal number being processed by an
IF LOAT , IFIX, or ISCAN instruction is represented with an E-field or a
B-field using more than four numeric characters.

Control is transferred with c(MQ) = 3.

07.01. 46
5 (6/61)

5. When a fixed point decimal number being processed by an IFIX or ISCAN
instruction, is such that the indicated position of the binary point causes the
loss of high-order 1-bits in the converted result.

Control is transferred with c(MQ) = 4.

6. When an IOCTAL, mIN, or lINT instruction is executed under a controlling
IMASK instruction which specifies a binary subfield extending into more than
one binary word.

Control is transferred with c(MQ) = 5.

7. When mcc Y, T, C, N or mcw Y, T, C, N is executed with N = O.

Control is transferred with c(MQ) = 6.

8. When an IFLOAT instruction results in an underflow condition.

Control is transferred with c(MQ) = 7.

9. When an IFLOAT instruction results in an overflow condition.

Here, c(MQ) = 8.

Whenever the execution of a conversion macro; e. g., lINT Y, T, C, N, leads to
a transfer of control according to ISPILL, the column counter will be increased,
as usual, by the N-value specified in the conversion macro-instruction, but the
contents of location Y -c(T) will be unaffected.

The normal mode associated with ISPILL* is a transfer to the system which
results in the printing of an error message on the debugging output unit indicating
which macro caused the spill. The contents of the AC and MQ are printed for
analysis. Control is then transferred to the monitor. The remainder of the job
is deleted.

ERROR RETURN: ICHAR 8; ISPILL

If an error condition occurs which transfers control to an ICHAR 8 or ISPILL error
routine, the programmer may want to determine where the error occurred in order
to return to the program at the proper location. This task is performed auto­
matically. In order to return to the next sequential instruction after the macro
which causes the error, it is only necessary to transfer to location SYSIT 1. * *

* With the IB Monitor, the normal mode is a recognizable stop within the system.

** With the IB Monitor, SYSITl must be referred to as an absolute location, and can be determined from
the expansion of any input macro-instruction.

07.01.47
5 (6/61)

Example:

Location Operation

LOCI
LOC2
LOC3

ERROR

ISPILL
IFIX
IFIX
IFIX

PANEL
TRA

Variable Field

ERROR
Y,T,C,N
Y,T,C,N
Y,T,C,N

SYSITi

}

Convert

"
"

Continuation of the program

Error routine - look at AC and
MQ for analysis, then return to
object program at next instruction.

If a spill occurred in the IFIX at LOCI, the error routine would give a PANEL
(see Section 06) and return control to LOC2.

When returning via this error return, two options are available:

1. A zero placed in the decrement of SYSITl causes zeros to be stored in
the word where the converted result was to go.

2. A non-zero value in the decrement of SYSITl causes the location where the
converted result was to go to remain unaltered.

The normal condition is a zero in the decrement of SYSITI.

If the index registers are altered in the error routine, their values when the
transfer to SYSITI is executed, will be in effect when control is returned to the
next instruction of the obj ect program.

IPOINT Y, T

This modal macro applies only to IFIX and is used to supply a B-value, by means
of the literal value Y-c(T), for any fixed point decimal numbers (processed by
la ter IFIX instructions).

Example:

Suppose c(index register 4) = 1 when the instruction

07.01. 48
5 (6/61)

Operation

IPOINT

Variable Field

36,4

is executed, and a later IFIX instruction is to process an image subfield containing
1. 2E3. The result would be the same as if the subfield had contained 1. 2E3B35.
All subsequent fixed point decimal numbers would be so treated until a new IPOINT
mode is established.

The value established by the IPOINT mode is additive when used with one of the
other two methods of locating the binary point (the B-part in the data and the P­
parameter of IFIX). * If all three methods specify a non-normal value, the effective
binary point location is the sum of the B-part in the data and the IPOINT value,
the P-parameter is ignored.

The normal mode for IPOINT is the use of 0 for the B-value. That is, fixed point
numbers represented without a B-part and with P == 0 for IFIX are normally
treated as proper fractions.

A negative B-integer (e. g., IPOINT -2) is allowable and will be properly interpreted.
Even though the -2 would become internally converted, as usual, to its twos
complement, the presence of a complemented number is later detected and the
number is effectively translated back to its algebraic (signed) value.

ISCALE Y, T

This modal macro applies to all IFLOAT and IFIX instructions, and to all ISCAN
instructions which process floating point or fixed point decimal numbers (not
integers). ISCALE Y, T can be used for such numbers to supply a decimal scale
factor, Y -c(T), in addition to the possible E-part which may also be present
and the possible D-parameter of the IFIX or IFLOAT macros.

Example:

Suppose c(index register 4) == 1 when the instruction

Operation Variable Field

ISCALE 6,4

is executed, and a later IFLOAT, IFIX, or ISCAN instruction is processing an
image subfield containing 1. 2E-3. Then the result would be the same as though
this nqmber had been multiplied by 105, i. e., as though the string were 1. 2E2.
This scale factor, 105" would continue to be so used until a new ISCALE mode
is established.

* With the IB Monitor, the IPOINT value will be effective only if there is!lQ. B-part in the data. The
P-parameter is not recognized when used with the IB Monitor.

07.01. 49
5 (6/61)

If an IFLOAT or IFIX instruction with a D-parameter* of -1 is processing the
same image subfield as above, then the number 1. 2 is multiplied by 10-3 , by
105, and by 10-1, i. e., as if the number were 1. 2E1. The E-value, the ISCALE
value and the D-parameter are all additive, unless there is a decimal point in
the data. In the latter case, the D-parameter is ignored.

The normal mode for ISCALE is the use of the scale factor 100 = 1. This is, of
course, equivalent to applying no scale factor at all.

The specification of a negative power of 10, e. g., ISCALE -2, is allowable and
will be properly interpreted.

IOVPCH Y, T, C

In normal practice, which has been assumed thus far, all signs used in the numbers
processed by conversion macros appear as separate characters ahead of the
numeric string with which each sign is associated.

IOVPCH, which applies to all conversion macros, provides for the treatment of
"overpunched" signs, a space-saving device which combines the sign with one of
the characters in the numeric string to which this sign applies. For example,
+123 and -123 are represented, respectively, by 123 and 123. 3 and 3 indicate
a 3-punch, in the input card, "overpunched" with a 12-punch or an 11-punch,
respectively. These codes are identical to the card code for the characters C
and L (see Appendix 1).

If a sign is overpunched, it must occur with one and only one of the digits in the
string to which it relates. The overpunch may occur anywhere in this string,
except over a decimal point.

In the general form IOVPCH Y, T, C; C must have one of the values 1, 2, or 4.

1. IOVPCH Y, T, 1

When an instruction of the form IOVPCH Y, T, 1 is executed, the IOVPCH
subroutine computes and establishes the effective value Y-c(T). Subsequent
to this, any image subfield processed by any of the conversion macros will
be assumed to contain a number which originated from a card where the sign
of the principal part is punched over the nth character of the subfield, where
n = Y-c(T). Note that the nth character must be a numeric character in the
principal part, but that possible leading blanks and decimal point are included
in the character count.

* With the IB Monitor the D-parameter is not recognized, and therefore this paragraph does not apply.

07.01. 50
5 (6/61)

Example:

+
The subfield bbl. 23 would be treated using the mode:

Operation Variable Field

IOVPCH 6,0,1

If a separate sign is punched in addition to the overpunched sign, e. g. ,
+

b+1. 23, it will be treated as an irregular character. Moreover, if an
IOVPCH mode has been specified, but the designated numeric character
does not actually have an overpunch, a + overpunch will be assumed. Of
course, overpunching in a card column which does not agree with the
IOVPCH mode will result either in an irregular character or in a mis­
interpretation, e. g., the code for an over punched +5 is the same as the
Hollerith code for E.

2. IOVPCH Y, T, 2

This macro-instruction has the same effect as IOVPCH Y, T, 1; except that
it refers only to over punched signs in the E-field (exponent field) of a
decimal floating or fixed point number. Consequently, it applies only to
IFIX, IFLOA T, and ISCAN. The character E is not included in the count.

+
Thus, 1. 2EI0 would be treated by the mode:

Operation Variable Field

IOVPCH 2,0,2

3. IOVPCH Y,T,4

This macro-instruction has the same effect as IOVPCH Y, T, 1; except that
it refers only to overpunched signs in the B-field of a decimal fixed point
number. Consequently, this macro applies only to IFIX and ISCAN. The
character B is not included in the count. Thus, the string 1. 2BIU' would be
treated by the mode:

Operation Variable Field

IOVPCH 2,0,4

The normal mode associated with IOVPCH for all three types (C = 1, 2, and 4) is
no overpunching. All three can be simultaneously set to normal by using the
instruction IOVPCH ° (or INTRAN). Each can be set independently to normal
by using IOVPCH 0, 0, C with C = 1, 2, or 4.

07.01. 51
5 (6/61)

IEOR Y, T, C

When an instruction of the form IEOR Y, T, C is executed, the IEOR subroutine
computes and establishes the effective address Y-c(T), and saves the specified
C-value. Later, if a conversion macro, or an IBCC or IBCW instruction is
executed, and specifies an image subfield whose rightmost column number exceeds
the saved C-value, then control will be transferred to location Y-c(T).

For example, if the instruction

Operation Variable Field

IEOR 5000,0,72

has been executed, then the execution of the instruction

Operation Variable Field

IBCC 3000,0,71,3

would cause a transfer of control to location 5000, without disturbing c(3000).

The contents of the column counter after such an IEOR transfer of control is in
general meaningless.

The normal mode associated with lEaR is a transfer of control to the system,
whenever the rightmost column number of the specified image subfield exceeds
120. * This results in an error message being printed on the debugging output
unit which indicates the location of the macro which caused the error. Control
then is transferred to the monitor and the remainder of the object program is
deleted.

mPT R,I,J

This special control macro can be used to repeat the execution of any active
internal processing macro-instruction, i. e., any conversion macro-instruction
or IBCC or IBCW macro-instruction.

When an instruction of the form IRPT R, I, J is executed, the first active internal
processing macro-instruction thereafter will be executed a total of R times,
instead of only once. The first time the macro is executed using the Y, T, C, N
fields as specified, the second time with Y increased by I and C increased by J, etc.

* With the IB Monitor, the normal mode results in a recognizable stop within the system.

07.01. 52
5 (6/61)

Note that if the macro-instruction which is repeated uses indirect addressing,
it is the direct address, Y, and not the indirect address which is increased by I.

For example, the execution of the two instructions

Operation

ffiPT
IBee

Variable Field

5,1,6
3000,0,21,2

is equivalent to the execution of the five instructions

Operation

mee
IBCC
mec
mce
IBCC

Variable Field

3000,0,21,2
3001,0,27,2
3002,0,33,2
3003,0,39,2
3004,0,45,2

In ffiPT R, I, J; the value of R must be non-zero. The specification of a
negative value for I or J, e. g., ffiPT 5, -1, -6, is allowable and will have
the effect of decreasing the value of Y and C, respectively, in the subsequent
repeated executions of the active macro-instruction.

07.01. 53
5 (6/61)

EXPANSIONS OF INTRAN MACROS*

(1) IBCC [*] Y,T,C,N

STL SYSIT1
TXL SYSIT2, 0, 1
PZE [*] Y,T
PZE C, 0, N

(2) IBCW [*] Y,T,C,N

STL SYSIT1
TXL SYSIT2, 0, 2
PZE [*] Y,T
PZE C, 0, N

(3) IBIN [*] Y,T,C,N

STL SYSIT1
TXL SYSIT2, Q, 5
STO [*] Y,T
PZE C, 0, N

(4) IBRNCH [*] Y,T

STL SYSIT1
TXL SYSIT2, 0, 16
PZE r] Y,T

(5) ICHAR [*] Y,T,C

STL SYSIT1
TXL SYSIT2, 0, 12
PZE [*] Y,t
PZE C

(6) ICOLIN Y,T

STL SYSITl
TXL SYSIT2, 0, 21
PZE Y,T

* With the IB Monitor, SYSITI is replaced by 4310 and SYSIT2 by 4410. With both systems, PZE is,
in some instances, replaced by HI'R.

07.01.54
5 (6/61)

(7)

(8)

(9)

(10)

(11)

(12)

07.01. 55
5 (6/61)

ICOLR

STL
TXL
PZE

IEOR [*]

STL
TXL
PZE[*]
PZE

IFILE [*]

STL
TXL
PZE[*]

IFIX[*]

STL
TXL
STO[*]
PZE
PZE

IFLOAT [*]

STL
TXL
STO [*]
PZE
PZE

IIMAGE [*]

STL
TXL
PZE[*]
PZE

Y,T

SYSIT1
SYSIT2, 0, 20
Y,T

Y,T,C

SYSIT1
SYSIT2, 0, 11
Y,T
C

Y,T

SYSITI
SYSIT2, 0, 14
Y,T

Y,T,C,N,D,B The D and B parameters of IFIX
and the D parameter of IFLOAT

SYSITI are not available when using the
SYSIT2,0,q IB Monitor, and the respective
Y,T expansions are four words
C,O,N rather than five .
D,O,B

Y,T,C,N,D

SYSITI
SYSIT2, 0,6
Y,T
C,O,N
D

Y,T,C

SYSIT1
SYSIT2, 0, 22
Y,T
C

(13)

(14)

(15)

(16)

(17)

(18)

(19)

07. 01. 56
5 (6/61)

TINT [*]

STL
TXL
STO [*]
PZE

IMASK

STL
TXL
PZE
PZE

INTRAN

STL
TXL

IOCTAL[*]

STL
TXL
SLW[*]
PZE

IOVPCH

STL
TXL
PZE

IPOINT

STL
TXL
PZE

ffiEADY

STL
TXL

Y,T,C,N

SYSIT1
SYSIT2, 0,4
Y,T
C, 0, N

Y,T,C,N

SYSIT1
SYSIT2, 0, 10
Y,T
C,O,N

SYSIT1
SYSIT2, 0, 0

Y,T,C,N

SYSIT1
SYSIT2, 0,3
Y,T
C, 0, N

Y,T,C

SYSIT1
SYSIT2, 0, 17
Y,T,C

Y,T

SYSIT1
SYSIT2, 0, 18
Y,T

SY SIT 1
SYSIT2, 0,24

(20)

(21)

(22)

(23)

(24)

(25)

07.01. 57
5 (6/61)

IREDUN [*]

STL
TXL
PZE[*]

IRPT

STL
TXL
PZE
PZE

ISCALE

STL
TXL
PZE

ISCAN [*]

STL
TXL
STO[*]
PZE

ISCRIB [*]

STL
TXL
LDQ[*]
PZE

ISPILL [*]

STL
TXL
PZE[*]

Y,T

SYSIT1
SYSIT2, 0, 15
Y,T

R,I,J

SYSIT1
SYSIT2, 0,9
R-1
1,0, J

Y,T

SYSITI
SYSIT2, 0, 19
Y,T

Y,T,C,N

SYSITI
SYSIT2, 0, 8
Y,T
C, 0, N

Y,T,C,L The L parameter is not available
when using the IB Monitor.

SYSITI
SYSIT2, 0, 23
Y,T
C, 0, L

Y,T

SYSITI
SYSIT2, 0, 13
Y,T

CHAPTER 2: OUTPUT SYSTEM - OUTRAN*

This chapter deals with the OUTRAN vocabulary of SOS. This vocabulary con­
sists entirely of system macros.

OUTRAN provides the programmer with two tools:

1. A large set of fundamental subroutines, each of which performs one of the
basic output functions required for a general class of information.

2. An easy means of specifying that one of these fundamental subroutines is to
be used, i. e. , by a single macro.

These basic subroutines may in turn be used to construct higher-level subroutines.
These higher-level subroutines might be designed to cover part or all of the out­
put processing required in a very large class of problems, and thus be made into
a standard output program. The nature and range of output programs will vary
widely and may be chosen to suit the particular needs of the installation. By
using the Output macros, the programmer will find that the task of constructing
such programs is extremely simplified.

On the other hand, for a given production problem with certain output requirements
(perhaps peculiar to the problem), the programmer may choose to write his own
subprograms as part of his total source program. In such a case, he will find
that the direct use of the OUTRAN macros in his program will be of great value.

RULES FOR SPECIFYING OUTRAN MACROS

The general rules for specifying any SOS instruction (see Section 02) apply to all
OUTRAN macros. For example, the location field of a macro may contain a
symbol, the variable field is divided into subfields separated by commas, etc.

As is the case with all macro-instructions, a location symbol of an OUTRAN
macro will be associated with the first word generated by the instruction, i. e.)
the location symbol will be entered into the dictionary' with the value assigned
to the first word generated by the macro-instruction.

* There are currently two versions of OUTRAN, one which is used with the SHARE Monitor and the other
with the IB Monitor. The differences in the two versions are generally relatively minor and are indicated
by footnotes. However, significant differences occur in the actual output transmission routine (OSCRIB).
The routine is, therefore, described separately for each version.

07.02.01
5 (6/61)

A list of all the OUTRAN macro-operations and their expansions is given on page
07.02.58. The macro-operations for which indirect addressing is permissible are
so indicated. Indirect addressing is, as usual, specified by placing the character
"*,, at the end of the operation code.

The list of macros also indicates the pattern of the variable field of each macro.
As is evident, the number of subfields which must be specified in the variable
field is fixed for each macro, but among all the macros, this number varies
from zero to at most six. The programmer may, of course, specify zero values
for the last n subfields of the variable field by simply omitting the subfields
along with their separating commas. The roles 'played by these various subfields
and the rules for specifying subfields depend, in general, on the operation, and
are discussed below.

By definition, a macro-instruction always generates, or "expands into, " one or
more machine words. The number of words in the expansion of any macro
depends only on the macro-operation used in the instruction and not on the values
of the expressions in the variable field. In fact, ~ SOS macro (whether a pro­
grammer or system macro) results in generation of a fixed number of words.

The expansions for the different Output macros vary in size from at least two to
at most five words. For example, the macro OUTRAN will always generate two
words, whereas the OFLOAT macro will always generate five words. The number
of words generated by a given macro and the number of subfields required in the
variable field of such an instruction are directly related. The relation between
these two numbers is due to the fact that the set of words generated by a macro­
instruction is simply a calling sequence, which of course must contain all of the
information specified in the variable field of the macro-instruction.

It can be seen that the first two words generated by any OUTRAN macro are an
STL instruction and a TXL instruction. When these two instructions are executed,
they store the contents of the instruction location counter and transfer control to
the OUTRAN program. The OUTRAN program consists of a set of subroutines
which carry out the functions prescribed by the particular macro, using the in­
formation which it finds in those words of the macro expansion, if any, immediately
following the TXL instruction. Finally, control is returned to the first word
following the expansion. Execution of the object program then continues. Note:
For certain macro-operations, and under certain conditions (such as error con­
ditions, etc.) which will be discussed below, control may be transferred to some
special location.

SPECIAL REGISTERS AND INDICATORS

Whenever the OUTRAN program is entered by a calling sequence generated by a
macro, the contents of the AC and MQ, and the status of the AC Overflow indicator

07.02.02
5 (6/61)

are lost. The contents of the three index registers, the Sense Indicator register,
the status of the Sense Lights, or the special indicators on the 709/7090 are not
disturbed. However, it is possible that the status of the tape check indicator,
the end-of-tape indicator, or the end-of-file indicator associated with a given
data synchronizer channel will be affected by an OSCRIB or OREADY instruction
which uses that channel for tape operations.

PURPOSE OF THE OUTPUT SYSTEM

The Output System was designed to simplify the problem of providing a suitable
external form for output. The external representation will generally be the result
of an intermediate conversion (usually from binary to decimal), and will be in
the form of either on-line printing, cards punched on-line, or magnetic tapes
which may be used to produce printing or punched cards off-line.

OUTRAN is designed to treat a single unit record at a time.

The external information produced by OUTRAN consists of one or more unit
records. A unit record may take on any of the following forms:

1. A card punched with 72 columns of Hollerith information (produced on-line).

2. A BCD tape record consisting of n words (i. e., 6n characters). Such a
record might be used for off-line punching (BCD mode) or printing, or
be intended merely for storage on tape.

3. A BCD tape record specially prepared with spacing characters, to be used
for an off-line tape-to-printer operation. The number of characters which
are printed in this case can be any multiple of 6 up to 114, or it can be
119 (not 120). (During the actual off-line printing, the Carriage Control
switch must be set to Program.)

4. A printed line of Hollerith characters (produced on-line).

5. A card punched with 72 columns of binary information, in column binary
form (produced on -line). *

6. A binary tape record consisting of 28 words. Such a record will normally
be used to produce an 80-column column binary card by means of an
off-line tape-to-card operation. *

* The conventional column binary card contains 7- and 9- punches in column 1. The macro OSCRIB,
when used for punching a column binary card, will not automatically produce 7- and 9- punches in
column 1, and their presence will be at the option of the programmer.

07.02.03
5 (6/61)

The binary information in a unit record of either of the last two forms can be
quite arbitrary. Since this information is merely a copy of the internal binary
information there is no conversion problem. The only concern of OUTRAN in
producing such a record is to provide a means for writing it on tape, or punching
it into cards.

The major part of OUTRAN is devoted to converting binary words, or portions
of words, to BCD characters (six-bit groups) representing numbers in any of
the following forms: floating point decimal, fixed point decimal, decimal integers,
octal integers, and binary integers; and to assembling these character strings to
form a record in one of forms 1, 2, 3, or 4. The choice of the external form
produced, i. e., position of decimal point, use of a decimal exponent field, etc.,
is quite general and conforms to the rules of representation for INTRAN.

Internal information in BCD form, thus requiring no conversion except the auto­
matic conversion from BCD to Hollerith, can also be treated to produce a record
of form 1, 2, 3, or 4. (See OBCC and OBCW below.)

There are two stages which the programmer must specify for the output pro­
duction of every unit record:

1. Internal Processing Stage:

Internal binary information to be produced as an output record is processed
to form a string of six-bit groups occupying a region, I, * of core storage.

"Processed" here may mean either converted to a BCD representation of
decimal, octal, or binary data, or else merely moved without conversion.
If the unit record is to be of form 1, 2, 3, or 4, then the six bit groups
must be legal BCD characters. If the unit record is to be of form 5 or 6,
then the six-bit groups are arbitrary.

2. Write -out Stage:

Information placed in the I -region by the internal processing stage is
written in one of the unit record forms (punched cards, printed sheets,
or tape records). No conversion is necessary in this stage except the
standard BCD-to-Hollerith conversion required when the record is to
be a Hollerith card or a printed line.

* The I-region (image region) used by the Output System is independent of, and must not be confused

with, the I-region used by the Input System. See OIMAGE below.

07.02.04
5 (6/61)

The programmer is provided with six macros, called "write-out" macros, to
specify the write-out stage. With the exception of the two macros OIMAGE and
OUTRAN, described immediately below, which apply to both stages, the remaining
output macros are directly concerned with the internal processing stage, and are
called "internal processing" macros.

OIMAGE Y,T,C

An I-region is used by the Output System as a buffer area to link the internal
(output) processing stage with the write-out stage, just as the I-region used by
INTRAN is used to link reading and internal processing. This output I-region
has no logical relation to the input I-region, and is determined, completely
independently, by the mode of the macro OIMAGE in the same way as IIMAGE
determines the input I -region.

OIMAGE has the same properties as IIMAGE. The normal output I-region is a
fixed region inside that part of core storage occupied by the Output System, and
consists of dual regions 11 and 12' each 28 words long. This size is adequate
to treat any of the permissible unit record forms except a BCD tape record of
more than 28 words. OIMAGE Y, T, C speCifies a non-normal I-region, 2xC
words long, beginning at the effective location Y-c(T). OIMAGE 0 sets the
output I-region to normal.

In the remainder of this chapter, such terms as "I-region", "record image",
"image subfield", etc., all refer to the output I-region (as distinct from the
input I-region). Of course, if the Input and Output Systems are used together,
it is possible to identify the input I-region with the output I-region by using an
IIMAGE and an OIMAGE instruction with the same variable field.

OUTRAN

This macro is the exact counterpart of the macro INTRAN and serves to set the
12 Output System modes to normal. The OUTRAN macro should ordinarily be
used before the execution of any other Output System macro, to insure norm ali -
zation of all 12 modes.

MACRO CLASSIFICATIONS

The following chart shows the classification of the OUTRAN macros.

07.02.05
5 (6/61)

Internal processing Write -out macros
macros

OBCC OFLFIX OREADY OSCRIB

OBCW o FLOAT

ACTIVE OBIN OFXFLO*

OBLANK OINT

OFIX OOCT

*SHARE Monitor only

OEOR ORPT OHEAD OSPACE

MODAL OMASK OSCALE ORE DUN OTPEND

OOVPCH OSPILL

OPOINT OZERO

OIMAGE OUTRAN OCOLC* OIMAGE

Other OCOLIN OUTRAN

OCOLR

*SHARE Monitor only

Note that as with the INTRAN modal macros, the mode associated with any
OUTRAN modal macro can be set to normal by using the instruction OPCODE 0;
where OPCODE is the modal macro to be reset to normal.

07.02.06
5 (6/61)

THE INTERNAL PROCESSING MACROS

The internal processing macros include ten active macros (nine when using IB
Monitor). One of these, "OBLANK", is special and will be discussed first.
Seven involve conversion (from binary) and, hence, are called "conversion
macros." The other two (OBCC and OBCW) do not involve conversion. Associated
with the active macros there are seven modal macros, whose description follows
that of the active macros.

The variable field of an active internal processing macro (except OBLANK) must
be of the form Y, T, C, N; Y, T, C, N, K; or Y, T, C, N,K, B. * Here, as
in the corresponding INTRAN macros, Y and T together specify a core storage
address, and C defines the beginning column of an image subfield, i. e., a sub­
field of the output I-region, where the I-region is again considered to be composed
of column positions (six-bit groups) numbered 1,2,3, ... , M, with M = the
character length of the I-region. For each active macro the length of this image
subfield depends on N and K (if K is relevant) as described for each macro.

The Column Counter

There is a column counter for OUTRAN (independent of the Input System column
counter) with exactly the same properties as the INTRAN column counter.

Thus, for the execution of any active internal processing macro-instruction
(including an OBLANK instruction):

1. If C = 0, the contents of the column counter will be used as the C-value
for the instruction.

2. If C = 0, the column counter will be set to C.

3. After 1 or 2 is completed the column counter will be increased by the
character length specified in the instruction.

OCOLR Y, T

This macro is the exact counterpart of ICOLR and is used to set the column
counter to the value specified literally by Y -c(T)

OCOLIN Y, T

This macro is the exact counterpart of ICOLIN and is used to increase the
contents of the column counter by the value speCified literally by Y -c(T).

* The latter form is not available with the IB Monitor.

07.02.07
5 (6/61)

OCOLC Y, T*

The execution of this macro will cause the current value of the column counter
to be placed in location Y -c(T).

OBLANK Y, T, C

The execution of this active macro-instruction will cause the BCD code for the
character "blank" to be placed in every column of that image subfield whose
first column is specified by the C-value and whose length is specified literally
by Y -c(T). The length should never be zero. If it is, the result is generally
unpredictable.

Note that the rules given above under "The Column Counter" will apply to OBLANK.

Example: Suppose index register 4 contains 10 when the following instruction
is executed:

Operation Variable Field

OBLANK 15,4,21

The result would be:

c(image columns 21 through 25) = (bbbbb)BCD (where "b" indicates the
character, blank)

c(column counter) = (26)10

On the other hand, if c(column counter) = 29 when the instruction

Operation Variable Field

OBLANK 2

is executed, the result (since C = 0 in the instruction) would be:

c(image columns 29 and 30) = (bb)BCD

c(column counter) = (31)10

* The OCOLC macro is not available with the IB Monitor.

07.02.08
5 (6/61)

In constructing a record image, it will often be desirable to begin by clearing the
image region so that it will contain all blanks. This can be done most conveniently
by using an OBLANK instruction. For example, if the length of the image region
is 120 character positions, the programmer can simply write:

Operation Variable Field

OBLANK 120,0,1

This instruction will not set the entire I -region to blanks, only the first 120
columns of either II or 12 whichever is currently in use (see OIMAGE and OSCRIB
which describes the alternation of II and 12).

Note that the modal macro OEOR (see below) applies to OBLANK.

OBCC Y, T, C, N
/

The execution of this active macro-instruction causes the string of N characters
(six-bit groups) beginning, normally * , with the first (leftmost) character position
of the word in location Y -c(T) to be moved to the record image subfield defined
by C, N. The core storage region which is the source of the string remains
undisturbed, as do all positions of the image region which do not receive trans­
mitted characters.

Example:

Suppose that

c(3000) = (ABCDEF)
BCD

c(3001) = (GHIJKL)
BCD

Then the execution of the instruction

Operation

OBCC

Variable Field

3000,0,21,8

*"Normally," as used here, means that the C1UTent mode for OMASK is normal.

07.02.09
5 (6/61)

would result in:

c(image columns 21 through 28) = (ABCDEFGH)BCD

c(column counter) = (29)10

Note that the modal macro OMASK can be used to change the position of the
string to be inserted.

OBCC is not restricted to the treatment of legal BCD characters. Any binary
information, in multiples of six bits, can be moved to the image region.

The execution of OBCC Y, T, C, N when the N -value is zero will lead to a transfer
of control to a location determined by the current mode of OSPILL. When the
transfer occurs c(MQ) = O. The "0" in the MQ can be used to distinguish the
kind of OSPILL error, since there are other conditions which will cause a
transfer to the same location.

Besides OMASK and OSPILL, the modal macro OEOR also applies to OBCC.

OBCW Y,T,C,N

This macro has exactly the same properties as OBCC except for the meaning of
N. Here N is the number of words, rather than the number of characters as in
OBCC. The column counter is, of course, increased by 6*N, rather than N.
Thus, the following two instructions are equivalent.

Operation

OBCW
OBCC

Variable Field

Y,T,C,N
V, T, C, 6*N

OBCW is provided only for convenience, and cannot be used if the number of
characters to be moved is not a mUltiple of six.

Note that the modal macros OMASK, OSPILL, and OEOR apply to OBCW.

OOCT AL Y, T, C, N

The execution of this macro-instruction causes the contents of cell Y -c(T) to be
considered a binary integer and to be converted to an octal integer. The converted
number is stored in the image subfield beginning with column C. The length of
the subfield is N characters.

07.02.10
5 (6/61)

If N is written as zero, or is omitted, the value of N will be taken as 12. N
should not exceed 13. If N> 13, control will be transferred to the location
determined by the current mode of the modal macro OSPILL with c(MQ) = 3.

If IS N S 12 (which is the ordinary case), then the contents of location Y -c(T)
are considered as a 36-bit, signless integer, and converted to the corresponding
string of 12 octal digits. The rigqtmost N digits are stored in the specified
image subfield.

Thus, if c(3000) = (000 000 000 077)8' then the execution of the instruction

Operation Variable Field

OOCTAL 3000,0,21,3

would set c(image columns 21 through 23) = (077)
BCD

c(column counter) = (24)
10

If the specified image subfield length is too small to accommodate the number
(i. e., if N < 12 and the (12-N) leftmost digits in the 12-octal-digit converted
result are not all zeros), then control will be transferred to the location deter­
mined by the current mode of OSPILL with c(MQ) = 9.

For example, if the instruction in the illustration above had been OOCTAL
3000,0,21,1, then such an OSPILL transfer would occur because of the loss
of the leftmost 7 digit.

If N = 13, then the contents of location Y-c(T) will be converted as a 35-bit,
signed integer to produce a 13-character string consisting of a sign followed by
12 octal digits (the leading digit cannot exceed 3). If the sign is +, it will be
suppressed, i. e., stored as a blank character.

Example:

If c(3000) = (000 000 000 077)8' then the execution of

would cause

07.02.11
5 (6/61)

Operation Variable Field

OOCTAL 3000,0,21,13

c(image columns 21 through 33) = (b000000000077)
BCD

c(column counter) = (34)
10

Note that leading zeros are never suppressed.

In addition to OSPILL, the modal macros OMASK and OEOR also apply to
OOCTAL.

OBIN Y,T,C,N

The execution of this macro-instruction causes the contents of cell Y -c(T), con­
sidered as a 36-bit signless integer, to be converted to a binary integer; i. e. ,
a 36-character string of O-digits and I-digits. The rightmost N digits of this
string are then stored in the N -character image subfield beginning at column C.
If N is 0, or is omitted, the value of N will be taken as 36. The value of N
should not exceed 36. If N >36, then control will be transferred to the location
determined by the current mode of OSPILL with c(MQ)= 4.

Thus, if c(3000) = (000 000 000 077)8' then the execution of the instruction

Operation Variable Field

OBIN 3000,0,21,7

would set c(image columns 21 through 27) = (0111111)BCD

c(column counter) = (28)10

If the specified image subfield length is too small to accommodate the number,
i. e., if N<36 and the (36-N) leftmost digits in the converted result are not all
zeros, control will be transferred to the location determined by the current
mode of OSPILL with c(MQ) = 10.

For example, if the instruction in the illustration above had been OBIN 3000,0,
21,5, then an OSPILL transfer would occur because of the loss of the leftmost
1 digit.

Note that the results of using OBIN never involve the characters + or -, and
that leading zeros are not suppressed.

In addition to OSPILL, the modal macros OMASK and OEOR also apply to
OBIN.

07.02.12
5 (6/61)

OINT Y,T,C,N

The execution of this macro-instruction causes the contents of cell Y -c(T),
considered as a 35 -bit, signed binary integer, to be converted to a decimal
integer, thus producing a sign and a string of 11 decimal digits. The rightmost
N digits of this string, with leading zeros replaced by blanks and with an extra
blank character attached to the beginning of the N-digit string, is then stored in
the N+lth character image subfield beginning at column C. Finally, if the sign
of the integer is negative, a - character replaces the rightmost blank character
(i. e., the - immediately precedes the most significant digit). If the absolute
value of the integer is 0, so that the II-digit converted result is all zeros, then
the above procedure is not used. Special rules, detailed in the description of
the modal macro OZERO (see below), apply in this case.

Leading zeros and + signs are suppressed, but the length of the image subfield
is always N+l, not N. *

If N is 0, or is omitted, the value of N will be taken as 11. The value of N should
not exceed 11. If N> 11, then control will be transferred to the location deter­
mined by the current mode of OSPILL with c(MQ) = 2.

Thus, if c(3000) = (400 000 000 017)8' then the execution of the instruction

Operation Variable Field

OINT 3000,0,21,3

would set c(image columns 21 through 24) = (b-15)BCD

c(column counter) = (25)10

If the specified image subfield length is too small to accommodate the number,
i. e., if N < 11 and the (11-N) leftmost digits in the I1-digit converted result are
not all zeros, then control will be transferred to the location determined by the
current mode of OSPILL with c(MQ) = 8.

For example, if the instruction in the illustration above had been OINT 3000,0,
21,1, then an OSPILL transfer would occur because of the loss of the leftmost
digit.

* Unless a non-normal OOVPCH mode is in effect (in which case the length is N; see 00VPCH below).

07.02.13
5 (6/61)

In addition to OSPILL, the modal macros OMASK, OEOR, OZERO, and OOVPCH
also apply to OINT.

OFLOAT Y,T,C,N,K

The execution of this macro-instruction causes the contents of location Y -c(T) to be
regarded as a floating point binary number (i. e., I-bit sign, 8-bit characteristic,
27 -bit fraction), possibly not normalized. This number is first normalized and
then converted to floating point decimal form, i. e., to a string composed of a
principal part ("mantissa") followed by an exponent part (decimal scale factor).
This string is then stored in the image subfield beginning at the column number
specified by C.

The number of characters in the string (and hence the length of the image sub­
field used) depends on Nand K, as follows:

The principal part of the number will consist of a sign (+ will be suppressed)
followed by N+K decimal digits, with the leftmost digit non-zero. If K =1= 0,
a decimal point will be used to separate the N leftmost and the K rightmost
digits, so that the principal part is composed of N+K+2 characters. In this
case, N = 0 is allowable and will cause the point to occur between the sign
and the leftmost digit. If K = 0, a decimal point will not be used, so that
the principal part is composed of N + 1 characters. When K = 0, an N = 0
is not allowable and will cause a meaningless result.

If the converted result is zero then special rules apply which are given under
the description of the modal macro OZERO (see below).

An exponent part will always appear following the principal part. This exponent
part will not use the character E *, but always commences with a sign (+ is not
suppressed). The sign is followed by exactly two decimal digits, unless the
absolute value of the decimal exponent exceeds 99, in which case three decimal
digits will be used. Leading zeros are not suppressed.

Ordinarily, the absolute value of the decimal exponent will not exceed 38, but
the use of an additional decimal scale factor by means of OSCALE (see below)
may cause it to exceed 99.

* Unless the current OOVPCH mode is non-normal; see description of OOVPCH below.

07.02.14
5 (6/61)

Thus, the number of characters in the generated string is normally*:

N +4 if K = 0 (sign and exponent)

N+K+5 if K = 0 (sign, decimal point, and exponent)

When the exponent requires three decimal digits this number of generated
characters is increased by 1.

As an illustration, suppose that c(3000) = (601 500 000 000)8' i. e. the standard
floating point binary representation of (-1. 25) . Then the execution of the
. t t' 10 Ins ruc Ion

Operation Variable Field

OFLOAT 3000,0,21,3,0

would set c(image columns 21 through 27) = (-125-02)BCD

c(column counter) = (28)10.

On the other hand, the instruction

Operation Variable Field

OFLOAT 3000,0,21,0,3

would result in c(image columns 21 through 28) = (-. 125+01)BCD

c(column counter) = (29)10

Whereas the instruction

Operation Variable Field

aFLOAT 3000,0,21,1,3

would result in c(image columns 21 through 29) = (-1. 250+00)BCD

c(column counter) = (30)10.

* Unless the current OOVPCH mode is non-normal; see description of OOVPCH below.

07.02.15
5 (6/61)

There are three restrictions with respect to OFLOAT whose violation will cause
a transfer of control to the location determined by the current mode of OSPILL.
These .are:

1. N+K must not exceed 8. Violation of this restriction leads to a control transfer
with c(MQ) = 5.

2. The absolute value of the decimal exponent of the converted result must
not exceed 999. Violation of this restriction leads to a control transfer
with c(MQ) = 15.

3. The floating point binary number in location Y -c(T), if not normalized,
should not be so small as to cause a floating point underflow when it is
normalized. Violation of this restriction leads to a control transfer
with c(MQ) = 13.

In addition to OSPILL and OSCALE, the modal macros OEOR, OZERO, and
OOVPCH, also apply to OFLOAT.

OFLFIX Y,T,C,N,K

The execution of this macro-instruction has the following effect:

The contents of location Y -c(T) is regarded as a floating point binary number
possibly not normalized. * This number is first normalized and then converted
to fixed point decimal form which consists of a signed string of decimal digits,
possibly with a decimal point. This string is then stored in the image subfield
beginning at the column number specified by C.

If K = 0, the string which is developed will consist of N +K +2 characters; one
character for the sign, N digits representing the integral part of the number
(N may be 0), followed by a decimal point and K digits representing the fractional
part of the number.

If the current OOVPCH mode (see below) is non-normal, then the number of
characters generated is 1 less than indicated above.

If K = 0, no decimal pOint will be used, and the string will consist of N + 1
characters; one character. for the sign and N digits representing the integral
part of the number. In this case, the specification of N = 0 is not allowable
and will cause a meaningless result.

* If bits 9-35 of the contents of location Y -c(T) are all zeros, special rules apply. These are given
under the description of the modal macro.OZERO (see below).

07.02.16
5 (6/61)

Leading zeros in the integral part of the number and plus signs are suppressed.
Minus signs will appear in the position immediately to the left of the high-order
non-zero digit in the integral part, or immediately to the left of the decimal
point.

For example, suppose that c(3000) = (601 500 000 000)8' i. e., is the standard
floating point binary representation of (-1. 25)10' Then the execution of the
instruction

Operation Variable Field

OFLFIX 3000,0,21,3,0

would set c(image columns 21 through 28) = (bb-l. 250)BCD

c(column counter) = (29)10'

However, the instruction

Operation Variable Field

OFLFIX 3000,0,21,3,0

would cause c(image columns 21 through 24) = (bb-1)BCD

c(column counter) = (25)10'

OFLFIX can convert to any fixed point number up to 16 characters long. *
However, since a normalized floating point binary number can be accurate only
to eight decimal integers, OFLFIX will pad trailing zeros on numbers with
N+K greater than eight (or in some cases, nine). IfK> 8, fractional numbers
(without integers) will have significant zeros inserted between the decimal point
and the eight converted characters. Note, however, that accuracy is only as
great as the eight (or nine) non -zero characters, if an integer part is present.

For instance, with the following converted results,

512,064,470,000 The last 4 zeros are padding and not accurate.

512.06447000 The last 3 zeros are padding and not accurate.

* In the IB Monitor version of OUTRAN, OFLFIX converts up to 8 characters only, and this paragraph

does not apply.

07.02.17
5 (6/61)

.00000005126447

. 00512064470000

The first 7 zeros were inserted but each
character is significant.

The last 4 zeros are padding and not accurate .

There are three re&trictions with respect to OFLFIX whose violation will cause
a transfer of control to the location determined by the current mode of OSPILL.
These are:

1. N+K must not exceed 16 (8 for the IB Monitor version). Violation of this
restriction leads to a control transfer with c(MQ) = 6.

2. N must be large enough to accommodate the integral part of the converted
result, e. g., if c(3000) = (-1. 25)10 as in the above example the specifi­
cation of N = 0 is inadequate. * If this restriction is violated, an attempt
will be made to give a result wherever possible by placing the number, in
floating point form, within the space provided. ** If this attempt fails, control
is transferred to OSPILL with c(MQ) = 11.

3. If the floating point binary number in location Y -c(T), is not normalized, it
should not be so small as to cause a floating point underflow when normalized.
Violation of this restriction leads to a control transfer with c(MQ) = 14.

In addition to OSPILL, the modal macros OEOR, OSCALE, OZERO, and OOVPCH
apply to OFLFIX.

OFIX Y,T,C,N,K,B***

The execution of this macro-instruction causes the contents of location Y -c(T)
to be regarded as a fixed point binary number with the position of the binary point
determined by the value of the B-parameter*** and by the current mode of the modal
macro OPOINT. This number is converted to fixed point decimal form which
consists only of a signed string of decimal digits possibly with a decimal point.
This string is then stored in the image subfield beginning at the column number
specified by C.

* Note here that the effect of any decimal scale factor introduced by the modal macro OSCALE must
also be provided for in the converted result. Thus, in this example, if OSCALE -1 is in effect, N::O

would be adequate since the converted result would have the value (-0. 12Sho.

** The attempt to place the number in the image in floating point form will not occur when using the IB
Monitor version of OUTRAN. Control will always transfer to OSPILL with c(MQ) = 11.

***The B-parameter cannot be handled by the version of OUTRAN used with the IB Monitor and is thus

always assumed to have a zero value.

07.02.18
5 (6/61)

The B-parameter* modifies the location of the binary point in the fixed point
number to be converted. It supplements the OPOINT modal value (see below)
and is effective only for the OFIX in which it appears. For example, if the
mode of OPOINT is normal, i. e., the binary point is between bit positions
S and 1, a B value of 35 will place the binary point to the right of bit position
35. The converted number will then be an integer with no fractional part.

The rules for specifying N and K, and the make-up of the generated BCD string
are the same as for OFLFIX, except that N+K may be no larger than 11. Thus,
the length of the image subfield used will be N+K+2 if K =1= 0, and N+ 1 if K = o.

Example:

Suppose that c(3000) = (000 000 000 005)8 and the binary point is between positions
33 and 34.** This is a fixed point-binary representation of (1.01)2 = (1.25)10.
Then the execution of the instruction

would set

Operation Variable Field

OFIX 3000,0,21,3,3

c(image columns 21 through 28) = (bbblo 250)
BCD

c(column counter) = (29)10

However, the instruction

Operation Variable Field

OFIX 3000,0,21,3,0

would result in c(image columns 21 through 24) = (bbbl)BCD

c(column counter) = (25)10

There are three restrictions with respect to OFIX whose violations will cause a
transfer of control to the location determined by the current mode of OSPILL
(described below). These are:

1. N+K must not exceed 11. Violation of this restriction leads to a transfer
with c(MQ) = 7.

* The B-parameter cannot be handled by the version of OUTRAN used with the IB Monitor and is thus

always assumed to have a zero value.

**The combined effect of OPOINT and the B-parameter is assumed to be 33.

07.02.19
5 (6/61)

2. N must be large enough to accommodate the integral part of the converted
results, e. g., if c(3000) = (1. 25)10' as in the above example, the specifi­
cation of N = 0 is inadequate. * Violation of this restriction leads to a
transfer with c(MQ) = 12.

3. If A denotes the absolute value of a number, as originally represented in
fixed point binary in location Y-c(T) and by the current OPOINT mode and
B, ** then A x 10K must not exceed 235_1. Violation of this restriction
leads to a transfer with c(MQ) = 16.

For example, such a violation would occur on the execution of uOFIX 3000,
0,21,0,11" where c(3000)= (200 000 000 000)8 with normal OPOINT mode.
Here, A = (0.1)2 = (0.5)10' so that A x 10K = (0.5) x 1011> 235.

However, if OSCALE -1 were in effect, then A = (0.5) x 10-1= (0.05), so
that A x 10K =(0.05) x 1011= 5 x 109 < 2 35, which is not a violation.

In addition to OPOINT and OSPILL, the modal macros OEOR, OSCALE, OZERO
and OOVPCH also apply to OFIX.

OFXFLO Y,T,C,N,K,B***

The execution of this macro-instruction causes the contents of location Y -c(T)
to be regarded as a fixed point binary number with the position of the binary
point determined by B and the current mode of o POINT . This number is converted
to a normalized floating point binary number and stored in location Y -c(T).
Control is then transferred to OFLOAT. All parameters, except B, are then
interpreted by the OFLOAT program and the number is converted to floating point
decimal form. This string is then stored in the image subfield beginning at the
column specified by C.

The parameters, except B, must meet the OFLOAT specifications and the number
of characters in a string, depending on Nand K, is calculated exactly as for the
OFLOAT routine.

* Note that the possible extra effect of a decimal scale factor introduced by the modal macro OSCALE
(described below) must also be included in the converted result. Thus, in the example, if OSCALE -1
is in effect, the specification of N = 0 would be adequate since the converted result would be the

value (0. 125ho.

** The possible effect of a decimal scale factor introduced by the modal macro OSCALE (described below)
must also be included here in the value of the number.

***OFXFLO is not available with the IB Monitor.

07.02.20
5 (6/61)

Example:

Assume c(3000) = (000 012 400 000)8 and the OPOINT mode is normal. Then
the instruction

will set

Operation Variable Field

OFXFLO 3000,,10,2,2,17

c(image columns 10 through 18)= (b. 10. 50+00)BCD

c(column counter) = (19)10

Note that since OPOINT was normal, the B-parameter established the binary
point to the right of bit position 17. The B-para-meter is additive to the OPOINT
modal value (see OPOINT below) and applies only to the macro-instruction in
which it is specified.

OMASK Y,T,C,N

This modal macro is used to establish a mode of execution for instructions
using one of the five macro-operations:

OOCTAL
OBIN
OINT
OBCC
OBCW

If the mode associated with OMASK is normal, the above five macros will function
as already described. As mentioned previously, either of the instructions OMASK
o or OUTRAN will set this mode to normal.

The execution of the instruction OMASK Y, T, C, N defines a binary subfield,
where Y -c(T) specifies literally the length (in bits) of the subfield, and C specifies
the number of the first bit of the subfield. N, which is normally 0, is described
below. The defined subfield is taken with respect to a 36-bit word with bits
numbered 1 - 36; not 0, 1 - 35. Thus, if index register 4 contains 1 when the
instruction OMASK 16, 4, 22 is executed, then the subfield so defined will be the
address part of the cell, i. e., bits 22 through 36.

07.02.21
5 (6/61)

After the instruction OMASK Y, T, C is executed, any subsequent instructions of
the forms

Operation

OOCTAL
OBIN
OINT

Variable Field

ALPHA, TAG, COL, LENGTH
ALPHA, TAG, COL, LENGTH
ALPHA, TAG, COL, LENGTH

will have the same effect as usual, except that, in each case, the number used
(i. e., converted and stored in the record image) will not be simply the contents
of cell ALPHA-c(TAG). Instead, the subfield defined by .. the controlling OMASK
instruction, will be extracted and converted. It is assumed here that the subfield
length· Y -c(T) does not exceed 35. For other cases, see below.

Example:

If c(3001) = (700 011 777 777)8' then the execution of the instructions

would set

Operation

OMASK
OINT

Variable Field

15, 0, 40
3000,0,21,1

c(image columns 21 and 22) =(b9)BCD

The extracted subfield in this case is the 15-bit string (00011)8' and the word
used is. (OOe 0.00 000- 011)8.

Note, as implied in the above example, that the C of the OMASK instruction may
exceed 36. Thus, the specified subfield, although defined in this case with respect
to location 3000, does not lie in location 3000. It is in fact the decrement part
of location 3001. However, any OMASK instruction (as applied to an OOCTAL,
OBIN,or OINT instruction) must specify a subfield which lies entirely in a single
cell. For example, the instruction OMASK 15, 0, 31, or any OMASK instruction
with Y -c(T) exceeding 36, would not be allowable. If this restriction is violated,
the attempted execution of the OOCTAL, OBIN or OINT instruction will lead to
a transfer of control to the location determined by the current mode of OSPILL
with c(MQ) = 1.

In the special case where the length Y -c(T), of the extracted subfield is specified
as 36 which requires the specification of C as 1 or 1 plus some multiple of 36,
the leftmost bit of this subfield, the sign bit, will be unconditionally changed to
zero. For example, if c(3000) = (400 000 000 005)8' then the execution of the
instructions

07.02.22
5 (6/61)

Operation

OMASK
OINT

Variable Field

36~0,1

3000,0,21,1

would result in c(image columns 21 and 22) = -(b5)BCD (not (-5)BDC)'

Thus, the sign of the 36-bit number used by an OOCTAL, OBIN, or OINT in­
struction and controlled by a non-normal OMASK mode is always positive ..

Note, however, that a sign bit included in an extracted subfield of length less than
36 is treated -as an ordinary numeric bit. For example, if c(3000) = (400 000 000
000)8' then the execution of the instructions

would set

Operation

OMASK
OINT

Variable Field

3,0,1
3000,0,21,1

c(imagecolumns 21 and 22) = (b4)BCD

After the instruction OMASK Y, T , C is executed, any subsequent instructions of
the forms

Operation

OBCC
OBCW

Variable Field

ALPHA, TAG, COL, LENGTH
ALPHA, TAG, COL, LENGTH

will have the usual effect, except that the source region for the string of
characters to be moved by the OBCC or OBCW instruction to the image region
does not begin with the first character position in location ALPHA - c(TAG).
Instead the region begins with bit position C, considering C = 1 as the leftmost
bit of ALPHA - c(TAG). Thus, if c(3000) = (ABCDEF)BCD andc(3001)=
(GHIJKL)BCD' then the execution of the instructions

would cause

07.02.23
5 (6/61)

Operation

OMASK
OBCC

Variable Field

0,0,31
3000,0,21,7

c(image columns 21 through 27) = (FGHIJKL)BCD'

In the above example, C = 31 happens to correspond to the leading bit in a char­
acter position (of which there are six: C = 1,7,13,19,25,31). This is not required.
C is arbitrary, and a character (six-bit group) may overlap two words.

Note that Y and T in the instruction OMASK Y, T, C, when applied to OBCC and
OBCW, are irrelevant.

In the instruction OMASK Y, T, C, N; N must have one of the two values ° or 1.
The specification of N :::: 1 indicates a "floating mask." Thus, each time the
OMASK instruction is applied by the execution of an instruction using one of the
five macros subject to OMASK control, the number of the leading bit of the sub­
field is increased by the length, Y -c(T), of the subfield.

Example:

Suppose, that c(3000) :::: (0001 0002 0003)8 and c(3001) :::: (0004 0005 0006)8.

Then the execution of the instructions

Operation

OMASK
OINT
OINT
OINT
OINT

Variable Field

12,0,1,1
3000,0,21,1
3000,0,0,1
3000,0,0,1
3000,0,0,1

would resuit in c(image columns 21 through 28) :::: (b1b2b3b4)BCD

Note that the effect of the above example could be achieved (at more cost in space)
by the instructions:

07.02.24
5 (6/61)

Operation

OMASK
OINT
OMASK
OINT
OMASK
OINT
OMASK
OINT

Variable Field

12,0,1
3000,0,21,1
12,0,13
3000,0,0,1
12,0,25
3000,0,0,1
12,0,37
3000,0,0,1

A floating mask can also be applied to OBCC and OBCW. For example, if

c(3000) = (ZZZZZA)BCD

c(3001) = (ZZZZZB)BCD

c(3002) = (ZZZZZC)BCD

then the execution of the instructions

Operation

OMASK
OBCC
OBCC
OBCC

Variable Field

36,0,31,1
3000,0,21,1
3000,0,0,1
3000,0,0,1

would result in c(image columns 21 through 23) = (ABC)BCD

OSPILL Y,T

This modal macro is used to establish a mode which relates to the six conversion
macros, and which has already been mentioned in the description of these macros.

When an instruction of the form OSPILL Y, T is executed, the OSPILL subroutine
computes and establishes the effective address Y -c(T). Later, control will be
transferred automatically to this established address in anyone of the situations
given below. The contents of the M Q at the time of the control transfer to location
Y -c(T) can be used to distinguish the different conditions.

Contents
ofMQ

°
1

2

3

4

07.02.25
5 (6/61)

Condition

OBCC Y, T, C, N or OBCW Y, T, C, N executed with N=O.

An OOCT AL, OBIN, or OINT instruction executed under control
of an OMASK instruction specifying a binary subfield extending
into more than one binary word (see description of OMASK).

OINT Y, T, C, N executed with N:>11.

OOCTAL Y, T, C, N executed with N:> 13.

OBIN Y, T, C, N executed with N> 36.

Contents
ofMQ

5

6

7

8

9

10

11

12

13

14

15

16

Condition

OFLOAT Y, T, C,N,K or OFXFLO Y, T, C,N,K,B executed
with N+K> 8.

OFLFIX Y, T, C, N, K executed with N+K > 16. *

OFIX Y, T, C, N,K executed with N+K > 11.

OINT Y, T , C, N executed with N too small to accommodate
the converted number (see OINT).

OOCTAL Y, T, C, N executed with N too small to accommodate
the converted number (see OOCTAL).

OBIN Y, T, C, N executed with N too small to accommodate
the converted number (see OBIN).

OFLFIX Y, T, C, N, K executed with N too small to accommodate
the integral part of the converted result (see OFLFIX).

OFIX Y, T, C, N, K executed with N too small to accommodate
the integral part of the converted result (see OFIX).

An OFLOAT instruction executed which operated on a binary
floating point number that caused a floating point underflow
when normalized (see OFLOAT).

An OFLFIX instruction executed which operated on a binary
floating point number that caused a floating point underflow
when normalized (see OFLFIX).

The execution of an OFLOAT or OFXFLO instruction gives
a converted result with a decimal exponent greater than 999
in absolute value (see OFLOAT).

(Note below the exception in this case with respect to the
column counter.)

OFIX Y, T, C, N, K executed, which operated on a fixed point
binary number whose value A, considering the binary point as
defined by the current OPOINT mode and including the effect
of a possible decimal scale factor introduced by OSCALE, is
such that A x 10K > 235 -1. (See OFIX.)

* With the IB Monitor, when N + K > 8.

07.02.26
5 (6/61)

With the exception of the case where c(MQ) = 15, the execution of a conversion
macro-instruction leading to anyone of the above types of OSPILL control,
transfer will not cause any change in the contents of the column counter or of
the record image.

However, if the execution of OFLOAT Y, T, C, N, K leads to an OSPILL transfer
with c(MQ) = 15, then the OFLOAT subroutine, before transferring control, will
first store the principal part (omitting the exponent part) of the converted result
in the specified image subfield. Then the column counter is increased by either
N+l (K=O) or N+K+2 (K =1= 0), the length of the principal part. ThUS, the contents
of the column counter will be the number of the column where the exponent part
would have commenced if it had not been too large.

The normal mode associated with OSPILL is a transfer to an address inside the
SOS program. The routine beginning at this location causes printing of a
message, on the debugging output unit, describing where the error occurred
and giving the contents of the MQ and AC for analysis. *

It is possible to return to the object program when an OSPILL error occurs,
by setting the OSPILL mode to the location of a section of coding which terminates
with a TRA SYSOTI. ** This will returncontrol to the main program at the location
immediately following the macro which caused the error condition.

Normally, the field specified by the macro that spilled will be filled with Xs.
If Xs are not desired, a non -zero value should be placed in the decrement of
SYSOTI before transferring to it. This will advance the column counter beyond
the field without inserting anything.

At the time of the spill, the registers contain:

AC
MQ

decrement: column counter
address: location of macro causing spill

type of spill

Analysis, after the spill, can be made before returning to the object program,
but an Output macro cannot be used. The use of such a macro would destroy
preset conditions within OUTRAN and a later return via SYSOTI would fail.

* When used with the IB MOnitor, the normal mode of OSPILL is a recognizable stop.

**This error return feature is not available when using the IB Monitor.

07.02.27
5 (6/61)

OPOINT Y, T

This modal macro applies only to OFIX and OFXFLO and is used to define, by
means of the literal value Y -c(T), the position of the binary point in any fixed
point binary number processed by a later OFIX or OFXFLO instruction.

Example:

Suppose that c(index register 4) = 3 when the following instruction is executed:

Operation Variable Field

OPOINT 35,4

Then, until a new OPOINT mode is established, any binary word converted by
a subsequent OFIX or OFXFLO instruction would be treated as though its binary
pOint were placed between positions 32 and 33. Thus, the 36-bit binary string
(000 000 000 034)8 would be regarded as representing the number (11. 100)2 =

(3.5)10'

The B-parameter* of an OFIX or OFXFLO instruction is additive to the current
OPOINT value. Thus when an OPOINT 10 is followed by the instruction

Operation Variable Field

OFIX DA T A, , , , , 25

the B value of 25 to be added (algebraically) to the OPOINT value of 10, making
the effective location of the binary point to be to the right of bit position 35.

The normal mode for OPOINT defines the binary pOint as being between bit
positions 0 and 1. Thus, the execution of OPOINT 0 or OUTRAN causes all
fixed point numbers to be treated as proper fractions.

The speCification of a negative value Y -c(T); e. g., OPOINT -2; is allowable and
will be properly interpreted.

OSCALE Y,T

The execution of this modal macro-instruction defines a decimal scale factor lOS,
where S is specified literally by the value Y -c(T). This scale factor is applied to
all decimal numbers resulting from execution of any OFLOAT, OFIX, OFLFIX,
or OFXFLO instruction, until a new OSCALE mode is established.

* With the IB Monitor, the B-parameter is not recognized.

07.02.28
5 (6/61)

Example:

Suppose c(index register 4) = 1 when the following instruction is executed:

Operation Variable Field

6,4

Then the scale factor 105 is established. Then, if an OFLOAT instruction is
executed which would normally produce the BCD string b123-01, the string
b123+04 would be produced instead..

The normal mode for OSCALE is the scale factor 100 = 1. This is, of course
equivalent to applying no scale factor at all.

The specification of a negative power of 10 (e. g., OSCALE -2) is allowable.

OZERO Y, T

This modal macro applies only to the execution of OINT, OF LOAT , OFLFIX,
OFXFLO and OFIX instructions. It provides a means for controlling the manner
of representing results when they are zero.

There are only two modes possible for OZERO: the normal mode and the non­
normal mode, specified respectively by a zero and a non-zero value for Y -c (T).

For the normal mode, the following rules hold:

1. When an OINT, OFLFIX, or OFIX instruction is executed and the decimal
digits in the converted result are all zeros, the resulting BCD string which
is stored in the record image will consist of either bO (if the sign is plus) or
-0 (if the sign is minus) in the two rightmost BCD positions. Blanks occupy
all other positions.

2. If an OFLOAT or OFXFLO instruction is executed with c(Y-c(T»9_35=
(000 000 000)8 (i. e., if the binary number being processed has a zero
mantissa) then, regardless of the mode of OSCALE, the resulting BCD
string which is stored in the record image will be either bO+OO (if the
number is positive) or -0+00 (if the number is negative) in the five right­
most character positions. Blanks will occupy all other positions.

For the non -normal mode, the following rules hold:

1. Same as rule 1 above except that, if the number is positive, the string will
consist entirely of blank characters.

07.02.29
5 (6/61)

2. Same as rule' 2. above except that, if the number is positive, the string
(including the positions in the exponent part) will consist entirely of
blank characters.

Note that the rules for determining the number of characters stored in the record
image and the consequent amount by which the column counter is increased still
hold, regardless of the OZERO mode and whether the converted result is zero.
Thus, if c(3000) = (0'00 600 000 000)8' and if the OZERO mode is normal, then
the execution of

Operation Variable Field

OF LOAT 3000,0,21,5,3

would result in c(image columns 21 through 33) =(bbbbbbbbbO+OO)BCD

c(column counter) = (34)10'

OOVPCH Y,T,C

This macro, which applies only to OINT, OFLOAT, OFLFIX, OFXFLO, and
OFIX instructions, can be used to cause the "overpunching" of signs in the
decimal number representation resulting from the execution of any of these in­
structions. Ordinarily, OOVPCH, if employed at all, will be used only in the
construction of record images which are to be punched into cards.

In the g.eneral form OOVPCH Y, T , C the C-value· must be either 1 or 2.

1. OOVPCH Y, T, 1

When an instruction of the form OOVPCH Y, T, 1 is executed, the OOVPCH
subroutine computes and establishes the literal value Y -c(T). Subsequent
to this, any BCD character string resulting from the execution of an OINT,
OF LOAT , OFLFIX, OFXFLO, or OFIX instruction will be altered as
follows before being stored in the record image:

The sign character of the number (in the case of OFLOAT and OFXFLO,
the sign character of the principal part of the number), will be removed
from the string and combined with (in the sense of overpunching) the nth
character of· the resulting string where n = Y -c(T). The character with
which the sign is combined must be an actual numeric' character, not a
decimal point or a blank character resulting from a suppressed: zero, al­
though such non-numeric characters are included in the count. Thus the
length of the character string, and consequently the. length o:f the image
subfield used, is reduced by 1 from the-lengths as previously stated.

07.02.30
5 (6/61)

For example, suppose that the following OOVPCH mode has been given:

Operation Variable Field

OOVPCH 7,0,1

Then, if c(3000) is such that the subsequently executed instruction
OFLFIX 3000,0,21,3,3 would normally cause

c(image columns 21 through 28)= (bbblo 250)BCD

c(column counter) = (29)10

the result which would be produced instead, be.cause of the given OOVPCH
mode, would be:

+
c(image columns 21 through 27) = (bbl. 250)BCD

c(column counter) = (28)10.

Note that + overpunch is not suppressed, but actually appears as the con­
ventional 12-punch combined with the numeric character.

2. OOVPCH Y, T, 2

A macro-instruction of this form applies only to OFLOAT and OFXFLO
instructions and is used to cause overpunching with respect to the exponent
part of the number only. However, .since the exponent sign also plays the
role of a separator its removal is accompanied by the insertion of the
character E in its place. Hence, unlike the case C = 1, there is no reduction
in the number of character positions used. The position Y -c(T) in this case
is counted beginning in the first numeric position of the exponent part. Of
course, since the exponent can consist of at most three numeric characters,
the value' of Y -c(T) is restricted to 1,2, or 3.

Example~

Thus, if the 'result of an aFLOAT instruction is normally, say, "-125-01",
then the use ,of the non -normal mode

Operation Variable Field

2,0,2

would produce the- result -l25EOJ (1. e., -125E'()I) instead.

07.CJ2.31
5(6/61)

The normal mode associated with OOVPCH for both types (C = 1 and 2) is no
overpunching. Both can be simultaneously set to normal by using the instruction
OOVPCH ° or OUTRAN. Either can be set independently to normal by using
OOVPCH 0,0, C with C = 1 or 2.

OEOR Y,T,C

When an instruction of the form OEOR Y, T, C is executed, the OEOR subroutine
compues and establishes the effective address Y -c(T) and saves the specified
C-value. Later, if a conversion macro-instruction or an OBCC, OBCW, or
OBLANK instruction is executed and specifies an image subfield in which the
number of the rightmost column exceeds this saved C-value, then control will
be transferred to the address Y -c(T).

For example, if the instruction

Operation Variable Field

OEOR 5000,0,72

has been executed, then the execution of the instruction

Operation Variable Field

OBCC 3000,0,71,3

would cause a transfer of control to location 5000.

After the attempted execution of a macro-instruction which leads to an OEOR
transfer of control, the contents of the column counter will in general be meaning­
less. In some cases the contents of the illegal image subfield specified by the
instruction will have been changed by the attempted execution.

The normal mode associated with OEOR * is a transfer of control whenever the
rightmost column of the specified image subfield exceeds 120. The transfer
will be to a location within the SOS program. where a message will be written
on the debugging output unit indicating in which macro the error occurred.

ORPT R,I,J

This special control macro can be used to repeat the execution of any active
internal processing macro-instruction, i. e., of any conversion macro-instruction
or OBCC, OBCW, or OBLANK instruction.

* With the IB Monitor, the normal mode of OEOR leads to a recognizable stop.

07.02.32
5 (6/61)

When an instruction of the form ORPT R, I, J is executed, the first active internal
processing macro-instruction which is executed thereafter will be executed a
total of R times (instead of only once), the first time using the Y, T, and C fields
as specified, the second time with Y increased by I, and C increased by J; etc.
Note that if the macro-instruction which is repeated uses indirect addressing,
it is the direct address, Y, and not the indirect address, c(Y)21-35' which is
increased by I.

For example, the execution of the two instructions

Operation

ORPT
OBCC

Variable Field

5,1,6
3000,0,21,2

is equivalent to the execution of the five instructions

Operation

OBCC
OBCC
OBCC
OBCC
OBCC

Variable Field

3000,0,21,2
3001,0,27,2
3002,0,33,2
3003,0,39,2
3004,0,45,2

In ORPT R, I, J; the value of R must be non-zero. The specification of a negative
value for I or J (e. g., ORPT 5, -1, -6) is allowable and will have the effect of
decreasing the value of Y and C, respectively, in the subsequent repeated
executions of the active macro-instruction.

07.02.33
5 (6/61)

THE WRITE-OUT MACROS

The following six macros are concerned with the write -out stage. The first
two are active macros and the last four are modal macros.

OSCRIB Y, T, C, N (SHARE Monitor System)*

OSCRIB is used to initiate writing of a tape record, a printed line, or a punched
card.

Y -c(T) specifies the location of a cell whose address contains the standard
709/7090 code for the desired output unit. C is used to specify the number of
words to be transmitted from the I-region. N makes possible the distinction
between the eight modes of possible output (see Table 1).

709/7090 Unit Code Required
MODE Function (octal) N C W

STH Storage to BCD tape X201 through X210 0 C=O W = 14
C~O W= C

STHB Storage to Binary tape BCD for X221 through X230 3 ineffective 24
columnar binary punching off-
line. (Results in Hollerith cards)
cards)

STHP Storage to BCD tape. CalTiage X201 through X210 1 C=O W= 20
control by OHEAD and OSPACE C$ 20 W= C
(for off-line printing) C> 20 W= 20

STB Storage to Binary tape X221 through X230 2 ineffective 28

SPH Storage to on-line printer Y361 (SYSPRT) 0 C=O W= 20
(First character in buffer C$20 W= C
is for cartiage control) C> 20 W = 20

SPHP Storage to on-line printer Y361 (SYSPRT) 1 C=O W = 20
. (Carriage control by OHEAD CS 20 W=C
and OSPACE) C> 20 W = 20

SCH Storage to on-line punch Y341 (SYSPCH) 0 ine ffe cti ve 12
(BCD)

SCB Storage to on-line punch Y341 (SYSPCH) 1 ineffe cti ve 24
(Columnar binary)

Notes:
X and Yare the channel numbers required. A programmer need not be concerned with the numbers

if symbolic tape references are used.
W is the number of words, ,in the I-region, that are actually used.
If the 709/7090 code given is not acceptable, or if W is too large, an error condiction occurs.

This is controlled by OREDUN.

* See page 07.02.40 for description of OS CRIB for IB Monitor System.

07.02.34
5 (t)/61)

Output Modes

STH :Tape - BCD-Normal

The first W words in the I-region (see Table 1) are written on tape as a BCD
record.

If W is more than 28 words, then the standard I-region cannot be used, and a
larger I -region must be defined by means of OIMAG E.

This type of output is usually used for off-line Hollerith card punching, or for
off-line printing under single space or double space control. To punch a full
80-column card, W should be 14, in which case the last four characters are
not relevant.

STHB: Tape-Binary-Hollerith Image

The first 12 words in the current buffer are converted from BCD to a 24-word
column binary image and written on tape as a binary record.

This type of output allows the off-line punching of Hollerith cards with the off­
line punch in the binary mode. Thus, mixed information (BCD and binary)
can be punched from the same tape with one setting of the punch control switch
(binary mode).

STHP:Tape-BCD-Special

This type of output is used for off-line printing with the printer Carriage Control
switch set to Program.

The first W words in the I-region are shifted right one character (6 bits), and
a spacing character is inserted in the first position. If W = 20, the last character
is lost. If W < 20, then W+1 words are transmitted, and the last 5 characters
are blanks.

For other than standard single spacing, OSPACE can be used to control spacing.
Headings and line counts can be controlled by OHEAD.

Automatic page overflow does not take place; however, OHEAD can be used to
control page overflow.

STB :Tape - Binary

The first 28 words in the I-region are written on tape as a binary record.

07.02.35
5 (6/61)

This is normally used to punch column binary cards off-line. *

S PH: Print-on -line.

The first W BCD words in the current buffer (II or 12) are printed on-line
(except the first character in the buffer - see below).

If W is 12 or less, a 72-character line will be printed (any trailing characters
beyond W up to character 72 will be automatically blank).

If W is greater than 12, a 120-character line will be printed. Note that the
speed of printing for 120-character lines is 75 lines per minute, and that the
OSCRIB routine must wait a full print cycle for the printing of the right hand
portion of the line.

The first character of the buffer is assumed to be for carriage control. (See
IBM 700-7000 Series Auxiliary Operations manual, form A22-6502.) It should
be placed there by the programmer for his own spacing requirements. Since
the first character is for carriage control, the maximum number of BCD
characters that can be printed on line is 119, not 120.

SPHP:Print-on-line-Special

The first W BCD words in the current buffer are printed on-line.

The type of line to be printed is similar to that described above for the SPH mode.
However, in this mode, the first character is a spacing character placed there
by the OHEAD or OSPACE routines. All other characters are moved one character
space to the right so that only (6*W)-1 characters will be printed; the maximum
for one line being 119 characters.

For other than standard single .spacing, OSPACE can be used to control spacing.
Headings and line counts can be controlled by "OHEAD. "

SCH : Punch-Hollerith

The first 12 BCD words in the I-region are punched on-line as the first 72-columns
of a Hollerith card.

* The first column should contain 7- and 9-punches, which must be supplied by the programmer.

07.02.36
5 (6/61)

SCB:Punch Binary

The first 24 words of the current buffer are converted from row binary to column
binary form and punched on-line in the first 72 columns on a card.

The OSCRIB routine will not automatically insert the characteristic 7 - and 9-
punches into the column binary card. They must be supplied, if desired, by
the programmer.

Special Conditions

A special condition can occur during the execution of an OSCRIB instruction.
In this case, instead of returning control to the instruction follOwing the OSCRIB
instruction, control is transferred to a speCial location.

Transfer of control might occur to the location specified by OHEAD, if effective.
If an end-of-tape mark is encountered, or an error condition occurs, control is
transferred to a standard error message routine, or to the location speCified by
OTPEND or OREDUN, respectively, if they are effective. The MQ and AC will
in general contain some pertinent information. Transmission of the current
record mayor may not take place. Table 2 gives a summary of the different
special conditions that can occur.

SPECIAL CONDITION

Headings
End-of-Tape CTUNIT = PTUNIT
Mark CTUNIT f. PTUNlT
Redundancy CTUNIT = PTUNIT
Error qUNIT /: PTUNIT
I-Region Too Small
Unit Not Assigned
Illegal N or Unit Name

07.02.37
5 (6/61)

Modal Macro Does Transmission
Effective Take Place?

OHEAD NO
OTPEND NO
OTPEND YES
ORFDUN NO
OREDUN YES
OREDUN NO
OREDUN NO
ORFDUN NO

MQ Accumulator
Register Decrement Address

- - CUNIT
- CUNIT PUNIT

- CUNIT PUNIT
0 CUNIT PUNIT
0 CUNIT PUNIT
1 llc CUNIT
2 CUNIT PUNIT
3 CUNIT PUNIT

CUNIT and PUNIT are the standard machine codes for the current and previous
transmission units, respectively. CTUNIT and PTUNIT mean the current and
previous tape units, respectively, regardless of mode (BCD or Binary). When
there is no previous transmission PUNIT = O. b:.c is the difference between W
for the OS CRIB instruction and the actual size of the I -region.

Headings.

This applies only when current output type is Print-on-line (SPHP) or Tape­
BCD-Special (STHP) and the current mode of OHEAD is non-normal. Whenever
the nU1nber of lines, including spaces, that have been transmitted is equal to
or gr~ater than the number specified by the OHEAD mode, then control is trans­
ferred! to the location specified by the OHEAD mode. Transmission does not
take place.

End-of-Tape Mark.

Whenever the previous transmission involved a tape, then, during the execution
of the current OS CRIB instruction, the transmission which was initiated by the
last OSCRIB instruction is tested for end of tape. If an end-of-tape condition
occurred, control is transferred to the location determined by the current mode
of OTPEND.

Transmission does not take place if the current and previous tape units are the
same. If the tape units are different, the current transmission is initiate<L

Redundancy Error.

Whenever the previous transmission involved a tape, then during the execution
of the current OSCRIB instruction, the transmission initiated by the last OSCRIB
is tested for tape redundancy. * If the indicator is On, the SHARE Monitor Bad
Spot Routine (SYSBAD) attempts to rewrite the previous record. ** If the redun­
dancy persists, control is transferred to the location determined by the current
mode of ORE DUN . Transmission does not take place if the current and previous
units are the same. If the units are different, the current transmission is
initiated.

* Only if the End-of-Tape indicator was not On, since the end-of-tape test takes precedence over the

redundancy test.

** In the case of Tape-BCD-Special (SPHP) , if extra one-word spacing records were written on the tape,

these records are not rewritten. If the error occurred on such a record, only the last information record
is rewritten, and the error in the spacing record is not tested. This type of error can be recognized only

during the actual off-line printing.

07.02.38
5 (6/61)

Example:

Assume that the instructions OS CRIB SYSARI followed by OSCRIB UNIT2 are
given, that OREDUN Z is effective, c(SYSARl)21_35=(01201)8' and c(UNIT2)21_35=
(01361)8. Suppose that the record on Al cannot be correctly written because
of a bad spot on the tape. The first OSCRIB instruction initiates writing on AI,
and the second OSCRIB instruction, before initiating the printer output, tests
Al and tries to rewrite the record ten times (under control of the SHARE Monitor
Bad Spot Routine). Then the printer output is initiated, and control is transferred
to Location Z, with c(MQ)=O, c(AC)3-17= (01361)8, and c(AC)21-35= (01201)8'
If c(UNIT2)21-35 had been (01201)8 or (01221)8' then the current transmission
would not have been initiated. If c(UNIT2)21_35 had been (02201)8' then the
current transmission would have been initiated before any testing.

I -Region Too Small

Whenever the W of an OSCRIB instruction (see Table 1) exceeds the length of
the I-region, control is transferred to the location determined by the current
mode of OREDUN. In this case, the current transmission does not take place.
If the standard 28-plus-28 word I-region is used, this condition can occur only
if the output type is Tape-BCD-Normal (STH) with C exceeding 28. For example,
the execution of the following instruction will result in this type of error unless
an associated I-region of at least 50-plus-50 words has been provided by an
OIMAGE instruction;

Operation Variable Field

OSCRIB SYSARI, 0,50,0

where the address part of SYSARI contains a standard code for BCD tape.

Unit Not Assigned.

If the address portion of Y -c(T) is zero, control is transferred according to the
current mode of OREDUN. In this case, the current transmission does not take
place.

The contents of Y -c (T) might be zero if a system tape symbol, e. g., SYSARI,
were used and that symbolic tape were not assigned by an ASSIGN control card
or by SYSTAS.

07.02.39
5 (6/61)

Illegal N or Unit Name.

The choice of mode by OSCRIB is based upon the decoding of bits from the out­
put unit address, together with N in cases of ambiguity. When an absolute unit
address is not compatible with tb,e N given, and OSCRIB cannot decode the in­
formation, control is transferred to the location specified by the current mode
of OREDUN.

OSCRIB Y, T , C, N (IB Monitor System)*

OSCRIB is used to initiate writing of a tape record, a printed line, or a punched
card from the I-region.

Y -c(T) specifies the location of a cell whose address contains the standard
709/7090 code for the desired output unit. C is used to specify the number of
words to be transmitted from the I-region. In Table 3, below, the actual number
of words transmitted is denoted by W. N makes possible the distinction between
two types of BCD tape outputs, and two types of card punching.

OUTPUT TYPE 709 UNIT CODE (octal)

Punch- Hollerith Y341

Tape-BCD-Normal X201 through X210

Tape-BCD-Special X201 through X210

Print-On-Line Y361

PWlch-Column-Binary Y341

Tape-Binary X221 through X230

NOTES:

X and Y are the channel numbers required.
X can be 1,2,3,4,5, or 6. Y should be 1, 3, or 5.
* indicates that the last character is lost.

N

0

0

1

ineffecti ve

1

ineffecti ve

C W

ineffecti ve 12

C=O 14
C1Q C

C= 0 or C~20 20*
1S C S 19 C

OSCS12 12
13SC 20

ineffecti ve 24

ineffective 28

W is the number of words in the I-region that are actually used. The number of words that make up

the actual output record is not necessarily W. However, this does not, in general, concern the programmer.
If the unit address given is not acceptable, or if W is too large, then an error condition occurs. OREDUN
oontrols this.

* See page 07.02.34 for description of OSCRIB for SHARE Monitor System.

07.02.40
5 (6/61)

Four of the six output types require that OS CRIB perform a special conversion
before transmission is initiated. For this purpose, a special buffer is set aside
for the final output image. The programmer does not have to be concerned
with the special buffers.

Output Types

Punch -Hollerith.

The first 12 BCD words in the I-region are punched on-line in Hollerith as the
first 72 columns of a card.

Tape-BCD-Normal.

The first W words in the I-region are written on tape as a BCD record. If W
is more than 28 words, the standard I -region cannot be used and a larger I -region
must be defined by means of OIMAGE.

This type of output is usually used for off-line Hollerith card punching, or for
off-line printing under single space or double space control. To punch a full
80-column card, W should be 14. In this case, the last four characters will
be irrelevant.

Tape - BCD-Special.

This type of output is used for off-line printing, under program control.

The contents of the first W words in the I-region are shifted right one character
position and a spacing character, for the off-line printer, is inserted in the
first position. If W = 20, the last character is lost. If W < 20, then W + 1 words
are transmitted and the last 5 characters of the last word are blanks.

If non-standard spacing is desired, OSPACE can be used to control spacing.
Headings and line counts can be controlled by OHEAD. Automatic page overflow
does not take place. However, OHEAD could be used to control overflow.

Print-On-Line.

The first 12 or 20 BCD words in the I-region are printed as a 72 or 120 character
line, respectively, on the on-line printer.

If non-standard spacing is desired, OSPACE can be used to control spacing.
Headings and line counts can be controlled by OHEAD.

07.02.41
5 (6/61)

For maximum speed (150 lines per minute) lines should consist of 72 characters
only. If 120 characters are required, printing speed will be at most 75 lines
per minute, because the OSCRIB subroutine must wait a full print cycle, during
the left-half transmission, before the right-half transmission can be initiated.

Punch -Column - Binary.

The first 24 words in the I-region are converted to column binary and punched
on-line as the first 72 columns of a card.

Tape - Binary.

The first 28 words in the I-region are written on tape as a binary record.

This is normally used to punch off-line column binary cards from the tape.

Special Conditions

A special condition can occur during the execution of an OSCRIB instruction.
In this case, instead of returning control to the instruction following the OSCRIB
instruction, control is transferred to some special location.

Transfer of control might occur to the location specified by OHEAD, if effective.
If a tape end mark is encountered, or an error condition occurs, control is
transferred to a standard debugging routine, * or to the location specified by
OTPEND or OREDUN, respectively, if they are effective. Transmission of
the current record mayor may not take place.

Table 4 gives a summary of the different special conditions that can occur. The
MQ and the AC will in general contain pertinent information.

Modal Macro Does Transmission MQ Accumulator

SPECIAL CONDITION Effective Take Place? Register Decrement Address

Headings OHEAD NO - - CUNIT

End-of-Tape CTUNIT = PTUNIT OTPEND NO - CUNIT PUNIT

Mark CTUNIT -I PTUNIT OTPEND YES - CUNIT PUNIT

Redundancy CTUNIT = PTUNIT OREDUN NO 0 CUNIT PUNIT

Error CTUNIT -I PTUNIT OREDUN YES 0 CUNIT PUNIT

I-Region Too Small OREDUN NO 1 flC CUNIT
709 Code Non-Acceptable OREDUN NO 2 CUNIT PUNIT

CUNIT and PUNIT are standard codes for the current and previous transmission units, respectively.
When there is no previous transmission PUNIT = O.

CTUNIT and PTUNIT are the current and previous tape units, respectively, regardless of mode (BCD or Binary).

A C is the difference between W for the OSCRIB instruction and the actual size of the I-region.

* At present, program halts.

07.02.42
5 (6/61)

Headings.

This applies only when the current output type is Print-On-Line or Tape-BCD­
Special and the current mode of OHEAD is non -normal. Whenever the number
of spaces plus the number of lines transmitted is equal to or greater than the
number specified by the OHEAD mode, control is transferred to the location
specified by the OHEAD mode. Transmission does not take place.

End of Tape.

Whenever the previous transmission involved a tape, the transmission initiated
by the last OSCRIB instruction is tested for end-of-tape condition during execution
of the current OSCRIB. If the End-of-Tape indicator is On, control is transferred
to the location specified by the current mode of OTPEND. If the tape units are
different, the current transmission is initiated before the transfer occurs.
Transmission does not take place if the current and previous tape units are the
same.

Redundancy Error.

Whenever the previous transmission involved a tape, the transmission which
was initiated by the last OSCRIB instruction is tested for the tape redundancy**
during the execution of the current OSCRIB.

If the Tape Redundancy indicator is On, up to three attempts are made to rewrite
the previous record. *** If the error still persists, control is transferred to the
location specified by the current mode of ORE DUN . If the tape units are different,
the current transmission is initiated before the transfer occurs.

Example:

Assume that the instructions OSCRIB UNITl and OSCRIB UNIT2 were given,
when OREDUN Z is effective. Suppose also that c(UNITl)21_35 = (01201)8'
c(UNIT2)21_35 =(01361)8' and that the record on Al cannot be correctly written
because ora bad spot on the tape.

** Only if the End-of-Tape indicator was not On, since the end-of-tape test takes precedence over the

redundancy test.

***In the case of Tape-BeD-Special, if extra one-word spacing records were written on the tape, these

records are not rewritten. If the error occurred on such a record, only the last information record is

rewritten, probably once, and the error in the spacing record is not tested. This type of error can be

recognized only during the actual off-line printing.

07.02.43
5 (6/61)

The first OSCRIB instruction initiates writing on AI, and the second OSCRIB
instruction, before initiating the printer output, tests Al and rewrites the record
three times (including three backspaces). Then transmission of printer output
is initiated, and control is transferred to location Z, with c(MQ) = 0, c(AC)3-17
= (01361)8' and c(AC)21-35 = (01201)8.

If c(UNIT2)21_35 had been (01201)8 or (01221)8' then the current transmission
would not have been initiated. On the other hand, if c(UNIT2)21_35 had been
(02201)8' the current transmission would have been initiated before any testing.

I -Region too Small

Whenever the W of the OSCRIB instruction (see Table 3) exceeds the length of
the I -region, control is transferred according to the current mode of OREDUN.
In this case, the current transmission does not take place. When the standard
28-plus-28 word I-region is used, this error condition can occur only if the
output type is Tape-BCD-Normal with C exceeding 28.

For example, the execution of the following instruction will cause this type of
error unless an output I-region of at least 50-plus-50 words has been provided
by an OIMAG E instruction:

Operation Variable Field

OS CRIB UNIT, 0, 50,0

where the address part of UNIT contains a 709/7090 code for a BCD tape.

709/7090 Code Not Acceptable

Whenever the 709/7090 unit code is not acceptable to OSCRIB, control is trans­
ferred to the location specified by the current mode of OREDUN. 'In '-llis case,
the. current transmission does not take place.

The following codes are acceptable:

Channels 1,2,3,4,5,6. (Even if some channels are not operative.)
Unit codes (in octal): 341, 361, 200 through 237.
Channels 0 and 7, and all other unit codes are considered as an error.

07.02.44
5 (6/61)

USE OF THE BUFFER AREA

In order to permit use of the simultaneous output and computing features pro­
vided on the 709/7090, the I-region is split into two buffers, 11 and 12 , which
operate as described below. The source region for a record written by a given
OS CRIB instruction may be either 11 or 12' and, normally, successive executions
of OS CRIB instructions will use 11 and 12 alternately. * For example, consider
the following sequence:

Operation

OSCRIB
OS CRIB
OSCRIB

Variable Field

UNIT
UNIT
UNIT

If the first OSCRIB instruction writes a record from 12, the second OS CRIB in­
struction would write the next record from 11' the third from 12, and so on.

When an OSCRIB instruction is executed, the actual writing of the record from
11 or 12, is not completely carried out, but merely initiated, and nothing further
is done for this current record, until the next OSCRIB (or OREADY) is executed.
At that time, the OSCRIB (or OREADY) subroutine delays until the previously
initiated transmission is completed, and checks for the end of tape and redundancy.
The transmission specified by the current OSCRIB instruction is initiated, as
soon as possible, from the alternate buffer, e. g., from 11 if 12 was previously
used.

If the channels are different, the current transmission is initiated before the
delay and test of the previous transmission. However, if the channels are the
same, the current transmission is initiated after the delay and test.

If an end of tape or redundancy condition is detected, and the units are the same,
the current transmission is not initiated.

Thus, immediately after the execution of an OSCRIB instruction, one buffer is
being written, and the other is available for use. In particular, this buffer is
available for use by all the active internal processing macros which will ordinarily
be employed to prepare the buffer for the next OSCRIB instruction. The programmer
is never required to specify which of the two buffers (11 or 12) is to be used, pro­
vided the internal processing macros refer to the next OS CRIB to be executed.

, * Unless OREADY or OIMAGE instructions intervene, and if the current transmission takes place.

07.02.45
5 (6/61)

In using OSCRIB, the alternation of the buffers 11 and 12 takes place whenever
the transmission specified is initiated. * However, if no OSCRIB (or OREADY)
instructions are used in the source program, the internal processing macros
will always take lIas their destination region. By means of OREADY or OIMAG E ,
the buffer II can be used at all times.

Example:

Suppose that a line of information is to be both printed on-line and written on
tape for off-line printing. For off-line printing, one tape is to be prepared for
printing with single space control, and another for printing under program
control. Four sequences which will accomplish the same end result are shown
below. It is assumed that:

C(SYSPRT)21_35 = (01361)8

c(SYSAR3)21_35 = (02205)8

c(SYSAU4)21_35 = (01206)8

(on-line printer)

(tape B5)

(tape A6)

Operation Variable Field

OS CRIB
OREADY
OS CRIB
OREADY
OS CRIB

}
SYSPRT, 0,20

SYSAR3, 0,20,0

SYSAU4, 0,20,1

internal processing
macro-instructions

In this sequence, the OREADY instructions are somewhat wasteful of time, since
each causes a delay until the previous OSCRIB transmission is completed. Either
the 11 or the 12 region is used at all times, depending on the state of the alternation
at the beginning of the program.

Operation

OREADY
OIMAGE

OS CRIB
OIMAGE
OS CRIB
OIMAGE
OSCRIB

Variable Field

set to II

}
internal processing
macro -instructions

SYSPRT, 0, 20
set to 11

SYSAR3, 0, 20, 0
set to II

SYSAU4, 0, 20,1

* Under some special circumstances, the OSCRIB subroutine will not perform the buffer alternation because

the current transmission was not initiated. The macro OHEAD or some error condition (already mentioned)

can cause this.

07.02.46
5 (6/61)

Here the OIMAGE instruction is used instead of OREADY, so that no excessive
time is wasted. However, 11 is always used here since the execution of the
OIMAGE instruction always sets the alternation to 11 (see below). The OREADY
instruction appearing at the beginning should be used to insure the completion of
the previous transmission, if any, since such a transmission might be writing
out 11' which would, of course, be disturbed by the execution of the indicated
internal processing macro-instructions.

Operation

OSCRIB

OS CRIB
OS CRIB

Variable Field

J
SYSPRT, 0,20

]
SYSAR3, 0, 20, °
SYSAU4, 0, 20, 1

internal processing
macro -instructions

internal processing
macro -instructions

In this sequence, both buffers are filled with the same information by using the
same internal processing macro-instructions on the two different alternations.
Such a procedure might waste some time if the internal processing time is great.

Operation
OIMAGE

OS CRIB
OBCW
OS CRIB
OSCRIB

Variable Field
X,0,20

} internal processing
macro-instructions

SYSPRT, 0, 20
X,0,20
SYSAR3, 0, 20, °
SYSAU4, 0, 20, 1

In this sequence, a non-standard I-region beginning at location X is defined, and
the OBCW instruction is used to set up the buffer 12 (beginning at location X + 20).

The above four examples should serve as some indication.of how the buffers 11
and 12 function.

The following rules govern the alternation procedure:

1. Prior to execution of any OSCRIB (or OREADY) instruction, the destination
region, D, for use by any internal processing macro-instruction is set to
11·

07.02.47
5 (6/61)

2. The execution of OIMAGE 0 or the instruction OUTRAN always sets D to 11'

3. The destination region used by an internal processing macro-instruction
becomes the source region for the next OSCRIB instruction if no OREADY,
OIMAGE, or OUTRAN instruction intervenes.

4. If D is II just before the execution of an OSCRIB instruction, then D is 12
just after the normal execution of the OSCRIB instruction. ("Normal
execution" here means whenever current transmission is initiated - see
Tables 2 and 4 above.)

5. If D is II just before the execution of an OREADY instruction, then D is 12
just after the execution of the OREADY instruction. (No exceptions.)

The action of the OS CRIB subroutine proceeds chronologically as follows:

1. Test for unassigned output unit. *
2. Test for illegal N or unit name. *
3. Form W as in Tables 1 and 3.
4. Test for non-normal OHEAD mode.
5. Test for too small an I -region.
6. Prepare final output record, if any conversion is required.

(The original I -region is not disturbed here.)
7. Compare previous and current transmissions.

a. If there was no previous transmission, ** or if the current channel is
different from the previous channel, then reset the End-of-Tape and
Redundancy indicators for the current channel. Go to step 10.

b. If the current channel is the same as the previous channel, wait until
the previous transmission is completed.

8. If the previous transmission did not involve a tape, go to step 10.
9. Test the End-of-Tape indicator for previous transmission. If On, set

end-of-tape exit:
a. If CTUNIT = PTUNIT, go to step 15.
b. If CTUNIT =1= PTUNIT and step 10 has already been done, go to

step 14. Otherwise, go to step 10.
10. Test for redundancy during previous transmission. If a redundancy

occurred, attempt to rewrite record. If redundancy persists set up
error exit and go to step 9(a) or 9(b).

* When using OUTRAN under IB Monitor control, steps 1 and 2 are replaced by a single test for non­

acceptable output unit code.

** "No previous transmission" means that this is the first OSCRIB instruction executed, or an OREADY

instruction was given between the last OSCRIB instruction and the present one. The macro OUTRAN

does not affect this.

07.02.48
5 (6/61)

11. Modify the OHEAD counter if required (see OHEAD).
12. Initiate current transmission.
13. If there ~ a previous transmission, and if the current channel and the

previous channel are different, wait until the previous transmission is
completed. Otherwise, go to step 15.

14. If the previous transmission involved a tape, go to step 9.
15. Alternate the buffers II and 12.
16. Transfer control back to the program, or to the location determined by

the current mode of OREDUN or of OTPEND.

OREADY

The programmer will ordinarily use an OREADY instruction to terminate a
series of OSCRIB instructions. The OREADY subroutine delays until the last
transmission initiated by an OSCRIB instruction is completed, and then checks
for an end-of-tape condition and redundancy error. It will also alternate the
buffers II and 12.

For example, suppose it is required to construct and write 50 records on tape
B3 in BCD for later off-line punching. No special error routines are to be
used. A sample program for accomplishing this is given below.

Location Operation Variable Field Comments

START REWB 3 Rewind tape B3.
OUTRAN Set all modes to normal.

LOOP

07.02.49
5 (6/61)

*
*

AXT

OS CRIB

TIX
OREADY
TRA

50,1

START, 0,14,0

LOOP, 1, 1

OUT

Initialize loop.

Use internal proc-
essing macros to
process record 1,
then process record
n while writing record
n - 1, where n = 2, 3,
..... ,50.
Initiate writing record
n=l, 2, 50 and check
records n=l, 2, , 49.
Count records.
Check record n=50.
Finish.

The internal processing macro-instructions process the first record. Then,
simultaneous writing and processing take place. While the last record is being
written, no processing takes place. Finally the OREADY instruction delays
until this last transmission is completed, and checks the transmission.

In the above example, the two buffers II and 12 were used alternately, starting
with 11' If the programmer so chooses, he may avoid the alternation and use
only the single buffer I l' This may be accomplished by execution of an OREADY
instruction following every OSCRIB, since OREADY will alternate the buffer
back to 11. The use of this device will, in general, defeat the purpose of the
alternation logic, i. e., simultaneous writing and processing. Thus, the function
performed by the sample program above might have been accomplished as
follows:

Location Operation Variable Field Comments

START REWB 3 Rewind tape B3.
OUTRAN Set all modes to normal.
AXT 50,1 Initialize loop.

LOOP
Use internal proc-
essing macros to
process record
n=l, 2 ... ,50.

OSCRIB START, 0,14,0 Initiate writing record

* n=I,2, ... ,50
OREADY Check record

* n=I,2, ... ,50
TIX LOOP, 1, 1 Count records.
TRA SYSTEM Finish

In this program, the transmission, initiated by each of the 50 executions of the
OSCRIB instruction, is checked at once by the OREADY instruction. This double
alternation of the buffers 11 and 12 (one alternation by the OS CRIB instruction and
the other by the OREADY instruction) results in the continual use of II only. The
logic of this latter program is of course simpler than that of the former one, but
the relative loss of time due to the serial processing and transmission (rather
than parallel, as in the former case) may be considerable.

The OREADY subroutine can be characterized by noting that it performs functions
similar to those of the OSCRIB subroutine, except initiation of a new transmission.
In particular, the execution of an OREADY instruction, like that of an OSCRIB
instruction may result in:

07.02.50
5 (6/61)

1. A transfer of control back to the instruction following the OREADY instruction.
This is the normal case, i. e., when the previously initiated transmission,
having been checked by the OREADY subroutine, does not result in an error
or end-of-tape condition.

2. A transfer of control according to the mode of OTPEND. This is the case
when the previously initiated transmission results in an end -of-tape condition.
The decrement of the accumulator contains 0,' and the address contains the
unit code.

3. A transfer of control according to the mode of OREDUN, with c(MQ)=O.
This is the case when the previously initiated transmission is unsuccessful
because of a persistent tape redundancy error. The decrement of the
accumulator contains 0, and the address contains the unit code.

Unlike OSCRIB, OREADY always alternates the buffers 11 and 12, even in the
case of a special transfer of control according to OTPEND or OREDUN.

If an OREADY instruction is executed and there is no previous transmission
(e. g., before execution of an OS CRIB or after execution of an OREADY), the
only action taken will be to alternate the buffers 11 and 12.

The OREADY subroutine proceeds chronologically as follows:

1. Alternate the buffers 11 and 12.
2. Test whether OS CRIB or OREADY was executed last.

a. If OREADY, or neither, operation is completed.
b. If OSCRIB, go to step 3.

3. Wait until the previous transmission initiated by OSCRIB is completed.
4. Test whether the previous transmission involved a tape.

a. If not a tape, operation is completed.
b. If a tape, got to step 5.

5. Test for end -of-tape condition.
a. If no, go to step 6.
b. If yes, write end of file on the tape unit and transfer control

according to OTPEND.
6. Test for redundancy.

a. If no, go to step 7.
b. If yes, the standard attempt is made to recover by the monitor bad

spot routine. * If the error still persists, control is transferred
according to the mode of OREDUN, with c(MQ) = O.

7. The operation is completed.

* In the case of a tape prepared for off-line printing, if there were extra spacing records written on the
tape, these records are not rewritten. If the error occurred on such a record, only the last record (the
main one) is rewritten, probably once, and the error is not corrected. This type of error can be

recognied only during the actual off-line printing.

07.02.51
5 (6/61)

OSPACE Y, T, C, N

This modal macro provides space control when the output unit is a printer or
a tape prepared for off-line tape-to-printer operation with the carriage control
switch set to "Program". The OSPACE mode is examined whenever an OS CRIB
instruction specifies one of these two types of output, which are referred to
below as "on-line" and "off-line" printing, respectively.

N specifies whether this OSPACE instruction applies to off-line or on-line. If
N = 1, only off-line printing is affected. If N = 2, only on-line printing is affected.
Hence, two independent OSPACE modes can be given. By specifying N = 3, one
OSPACE instruction will affect both types of output; i. e., the instruction OSPACE
Y, T, C, 3 is equivalent to the two consecutive instructions OSPACE Y, T, C, 1
and OSPACE Y,T,C,2.

The value Y -c(T) specifies literally the number of lines to be spaced before
printing the next line, including the printed line itself. A Y -c(T) equal to 0 or
1 indicates single spacing (provided C = 0, see below).

C specifies whether the page is to be ejected before spacing takes place. If
C = 0, normal spacing (no eject) is indicated. If C = 1, this indicates that the
page is to be ejected before spacing. In this case only, there is a distinction
between Y -c(T)= ° and Y -c(T)= 1. Y -c(T)= 0 means eject and print, and Y -c(T)=
1 means eject, space one line, and then print.

The normal mode associated with OSPACE is no ejection and single spacing.
Both modes (N = 1 and 2) can be set simultaneously to normal by using OSPACE
0, or each can be set independently to normal by using OSPACE 0,0,0, N where
N= 1 or 2.

OHEAD Y, T , C, N, K

This modal macro controls line counts and headings when output is for on -line or
off-line printing. The OHEAD mode is examined whenever on OSCRIB instruction
specifies one of these two types of output.

K specifies whether this OHEAD instruction applies to off-line or on-line printing.
The K-value should be either 1 or 2. K = 1 specifies off-line, and K = 2 specifies
on -line. Hence, two independent OHEAD modes can be given. By specifying
K = 3, one OHEAD instruction will affect botk types of output. Thus, the instruction
OHEAD Y, T , C, N, 3 is equivalent to the two consecutive instructions OHEAD
Y, T, C,N, 1 and OHEAD Y, T, C,N,2.

07.02.52
5 (6/61)

There are two counters that are set aside; one for off-line and the other for
on-line printing. Each counter contains the number of lines printed and spaced
since the last execution of an OHEAD instruction. At the start, each counter is
reset to zero. Whenever a line is printed, the total number of spaces used up
is added to the corresponding counter. This means that 1 is added to the counter
if the corresponding OSPACE mode is normal. If the OSPACE mode is non­
normal, then the number of spaces, S, specified by the current OSPACE mode,
is added to the counter.

N controls the number of lines, including spaces, which are normally to be
printed before a transfer of control (to a heading program) occurs. Each time
the OS CRIB subroutine attempts to transmit one of the two types of output, the
contents of the appropriate counter is compared to N. If the counter contains a
number less than N, the usual transmission takes place* and the value of S is
added to the counter. However, if the contents of the counter is greater than
or equal to N, then transmission does!!Q! take place. Instead, control is trans­
ferred to the location Y -c(T) specified in the controlling OHEAD instruction.

However, before this transfer of control, the following changes will take place:
If C = 0 in the controlling OHEAD, the counter is reset to 0; if C is 1, the current
page will be ejected, and the counter is reset to 1 (not 0) since the succeeding
printing will be one line lower. (This is true because spacing always occur be­
fore printing a line.)

Example:

Suppose 500 lines, for "off-line" printing are to be written on tape A2, with
each line consisting of 120 characters, single spaced, and that a new page,
with a 48-character page heading line is to be started after every 50 lines.

The program might be:

Location

START

*
LOOP

LOOP1

*
*

Operation

OUTRAN
AXT

OHEAD

OSCRIB

Variable Field

500,1

A,O,l,O,1

]

Comments

Set all modes to normal.
Initialize counter for
total lines.
Initialize first heading.
Set up line image by
using internal proc­
essing macros.

TAPEA2, 0,20,1 Initiate transmission,
or transfer control
to A or B.

* Assuming no end-of-tape or redundancy error condition in the previous transmission is detected.

07.02.53
5 (6/61)

TIX LOOP, 1, 1 Count total lines.
OREADY Check last record.
HTR Finish

A OHEAD B,0,1,52,1 lnitalize succeeding

* headings.
B OREADY AI ternate buffers

* 11 and 12,
OBCW PAGE, 0,1,8 Set up alternate

* buffer with heading

* image.
OS CRIB TAPEA2, 0, 8,1 Write heading.
TRA LOOPI Continue main program.

PAGE BCI 8, (48 characters)page heading.
TAPEA2 OCT 1202

Since the N-value is ° in the instruction OHEAD A, 0,1,0,1; the first execution
of the following OSCRIB instruction which attempts to transmit a Tape-BCD­
Special (STHP) suppresses this transmission, causes a page to be ejected, resets
the counter to 1, and transfers control to location A. At A, the instruction OHEAD
B, 0,1,52,1 specifies that whenever 52 lines have been printed (50 standard lines,
1 heading line, and 1 extra space line due to the remote eject), the execution of
a subsequent OS CRIB instruction specifying Tape - BCD-special (STHP) should
result in ejecting a page, resetting the counter to 1, and transferring control to
B. Otherwise, the required line is printed and is added to the counter. At B,
the OREADY instruction alternates the buffers, so as not to destroy the line image
already prepared by the internal processing macro-instructions but not yet trans­
mitted. The OBCW instruction will then set up the alternate buffer with the 48-
character page heading line. The OSCRIB instruction which follows then initiates
the transmission of this heading line to the tape. The buffer is switched back to
the one already prepared for the next line image, and control is transferred back
to the usual OSCRIB instruction, which will initiate transmission of the required
line.

Ordinarily, in a program such as the one given above, some modal macro­
instructions would be used ahead of the main loop. If other than single-spacing
is desired, it could be accomplished by using OSPACE.

There is one additional rule for OHEAD. When OHEAD Y, T, C, N, K is executed
with N = 0, the corresponding heading counters, either the "off-line" counter,
the "on-line" counter, or both, depending on whether K = 1, K = 2, or K = 3,
are set to 0. Otherwise, the counters are unchanged.

The normal mode of OHEAD (in both cases K = 1 and K = 2) is for the OSCRIB
subroutine to ignore the heading feature, so that no OHEAD transfer of control
and no change in either of the heading counters will occur on the execution of
an OS CRIB instruction.

07.02.54
5 (6/61)

The execution of OHEAD Y, T, C, N, K with Y -c(T)= ° will set the OHEAD mcxles
to normal. However, according to the rule stated above, this mayor may not
result in setting the counters to zero, depending on whether N= ° or N =F 0.

As an application of the above, suppose that a Tape-BCD-Special record (STHP)
is being written using the heading feature, and that it is desired, at the same
time, to write another Tape-BCD-Special record without using the heading
feature, where the unit code for this second tape is in, say, location TAPEB3.
Then the following instructions might be used:

Operation

OHEAD
OSCRIB
OHEAD

Variable Field Comments

0,0,0, 1, 1 Suppress counting.
TAPEB3, 0, C, 1 Write second tape.
X, 0, C, N, 1 Restore desired

heading mode, con­
tinue counting.

Both of the OHEAD modes (K= 1, K= 2) can be simultaneously set to normal by
using either OHEAD ° or OHEAD 0,0,0,0,3. Each can be set independently to
normal by using OHEAD 0,0,0,0, K where K= 1 or 2. In this case, the counters
will be set to zero. Note, that the execution of the macro OUTRAN also causes
both counters to be set to zero.

Both of the OHEAD modes (K= 1 and 2) can also be set to normal by using
"OHEAD 0, 0, 0, 1, 3", or each can be set independently to normal by using
"OHEAD 0,0,0,1, K", where K= 1 or 2. However, as indicated above, in this
case, the counters will not be changed.

OREDUN Y,T

This modal macro is used to establish a mode which is examined during the
execution of an OSCRIB or OREADY instruction in the event that a persistent
tape redundancy error is detected. Control is transferred to the location Y -c(T)
whenever one of the follOwing situations occurs:

1. When the redundancy indicator remains on after the Bad Spot Routine attempts
to rewrite the previous record on a tape unit. This can occur during the
execution of an OSCRIB or OREADY instruction, when the tape transmission
initiated by the previous OSCRIB instruction is tested. In this case, c(MQ)
= 0; the decrement of the accumulator will contain the current unit code and
the address will contain the previous unit code (involving the erroneous
record). Three cases can be distinguished when examining the accumulator;
the first two cases occur during the execution of an OSCRIB instruction and
the third case during the execution of an OREADY instruction:

07.02.55
5 (6/61)

a. If the current and previous tape units are the same, i. e., the address
for the two units, excluding the 5th bit from the right (which distinguishes
BCD from binary tape mode), are the same, then the current transmission
has not been initiated.

b. If the current and previous tape units are different, then the current
transmission has been initiated. Here, only the previous unit is
necessarily a tape; the current unit can be a tape, printer, or punch.

c. If the decrement part of the accumulator (the field for the current unit
code) is zero, the redundancy test must have occurred during the execution
of an OREADY instruction. Therefore, no current transmission was
required.

2. When attempting to execute an OSCRIB instruction where the length of the
I-region is smaller than the number of words, W, required to be transmitted.
In this case, c(MQ)= 1, and the accumulator will contain the current unit
code in the address and (W - word length of buffer) in the decrement. The
transmission specified by the current OS CRIB instruction will not have been
initiated.

3. When attempting to execute an OSCRIB instruction which specifies an output
unit which has not been assigned. The current transmission does not take
place. In this case, c(MQ)= 2; the address of the accumulator will contain
the previous unit code and the decrement will contain the illegal current
unit code.

4. When attempting to execute an OS CRIB instruction which specifies an illegal
N or unit name. For example, with N = 2 (implying binary tape output) and
the unit specified as the on-line printer, OSCRIB could not correctly determine
its proper function.

The current transmission does not take place and control transfer with
c(MQ)= 3 and the accumulator as for 3 above. *

The normal mode associated with OREDUN is a transfer of control to the
SOS program initiating a message to the dugging output unit which gives
the contents of the AC and MQ, together with the location of the current
OSCRIB macro. **

* This situation does not apply if the IB Monitor is used.

** With the IB Monitor, the normal mode of OREDUN is a recognizable stop.

07.02.56
5 (6/61)

OTPEND Y, T

H an end-of-tape mark was encountered during the transmission of a tape record
whose transmission was initiated by an OSCRIB instruction, then an end of file
is written on that tape unit during the execution of the next OSCRIB or OREADY
instruction, and control is transferred to location Y -c(T).

The decrement of the accumulator will contain the current unit code and the
address will contain the previous unit code (denoting the tape for which the end­
of-tape mark was detected).

If the Redundancy indicator was also turned On, it is neither tested nor reset.
The OTPEND mode has priority over the OREDUN mode. However, during the
execution of the next OSCRIB instruction, the Redundancy indicator is reset
before transmission is initiated.

Transmission specified by the current OSCRIB instruction mayor may not have
been initiated.

1. If the current and previous tape units are the same, the current transmission
has not been initiated.

2. If the current and previous units are different (the previous unit was
necessarily a tape, but the current unit may be a tape, printer, or
punch), the current transmission.h.!§ been initiated.

3. If the decrement of the AC (the field for the current unit code) is zero,
the end-of-tape test must have occurred during the execution of an
OREADY instruction. Therefore, no current transmission was· required.

The normal mode associated with OT PEND is a transfer of control to the SOS
program. A message is written on the debugging output unit giving the contents
of the AC and the location of the current OSCRIB instruction. *

* With the IB Monitor, the normal mode for OTPEND is a recognizable stop within the system.

07.02.57
5 (6/61)

EXPANSIONS OF OUTRAN MACROS*

(1) OBCC [*] Y,T,C,N

STL SYSOT1
TXL SYSOT2, 0, 7
LDQ[*] Y,T
PZE C,O,N

(2) OBCW [*] Y,T,C,N

STL SYSOT1
TXL SYSOT2, 0, 8
LDQ[*] Y,T
PZE C,O,N

(3) OBIN [*] Y,T,C,N

STL SYSOT1
TXL SYSOT2~ 0,1
LDQ [*] Y,T
PZE C,O,N

(4) OBLANK Y,T,C

STL SYSOT1
TXL SYSOT2, 0, 9
PZE Y,T,C

(Ij) OCOLIN Y,T

STL SYSOT1
TXL SYSOT2, 0, 13
PZE Y,T

(6) OCOLC [*] Y,T (Not available when using the
m Monitor)

STL SYSOTI
TXL SYSOT2, 0, 28
STO [*] Y,T

* With the IB Monitor, SYSOT1 is replaced by 2210' and SYSOT2 by 2310' With both systems, PZE
is, in some instances, replaced by HfR.

07.02.58
5 (6/61)

(7)

(8)

(9)

(10)

(11)

(12)

07.02.59
5 (6/61)

OCOLR Y,T

STL SYSOT1
TXL SYSOT2, 0, 14
PZE Y,T

OEOR [*] Y,T,C

STL SYSOTI
TXL SYSOT2, 0, 19
PZE [*] Y,T
PZE C

OFIX [*] Y,T,C,N,K,B (B parameter is not available
when using the m Monitor)

STL SYSOTl
TXL SYSOT2, 0,4
LDQ[*] Y,T
PZE C,O,N
PZE K,O,B

OFLFIX [*] Y,T,C,N,K

STL SYSOTI
TXL SYSOT2, 0, 5
LDQ[*] Y,T
PZE C, 0, N
PZE K

OFLOAT [*] Y,T,C,N,K

STL SYSOTI
TXL SYSOT2, 0, 3
LDQ [*] Y,T
PZE C,O,N
PZE K

OFXFLO [*] Y, T, C,N,K,B (Not available when using the
m Monitor)

STL SYSOTI
TXL SYSOT2, 0, 6
LDQ[*] Y,T
PZE C, 0, N
PZE K,O,B

(13)

(14)

(15)

(16)

(17)

(18)

07.02.60
5 (6/61)

OHEAD [*] Y,T,C,N,K

STL SYSOT1
TXL SYSOT2, 0, 24
PZE [*] Y,T
PZE C,O,N
PZE K

OIMAGE [*] Y,T,C

STL SYSOT1
TXL SYSOT2, 0, 22
PZE [*] Y,T
PZE C

OINT [*] Y,T,C,N

STL SYSOT1
TXL SYSOT2, 0, 0
LDQ[*] Y,T
PZE C,O,N

OMASK Y,T,C,N

STL SYSOT1
TXL SYSOT2, 0, 12
PZE Y,T
PZE C,O,N

OOCTAL [*] Y,T,C,N

STL SYSOT1
TXL SYSOT2, 0, 2
LDQ[*] Y,T
PZE C,O,N

OOVPCH Y,T,C

STL SYSOT1
TXL SYSOT2, 0, 11
PZE Y,T,C

(19)

(20)

(21)

(22)

(23)

(24)

(25)

07.02.61
5 (6/61)

OPOINT Y,T

STL SYSOTI
TXL SYSOT2, 0, 16
PZE Y,T

OREADY

ST'L SYSOTI
TXL SYSOT2, 0, 26

OREDUN [*J Y, T

STL SYSOTI
TXL SYSOT2, 0, 20
PZE[*] Y,T

ORPT R,I,J

STL SYSOTI
TXL SYSOT2, 0, 23
PZE R-l
PZE I,O,J

OSCALE Y,T

STL SYSOTI
TXL SYSOT2, 0, 16
PZE Y,T

OSCRm [*] Y,T,C,N

STL SYSOT1
TXL SYSOT2, 6, 25
LDQ[*] Y,T
PZE C,O,N

OSPACE Y,T,C,N

STL SYSOTI
TXL SYSOT2, 0, 17
PZE Y,T
PZE C,O,N

(26)

(27)

(28)

(29)

07.02.62
5 (6/61)

OSPILL [*] Y,T

STL SYSOT1
TXL SYSOT2, 0, 18
PZE [*] Y,T

OTPEND [*] Y, T

STL SYSOT1
TXL SYSOT2, 0, 21
PZE [*] Y,T

OUTRAN

STL SYSOT1
TXL SYSOT2, 0, 27

OZERO Y,T

STL SYSOT1
TXL SYSOT2, 0, 10
PZE Y,T

INPUT/OUTPUT SYSTEM

CHAPTER 3: INPUT EDITOR

The SHARE System Input Editor provides for conversion of data during Phase 1.
The binary results of the conversion are written on a mediary output tape, in
a form suitable for later reading by means of the buffering routines SYSRTK
and SYSWTK (see Chapter 6).

The editor uses INTRAN to convert data, and the Buffering routines to write the
data on the mediary output tape. This is done internally and the programmer
need not be concerned with the use of INTRAN and the writing of the mediary
output tape. He must, however, utilize the Buffering routines (see page 07. 06. 01)
to read the data from the mediary input tape during Phase 2.

Because conversion is handled during Phase 1, no storage space is required during
execution of the program in Phase 2. When Phase 2 is begun data will have been
converted and is ready for immediate use when read by SYSRTK or SYSWTK.

Cards containing data to be converted by the Input Editor will generally have a class
code punched in column one. This code refers to the type of conversion to be per­
formed on this data. Class codes 0, 1, ••• , 9 are reserved for installation conversion
routines; +0, A, B, ••• , I are available for use by the individual programmer.

The conversion corresponding to a programmer class is described by a format
statement. This statement must be inserted at some point prior to the data to
be converted.

A special programmer class, $, permits the use of data cards which cannot be
punched with a class code in column one. The $ FORMAT statement, which describes
the conversion required for these cards, must immediately precede them.

INPUT DATA PACKAGE

The data to be processed by the Input Editor is arranged as follows:

1. t
2.
3.
4. t
5.

DATA A,B, C (See page 09. 02. 06.)
Blank Card
Data to be converted, including control cards and data cards.
ENDATA
Blank Card

More than one data package may be processed; each package must be arranged
as described above.

t 7-, 8-, and 9-punches in column one.

07. 03. 01
4 (3/61)

CONTROL CARDS

The DATA and ENDATA cards are SHARE Monitor control cards; hence, they
must have the combination of 7-, 8-, and 9-punches punched in column one. The
control cards discussed below are, on the other hand, a part of the data. There­
fore, column one must be blank, or be punched with a "$".

A.ENDRCD

This card will cause a Logical End of Record flag to be written on the output
tape. (An II-punch in column one of an installation class data card will also
cause an end of record to be written following the data on that card.) Each
group of successive data cards must be terminated by an end of record.
ENDRCD cards not immediately following data are ignored.

B.ENDGRP

This card will cause a Logical End of Group flag to be written. An ENDGRP
card will always have the same effect. However, the programmer may have
two or more in succession. (A card with an "*,, in column one, and otherwise
blank, will also cause an end of group to be written.)

C. ENDFILE

This card will cause a Logical End of File flag to be written if the output tape
is not SYSMOT. If SYSMOT has been specified, the ENDFILE card is an
illegal control card.

It should be noted that it is not possible to read past a Logical End of File
flag using the buffering routines SYSRTK and SYSWTK.

D.ENDTAPE

This card will cause a Logical End of Tape flag to be written. The restrictions
for ENDFILE also apply to ENDT APE.

E.NOMORG

A programmer will ordinarily use SYSRTK for input of converted data. The
calling sequence for SYSRTK specifies the starting location into which the
data is to be read. This starting location may, at the programmer's option,
be incremented by the nominal origin associated with the data. The nominal
origin may be specified in two ways: through the use of a NOMORG card, or
on the data card itself.

07.03. 02

4 (3/61)

The format of the NOMORG card is

NOMORG A,B

where A is the nominal origin in decimal (a sign is optional)
B is described below.

1. NOMORG A

This card may appear at any point in the data package. Its effect is to set
the nominal origin to "A". A succeeding ENDRCD or its equivalent returns
the mode of operation to normal. A nominal origin specified in a data card
has precisely the same effect as "NOMORG A".

2. NOMORG A,RECORD

This card may appear only at the beginning of a record. Its effect is to set
the nominal origin to "A" at the beginning of that and each succeeding record.
An ENDGRP or its equivalent returns the mode of operation to normal.

3. NOMORG A,GROUP

This card may appear only at the beginning of a group. Its effect is to set
the nominal origin to "A" at the beginning of that and each following group.
An ENDFILE returns the mode of operation to normal.

The mode of operation is always either normal, or that prescribed by the latest
NOMORG card or its equivalent. The normal mode of operation is

NOMORG 0

F.FORMAT

This card is used to describe the conversion of programmer class data cards.
The format of the card is

FORMAT A, (format specifications)

where A is one of the programmer class codes. FORMA T cards must occur
somewhere prior to the data cards whose format they describe.

A programmer class may be redefined at any time. For a complete discussion
of format statements, see below.

07.03.03
4 (3/61)

G.ETC

This card is a continuation card for format statements which cannot be
contained on one card. As many ETC cards as necessary may be used. The
format of the card is

ETC (Continuation of format statement)

THE $ CLASS

The $ class is a special programmer class which permits the use of data cards
which do not have a class code punched in column one. The "$ mode" is entered
upon encountering a FORMAT card with a "$" punched in column one and column
16. This "$ FORMAT card" must immediately precede the data to be converted.
All subsequent control cards must also have a "$" punched in column one. The
only restriction on the data cards is that they must not have a "$" in column one.

Data may be punched in column one; therefore, the "$" format specification must
define the first data field as beginning with column one, rather than with column
two (the first data column of ordinary data cards).

A special control card, $ STOP, is required to release the Input Editor from the
$ mode.

Example of $ FORMAT card:

$ FORMAT $, 516, A6/ •••

FORMAT STATEMENTS

The format statement describes the arrangement of data in a card, and prescribes
the types of conversion to be performed between this data and its binary equivalents.
The format statement is examined by the Input Editor, and a conversion routine
is generated, to be executed when data referring to the format statement is
encountered.

The format statement describes a card by indicating, for each field in the card,
starting from the leftmost column available for data:

1. The type of field.

2. The width ''wtf of the field, in columns.

3. Other modifiers, as necessitated by the field type.

07.03.04
4 (3/61)

A. Basic Field Specifications

1. Iw

The field is assumed to contain a signed or unsigned decimal integer, which
is converted to binary.

2. Ow

The field is assumed to contain a signed or unsigned octal integer, which
is converted to binary.

3. Ew. d, Fw. d

The field is assumed to contain a signed or unsigned floating point decimal
number, "d" must be specified. Unless a decimal point occurs in the data,
the decimal point is assumed to be "d" places to the left of the rightmost
digit of the principal part. If an exponent part does not occur, it is
assumed to be zero. The exponent part must begin with an "E", or a
sign, or both. The number is converted to floating point binary.

4. Ew. dBb, Fw. dBb

The field is assumed to contain a signed or unsigned floating point decimal
number. "d!l must be specified. Unless a decimal point occurs in the data,
the decimal point is assumed to be d places to the left of the rightmost
digit of the principal part. If an exponent part does not occur, it is assumed
to be zero. The exponent part must begin with an !IE", or a sign, or both.
The number is converted to fixed point binary. "b" must be specified.
Unless a B part occurs in the data, the binary number is assumed to have
its binary point b places to the right of the leftmost bit.

5. Aw

The field is assumed to contain Hollerith data. The data is converted to
BCD, and left adjusted; zeros are inserted in unused character positions.

6. wH

The "w" columns following the "H" are skipped over in the scan of the format
statement. These columns are converted as though the specification were
!lAw". Note that all of the w characters and the specification must be on
one FORMAT or one ETC card.

07.03.05
4 (3/61)

7. Nw

The field is assumed to contain a signed or unsigned decimal integer. The
integer is converted to binary, and becomes the nominal origin for the
following data. A blank field is ignored.

8. NwO

The field is assumed to contain a signed or unsigned octal integer. The
integer is converted to binary, and becomes the nominal origin for the
following data. A blank field is ignored.

9. wX

The field is ignored.

B. Other Specifications

1. pP

A decimal scale of lOP is applied to all E and F fields following this
specification, so that

Internal number = External number x lOP

The decimal scale continues to apply until another "pP" is encountered, or
another format statement is referred to, or an end of record is written.

2. Sx. y. z

This speCification may follow any of the specifications for numerical fields
and indicates the occurrence of overpunching in the field. The digits x,
y, and z refer to the principal part, exponent part, and B part of the field,
respectively. x is the number of the column within the field (numbered
1, 2, 3, ... , w from left to right) in which the overpunched sign of the
principal part occurs. y is the number of the column within the E part
(with the column containing the "E" numbered 0) in which the overpunched
sign of the exponent part occurs. z is the number of the column within
the B part (with column containing the "B" numbered 0) in which the
overpunched sign of the B part occurs. If the "E" or "B" do not occur in
the field, the y or z are ignored. The absence of an over punch implies
a "+". A field which is blank except for an over punch in the principal part
is considered to be a blank field.

07.03.06
4 (3/61)

Any of the values ''x,'' ''y,'' "z" may be omitted from the specification, but
the decimal points which define them must be specified. The following are
correct specifications:

Ew. dSx, OwSx, Fw. dBbSx •• z, Ew. dBbS •• z, NwOSx

c. General

The order of the specifications must be followed precisely. Blanks in the
format statement are ignored, except in the ''w'' columns following a ''wH''
specification. The numeric modifiers called for in the specifications may
not, in general, be omitted. They may in some cases be negative; the sign
must then precede the number.

Example: EI0. -2B-20

Each specification in the format statement should be terminated by one of
the following characters:

,
/
)

comma
slash
right parenthesis

or by the end of the format statement. The comma may be omitted after the
specifications ''wH'' and ''pP''.

A basic field specification, except "wH" and "wX", may be preceded by a
positive non-zero number "n". The effect of this modifier is to repeat the
field specification "n" times. If "n" is not specified, it is taken to be one.

Example: 3E12.5 = E12. 5, EI2.5, E12.5

Parentheses may be used to enclose a group of specifications which are to
be repeated. The modifier ''n'' precedes the left parenthesis, may not be
omitted, and indicates that the group of specifications is to be repeated ''n''
times.

Example: 2(13, 05) = 13, 05, 13, 05

Parentheses may be nested to any degree.

Example: 2(12, 3(F6. 1, A2)) = 12, F6. 1, A2, F6. 1, A2, F6. 1, A2, 12, •••

More than one data card may be described in a FORMAT statement. Specifications
of succeeding cards are separated by a slash.

07.03.07
4 (3/61)

Example: 11H FmST CARD/12H SECOND CARD/11H THmD CARD

Repeated slashes cause the indicated data cards to be ignored.

Example: 11H FmST CARD/ /llH THIRD CARD

Repetition of a data card specification is indicated by ''n*'' at the beginning
of the specification •

Example: •• • /2*6Ell. 4B35/ ••• = ••• /6Ell. 4B35/6Ell. 4B35/ •••

Parentheses which enclose groups of field specifications must not enclose
a slash. In other words, field specifications may be repeated only within a
card. A single pair of parentheses, with the modifier ''n'' omitted before the
left parenthesis, may be used. Normally, when the end of the format statement
is reached and there is still data to be converted, the format statement is
reentered at its beginning. However, if an unmodified left parenthesis was
encountered, the format statement will be reentered at that point. This pair
of parentheses may enclose slashes, but the left parenthesis must occur at
the beginning of a data card specification, and the right parenthesis must
be coincident with the end of the format statement.

Example: A60/(6IIO/6010) = A60/6IIO/6010/6IIO/6010/ •••
A60/i(6I10/6010) = A60/6IIO/6010/ A60/6I10/ •••

An unmodified left parenthe sis occurring at the beginning of a format statement
is obviously redundant and is ignored. In this case only, more than one un­
modified left parenthesis may occur in a format statement.

It is particularly important that every left parenthesis be matched by a
corresponding right parenthesis.

D. Data Conver sion

Leading and trailing blanks in a numeric field are ignored in conversion. An
imbedded blank is an error. A blank numeric field is ignored, and no corres­
ponding data is written on the output tape, but the nominal origin is incremented.
If SYSRTK is used to read in data from cards containing blank numeric fields,
the calling sequence must include the MZE prefix (which causes SYSRTK to
increment the starting location by the nominal origin). Any word which would
ordinarily have been filled with data from a numeric field will be undisturbed,
if the field was blank. If the PZE prefix is used, and blank numeric fields
occurred in the data cards, the results are unpredictable.

07.03.08
4 (3/61)

ERROR ANALYSIS

The Input Editor performs an extensive error analysis on both data and control
cards. Upon encountering an error, an indicative comment is written on the
system output unit. When appropriate, the card number t card column, and card
image are also written.

A. Type 1 Errors

Type 1 errors are those which would lead to loss of control by the Input Editor.
The job is deleted immediately upon encountering a type 1 error, and control
is returned to the system.

B. Type 2 Errors

Type 2 errors are those which would definitely prevent successful execution
of the program. In order to locate as many errors as possible, processing
of data continues. However, the job is deleted.

C. Type 3 Errors

Type 3 errors are those which might prevent successful execution of the program.
If GO was punched in the variable field of the DATA card, the job is not deleted.

In general, a type 3 error involves bad data, such as illegal characters, loss of
significant bits, or floating point spill. A bad data flag is written at the end of
the logical record in which the bad data occurred. When this flag is encountered
by SYSRTK, the error return is made. Bad data is replaced by zero, except
in the case of a floating point overflow, when it is replaced by -377777777777 s-

ERROR MESSAGES

Error messages are enclosed in quotation marks below.

A. Type 1 Errors

1. "Illegal or blank control card. "
2. "Binary card not a control card (7-8-9)."
3. ''Binary record on tape not column binary in origin. "
4. "More than ten persistent redundancy checks on input tape."
5. "Attempt made to process past end of record." This error can occur only if

an installation class conversion routine is erroneously programmed.
6. "Physical end of file encountered on input unit." This is a type 3 error

if the end of file is encountered after the ENDATA card is read.
7. "ffiEDUN return from INTRAN." This error can occur only if an installation

class conversion routine is erroneously programmed.

07. 03. 09

4 (3/61)

B. Type 2 Errors

1. Errors encountered in scanning a format statement.

a. "Parenthesis trouble, first noticed here."
b. "The preceding specification is incorrect."
c. "The specified Hollerith field was not complete on this card."
d. ''Illegal character."
e. "A non-zero number must precede this character."
f. "Specification not properly terminated."
g. ''Too many columns specified for tape (or card) record."
h. "Character is illegal in this context. "
i. "A number must precede this character."
j. ''The conversion routines compiled for this job exceed the capacity of

storage. "
k. "Illegal FORMAT class specified."

2. Any spill produced in converting the field of a NOMORG card, or a nominal
origin field in a data card.

3. An illegal character in the nominal origin field of a data card.

4. "Improper specification in a NOMORG."

5. "Illegal class code. "

6. "Legal but undefined class code."

7. "ET C not preceded by FORMAT."

8. "Persistent redundancy check on input tape."

C. Type 3 Errors

1. Spills produced in the process of data conversion.

a. ''Numeric part of OCT integer exceeds 2**36."
b. "Absolute value of DEC integer exceeds 2**35."
c. "String of numeric digits exceeds 2**35."
d. "E or B field exceeds 4 characters."
e. ''Indicated binary pt. causes loss of left bits."
f. "Binary subfield extends into more than 1 word." This error cannot

occur in a conversion defined by a format statement.
g. ''!BCC or mcw with zero field width." This error cannot occur in a

conversion defined by a format statement.

07.03.10
4 (3/61)

h. "Floating pt. underflow occurred in conversion."
i. "Floating pt. overflow occurred in conver sion. "

2. "Character is illegal in data field. "

3. "Field width exceeds 31 columns. Compilation of format statement will
continue." The field is taken to consist of the rightmost 31 columns.

4. ''NOMORG RCD/GRP not at beginning of rcd/grp." The required end of
record or end of group is written, and the NOMORG card is then processed.

5. "ENDGRP or ENDATA not preceded by ENDRCD." The required end of
record is written.

6. ''$STOP or FORMAT not preceded by ENDRCD." The required end of
record is written.

7. "STOP card in improper sequence." The card is ignored.

8. "Control card (7-8-9) not an ENDATA card." The card is treated as an
ENDA T A card.

07.03.11
4 (3/61)

INPUT/OUTPUT SYSTEM

CHAPTER 4: OUTPUT EDITOR

The Output Editor provides the programmer with a method of converting data and
writing it on the standard system output unit in the form desired. The editor
operates during Phase 3, which means that virtually no storage space is sacrificed
by the programmer during execution of his program in Phase 2.

The editor uses OUTRAN to perform the necessary conversion and writing of
information. If the editor is used, both it and OUTRAN will be brought in during
Phase 3.

The language of the Output Editor consists of eight macros which the programmer
may use in his program to punch Hollerith and to print Hollerith information
with full control of page headings, footings, spacing, conversion specifications,
etc. The macros (XFORM, XPRINT, XPUNCH, XHEAD, XFOOT, XSPACE,
XEJECT, XCOUNT) are expanded by the Compiler as calling sequences to an
Output Editor Supervisor. The supervisor, which always occupies 100 words
of core during Phase 2, interprets the calling sequences, and writes information
onto the mediary output tape. During the third phase, this information is read
by the Output Editor, and editing proceeds.

The format of output can be specified precisely through the Output Editor macros
and format ·statements. The format statement will define exactly what work is
to be performed on each piece of data, together with spacing and control. The
format statements are compatible with those of the Input Editor. The basic
field specifications permissible in a format statement are described on page 07. 04. 06.

MACRO-INSTRUCTIONS

A. XFORM N

Format statements are introduced by the macro

XFORM N

where N is the number of flag-words to follow the macro (and is, in fact, the
number of format statements to be introduced by the macro).

Each of the N flag-words has the form

pfx L, T,M

where L, T denotes the beginning of the M words comprising a single format
statement.

07.04.01
4 (3/61)

The prefix is PZE if L, T is the direct address, MZE if indirect.

The M BCD words comprising a format statement appear in core as if (or in fact)
a direct result of

(L,T) BCI
BCI

BCI

ml, A, XXXXXXXX

m2'~···~

A is a BCD character identifying the format statement.

Unlike the Input Editor's format statement, the character used to identify the
statement may be any BCD alphabetic character or $ (0 through 9 will again
be reserved for installation standard format conversion routines).

The basic field specifications permissible in a format statement are described
on page 07. 04. 06.

Example:

To introduce two format statements

1. A, 215
2. B, 3El4.6, 2(E9. 4B5, F4. 3B5)

we use

XFORM 2
PZE ALP, 0, 2
PZE BET, 0, 5

and somewhere in our program we have

ALP
BET

BCI
BCI

B. XPRINT A, N, C

2, A, 215
5, B, 3El4. 6, 2(E9. 4B5, F4. 3B5)

Conversion and printing of a block of data according to a given format is
specified by the macro

07.04.02
4 (3/61)

XPRINT A, N, C

where A is the identifying character of the format statement describing the
desired conversion;

N is the number of flag-words which follow the macro;
C (which may be omitted) specifies that if fewer than C lines are left

on the output page, the page should be ejected before the macro is
executed.

The N flag-words which follow the macro have the same form as those following
the XFORM macro, that is pfx L, T, M. The location (L, T) specifies the
first of the M words of data to be converted and printed according to the format
statement.

Example:

XPRINT
PZE
PZE

A,2
DATAl, 0, 2
DATA2, 0,4

specifies conversion and printing of two words of data which begin at location
DATAl and four words of data which begin at location DATA2 according to
format statement A (which is presumed to have been introduced earlier in the
program by an XFORM statement).

C. XPUNCH A, N

The XPUNCH macro is parallel to the XPRINT macro. XPUNCH A, N instructs
the Output Editor to create output on the system t s punched output unit. Output
will be in Hollerith if on-line or, more normally, in column-binary-coded
Hollerith if off-line. The data indicated by the N flags following the macro is
converted and punched according to the format statement whose identification is A.

D. XHEAD At N, C

This macro instructs the Output Editor to convert, according to format statement
A, the data specified in the following N flag-words and use it as the page heading
for each page of print Wltil suppressed by an XHEAD macro with a blank variable
field or by an XHEAD specifying a new heading. - ~

When the XHEAD macro is executed, the page is ejected if necessary (i. e. t

if the line count I: 0).

If C is non-zero, the number of lines per page is reset to C. (This is provided
since it is probable that when a new heading is begun, the programmer is setting
up a new page format, and might at this time want to reset the number of lines
printed per page.)

07.04.03
5 (6/61)

Spacing after the heading is normally suppressed. Therefore, if overprinting
is not desired, spacing must be provided. Spacing following the heading may
be specified in the format statement by multiple slashes. It may also be
specified by a separate macro: XSPACE C, H where C is the number of spaces
to follow the heading before any subsequent printing. (See below.)

E. XFOOT A,N,C

This macro is parallel to XHEAD, and causes the information desired to be
printed at the foot of the page (before page ejection). Spacing before footing
may be specified in the format statement or by an appropriate XSPACE.

Note: Page ejection is the normal mode of operation; if it is suppressed,
heading and/ ~r footing are also suppressed.

F.){SPACE C,K

This macro is used to specify that there are to be C spaces of type K, where:

K :::: H to specify spacing between the heading and the body of a print page
= B to specify spacing between the blocks of printing in the body (a "block"

of printing is defined to be the printed output resulting from one XPRINT
macro)

:::: F to specify spacing between the body and the footing
:::: blank, for all three types of spacing.

XSPACE C,K is modal and will apply until another XSPACE of the same type
is executed, wherein C may define a different number of spaces or may be
blank or zero to discontinue the mode established.

Note: The spacing specified by an XSPACE macro supersedes spacing
specifications in a format statement.

G. XEJECT C

The XEJECT macro is used to direct immediate page ejection or to reset the
standard number of lines to be printed previous to page ejection.

C :::: 0 or blank if the page is to be ejected immediately,
:::: a decimal integer if the number of lines per page is to be reset to C.

Interpretation of XEJECT with nonzero C will cause the page to be ejected
immediately unless the line count is zero (that is, unless the page has just
been ejected).

An XEJECT with C :::: -1 may be used to suppress page ejection altogether.

07.04.04
5 (6/61)

H. XCOUNT N, S, I, R

This macro is used to define a counter (as for page numbering) or a series
of hierarchy of counter s.

XCOUNT N, S, I, R

where N is the identifying number of the counter (may be 1 through 7)
S is the value to which counter N is to be set initially
I is the amount by which counter N should be incremented (under control

of format statements; see below).
R is the identifying number of another counter which, when incremented

will cause the counter N to be reset to its initial value (R I: N).

The contents of a particular counter are incremented and displayed under the
control of format statements. Suppose, for example, that the macros

XCOUNT
XCOUNT

r, 1, k
n, s, i, r

had been executed previously. Suppose, further, that execution of an XPRINT,
XHEAD, XFOOT, or XPUNCH macro is in process, and the subfield rCw+
is encountered in the format statement. The current value of counter r would
be printed (or punched) as a decimal integer in the next w columns of the
output record, the value of counter r would be incremented by the amount k,
and finally, the value of counter n would be reset to s.

As described on page 07. 04. 07:

rCw specifies that the value of counter r is to be printed but not incremented,
rC+ specifies that the value of counter r is not to be printed but is to be

incremented (and thenee, in our example, reset the value of counter n).

The example on page 07.04.10 will serve to clarify the use of the XCOUNT
macro in conjunction with format statements.

It should be noted that the counters are limited in capacity (similar to the index
register limit) to modulo 32, 768.

FORMAT STATEMENT SPECIFICATIONS

As noted above, the parameters of the output macros (XPRINT, XPUNCH, XHEAD,
and XFOOT), in addition to specifying the words in core to be transmitted, also
specify the identifying name of a format statement describing the type of conversion
to be performed between the internal machine language and the external notation as
well as the physical format of the output record.

07.04.05
4 (3/61)

The format specification describes the line to be printed or punched by giving the
type of conversion and the width (w) for each field in the line.

BASIC FIE LD SPE CIFICATIONS

Iw

Ow

Ew. d. i

Ew. d. iBb

Fw.d

Fw.dBb

Aw

wH

07.04.06
4 (3/61)

Description

The following w characters of output are to be the result
of binary to decimal integer conversion. If w exceeds 11,
only the 11 rightmost characters will be significant, the
rest will be blanks. The result will be right-adjusted.

The following w characters of output are to be the result
of binary to octal conversion. If w exceeds 13, the excess
will be blanks and the result right-adjusted. Leading zeros
will be converted to blanks.

The next w characters of output are to be the result of
converting the internal binary floating point number to
decimal floating point, and the result is to have d places
to the right of the decimal point and i places to the left.

Internal binary fixed point number to external decimal
floating number. The binary number is assumed to have
its binary point b place s to the right of the leftmost bit.
The result is to have d places to the right of the decimal
and i places to the left.

The next w characters of output are to be the result of
conversion from an internal binary floating point number
to an external decimal fixed point number, where d is as
in the E-type field.

Internal binary fixed point number to be converted to external
decimal fixed point number, d and b are as in the E-type field.

The next ~ data words contain BCD characters, and w of
these characters are to be moved into the next w columns
of the output image (are to appear as Hollerith characters
in the next w output columns).

The w BCD characters following the H are to be moved directly
into the output image (are to appear as Hollerith characters
in the next w output columns).

wX

Nw

NwO

The next w columns of output are to be blank.

The next w columns of output are to be the result of
conversion from the internal signed binary integer to an
external (signed) decimal integer which is to be used as the
nominal origin. Actually, the Output Editor simply treats
this specification as if it were Iw. It is left to the programmer
to so place it that it will serve him as a nominal origin.

See above specification. This type results in an octal
number to be used as nominal origin.

The method for indicating repetition of a field specification, of a group of specifications,
and of the specification for an entire format line, as well as the separation of lines,
indications of blank lines, etc. are the same as for the Input Editor, as are the
means of indicating overpunching and scale factors. See page 07. 03.07.

The format statements for the Input and Output Editors are compatible. Parameters
required in the statement for one editor and not the other will be ignored by the
second editor, e. g., a format statement, for output, containing Ew. d. i (see above,
floating point binary to floating decimal) could also be used intact as a format
statement for the Input Editor. In this latter case, the i parameter is ignored
and specification is treated as Ew. d (floating decimal to floating binary).
(See page 07.03.05.)

LINE SPACING

If it is desired that a number of lines be spaced before printing a given line, the
format specification of that line may be preceded by a decimal integer from 1 to
9 indicating literally the number of spaces desired. This integer must preceed
the first field specification of the line and must be separated from it by a comma.
In the absence of such a number, the Output Editor assumes a value of 1.

Example: FORMAT A, •••••• /2, 15/3, 306, •••

COUNTER CONTROL BY FORMAT STATEMENTS

The basic field specification cC (c is the identifying number of a counter and may
be 1 through 7) is unique to the format statement of the Output Editor. This
specification governs the treatment of the value of a counter, c, where this counter
has been previously defined by an XCOUNT macro.

cCw

07.04.07
4 (3/61)

specifies conversion of the value of counter c to decimal,
and printing of it in the next w columns of the output record.

cCw+

cC+

07.04.08
4 (3/61)

specifies conversion and printing of the value of counter c,
and incrementing the counter by the amount indicated in the
increment parameter of the XCOUNT macro defining counter c.

specifies incrementing of the value of counter c, but not
printing.

EXPANSIONS OF OUTPUT EDITOR MACROS

(1) XCOUNT
STL
TXL
VFD
VFD

(2) XEJECT
STL
TXL
VFD

(3) XFOOT
STL
TXL
VFD

(4) XFORM
STL
TXL
VFD

(5) XHEAD
STL
TXL
VFD

(6) XPRINT
STL
TXL
VFD

(7) XPUNCH
STL
TXL
VFD

(8) XSPACE
STL
TXL
VFD

07.04.09
4 (3/61)

N, S, I, R
SYSOED
SYSOED-1, ,8
15/0,3/N
3/N, 15/S, 3/R, 15/1

C
SYSOED
SYSOED-1,,1
15/0, 15/C, H6/

A,N,C
SYSOED
SYSOED-1,,7
15/N, 15/ C, H6/ A

N
SYSOED
SYSOED-1,,3
15/N, 15/0, H6/

A,N,C
SYSOED
SYSOED-1,,6
15/N, 15/C, H6/ A

A,N,C
SYSOED
SYSOED-1,,4
15/N, 15/C, H6/ A

A,N
SYSOED
SYSOED-1, ,5
15/N, 15/0, H6/ A

C,K
SYSOED
SYSOED-1,,2
15/0, 15/C, H6/K

13631 -0 62500 a 00104
13634 0 00010 0 13703
13635 0 00013 0 13713

13636 -0 62500 0 00104

13641 -0 62500 0 00104

13644 -0 62500 0 00104

13647 -0 62500 0 00104

13652 -0 62500 a 00104

13655 -0 62500 a 00104

13660 -0 62500 a 00104

13663
13664
13665
13666
13667
13670
13671
13672
13673
13674

13675
13700
13701
13702
13703
13713
13724
13726

o 60000 0 13727
o 77400 1 00024
o 50000 0 13726
a 40000 a 13727
o 60100 0 13727
a 77400 2 00033
a 50000 2 13762
o 40000 a 13726
a 60100 2 13763
2 00001 2 13671

-0 62500 0 00104
o 00034 0 13727
2 00001 1 13665
a 07400 4 00042
2 17::'05 a 06773
2 ~7305 0 06773
1 33103 7 30267
o 00000 0 oeOOl

13727
, 1."31

1*
2*
3* ,.*
5*

OUTPUT EDITOR EXAMPLE

lET US· ASSUME THAT WE HAVE A PROBLEM IN WHICH WE ARE
ITERATING ON A 4-BY-7 MATRIX AND THAT WE WANT TO DISPLAY THE
VALUES OF THE ELEMENTS AfTER .EACH ITERATION. IN THE SAMPLE
PROGRAM WHICH FOLLOWS, EfFECTIVE USE IS MADE OF THE COUNTER
DEFINING ABILITY OF THE EDITOR.

7 XFORM 2 INTRODUCE AS FORMAT STATEMENTS
GO STL SYSOEO

OUTPUT
00/00/00

PAGE

8 +3 PZE FORM1.0,8 1. THE 8 WORDS SEGJNNING AT FORMI
9 +4 PZE FORM2.0.I1 2. THE 11 WORDS BEGINNING AT fORM,.

10 XCOUNT 1,1.1 DEFINE COUNTER FOR PAGE NUMBER.
+5 STl SYSOED

11 XCOUNT 2.1.1 DEFINE COUNTER FOR ITERATION NUMBER.
+8 STl SYSOEO

12 XCOUNT 3.1.1.2 DEFINE COUNTER FOR ROW OF ELEMENT.
+11 STL SYSOEO

13* THUS, THE ROW COUNTER WILL BE RESET TO 1 EACH TIME THE
14* ITERATION COUNTER IS INCREMENTEO.
15 XCOUMT 4.1.1.3 DEFINE COUNTER FOR COLUMN NUMBER OF ELEMEN

+14 STL SYSOED
16* THE COLUMN COUNTER WILL BE RESET TO 1 EACH TIME THE ROW
17* COUNTER IS INCREMENTED.
18 XHEAD A PRINT AS THE OUTPUT HEADING THE

+17 STL SYSOED
19* INFORMATION SPECIFIED BY FORMAT A.
20 XSPACE 10.H

+20 STL SYSOEO
21 XSPACE 6.B

+23 STL SYSOED

BEGaN
+1

AGAIN
+1
+2
+3

MTRX INITIALIZE THE PHONY MATRIX.
20.1 SET FOR 20 ITERATIONS
L(ONE)
MTRX
MTRX
21.2 SET FOR A SINGLE ITERATION.
MTRX+21.2
LeONE)
MTRX+28.2

1

24
25
26
21
28
29
30
31
32
33
34

ITER
+1
+2
+3

STZ
AXT
CLA
ADD
STO
AXT
ClA
ADO
STO
TIX
XPRINT
STL
PZE
TIX
TSX
BCI
BCI
BCI
OCT
BSS
F""\)

ITER.2.1 TEST ALL EL.EMENTS IN MATRIX TREATED.

35
36
31
38
39
40
41
42 .. ~

+4
+1
+8
+9

FORMl
FORM2

+9
L.(ONE)
MTRX

B.1.12 YES. PRINT ACCORDING TO FORMAT B THE
SYSOED
MTRX,O.28 28 DATA WORDS BEGINNING AT MTRX.
AGA I N.lt 1
SYSTEM.4
8.A.SOX,16HMATRIX ITERATION.40X.SHPAGE lC4+
9,B.50X.10HITERATION 2C3+11114*2.7(4H X(3C2,lH.4C2+.2H) •
2.=13.2X)3C+
1
28.0
ere

X(It 1)= 13

XI 2. 1)= 20

XI 3. 1). 27

X(4. 1)= 34

X (It 1) = 14

X(2. 1)= 21

X(3. 1}= 28

X(4. 1}= 35

XI It 1)= 15

X(2. 1). 22

Xl 3. 1)· 29

XI 4. 1)= 36

x (1. 2):: 14

Xl 2. 2)= 21

XC 3. 2)= 28

XC 4. 2)= 35

xc 1. 2)= 15

XC 2. 2)- 22

XC 3. 2)· 29

X(4. 2)= 36

XC 1. 2):a 16

Xl 2, 2)= 23

XC 3. 2)= 30

xc 4. 2). 37

xc 1. 3)= 15

X (2, 3) = 22

XI 3. 3)= 29

Xl 4, 3)= 36

xc 1. 3)= 16

xc 2. 3)= 23

XC 3. 3)· 30

XI 4. 3)= 37

xc 1. 3)= 17

xc 2, 3)= 24

XC 3. 3) = 31

xc 4, 3). 38

MATRIX ITERATION

ITERATION 13

Xl It 4)· 16

XC 2. 4). 23

Xl 3. 4). 30

X(4. 4)" 37

ITERATION 14

XI 1. 4)= 17

XI 2. 4)= 24

Xl 3. 4)· 31

XI 4. 4). 38

ITERATION 15

Xl 1. 4). 18

Xl 2. 4)· 2S

Xl 3, 4). 32

XI 4. 4). 39

SAMPLE OUTPUT

XI 1. 5). 17

XI 2. 5). 24

XC 3. 5). 31

Xl 4. 5). 38

Xl 1. 5)= 18

XC 2. 5). 25

XC 3. 5). 32

Xl 4, 5). 39

Xl 1. 5)· 19

X(2. 5). 26

XC 3. 5). 33

XC 4, 5). 40

XC It 6)= 18

XI 2. 6) = 25

XC 3. 6)= 32

XI 4. 6)- 39

XC 1. 6). 19

Xl 2. 6) = 26

XC 3. 6)- 33

Xl 4. 6)- 40

Xl It 6) = 20

X(2. 6'- 27

Xl 3. 6'- 34

Xl 4. 6'· 41

PAGE

xc It 7). 19

Xl 2. 7). 26

Xl 3. 7)- 33

XC 4. 7)- 40

XC 1. 7)- 20

XC 2, 7)- 27

Xl 3. 7)- 34

xc 4. 7)- 41

Xl It 7)- 21

XC 2, 7). 28

X, 3. 7)= 35

X, 4. 7)- 42

5

INPUT/OUTPUT SYSTEM

CHAPTER 5: SHARE MONITOR TRANSMISSION MACROS

The Transmission macros cause generation of a set of calling sequences to an
input/output dispatching program. These macros provide for efficient use of the
parallel input/output facility of the 709, while relieving the programmer of
nearly all I/o timing considerations.

Data is moved directly between working storage and the specified I/O unit using
DSC commands provided by the programmer. Buffers are not employed; there­
fore, no arbitrary limits are placed on the length of records being read or written.
The status of any transmission may be determined at any time, and priority may
be assigned to specific operations.

If an object program, through the use of a Transmission macro, attempts to initiate
transmission on a channel that is in operation, an entry for the macro is made in
the "stack table" for the channel involved. Control is then returned to the object
program. Subsequent execution of a Transmission macro causes entry to the
Dispatching program. The status of each channel is then checked and waiting
operations (i. e., those previously entered into the stack table) are initiated.

Since the Transmission macros are not designed to read or write information in
the SHARE Monitor buffered format, it is not possible to operate on the same tape
with both the Transmission macros and the Monitor buffering routines.

In the following description of the Transmission macros, each element in the
designated variable field is expressible as a SCAT symbolic expression. Each
refers to a core address, except 'Ttl which is the index register associated with
the address "Y", and ''N'' which is a spacing count for the non-transmitting tape­
moving macros. The location counter symbol (*) may not be used, and a blank
or zero field may have special meaning.

Each of the macros except DISP specifies an input/output operation referring to
a table located at the effective address Y-c(T), or indirectly to the table if
the macro is indirectly addressed. The first word of an I/O table specifies the
symbolic tape unit and the mode. The mode is indicated by the prefix, which is
PZE for binary mode and MZE for decimal mode. In the case of a READ or
WRITE macro, the remainder of the table consists of the DSC commands which
control the actual transmission. The I/O table is required by the Dispatching
program throughout the execution of the Transmission macro. Therefore, the
table must not be altered until the operation is complete.

07.05.01
4 (3/61)

The following example illustrates the format of an I/O table:

x PZE
IOCP
lOST

SYSAR1
A,,3
B, ,1000

This table, when referred to by a READ macro, specifies reading in the binary
mode from the tape assigned as SYSAR1 (PZE in the prefix of X indicates binary
mode).

The first three words of a record read will be transmitted to locations A through
A+2, and the remainder of the record (up to a maximum of 1, 000 words) will be
transmitted to location B and following cells.

Each of the Transmission macros, except DISP, has an ERROR return as one of
its variable field parameters. With the exception of the IN and OUT macros, the
Dispatching program will transfer control to the location specified by the ERROR
parameter if either of two conditions occurs:

1. the stack table for the channel involved is full
2. the tape specified in the first word of the I/O table has not been assigned.

Upon return to ERROR, the sign of the MQ will be plus in the first instance and
minus in the second. The accumulator will contain the complement of the macro
location. If ERROR is zero or blank, the return will be to SYSERR and index
register 4 will contain the complement of the macro location.

READ Y, T, ERROR

This macro causes a read operation to be entered in the stack table for the specified
channel. When the Dispatching program executes the read operation, the I/O
table at location Y -c(T) is used to specify the unit and control the reading.

The status of the read operation is tested by an IN macro referring to the same
I/O table.

STEPR Y, T, N, ERROR

This macro enters a "step records" operation in the proper stack table. The I/O
table at Y -c(T) need consist only of the symbolic tape address. That tape is
spaced forward N records or until end of file or end of tape is encountered.
Such an indication is not counted as a record.

The status of the STEPR operation is tested by an IN macro.

07.05.02
4 (3/61)

STEPF Y, T, N, ERROR

This macro enters a "step files" operation in the stack table. It causes the
specified symbolic tape to be spaced forward N files.

The status of the STEPF operation is tested by an IN macro.

WRITE Y, T, ERROR

This macro enters a write operation in the proper stack table, exactly as described
for READ.

The status of the write operation is tested by an OUT macro.

WEOF Y, T, ERROR

This macro enters a write-end-of-file operation in the stack table of the Dispatching
program. The one-word I/O table at location Y -c(T) symbolically specifies the
tape on which an end-of-file mark is to be written.

The write-end-of-file operation status is checked by an OUT macro.

BACKR Y, T, N, ERROR

This macro causes the tape specified in the I/O table to be backspaced N records,
or until beginning-of-tape is encountered. This operation, because of its inherent
inefficiency, should be used sparingly, if at all. Its status is checked by an OUT
macro.

BACKF Y, T, N, ERROR

This macro enters a backspace-file operation in the stack table. When executed,
the operation backspaces the specified tape N; files. If load point is reached by
fewer than N backspaces, an error is noted for subsequent reporting by an OUT
macro. If load point is reached on the n.ll! backspace, the operation is complete.
If not at load point, the tape is moved forward over the end-of-file mark preceding
the desired file.

The status of a BACKF operation is tested by an OUT macro.

BACKT Y, T,ERROR

This macro causes the tape specified symbolically at location Y -c(T) to be re­
wound.

The status of the operation is tested by an OUT macro.

07.05.03
4 (3/61)

IN Y, T, NI, ERROR, EOF

The execution of this macro determines the status of the earliest READ, STEPR,
or STEPF operation relating to the I/O table at location Y -c(T). If the operation
has been successfully completed, a return is made to the next program step. In
the case of a READ, the contents of the DSC registers for the channel will be placed
in the accumulator upon completion of the operation.

If the operation has not been completed, a "Not In" return is made to location NI
unless NI is zero or blank, in which case the Dispatcher retains control until
the operation is complete. When the "Not In" return is made, the accumulator is
set to indicate the state of the transmission:

1. READ

a. If the operation has not yet been started, the accumulator is set to zero.
b. If the operation is in progress, the contents of the DSC registers involved

in the transmission will appear in the accumulator.

2. STEPR or STEPF

a. If operation has not started, the decrement of the accumulator is set
to zero.

b. If operation is in progress, the decrement of the accumulator contains the
number of files or records already stepped, and the address contains the
number remaining to be stepped.

If the operation was a READ or STEPR which was successful but terminated on an
end-of-file, a return is made to location EOF. The contents of the DSC registers
or the stepping counts as they were when the end of file was encountered will
appear in the accumulator. In the case of these two macros, if EOF is zero or
blank, return is made to ERROR.

If the operation was a STEPF and the specified number of files were successfully
spaced over, the return is to EOF or, if EOF is zero or blank, to the next program
step.

If the operation produced an error, a return is made to location ERROR. The contents
of the DSC registers or the stepping counts as they were at completion of transmission
will appear in the accumulator, and the MQ register will contain error bits in the
following pattern:

07.05.04
4 (3/61)

S

1

2

3

Nature of Error

No READ, STEPR, or STEPF macro has been given for the
specified I/O table.

Operation completed but unsuccessful. This is normally
caused by an unrecoverable redundancy.

Not used

End of file was encountered during operation.

If no error return is specified, return will be made to SYSERR.

The IN macro removes its corresponding entry from the stack table on all returns
except to NI. The object program must execute IN macros in such a way that
each READ, STEPR,or STEPF entry in the stack tables is removed in order to
preclude saturation of the stack tables and resultant 'Too Full" error returns
when subsequent macros are executed.

OUT Y, T, NO, ERROR

The execution of the OUT macro interrogates the status of the earliest WRITE,
WEOF, BACKR, BACKF, or BACKT operation relating to the I/O table at the
specified location. On all except the NO return, the corresponding entry is
removed from the stack table. The program must execute OUT macros in
such a way as to insure that each entry will be removed from the stack tables.

If the operation has been successfully completed, a return is made to the next
program step. The contents of the nsc registers or the backspacing counts as
they were at the end of the transmission will appear in the accumulator.

If the operation has not been completed, a "Not Out" return is made to location
NO; the accumulator will indicate the status of transmission in the same format
as that described for the IN macro. If NO is zero or blank, the Dispatching
program retains control and delays until the operation is complete.

If the operation was completed but produced an error, the return is to ERROR.
The contents of the nsc registers of the stepping counts as they were at completion
of transmission will appear in the accumulator. The MQ will contain the
appropriate error bits as follows;

Bit

S

07.05.05
5 (6/61)

Nature of Error

No WRITE, WEOF, BACKR, BACKF or BACKT macro has
been executed relating to the specified I/O table.

1

2

4

RUSH

Operation completed but unsuccessful. This is normally
caused by an unrecoverable redundancy.

A BACK operation attempted to backspace beyond the beginning
of tape. (The decrement of the accumulator contains the
number of records or files actually spaced.)

End of tape encountered by WRITE or WEOF. If no error
return is specified, return will be made to SYSERR

Y, T,ERROR

The execution of this macro causes priority to be given to the unit specified in the
contents of location Y -c(T); i. e., all previous operations which relate to this
unit are advanced in the stack table of the designated channel so that these operations
will be executed as soon as possible. RUSH does not interrupt a transmission
already in progress, nor does it apply to operations on that channel which are
initiated by macros following the RUSH macro. If more than one RUSH macro is
executed, the order of priority is the order of execution of the RUSH macros.

DISP

The execution of this macro causes the Dispatching program to update the operation
of all channels. The updating function is automatically performed each time any
Transmission macros is executed. However, it may be necessary for
certain types of programs to execute DISP occasionally to avoid undue idle time
on channels.

07.05.06
5 (6/61)

EXPANSIONS OF SHARE MONITOR TRANSMISSION MACROS

(1) READ Y, T, ERROR

CAL *
TXL SYSTMA, , ERROR
PZE Y,T
normal return

(2) STEPR Y, T, N, ERROR

CAL *
TXL SYSTMA+1, ,ERROR
PZE Y,T,N

, normal return

(3) STEPF Y, T, N, ERROR

CAL *
TXL SYSTMA+2, ,ERROR
PZE Y,T,N
normal return

(4) WRITE Y, T,ERROR

CAL *
TXL SYSTMA+3" ERROR
PZE Y,T
normal return

(5) WEOF Y, T, ERROR

CAL *
TXL SYSTMA+4, , ERROR
PZE Y,T
normal return

(6) BACKR Y, T,N, ERROR

CAL *
TXL SYSTMA+5, , ERROR
PZE Y,T,N
normal return

07.05.07
4 (3/61)

(7) BACKF Y, T, N, ERROR

CAL
TXL
PZE
normal return

*
SYSTMA+6, , ERROR
Y,T,N

(8) BACKT Y, T, ERROR

(9) IN

(10) OUT

CAL
TXL
PZE
normal return

*
SYSTMA+7, , ERROR
Y,T

Y, T, NI, ERROR, EOF

CAL
TXL
PZE
PZE
normal return

*
SYSTMA+8" ERROR
Y,T,NI
EOF

Y, T, NO, ERROR

CAL
TXL
PZE

*
SYSTMA+9" ERROR
Y,T,NO

normal return

(11) RUSH Y, T, ERROR

(12) DISP

07.05.08
4 (3/61)

CAL
TXL
PZE
normal return

CAL
TXL
normal return

*
SYSTMA+I0, , ERROR
Y,T

*
SYSTMA+ll,O

INPUT/OUTPUT SYSTEM

CHAPTER 6: SHARE MONITOR BUFFERING ROUTINES

The Buffering routines provide a simplified means of reading, or writing,
mediary tapes. These routines offer a programmer the advantages of buffered
input/output without his having to be concerned with either timing considerations
or the relation between buffer lengths and actual physical record sizes.

The reading and writing routines are controlled by special system flags which
partition the data. Hence, only tapes produced by the Buffering routines can
be read by the Buffering routines. Blocks of words can be formed into a logical
record or a logical group. Termination of a block, or blocks, is controlled
entirely by the programmer although normally a logical group will be composed
of several logical records.

Core storage must be provided for the use by the Buffering routines. This storage
will be divided into 256-word buffers. At no time will more than one buffer be
attached to any I/O unit unless otherwise specified. (See Dispatching routines.)

Reading and writing of a given tape cannot be interspersed in a job without inter­
vening rewinding of the tape. Provision has been made for backspacing a logical
record only. Note that the logical properties of a tape written by the Buffering
routines have no relation to the physical properties of that tape.

07.06.01
4 (3/61)

GENERAL PURPOSE ROUTINES

The following Buffering routines will perform all functions required for normal
operation.

Routine

Add Buffer

Write Logical Records

Read Logical Records

Backspace Logical Record

Rewind Tape

07.06.03
4 (3/61)

Name Page

SYSBFD 07.06.04

SYSNPT 07.06.05

SYSRTK 07.06.06

SYSBKS 07.06.08

SYSRWD 07.06.09

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTES:

07.06.04
4 (3/61)

ADD BUFFER: SYSBFD

Prior to the use of the Buffering routines, the programmer
must assign blocks of core for use as buffer areas. Each
block will be divided into 256-word buffers. At least one
buffer should be available for each tape used. Non­
contiguous blocks may be furnished by multiple entries
to SYSBFD.

TSX SYSBFD,4
PZE Y"N
error return
return

where Y is the location of the first word in the block
N is the number of words available in the block

The error return will be made if the block specified is
less than 256 words.

TITLE:

PURPOSE:

CALLING SEQUENCE:

EXAMPLE:

07.06.05
4 (3/61)

WRITE LOGICAL RECORDS: SYSNPT

This routine is used to write logical sets of information
on the specified tape.

TSX
PZE

return

N flags

where TAPE is the symbolic tape name
N is the number of flags which follow

TSX SYSNPT,4
PZE SYSBU3,,7 WRITE THE NEXT 7 FLAGS AND THE

DATA SPECIFIED ON TAPE SYSBU3
IOCP A,,10 10 WORDS BEGINNING WITH LOCATION A
TCH - SYSLER END OF FmST LOGICAL RECORD
IOCP B, ,5 5 WORDS BEGINNING WITH LOCATION B
IOCP C, ,8 8 WORDS BEGINNING WITH LOCATION C
TCH SYSLER END OF SECOND LOGICAL RECORD
TCH SYSPEF"O END OF THIS LOGICAL GROUP
TCH SYSPEF,,1 END OF DATA ON THIS TAPE

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTES:

07.06.06
4 (3/61)

READ LOGICAL RECORDS: SYSRTK

This routine reads logical sets of information from a tape.
Data will be read until terminated by a Logical Record,
Logical Group, or Logical End flag. A return corresponding
to the terminating flag will be made.

TSX
OP

SYSRTK,4
TAPE" Y

error return
logical end return
logical group return
logical record return

where OP

OP

is PZE to place data in storage, starting at Y

is MZE to place data in storage at the block
flag address relative to Y, i. e., Y plus the
address specified in the block flag when it
was originally written on tape

TAPE is the symbolic tape name ..

If the logical end return is made, further attempts to read
this tape will result in the same return.

The error return is used only with the Input Editor and
signifies that the data now in storage was improperly
converted by this editor.

Upon exit from SYSRTK the address field of the accumulator
will contain Y plus the number of words in the logical
record just read. This address can be used to preset
the decrement of the parameter for the next entry to
SYSRTK.

EXAMPLE:

07.06.07
4 (3/61)

The following could be used to read the tape written by
the SYSNPT example shown previously.

START TSX SYSRTK,4 READ LOGICAL RECORD
PZE SYSBU3" Y INTO Y FROM SYSBU3
TSX SYSERR,4 IMPROPER RETURN
TRA END END RETURN
TRA EOG GROUP RETURN

REC RECORD RETURN-PROCESS
LOGICAL RECORD IN Y

} FmST LOGICAL RECORD
WILL GO INTO Y TO Y+9.

SECOND RECORD WILL GO
INTO Y TO Y+12.

TRA START GO TO READ NEXT RECORD
EOG } PROCESS LOGICAL END

OF GROUP
END } PROCESS LOGICAL END

Y BSS 20

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTE:

07.06.08
4 (3/61)

BACKSPACE LOGICAL RECORD: SYSBKS

This routine backspaces to the previous logical end of
record.

TSX
OP

SYSBKS,4
TAPE

error return
return

where OP is PZE for an input tape
OP is MZE for an output tape
TAPE is the symbolic tape name.

The error return is made if the beginning of tape is
encountered.

The use of backspace does not allow both reading and
writing of the same tape.

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTE:

07.06.09
4 (3/61)

REWIND TAPE: SYSRWD

This routine rewinds a tape written, or read, in a buffered
format. It must be used if a buffered tape is to be rewound
as it causes the proper termination of processing.

TSX
PZE
return

SYSRWD,4
TAPE

where TAPE is the symbolic tape name.

Tapes being written must be rewound before being read,
and vice versa.

BUFFERING ROUTINE FLAGS

A. General Purpose Flags

The following are the commonly used flags which will furnish all the control
necessary for normal jobs.

1. Block Flag

IOCP Y"N

where Y is the first location of N consecutive words to be written on tape.

Any number of Block flags may be used to form the contents of a single
logical section. The Block flag is written on tape immediately followed by
the information referred to.

2. Logical End of Record Flag

TCH SYSLER

This flag is written on tape in indicate the end of a logical record. A logical
record consists of one or more Block flags together with the data to which
the flags refer.

3. Logical End of Group Flag

TCH SYSPEF, , 0

This flag is normally used to separate groups of logical records.

4. Logical End Flag

TCH SYSPEF, , 1

An end-of-file mark is written on the tape followed by the Logical End flag.
It is not possible to read past the Logical End flag.

B. Special Purpose Flags

The following flags are not necessary for normal use of the buffering routines
but may be used for special purposes.

1. Nominal Origin Flag

IOCPN Z

07.06.10
4 (3/61)

where Z is an address specified by the program.

Buffer read routines may be made to read data into locations dependent
on addresses specified in block flags written on the tape. (See the MZE
parameter in SYSRTK.) The Nominal Origin flag causes the write routines
to process Block flags in a special way. The origin for output data specified
in the Block flags which follow a Nominal Origin flag, is used only to
designate the initial locations for writing the data on tape. The flags
themselves are altered prior to being written on tape. The address field
of the first Block flag following the Nominal Origin flag is replaced by the
address contained in the Nominal Origin flag. The addresses of subsequent
Block flags are replaced by the address specified in the Nominal Origin
flag plus the word counts of the preceding Block flags. Any flag other than
a Block flag terminates this method of output processing. The Nominal
Origin flag is never written on tape. The use of this flag furnishes a
means of relative addressing.

Example;

The logical record specified in a SYSNPT calling sequence by:

IOCPN
IOCP
IOCP
TCH

would appear on tape as:

IOCP

IOCP

TCH

Z
D,,4
E, , 11
SYSLER

Z .. 4 }

Z+4,,11

SYSLER}

4 words from location D

11 words from location E

If this record were read by SYSRTK using the MZE parameter (i. e. ,
MZE TAPE, ,Y) then 15 words would be read into location Y+Z.

2. Immovable Block flag

IOSP Y" N

where Y is the location of N words to be written on tape.

This flag is like the Block flag except that when being read by SYSRTK, the
data is put back into the locations beginning at Y no matter what mode of
input control is being used by SYSRTK.

07.06.11
4 (3/61)

3. Symbol flag

IOSPN Y" N

where Y is the location of N words to be written on tape.

This flag is normally used for record or tape labeling. The SYSRTK
routine will simply pass over this flag and its data, and will interpret the
next flag. The reading routine SYSWTK, permits the analysis of this
flag and its data.

4. Sequence flag

IOSPN N" 0

where N is the sequence number assigned by the program, and is part of
the flag itself.

This flag may be used for tape or record numbering.

SYSRTK will simply pass over the Sequence flag, and will interpret the
next flag. The reading routine SYSRTK, permits analysis of the flag.

07.06.12
4 (3/61)

SPECIAL PURPOSE ROUTINES

The following routines may be used for special purposes:

Routine

Read Word

Write a Block Flag

Write a Data Word

Write a Terminating or Non-data Flag

07.06.13
4 (3/61)

Name

SYSWTK

SYSBLK

SYSINF

SYSWHT

Page

07.06.14

07.06.17

07.06.18

07.06.19

TITLE:

PURPOSE:

CALLING SEQUENCE:

07.06.14
4 (3/61)

READ WORD: SYSWTK

This routine is used when it is necessary to process each
word or flag separately. It is the only reading routine
which allows interpretation of symbol or sequence flags.

One of three returns informs a program that the routine
is positioned at the beginning of a block of data; or that
a word of data has been transmitted to the register
specified; or that a terminating flag has been found.

TSX
OP

SYSWTK,4
TAPE, TAG

PZE A, ,B
data return

where OP is CLA, CAL, LDQ, or LDI specifying the
register into which a word of data is to be
placed.

TAPE is the symbolic tape name

TAG is the index register which is available for
us by this buffering routine. The index
register must not be altered by the program
until a terminating flag has been read.

A is the return to be made when a Block,
Symbol, Sequence, or Immovable Block flag
is encountered. The flag will be in the
logical accumulator regardless of the
specified data register. For this type of
flag, the SYSWTK calling sequence is replaced
before the A return is made. The next
entry to SYSWTK should normally be to the
former location of the PZE parameter to
pick up the first word of data. The first
data return will then be made with the fir st
data word in the specified register. The
remaining data words are picked up by entries
to the former location of the TSX SYSWTK, 4
instruction. The calling sequence is
automatically restored when all the words in
the block have been read.

EXAMPLE:

Location

WORD
SEQ
NUM

*

DAT

07.06.15
4 (3/61)

If the word count is zero, as will always be
the case with a Sequence flag, and may be the
case with blindly formed Block flags, the first
entry to SYSWTK following the A return must
be to the former location of the OP parameter
rather than the PZE parameter. SYSWTK
will then make either the A or B return
depending on what flag follows the one just
read.

B is the return made when a Logical Record,
Logical Group, or Logical End flag is en­
countered. The flag will be in the logical
accumulator regardless of the specified
data register. The next flag will be obtained
if the program returns to the location of
the TSX SYSWTK, 4.

The data return permits the program to process the word
of data which has just been loaded into the specified data
register. The next word or flag will be obtained if the
program loops back to the location of the TSX SYSWTK, 4.

Operation

TSX
CLA
PZE

TRA

TRA

Address

SYSWTK, 4
SYSBU3, 2
DAT,NODAT

}
WORD

NUM

Comments

PROCESS DATA FOLLOWING
BLOCK OR SYMBOL FLAG

GO TO PICK UP NEXT DATA WORD

PROCESS BLOCK SEQUENCE
OR SYMBOL FLAG

GO TO GET FmST DATA WORD

*

NODAT

*
*
*

07.06.16
4 (3/61)

TRA

T.RA

SEQ

WORD

SEQUENCE FLAG OR BLOCK
FLAG WITH ZERO COUNT

PROCESS LOGICAL END OF
RECORD. LOGICAL END OF
GROUP, LOGICAL END OR
SEQUENCE FLAGS

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTE:

07.06.17
4 (3/61)

WRITE A BLOCK FLAG: SYSBLK

This routine and the two which follow, SYSINF and SYSWHT,
are used to write flags and data one word at a time. These
routines are used principally in programs where non­
contiguous data must be processed and written as a single
logical section.

SYSBLK writes a single flag and initializes the routine
SYSINF, which writes a word of data. SYSBLK must be
used to write a Block, Immovable Block, Nominal Origin,
or Symbol flag.

TSX
OP

where OP

SYSBLK,4
TAPE, T

is STO t SLW, STQ or STI specifying the
register in which a word of data will be
placed by the obj ect program.

TAPE is the symbolic tape name

T is the index register which is available
to the routine SYSINF, which places the
data in the buffer. The index register must
not be altered until the word count in the flag
being written by SYSBLK has been reduced
to zero by the appropriate number of entries
to SYSINF

Upon entry to the routine, the flag to be written must be
in the logical accumulator.

If the Block, Immovable Block, or Symbol flag has a word
count of zero, the SYSWHT routine should be used to
output this flag.

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTES:

07.06.18
4 (3/61)

WRITE A DATA WORD: SYSINF

This routine writes a word as a part of the block of data
specified in the flag which was written by the SYSBLK
routine. SYSINF closes out the internal processing
initialized by SYSBLK when the number of words which
have been stored is equal to the word count in the flag
written by SYSBLK.

TSX SYSINF,4

On entry, a word of data must be in the register specified
in the OP parameter of the SYSBLK routine. The index
register specified by SYSBLK will be initially 0 and will
be decremented by 1 until the negative of the word count
is reached.

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTES:

EXAMPLE:

WRITE A TERMINATING OR NON-DATA FLAG: SYSWHT

This routine writes a Logical End of Record, Logical End
of Group, Logical End, or Sequence flag.

TSX
PZE

SYSWHT,4
TAPE

where TAPE is the symbolic tape name

Upon entry to the routine the terminating flag must be
in the logical accumulator. If the terminating flag is a
Logical End flag, the contents of the buffer are written
on tape, followed by an end-of-file mark and the Logical
End flag. In reading, it is not possible to read past a
Logical End flag.

To output a tape of the following form with the data words converted!

IOCP J,,10
TCH SYSLER
IOCP K,,5
IOCP L,,8
TCH SYSLER
TCH SYSPEF"O
TCH SYSPEF"l

Location Operation

START AXT
SXA
AXT
SXD
CAL
TSX
CAL
TSX
AXT
SXA
AXT
SXD
CAL
TSX

07.06.19
4 (3/61)

Address

J,4
RA,4
10,4
RA,4
RA
C,4
SA
D,4
K,4
RA,4
5,4
RA,4
RA
C,4

Comments

PRESET TO OUTPUT BLOCK J, , 10

GO TO OUTPUT BLOCK J, , 10
OUTPUT LOGICAL RECORD

PRESET TO OUTPUT BLOCK K, , 5

GO TO OUTPUT BLOCK K, , 5

REST

C

A

B

D

RA
SA
TA
VA

()7. 06. 20
4 (3/61)

AXT
SXA
AXT
SXD
CAL
TSX
CAL
TSX
CAL
TSX
CAL
TSX

BEGIN
STA
STD
TSX
STQ
LDQ
CAQ
TSX
TXH
RETURN

BEGIN
TSX
PZE
RETURN

IOCP
TCH
TCH
TCH

L,4
RA,4
8,4
RA,4
RA
C,4
SA
D,4
TA
D,4
VA
D,4

}
1,5
A
B
SYSBLK,4
SYSAR2, 1
**,1
X
SYSINF,4
A, 1, **
C

1,4
SYSWHT,4
SYSAR2
D

** ** , ,
SYSLER
SYSPEF"O
SYSPEF"l

PRESET TO OUTPUT BLOCK L, ,""

GO TO OUTPUT BLOCK L, , 8
LOGICAL RECORD
GO TO OUTPUT LOGICAL RECORD
LOGICAL GROUP
GO TO OUTPUT LOGICAL GROUP
LOGICAL END
GO TO OUTPUT LOGICAL END

REMAINDER OF PROGRAM

CONVERT DATA

BLOCK
LOGICAL RECORD
LOGICAL GROUP
LOGICAL END

DISPATCHING ROUTINES

The group of routines described below are Buffer Dispatching routines. They
permit a program to exert some control over the functioning of the read or
write Buffering routines.

A writing routine functions at maximum efficiency if two buffers are provided,
one to be written on the tape as the other is filled from core storage. The
program should request that the Dispatcher attach two buffers to an output tape.
A number in excess of two will be ignored.

Reading may be made to keep any number of buffer s ahead. Time may always be
saved by having two buffers, rather than one, attached to an input tape .. If logical
sections are known to be longer than the buffer size, then it is to the programmer's
advantage to supply space for more than two buffers and to use the dispatching
routines to keep at least one logical section immediately available t(!)'t}re object
program. That is, the program should request that as many buffers be attached
as will accommodate two logical sections.

The Dispatching routines are:

Routine

Dispatching Initiation

Normal Dispatching

Dispatcher Suppression

07.06.21
4 (3/61)

Name

SYSDPI

SYSDIS

SYSDPS

Page

07.06.22

07.06. 23

07.06.24

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTES:

07.06.22
4 (3/61)

DISPATCHING INITIATION: SYSDPI

This routine gives the Dispatcher the location of the
programmer dispatching lists.

TSX
PFX
return

SYSDPI,4
L, ,N

where PFX = PZE to add to dispatching list
= MZE to delete a dispatching list

L is the location of a list
N is the number of entries in the list not

including the terminating word of zero.

The dispatching list is of the form

L PFX

L+N-1PFX
L+N PZE

TAPE" M

TAPE, ,MN

where PFX = PZE for an input unit
= MZE for an output unit

TAPE is the symbolic tape name for which
dispatching is to be performed.

M is the number of buffers to keep ahead.

A terminal word of zeros is always required.

More than one dispatching list may be provided or deleted
by multiple entries to SYSDPI. Dispatching will be in the
same sequence as the order in the lists furnished.

TITLE:

PURPOSE:

CALLING SEQUENCE:

07.06.23
4 (3/61)

NORMAL DISPATCHING: SYSDIS

Dispatching will occur whenever entry is made to a
Buffering I/O routine. The Dispatcher scans the dispatching
lists made available to it, initiates I/O operations and
attaches buffers, if possible to I/O units based on the
number requested in the dispatching lists. If insufficient
buffers are available to meet dispatcher list requirements
as many as available will be attached with preference
given to those at the top of the lists.

In situations where large amounts of computation are
accomplished without I/O, some increase in speed may
be obtained by occasional entries to the Dispatcher to
initiate I/O on quiet channels.

TSX
return

SYSDIS,4

TITLE:

PURPOSE:

CALLING SEQUENCE:

07.06.24
4 (3/61)

DISPATCHER SUPPRESSION: SYSDPS

To prevent further dispatching on a particular I/O unit.
This routine will zero the buffer count on all dispatcher
list entries referring to the specified I/O unit. This
essentially releases those buffers for use on other I/O
units.

TSX
PZE

SYSDPS,4
TAPE

where TAPE is the symbolic name of the I/O unit.

INPUT/OUTPUT SYSTEM

CHAPTER 7: m MONITOR TRANSMISSION MACROS

The IB Monitor Transmission macros provide a language by which the programmer
can conveniently use the parallel operations of input, output, and computing.
Transmission requests are stacked in tables corresponding to the channel
specified. These requests are subsequently carried out by the Transmission
macro routines. The status of a given transmission can be tested at any point
in the program. The checking of all input/output indicators is handled automatically.

There are twelve IB Monitor Transmission macros which generate calling sequences
for the Transmission macro routines.

Each element in the variable field of a Transmission macro can be a symbolic
expression. Each refers to a core address except T (which is a tag for the
address Y) and N (which is a count for backspacing).

The READ and WRITE macros specify transmission according to an I/O Table
located at the effective address Y-c(T). The first word of the table specifies the
mode (binary or BCD), channel, and unit in absolute. The first word is followed
by the I/o control words to be executed for the transmission.

Example:

A710 OCT
10CP
10CD

1227
CKSUM"l
DATA, ,100

This sequence specifies that tape 7, channel A, is to be read or
written in the binary mode according to the two control words in
A710+1, and A710+2.

The fir st word could also be written as:

A710

A710

PZE
or

DEC

663

663

IN and OUT are used to test the status of the transmission specified for the I/O
table at location Y -c(T). RUSH establishes a priority for all previous transmission
macros for the unit specified by the word in location Y-c(T). BACK, REWIND,
and WRITEF will backspace, reVtCind, and write end-of-file in the unit specified
in location Y -c(T).

07.07.01
4 (3/61)

Whenever a READ, WRITE, WRITEF, BACK, or REWIND macro is executed,
the corresponding operation may not be started immediately if the channel is
performing a previous operation. In this case, the operation is automatically
placed in the "stack table" and computation proceeds.

The stack table is an ordered list of operations for each channel which is kept
and automatically updated by the Transmission routines. Entries are made in
this table whenever a READ, WRITE, WRITEF, BACK, or REWIND is executed.
IN and OUT interrogate the stack table as to the status of READ and WRITE
operations, respectively. They determine whether the operations have been
completed or not, and whether check indicators have been turned on.

In order to minimize idle time for a channel, it may be necessary to execute the
macro DISP periodically during problem computation. This macro simply
transfers to the Transmission routines and begins the next operation in the stack
table for an idle channel. Dispatching also occurs automatically whenever any
Transmission macro is executed.

OPERATION OF THE TRANSMISSION ROUTINES

Two cells in the m Monitor communication region are used by the Transmission
routines. These are:

SYSTM1 = (61)8 = (49)10

SYSTM2 = (62)8 = (50)10

The Transmission routines do not depend on any fixed location assignment for
SYSTM1 and SYSTM2.

The m Monitor automatically reads the Transmission routines from the System
tape at the first attempt by an object program to execute a Transmission macro.
The Transmission routines require approximately 700 locations.

At object time, core storage is allocated as follows:

(0-2999) 0
(3000-89~9)10
(9000-10499) 10
(10500-14499)10
(14500-15200)10

m Monitor and Debugging System
INTRAN
Data Sentence Program
OUTRAN
Transmission routines

The last 256 words of memory will be used as a buffer by the Debugging System
if the TAPE macro is executed without previously executing the BUFFER macro.

07.07.02
4 (3/61)

When the monitor reads in the Transmission routines from the system tape, it
initializes routines via the calling sequence

TSX **,4
PZE SYSTM1, 0, SYSTM2
return

where ** is obtained from the TCD card of the Transmission routines. The
routines then initialize themselves to the value of SYSTM1 and place a transfer
to the routines into SYSTM2. Control is then returned to the monitor.

When an object program causes loading of the Transmission routines, by execution
of a Transmission macro, and later reads over the storage for the routines
(14500-15200)10' the object program must reload the routines by

TSX
return

where SYSTM3 = (63)8 = (51)10.

SYSTM3, 4

The monitor will reload and initialize the Transmission routines.

The Transmission routines provide for 10 entries in each channel stack table.

TRANSMISSION MACROS

A. READ Y, T, ERROR

This macro causes a Read transmission to begin according to the mode, unit,
and control words specified in the I/O table at the effective address Y-c(T).
If the channel is active, or if other previously specified operations are waiting
for the channel, this Read is stacked for subsequent execution.

If the Read is either executed or stacked, a return is made to the next program
step without delay. If the Read is to be stacked and there is insufficient room
in the stack table, the return is to ERROR and the entry is not stacked. An
ERROR address of zero will cause a transfer to location SYSTEM when the
stack table is full.

B. WRITE Y, T, ERROR

This macro causes a Write transmission to begin according to the mode, unit,
and control words specified in the I/O table at the effective address Y-c(T). If
the channel is active, or if other previously specified operations are waiting
for the channel, the Write is stacked for subsequent execution.

07.07.03
4 (3/61)

If the Write is either executed or stacked, a return is made to the next program
step without delay. If the Write is to be stacked and there is insufficient room
in the stack table, the return is to ERROR and the entry is not stacked. An
ERROR address of zero will cause a transfer to location SYSTEM when the
stack table is full.

C. WRITEF Y, T, ERROR

This macro will cause an end-of-file to be written on the tape unit specified
by the word in location Y-c(T). If the channel is active or if other previously
specified operations are waiting for the channel, the WRITEF is stacked for
subsequent execution.

If the WRITEF is either executed or stacked, a return is made to the next
program step without delay. If the WRITEF is to be stacked and there is
insufficient room in the stack table, the return is to ERROR and the entry
is not stacked. An ERROR address of zero will cause a transfer to location
SYSTEM when the stack table is full. WRITEF is interrogated by OUT in the
same way as WRITE.

D. REWIND Y, T, ERROR

This macro will cause the unit specified in the word in location Y -c(T) to be
rewound. If the channel is active, or if other operations are waiting for the
channel, the REWIND is stacked for subsequent execution.

If the REWIND is either executed or stacked, a return is made to the next
program step without delay. If the REWIND is to be stacked and there is
insufficient room in the stack table, the return is to ERROR and the entry is
not stacked. An ERROR address of zero will cause a transfer to location
SYSTEM when the stack table is full.

REWIND should not be interrogated. Its entry is removed from the stack table
as soon as the operation is completed on the channel.

E. BACK Y, T, N, ERROR

This macro will cause the tape unit specified in the word in location Y -c(T)
to be backspaced N records. An end-of-file gap will be considered as a
record. If N is zero, a backspace file will be executed. If the channel is
active, or if other previously specified operations are waiting for the channel,
the BACK is stacked for subsequent execution.

07.07.04
4 (3/61)

If the BACK is either executed or stacked, a return is made to the next program
step without delay. If the BACK is to be stacked, and there is insufficient room
in the stack table, then the return is to the ERROR address and the entry is
not stacked. An ERROR return of zero will cause a transfer to location
SYSTEM when the stack table is full.

BACK should be interrogated by the OUT macro to determine a beginning of
tape error condition.

F. RUSH Y,T,ERROR

This macro will cause the unit specified by the word in location Y-c(T) to be
given channel priority. Hence, all Transmission macros relating to a specific
unit are placed (in their relative positions to each other) ahead of the macros
referring to other units on the same channel.

RUSH will not interrupt a transmission already on the channel. If more than
one RUSH macro is executed, the order of priority is the order of execution
of the RUSH macros. A RUSH macro establishes priority between units
rather than between macros for the same units.

After the execution of this macro, a return is made to the next program step.
If there are no transmissions in the stack table relating to the specified unit,
a return to ERROR is made. (Card punch and printer operations will be
handled together; all other units are handled separately.)

G. IN Y, T, NI, ERROR, EOF

The status of the stack table of the READ operation relating to the I/O table
at location Y -c(T) is interrogated. The Dispatcher searches the appropriate
channel table for the first READ with the same Y, T entry and tests its status.
If Y and T are zero, the Dispatcher will search for the last READ in any
channel stack table and test its status.

If reading has been completed, and no check indicators have been turned on,
a return is made to the next program step. When the return is made, the
accumulator will contain the results of a Store Channel instruction executed
at the end of the transmission.

If the reading has not been completed, a "Not In" return is made to location NI,
and the accumulator will be set to indicate the status of transmission. The
accumulator is set to zero if the macro has not been started. If the macro
is in progress, the accumulator will contain the results of a Store Channel
instruction executed at this time.

07.07.05
4 (3/61)

If the reading has not been completed, but an end of file was encountered, a
return is made to location EOF. The accumulator will contain the results
of a Store Channel instruction executed at this time.

If the operation has been completed but an error has been detected, a return
is made to location ERROR. The accumulator will contain the results of a
Store Channel instruction executed at the end of the transmission. The MQ
will contain error indicator bits as follows:

Bits Contents

S 1

1 1

2 1

3 1

Meaning

No READ macro has been given for
the I/O table at location Y -c(T). No
reading has taken place. A previous
IN may have removed the macro the
programmer is searching for.

Reading was completed, but a
redundancy check occurred.

Reading was completed, but the
beginning-of-tape indicator was on
at the start of transmission.

The end-of-file indicator was turned
on by the operation. Note that the
end-of-file return to location EOF
is made only if no error condition
was encountered.

The IN macro removes its corresponding READ entry from the stack table on
all returns except the NI return.

H.OUT Y, T, NO, ERROR, ETT

This macro permits the testing of the macros WRITE, WRITEF, and BACK
relating to the I/O table at location Y -c(T). The Dispatcher searches the
appropriate channel table for the first WRITE with the same Y, T entry and
determines its status. If Y and T are zero, the Dispatcher searches for the
last WRITE and tests its status.

If writing has been completed and no check indicators have been turned on, a
return is made to the next program step •. The accumulator will contain the
results of a Store Channel instruction executed at the end of the transmission.

07.07.06
4 (3/61)

If the writing has not been completed, a "Not Out" return is made to location
NO and the accumulator is set to indicate the status of transmission. The
accumulator is set to zero if the macro has not been started. If the macro is in
progress, the accumulator contains the results of a Store Channel executed at
this time.

If the writing has been completed, but end- of-tape was encountered, a return
is made to location ETT. The accumulator will contain the results of a Store
Channel executed at the end of the transmission.

If the operation has been completed but an error has been detected, a return
is made to the location ERROR. The accumulator will contain the results of
a Store Channel instruction executed at the end of the transmission. The MQ
will contain error indicator bits as follows:

Bits Contents

S 1

1 1

2 1

3 1

Meaning

No WRITE macro has been given for
the I/O table at location Y -c(T). No
writing has taken place. A previous
OUT may have removed the macro
the programmer is searching for.

Writing completed but wi th a redundancy
check.

The Beginning-of-Tape indicator was
on when writing was started. Note
that when backspacing, it is possible
for records or long files to turn on
the indicator after it has been checked.
The indicator must then be checked
by the obj ect program.

Writing has been executed and has
turned on the End-of-Tape indicator.

The OUT macro removes the corresponding WRITE from the stack table except
upon the NO return.

I.~

This macro will cause a transfer to the Transmission routines which will initiate
the next operation in the stack table for any idle channel. A return is made to
the next program step.

07.07.07
4 (3/61)

Though this operation is performed automatically for all channels each time
a Transmission macro is executed, it may be necessary in certain programs
to execute DISP periodically to prevent excess idle time on channels.

J. CLEAR

This macro is used to initialize the stack tables. It will remove all entries
from all tables regardless of status. Return is always made to the next
program step.

K.CUT

This macro removes from the tables all entries that have not been completed,
those that have not been initiated, and those in the process of execution.
Return is always made to the next program step.

L. CSKIP

This macro removes from the tables all entries that have been executed.
Return is always made to the next program step.

07.07.08
4 (3/61)

EXPANSIONS OF THE m MONITOR TRANSMISSION MACROS

The twelve Transmission macros have the following expansions:

(1) READ

STL
TXL
PZE

(2) WRITE

STL
TXL
PZE

(3) WRITEF

STL
TXL
PZE

(4) REWIND

STL
TXL
PZE

(5) RUSH

STL
TXL
PZE

(6) IN

STL
TXL
PZE
PZE

07.07.09
4 (3/61)

Y, T,ERROR

SYSTMI
SYSTM2, 0, 1
Y, T, ERROR

Y, T, ERROR

SYSTMI
SYSTM2, 0, 8
Y, T, ERROR

Y, T, ERROR

SYSTMI
SYSTM2, 0,9
Y, T,ERROR

Y, T,ERROR

SYSTMI
SYSTM2, 0, 12
Y,T, ERROR

Y, T,ERROR

SYSTMI
SYSTM2, 0,5
Y, T, ERROR

Y, T, NI, ERROR, EOF

SYSTMI
SYSTM2, 0,6
Y,T,NI
ERROR, 0, EOF

(7) OUT Y,T,NO,ERROR,ETT

STL SYSTM1
TXL SYSTM2, 0, 7
PZE Y, T,NO
PZE ERROR, 0, ETT

(8) BACK Y, T, N, ERROR

STL SYSTM1
TXL SYSTM2, 0, 10
PZE Y,T,N
PZE ERROR

(9) DISP

STL SYSTM1
TXL SYSTM2, 0,11

(10) CUT

STL SYSTM1
TXL SYSTM2, 0,3

(11) CSKIP

STL SYSTM1
TXL SYSTM2, 0,4

(12) CLEAR

STL SYSTM1
TXL SYSTM2, 0, 2

Notes:

(1) SYSTM1 = (49)10

SYSTM2 = (50)10

(2) Omission of any part of a vari~ble field is a possible error.

07.07.10
4 (3/61)

INPUT/OUTPUT SYSTEM

CHAPTER 8: DATA SENTENCES

The data sentence facilities, which may only be used with the IB Monitor, provide
a means of entering data, which requires conversion, without using storage
space for the input/output system during execution. This permits an obj ect
program to use all available storage except that required by the monitor.

Data sentences consist of a decimal address followed by an equal sign (=) which
in turn is followed by data items to be loaded. Data items in a data sentence
are separated by commas. All data sentences except the last in a set are terminated
by an *. The last data sentence in a set, or "data sentence block, " is terminated
by the symbol, $. Following the $ which terminates a data sentence block there
may be a decimal address. This address is used as indicated below.

Data items in a sentence may be decimal (integers, fixed point, and floating
point) or octal. Decimal data is the normal case, and these items are written
in the usual way for SOS, e. g., 32. 1E5, -52, 69. 7B12. Octal data on the other
hand must be enclosed in parentheses which are preceded by the character "0".
For example, 0(56), 0(-777,432601).

The following is an example of a data sentence block consisting of three data
sentences.

5680 = 63, 45, 4E12, 52. 8B22, 0(-1), -50*
7456 = 25, -25, 10,0(-7, 74)*
6584 = 100, 25, 50$2000

Data Sentence Processing

When the IB Monitor encounters a DS1 card, control is passed to the Data Sentence
Program. This program reads the data sentence block following the DS1 card
and using the Input system converts the data as indicated. The converted data
is then written on tape B1 following the object program as a separate file. Control
is then returned to the Monitor. If additional DS1 cards and data sentence blocks
are encountered, the data is converted, and each block written as a separate file
on tape Bl.

In order to use a data sentence block during the execution of an object program,
the following calling sequence must be used to read the required block.

07.08.01
4 (3/61)

TSX 82,4
PZE At ,B
Error return

where A is the number of the desired data sentence file, if A # O. If
A = 0, the next file in the sequence is the desired block.

B is the location to which the monitor returns after reading the block,
if B .,. o. If B = 0, the return to be used is that specified after the
$ which terminates the block.

A and B can be either symbolic or absolute.

Punching Data Sentences

Data sentences are punched as follows:

1. Card columns 1-72 only may be used.

2. A data sentence may occupy more than one card, and more than one sentence
may appear in a card.

3. A data sentence may start in any card column.

4. Data sentences must be punched continuously from the first character in
a card to the last in the card.

5. If a data sentence is contained in more than one card, the last character
on a card must be a comma.

6. A blank column subsequent to the first character in a card will cause the
remainder of the card to be ignored.

Error Conditions

During conversion of data items, two types of errors are detected.

1. Overflow/Underflow.

2. Illegal characters.

Both of the conditions cause a normal zero to be stored, and an error message
to be printed. Processing is then continued with the next data item. When the
block has been completed, the error return address of the calling sequence is
used for the return.

07.08.02
4 (3/61)

Example:

The data sentence

8964 = 14, 16.3E3, 14. 6B23, 0(4777, -1)$

causes the following items to be stored in the locations indicated.

Location Contents (Octal)

8964 16
8965 216775300000
8966 164631
8967 4777
8968 -1

The manner in which data sentence cards are used is described on page 08. 03. 02.

07.08.03
4 (3/61)

IB MONITOR

CHAPTER 1: INPUT

The input to the IB Monitor consists of one or more job decks. These decks
consist of a program (which may be either symbolic, SQUOZE, or a combination
of the two) together with control cards which indicate the processing desired
for the program. The types of processing which may be selected by control
cards are:

A. Compilation. The input for a compilation is a symbolic program which may
or may not include SQUOZE decks from previous compilations. The output
from a compilation will be a SQUOZE deck, and a listing as described in
Section 04.

B. List. The input when a listing is desired depends upon the manner in which
a listing is specified (see Chapter 3 for details).

C. Punch a new SQUOZE deck. A new SQUOZE deck may be prepared from a
SQUOZE deck which includes modifications. When a new SQUOZE deck is
punched, a listing is also prepared.

D. Punch Absolute Deck. An option is available by which an absolute binary
deck may be prepared from a SQUOZE deck. It is not, however, advisable
to exercise this option until a program is completely tested and corrected,
since the debugging features of SOS are not available with absolute binary
decks.

E. Execution. The input for an execution job is a SQUO ZE deck which mayor
may not include symbolic modifications. Sets of data sentences (see Chapter 8,
Section 7) may also be included.

The control cards used for each of the above job types are discussed in Chapter
2, and the arrangement of job decks are given in Chapter 3.

08.01. 01
5 (6/61)

IB MONITOR

CHAPTER 2: CONTROL CARDS

The IB Monitor uses fifteen control cards which indicate the processing required
of the program, the beginning and end of a job deck, the date of processing, the
format of the input, and the output desired. The effects of all the control cards
are described below. In addition the Compiler pseudo-operation, SQZ, is
described since it can be treated as control cards, and because it is mentioned
in connection with deck arrangement. The manner in which they are used is
discussed in Chapter 3.

It should be noted that information punched in all control cards except MOD will
be listed by the system.

JOB

JOB
I I

SYMBOL OPERATION: ADDRESS, TAG, DECREMENT rCOUNT ~ REMARKS LABEL

II I

1000000100000000:00000000000000000000000000000000000 000000000000000000000000000000 1/1

I 2 3 • ~ '11\. , 10 II 12 IJ .. 1~116 11 18 19 20 21 22 2J ~ 21 26 21 28 19 30 31 31 J3 3' 31 J6 3' 31 39434' .: 43 44 .1 .6 41 .. 49 :.0 II ~2 13 I' I~ '06 ~~ \4 " 60 01 62 6J 6. 61 66 61 61 69 1911 12 ;3 14 1~ 16 1) 18 1'10 :r
t 11111111111111111 I II I I I I I I I I I I I 111 I 1111 II 111 111 1 1 Iii 1 1 I 1 I 11 , Iii' 1111 11 11 11111111 ~

, ' , ,.,
I I I

1222222,2212 ? 2 2 212 2 222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222 22 2 222 2 2 2 Z 2 l 2 2 2 2 2 2 2 2 2 222 2 2 2 2 2 2 2 2 2 2 2 2 222 .., II I ~
333 3 J 313,3 333333 313 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J 333 333 333 3 33 J 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333 3 3 3 3 3 3 333 1/1

I
I -<

44 44 44 414 4 4 4 4 4 4 414 4 4 444444444444444 4444444444 4 4 4 4 4 4 4 4 4 4 444444444 44444 4 4 4 4 44 4 444 444 ~
I I ~

55 5 5 555,'55555555155555555555555555555555555555555555555 555555555555555555555555555 n
I I

6 6 6 6 6 6
1

6
1

6 16 6 6 6 6 6:6 C 6 6 6 6 6 6 6 6 G 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 & 6 6 6 6 6 6 6 E
11111 TI1117 1111:7 1 7 7 11111 7 7 7 1 7 1 7 7 111 7 71 7 7 1111 7 77771777717171111777117171117117117 0

8888881818888888 8;8 8888888888888 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 888 8 8 8 8 8 8 88 8

9 CJ 9 9 9 919 9 9 9 9 9 9 9 919
I 2 3 4 ~ , 1 •• 10 II 12 IJ 14 I~:I& II 11 I' 20 2122 2J ;. ;1 26 21 lilt 3D 31 12 33 14 31), " JI 3H041 424344 4146 41 ... , so II ~253 M 51 5i 51 \4 It 60 61 \J it 6' ~I 66 51 6169 10 11 721314 15 1& 1) 11 1'10

11M e50859

This card is used to indicate to the Monitor the beginning of a new job deck
and is usually the first card of a deck. The JOB card may be the second card
of a job deck, if it is preceded by a DATE card (see below).

The JOB card may be used as a means of introducing identification for a program,
such as a program name. Columns 16-72 may be used for identification; however,
only the characters in columns 16-27, if any, are included in the SQUOZE deck,
and printed in the listings.

A JOB card will cause skipping to a new page during both off-line and on-line
printing. The card will be punched preceding every output deck (both SQUOZE
and absolute binary) and will be printed at the beginning of every listing.

08.02.01

5 (6/61)

DATE

!
ATE :

II I I
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT / COUNT ~ REMARKS LABEL

~o 0 0 0 0 0 0 0 10 0 0 0 010 000 0 0 0 0 0 0 0 0 00 0 0 000 000 00 000 0'0 0 0 0 0 0 0 01 VI

I 2 3 4 5 , 1 II I 10 II 1213 14 15111 II II 1120 21 %2 23 24 21 a 21 11 2130 31 .3; 33 ,4 3j l&)1 31 r.J 40 41 42 4J 41 45 4& 41 41 49 so 51 52 53 54 ~5 55 51 5159 &0 II 62 i3 &4 65 &6" &I I~ 10 11 12!~3 14 15 " 11 II II III! :J:

111111111111111!11111111111111111111111111111111 t 11111111111 t 111111111111111111111! S

This card is used whenever it is desired to supply a date to be incorporated when
punching a SQUOZE deck. The date is punched in columns 16-21 as six decimal
digits. For instance, July 4, 1976 would be punched 070476. This datewduld
then appear on subsequent listings of the program until a new date is included
when a new SQU OZE deck is punched. The new date will then repla~e the old one.

CPL

!
PL :

I I
SYMBOL OPERATION: ADDRESS, TAG. DECREMENT I COUNT ~ REMARKS LABEL

II I

~
o 0 0 00 0 0 0 0 0 0 0 0 o~o 000 000 010 0 0 0 0 0 0 0

1
VI

I 2 3 4 5 & 1111 I 10 II 12 13 14 1511& 1111 I' 20 2122 U24 25 21 2118 19 30 31 313314353& 11 38 39 40 414243 44 45 4& 41 4149 so 51 525354 ~ 56 51 5159 60 61 &2 63 64 6511&1 &liS 10 11 12:;3 14 15 1111111' 10 .l:

t 11 ~

This card indicates:

1. The program which follows requires processing by the Compiler.

2. The SQUOZE output from the Compiler is to be punched in columnar binary
form.

The program will also be listed as described in Section 04.

CPLRB

r:
LRB : .

I I I
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT ~ REMARKS LABEL

III I

rn
0 0000000000000:00000000000000000000000000000000000000 0 0 0 0 0 00000000000000'00000000 VI

1234511111 '10111113141511611111920212223242521211129303132333435363131394041414344454&4141495051525354555651515'10615263&4656661&869101112113/4151611111910 :J:

t 111 ~

This card also indicates that the program which follows is to be processed by
the Compiler. However, CPLRB indicates that SQUOZE decks are to be punched
on-line in row binary form. A listing of the program will also be prepared.

08. 02.02
5 (6/61)

SQZ*

fSQZ I
I
I

SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT • REMARKS LABEL

I I

I 1 3 • 5 • mO
Olle 010 10 0 0 0 0:0 I VI

71.~»u»~~~"n~a~nnN~.v3~~~nD~~»u~H~~~U~~*uu~~~~~~U~~~"~~U~~~"~u"ro"1nu~nnnn. ~
Plll1 111 J l11111111111111111111111111L~

This card is inserted into a symbolic source program to indicate that a SQUOZE
deck, which must be in columnar binary form, is to be incorporated into the
program at the point where the SQZ card appear s. The SQUOZ E deck to be
incorporated may be inserted into the symbolic deck following the SQZ card.
If the source program is entered from tape, the SQUOZE deck may be entered
from cards instead of from the tape (see page 08. 03. -02).

If the SQUOZE deck to be inserted is in row binary form, RB must appear in the
variable field.

LS

'-S I
I
I

SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT • REMARKS LABEL
I I

~o 0 000 o 0 I 0 0 0 0 0 0:0 0 0 0 0 0 0 0 0 II 00000000 VI
1i2 3 45& 7 • I 10 11 12 13 14 1511& 11 l' 19 20 21 22232' 25 lIi 11 2i 29 ~ 31 32 33 ~ 35 » 31 3lI H ~ 41 42 43 ~ 45 * 41 .. 49 50 51 52 53 ~ U ~ 51 ~ !II &0 II &2 ~ 14 &5 " 17 U &9 10 11 12 131415nn711 •• :I:

'l11111 111 J 1111111111111111111 11111111 J>

~

This card is used with a SQUOZE deck when it is desired to list a program. The
LS card is used with SQUOZE decks which do not include symbolic modifications.
The listing produced is identical with the one prepared when the SQUOZE deck
was punched.

If the SQUOZE deck to be listed is in row binary form, this card must contain
"RB-" in columns 16-17. If the deck is columnar binary, columns 16-17 are left
blank.

*This is a Compiler pseudo-instruction, rather than an m Monitor control
card, and is only included here for convenience.

08.02.03
3 (1/61)

LIST

~IST : I I
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT ~ REMARKS LABEL

I I

mO ° 0 0 0 000 II 00001000 0 0 0 0 0 0 0 0 0 0 00000000
,234 S 6 1\' S 10 111213141SI161118 192021222324 2S 2121 28 29 303132 33 34 3S 36 37 3139404142 43 44 4S46 47 4849 SO SI S2S3S4SS SlS7 SI 5S60 &1 52&3 &4 IS Ii &7 &1"101112 1314151&7J117S1O

tIll 1 1 111 11111111

The LIST card will also cause a program listing to be prepared. LIST differs
from LS in the follOwing ways:

1. LIST does not require, as does LS, that the SQUOZE deck to be listed not
include symbolic modifications.

VI
:r
~
:;u

2. The listing will be of the type prepared by the debugging macro-instruction
CORE since, in fact, CORE is used to list the program. Thus, the listing
produced by a LIST will be little more than a symbolic storage dump.

PS

~~ ,

..... 1
I

SYMBOL OPERATION I ADDRESS, TAG, DECREMENT I COUNT ~ REMARKS LABEL

I :
0000000 I 000000:000 0 0 0 0 0 0 pOD 00000000000 VI rn, , · · · , · """"'" ,,,,,,,,,,,.,, "" ... ;,. .. """ " .. " " ". " " """ .. " ... " oro" "I""'" n. :r

t 11111 111 1 I 1111111111111 1 1 11 11111111111111111111111111111111111111.1111111111111111
~
:;u

The PS card is used to cause punching of a new SQUOZE deck. In order to punch
a new SQUOZE deck, symbolic modifications must be included. However, this
requirement may be fulfilled by inserting a MOD and an ENDMOD card (see
below) in the SQUOZE deck. When a new deck is punched a new listing of the
program is prepared.

Columns 16-17 and 18-19 are also punched with "RB" when input and/or on-line
output, respectively, are to be in row binary form. If input and/or output are
to be columnar binary the appropriate pair of columns is left blank. Thus, if:

columns 16-19 contain:

RBRB
RBbb
bbRB
bbbb

where "b" represents a blank.

08. 02. 04
3 (1/61)

input is:

row binary
row binary
columnar binary
columnar binary

and output will be:

row binary
columnar binary
row binary
columnar binary

PA

f I

I
I I

SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT to REMARKS LABEL

I I

rn
OOOIl o 0 0 0 0 0 0 0 0:0 00000000

I 2 3 4 5 , II' '181112131415\'611'8'9102'2223242526212129303' 32113435 3631 J839484142434445464~4I49585152535455565151596861&2636465H6161ct1811 12 1314151611111910

t 1 1111 111 11111111

The PA card indicates that an absolute binary deck is to be prepared from the
SQUOZE input deck. The SQUOZE deck mayor may not contain symbolic
modifications.

(I)

%
J>
::u

Columns 16-17 and 18-19 are also punched "RB" when input and on-line output,
respectively are to be in row binary form. If input and/or on -line output are to
be columnar binary, the appropriate pair of columns is left blank. Thus, if:

columns 16-19 contain:

RBRB
RBbb
bbRB
bbbb

input is:

row binary
row binary
columnar binary
columnar binary

and output will be:

row binary
columnar binary
row binary
columnar binary

where "b" represents a blank.

LG

.... G I
I

I \
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT---. R£MARKS LABEL

I I

~OOOOOO 00 0 0 0 0 0 O~O 00 00000000
I 2 3 4 5 611 1 910 1112131415;'.11111910212223241526t12829JOJl J2JJJ4J536Jll8J940tl t24J44454641484958515253545556515859686162636465666161691DI112 13141516111119.

1111111 11 11111111
1 . .

(I)

%
J>
::u

This card indicates that the SQUOZE input is to be converted to absolute in
preparation for listing (by LIST) or for execution. The absolute form of the
program is written on tape B1 in n+1 files, where n TCD instructions are present
in the program. These sections are written as the first, second, ... , n+ 1th
files. The first n of these files are terminated by a TeD instruction and the
n+lth file by an END (which, is required to be present). Thus, if no TCD
instructions are used in the program, there will be only one file written on tape.
(The subsequent use of the tape files written by LG is included with the descriptions
of the DS1 and GO cards.)

H the SQUOZE input deck is in row binary form, this card must contain "RB"
in columns 16-17. If the deck is columnar binary, columns 16-17 are left blank.

08.02.05
5 (6/61)

MOD

I
I

I I
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT REMARKS LABEL

II I

o 0 0 0 0 0 0 0 0 0 0 0 a ola a a a a 0 a 0 a a 00 0 0 0 0 0 0 0 0 a aDO 8 0 0 a CII

2345'1 •• ~"n"u"~"~"a~~nHaavn~M~nn~~~D»H~~QO~~"~.U~~U~~~ ~U~~.~~~M •• ~ •• ~nnnu~~nnn. %

11 ~

This card is used to indicate the start of symbolic modification cards. (It is
never listed.)

ENDMOD

r D

:

I I I I
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT ~ REMARKS LABEL

I II I

100 I 0 0 000000000100000000000000000000000000080000000000088000808080008808008800000
23451 1.'""n"u"~"""a~nnN~ann~~~nn~~.D~~~~~~~~"~.U~~U"~~~U~~.~R~M •• ~ •• ~nnnM~~n~~.

,11111 1 1 1 1 1 1 1 1 111 I I I I I 1 I 1 1 1 1 1 1 1 1 1 1

CII
% • :u

ENDMOD indicates the end of symbolic modification cards for a given program.

DS1

f
S1

I

I I
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT. REMARKS LABEL

I

000000010000001008000880008001180000 CII E""'" .. " , .. " .. """"" " ... "." ... """." ,, ,, " ... """ ,, ... %

, III t 1111111111!111 • :u

This card indicates that data sentences (see Chapter 8, Section 07) follow, and
will cause the data sentence to be written in absolute on tape BI, following the
absolute form of the program, as files n+2, n+3, ... ,n+m, where m is the number
of data sentences. If errors are detected in the data sentences, error messages
will be printed.

GO

r ' I
I I

SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT. REMARKS LABEL

I I

o 0 0 0 0 0 0 0 0 0 0 0 0 DID aDo 0 0 0 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 00000000 CII m' · · , T · ".""" .. ' ... " .. 0."""" """" •• " ••••• ". n."" " ." ••• " ••• ".",,,, lJl4nlllllln .. %

-11 11111111 • :u

This card causes the debugging system to be loaded into core storage below location
(3000)10 and file 1 from tape Bl to be loaded into the locations assigned to the in­
structions in the record. Control is then transferred to the location specified by
the TeD or END card of file 1.

08.02.06
5 (6/61)

PAUSE

I I I
SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT ~ REMARKS LABEL

I I !
AUSE :

00000 0 0 0 II 0 00 oio 0 • 8 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 000 000 000 0 0 0 0 0 0 0 0 0 0 0 8 DO 00 0 8 0 0 • 8 0 0 0 0 0 8 0 0 0 0.0 0 0 0 en
23.511.t~"n~U~~"R".~nnH~.n ••• ~u»~~»»»B.U~u~~.uau~~u~~ •• D ••• ~uaMa.~ •• ~nnnu~~nnn. %

,11 ~

PAUSE causes a halt in such a way that processing can be continued by depressing
the Start key.

STOP

STOP I
I
I

SYMBOL OPERATION: ADDRESS, TAG, DECREMENT I COUNT ~ REMARKS LABEL

II I III II D
o II 0 • 8 0 0 .: ••••• I • 0 0 ••• I 0 I • I 0 8 8 • 8 0 0 I 0 8 8 0 0 0 8 0 8 • 0 0 0 ••••• 0 0 0 I 8 0 •• 0 0 0 8 0 0 00000000 en

2 3 • 5 I 1. til" 12 11M 151""" ".IIDDMI5." ••• 31 J2» ~35 »31.31 •• 1 .2.3~~ •• '.U.51 U53~ •• 5' ••• lIaal4 •• 'I •• 1I11 n 73'.15~nnn. %

t 1111 1 1 1 1 1 1 1 1 111 11 1 1 1 1 11111111 10
:u

A STOP card causes a final halt, i. e., depressing the Start key will not continue
processing. The card also causes an end-of-file mark to be written on the
output tapes, if any, and the tapes to be rewound.

08.02.07
3 (1/61)

m MONITOR

CHAPTER 3: JOB DECK ARRANGEMENT

As stated in Chapter 1, there are five types of processing which may be selected
by m Monitor Control Cards. These are:

A. Compilation
B. List
C. Punch a new SQUOZE deck
D. Punch an absolute binary deck
E. Execution

The arrangement and content of job decks for each of these types of processing
is basically the same, and is given below.

1. JOB card

2. Pre-processing control card:

a. CPL, CPLRB - input is a symbolic deck.

b. LS - a SQUOZE input deck is to be listed.

c. PS - a new SQUOZE deck is to be punched.

d. P A - an absolute binary deck is to be punched.

e. LG - a SQUOZE deck is to be loaded for execution or for listing by
means of LIST.

3. Input deck

a. If the preceding card is CPL or CPLRB this is a symbolic deck. SQUOZE
decks without modification may be included, but such decks must be
preceded by either an SQZ (or SQZ RB) card. Alternatively, this type

08.03.01
3 (1/61)

of job deck may be loaded in the following way:

(1) All cards, except row binary SQUOZE decks, may be entered from
tape. The SQZ (or SQZ RB) control card is included at the appropriate
points in the symbolic program on tape. If columnar binary decks are
to be entered from tape, they must appear where they are to be
incorporated.

(2) The row binary SQUOZE decks and, if desired, columnar binary
SQUOZE decks to be incorporated into the program, are stacked
in the card reader in the order in which they are used in the program.

For example, the arrangement of the input tape would be:

JOB
CPL

SQZ

SQZ RB

END

}
}
}

Blank card

symbolic cards

symbolic cards

symbolic cards

The two SQUOZE decks to be incorporated into the program would be
entered from the card reader. The columnar binary deck must, of course,
be the first in the card reader and must be followed by one in row binary.
The columnar binary SQUOZE deck may also be written on tape following
the SQZ card and only the row binary deck read from cards.

b. In all other cases, this is a SQUOZE deck. Modification cards may be
included in the deck. These cards must be preceded by a MOD card,
followed by an ENDMOD card, and then inserted immediately preceding
the blank card in the SQUOZE deck.

Modifications must be included, if the preceding control card is PS.
However, this requirement is satisfied by the presence of a MOD and an
ENDMOD card.

Modifications may .llQt be included if the preceding card is LS. In all other
cases, modifications are optional.

4. Blank card (required with CPL and CPLRB; optional for all others).

5. Data sentence deck, if desired. This deck may include any number of data
sentence blocks. Each data sentence block must be preceded by a DS1
card and followed by a blank card.

08.03.02
3 (1/61)

6. Post Processing Package

a. GO - The program is to be executed. This may be followed by input
data if any.

b. LIST - if the program is to be listed in the form of a symbolic core dump.

c. PAUSE - if a halt is desired between jobs.

Operator Instructions

In addition to the job deck components listed above, a set of cards with operating
instructions (columns 8-13 of such cards must be blank), and a PAUSE card may
be inserted immediately following the JOB or DATE card. These cards will
cause printing of instructions for the operator and a pause while the instructions
are followed. Then, when the Start key is depressed processing will be continued.

STOP

A STOP card may be used to terminate input (i. e., a group of stacked jobs).

08.03.03
5 (6/61)

SHARE MONITOR

CHAPTER 1: INTRODUCTION

The SHARE Monitor operates as a three phase system. All jobs are processed
through one phase before going into the next phase.

In general, Phase 1 converts a stack of jobs, in the form of SQUOZE or symbolic
decks into machine language codes, and associated data packages into binary data.
The results of this conversion are stacked on a system intermediate tape.

Symbolic and SQUOZE decks may also be converted by Phase 1 into new or
revised SQUOZE decks, absolute decks, and listings. These are stacked on the
appropriate system peripheral output units.

Phase 2 executes each of the stack of job codes formed in Phase 1. For each
job the system assigns the required tapes, loads the necessary system input/output
routines, loads the code and executes it. Jobs using the Debugging System or
Output Editor write condensed binary output on a system intermediate tape.

Phase 3 converts the stacked output from Phase 2 and writes it on the appropriate
peripheral output units.

Conversion and Input/Output Routines

Routine

Compiler; Modify
and Load

Input Editor

Buffering Routines

09. 01. 01.
4 (3/61)

Usage

Performs all conversion of symbolic and SQUOZE decks
during Phase 1.

Converts and edits data packages during Phase 1 if
requested by the programmer. The data package for
each job is placed immediately behind the symbolic or
SQUOZE deck. By using this routine, the programmer
avoids having to furnish his own routines and core storage
areas for editing of input data during execution of his job
in Phase 2.

These routines are in core storage and are available to the
programmer at all times. They must be used by an
execution job to read data packages processed through
Phase 1. They may also be used to read and write
programmer intermediate tapes.

Transmission
Macro Routines

INTRAN Routines;
OUTRAN Routines

Debugging Routines

Output Editor Macro
Routines

Tape Usage

These routines are read into core storage just prior to the
execution of a job which specifies their use. They are
used to read and write programmer tapes.

These are brought into core storage just prior to the
execution of a job which specifies their use. They allow
the programmer to read, write, and edit information
using his own input or output units.

These routines occupy considerable core storage during
execution of a job. Therefore, if this space is required
for an object program, the Input and Output editors should
be used.

These routines are brought into core storage just prior
to the execution of a job which specifies their use. In­
formation macros cause writing of condensed binary
output on a system intermediate tape. Debugging in­
formation for all jobs is converted to peripheral form in
Phase 3.

These routines may always be used by the programmer
during execution of his job. The routines write editing
information and unedited output data on the same
intermediate tape used by the Debugging System. The
Output Editor itself is used by the system in Phase 3 to
edit and convert this information to peripheral form for
all jobs. Hence, no space is required for output editing
during execution of the job.

The system normally uses the following tapes:

Phase

1

09.01. 02
4 (3/61)

Tape Name

SYSPOT (Peripheral
Output Tape)

SYSPPT (Peripheral
Punch Tape)

SYSES1
SYSES2

Contents or Use

Listings converted from symbolic or
SQUOZE decks for all jobs.

SQUOZE or converted Absolute decks from
Modify and Load or the Compiler for all jobs.

Erase tapes used by Modify and Load or the
Compiler.

Phase

2

Tape Name

SYSPIT (Peripheral
Input Tape)

SYSMIT

SYSMOT

SYSTAP

SYSMIT

SYSMOT

SYSTAP

Contents or Use

Original job decks.

System intermediate tape.

System intermediate tape.

Contains all system components

See above.

See above.

See above.

No peripheral tapes are assigned or used by the system during
Phase 2.

3 SYSDOT (Debugging Contains converted debugging output for
Peripheral Output Tape) all jobs.

SYSPOT (Peripheral
Output Tape)

SYSPPT (Peripheral
Punch Tape)

SYSMIT

SYSMOT

SYSTAP

Non-standard system use:

Contains edited and converted printed output
for all jobs using the Output Editor.

Contains edited and converted punch
output for all jobs using the Output Editor.

See above.

See above.

See above.

1. The programmer may, if he desires, have his job executed in Phases 1 or 3
rather than in Phase 2. This will mean, of course, that fewer tapes are
available to him; however, it does allow the programmer to write directly
on the peripheral output units.

2. Special programmer tapes have names of the form SYSXRN or SYSXUN where
X and N are the channel letter and unit number respectively. Rand U denote
reserved Ilr utility tape.

09.01. 03
4 (3/61)

Such a symbolic tape name serves as a location symbol for a cell containing
the absolute tape address assigned to that symbolic tape. This absolute tape
address is in the address field of the cell and is always a decimal mode address.
Thus, to read tape SYSAR5 independent of system subroutines, in the binary
mode, the following sequence could be used.

09.01. 04
4 (3/61)

SEL

BIN

CLA SYSAR5
ORA BIN
STA SEL

RDS **

OCT 20

SHARE MONITOR

CHAPTER 2: CONTROL CARDS

Control cards provide a compact and flexible method of communication between
the programmer, the operator, and the system.

All SHARE Monitor control cards have the following common characteristics:

1. Column 1 contains 7-, 8-, and 9-punches to identify it as a control card.

2. The operation code of the control card is punched in the normal SCAT format,
i. e., beginning in column 8.

3. The variable field must be separated from the operation code by at least one
blank column, and must begin no later than column 16, i. e., in SCAT format.

4. If a normal case is defined for an item in the variable field of a control card
and this normal case meets the programmer's needs, it is not necessary to
punch the parameter in the control card. Parameters need be specified only
in situations which require other than the normal case. If the variable field
is entirely blank on a control card which has a normal case defined for all
items, the System will employ the normal case for all items.

Note: Only one comma should be inserted between the items actually punched
on the control card.

The following sections describe the control cards.

JOB

The JOB card must be the first card of any deck to be processed by the system,
since it serves to notify the system that a new job is about to commence.

where

09.02.01
4 (3/61)

JOB JN,RN,MN,ET,EMO,EPO

JN = Job Number
RN = Run Number
MN = Man Number
ET = Estimated Running Time (Unit is O. 01 hrs.)
EMO = Estimated Mediary Output (Words)
EPO = Estimated Peripheral Output (Records)

The information contained in the variable field of the JOB card serves the following
purposes:

1. It causes the system to enter the Accounting Initiation routine.

2. The identifying information (job-, run-, and man-numbers) is passed along
from phase to phase to identify debugging and other peripheral output.

3. The estimated running time may be used by an Interval Trap routine or by
the operator to determine whether the obj ect program is using too much time
in the execution phase.

4. The estimates of mediary and peripheral output will enable the System to
discover and forestall such errors as excessive debugging output, etc.

Each installation may, with a minimum amount of modification to the Monitor,
specify its own parameters for the JOB card.

LOAD

The LOAD card follows the JOB card in the input deck and indicates that a
SQUOZE deck (with or without a modification package) is to follow. The card
furnishes all the required information as to which parts of the system will be
requi.red, when they will be required, and how they are to operate on the
associated SQUOZE deck.

LOAD

where A =
=
=

B =
=

C =
=
=

=
D =

=
=

E =
=

F =
=
=

09.02.02
4 (3/61)

A,B,C,D,E,F,G,H,J,K,L,M,N,P,Q

+ for input with only commentary text
- for input with only non -commentary text
B for input with both SQUOZE texts
R for row binary input
C for columnar binary input
GOlF to execute if no errors
GO to execute if no definite error s
GOGOGO to execute provided the system was able to produce

an executable code.
NOGO to suppress execution
1-execute program in phase 1
2-execute program in phase 2
3-execute program in phase 3
SQZ to punch new SQUOZE deck
NOSQZ to suppress punching SQUOZE deck
+ to output only commentary text
- to output only non-commentary text
B to output both texts

G =
=

H =
=

J =
=

K =
=

L =
=

M =
=

N =
=

P =
=

Q =
=

The normal case is:

ABS to punch absolute deck
NOABS to suppress punching absolute deck
R for row binary output
C for columnar binary output
LIST to obtain listing
NOLIST to suppress listing
DICT to write a dictionary as part of the program listing
NODICT to suppress dictionary output
DEBUG to execute with the Debugging System
NOB UG to execute without the Debugging System
SS to use System Symbols
NS to suppress use of System Symbols
IN to execute with INTRAN
NOIN to execute without INTRAN
OUT to execute with OUTRAN
NOOUT to execute without OUTRAN
NOMAC to execute without Transmission macros
TRMAC to execute with Transmission macros

LOAD B, C, GO, 2, NOSQZ, +, NOABS, C, NOLIST, DICT, DEBUG, SS, NOIN,
NOOUT, NOMAC

SCAT

The SCAT card informs the System that a symbolic deck to be compiled follows.
The card causes the presetting necessary to fulfill the demands of the various
parameters.

SCAT C, D, E, F, G, H,J, K, L, M, N, P, Q

(The parameters C through Q are as described above for the LOAD card).

The normal case is:

SCAT NOGO, 2, SQZ, +, NOABS, C, LIST, DIeT, DEBUG, SS, NOIN,
NOOUT, NOMAC

SINGLE TEXT SQUOZE DECKS

The options for single text output on both the SCAT card and the LOAD card,
and the options for single text input on the LOAD card, may be exercised. The
admissible parameter forms are as follows:

09. 02. 03
5 (6/61)

B = both texts are present or required.
+ = text with commentary only is present or required.
- = text without commentary only is present or required.

No difficulty should be experienced with single text output. Use of this option will
result in a SQUOZE deck which is numbered consecutively throughout, and has only
one text section. The Preface card will contain the correct text word counts.

Single text input may consist of either a double text deck, with one text section
manually removed; or a single text deck which was produced by a previous single
text output run. In the former case, the Preface card, which must not be changed
indicates that the SQUOZE deck is double text. The input parameter on the LOAD
card must correspond to the actual state of the deck. In the latter case, the Preface
card describes the deck completely and the input parameter on the LOAD card
is ignored.

The following points should be noted:

1. Single text output may be obtained from double text input and vice versa. If,
however, single text input has only text without commentary, then the two
text sections of the double text. output will, in the absence of modifications,
be identical.

2. The normal case for output is single text with. commentary. The normal case
for input is double text. A single text input deck will load without difficulty
even though double text input is specified or implied by the LOAD control card.

3. An absolute deck can be pWlched on the same run as single text SQUOZE deck.

4. Alter numbers and relative numbers are the same for text without commentary
as for the corresponding text with commentary. Thus, for instance, it is
possible to load with modifications using only text without commentary and
referring alter numbers to a listing of text with commentary.

5. All operations previously possible with double text are possible with single
text.

IDENT

The IDENT card is used, if de~ired, in conjunction with a SCAT or LOAD card
and its associated deck. A and B, which are described below, are punched in the
9-right and 8-left word of the SQUOZE deck Preface card, and will appear in the
upper right-hand corner of each page of the listing, if a listing is requested. C
is punched in the stated columns of each card in the SQUOZE deck if the punch­
sequencing device is installed on the on-line card punch.

09.02.04
5 (6/61)

The IDENT card (if used) must be positioned between the JOB card and the SCAT
or LOAD card.

where

IDENT A,B,C

A is the first BCI word for the Preface
B is the second BCI word for the Preface
C is the BCI field for columns 73-76

(Note: Commas and blanks are illegal BCI characters in the above fields since
they serve as field terminators.)

Identification in the Preface card will follow the rules given below.

1. If an IDENT card exists, in a SCAT run, identification in the Preface comes
from the first two subfields of the IDENT card.

2. If no IDENT card exists, the identification is taken from the first and third
subfields of the JOB card. In a LOAD SQZ run the identification in the
Preface of the output deck will be the same as that of the input deck unless
an IDENT card is included whose first two subfields are non-zero or non-blank.

ASSIGN

The ASSIGN card causes a physical tape unit to be assigned to the symbolic reserve
tape and utility tape names referred to by a job. The ASSIGN cards would normally
be inserted in the input deck by a machine operator with knowledge concerning
available tapes. However, certain installations may desire that the programmer
know what physical tapes are available for his use. The ASSIGN card has the form:

where:

ASSIGN XN=SYSXZN

x = A through F, specifying a symbolic channel
N = 1 through 8, specifying a symbolic tape drive
Z = R for Reserved Tape assignment
Z = U for Utility Tape assigment

The assignment of utility and/or reserved tapes is accomplished by placing the
appropriate ASSIGN cards after the JOB card and before the LOAD or SCAT­
card of the job for which the assignment is to be effected.

09.02.05
4 (3/61)

Examples:

a.

b.

ASSIGN B5 = SYSBRI

This card assigns unit 5, channel B as symbolic tape SYSBRI for the
job with which this ASSIGN card is associated.

ASSIGN C2 = SYSAUI

The above card will assign physical unit 2, channel C for use in all
references to symbolic utility tape Al during the execution of the
object program.

At the conclusion of execution of the object program using the above ASSIGN
cards, tape drives B5 and C2 would be rewound by the System. and the
operator would be instructed as follows:

REMOVE B5 = SYSBRI

Thus. remove messages are given only for reserved tapes.

DATA

The DATA control card causes the following cards (or records) on the system input
unit to be converted and/or transcribed on the specified tape unit in standard buffered
format during Phase 1. Data processed through Phase 1, whether edited or not,
must be read by the executing program using the Buffering routines SYSRTK
or SYSWTK.

If the programmer wishes the data to be converted and edited, the parameters of
the DATA card cause appropriate initialization prior to entry into the Input Editor
(see page 07. 03. 01) for conversion and transcription. If data is to be only trans­
cribed on the specified tape unit, the Input Editor is not required. BCD records
are written as 12-word logical records and binary records are written as 24-word
logical records. A subsequent DATA control record causes an Logical End of
Group flag to be written; any other control record causes a Logical End flag to
be written on SYSMOT or an End of Logical Tape flag to be written on SYSXRN.
In the latter case, SYSXRN will be rewound and become unassigned.

The format of the DATA control card is:

where

09.02.06
4 (3/61)

DATA A,B,C

A = EDIT if the Input Editor is to be used for conversion and transcription.

= NOEDIT if simple transcription is required.

B = GO to continue processing if bad data is encountered by the
Input Editor.

= GOlF to discard the job if bad data is encountered.

C = SYSMOT if data is to be placed on the System Mediary Output
Tape.

= SYSXRN if data is to be placed on reserved tape ''N'' on channel

''X. "

The normal case is:

09.02.07
4 (3/61)

DATA EDIT, GOlF, SYSMOT

SHARE MONITOR

CHAPTER 3: INPUT DECK ARRANGEMENT

Owing to the ordered sequence in which the va rious components of the System
perform their functions on a given job, there are strict rules for the arrange­
ment of the input deck. The first of these rules is that the JOB card must be
the first card in a deck. The JOB card may be followed by an IDENT card, and/or
ASSIGN cards. The next card must be either a LOAD or a SCAT control card,
depending upon the type of operation to be executed. The composition of the
remainder of the deck for each of these cases is described below:

A. LOAD control card

SQUOZE program deck (no blank card at end of SQUOZE deck)
Data package(s) (optional, see below)

B. SCAT control card

Symbolic deck (terminated by an END card)
Data package(s) (optional if 'GO" requested, see below)

Data packages may be for Input Editor translation (EDIT) or for mere transcription
(NOEDIT). Their arrangements are:

A. EDIT

DA T A control card
Blank card
Data cards
ENDA T A control card
Blank card

B. NOEDIT

DA T A control card
Data cards

Multiple data packages may be used at the positions of the input decks as noted
above, and in such a set, some can be EDIT packages while others are NOEDIT
packages.

Note: The above are all of the allowable sequences of cards in an input deck for
one job. Successive jobs are merely repetitions of these sequences.

09.03.01
4 (3/61)

SHARE MONITOR

CHAPTER 4: COMMUNICATION REGION TRANSFER POINTS AND ASSOCIATED
STANDARD ROUTINES

Transfer points are designed to allow the programmer three options in dealing
with errors discovered in the object program. Each transfer point consists of
two instructions within the Communication Region, the first of which is labeled
with a system symbol to which the programmer may refer. A transfer point
is of the form

where

SYSXYZ TXH ** ** , ,
TXL XYZ" 0

SYSXYZ is the reference system symbol
XYZ is the System routine normally entered.

The option desired by the programmer is exercised through modification of the
instruction at SYSXYZ. Under no circumstances may the instruction at SYSXYZ+l
be altered or replaced by the object program.

The options afforded the programmer are:

A. Execute the standard routine provided by the System with the return determined
by the System routine entered.

Method

If the first instruction is not preset by the programmer, the TXH at SYSXYZ
will fail. Entry will be made to the specified System routine via the
TXL at SYSXYZ +1.

B. Execute the standard routine provided by the System and return to the address
specified by the programmer.

Method

The decrement of SYSXYZ is preset by the object program with the special
return. After the standard System routine has been entered and executed,
control is transferred to the address specified in the decrement.

09.04.01
4 (3/61)

C. Execute a special routine provided in the object program.

Method

The instruction at SYSXYZ is replaced by a transfer to the object programs'
special routine.

D. Execute a special programmer routine followed by the System routine.

Method

The instruction at SYSXYZ is replaced by a transfer to the object program"s
special routine. This routine then transfers to. SYSXYZ+ 1 after performing
its own functions.

E. Execute a special programmer routine followed by the System routine but
making a return specified by the programmer.

Method

The instruction at SYSXYZ is replaced by an instruction such as TXL OWNl,
OWN2. Transfer to SYSXYZ causes entry to OWNl. After OWN1 is completed,
it transfers to SYSXYZ+1 to carry out the System routine. The System
routine then makes the special return to OWN2.

There are nine transfer points and associated standard routines which the programmer
may wish to use. Where applicable the setting of an error indication will result
in a message which will be part of the debugging output for the job.

A. SYSERR: The standard Unexpected Error routine provides a message on
SYSDOT saying 'THIS JOB HAS CAUSED A RETURN TO SYSERR FROM XXXX."
If no special return is given in the decrement of SYSERR, the system will
load SNAP into core and give a console scoop before returning to SYSTEM.
The console scoop is suppressed for special returns to avoid the possibility
of SNAP covering the obj ect code.

The calling sequence to SYSERR is:

B. SYSBAD:

09.04.02
4 (3/61)

TSX SYSERR,4
No return normally

TSX SYSBAD,4
X TAPE,T, Y

where X = PZE for read
= MZE for write

TAPE = location of tape unit address
T = 0 for BCD mode

= 7 for binary mode
Y = location of the beginning of the I/O table

The Bad Spot routine will reposition the tape and read or write the records
indicated in the object program's I/O list. If the routine is not able to
accomplish this without encountering a condition listed below, the tape will
be positioned as found and the program transfers to SYSTRC. That routine
prints the number of the unit which cannot be used successfully and transfers
back to the monitor to process the next job. The conditions which may cause
this are:

1. record or end-of-file cannot be written, five attempts have been made to do
so. Blank tape has been written prior to each attempt.

2. records in the I/O list cannot be read successfully. The tape was correctly
repositioned, but 10 attempts to re-read have resulted in redundancy.

3. in repositioning the tape from an ambiguous command list (see below),
the routine is not able to read the first five words without redundancy.
15 attempts have been made.

4. beginning-of-tape has been encountered while the routine is trying an extra­
backspace and comparison of the 5 words (see below), in order to find
the correct position for re-reading.

5. the tape cannot be correctly repositioned although more than 25 extra records
have been backspaced and the first 5 words compared.

The I/O list is specifically restricted in that it may not contain more than 25
records with count type commands.

In writing a tape, there is no question about the number of records which must
be backspaced before another attempt can be made to write. Read commands,
unless they are exclusively 10RP or 10RT, force the Bad Spot routine to do a
special search. It backspaces the minimum number of records, reads the first
five words referred to in the command list and compares them to the first five
words which must have been read into storage. A match, or a match except for
a single bit, is recognized as a correct position for an attempt at re-reading.
Therefore, an IORP or IOSP at the beginning of the list must specify a word
count of at least 5, and refer to a tape record which contains five or more words.

09.04.03
4 (3/61)

The routine will not make the comparison unless the first five words, at least,
can be read without redundancy; up to 15 attempts will be made to read the first
five words of the record.

When the comparison shows that the tape is not yet in position, another backspace
is executed and the comparison made again. A beginning-of-tape encountered
at this stage will cause the routine to abandon the job after spaeing the tape
forward in order to leave it as found.

C. SYSTRC: The standard Tape Redundancy Check routine is entered by a
TSX SYSTRC, 4 with the symbolic name of the tape unit in index register 2.
An indication of the error is made in the problem status indicators and the
routine exits to SYSERR.

D. SYSIOC: The standard Input/Output Check routine is entered by a TSX SYSIOC, 4.
An indication of the error is made in the problem status indicators and the
routine exits to SYSERR.

E. SYSTDC: The standard Divide Check routine is entered by a TSX SYSTDC, 4.
Normally this routine goes to SYSERR after leaving an indication of the error.

F. SYSTUF: The standard Floating Point Underflow routine is entered when a
floating point underflow is trapped. The register in which underflow occurred
is set to zero and an error indication made. Return is normally to the object
program at the instruction following the one causing underflow.

G. SYSTOF: The standard Floating Point Overflow routine is entered when a
floating point overflow is trapped. Normally this rO'lttine exits to SYSERR
after leaving an indication of the error.

H. SYSTRP: The standard Transfer Trap routine is entered if ETM is executed
in a programmer's job and no entry to a programmer's routine has been placed
in location SYSTRP. The standard routine will create a message on the
debugging output unit indicating that no programmer routine was furnished
and will go on with the next job.

I. SYSSTR: A store location and trap instruction normally causes entry to the
Unexpected Error Routine SYSERR.

09.04.04
4 (3/61)

SHARE MONITOR

CHAPTER 5: EXECUTION COORDINATION UTILITY ROUTINES

Certain system routines are available to the programmer at execution time for
the purpose of performing standard operations. These routines are:

Routine

Comment Attached Printer

Mediary Tape Loader

09.05.01
4 (3/61)

Name Page

SYSCAP 09.05.02

SYSMTL 09.05.03

TITLE:

PURPOSE:

CALLING SEQUENCE:

09.05.02
4 (3/61)

COMMENT ATTACHED PRINTER: SYSCAP

SYSCAP may be used to print up to 12 words of information
in a single line on an on-line printer. The routine should
be used only for those messages to the operator which are
vital to the operation of a job.

TSX SYSCAP,4
X L, ,N
return

where X = PZE to force a skip to channel 2 of the
carriage control tape

= MZE to suppress skipping
L = the location of the first BCI word to be printed
N = the number of BCI words to be printed

The N BCI words are converted into a line image and the
machine is delayed until the printer channel is free. The
comment is then transmitted to the printer.

TITLE:

PURPOSE:

CALLING SEQUENCE:

NOTES:

09.05.03
4 (3/61)

MEDIARY TAPE LOADER: SYSMTL

SYSMTL may be used by the programmer to load a program
section, following a TCD card into core storage from
SYSMIT, the mediary input tape.

TSX
X

where X =
=

R=
=

SYSMTL,4
SYSMIT, ,R

PZE to preset core to TSX SYSERR,4
l\!~~aro suppress presetting
is the return address
o to use return on tape, i. e., the address
specified on the END or TCD card

Upon return, the sign of the accumulator is positive if
loading is terminated by a TCD card. The sign is negative
if loading is terminated by an END card. In either case,
the address of the END or TCD card may be found in
location SYSTRA.

SYSMTL assumes that SYSMIT is in correct logical
position.

To alternate program files or load them in other than
sequential order, the tape must be positioned properly
by use of the Buffering routines SYSBKS, SYSWTK,
and SYSRTK.

SHARE MONITOR

CHAPTER 6: AVAILABILITY OF MACHINE COMPONENTS

During Phase 2, the following machine components are available for use by
the programmer:

A. Core storage above the system origin, which is the location of the first cell
following those routines which must remain in core storage at all times, and
those special System routines requested by the programmer for use in the
execution of his job. This location is found in the address field of location
SYSORG. Unless specified by an ORG card in the program, code will be
automatically assigned above the system origin.

1. If INTRAN is requested, SYSORG will be at least 42,200 octal.

2. If OUTRAN is requested, SYSORG will be at least 26, 500 octal.

3. If the Transmission macros are requested, SYSORG will be at least 13,700
octal.

4. If, the Debugging System is requested, SYSORG will be at least 12, 600
octal.

5. If no System routines are requested SYSORG will be at least 10, 500 octal.

B. All drum units.

C. The on-line printer may only be used to print special operator instructions
by means of the System subroutine SYSCAP

D. All tapes except those designated as system tapes may be assigned as reserved
or utility tapes. The system tape SYSMIT may be read to:

1. Load sections of a program following a TCD card, with the aid of the
System Mediary Tape Loader, SYSMTL.

2. Load data converted by the System during Phase 1. In this case the Buffering
routines SYSRTK (the routine which reads a logical record) and SYSWTK
(the routine which reads a single word) are used.

During execution of a job's code in Phase 2 the following machine components are
not available to the programmer:

09.06.01
4 (3/61)

A. Core storage from decimal location 00000 through the system origin.

B. The three System tapes SYSMIT, SYSMOT, and SYSTAP except as noted
above.

C. Sense switches 1 through 6.

D. The MQ entry keys.

09.06.02
4 (3/61)

Accuracy

Address

Alphameric

Assembly Program

11. 01. 01
5 (6/61)

Correctness or freedom from error (as contrasted
with precision).

1. A label, name, or number identifying a register,
location or unit where information is stored.

2. Loosely, the address field of a machine word.

A generic term for alphabetic letters, numerical digits.

A program to translate a routine written in a symbolic
machine language into absolute machine instructions,
and to assign machine storage for those instructions
and data.

11

BCD

Binary Cards

Binary Cards, Row

Binary Cards, Column

Blocking

Block Length

Bootstrap

Buffer

11.02.01
5 (6/61)

Abbreviation for binary-coded-decimal.

Cards containing up to twenty-three 36-bit binary
words together with an origin, a word count, and
an AC L checksum.

Binary cards in which successive bits are found by
reading columns 1-36 and 37-72, alternately, row­
by-row starting with row 9.

Binary cards in which successive bits are found by
reading down the columns (starting with the leftmost,
column 1).

The combining of two or more data or item records
into a tape record, or block.

By thus reducing the number of inter-record gaps on
tape, the acceleration or deceleration time per data
record is reduced, and the number of data records which
may be contained in a given length of tape is increased.

The total number of words contained in one block.

A technique or device designed to bring itself into a
desired position by means of its own effort, e. g. ,
a special machine routine to bring itself into the
computer from an input device.

An area assigned for use as an intermediate storage
area for data to be transmitted between storage and
input/output devices.

Call

Card Field

Calling Sequence

Character

Check

Clear (Verb)

Closed Subroutine

Column Binary

Compare

Conditional Transfer

Control Card

11.03.01
5 (6/61)

To transfer control to a subroutine by means of a
calling sequence.

A fixed number of consecutive card columns assigned
to a unit of information, e. g., card columns 15-20
can be assigned to identification.

An instruction that (1) records its own location and
(2) transfers program-control to a closed subroutine,
together with as many locations as are necessary to
hold the information ("parameters" or "arguments")
needed by the subroutine.

A decimal digit, alphabetic letter, or special symbol
such as $, %, etc.

1. Parity check - one type of redundancy check.

2. Redundancy check - use of summation bits and
redundant bits (check digits) to insure accuracy
of tape information.

To erase the contents of a storage location or register
by replacing the contents with a pre-determined
character, such as zeros, ones, nines.

A routine which is not inserted as a block of instructions
within a main routine but is entered by basic linkage
from the main routine.

A form of binary card punching in which the first word
on the card occupies columns 1-3 and, for a full card,
the last word occupies columns 70-72. Bits 0-11 of each
word go into positions 12-9 of the leftmost of the three
allotted columns, etc.

To examine the representation of two groups of characters
for the purpose of discovering relative magnitude.

A transfer which occurs only when a certain condition
exists at the time control passes to the transfer instruction.

A card which contains input data or parameter s for
a specific application of a general routine.

Dump

11. 04. 01
5 (6/61)

To copy the contents of part or all of some storage
medium onto another storage medium,e. g., to write
the contents of core storage on a peripheral output
tape through a translator.

m

Edit

Exponent

11.05.01
5 (6/61)

To rearrange information for machine output or input.

That portion of a floating point number which represents
an integral power.

Field

File

Fixed Length Records

Flag

Format

11. 06. 01
5 (6/61)

A set of one or more contiguous bits or characters
treated as a unit of information.

1. A collection of records, an organized collection
of information.

2. On tape, a sequence of records terminated by an
end-of-file mark and file gap.

Records comprising a file in which every record is
the same length.

A field which serves as a signal to a processor.

The predetermined arrangement of characters, fields,
lines, page numbers, punctuation marks, etc.

II

Grouping

11.07.01
5 (6/61)

m
Combining two or more records.

Initialization

Instruction

Interrupt

I/o

11.09.01
5 (6/61)

Setting counters, switches, and instruction addresses
at specified times in a program.

1. Machine Instruction - An instruction directly
recognizable by a machine.

2. Symbolic Instruction - In an assembly language,
a group of symbols which can be translated directly
into a machine code, i. e., there is a correspondence
(usually one-to-one) between a symbolic instruction
and a machine code (object language) instructions.

3. Pseudo-Instruction - A group of symbols which causes
the Assembler to depart from the normal mode of
translating symbolic instructions and to take some
appropriate special action.

4. Macro-Instruction - A pseudo-instruction which
calls for the insertion into the obj ect routine of
a sequence of instructions generated from a skeletal
definition by the insertion of any parameters supplied.

A procedure by which the normal operation of the program
is temporarily suspended by a special signal. The
signal might be external to the computer, or might be
caused by an error condition, or by the completion of
an asynchronous operation. The machine branches to
a routine appropriate to the cause of the interrupt, and
at the completion of the routine, normal operation is
resumed. Sometimes called trapping.

Abbreviation for input/output.

D

Library

Library Routine

11. 12.01
5 (6/61)

A group of standard, proven routines which may be
incorporated into larger routines.

A sequence of instructions which is used often enough
to be identified and placed on file, and which is either
the same sequence in all applications or else a sequence
which is self-initializing through the use of parameters
supplied at execution time.

II

Macro-Instruct; on

Mask

Monitor

11. 13. 01
5 (6/61)

A pseudo-instruction which calls for the insertion
into the object routine of a sequence of instructions
generated from a skeletal definition by the insertion
of any parameters supplied.

A machine word used with a logical instruction to
eliminate undesired bits from another word.

A routine which exercises supervisory control over
some other program or collection of programs. When
the collection of routines comprises all those normally
used in the operation of a computer, the Monitor and
the entire collection is called an operating system.

II

Object Program

Off-Line

On-Line

Open Subroutine

Origin

Overflow

11.15.01
5 (6/61)

The machine language program which is the final output
of a coding system.

Pertaining to the operation of input/output devices or
auxiliary equipment not under direct control of the
central processing unit.

Pertaining to the operation of input/output devices under
direct control of the computer.

A separately coded sequence of instructions which is
inserted into another instruction sequence directly in
the line of flow of control. Sequences generated by
macro-instructions are an example of open subroutines.

1. The absolute storage address of the beginning of
a program or block.

2. In relative coding, the absolute storage address to
which 'addresses in a region are referenced.

In an arithmetic operation, the generation of a quantity
beyond the capacity of the register.

1. For addition, generation of a sum greater than the
capacity of a sum register.

2. For division, generation of a quotient greater than
the capacity of the quotient register.

Precision

11.16.01
5 (6/61)

The number of significant digits in a quantity
(see "Accuracy").

Record

Redundancy Check

Register

Reset

Rewind

ROWld-off Error

Routine

Row Binary

11. 18. 01
5 (6/61)

A Wlit of information for computer input or output. A
record may be of indefinite length, and need not be read
in its entirety. A physical record is the smallest unit
at which an input or output device may be positioned.

A check which uses extra bits.

The hardware for temporarily storing information while
or Wltil it is used. (Usually not main storage.)

To set a field or switch back to an initial or standard
condition.

To return a magnetic tape to its beginning point.

The error resulting from dropping the least significant
digits of a number, and adj usting the most significant
digits.

A sequence of machine instructions which carry out
a well-defined function.

A binary card format in which the first word occupies
the first 36 columns of the 9 row (hence, 9L), the
second word occupies columns 37-72 of the 9 row
(hence, 9R), the third word occupies 8L, and so on
through 12R.

Self-loading

Simulator

Snap, Snapshot

Subroutine

Supervisor

Symbolic Coding

Symbolic Language

Symbolic Modification

11.19.01
5 (6/61)

A term applied to a sequence of instructions which are
so constructed that the first few instructions make the
machine accept the following instructions automatically.
(Sometimes referred to as "bootstrap. ")

1. A program or routine cOl.-responding to a
mathematical model or representing a physical model.

2. A routine which runs on one computer and imitates
the operations of another.

A dynamic Dump, obtained by somehow interrupting
the progress of a computation while a Monitor routine
collects the desired information, after which the machine
status at the time of interruption is restored and the
computation resumed. The routine in SOS which
performs such fWlctions is called SNAP and the routine
which converts the information for output is called
SNAPTRAN.

See "Open Subroutine" and "Closed Subroutine. "

See "Monitor. "

1. Broadly, any coding system in which symbols other
than machine addresses are used.

2. A method of coding in which addresses are
represented by arbitrary symbols bearing no
absolute or relative relationship to actual memory
locations (these symbols may be descriptive of the
contents). In fact, the symbolic coding itself may
bear little resemblance to machine language.

Any collection of symbols used in programming to
represent operation codes, fWlctions and/or addresses,
with rules of usage.

The insertion or deletion of coding in a SQUOZE deck
by reference to symbolic locations in the original source
program.

Tracing

Translate

Trapping

11.20.01
5 (6/61)

An interpretive diagnostic technique to record executed
instructions and results on an output device during
execution.

To change information from one form of representation
to another without significantly affecting the meaning.

1. A hardware provision for interrupting the normal
flow of control of a program while transfer is
made to a known location. The trapping features
are most commonly used by Monitor routines or
for commWlication between input and output routines
and the programs using them.

2. A technique of debugging for obtaining information
during the execution of a routine.

II

Utility Routines

11. 21. 01
5 (6/61)

m
Standardized routines which perform a basic service.

APPENDIX 1

TABLE OF PERMISSIBLE CHARACTERS

-- -
§;::;-~ C\I s:l- - s:l ~ -.....

~ - -
~ C1I C\I J.. o C1I Q) U C1I

~
..... t) o Q) Q) t) C1I ... J.. "0 Q) 0 Q) C1I ...

J.. C1I "0"0 Q) 0 Q) ... U Q)
"0 0 "0 t) f.LlU

Q) "0 0
Q) 0 Q) ... f.Ll U U Q) 0 "0 -

"0 U
~.2.

... "0- o 0 N 0 ... "0- "0 U N 0 C1I o 0 U Q) U o Q)
U Q) U o Q) o 0 o- J.. "5 U o Q) U- o Q)

C1I ~ "0 U O'l U- 0-
C1I "5'"0 U O'l U- C1I U O'l J.. C1I

8 ~
~ Q)

J.. ~ Q) 0 s:l "E C1I Cl 8. ~'"O C1I U J.. Cl J.. o'g C1I s:l J-o Cl ~
Q)

o'g Cl () ~ s:l C1I Cl p. ::s C1I 0 0 U 13 (; ,t ~ P-.U U C1I U ,t U V) U U B U C1I V)u U ... j:QE-< V)U j:QV) j:QE-<
j:QV) j:QE-< j:QV)

blank blank 60 40 0 G 12 27 67 21 W 0 66 26 41 7 6

0 0 0 12 1 H 12 30 70 22 X 0 67 27 42 8 7

1 1 1 1 2 I 12 31 71 23 Y 0 70 30 43 9 8

2 2 2 2 3 J 11 41 41 24 Z 0 71 31 44 1 9

3 3 3 3 4 K 11 42 42 25 = t 3-8 13 13 45 2 #

4 4 4 4 5 L 11 43 43 26 ~ 0 74 34 46 3 4-8

5 5 5 5 6 M 11 44 44 27) 12 34 74 47 4 n 4-8

6 6 6 6 7 N 11 45 45 30
+ ,. 12 32 72 50

5 & 0

7 7 7 7 10 0 11 46 46 31
,

11 52 52 51
6 - 0

8 8 10 10 11 P 11 47 47 32
- .,

4-8 14 14 52 7 @

9 9 11 11 12 Q 11 50 50 33 + t 12 20 60 53 8 &

A 12 21 61 13 R 11 51 51 34 - t 11 40 40 54 1 9

B 12 22 62 14 S 0 62 22 35 * t 11 54 54 55 2 2 4-8

C 12 23 63 15 T 0 63 23 36 / t 0 61 21 56 3 3 1

D 12 24 64 16 U 0 64 24 37 $ t 11 53 53 57 4 4 3-8

E 12 25 65 17 V 0 65 25 40 t 0 73 33 60 5 5
,

3-8

F 12 26 66 20 . 12 33 73 61 6 3-8

t Character may not be used in a symbol.
I Character is not normally used. When it is used it will not be considered a sign.

12.01. 00. 01
2 (2/60)

APPENDIX 2

SQUOZE OPERATION CODES

I. 5 -bit Operation Codes

Octal Mnemonic Octal Mnemonic Octal Mnemonic Octal Mnemonic
-0- ACL ---w FMP ~ STO 30 TPL

1 ADD 11 FSB 21 STQ 31 TRA
2 AXT 12 LDQ 22 SXA 32 TSX
3 CAL 13 LXA 23 SXD 33 TXH
4 CLA 14 LXD 24 TIX 34 TXI
5 CLS 15 PSEt 25 TMI 35 TXL
6 FAD 16 PZE 26 TNX 36 TZE
7 FDP 17 STA 27 TNZ 37 XCA

t: Included in this category are all the 709 instructions which have +0760 in the
upper twelve bits and use the address as part of the operation code, i. e., the
instructions

BTT ENK PSE SPR
CFF ETM RCT SPT
CHS FRN RND SPU
CLM lOT SLF SSP
COM LBT SLN SWT
DCT

II. 9-bit Codes

Octal Mnemonic Octal Mnemonic Octal Mnemonic Octal Mnemonic
--;w- ADM ~ FOR 110 LCHD 134 OAI

41 ALS 65 FSM 111 LCHE 135 OFT
42 ANA 66 FVE 112 LCHF 136 ONT
43 ANS 67 HPR 113 LDA 137 ORA
44 ARS 70 HTR 114 LDC 140 ORS
45 AXC 71 lIA 115 LDI 141 OSI
46 BSF 72 IlL 116 LFT 142 PAC
47 BSR 73 IIR 117 LGL 143 PAl
50 CAD 74 IIS 120 LGR 144 PAX
51 CAQ 75 IOCD(N) 121 LLS 145 PDC
52 CAS 76 IOCP(N) 122 LNT 146 PDX
53 CPY 77 IOCT(N) 123 LRS 147 PIA
54 CRQ 100 IORP(N) 124 MON 150 PON
55 CVR 101 IORT(N) 125 MPR 151 PTH
56 DVH 102 IOSP(N) 126 MPY 152 PTW
57 DVP 103 LAC 127 MTH 153 PXA
60 ERA 104 LAS 130 MTW 154 PXD
61 MSE@ 105 LCHA 131 MZE 155 RDS #
62 FAM 106 LCHB 132 NOP 156 REW
63 FDH 107 LCHC 133 NZT 157 RFT

12.02.00.01
2 (2/60)

160 RIA 213 SVN 246 TQP 301 RCHF
161 RIL 214 TCH 247 TRCA 302 / / / (invalid code)
162 RIR 215 TCNA 250 TRCB 303 TQO
163 RIS 216 TCNB 251 TRCC 304 LCHG
164 RNT 217 TCNC 252 TRCD 305 LCHH
165 RQL 220 TCND 253 TRCE 306 RCHG
166 SBM 221 TCNE 254 TRCF 307 RCHH
167 SCHA 222 TCNF 255 TTR 310 SCHG
170 SCHB 223 TCOA 256 ENB 311 SCHH
171 SCHC 224 TCOB 257 UAM 312 TCNG
172 SCHD 225 TCOC 260 UFA 313 TCNH
173 SCHE 226 TCOD 261 UFM 314 TCOG
174 SCHF 227 TCOE 262 UFS 315 TCOH
175 SIL 230 TCOF 263 USM 316 TEFG
176 SIR 231 TEFA 264 VDH 317 TEFH
177 SIX 232 TEFB 265 VDP 320 TRCG
200 SLQ 233 TEFC 266 VLM 321 TRCH
201 SLW 234 TEFD 267 WEF 322 SDN
202 STD 235 TEFE 270 XCL 323 RUN
203 STI 236 TEFF 271 ZET 324 EAD
204 STL 237 TIF 272 IOST(N) 325 EDP
205 STP 240 TIO 273 blank 326 ELD
206 STR 241 TLQ 274 RCHA 327 EMP
207 WRS * 242 TNO 275 RCHB 330 ESB
210 STT 243 XEC 276 RCHC 331 EST
211 STZ 244 ESNT 277 RCHD 332 EUA
212 SUB 245 TOV 300 RCHE

NOTES:

@: This category includes all 709 instructions which have -0760 as their upper
twelve bits and use the address as part of the operation. These are:

ECTM LTM
EFTM MSE
ESTM PBT
ETT SLT
LFTM SSM
LSNM

#: This code is used for the following extended operations for Read Select:

RCD RTB
RDR RTD
RPR

*. This code is used for the following extended operations for Write Select:

WDR
WPB
WPD
WPU

12.02.00.02
2 (2/60)

WTB
WTD
WTV

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 1: GENERAL ARRANGEMENT

The SQUOZE deck produced by SOS is divided as follows and punched in the
order given:

Preface
Heading Table
Macro-instruction Name Table
Blank Card
Macro-instruction Skeletons
Introduction
Dictionary
Footnotes
Text Without Commentary
Text With Commentary

This Appendix only describes the SQUOZE deck as produced by SOS, the actual
structure of the deck when used is given in Section 08: IB Monitor or Section 09:
SHARE Monitor.

Each card in the deck (except the blank card appearing between the Macro­
instruction Name Table and the Macro-instruction Skeletons) has word 1 (9 -left
in row binary cards, and columns 1-3 in columnar binary cards) punched as
follows:

Bits
S

1-5

6-8

9-11

12-23

24-35

Contents
1

Count of data words in this card.

High order bits of the sequence number of this card.

101

Low order bits of the sequence number of this card.

Logical check sum of all words (except bits 24-35 of
word 1) contained in this card.

The remaining 23 words of the cards may be punched with up to 23 data words.
The manner in which these words are punched varies from section to section and
is described in the following chapters.

12.03. 01. 01
2 (2/60)

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 2: PREFACE

This section always consists on one and only one card. The card contains a
summary of the sizes of the following sections and is used as a basis for the
allocations of storage, etc.

The Preface card is punched:

Data Word
1

2

3

4

5

6

7

12.03.02.01
2 (2/60)

Bit Positions Used
all

all

S, 1- 2
3-17

18-20
21-35

S, 1- 2
3-17

S,

S,

18-20
21-35

all

1- 2
3-17

18-20
21-35

1- 2
3-17

18-35

Contents
First six BCD characters of the program
identification (taken from the JOB card, see
description of the Monitor program used).

Second six BCD characters of the program
identification.

Unused.
Number of words in the Introduction.
Unused.
Number of words in the Heading Table.

Unused.
Number of words in the Macro-instruction
Name Table.
Unused.
Number of words in the longest programmer
macro-instruction skeleton.

Number of Dictionary entries.

Unused.
Location of the END instruction relative to
the first item in the Dictionary.
Unused.
Number of words in the Footnotes section.

Unused.
Number of bits required for dictionary
references.
Number of words of Text With Commentary.

8 S, 1- 2 Unused.
3-17 Highest alter number used in program.

18-35 Number of words of Text Without Commentary.

9 all Total number of words in all programmer
macro-instruction skeletons.

10 all Date of compilation (taken from the DATE
card; see the section on the Monitor used).

11-23 all Unused.

12.03.02.02
2 (2/60)

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 3: HEADING TABLE

This section is included only when heading characters are used in a program.
When supplied with the SQUOZE deck, the table begins in a new card, and uses
as many cards as are necessary to contain the table. The heading characters
included in the Heading Table are punched in the data words of SQUOZE cards
in the order of their appearances in the program. The first data word in the
table, when supplied, is always punched with zeros; the remaining words re­
quired for the table are punched as follows:

12.03.03.01
2 (2/60)

Bit Positions Used
S, 1- 2

3-17

18-20

21-35

Contents
Unused.

Alter number of HEAD instruction.

Unused.

Base 50 representation of heading
character (see Appendix 1).

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 4: MACRO-INSTRUCTION NAME TABLE

This section is only punched when the program uses programmer macro-instructions.
The table is punched beginning on a new card, and uses as many cards as are
necessary. Two consecutive data words are used for each name in the table.
The first data word for each entry contains the name of the macro-instruction
in BCD representation; the name is left-justified and the unused low order
positions are filled in with zeros. The names in the table are arranged in the
order in which they are encountered.

The second data word for each entry contains the following information:

Bit Positions Used
S, 1- 2}

18-20

3-17

21-35

12.03.04.01
2 (2/60)

Contents
Number of parameters in the macro­
instruction skeleton.

Number of words in the macro-instruction
skeleton.

The relative position, in the Macro­
instruction Skeleton Table, of the first
word of the first macro-instruction skeleton.
(The first word of the table is numbered
zero, and the remaining words are numbered
sequentially.)

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 5: BLANK CARD

The blank card included in the SQUOZE deck is always supplied by SOS. This
card is unnumbered and no sequence number is reserved for it. The card is
supplied to indicate the place at which modifications are inserted, must not be
removed from the deck, and must follow modification cards.

12.03. 05. 01
2 (2/60)

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 6: MACRO-INSTRUCTION SKELETON TABLE

This section is punched only when programmer macro-instructions are used
in the program. This section starts on a new card, and occupies as many
cards as are necessary. Each macro-instruction skeleton uses a continuous
string of bits, and each string begins in a new word. A skeleton is punched
as follows:

Number of
Bits Used Contents Comments

1 0 Beginning of new instruction.

1 or 2 0 No location symbol.
10 Location symbol is present and is not a

parameter of the macro-instruction.
11 Location symbol is a parameter.

0,5, or 36 Location This is the BCD representation of the symbol.
symbol
(36-bits)

Parameter Parameters are numbered beginning with o.
number
(5-bits)

1 0 Operation code is not a parameter.
1 Operation code is a parameter.

5 or 6 Parameter Parameter number of operation code.
number
(5-bits)

Count of The number of BCD characters in the
characters in operation code.
operation code

(6-bits)

XX Operation The number of bits used in six times the
code character count.

12.03.06.01
2 (2/60)

1

xx

1

xx

Variable subfields:
4

4,6, or XX

R:
1 or 2

12.03.06.02
2 (2/60)

o
1

Variable
field

1
o

Zeros

T

R

1
00
01

Instruction is indirectly addressed.
Instruction is not indirectly addressed.

The variable field may contain any number
of filIUbfields, each of which has the form
T1R1T2R2 ... TnRnTn+1, where T and R
are described below.

End of skeleton.
Beginning of a new instruction. (This is the
same bit as described first in this list.)

This field fills unused bits of the last word
used for the skeleton.

This is a connector between two items in a
subfield. All connectors are included, even
leading plus signs which were omitted when
the skeleton was coded. Leading plus signs
are generally deleted when the SQUOZE deck
is decoded.

If Tis:
0000
0001
0010
0011
0100
0101
1001
1010

the connector is:
+

/ (VFD separator)

*
/ (division sign)
$
blank

The trailing T in a subfield is a blank, comma
or VFD separator to terminate the subfield.
FollOwing a comma or a VFD separator,
another subfield is begun. The blank terminates
the instruction.

This field is punched as indicated below.

Entry is a parameter.
Entry is a symbol or constant.
Entry is a system macro-instruction name.

2, 4,or 5

xx

Parameter
number
(5-bits)

System macro­
instruction name
table reference

(2-bits)

(If preceding field is 1.) Omit next field.

(If preceding field is 01.) Omit next field.

Count of charac - The number of BCD characters in the
ters in symbol or symbol or constant.
constant (4-bits)

Symbol or
constant (BCD
form)

The number of bits used in six times the
character count.

No provisions are available for the inclusion of comments or remarks in the
skeleton.

12.03.06.03
2 (2/60)

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 7: INTRODUCTION

The Introduction is only supplied with the SQUOZE deck when generative pseudo­
instructions and/or commentary cards, i. e., remarks cards and listing pseudo­
operations, are included in the program. The section starts on a new card and
uses as many cards as are necessary.

Data words in this section contain entries in the order in which they are encountered.

The information for each entry in this section is punched as follows:

I. For generative pseudo-operations:

Bit Positions Used
S

1- 2

3-17

18-20

21-35

II. For Commentary cards:

Bit Positions Used
S

1- 2

3-17

18-20

21-35

12.03.07. 01
2 (2/60)

Contents
o

Unused.

Alter number of the instruction.

Count of the commentary cards which appear at the
end of the set of machine words generated by the
pseudo-instruction. As many as seven are permitted,
and the number can be non -zero for macro-instructions
only.

(n -1), where n is the number of words generated by
the instruction.

Contents
1

Unused.

Alter number of the commentary card or of the first
of a consecutive set of such cards.

Unused.

Number of consecutive commentary cards.

APP'ENDIX 3

SQUOZE DECK FORMAT

CHAPTER 8: DICTIONARY

A Dictionary is punched for all programs. The section occupies as many cards
as necessary. The Dictionary is divided into two halves each beginning on a new
card. A word in each half is used for every item. The words in the first half
of the Dictionary are called "first word entries" and those in the second half
"second word entries." The first word entries are arranged in ascending order
according to bits 1-35; the second word entries are arranged in the same order
as the corresponding first word entries.

The first two entries in each half of the Dictionary are used for special purposes.
The first entry (number 0) is the reference for the "*,, which means "the contents
of the location counter." Bits 3-17 of the second'word entry for this item contain
the number of the item which was encountered first in the program (the remainder
of the word is zero). The second entry (number 1) is the reference for invalid
symbols. Subsequent entries are numbered beginning with 2.

First Word Entries

Two types of first word entries may appear in the Dictionary:

I. For location symbols and the pseudo-operations SYN, EQU, and BOOL:

Bit Positions Used
S

1

2-35

12.03.08.01
5 (6/61)

Contents
o - Entry is a symbol which is the location symbol

of a machine instruction or generative pseudo­
instruction.

1 - Entry is for SYN, EQU, or BOOL instruction,
or for a symbol associated with BES, BSS,
END, ORG, or TCD.

o - Symbol which follows is six characters long.
1 - Symbol is fewer than six characters in length.
Base 50 representation of the symbol with heading
character. (For SYN, EQU, and BOOL entries
this is the location symbol of the instruction.)

The base 50 representation of a symbol is obtained
as follows:
a. If the symbol has fewer than five characters, it

is headed (by blank if it is in an unheaded region).
b. The symbol with it heading character is left­

justified and any unused low-order positions are
filled with blanks.

c. Each character in the symbol is replaced by it
base 50 equivalent.

d. The result is then converted by the following:
if the symbol, after each character is repaced
by its base 50 equivalent, is ABCDEF, its base
50 representation is (A*502+B*50+C)*217+(D*502

+E*50+F).

ll. For the pseudo-operations ORG, BSS, BES, HEAD, TCD, and END:

Bit Positions Used
S

1- 8

9-20

21-22

23-35

Second Word Entries

Contents
1

Type code:
3728 ORG
3738 BES
3748 BSS
3758 HEAD
3768 TeD
3778 END

Unused.

00

These bits indicate the position in the Dictionary
of the next item encountered during the scanning
of the program. Thus, they indicate the order in
which the Dictionary entries were made. However,
the entry for END will have the base 50 representation
of the current heading character in these bits.

There are five types of second word entries which may appear in the Dictionary.

I. For location symbols of machine instructions:

Bit Positions Used
S

1

2

12.03.08.02
5 (6/61)

Contents
o - Symbol is defined.
1 - Symbol is undefined.

Unused.

o - Symbol is not exempt.
1 - Symbol is exempt.

3- 4

5-17

18-20

21-35

Unused.

These bits indicate the position in the Dictionary
of the entry for the next item for the program.

Debugging code.

Separation count, i. e., 1 plus the sum of the number
of machine instructions, principal pseudo-operations,
and instructions generated by generative pseudo­
operations encountered in the program prior to this
instruction.

II. For location symbols of principal pseudo-instructions ORG, BES, BSS,
TCD, and END:

Bit Positions Used
S

1- 4

5-17

18-20

21-35

Contents
o - Symbol is defined.
1 - Symbol is undefined.

0010

Location in the Dictionary of the corresponding
pseudo-operation entry (see III below).

Debugging code.

Separation count.

III. For operations of principal pseudo-instructions ORG, BSS, BES, TCD and
END:

Bit Positions Used
S

1- 4

5-17

18-20

21-35

12.03.08.03
5 (6/61)

Contents
o - Instruction not removed by a modification.
1 - Instruction removed by a modification.

0000

The word of the Footnotes section containing the
first 18-bit unit of the footnote for this item. (The
words in the Footnotes are numbered consecutively
beginning with o.)

Unused.

Separation count.

IV. For HEAD pseudo-operation:

Bit Positions Used
S

1-11

12-17

IS-20

21-35

Contents
o - Instruction not removed.
1 - Instruction removed by a modification.

Unused.

Base 50 representation of heading character.

Unused.

Separation count.

V. For SYN, EQU, and BOOL pseudo-operations:

Bit Positions Used
S

1

2- 4

5-17'

IS-20

21-35

Contents
o - Defined symbol in variable field.
1 - Undefined symbol in variable field.

o - Pseudo-operation is EQU or SYN.
1 - Pseudo-operation is BOOL.

000

The position in the Footnotes section of the word
containing the first IS-bit unit of the footnote for
this item.

Debugging code.

Separation count.

VI. The second word entry for multiply defined symbols is always (7000 000 700 OOO)S
or (600 000 700 OOO)S.

VII. There are n+l entries for a symbol defined n times in a program (n>I). The
dummy entry (the one with the second word entry 700 000 700 OOOS or
600 000 700 OOOS) will appear in the normal position, i. e., in the sorted list.
Reference in the Text or Footnotes to a multiply defined symbol will be to this
entry. The remaining n dictionary entries appear after the entry for the
END card. The entries are referred to in the ordinary way within the
dictionary. That is, the reference in one entry to a next item which is
multiply defined will be to an item following the entry END, not to the
dummy entry.

12.03. OS. 04
5 (6/61)

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 9: FOOTNOTES

This section begins on a new card and uses as many cards as are necessary.
The footnotes are arranged in the order in which they were developed by SOS.
Each footnote occupies as many bits as are required; and each new footnote
begins in a new data word. Footnotes are punched as follows:

Bits S, 1-17 of the first data word used may be punched in either of two
ways depending on the pseudo-operation which corresponds to the footnote:

I. ORG, BSS, BES, TCD, and END:

Bit Positions Used
S

1

2- 4

5-17

II. SYN, EQU, and BOOL:

Bit Positions Used
S

1

2

3- 4

5-17

12. 03. 09. 01
5 (6/61)

Contents
1 - beginning of new footnote.

o - no symbol is associated with the pseudo-operation.
1 - a symbol is associated with the pseudo-operation.

000

If bit 1 is 0: Unused.
If bit 1 is 1: The position in the Dictionary of the

location symbol of the instruction.

Contents
1 - beginning of a new footnote.

Unused.

o - pseudo-operation is SYN or EQU.
1 - pseudo-operation is BaaL.

Unused.

The position of the next entry made in the Dictionary.

The remainder of the footnote is divided into 18-bit units which are punched
as follows:

Bit Positions Used
o

1- 3

4

5

6

7-17

12.03.09.02
5 (6/61)

Contents
o - Continuation of footnote (carried at the beginning

of a word only).

Connector:
000 +
001
010 End of footnote
011 $
100 *
101 /
110
111 Unused

If the connector is 011 ($) bits 4-17 contain the
base 50 representation of the heading character.

If the connector is 010 (end of footnote) hits 4-17
contain zeros. Note that if the connector would fall
in bit positions 1-3, the end of the footnote is
indicated by the beginning of the next footnote.

When the connector is +, -, *, or /, bits 4-17
are used as indicated below.

o - Constant follows, succeeding bits are used as
indicated below.

1 - Dictionary reference follows (in bits 5-17).

o - 12-bit constant follows.
1 - 18- or 35-bit constant follows.

If bit 5 is 0, this is the high-order bit of a 12-bit
constant.

If bit 5 is 1:
o - 18-bit constant follows
1 - 35-bit constant follows

If constant is 12 bits long, these are the 11 low­
order bits.

If constant is 35 bits long, these bits are unused.

When a constant is 18 or 35 bits long and the preceding connector is in bit positions
19-21, the constant is carried in the following word which is punched:

Bit Positions Used
S

1-18

19-35

Contents
o - continuation of previous footnote.

18-bit constant or high-order bits of 35-bit
constant

Low-order bits of 35-bit constant, or next connector
(in this case the continuation bit is not used).

If the preceding connector is in bit positions 1-3, an 18-bit constant will
appear in bit positions 18-35.

If a footnote requires more than 36 bits, succeeding 18-bit units are used.

12.03.09.03
5 (6/61)

APPENDIX 3

SQUOZE DECK FORMAT

CHAPTER 10: TEXT

This section is supplied in two forms; one with commentary and one without
commentary. Both sections are divided into groups of 230 data words. Each
group appears in the order in which they appear in the program; however, within
each group, the data words appear in inverse order.

The non-commentary text differs from the commentary text in the following respects:

1. where a single bit is used (see below) to indicate whether comments do or do
not follow, the bit is always zero in the non-commentary text and the comment
field is omitted.

2. when a character count is used instead of a single bit, the count will be zero;
the comments are again omitted.

3. information in the variable and comments fields of DEC, DUP, LBR, SQZ,
macro-instructions, ETC following a macro, and listing pseudo-operations
are omitted.

4. remarks are omitted.

5. The operation fields of macro-instructions are omitted.

Note that in all cases, the alter numbers are the same in both commentary and
non-commentary texts.

The number of data words required for the text of an instruction varies according
to the information included with the instruction, so that the text can only be
thought of as strings of bits. Within a string, the bits have the following significance
in the order of their appearance.

Number of
Bits Used

1

I. Instructions:
1

1

12.03.10.01
5 (6/61)

Contents
o
1

o
1

o
1

Comments
Instruction follows. (See I below.)
Special item follows. (See n below.)

Five bit o.per ation code.
Nine bit operation code.

Instruction not indirectly addressed.
Instruction indirectly addressed.

5 or 9

2

o or XX

1 or 2

Operation
code

00

01

10

11

Address of
dictionary
reference

1
00
01

0,3 or ~ tag

1 or 2

o or 1

o or XX

o or 1

1

o or 1

12.03.10.02
5 (6/61)

1
00

01

o

1

Decrement
or count

o
1

o
1

o

1

(SQUOZE code for operation)

Simple address; dictionary reference or
constant follows. (See Note 1, page 12. 03. 10. 07.)
Complex address; expression follows. (See
Note 2, page 12. 03. 10. 07.)
Relative address; expression follows. (See
Note 3, page 12. 03. 10. 07.)
No address; next field is omitted.

Address sizes depend .on the form, and the
dictionary reference size. (See Notes 1-3,
page 12.03.10.07.)

No tag; next field is omitted.
Absolute tag; tag follows.
Complex tag; expression follows. (See Note 2,
page 12. 03. 10. 07.)

No decrement; next three fields are omitted.
Simple decrement field; decrement follows.
(See Note 1, page 12. 03. 10. 07.)
Complex decrement field; decrement follows;
(See Note 2, page 12. 03. 10. 07.)

Decrement field contains a count for variable
length arithmetic or convert instruction.
Decrement field is not a count.

Decrement sizes depend on the form and the
dictionary reference size. (See Notes 1-3,
page 12. 03. 10. 07.)

Sign of decrement is +.
Sign of decrement is -.

No comments are associated with the instruction
Comments are present, and follow.

Comment begins in the same column as the first
comment in the program.
Comment does not begin in the same column as the
first comment in program.

o or 6

o or XX

IT Special Item:
2

Count of
Characters
in comments

Comments
(BCD form)

00
01
11
10

The number of bits used for this entry is six times
the character count.

Principal pseudo-operation. (See IT. A. below.)
Commentary. (See II. B. below.)
Data. (See IT. C. below.)
Control (See II. D. below).

A. Principal Pseudo-operations:
1 0 Operation is ORG, BSS, or BES.

1 Operation is EQU, SYN, or BOOL.

xx

1

o or 1

o or 6

o or XX

Dictionary
Reference

o
1

o

1

Count of
characters
in comments

Comments
(BCD form)

B. Commentary:
1 0

1

(1) Pseudo-operations:
3 000

12.03.10.03
5 (6/61)

001
010
011
100
101
110
111

The number of bits used, XX, is specified in data
word 7, bits 3-17 of the Preface.

No comments are associated with the item.
Comments are present and follow.

Comment begins in the same column as the first
comment in the program.
Comment does not begin in the same column as
the first comment in the program.

The number of bits used for this entry is six times
the character count.

Pseudo-operation. (See II. B. (1) below.)
Remarks. (See II. B. (2) below.)

ETC
DUP
Macro-instruction
LBR
DEC
OCT
BCI
SQZ.

7 Count of char-
acters in vari-
able field and/
or comments

XX Variable
field and/or
comments'
(BCD form)

(2) Remarks:
3

7

XX

C. Data: -36

1

o or 1

o or 6

12.03.10.04
5 (6/61)

000
001
010
011
100
101
110
111

Count of
char acter s in
variable
field and/or
comments

Variable field
and/or
comments
(BCD form)

Data item

o
1

o

1

Character
count of
comments

Number of BCD characters (not carried with
OCT and BCI, see Note 3, Page 12. 03. 10. 07).
In the case of macro-instructions, the operation
code is also included.

The number of bits used for this entry is six
times the character count.

LIST
UN LIST
DETAIL
TITLE
SPACE
EJECT
Unused
Remarks

If entry is 000000, no variable field follows.

The number of bits used for this entry is six
times the character count.

One entry is made for pseudo-operation and
each data word of an OCT, BCI and DEC in­
struction (See Note 4, page 12. 03. 10. 07.)

No comments are associated with the item.
Comments are present and follow.

Comment begins in the same column as the first
comment in the program.
Comment does not begin in the same column as
the fir st comment in the program.

This information is associated with only the last
item from an OCT, BCI or DEC card.

o or XX

D. Control:
2

Comments
(BCD form)

00

10
11
01

(1) TCD:
XX

1

o or 1

o or 6

OorXX

Dictionary
reference

o
1

o

1

Character
count of
comments

Comments
(BCD form)

(2) END:
xx

8

1

o or 1

12.03.10.05
5 (6/61)

Dictionary
reference

Residue of
synchroniz­
ation count

o
1

o

1

The number of bits used for this entry is six
times the character count.

End of modifications (used only by Modify and
Load).
TCD. (See ll. D. (1) below.)
END. (See ll. D. (2) below.)
Other. (See U. D. (3) below.)

The number of bits used for this entry is
specified in data word 7, bits 3-17 of the Preface.

No comments are associated with the item.
Comments are present and follow.

Comment begins in the same column as the first
comment in the program.
Comment does not begin in the same column as
the first comment in the program.

The number of bits used for this entry is six
times the character count.

The number of bits used for this entry is
specified in data word 7, bits 3-17 of the Preface.

256-x, where x is the number of entries, including
this one, which have been made since the last
synchronization count. (See (3) below.)

No comments are associated with the item.
Comments are present and follow.

Comment begins in the same column as the fii-st
comment in the program.
Comment does not begin in the same column as
the first comment in the program.

o or 6

OorXX

Character
count of
comments

Comments
(BCD form)

(3) Other:
3 000

6

1

o or 1

o or 6

o or XX

XX

12.03.10.06
5 (6/61)

(a)

(b)

001
010
011
100
101
110
111

HEAD:
Heading
character

0
1

0

1

Character
count of
comments

Comments

VFD:
Variable
field

The number of bits used for this entry is six
times the character count.

Synchronization count (every 256th entry).
Heading. (See U. D. (3)(a) below.)
VFD. (See n. D. (3)(b) below.)

Reserved for expansion of the system.

Base 50 representation of heading character.

No comments are associated with the item.
Comments are present am follow.

Comment begins in the same column as the first
comment in the program.
Comment does not begin in the same column as
the first comment in the program.

The number of bits used for this entry is six
times the charaoter count.

The number of bits used for this entry depends
on the length of the variable field and the size
required for dictionary references. The entry
is subdivided into fields as shown in ll. D. (3)(b)
i. below.
The format is:

K1L1F1 K2L2F2. · · KnLnFnKn+1

2

6

L

i. Variable field subdivisions:
K Field type:

L

F

00 - Complex field follows. (See
Note 1, below.)

01 - end of VFD instruction.
10 - Hollerith field follows.
11 - Octal field follows.

Bit count of field which follows.

VFD subfield.

Note 1: A simple field, R, is a dictionary reference if the first bit is 1. The
number of hits used for the reference is specified in data word 7, bits 3-17
of the Preface. R is a constant if the first bit is O. If the next two bits are:

00 - a four-bit constant follows.
01 - a twelve-bit constant follows.
10 - an eighteen-bit constant follOWS.
11 - a thirty--five-bit constant follows.

Note 2: Complex fields have the form T 1 R1 T 2R2 ... T nRn T n+ V where T represents
the type of connector used in a complex field; and R is used to represent
dictionary references or constants shown in Note 1. Exception: If T = 011
($), the R which follows is the 6-bit, base 50 heading character which
preceded the $ in the original symbolic field.

If T is 000 the connector is +
001 "
010 "
011
100
101
110
111

"
"
"

End of field
$
*
/
Unused

Note 3: Relative fields have the form RIR2S; where R is as shown above and S
is used to represent a sign in a relative expression; S always occupies
one bit only. If S is 0, the sign is plus (+); if S is 1 the sign is minus (-).

Note 4: For OCT, BCI, and DEC instructions, n+1 entries are made. For BCI,
n is defined by the first subfield of the instruction. For OCT and DEC,
n is the number of subfields in the variable field. The first entry is for
the pseudo-operation, the remaining entries are for the n data words.
If comments are also included with anyone of these instructions, only the
n+ 1 th entry will include the comments.

12.03.10.07
5 (6/61)

Examples

The complex field A+B/C*D+35, where (A), (B), (C), (D) represent the positions
in the dictionary of the entry for A, B, C, and D, respectively, would appear
in the text as:

000 1 (A) 000 1 (B) 101 1 (C) 100 1 (D) 000 0 01 000000100011 010

Taking the bits in order, they have the following significance:

000 + (the signs are always explicitly given).
1 Dictionary reference follows.

(A) n-bit Dictionary reference for A.
000 +

1 Dictionary reference follows.
(B) n-bit Dictionary reference for B.
101 /

1 Dictionary reference follows.
(C) n-bit Dictionary reference for C.
100 *

1 Dictionary reference follows.
(D) n-bit Dictionary reference for D.
000 +
o Constant follows.

01 Constant is 12-bits long.
000000100011 35

010 end of field

The relative field A-35, on the other hand, would appear as

l.!J~}' \ 0 01 000090100011j~
A 35 -

12.03.10.08
5 (6/61)

APPENDIX 10

32K IB MONITOR OPERATING NOTES

CHAPTER 1: EQUIPMENT REQUIREMENTS

The use of the 32K IB Monitor with SOS requires the availability of the following
system components:

A. IBM 711 Card Reader

B. IBM 716 Printer

C. IBM 721 Card Punch

D. Three to seven tape units:

1. Unit A1. This unit is used for the SOS system tape and is, of course,
always required.

2. Unit A2. Output for off-line listing is written on this tape. Hence, the
unit need only be available when there is to be such output.

3. Unit A3 is used for two purposes:
a. If Sense Switch 1 is Up, all input is assumed to have been written on

tape by off-line card-to-tape operations, and is read from this tape.
b. When a SQUOZE deck is to be read on-line in columnar binary form,

this tape is used for intermediate storage of input if insufficient
storage space is not otherwise available.

4. Unit A4. H the library tape is required for the processing of a job deck,
it must be on this unit. When the library tape is not required, this unit
need not be readied.

5. Unit A5 is used when SQUOZE or absolute binary output is to be punched
off-line. The unit need only be readied when there is to be such output.

6. Unit Bl must always be readied and is used as a work tape for input by
SOS.

7. Unit B2 must also always be readied. This tape is used by SOS for a
working tape for output.

12.10.01.01
5 (6/61)

APPENDIX 10

32K IB MONITOR OPERATING NOTES

CHAPTER 2: OPERATING INSTRUCTIONS AND PROGRAMMED HALTS

A. Ready the required tape units as outlined above (only tape Al need be re­
wound).

B. Place either the SHARE 1 or SHARE 2 control panel in the printer.

C. If input is to be read from cards, ready job decks in the card reader.

D. Set Sense Switches for the desired options as follows:

Sense
Switch

1
Setting

UP

DOWN

2 Presently unused.

3

4

5

12.10.02.01
5 (6/61)

UP

DOWN

UP

DOWN

UP

DOWN

Option
Input is to be read from tape (A3 must be
readied).
Input is to be read from cards (card reader
must be readied with input).

Only monitor control cards and error statements
are to be printed on-line.
All printing is to be done on -line.

Normal procedure is to be used when loading
the system.
After loading the system, the debugging output
from the preceding job is to be printed. This
feature makes it possible to re"cover debugging
output when the previous job affected the
operation of SOS and had to be terminated.

All information for printing, including monitor
control cards and error statements, is to be
written on tape A2 for off -line tape -to-printer
operations. (Tape A2 must, of course, be
readied.)
No information is to be written on tape A2.

6 UP

DOWN

All card output is to be written on tape for
off -line tape -to-colunmar -binary -card
operation, regardless of whether control cards
specify row binary or columnar binary output.
Card output is to be punched on-line in either
row binary or columnar binary as specified
in the control cards.

Note: H both Sense Switches 3 and 5 are Up during Modify and Load processing,
information for printing will be written on tape A2 and not listed on-line.

E. Depress the Clear key and then the Load Tape key.

HALTS

There are four programme<;:i halts which may occur during processing of a job
deck:

Location
cOWlter (octal)

1370

1402

1746

2420

Explanation
A STOP card has been encountered. If Sense Switch 1
is Up, tape A3 has been rewound. If printing is to be
done off-line, an end-of-file has been written on tape
A2 and the tape rewound. Similarly, if output decks
are to be punched off-line, an end-of-file has been
written on tape A5, and the tape rewound. Tape Al
is always rewound.

A PAUSE card has been encountered. Depression of
the Start key will cause processing to continue.

OR
An end-of-file condition has occurred while reading
input from tape A3.

An end-of-tape condition has occurred on tape A2.

An end-of-tape condition has occurred on tape A5.

In each of the above cases, a message will be printed on-line indicating the
condition which caused the halt. When any other condition arises, an error
statement will be printed out (and, if Sense Switch 5 is UP, written on tape A2)
indicating the condition, (see Appendix 11); when possible the Monitor will continue
processing. If it is not possible to continue, the Monitor will terminate processing
of the job deck and skip to the next deck.

12.10.02.02
5 (6/61)

APPENDIX 12

SHARE MONITOR SYSTEM AND LffiRARY TAPE GENERATION AND UPDATING

In order to incorporate revisions to the various files of the System, the programmer
responsible for the maintenance of SOS at his installation must be familiar with
the use of the WST (Write System Tape) control card, the operation of the WST
file, and the format of the System Tape.

The SHARE Distribution Agency distributes changes either in the form of a mod­
ification package to the current SQUOZE deck of a particular file, or in the form
of a new SQUOZE deck of that file. Therefore, installation-specific revisions
should be accomplished by modifications to the current SQUOZE deck using
CHANGE rather than ALTER in effecting such modifications.

The SQUOZE deck with its modifications must be converted to 709-type absolute
binary before being written on the System Tape.· Modify and Load can be used
for this conversion.

System Tape Format

Each file on the System Tape begins with a one-word Bel file identifier for use by
the System Tape Loader routine. The file identifier is followed by the absolute
code comprising that file. The code is divided into 256-word records. The last
record of a file is a one-word transfer address corresponding to the transfer
card of the absolute binary deck, followed by a physical end-of-file mark.

The format of the System Tape is as follows:

EOF mark
FILE 1:

File Identifier
Record 1

Record n

256 words each

Transfer address record
EOF mark
FILE 2:

File Identifier
Record 1

Record m

256 words each

Transfer address record

12.12.00.01
5 (6/61)

EOF mark

} files consisting of 256-word records

EOF mark
Terminal check sum file (File Identifier is 777 777 777 7778)

Use of System Tape Writer

The WST file is loaded into core storage whenever a WST control card is recog­
nized, whether during Initiation or during Phase 1.

The following control cards are recognized by the System Tape Writer:

A. CHANGE X, Y (X and Yare BCI file identifiers)

The CHANGE card has two possible functions:

1. If the variable field is X, Y, the files on the System records from the
beginning of X to the end of Y would be deleted.

For example,

CHANGE rnTRAN,rnTRAN

would delete that file from SYSTAP. Any or all new files following that
CHANGE card and preceding the next CHANGE or END card would be
inserted at this point.

2. If the variable field contains only X, the new files following that CHANGE
card and preceding the next CHANGE or END card will be inserted
following the file identified by X.

B. CODE A

A is a file identifier of 1-6 BCI characters. The CODE control card is used
to establish the file identifier (see above) for the subsequent absolute deck.

C. ROW

The ROW control card indicates that the absolute deck following is in row
binary. The row binary deck must be followed by a blank card. No equivalent
control card or blank card is required if the absolute deck is column binary.

12.12.00.02
5 (6/61)

D. LAST

The LAST control card causes the System Tape Writer to write an end-of­
file mark on the new tape.

E. END

The END control card indicates that the last modification file has been read
and that the remainder of the System Tape should be copied directly. The
check sums written in the Terminal check sum file will be recomputed before
being written.

Each of the five control cards described above is punched in the standard format.
The exception is that the variable field, when required, must commence in
column 16. In addition, column 1 of each card must contain 7-, 8-, 9-punches.

The System Tape Writer, as presently assembled, is capable of processing files
of up to 44, 0008 words in length. Files must be inserted and/or deleted in the
order in which they appear on the input System Tape. The primary reason for
this restriction is that duplicates of one or more files (using the same file identifier)
may appear on the System Tape to reduce tape searching time. WST prints an
ordered list of file identifiers for this purpose before the updating process is
started.

Examples:

Three examples of the input deck format for System Tape modification are given
below:

A. The purpose of this deck is to replace the current files of M1 and INTRAN
with new versions:

WST
Blank
CHANGE MI, MI
CODE M1
ROW
New row binary absolute deck (with Transfer card)
Blank (used in conjunction with ROW. Note that this is omitted when

the absolute deck is column binary.)
LAST
CHANGE INTRAN,INTRAN
CODE INTRAN
New column binary absolute deck
LAST
END

12.12.00.03
5 (6/61)

B. The purpose of this input deck is to replace the current file of M8, the Modify
and Load Lister, with a new version and to insert the Output 'Editor on a tape
that previously contained no version of the editor. For this example, it is
assumed that the most logical position for the Output Editor is immediately
following SNAPTRAN, the debugging translator.

WST
Blank
CHANGE M8, M8
CODE M8
Absolute deck of M8 in column binary
LAST
CHANGE SNPTRN
CODE OUTED (OUTED is the file identifier of the Output Editor.)
ROW
Absolute deck of Output Editor in row binary
Blank
LAST
END

C. The following deck will reproduce a tape.

WST
Blank
END

Two methods can be used to perform a WST run from a peripheral input tape.

A. Arrange the deck as mentioned above.

B. Start the input tape with the CHANGE card of the first file to be changed (or
inserted after), then CODE, etc. In this case the loader must have the GO
card replaced with a WST card and a blank card following that. Sense Switch
2 will be Up.

C. A JOB card can be used if the deck is to be placed on SYSPIT. Follow this
with a WST card, a blank, and so on as prescr.ibed. The standard loader
should then be used with the GO card and Sense Switch 2 Up.

Naturally, only column binary cards can be read by the off-line card reader.

If the job is to be read on-line with Sense Switch 2 Down, the JOB card method
should not be used. The proper method is to replace the GO card of the loader
with a WST card, followed by a blank, CHANGE card, etc.

12.12.00.04
5 (6/61)

The following procedure is to be used to write a System Library tape as a file
on SYST AP or as a separate tape.

Set deck up as follows:

**

**
**

**

CHANGE

TABLE
ITEM

ITEM

** LAST
** END

SCAT1

LBR
NAME1

}
NAMEn

}

(the file after which Library
routines are desired)

(the name of subroutine)

SQUOZE deck
(must be column binary)
(name of last routine)

SQUOZE deck

The procedure to write the Library file as a separate tape requires exactly the
same deck setup as above, except that the CHANGE card is replaced by a
NOTAPE card ** (NOTAPE is punched in columns 8-13). In this case, the library
tape will be written on SYSES2, or unit B4 if there are no special assignments.

The job is run in the same way as a WST run, with the finished tape being denoted
by an on-line message. In all cases, the message will indicate a completed
SYST AP, when in reality, if the Library tape is being written separately, the
finished tape is not SYSTAP, but SYSLBR.

This may be run as mentioned above using either on-line or off-line input. The
Library file must be in column binary form.

** 7-, 8-, and 9-punches required in column 1.

12.12.00.05
5 (6/61)

APPENDIX 12

32K IB MONITOR OPERATING NOTES

CHAPTER 1: EQUIPMENT REQUIREMENTS

The use of the 32K IB Monitor with SOS requires the availability of the following
system components:

A. IBM 711 Card Reader

B. IBM 716 Printer

C. IBM 721 Card Punch

D. Three to seven tape units:

1. Unit AI. This unit is used for the SOS system tape and is, of course,
always required.

2. Unit A2. Output for off-line listing is written on this tape. Hence, the
unit need only be available when there is to be such output.

3. Unit A3 is used for two purposes:
a. If Sense Switch 1 is Up, all input is assumed to have been written on

tape by off-line card-to-tape operations, and is read from this tape.
b. When a SQUOZE deck is to be read on-line in columnar binary form,

this tape is used for intermediate storage of input if insufficient
storage space is not otherwise available.

4. Unit A4. If the library tape is required for the processing of a job deck,
it must be on this unit. When the library tape is not required, this unit
need not be readied.

5. Unit A5 is used when SQUOZE or absolute binary output is to be punched
off-line. The unit need only be readied when there is to be such output.

6. Unit Bl must always be readied and is used as a work tape for input by
sos.

7. Unit B2 must also always be readied. This tape is used by SOS for a
working tape for output.

12. 12.01. 01
2 (2/60)

APPENDIX 12

32K IB MONITOR OPERATING NOTES

CHAPTER 2: OPERATING INSTRUCTIONS AND PROORAMMED HALTS

A. Ready the required tape units as outlined above (only tape Al need be re­
wound).

B. Place either the SHARE 1 or SHARE 2 control panel in the printer.

C. If input is to be read from cards, ready job decks in the card reader.

D. Set Sense Switches for the desired options as follows:

Sense
Switch

1
Setting

UP

DOWN

2 Presently unused.

3 UP

DOWN

4 UP

DOWN

5 UP

DOWN

12.12.02. 01
2 (2/60)

Option
Input is to be read from tape (A3 must be
readied).
Input is to be read from cards (card reader
must be readied with input).

Only monitor control cards and error statements
are to be printed on-line.
All printing is to be done on-line.

Normal procedure is to be used when loading
the system.
After loading the system, the debugging output
from the preceding job is to be printed. This
feature makes it possible to re"cover debugging
output when the previous job affected the
operation of SOS and had to be terminated.

All information for printing, including monitor
control cards and error statements, is to be
written on tape A2 for off-line tape-to-printer
operations. (Tape A2 must, of course, be
readied.)
No information is to be written on tape A2.

6 UP

DOWN

All card output is to be written on tape for
off-line tape-to-columnar-binary-card
operation, regardless of whether control cards
specify row binary or columnar binary output.
Card output is to be punched on-line in either
row binary or columnar binary as specified
in the control cards.

Note: If both Sense Switches 3 and 5 are Up during Modify and Load processing,
information for printing will be written on tape A2 and not listed on-line.

E. Depress the Clear key and then the Load Tape key.

HALTS

There are four programmed halts which may occur during processing of a job
deck:

Location
counter (octal)

1370

1402

1746

2420

Explanation
A STOP card has been encountered. If Sense Switch 1
is Up, tape A3 has been rewound. If printing is to be
done off-line, an end-of-file has been written on tape
A2 and the tape rewound. Similarly, if output decks
are to be punched off -line, an end -of -file has been
written on tape A5, and the tape rewound. Tape Al
is always rewound.

A PAUSE card has been encountered. Depression of
the Start key will cause processing to continue.

OR
An end~of-file condition has occurred while reading
input from tape A3.

An end -of -tape condition has occurred on tape A2.

An end-of-tape condition has occurred on tape A5.

In each of the above cases, a message will be printed on-line indicating the
condition which caused the halt. When any other condition arises, an error
statement will be prin~ed out (and, if Sense Switch 5 is UP, written on tape A2)
indicating the condition, (see Appendix 13); when possible the Monitor will continue
processing. If it is not possible to continue, the Monitor will terminate processing
of the job deck and skip to the next deck.

12.12.02.02
2 (2/60)

APPENDIX 13

SHARE MONITOR OPERATING NOTES

CHAPTER 1: CONTROL CARDS

This chapter, and the remaining chapters of the appendix, are of interest to
operators only. In the following material, knowledge of the information contained
in Section 09, chapters 1, 2 and 3 is assumed. Therefore the reader of this
appendix should have first read those chapters.

A. ASSIGN

An ASSIGN control card is employed to cause a change in the status or use of
an I/O unit. It is placed before the GO control card (see below) in the loader.
It may also be used between phases.

The format of an ASSIGN card is:

ASSIGN XN=Z

where X is an alphabetic channel designation (A through F)
N is a tape number (not used for card equipment)
Z is the assignment desired for the specified I/o unit.

Examples:

Z = OFF to disconnect the unit and make it unavailable for use.
= ON to place the I/O unit in an "unassigned and available" status.
= SYSXXX, referring to the Communication Region control word

for the symbolic unit named.

1. ASSIGN C = SYSCRD

causes the System to use the card reader on channel C for on-line input.

2. ASSIGN A5 = OFF

will force the System to avoid the use of tape drive 5 on channel A for
any purpose and to print an error message to the operator if an attempt
is made to assign A5 for System or object program use.

3. ASSIGN A5 = ON

will return the specified physical unit to available status.

12.13.01.01
5 (6/61)

4. ASSIGN B4 = SYSPOT

B. DATE

will cause tape B4 to be used as the Peripheral Output Tape during all
subsequent phases which require it until reassignment or initialization.

Note: Reassignment of system tapes is permitted only at specific
intervals. SYSTAP may be reassigned only during initiation, SYSMIT
and SYSMOT between cycles (i. e., preceding execution of the input
phase), and all other system tapes between phases.

A DATE control card may be placed before the GO card in the loader. The
date is then available for use by the accounting routines, by the Compiler
which places it in 4-left row of the Preface card of SQUOZE decks, and by
the Lister which places it on each page of listings. The format of a DATE
card is:

DATE M/D/Y
where M consists of 2 decimal digits specifying the month

D consists of 2 decimal digits specifying the day
Y consists of 2 decimal digits specifying the year.

C. GO

A GO card must be the last card in the loader. It indicates that all System
control cards have been read, and causes the System to commence execution
of Phase 1.

The format of this card is:

GO

No parameters are necessary.

D. END

An END card must be the last control card in a stack of jobs. It specifies
that all the jobs to be executed in this cycle of operation have been read.

The format of this card is:

END

No parameters are necessary.

12.13.01.02
5 (6/61)

APPENDIX 13

SHARE MONITOR OPERATING NOTES

CHAPTER 2: INPUT DECK ARRANGEMENT

The input deck consists of a stack of intermixed "Compiler" or "Modify and
Load" jobs in any order. Each job deck will contain the program control cards
necessary for that job. All program control cards must have 7-, 8-, and 9-
punches in column one.

The Job Deck

Each job deck consists of a job card, a "Compiler" or "Modify and Load" deck,
and possibly a data deck.

An END control card must follow the stack of jobs. This card must have 7-, 8-,
and 9-punches in column one; and END punched in columns 8-10.

Note: If it appears that the end of the peripheral input tape will be reached, a
symbolic deck for a SCAT job may be divided into two parts. The first
part should have a card placed behind it which has ENDTAP punched in
columns 8-13. No other punches should appear in the card. The remainder
of the input decks may now be placed on another tape. This facility is not
available for SQUOZE decks. The system will print a request to mount
the second tape when it is needed.

The stack of jobs constituting an input deck is the same whether read on-line or
off-line. However, row binary cards cannot be read by off-line card-to-tape
equipment.

12.13.02.01
5 (6/61)

APPENDIX 13

SHARE MONITOR OPERATING NOTES

CHAPTER 3: STARTING OPERATION

Operation of the SHARE Monitor System is started by means of a Loader deck.
This deck may contain six or more cards. The last card of the deck is a GO
card.

The system assumes a two channel machine with five tapes on each channel. Any
variance in the number of tapes per channel will require the use of ASSIGN
cards placed before the GO card in the Loader deck.

Before operation is begun, five tapes on each channel must be readied. The units
should be dialed 1, 2, 3, 4, 5 on Channel A and 1, 2, 3, 4, 5, on Channel B.

The steps required for starting operation are given below. The standard addresses
for the system tape and peripheral input tape are assumed.

A. Ready the System Tape on Bl.
B. Ready the Peripheral Input Tape on B2.
C. Ready tapes on B3, B4, B5, AI, A2, A3, A4, A5.
D. Place Loader deck, containing any necessary ASSIGN cards, in card reader.
E. If input is from cards, place input deck following loader.
F. Ready card reader.
G. Set Sense Switches as indicated below.
H. Depress the Clear and the Load Cards keys.

After a period of initialization the printer will indicate that the system is entering
Phase 1. A stop will then occur with the location counter containing 458. If no
alteration of the tape assignments is necessary, the operator may continue by
depressing the Start key.

As each job is started, the program control cards for that job will be printed.
If Sense Switch 1 is Down, the identification of the file being read from the
System Tape will also be printed on-line.

From time to time instructions concerning the readying or removal of tapes will
also be printed. Operation may be continued, when these instructions have been
carried out, by d'epressing the Start key.

If a request for tape assignment is made, the operator need only place the cor­
responding absolute address in the address portion of the Entry keys and depress
the Start key. Tapes designated as free on the status list should be used to fill
such requests. Any illegal assignments will result in a message and a stop for
resetting the entry keys.

12.13.03.01
5 (6/61)

If any halt other than 458 occurs, transfer to location 468, If the system cannot
continue, use the restart procedure (see page 12. 13. 05. 01).

Sense Switch Settings

Sense
Switch

1

2

3

4

5

6

12.13.03.02
5 (6/61)

Setting

UP
DOWN

UP
DOWN

UP
DOWN

UP

DOWN

UP

UP
DOWN

Option

Do not print file identifications on-line.
Print identifications on-line.

Input is to be read from tape.
Input is to be read from cards.

Write print-output on tape for off-line printing.
Write print-output on-line.

Tape assignments changes are not required
(see page 12. 13. 04. 01).

Tape assignment changes are required.

(Not used; must always be Up.)

Write card output on tape for off-line punching.
Punch card output on-line.

APPENDIX 13

SHARE MONITOR OPERATING NOTES

CHAPTER 4: SYSTEM TAPE REASSIGNMENT

The operator must be concerned with tape assignments at three different points
in the processing of a stack of jobs.

A. During Initiation

ASSIGN cards may be placed in the loader to reassign the systern tapes
SYSPOT, SYSPPT, SYSPIT, SYSES2, SYSES1, SYSMIT, SYSMOT and
SYSDOT. The assignments specified on these cards will hold throughout the
entire cycle unless changed between phases.

B. Between Phases

The Monitor will halt after printing the necessary ready and remove messages
and the tape status list. At this time, the assignment of some system tapes
may be altered.

If the operator desires to change the assignment of a system tape from the
card reader, he must:

1. Set Sense Switch 4 to Down.
2. Enter the prefix MTH (7) in the MQ entry keys.
3. Ready the appropriate ASSIGN cards in the reader.
4. Depress the Start key.

For example, to assign a new tape as SYSMOT the card would be:

ASSIGN XN = SYSMOT

An end of file or an error will terminate processing of ASSIGN cards.

If the Monitor requests assignment of a specific tape, e. g. ,

ASSIGN SYSMOT

the operator may use the method outlined above, or the following:

1. Set Sense Switch 4 Down.
2. Enter the prefix PZE in the entry keys.
3. Enter the physical address of the tape to be assigned as SYSMOT, in

the address position of the Entry keys.
4. Depress the Start key.

12.13.04.01
5 (6/61)

Note: SYSMIT may not be reassigned between phases.

If the operator wishes to change the output mode from on-line to off-line, or
vice versa, he should:

1. SQt Sense Switch 4 Down.
2. Place the prefix MON in the Entry keys.
3. Change the sense switches as desired.
4. Depress the Start key.

The necessary output changes will be made, a new tape status list will be
printed, and the halt at location 458 will occur. Sense Switch 4 may now
be set to Up and the Start key depressed to enter the phase.

C. Between Jobs

An ASSIGN card of the form ASSIGN XN = SYSXYN for each reserved or
utility tape desired at execution time is placed between the JOB card and
the SCAT or LOAD card.

At execution time, the system will print messages to ready the reserved and
utility tapes for the next job to be executed. A halt will then occur. If the
tape assignments described are insufficient or erroneous, the operator may
correct them either by using ASSIGN cards in the card reader or by direct
entry from the Entry keys. The type of change made will depend on the
prefix in the Entry keys. In no case may the assignment of other than reserved
or utility tapes be made at this time. The proper setting for the Entry keys
is shown in the table below.

KEYWORD
FUNCTION PREFIX ADDRESS DECREMENT

General Form PFX A (physical address) B (symbolic designation
as if it were physical)

Assign Reserved Tape PON

Assign Utility Tape PTW

*Assign System Tape PZE

Make Physical unit MZE
a vailable for new
assignment.

Make Physical Unit PTH
Unavailable

Process ASSIGN cards MTH
in card reader

A

A

A

A

A

* This entry is made only upon request by monitor.

12.13.04.02
5 (6/61)

B

B

ANALOGOUS CARD

ASSIGN XN = SYSYRM

ASSIGN XN = SYSYUM

ASSIGN XN = SYSYYY

ASS IGN XN = ON

ASSIGN XN = OFF

Miscellaneous Notes

In some instances a program will use special tapes during execution. The person
setting up the input deck must have information concerning the symbolic addresses
of the tapes to be used and the phase in which the job will be executed. Any physical
tape may be assigned for these symbolic addresses provided the tape is not already
in use. There is no restriction concerning channel. This assignment is made
with the use of an ASSIGN control card of the form

ASSIGN XN = SYSYYY

where SYSYYY is the programmer's symbolic tape address such as SYSAR1,
SYSBU4, etc.

XN is the tape to be used (X is the channel letter and N is the tape unit on
that channel).

If the programmer is using a symbolic tape (i. e., a tape referred to by a symbolic
name) as input, it will be necessary for the operator to mount that tape on the unit
specified by the ASSIGN card.

For example, suppose that a programmer specifies that he needs tape SYSBR3.
If tape A4 is to be used, the ASSIGN card would be

ASSIGN A4 = SYSBR3

This card and any other required ASSIGN cards would be placed immediately after
the JOB card for this job. An ASSIGN card is required for every symbolic tape
unit used by the programmer.

Because of the importance of proper tape utilization to obtain maximum system
efficiency it is suggested that a chart, similar to the one shown in the example
below, be set up for each stack of jobs.

Example:

Suppose there is a stack of jobs with the following requirements:

Job Symbolic Tapes

1 SYSAR1, SYSBU1
2 SYSAR1
3 SYSAR4, SYSBR2,
4 sYSAU2
5 SYSBR2
6 SYSBR2, SYSAU4
7 SYSBU6
8 none

12.13.04.03
5 (6/61)

Execution Phase

3
1

SYSAU8 2
2
1
2
2
2

A table can then be formed on the basis of the phase in which the job will be
executed. Normal system tape assignments are assumed. As shown in the table,
the use of system tapes during Phases 1 and 3 is rather extensive if all operations
are to be off-line. Thus, the majority of jobs should be executed in Phase 2.

After entering the tapes which remain the same during an entire phase, we then
assign tapes as required for each job, so that the operator has time to mount
and remove tapes where necessary.

If necessary, the tapes assigned as erase tapes (SYSESN) may be used as utility
or reserved tapes for Phase 1 execution. The system will handle them automatically
as though these were free and available tapes.

Prior to starting the next job, the system will stop if tapes normally used as erase
tapes were used on previous jobs as reserved or utility tapes. Removal messages
will be printed if the tapes were used as reserve tapes, and ready messages will
be printed for those erase tapes involved.

PHASE 1 2 3

JOB NUMBER 2 S 3 4 6 7 8 1

TAPE NUMBER :>< >< >< >< >< >< >< ><
Ai SYSPOf SYSPOf - - - - - SYSPOf

A2 SYSPPT SYSPPT - - - - - SYSPPT

A3 SYSMIT SYSMIT SYSMOT SYSMOT SYSMOT SYSMOT SYSMOf SYSMIT

A4* SYSESi SYSESi SYSAU8 - - - - SYSDOf

AS - SYSBR3 SYSARl - - SYSBU6 - -

B1 SYSTAP SYSTAP SYSTAP SYSTAP SYSTAP SYSTAP SYSTAP SYSTAP

B2 SYSPIT SYSPIT - SYSAU2 - - - SYSARl

B3 SYSMOT SYSMOf SYSMIT SYSMIT SYSMIT SYSMrr SYSMrr SYSMOf

B4* SYSES2 SYSES2 - - SYSBR2 - - -

BS SYSARl - SYSBR2 - SYSAU4 - - SYSBUl

* ASSIGN cards for utility and reserved tapes may refer to the same tape unit used as SYSES 1 and
SYSES2 even though the job is to be executed in Phase 1.

12.13.04.04
5 (6/61)

The ASSIGN cards required for the above assignments would then be:

JOB 1

ASSIGN B2 = SYSAR1
ASSIGN B5 = SYSBU1

JOB 2

ASSIGN B5 = SYSAR1

JOB 3

ASSIGN A5 = SYSAR1
ASSIGN B5 = SYSBR2
ASSIGN A4 = SYSAU8

JOB 4

ASSIGN B2 = SYSAU2

12.13.04.05
5 (6/61)

JOB 5

ASSIGN A5 = SYSBR3

JOB 6

ASSIGN B4 = SYSBR2
ASSIGN B5 = SYSAU4

JOB 7

ASSIGN A5 = SYSBU6

JOB 8

none

APPENDIX 13

SHARE MONITOR OPERATING NOTES

CHAPTER 5: RESTART PROCEDURE

If for some reason the monitor is written over during any phase of operation, it
may be restored and operation begun with the next job to be processed. The
procedure is as follows:

A. Note the tape assignments for SYSMIT and SYSMOT in the most recent tape
status list. Make up an ASSIGN card for each of these.

B. Remove the first three cards of the loader deck and replace with the
Recovery card.

C. Place the two ASSIGN cards in front of the GO card in the loader deck.

D. Depress the Clear key and the Load Cards key. Run all the cards in the
revised loader deck through the card reader.

E. The system will be reloaded and initialized, and a stop will occur after a
message is printed instructing the operator to place the phase number, in
which to restart, in the entry keys. This phase number is determined from
the tape status list. If input phase is indicated, this is Phase 1. The execution
phase is Phase 2, and the output phase is Phase 3.

F. After setting the phase number in the keys, depress the Start key. The
printer will indicate that restart has succeeded.

G. Restore the loader deck to its original form by removing the two ASSIGN
cards and replacing the first three cards.

Note: The Recovery card is good only if the system tape is on B1. If non-standard
assignments have previously been made for peripheral input, output and
punch tapes, it will be necessary to include ASSIGN cards for those as well
as for SYSMIT and SYSMOT.

12.13.05.01
5 (6/61)

active macros
INTRAN
OUTRAN

Add Buffer routine

alter numbers

ALTER

and

AND

arithmetic
expressions
operations

ASSIGN

assign a symbol to a word
in a headed area
in an unheaded area

attempt to read from unassigned unit

availability of machine components

Aw

13.01. 01
5 (6/61)

07.01. 06
07.02.06

07.06.04

04.02.02

05.02.06

02.00.07

06.04.06

02.00.03
02.00.05

05.02.14
09.02.05
09.03.01
12. 13. 01. 01

05.02.13
05.02.12

07.01. 11
07.01. 21

09.06.01

07.03.04
07.04.06

BACK

BACKF

BACKR

BACKT

backspace

Backspace Logical Record routine

Bad Spot routine

basic field specifications

BCD to Hollerith conversion

BCI

BEGIN

beginning of
comments field
tape

BES

binary
integers

point specification

tape record not column binary
to decimal conyer sion
to octal conversion

13.02.01
5 (6/61)

07.07.04
07.07.10

07.05.03

07.05.03

07.05.03

07.05.03
07.06.08

07.06.08

09.04.02

07.03.05

07.04.06

03.00.16

03 00.34

02.00.11
07.05.03

03.00.05

07.01. 29
07.02.12
03.00.12
07.01. 35
07.01.48
07.02.18
07.02.20
07.02.28
07.01.21
07.04.46
07.04.07

blank
columns

input
output
in format statements
in variable field

data field
operation code

block
flag
of data
re serva tion

BOOL

boolean
expressions
operators
symbols

equate two

BSS

BUFFER

buffer
allocation for TAPE macro

al ternation
definition

INTRAN
OUTRAN

initiation
requirements

Buffering routines

13.02.02
5 (6/61)

07.03.08
07.04.07
07.03.07
02.00.09
07.01. 44
02.00.01

07.06.10
07.04.04
03.00.03
03.00.05

03.00.08

02.00.07
02.00.07
02.00.07
03.00.08

03.00.03

06.03.04

06.03.04
06.03.05
07.01.18

07.01. 05
07.02.05
07.01.14
07.06.21

07.06.01
07.06.09
09.01. 01

calling
library programs
sequences

cards not assigned alter numbers

cC

CHANGE

change tape assignments

character codes

characters not permitted in symbols

checking
I/O indicator
transmission

classification of operations

CLEAR

clear buffer area

CODE

column
binary

indication missing
output

counter
INTRAN
OUTRAN

combining conditional Debugging macros

Comment Attached Printer routine

comments
in listing

13.03.01
5 (6/61)

03.00.23
03.00.34

04.02.02

07.04.05
07.04.07

05.02.01
12.12.00.02

12.13.03.07

12. 01. 00. 01

02.00.01

07.07.03
07 .. 01.11

03.00.01

07.07.08
07.07.10

07.02.08

12.12.00.07

07.01.11
07.04.03

07.01. 23
07.02.07

06.04.09

09.05.02

02.00.11
04. 01. 01

communication region
m Monitor
SHARE Monitor

Compiler

functions

conditional Debugging macros

control cards
IB Monitor
SHARE Monitor
Input Editor

conversion
and printing of a data block
of data

CORE

Input Editor
Output Editor

counter
control by format statements
column

INTRAN
OUTRAN

location

complement

complex expressions

conventions for conyer sion of octal integers

CPL control card
effect of
use of

cross reference between headed areas

CSKIP

13.03.02
5 (6/61)

07.07.02
09.04.01

03.00.01
09.01.01
01.00.02

06.01. 01
06.04.01

08.02.01
09.02.01
07.03.02

07.04.02

07.03.04
07.04.06

06.02.03

07.04.05

07.01. 23
07.02.07
02.00.06

02.00.07

02.00.04

03.00.15

08.02.02
08.03.01

03.00.42

07.07.08

current value of location counter

CUT

13.03.03
5 (6/61)

02.00.06

07.07.08

m
DATA 07.03.01

09.02.06
09.03.01

data conversion 07.03.01
07.03.08

Input Editor 07.03.04
control codes 07.03.01

Output Editor 07.04.06

data sentences 07.08.01
decks 08.03.02
error conditions in 07.08.02
example of 07.06.03
punching 07.06.02

DATE 08.02.02
12. 13. 01. 02

debugging format codes 03.00.04
03.00.06
03.00.13

Debugging macros 06.01. 01
conditional 06.01. 01

06.04.01
AND 06.04.06
EVERY 06.04.08
OR 06.04.07
UNLESS 06.04.05
WHEN 06.04.04

information 06.01. 01
06.02.01

CORE 06.02.03
DSC 06.02.08
PANEL 06.02.02
TAPE 06.02.05
TRAP 06.02.09
UNTRAP 06.02.10

modal 06.01. 01
06.03.01

BUFFER 06.03.04
FORMAT 06.03.06
NUCASE 06.03.05
ON 06.03.06
OFF 06.03.07

13.04.01
5 (6/61)

POINT
USE

Debugging Message Writer routine

Debugging System

DEC

decimal
integer conversion

numbers

scale

define
new symbol
undefined symbol
unused symbols

delete and insert words in a program
by ALTER
by CHANGE

delete
commentary from a .program
Macro-Instruction Name Table and Macro-Instruction

Skeleton Table from SQUOZE deck
programmer macro-instruction
words in a program

by ALTER
by CHANGE

13.04.02
5 (6/61)

06.03.03
06.03.02

09.05.04

07.07.02
09. 01. 02

03.00.10

03.00.18
07.01. 30
07.02.13
07.03.05
07.03.06
03.00.10
07.01. 34
07.01.38
03.00.12
07.01.31
07.01.32
07.01. 36
07.01. 49
07.02.28
07.03.06

05.02.15
05.02.15
02.00.03

05.02.06
05.02.02

05.02.09
05.02.10

05.02.10

05.02.06
05.02.02

DETAIL

discontinue heading

DISP

Dispatching Initiation routine

dispatching routines, SHARE Monitor

Dispatcher Suppression routine

Divide Check routine

$ FORMAT

$ STOP

DSC

DS1 control card
effect of
use of

DUP

duplicate instructions

13.04.03
5 (6/61)

04.03.02

03.00.41

07.05.06
07.07.07
07.07.10

07.06. 22

07.06.21

07.06.24

09.04.04

07.03.01
07.03.04

07.03.04

06.02.08

08.02.06
08.03.02

03.00.21

03.00.20

effect on indicators
INTRAN
OUTRAN

EJECT

END

end
of file

-of-file return
of group
of macro skeleton
of source program
of tape

of variable field

ENDATA

ENDFILE

ENDGRP

ENDMOD control card
effect of
use of

ENDRCD

ENDTAPE

EOF return

EQU

13.05.01
5 (6/61)

07.01. 03
07.02.03

04.03.04

03.00.46
08.02.05
12.12.00.03
12. 13. 01. 02

07. 01. 11
07.01. 18
07.01. 20
07.05.04
07.03.02
03.00.30
03.00.46
07.02.57
07.05.02
02.00.09

07.03.01

07.03.02
07.03.03

07.03.02
07.03.03

08.02.06
08.03.02
08.04.04

07.03.02
07.03.03

07.03.02

07.05.04

03.00.06

equate two
boolean symbols
ordinary symbols

equipment requirements
32K IB Monitor

ERASE

error
analysis
bits

listings
compiler
modifications
symbol and pseudo-operation

return

ETC

evaluation of expressions
arithmetic
boolean

EVERY

Ew.d

Ew. dBb

Ew. d. i

Ew. d. iBb

exclusive or

13.05.02
5 (6/61)

03.00.08
03.00.06

12. 10. 01. 01

05.02.09

07.03.08
07.05.05
07.07.06
07.07.07

04.01. 02
04.01. 02
04.01. 03
07.05.02
07.05.04
07.05.05
07.07.03
07.07.04
07.07.05
07.07.06

03.00.44
07.03.04

02.00.05
02.00.07

06.04.08

07.03.05

07.03.05

07.04.06

07.04.06

02.00.07

execute

execution job deck

EXEMPT

exempted symbols in library program

exempt from relativization

expansion of macros
BEGIN
IB Monitor Transmission
INTRAN
Output Editor
OUTRAN
SHARE Monitor Transmission

expressions
arithmetic
boolean
complex

extended operation codes

extending variable field

13.05.03
5 (6/61)

08.03.04

08.03.04

03.00.24

03.00.23

03.00.24

03.00.26
07.07.09
07.01.54
07.04.09
07.02.58
07.05.07

02.00.03
02.00.07
02.00.04

04.01. 01

03.00.44

fixed point numbers
binary
decimal

flag word

Floating Point Overflow routine

Floating Point Underflow routine

floating
mask

point
decimal number s

decimal to binary conversion
spill

footing

FOR

FORMAT

format
codes for Debugging macros
statements

FVE

Fw.d

Fw.dBb

13.06.01
5 (6/61)

07.02.18
03.00.12

07.04.03

09.04.04

09.04.04

07. 01. 41
07.02.24

03.00.12
07.02.14
07.02.20
07.03.05
07.03.09

07:04.04

03.00.01

06.03.06
07.03.03

06.01. 02
07.03.04
07.04.02

03.00.01

07.03.05
07.04.06

07.03.05
07.04.06

II

general purpose
Buffering routines
flags

GO

13.07.01
5 (6/61)

07.06.03
07.03.02

08.02.06
08.03.04
12. 13. 01. 02

m

HEAD

headed areas, cross-referencing

heading
characters as parameters of programmer macros

page

Hollerith data conversion

13.08.01
5 (6/61)

03.00.40

03.00.42

03.00.40
03.00.34
03.00.44
07.04.04

07.03.05
07.04.03

m

mcc

mcw

mIN

m Monitor
32K equipment requirements
32K operating instructions
32K programmed halts
control cards

CPL
CPLRB
DATE
DS1
ENDMOD
GO
JOB
LG
LIST
LS
MOD
PA
PAUSE
PS
STOP

Transmission macros

mRNCH

ICHAR

ICOLIN

ICOLR

IDENT

identification of library programs

IEOR

IFILE

IFIX

13.09.01
5 (6/61)

07.01. 24

07.01. 25

07.01. 28

12. 10. 01. 01
12.10.02.01
12.10.02.02
08.02.01
08.02.02
08.02.02
08.02.02
08.02.06
08.02.06
08.02.06
08.02.01
08.02.05
08.02.04
08.02.03
08.02.06
08.02.05
08.02.07
08.02.04
08.02.07
07.07.01

07.01.19

07.01.43

07.01. 24

07.01. 24

09.02.04
09.03.01

03.00.21

07. 01. 52

07.01. 20

07.01.34

a

IF LOAT

TIMAGE

TINT

IMASK

Immovable Block flag

IN

inclusive or

incorporation of
headed library programs
headed SQUOZE decks
SQUO ZE decks in symbolic programs

indirect addressing
of operation in programmer macro
of programmer macro

information macros, Debugging System

initiation of read

input
data class codes

installation standard
deck arrangement

IB Monitor
SHARE Monitor

Input Editor

control cards
da ta package

Input/Output Check routine

13.09.02
5 (6/61)

07.01. 31

07.01. 05

07.01. 30

07.01. 39

07.06.11

07.05.04
07.07.05
07.07.09

02.00.07

03.00.43
03.00.46
03.00.45

03.00.31
03.00.34

06.01. 01
06.02.01

07.01.13

07.03.01
07.04.02
07.04.02

08.03.01
09.03.01
12.13.02.01

07.03.01
09. 01. 01
07.03.02
07.03.01

09.04.04

Input/Output System functions

insert words in a program
by ALTER
by CHANGE

instructions for operator, printing of

integers

internal processing
macros

INTRAN
OUTRAN

stage
INTRAN
OUTRAN

INTRAN

effect on indicators
internal processing stage
macros

mcc
mcw
mIN
mRNCH
ICHAR
ICOLR
ICOLIN
IEOR
IFILE
IFIX
IF LOAT
IIMAGE
lINT
IMASK
INTRAN
IOCTAL
IOVPCH
ffiEADY
IREDUN

13.09.03
5 (6/61)

01. 00. 03

05.02.06
05.02.03

08.03.03

02.02.02
03.00.11

07.01. 22
07.02.07

07.01. 04
07.02.04

07.02.01
07.03.01
07.07.02
09.01.02
07.01. 03
07.01. 04

07. 01. 24
07.01. 25
07.01. 28
07.01. 19
07.01. 43
07.01. 24
07.01. 24
07.01. 52
07.01. 20
07.01.34
07.01. 31
07.01. 05
07.01. 30
07. 01. 39
07.01. 07
07.01. 27
07.01. 50
07.01.16
07.01. 21

IRPT 07.01. 52
ISCALE 07.01. 49
ISCAN 07.01. 38
ISCRIB 07.01. 07
ISPILL 07.01. 46

read-in stage 07.01. 04

inter section 02.00.07

introduction of data 03.00.10
BCI 03.00.16
in units of bits 03.00.17
octal 03.00.14

I/O table 07.05.01
07.07.01

invalid
operation codes 04. 01. 01
symbols 04.01. 01

IOCTAL 07.01. 27

IOVPCH 07.01. 50

IPOINT 07.01.48

I-region 07.01. 05
07.02.05

ffiEADY 07.01.16

mEDUN 07.01. 21

mPT 07.01. 52

irregular characters in data 07.01.44

ISCALE 07.01.49

ISCAN 07.01. 38

ISCRIB 07.01. 07

ISPILL 07.01. 46

Iw 07.04.06

13.09.04
5 (6/61)

JOB control card

effect of
use of

job deck

13.10.01
4 (3/61)

09.02.01
09.03.01
08.02.01
08.03.01

01.00.04

D

LAST

LBR

leading
bl ank in data
zeros in symbols

LG control card
effect of
use of

library program
calling
exempted symbols in
identification
symbols entered in dictionary

line counts

lines per page

LIST
control card

effect of
use of

pseudo-operation

lister functions

listings
program

LOAD

location
field
counter

Logical End
flag
of File flag
of Group flag

13.12.01
5 (6/61)

12.12.00.03

03.00.21

07.01. 43
02.00.02

08.02.05
08.03.04

03.00.21
03.00.23
03.00.23
03.00.21
03.00.22

07.02.52

07.04.03

08.02.04
08.03.03
04.03.01

01.00.03

09.01. 01
04.01. 01

09.02.02
09.03.01

02.00.02
02.00.03

07.06.10
07.03.02
07.03.02
07.06.10

II

of Record flag

of Tape flag

LS control card
effect of
use of

look-ahead information

loss of bits in converted result

13.12.02
5 (6/61)

07.03.02
07.06.10
07.03.02

08.02.03
08.03.01

07.01. 08
07.01. 10

03.00.12

machine components, availability

MACRO

macro classifications
OUTRAN

macro-instructions
definition
end of skeleton

mask

maximum
number of

parameters for programmer macros
programmer macros

subfield length for VFD
value of decimal numbers

mediary tapes
input
output

Mediary Tape Loader routine

missing column binary indication

mixed
expressions

mode tapes

MOD control card
effect of
use of

modal macros
Debugging System

INTRAN
OUTRAN

13.13.01
5 (6/61)

09.06.01

03.00.27

07.02.06

03.00.26
03.00.27
03.00.30

02.00.06
07.01. 41
07.02.21

03.00.33
03.00.33
03.00.19
07. 01. 37

07.06.01
07.03.01
07.03.01

09.05.01

07. 01. 11

02.00.07
03.00.10
07.01. 10

08.02.06
08.03.02

06. 01. 01
06.03.01
07.01. 06
07.02.06

m

Modify and Load
functions
main features
pseudo-oper a tions

ALTER
ASSIGN
CHANGE
ERASE
SYMBOL

modifications listing
sample

MON

monitor fWlctions

MTH

MTW

multiply defined symbols
in text
in principal pseudo-operations

MZE

13.13.02
5 (6/61)

01.00.03
05. 01. 01
05.02.01
05.02.06
05.02.14
05.02.01
05.02.09
05.02.12

04.01. 02
04.01. 03

03.00.01

01.00.04

03.00.01

03.00.01

02.00.02
04.01. 04
04.01.04

03.00.01

naming programmer macros

nominal origin
conversion

· flags

NOMORG

no previous transmission before ffiEADY

Normal Dispatching routine

not

Not-In return

Not-Out return

NUCASE

numeric modifiers for field specifications

Nw

NwO

13.14.01
5 (6/61)

m
03.00.29

07.03.02
07.03.06
07.04.07
07.03.10

07.03.02

07.01.19

07.06.23

02.00.07

07.05.04
07.07.05

07.05.05
07.07.07

06.03.05

07.03.07

07.03.06
07.04.07

07.03.06
07.04.07

OBCC

OBCW

OBIN

object program, termination

OBLANK

OCOLC

OCOLIN

OCOLR

OCT

octal
data
integers

conventions for conversion of

OEOR

OFIX

OFLFIX

o FLOAT

OFXFLO

OHEAD

OIMAGE

OINT

OMASK

omission of zero subfields

13.15.01
5 (6/61)

07.02.09

07.02.10

07.02.12

06.01. 01

07.02.08

07.02.08

07.02.07

07.02.07

03.00.14

03.00.14
03.00.14
03.00.18
07.02.10
07.03.06
03.00.15

07.02.32

07.02.18

07.02.16

07.02.14

07.02.20

07.02.52

07.02.05

07.02.13

07.02.21

02.00.09
02.00.10

ones complement

OOCTAL

OOVPCH

operating instructions
32K IB Monitor
SHARE Monitor

operations
arithmetic
boolean

operation codes
listing of

extended
invalid

OPOINT

or

OR

OREADY

OREDUN

ORG

origin

ORPT

OSCALE

OSCRm
m Monitor
SHARE Monitor

OSPACE

OSPILL

13.15.02
5 (6/61)

02.00.07

07.02.10

07.02.30

12.10.02.01
12.13.00.00

02.00.05
02.00.07

02.00.01

04. 01. 01
04. 01. 01

07.02.28

02.00.07

06.04.07

07.02.49

07.02.55

03.00.01

03.00.01

07.02.32

07.02.28

07.02.40
07.02.34

07.02.52

07.02.25

OTPEND 07.02.57

OUT 07.05.05
07.07.06
07.07.10

output
buffer alternation 07.02.46

07.02.49
modes 07.02.34

07.02.35
types 07.02.40

07.02.41

OUTRAN 07.02.05
07.07.02
09.01.02

effect on indicators 07.02.03
macros

OBCC 07.02.08
OBCW 07.02.10
OBIN 07.02.12
OCOLC 07.02.07
OCOLIN 07.02.07
OCOLR 07.02.07
OFIX 07.02.18
OFLFIX 07.02.16
OF LOAT 07.02.14
OFXFLO 07.02.20
OHEAD 07.02.52
OIMAGE 07.02.05
OINT 07.02.13
OMASK 07.02.21
OOCTAL 07.02.10
OOVPCH 07.02.30
OPOINT 07.02.28
OREADY 07.02.49
OREDUN 07.02.55
ORPT 07.02.32
OSCRm

m Monitor 07.02.40
SHARE Monitor 07.02.34

OSPACE 07.02.52
OSPILL 07.02.25
OTPEND 07.02.57

13.15.03
5 (6/61)

OUTRAN
OZERO

Output Editor

macros

overpunching

Ow

OZERO

13.15.04
5 (6/61)

07.02.05
07.02.29

07.04.01
09.01. 02
07.04.01

07.01. 50
07.02.30
07.03.06
07.04.07

07.03.05
07.04.06

07.02.29

PA control card
effect of
use of

page
ejection

suppression of
footing
heading
numbering

PANEL

parentheses
in format statements
not permitted for grouping

PAUSE control card
effect of
use of

permissible characters

persistent redundancy

phases, SHARE Monitor

PON

pP

prefix code s

print counter

priority assignment

processing controlled by monitor

programmer macros

13.16.01
5 (6/61)

08.02.05
08.03.03

07.04.03
07.04.04
07.04.04
07.02.52
07.04.03

06.02.02

07.03.07
02.00.05

08.02.07
08.03.01
08.03.03

12. 01. 00. 01

07.01. 11
07.01. 18
07. 01. 21

07.03.01

03.00.01

07.03.06

03.00.01

07.04.05

07.07.05

08. 01. 01

03.00.27

programmed halts
32K IB Monitor

PS control card
effect of
use of

pseudo­
instructions

undefined symbols in principal
multiply defined symbols in principal

operations

PTH

PTW

circular definition, indication of
listing

punch an absolute binary deck

punch a new SQUOZE deck

PZE

13.16.02
5 (6/61)

12.10.02.02

08.02.04
08.03.01

04.01. 03
04.01. 04

04.01. 03
04.03.01

03.00.01

03.00.01

08.03.01
09.02.02
09.02.03

08.03.01
09.02.02
09.02.03

02.00.01
03.00.01

READ

Read
Logical Record routine
Word routine

read-in macros

record
types

INTRAN
OUTRAN

too long for I-region

redefine
I-region

INTRAN
OUTRAN

programmer macros
symbols defined by EQU, SYN, or BOOL

reference
systems

alter number s
relative numbers

to unnamed instructions

relative
expressions
numbers

instructions not assigned
negative

relativization of library programs
with no exempt symbols

remarks

repeat execution of macros
INTRAN
OUTRAN

13.18.01
5 (6/61)

07.05.02
07.05.04
07.07.03
07.07.09

07.06.05
07.06.14

07.01.07

07.01.03
07.02.03
07.01.09
07.01. 21

07.01.05
07.02.05
03.00.34
05.02.15

04.02.02
04.02.02
02.00.04

02.00.04

04.02.01
04.02.01

03.00. 23
03.00.26

02.00.11

07.01.52
07.02.32

III

repetition of field specifications

reproduce system tape

restrictions
ALTER
arithmetic expressions
binary integer s
CHANGE
decimal

integers

numbers

floating point
masks
octal numbers

SYMBOL

RETURN

REWIND

Rewind Tape routine

ROW

rules for decimal number s

RUSH

13.18.02
5 (6/61)

07.03.08
07.04.07

12.12.00.04

05.02.07
02.00.05
07.01. 29
05.02.07

03.00.19
07.01. 31
03.00.13
07.01.37
07.01. 39
07.01. 31
02.00.06
03.00.15
03.00.19
07.01.28
05.02.07

03.00.37

07.07.04
07.07.09

07.06.09

12.12.00.02

03.00.12

07.05.06
07.07.05
07.07.09

saving
data channel trap conditions
index register contents
register contents

INTRAN
OUTRAN

sense indicators

scale factor

SCAT control card

sense indicator instructions

Sequence flag

setting modal macros to normal
Debugging System
INTRAN
OUTRAN

SHARE Monitor
control cards
Dispatching routines
library tape

operation
phases

restart
system tape
tape

format
usage

Transmission macros

single text SQUOZE decks

SIX

source program, end of

SPACE

13.19.01
5 (6/61)

03.00.35
03.00.35

07.01. 03
07.02.02
03.00.35

03.00.12

09.02.03
09.03.01

02.00.06

07.06.12

06.03.05
07.01. 07
07.02.05

09.02.01
07.06.21
12.12.00.01
12.12.00.05
12.13.03.01
07.04.01
09.01.01
12.13.05.01
12.12.00.01

12.12.00.01
09.01. 02
07.05.01

09.02.03

03.00.01

03.00.46

04.03.04

spacing

before printing
control for off-line printing

special
output conditions

purpose
Buffering routines
flags

spill conditions

SQUOZE
decks

combined with symbolic decks
format

operation codes

SQZ

stack table

standard buffer for TAPE

step
files
records

STEPF

STEPR

STOP control card
effect of
use of

13. 19. 02
5 (6/61)

07.03.07
07.04.04
07.04.07
07.02.52

07.02.37
07.02.42

07.06.13
07.06.10

07.01.46
07.02.25

01.00.02
09.02.03
03.00.46
12.03.00.00
12.02.00.01

03.00.45
08.02.03
08.03.01

07.05.01
07.07.01

06.02.05
06.03.04

07.05.03
07.05.02

07.05.03
07.05.04

07.05.02
07.05.04

08.02.07
08.03.03

storage allocation

Store Location and Trap

SVN

Sx.y.z

Symbol
flag
listing

sample

SYMBO L pseudo-operation
example of use of
restrictions on use of

symbols
boolean
equate two
listing of invalid
undefined in text
undefined in principal pseudO-instructions
multiply defined in principal pseudo-instructions
multiply defined in text

symbolic modifications, position in SQUOZE
deck

symmetric difference

SYN

SYSBAD routine

SYSB FD routine

SYSBKS routine

SYSB LK routine

SYSCAP routine

SYSDIS routine

13.19.03
5 (6/61)

07.07.02

09.04.04

03.00.01

07.03.06

07.06.12
04.01. 04
04.01. 05

05.02.12
05.02.13
05.02.13

02.00.01
03.00.08
03.00.06
04.01. 01
04.01. 04
04.01. 03
04.01. 03
04.01.04

08.03.02
08.03.04

02.00.07

03.00.08

09.04.02

07.06.04

07.06.08

07.06.13
07.06.17

09.05.02

07.06.23

SYSDPI routine 07.06.22

SYSDPS routine 07.06.24

SYSERR routine 09.04.02

SYSINF routine 07.06.13
07.06.18

SYSIOC routine 09.04.04

SYSMOT 07.03.02

SYSMTL routine 09.05.01

SYSNPT routine 07.06.05

SYSORG 09.06.01

SYSRTK routine 07.03.01
07.03.02
07.03.09
07.06.12

SYSRWD routine 07.06.09

SYSSTR routine 09.04.04

SYSTDC routine 09.04.04

SYSTEM 07.07.03
07.07.04
07.07.05

System
macros 03.00.27
tapes 09.01. 02

SYSTM1 07.07.02

SYSTM2 07.07.02

SYSTM3 07.07.03

SYSTOF routine 09.04.04

13.19.04
5 (6/61)

SYSTRC routine

SYSTRP routine

SYSTUF routine

SYSWHT routine

SYSWTK routine

13.19.05
5 (6/61)

09.04.04

09.04.04

09.04.04

07.06.13
07.06.19

07.03.02
07.03.10
07.06.13
07.06.19

II
table generated by TRAP 06.02.09

TAPE 06.02.05
allocation of buffer for 06.02.05

06.03.04
examples of 06.02.06

Tape Redundancy Check routine 09.04.04

tape
reassignment 12.13.04.01
redundancy error 07.02.55
usage

m Monitor 12.10.02.01
SHARE Monitor 09.01.02

TCD 03.00.47
effect on input for execution 08.02.05

terminal blanks in data 07.01.44

TITLE pseudo-operation 04.03.03

title line 04.01.01

too full return 07.05.05

tr ansfer points 09.04.01

Transmission
macros

m Monitor 07.07.01
SHARE Monitor 07.05.01

routines 07.07.02
09.01.02

trap table 06.02.09

TRAP 06.02.09

type 1 errors 07.03.09

type 2 errors 07.03.09
07.03.10

type 3 errors 07.03.09
07.03.10

13.20.01
5 (6/61)

undefined symbols
in principal pseudo-instructions
in text

Unexpected Error routine

union

UNLESS

UN LIST

unmodified left parentheses

UNTRAP

USE

use of
* as a

term
parameter of a programmer macro

boolean symbols
LBR in programmer macros
output buffer area
programmer macros within programmer macros

13.21.01
5 (6/61)

02.00.02
04.01. 03
04.01.04

09.04. 02

02.00.07

06.04.05

04.03.01

07.03.08

06.02.10

06.03.02

02.00.06
03.00.33
02.00.10
03.00.32
07.02.45
03.00.33

II

variable field
end of
extending

variable field-definition

VFD

13.22.02
5 (6/61)

02.00.08
02.00.09
03.00.44

03.00.17

03.00.17

I!I

WEOF

wH

WHEN

WRITE

Write
a Block Flag routine
a Terminating or Non-data flag routine
Data Word routine

write end of file

WRITEF

write library tape

Write Logical Record routine

write-out
macros
stage

WST

WX

13.23.02
5 (6/61)

07.05.03

07.03.05
07.03.07
07.04.06

06.04.04

07.05.03
07.07.03
07.07.09

07.06.17
07.06.19
07.06.18

07.05.03

07.07.04
07.07.09

12.12.00.05

07.06.06

07.02.34
07.02.04

12.12.00.02

07.03.06
07.04.07

II

XCOUNT

XEJECT

XFOOT

XFORM

XHEAD

XPRINT

XPUNCH

XSPACE

13.24.01
4 (3/61)

07.04.05
07.05.09

07.04.04
07.04.09

07.04.04
07.04.09

07.04.01
07.04.09

07.04.03
07.04.09

07.04.02
07.04.09

07.04.03
07.04.09

07.04.04
07.04.09

zero subfields

13.26.02
5 (6/61)

02.00.09

International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N. Y. Printed in U. S. A. 328-1219

	00.00.00.1
	00.00.00.2
	00.00.00.3
	00.00.00.4
	00.00.00.5
	00.00.00.6
	00.00.01
	00.00.03
	00.00.05
	00.00.06
	00.00.07
	00.00.08
	00.00.09
	00.00.10
	00.00.11
	00.00.12
	00.00.13
	00.00.14
	00.00.15
	00.00.16
	00.00.17
	01.00.01
	01.00.02
	01.00.03
	01.00.04
	02.00.01
	02.00.02
	02.00.03
	02.00.04
	02.00.05
	02.00.06
	02.00.07
	02.00.08
	02.00.09
	02.00.10
	02.00.11
	03.00.01
	03.00.02
	03.00.03
	03.00.04
	03.00.05
	03.00.06
	03.00.07
	03.00.08
	03.00.09
	03.00.10
	03.00.11
	03.00.12
	03.00.13
	03.00.14
	03.00.15
	03.00.16
	03.00.17
	03.00.18
	03.00.19
	03.00.20
	03.00.21
	03.00.22
	03.00.23
	03.00.24
	03.00.25
	03.00.26
	03.00.27
	03.00.28
	03.00.29
	03.00.30
	03.00.31
	03.00.32
	03.00.33
	03.00.34
	03.00.35
	03.00.36
	03.00.37
	03.00.38
	03.00.39
	03.00.40
	03.00.41
	03.00.42
	03.00.43
	03.00.44
	03.00.45
	03.00.46
	03.00.47
	04.01.01
	04.01.02
	04.01.03
	04.01.04
	04.01.05
	04.02.01
	04.02.02
	04.03.01
	04.03.02
	04.03.03
	04.03.04
	05.01.01
	05.01.02
	05.02.01
	05.02.02
	05.02.03
	05.02.04
	05.02.05
	05.02.06
	05.02.07
	05.02.08
	05.02.09
	05.02.10
	05.02.11
	05.02.12
	05.02.13
	05.02.14
	05.02.15
	05.02.16
	06.01.01
	06.01.02
	06.02.01
	06.02.02
	06.02.03
	06.02.04
	06.02.05
	06.02.06
	06.02.07
	06.02.08
	06.02.09
	06.02.10
	06.03.01
	06.03.02
	06.03.03
	06.03.04
	06.03.05
	06.03.06
	06.03.07
	06.03.08
	06.04.01
	06.04.02
	06.04.03
	06.04.04
	06.04.05
	06.04.06
	06.04.07
	06.04.08
	06.04.09
	06.04.10
	06.05.01
	06.05.02
	06.05.03
	06.05.04
	07.01.01
	07.01.02
	07.01.03
	07.01.04
	07.01.05
	07.01.06
	07.01.07
	07.01.08
	07.01.09
	07.01.10
	07.01.11
	07.01.12
	07.01.13
	07.01.14
	07.01.15
	07.01.16
	07.01.17
	07.01.18
	07.01.19
	07.01.20
	07.01.21
	07.01.22
	07.01.23
	07.01.24
	07.01.25
	07.01.26
	07.01.27
	07.01.28
	07.01.29
	07.01.30
	07.01.31
	07.01.32
	07.01.33
	07.01.34
	07.01.35
	07.01.36
	07.01.37
	07.01.38
	07.01.39
	07.01.40
	07.01.41
	07.01.42
	07.01.43
	07.01.44
	07.01.45
	07.01.46
	07.01.47
	07.01.48
	07.01.49
	07.01.50
	07.01.51
	07.01.52
	07.01.53
	07.01.54
	07.01.55
	07.01.56
	07.01.57
	07.02.01
	07.02.02
	07.02.03
	07.02.04
	07.02.05
	07.02.06
	07.02.07
	07.02.08
	07.02.09
	07.02.10
	07.02.11
	07.02.12
	07.02.13
	07.02.14
	07.02.15
	07.02.16
	07.02.17
	07.02.18
	07.02.19
	07.02.20
	07.02.21
	07.02.22
	07.02.23
	07.02.24
	07.02.25
	07.02.26
	07.02.27
	07.02.28
	07.02.29
	07.02.30
	07.02.31
	07.02.32
	07.02.33
	07.02.34
	07.02.35
	07.02.36
	07.02.37
	07.02.38
	07.02.39
	07.02.40
	07.02.41
	07.02.42
	07.02.43
	07.02.44
	07.02.45
	07.02.46
	07.02.47
	07.02.48
	07.02.49
	07.02.50
	07.02.51
	07.02.52
	07.02.53
	07.02.54
	07.02.55
	07.02.56
	07.02.57
	07.02.58
	07.02.59
	07.02.60
	07.02.61
	07.02.62
	07.03.01
	07.03.02
	07.03.03
	07.03.04
	07.03.05
	07.03.06
	07.03.07
	07.03.08
	07.03.09
	07.03.10
	07.03.11
	07.04.01
	07.04.02
	07.04.03
	07.04.04
	07.04.05
	07.04.06
	07.04.07
	07.04.08
	07.04.09
	07.04.10
	07.04.11
	07.05.01
	07.05.02
	07.05.03
	07.05.04
	07.05.05
	07.05.06
	07.05.07
	07.05.08
	07.06.01
	07.06.03
	07.06.04
	07.06.05
	07.06.06
	07.06.07
	07.06.08
	07.06.09
	07.06.10
	07.06.11
	07.06.12
	07.06.13
	07.06.14
	07.06.15
	07.06.16
	07.06.17
	07.06.18
	07.06.19
	07.06.20
	07.06.21
	07.06.22
	07.06.23
	07.06.24
	07.07.01
	07.07.02
	07.07.03
	07.07.04
	07.07.05
	07.07.06
	07.07.07
	07.07.08
	07.07.09
	07.07.10
	07.08.01
	07.08.02
	07.08.03
	08.01.01
	08.02.01
	08.02.02
	08.02.03
	08.02.04
	08.02.05
	08.02.06
	08.02.07
	08.03.01
	08.03.02
	08.03.03
	09.01.01
	09.01.02
	09.01.03
	09.01.04
	09.02.01
	09.02.02
	09.02.03
	09.02.04
	09.02.05
	09.02.06
	09.02.07
	09.03.01
	09.04.01
	09.04.02
	09.04.03
	09.04.04
	09.05.01
	09.05.02
	09.05.03
	09.06.01
	09.06.02
	11.01.01
	11.02.01
	11.03.01
	11.04.01
	11.05.01
	11.06.01
	11.07.01
	11.09.01
	11.12.01
	11.13.01
	11.15.01
	11.16.01
	11.18.01
	11.19.01
	11.20.01
	11.21.01
	12.01.00.01
	12.02.00.01
	12.02.00.02
	12.03.01.01
	12.03.02.01
	12.03.02.02
	12.03.03.01
	12.03.04.01
	12.03.05.01
	12.03.06.01
	12.03.06.02
	12.03.06.03
	12.03.07.01
	12.03.08.01
	12.03.08.02
	12.03.08.03
	12.03.08.04
	12.03.09.01
	12.03.09.02
	12.03.09.03
	12.03.10.01
	12.03.10.02
	12.03.10.03
	12.03.10.04
	12.03.10.05
	12.03.10.06
	12.03.10.07
	12.03.10.08
	12.10.01.01
	12.10.02.01
	12.10.02.02
	12.12.00.01
	12.12.00.02
	12.12.00.03
	12.12.00.04
	12.12.00.05
	12.12.01.01
	12.12.02.01
	12.12.02.02
	12.13.01.01
	12.13.01.02
	12.13.02.01
	12.13.03.01
	12.13.03.02
	12.13.04.01
	12.13.04.02
	12.13.04.03
	12.13.04.04
	12.13.04.05
	12.13.05.01
	13.01.01
	13.02.01
	13.02.02
	13.03.01
	13.03.02
	13.03.03
	13.04.01
	13.04.02
	13.04.03
	13.05.01
	13.05.02
	13.05.03
	13.06.01
	13.07.01
	13.08.01
	13.09.01
	13.09.02
	13.09.03
	13.09.04
	13.10.01
	13.12.01
	13.12.02
	13.13.01
	13.13.02
	13.14.01
	13.15.01
	13.15.02
	13.15.03
	13.15.04
	13.16.01
	13.16.02
	13.18.01
	13.18.02
	13.19.01
	13.19.02
	13.19.03
	13.19.04
	13.19.05
	13.20.01
	13.21.01
	13.22.02
	13.23.02
	13.24.01
	13.26.02
	xBack

