Reference Manual Distribution Nn.i

This is the first in a series of distributions of material which, when complete, will
constitute the reference manual for the SHARE 709 System. Each distribution will
contain pages to be inserted into a loose-leaf binder, and may consist of basic
material for one or more of the sections of the manual and/or replacement pages
which correct previously published material. In addition, each distribution will
contain a list of current pages of the manual, a list of the form numbers of all
previous distributions, and, if necessary because of new included sections or
extensive changes, an updated table of contents.

A three-ring loose-leaf binder, SOS Reference Manual — SHARE System for the
IBM 709, form X28-1213, will be supplied to 709 installations to hold the pages
issued in these distributions. A set of index tabs will also be provided with the
binder to facilitate reference to a particular part of the system. The set of tabs
will be printed with titles and section numbers of the various parts of the system,
as follows:

01 Introduction

02 SCAT Language

03 Compiler

04 Lister

05 Modify and Load

06 Debugging System
07 Input/Output System
08 IB Monitor

09 SHARE Monitor

10 Programming and Operating Notes
11 Glossary

12 Appendices

13 Index

This, then, will be the arrangement of the manual. In connection with the above
outline of the SOS reference manual, it should be noted that Section 10, Programming
and Operating Notes, was included as a means whereby programming techniques,
operating methods, etc., which have been found useful by one user of SOS, could be
conveniently included in this manual and thereby communicated to the other users

of the system. Material of this sort, which is intended for inclusion in the manual,
should be addressed to:

SHARE System for the IBM 709

© 1959 by International Busiriess Machines Corporation

SOS Group

704/709 Applied Programming

International Business Machines Corporation
590 Madison Avenue

New York 22, New York

It is also anticipated that a companion manual, the SHARE-709~System General
Information Manual, will be published in the future. That manual will approach
SOS on a more basic level and will be intended primarily for persons who are
unacquainted with SOS.

In order to facilitate updating of the manual, all pages will specify the distribution
number and will include a date, consisting of the month and year published, and a
page number. All page numbers, except those for the appendices, will be six digits
separated into three groups of two digits by a decimal point. The first two digits
will be the section number, the next two digits the chapter number within that
section, and the last two digits will be the number of the page within the chapter.
For example, 05.02. 04 will be the number of the fourth page of the second chapter
in the Modify and Load Section (05). The page numbers of the appendices will be
eight digits long. The first two will be 12 (the section number of the appendices),
the next three groups of two digits will be (in order), appendix number, chapter
number, and page number.

Reference Manual Distribution No. 2

This distribution contains additional reference material for the SHARE 709
System. The attached pages include both new material and pages to replace
some previously published. The new material consists of: Section 01: Intro-
duction; Section 08: IB Monitor; and four appendices (Section 12). It will be
noted that the appendices included in this distribution are not consecutively
numbered. The spaces in the numbering have been left so that the series of
appendices presently planned will be numbered in an orderly fashion. The
replacement pages include an updated Table of Contents and listing of current

pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques, operating
procedures, etc. which have been found useful by them may be communicated
to other users of the system. Such material should be addressed to:

SOS Group

704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas

New York 20, New York

SHARE System for the IBM 709

Reference Manual Distribution No.3

This distribution contains additional reference material for the SHARE 709
System. The attached pages include both new material and pages to replace
some previously published. The new material consists of Section 06:
Debugging System; one chapter of Section 07: Input/Output System; and initial
pages for Section 13: Index. The replacement pages include an updated
Table of Contents and listing of current pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques,
operating procedures, etc., which have been found useful by them may be
communicated to other users of the system. Such material should be
addressed to:

SOS Group

704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas

New York 20, New York

SHARE System for the IBM 709

Reference Manual Distribution No.4

This distribution contains additional reference material for the SHARE 709
System. The attached pages include both new material and pages to replace
some previously published. The new material consists of five chapters of
Section 07: Input/Output System; and Section 09: SHARE Monitor. The re-
placement pages include an updated Table of Contents and Index, and a listing
of current pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques, operating
procedures, etc., which have been found useful by them may be communicated
to other users of the system. Such material should be addressed to:

SOS Group

704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas

New York 20, New York

SHARE System for the IBM 708

Reference Manual Distribution No.5

This distribution contains material for inclusion in the SHARE 709 System
Reference Manual. The attached pages include both new material and pages to
replace some previously published. The new material consists of Section 02:
SCAT Language; Section 03: Compiler; two chapters of Section 07: Input/Output
System; and two appendices. The replacement pages include an updated Table
of Contents and listing of current pages, and index pages.

Users of SOS are invited to contribute material, for inclusion in Section 10:
Programming and Operating Notes, so that programming techniques, operating
procedures, etc., which have been found useful can be communicated to other
users of the system. Such material should be addressed to:

SOS Group

704/709/7090 Applied Programming
International Business Machines Corporation
1271 Avenue of the Americas

New York 20, New York

SHARE System for the IBM 709

ACKNOWLEDGEMENT TO THE SHARE ORGANIZATION

The SHARE 709 System described in this manual was developed under the
auspices of the SHARE organization of 704 and 709 users. The specifications
for the various components of SOS were developed over a period of eighteen
months by the SHARE 709 System Committee which was established in December
1956. This committee originally consisted of:
Chairman:
Mr. Donald L. Shell General Electric Company, Cincinnati, Ohio

Members:

Miss Elaine M. Boehm IBM, New York

Mr. Ira Boldt Douglas Aircraft Corp., Santa Monica, Calif.
Mr. Harvey Bratman Lockheed Aircraft Corp., Los Angeles, Calif.
Mr. Vincent DiGri IBM, New York

Mr. Irwin D. Greenwald Rand Corporation, Santa Monica, Calif.
Miss Maureen E. Kane IBM, Poughkeepsie

Miss Jane E. King General Electric Co., Schenectady, New York
Mr. Owen R. Mock North American Aviation, Los Angeles, Calif.
Mr. Stanley Poley Service Bureau Corp., New York

Mr. Thomas B. Steel System Development Corp., Santa Monica, Calif.
Mr. Charles J. Swift Convair, San Diego, Calif.

Subsequently, during implementation of SOS by IBM, the numerous modifications
and clarifications which have become necessary and desirable have been worked
out through liaison with the current SHARE 709 System Committee.

00.00.01
2 (2/60)

PREFACE

In writing this manual, it has been assumed that readers are familiar with the
material contained in two IBM manuals:

General Information Manual: IBM 709-7090 Data Processing System,
form D22-6508

Reference Manual: IBM 709-7090 Data Processing System, form A22-6503.

In particular, a knowledge of methods of symbolic programming is assumed.
Those readers who are unfamiliar with symbolic programming are referred to
the sections of the above manuals which deal with that subject. It is anticipated
that a primer on symbolic programming and assembly programs in general

and on SOS in particular will become available in the near future. At such time
as it is available, notice will be given in this manual.

00.00.03
2 (2/60)

TABLE OF CONTENTS
ACKNOWLEDGEMENT TO THE SHARE ORGANIZATION
PREFACE
TABLE OF CONTENTS
CURRENT PAGES
SECTION 01: INTRODUCTION

SCAT

Compiler

Lister

Modify and Load
Debugging System
Input/Output System
Monitor

SECTION 02: SCAT LANGUAGE

Operation Codes

Symbols

Integers

The Location Field

The Location Counter
Arithmetic Expressions
The Use of "*!" a8 3 Term
Sense Indicator Instructions
Boolean Symbols and Expressions
The Variable Field
Comments Field

Remarks

SECTION 03: COMPILER

Classification of SOS Operations

Machine Operations

Pseudo-Operations

Pseudo-Operations which Control the Location Counter
ORG (Origin)
BSS (Block Started by Symbol)
BES (Block Ended by Symbol)

00. 00. 05
5 (6/61)

00. 00.
00. 00.
00. 00.
00. 00.
01. 00.
01. 0o0.
01. 00.

01. 00.
01. 00.

01.00.
01.00.
01.00.

02. 00.
02. 00.
02. 00.
02. 00.
02. 00.
02. 00.
02. 00.
02. 00.
02, 00.
02. 00.
02. 00.
02. 00.

03. 00.
03. 00.
03. 00.
03. 00.
03. 00.
03. 00.
03. 00.

01

03

05

15

01

02
02
02
03
03
03
04

01
01
02
02
03
03
06
06
07
08
11
11

01
01
01
01
01
03
05

Pseudo-Operations for Relating Symbols
EQU (Equals)
SYN (Synonym)
BOOL (Boolean Equals)
Pseudo-Operations for the Introduction of Data
DEC (Decimal Data)
OCT (Octal Data)
BCI (Binary Coded Information)
VFD (Variable Field-Definition)
DUP (Duplicate)
LBR (Library Program)
EXEMPT (Exempt from Relativization)
Macro-Operations
MACRO (Macro-Instruction Definition)
BEGIN (Begin Subroutine)
RETURN (Return)
HEAD (Heading)
ETC (Et Cetera)
SQZ (SQUOZE)
END (End)
TCD (Transfer Card)

SECTION 04: LISTER
Chapter 1: SCAT Listings

Compiler Error Listing

Modifications Listing

Symbol and Pseudo-operation Error Listing
Program Listing

Symbol Listing

Chapter 2: Reference Systems

Relative Numbering
Alter Numbering

Chapter 3: Pseudo-operations

UNLIST
LIST
DETAIL
TITLE
SPACE
EJECT

00. 00. 06
5 (6/61)

03. 00. 06
03. 00. 06
03. 00.08
03. 00. 08
03. 00.10
03.00.10
03. 00. 14
03. 00. 16
03.00. 17
03. 00. 20
03. 00. 21
03. 00. 24
03. 00. 26
03. 00. 27
03. 00. 34
03. 00. 37
03. 00. 40
03.00. 44
03. 00. 45
03. 00.46
03. 00. 47

04

04
04
04
04
04

04

04
04

04

04.
04.
04.
04.
04.
04.

. 01.

. 01,
. 01.
. 01.
.01,
.01.

.02,

.02,
. 02,

. 03.

03.
03.
03.
03.
03.
03.

01

02
02
03
04
04

01

01
02

01

01
01
02
03
04
04

SECTION 05: MODIFY AND LOAD

Chapter 1:

Chapter 2:

Main Features
Pseudo-Operations

CHANGE
ALTER
ERASE
SYMBOL
ASSIGN

SECTION 06: DEBUGGING SYSTEM

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

00. 00. 07
5 (6/61)

General Features
Information Macro-~Instructions

PANEL
CORE
TAPE
DSC
TRAP
UNTRAP

Modal Macro-Instructions

USE
POINT
BUFFER
NUCASE
FORMAT
ON

OFF

Conditional Macro-Instructions

WHEN

UNLESS

AND

OR

EVERY

Combining Conditional Macro-Instructions

Expansions of Debugging Macros

05. 01.01

05. 02. 01

05. 02.
05. 02.
05. 02.
05. 02.
05. 02.

06.01.

06. 02.

06.
06.
06.
06.
06.
06.

06.

06.
06.
06.
06.
06.
06.
06. 03.

06. 04.

06. 04.
06.
06.
06.
06.
06.

06.

02.
02.
02.
02.
02.
02.

03.

03.
03.
03.
03.
.06
03.

03

04.
04.
04.
04.
04.

05.

01
06
09
12
14

01

01

02
03
05
08
09
10

01

02
03
04
05

07
08

01

04
05
06
07
08
09

01

SECTION 07: INPUT/OUTPUT SYSTEM

Chapter 1: The Input System — INTRAN

Rules for Specifying INTRAN Macros
Special Registers and Indicators
Purpose of the Input System
IIMAGE
Modal I-Macros
INTRAN
The Read~In Macros
ISCRIB
IREADY
IBRNCH
IFILE
IREDUN
The Internal Processing I-Macros
The Column Counter
ICOLR
ICOLIN
IBCC
IBCW
Rules for Use of N in the Conversion macros
IOCTAL
IBIN
IINT
IFLOAT
IFIX
ISCAN
IMASK
ICHAR
ISPILL
Error Return: ICHARS; ISPILL
ISCALE
IOVPCH
IEOR
IRPT
Expansions of INTRAN macros

Chapter 2: The Output System-OUTRAN

00. 00. 08
5 (6/61)

Rules for Specifying OUTRAN Macros
Special Registers and Indicators
Purpose of the Output System
OIMAGE

07.01.01

07.01.01
07.01. 03
07.01.03
07.01. 05
07.01.06
07.01. 07
07.01. 07
07.01. 07
07.01. 16
07.01.19
07.01. 20
07.01.21
07.01. 22
07.01. 23
07.01. 24
07.01.24
07.01. 24
07.01. 25
07.01. 26
07.01. 27
07.01. 28
07.01.30
07.01.31
07.01. 34
07.01.38
07.01.39
07.01.43
07.01.46
07.01. 47
07.01.49
07.01.50
07.01.52
07.01.52
07.01.54

07.02.01

07.02.01
07. 02,02
07.02. 03
07.02. 05

Chapter 3:

00. 00. 09
5 (6/61)

OUTRAN
Macro Classifications
The Internal Processing Macros
The Column Counter
OCOLR
OCOLIN
OCOLC
OBCC
OBCW
OOCTAL
OBIN
OINT
OFLOAT
OFLFIX
OFIX
OFXFLO
OMASK
OSPILL
OPOINT
OZERO
OOVPCH
ORPT
The Write-Out Macros
OSCRIB (SHARE Monitor System)
Output Modes
Special Conditions
OSCRIB (IB Monitor System)
Output Types
Special Conditions
Use of the Buffer Area
OREADY
OSPACE
OHEAD
OREDUN
OTPEND
Expansions of the OUTRAN Macros

Input Editor

Input Data Package

Control Cards
ENDRCD
ENDGRP
ENDFILE
ENDTAPE

07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07,
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.

07.
07.
07.
07.

07.

07.
07.
07.

02,
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.

02

02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.
02.

03.

03

05
05
07
07
07
07
08
09
10
10
12
13
14
16
18
20
21
25
28
29
30
.32
34
34
35
37
40
41
42
45
49
52
52
55
57
58

01

.01

03. 02
03. 02
07.03.02
07.03. 02
07.03.02

Chapter 4:

Chapter 5:

00. 00. 10
5 (6/61)

NOMORG
FORMAT
ETC
The $ Class
Format Statements
Basic Field Specifications
Other Specifications
General
Data Conversion
Error Analysis
Type 1 Errors
Type 2 Errors
Type 3 Errors
Error Messages
Type 1 Errors
Type 2 Errors
Type 3 Errors

Output Editor

Macro-Instructions

XFORM

XPRINT

XPUNCH

XHEAD

XFOOT

XSPACE

XEJECT

XCOUNT
Format Statement Specifications

Basic Field Specifications

Line Spacing

Counter Control by Format Statements
Expansion of Output Editor Macros
Example

SHARE Monitor Transmission Macros

READ
STEPR
STEPF
WRITE
WEOF -
BACKR
BACKF

07. 03.
07. 03.
07. 03.
07.03.
07. 03.
07. 03.
07.03.
07. 03.
07. 03.
07. 03.
07. 03.
07. 03.
07. 03.
07. 03.
07.03.
07.03.
07. 03.

07. 04.

07. 04.
07. 04.
07. 04.
07. 04.
07. 04.
07. 04.
07.04.
07.04.
07. 04.
07. 04.
07. 04.
07. 04.
07. 04.
07. 04.
07. 04.

07. 05.

07. 05.
07. 05.
07. 05.
07. 05.
07. 05.
07. 05.
07. 05.

02
03
04
04
04
05
06
07
08
09
09
09
09
09
09
10
10

o1

01
01
02
03
03
04
04

SRRR

07
09
10

01

02
02
03
03
03
03
03

BACKT

IN

ouT

RUSH

DISP

Expansions of SHARE Monitor Transmission Macros

Chapter 6: SHARE Monitor Buffering Routines

General Purpose Routines
Add Buffer — SYSBFD
Write Logical Records — SYSNPT
Read Logical Records — SYSRTK
Backspace Logical Record — SYSBKS
Rewind Tape — SYSRWD
Buffering Routine Flags
General Purpose Flags
Block Flag
Logical End of Record Flag
Logical End of Group Flag
Logical End Flag
Special Purpose Flags
Nominal Origin Flag
Immovable Block Flag
Symbol Flag
Sequence Flag
Special Purpose Routines
Read Word — SYSWTK
Write a Block Flag — SYSBLK
Write a Data Word ~— SYSINF

07.
07.
07.
07.
07.
07.

07.

07.
07.
07.
07.

07.
07.

07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.

05.
05.
03.
05.
05.
05.

06.

06.
06.
06.
06.
06.
06.
06.
06.

06

06.
06.
06.
06.
06.
06.
06.
06.
06.
06.
06.

06

03
04
05
06
06
07

01

03
04
05
06
08
09
10
10
.10
10
10
10
10
10
11
12
12
13
14
17
.18

Write a Terminating or Non-Data Flag — SYSWHT07. 06. 19
07.06. 21
07.06.22
07. 06. 23
07.06. 24

Dispatching Routines
Dispatching Initiation — SYSDIS
Normal Dispatching — SYSDIS
Dispatcher Suppression — SYSDPS

Chapter 7: IB Monitor Transmission Macros

Operation of the Transmission Macros
Transmission Macros

READ

WRITE

WRITEF

REWIND

BACK

00. 00. 11
5 (6/61)

07.07.01

07.07. 02
07.07. 03
07.07. 03
07.07.03
07.07.04
07.07. 04
07.07. 04

Chapter 8:

SECTION 08:

Chapter 1:

Chapter 2:

00. 00. 12
5 (6/61)

RUSH
IN
ouT
DISP
CLEAR
CuT
CSKIP
Expansions of the IB Monitor Transmission Macros

Data Sentences

Data Sentence Processing
Punching Data Sentences
Error Conditions
Example

IB MONITOR

Input
Compilation
List
Punch a New SQUOZE Deck
Punch Absolute Deck
Execution

Control Cards

JOB
DATE
CPL
CPLRB
SQZ

LS
LIST
PS

PA

LG
MOD
ENDMOD
DS1

GO
PAUSE
STOP

07.07.05
07.07. 05
07.07. 06
07.07.07
07.07.08
07.07.08
07.07.08
07.07.09

07.08.01

07.08.01
07.08. 02
07.08.02
07.08.03

08.01.01
08.01.01
08. 01. 01
08.01.01
08.01.01
08.01.01

08.02. 01

08.02.01
08. 02, 02
08. 02. 02
08.02. 02
08.02. 03
08.02. 03
08. 02, 04
08. 02, 04
08.02. 05
08.02. 05
08. 02, 06
08. 02. 06
08. 02. 06
08. 02. 06
08. 02. 07
08. 02. 07

Chapter 3: Job Deck Arrangement 08. 03. 01

SECTION 09: SHARE MONITOR

Chapter 1: Introduction 09.01.01
Conversion and Input/Output Routines 09.01.01
Chapter 2: Control Cards 09. 02, 01
JOB 09. 02, 01
LOAD 09. 02, 02
SCAT : 09. 02, 03
Single Text SQUOZE Decks 09.02. 03
IDENT 09. 02. 04
ASSIGN 09. 02. 05
DATA 09. 02. 06
Chapter 3: Input Deck Arrangement 09.03. 01

Chapter 4: Communication Region Transfer Points and Associated 09. 04. 01
Standard Routines

Chapter 5: Execution Coordination Utility Routines 09. 05. 01
Comment Attached Printer — SYSCAP 09. 05, 02
Mediary Tape Loader — SYSMTL 09. 05. 03
Chapter 6: Availability of Machine Components 09. 06. 01
SECTION 11: GLOSSARY 11.00. 00

SECTION 12: APPENDICES
Appendix 1: Table of Permissible Characters 12, 01. 00. 01
Appendix 2: SQUOZE Operation Codes 12.02. 00. 01 -

Appendix 3: SQUOZE Deck Format

Chapter 1: General Arrangement , 12.03.01.01

Chapter 2: Preface 12.03.02.01

Chapter 3: Heading Table 12. 03. 03. 01
00. 00. 13

5 (6/61)

Chapter 4: Macro-Instruction Name Table
Chapter 5: Blank Card
Chapter 6: Macro-Instruction Skeleton
Chapter 7: Introduction
Chapter 8: Dictionary
Chapter 9: Footnotes
Chapter 10: Text
Appendix 10: 32K IB Monitor Operating Notes
Chapter 1: Equipment Requirements
Chapter 2: Operating Instructions and Programmed Halts

Appendix 12: SHARE Monitor System and Library Tape
Generation and Updating

System Tape Format
Use of System Tape Writer

Appendix 13: SHARE Monitor Operating Notes
Chapter 1: Control Cards
Chapter 2: Input Deck Arrangement
Chapter 3: Starting Operation
Chapter 4: System Tape Reassignment
Chapter 5: Restart Procedure

_SECTION 13: INDEX

00. 00. 14
5 (6/61)

12. 03. 04. 01
12, 03.05. 01
12. 03. 06. 01
12.03. 07. 01
12.03.08. 01
12. 03. 09. 01

12. 03.10.01

12.10.01.01
12.10.02.01
12.12.00.01

12.12.00. 01
12. 12, 00. 02

12.13.01.01
12.13.02.01
12.13.03.01
12.13. 04. 01

12.13.05.01

00.
00.
01.
02.
03.
04.
04.
04.
05.
05.
05.
05.
06.
06.
06.
06.
06.
06.
06.
06.
06.
06.
06.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
07.
08.
08.
08.
08.
08.
08.
08.
09.
08.

00.
00.
00.
00.
00.
01.
01.
01.
01.
02.
02,
02.
01.
02.
02.
02.
02,
03.
04.
04.
04.
04.
05.
01.
02,
03.
04.
04.
04.
05.
05.
05.
06.
07.
08.
01.
02.
02,
02.
02.
03.
03.
01.
02.

01
05
01
01
01
01
03

01
01
03
05
01
01
03
05
07
01
01

05

07
09
01
01
01
01
01
03
05
01
05
07
01
01
01
01
01
03
05
07
01
03
01
01

00. 00. 15
5 (6/61)

- 00.
- 00.
- 01.
- 02.
- 03.
.01.02
- 04.

- 05.
- 05.
- 05.
- 05.
- 06,
- 06.
- 06.
- 06.
- 06.
- 06.
- 06.
- 06.
- 06.
- 06.
- 06.
- 07.
- 07.
- 07.
- 07.
- 07.
- 07.
- 07.
- 07.
- 07.
- 07.
- 07.
- 07.

- 08.
- 08.
- 08.
- 08.

- 09.
- 09.

00. 04
00. 17
00. 04
00.11
00. 47

01. 04

01. 02
02. 02
02. 04
02. 16
01.02
02, 02
02. 04
02. 06
02.10
03.08
04. 04
04. 06
04. 08
04.10
05.04
01.57
02.62
03.11
04.02
04. 04
04.11
05. 04
05. 06
05. 08
06. 24
07.10
08. 03

02.02
02. 04
02. 06
03. 02

01. 04
02. 02

BT WL UTW LU RO RO R OTOTOTOTW UIWW W UL U O RN RRDNDWOION OGN

2/60
6/61
2/60
6/61
6/61
1/61
2/60
11/59
11/59
2/60
3/61
11/59
6/61
6/61
1/61
6/61
1/61
1/61
1/61
6/61
1/61
6/61
6/61
6/61
6/61
3/61
3/61
6/61
3/61
3/61
6/61
3/61
3/61
3/61
3/61
6/61
6/61
1/61
6/61
1/61
1/61
6/61
3/61
3/61

09. 02.
09. 02.
09. 03.
09. 04.
09. 05,
09. 06.
11.01.
11. 02.
11. 03.
11. 04.
11. 05.
11. 06.
11. 07.
11. 09.
11.12.
11.183.
11.15.
11. 16.
11.18.
11.19.
11. 20.
11. 21.
12. 01.
12. 02.
12. 03.
12. 03.
12. 03.
12.03.
12. 03.
12. 03.
12. 08.
12.03.
12. 03.
12. 03.
12.10.
12.10.
12.12.
12.13.

13.01.
13.02.
13. 03.

00. 00.

01
01
01
01
01
01
01
01
01
01

00.
00.
01.
02.
03.
04.
05.
06.
07. :
08.01 - 12. 03. 08. 04

01
01
01
01
01
01
01
01
01

- 09.02.04
- 09.02.07

- 09. 04. 04

- 09.05.03
- 09.06. 02

- 12. 02. 00. 02

- 12.03.02. 02

- 12.03. 06. 03

09. 01 - 12. 03. 09. 03
10.01 - 12.03.10.08

01.

01

02.01 - 12.10. 02. 02
00.01 - 12.12. 00. 05
01.01 - 12.13. 01. 02
12.13.02.01
12.13.03.01 - 12. 13. 03. 02
12.13.04. 01 - 12, 13. 04. 05
12.13.05.01

01
01
01

16

5 (6/61)

- 13.02.02
- 13.03.03

QOUUOUTOUTU OO @O OO NDNNDRDNNDNNDNNDNNDNNNDNOTT AN UTO U OO DR O

6/61
3/61
3/61
3/61
3/61
3/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
2/60
2/60
2/60
2/60
2/60
2/60
2/60
2/60
2/60
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61

13.04.01 - 13.04. 03
13.05. 01 - 13. 05. 03
13. 06. 01
13.07.01
13.08.01
13.09.01 - 13.09.04
13.10.01
13.12.01 - 13.12.02
13.13.01 - 13.13.02
13.14.01
13.15.01 - 13.15.04
13.16.01 - 13.16.02
13.18.01 - 13.18.02
13.19.01 - 13.19.05
13. 20. 01
13.21.01
13.22.01
13.23.01
13.24.01
13.26.01

Total number of current pages: 461

00. 00. 17
5 (6/61)

(S B RS, B RS) B I IS I S IS IS) IS RS IS I

6/61
6/61
6/61
6/61
6/61
6/61
3/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
6/61
3/61
6/61

INTRODUCTION

The SHARE 709 System is designed to provide all the advantages of symbolic
assembly, and, at the same time, eliminate most of the disadvantages associated
with other symbolic assembly systems. For example, the use of most assembly
programs permit only two options for making changes to an assembled program:

A. Changes may be made in symbolic form, and inserted into the symbolic
source deck, which must then be reassembled. Thus, each time changes
are made in a program there is a resulting loss of machine time.

B. The changes may be made in machine language and ''patched' into a program.
This method, while conserving machine time, does require tedious record
keeping to relate machine language patches to the symbolic listing.

The SHARE 709 System provides the advantages of making changes in symbolic
form with little increase of machine time over the loading of binary punched
cards. The method by which this is accomplished is described in the various
parts of this manual as the need arises.

An additional feature of SOS is the facility for listing debugging information in
symbolic form, rather than actual or machine language as was previously required.

The SHARE 709 System also includes provisions for:

A. The use of mnemonic operation codes (including a large group of pseudo-
operations).

B. Arbitrarily chosen location symbols.
C. Relative and complex addressing.

D. The definition of special purpose macro-instructions for use in a given
program.

Further details are given in the discussion which follows of the various parts
of SOS.

Although SOS is in reality an integrated system, it has for convenience and easy
reference been divided into the following subsystems:

A. The SHARE-Compiler-Assembler-Translator (SCAT). This subsystem has
also, for convenience of discussion, been subdivided into three parts:
1. Compiler

01.00.01
2 (2/60)

2. Lister
3. Modify and Load

B. The Debugging System
C. The Input/Output System

D. Monitor. (Two monitor programs are described in the manual: the IB
Monitor and the SHARE Monitor.)

SCAT

As indicated above, this subsystem will be described in three different parts:
Compiler, Lister, and Modify and Load. These three parts together perform

all the functions associated with symbolic assembly. In addition, SCAT produces
symbolic listings, performs all the mechanics of incorporating modifications
into a program, and loads programs for execution.

A. Compiler

The Compiler performs the first part of the assembly of a symbolic source
program. This consists of reading symbolic cards, translating the in-
formation contained in them into, and producing, a compact binary-coded-
symbolic (SQUOZE) form of the program. This SQUOZE form of the program
contains all the information supplied in the source program, including
remarks cards, and comments from instruction cards. (For detailed in-
formation concerning the composition and form of the SQUOZE program,

the reader is referred to the appropriate appendix.)

The SQUOZE deck produced by the Compiler may be used in either of two

ways:

1. It may be used with a symbolic deck and other SQUOZE decks as input
to subsequent Compiler passes, and incorporated with the symbolic
deck to form one SQUOZE program as output. This feature makes it
possible to write a program in parts and debug each part before combining
them.

2. It may be used as input to Modify and Load, which completes assembly
and loads the program for execution.

B. Lister

The SCAT Lister is in reality a part of the Modify and Load program.
However, since the Lister is used by the Compiler as well as by Modify
and Load, and because knowledge of certain features of the listing produced

01. 00. 02
2 (2/60)

by SCAT are required for the understanding of the discussion of Modify and
Load, the Lister is considered separately in this manual.

The Lister provides the counterpart of an assembly listing of a program.
The listings produced include all the symbolic information, including
remarks and comments, from the original source program deck as modified
by subsequent changes, and the machine language program generated.

C. Modify and Load

Input to Modify and Load is a SQUOZE program and, when necessary,
symbolic cards which indicate changes to be made in the program. Modify
and Load completes the assembly of the input, incorporates symbolic
modifications (if included with the input) and loads the program into storage
for execution.

Modify and Load also provides the following features:

1. A new SQUOZE program, which incorporates symbolic changes, can
be prepared when desired. (A new listing of the program will also
be prepared.)

2. An absolute binary deck can be punched from a SQUOZE program.

3. A new listing of a program in SQUOZE form can be prepared when
required.

DEBUGGING SYSTEM

The Debugging System consists of a group of closed subroutines and their
associated macro-instructions, which may be written into a program at strategic
points, or included as program changes through Modify and Load. These sub-
routines provide the instructions necessary to print-out symbolic information
which will aid in debugging.

INPUT/OUTPUT SYSTEM

The Input/Output System consists of a set of macro-instructions which cause
the generation in a program of the instructions necessary for input and output
conversion of several types. These macro-instructions are a general purpose
type and are intended to be interspersed with machine instructions as necessary
to achieve special purpose input/output for a given job.

01.00.03
2 (2/60)

MONITOR

The input to the Monitor program consists of one or more "job decks.'" A job
deck, as the term is used in this manual, is a program deck to be processed
by SOS (symbolic, SQUOZE, or a combination of the two), together with control
cards to indicate the functions to be performed on the program, i.e., compile,
list, load, etc. The processing of each program is controlled by the Monitor
as specified in the control cards included in a job deck.

When a job deck is used as input to the Monitor, the Monitor reads the control
card(s) included in the deck, determines the part of SOS required for the pro-
cessing of the deck and loads the required part. Control is then transferred to

the processor loaded by the Monitor. That program then processes input until

the end of the job deck is reached, or a new control card is encountered, or an
error occurs. When the end of the deck is reached or a new confrol card is
encountered, the Monitor is reloaded into storage and the process is repeated.

If an error occurs, the Monitor will print a message indicating the error and will,
if possible, continue the processing of the job. If it is not possible for the Monitor
to continue, it will skip to the next job.

This manual describes two Monitor programs which can be used with SOS; for
detailed information on each, see the appropriate sections of the manual.

01. 00. 04
2 (2/60)

SCAT LANGUAGE

A symbolic program consists of an ordered set of symbolic instructions. These
instructions are punched into IBM cards, one per card, keeping the same order.
The resulting (ordered) deck is then used as input for the Compiler.

An instruction consists of an ordered string of Hollerith characters. (For a list
of the allowable characters, see Appendix 1.) An instruction is divided into
four fields. From left to right they are:

the location field (always 6 columns)
the operation field (1 to 7 columns)
the variable field (variable length)
the comment field (variable length)

eopw

The fields are separated by the character "blank. "

Since only 72 of the 80 columns of an IBM card can be used for an instruction, the
length of an instruction is limited to 72 characters (except for three cases; see
page 03. 00. 44).

Every instruction should specify an operation in the operation field. However, it
will often happen, depending on the operation, that the location field and/or the
variable field may be left blank. The comment field is provided merely as a
means for improving the readability of program listings, and may always be
omitted. All comments are retained and included in program listings. Each will
appear with its associated instruction(s). For further provisions for writing
comments, see page 02.00. 11 concerning the use of "*" for remarks.

Operation Codes

Each operation which SOS recognizes, including all of the 709/7090 machine
operations, is abbreviated by a mnemonic operation code placed in the operation
field. (A blank operation field is equivalent to PZE; see page 03. 00. 01.) This
code is a string of from one to six alphabetic characters. Indirect addressing

of an operation, where permitted, is indicated by placing an asterisk (*) at the
end of the code. The asterisk is then considered part of the operation code. The
operation code may be as long as seven characters when indirectly addressed.

Symbols

A symbol is any string of from one to six non-blank Hollerith characters. At
least one character must be non-numeric, and none may be:

+-*/'$=s

02.00.01
5 (6/61)

For example, "A", "Al", '"(1)", "12345X" are all legal symbols. However,
""123456A", "AbB" where b represents a blank, "A = B", 123", "A, B" are not
symbols.

"=" is not allowed because it is reserved for a special purpose. Leading zeros
are considered legitimate characters of a symbol.

It is important to distinguish between operation codes and symbols. An operation
code must be taken from a fixed set of codes which is the code-vocabulary of SOS.
This vocabulary may be expanded, within a given program, by means of the operation
MACRO (see page 03. 00.27). Symbols, on the other hand, are chosen arbitrarily

by the programmer. An operation code is recognized as such by the fact that it
appears in the operation field. Symbols cannot appear in the operation field, but
may appear either in the location field or the variable field.

Integers

An integer is a string of numeric characters. Integers will usually be interpreted
as decimal (base 10), but sometimes as octal (base 8), depending on the operation
code in the instruction where they appear.

By this definition, integers are always positive. There are certain restrictions
on the maximum size of an integer. These depend on its use, and are described
on pages 02. 00. 05, 02, 00. 06, and 03. 00. 18.

The Location Field

The location field of an instruction should either be blank or else contain a symbol.
The use of an integer in the location field is an error. It is ignored and flagged
as a possible error in the output listing (see page 04. 01. 02).

The normal purpose of a location symbol is to give a name to an instruction, so
that the instruction may be referred to by this name in other instructions of the
program. However, for the location symbol of some ""pseudo-instructions, " this
is not true (see page 03.00. 06). In fact, placing a given symbol in the location
field of some instruction is the only way of establishing this symbol as a name.

Every symbol used in a program should appear exactly once in the location field

of some instruction in the program. If it does not appear as a location symbol,

the symbol is said to be undefined. If it appears more than once, it is said to

be multiply defined and of course is ambiguous as a name. The listing produced

by the assembly process will contain, for a given source program, a list of all
undefined symbols and also a list of all multiply defined symbols (see page 04. 01. 04).

02.00.02
5 (6/61)

Although there is nothing logically wrong in naming an instruction without ever

using the name, it is generally desirable to use a location symbol for an instruction
only if a symbol is needed to refer to the instruction elsewhere in the program.

The reason for this is that the Compiler, processing the source program, constructs
a "'dictionary" of location symbols in core storage. The amount of core storage
which can be allotted for this purpose, although reasonably large, is limited and

the extra symbols may cause compilation to be stopped. An error will be flagged

on the output listing if this occurs.

The Location Counter

Each entry in the dictionary contains a location symbol and the ''value' of the
location symbol. This value is an absolute binary number denoting an actual
machine cell. The instruction with the given location symbol will finally occupy
this cell when the object program is later loaded by Modify and Load (however,
see page 04, 02. 01).

In order to assign the proper value to each location symbol used in the source
program, the Compiler uses a special cell called the location counter. The
location counter can be initially set to an arbitrary value by the source program
(see page 03.00.02).

For each machine instruction processed in the source program, the location
counter is increased by 1. Certain pseudo-instructions, on the other hand, may
result in no increase or an increase of more than 1 (see page 03. 00. 04).

Whenever a location symbol occurs with an instruction being processed, the
symbol is entered in the dictionary with the current value in thelocation counter
as the value of the symbol. For certain pseudo-instructions, a dictionary entry
is not made (see page 03. 00. 20 and following).

Arithmetic Expressions

A reference by one instruction to another instruction of a program may be made
by using the symbolic name (location symbol) of the instruction. For example,
suppose that the following instruction appears in a program:

Location Operation Variable Field

START CLA L(1)
Control may be transferred to this instruction by:

Location Operation Variable Field

TRA START

02.00.03
5 (6/61)

However, sometimes a programmer must refer to an instruction that does not
have a name. If he wishes, he may go back and give a name to the instruction.
This, however, is not necessary. Suppose he wishes to transfer control to the
instruction CLA GAMMA in the following sequence.

Location Operation Variable Field
ALPHA TRA BETA

CLA GAMMA

SUB L(1)
STGAM STO GAMMA

TPL DELTA

This may be done by either of the following instructions:

TRA ALPHA+1
TRA STGAM-2

Thus, an unnamed instruction may be referred to by using the name of an
instruction somewhere in its vicinity and adding or subtracting an integer or
symbol.

The combination "TALPHA+1'" or "STGAM-2" is called a relative expression. A
relative expression is the sum or difference of not more than two symbols or
constants. The presence in an expression of a $§, *, /, or more than one plus or
minus sign defines the expression as complex. A negative symbol or constant in
an address field is treated as relative, i.e., is treated as zero minus the symbol
or constant.

Relative expressions should be used with care, since a later insertion or deletion
of instructions between X and X+n ¢(or X-n) changes the instruction to which "X+n"
(or "X-n") refers. This is the outstanding disadvantage of a so-called "relative
coding" system. It is theoretically possible, though rarely advisable, to use

only one name in an entire program and make all references relative to that name.

Occasionally it may be found useful to combine symbols and integers in more
complicated ways than in a relative expression. For example:

A*B
A/B
A*¥B/C+D*2-E

The Compiler recognizes and correctly interprets, according to the ordinary
rules of arithmetic, any meaningful arithmetic expression which can be constructed
from symbols, integers, and the four arithmetic operations:

02.00.04
5 (6/61)

+ (addition)

- (subtraction)

* (multiplication)
/ (division)

Since left and right parentheses can occur as legitimate characters in a symbol,
they cannot be used as grouping marks in an expression. Thus, "A multiplied
by (B+C)'" must be written as "A*B+A*C'., Most, but not all, expressions using
parentheses can be written without parentheses. Note that A/(B+C) cannot be
written without using parentheses, and hence cannot be used.

The evaluation of an arithmetic expression is carried out as follows: First,

all symbols must be defined and all integers appearing in the expression are taken
as decimal. Integers must be less than 235 The whole expression will be indicated
as an error on the output listing for either of the following violations:

a. Any of the symbols in the expression are not defined.
b. An integer exceeding 235-1 occurs in the expression.

The evaluation proceeds by first scanning the expression from left to right and
performing all multiplications and divisions. (In division, only the integral part

of the quotient is retained; the remainder is discarded.) Then another left~-to-right
scan is made and all additions and subtractions are performed.

All arithmetic is carried out using 35 binary bits and a sign. If, at any point in
“these operations, the numeric part of the result exceeds 239-1, only the rightmost
35 binary bits are kept, i.e., the number is reduced modulo 239. If the result,

R, after the second scan is negative, R is replaced by the 2s complement of the
absolute value of R, i.e., R becomes (235- |R|). When the expression has been
completely processed, the value taken for the expression is the rightmost 15 bits
of R, i.e., R is reduced modulo 215,

Ordinarily, none of the computations should result in more than 15 bits, but the
expression is still considered meaningful if 15 bits is exceeded.

Note the term expression is meant to include not only relative and complex
expressions, but also simple expressions consisting of a single symbol or integer.

Thus "A'" and "7" are expressions, as are "-A' and "-7",

According to the rules given above, "-7" would yield the 15-bit value (77771)g.

02.00.05
5 (6/61)

The Use of "*'" as a Term

An important and extremely useful convention is another meaning for the asterisk
(*) in an expression. When the Compiler encounters an "*'" as a term in an
expression (i.e., in that part of the expression where a symbol or integer should
logically be), it interprets the '"*'" as the current value of the location counter.
For example, assume the location counter contents are 155 when the following
instruction is processed:

Location Operation Variable Field

TRA *+2

Then the relative expression "*+2" ig evaluated as 155+2=157, so that a transfer

to the second instruction after the TRA instruction is indicated. An "*'" employed
in this way represents a kind of "'floating address, '" and by it judicious use in a
program one can often avoid introducing superfluous names. For instance,

TRA *-2 always means "transfer control to the second instruction preceding this
instruction' and that instruction need not be named. There is no confusion between
the use of '"*" as a term and its use to indicate multiplication in an expression,
e.g., the expression '"***!" means '"the current value of the location counter
multiplied by the current value of the location counter. "

- Sense Indicator Instructions

Special provisions are made in the SCAT language for dealing with sense indicator
instructions. Unlike the 15-bit address of ordinary instructions, a sense indicator
instruction has a '""mask' of 18 bits, which is really a string of 18 independent
logical (Boolean) bits.

The mask field (which corresponds to the address field of an ordinary symbolic
instruction) of a sense indicator instruction written in the SCAT language must
contain a single octal number or a single symbol. If this condition is violated,
the mask will be evaluated as zero and an error will be indicated on the output
listing. The same treatment is given to an integer mask for any of the following
violations:

a. The integer representation contains the character "8'" or "9'" so that it is
clearly not octal.

b. The integer value exceeds 218.1,

¢. The integer representation uses more than 12 characters.

02.00.06
5 (6/61)

Boolean Symbols and Expressions

If a symbol is used in the mask field of a sense indicator instruction, this symbol
should be defined by means of a special pseudo-operation whose sole purpose is
to define such symbols. Such symbols are called '"Boolean'' symbols and have an
18-bit range, as distinct from '"ordinary'" symbols with a 15-bit range.

An expression involving Boolean symbols and/or octal integers is called a '"Boolean"
expression. A Boolean expression which does not consist simply of an octal

number or a (Boolean) symbol must occur only in a BOOL pseudo-instruction

(see description of BOOL, page 03.00.08). An expression should never be "mixed, "
i.e., if one of the symbols in an expression is Boolean or one of the integers is
octal, then all symbols should be Boolean and all integers should be octal in this
expression. Similarly, if there is one ordinary symbol or decimal integer in an
expression, then all symbols should be ordinary and all integers decimal.

The rules for constructing a Boolean expression resemble those for an arithmetic
(ordinary) expression. However, the meanings of the four operations, '+', '"-",
k1 and '"/" are Boolean rather than arithmetic. They are simply:

[INR]} ("OI‘”, "ot ("exclusive OI‘",
"inclusive or", "symmetric difference')
"union")

0-0=0
0+0=0 0-1=1
0+1=1 1-0=1
1+0=1 1-1=0
1+1=1

"/1" (“ones complement'",
1K1 (nandn’ "complement",
"intersection') "not")
0*0=0 /0=1
0%¥1=0 /1=0
1*¥0=0
1*¥1=1
Note that the operations "+", "=, and '*" are ordinarily operations connecting

two terms, whereas the operation ""/" ordinarily involves one term. However,
by convention, "A/B" is taken to mean "A*/B.' Thus the table for '/" as a two-
term operator is:

0/0=0
0/1=0
1/0=1
1/1=0

02.00.07
5 (6/61)

Other conventions are:

+tA=A+=A
~-A=A-=A p one operand missing
A = A¥=A
A/=0 J
<
+=0

-= b both operands missing
*=(T17777)g
/=0

-

The above tables completely define the four Boolean operations for one-bit
quantities and hence for the 18-bit Boolean quantities in SCAT. For if A and B
are 18-bit Boolean quantities, each can be regarded as a string of 18 independent
one-bit quantities. Thus C = A*B (for example) is simply obtained by 18 parallel,
independent "AND'" operations, where each "AND" is performed between one bit of
A and the corresponding bit of B.

For example,

(123456)g * (234567)g = (020446)g
(123456)g + (234567)g = (337577)g
(123456)g - (234567)g = (317131)g

/ (123456) g = (654321)g

The evaluation of a Boolean expression proceeds as described for an arithmetic
expression, but the four operations are interpreted as Boolean in the sense defined
above, rather than arithmetic. First, the operations "*" and '/'" are carried out
from left to right, and then the operations '+' and ''-'". Eighteen-bit Boolean
arithmetic is used in all stages, and the final value of the expression is 18-bit
Boolean.

For restrictions on integers in a Boolean expression, see page 03. 00. 10.

The Variable Field

In order to specify a 709/7090 machine instruction completely, the programmer
can, and sometimes must, specify a certain combination of address, tag, and
decrement (or count), depending on the operation used in the instruction. For
example, a TIX instruction requires an address, tag, and decrement; LXD requires
an address and tag but must not have a decrement; CLA requires an address and
may have a (operative) tag, but must not have a decrement; PXD requires a tag,
must not have a decrement, but may have an (inoperative) address; CLM must not
have any address, tag, or decrement; etc.

02.00.08
5 (6/61)

The complete details for all 709/7090 operations can be found in the 709 and 7090
reference manuals.

The address A, and/or the tag T, and/or the decrement D, of an instruction are
specified in the instruction's variable field, in that order (i.e., A,T,D). The
subfields A, T, D are separated by commas. For example, the following instruction
specifies an address ALPHA, tag of 4, decrement of 1.

Location Operation Variable Field

TIX ALPHA,4,1

The end of the variable field is signalled by the occurrence of the first blank
‘character in scanning from left to right. Hence, there must be no blanks left
between the subfields of the variable field, nor within the subfields themselves.
The sole exception to this is the pseudo-operation BCI (see page 03. 00. 16).

For those operations which require a tag but no address, the address zero should
be used, e.g.,

Location Operation Variable Field

PXD 0,4
Two very useful conventions in specifying variable fields are provided:

a. If one or more of the subfields of a variable field is to be zero, the programmer
may omit writing the ""0" character and use only the separating comma. For

example:
Operation Variable Field
TXL ALPHA, 0,5
can be written: TXL ALPHA,,5
TXH 0,0,5
can be written: TXH ;)
PXD 0,4
can be written: PXD , 4

Notes: 1. In a subfield which is not the last subfield of the variable field, never
replace the ""0" with a blank, since the blank signals the end of the
variable field.

02.00.09
5 (6/61)

2. If zero subfields are omitted, messages are printed to indicate that
they are possible errors, and zeros are inserted in the subfields.

b. If the programmer wishes to specify the value 0 in the last subfield, or
subfields of the variable field, he may do so by omitting these fields along
with their separating commas. For example:

Operation Variable Field
TXL ALPHA, 4,0
can be written: TXL ALPHA, 4
TXL ALPHA,0,0
can be written: TXL ALPHA
TXH 0,0,0
can be written: TXH
PXD 0,0
can be written: PXD

Certain pseudo-instructions in SOS require more than three subfields in the variable
field. The same convention applies to these; i.e., if the last n subfields are to
contain zeros, they may all be omitted along with their separating commas. The
restrictions on the address (mask) field of sense indicator instructions have already
been stated. With the exception of this special case, the subfields of the variable
field of a 709/7090 machine instruction may contain any arithmetic expression.

For instance:

Location Operation Variable Field

TIX A*B+C,D/E-F, G¥29+H

is perfectly legal, so long as the symbols A, B, ..., H are all defined and are
arithmetic.

The use of Boolean symbols in other than a sense indicator instruction is not

strictly prohibited but can result in errors which will not be flagged in the output
listing. A Boolean symbol used by itself as an address or decrement, can change
the tag or operation field, respectively. For example, if A and B are Boolean
symbols with value (777777)g, then the instruction TIX A,1,B will result in the
absolute machine word (7 77777 7 77777)g which has an undesired prefix and tag

of 7. Such an error will not be detected and indicated to the programmer. However,
if A and B (in the example) did not exceed 15 bits (i. e., were less than 215), the

02.00.10
5 (6/61)

correct prefix and tag would result. A Boolean symbol occurring in a relative
or complex expression will be detected and indicated as a possible error on the
output listing. The expressions in the address and decrement subfields will be
evaluated as previously described, i.e., the rightmost 15 bits of the results
will be placed in the address or decrement. However, only the rightmost three
bits of a result will be placed in the tag, i.e., the result is reduced modulo 2°.
Certain pseudo-operations in SOS will be described later which require variable
fields in different forms. In an instruction using such operations, the subfields
of the variable field have special restrictions. The rules for specifying the
variable field depend on the given pseudo-operation. These rules are set down
in the following sections with the description of the pseudo-operation.

Comments Field

Any non-blank characters found after the blank that signals the end of the variable
field will be regarded as comments and will appear unaltered in the output listing.

The start of this field must be separated from the end of a preceding non-blank
variable field by at least one blank. However, if the variable field is blank, the
comments field must not start to the left of column 17. It ends in or before
column 72. This field may contain blanks. It does not affect execution of the
instruction, but it is retained by SOS for inclusion in program listings.

Remarks

Any card with "*" in column 1 is called a "remarks'" card. When such a card

is encountered, columns 2 through 72 are treated as commentary. This
commentary is saved and printed out as a single line on the output listing, exactly
as it is written. Such a card has no other effect on the processing of the source
program.

Remarks cards can be extremely useful in producing a readable output listing.
One or more such cards might be placed at the beginning of the program for
different descriptive purposes, or inside the program to include pertinent
information for the reader of the program.

02.00.11
5 (6/61)

THE COMPILER

Classification of SOS Operations

Every operation in the SOS language belongs to one of two classes: 709 machine
operations (e.g., CLA, LXD, RDS, or IOCD) and non-machine operations. A
non-machine operation is called a '""pseudo-operation.' Instructions using
pseudo-operations are called "pseudo-instructions. "

The 15 operations associated with the Data Synchronizer Channels are put in the
same class as ordinary operations and the '""commands' in which these operations
appear are specified in the same way as ordinary machine instructions.

Note that SOS provides the following 12 codes, which can be used in a convenient
mnemonic way to specify only the prefix (leftmost three bits) of the instruction,
accompanied by the usual variable field pattern of address, tag, decrement.

PZE (Plus zero) PTH (Plus three)
MZE (Minus zero) MTH (Minus three)
PON (Plus one) FOR (Four)

MON (Minus one) FVE (Five)

PTW (Plus two) SIX (Six)

MTW (Minus two) SVN (Seven)

Machine Operations

A machine instruction (i.e., an instruction using a machine operation) always
generates one 36-bit binary machine word in the object program. The rules for
specifying the location field and the variable field of a machine instruction have
already been given in Section 02.

Pseudo-Operations

Unlike machine instructions, some pseudo-instructions may generate more than
one machine word in an object program or may generate no words at all. The
pseudo-operations of SOS have a variety of functions which will be seen in the
following pages.

Pseudo-Operations Which Control the Location Counter

The function of the following three pseudo-operations is principally to control
the contents of the location counter (see page 02.00.03).

A. ORG (Origin)

If a programmer wishes the origin of his program (i.e., the location of the
first word in his object program) to be (3490)1(, he may simply preface his
source program with the pseudo-instruction:

03. 00. 01
5 (6/61)

Location Operation Variable Field

ORG 3490

No word is generated in the object program by this instruction. Its effect is to
cause the Compiler to set the location counter to the value (3490)1¢. If the
instruction immediately following the ORG is ALPHA CLA BETA, then the
symbol ALPHA will receive the value (3490);(when placed in the dictionary.
The binary word which results from the CLA BETA part will be ear-marked for
location (3490)(, and subsequently assigned to this location by Modify and Load.
(However, see page 04.02.01.)

ORG instructions may appear anywhere in the program. Moreover, the expression
in the variable field need not be an integer as in the above example. It may be

any arithmetic expression. For example:

Location Operation Variable Field

ORG ALPHA+BETA*GAMMA-1

Thus, the variable field of an ORG instruction consists of a single subfield. If
more than one subfield is used (e.g., ORG A, B), only the first, in this case A,
will be used. The remaining subfields will be ignored, and an error flagged in
the program listing. The effect of the above instruction (and, in general, any
ORG instruction) is to cause the location counter to be set to the value of the
expression in the variable field. Of course, any symbols used in the variable
field expression of the ORG must be eventually capable of receiving values, i.e.,
they must be defined in the sense given on page 02.00.02. However, they need
not have been assigned values before they are used. In the above example, ALPHA
and/or BETA and/or GAMMA need not have appeared as location symbols before
the ORG instruction itself.

A location symbol can meaningfully appear in an ORG instruction, for example.

Location ‘Operation Variable Field

ALPHA ORG 3490

This instruction will cause the symbol ALPHA to be entered in the dictionary
of symbols with the associated value of (3490)1¢. If the variable field had been
a symbol or some non-simple expression, then the value of ALPHA in the
dictionary would have been the value of that symbol or expression. Note that,
in this example, if the next instruction were

Location Operation Variable Field

CLA BETA

03. 00. 02
5 (6/61)

then the same effect could also have been obtained by writing

Location Operation Variable Field
ORG 3490
ALPHA CLA BETA

On the other hand, if the programmer were to write

Location Operation Variable Field
ALPHA ORG 3490
GAMMA CLA BETA

Then ALPHA and GAMMA would both be entered into the dictionary, with the
value (3490);¢. Another way of achieving such an effect will be seen in the
pseudo-operation EQU. '

The Compiler does not require the presence of an ORG at the beginning of the
source program, nor anywhere within the source program. If the programmer
fails to use an ORG instruction to set the location counter to an initial value,
the Compiler will assume that the program is to begin at a location to be
determined later.

Lower core storage will ordinarily contain a part of the SHARE Monitor. For
this reason, a source program with no initial ORG instruction will not be started
at location (00000)g. Instead, the initial location is assigned by the monitor as
the lowest available location.

Since a certain part of lower core storage is normally required for the function-
ing of SOS, the programmer should not specify a program origin which is so low
that the object program will conflict with this required part. An error will be
indicated on the output listing if & program origin which is too low is specified.

BSS (Block Started by Symbol)

A programmer will often need to reserve a block of one or more words of core
storage for such purposes as ''erasable storage,' input and output buffers, etc.
If, for example, in writing his source program, he needs to reserve the next
50 words, he may write:

Location Operation Variable Field

BSS 50

03. 00. 03
5 (6/61)

When encountered, this instruction will cause the location counter to be
increased by (50){ -

If it is desired to gi&en the name ALPHA to the first word of the block, the
instruction can be written:

Location Operation Variable Field

ALPHA BSS 50
With BSS, it is not possible to associate location symbols with any words of
the reserved block except the first word. This, however, can be accomplished

by EQU.

Like ORG, the variable field of a BSS instruction may contain any arithmetic
expression, for example:

Location Operation Variable Field

ALPHA BSS BETA/GAMMA+4*DELTA-3

The effect of the above instruction is to enter ALPHA in the dictionary with
the current value of the location counter, and then to increase the location
counter by the value of the arithmetic expression in the variable field. The
general comments about ORG also apply to BSS.

Unlike ORG, the variable field of a BSS instruction may have a second subfield
which can be used to provide information for later use by the Debugging
System. The programmer can specify this information by placing, inthe
second subfield, an alphabetic format code which he can choose from one

of the following list of seven codes:

Code Format Intended

Command (DSC control word)

Floating point number

Hollerith (binary coded decimal) information
Octal integer

Symbolic instruction

Variable Format

Fixed point number

K<wmom=Q

For example, suppose a programmer writes the following instruction:

03.00.04
5 (6/61)

Location Operation Variable Field

ALPHA BSS 50, F

By use of the F, he specifies that the 50 words in the block beginning at
ALPHA are to be interpreted as floating point numbers. Subsequently,
whenever the Debugging System is to dump information from this block,
the words will appear in the output as floating point numbers.

If the programmer does not intend to use the Debugging System, he will, of
course, have no need for specifying a second subfield in a BSS instruction.

For further information on the meaning and use of the seven format codes,
see page 06.01.02 and following.

C. BES (Block Ended by Symbol)

This pseudo-operation has exactly the same properties as BSS, except that
when it is used with a location symbol, the symbol is associated with the
first word following the reserved block (rather than with the first word of
the block). For example, suppose a programmer writes

Location Operation Variable Field
ALPHA BES 50
CLA BETA

Then the symbol ALPHA becomes associated with the instruction CLA BETA.
Thus, the programmer could with equivalent results, have written

Location Operation Variable Field
BES 50
ALPHA CLA BETA

On the other hand, if the programmer writes

Location Operation Variable Field
ALPHA BES 50
GAMMA CLA BETA

then ALPHA and GAMMA would both be entered into the dictionary, each with
the value of the location counter at the time the CLA instruction is processed.

03. 00. 05
5 (6/61)

Thus, the effect of the instruction ALPHA BES 50 is to increase the location
counter by (50)1¢ and then to enter ALPHA into the dictionary with the
resulting value in the location counter. Note that ALPHA BES 50 is equivalent
to ALPHA ORG *+50.

As with BSS, a second subfield can be used in the variable field of a BES
instruction to specify one of the seven possible formats for the reserved block.

Pseudo-Operations for Relating Symbols

The following three pseudo-operations serve the sole function of equating two
or more symbols, or of assigning a value to a symbol.

A. EQU (Equals)

When writing a source program, a programmer may want to use a name for
something, the precise nature of which he does not yet know. For example,
he might wish to refer to some instruction which he has not written down,

and does not yet want to decide on the name of this instruction. For example,
he may be at a point such as:

Location Operation Variable Field
CLA ALPHA
SUB BETA
TZE

where he knows what he wants to do next if ¢c(AC) is not zero but he would
like to leave the address of the TZE instruction unspecified until later. He
may, of course, leave this address blank temporarily. He may want to
write something arbitrary such as TZE X1, just to make the instruction
complete (especially if his program is being punched in batches). Later
when he decides what the instruction X1 is to be, he may be satisfied to use
the name (location symbol) X1 for this instruction. If he is not satisfied
with the name X1, he may go back and replace it with the symbol he has
decided on wherever he has used it. However, for one reason or another,
this replacement may be impractical, e.g., if instruction cards referring
to X1 have already been punched.

In the above example, suppose the programmer has actually written X1
and later decides that what he has called X1 should be called NOGOOD.
Then he could simply write

03.00.06
5 (6/61)

Location Operation Variable Field

CLA ALPHA
SUB BETA
TZE X1
NOGOOD PXA 0,1
X1 EQU NOGOOD

AXT 4,1

where the PXA and AXT instructions are two instructions of the NOGOOD
subroutine. X1 EQU NOGOOD specifies that the symbols NOGOOD and
X1 are to be equivalent.

The above situation is one of many examples where the pseudo~operation

EQU can be used very conveniently and effectively. Even if, in this example,
the name X1 had occurred in many places, before or after the EQU instruction,
X1 would still be equated to the symbol NOGOOD.

Moreover, the EQU instruction could have been put anywhere in the program,
before or after the instruction named NOGOOD. The general comments about
ORG also apply to EQU. As with ORG, the variable field of an EQU instruction
can contain any arithmetic expression, subject to the restrictions described
under ORG. For example, one can write

Location Operation Variable Field

ALPHA EQU BETA*GAMMA-DELTA/9+17

The effect of the above instruction is to enter ALPHA in the dictionary with
the value of the arithmetic expression in the variable field. Unlike ORG,
BSS, and BES, the pseudo~operation EQU does not affect the value in the
location counter.

An EQU instruction is meaningless if it does not have a location symbol. An
EQU instruction without a location symbol will have no effect and an error
will be indicated on the output listing.

03. 00. 07
5 (6/61)

Like ORG, the variable field of an EQU instruction should contain only one

subfield, namely an arithmetic expression. If more than one subfield

appears in the variable field of an EQU instruction, only the first will be used.
- The remaining subfields will be ignored and an error indicated on the output

listing.

In the example given above, the variable field of the EQU instruction in each
case contains a symbolic expression. The variable field expression may
also be completely numeric. For example:

Location Operation Variable Field
LLS SHIFT
SHIFT EQU 35

Here, the symbol SHIFT receives the value 351 by virtue of the EQU instruction.
B. SYN (Synonym)

In the SCAT language, SYN is simply another code for EQU, and they may
be used interchangeably. The reason for providing two codes is purely
historical.

C. BOOL (Boolean Equals)

If the programmer uses the Sense Indicators in a program, he may often
need to write instructions in which the 18-bit address (''mask') corresponds
to the 18 leftmost or 18 rightmost bits of this special register. If he cannot
conveniently predetermine what particular sense indicator positions he would
like to use, he might write, for example:

Location Operation Variable Field

RIR SENSX
Later, when he has decided that SENSX should be, say, the rightmost four
positions (i. e., positions 32, 33, 34, and 35 of the Sense Indicator register),

he can write:

Location Operation Variable Field

SENSX BOOL 17

03.00.08
5 (6/61)

where the 17 is interpreted as an octal number equivalent to

000 000 000 000 001 1115. The effect of the instruction SENSX BOOL 17 is
similar to the effect of SENSX EQU 17. However, they differ in two important
respects:

1. For EQU, the 17 would be interpreted as decimal, while for BOOL, the
17 is taken as octal.

2. For BOOL, the symbol SENSX would be entered into the dictionary with
a special indication that this symbol is '"Boolean, " while with EQU, the
symbol SENSX receives no such special indication.

In the above example, the variable field of the BOOL instruction contains an
octal integer, which is a special case of a Boolean expression (see Section 02).
The variable field of a BOOL instruction can in general contain any Boolean
expression. For example, one might write:

Location Operation Variable Field

A BOOL B*C+D-707070

where the variable field expression is Boolean, i.e., B, C,D are Boolean
symbols, 707070 is an octal integer, and the operations (*, +, and -) are
Boolean (see Section 02).

It is not necessary that the symbols used in the variable field expression
should already have received values when the BOOL instruction is first
encountered. However, the symbols should all be defined in the sense that
each symbol in the expression should occur once in the location field of some
other BOOL instruction, since all symbols used must be Boolean and a
Boolean symbol can be defined by a BOOL instruction.

As in ORG and EQU, the variable field of a BOOL instruction should contain
only one subfield. If more than one subfield appears, only the first will be
used. The remaining subfields will be ignored and an error indicated on the
output listing.

The variable field expression of a BOOL instruction will be evaluated as zero,
and an error will be indicated on the output listing, for any of the following
reasons:

1. An integer appears in the expression using the character 8 or 9, so that
the integer is clearly not octal.

03.00. 09
5 (6/61)

2. An integer appears in the éxpression, and the value of the integer exceeds
235-1.

3. An integer appears in the expression and the representation of the integer
uses more than 12 numeric characters.

If the variable field of a BOOL instruction uses some non-Boolean (i. e.,
ordinary) symbol, this symbol will be treated as.though it were Boolean

and a possible error will be indicated on the output listing.

Pseudo-Operations for the Introduction of Data

The following four pseudo-operations can be used to introduce decimal, octal,
binary-coded-decimal, or mixed data fromthe source program into the object
program.

A. DEC (Decimal Data)

This pseudo-operation causes the decimal numbers specified in the variable
field to be converted to binary, and assigned to successive locations
beginning with the current value of the location counter. If there is a location
symbol, it is entered in the dictionary with the current value of the location
counter. The first (i.e., leftmost) decimal number specified in the variable
field can be referred to by this location symbol.

Example:

Suppose the value in the location counter is (3900)10, when the following
instruction is encountered:

Location Operation Variable Field

CONST DEC 1,-3,5,-7,9

The effect of this instruction is to enter the symbol CONST in the dictionary
with the value 3900. The five integers 1,-3,5,-~7,9 are converted to binary
and assigned to locations 3900, 3901, 3902, 3903, 3904, respectively. The
value of the location counter upon completion will be 39051.

If the programmer desires to add the integer 9 to the contents of the AC,
he may now write:

Location Operation Variable Field

ADD CONST+4

03.00.10
5 (6/61)

Every decimal number must be represented by a string of characters from
the following set of 15 characters:

J

+ (plus sign)

- (minus sign)
(decimal point)
(exponent)
(binary point)

WE e

(numeric
rcharacter s)

W oo~ U WNn MO

l

In order to represent a valid decimal number, the composition of the string
must satisfy the rules given below.

There are three types of decimal numbers which can be specified in the
variable field of a DEC instruction:

1. Integers
2. Fixed point numbers
3. Floating point numbers.

A given decimal number is recognized as belonging to one of these three
types by the representation of the number itself.

The sign of any decimal number is always specified by the first character,
"+ or "=", If no initial "+'" or "-" is given, the sign is assumed to be "+'".

Integers are represented by a string of numeric characters only (with possibly
a leading sign character). For example, -31 is an integer, but -31. is not.
An integer is converted to a 35-bit binary number with sign and stored in
positions S, 1-35 of the 709 binary word cell, the position of the binary point
in the cell being at the right-hand end of the word. For instance, -31 would
convert to (400 000 000 037)g.

The term "integer' as used here differs from the term "integer" defined in
Section 02, where it essentially means a non-negative whole number to be
dealt with according to the rules for evaluating a symbolic expression. For
example, the instruction PZE -1 converts to (000 000 077 777)g, while

DEC -1 converts to (400 000 000 001)g. On the other hand, PZE 1 and

DEC 1 both convert to (000 000 000 001)g. The reader can always determine
which meaning of integer is intended by considering the context.

03.00.11
5 (6/61)

A fixed point number or a floating point number may have a decimal point
and/or a signed decimal scale factor. The scale factor is indicated by the
character E and is placed after the principal part of the number. If the
decimal point is not present, it is assumed to be at the right-hand end.
For example, the strings 314159. E-5 and 314159E-5 each represent the
number (3. 14159)1¢ (i.e., 314159.0 x 10-5). The sign of the scale factor
may be omitted if it is +. Thus, for example, the number (3.14159)10
might be presented by .314159E+1 or . 314159E1. The character E, which
indicates a decimal scale factor, may also be omitted, but only if the scale
factor is signed. Thus, (3.14159),(could be represented by 314159-5 or
. 314159+1 (but not, of course, by .3141591).

A number is recognized as being floating point and will be converted to a
normalized floating point binary number if and only if its principal part
contains a decimal point and/or it has a decimal scale factor, but not if it

uses the character B. Thus, all the examples given in the previous paragraph
(i.e., 314159, E-5, 314159E-5, .314159E+1, .314159E1, 314159-5, . 314159+1)
are floating point numbers. Another representation of 3. 141591 in floating
point form would be simply the string 3. 14159.

A number is recognized as being fixed point if and only if the string representing
it contains the character B. The B must be followed by a signed integer (as
usual, if the sign is +, it may be omitted). This integer specifies the position
of the binary point in the cell in which the fixed point binary number resulting
from the conversion is to be stored. The B-integer is used to count from the
left-hand end of the binary word cell from left to right. Thus, B = 0 specifies

a binary point between positions S and 1, and B = 35 specifies a binary point
immediately to the right of position 35. The B-integer can thus be thought

of as the number of integral places. '

It is not necessary for the B-integer to be positive. A negative value means

the binary point is positioned outside of the left-hand end of the cell. The
B-integer may also exceed 35, e.g., 2.0B+36 would convert to (000 000 000 001)g.
Here the binary point is one position outside the right-hand end of the word cell.

Note that it is possible to lose bits on the left-hand end of the number if the
B-integer is improperly chosen. For example, 1.5B0 results in the loss
of the integral bit of the converted result (1.1)9. If such a loss on the left
occurs, the number will be taken as zero and an error indicated on the
output listing.

It is also possible, and generally unavoidable, to lose bits on the right for
a fixed point decimal number. For example, 3. 0B+36 would cause the

rightmost 1-bit in (11)9 to be lost, because the word cell has only 35 bits.
This loss could have been avoided by specifying a B-integer of 35 instead

03.00.12
5 (6/61)

of 36. However, numbers like (0.4);(which equals (. 314631463146....)g
do not have a finite binary representation, so that 0.4B0 will result in an
unavoidable loss of bits on the right. If bits are lost from the right-hand
end, no error will be indicated, and the best possible result will be obtained.

A fixed point number may have a decimal point and/or a decimal scale factor;
e.g., 314159E-5B2, 314159. E-5B2, and 3. 14159B2 are all fixed point numbers.
However, the presence of the B alone is sufficient to define a number as fixed
point; e.g., 32B6 is fixed point.

Note that an integer can always be represented equivalently by using a fixed
point representation with a B-integer of 35, e.g., ~31 is equivalent to
-31B35.

If the string representing a fixed point number contains both B and E, the
B-part and the E-part should both be placed after the principal part of the
number, but their relative order is unimportant. For example, 314159B2E-5
is equally as acceptable as 314159E~5B2,

A 709/7090 word cannot accommodate integers whose absolute value exceeds
235-1 or floating point numbers whose absolute value exceeds approximately
1038, Hence no decimal numbers outside of these ranges should be specified
in a DEC instruction.

If an integer exceeding 2351 or a floating point number exceeding approximately
1038 (in absolute value) is specified in a DEC instruction, the number will be
taken as zero and an error indicated on the output listing. There is no
restriction on the number of numeric characters which may be used in
representing a number, so long as these rules are followed.

The number of decimal numbers which may be specified in a single DEC
instruction is limited only by the number of subfields which can be written
in the variable field (this depends on the length of the variable field and the
lengths of the strings representing the numbers).

Any combination of types of numbers is allowable in a single DEC instruction;
for example, CONST DEC 2,3,1,0.9B5. However, it is generally preferable
for all numbers in a given DEC instruction to be the same type.

The reason for this is that a DEC instruction location symbol has an associated
format code which is entered into the dictionary along with the location symbol
itself. This code is retained and later used by the Debugging System to
determine how numbers are to be interpreted, whether as fixed point (format
code X) or as floating point (format code F). The format code used is determined
by the type (format) of the first decimal number appearing in the variable

03.00.13
5 (6/61)

field of the DEC instruction (in the above example, this would be X). The
remaining decimal numbers in the variable field will be assumed to be of
the same format, and if they are not, they will not appear on the debugging
output list as originally written.

B. OCT (Octal Data)

This pseudo-operation causes octal integers inthe variable field to be
converted to binary, and assigned to successive locations beginning with
the current value of the location counter. If there is a location symbol,

the symbol is entered in the dictionary with the current value of the location
counter. Thus, the octal integer specified in the leftmost subfield of the
variable field can be referred to by this symbol.

For example, suppose the value of the location counter is 39007 when the
following instruction is encountered:

Location Operation Variable Field

OCTDAT OCT 77777777, -17,66,~55,44

The effect of this instruction is to enter the symbol OCTDAT in the dictionary
and to convert the five octal integers in the variable field to binary. The
numbers are assigned to locations 3900, 3901, 3902, 3903, 3904, respectively,
leaving the value of the location counter at 39057¢. Thus, the symbol
OCTDAT+2, for example, may be used to refer to the number 66g specified

by this instruction.

Every octal integer must be represented by a string of characters from the
following set of 10 characters:

0—
1

2 .

3 > numeric characters
4

5

6

7_]

+ (plus sign)

- (minus sign)

An octal number may consist of up to 12 numeric characters and may be
preceded by a sign.

03.00. 14
5 (6/61)

If more than 12 digits are used in representing the number, or if an 8 or 9
is included, then the number is converted as zero and an error is indicated
in the output listing.

The sign of the octal number provides an easy way to specify the sign of the
binary result. + and - specify a 0-bit or 1-bit, respectively, in the sign
position. An alternative way of specifying the leftmost bit of the binary result
is by using twelve octal digits in representing the number. If the leftmost
octal digit is 4, 5, 6, or 7, this implies that the leftmost binary bit of the
result is 1 (i.e., a - sign). For small octal integers such as -77g, it is
easier to write =77 than to write 400000000077 (these two strings are equivalent
and convert to (400 000 000 077)g). However, the 12-digit, signless
representation can always be used for any 36-bit binary number and is
preferable if 12 octal digits must be used in any case.

If a sign and 12 octal digits are used to represent an octal number,
redundancies or inconsistencies arise (unless the leftmost octal digit is
regarded as base 4 instead of base 8). For example, +700000000000 and
-300000000000 are inconsistent, while =700000000000 and +300000000000
are both redundant. If an octal number is represented by 12 octal digits
and an explicit sign, and the leftmost digit is 4, 5, 6, or 7, then an error
is indicated in the output listing. The following conventions are then used
in conversion:

sign and leftmost octal digit binary result (bits S, 1, 2)
+0 000
-0 100
+1 001
-1 101
+2 . 010
-2 110
+3 011
-3 111
+4 100
-4 100
+5 101
-5 101
+6 110
-6 110
+7 111
-7 111
03.00.15

5 (6/61)

C. BCI (Binary Coded Information)

One to ten words of binary coded information can be provided in the object
program by means of a BCI instruction. The variable field of a BCI
instruction has two subfields.

The first subfield specifies the number of words of information. This first
subfield must contain a number from 1 through 9, or else consist only of the
comma which is used to separate the two subfields. In this case the number
of words of information is taken as ten.

The second subfield specifies the BCI information and must consist of a
continuous string of Hollerith characters, including comma, blank, etc.
The number of characters taken from the second subfield is six times n,
where n is the specification of the first subfield.

If a BCI instruction has a location symbol, the symbol is entered in the
dictionary with the current value of the location counter. The n words of
Hollerith information are converted to n words, consisting of six binary-
coded~-decimal characters each. These n words are assigned to the n
successive locations beginning with the current value of the location counter.
Thus, the first word of BCD information can be referred to by the location
symbol name.

For example, suppose the location counter value is 390019 when the following
instruction is encountered:

Location Operation Variable Field

IDENT BCI 3, THISbISbAbBCI
(where "b" indicates the character, blank)
The effect of this instruction would be to enter the symbol IDENT into the

dictionary with the value (3900)1(, and to store the BCD representation of
the three Hollerith words. The words would be stored as follows:

3900 THISbI
3901 SbAbBC
3902 Tbbbbb

where b represents a blank, i.e., the core storage BCD character 1100009.

The value of the location counter would be 3903;;. The programmer could
then refer to the first word in, say, an IOCD command by means of the
symbol IDENT.

03.00. 16
5 (6/61)

D. VFD (Variable Field-Definition)

The preceding three pseudo-operations describe means of introducing decimal,
octal, or Hollerith information into the object program in units of words.
However, it will often be found desirable to prescribe information in smaller
units of a word.

1t is, of course, possible (though sometimes not convenient) to use the
prefix, decrement, tag, address format of a word by specifying a proper
machine instruction, e.g., SVN 9,1, 127 results in a prefix (bits 0-2) of 7,
a decrement (bits 3-17) of 127, a tag (bits 18-20) of 1, and an address
(bits 21-35) of 9. Even in such cases, the use of VFD may be found easier,
because its basic unit of information is a bit, instead of a word. It allows
the programmer to specify a continuous string of bits, from left to right,
starting at the left-hand end (0-bit) of a word.

As an example, suppose the programmer would like to break up a single
36-bit word into four subfields: positions 0-9, positions 10-14, positions
15-29, and positions 30-35. Suppose also that he would like to have placed

in these four subfields, respectively, the following four pieces of information:

The binary equivalent of the decimal integer 895.
The binary equivalent of the octal integer 37.
The binary value of the symbol ALPHA.

The binary coded value for the character C.

B 1o

Then he may simply write:

Location Operation Variable Field

VFD 10/895,05/37, 15/ALPHA, H6/C

The four subfields of the variable field of the above instruction are, as usual,
separated by commas and the variable field itself is terminated by a blank.

The term ''variable field" of the symbolic instruction is not to be confused
with the name VFD meaning "variable field-definition;" this latter term is
meant to indicate that the binary words of the converted result have been
broken up into the ''variable field" format.

From the above sample instruction would be generated a machine word which
contains (assuming ALPHA is location 18563g):

03. 00. 17
5 (6/61)

Specification Bits Contents

10/895 0-9 15774 (8957)
05/317 10-14 37g

15/ALPHA 15-29 18563

H6/C 30-35 23g

Note that the number preceding the '"/'" in the instruction subfield defines the
length (number of bits) of the binary subfield. If the letter O precedes this
number, this indicates that the information to follow the /' is an octal
integer, while the letter H indicates Hollerith information.

The absence of any letter indicates that the information following the "/

is to be regarded as an ordinary (arithmetic) expression, and is to be evaluated
according to the standard rules, except that only the rightmost n bits of the
result are to be used, where n is the length of the subfield.

Hence, an integer is treated as in an arithmetic expression, not as an integer
in the sense of DEC, where it is converted to a signed binary number. For
example, VFD 18/-1, 18/1 converts to (777 777 000 001)g. The restrictions
on the arithmetic expression here are those given in Section 02. Hence,

no integer should exceed 23°-1. Integers larger than 215-1, but less than
235, are allowable and will be properly converted.

If the binary result requires less than n bits, the result will be placed in the
right-hand end of the binary subfield, and zeros will be filled in on the left.
This is also true of octal fields. For example, VFD 36/8 and VFD 036/10
both convert to (000 000 000 010)g.

The examples given thus far specify information to be packed into a single
binary word, and the sum of the lengths of the binary subfield is 36. This
is not a requirement. Any number of binary words can be specified, using
any number of binary subfields. (See the description of ETC.) Moreover,
subfields may overlap the binary words. For example;

Location Operation Variable Field

PACKIN VFD 30/1,012/777
is allowable and converts to the two binary words:

000 000 000 107g
770 000 000 0008

03.00.18
5 (6/61)

Note in the above example that the sum of the two subfield lengths is 42,
which is not a multiple of 36. As implied, this results in the unspecified
bits of the last-used word being taken as 0's. (In the example, there are
30 such bits.) Thus, the example could equally well have been written
PACKIN VFD 30/1,012/777,30/0. The number of words generated by a
VFD instruction is, of course, always the smallest integer greater than
or equal to the sum of the lengths of all the subfields divided by 36.

Note in the above example that the location symbol PACKIN appears in the
instruction. As in the three previously described pseudo-operations, such

a symbol is entered into the dictionary with the current value of the location
counter, so that the first word of information generated by the VFD instruction
can be referred to by this symbol. The value of the location counter is then
increased by the number of words generated. In the above example, if the
location counter value had been 39004 when the instruction was encountered,
the symbol PACKIN would have received the value 39007 and the final

value of the location counter would have been 3902

The length of a subfield must not exceed 63;,. If a binary subfield length
exceeding 63, is specified, this length is taken as 6319 and an error is
indicated in the output listing.

Although decimal integers (i. e., integers in an ordinary subfield) should
not exceed 239-1, there is no limit on the number of octal digits that can
be specified in an octal (O) subfield, beyond the limitation mentioned in
the previous paragraph and the limitation imposed by the length of the
instruction card.

The length specified in a Hollerith (H) subfield should, in general, be a
multiple of 6, since one Hollerith character converts to six binary bits.
However, it is not required. If the bit-length specified is too small to
accommodate the characters specified, the resulting string of bits is
truncated, on the left, to that length. If the bit-length is too large, the
string is right-justified, i.e., placed in the right-hand end of the binary
subfield. However, the left-hand unused bits in this case are filled out
with the binary code for blank, i.e., 1100005. If the Hollerith subfield
bit length is too large and is not a multiple of 6, a terminal segment of
this six-bit code is used to fill out the subfield on the left.

Any Hollerith characters, except blanks and commas, can be used in an H
subfield. Blanks and commas are, of course, not permitted because they
are used to terminate the variable field and to separate subfields of the
variable field, respectively.

03.00.19
5 (6/61)

DUP (Duplicate)

The instruction DUP M, N causes the next M instructions to be duplicated N times.
For example, suppose that the current value of the location counter is 39007
when the following instructions are encountered:

Location Operation Variable Field
DUP 3,30
DEC 1
DEC 2
DEC 3

The effect of these four instructions will be to assign the 90 integers 1,2, 3,1,
2,3,...,1,2,3 to the 90 locations 3900, 3901, 3902, 3903,...3988, 3989,
respectively. The value of the location counter will be left at 39904 .

Exactly the same effect could have been obtained by writing

Location Operation Variable Field
DUP 1,30
DEC ‘ 1,2,3

Note, as in this example, that some or all of the instructions to be duplicated
may be pseudo-instructions, which may in turn generate more than one word
in the object program. DUP M,N increases the location by the quantity: N
times (the number of machine instructions plus the number of words reserved
by principal pseudo-operations).

No more than ten principal pseudo-operations (BSS, BES, TCD, HEAD, ORG)
may appear within the range of a DUP instruction.

If a location symbol is used with a DUP instruction, this symbol will be entered
in the dictionary with the value of the location counter at the time the DUP
instruction is encountered. Thus, this symbol can be used to refer to the first
word generated by the DUP instruction (in the above example, this would be
location 39001 ().

If an instruction to be duplicated has a location symbol, this symbol is associated
with the first, and only the first, occurrence of the duplicated instruction.

No instruction which a DUP instruction specifies is to be duplicated may itself
be a DUP instruction or an END instruction.

03. 00. 20
5 (6/61)

If; in the instruction DUP M, N; M and/or N are missing, zero, non-numeric,
or complex, an error will be flagged on the output listing and M will be replaced
by 1 and/or N will be replaced by 2.

LBR (Library Program)

Normally, each installation using SOS will have available, during the execution

of the Compiler, one (or possibly more than one) tape containing a set of library
programs. Each of these library programs will normally conform to SHARE
standards and will exist on the tape in SQUOZE (binary-coded-symbolic) form.
Moreover, each library program on the tape will have an identification

recognizable by the Compiler, so that the Compiler can search the library tape

for a specified program, and incorporate it into the source program being processed.

The identification label is not to be thought of as a symbol. It is simply an
identifying string of alphanumeric characters.
