
--- ------ - ---- ---- - ---- - - ----------_ .-

SC34-0314-2 LICENSED
PROGRAM

File No. S1-35

IBM Series/1

Event Driven Executive

Language Reference

Program Numbers: 5719-LM5 5719-LM6 5719-AM3
5719-XX2 5719-XX3 5719-MS1
5740-LM2 5719-LM3

Series/1

--- ------ ----- ---- - ---- - - ----------_.-

SC34-0314-2 LICENSED
PROGRAM

o

o

File No. S1-35

IBM Series/1

Event Driven Executive

Language Reference

Program Numbers: 5719-LM5 5719-LM6 5719-AM3
5719-XX2 5719-XX3 5719-MS1
5740-LM2 5719-LM3

Series/1

Use this publication only for the purpose stated.

Changes are periodically made to the information herein;
before using this publication in connection with the operation
of IBM systems, refer to the latest IBM Ser i es/1 Graph i c
Bibliography, GA34-0055, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services which are not announced in your coun­
try. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, program­
ming, or services in your country.

Publications are not stocked at the address given below.
Requests for copies of IBM publications should be made to your
IBM rep res e n tat i v e 0 rt h e IBM bra n c h 0 f fie e s e r v i n g your I 0 c a I -
ity.

Th is pub I i cat i on cou ld conta i n techn 1 ca 1 i naccurac i es or
typographical errors. A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Systems Publica­
tions, Department 27T; P.O. Box 1328, Boca Raton, Florida
33432. IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

ee) Copyright IBM Corporation 1979,1980

o

c

o

o

o

SUMMARY OF AMENDMENTS

New Instructions

In Chapter 3 the CONTROL instruction has been added to
support the IBM Series/l 4969 Magnetic Tape Subsystem

Instruction and Statement List

• "Appendix A" has been added to list all of the Event
Driven Language statements and instructions with
their available operands and default values.

Modified Instructions

The following instructions and
modified to include support for
Magnetic Tape Subsystem:

• DSCB

• POINT

• PROGRAM

• READ

• WRITE

statements have been
the IBM Series/l 4969

SC34-0314 ;ii

Summary of Amendments continued

The Bibliography lists the books in
a recommended reading sequence.
related to EDX are also listed.

M;scellaneous Changes

the EDX library and
Other publications

This manual has been modified to include new function
and to improve technical accuracy and clarity. New mate­
rial and technlcal changes are indicated by vertical
bars in the left margin.

iv SC34-0314

o

o

o

o

o

HOW TO USE THIS BOOK

The material in this section is a guide to the use of this book.
It defines the purpose, audience, and content of the book as
well as listing aids for using the book and background materi­
als.

PURPOSE

The Language Reference contains all details for coding
individual Event Driven Language (EDL) instructions, except
those used exclusively for remote communications and advanced
terminal applications. Examples in the book illustrate the use
of many EDL instructions in different applications.

AUDIENCE

The Language Reference is intended for application programmers
who write and maintain application programs using EDL. The pro­
grammer is expected to know the Event Driven Language. EDL can
be learned by us i ng the IBM Ser i es/l Event Dr i ven Execut i ve
Event Driven Executive Study Guide, SR30-0436, available
through your loca 1 IBM Branch Of f i ce.

HOW THIS BOOK IS ORGANIZED

Th is manua lis d i vi ded into six chapters and one append i x:

• "Chapter 1.Introduction" describes the Event Driven
Language. It introduces each instruct i on or statement and
describes its format. It also presents information about
registers and parameter naming o.perands.

• "Chapter 2. Instruct ions and Statements Overv i ew"
contains the instructions divided into categories accord­
i ng to the i r general use. These categor i es are arranged in
alphabetical order.

• "Chapter 3. Instructions and Statements Descriptions"
contains a detailed description of each instruction or
statement in the Event Driven Language, showing syntax
rules, operands, and defaults. Each page contains a name
tab at the top of the page for easy reference.

SC34-0314 v

• " C hap t e r 4. I n d e xed Ac c e ssM e tho d" e x p I a ins how t his fun c -
tion is invoked and gives a detailed description of each
instruction used.

• "Chapter 5. Multiple Terminal Manager" explains how this
function is invoked and gives a detailed description of
each instruction used.

• "Chapter 6. Programming Examples" contains coded program
examples that use Event Driven Language instructions.
Some examples do not represent complete programs because
they do n~t include such instructions as PROGRAM, ENDPROG,
and END statements.

• "Append i x A. Instruct i on and Statement List" lists the
EDL, Communications, Indexed Access Method, and Multiple
Terminal Manager instructions and statements. The lists
also include the operands, their value ranges, and default
values. Once you become familiar with the instructions you
can code most instructions directly from these lists.

EXAMPLES AND OTHER AIDS

Throughout this book, coding examples and illustrations are
used to clarify coding techniques and requirements. Coding
examples are fully executable portions of complete programs
that can be entered as shown. Coding illustrations are non­
executable portions of incomplete programs that show the cor­
rect format of all required parameters on a statement. Missing
code, 0 r code p r,o v ide d b y yo u, i sin die ate d by a s e r i e s 0 f t h r e e
vert i ca I or hor i zonta I dots.

Several other aids are provided to assist yOU in using this
book:

• A Summary of Amendments lists the sign if i cant changes made
to this publication since the last edition

• A Bibliography:

Lists the books in the Event Driven Executive library
along with a brief description of each book and a
recommended reading sequence

Lists related publications and materials

• A Glossary def i nes terms

• A Common Index wh i ch includes entr i es from each book in the
Event Dr i ven Execut i ve library

vi SC34-0314

0,,": I _ "I

c

o

o

o

RELATED PUBLICATIONS

Related publications are listed in the bibliography.

SUBMITTING AN APAR

If you have a problem with the Ser;es/l Event Driven Executive
services, you are encouraged to fill out an authorized program
analysis report (APAR) form as described in the IBM Series/l
Authorized Program Analysis Report (APAR) User's Guide,
GC34-0099.

SC34-0314 vii

o

o
vii i SC34-0314

o

o

o

CONTENTS

Chapter 1. Introduct; on •••.•••••••
Layout and structure of EDL Programs
General Instruction Format
Syntax Rules ••••••••••••••
Address Indexing Feature •••••••
Use of The Parameter Naming Operands (Px=)
Task Code Words ••••••••••••
Symbo Ii c Sensor Based I/O Ass i gnments
Symbol i c Termi nal I/O Ass i gnments
Symbolic Disk/Tape I/O Assignments
Control Block And Parameter Equate Tables

Chapter 2. Instruct;ons and Statements - Overv;ew
Communications (Reference only)
Data Definition Statements
Data Formatt i ng Instruct ions ••••••••
Data Manipulation Instructions ••••

Vector Data Manipulation •••••
Integer And Log i cal Instruct ions ••••
Floating-Point Arithmetic Instructions ••••

Disk/Diskette I/O Instructions ••••••••••
Definitions For Disk Data Sets •••••

EXIO Control Instructions
Graph i cs Instruct ions ••••••
Indexed Access Method Instructions
List i ng Control Statements ••••
Multiple Terminal Manager Instructions
Program Control Statements .•••••
Program Module Sectioning Statements
Program Sequencing Instructions
Queue Process i ng •••••..•
Sensor-Based I/O Statements
System Configuration Statements
Tape I/O Instruct ions •••••

De fin i t ions For Tape D a t a S e-t s
Task Control Instructions ••••
Terminal I/O Instructions
Timing Instructions

Chapter 3. Instruct; on and Statement Descr;pt;ons
ADD • • • •
ADDV
AND
ATTACH
ATTNLIST
BSC (Binary Synchronous Communications)(Reference only)
BUFFER ••••.••••••.••••
CA L L • • • •
CALLFORT ••••
CONCAT
CONTROL

1
2
3
4
6
8
8
9

10
10
11

15
16
17
18
19
19
19
20
22
22
24
26
27
28
29
32
33
34
37
39
39
40
40
42
44
50

51
52
54
57
59
61
64
65
68
70
72
74

Contents ix

CONV,B 79
CONVTD 82
COpy 86 0 CSECT 87
DATA/DC 88
DCB 91
DEFINEQ . - . 94
DEQ 95
DEQT 97
DETACH . 98
DIVIDE 99
DO 101
ENDDO 103
DseB 105
ECB 107
EJECT 109
ELSE 110
END 111
ENDATTN 112
ENDDO 113
ENDIF 114
ENDPROG 115
ENDTASK 116
ENQ 117
ENQT 119
ENTRY 121
EOR 122
EQU 124 (----~,

ERASE 126 ("~I

EXIO 128 '---,
EXOPEN 129
EXTRN/WX,RN 134
FADD 135
FDIVD 137
FIND 139
FINDNOT 141
FIRSTQ 143
FMULT 144
FORMAT 146

Conversion of Numeric Data 148
Alphameric Data Specification 152
Blank L i hes in Output Records 155
Repetitive Specification 155
Stor~~e Considerations 156

FPCONV 157
FSUB 159
GETEDIT 162
GETTIME 167
GETVALUE 169
GIN 172
GOTD 173
IDCB . 175
IF 177
ELSE 178 C ENDIF 178

x SC34-0314

INTIME 181

0
IOCB 183
IODEF 185

SPECPI Process Interrupt User Routine 189
lOR 191
LASTQ 193
LOAD 194
MOVE 201
MOVEA 204
MULTIPLY 205
NEXTQ 207
NOTE 209
PLOTGIN 210

Plot Control Block 210
POINT 212
POST 213
PRINDATE 215
PRINT 216
PRINTEXT 217
PRINTIME 221
PRINTNUM 222
PROGRAM 225
PROGSTOP 234
PUTEDIT 236
QCB 240
QUESTION 242
RDCURSOR 244

0 READ 245
READTEXT 251
RESET l58
RETURN 259
5810 260

Analog Input 263
Analog Output 264
Digital Input 265
Digital Output 267

SCREEN 270
SHIFTL 271
SHIFTR 273
SPACE 275
SPECPIRT 276
SQRT 277
STATUS 278
STIMER 280
SUBROUT 281
SUBTRACT 283
TASK 285
TERMCTRL 288
TEXT 305
TITLE 308
TP HO.st Communications (Reference only) 309
USER 310
WAIT 313

0 WHERES 315
WRITE 317

Contents xi

WXTRN/EXTRN
XYPLOT
YTPLOT

Chapter
DELETE
DISCONN
ENDSEQ
EXTRACT
GET
GETSEQ
LOAD
PROCESS
PUT
PUTDE
PUTUP
RELEASE

4. Indexed Access Method

Chapter 5. Mul t; pIe
ACTION

Term; nal Manager

BEEP
CDATA
CHGPAN
CYCLE
FAN
FILEIO
FTAB
LINK
LINKON
MENU
SETCUR
SETPAN
WRITE

Chapter
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

6. Programm;ng Examples
1: Read and Pr 1 nt Date
2: Analog Input
3: Analog Input With Buffering To Disk
4: Digital Input and Averaging
5: Index Reg 1 ster Usage ••••••.••.
6: Use of Movea •••••••.•.•.
7: A Two Task Program '''i th ATTNLIST
8: Program load i ng Func"t ions
9: Floating Point, WAIT/POST, GETEDIT/PUTEDIT
10: User Exit Routine •••••••••••••
11: I/O level Control Program ••••••.••••
12: Graphics Instructions Programming Example
13: Format and Display Trace Data •••••
14: Use of Indexed Access Method •••.
15: Wr i te data to tape data set •••.•••••.
16: Processing Standard labels Using BlP
17: Wr i te A Data Set To A Sl Tape Then Read It
18: Initialize and WRITE a Nl Tape
19: READ the thi rd file on tape ••••••••

)(i i SC34-0314

323
324
325

327
329
332
334
336
338
341
344
347
350
352
354
356

359
360
361
362
364
365
366
367
372
374
376
377
378
379
381

383
384
386
387
390
392
394
395
397
398
400
403
408
411
414
419
420
422
424
426

o

c

o

o

o

Appendix A: Instruction and statement List
Event Driven Language Instructions
Indexed Access Method ••••••••••
Multiple Terminal Manager

B; b 1 ; 0 9 rap hy • • • • • •
Event Dr i ven Execut; ve Library Summary

Event Driven Executive Library
Summary of Library

System Gu i de
Utilities
Language Reference
Communications Guide
Interna 1 Des i gn
Reference Summary
Tab s

Read i ng Sequence ••••••
Other Event Driven Executive Programming Publications
Other Series/1 Programming Publications •••••
Other Programming Publications ••••••••••••••
Series/1 System Library Publications •••• • •••

Glossary

Common Index

Contents

429
429
437
438

439
439
439
440
440
440
441
441
441
4(.2
442
442
443
443
444
444

447

459

xii i

o

,I 0,

o
x i v SC34-03l4

LIST OF FIGURES

0
Figure 1 . Symbolic I/O Assignment · · · · · · · · · · . 10
Figure 2. The Control Mechanism of Queue Processing 38
Figure 3. The Concurrent Execution of Multiple Tasks 43
Figure 4. Function of ATTNLIST 63
Figure 5. BUFFER Statement · · · · · · · · · 67
Figure 6 • Execut i on of Sub rout i nes 69
Figure 7. EXIO Return Codes · · · · 131
Figure 8. EXIO Interrupt Codes 132
Figure 9. GETEDIT Overview · · · · · · · · · 166
Figure 10. Two Ways a f Load i ng a Program · · . . 200
Figure 11. Terminal I/O Return Codes · · · · 219
Figure 12. READ/WRITE return codes 249
Figure 13. Terminal I/O Return Codes · · · · 255
Figure 14. Virtual Terminal Communication Return Codes 256
Figure 15. Terminal I/O - ACCA Return Codes 301
Figure 16 • Text Statement . · · · · · · · · · · · 307
Figure 17. Calling A User Exit Routine and Returning 311
Figure 18. READ/WRITE return codes · · · · · · · · · 321
Figure 19. Graphic Program Output 410
Figure 20. Format and Display Trace Data 413

o

o
List of Figures xv

O····,r '" "

o

o
xvi SC34-0314

o

o

o

CHAPTER 1. INTRODUCTION

The language Reference is wr i tten for programmers who wr i te and
maintain application programs in the Event Driven Language
(ED l). Yo u are ex pee ted to be ·f ami 1 i a r wit h the 0 v e r vie win for­
mat ion in the System Gu ide.

The Event Driven language is a programming language designed
for coding application programs. The language is designed at a
level that allows flexibility for the application programmer
without sacrificing productivity and is efficient in exe­
cution. The language can be used effecti vely for vi rtually any
type of appl i cat i on.

The Event Dr i ven language conta ins . many advanced features
which provide great flexibility in application programming.
For example, it allows exiting to and returning from other pro­
grams or routines where this level of complexity is required.
It provides automatic translation for reading and writing
alphabetic, numeric, or alphameric data to and from graphic
screens. The language provides di fferent levels of control for
I/O operations. You can use the Event Driven language to
program I/O and allow the program to be device independent in
most cases or· you can control I/O devices at the machine
instruction level.

An application program consists of instructions combined to
form a task. A program can consist of one or more tasks. Each
task has an assigned priority which is used by the supervisor
to allocate system resources for task execution.

Application programs or tasks are made up of Event Driven lan­
guage instruct i ons ~have been processed by a comp i ler or
assembler and prepared for execution by the $UPDATE/LINK sys­
tem utilities. At execution time, the Event Driven Executive
(EDX) .SuP~~~~sor/Emulator analyzes the co~piled or assembled
format of an instruction and links to the appropriate supervi­
sor routine to perform the operation. Following the completion
of each instruction, the supervisor processes the next sequen­
tial instruction in the highest priority task that is in a
ready state.

Programs wr i tten us i ng the statements in th is manua 1 can be
processed by anyone of the following:

• Event Driven language compiler $EDXASM
5719-XX3)

(S719-XX2 or

• Macro Assembler, $SlASM (S719-ASA), in conjunction with
the macro library of program number 5719-lM5 or 5719-LM6

Chapter 1. Introduction 1

• 5/370 Program Preparation Facility (5798-NNQ) which will
be referred to as the host assembler in conjunction with
the macro library of 5740-LM2 or 5740-LM3

Note: Throughout this manual, the 5/370 facility is referred
to as the host assembler.

lAYOUT AND STRUCTURE OF EDl PROGRAMS

There are three basic components in an Event Dirven Executive
application!

• The Series/l machine configuration definition

• The application I/O definitions

• The instructions and data areas comprising the application
program

This three-part division minimizes the dependence of the
application program on a particular system hardware configura­
t ion. In add it i on, the sensor based I/O def i nit ions are
checked against the machine configuration to reduce the exe­
cution time errors resulting from incorrect I/O assignments.

The "System Configuration" section of the System Guide
describes the statements which define the hardware features on
the Series/i. There are many optional components in the Event
Driven Executive supervisor; their selection depends upon the
con fig u rat ion 0 f the 5 e r i e s / 1 for w h i c h the s lflP e r vis 0 r i s com­
piled or assembled. A set of configuration statements begin­
ning with SYSTEM are used to compile the configuration data
which is then stored with the supervisor during installation.

The I/O dev ices and data sets used by an appl i cat i on are
defined in the program itself. The PROGRAM statement must be
the first statement in every EDL program. Operands on the PRO­
GRAM statement and several I/O definition statements are pro­
vi ded to spec i fy the symbol i c dev i ce names, data set names,
options, techniques and defaults to be used by the program.
These optional statements are normally grouped together imme­
diately following the PROGRAM statement Every program is auto­
matically provided with a default definition of one terminal,
the terminal from which the program was invoked. Up to 9 data
sets can be made available for use simply by identifying them
with the OS operand of PROGRAM. Many applications require no
additional I/O descriptions.

The balance of an application program consists of its logic,
data,'manipulations, I/O requests, and data. Because the Event
o r i v:'e n Lan g u age i s bot h s imp 1 e and power f u 1, ito f ten r e qui res
very few instructions to describe a complete application pro-

2 SC34-0314

o

o

o

o

0" "

gram.

A user application program has the following basic structure:

PROGRAM
other I/O definitions

application program instructions

application program data

ENDPROG
END

A complete source program starts with a PROGRAM statement and
ends with the ENDPROG and END statements.

GENERAL INSTRUCTION FORMAT

Beginning with "Chapter 3. Instruction and Statement
Descriptions" on page 51, each instruction i~ described in
detail with brief remarks about the function, the synta~ to be
used to invoke a particular operation, the required parame­
ters, and the defaults used if parameters are not specified.
Each operand (or parameter) is listed and described.

Event Driven language instructions have the following struc­
ture:

label operation operands

The operands fie ld in many cases has mu 1 tip Ie entr i es, as i nd i­
cated by the following example:

label

label

operation

operands

op

The label field, containing a symbolic label with
a maximum of 8 characters. In most cases the label
is optional. If used it must start in column 1.

The operation field (or
instruction or statement.

op) containing the

The operands field, containing the operands or
parameters for the instruction.

Chapter 1. Introduction 3

Pl=,P2=,Pn= The parameter-naming operands used to allow
mod if i cat i on of the instruct i on parameters at exe­
cution time.

SYNTAX RULES

Syntactical coding rules are the same as those for the IBM
Series/l Macro Assembler. Some specific rules are as follows:

• An alphabetic string is 1 or more alphabetic characters (A
- Z) or $, i, and 0), the special characters.

• An alphameric string is 1 or more alphabetic characters or
numer i c characters (0 - 9).

• All upper case letters shown in the syntax descr i pt ions
starting in "Chapter 3. Instruction and Statement
Descriptions" on page 51 must be coded as shown. This also
applies to the comma immediately preceding the parameter
and the equal sign (=) following. For example:

•

•

,PREC=

Ell i pses e •••) i nd i cate that a parameter may be repeated a
variable en) number of times.

The vertical bar (I) between two operands indicates mutu­
ally exclusive operands; one or the other can be used but
not both.

• All labels, instruction mnemonics, and parameter names
must be alphameric strings of 1 to 8 characters in length,
the first being alphabetic.

• Statement labels must begin in column 1. To continue a
statement on another line, code a symbol in column 72, for
example an asterisk (*), and begin the next line in column
16. Examples shown in this manual may not conform to the
column spacing conventions due to limitations in the
length of pr i nted lines.

• Several instructions allow the use of immediate data or
constants. These are called self-defining terms and
improve the flexibi lity and ease of programming.

• Variable names, which are defined elsewhere by means of the
EQU statement, must be coded with a leading plus sign (+)

for proper comp i ler ope rat i on.

• The following labels are reserved for system use:

4 SC34-0314

o

o

o

o

o

o

All labels beginning with a $

RO, RI, R2, R3, R4, R5, R6, R7, FRO, FRI, FR2, FR3

iI, 12

RETURN (except when used in the instruction to end a
user exit routine)

SETBUSY

SUPEXIT

SVC

• The operands, opndl,opnd2, ••• opndn, are labels, names, or
values defined for each instruction. Operands may also
take the form NAME=name. This is called a "keyword" oper­
and. Within anyone instruction, the total positional and
keyword operands must not exceed 50.

The parameter naming operands, Pl=,P2=, ••• Pn=, or P=(•••)
are used to allow modification of instruction parameters
at execution time. This is discussed further on the follow­
i ng pages.

Instruction formats are illustrated in the followin~ example
of a simple program with a primary task ADDTEN. The first
statement, PROGRAM, starts the program and defines the entry
point as DOTEN. The DATA statement defines the variable COUNT
to be O. The first instruction has the label DOTEN, which
starts a DO loop with a count of 10. The next instruction adds
1 to a variable, COUNT, which was initialized to 0 by the DATA
statement. The ENDDO specifies the end of a DO loop. The ADD
instruction is executed 10 times, then PRINTEXT and PRINTNUM
instructions print the result on a terminal. The PROGSTOP
statement terminates the program execution. The ENDPROG and
END statements must be the last two statements of an Event
Dr i yen Execut i ve appl i cat i on source program.

ADDTEN PROGRAM DOTEN

COUNT DATA F ' 0 ' INITIALIZE COUNT TO 0

DOTEN DO 10,TIMES LOOP 10 TIMES
ADD COUNT,1 INCREMENT COUNT BY 1

ENDDO
ENQT
PRINTEXT 'RESULT = ,
PRINTNUM COUNT
DEQT
PROGSTOP

ENDPROG
END

Chapter 1. Introduction 5

The message will be: RESULT=10. This will be displayed on the
terminal invoking this program.

Note: The program examples, start i ng in "Chapter 6.
Programming Examples" on page 383 can be of great assistance in
understanding the usage of many of the instructions introduced
here and described in detail beginning in "Chapter 3.
Instruction and statement Descriptions" on page 51.

ADDRESS INDEXING FEATURE

Two software registers are available to you for each task and
may be referenced in many instruct ions to prov ide indexed
addressing. The registers themselves are referenced by the
names II and 12. Except where spec if i ca 11 y proh i b i ted, the reg­
isters may be used in the same manner as any other variable in
the program. For examp Ie, the integer ar i thmet i c, log i ca 1,
data movement, and program sequencing instructions may be used
to set, modify, and test these registers. Other instructions
are only permitted to use these index registers in the parame­
ter format (parameter,ir). For example, the instruction

MOVE i1,0

wi 11 set register il to the value O. The instruction

MOVE

will set register 12 to the contents of the variable A. An exam­
ple of the use of the register as the from parameter is:

ADD A,I!

Here, the contents of reg i ster #1 (.oJ ill be added to the var i ab Ie
A and the result wi 11 be placed inA. It may be necessary to set
a register to the address of a variable or vector. This is
accomplished with the MOVEA instruction. For example,

MOVEA #2,BUFFER1

sets register #2 to the address of the variable BUFFERI.

The syntax of an instruct i on parameter in wh i ch an index reg i s­
ter is speci fied is in the form:

(parameter,#r)

where parameter is either an address or a constant and r is
either a lor a 2. The effective address will result from the
sum of the address (or constant) spec) fied by parameter and the
current contents (constant or address) of the referenced index
register. Only one of the variables, either the parameter or

6 SC34-0314

o

o

o

o

o

the index reg i ster, can be an address; the other must be a d i s­
placement constant.

For example, if 11 = 2 then the indexed instruction

MOVE A,(B,11)

would be equivalent to the nonindexed instruction

MOVE A,B+2

as would

MOVE A,(2,11)

if register 11 contained the address of B. The following exam­
ple illustrates the use of the indexing feature in a DO loop to
find a value of -350 in a vector containing 1000 elements:

FOUND

MOVE
DO

IF
ADD

ENDDO

11,0
1000,TIMES
(CBUF,#I),EQ,-350),GOTO,FOUND
11,2

did not find a match

MOVE DISP,ll

The index register, 11, is set to 0, a DO loop is started to
execute 1,000 times. The buffer BUF has an implied length of
1,000 words (2,000 bytes). A test is made on the first va I ue of
the buffer. and if a match occurs, a branch to the label FOUND
is made. If not. the register is incremented by 2 (2 bytes = 1
word) and the second value tested, and so on. When the value
-350 is found in the buffer, the di splacernent from the start of
the buffer. which is now contained in #1, is saved at the
locat ion DISP.

Each task has its own II and 12 index reg i sters and the superv i­
sor always interprets instructions using the currently execut­
ing task's registers. Thus, individual programs and
individual task within the same program will have different
va lues in the i r respect i ve index reg i sters. I f a subrout i ne is
called by several different tasks, it uses the calling task's
11 and 12. Overlays, however, are independent programs with
their own tasks and therefore have their own registers and do
not use the invoking task's registers. Also, when moving data
into or out of II or 12 with the cross-partition facility of
MOVE, remember that the index registers are in the executing
programs partition.

Chapter 1. Introduction 7

USE OF THE PARAM-E'TE-R NAMING OPERANDS (PX=)

In some programs it is necessary to complete the parameters
used in certain instructions during execution. The Px operands
permit this to be done easily. The Px operands refer to other
operands within the same instruction in the following m~nner:
PI refers to opndl, P2 refers to opnd2, and so on, through the
instruction according to the syntax for each instruction. For
example, the number of times to execute a loop may not be known
at comp i Ie time. You may ass i gn a name to a parameter by add i ng
the keyword Px=NAME to the instruction definition, where x is
the operand number (1,2, •.). The operand number specified in
the Px keyword is given the name specified by the Px operand.
This name can then be used as an operand in other instructions
that modify the parameter at execution time. The following
example shows a typical use of a Px operand. The Pl=M operand on
the ADD instruction causes the label M to be placed on the first
operand in the ADD parameter list. The parameter list is shown
as DC instruct~ons; these are automaticallY generated by the
compiler. The MOVEA instruction (prior to the ADD) uses the
label M to modify the variable to be used by the ADD
instruction.

+
+M
+

MOVEA

ADD
DC
DC
DC

M,NAME

A,B,Pl=M
A($ADD)
A(A)
A(B)

address of name

ADD operation
parameter 1
parameter 2

Execution of the MOVEA instruction changes the contents of the
first operand of the ADD instruct i on from:

+M DC A(A)

to:

+M DC A(NAME)

and execution of the ADD instruction would result in the addi­
t i on of the contents of NAME and B.

I TASK CODE WORDS

Each task in the Event Driven Executive environment has a task
control block (TCB) associated with it. The first two words of
the TCB are called task code words and can be accessed us i ng the

8 SC34-0314

o

o

o

o

o

taskname. The taskname is described more fully in "Chapter 3.
Instruction and Statement Descriptions" on page 51 under the
statements PROGRAM and TASK.

The first task code word (word 0) is used by the EDX super'visor
to store the return code of various instructions. This word can
be tested to determine the value of the return code of those
instructions that return a code following their execution.
This test must be performed immediately after the instruction
execut i on because the task code word may be over la i d by the
return code of the next instruction.

The second task code word (word 1) may contain additional
information unique to the function being used or the condition
encountered.

SYMBOLIC SENSOR BASED I/O ASSIGNMENTS

The sensor-based I/O instruction (S8IO) refers to the I/O
d e vic e sus i n g a 3 - 0 r 4 - c h a rae t e r na me • The fir s t 2 c h a rae t e r s
identify the type of device: AI, UI, PI, AO, and DO for analog
input, digital input, process interrupt, analog output, and
digital output, respectively. The next 1 or 2 characters are
the user identification for the device, a number between 1 and
99. For example, the user may have three analog input termi­
nals assigned to him. He identifies them as All, AI2, and AI3.
The assignment of the actual physical addresses is done prior
to comp iii ng the appl i cat i on program us i ng the sensor based I/O
definition statement (IODEF). Therefore, all S8IO
instructions become independent of the physical location of
the sensor I/O po i nts.

The assignment of sensor I/O symbolic addresses is described
under "IODEF" on page 185. Figure 1 on page 10 depicts the
relationship between symbolic I/O, IODEF, and the physical I/O
unit.

Chapter 1. Introduction 9

Sensor-based
I/O execution
instruction
S810

CCx ~

Specifying
the action

CC can be A1, AO,
01, DO x can be
from 1 to 99

Sensor-based
I/O definition
instruction
10DEF

CCx

Address

Specifying
the physical
location

Specifies
logical
device

Physical
sensor-based
I/O address
SENSORIO

~ 00
Describes
physical
device

Figure 1. Symbolic I/O Assignment

SYMBOLIC TERMINAL I/O ASSIGNMENTS

Symbol i c address i ng 1 s also used for termi nal dev ices. In the
application the terminal is identified with a name which at
execution time is related to the TERMINAL system configuration
statement with a label of the same name. A default terminal can
be accessed by omitting the terminal name from the terminal I/O
statements in the application. This causes the terminal which
invoked the application to be used for the I/O and makes the
app I i cat i on comp lete I y independent of term ina I addresses.

I SYMBOLIC DISK/TAPE I/O ASSIGNMENTS

Symbolic addressing for disk, diskette, or tape devices is
achieved by having all I/O statements in the application refer
tot he s y m b 0 I i c d a t a set con t r 0 I b 10 c k D'S C B n a me. Ate x e cut ion
time, the data set and vo I ume def i ned by the OSCB are found, and
I/O is directed to the proper phys i ca I dey ice addresses. If
desired, the data set and volume names can be supplied by you at
the terminal when the program is loaded for execution.

10 SC34-0314

0

o

o

o

o

o

CONTROL BLOCK AND PARAMETER EQUATE TABLES

Application programmers sometimes wish to obtain data directly
from system control blocks when coding specialized functions
such as terminal commands (ATTNLIST exits), error exits (TASK
ERRXIT or TERMERR) or a binary synchronous communication
application. Many parameter lists and control blocks have
equate tables which provide symbolic names for various values
and the offset of each field relative to the beginning of the
control block. Symbolic field names can be used in conjunction
with index registers (see the "Address Indexing Feature" topic
in th i s manual) to address the data in the control blocks. The
symbol i c values are often used as parameters.

These equate tables are:

BSCEQU
CCBEQU
CMDEQU
DDBEQU

DSCBEQU
ERRORDEF
FCBEQU
IAMEQU

PROGEQU
TCBEQU
TDBEQU

Each equate table consists of a series of EQU statements which
can be included in your program using the COpy statement.
Although EQUs can be placed anywhere in a program, they are
usually grouped together at either the beginning or the end.
Some of the commonly used copy-code tables are briefly
explained in the following sections. The control blocks them­
selves are described in Internal Design.

When compiling programs with the host or Series/l Macro Assem­
blers, many equate tables are automatically included when a
PROGRAM instruction is assembled. Tables included this way are
PROGEQU, TCBEQU, DDBEQU, CMDEQU, and DSCBEQU.

BSCEQU

The BSCEQU equate table provides a map of the control block
bui It by the BSCLINE system_ configuration statement.

BSCEQU is also the name of a macro in the macro libraries used
with the host or Series/l macro assembler. Do not attempt to
COpy BSCEQU when us i ng either macro assembler.

CCBEQU

The CCBEQU equate table provides a map of the control block
(CCB) bu i I t by the TERMINAL system conf i gurat i on statement.

Chapter 1. Introduction 11

j;MDEQU

The CMDEQU equate table provides a map of the supervisor's emu­
lator command table.

DOBEQU

The ODBEQU equate table provides a map of the device data block
(DDB) bui It by the DISK system configuration statement.

DSCBEQU

The DSCBEQU equate table provides a map of the data set control
block (OSCB) bui It by either the PROGRAM or OSCB statements.

ERRORDEF

The ERRORDEF equate table provides symbolic values for use in
checking the return codes from the LOAD, READ, WRITE, and 5810
instructions.

FCBEQU

The FCBEQU equate table provides a map of an Indexed Access
Method file control block (FCB) for use with the EXTRACT func­
tion.

IAMEQY

The IAMEQU equate table provides a set of symbolic parameter
values for use in constructing parameter lists for CALLs to
Indexed Access Method functions.

12 SC34-0314

o

o

o

o

o

o

PROGEQU

The PROGEQU equate table provides maps of the program header
(bui It by the PROGRAM statement) and the supervisor's communi­
cation vector table (CVT).

TCBEQU

The TCBEQU equate table provides a map of the task control
block (TeB) bui It by either the TASK or PROGRAM statements.

TDBEQU

The TDBEQU equate table provides a map of the tape data block
(TDB) bu i 1 t by the TAPE system can f i gurat i on statement.

Chapter 1. Introduction 13

o

o
14 SC34-0314

o

o

o

CHAPTER 2. INSTRUCTIONS AND STATEMENTS - OVERVIEW

This chapter presents the coding instructions and statements
grouped by funct ions and the i r usage and 1 i sted ina Iphabet i ca 1
order according to function. For example, the WRITE
instruction falls into the application type listed under
"Disk/Diskette I/O Instructions" on page 22 and also repeated
under "Tape I/O Instructions" on page 40. There are
programming considerations with each group of instructions and
you should be familiar with these considerations prior to cod­
ing the individual instructions.

Some instructions/instruction groups requi re the support of
optional features in your hardware configuration. Before these
features are accessible by your programs, various supervisor
modules must be included in $LNKCNTL during your system gener­
ation. Refer to the hstem Guide for supervisor modules
required for optional features support.

For detailed descriptions of individual instructions see
"Chapter 3. Instruction and Statement Descripti~ns" on page 51
of this manual.

Chapter 2. Instructions and statements - Overview 15

COMMUNICATIONS (REFERENCE ONLY)

Binary Synchronous Communication Instructions

BSCCLOSE
BSCIOCB
BSCOPEN
BSCREAD
BSC~JR I TE

Binary synchronous communication instructions allow you to
read and write data to a host system in binary synchronous
mode. These instruct ions are descr i bed in deta iIi n the
Communications and Terminal Applications Guide.

Host Communications Facility Instructions (TP)

TP CLOSE TP RELEASE
TP FETCH TP SET
TP OPENIN TP SUBMIT
TP OPENOUT TP TIMEDATE
TP READ TP WRITE

The TP instruction provides services used to communicate with
the Host Communications Facility installed user program (IUP)
on a S/370 processor. Detailed descriptions are described for
these instructions in the Communications and Terminal
Applications Guide.

16 SC34-0314

o

()

o

o

o

o

DATA DEFINITION STATEMENTS

BUFFER
DATA
DC

EQU
STATUS
TEXT

Use the data definition statements to define storage areas and
the data initially placed in these areas. The DATA and DC
statements perform the same function and have the same oper­
ands. The Series/l and host macro assemblers provide some
additional operands for DC, but all operands shown in the
DATA/DC description are accepted by both macro assemblers and
$EDXASM un less otherw i se noted.

Chapter 2. Instructions and Statements - Overview 17

DATA FORMATTING INSTRUCTIONS

CONVTD
CONVTB
FORMAT
GETEDIl
PUlEDIT

The data formatting instructions allows you to prepare format­
ted data for display on the terminals or printers attached to
the Series/I. In addition, you can format data in storage and
then a llow the program to determ i ne the dest i nat ion.

The data formatting instructions FORMAT, GETEDIT, and PUTEDIT
require that your object program be processed by the link edit
program, $lINK, to include the formatting routines which are
supplied as object modules. The EXTRN statements necessary to
reference these modules are generated as part of the compila­
tion of the instruction. The modules can be automaticallY
included in your program when requi red by using the $lINK
autoca 11 fac iii ty and the $AUTO autoca 11 list prov i ded in
ASMlIB. For information on the use of the AUTOCAll option of
$lINK, refer to Utilities, Operator Commands, Program
Prep~ration, Messages and Codes.

You may also bui ld your own autocall list or include the format
modules yourself. The modules names are:

$GPlIST
$GEER
$GESC
$GEAC
$GEFC
$GEIC
$GEXC
$GEPM

18 SC34-0314

$PUAC
$PUFC
$PUIC
$PUXC
$PUHC
$PUSC
$PUEC

o

()

c

o

o

o

DATA MANIPULATION INSTRUCTIONS

ADD
ADDV
AND
DIVIDE
EOR
FADD

FDIVD
FMULT
FPCONV
FSUB
lOR
MOVE

I vector Data Man;pulation

MOVEA
MULTIPLY
SHIFTL
SHIFTR
SQRT
SUBTRACT

A vector is defined in this manual as a series of contiguous
data elements; bytes, ",ords, or double words. Operand 1 deter­
mines the beginning location of a vector and the count value
determines the vector length. Operand 2 is applied to each
element of the vector.

The ADDV and MOVE instructions are exceptions to this because
they establish 2 vectors: operand 1 and operand 2 along with
the count value. In these cases the first element of operand 2
is applied to the first element of operand 1, then the second
element of operand 2 is applied to the second element of oper­
and 1, and so on, unt i I the count is exhausted.

If the MOVE instruction operand 2 is immediate data, an explic­
it constant, then only operand 1 is a vector.

Integer And Logical Instructions

Integer arithmetic, logical, and data movement operations are
performed with instructions which have a common general form.

Data Representation

Arithmetic operands are interpreted as signed-binary integers
with negative values represented in twos complement form.
Single-precision operands consist of 16 bits including sign;
double-precision operands consist of 32 bits including sign.
Logical operands are interpreted as bit strings of the appro­
priate length: byte, word, or doubleword. 5ingle- and
double-precision operands of both types must be located on even
address boundaries.

Chapter 2. Instruct ions and statements - Overv-ielil 1 C;

I Over flow

during the Overflow conditions encountered
instruct ions ADD, ADDV, SUBTRACT,
reported by EDX.

and MUl TIPlV
integer

are no t

Mixed-precision Operations

Allowable precision combinations for integer arithmetic oper­
at ions are Ii sted in the followi ng table:

opndl I opnd2 I Result I Abbreviation I Remarks

S S 5 5 default
5 S D SSD
D S 0 D
D D 0 DO
0 S 5 OSS DIVIDE only

legend: S = single precision
0 = double precision

Operations Using Index Registers

Index registers may generally be treated as ordinary single­
precision integer arithmetic or logical variables. However,
results of a vector operation directed at the registers (#1 and
12) may not extend beyond #2.

Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions share a common format.
Attempts to perform floating-point operations on a Series/1
not equipped with the floating-point hardware result in a pro­
gram check error. Floating-point support must also be included
in the supervisor when it is generated. FLOAT=YES must be
specified on both the PROGRAM and TASK statements whenever
floating-point instructions are used in any task within a pro­
gram.

20 SC34-0314

o

o

o

o

o

o

Data Representation

Arithmetic operands are interpreted as signed floating-point
numbers in either single- or extended-precision. Single­
precision, for floating-point instructions, is 32 bits;
double-precision is 64 bits. Further, the second data operand
may be coded as an integer value between -32768 and +32767.
This immediate data will be converted to a single precision
floating point number prior to the arithmetic operation to be
performed.

Operations Using Index Registers

The index registers (t1 and 12) cannot be used as operands in
floating-point operations because the index registers are only
16 bits in size. These registers may be used to specify the
address of afloat i ng-po i nt operand.

Return Codes

Floating-point operations produce return codes which are
placed in the task code word. Th is word is referred to by
taskname (see PROGRAM/TASK statements). These codes must be
tested immediately after the floating-point instruction is
executed or the code may be destroyed by subsequent
instructions. The return codes are listed following the
description of each individual floating-point instruction.

Chapter 2. Instructions and Statements - Overview 21

DISK/DISKETTE I/O INSTRUCTIONS

DSCB
NOTE
POINT
READ
WRITE

You are provided with both sequential and random access to disk
or diskette data sets. When a program is first loaded for exe­
cution, all of your data sets have been opened for access
(reading or writing) beginning with the first record. Sequen­
tial and random access operations may be intermixed. For
instance, if five READ instructions, consisting of one record
each have been initially issued to a data set, then the next
sequential operation will normally take place with record num­
ber 6. A random access READ could be issued for some other
record, say record 23, and the next sequential operation would
sti 11 take place with record 6.

To open a data set during the execution of your program, you
will need an OPEN subroutine. (For details on the OPEN subrou­
tine, see "DSOPEN SUBROUTINE" in the SYstem Gu ide).

Record: The basic unit of direct access storage available to an
application program is a record on disk or diskette which con­
ta i ns 256 bytes of data. Records are conta i ned; n data sets, or
may be free space 1 n ali brary. Data set record number i n9
begins with 1.

Data Set: A data set is a group of reserved contiguous records
which have have been assigned collecti vely a data set name con­
sisting of 1 to 8 bytes. No special restrictions exist within
the system for valid names, but the use of standard system
utility programs for data set access and allocation dictates
that an alphameric character string be used as a name. Data
sets are conta i ned in 1 i brar i es.

A data set can contain either data or an executable program.
The term member (of the library) is sometimes used when refer­
ring to either type of data set. These data sets can be further
subdivided with the use of the $PDS uti Ii ty which can partition
an Event Dr i ven Execut i ve data set. $PDS uses the term members
to describe a group of contiguous records within the parti­
t i oned data set wh i ch have been ass i gned a name.

Volume/Library: A library is a set of contiguous records which
contains (1) a directory and either or both of the following:
(2) a set of allocated data sets, (3) space available for the

22 SC34-0314

o

o

o

o

o

a llocat i on of new data sets. A directory is a ser i es of cont i g­
uous records which describe the library contents in terms of
allocated data sets and free space. These records are at the
beginning of the library. A library is contained in a volume.

A volume is a physical direct access storage device, or a sub­
set thereof. Each volume is assigned a volume name of 1 to 6
alphameric characters. A volume begins on a cylinder boundary
and contains an integral number of cylinders. The maximum vol­
ume size is 32,767 records. Only one volume can be placed on a
diskette or in the fixed-head area of a disk, but disks may have
as many volumes as disk storage will permit. Each volume can
contain only one library.

Notes:

1. Additional information on direct access devices and organ­
i zat i on can be found in the System Gu i de.

2. For each data set defined in a PROGRAM statement, a data
set control block (OSCB) is generated in the program head­
er. A OSCB is used to contain information about the cur­
rent use of a data set within an active program such as the
location of the data set and the next record number for
sequent i a I I/O. Th is a llows the system to proper ly contro I
access to the same data set by separate programs.

3. A OSCB is a seriallY reusable program resource; therefore,
within a single program it is your responsibility to pre­
vent s i mu I taneous access to the same data set from separate
tasks. It is recommended that access to a data set within a
given program come from a single task. If, however, it is
necessary in a given application to access the same data
set from wi th i n different tasks in the same program the
user should use ENQ and OEQ to ensure ser i al i zed use of the
affected OSCB.

Chapter 2. Instructions and Statements - Overview 23

EXIO CONTROL INSTRUCTIONS

OCB
EXIO
EXOPEN
IOCB

I/O level control functions allow you to control, at a low lev­
el, any I/O device attached to the system. They give you the
ability to control devices not otherwise available using Event
Driven Language instructions. They also give you the ability
tog a inc los e r con t r 0 1 0 fad e vic e t han i s pro v ide d by 0 the r I/O
faci lities.

To use the EXIO control functions you should be familiar with
I/O programming in assembLer language. Refer to the section on
Input/Output Operat ions in the manua Is descr i bing the process­
ors for general descriptions of the immediate device control
block (IOCB) and the device control block (DeB) and their use,
and to the manuals describing the particular I/O device for
specific information for that device.

You must be thoroughly familiar with the device to be con­
trolled. The facilities provided by these instructions are
approximately those provided by the Series/l hardware for I/O.
You must, by using EXIO instructions, explicitly control every
aspect of the dev i ce' s operat ions.

After you define each device to be controlled by
statement (see the System Guide), you can use the
EXOPEN instructions.

an EXIODEV
EXIO and

Each device must be controlled from one task at a time. Before
a task relinquishes control of a device, it must assure that
all interrupts from that device have been serviced.

You must not alter a DCB unti 1 the operation caused by the EXIO
instruction which referenced it is complete. The lOeB may be
modified after its use in an EXIO instruction.

I/O commands produced by the COMMAND operand of the IOCB state­
ment are those used by IB~1 I/O devices and described in the pub­
lications which describe the processors and I/O devices. Any
other dev ice must be des i gned to respond to these same commands
if these instructions are to be used to control it.

If an EXIO device produces interrupts, you must:

1. Open the device by executing an EXOPEN instruction. This
allows the interrupt handler to return device information
to the user's program.

24 SC34-0314

o

o

o

o

o

o

2 .

3 •

Prepare the device by executing an EXIO instruction, so
t hat i t can i n t err, up t the pro c e s so r .

WAIT in one or more tasks for one or more ECBs which wi 11 be
posted when an interrupt ;s received.

4. Obtain all information required to service the interrupt.
This information is avai lable from:

a. Code word in ECB posted

b. Interrupt identification word and level status regis­
ter (see "EXOPEN" on page 129)

c. Residual status (refer to the description of DVPARM4
operand statement in "DCB" on page 91)

d. Cycle steal status (see description of listaddr oper­
and of refid='exope', the EXOPEN instruction, and the
description of COMMAND=SCSS operand of "IDCB" on page
175)

5. Prevent further interrupts if the interrupt serv i c i ng task
is to term i nate. Th ismay be done by execut i ng an EXIO
instruction which specifies an IDCB with COMMAND=PREPARE
and IBIT=OFF.

Chapter 2. Instructions and Statements - Overview 25

GRAPHICS INSTRUCTIONS

CONCAT
GIN
PLOTGIN

SCREEN
XYPLOT
YTPLOT

The graphics instructions provide a tool for the development of
graph i cs app I i cat ions. They can aid in the preparat i on of
graph i c messages, allow interact i ve input, and draw curves on a
display terminal.

These instructions are only valid for ASCII terminals having a
point-to-point vector graphics capability and compatible with
the coordinate conversion algorithm for graphics mode control
c.hal'acte.rs. This is described in detail in Internal Oesl...9.n..
The function of the various ASCII control characters used by a
terminal are described in the manual for that terminal. Such
terminals may be connected to the Series/l using the teletype­
wr iter adapter.

When the Event Dr i ven Execut i ve instruct ions are used,
detailed manipulation of terminal instructions and text mes­
sages is not required. All of the graphics instructions deal
wi th ASCI I data; therefore when an ASCI I text str i ng is sent to
the terminal the XLATE=NO parameter should be coded.

There are six graphic instructions. They are used in the same
manner as other instructions, except that the supporting code
will be included in your program, rather than in the supervi­
sor. If all instructions are code.d in a program, this code
requires approximately 1500 bytes of storage.

Use of the graphics instructions requires that your object
program be processed by the link edit program, SLINK, in order
to include the graphics functions which are supplied as object
modules. EXTRN statements for the necessary modules are
included in your program when the instructions are coded. The
modules ($$CONCAT, $$SCREEN, $$YPLOT, $$GIN, and $$PGIN) can
be automatically included in your program when required using
the $LINK autocall faci lity. Use the SAUTO autocall list pro­
vided in ASMLIB for this purpose. Refer to Utilities, Operator
Commands, Program Preparat i on, Messages and Codes for
information on the use of the autocall option of $LINK.

For a list of terminals supported, see "Terminal Support" in
the System Gu ide.

26 SC3 l f-0314

o

o

o

o

o

o

INDEXED ACCESS METHOD INSTRUCTIONS

DELETE
DISCONN
ENDSEQ
EXTRACT

GET
GETSEQ
LOAD
PUT

PUTDE
PUTUP
PROCESS
RELEASE

The Indexed Access Method is a data management system that
operates under the IBM Series/l Event Driven Executive. It
provides callable interfaces to build and maintain indexed
data sets and to access, by key or sequentially, the records in
that data set. In an indexed data set, each of the records is
identified by the contents of a predefined field called a key.
The Indexed Access Method builds into the data set an index of
keys that provides fast access to the records. Features of the
Indexed Access Method include:

• Direct and sequential processing. Multiple levels of
indexing are used for direct access; sequence chaining of
data blocks is used for sequent i a I access.

• Support for high insert and delete activity without sig­
nificant performance degradation. Free space is distrib­
uted both throughout the data set and in a free pool at the
end so that inserts can be made in place; space provided by
deletes can be i mmedi ately reclai med.

• Concurrent access to a single data set by several request­
ers. These requests can come from either the same or dif­
ferent programs. Data integrity is maintained by a file,
block, and record level locking system that prevents
access to that port i on of the file that is be i ng mod if i ed.

• Implementation as an independent task. A single copy of
the Indexed Access Method serves and coordinates all
requests. The buffer pool supports all requests and opti­
m i zes the space requ i red for phY5 i ca 1 I/O; in the user pro­
gram, the only buffer required is the one for the record
currently being processed.

• An Indexed Access Method utility program which provides
the capabi lity to create, format, load, unload and reor­
gan i ze an indexed data set.

The callable functions that comprise the Indexed Access Method
are described in "Chapter 4. Indexed Access Method" on page 327
of this manual. They appear in alphabetic sequence by their
funct i on name, such as DELETE, DISCONN, and so on.

"Example 14: Use of Indexed Access Method" on page 414 is a
complete program which illustrates many of the Indexed Access
Method services. This example should help you understand the
use of these services.

Chapter 2. Instructions and statements - Overview 27

The Event Driven Executive Indexed Access Method Licensed Pro­
gram (5719-AM3) is requ i red to use these fac i lit i es.

LISTING CONTROL STATEMENTS

EJECT
PRINT
SPACE
TITLE

listing control statements are used to identi fy program output
lit;tings, to provide blank lines in an assembly listing, and to
des i gnate how much deta i lis to be included in the list i ng. In
no case are instructions or constants generated in the object
program. With the exception of PRINT, listing control state­
ment.s are not printed in the listing itself.

The format used to describe these instructions is the same as
that used for descr-ib i ng the Event Dr i ven Execut i ve
instruction set. However, they are part of the assembler facil­
ity itself and are not elements of the Event Driven Executive
instruction set.

28 SC34-0314

o

o

o

o

o

o

MULTIPLE TERMINAL MANAGER INSTRUCTIONS

ACTION
BEEP
CHGPAN
CDATA
CYCLE

FAN
FILEIO
FTAB
LINK
LINKON

MENU
SETCUR
SETPAN
WRITE

The Multiple Terminal Manager is an optional licensed program
which provides the Event Driven Executive user with a set of
high-level functions designed to simplify the definition of
transaction-oriented applications such as inquiry, file
update, data collect i on, and order entry.

Transaction-oriented means that program execution is driven
by terminal operator actions, typically, responses to prompts
from the system. For example, a program executing under con­
trol of the Multiple Terminal Manager displays a menu screen
offering the operator a choice of functions. Based on the oper­
ator's selection, the application program then performs proc­
ess i ng operat ions such as read i ng i nformat i on from a data file,
displaying the data at the terminal, and waiting for the next
response.

This prompt-response-process cycle between the Series/l pro­
gram and the terminal operator is the basic principle for the
design of applications using the Multiple Terminal Manager.

The terminal manager simplifies such transactions by:

• Automatically allocating input and output buffers for the
application program.

• Performing I/O operations to access fixed-screen formats
from the screen file. The term screen in th i s discuss i on
refers to the image which is displayed on the screen of an
IBM 4979, 4978 or 3101 Display Station. Fixed-screen for­
mats consist of unmodifiable text and definitions of pos­
sib I ear e a s fo r d a t a i n put • On 0 the r s y s t ems, the s e may b e
referred to as maps, formats, or panels. Screens are bui It
using the $IMAGE utility. (See Utilities, Operator
Commands t Program Preparat i on, Messages and Codes for
additional information.)

• Returning control to the user program to allow modifica­
tion of the input buffer containing the screen.

• Performing the set of I/O operations involved in writing on
the terminal screen, filling in unprotected fields with
user-defined output data, and reading the data entered by
the operator before returning control to the application
program that requested the action. The terminal manager
assumes that each action request involves both output and
input operat ions, thus eli m i nat i ng the need for the app li-

Chapter 2. Instructions and statements - Overview 29

cat i on program to make separate requests.

In addition, the Multiple Terminal Manager provides storage,
file, program management, and terminal transaction statistics,
sign on programs for password validation, error recovery for
I/O, and program check cond it ions.

Multiple Terminal Manager application programs can be written
in Event Driven Language, assembler language, COBOL, PL/I, or
FORTRAN IV. Disk I/O can be performerl using indexed-access or
direct-access methods. Terminal support is provided for IBM
4979, 4978, and 3101 Display Stations and teletypewriter com­
patible terminals attached using the single line or multiline
asynchronous communication adapters.

Not~: Throughout the manual, when reference is made to the IBM
3101 Display Station, it is inferred to mean model 1 and model
2. However, model 2 is considered only in block mode (full
screen).

The functions provided by the Multiple Terminal Manager are
callable routines that perform terminal, disk and diskette
input/output operations and control the execution of applica­
t i on programs.

The program-execution control and terminal I/O functions
include:

• A routine (ACTION) to initiate the prompt-response termi­
nal I/O cycle.

• A routine (CDATA) which provides information about the
terminal which is controlling an executing program.

• Two rout i nes (L INK and L INKON) to link to a new program
from the currently executing program.

• A routine (MENU) to terminate program execution and return
control to the Multiple Terminal Manager.

• A routine (CYCLE) to voluntari ly give up control of the
program area to other users. This allows a user controlled
form of time sharing.

The Multiple Terminal Manager provides four callable functions
for the specific control of the IBM 4978/4979 Display. They
are:

• A rout i ne (SETPAN) to retr i eve a screen panel from disk and
move it into the input and output buffers.

• A rout i ne (SETCUR) to overr i de the in i t i a I cursor pos i­
t i on def i ned for that screen format.

30 SC34-0314

o

o

o

0

o

o

• A routine (BEEP) to ret1uest the 4978 audible alarm be
sounded on the next terminal I/O cycle.

• A routine (CHGPAN) to notify the terminal manager of
changes to a screen before it is written.

For the teletypewriter user, the following functions are pro­
vided:

• A routine (ACTION) to write to the terminal and read a
reply.

• A routine (WRITE) to write to the terminal without waiting
for an operator response. Multiple writes may be used to
write long messages, with the last message being written
using ACTION.

• A routine (BEEP) to cause a bell character to be included
in the next output line.

The FILEIOfunction provides the following for disk and
diskette files:

• Automat i c open of the requested file

• Indexed file support

•

•

Oi rect file support

Storage conservation through automatic open and close
functions

I Two programming aids are available using the Multiple Terminal
Manager:

I ·
I ·

A no-operation (FAN) adds programming compatibility with
other programming environments.

An unprotected field descriptor function (FTAB) describes
the fields of the screen image in the input buffer.

The coding syntax for these functions are described in detail
in "Chapter 5. Multiple Terminal Manager" on page 359 and are
organized alphabetically by function name, such as ACTION,
LINK, LINKON, and so on.

Use of these fac iIi ties requ i res the Mul tip Ie TerminaL Manager
Licensed Program (5719-MSl) and also the Indexed Access Method
Licensed Program (5719-AM3) if indexed files will be used.

Chapter 2. Instructions and Statements - Overview 31

PROGRAM CONTROL STATEMENTS

CALL
CALLFORT
RETURN
SUBROUT
USER

Program control statements are used to define and control
subsections within a program and can provide flexibility and
save space. CALL, SUBROUT, and RETURN provide for the defi­
nition and use of a reusable section of code. Calling a subrou­
tine and the returning to the mainstream program reduces
repetition of code and program complexity.

CALL is also used to invoke the individual functions of the
optional licensed programs Indexed Access Method and Multiple
Terminal Manager.

The USER statement allows Event Driven Executive programs to
utilize the Series/l assembler language in those specialized
cases where the Event Dr i ven language does not meet appl i cat ion
requ'j rements.

CALLFORT is used to invoke FORTRAN programs and subroutines.

32 SC34-0314

o

rr-~)
~V

o

o

o

o

PROGRAM MODULE SECTIONING STATEMENTS

COpy
CSECT
ENTRY
EXTRN
WXTRN

The COPY statement allows you to copy into the your program a
predefined source-program module from a data set.

The CSECT statement allows you to give names to the separately
assembled modules of a program. These modules are then link­
edi ted together to form a complete program.

The ENTRY, EXTRN, and WXTRN statements provide the information
which allows the linkage editor (SLINK) to resolve symbolic
address references among separately assembled program modules
during link-edit processing.

Labels defined by CSECT and ENTRY statements, along with their
addresses in the link-edited program are listed in the MAP
portion of $LINK output.

Chapter 2. Instructions and Statements - Overview 33

PROGRAM SEQUENCING INSTRUCTIONS

DO
ELSE
ENDIF
ENDDO

FIND
FINDNOT
GOTO
IF

The IF, DO, and GOTO instructions provide the means for
sequencing a program through the correct logic path based on
the data and conditions generated ~uring the execution of the
program. IF and DO involve the use of relational statements
which, based on a true or false condition, determine the next
instruction to be executed. That next instruction must begin on
a full-word boundary. Relational statements consist of a com­
bination of data elements and are of the following:

EQ Equal
NE Not equal
GT Greater than
LT Less than
GE Greater than or equal
LE Less than or equal

The comparison is always arithmetic. A relational statement
has the general format:

(datal,relcond,data2,width)

where:

width is optional,

relcond is one of the relational condition mnemonics,

datal and data2 are data elements coded with the same
syntax as other Event Driven Language instruction
operands. Only data2 can contain immediate data. The
immediate data can be decimal, hexadecimal, or EBCDIC
data, must be an integer between -32768 and +32767,
and will be converted to floating-point if necessary.

The default data width is 1 word (16 bits). The following table
s how s the a I lowed wid t h s p e c i f i cat ion s .•

Specification Data Element Width

BYTE
WORD
DWORD
FLOAT
DFLOAT
n

34 SC34-0314

1 byte (8 bits)
1 word (16 bits) (integer)
Doubleword (32 bits) (integer)
Single-precision floating-point (32 bits)
Extended-precision floating-point (64 bits)
n bytes (relcond may only be EQ or NE)

o

o

o

o

o

o

The last form (n) provides a means for comparing data strings.
For example, two 8-byte character strings may be compared or,
similarly, two data buffers may be checked for equality. This
form implies that both datal and data2 are storage locations;
an i mmed i ate second operand is not perm i t'ted.

Several forms of the IF and DO instructions are allowed. They
are descr i bed in deta iii n the instruct i on descr i pt ions in
"Chapter 3. Instruct i on and Statement Descr i pt ions" on page
51. The simp lest form of the IF instruct i on is

IF (A,EQ,B)

If the word contained in the variable A is equal to the word
contained in the variable B, the next sequential instruction
will be executed. This is called the true portion of the
IF-ELSE-ENDIF structure. For example:

IF (A,EQ,B)

(code for true condition)
ELSE

(code for false condition)
ENDIF

ELSE is an optional part of the structure, and if coded, the
instructions following it are referred to as the false part of
the structure. Therefore, in the example above, the
instruction following the ELSE instruction will be executed if
A is not equa I to B. If ELSE is not coded, contro I passes to the
instruction following the ENDIF if the condition is false.

The IF and DO instructions permit logically connected state­
ments of the form:

statement,OR,statement

statement,AND,statement

More than two statements may be log i ca 11 y connected in an
instruction. Logically connected statement strings are not
evaluated according to normal Boolean reduction. Instead, the
string is evaluated to be true or false by evaluating each
sequence of:

statement,conjunction

to be true or false as follows:

1. The express i on is eva 1 uated from left to right.

2. If the condition is true and the next conjunction is OR, or
if there are no more conjunctions, the string is true and
evaluation ceases.

Chapter 2. Instructions and Statements - Overview 35

3. If th~ condition is false and the next conjunction is OR,
the next cond it ion is checked.

4. If the condition is false and the next conjunction is AND,
or if there are no more conjunctions, the string is false
and evaluation ceases.

5. If the condition is true, and the next conjunction is AND,
the next cond it ion is checked.

The order of the statements and conj unct ions ina statement
string determines the evaluation of the string. It may be pos­
sible, by reordering the sequence of statements and conjunc­
tions, to produce a statement string that will be evaluated to
the same results as Boolean reduction of the statement. For
example, the statement string

could be reordered as

without changing the results if evaluated by Boolean
reduction. As a statement string in the IF or DO instructions,
however, the two forms produce different evaluations. If A is
not equal to B, but E is less than F, the first statement string
will be evaluated false and evaluation will cease as soon as
(A,EQ,B) is evaluated; however, the second statement string
wi 11 be evaluated true if E is less than F, as "Jould be expected
from Boolean reduction for either the first or second statement
string.

When writing code with structures, program readabi lity is
improved by indenting nested structures. Two spaces for each
nesting level is recommended. For example:

IF (A,EQ,B)

DO WHILE,(X,NE,Y)

IF (#l,EQ,l)

ENDIF
ENDDO

ELSE

ENDIF

36 SC34-0314

o

o

o

o

o

o

QUEUE PROCESSING

DEFINEQ
FIRSTQ
LASTQ
NEXTQ

FIRSTQ, LASTQ, and NEXTQ provide the user with the capability
to add entries to, or delete entries from a queue (defined by
DEFINEQ) on a first-in-first-out or last-in-first-out basis.
Entries are logically chained together and no associated data
movement is required in the process. An entry is a 16-bit word
which may, for example, be a data item, a record number in a
data set, or the address of an assoc i ated data buffer. A queue
is composed of a queue descriptor (QD) and one or more queue
entries (QEs).

A QD is created by DEFINEQ and is 3 words; n length. Word 1 is a
pointer to the most recent entry on a chain of active QEs. Word
2 is a pointer to the oldest entry on a chain of active QEs.
Wo r d 3 i sap a i n t e r tot h e fir s t Q Eon a c h a ina f f r e e Q E s. I f a
queue is empty, words 1 and 2 contain the address of the queue
(the address of the QD). If the queue is full, word 3 contains
the address of the queue.

QEs are also created by DEFINEQ and are also 3 words in length.
Word 1 is a pointer to the next oldest entry on a chain of
active QEs. Word 1 of the most recent entry points to the QD.
Word 2 is a pointer to the next most recent entry on a chain of
active QEs. Word 2 of the oldest entry points to the QD. Word 3
of a free QE is a pointer to the next element in the free chain
of QEs. Word 3 of the last QE in the free cha i n is a po inter to
the QD. Word 3 of an active QE is the queue entry as described
above.

Figure 2 on page 38 shows how a group of QEs are chained from a
QD.

Chapter 2. Instructions and Statements - Overview 37

Queue processing

QD

0500 3000

1000

4000
-
-

QE chain

1000 2000
..... 0500

Queue
entry

iooo 3000 -
1000

Queue
entry

tooo 0500 ~

2000

Queue
entry

• 4000

5000

5000

0500

Oldest
entry

Most
recent
entry

First
free
entry

Active

QE
chain

Free

QE
chain

Figure 2. The Contro 1 Mechan i sm of Queue Process i ng

38 SC34-0314

o

0

o

o

o

SENSOR-BASED I/O STATEMENTS

IODEF
SBIO
SPECPIRT

The sensor-based I/O statements provide the means for defining
the devices, device addresses, and the general operating envi­
ronment for the sensor-based application program. See Figure 1
on page 10 for a diagram showing the relationships.

The purpose of a sensor I/O application program is to communi­
cate with sensor I/O units. This communication is used for mon­
i tor i ng or controll i ng a process outs i de the Ser i es/l
processor from a program within the processor.

In sensor applications, a process produces either digital or
analog signals. These signals are sensed by sensor devices and
transferred through a sensor I/O unit to your sensor program.
These signals can be compared to stored digital data for moni­
tor i ng. For process contro I, the app 1 i cat i on program must
wr i te new values to the sensor un its.

SYSTEM CONFIGURATION STATEMENTS

BSCLINE
DISK
EXIODEV

HOSTCOMM
SENSORIO
SYSTEM

TAPE
TERMINAL
TIMER

These statements are used only during the generation of a
superv i sor. For more i nformat i on on System Conf i gurat i on and a
description of each statement, refer to the "System Configura­
tion" topic in the System Guide.

Chapter 2. Instruction~ and Statements - Overview 39

I TAPE I/O INSTRUCTIONS

CONTROL
DSCB
NOTE

POINT
READ
WRITE

These instructions control the IBM Series/l 4969 Magnetic Tape
Subsystem and provide sequential access to magnetic tape data
sets. When a program is first loaded for execution, all the
data sets named in your PROGRAM statement have been opened for
access (read i ng or wr i t i ng) and are pos it i oned to the first
record.

I Definitions For Tape Data Sets

Tape Label: A tape label consists of at least two 80-character
records wh i ch descr i be the tape contents, such as date the tape
was created, the block size and record length, and other perti­
nent data. This data is usually in a specific format and
re'ferred to as a standard label. Non-standard labels may be
used but no automatic processing will be performed on such
labels by EDX. There is also a trai ler label which has a stand­
ard format and contains record count, block count, and so on
for the tape. The use of labels is optional and if they are pre­
sent they can either be processed or bypassed.

Record: The basic unit of tape data storage available to Cln
appl i cat i on program is a record. A record may be any size
between 18 and 32767 bytes. The default size of a record is 256
bytes.

Fi Ie: A file is a 11 the records between any beg inn i ng tape mark
(T~1) and an ending TM. The term fi Ie and data set are sometimes
used interchangeably in tape record references, however, data
set is the preferred term here.

Data Set: A tape data set is a set of consecut i ve records
recorded on a magnetic tape. No special restrictions exist
wi th i n the system for val i d names, but the use of standard sys­
tem utility programs for data set access and allocation dic­
tates that an alphamer i c character str i ng be used as a name.

A tape data set can only conta i n data, not executable code.

Volume: A volume is all of the records recorded on a reel of
magnet i c tape. Each volume is ass i gned a volume name of 1 to 6
alphameric characters.

Load Point: The beginning of tape (BOT) where the load point
sticker is located. Normally this location is approximately 25
feet from the leading end of a reel of magnetic tape and placed

40 SC3(i-0314

o

o

o

o

on the glossy side of the tape near the front edge.

End of Tape (EOT): The EOT sticker which is located near the
physical end of a reel of magnetic tape. Ouring a WRITE or CON­
TROL WTM command, the tape drive sensing this sticker will
ra i se the EDT cond it ion in the tape dr i ve caus i ng a return code
value of 24 to be returned. This sticker is normally far enough
from the physical end of tape to allow a complete block of
records to be written after it is sensed. It is located on the
glossy side of tape near the rear edge.

Notes:

1. Additional information on magnetic tape devices and organ­
i zat i on can be found in the System Gu ide.

2. For each data set defined in a PROGRAM statement, a data
set control block (OSCB) is generated in the program head­
er. A OSeB is used to contain information about the cur­
rent usage of a data set within an active program such as
the location of the data set and the next record number for
sequential I/O. This allows the system to properly control
access to the same data set by separate programs.

3. A OSCB is a serially reusable program resource; therefore,
within a single program it is your responsibility to pre­
vent simultaneous access to the same data set from separate
tasks. It is recommended that access to a data set within a
given program come from a single task. If, however, it is
necessary to access the same data set from wi th i n different
tasks in the same program, you should use ENQ and OEQ to
ensure serial use of the affected OSCB.

4. A tape drive cannot be shared by multiple programs at the
same time. You should not create or open multiple DSCBs
for the same tape volume. If you pass a tape data set to
another program (OS= operand of LOAD), the OSCB of the pr-o­
gram issuing the LOAD will be disconnected from the tape
data set to allow it to be passed to the program being
loaded.

5. When pass i ng OSCBs to over lay programs, it is suggested
that the address of the DSCB in the root program be passed
and not the data set itself. If the data set is passed,
close offline (CLSOFF) wi 11 be invoked when the overlay
terminates; when the overlay executes a PROGSTOP state­
ment.

Chapter 2. Instructions and Statements - Overview 41

TASK CONTROL INSTRUCTIONS

ATTACH
ATTNLIST
DEQ
DETACH
ECB
END

ENDATTN
ENDTASK
ENDPROG
ENQ
LOAD
POST
PROGRAM

PROGSTOP
QCB
RESET
TASK
WAIT
WHERES

The basic unit of a program is a task. The PROGRAM statement
def i nes the in it i al task. Many tasks may be act i ve concurrent­
ly and asynchronously in a program. A task may be activated or
attached, using the ATTACH command, by the primary task or by
other tasks. Any combination of instructions may be used with­
in a task and will be executed independently of other tasks.
Tasks within a program may communicate with each other through
common storage areas or through system instructions and event
control blocks. The facilities of the Event Driven Executive
supervisor provide the capability of synchronizing task exe­
cution.

A user-written application program is composed of one or more
tasks. The instructions listed here are used to define tasks
and to control which of the tasks are active at any given
moment, plus other related functions. "Example 7: A Two Task
Program With ATTNlIST" on page 395 and "Example 9: Floating
Point, WAIT/POST, GETEDIT/PUTEDIT" on page 398 illustrate the
use of several task-control instructions.

Several programs, each composed of one or more tasks, may be
loaded from disk and run concurrently. When a user task gains
control of the system, its instructions are executed until a
higher priority task becomes ready, at which time the higher
priority task gains control of the system.

A program may have more than one independently operating task
and these tasks may commun i cate wi th one another us i ng data
storage locations or event control blocks within the specific
program of wh i ch they are a part. Commun i cat i on among tasks in
separate programs can be accomplished using the cross­
partition facilities provided with many of the task control
instructions. Communication can also be accomplished using a
user-provided common data storage area ($SYSCOM) in the super­
visor. The services available for cross partition communi­
cation are described further in the System Guide under "Cross
Partition Services."

It is your responsibility to write programs in such a way that
the tasks operate in the des i red sequence and termi nate proper­
I y •

Concurrent execution of multiple tasks is shown in Figure 3 on
page 43

42 SC34-0314

o

o

o

o

o

Storage LOAD

PRIMTASK PROGRAM

• • •
ATTACH TASK1

• • •
PROGSTOP

~ ~ TASK1 TASK

• • •
ATTACH TASK2

• • •
ENDTASK

oooooi ~ TASK2 TASK
• • •

LOAD PROGL

• • •
ENDTASK

I
ENDPROG
END

PROGL PROGRAM
• • •

ATTACH TASKA

• • •
PROGSTOP

o.....j ~ TASKA TASK
• • •

ENDTASK

I
ENDPROG
END

I

I

A

B

C

Overview of the functions

PROGRAM
TASK
ATTACH
LOAD
ENDTASK
PROGSTOP
ENDPROG
END

l :

B~ PROGL

I

D

Concur rent execution

Ref. PRIMTASK TASK1 TASK2 PROGL TASKA

A- -

B- -

C- -

D- -

---------------1- ----
- - - - - - - - - - - - - - - - - - -1-

Figure 3. The Concurrent Execution of Multiple Tasks

Chapter 2. Instructions and Statements - Overview 43

TERMINAL I/O INSTRUCTIONS

DEQT
ENQT
ERASE
GETVALUE

IOCB
PRINT'EXT
PRINTIME
PRINDATE
PRINTNUM

READTEXT
RDCURSOR
QUESTION
TERMCTRL

With few exceptions, you can write the -terminal I/O
instructions in an application program without concern for the
type of terminal used or its hardware address. The terminal
used by a program is assigned dynamically by the system as the
one used to invoke the program and may vary from one invocation
to the next without program change. Exceptions to this rule may
exist with terminals which use special control characters or
wh i ch have un i que hardware capab iii ties such as graph i cs oper­
ations. Certain screen-oriented instructions are applicable
only to the IBM 4978/4979 display.

The Event Driven Executive provides facilities to prevent con­
flicts among multiple programs using the same terminal. Each
individual operation <read, write, or control) acquires exclu­
sive control of the terminal for its duration. If you desire
exclusive control for the duration of a sequence of
instructions, for example to print a report, you can use the
ENQT and DEQT instructions.

Error Handling

The application program may provide response to errors by means
of the TERMERR operand in the PROGRAM and TASK statements. In
programs or tasks for which the TERMERR operand is coded with
the label of an instruction, control is given to that
instruction when an unrecoverable terminal I/O error occurs.
At that point the task code word, whose label is the task name,
contains the error code, and the following word contains the
address of the instruction during which the error occurred. If
TERMERR is not coded, the error code is available in the task
code word but program flow is not interrupted. Error codes are
shown with the READTEXT, PRINTEXT, and TERMCTRL instructions
in this manual. Use of TERMERR is the recommended method for
detecting errors because the task code word is subject to
modification by numerous system functions and may not always
reflect the true status of the terminal I/O operations.

Because TERMERR receives control only when an actual I/O error
occurs, it is important to note the way a PRINTEXT statement
ex e cut e s. APR IN T EXT s tat erne n t doe s not res u 1 tin i m m e d i ate I/O
operation or possible I/O error unless the TEXT statement con­
ta i ns an Ql character or, the SKIP operand is spec if i ed ina sub­
sequent PRINTEXT statement. This information should be

44 SC34-0314

o

o

o

o

o

I cons i dered when cod i ng a TERMERR rout i ne.

Data Representation

output: Normally, alphameric text data to be written to a ter­
minal is represented internally as a string of EBCDIC charac-
t e r s _ The system translates the data to the code expected by": ..
the device. Means are also provided for writing untranslated d ':

data to the dev ice for spec i a I purposes.

Integer numeric data is represented internally as binary inte­
gers of single-precision (2 byte) or double-precision (4
byte), or as floating-point numbers of single-precision (4
byte) or extended-precision (8 byte). You can specify trans­
lation to a designated external graphic form with numeric out­
put instructions.

Input: Programs may request entry of text data in word mode
without imbedded blanks. When several words are entered on a
line, they must be separated from each other, and from any
numeric entries on the same line, by one or more blanks. Pro­
grams such as the text-editor uti lity wi 11 also expect data
entry in line mode, in which case the entire input line is
stored internally as a string of EBCDIC characters. The ENTER
key terminates an input operation in either word mode or line
mode.

Integer numeric entries may be either decimal or hexadecimal,
depend i ng upon the program req ue.st. Dec i ma 1 entr i es may
include a plus (+) or minus (-) sign. When multiple numeric
entr i es are made on the same 1; ne, the entr i es may be separated
by blanks or by the delimiters comma (,) or slash (/). In con­
junction with this rule, there are two means of indicating
omitted values in a numeric sequence, namely the use of an
asterisk (*) or two consecutive delimiters. Omitted values
result in no change to the corresponding internal values, and
their interpretation depends upon the utility or application
program requesting the input. Allowable ranges for integer
numeric input are given with the DATA instruction description
in "Chapter 3. Instruct i on and Statement Descr i pt ions" on page
51 •

Forms Control

In order to achieve a high degree of device independence, all
terminals, whether their display media be perforated paper,
paper rolls, or electronic display screens, are treated
according to line printer conventions. This means that within
the limits imposed by differing page sizes and margins, the

Chapter 2. Instructions and Statements - Overview 45

output from an application program will be identical in format
for all terminal types. It is also possible to exercise direct
control of forms movement by using the direct I/O capabilities
of terminal I/O at the expense of device independence.

The forms control keyword parameters are common to several of
the term ina 1 I/O i nstr uct ions. The va lues spec if i ed for any of
the forms control parameters (SKIP, LINE, or SPACES) may be
either constants or variables, and they may be indexed. Note
that when forms parameters are spec if i ed on an I/O instruct i on,
the forms operation always takes place before the data trans­
fer.

output L; ne Bufferi ng: Two success i ve output instruct ions
without the occurrence of the SKIP or LINE options, or the new
line character 0), result in concatenation of the data to form a
single output line. The line is not displayed until a new line
is indicated or the terminal is released through an explicit
DEQT command, or the program terminates, or an input operation
is performed. Normally, when concatenated output exceeds the
1 i ne-buffer capac i ty, subsequent output is lost unt i I a new
1 i ne i nd i cat i on is given; hOL>Je ver, you can a llow the generat ion
of overflow lines by coding OVFLINE=VES in the TERMINAL state­
ment for the dev ice inquest i on.

Forms Interpretation for Electronic Display Screens: The
PAGSIZE parameter for the IBM 4978/4979 Display is forced to
24. The margin settings TOPM,BOTM,LEFTM and RIGHTM delimit a
logical screen which may be accessed independently of other
logical screens. Once a logical screen has been defined and
accessed, all I/O and forms control operations are defined reI­
ativeto the margins of that screen. See the TERMCTL, ENQT, and
IOCB statements in "Chapter 3. Instruction and Statement
Descriptions" on page 51. Screen operations are described more
fully under "Screen Management" on page 48.

Burst Output With Electronic Display Screens: Whenever the
number of consecutive output lines reaches the logical screen
size (BOTM-TOPM+l), the system wi 11 suspend further output,
allowing the terminal operator to viel.oJ the display. Upon oper­
ator signal (pressing the ENTER key on the 4978 or 4979), out­
put continues until the screen is again filled or a pause for
input occurs.

Prompting and Advanc~ Input

As. a t~ r m i na 1 user, your interactive response with an ap-p 1 i c a"'"
ticn or uti lity program 1S generally conducted through prompt­
ing messages which request you to enter data. Once you have
become fam iii ar with the d i a logue sequence, however, prompt i ng
becomes less necessary. The i nstr uct ions READTEXT and
GETVALUE include a conditional prompting option which enables

46 SC34-0314

o

o

o

o

o

you to enter data in advance and thereby i nh 1 bit the assoc i ated
prompting messages. Advance input is accomplished simply by
enter i ng more data on a line than may have been requested by the
program. Subsequent input instructions which specify
PROMPT=COND will then read data from the remainder of the buf­
fered line, and will issue a prompting message only when the
line has been exhausted. If you specify PROMPT=UNCOND with an
input instruction, an associated prompting message is issued
and the system wa i ts for your input. The prompt message
causes, as does every output message, cancellation of any out­
standing advance input.

Attention Handling

Attention Keys: Program operation may be interrupted by press­
ing the keyboard ATTN key. When this key is recognized, the
greater than symbol (» is displayed and the operator may enter
either a system function code (for example, $L) or a program
function code defined by an active ATTNLIST. For ASCII termi­
nals, the keys with character codes X'lB' (normally marked ESC
on the keyboard) and X'7D' (normally the right brace) are both
recogn i zed as the attent i on key.

Program Functi on Keys: All program funct i on keys on the IBM
4978/4979 Display Terminal are recognized by the attention
list code $PF. In addition, individual keys may be separately
recognized by $PFI to $PF254. It is possible to provide sepa­
rate entry points to the application code for particular keys,
or for rapid response, a single entry for all keys. When the
application program attention handler is entered for any
program function key, the code for that key is placed in the
second word of the keyboard task con'trol block.

The order in which the program function key codes appear in the
attention list is significant. For example:

ATTNLIST ($PFl,ENTl,$PF5,ENT2,$PF,ENT3)

would cause the program to be entered at ENT3 for all program
function keys except PFl and PF5.

KEYBOARD AND ATTNLIST TASKS: When the ATTN key or one of the PF
keys is pressed on a terminal, the keyboard task for that ter­
minal gets control. Except for the hardcopy key (normally
PF6), the PF keys are always matched against your ATTNLIST(s).
For an ATTN, you enter a command L-Ihich is first matched against
the system ATTNLIST and then against your ATTNLIST(s). If the
command matches the system ATTNLIST, appropriate system action
is taken ($0, $l, etc.). If ,there is no match against any
ATTNlIST, the message FUNCTION NOT DEFINED is displayed on the
terminal. For a PF key or an ATTN command match against your
ATTNlIST, the corresponding attention list task is given con-

Chapter 2. Instructions and Statements - Overview 47

trol. The appropriate application program attention routine
then runs under thi s task. If the ATTNLIST task is already
busy, the message, ,,> NOT ACKNOWLEDGED" is displayed on the
terminal. You the have the option of reentering the command or
press i ng the PF key at a later time.

When the application program attention handler is entered, the
index registers are initiallY set as follows:

#1 Address of task control block (TCB)
#2 Address of terminal control block (CCB)

The code for an interrupting key may therefore be obtained by
cod i ng, for e xamp Ie:

MOVE CODE,(2,#I)

Screen Management

Support for the 4978/4979 display allows the application
gram to partition the screen into logical screens, and to
age a logical screen according to one of two basic modes,
or static. The roll screen mode operates in a manner which
u 1 ate sat y pew r i t e r t e r min a I, L-J h i 1 e the s tat i c s c r e e n mod e
vides a convenient means for data display and data en~ry.
static screen mode is supplied only for the IBM 4978/4979
play Terminals.

pro­
man­
roll
sim­
pro-

The
Dis-

Roll Screens: Roll screens differ from typewriter printing
media only in the absence of hardcopy and in the limited amount
of display history which Celn be retained. The amount of histo­
ry to be retained on a roll screen is specified through the
NHIST parameter on the TERMINAL or IOCB statements. The value
of this parameter defines the boundary between two areas of the
screen, the history area (extending from TOPM to
TOF'M+NHIST-l), and the working area (extending from TOPM+NHIST
to BOTM). The top of the work i ng area is 1 i ne 0 for purposes of
forms control; the display proceeds from line 0 to the bottom
margin, after which the working area is shifted into the histo­
ry area, the working area is erased, and the display begins
again at line O.

Since screen shifting is implemented through a hardware mech­
anism which affects the entire physical screen line, shifting
is not performed for roll screens whose left and right margins
are other than 0 and 79. This protects adjacent logical
screens from alteration. All other aspects of roll screen man­
agement are preserved.

stat;c Screens: The object of static screen management is to
provide the application program with complete control over the
screen image, and to allow the terminal operator to modify an

48 SC34-0314

o

o

o

o

o

entire screen image before data entry.
therefore distinguished from roll screens
ways:

Static screens Clre
in the following

• Forms control operations which would cause a page-eject
for roll screens simply wrap around to the top for static
screens. No automatic erasure is performed; selected
portions of the screen are erased with the ERASE command.

• Protected fields may be written; this function is not
avai lable for roll screens.

• The cursor position, relative to the logical screen mar­
gins, may be sensed by the application program through the
RDCURSOR command.

• Input operations directed to static screens normally do
not cause a task suspens i on wa it for the ENTER key; they
are executed immediately. This allows the program to read
selected fields from the screen after the entire display
has been modified locallY without program interaction by
the operator. Operator/program signaling is provided
through the program function keys and a special
instruction, WAIT KEY.

• In order to allow convenient operator/program interaction
to take place on a static screen, the QUESTION, READTEXT,
and GETVAlUE instructions are executed as if they were
directed to a roll screen (automatic task suspension for
input). READTEXT and GETVAlUE are treated this way only
when a prompt message is specified in the instruction.

• The character <i' is treated as a normal data character. It
does not i nd i cate new 1 i ne.

The utility program $IMAGE (see Utilities, Operator Commands,
Program Preparation, Messaoes and Codes) can be used to
construct formatted screen images in a user-interactive mode
and save them in disk or diskette data sets. In addition, the
images may be retrieved and displayed by application programs
through the use of system prov i ded subrout i nes. See "Formatted
Screen Images", in the System Gu i de for deta i Is.

Operator Signals: An application program may wait at any point
for a 4978/4979 terminal operator to press the ENTER key or one
of the program funct i on keys. Th is is done by i ssu i ng the WAIT
KEY instruction.

When a key is pressed and the program operation resumes, the
key is identified in the second task code word at taskname+2
(see "Attention Handling" on page 47). The code value for the
ENTER key is o. For the program funct i on keys, the value is the
integer corresponding to the assigned function code; 1 for
$PF1, 2 for $PF2, and so on.

Chapter 2. Instructions and Statements - Overview 49

The program function keys do not generate attention interrupts
during execution of the WAIT KEY instruction. They only cause
that instruction to terminate, allowing subsequent
instruct ions to be executed.

TIMING INSTRUCTIONS

GETTIME
INTIME
PRINDATE
PRINTIME
STIMER

The t i mi ng funct ions are used in many different ways ; n the
Event Driven language programs. The time-of-day clock can be
displayed or it can be stored for data collection purposes. It
can also be used to start and stop the execut i on of tasks.

Interval timers are also avai Iable for\,use by user programs and
have ami n i mum time increment of 1 mill i second. The 4952
clock/comparator and the 4953/4955 timer feature 17840 are
supported.

50 SC34-0314

()

o

o

o

o

CHAPTER 3. INSTRUCTION AND STATEMENT DESCRIPTIONS

The Event Driven Language instructions and statements are pre­
sented here in alphabet i corder. A br i ef descr i pt i on of the use
of the instructions is provided where appropriate, followed by
information on how to invoke any particular operation, the
required parameters, and the defaults used if parameters are
not spec if i ed. Each operand (or parameter) is listed and
described. Event Driven Language instructions have the stand­
ard Series/l macro assembler format.

Each instruction is described in detail using the following
format:

Instruction name

Functional description

Syntax

Operands

Coding examples

The "Address Indexing Feature" on page 6 can be used only with
certain instructions and operands. The syntax description of
each instruct i on spec if i es wh i ch operands, if any, are
indexable.

The instructions are grouped by function beginning in "Chapter
2. Instructions and Statements - Overview" on page 15 and each
functional group is presented alphabetically. Also, general
i nformat i on that is common to each group is discussed there.

You should note in this chapter that the functional group of
each instruction is identified at the top of the first page of
each instruction. You can use this functional identifier to
refer back to the discussion in Chapter 2 of each functional
group.

Some instructions are also shown in various programming exam­
pies beg i nn i ng in "Chapter 6. Programm i ng Examp les" on page
383. These examples will give further assistance in the proper
use of the more complex instructions.

Chapter 3. Instruction and Statement Descriptions 51

ADD

Data Manipulation

The ADD instruction adds the signed value of operand 2 to the
signed value of operand 1. The value of operand 2 remains
unchanged.

Note: An overflow condition is not indicated by EDX.

Syntax

label ADD opndl,opnd2,count,RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=l,RESULT=opndl,PREC=S
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

RESULT=

PREC=XYZ

Description

The name of the variable to which the operation
app lies; it cannot be a constant.

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit constant may be specified.

The number of consecutive variables in opndl or
RESUL T upon wh i ch the operat i on is to be performed.
The maximum value allowed is 32767.

The name of a variable or vector in which the result
is placed. The variable specified by the first
operand is not mod if i ed. Th i s operand is opt i ona I .

The precision value X applies to opndl, Y to opnd2,
and Z to the result. The value may be either S
(single-precision) or 0 (double-precision). The
three operand spec if i cat i on may be abbrev i ated
according to the following rules:

S2 SC34-0314

o

o

0

o

Px=

•

•

If no precision is specified, all operands are
single precision.

If a single letter (S or D) is specified, it
applies to the first operand and result, with
the second operand defaulted to single
precision.

• If two letters are spec if i ed, 'the first appl i es
to the first operand and result, and the second
to the second operand.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Mixed-precision Operations: Allowable precision combinations
for ADD operations are listed in the following table:

opndl I opnd2 I Result I Abbrev;at;on I Remarks

S S S S default
S S D SSD
D S D D
D D D DD

Note: Operand 2 is either one or two words depending on the
precision specified with the keyword PREC. The total length of
operand 1 is determined by the operand 1 precision multiplied
by the value in the count operand.

Example

ADD #1,2

ADD E,15,PREC=D

ADD Vl,A,3,RESUlT=V2

add 2 to index register 1

add 15 to double-prec value

add the value in A to each
of 3 words starting at Vl
and place the results in 3
words starting at V2. VI
and A remain unchanged.

Chapter 3. Instruction and Statement Descriptions 53

ADDV

ADDV

Data Manipulation

The add vector instruct i on (ADDV) is used to add the components
of operand 2 to the corresponding components of operand 1.
Consecutive variables contained in operand 2 are added to the
corresponding variables contained in operand 1.

Note: An over flow cond i t ion is not i nd i cated by EDX.

Syntax

label

Required:
Defaults:

ADDV opndl,opnd2,count,RESULT=,PREC=,
Pl=,P2=,P3=

opndl,opnd2,count
RESULT=opndl,PREC=S

Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

RESULT=

PREC=XYZ

Description

The name of the variable to which the operation
app lies; it cannot be a constant.

The value by which the first operand is modified.
Either the name of a variable or an explicit con­
stant may be spec if i ed.

The number of consecutive variables in both opndl
and opnd2 upon wh; ch the ope rat ion is to be per­
formed. The maximum value allowed is 32767.

The name of a variable or vector in which the result
is placed. In this case the variable specified by
the first operand is not modified. This operand is
optional.

The precision value X applies to opndl, Y to opnd2,
and Z to the result. The value may be either S
(single-precision) or 0 (double-precision). The
three operand spec if i cat i on may be abbrev i ated
accord i ng to the fo llow i ng ru les:

54 SC34-0314

,;t'~

Vi

o

o

C)

o

Px=

ADDV

• If no precision is specified, all operands are
single-precision.

• If a single letter (S or D) is specified, it
applies to the first operand and result, with
the second operand defaulted to single
precision.

• If two letters are specified, the first applies
to the first operand and result, and the second
to the second operand.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Mixed-precision Operations: Allowable precision combinations
for integer arithmetic operations are listed in the following
table:

opndl I opnd2 I Result I Abbrev;at;on I Remarks

S S S S default
S S D SSD
D S D D
D D D DD

Operations On Index Registers

Index registers may generally be treated as ordinary single­
precision integer arithmetic or logical variables. However,
results of a vector operation directed at the registers, 11 and
12 may not extend beyond 12.

Chapter 3. Instruction and Statement Descriptions 55

[ADDV

Example

VI
V2

DATA
DATA
ADD V

32F'1'
32F'2'
Vl,V2,32 add V2 to VI, 32 values

(After execution, VI contains 32F'3')

V3
V4

ADDV
DATA
DATA

#1,V3,2
F ' 1 '
F ' 2 '

add V3 to il and V4 to #2

(#1 is incremented by 1 and #2 is incremented by 2.)

56 SC34-0314

o

o

o

o

AND

Data Manipulation

The AND instruct i on causes a log i cal and i ng together of the bit
positions in operand 2 to operand 1. The operands are treated
as bit strings and a comparison of each of the corresponding
bits in each string is made. If the operand bits are both 1,
the corresponding result bit is also set to 1. If either or
both of the operand bits is a 0, the corresponding bit in the
result is set to O.

Syntax

label AND opndl,opnd2,count,RESUlT=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=(l,WORD),RESULT=opndl,
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

Description

The name of the variable to which the operation
applies; it cannot be a constant. The length of
opndl is determined by multiplying count times pre­
cision.

The value by which the first operand is modified.
Either the name of a variable or an explicit con­
stant may be spec if i ed.

The number of consecutive variables in opndl upon
which the operation is to be performed. The maximum
value allowed is 32767.

The count operand can include the precision of the
data. Because these operations are parallel (the
two operands and the result are implicitly of like
precision) only one precision specification is
required. That specification may take one of the
following forms:

Chapter 3. Instruction and Statement Descriptions 57

RESULT=

Px=

Example

BYTE -- byte precision
WORD -- word precision
DWORD -- doubleword precision

This optional operand represents a var"iable or
vector in which the result is to be placed. In this
case the var i abla spec i f i ed by the first operand is
not modified.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
fUrther descriptions.

"Use of
on page 8

The
for

AND A,X'OOFF' AND bit positions of the constant
X'OOFF with variable A

AND B,A,(l,BYTE) AND bit positions of A with B

In the following example a mask value is ANDed with a data field
to turn off the low order 4 bits in the data byte without
affecting the other bits. After execution of the AND, the
field DATA contains X'EO' (binary 1110 0000).

AND DATA1,MASK,(1,BVTE)

DATA
MASK

DC
DC

58 SC34-0314

X'E7'
X'FO'

binary 1110 0111
binary 1111 0000

o

o

o

o

ATTACH

ATTACH

Task Control

The ATTACH instruct i on act i vates execut i on of another task. If
the named task is already in the attached state, no operation
occurs.

The task to be attached is normally assumed to be in the same
partition as the ATTACH instruction. However, it is possible
to ATTACH a task in another partition using the cross-partition
capability of ATTACH. For more information refer to
"Cross-Part it i on Serv ices" in the System Gu ide.

When an ATTACH statement is issued, the address of either the
default terminal or the currently active terminal for the task
issuing the ATTACH, is placed into $TCBCCB of the target task.
Therefore, the same terminal is active for both tasks.

Syntax

label

Required:
DefauLts:

ATTACH taskname,priority,CODE=value,
Pl=,P2=,P3=

Indexable:

task name
CODE=-l
none

Operands

taskname

priority

CODE=

Description

Name of the task to be attached. This task must be
def i ned wi th a TASK statement.

A priority to be assigned to the task. This
priority will override and replace the one ori­
ginally assigned in the TASK statement. It remains
in effect unless superceded by a subsequent ATTACH
statement. See the descr i pt i on of "TASK" on page
285 for a complete definition of priority.

A code word to be inserted in the first word of the
task control block of the task being attached. The
code word may be tested in the attached task by
referring to the taskname operand. Sometimes when

Chapter 3. Instruction and Statement Descriptions 59

ATTACH

Px=

a task is attached from more than one point, it may
be des i rable to inform the task of the or i gin of the
attachment. The code word value provides a simple
mechanism for accomplishing this. Note that the
code word should be examined immediately upon entry
to the attached task, since execution of certain
instructions (for example, I/O instructions) will
cause the task code word to be over la i d.

Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions.

60 SC34-0314

o

o

o

o

ATTNLIST

ATTNLIST

Task Control

The ATTNLIST statement provides entry to one or more user writ­
ten asynchronous attention interrupt handling routines. When
the attent i on key is pressed on a user term ina 1, the system
wi 11 query the user for a 1-8 character command. By con­
vention, commands beginning with $ are reserved for system use.
All other character comb i nat ions are allowed.

The ATTNLIST statement produces a list of command names and
associated routine entry points. Therefore, this statement
should not be placed between executable instructions. If the
command entered is specified in the list, control will be
passed to the associated user routine. This provides you with
a mechanism for interactive control of programs from a termi­
nal. These routines should be short because they are executed
on hardware interrupt level 1; therefore, they may interfere
with the execution of any other user programs. They must end
with the ENDATTN instruction.

Coding of a LOCAL or a GLOBAL ATTNLIST causes a special
ATTNLIST task control block (named $ATTASK) to be generated
within your program. Routines invoked by ATTNLIST statements
operate under the ATTNLIST task asynchronously with the other
user or system tasks. System operator commands, however, oper­
ate as part of the system keyboard task within the supervisor.
The following instructions are not recommended for use in an
ATTNLIST routine: DETACH, ENDTASK, PROGSTOP, LOAD, STIMER,
WAIT, TP, READ, WR ITE, ENQT, and DEQT.

I f the $DEBUG ut iIi ty program is to be used to test your
program, then the $DEBUG commands, 1 i sted in the Ut iii ties,
Operator Commands, Program Preparation, Messages and Codes
cannot also be defined in an ATTNLIST in the program to be
tested.

Chapter 3. Instruction and Statement Descriptions 61

ATTN LIST

Syntax

label

SCOPE=

Requ i r'ed:
Defaults:

ATTNL1ST (ccl,10cl,cc2,loc2, ••• ,ccn,locn),
SCOPE=

Indexable:

ccl,locl
SCOPE=LOCAL
none

Operands

ccl

locI

SCOPE=

Description

The command identification requiring 1- to 8-
alphameric characters. One exception is that $ is
reserved for system use as a first character,
except as noted under "Attention Handling" on page
47. The use of the 4979/4978 terminal program func­
tion keys to invoke ATTNLIST routines are defined
there. Also see use of $DEBUG commands in Ut ili­
ties, Operator Commands, Program Preparation, Mes­
sages and Codes.

Name of the routine to be invoked.

An indicator of where the ATTNLIST is invoked from,
either GLOBAL or LOCAL. GLOBAL allows the ATTNLIST
command routines to be invoked from any terminal
assigned to the same storage partition. LOCAL lim­
its the i nvok i ng of the commands to the spec if i c
terminal (assigned to the same partition) from
wh i ch the program conta in i n9 the command was
loaded. This is based on the premise that the parti­
tion assignment of the terminal has not been dynam­
ically changed by a $CP command. A program may have
one LOCAL ATTNLIST and one GLOBAL ATTNLIST.

Note: The fo llow i n9 cond it ions app 1 y to the ATTNL 1ST:

1. The $EDXASM compiler allows only one list with a maximum of
254 characters.

2. The Series/l macro assembler and host assemblers allow
multiple lists but with a maximum of 125 characters per
lis t .

62 SC34-0314

o

o

o

o

o

ATTNLIST

Example

ATTNLIST (PCI,PCODEI,PC2,PCODE2)

PCODEI MOVE' CODE,1 ENTER HERE BY PRESSING
ENDATTN ATTENTION AND KEYING 'PCI'

PCODE2 POST EVENT,2 ENTER HERE BY PRESSING
ENDATTN ATTENTION AND KEYING 'PC2'

Figure 4 shows the functional flow when ATTNLIST is used. Also
see "Example 7: A Two Task Program With ATTNLIST" on page 395.

ATTN LIST

abc --++---........ 1 abc,exit1

• • •
xyz,exit2

• • •

Figure 4. Function of ATTNLIST

exit1 • •
ENDATTN

exit2 •
•

ENDATTN

Chapter 3. Instruction and Statement Descriptions 63

BSC (BINARY SYNCHRONOUS COMMUNICATIONS)(REFERENCE ONLY)

Telecommunications

!lSCClOSE

BSCREAD

BSCIOB

BSCOPEN

BSCWRITE

The Binary Synchronous instructions are described in detail in
the Communications and Terminal Applications Guide

64 SC34-0314

o

()

o

o

0 11
'I

o

[BUFFER

BUFFER

Data Definition

The BUFFER statement def i nes a data storage area. The standard
buffer conta i ns an index, a length, and a data buffer. The
index may be used to indicate the current total number of words
stored in the buffer. Both the index and the data buffer are
initialized to o.

Certain instructions, for example INTIME and SBIO, have an
optional indexing facility wherein they can be used to add new
entries sequentially to a buffer by implicitly referencing and
incrementing the index word. The index can be thought of as a
subscript to a one dimensional array. If a buffer becomes full
and is to be reused, the index word must be reset to O. Examina­
t i on of the index word a Iso i nd i cates hOl;J many entr i es are cur­
rently in use in a buffer. You may assign a name to the index
word in the BUFFER statement to provide for such program refer­
ences.

BUFFER can be used to def i ne the spec i al i zed storage area
needed for use wi th the Host Commun i cat ion Fac iIi ty TP
READ/WRITE instruction, and can also be used with the Terminal
I/O instructions. Use of BUFFER for terminals is explained
under the 10CB statement.

For a physical layout of a buffer see Figure 5 on page 67.

Syntax

label BUFFER count,item,INDEX=

Required:
Defaults:
Indexable:

count
item=WORD
none

Operands

count

Description

The length of the buffer in terms of the item
specified. In addition to the buffer itself. 2
words of control information are allocated.

Chapter 3. Instruction and Statement Descriptions 65

BUFFER

item

INDEX=

Buffer type i nd i cator. Code BYTE or BYTES if the
buffer length is defined in terms of bytes. Code
WORD or WORDS if the buffer length is defined in
terms of words. The default for this operand is
WORD.

Code TPBSC to generate a buffer for use with the TP
READ and WRITE statements (Host Communications
Fac i 1 i ty). BUFFER length must be spec if i ed in
bytes if TPBSC is used.

A symbolic name assigned to the buffer index word.
The parameter cannot be used if the item parameter
is coded as TPBSC.

Note: Count and INDEX are maintained in terms of the number of
data items (words or bytes) which the buffer can contain (total
size) or currently contains, respectively. Index may also be
regarded as the displacement of the next ava; lable location
re lat i ve to the start of the buffer.

66 SC34-0314

o

C)

o

o

o

Standard BUFFER

label BUFFER count,item,INDEX=name

TPBSC BUFFER

label BUFFER

J I
name index

count

label x

x

x

x

0

0

0

0

0

count, TPBSC

Lcount

pad

request

..... -------... label

data

pad

Figure 5. BUFFER Statement

I

} 2 words

index-

size in bytes

Count in
bytes or
words

1 word

o L E/STX 1 word

TP request block 8 words

ETX

'count'
bytes

1 word

Chapter 3. Instruction and Statement Descriptions 67

CALL

CALL

Program Control

The CAll instruction executes a user-written or system subrou­
tine. Up to five parameters may be passed as arguments to the
subroutine. The first instruction of the subroutine is identi­
fied by a SUBROUT statement. If the called subroutine ;s a sep­
arate object module to be link-edited with your program, then
you must also code an EXTRN statement for the subroutine name
in the calling program.

Syntax

label CALL name,parl, ••• ,par5,Pl=, ••• ,P6=

Required: name
Defaults: none
Indexable: none

Operands

name

parn

Description

The name of the subrout i ne to be executed.

The parameters associated with the subroutine. Up
to five, explicit, single precision, integer con­
stants or the symbolic labels of single-precision
integer variables which will be passed to the
subroutine. The actual constant or the value at the
named location is moved to the corresponding sub­
routine parameter. Updated values of these parame­
t e r s are ret u r ne d b y t he sub r 0 uti n e •

If the parameter name is enclosed in parentheses,
for examp Ie, (par 1), t he address of the var i ab Ie is
passed to the subroutine parameter. Such an
address may be the label of the first word of any
type of data item or data array. Wi th i n the subrou­
tine it will be necessary to move the passed address
of the data item into one of the index reg i sters, #1
or #2, in order to reference the actual data item
locat i on in the ca 11 i ng program. I f the parameter
name enclosed in parentheses is a symbol defined by
an EQU statement, the value of the symbol is passed

68 SC34-0314

o

o

o

o

Px=

Example

CALL

as the parameter.

If the parameter to be passed is the value of a sym­
bo I def i ned by an EQU statement, it can a Iso be pre­
ceded by a plus (+) sign. This causes the value of
the EQU to be passed to the sub rout i ne. I f not
preceded by a +, the EQU is assumed to represent an
address and the data at that address is passed as
the parameter.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

CALL

CALL

PROG,5 The value 5 is passed to PROG

SUBROUT,PARMl,(PARM2),+FIVE

The parameters passed to SUBROUT
are the contents of PARMI, the
address of PARM2 and the value
of the EQU symbol FIVE

Figure 6 shows the contro I f low when us i ng a CAL L statement.

•
•
•

CALL name1 SUBROUT name1

r..- • • • •
• CALL name2 SU B ROUT name2

• ~ •
• • --- RETURN •

•
""- RETURN

Figure 6. Execution of Subroutines

Chapter 3. Instruction and Statement Descriptions 69

CALLFORT

CALLFORT

Program Control

The CALLFORT instruction calls a FORTRAN program or subroutine
from an Event Driven Executive program. If a FORTRAN main pro­
gram is called, the name you specify on the name parameter is
the name coded in the FORTRAN PROGRAM statement or the default
name MAIN if no PROGRAM statement was coded. If a FORTRAN sub­
routine is called, specify the subroutine name. Parameters may
be passed to FORTRAN subroutines. Standard FORTRAN subroutine
conventions apply to the use of CALLFORT.

For a more complete description of the use of the CALLFORT
statement, see the IBM Series/l FORTRAN IV Licensed Program
5719-FOl, F03, User's Guide, SC34-0134.

Syntax

label CALLFORT name,(al,a2, ••• ,an),P=(pl,p2, •• pn)

Required:
Defaults:
Indexable: none

Operands Description

name

a

p=

The name of a FORTRAN program wh i ch cons i sts of 1 to
6 alphabetic or numeric characters, the first of
which must be alphabetic. This name, or entry
po i nt, must also be coded in an EXTRN statement ~

Each a is an actual argument that is being supplied
to the sub rout i ne. The argument may be a constant, a
var i able, or the name of a buffer.

Parameter naming operands (See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions). A list of names of up to 8
characters each can be provided. These names are
ass i gned to the parameter list entr i es for the
arguments specified in the a operand in the order
specified.

70 SC34-0314

()

o

o

o

Example

CALLFORT FPGMI

CALLFORT FSUBl,A

CALLFORT FSUB2,(A,B)

CALLFORT FSUB2,(A,B),
P=(INPUT,OUTPUT)

CALLFORT

No parameters passed

One parameter passed

Two parameters passed

Two parameters
passed with labels,
INPUT for parameter A
OUTPUT for parameter B

Cnapter 3. Instruction and Statement Descriptions 71

CONCAT

Graphics

The CONCAT statement concatenates two text strings, text! and
text2, or a text string and a graphic control character. Text
from text2 is placed at the right of any text which is currently
in the buffer text! and the resulting text string is placed in
text!. The character count of text! is then changed to reflect
the combined counts of the beginning contents of text! plus the
concatenated characters from text2. Truncation on the right
occurs if the comb i ned counts exceed the phys i cal length of
textl. You have the option to reset the character count of
textl to 0 before beginning to concatenate a new string.

label

Required:
Defaults:

CONCAT textl,text2,RESET,REPEAT=,P!=,P2=

textl,text2
REPEAT=!

Indexable: none

Operands

textl

text2

RESET

REPEAT=

Description

label of left input and resultant text.

label of right input text, an explicit I-character
constant (left-justified, for example e'A' or
X'07'), or a symbol representing one of the follow­
ing ASCII graphic control characters: GS, BEL, ESC,
ETB, ENQ, FF, CR, IF, SUB, or US.

An indicator to reset the character count of textl
before start i ng the spec if i ed concatenat i on. No
res e tis done i f t his par a mete r i s om itt e d •

The number of times text2 is to be concatenated to
text!. For example if a C' , is coded as text2 and
REPEAT is coded with a 5, then 5 blanks are concat­
enated to text!. REPEAT must be an absolute numeric
value.

72 SC34-03l4

()

;f- .""

II",;)

o

o

o

o

Px= Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

CONCAT

"Use
on page

of
8

The
for

Note: See "Example 12: Graphics Instructions Programming
Example" on page 408 for typical use of this instruction.

Chapter 3. Instruction and Statement Descriptions 73

CONTROL

CONTROL

Tape Control

The CONTROL statement allows you to execute tape funct ions. You
can space forward or backward a specified number of records or
files (a file is the data between the beginning tapemark and
the end i ng tapemark). You can also wr i te tape marks, rew i nd the
tape, set the tape drive offline, or rewind and set offline.

CONTROL also is used to close tape data sets. It is a recom­
mended procedure to close all tape data sets. If you do not
close data sets, then you must control the tape drive directly
with the various CONTROL functions. Close to a Sl (standard
label) output tape will write the following trailer label: Tr1
EOFI TM TM. Close to a NL (no label) tape will write: TM TM.
Input tapes are automatically rewound as the result of a close
operation. An attempt to WTM (write tapemark) to an unexpired
file (expiration date in the header label is not equal or less
than the current date) is an error cond it i on.

Syntax

label

Required:
Defaults:

CONTROL DSx,type,count,END=,ERROR=,WAIT=,P3=

DSx,type
count=l,WAIT=YES

Indexable: count

Operands

DSx

type

Description

x specifies the relative data set number in a list
of data sets defined by you on the PROGRAM state­
ment. It must be 1 n the range of 1 to n, where n is
the number of data sets def i ned in the 1 i st. A DSCB
name def i ned by a DSCB statement canbe subst i tuted
for DSx.

The type fie Id is the CONTROL funct i on to be
performed. Following is a list of functions avail­
able:

74 SC34-0314

o

o

o

o

CONTROL

FSF Forward space fi Ie (tapemark). Regardless
of where the tape is currently positioned,
the tape will search forward the number of
tape marks indicated in the count operand.
If the sepcified number of tape marks indi­
cated by the count fi eld are not on the tape,
the pos i t ion i ng of the tape is unpred i ct­
able.

BSF Backward space file (tapemark). The tape
will search backward until the next tape
mark is read. The default value for count is
1. If the tape is at load po i nt when when
th is command is issued, the load po i nt
return code is returned.

FSR Forward space record. The tape wi 11 space
forward past the number of records spec if i ed
in the count field. The default value for
count is 1.

BSR

WTM -

Backward space record. The tape will space
backward past the number of records speci­
fied in the count field. The default value
for count is 1. If the tape is at load point
when this command is issued, the load point
return code is returned.

Write tapemark. This function will write a
tape mark on tape. If the count field is
coded, success i ve tape marks wi 11 be wr i tten
accord i ng to the count va 1 ue.

R EW R e win d tap e to loa d poi n t (beg inn i n 9 0 f
tape) •

ROFF Rewi nd "tape and set the tape dr i ve
offline.

OFF Set tape drive to offline.

to

CLSRU Close tape data set and allow it to be reused
(reopened by another program or task wi thout
an i nterven i ng $VARYON command). The tape is
repositioned to the HDRI label of the data
set for labeled tape. The tape is pos i­
t i oned to the beg inn i ng of the first data
record for no label tapes. You can lise
$VARYON to change the file number be i ng
processed or you can use a CONTROL funct ion.

Ch~pter 3. Instruction and Statement Descriptions 75

CONTROL

count

END=

ERROR=

WAIT=

CLSOFF C lose tape data set, rew i nd tape, and set
the tape drive to offline.

The count operand specifies the number of files or
records to be skipped or the number of tapemarks to
be wr i tten. Th i s can be a constant or the label of a
count value.

Use this keyword to specify the first instruction
of the routine to be invoked if an end-of-data-set
condition is detected (return code=10). If this
operand is not spec if i ed, an EOD I·d 11 be treated as
an error. This operand must not be used if WAIT=NO
is coded.

If END is not coded, a tapemark wi 11 also be treated
as an error. The physical position of the tape,
under this condition, is the read/write head posi­
tion is immediately following the tapemark. See
CONTROL close functions for repositioning of the
data set. Remember also that the count field might
not be decremented to zero.

Use this keyword to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after the READ and
you must test the return code in the task code word
for errors. Th is operand must not be used if
WAIT=NO is coded.

If this operand is allowed to default or if it is
coded as WAIT=VES, the current task wi 11 be sus­
pended until the operation is complete. If the
function selected is CLSRU or CLSOFF then WAIT=YES
is the only valid option for this operand, any other
option wi 11 be ignored.

For functions other than close, if the operand is
coded as WAIT=NO, control wi 11 be returned after
the ope rat ion is in i t i ated and a subsequent WAIT
DSx must be issued in order to determine when the
operation is complete.

END and ERROR cannot be coded if WAIT=NO is coded.
You must subsequently test the return code· in the
Event Control Block (ECB) named DSx or in the task
code word (referred to by 'taskname'). Two codes
are of special significance. A -1 indicates a suc­
cessful end of operation. A +10 indicates an 'End
of Data Set' and may be of logical significanc~to

76 SC34-0314

o

o

o

()

o

Px=

CONTROL

the program rather than being an error. For
programming purposes, any other return codes ·should
be treated as errors.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

I Tape Return Codes

Code Description

-1
1
2
4
5
6

10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
76

Successful completion
Exception but no status
Error reading STATUS
E:rror issuing STATUS READ
U'n r e c 0 v era b I e I/O err 0 r
Error issuing I/O command
Tape mark (EOD)
Device in use or offline
Wrong length record
Not ready
File protect
EOT
Load point
Uncorrected I/O error
Attempt WRITE to unexpired data set
Invalid blksize
Data set not open
Incorrect device type
Incorrect request type on close request
Block count error during close
EOVI label encountered during close
DSN not found

Chapter 3. Instruction and Statement Descriptions 77

CONTROL

Example

CONTROL DS1,CLSOFF

This statement closes the tape data set specified by DS1,
rewinds the tape, and sets the tape drive offline.

CONTROL DS2,FSR,16

This statement causes the tape data set specified by DS2
to be forward spaced 16 data records.

78 5C34-0314

o

/f--~,

l~,-_)

o

o

c'

o

CONVTB

CONVTB

Data Formatting

The CONVTB instruction converts a binary value to an EBCDIC
string. Both integer and floating-point formats are provided.
In addition, both the normal floating-point notation and E
not at i on are prov i ded.

Syntax

label

Required:
Defaults:

CONVTB

opndl,opnd2
PREC=S,FORMAT=(6,O,I)

Indexable: opndl,opnd2

Operands

opndl

opnd2

PREC=

Description

The name of an area in storage where the converted
results will be placed. The address must be the
leftmost byte of the area. The converted results
wi 11 be in EBCDIC.

The name of the variable to be converted to EBCDIC.
You must know the format of the data. The following
opnd2 types are supported:

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

1 word
2 words
2 words
4 words

The PREC keyword is used to specify the form of
opnd2. The allowable values are:

S - Single-precision integer
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

FORMAT=(W,D,T) The format of the value converted.

Chapter 3. Instruction and Statement Descriptions 79

CONVTB

Px=

W = Field width in bytes of EBCDIC field

o = Number of digits to the right of decimal point.
Valid for floating-point variables only. For
integer values, code a 0 here.

T = Type of EBCDIC Data as follows:

1- Integer XXXX

F- Real number XXXX.XXX

E- Real number of exponent (E) notation

This notation uses the form:

SX.XXESYY

where:

S = Optional sign character (+ or -), default = (+)
X = Characteristic 1 to 7 numeric digits

= Decimal point anyplace within characteristic
E = Designation of E notation
YV = Mantissa, range -85 to +75. The base is 10.

Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions.

Following are the return codes returned at taskname (See
PROGRAM/TASK statements).

Return Code!!

Code

-1
3

Description

Successful completion
Conversion error

.Q~ration: The Convert Binary to EBCDIC instruction accepts
both integer and floating-point variables and converts them
into an EBCDIC character string. The format of the EBCDIC

80 SC34-0314

01 '
, ,

o

o

o

o

CONVTB

character str i ng is def i ned by the use of the operands PREC and
FORMAT. The following examples should help define the capabi 1-
ities of this instruction.

Integer Example

CONVTB TEXTA,VALUE,PREC=S,FORMAT=(8,O,I)

VALUE
TEXTA

DATA
TEXT

F'12345'
LENGTH=8

The value 12345 in the variable VALUE will be converted to
EBCDIC at TEXTA in the fo llow i ng format:

bbb12345

If conversion of double-precision integers is required, then
PREC=D is coded.

Floating-Point Example

VALUE
VALUE1
TEXTB
TEXT1

CONVTB
CONVTB

DATA
DATA
TEXT
TEXT

TEXTB,VALUE,PREC=F,FORMAT=(15,4,F)
TEXT1,VALUE1,PREC=L,FORMAT=(20,14,E)

E'62421.16'
L'4926139.2916'
LENGTH=15
LENGTH=20

The following EBCDIC character strings would result (b repres­
ents blanks):

TEXTB=bbbbb62421.1600

TEXTl=b.49261392916000Eb07

Remember that the conversion routines assume that the type of
variable to be converted is as specified by the PREC operand.
If the internal format of the variable is something other than
specified by the PREe operand, incorrect results will occur.

Chapter 3. Instruction and Statement Descriptions 81

CONVTD

CONVTD

Data For'matt i ng

The CONVTD instruct i on converts an EBCDIC character str i ng to a
binary arithmetic value. Both integer and floating-point var­
iables are allowed.

Syntax

label

Required:
Defaults:

CONVTD

opndl,opnd2
PREC=S,FORMAT=(6,Q,I)

Indexable: opndl,opnd2

Operands

opndl

opnd2

Description

The name of a variable where the result of
conversion is to be stored. You must insure
enough space is reserved to accommodate
results.

the
that

the

Single-precision integer
Double-precision integer
Single-precision floating-point
Extended-precision floating-point

1 Word
2 ~Jords

2 Words
4 Words

The address of the first character of the EBCDIC
character string.

Allowable ranges for data values

Single-precision integer
Double-precision integer

Single-precision floating-point
Extended-precision floating-point

are:

-32768 to 32767
-2147483648 to
2147483647
7 decimal digits*
16 decimal digits*

*Exponent range is
from 10 to the

o

-85th through 10 0
to the 75th. ' "

82 SC34-0314

o

o

CONVTD

PREC= The form of opndl.

S Indicates single-precision integer
D Indicates double-precision integer
F Indicates single-precision floating-point
L Indicates extended-precision floating-point

FORMAT::;(W,D,T) The format of the value converted.

W = Field width in bytes of EDCDIC field

D = Number of implied decimal positions if no
decimal point is in input (valid for floating
point only). For integer values code a O.

T = Type of EBCDIC data as follows:

I Integer xxxxx

F Real number xxx.xx

E Real number in E notation (see CONVTB for
a description of E notation)

Parameter naming operands. See "Use of The
Parameter Nam i ng Operands (Px=)" on page 8 for fur­
ther descriptions.

Foll()wing are the return codes returned at taskname (See
PROGRAM/TASK statements).

Return Code.,

Code

-1
1
2
3

Description

Successful completion
No data in field
Field omitted
Conversion error

Operation: The Convert EBCDIC to Binary instruction accepts a
variety of input formats. The following examples will help to
def i ne the var i ous types accepted.

Chapter 3. Instruction and Statement Descriptions 83

CONVTD

Integer Example

VALUE
TEXT

CONVTD

DATA
TEXT

VALUE,TEXT,PREC=S,FORMAT=(8,O,I)

F ' 0 '
'12345',LENGTH=8

The value in EBCDIC, 12345, will be converted to a single pre­
cision binary value and stored at VALUE as X'3039'. Double­
precision integers can also be converted by using the PREC=D
parameter and us i ng a 2 word var i ab Ie at VALUE.

Floating-Point Example

VALUE
VALUEI
TEXTl
TEXT2

CONVTD
CONVTD

DATA
DATA
TEXT
TEXT

VALUE,TEXT1,PREC=F,FORMAT=(lO,2,F)
VALUE1,TEXT2,PREC=L,FORMAT=(15,O,E)

2F'O'
4F'O'
'100.5',LENGTH=10
'O.1005E3',LENGTH=15

Both values shown in the TEXT statements result in the same
binary data values being stored in the two DATA statements.
The only di fference is that at VALUEl an extended-precision
value is stored.

The EBCDIC field should contain only those characters that are
valid for the operation being performed. For example:

• Integers

Leading blanks
Sign character + or -
Digits 0 through 9
Trailing blanks

• Floating-point

Lead i ng blanks
Sign character + or -
Di g i ts 0 through 9
Decimal-point
The character E, if E notat ion, fo llowed by a sign
character, + or -, or the digits 0 through 9.

If any other character is found during the conversion, the
following action will be taken:

84 SC34-0314

()

/'.,\

i,,-)

o

o

c

o

•

CONVTD

For delimiters, or /

End of field wi 11 be generated. If no data was found, a
"Field Omitted" (2) will be returned.

• For all blanks

"No Data in Field" (1) will be returned.

• For any other character (for example, an alphabetic char­
acter).

'~E n d 0 f Fie I d " (1) w ill b ere t urn e d •

Chapter 3. Instruction and Statement Descriptions 85

COpy

COpy

Program Module Sectioning

The COPY instruction copies a predefined source program module
into your program. The module to be cop i ed must ex i st ina disk
or dis~(ette data set. The specified source statements are
copied immediately following the COpy statement. The program
module to be cop i ed must not conta ina COpy statement.

Syntax

blank COpy symbol

Required: symbol
Defaults: none
Indexable: none

D..ll.e rands Description

symbol The symbolic name of the source module on disk or
diskette that is to be cop i ed into your program.

• The assembler program $EDXASM prov i des a restr i cted i mple­
mentation of the COPY statement. The names of the volumes
which may contain modules which may be referenced must be
in the control list $EDXl. See the description of $EDXASM
in the Utilities, Operator Commands, Program Preparation,

.M e S S ilSe san d Cod e s for d eta i 1 son how you can add yo II row n
'*COPYCOD' def i nit ions to those supp lied as standard de f i­
nitions in $EDXL.

• The Series/l macro assembler provides a full implementa­
tion of the COpy statement as part of the Event Dri yen
Executive Macro library (5719-LM5 or 5719-LM6). See the
IBM Ser i es/l Event Dr i ven Execut i ve Macro Assembler
(5719-ASA) for deta i Is on us i ng th is COPY statement.

• The System/370 macro assembler also provides a full imple­
mentation of the COpy statement as part of the IBM
System/370 Program Preparat ion Fac iii ty FOP (5798-NNQ).
See the IBM SYstem/370 Program Preparation Facility,
S830-1072 for detai Is on using this COpy statement.

86 SC34-0314

o

o

o

CSECT

CSECT

Program Module Sectioning

The CSECT statement names a program module to identify its
locat i on with i n the program output from $ LINK.

The C 5 E C Tin 5 tr u c t i on i s opt ion a 1 and i fit i s om i t ted t he pro­
gr~m module has a blank name.

/

Program modules, assembled by $EDXASM, can have multiple CSECT
statements. However, all CSECTS, after the first one, will
generate ENTRY instead of CSECT def i nit ions.

Program modules assembled by means of the Series/l Macro Assem­
bler or host assembler are also permitted to have multiple
CSECT instructions in a single assembly. These assemblers will
generate a separate program module for each uniquely named
CSECT.

Syntax

label CSECT

Required: label
Defaults: none
Indexable: none

Operands Description

none

label The label must be the name of the program
module for the first CSECT. For subsequent
CSECTs the label must be an entry name.

Chapter 3. Instruction and Statement Descriptions 87

DATA/DC

DATA/DC

Data Definition

The DATA/DC statement defines one or more constants. Constants
can have various forms of data representation such as binary,
decimal, hexadecimal, character, floating-point, or address.
Character strings or multiple constants may be defined in one
DATA statement. The maximum number of bytes allowed in the
value operand depends upon the program preparation facility
used and can be determined by referencing the appropri~te doc­
umentation. When using $EDXASM, up to 10 separate data spec­
ifications may be made on a DATA statement by separating the
individual specifications with commas. When using $SIASM, one
data specification is allowed with each DATA statement.

label DATA dup type value

label DC dup type value

Required: type, value
Defaults: dup=l
Indexable: none

Operands

dup

type

value

Description

Dupl i cat i on factor for the type constant def i ned.

Constant type or form of data representat i on.

The va I u e to be ass i g ned tot he c on s t an t • A Iso
determines field length of some types of constants.
The value is enclosed in quotes for all constant
types except A, in which the value is enclosed in
parentheses.

88 SC34-0314

"".

/'

"" i I

\,~"

o

o

()

o

DATA/DC

Valid codes for type are:

Code

C
X
B

F
H
D
E
L
A

Type Constant

EBCDIC
Hexadecimal
Binary

Fixed-point
Fixed-point
Fixed-point
Floating-point
Floating-point
Address

Storage Format

8-bit code for each character
4-bit code for each digit
1-bit for each digit (not allowed
with $EDXASM)
Signed, fixed-point binary; 2 bytes
Signed, fixed-point binary; 1 byte
Signed, fixed-point binary; 4 bytes
Floating-point binary; 4 bytes
Floating-point binary; 8 bytes
Value of address or expression;
2 bytes

Allowable ranges for data values are:

Single-precision integer
Double-precision integer

Single-precision floating-point
Extended-precision floating-point

-32768 to 32767
-2147483648 to

2147483647
7 decimal digits *
16 decimal digits *
*Exponent range is
from 10 to the -85th
to 10 to the 75th

Floating point constants can be expressed as real numbers with
decimal points, for example 10234, or can be expressed in expo­
nent (E) notation. E notation uses the form:

SX.XXESVV

where:

S = Optional sign character (+ or -); default = (+)

X = Characteristic 1 to 7 numeric digits
= Decimal point anyplace within characteristic

E = Designation of E notation
VV = Mantissa, range -85 to +75. The base is 10.
(for example, 3.1415E-2 = .031415)

Character constant~_(C) can include an explicit length spec­
if i cat i on for the fie Id by spec i fyi ng the type as CLn where n is
the length of the field. If the value operand is smaller than
the field length, the balance of the field is filled with
blanks.

Chapter 3. Instruction and statement ~escriptions 89

DATA/DC

_Example

BINCON DATA 8'001100001111' He~adecimal 30F in
binary

A DATA F'I' Decimal constant 1

BUF DC 128F'0' 128 words of 0

CHAR DATA C'XYZ' EBCDIC String 'XYZ'

BLANK DC . 80C' , 80 EBCDIC blank.s

C8 DC Cl8'$' $ followed by 7 blanks

HEXV DATA X'OOF1' Decimal 241 in
hexadecimal

ADDR DATA A(BUF)

DBl DATA 0'100000'

Fl DATA E'I.234'

F2 DATA 4E'0.123'

l2 DATA 4l'12345678.9'

l3 DATA l'.123456E-40'

MANY DATA F'I',D'2'

90 SC34-0314

Address of 'BUF'

2-word decimal constant
100,000

Flo~~ing-point value 1.234

Four Floating-point values of
0.123 (4 bytes each value>

Four Extended-precision
Floating-point values of
12345678.9 (8 bytes each
value

Extended-precision float­
ing point in exponent form

A word of 1 and a double
word of 2

o

o

o

DeB

EXIO Control

The DCB statement creates a standard device control block COCB)
for use with EXIO. For additional information on DCBs refer to
the descr i pt ion manua I for the processor in lise.

Syntax

label

Required:
Defaults:

DCB PCI=,IOTVPE=,XD=,SE=,DEVMOD=,DVPARMl=,
DVPARM2=,DVPARM3=,DVPARM4=,CHAINAD=,
CQUNT=,DATADDR=

Indexable:

label
PCI=NQ,IOTVPE=QUTPUT,XD=NQ,SE=NO
none

Operands

PCl=

IOTVPE=

XD=

SE=

DEVMOD=

Description

An interrupt indicator. Code PCI=VES to cause the
device to present an interrupt at the completion of
the DCB fetch pr i or to data transfer.

An indicator showing the type of operation. Code
IOTVPE=INPUT for operations involving transfer of
data from device to processor or for bidirectional
transfers under one DCB operat i on.

Code IOTVPE=OUTPUT for operations involving trans­
fer of data from processor to device or for control
operations involving no data transfer.

A DCB type indicator. Code XD=VES to indicate the
DCB is a non-standard type.

An exception reporting indicator. Code SE=VES to
indicate the device is allowed to suppress the
report i ng of certa i n except i on cond it ions.

The byte that describes functions unique to a
particular device. Code two hexadecimal digits.

Chapter 3. Instruction and Statement Descriptions 91

DVPARMl=

DVPARM2=

DVPARM3=

DVPARM4=

CHAINAD=

COUNT=

DATADDR=

The value of device-dependent parameter word
Code as four hexadecimal digits or the label of
EQU preceded by a +.

The v~lue of device-dependent parameter word
Code as four hexadecimal digits or the label of
EQU preceded by a +.

The value of device-dependent parameter word
Code as four hexadecimal digits or the label of
EQU preceded by a +.

1 •
an

2 •
an

3.
an

The value of device-dependent parameter word 4.
Code as four hexadecimal digits or, if SE=VES, the
label of the first byte to which residual status
data is to be transferred. The length of the resi­
dual status area is dev ice dependent.

The label of the next DCB in the chain if chained
DCBs are des ired.

The number of data bytes to be transferred. Code a
decimal number between 0 and 32767 inclusive or the
label of an EQU preceded by a +.

The label of the fi rst byte of data.

For information on the contents of DVPARMI-DVPARM4 and DEVMOD
refer to the description manual of the device to be used.

The example below shows two chained DCBs. WRIDCB is for some
type of output operation in which the 120 byte field MSGI will
be transferred to the device. Any status information resulting
from the operation will be placed in RESTAT by the device.
WR2DCB is for some type of device control operation because it
too defaulted to IOTVPE=OUTPUT but no data transfer
(DATADDR=,COUNT=) was specified. RESTAT is used for status of
this operation as well.

92 SC34-0314

0

,,r--,,\

"~_c)

o

o Example:

WRIDCB DCB SE=YES,DVPARMl=0300,DVPARM2=3048, C
DVPARM3=1100,DVPARM4=RESTAT, C
CHAINAD=WR2DCB,COUNT=120,DATADDR=MSGl

WR2DCB DCB SE=VES,DVPARMl=20AO,DEVMODE=6F, C
DVPARM4=RESTAT

MSGI DATA 120X'OO'
RESTAT DATA 2F'O'

o
Chapter 3. Instruction and statement Descriptions 93

DEFINEQ

DEFINEQ

Queue Processing

The DEFINEQ statement defines the queue deseriptor (QD) and the
set of queue elements (QEs) used by FIRSTQ, LASTQ, and NEXTQ.
DEFINEQ CCln optionally define a pool of data storage areas or
data buffers. For additional information refer to the dis­
cuss i on of queue process i ng in Chapter 2 of th i s manual.

Syntax

label DEFINEQ COUNT=,SIZE=

Required: label, COUNT=
Defaults: none
Indexable: none

Operands

COUNT=

SIZE=

peseription

The number of 3-word queue elements to be
generated. An additional 3-word QO will be gener­
ated and the first word of the QD will be assigned
the name spec if 1 ed in the labe 1 on the DEF lNEQ
statement.

The size, in bytes, of each buffer (data area) to be
included in the buffer pool in the initial queue.
As many sllch buffers wi 11 be generated as speci fied
in the COUNT operand. Each such buffer is initial­
i zed to binary zeros. Each QE in the queue will
contain the address of an associated buffer in the
buffer pool.

If the SIZE operand is not specified, all QEs will
be generated to be in the free chain and the queue
will be defined as empty. If SIZE is specified, all
QEs will be inclUded in the active chain and the
queue will be defined as full •

.E.!J!..m..el.!t= See the examp Ie fa llow i ng the NEXTQ instruct i on ..

94 SC34-0314

()

/f- "\

i~, __)

o

o

o

o

DEQ

Task Control

The DEQ instruction releases exclusive control of a system or
user resource other than a terminal. You must always dequeue
any resource previously enqueued (ENQ). Fai lure to dequeue the
resource prevents its further use. For additional information
refer to the descr i pt i on of ENQ.

DEQ normally assumes that the QCB for the resource is defined
in the same partition as the current program. However, it is
possible to dequeue from a resource in another partition. For
additional information. refer to the topic on
"Cross-Partition Services" in the System Guide.

When using the $SlASM macro a5s~mbler or the host assembler,
the DEQ instruction causes the QCB defining the named resource
to be generated at the end of the program. When us i ng $EDXASM,
no QCB wi 11 be generated; the QCB must be expl i city created
wi th the QCB instruct i on.

Syntax

label DEQ

Required: resource
Defaults: code=-l
Indexable: resource

Operands Description

resource

code

The symbolic name of the resource being dequeued.
Th is must be the same name used for the ENQ
instruction and is usually the label of a QCB state­
ment.

A code word to be inserted into the queue control
block (QCB) which defines the resource. The code
word may be examined by referencing the symbolic
name of the resource. Th is code may be used as a
flag to indicate a status or a condition. A code of
o is interpreted by the ENQ instruct j on to mean that
the resource is unavailable for use; all non-zero

Chapter 3. Instruction and statement Descriptions 95

Px=

codes indicate the resource is available for other
uses.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use
on page

of
8

The
for

96 SC34-0314

o

o

o

0

CEQT

DEQT

Terminal I/O

The DEQT statement releases the terminal which was previously
a c qui red w i--t han E N Q Tin s t r u c t ion • A t ask may iss u e s lJ c c e s s i v e
ENQTs directed to the same terminal before issuing a DEQT.
Until DEQT is executed, however, ENQfs directed to other termi­
nals are ignored. If a terminal configuration was established
by ENQT, then DEQT restores the configuration to that defined
by the TERMINAL system configuration statement. DEQT also
forces part i all y fu 11 buffers to be wr i tten to the term ina I and
completes all pending I/O.

Syntax

label DEQT

Requ ired: none
Defaults: none
Indexable: none

Operands Description

none none

Example of ENQT and DEQT

ENQT $SVSPRTR

DEQT
ENQT TERMl,BUSV=ALTERN

DEQT

ALTERN ENQT $SVSLOG

TERMl IOCB TTVl,PAGSIZE=24

Chapter 3. Instruction and Statement Descriptions 97

DETACH

DETACH

Task Control

The DETACH instruction removeS a task from operational status.
A task may only detach itself. If a task is reattached, exe­
cution proceeds with the next instruction after the DETACH in
the reattached task.

Syntax

label DETACH code,Pl=

Requ ired: none
Defaults: code = -1
Indexable: none

Operands

code

Deser i pt i on

The posting code to be inserted in the
word of the task being detached. It is
word of the task control block.

task
the

P1= Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use
on page

of
8

98 SC34-0314

code
first

The
for

'~ .. ~
~.J

(1' "",\

~ .. :~)

o

o

C·· '\
,;'

o

DIVIDE

DIVIDE

Data Manipulation

the DIVIDE instruction provides for signed division of opndl by
dpnd2. The remainder is stored in the task code word and will
be lost after the next DIVIDE, I/O operation, or other op~r­
ation that updates the task code word. Only if the divisor
(opnd2) is double--precision wi 11 the remainder be double­
precision. Divide overflow is indicated by the special remain­
der X'BOOO'. X'BOOO' is also the result of a divide by zero
operation.

Note: An overflow condition is not indicated by EDX.

Syntax

label DIVIDE opndl,opnd2,count,RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=l,RESULT=opndl,PREC=S
Indexable: opndl,opnd2,RESULT

.o..Qerands

opndl

opnd2

count

RESULT=

Description

The name of the variable to which the operation
applies; it cannot be a constant. This is the divi­
dend.

I

The value by which the first operand is modified,
either the name of a variable or an explicit Con­
stant. This is the divisor.

The number of consecutive variables upon which the
operation is to be performed. The maximum valu~ is
32767.

The name of a variable or vector in which the result
is to be placed. In this case the variable speci·
fied by the first operand is not modified. ihis
operand is opt i ona I.

Chapter 3. Instruction and Statement Descriptions 99

DIVIDE

PREC=XVZ

Px=

The precision value X applies to opndl, V to opnd2,
and Z to the result. The value may be either 5
(single-precision) or D (double-precision). The
Three operand spec if i cat i on may be abbrev i ated
according to the following rules:

• If no precision is specified, all operands are
single-precision.

• If a single letter (S or 0) is specified, it
applies to the first operand and result, with
the second operand defaulted to single­
precision.

• I f two letters are spec i f i ed, the first app lies
to the first operand and result, and the second
to the second operand.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use
on page

of
8

The
for

Mixed-precision Operations: Allowable precision combinations
for divide operations are listed in the following table:

opndl I opnd2 I Result I Abbreviation I Remarks

S S S S default
S S 0 SSD
D S D D
D 0 0 DO
D S 5 OSS

Example

DIVIDE VAL,(TAB,tl) second operand indexed

100 SC34-0314

f 'c)\

I,.)

o

o

o

DO

Program Sequencing

The DO instruction initializes a loop. A loop is a set of one
or more instructions that are executed repetitively until the
condition specified by the DO is satisfied. The DO loop must
have an associated ENDDO instruction which defines the end of
the loop. There are three forms of the DO instruct ion. DO UNTI L
and DO WHILE provide a means of looping until or while a rela­
tiona 1 statement is true. The th i rd form 0 f the DO instruct i on
causes a loop to be executed a spec if i c numbe r 0 f times. In all
of these forms a branch out of the loop is allowed.

~: Because cod i ng pract i ce is to code DO and ENDDO together,
the description of ENDDO is duplicated immediately following
the DO description for convenience.

Examp les of DO and ENDDO are shown at the end of th is sect ion.

Syntax

label DO count,TIMES,INDEX=,Pl=

label DO UNTIl,statement

label DO WHILE,statement

Required: count or one relational statement
with UNTIL or WHILE

Defaults: none
Indexable: count or datal and data2 in each statement

Operands

count

Description

The number of times the loop is to be executed. It
is an explicit constant, or the label of a count.
The maximum value is 32767.

Note: If count=O, then the loop will be executed
one time.

Chapter 3. Instruction and Statement Descriptions 101

TIMES An optional operand which only serves to comment
the instruction for program readability.

INDEX= The label of a variable, defined by the user, whith
will be reset to 0 before starting the DO loop and
will be incremented by 1 immediately prior to e~ch
execut i on of 'the instruct i on followi ng the DO
j nstruct i on. Therefore, the first time the loop is
executed the index wi 11 have a value of 1.

UNTIL This P'3rameter establishes a trailing decision
loop, IIlhich is executed until the exit condition is
true. Even if the condition is true initially, the
loop will be executed one time.

WHILE This parameter establishes a leading-decision
loop, which is executed as long as the exit condi­
tion is true. Note that if the condition is false
initially, the loop will not be executed.

statement A relational statemen't or statement string

PI=

indicating the condition for the loop exit. This
form is valid only following UNTIL or WHILE.

Note: Additional details such as coding the
operands datal and data2 in a relational statement
are described following "Program Sequencing
Instructions" on page 34. For examples of relation­
al statements see "Examples of Relational state­
ments" following the descriptions of "IF" on page
177.

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

102 SC34-0314

o

o

()

o

ENDDO

Program Sequencing

The ENDDO instruction defines the end of a DO loop. It must be
preceded by a DO instruction. Up to twenty nested loops are
allowed, and each must be defined by a DO and an ENDDO.

Syntax

label ENDDO

Required: none
Defaults: none
Indexable: none

Opera~ Description

none none

Chapter 3. Instruction and Statement Descriptions 103

Example of DO and ENDDO

1. Simple DO

DO 100

(execute 100 times)
ENDDO

2. Simple DO with TIMES coded

DO N,TIMES

(execute 'N' times)
ENDDO

3. DO UNTIL

DO UNTIL,(A,EQ,lOOO,FLOAT)

(execute until A EQ 1000)
ENDDO

4. DO WH I LE

DO WHILE,(B,NE,C)

(execute while B NE C)
ENDDO

s. Nested DO loops

DO

DO

ENDDO
ENDOO

UNTIL,(A,EQ,B,DFLOAT),OR,(11,EQ,1000)

10,TIMES

6. Nested DO loops and IF statements

DO WHILE,(A,GT,B,DWORD)
IF (CHAR,EQ,C'A',BVTE)

DO 40,TIMES

ENDDO
ELSE

ENDIF
ENDDO

104 SC34-0314

{~
\~ ... ~I

o

o

o

oseB

DSCB

Disk/Tape I/O

The DSCB statement generates a data set control block (DSCB)~
A DSCB provides the information required to access a data set
within a particular volume. One DSCB is generated in the pro­
gram header for each data set specified in the DS parameter of
the PROGRAM statement. ~he name of each DSCB so generated is
DS!, DS2, .•• , DS9, correspond i ng to the order of spec if i cat ian
of the data set. The name DSx is assigned to the first word of
the DSCB, the event control block. Fields within these DSCB
may be referenced symbolically with the expression:

DSx+name

where name is a label defined in the DSCB equate table,
DSCBEQU.

When over lay programs have been spec if i ed in the PROGRAM state­
ment of an application program, a DSCB is created in the pro­
gram header for each such overlay. Each of these can be
referred to by the name PGMx where x is a number from 1 to 9 cor­
responding to the order of specification of the program name.
Fields within these DSCBs may be referenced as PGMx+name wher~
name i,s a label def i ned in the OSCB equate tab Ie, DSCBEQU.

OSCBs are automatically generated for data sets referenced by
the OS and PGMS operands of PROGRAM.

It is also possible to generate and use additional DSCBs within
your program by coding a DSCB statement. These DSCBs are named
wi th the OSt operand.

Syntax

label

Required:
Defaults:
Indexable:

DSCB DSi=,DSNAME=,VOlSER=,DSlEN=

DSt=,DSNAME=
VOlSER=null, DSLEN=O
none

Chapter 3. Instruction and Statement Descriptions 105

DSCB

Operands

lOS. =

DSNAME=

VOLSER=

DSLEN=

Description

The alphamer i c name wh i ch is used to refer to a OSCB
in disk or tape I/O instruct ions. Th is name wi 11 be
assigned to the first word (ECB) of the generated
OSCB. Spec i fy 1 to 8 characters.

The data set name field within the OSCB. Specify 1
to 8 characters.

The volume label to be assigned to the volume label
field of the OSCB. Speci fy 1 to 6 characters. A null
entry (blanks) will be generated if VOLSER is not
specified. Note, however, that if the OSCB is for a
tape data set, VOLSER must be spec if i ed pr i or to
OSOPEN. Also for tape data sets, if there is no vol­
ume label, then the 1 - 6 digit tape drive 10 must be
supplied. The tape drive 10 is assigned with the
TAPE configuration statement during system gener­
ation.

The size of the referenced direct access space. If
no number is specified, this value will be set to O.
Th j s parameter is not used if the OSOPEN rout i ne
will be used to open the OSCB.

When a data set is defined using the OSCB statement it must be
opened before attempting disk or tape I/O operations such as
READ or WRITE. The routines DSOPEN and $OISKUT3 are provided
for this purpose. OSOPEN must be copied into your program with
the COPY instruction and then invoked with the CALL
instruction. The $OISKUT3 is invoked with the LOAD
instruction. For more information on OSOPEN refer to the
System Guide "Advanced Topics" section.

Example

OSCB

106 SC34-0314

DS#=INDATA,OSNAME=MASTER,
VOLSER=EDXQ03

o

o

o

ECB

Task Control

The ECB statement generates a 3-word event control block CECB).

Norma 11 y th i s statement will not be needed for wr i t i ng app I i ca­
tion programs if the program is to be assembled by the host or
Series/l macro assemblers. In this case Event Control Blocks
are automatically generated for you as a consequence of your
nami ng an event ina POST instruct i on. However, i'\: may be used
for special purposes such as controlling their location within
a program. You must explicitly code necessary ECBs in programs
to be assembled by $EDXASM, except for those created by speci­
fyi ng EVENT ina PROGRAM or TASK statement.

A maximum of 25 ECB statements may be coded in a program. If
more than 25 ECBs are required, they must be coded using the
DATA statement. (See the example following the syntax

Operands

code

Descr i pt'i on

Initial value of the code field (word 1). If this
word is non-zero when a WAIT is issued, no wait
occurs unless the WAIT has RESET coded.

Chapter 3. Instruction and Statement Descriptions 107

Example

ECBl ECB

is equivalent to coding,

ECBl DATA
DATA

F'-l'
2F'O'

Note that ECB is not an executable statement and should
not be placed between executable instructions.

108 SC34-03l4

l)," \-l.

/""",

(~)

o

o

o

EJECT

EJECT

Listing Control

The, EJECT statement causes the ne)(t line of the 1 i st i ng to
appear at the top 0 f a new page. Th i s statement prov i des a con­
venient way to separate sections of a program. It does not
change the page tit Ie if one is in force.

Syntax

blank EJECT

Operands Description

none none

Chapter 3. Instruction and Statement Descriptions 109

ELSE

Program Sequencing

The ELSE statement defines the start of the false path codE!
associated with the preceding IF instruction. The end of th,
false path code is the next ENDIF instruction.

Note: Since IF, ELSE, and ENDIF are usually coded
this description is repeated for your convenience
the IF instruction.

Syntax

label ELSE

Requ ired: none
Defaults: none
lndexable: none

Description

nQne none

together,
following

Example: The examples for IF, ELSE, and ENDIF are shown follow­
ing the IF instruction.

110 SC34-031.4

()

o

o

o

END

Task Control

The END statement must be the last statement coded in your pro­
gram.

Syntax

blank END

Required: none
Defaults: none
Indexable: none

Operands Description

none none

Chapter 3. Instruction and Statement Descriptions 111

;;;;;

ENDATTN

ENDATTN

Task Control

The ENDATTN statement ends an attention interrupt handling
routine, as described under ATTNlIST, and is the last statement
of that rout i ne.

An attention interrupt handler should be a short routine used
to provide an operator with terminal keyboard initiation or
control of application routines.

Syntax

label ENDATTN

Required: none
Defaults: none
Indexable: none

Operands Description

none none

Example: See ATTNlIST instruction and also "Example 7: A Two
Task Program Wi th ATTNlIST" on page 395.

112 SC34-0314

o

,,r~.,,,

:,~)

o

o

o

ENDDO

ENDDO

Program Sequencing

The ENDDO instruction defines the end of a DO loop. It must be
preceded by a DO instruction. Twenty nested loops are allowed,
and each must be defined by a DO and an ENDDO. Examples of DO
loops are shown following the description of "DO" on page 101.

Note: Because the practice is to code DO and ENDDO together,
this instruction is repeated following the DO instruction.

Syntax

label ENDDO

Required: none
Defaults: none
Indexable: none

Operands Description

none none

Example: See the examples following the DO instruction.

Chapter .3. Instruction and Statement Descriptions 113

ENDIF

ENDIF

Program Sequencing

The ENDIF instruction indicates the end of an IF-ELSE struc­
ture. If ELSE is coded, ENDIF indicates the end of the false
code associated with the preceding IF instruction. If ELSE was
not coded, ENDIF indicates the end of the true code associated
with the preceding IF instruction.

Note: Since IF, ELSE, and ENDIF are usually coded
this description is repeated for your convenience
the IF instruction.

Syntax

label ENDIF

Requ ired: none
Defaults: none
Indexable: none

Operands Description

none none

together,
following

Example: Examples of IF, ELSE, and ENDIF are shown following
the IF instruction.

114 SC34-0314

()

o

o

o

o

ENDPROG

ENDPROG

Task Control

The ENDPROG statement must be the next to the last statement in
a user program. The l~st statement must be END.

Syntax

blank ENDPROG

Required:
Defaults:
Indexable:

none
none
none

Operands Description

none none

Chapter 3. Instruction and Statement Descriptions 115

ENDTASK

ENDTASK

Task Control

The ENDTASK statement def i nes the end of a block of
instructions associated with a task. Each task, except the
initial task, requires one ENDTASK as its final statement.
When this instruction is executed, the task will be detached.
If another ATTACH is issued, execution will resume at the ini­
tial instruction of the task.

ENDTASK actually generates two instructions: DETACH and GOTO
start where start is the label of the first instruction to be
executed when the task is first attached.

Syntax

label ENDTASK

Required: none
Defaults: code=-1
Indexable: none

Operands

code

Pl=

Descriptjon

The post i ng code to be inserted in the task code
word (f i rst word of the TeB) of the task be i ng
detached.

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

116 SC34-0314

o

o

o

C'·',' \
,I

o

ENQ

Task Control

The ENQ instruction acquires exclusive control of a system or
user resource other than a terminal.

A resource is a logical or physical entity (for example an I/O
dev i ce, subrout i ne, or data set) wh i ch must be used ina ser i a I
fashion. Enqueuing is the process of acquiring exclusive con­
tro 1 in order to ensure ser i a 1 (one at a time) use. In genera 1,
there are two types of resources, system and user. System
resources are those which may be shared serially by all user
programs, and are defined by symbolic names which are known
broadly across the system. User resources are shared serially
by different parts of one user program and are identified by
symbolic names known only within that user program.

Syntax

label ENQ resource,BUSY=busyaddr,Pl=

Required: resource
Defaults: none
Indexable: resource

Operands Description

resource

BUSY=

Pl=

The symbo Ii c name of the resource to be enqueued.

The address of the instruction to receive control
if the requested resource is not avai lable. If the
resource is busy and th is operand is not spec if i ed,
the requesting task will be placed in a wait state
until it is available.

Parameter naming operand. See "Use of The Parameter
Nam i ng Operands (Px=)" on page 8 for further
descriptions.

Each named resource is represented by a 5-word QCB. The
resource name is the label of the QCB. You must explicitly code·
any QCBs necessary in programs to be assembled with $EDXASM.
The Series/l and host macro assemblers automatically create

Chapter 3. Instruction and Statement Descriptions 117

the necessary QCB if a DEQ instruction naming the resource is
included in the program.

ENQ normally assumes that the resource (QCB) to be queued for
is; n the same part it i on as the current program. However, it is
possible to enqueue on a resource in another partition using
the cross-part i t ion capab iIi ty of ENQ. For more i nformat i on on
th; s subj ect refer to the System Gu i de top icon
"Cross-Partition Services."

118 SC34-0314

o

o

o

o

ENQT

ENQT

Terminal I/O

The ENQT instruction acquires exclusive access to a terminal
until a DEQT is executed. ENQT is also used to establish termi­
nal configuration parameters, such as the limits and mode of a
logical screen, which will be in effect during the period of
exclusive access.

Note: As part of the LOAD function, a DEQT of the terminal
currently in use by the loading program is performed. You
should allow for this circumstance in coding the program which
issues the LOAD instruction.

Syntax

label

Required:
Defaults:

ENQT name,BUSY=,P1=

none
name=terminal from which the issuing program

was loaded
Indexable: none

Operands Description

name

BUSY=

In general, this parameter is the label of an IOCB
s ta t e me n t de f i oi -ng the t e r min a Ito be a c c e sse d, and
this form would be used to establish temporary ter­
m ina I conf i gurat i on parameters. Howe ver, two
spec i a I names are recogn i zed: $SYSLOG and $SYSPRTR.
When one of these names is used, the terminal
acquired is the one whose TERMINAL statement has
that label. If this parameter is not specified, or
if no terminal with the indicated name exists, then
access defaults to the terminal from which the pro­
gram was loaded.

The terminal to which the ENQTinstruction is
directed may have been acquired by another task or
may be in use by a supervisor utility function. The
requesting task is then placed in a queue, waiting
for the dey i ce, and its ope rat i on is suspended
until all other users preceding it have been serv-

Chapter 3. Instruction and Statement Descriptions 119

Pl=

iced. The BUSY operand allows the program to detect
such a busy condition before it is placed in the
queue. Code BUSY with the label of the instruction
where execution is to proceed to if the terminal is
in use.

Parameter nam; ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use
on page

of
8

The
for

120 SC34-0314

o

o

o

c

o

ENTRY

ENTRY

Program Module Sectioning

The ENTRY statement defines one or more labels as being entry
points within a program module. These entry point labels may
be referenced by instructions in other program modules that are
link-edited with the module which defines the entry label. The
program modules which reference the label must contain either a
EXTRN or WXTRN statement for the label.

Syntax

blank

Required:
Defaults:

ENTRY one or more relocatable symbols
separated by commas

one symbol
none

Indexable: none

Operands Descriotion

One or more symbols that appear as statement labels
within the program module.

Chapter 3. Instruction and Statement Descriptions 121

EOR

Data Manipulation

The EOR instruction (exclusive OR) makes a logical comparison
of two bit-strings and provides a result, bit by bit, of 1 or o.
If the inputs are the same, the result is O. If the inputs are
not alike, the result is 1. If the entire input fields are
identical, the entire resulting field will be o. If one or more
bits differ, the resulting field will contain a mixture of Os
and Is.

Syntax

label EOR opndl,opnd2,count,RESULT=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=(I,WORD),RESULT=,opndl
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

Description

The name of the variable to which the operation
app lies; it cannot be a constant.

The value to be compared to the first operand.
Either'the name of a variable or an explicit con­
stant may be spec if i ed.

The number of consecutive variables upon which the
operation is to be performed. The maximum value
allowed is 32767.

The count operand can include the precision of the
data. Because these operat ions are para lIe I (the
two operands and the result are implicitly of like
precision), only one precision specification is
requ ired. That spec if i cat i on may take one of the
following forms:

BYTE -- Byte precision
WORD -- Word precision
DWORD -- Doubleword precision

122 SC34-0314

()

c

o

C" 1'1

JI

o

RESUlT=

Px=

Example

C
D
R

DATA
DATA
DATA
EOR

The name of a variable or vector in which the result
is to be placed. In this case the variable speci­
fied by the first operand is not modified. This
operand is opt i anal.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use
on page

of
B

X'92'
X'BF'

binary 10010010
binary 10001111

X'OO'
C,D,(l,BYTE),RESUlT=R

The
for

After execut i on of the example EOR, fields C and Dare
unchanged. Field R looks like this:

R DATA X'lD' binary 00011101

Chapter 3. Instruction and Statement Descriptions 123

EQU

Data Definition

The EQU instruction assigns a value to a symbol. The symbol
(the label on the EQU statement) can be used as an operand in
other instruct ions wherever symbo Is are allowed.

Syntax

label EQU value

. Required: label,value
Defaults: none
Indexable: none

Operands

value

Description

A self-defining term or another symbol. If it is a
symbol it must have been previously defined. The
symbol may be coded as an asterisk (*). The aster­
isk refers to the next available storage location
in the program. It is used pr i mar i I y to generate
convenient labels for use within the program.

Note: When the symbol is used as an operand in an
instruction that allows either immediate data or
the label of a variable as the operand, the symbol
will be interpreted as a variable unless it is
preceded by a plus (+) sign.

The label may be used in other instruct ions as
desired. When using $EDXASM it must be preceded by
a + where literal or i mmed i ate data is des ired; oth­
erw i se, it is assumed to be the address of the data.

124 SC34-0314

o

o

0

c

o

Example

A EQU 2
MOVE
MOVE
MOVE

B EQU
MOVE

CALLA EQU
CALLSUB CALL

(A,ll),7
C,A
C,+A

A
C,+B

* PROGA

A has the value of 2
7 is moved to addr (2 + 11)
Contents of addr 2 moved to C
A '2' is moved to C

B also has the value of A (2)
A '2' is moved to C
CALLA is equivalent to CALLSUB

Chapter 3. Instruction and Statement Descriptions 125

ERASE

ERASE

Terminal I/O

The ERA S E ins t r u c t ion c a use s des i g nat e d po r t i o.n s 0 f the s c r e e n
to be cleared (blanked) and set to a no data, null characters
condition. It applies only to terminals accessed in STATIC
mode. STATIC mode is specified with the SCREEN parameter of
either a TERMINAL or IOCB statement.

Syntax

label ERASE count,MODE=,TVPE=,SKIP=,lINE=,SPACES=

Required: none
Defaults: count=maximum,MODE=FIELD,TVPE=DATA,

SKIP=O,LINE=current line,SPACES=O
Indexable: count,SKIP,LINE,SPACES

Operands

count

MODE=

Description

The number of bytes to be erased. Both
non-protected and protected characters contribute
to the count, even if only non-protected characters
are erased.

The termi nat i ng cond it i on for the erase operat ion.

MODE=FIElD: The operation terminates whenever the
mode-of-character display changes from non­
protected to protected, or when the end of the cur­
rent line is reached.

MODE=LINE: Erasure continues to the end of the
line.

MODE=SCREEN: Erasure cont i nues to the end of the
log i ca 1 screen.

Exhaustion of the count takes precedence over any
other terminating condition. An unspecified count
is therefore implicitly large enough to include the
entire logical screen.

126 SC34-0314

o

o

o

o

o

TVPE=

SKIP=

LINE=

SPACES=

Example

ERASE
ERASE
ERASE

ERASE

The type of data to be erased.

TVPE=DATA: Only unprotected characters are erased.

TVPE=ALL: Both protected and unprotected charac­
ters are erased.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), it is divided by the page size,
and the rema i nder is the number of 1 i nes sk i pped.

This operand is used to specify the line at which
the next I/O operat i on wi 11 take place. Code a num­
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwise to that line on the current
page. For stat i c screens, the I/O operat i on will
take place on the line specified. In any case, if
the value exceeds the last usable line number, it is
divided by the logical page size, and the remainder
is used as the line number.

The I/O position for a terminal or logical screen is
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to specify an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. Whenever LINE or SKIP is specified on an
instruct i on, the current indent is reset to zero
(carriage return). For static screens in partic­
ular, specification of both LINE and SPACES desig­
nates a character position in Two-coordinate form.
If SPACES is specified without LINE or SKIP, then
the indent value is increased by the value speci­
fied.

4,MODE=FIELD,TVPE=DATA
LINE=O,SPACES=O,MODE=SCREEN,TVPE=ALL
LINE=1,MODE=LINE,TVPE=ALL

Chapter 3. Instruction and Statement Descriptions 127

EXIO

EXIO Control

EXIO is used to request execut i on of
user-defined IDCB.

a command in a

SYnta)(

label EXIO idcbaddr,ERROR=,Pl=

Required: idcbaddr
Defaults: none
Indexable: idcbaddr

Operands Description

idcbaddr

ERROR=

Pl=

The address of an IDCB.

The label of the first instruction executed if an
error occurs dur i ng execut i on of th i s command.
This instruction will not be executed if an error is
detected at the occurrence of an interrupt caused
by the command. The cond i t i on code (ccode)
returned at interrupt time is posted in an ECB (see
the EXOPEN instruction).

A 'Device Busy' bit is set on by the EXIO
instruction if a START command is executed. It is
reset after the device interrupts if the operation
is complete. If a device fails to interrupt or com­
plete an operation, it will be necessary to reset
the 'Dev i ce Busy' bit so that another command may be
executed. The dev ice busy bit can be reset by i ssu­
ing an EXIO instruction to the appropriate IDCB
followed by an IDCB instruction with COMMAND=RESET.

Parameter nami ng operands. See
Parameter Naming Operands (p)(=)"
further descriptions.

"Use
on page

of
8

The
for

JiQ..t.e. : For a list 0 fin s t r u c t i on and i n t err up t con d i t i on codes,
see the EXOPEN instruct i on and Figure 7 on page 131 and
Figure 8 on page 132.

128 SC34-0314

o

,,,," '''\

i~_)

o

o

o

EXOPEN

EXOPEN

EXIO Control

EXOPEN is used to spec i fy the locat ions where i nformat ion is to
be returned after an EXIO device interrupt. EXOPEN does not
reset dey i ce status or dey ice busy.

Syntax

label EXOPEN devaddr,listaddr,ERROR=,Pl=,P2=

Required: devaddr,listaddr
Defaults: none
Indexable: listaddr

Operands

devaddr

listaddr

Description

The device address as two hexadecimal digits.

The label of the first word of a list of three
addresses.

The three addresses in the 1 i st are:

1. The address of a 3-word block where, after an
interrupt, the system wi 11 store:

2 •

a. Interrupt ID word

b • Level stat u s reg i s t era t t i me a fin t err up t

c. Address of ECB posted

Note: If this word is zero, the information
will not be returned.

The address of a list of ECB addresses. The
interrupt condition code (ccode) received from
the device will determine which ECB in the list
wi 11 be posted. A ccode=O wi 11 cause posting at
the first ECB in "the 1 i st, etc. The same ECB
may be specified for more than
code. The ECB spec if i ed for

one condition
ccode=2 (ex-

Chapter 3. Instruction and Statement Descriptions 129

EXOPEN

ERROR=

Px=

ception) will be posted in the event of a pro­
gram error. The post i ng code conta i ns:

a • Bit 0 on (1)

b. Bits 4-7 ccode

c. Bits 8-15 dev i ee address

Interrupt cond it i on codes are shown in Figure 8
on page 132

3. The address of a DeB containing the parameters
of a start eye Ie stea 1 status operat i on. Th i s
operation will ba started by the system, using
this DCB, if an exception interrupt is received
from this device. If the word is zero, the
operat ion will not be per formed.

The label of the first instruct i on to be executed if
an error is encountered during the execution of
this instruction.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions •

"Use of
on page 8

The
for

. Note: Refer to the descr i pt i on manua 1 for the processor in use
for more information on interrupt 10, level status register,
interrupt condition codes, and DCBs. Refer to the description
manual for the device in use for information on the causes of
various condition codes and the status information available
using start cycle steal status.

130 SC34-0314

10.' '-.~

o

o

o

o

EXOPEN

EXIO Return Codes

I/O Instruction Return Codes are located in word 0 of TCB. Word
1 of TCB contains supervisor instruction. address.

Code Description

-1
1
2
3
4
5
6
7
8
9

10
11
12
13
16

Command accepted
Device not attached
Busy
Busy after reset
Command reject
Intervention required
Interface data check
Controller busy
Channel command not allowed
No DDB found
Too many DCBs chained
No address specified for residual status
EXIODEV specified zero bytes for residual status
Broken DeB chain (program error)
Device already opened

Figure 7. EXIO Return Codes

Chapter 3. Instruction and statement Descriptions 131

EXOPEN

Code Description

o Controller end
1 Program Controlled Interrupt (PCI)
2 Exception
3 Device end
4 Attention
5 Attention and PCI
6 Attention and exception
7 Attention and device end
8 Not used
9 Not used

10 SE on and too many DCBs chained
11 SE on and no address specified for residual status
12 SE on and EXIODEV specified no bytes for residual

status
13 Broken DCB chain
14 ECB to be posted not reset
15 Error in Start Cycle Steal Status

(after exception)

Note: Interrupt Condition Codes (Bits 4-7 of word 0 of
ECB) (If bit 0 is on, bits 8-15=device ID)

Figure 8. EXIO Interrupt Codes

132 SC34-0314

o

o

o

" 0 ,

Example

L40P

LNLIST

LNID
LNECBS

LNSCSS
LNCSD
LNPCIR
LNEXCP
LNDEVD

EXOPEN

DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DCB
DATA
ECB
ECB
ECB

EXOPEN

E4,LNLIST

ACLNID)
ACLNECBS)
ACLNSCSS)

3F'O'
F ' 0 ' no ECB for code 0
ACLNPCIR)
ACLNEXCP)
ACLNDEVD)

IOTVPE=INPUT,CQUNT=20,DATADDR=LNCSD
lOF'O'
o
o
o

Chapter 3. Instruction and Statement Descriptions 133

EXTRN/WXTRN

EXTRN/WXTRN

Program Module Sectioning

Both of these statements identify symbols which are not defined
within the program module containing the EXTRN/WXTRN state­
ment. References to these symbols wi 11 be resolved when the
program module is link-edited with a program module containing
an ENTRY definition for the subject symbol. If no symbol is
found during link-edit, the symbol is said to be unresolved and
it is assigned the same address as the beginning of the pro­
gram.

WXTRN symbols are resolved only by symbols that are contained
in modules that are included by the INCLUDE statement in the
link-edit process or by symbols found in modules called by the
AUTOCALL function. However, WXTRN itself does not trigger
AUTOCALL processing.

Only symbols defined by EXTRN statements wi 11 be used as search
arguments during the AUTOCALL processing function of $LINK.
Any additional external symbols found in the module found by
AUTOCALL will be used to resolve both EXTRN and WXTRN symbols.
See the description of $LINK in Utilities, Operator Commands,
Program Preparat i on, Messages and Codes for further
information.

Syntax

blank
blank

Required:
Defaults:

EXTRN
WXTRN

One or more relocatable symbols
that are external to this
program, separated by commas

one symbol
none

Indexable: none

Operands Description

One or more external symbols which will be resolved
by link-editing to a program module which contains
the same symbol def i ned by an ENTRY statement.

134 SC34-0314

o

o

o

()

o

FADD

FADD

Data Manipulation

The float i ng-po i nt ADD prov ides signed add it i on of operand 2 to
operand 1. FLOAT=VES must be coded on the PROGRAM statement of
any program whose initial task uses floating-point
instructions and on the TASK statement of any task containing
floating-point instructions.

Syntax

label FADD opnd1,opnd2,RE5ULT=,PREC=,
Pl=,P2=,P3=

Required: opnd1,opnd2
Defaults: RESULT=opnd1,PREC=FFF
Indexable: opnd1,opnd2,RESULT

Ope·f'ands

opndl

opnd2

RESULT=

PREC=

Description

The name of the variable to which the operation
applies. For example, the variables in FADD A,B
correspond to the common algebraic notation A+B.
If the RESULT operand is not specified, then opnd1
is also the implicit result. This operand may not
be a constant.

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit integer constant (immediate
data) between -32768 and +32767 may be spec if i ed.

This operand is optional and can be coded with the
n a me 0 f a va ria b lei n w h i c h the res u I tis to be
placed. When this operand is coded the variable
specified by the first operand is not modified.

All possible combinations of single and extended
precision are permitted. An immediate value for
opnd2 will be converted to a sing le-prec i s i on va I ue
regardless of any other method of precision spec­
ification discussed in the following paragraphs.

Chapter 3. Instruction and Statement Descriptions 135

FADD

Px= Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions.

The PREC operand is spec if i ed as xyz where x, y, and z are char­
acters representing the precision of opndl, opnd2, and the
RESULT operands respectively. Either 2 or 3 characters must be
specified depending on whether or not the RESULT operand was
coded. Permissible characters are:

F = Single-precision (32 bits)
L = Extended-precision (64 bits)
* = Default (single-precision)

If the precision of an operand is not established by the PREC
operand, it will default to single-precision.

Return Codes: Floating-point operations produce return codes
which are placed in the task code word, referred to by taskname
(see PROGRAM/TASK). These codes must be tested immediately
after the floating-point instruction is executed or the code
may bed est roy ed by sub seq u e n tin s t r u c t i an s •

Code Description

-1 Successful completion
1 Floating point overflow
5 Floating point underflow

Examples:

FADD
FADD
FADD

Fl,F2,RESULT=F3
(O,#1),(2,t2),RESULT=ANSL,PREC=LLL
VALUE,32767,PREC=LF

136 SC34-0314

o

o

o

o

FDIVD

FDIVD

Data Manipulation

Floating-point divide provides signed division of operand 1 by
operand 2. FLOAT=VES must be coded on the PROGRAM statement of
any program whose initial task uses floating-point
instructions and on the TASK statement of any task containing
floating-point instructions.

Syntax

label FDIVD opndl,opnd2,RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: RESULT=opndl,PREC=FFF
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

RESULT=

PREC=

Description

The name of the variable to which
applies. If the RESULT operand is
then opndl is the implicit result.
must not be a constant.

the ope rat i on
not specified,

Th i s operand

Th is operand determ i nes the va I ue by wh i ch the
first operand is modified. Either the name of a
variable or an explicit integer constant (immediate
data) between -32768 and +32767 may be specified.

This operand is optional and can be coded with the
name of a variable in which the result is to be
placed. In this case, the variable specified by the
first operand is not modified.

All possible combinations of single and extended
precision are permitted. An immediate value for
opnd2 wi 11 be converted to a single precision value
regardless of any other method of precision spec­
if i cat i on discussed in the fo llow i ng paragraphs.

Chapter 3. Instruction and Statement Descriptions 137

FDIVD

Px=

The PREC operand is spec if i ed as xyz where x, y, and
z are characters represent i ng the prec i s i on of
opnd1, opnd2, and the RESULT operands respecti vely.
Either 2 or 3 characters must be specified depend­
ing on whether or not the RESULT operand was coded.
Permissible characters are:

F = Single-precision (32 bits)
L = Extended-precision (64 bits)
* = Default (single-prcision)

If the prec is i on of an operand is not establ i shed by
the PREC operand, it will default to single­
precision.

Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions.

Return Codes: F!o~ting-point operations produce return codes
wh i ch are stored in the task code word, referred to by taskname
(see PROGRAM/TASK). The codes must be tested i mmed i ate 1 y after
the floating-point instruction is executed or the code may be
destroyed by subsequent instruct ions.

Code

-1
1
3

5

Examples:

FDIVD
FDIVD

Description

Successful completion
Floating point overflow
Floating point divide check
(divide by '0')
Floating point underflow

DIV1,DIV2,RESULT=ANS
AB,300,PREC=LS

138 SC34-0314

()

o

o

C
~~'I~'I

,I

o

FIND

FIND

Program Sequencing

FIND is used to locate the first occurrence of a specific char­
acter (byte) in a character (byte) string.

Syntax

label

Required:
Defaults:

FIND character,string,length,where,
notfound,DIR=,Pl=,P2=,P3=,P4=,P5=

character, string, length, where, notfound
DIR=FORWARD

Indexable: string, length, and where

Operands Description

character Specify the character that is the object (target)
of the search. If searching for an EBCDIC alphamer­
ic character, specify it in the format C'x' where x
is the desired character. For a bit string which is
not an alphameric character, specify as X'xx'.

str i ng Spec i fy the address of the str i ng to be searched.

length Specify the length of the string to be searched.

where

not found

DIR=

Px=

Either the name of a variable or an explicit integer
constant (i mmed i ate data) may be spec if i ed.

Spec i fy the locat i on where the address of
target character is to be stored if it is found.
it is not found, th is word will be unchanged.

Spec i fy the address of the instruct i on to
executed if the target character is not found.

the
If

be

Specify DIR=FORWARD or omit to search from left to
right. Specify DIR=REVERSE to search from right to
left.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Chapter 3. Instruction and Statement Descriptions 139

FIND

Example

FIND

FIND

C'$',MSGl,20,POINTER,NOTFOUND

X'AO',(O,il),LSTR,POINTER,NOGOOD

140 SC34-0314

o

o

o

o

o

o

FINDNOT

FINDNOT

Program Sequencing

FINDNOT is used to find, in a character string, the first
occurrence of a character (byte) different from the one speci­
fied.

Syntax

label FINDNOT character,string,length,where,
notfound,DIR=,Pl=,P2=,P3=,P4=,P5=

Required: character, string, length, where, not found
Defaults: DIR=FORWARD
Indexable: string, length, and where

Operands Description

character Specify the character you are searching for. If
search i ng for an a lphamer i c character spec i fy it in
the format C'x' where x is the desired character.
For a bit string which is not an alphameric charac­
ter, specify as X'xx'.

str i ng Spec i fy the address of the str i ng to be searched.

length Spec i fy the length of the str i ng to be searched.
Either the name of a variable or an explicit integer
constant (i mmed i ate data) may be spec if i ed.

where Spec i fy the locat i on where the address of the first
non-target character is to be stored if it is found.
I f one is not found, th is word will be unchanged.

not found

OIR=

Spec 1 fy the address of the instruct i on to be
executed if a non-target character is not found.

Specify DIR=FORWARD or omit to search from left to
right. Specify DIR=REVERSE to search from right to
left.

Chapter 3. Instruction and Statement Descriptions 141

FINDNOT

Px=

Exampl,

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

FINDNOT C' ',INPUT,80,CPOINTER,ALLBLANK

"Use of
on page 8

FINDNOT X'40',CARD+79,BO,LASTCHAR,ALLBLANK,DIR=REVERSE

142 SC34-0314

The
for

o

o

o

o

FIRSTQ

FIRSTQ

Queue Processing

FIRSTQ acquires entries from a queue defined by DEFINEQ on a
first-in-first-out (FIFO) basis. Each time FIRSTQ is used, the
first (oldest) entry is removed from the specified queue and
returned to the user. The queue element (QE) wi 11 then be added
to the free chain of the queue.

Syntax

label FIRSTQ qname,loc,EMPTY=,Pl=,P2=

Required:
Defaults:
Indexable:

qname,loc
none
qname,loc

Operands

qname

loc

EMPTY=

Px=

Description

The name of the queue from which the entry is to be
fetched. The queue name is the label of the DEFINEQ
instruct i on wh i ch created the queue.

The address of one word of storage where the entry
is placed. #1 or #2 can be used.

The first instruction of the routine to be invoked
if queue empty .condition is detected during the
execution of this instruction. If this operand is
not speci fied, control wi 11 be returned to the next
instruction after the FIRSTQ and the user may.test
the task code word for a -1 indicating successful
completion of the operation or a +1 if the queue is
empty.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Example: See the example of queuing instructions in the example
following the NEXTQ instruction.

Chapter 3. Instruction and Statement Descriptions 143

FMULT

FMULT

Data Manipulation

This instruction provides signed floating-point multipli­
cat i on of operand 1 by operand 2. FLOAT=YES must be coded on the
PROGRAM statement for programs whose in i t i a I task uses
floating-point instructions and on the TASK statement of every
task containing floating-point instructions.

Syntax

label FMULT opndl,opnd2,RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: RESULT=opndl,PREC=FFF
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

RESULT=

PREC=

Description

The name of the variable to which the
applies. If the RESULT operand is not
then opndl is also the implicit result.
and may not be a constant.

operation
specified,
Th is oper-

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit integer constant immediate
data between -32768 and +32767 may be spec if i ed.

This operand may optionally be coded with the name
of a variable in which the result is to be placed.
In this case, the variable specified by the first
operand is not modified.

All possible combinations of single and extended
precision are permitted. An immediate value for
opnd2 wi 11 be converted to a single precision value
regardless of any other method of precision spec­
ification discussed below.

144 SC34-0314

()

o

o

o

Px=

FMUlT

The PREC operand is specified as xyz; where x, y,
and z are characters representing the precision of
opndl, opnd2, and the RESULT operands respecti vely.
Either 2 or 3 characters must be specified depend­
ing on whether or not the RESULT operand was coded.
Permissible characters are:

F = Single-precision (32 bits)
L = Extended-precision (64 bits)
* = Default (single-precision)

If the prec is i on of an operand is not establ i shed by
the PREC operand, it wi 11 default to single­
precision.

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Return Codes: Floating-point operations produce return codes
in the task code word, referred to by taskname (see
PROGRAM/TASK). These codes must be tested immediately after
the floating-point instruction is executed or the code may be
destroyed by subsequent instruct ions.

Code

-1
1
5

Example

FMULT
FMULT

Description

Successful completion
Floating point overflow
Floating point underflow

Fl,F2
A,B,PREC=FLL,RESULT=DOUBLE

Chapter 3. Instruction and Statement Descriptions 145

FORMAT

FORMAT

Data Formatting

Specifies the type of conversion to be performed when data is
transferred from storage to a text buffer by a PUTEDIT
instruction, or from a text buffer to storage by a GETEDIT
instruction.

The FORMAT statement must be contained in the assembly in which
it is referenced and cannot be placed within a sequence of
executable program instructions.

Note: The FORMAT statement may be continued on multiple lines
but each line (except the last) must be coded through column 71
and must have a continuation symbol in column 72. Commas may
not be used to continue a line before column 71.

Syntax

label FORMAT list,gen

Required:
Defaults:
Indexable:

list
gen=BOTH
none

Operands

list

Description

Conversion specifications for the data to be con­
verted. May be:

Item
Type

I

Definition

Integer numeric

F Floating point numeric

E Floating point numeric E notation

1.46 SC34-0314

o

o

o

o

gen

FORMAT

H Literal alphameric data, enclosed
in quotes

X Blanks

A Alphameric data

GET, if this FORMAT statement is for the e)(clusive
use of GETEDIT instruct ions.

PUT, if this format statement is for the e)(clusive
use of PUTEDIT instruct ions.

BOTH, if this format statement can be
GETEDIT and PUTEDIT instruct ions.

used
BOTH,

with
the

default, requires more storage than either GET or
PUT.

The PUTEDIT statement retrieves each variable in the list,
converts it~according to the respective item specification in
the format statement, and loads it into the te)(t buffer speci­
fied. Spaces (blanks), line control characters, and literals
may be inserted.

The GETEDIT statement moves data from the te)(t buffer, converts
it as spec if i ed in the FORMAT statement, and stores it at spec­
if i ed addresses. Characters in the input buffer may be
skipped.

The slash (/) in a FORMAT statement associated with a GETEDIT
statement acts as a delimiter, performing the same function as
a comma.

Successive items in the buffer transfer list are converted and
moved according to successive specifications in the FORMAT
statement until all items in the list are transferred. If
there are more items in the list than there are specifications
in the FORMAT statement, control transfers to the beginning of
the FORMAT statement and the same spec if i cat ions are used aga i n
unt i I the list is e)(hausted. The ent ire transfer is treated as
a single record.

No check is made to see that the specifications in a FORMAT
statement correspond in mode wi,th the list items in the GETEDIT
or PUTEDIT instructions. It is your responsibility to ensure
that integer variables are associated with I-type format spec­
ification and real variables with F-type or E-type format spec­
if i cat ions. You must a Iso ensure that amp I e storage is
avai lable for transfer of data in a PUTEDIT operation.

Chapter 3. Instruction and Statement Descriptions 147

FORMAT

Conversion of Numeric Data

The following specifications, or conversion codes, are avail­
able for the convers i on of numer i c data:

Item
Type

I

F

E

where:

w

d

Form Definition

Iw Integer numeric

Fw.d Floating point numeric

Ew.d Floating point numeric E notation

is an uns i gned integer constant spec i fy i ng the tota I
fie ld length of the data. Th i s spec if i cat i on may be
greater than that required for the actual digits in
order to provide spacing between numbers; however,
the maximum width allowed is 40 for lor F specifica­
tions.

is an unsigned integer constant specifying the
number of decimal places to the right of the decimal
point. The allowable range is 0 to w-l for F-type
spec if i cat ions and 0 to w-6 for E-type spec if i ca­
tions •

.li2..:t.!i: The decimal point between the wand d portions of the
specification is required.

The following discussion of conversion codes deals with load­
ing a text buffer, using PUTEDIT, in preparation for printing a
line. The concepts, however, apply to all permissible text
buffer operations.

Integer Numeric Conyersjon

General form: Iw

The speci fication Iw loads a text buffer with an EBCDIC charac­
ter str i ng represent i ng a number in integer form; w pr i nt pos i­
tions' are reserved for the number. The number is
r i ght-j ust if i ed. I f the number to be loaded is greater than
w-l positions and the number is negative, an error condition
will occur. A print position must be reserved for the sign if
negative values are possible; however, positive values do not

148 SC34-0314

o

()

o

o

o

FORMAT

requ ire a pos it i on for the sign. I f the number has less than w
digits, the leftmost print positions are filled with blanks.
If the quantity is negative, the position preceding the left­
most digit contains a minus sign.

The following etamples show how each of the quantities on the
left is converted, according to the specification '13':

Internal Value Value in the Buffer

721 721
-721 *** -12 -12
8114 *** 0 0

-s -5
9 9

Note that a 11 error fie Ids are stored and pr i nted as aster i sks.

Floating Point Numeric Conversion

General form: Fw.d

For F-type conversion, w is the total field length and d is the
n u m b e r 0 f p I ace s tot her i 9 h t 0 f the dec i ,m alp 0 i n t. For 0 u t put ,
the total field length must include positions for a sign, if
any, and a decimal point. The sign, if negative, is also
loaded. For output, w should be at least equal to d + 2.

If insufficient positions are reserved by d, the fractional
port ion is tr uncated from the right. I f excess i ve pos i t ions
are reserved by d, zeros are filled in from the right for~he
insignificant digits.

If the integer portion of the number has less than w-d-l dig­
its, the leftmost print positions are filled with blanks. If
the number is negat i ve, the pos it i on preced i ng the leftmost
digit contains a minus sign.

The following examples show how quantities are converted
according to the specification FS.2:

Chapter 3. Instruction and statement Descriptions 149

FORMAT

Internal Value

12.17
-41.16

-.2
7.3542

-1.
9.03

187.64

Notes:

Value in the Buffer

12.17

-0.20
b7.35
-1.00
b9.03

1. 'b' represents a blank character stored in the text buffer.

2. Internal values are shown as their equivalent decimal val­
ue, a I though actua 11 y stored in float i ng-po i nt binary
notat i on requ i ring 2 or 4 words of storage.

3. All error fields are stored and printed as asterisks.

4. Numbers for F-convers i on input need not have the i r dec i ma 1
points appearing in the input fields (in the text buffer).
If no decimal point appears, space need not be allocated
for it. The decimal point is supplied when the number is
converted to an internal equivalent; the position of the
decimal point is determined by the format specification.
However, if the position of the decimal point within the
field is different from the position in the format specifi­
cation, the position in the field overrides the format
specification. For example, for a specification of FS.2,
the fo llow i ng convers ions wou ld be per formed:

Text Buffer Characters

12.17
b1217
121.7

Converted
Internal Value

12.17
12.17
121.7

Floatjng Point Number Conversion (E-notation)

General form: Ew.d

For E-type convers ion, w is the tota I fie ld length and dis the
number of places to the right of the decimal point. For output,
the total field length must include sufficient pnsitions for a
sign, a decimal point, and space for the E notation (4 digits).
For output, w should be at least equal to d + 6. For input, dis
used for the default decimal position if no decimal is found in

150 SC34-0314

()

o

o

o

FORMAT

the input character str i ng.

If insufficient positions are reserved by d, the digits to the
right of d digits are truncated. If excessive positions are
reserved by d, zeros are filled in from the right for the ins i g­
nificant digits.

The following examples show how each of the values on the left
is converted accord i ng to the spec if i.cat ion E 1 0.4:

Internal Value

12.17
-41.16

Notes:

-.2
7.3542

-1.
9.03

.00187

Value in the Buffer

b.1217Eb02
-.4116Eb02
-.2000EbOO
b.7354EbOI
-.1000EbOI
b.9030EbOI
b.1870E-02

1. 'b' represents a blank character stored in the text buffer.

2. Internal values are shown in their equivalent decimal val­
ue, although actually stored in floating-point binary
requ i ring 2 or 4 words of storage.

3. All error fields are stored and printed as asterisks.

4. Numbers for E-conversion need not have their decimal
points appearing in the input fields (in the text buffer).
If no decimal point appears, you need not allocate space
for it. The decimal point is supplied when the number is
converted to an internal equivalent; the position of the
decimal point is determined by the format specification.
However, if the position of the decimal point within the
field is different from the position in the format specifi­
c~tion, the position in the field overrides the format
specification. For example, for a specification of E7.2,
the following conversions would be performed:

Text Buffer Characters

12.17EO
b1217El
121.7E-2

Converted Internal Value

12.17
121.7
1.217

Chapter 3. Instruction and Statement Descriptions 151

FORMAT

The following specifications are available for alphameric
data:

Item
Type Form Definition

H 'data' Literal alphameric data

A A Alphameric data

X X Insert blanks (output) or
skip input fields

The H-spec if i cat i on i $ used for a lphamer i c data that is not
changed by the program, such as pr i nted head i ngs.

The A-specification is used for alphameric data in storage
wh i ch is to be operated on by the program such as a line that is
to be printed.

The X-spec if i cat i on is used to bypass one or more input charac­
ters or to insert blanks (spaces) on an output line.

literal Specification

General form: H

The H-spec if i cat i on is used to create a lphamer i c constants.
The max i mum length for a litera lis 255.

Literals must be enclosed in apostrophes. For example:

FORMAT ('INVENTORY REPORT')

The apostrophe (') and ampersand (&) characters within literal
data are represented by two successive characters. For exam­
ple, the characters DO & DON'T must be represented as:

DO && DON"T

Literal data can be used only in loading a text buffer; it is
invalid in a GETEDIT statement. All characters between the
apostrophes (including blanks) are loaded into the buffer in
the same re lat i ve pos i t i on they appear in the FORMAT statement.
Thus:

152 SC34-0314

o

o

o

o

FORMAT

FM FORMAT ('THIS IS ALPHAMERIC DATA',3X,A6)

PUTEDIT FM,TEXT,(ALP)

cause the following record to be loaded into the buffer labeled
TEXT.

THIS IS ALPHAMERIC DATA AAAAAA

Literal data may also be included with variable data.

For example, the instructions:

FM FORMAT ('TOTAL OF',I2,' VALUES = ',F5.2)

PUTEDIT FM,TEXT,(TOTAL,VALUE)

cause a record such as the one in the following example to be
loaded into the buffer.

TOTAL OF 5 VALUES = 35.42

Alphame-r-icd-$pec if i cat ion

General form: Aw

The specification Aw is used to transmit alphameric data
to/from variables in storage. It causes the first w characters
to be stored into or loaded from the area of storage_specified
in the text buffer transfer list. For example, the statements:

FM FORMAT (A4)

GETEDIT FM,TEXT,(ERROR)

cause four alphameric characters to be transferred from the
buffer TEXT into the variable named ERROR.

The following statements:

FM FORMAT ('XY=',F9.3,A4)

PUTEDIT FM,TEXT,(A,ERROR,B,ERROR)

Chapter 3. Instruction and Statement Descriptions 153

FORMAT

may produce the following line:

XV= 5976.000 •••• XV= 6173.500 ••••

In this example, the ellipses C ••••) represent the contents of
the character str i ng fie ld ERROR.

The A-specification provides for storing alphameric data into
a field in storage, manipulating the data Cif required), and
loading it back to a text buffer.

The alphameric field can be defined using the DATA statement or
the TEXT statement. On input CGETEDIT) the alphameric field is
set to blanks pr i or to data convers ion. The a lphamer i c data is
left justified in the field.

Blank Specification

General form: X

The X-specification allow you to insert blank characters in an
output buffer record and to skip characters of an input buffer
record.

When the nX specification is used with an input record, n char­
acters are sk i pped before the transfer of data beg i ns. When the
nX specification is used with an output record, n characters
are inserted before the transfer of data begins. For example,
if a buffer has four IO-position fields of integers, the state­
ment:

FORMAT (IIO,IOX,IIO,IIO)

could be used to avoid transferring the second field.

When the X-spec if i catTon is used with an output record, n pos i­
t ions are set to blanks, allow i ng for spaces on a pr i nted line.
For example, the statement:

FORMAT (F6.2,5X,F6.2,5X,F6.2,5X)

may be use d to set U-p -a 11ne----f 0 r p r i n tin gas f 0 1 low s :

-23.45bbbbbbI7.32bbbbbb24.67bbbbb

where b represents a blank.

154 SC34-0314

o

o

o

o

o

FORMAT

Blank Lines in Output Records

Blank lines may be introduced between output records by using
consecuti ve slashes (/). The slash causes a line control char­
acter to be inserted in the buffer. The number of blank lines
inserted between output records depends upon the number and
placement of the slashes with in the statement.

If there are n consecuti ve slashes at the beginning or end of a
format specification, n blank lines are inserted between out­
put records. For n consecutive slashes elsewhere in the format
specification, the number of blank lines inserted is n-1. For
example, the statements:

PUTEDIT FM,TEXT,(X,(Y,D),Z)

FM FORMAT ('SAMPLE OUTPUT',/,Is////I9,I4//)

X DC
Y DC
Z DC
TEXT TEXT

F'-1234'
D'111222333'
F'22'
LENGTH=50

result in the following output:

SAMPLE OUTPUT
-1234
(3 blank lines)

111222333 22

(2 blank lines)

Repetitive Specification

A spec i f i cat i on may be repeated as many times as des ired, wi th­
in the limits of the text buffer size, by preceding the spec­
ification with an unsigned integer constant. The allowable
range is 1 (the default) to 255.

Thus,

(2F10.4)

is equivalent to:

(F10.4,F10.4)

Chapter 3. Instruction and Statement Descriptions 155

FORMAT

and uses less storage.

A parenthetical expression with multiplier (repeat constant)
is permitted to enable repetition of data fields according to
format specifications contained within the parentheses. All
item types are permitted within the parenthetical expression
except another parenthetical expression. Multiple parenthe­
tical expressions may be specified within the same FORMAT
statement. For example, the statement:

FORMAT (2(FIO.6,FS.2),14,3(IS»

is equ i valent to:

FORMAT (FIO.6,F5.2,FIO.6,FS.2,14,IS,IS,IS)

storage Cons;derat;ons

In general, the fewer items in the FORMAT list, the less stor­
age that is requ ired. An item is def i ned as a sing Ie convers i on
specification, literal data string, one or more grouped record
delimiters, or a parenthetical multiplier. For example, the
following format statements all have three items:

FORMAT (15,15,16)

FORMAT (I5,3IS,'ITEM 3')

FORMAT (3(15),315)

FORMAT (15/,15)

FORMAT (15,///,15)

FORMAT (/,/,/)

FORMAT (2(/),/)

FORMAT (2(lX),2X)

FORMAT (IS/,2X)

156 SC34-0314

o

o

o

o

o

o

FPCONV

FPCONV

Data Manipulation

FPCONV is used to convert integer values to or from floating­
point numbers, by using the optional floating-point hardware
feature. FLOAT=VES must be coded on the PROGRAM statement for
programs whose initial task uses floating-point instructions
and on the TASK statement of every task containing floating­
point instructions.

Syntax

label

Required:
Defaults:

FPCONV opndl,opnd2,COUNT=,PREC=,
Pl=,P2=,P3=

opndl,opnd2
COUNT=l,PREC=FS

Indexable: opndl,opnd2

Operands

opnd1

opnd2

COUNT=

PREC=

Description

The address (label or index register reference) to
rece i ve the output of the convers ion.

The address of the data input to the convers i on.
'opnd2' maya Iso be i mmed i ate data in the form of an
integer constant between -32768 and +32767.

The number of values, beginning at opnd2, to be
converted and stored at locat ions beg inn i ng at
opndl. If opnd2 is immediate data, it will be con­
verted and stored beg i nn i ng at the locat ion def i ned
by opndl for as many locations as are defined by the
COUNT operand.

Defines the type and precision of opndl and opnd2
respectively. Its form is PREC=xy. The xy is a two
character value composed of two of the following
symbols. The type, integer or floating-point, of
opndl and opnd2 must not be the same.

Chapter 3. Instruction and Statement Descriptions 157

FPCONV

S = One word integer (or immediate data)
D = 2-word integer
F = Single-precision floating-point
L = Extended-precision floating-point
* = Use default (single-precision)

If PREC is not coded, the defau 1 t spec if i cat i on for
the operand will be used.

Px=

Example

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
fur the r de!ic rip t ·i 0 n s •

FPCONV A,B,COUNT=5,PREC=LD

FPCONV X,L4,PREC=DL

FPCONV (6,tl),C

FPCONV (X,#1),(Y,t2),PREC=DL

158 SC34-0314

"Use of
on page 8

the
for

o

o

c

o

o

FSUB

FSUB

Data Manipulation

This instruction provides floating-point signed subtraction of
operand 2 from operand 1. FLOAT=YES must be coded on the PRO­
GRAM statement for programs whose initial task uses floating­
point instructions and on the TASK statement of every task
containing floating-point instructions.

Syntax

label FSUB opndl,opnd2,RESULT=,PREC=,
P1=,P2=,P3=

Required: opndl,opnd2
Defaults: RESULT=opndl,PREC=FFF
Indexable: opnd1,opnd2,RESULT

Operands

opndl

opnd2

RESULT=

PREC=

Description

The name of the variable to which the operation
applies. For example, the variables in FSUB A,B
correspond to the common algebraic notation A-B.
If the RESULT= operand is not specified, then opndl
is also the implicit result. This operand may not
be a constant.

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit integer constant ('immedi­
ate data') between -32768 and +32767 may be speci­
fied.

This optional operand can be coded with the name of
a v a ria b 1 ei n w h i c h the res u I tis t 0 b e p I ace d • In
this case, the variable specified by the first
operand is not mod if i ed.

All poss i b Ie comb i nat ions of sing Ie and extended
precision are permitted. An immediate value for
opnd2 wi 11 be converted to a single precision value
regardless of any other method of precision spec­
ification discussed below.

Chapter 3. Instruction and Statement Descriptions 159

Px=

The PREC operand is specified as xyz; where x, y,
and z are characters represe~ting"the precision of
o p n d 1, 0 p n d 2, a n dt heR E S U L Top era n d s respectively.
Either 2 or 3 characters must be specified depend­
i ng on whether or not the RESUL T operand was coded.
Permissible characters are:

F = Single-precision (32 bits)
L = Extended-precision (64 bits)
* = Default (single-precision)

I f the pre cis ion o"f a n 0 per and i s not est a b lis h e d b y
the PREC operand, it wi 11 default to single pre­
cision.

Parameter nami ng operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur­
ther descriptions.

Index Registers

The index registers (i1 and i2) may not be used as operands in
floating-point operations since they are only 16 bits in
length. The registers may, however, be used to specify the
address of afloat i ng-po i nt operand.

Return Codes

Floating-point operations produce return codes in the task
code word, referred to by taskname (see PROGRAM/TASK). These
codes must be tested i mmed i ate ly after the float i ng-po i nt
instruction is executed or the code may be destroyed by subse­
quent instructions.

Code

-1
1
5

Description

Successful completion
Floating point overflow
Floating point underflow

160 SC34-0314

o

o

o

o

Example

FSUB

FSUB

L4,F2,PREC=LF

L4,2,PREC=L*

FSUB

Chapter 3. Instruction and Statement Descriptions 161

t GETEDIT

GETEDIT

Data Formatting

GETEDIT moves data from a terminal or a text buffer, converts
the data, and stores it in variables within the program.

Syntax

label

Required:

GETEDIT format,text,(list),(format list),
ERROR=,ACTION=,SCAN=,SKIP=,LINE=,
SPACES=,PROTECT=

Defaults:
lndexable:

text, (list), and either format
or (format list)
ACTION=IO,SCAN=FIXED,PROTECT=NO
none

Operands

, format

, text

list

Description

The name of a FORMAT statement or the name to be
attached to the format list optionally included in
this instruction. This statement or list will be
used to control the convers i on of the data. Th i s
operand is requ ired if the program is comp i led with
$EDXASM.

The name of a TEXT statement defining the text
'buffer. 'If data is moved from the terminal, this
buffer stdres the data as an EBCDIC character
str i n9 before it is converted and moved into the
variables.

A description of the variables or locations which
w i'll contain the des i red data. The list wi 11 have
one ,of the followi ng forms:

162 SC34-:-0314

o

o

o

o

o

format list

ERROR=

GETEDIT

((variable,count,type),-----)
or
(variable,-----)
or
((variable,count),-----)
or
((variable,type),-----)

where:

variable: is the name of a variable or
group of variables to be
included.

count: is the number of variables
that are to be converted.

type: is the type of va.riable to
be converted.

S - Single-precision integer (default)
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

The type will default to S for integer
format data and to F for floating-point
format data

If you wish to refer to this format statement from
another GETEDIT instruction, then both the format
and format list operands must be coded. Refer to
the FORMAT stateme·nt for cod i ng instruct ions. Th i s
operand is not allowed if the program is compiled
with $EDXASM.

The name of a user's routine to branch to if an
error is detected during the GETEDIT execution.
Errors that might occur causing this action to take
place are:

• Use 0 fan' inc 0 r r e c t for mat lis t •

• Nod a t a i n i n put (a t t em p tis mad e to' con ve r t the
rest)

• Field omitted (attempt is made to convert the
rest)

• Not enough data in input text buffer to satisfy
the Da taL i st.

Chapter 3. Instruction and Statement Descriptions 163

ACTION=

SCAN=

SKIP=

LINE=

• Con ve r s i on error (value too large) •

• The error indicators (return codes) are listed
in the description of the CONVTD instruction.

• If the ERROR parameter is not coded, then no
error i nd i cator is returned to the user.

10 causes a READTEXT instruction to be executed
pr i or to conyers ion.

STG causes the conversion of a text buffer that has
been prev i ous 1 y obta i ned. The data must be in
EBCDIC.

FIXED - Data elements in the input text buffer must
be in the format described in the format statement.
That is, if a field width is specified as 6, then
there are 6 EBCDIC characters used for the conver­
s ion. Lead i ng and tra iIi ng blanks are ignored.

FREE - Data elements in the input text buffer must
be separated by del i mi ters: blank, comma, or slash.
If A format type items are included, they must be
enclosed in apostrophes, for example, 'XYZ'. This
allows the inclusion of any alphameric characters
except the apostrophe.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page
size and the rema i nder is the number of 1 i nes
skipped.

This operand is us~dto specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable 1 ine
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the spec if i ed 1 i ne on the
next page, otherwise to that line on the current
p age • I nan y cas e., i f the val u e e x c e e d s the I as t
usable line number, then it is divided by the log­
i cal p age s i z e , and t he rem a i n d er i s used as the
1 i ne number.

164 SC34-0314

o

o

o

o

o

SPACES=

PROTECT=

GETEDIT

The I/O p os i ti on for ate r min a lor log i cal s c r e e n i s
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. Whenever LINE or SKIP is specified on an
instruct i on, the current indent is reset to 0 (car­
riage return). For static screens in particular,
specification of both LINE and SPACES designates a
character position in two-coordinate form. If
SPACES is specified without LINE or SKIP, then the
indent val ue is incremented by the va 1 ue spec if i ed.

Code PROTECT=YES if the input text is not to be
printed on the terminal. This operand is effective
only for devices which require the processor to
echo input data for printing.

Operat ion GETEDIT scans the input text buffer and converts
data according to the FORMAT list, then stores the
data in the users program at the locations speci­
fied by the data list.

Example

TEXTl
FM

GETEDIT

TEXT
FORMAT

FM,TEXTl,(A,(B,F),(C,L»

LENGTH=24
(I4,F6.2,2X,EI0.4)

The above example wi 11 convert the fi rst 4 characters to an
integer and store them at A, then convert the next 6 characters
to a single-precision floating-point value and store them at B.
The next 2 characters are bypassed. The next 10 characters are
converted to extended-prec i s i on float i ng-po i nt (due to type
speci f i cat ion E) and stored at C.

See Figure 9 on page 166 for an overview of GETEDIT.

~: $LINK must be used in order to include the formatting
routines which are supplied as object modules. Refer to "Data
Formatting Instructions" on page 18 for additional informa­
tion.

Chapter 3. Instruction and Statement Descriptions 165

I GETEDIT

[31416E 01/

READTEXT FLOATEXT J-.+---~ FLOATEXT TEXT LENGTH = 18

length 12
count OA
FLOATEXT 4B

F3
F1
F4
F1
F6
C5
40
FO
F1 GETEDIT FLTFORM,FLOATEXT,((FVAL,F)),ACTION=STG
40

rru 40

FL TFORM FORMAT (E11.4),BOTH

figure 9. GETEDIT Overview

166 SC34-0314

FVAL Binary
floating-
point
number

()

o

o

0

GETTIME

GETTIME

Timing

GETTIME will cause the contents of the system t i me-of-day clock
to be inserted into a 3-word table in the application program.
The 3 words will contain hours, minutes, and seconds, respec­
tively. It is possible to specify that the date is to be stored
in an additional 3 words, resulting in a 6-word table contain­
ing hours, minutes, seconds, month, day, and year. This
instruction is useful when you wish to store the time of day and
date with data when it is collected. The maximum time is
23.59.59. At midnight, the time-of-day clock is reset to 0 and
the day is incremented by 1.

Note: Day, month and year are incremented and
necessary by the Superv i sor.

reset as

Syntax

label GETTIME 10c,DATE=,Pl=

Required: loc
Defaults: DATE=NO
Indexable: loc

Operands

loc

DATE=

Description

The address of: (1) a 3-word table in wh i ch the time
of day will be stored as hours, minutes, and sec­
onds, or (2) a 6-word table in which the time of day
and the date will be stored as hours, minutes, sec­
onds, month, day, and year. These numbers are in
binary form.

Code DATE=VES to obta i n the date as well as the time
of day. If the system was generated with
DATEFMT=DDMMVY on the SYSTEM statement, the TCB
code word, $TCBCO, will contain a -2. If
DATEFMT=MMDDVY, the code word wi 11 be -1. In either
case, the tab Ie conta i ns month, day, and year in
that order. The return code may be used to inform
application programs of the standard date format
that is desired for each particular system.

Chapter 3. Instr~c~ion ahd S~.tement Descriptions 167

GETTIME

p)(=

E)(ample

GETTIME

TAB 0000
0018
0005
OOOC
0019
004F

Parameter nami ng operands. See
Parameter Naming Operands (p)(=)"
further descriptions.

TAB,DATE=VES

(hours)
(minutes)
(sec'onds)
(month)
(day)
(year)

"Use of
on page 8

The
for

This example is equivalent to 13:24:05, on December 25,1979.

168 SC34-0314

o

o

o

o

GETVALUE

GETVALUE

Terminal I/O

GETVALUE is used to read one or more integer numer i c va lues, or
a single floating-point value, entered by the terminal opera­
tor. The values may be decimal or hexadecimal, of single or
double-precision or floating-point. If an invalid character
is entered, it acts as a delimiter. The printing,of an associ­
ated prompt may be uncond it i ona I, or it may be cond it i ona I upon
the absence of advance input.

Syntax

label

Required:
Defaults:

GETVALUE

loc

10c,pmsg,count,MODE=,PROMPT=,
FORMAT=,TVPE=,SKIP=,LINE=,
SPACES=,P1=,P2=,P3=

Indexable:

MODE=DEC,PROMPT=UNCOND,count;1 (word)
FORMAT=(6,O,I),TVPE=S
SKIP=O,LINE=cu~rent line,SPACES=O
10c,pmsg,SKIP,LINE,SPACES

Operands

loc

pmsg

count

Description

Name of the variable to receive the input value. If
the number of values requested is greater than one,
then successive values are stored in successive
words or doublewords.

Name of a TEXT statement or an explicit text message
enclosed in apostrophes. This defines the prompt­
ing message which will be issued according to the
value of the PROMPT keyword.

Speci fy the number of integer values to be entered.
The precision specification may be substituted for
the count spec i f i cat i on, in wh i ch case the count
defaults to 1, or it may accompany the count in the
form of a sublist: (count,precision).

Chapter 3. Instruction and Statement Descriptions 169

GETVALUE

MODE=

PROMPT=

FORMAT=

TVPE=

SKIP=

With conditional prompting in effect, the absence
of advance input causes the prompt message to be
issued. Once a prompt message has been issued, how­
ever, zero or more values may be entered. Omitted
values leave the cor'responding internal variables
unchanged. Permitted delimiters between values are
the characters slash, comma, period, or blank. At
completion of the instruction, the number of values
entered is stored at taskname+2.

Use MODE=HEX for hexadecimal input.
(MODE=DEC) is decimal.

The default

Code PROMPT=COND or PROMPT=UNCOND (PROMPT=UNCOND
is the default)

Th is parameter is used to spec i fy external
formatting for the input of a single value. The
count parameter is ignored. The format is spec i­
fied as a 3-element list (w,d,f), defined as fol­
lows:

w

d

f

A decimal value equal to the maximum field
width in bytes expected from the terminal.

A decimal value equal to the number of bytes
to the right of an assumed dec i ma 1 po i nt. (An
actual decimal point in the input will over­
ride this specification.) For integer vari­
ables, code this value as zero.

Format of the input data

I integer

F floating-point F format

E floating-point E format

Use this operand only in conjunction with FORMAT=.

S Single-precisi,on integer (1 word)
D Double-precision integer (2 words)
F Single-precision floating-point (2 words)
L Extended-precision floating-point (4 words)

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page

170 SC34-0314

o

o

o

c

o

LINE=

SPACES=

Px=

Example

MESSAGE
MSG
DATA
DATA2
DATA3

GETVALUE .1'

s i z e, and the rem a i n d e r i s the .n u m b e r 0 f 1 i n e s
skipped.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwise to that line on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
i ca 1 page size, and the rema i nder is used as· the
line number.

These parameters may be used to spec i fy the
location within the logical page at which input is
to beg in, if that locat i on differs from the current
line and indent.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

DATA, MESSAGE

"Use of
on page 8

GETVALUE
GETVALUE
GETVALUE

DATA2,'~ENTER A: ',PROMPT=COND
DATA3,MSG,5,MODE=HEX

TEXT
TEXT
DATA
DATA
DATA

'ENTER YOUR AGE'
'DATA:

F ' 0 '
F ' 0 '
5F'O'

The
for

Chapter 3. Instruction and Statement Descriptio~s 171

GIN

Graphics

GIN provides interactive graphical input. It rings the bell,
displays cross-hairs, waits for the operator to position the
cross-hairs and key in any single character, returns the coor­
dinates of the cross-h~ir cursor, and optionally returns the
character entered by the user. Cursor coord i nates are
unsealed. The PLOTGIN instruction obtains coordinates scaled
by the use of a PLOTCS control block. (See "PLOTGIN" on page 210
for the format of a PLOTCS).

Syntax

label GIN

Required: x,y
Defaults: no character returned
Indexable: none

Operands

x,y

char

Px=

Description

Locat ions for storage of coord i nates of the cursor.

Lot a" t ion" w her e c h a r act e r i s t 0 b est 0 red • The
character is stored in the right-hand byte; the
left byte wi 11 be set to zero. If omitted, the char­
acter is not stored.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

172 SC34-0314

o

o

o

C

o

GOTO

GOTO

Program Sequencing

GOTO is an unconditional branch to another instruction or a
list of instructions from which a selection is made as a func­
tion of a specified index value (computed GOTO). The
instruction branched to must be on a full-word boundary.

Examples using GOlO are shown under the IF
descr i bed later in th is chapter.

instruction

Syntax

label GO TO

label GOTO (locO,locl,loc2, ••• ,locn),index,Pl=,P2=

Required: loc
Defaults: none
Indexable: index

Operands

loc

locO

Description

The address of the instruct i on to be executed after
the unconditional branch. If loc is enclosed in
parentheses, the GOTO is indirect and the address
of· the next instruct i on is determi ned by the
contents of loc.

The address of the instruct i on to be executed if the
index value for a computed GOTO is not in the range
1 to n.

lac!, loc2, ••• ,locn Ali st of instruct i on addresses. The

inde)(

address selected will be a function of the value of
the inde)(field.

The address of an index variable (single-precision
value) whose value is to be used to select the tar­
get address for the branch. The number of loc
instruct i on addresses +1 must not exceed 50.

Chapter 3. Instruction and Statement Descriptions 173

Px=

Example

GOTO
GOTO

GOTO

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

Branch to LOCO

"Use of
on page 8

The
for

LOCO
(LOC1) Branch to location address defined

by LOCI
(ERR,L1,L2),I Computed GOTO based on value 'I'.

If I is 1, branch to L1.
If I is 2, branch to L2.
Otherwise, branch to ERR.

174 SC34-0314

o

o

o

C~I

o

·1 IDeB

IDCB

EXIO Control

IOCB is used to create a standard immediate device control
block.

Syntax

label

Required:
Defaults:

IOCB COMMAND=,ADDRESS=,DCB=,DATA=,
MOD4=,LEVEL=,IBIT=

label,COMMAND=,ADDRESS=
LEVEL=l,IBIT=ON

Indexable: not applicable

Operands

COMMAND=

Description

The specific I/O operation. Code one of the
following keywords shown below. The resulting
hexadecimal command code is shown in parentheses.
An x represents a character that is filled in by the
value specified by MOD4.

READ - Transfer a byte or word
from the device

READ1 - Same as READ plus
function bit set

READID - Read the device
identification word

RSTATUS - Read the device status

WRITE - Transfer a byte or word
to the device

WRITE1 - Same as WRITE plus
function bit set

PREPARE - Prepare the device

CONTROL - Initiate a control
action to the device

(Ox)

(1 x)

(20)

(2x)

(4x)

(Sx)

(60)

(6x)

Chapter 3. Instruction and Statement Descriptions 175

IDes

ADDRESS=

DeB=

DATA=

MOD4=

LEVEL=

IBIT=

Example

IDCBI

RESET

START

SCSS

- Initiate a device
reset operation

- Initiate a cycle
steal operation

- Initiate a start cycle
steal status operation

(6F)

(7x)

(7F)

The device address as two hexadecimal digits.

The label of a DCB.

The data word to be transferred to the device by a
WRITE, WRITEI, or CONTROL command. Code the actual
data as four hexadec i mal dig i ts.

A four bit device dependent value that modifies the
command code specified by the COMMAND code. Code
one hexadecimal digit.

The hardware interrupt level to be assigned to the
device by a PREPARE command.

Code ON or OFF to indicate whether the d~vice is to
h a vet he a b iIi t y to pre sen t an i n t err u pt •

Note: Refer to the description manual for the
processor i n use for more in for mat i on on I DC B 5 •

IDCB COMMAND=WRITEI,ADDRESS=OO,DATA=0041

PREPIDCB IDCB COMMAND=PREPARE,ADDRESS=E4,LEVEL=3,IBIT=ON

WRIIDCB IDCB COMMAND=START,ADDRESS=EI,DCB=WRIDCB

176 SC34-0314

o

o

o

CI

o

IF

Program Sequencing

IF determines whether a relational statement or statement
string is true or false, and then branches to a user specified
address or passes control to true code or false code within the
IF-ELSE structure.

Note: Because IF, ELSE, and ENDIF are usually coded together,
the ELSE and ENDIF instructions are repeated here for your con­
venience.

Syntax

label IF statement

label IF statement,GOTO,loc

Required: one relational statement
Defaults: none
Indexable: datal and data2 in each statement

Operands Description

statement A relational statement or statement string
indicating the relationship(s) to be tested. Each
statement is enclosed in parentheses. If GOTO is
coded and the statement is true, the next
in~truction executed is defined by loc. If GOTO is
not coded, THEN is assumed and the next instruct i on
is determined by the IF-ELSE-ENDIF structure. If
the condition is true, execution proceeds sequen­
tially. The various forms of relational statements
are fully described following "Program Sequencing
Instructions" on page 34 and a number of examples
are shown below.

GOTO If the statement is true and GOTO is coded, control
is passed to the instruction at loc. If the state­
ment is false, execution proceeds sequentially.

Chapter 3. Instruction and Statement Descriptions 177

loc

ELSE

Used with GOTO to speci fy the address of the
instruct i on to be executed if the statement is
true. The instruction must be on a full-word bound­
ary.

Note: THEN can be coded after statement. This may
be desired to comment the instruction for program
readability.

ELSE defines the start of the false code associated with the
preceding IF instruction. The end of the false code is the next
ENDIF instruction.

Syntax

label ELSE

Required: none
Defaults: none
Indexable: none

ENDIF

END I Fin d i cates the end' of an I F - E L S E structure. I f E L S E i s
coded, ENDIF indicates the end of the false code associated
with the preceding IF instruction. If ELSE was not coded,
ENDIF. indicates the end of the true code associated with the
preceding IF instruction.

178 SC34-0314

()

/(-"',
I J

'~

o

o

c)

o

label ENDIF

Requ ired: none
Defaults: none
Indexable: none

ExamPles of IE, ELSE, and ENDIE

1. IF with GOTO

IF (A,EQ,B),GOTO,ANEB

2. Single IF

IF or

(execute if C NE D)

ENDIF

3. IF with ELSE

IF (il,EQ,1)

(execute if 11 EQ 1)
ELSE

: (execute if 11 NE 1)
ENDIF

4. Double IF with ELSE

IF (C,NE,D),THEN

(execute if A EQ Band C EQ D)
ELSE

: (execute if either A NE B or C NE D)
ENDIF

Chapter 3. Instruction and Statement Descriptions 179

5. IF with nesting

IF (A,EQ,B)
xl

IF (X,GT,V)
x2

ENDIF
x3

ELSE
x4

ENDIF

If A equals B and X is
greater than V, instructions
xl, x2, and x3 will be executed.
If A equals B, but X is not
greater than V, instructions xl
and x3are executed. If A does
not equal B, only instruction x4
is executed.

Examples of relational statements

Relational statement

(A,EQ,O)
CA,NE,B)
(DATA1,LT,DATA2,WORD)
CCHAR,EQ,C'A',BVTE)
(XVAL,GT,V,DWORD)
(CA,il),EQ,l)
«Al,ll),LE,(Bl,12»
(il,EQ,l)
(ll,GT,i2)
«C,12),EQ,CHAR,BVTE)
(A,EQ,B,8)
«BUF,il),NE,DATA,3)
(Fl,GT,O,FLOAT)
(L2,LT,L3,DFLOAT)
«BUF,il),LE,l,FLOAT)

Comments

A equal to 0, WORD
A not equal to B, WORD
DATAl less than DATA2, WORD
CHAR equal to 'A', BVTE
XVAL greater than V, DWORD
(A,il) equal to 1, WORD
(Al,ll) LE (Bl,12), WORD
II equal to 1, WORD
II greater than i2, WORD
(C,12) equal to CHAR, BVTE
A equal to B, 8 bytes
(BUF,il) not equal to DATA, 3 bytes
Fl greater than 0, FLOAT
L2 less than L3, EXTENDED FLOAT
(BUF,il) less than or equal I, FLOAT

Examples of relational statement strings

(A,EQ,B),AND,(A,EQ,C)
(A,NE,1),OR,(D,EQ,E,DWORD),AND,Cil,NE,14)
(F,EQ,G,8),AND,Ci1,EQ,i2),AND,(X,EQ,1),OR,(RESULT,GT,0)
(DATA,EQ,C'/',BVTE),OR,(DATA,EQ,C'*',BVTE)
«BUF,il),NE,(BUF,i2»,OR,Ci1,EQ,i2)

180 SC34-0314

o

o

o

INTIME

INTIME

Timing

INTIME is used to provide the user with two forms of interval
timing information, reltime and loco The first, reltime, is a
2-word area in the your program where INTIME wi 11 store a value
each time an INTIME is executed. This value is equal to the
elapsed time since system IPL. Th is count is expressed in
milliseconds and is in double precision integer format. The
maximum value for reltime will be reached in approximately 49
days of continuous operation and the counter will then roll
over to O.

The second, loc, ;s a single-precision integer variable where
INTIME will store the time in milliseconds since the previous
execution of an INTIME instruction in this task. The maximum
interval between calls to INTIME (that is, the maximum value
that can be stored at IDe) is 65535 milliseconds or 65.535 sec­
onds.

Syntax

label INTIME reltime,loc,INDEX,P2=

Required: reltime,loc
Defaults: no indexing
Indexable: loc

Operands

reltime

loc

Description

The address of a 2-word table where a relative time
marker may be stored. Th is fie ld shou ld be def i ned
by DATA 2F'0'. The relative time marker is a
double-precision count, in mi lliseconds, which
indicates the relative time at which the last
INTIME was issued. It should be initialized to O.
Proper use of this parameter allows you to measure
different intervals from the same origin in time.

Buffer address or locat i on where interval time data
is to be stored. When reltime = 0, as after
initialization, the first interval returned will
also be O.

Chapter 3. Instruction and statement Descriptions 181

INTIME

INDEX

Px=

Autom.tic indexing is to be used. The oper~nd 10c
must be defined by a BUFFER statement when INDEX is
used.

Paramete r nam i ng ope rand s • See "Use of
Parameter Naming Operands (Px=)" on page 8
further descriptions.

~: Each task in each program in the system has available to
it one software dr-tv.n timer which operates with a precision of
1 millisecond. The STIMER instruction is used to operate thi.
timer in any task.

182 SC34-0314

0 1

,I "

o

o

c

0

IOCB

IOCB

Terminal I/O

IOCB defines a terminal name and configuration parameters for
use with the ENQT instruction. Additional information on the
configuration parameters can be found under the TERMINAL sys­
tem conf i gurat i on statement in the System Gu ide

Syntax

label IOCB name,PAGSIZE=,TOPM=,BOTM=,LEFTM=,
RIGHTM=,SCREEN=,NHIST=,OVFLINE=,BUFFER=

Requ ired: none
Defaults: see discussion below
Indexable: none

Operands

name

PAGSIZE=

TOPM=

BOTM=

LEFTM=

RIGHTM=

Description

The name of a terminal as defined by the label on a
TERMINAL statement. See the System Configuration
sect i on of the System Gu i de for a descr i pt 1 on of
the TERMINAL statement. This operand generates an
8-character EBCDIC str i n9, padded as necessary wi th
blanks, whose label is the label on the IOCB state­
me n t • I t may t he ref 0 r e be mod i fie d b y the p ro g ram .
If unspecified, the string is blank and implicitly
refers to the terminal from which the program was
loaded.

This operand i s as defined for the TERMINAL
statement. Its default is the value assigned in
that statement.

As defined for TERMINAL. The default is o •

As defined for TERMINAL. The default i s PAGSIZE-l.

As defined for TERMINAL. The default is o •

As defined for TERMINAL. The default i s LINSIZE-l.

Chapter 3. Instruction and Statement Descriptions 183

SCREEN=

NHIST=

OVFLINE=

BUFFER=

Either SCREEN=ROLL or SCREEN=STATIC, as defined for
TERMINAL. The default is ROLL.

As def i ned for TERMINAL. The defau I tis O.

As de{i ned for TERMINAL. The defau It is NO.

If the application requires a temporary I/O buffer
larger than that defined by the LINSIZE parameter
on the TERMINAL statement, then set th is operand
with the label of a BUFFER statement allocating the
desired number of bytes. For data entry applica­
tions which require full screen data transfers, for
example, this obviates the need for allocation of a
large buffer within the resident supervisor. Note
that when the buffer size is greater than the
80-byte line size of the 4978/4979 display, all
data transfers take place as if successive lines of
the display were concatenated. Screen positions
are st ill des i gnated, however, by the LINE and
SPACES parameters wi th respect to an 80-byte 1 i ne.

If the tempora~y buffer is not directly addressed
by a terminal I/O instruction, then it acts as a
normal system buffer of size RIGHTM+l; it may also
be used, however, for direct terminal I/O. Direct
terminal I/O occurs when the buffer defined by an
active IOCB is directly addressed by a PRINTEXT or
REA D T EXT instruction; the d a t a i st ran s fer red i m m e -
diately and the new line character is not recog­
nized. When performing direct output operations the
user must insert the output character count in the
index word of the BUFFER pr i or ~o the PR INTEXT (out­
put) instruction. This mode of operation allows the
transfer of large blocks (larger than can be accom­
modated by a TEXT buffer) of data to and from buf­
fered devices such as the 4978/4979 Display or
buffered teletypewriter terminals. Upon execution
of DEQT, the buffer defined by the TERMINAL state­
ment_ is restored.

184 SC34-0314

o

o

o

o

IODEF

IODEF

Sensor Based I/O

IODEF is used to provide addressability for the Sensor Based
I/O facilities which are referenced symbolically in an appli­
cat i on program. The spec if i c form used var i es wi th the type of
I/O be i ng spec if i ed as shown be low.

All IODEF statements of the same form (AI, AO, DI, DO, or PI)
must be grouped together in the program and must be placed
ahead of the SBIO instructions that reference them.

Each IODEF statement cr~ates an SBIOCB control block. The con­
tents of the SBIOCB is descr i bed in the Internal Des i gn.

The remainder of this description is divided into five parts to
show the syntax for PI,DO,DI,AO, and AI. Because the operand
definitions are common they are shown only once following the
AI syntax.

Syntax

Process Interrupt

label IODEF PIx,ADDRESS=,BIT=,SPECPI=
or ADDRESS=,TVPE=BIT,BIT=,SPECPI=
or ADDRESS=,TVPE=GROUP,SPECPI=

Chapter 3. Instruction and Statement Descriptions 185

IODEF

Digital Output

label IODEF DOx,TVPE=GROUP,ADDRESS=
or TVPE=SUBGROUP,ADDRESS=,BITS=(u,v)

Syntax

Digital Input

label IODEF DIx,TVPE=GROUP,ADDRESS=

Analog Output

label

or TVPE=SUBGROUP,ADDRESS=,BITS=(u,v)
or TVPE=EXTSVNC,ADDRESS=

IODEF AOx,ADDRESS=,POINT=

Defaults: POINT=O

186 SC34-0314

o

o

o

IODEF

Analog Input

Syntax

label

Raquired:
Defaults:

Operands

PIx

DO.

DIx

AOx

AIx

IODEF AIx,ADDRESS=,POINT=,RANGE=,ZCOR=

All
RANGE=5V,ZCOR=NO

Description

.t!2.ll: The following operand descriptions apply to
the fi ve forms of IODEF as previously shown:

Process Interrupt. Operand x specifies a symbolic
reference number used w t th in an app 1 i cat i on pro­
gram; range = 1-99. If multiple IODEF PIx state­
ments are included in the program, they must be
grouped together.

Digital Output. Operand)(specifies a symbolic
reference number used within an application pro­
gram; range = 1-99. If multiple IODEF DOx state­
ments are included in the program, they must be
grouped together.

Digital Input. Operand x specifies a symbolic
reference number used within an application pro­
gram; range = 1 99. If multiple IODEF DIx state­
ments are included in the program, they must be
grouped together.

Analog Output. Operand x specifies a symbolic
reference number used within al1 application prC)­
gram; range = 1-99. If multiple tODEF AOx state­
ments are included in the program, they must be
grouped together.

Analog Input. Operand x specifies a symbolic
reference number used within an application pro­
gram; range = 1-99. If multiple IODEF AIx state­
ments are included in the program, they must be
grouped together.

Chapter 3. Instruction and Statement Descriptions 187

IODEF

TVPE=

ADDRESS=

GROUP

SUBGROUP

BIT

EXTSVNC

The complete DI/DO/PI group participates
in the I/O ope rat ion. See SPECPI be low if
PI is spec if i ed as GROUP. 01 operates in
unlatched mode.

A subset of the 16-b it group will be used
in the I/O operations. For output oper­
ations, all bits not part of the speci­
f i ed subgroup will rema i n unchanged. For
input, the subgroup wi 11 be stored
right-adjusted in input word with all
high order bits set to zero. 01 operates
in unlatched mode.

Specified for a user PI bit only (see
SPECPI be low) •

Specified when using the hardware
external synchronization feature for DI
or DO. A count field must be spec if i ed on
assoc i ated SBIO instruct ions. EXTSVNC
also implies latched 01 operation mode.

Spec i fy the two-d i g it hexadec i ma 1 address.

BITS=(u,y) This parameter indicates a portion of a group
starting at bit u (u = 0 to 15) for a length y (v = 1
to 16-u). Th is operand is used on 1 y when
TVPE=SUBGROUP is spec if i ed for 01 or DO. Note that
it is possible to specify a 16-bit wide subgroup,
although it is probably more meaningful in that
case to define a normal group and specify a
substr i ng in certa i n I/O cases.

BIT=

POINT=

RANGE=

A number from 0 - 15 specifying the bit to be used
for PI.

Specify the analog o~tput or input point. Point = 0
- 1 for AO, and 0 - 7 for AI relay or 0 - 15 for AI
solid state.

Specify the range for themultirange amplifier.

5V = 5 VOLTS
500MV = 500 Millivolts
200MV = 200 "
100MV = 100 "
50MV = 50 "
20MV = 20 "
10MV = 10 "

188 SC34-0314

o

f" (I~ \

V

0

o

o

o

ZCOR=

SPECPI=

Example

IODEF
IODEF
10DEF
IODEF
IODEF
IODEF
IODEF

IODEF

This parameter allows the zero correction facility
of AI to be used. Specify 'YES' to use zero' cor­
rection, the default is 'NO'.

Identifies the label of the first instruction of a
special process interrupt routine. See SPECPI
below.

PI1,ADDRESS=48,BIT=2
PI2,ADDRESS=49,BIT=15
D01,TVPE=GROUP,ADDRESS=4B
D02,TVPE=EXTSVNC,ADDRESS=4A
DI1,TVPE=GROUP,ADDRESS=49
AI1,ADDRESS=72,POINT=1,RANGE=50MV,ZCOR=VES
A02,ADDRESS=75,POINT=1

In this example, two process interrupts are defined, a digital
output group, a digital output group as external sync, a dig­
ital input group, an analog input point, and an analog output
point.

The SBIO instruction is used to reference the digital and ana­
log I/O points as described under the SBIO instruction. Proc­
ess interrupt are referenced by the POST and WAIT instructions
and are described under the respective instruction. Further
examples of IODEF statements are shown following the SBIO
instruction.

SPECPI - Process Interrupt User Routine

The SPECPI opt i on of the IODEF statement may be used to def i ne a
special process interrupt routine. The supervisor will exe­
cute a routine written in Series/l assembler language when the
defined interrupt occurs. The purpose is to provide the mini­
mum delay before service of the interrupt, by bypassing the
normal supervisor interrupt servicing. Multiple special proc­
ess interrupt routines are allowed in a program.

TVPE=BIT Contro 1 is given to the spec if i ed rout i ne when,
and only when, an interrupt occurs on the speci­
f i ed bit. On return to the superv i sor, the con­
tents of Rl must be the same at entry to the user's
routine and RO must contain either '0' or a POST
code. In the latter case" R3 must conta in the
address of an ECB to be posted by the POST
instruct i on. Reg i ster 7 conta ins the superv i sor
return address upon entry. If the user rout i ne is

Chapter 3. Instruction and Statement Descriptions 189

IODEF

in part i t ion 1, the return to the superv i sor may be
accomp 1 i shed us i ng BXS (R7). Otherw i se return must
be made by use of the SPECPIRT i nstt'uct i on.
SPECPIRT can also be used in partition 1. The val­
u e t hat i sin R 7 up one n try may be us edt are t urn to
the supervisor using BXS (R7) only if the user rou-­
tine is in partition 1.

TVPE=GROUP Control is given to the specified routine if any
bit in the PI group occurs. The user's routine is
entered as qu i ck 1 y as poss i b Ie. The PI group is not
read or reset; this is the user routine's respon­
sibility. Return to the supervisor is done with a
branch to the entry po i nt SUPEXIT. The module
$EDXATSR must be included with the PROGRAM to use
SUPEXIT. If interrupt is processed on level 0, the
routine may issue a Series/l hardware exit level
instruction (lEX) instead of returnin~ to SUPEXIT.
This will improve performance significantly.

~: Use of TVPE=GROUP requires that you be familiar with the
ope rat i on of the Ser i es/l process interrupt feature. Your rou­
tine must contain all instructions necessary to read and reset
the referenced process interrupt group.

Example usjna special process interrupt bit

IODEF PI2,ADDRESS=48,BIT=3,TVPE=BIT,SPECPI=FASTPII

FASTPII EQU

MVW

MVA
MVWI
MVW
SPECPIRT

*
Rl,SAVERI

PI2,R3
3,RO
SAVERl,Rl

SAVE Rl

PUT THE ADDRESS OF PI2 IN R3
POSTING CODE IN RO
RESTORE Rl
RETURN TO SUPERVISOR

Example of spec i al process interrupt group

IODEF PI6,ADDRESS=49,TVPE=GROUP,SPECPI=FASTPI2

FASTPI2 EQU

Control is gi ven to the user at label FASTPI2.

190 SC34-0314

o

o

o

o

lOR

Data Manipulation

lOR will logical OR operand 2 to operand 1, bit by bit. If
either bit is one, the result is a one; if neither bit is one,
the result bit wi 11 be zero.

Syntax

label lOR opndl,opnd2,count,RESULT=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=(l,WORD)RESULT=opndl
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

RESULT=

Description

The name of the variable to which the operation
app lies; it cannot be a constant.

This operand identifies the bit string to be ORed
with the first operand. Either the name of a vari­
able or an expl i cit constant may be spec if i ed.

Spec i fy the number of consecut i ve var i abIes upon
which the operation is to be performed. The maximum
value allowed is 32767.

The count operand can include the precision of the
data. Because these operations are parallel (the
two operands and the result are implicitly of like
precision) only one precision specification is
requ ired. That spec if i cat i on may take one of the
fo llow i ng forms:

BYTE -- Byte precision
WORD -- Word precision (default)
DWORD -- Doubleword precision

This operand, which is optional, can be coded with
the name of a variable or vector in which the result
is to be placed. In this case the variable speci­
fied by the first operand is not modified.

Chapter 3. Instruction and Statement Descriptions 191

Px=

Example

STRING
ANS

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

STRING,X'F008',RESUlT=ANS

"Use of
on page 8

lOR
DATA
DATA

X'OF08' binary 0000 1111 0000 1000
F'O' binary zeros

After execut i on of lOR, the var i able ANS looks I i ~e th is:

ANS DATA X'FF08' binary 1111 1111 0000 1000

192 SC34-0314

The
for

o

;f ."c"

(,-,)

o

o

o

LASTQ

LASTQ

Queue Processing

LASTQ acquires entries from a queue, defined by DEFINEQ, on a
last-in~first~out (LIFO) basis. Each time LASTQ is used, the
last (most recent) entry is removed from the specified queue
and returned to the user. The queue entry (QE) wi 11 then be
added to the free chain of the queue.

Syntax

label LASTQ qname,10c,EMPTY=,Pl=,P2=

Required:
Default:
Indexable:

qname,loc
none
qname,loc

Operands

qname

loc

EMPTY=

Px=

Description

The name of the queue from which the entry is to be
fetched. The queue name is the label on the DEFINEQ
instruct i on used to create the queue.

The address of one word of storage where the entry
is placed. #1 or #2 can be used.

Use this operahd to Sp~cify the first instruction
of the rout i ne to be invoked if "queue empty" cond i­
t ion is detected dur i ng the execut i on of th i s
instruction. If this operand is not specified,
control wi 11 be returned to the next instruction
after the LASTQ and the user may test the task code.
word for a -1 indicating successful completion of
the ope rat i on or a +1 if the queue is empty.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Example: See the example following the NEXTQ instructions.

Chapter 3. Instruction and Statement Descriptions 193

LOAD

LOAD

Task Control

Note: Indexed Access Method LOAD is located under "LOAD" on
page 344.

The LOAD instruct ion is used in one program to in it i ate the
loading of another main program or program overlay from the
program library on disk or diskette. The loaded program will
run in parallel with, and independently of, the loading pro­
gram, regardless of whether it is a main program or an overlay.

Data parameters and data set names may be passed to the loaded
program. Also, the load i ng program may synchron i ze its own exe­
cution with that of the loaded program.

A program may be loaded in two ways:

• As an independent program in its own cont i guous storage
area

• As an overlay program within the storage area allocated for
the load i ng program

The advantages of the independent LOAD ope rat i on are:

• Ma i n storage is a llocated on 1 y when requ ired

• More than one program may be loaded for simultaneous exe­
cution

The advantages of the over lay LOAD operat i on are:

• The availability of main storage can be guaranteed by the
load i ng program since it is with i nits own storage area

• The loaded program wi 11 be brought into storage more quick-
1 y than by an independent LOAD

The task code word of the loading task may be tested to deter­
mine the resu 1 t of the program load ope rat i on. The code word is
ref ere nee d by t he t ask name • The t ask c ode w 0 r d 0 f the i nit i a 1
task is the name 0 f the program. If th i sword is ...;.1 the oper­
at ion was successful. For the def i nit i on of error codes
returned during the load process, see "Return Codes" later in
this description.

194 SC34-0314

o

o
LOAD

As part of the LOAD function, a DEQT of the terminal currently
in use by the loading program is performed. You should allow
for this circumstance in coding the program which issues the
LOAD instruction.

When a LOAD is executed for either an independent program or an
overlay, the address of the currently active terminal of the
loading program is stored in the program header of the program
being loaded.

Syntax

label

label

Required:
Defaults:

LOAD progname,parmname,
DS=(dsnamel, ••. ,dsname9),EVENT=,
LOGMSG=,PART=,ERROR=,STORAGE=,P2=

or
LOAD PGMx,parmname,DS=(DSx, •••),EVENT=,

ERROR=,P2=

Indexable:

progname or PGMx
LOGMSG=YES,STORAGE=O
none

Operands

progname

PGMx

parmname

Description

The 1-8 character name of a program stored in an
Event Dr i ven Execut i ve library. The user may spec­
ify a the volume from which to load the program by
separat i ng the program name, 1-8 characters, and
the volume name, 1-6 characters, by a comma and
enclosing in parentheses, for example,
(PROGA,EDX003). The program must reside on disk or
diskette.

The parameter x is a digit from 1 to 9 specifying
which of the overlay programs, defined in the PRO­
GRAM statement, is to be loaded. PGMx is not val i d
with PART; overlay programs are loaded in space
inc I uded with the load i ng program.

The symbolic label on the first word in a list of
consecut i ve parameter words to be passed to the new
program. (See the PROGRAM statement for spec if i ca­
tion of the length of this list.>

Chapter 3. Instruction and Statement Descriptions 195

LOAD

DS=

LOGMSG=

Th is parameter des i gnates data sets to be passed to
the loaded program.

For a non-overlay program load, 1 - 9 data set names
can be listed. These names are used to spec i fy data
set names at program load time. (See PROGRAM state­
ment.) Data sets may also be speci fied in the form
DSx where x is a digit from 1 to 9 which selects a
data set def i ned in the PROGRAM statement of the
loading program. This allows the definition of
data sets to be passed to loaded programs to be
deferred until the initial load time.

For an overlay program load, specify DSx where x is
a digit from 1 to 9 selecting data sets defined in
the PROGRAM statement of the load i ng program.

For example, in a non-overlay situation assume that
the PROGRAM statement in the program to be loaded
specified a data set list such as:

DS=(PARMFILE,??,RESULTS)

Then a statement

LOAD progname,parmname,DS=(MYDATA)

would yield a final list of

DS=(PARMFILE,MYDATA,RESULTS)

All unspec if i ed data set names in the program be i ng
loaded must be resolved at LOAD time or the oper­
ation will not be performed. If a tape data set IS
passed to another program us i ng the LOAD statement,
the load i ng programs DSCB will be disconnected from
the tape data set. Th is a llows the program be 1 ng
loaded to have access to the tape data set us i ng the
load i ng program's DSCB. When the program be i ng
loaded completes execution the tape data set will
be closed. If the program that issued the LOAD needs
to use the tape data set aga in, it will have to reo­
pen the tape data set us i ng the DSOPEN subrout i ne or
$DISKUT3.

~: See the PROGRAM statement descr i pt i on for
more i nformat i on on data set spec if i cat i on.

Spec i fy either YES or NO to i nd i cate whether a
"PROGRAM LOADED" message is to be pr i nted on the
system logging terminal. The default is YES.

196 SC34-0314

()

o

o

0 ,,'
I)

o

EVENT=

PART=

ERROR=

STORAGE=

LOAD

Th i sis the symbol i c name of an event (ECB
statement) which is to be posted complete when the
loaded program issues a PROGSTOP.

By i ssu i ng a LOAD and a subsequent WAIT for th is
event, the loading program may synchronize its own
execution with that of the loaded program.

Figure 10 on page 200 shows the flow of control in
the two ways of load i ng a program.

Note: If this operand is specified, the loading
program must ultimately WAIT for completion of the
loaded program. If this is not done, a POST wi 11 be
issued when the loaded program terminates even
though the load i ng program may no longer be act i ve,
and unpredictable results can occur.

Th i s opt i ona 1 operand is used to spec i fy cross
part i t i on load i ng of a program ina system conta i n­
ing more than 64K of storage. If PART is not coded,
the program wi 11 be loaded in the same part i t i on as
the loading program.

Code PART='n' to specify the partition number into
which to load the new program (n = 1 to 8).

Code PART=ANV to load the new program in any ava i 1-
able partition.

Code PART='label' to point to a word in storage
which contains the partition number in which to
load the new program. Zero in the word pointed to
by labe 1 is the same as PART=ANV.

PGMx is not valid with PART.

Use this operand to specify the label of the first
instruct i on of the rout i ne to be invoked if an error
cond i t i on occurs dur i ng the load process. I f not
specified, control is returned to the instruction
following the LOAD instruction and the user may
test for errors by testing the return code stored at
the taskname (see PROGRAM/TASK).

Use this operand to override the value specified in
the STORAGE operand coded on the PROGRAM statement
of the program to be loaded. Some application pro­
grams will have a minimum dynamic storage require­
ment; be sure you know what it is before using this
override. A value of 0 means that the STORAGE value
spec if i ed in the loaded programs header is not to be

Chapter 3. Instruction and Statement Descriptions 197

:1
I
j

:,

o v e ,r rid den. S TOR AGE = 0 i s the d e f a u It.

If the total storage required for the program and
the dynamic increment is not available the LOAO
request will fail. See the PROGRAM statement STOR­
AGE operand for additional information on dynamic
storage.

Parameter nam i ng ope rands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

1'18 SC34-0314

o

o

o

o

C~\I
jvl

o

LOAD

Return Codes

Code Description

-1
61

62
63
64
65

66

67

68
69
70
71
72
73

74
75
76
77
78

79

80
81

82

Successful completion
The transient loader ($LOADER) is not included
in the system
In an overlay request, no overlay area exists
In an overlay request, the overlay area is in use
No space available for the transient loader
In an overlay load operation, the number of data
sets passed by the LOAD instruction does not equal
the number required by the overlay program
In an overlay load operation, no parameters were
passed to the loaded program
A disk or diskette I/O error occurred during the
load process
Reserved
Reserved
Not enough main storage available for the program
Program not found on the specified volume
Disk or diskette I/O error while reading directory
Disk or diskette I/O error while reading program
header
Referenced module is not a program
Referenced module is not a data set
Data set not found on referenced volume
Invalid data set name
LOAD instruction did not specify required data
set(s)
LOAD instruction did not specify required
parameters(s)
Invalid volume label specified
Cross partition LOAD requested, support was not
included at sysgen
Requested partition number greater than number of
partitions in the system

~: If the program being loaded is a sensor I/O program, and
a sensor I/O error is detected, the return code wi 11 be a sensor
I/O return code, not a load return code.

Chapter 3. Instruction and Statement Descriptions 199

LOAD

l : ~

EJ)

PROGRAM

•
•
•

LOAD

•
•
•
•
•
•
•
•
•
•

LOAD

•
•
•
•

PROGRAM

•
•
•

and

14----- independent ----...,
execution

Overlay program
within storage area
of loading program.
I ndependent execution.

Figure 10. Two Ways of Load i ng a Program

200 SC34-0314

PROGRAM

•
•
•
•
•

Independent
program in its
own storage area

(/ ."'.
~.-,/'

o

o

o

MOVE

MOVE

Data Manipulation

Operand 2 is moved to operand 1. If operand 2 is "immediate
data", it must be an integer between -32768 and +32767 which
wi 11 be converted to float i ng po i nt, if necessary.

Syntax

label MOVE opndl,opnd2,count,FKEY=,TKEY=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=Cl,WORD)
Indexable: opndl,opnd2

Operands

opndl

opnd2

count

Description

The name of the variable to which the operation
app lies; it cannot be a constant.

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit constant can be specified.

Opnd2 is moved to opndl. If opnd2 is i mmed i ate
data, it must be an integer between -32768 and
+32767 which will be converted to floating point,
if necessary.

Specify the number of consecutive variables upon
wh i ch the operat i on is to be performed. A symbol
cannot be used for count. The maximum value allowed
for the count operand is 32767.

Note: For all prec i s ions other than BYTE, opnd 1 and
opnd2 must spec i fy even addresses.

The count operand can include the precision of the
data. Since these operations are parallel (the two
operands and the result are implicitly of like pre­
cision) only one precision specification is
requ ired. That spec if i cat i on may take one of the

Chapter 3. Instruction and Statement Descriptions 201

I MOVE

FKEV=

TKEV=

fo llow i ng forms:

BYTE
WORD
DWORD
FLOAT
DFLOAT

Byte precision
Word precision
Doubleword precision
Single-precision floating-point
Extended-pr~cision floating-point

The default precision is WORD.

The precision specification may be substituted for
the count spec if i cat i on, in wh i ch case the count
defaults to 1, or it may accompany the count in the
form of a sublist: (count,precision). For exam­
ple, MOVE A,B,BYTE and MOVE A,B,(l,BYTE) are equiv­
alent.

This oparand provides a cross partition capability
for opnd2 of MOVE. FKEY des-ig-na-Fes the address key
of the partition containing opnd2 (The address key
is one less than the part it i on number). FKEY can
specify either an immediate value from 0 to 7 or the
label of a word containing a value from 0 to 7. If
FKEY is not specified, opnd2 is in the same parti­
tion as the MOVE instruction. If FKEY is specified,
opnd2 cannot be immediate data or an index regis­
ter. However, it can conta i n an index reg i ster if in
the (parameter,tr) format.

This operand provides a cross partition capability
for opndl of MOVE. TKEY designates the address key
of the partition containing opndl (the address key
is one less than the part i t i on number). TKEY can
spec i fy either an i mmed i ate va lue from 0 to 7 or the
label of a word containing a value from 0 to 7. If
TKEY is not spec if i ed, opnd 1 must be in the same
partition as the MOVE instruction. If TKEY is spec­
ified, opndl cannot be an index register. However,
opndl can contain an index register if it is of the
format (parameter,tr).

If TKEY is specified a~d opnd2 is immediate data,
the i mmed i ate data is always 1 word in length
regardless of any precision specification. Howev­
er, a precision specification plus length is used
in determining the total amount of data to be moved.
Refer to Address Indexing Feature for further
information.

Note: Refer to the System Gu i de top icon
"Cross-Partition Services" for additional informa­
t i on on the use of cross-part it ions funct ions.

202 SC34_-0314

o

o

o

o

Px=

Example

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of Th,.
on page 8 for

A,B

TEXT,c' ',(64,BYTE)

VI,V2,16

SAVE,il

i2,INDEX

D,C,(4,DWORD)

F2,Fl,(1,FLOAT)

LR,Ll, (6,DFLOAT)

move word, B to A

move EBCDIC blank to
64-byte field

move V2 to VI, 16 words

index register 1 to SAVE

set index register 2
from INDEX

C to D, 4 doublewords

Fl to F2, single-precision
floating-point

Ll to LR, 6 extended float-.
ing point numbers (24 words)

(BUF,tl),0,(10,FLOAT) 10 floating-point zero value,
to starting address (BUF,il) I~

HERE,$START,FKEY=O

(0,il),12,TKEY=KEY

($NAME,ll),C'
(8,BYTES),TKEV=0

move one word from $START in
partition one to HERE

move contents of 12 to a
word in another partition
at the address specified
by #1

moves blanks into $NAME fiel~

in partition 1 (opnd2 must b,
a word immediate value)~11

! •

Chapter 3. Instruction and Statement Descriptions 20J

MOVEA

MOVEA

Data Manipulation

The address of operand 2 is moved to operand 1.

Syntax

label MOVEA

Required: opndl,opnd2
Defaults: none
Indexable: opndl

Operands

opndl

opnd2

Px=

Example

MOVEA
MCVEA

Description

The name of the var i able in wh i ch the address of
opnd2 is stored.

Thi.s operand determines the address value that is
placed in opndl.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

PTR,A
PTR,B+4

move address of A into PTR
move address of (B)+4 into PTR

The
for

204 SC34-0314

o

o

o

o

o

MULTIPLY

MULTIPLY

Data Manipulation

Signed multiplication of operand 1 by
instruct i on may be abbrev i ated MUL T .

operand 2 • The

.tUU..I.: An over flow cond it ion is not i nd i cated by EDX.

Syntax

label MULTIPLY opndl,opnd2,count,RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=l,RESULT=opndl,PREC=S
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

RESULT=

PREC=XYZ

Description

The name of the variable to which the operation
appl i es; it cannot be a constant.

This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit constant may be specified.

Specify the number of consecutive variables upon
which the operation is to be performed. The maximum
value allowed is 32767.

This operand may optionally be coded with the name
of a variable or vector. in which the result is to be
placed. In this case the variable specified by the
first operand is not modified.

Where X applies to opndl, V to opnd2, and Z to the
result. The value may be either S (single­
precision) or D (double-precision). 3-operand
specification may be abbreviated according to the
following rules:

Chapter 3. Instruction and Statement Descriptions 205

MULTIPLY

Px=

• If no precision is specified, then all operands
are single-precision.

• If a single letter (S or D) is specified, then
it applies to the first operand and result,
with the second operand defaulted to single­
precision.

• If two letters are spec if i ed, then the first
appl i es to the first operand and result, and
the second to the second operand.

Parameter nami ng. operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Mixed-precision Oeerations: Allowable precision combinations
for multiply operations are listed in the following table:

opndl

S
S
0
0

~xample

MULT
MULT

MULT

I opnd2 I Result

S S
S 0
S 0
0 D

C,D,RESULT=E,PREC=SSD
A,10,PREC=D

X,10,2

206 SC34-0314

I Abbrev;at;on I Remarks

S default
SSD
0
DD

double-precision product
double precision variable A
is multiplied by 10

the single-precision yaria~lea
at X and X+2 are each
multiplied by 10.

o

o

o

o

NEXTQ

NEXTQ

Queue Processing

NEXTQ allows the user to add entries to a queue defined by
DEFINEQ. A queue element (QE) is removed from the free chain of
the queue and placed in the act i ve queue.

Syntax

label NEXTQ qname,loc,FULL=,Pl=,P2=

Required: qname,loc
Default: none
Indexable: qname,loc

Operands

qname

loc

FULL=

Px=

Description

The name of the queue in which to place the entry.
T he que u e n a me i s t he I abe I on the DE FINE Q
instruct i on used to create the queue.

The address of one word of storage wh i ch will become
an entry in the queue. This might be a single word
of data or the address of an associated data area.
If loc is coded as 'iI' or '#2' then the contents of
the selected register will become the entry in the
queue.

Use this operand to specify the first instruction
of the routine to be invoked if a "queue full" con­
dition is detected during the execution of this
instruction. If this operand is not specified,
control wi 11 be returned to the next instruction
after the NEXTQ and the user may test the task code
word for a -1 indicating successful compl~tion of
the ope rat i on or a +1 if the queue is full.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Chapter 3. Instruction and Statement Descriptions 207

NEXTQ

Queuing Instructions Programming Example

In the following example all queuing instructions are used. A
buffer pool is defined which contains 4 six word buffers. A
buffer is obtained, GETTIME is executed and the resulting time
is queued. The resulting time is stored in the obtained buff­
er. When all buffers are allocated, the queue entries are
printed on a first-in-first-out basis, then on a last-in­
last-out basis, and the buffers used are freed. Each buffer
pool/queue instruction is executed 8 times.

QTEST
,*

PROGRAM START

* EXAMPLE USING QUEUING INSTRUCTIONS

* START

EMPTY

CHKCTR

ERROR!
DONE

* DATA
TIMEBUF
TIMEQI
TIMEQ2
CTR

FIRSTQ
IF
GETTIME
NEXTQ
NEXTQ
ADD
GOTO

FIRSTQ
LASTQ
ENQT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
DEQT
NEXTQ
GOTO

IF
GOTO
PRINTEXT
PROGSTOP

AREA
DEFINEQ
DEFINEQ
DEFINEQ
DATA
ENDPROG
END

208 SC34-0314

TIMEBUF,LOC
(QTEST,EQ,l),GOTO,EMPTY
*,DATE=YES,P1=LOC
TIMEQl,LOC,FULL=ERRORl
TIMEQ2,LOC,FULL=ERRORl
CTR,l
START

TIMEQl,OUTADDRl,EMPTY=CHKCTR
TIMEQ2,OUTADDR2,.EMPTV=CHKCTR
$SYSPRTR
SKIP=1
*,6,6,Pl=OUTADDRl
SPACES=5
*,6,6,Pl=OUTADDR2

TIMEBUF,OUTADDRI
EMPTY

(CTR,GE,8),GOTO,DONE
START
'~TIMEQ PREMATURELY FULL~'

COUNT=4,SIZE=12
COUNT=lO
CQUNT=lO
F ' 0 '

o

o

NOTE

NOTE

Disk/Tape I/O

NOTE causes the value of a data set's next-record~pointer,

which is maintained by the system, to be stored in your pro­
gram. The next-record-pointer is the relative record number
that wi 11 be retr i eved by the next sequent i al READ or WRITE.

Syntax

label NOTE DSx,loc,P2=

Required: DSx,loc
Defaults: none
Indexable: loc

Operands

DSx

loc

P2=

Description

Operand x spec if i es the re lat i ve data set number in
a list of data sets defined by the user in the PRO­
GRAM statement. The first data set is DSl, the sec­
ond is DS2, and so on. A DSCB name def i ned by a DSCB
statement may be used i n place of D S x.

The address of a full word of storage that will
contain the next record pointer, after NOTE is exe­
cuted. This value can be used as the relative record
number (relrecno) in a subsequent POINT or direct
READ/WRITE operation.

Pa r amet e r nam i ng ope rand. See "Use 0 f The Pa ramete r
N ami n 9 Ope ran d s (P x=) n on p age 8 for fur the r
descriptions.

Chapter 3. Instruction and Statement Descrip~ion5 209

PLOTGIN

PLOTGIN

Graphics

PLOTGIN provides interactive reading of values of data on
curves plotted on screens. The bell is rung and the cross-hai r
cursor is displayed. The program waits for the user to position
the cross-hairs and key any character. That character and the
cursor coordinates, scaled by use of the PLOTCB, are obtained
for use by the program.

Syntax

label

Required: x,y,pcb
Defaults:
Indexable:

no character returned
none

Operands

x,y

char

pcb

Px=

Description

Locations for storage of x and y cursor coordinate
values.

Locat i on where character is to be stored. The
character is stored in the right-hand byte; the
Ie ft byte will be set to zero. I f om i tted, the char­
acter is not stored.

Label of an 8-word Plot Control Block.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Plot Control Block

PlOTCB (Plot Control Block) data areas are required by the
PlOTGIN, XVPlOT, and YTPLOT instructions.

210 SC34-0314

o

o

C::

o

PLOTGIN

The plot control block is 8 words of data defined by DATA state­
ments which provide definition of size and position of the plot
area on the screen and the data values associated with the
edges of the plot area. Indirectly, the scale of the plot is
spec if i ed. The format of a PlOTCB is:

label DATA F'xls'
DATA F'xrs'
DATA F')(lv'
DATA F'xrv'
DATA F'ybs'
DATA F'yts'
DATA F'ybv'
DATA F'ytv'

All 8 explicit values (no addresses) are required and are
explained in the text following:

Ll:i:)(screen location at left edge of plot area

.x...t.a :)(screen location at right edge of plot area

.!..lJ!. :)(data value plotted at left edge of plot

.!.J:..X. :)(data value plotted at right edge of plot

.l!.Ia : y screen location at bottom edge of plot

.d.i. : y screen location at top edge of plot

l!..I2.l. : y data value plotted at bottom edge of plot

l!.t..l : y data value plotted at top edge of plot

Chapter 3. Instruction and statement Descriptions 211

POINT

POINT

. Disk/Tape I/O

POINT causes the value of a data set's next-record-pointer,
which is maintained by the system, to be reset to a new value.
The system will use th is new va 1 ue in subsequent sequent i a 1
data set accesses.

Syntax

label POINT DSx,relrecno,P2=

Required: DSx,relrecno
Defaults: none
Indexable: relrecno

Operands

DSx

relrecno

P2=

Description

The operand x specifies the relative data set
number ina 1 i st of data sets def ined by the user in
the DS parameter of the PROGRAM statement. The
first data set is DS!, the second is DS2, and so on.
A DSCB name defined by a DSCB statement can be sub­
st; tuted for DSx.

The new value of the next record pointer, either a
constant or the label of the value to be used.

Parameter naming operand. See "Use of The Parameter
Nam i ng Operands (PXII)" on page a for further
descripttons.

212 SC34-0314

(., .'lh,.'" I I

_./

o

o

o

POST

POST

Task Control

POST is used to signa I the occurrence of an event.

Syntax

label POST event,code,Pl=,P2=

Requ ired: event
Defaults: code=-l
Indexable: event

Operands

event

code

Px=

Description

The symbolic name of the event. The name may be
def i ned in an EVENT= operand of another
instruct i on, or with an ECB statement. An exp 11 c 1 t
ECB must be coded in programs to be compiled with
$EDXASM.

$SlASM and the S/370 host assembler both provide
automat i c gene rat i on of the ECB for the event named
in the POST instruct i on. It is not necessary to
code an ECB statement with either of these macro
assemblers.

Process interrupts are special events which may be
simulated with a POST. This 15 useful when one task
is wa i t i ng for a process; nterrupt and a second task
wishes to act i vate the first, as ina program term i­
natton sequence. In thts case, tssue a POST PIx
where x ;5 a process interrupt number in the range
of 1-99 as spec if i ed in an IODEF statement.

A value, other than zero, to be inserted tnto the
control block for the event. The code word is
referred to by the event name and may be used as a
flag to indicate a condition or a status.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page a

The
for

Chapter 3. Instruction and Statement Descriptions 213

POST normally assumes the event is in the same partition as the
executing program. However, it is possible to POST an event in
another part i t i on us i ng the cross-part it i on capab iIi ty of
POST. See the System Guide topic on "Cross-Partition Services"
for more information.

214 SC34-0314

o

o

o

o

PRINDATE

PRINDATE

Terminal I/O

PRINDATE prints the date on the terminal. The value is printed
in the form MM/DD/YY or DD/MM/YY, depend i ng upon the opt ion
selected on the SYSTEM statement when the supervisor was gener­
ated.

Syntax

label PRINDATE

Requ ired: none
Defau 1 ts: none
Indexable: none

Operands Description

none none

Chapter 3. Instruction and Statement Descriptions 215

PRINT

PRINT

Listing Control

The PRINT statement is used to control printing of the assembly
listing.

A program may conta in any number of PR INT statements. One
PRINT statement controls the printing of the assembly listing
until another is encountered. Each option remains in effect
unt i I the correspond i ng oppos i te opt i on is spec if 1 ed.

The GEN/NOGEN opt i on is not supported by $EDXASM.

Syntax

blank PRINT ON/OFF,GEN/NOGEN,DATA/NODATA

Requ ired: none
Defaults: (Initially) ON,GEN,NODATA
Indexable: none

Operands

ON

OFF

GEN

NOGEN

DATA

NODATA

Description

The operands may be spec if i ed in any sequence.

A listing is printed.

No listing is printed.

All statements generated by instruct ions are
printed.

Statements generated by instruct ions are not
printed with the exception of MNOTE (error mes­

. sages) which will print regardless of NOGEN. The
instruction itself will still appear in the list­
i ng •

Constants are pr i nted out in fu 11 in the 1 i st i ng.

Only the leftmost 8 bytes of constants are printed
on the listing.

216 SC34-0314

O,I",!" '\.. -

o

o

c

o

PRINTEXT

PRINTEXT

Terminal I/O

PRINTEXT is used to wr i te a message to the termi nal and to con­
trol forms movement. Forms control is always executed before
the message is wr i tten.

Syntax

label PRINTEXT msg,SKIP=,lINE=,SPACES=,XlATE=,
MODE=,PROTECT=,P1=

Requir.d: At least one operand other than XlATE=,
MODE= or PROTECT=

Defaults: SKIP=O,LINE=(current line),SPACES=O,
XLATE=VES,PROTECT=NO

Indexable: msg,LINE,SKIP,SPACES

Operands

msg

SKIP=

Description

The name of a TEXT statement wh i ch def i nes the
message to be printed or an explicit text message
enclosed in apostrophes. If msg is the label of a
BUFFER statement referenced by an act i ve IOCB, then
the output is direct, for example, the count is tak­
en from the buffer index word at msg-4, the new line
character is not recognized, and the operation is
executed immediately. The direct I/O feature is
useful for full control over a device, for example,
to cause overstr i king on a pr inter.

The maximum line size of the terminal is estab­
lished by the TERMINAL statement used to define the
terminal when the system was configured. Refer to
the TERMINAL statement in the System Gu i de for
information on default sizes.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page

Chapter 3. Instruction and Statement Descriptions 217

PRINTEXT

LINE=

SPACES=

XLATE=

MODE=

size, and the remainder is used in place of the
specified value.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the spec if i ed line on the
next page, otherwi se to that 1 i ne on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O position for a terminal or logical screen is
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. Whenever LINE or SKIP is specified on an
instruct ion, the current indent is reset to zero
(carr i age return). For stat i c screens in part i c­
ular, specification of both LINE and SPACES desig­
nates a character pos i t i on in 2-coord i nate form.
If SPACES is specified without LINE or SKIP, then
the indent value is incremented by the value speci­
fied.

To send character codes to the dev ice as is, without
translation by the system, code XLATE=NO. This
option might be used, for example, to transmit
g rap hie con t r 0 1 c h a r a' c t e r san d d a t a • X L ATE = YES
causes translation of characters from EBCDIC to the
termi nals code.

Note: If the terminal requires that characters be
sent in "mirror image", it is the user's responsi­
bility to provide the proper bit representation if
XLATE=NO is used.

Code MODE=LINE if the text includes imbedded a
characters which are not to be interpreted as new
line. For screens accessed in STATIC mode,
MODE=LINE causes protected fields to be skipped
over as the data is transferred to the screen. Pro­
tected pos it ions do not contr i bute to the count. Do
not code this parameter if ~ characters are to be
interpreted as new line.

218 SC34-0314

o

o

o

PROTECT=

Px=

Code

-1
1
2
3
4
5
6
7

>10

PRINTEXT

Code PROTECT=VES to wr i te protected characters to a
screen device for which this feature is supported
(the IBM 4978/4979 display). This operand is mean­
ingful only for STATIC logical screens.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

Description

Successful completion
Device not attached
System error (busy condition)
System error (busy after reset)
System error (command reject)
Device not ready
Interface data check
Overrun received

"Use of
on page 8

The
for

Codes greater than 10 represent possible
multiple errors. To determine the errors,
subtract 10 from the code and express the result
as an 8-bit binary value. Each bit (numbering
from the left) represents an error as follows:

Bit Description

o Unused
1 System error (command reject)
2 Not used
3 System error (DCB specification check)
4 Storage data check
5 Invalid storage address
6 Storage protection check
7 Interface data check

Figure 11. Term ina I I/O Return Codes

.ti.Q..:t...e.: If for devices supported by IOS2741 (2741, PROC) an error
code greater than 128 is returned, subtract 128; the result
then conta i ns status word 1 of the ACCA. Refer to the
Communications Features Description manual for determination
of the special error condition.

Chapter 3. Instruction and Statement Descriptions 219

PRINTEXT

Example o
PRINTEXT TEXT1

PRINTEXT 'aSTART OF PROGRAM'

PRINTEXT TEXT2,SPACES=4

PRINTEXT TEXT3,lINE=1,SKIP=2

PRINTEXT SKIP=1

PRINTEXT CODES,XlATE=NO

,1-·~
I , \, ... -,1

o
220 SC34-0314

o

c'

o

PRINTIME

PRINTIME

Terminal I/O

PRINTIME prints the time of day on the terminal. The value
printed is in the form HH:MM:SS, according to a 24-hour clock,
and is based upon the time value entered during the last $T
en try 0 f time.

Syntax

label PRINTIME

Required: none
Defaults: none
Indexable: none

Dpar.nds Dascr'pt'gn

none none

Chapter 3. Instruction and Statement Descriptions 221

PRINTNUM

PRINTNUM

Terminal I/O

PR INTNUM is used to convert afloat i ng po i nt var i ab Ie or one or
more numer i c integer var i ab les to pr i ntab Ie dec i ma I or
hexadec i mal format and wr i te them to the termi nal wi th opt i anal
format control. Format specification can include, for integer
data, the nUmber of elements per line and the spacing between
elements ean be spec if i ed.

Syntax

label PRINTNUM loc,count,nline,nspace,MODE=,FORMAT=
TVPE=,SKIP=,LINE=,SPACES=,PROTECT=
Pl=,P2=,P3=,P4=

Required: lac
Defaults: count=l,nspace=l,MODE=DEC,PROTECT=NO,

FORMAT=(6,O,I),TVPE=S,
SKIP=O,LINE=current line,SPACES=O
If nlihe is not specified, then it is
determined by the terminal margin settings.

Indexable: loc,SKIP,LINE,SPACES

Operands

lac

count

nline

nspace

Description

Address of the first value to be printed.
Successive values are taken from successive words
or doublewords.

The number of values to be printed. The precision
spec if i cat i on may be subst i tuted for the count
specification, in which case the count defaults to
1, or it may accompany the count in the form of a
sublist: (count,precision). Precision may be
either WORD (the default) or DWORD (double word).

The number of values to be pr i nted per 1 i ne.

The number of spaces by which printed values wi 11 be
separated.

222 SC34-0314

o

o

c

MODE=

FORMAT=

TVPE=

SKIP=

LINE=

PRINTNUM

Code MODE=HEX for hexadecimal output. The default
is decimal (MODE=DEC).

This operand is used to specify, in the form of a
three-element list (w,d,f), the external format of
a single variable to be printed. If this operand is
specified integer or floating-point, then count,
n line, nspace, and MODE are -i gnored. The format is
defined as follows:

w A decimal value equal to the field width in
bytes of the data to be pr i nted.

d A decimal value equal to the number of
significant digits to the right of the decimal
po i nt. For the integer format th i s va I ue must
be zero; for the floatin,g-point F format it
must be less than or equal to w-2, and for the
floating-point E format less than or equal to
w-6.

f Format of the output data

I Integer

F Floating-point F format

E Float i ng-po i nt E format

This operand is used to specify the type of the
internal variable to be printed. Used only in con­
j unct ion with the FORMAT operand.

S Single-precision integer (1 word)
D Double-precision integer (2 words)
F Single-precision floating-point (2 words)
L Extended-precision floating-point (4 words)

The number of lines to be sk i pped before the
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page
size, and the remainder is used in place of the
specified value.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
be r bet wee n 0 an d the n u m be r 0 f t.h e I as t usa b I eli n e
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is

Chapter 3. Instruction and Statement Descrip~ions 223

PR:tNTNUM

SPACES=

PROTECT=

Px=

Example

less than or equal to the current line number, then
the forms will move to the spec if i ed 1 i ne on the
next page, otherwi se to that 1 i ne on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size and the remainder is used in place of
the value.

The I/O pos it i on for a termi na I or log i ca I screen is
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. Whenever LINE or SKIP is specified on an
instruct ion, the current indent is reset to zero
(carriage return). For static screens in partic­
ular, specification of both LINE and SPACES desig­
nates a character pos it i on in 2-coord i nate form.
If SPACES is specified without LINE or SKIP, then
the indent value is incremented by the value speci­
fied.

Code PROTECT=VES to wr i te protected characters to a
dev ice for wh i ch th is feature is supported.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

PRINTNUM A

PRINTNUM BUF1,lO

PRINTNUM AX,MODE=HEX

PRINTNUM BUF2,lO,5,3

PRINTNUM BZ,(lO,DWORD),MODE=HEX

224 SC34-0314

o

o

o

PROGRAM

PROGRAM

Task Control

PROGRAM is used to define basic parameters of a user program.
PROGRAM is the first statement of every user program. When
program assembly is to be done by $EDXASM, the PROGRAM state­
ment may be omitted when assembling a subprogram. (See the MAIN
operand for the def i nit i on of a subprogram.) When program
assembly is to be done by the Host or Ser i es/l macro assem­
blers, the PROGRAM statement must be coded even for subpro­
grams.

Syntax

taskname

Required:
Defaults:

PROGRAM start,priority,EVENT=,
DS=(dsnamel, ••• ,dsname9),PARM=n,
PGMS=(pgmnamel~ ••. ,pgmname9),TERMERR=,
FLOAT=,MAIN=,ERRXIT=,STORAGE=,WXTRN=

taskname,start (except when MAIN=NO)
priority=150,PARM=O,FLOAT=NO,MAIN=VES,
STORAGE=O,WXTRN=VES

Indexable: none

Operands Description

taskname

start

The name to be assigned to the primary task of the
program. A system control block is generated for
each task in an application program. This is known
as the Task Control Block or TCB. The first word of
the TCB is ass i gned the name spec if i ed in the
task name operand. This word is known as the 'task
code word' and has a special significance in pro­
gram operation. For example, in I/O operations it
is used for storing a return code for the user.
Thus, the task name may be used in an IF instruct i on
to test for a successful completion of an I/O oper­
ation.

The label of the first instruction to be executed in
your program. The instruct i on must be on a fu 11 word
boundary.

Chapter 3. Instruction and Statement Descriptions 225

I PROGRAM I
priority

EVENT=

t OS=

J

The pr i or i ty of the program's pr i mary task.
Priorities separate tasks according to their rela­
tive critical real time needs for processor time.
The range is from 1 (highest priority) to 510 (low­
est priority). Priorities 1-255 imply foreground
and are executed on hardware interru~t level 2.
Pr i or it i es 256-510 imply background and are exe­
cuted on interrupt level 3.

EVENT=name is used to name the event which will be
posted when the initial task is detached. It must
be defined only if another ta~k will issue a WAIT
for this event. This event name must not be defined
explicitly by an ECB since it will be generated
automatically.

Names of 1-9 disk, diskette, or tape data sets to be
used by this program. Each name is composed of 1-8
alphameric characters, the first of which must be
alphabetic.

One OSCB is generated in the program header for each
data set specified in the .OS parameter of the PRO­
GRAM statement. The name of each OSCB so generated
is OSI, DS2, ••• , OS9, correspond i ng to the order of
spec if i cat i on of the data set. The name DSx is
assigned to the first word of the OSCB, the event
control block. Fields within the OSCB may be refer­
enced symbolically with the expression:

DSx+name

where name is a label defined in the OSCB equate
table, DSCBEQU.

All tape data sets are of the form (OSN,VOlUME). The
specification of tape data sets is dependent upon
the type of label process i ng be i ng done.

For standard label (Sl) processing the OSN is the
data set name as it is specified in the HOR1 label.
VOLUME is the volume serial as it is specified in
the VOll label.

When doing no label (Nl) processing or bypass label
pro c e s s i·n g (B l P) the v 0 I u me m u s t b e s p e c i fie d a s
the 1 - 6 digits that represent the tape unit 10.
The tape unit 10 was assigned at system generation
time. The DSN is ignored during Nl or BlP processing
but it must be supp lied for syntax check i ng pur­
poses. It also provides identification of the data
set for th i ngs 1 ike error logg i ng.

226 SC34-0314

(:)

o

o

o

PRO.GRAM

If more than one disk or diskette logical volume is
being used, a volume label must be specified if the
data set resides on other than the IPL volume. The
data set name and volume are separated by a comma
and enclosed in parentheses. In addition, the
entire list of data set/volume names are enclosed
ina second set of parentheses. For example:

••• ,DS=(CACTPAY,EDXOOl),(DSDATA2,EDX003»

references the data set ACT PAY on volume EDXOOI and
DSDATA2 on volume EDX003. If a volume is not speci­
fied, the default is the IPL volume.

When one data set is used and it is in the IPL vol­
ume, no parentheses are required. For example:

DS=CUSTFIL

When more than one data set is used and they reside
in the IPL volume, the data set names are separated
by commas and enc losed in parentheses. For exam­
ple:

DS=CCUSTFIL,VENDFIL)

Four special data set names are recognized: ??, $$,
$$EDXLIB, and $$EDXVOL. A data set control block
CDSeB) is created just as for any other data set
name. However, special processing occurs when the
program is loaded for execut ion.

I f the sequence '??' is used as a data set name, the
final data set name and volume specification is
done at program load time. If the program is loaded
by another program, this information must be
conta i ned in the DS operand of the LOAD
instruct i on. If the program is loaded us i ng the
s y s t e m com man d '$ L " the s y s t e m w i 11 q u' e r y the
operator for these names. I f the spec if i ed
sequence is of the form

DS = (Cs"tring,??»

where 'string' is 1-8 alphanumeric characters the
user will be given a prompt message:

stringCNAME,VOLUME)

I f the spec if i ed sequence is of the form

Chapter 3. Instruction and Statement Descriptions 227

PROGRAM

PARM=

DS = 11

the user wi 11 then be gi ven a prompt message

DSnCNAME,VOLUME):

where 'n' is a digit from 1 to 9.

If the sequence '$$' is used as a data set name, a
DSeB is created but no attempt is made to open the
data set. All other data sets are processed in the
norma I fash ion. Th is is use fu 1 for reserv i ng a DSeB
in the PROGRAM header so that it can be filled in
and opened (using DSOPEN) after execution begins.

If '$$EDXLIB is used as a data set name, the 1 i brary
directory of the specified volume is opened for
process; ng. Note that record 1 conta i ns a directory
control entry and the first seven directory member
entr i es. Th i sis useful for the creat i on of ut iii ty
programs or for "do it yourself" data set access.
Update of the directory by user programs is not
recommended since doing so incorrectly could cause
the loss of some or all of the data sets in the vol­
ume.

If .$EDXVOL is used as a data set name, the entire
volume is opened for processing as if it were a sin­
gle data set. The library directory and any data
sets on the volume are accessible. Note that record
number 1 and 2, of a primary volume, can contain IPL
text, and record number 4, of a diskette, contains
the volume label. This is useful if the DISK state­
ment defining the volume did not assign all avail­
able space to a library. It can also be used if the
app 1 i cat i on program does not wish to use Event
Driven Executive data set facilities at all.

In this operand, n 15 a word count specifying the
length of a parameter list to be passed to th is pro­
gram at load time. Each word in the 1 i st may be ref­
erenced by the symbolic name $PARMx where x is the
word position number in the list beginning with 1.
The maximum length of this list is 368 words less 19
for each data set name specified in the DS operand
and each program over lay name spec if i ed 1 n the PGMS
operand.

Th is parameter; 5 va 1 i d for programs to be loaded by
a LOAD instruction. The list address is specified
as an operand of that instruction. The list would
be filled in by the load i ng program and there are no

228 SC34-0314

o

o

o

o

PGMS=

TERMERR=

FLOAT=

MAIN=

PROGRAM

restr i ct ions as to its contents. I f a program is
loaded us i ng $L and it has a PARM spec if i cat i on, the
parameters will be initiallized to zero.

Names of 1-9 programs which may be loaded as
overlays during execution of this program. Pro­
grams are specified by name only if they reside on
the IPL volume or by (name,volume) if they reside
elsewhere. The same coding rules apply as for DS
above.

Space will be reserved within this program for the
largest of the overlay programs identified in this
list, thus insuring that space will be available
for the overlays when the program is executed.
Overlay programs are invoked using LOAD; only one
overlay program can be executed at anyone time
because each one uses the same space. See the
description of the LOAD instruction for additional
information.

Notes:

1. PGMS can only be coded for a main program and
not in the PROGRAM statement of an overlay pro­
gram.

2. PGMS cannot spec; fy tape data sets.

When overlay programs have been speci fied in the
PROGRAM statement of an app I i cat i on program, a DSeB
is created in the program header for each such over­
lay. Each of these can be referred to by the name
PGMx where x ;s a number from 1 to 9 corresponding
to the order of specification of the program name.
Fields within these DSCBs may be referenced as
PGMx+name where name is a label defined in the DSCB
equate table, DSCBEQU.

Specifies the label of a routine which will handle
unrecoverable terminal errors. See "Error
Handling" on page 44 for a description of the use of
th i s operand.

Spec i fy FLOAT=VES iff loat i ng po i nt instruct ions
are used by the initial task.

Spec i fy MAIN=NO if th is program does not conta i n
the, pr i mary task of a program. For example, code
MAIN=NO if th i s program is a subrout i ne or any other
section of a program which is being prepared sepa­
rately and will later be link-edited to a main pro-

Chapter 3. Instruction and Statement Descriptions 229

PROGRAM

ERRXIT=

gram. Such a program is ca lied a subprogram. Link
editing of program modules is only possible with
the $LINK ut iii ty from the Program Preparat i on
Facility, (S719-XX2 or S719-XX3) or Series/l macro
assembler, (S719-ASA).

Note: Subprograms must not contain TASK, ENDTASK,
or ATTNLIST statements.

MAIN=NO suppresses the generation of the Program
Header and the Task Control Block, thereby reducing
the storage size of the subprogram. If MAIN=NO then
none of the other operands of the PROGRAM statement
are mean i ngfu 1.

When a subprogram is to be assembled by $EDXASM the
PROGRAM statement may be omitted entirely.

Specifies the label of a 3 word list which points to
a routine which is to receive control if a hardware
error or program except i on occurs wh i Ie the pr i mary
task is executing. This task error exit routine
must be prepared to completely handle any type of
program or mach i ne error. See the SYstem Gu j de
sect i on on Task Error Ex i ts before attempt i ng to
use the operand.

I f the pr i mary task is part of a program wh i ch
shares resources such as QCBs, ECBs, or Indexed
Access Method update records with other programs,
it is often necessary to re lease these resources
even though your program cannot cont i nue because of
an error. the supervisor does not release
resources for you, but the task error exit faci lity
enables you to take whatever action that is appro­
priate.

The format of the task error ex i t list is:

230 SC34-0314

()

/-- "\

~,,'

c

o

C""","
I

o

STORAGE=

WORD 1

WORD 2

WORD 3

PROGRAM

The count of the number of parameter
words which follow (always F'2')

The address of the user's error exit
routine

The address of a 24 byte area in
which the level Status Block (lSB)
and Processor Status Word (PSW)
from the point of error are placed
before the exit routine is entered.
Refer to a Series/l processor
description manual for a description
of the lSB and PSW.

Specifies in bytes the quantity of additional
storage which should be added to the si ze of the
program itself when it is loaded for execution.
This provides a dynamic increment of storage at
load time. This value may be overridden by a param­
eter on the lOAD instruction, thus dynamically
altering the space available to the program. The
address and length of the additional storage is
contained in the variables $STORAGE and$lENGTH
respectively and may be referenced by your program
during execution.

The amount of storage is rounded up to a mu I tip 1 e of
256 bytes. $lENGTH contains the number of 256 byte
pages that are avai lable for current execution. If
no dynam i c area is spec if i ed, $ lENGTH conta ins 0
and $STORAGE contains the address of the program's
pr i mary task.

Storage can be any value from 0 to 65,535 minus the
$'ize of the program itself. If the storage required
is not avai lable at lOAD time, the program wi 11 not
be loaded.

The amount of storage requi red by a program for such
things as buffers, queues, or data often varies
depending on its input. Dynamic storage provides a
way to adjust the amount of storage available with­
out recompiling your program. The PROGRAM state­
ment can be used to define the amount of dynamic
storage for either min i ma I or typ i ca I process i ng
requirements and the lOAD instruction can be used
to expand the work space when processing will
r e qui r e more st 0 rage • For e x amp 1 e , on a d ail y bas i s
a program may have to read about 1000 bytes of data
into storage, analyze it and format it into a
report. Once a month it may be required to process

Chapter 3. Instruction and Statement Descriptions 231

PROGRAM

WXTRN=

30 days worth of data (30,000 bytes) 1 n the same
way. Instead of wast i ng 29,000 bytes of storage
every day, dynamic storage can be used to adjust the
size to meet requ i rements.

Spec i fy WXTRN=NO if WXTRN statements for entry
po i nts SVC, SETBUSY, and SUPEXITare not to be gen­
erated by PROGRAM. WXTRN=YES causes the WXTRNs to
be created. These entry points must be defined for
Series/l assembler language programs which contain
references to them; however the WXTRNs have no
effect on programs which do not refer to them and
thus the default is WXTRN=VES. The NO option is
provided primarily to allow selective use of EXTRN
statements for the entry points at the discretion
of Series/l assembler language programmers.

Examples of valid PROGRAM statements

TASKI PROGRAM STARTI

The primary task is named TASKl and the first executable
instruction has the label STARTI. The priority of TASKI
is the default priority, 150.

TASK2. PROGRAM BEGIN,300,FLOAT=YES

The primary task, which is named TASK2, has a priority
300 and starts at the label BEGIN. Floating point
instructions will be used.

TASK3 PROGRAM GOPROG,DS=NAMEI

The primary task, TASK3, starts at GOPROG. One data set,
NAMEI, is defined. All disk I/O statements will refer
to this data set by the symbolic name DSI.

232 SC34-0314

o

o

o

o

PROGRAM

TASK4 PROGRAM START4,DS=CCMVDATA,110011»

The primary task, TASK4, starts at START4 and uses one tape
data set. That data set is on a standard labeled tape where
the VOL1 label contains 110011 as the volume serial number
and the HDR1 label contains MVDATA as the data set name.
These labels were written using the $TAPEUT1 utility INITIAL­
IZE function.

TASKS PROGRAM STARTS,DS=«$$EDXVOL,TU088»

The primary task, TASKS, starts at STARTS and uses one tape
data set. That tape data set is either on a no label tape or
bypass label processing is being used and the tape device 10
is TU088.

TASK6 PROGRAM START6,DS=C??,CNAME2,EDX002»,
PGMS=(OLAV1,OLAV2),STORAGE=1000

TASK6 starts at START6. Two data sets are defined. The name
of DS1 will be specified at program load time. The second
data set, DS2, has the name NAME2 and resides on the logical
volume named EDX002. Two overlays are defined, OLAVI and
OLAV2. A IOOO-byte area will be appended to the program and
its address placed in $STORAGE.

TASK7 PROGRAM START7,DS=(MVDSI,CMVDS2,100001),
(OUTPUT,??),??)

The primary task, TASK7, starts at START7 and uses 4 data
sets. MVDSI is a disk or diskette data set in the IPL vol­
ume. MVDS2 is a tape data set on standard labeled tape num­
ber 100001. The last two data sets require operator promp~­
ing. The third data set will be prompted for as
OUTPUTCNAME,VOLUME); the fourth will be prompted as
DS4CNAME,VOLUME). Either or both of the latter data sets may
be specified by the operator as disk, diskette, or tape data
sets.

Chapter 3. Instruction and Statement Descriptions 233

PROGSTOP

PROGSTOP

Task Control

PROGSTOP is used to termi nate execut i on of a program and
release the storage allocated to it. There can be more than one
PROGSTOP statement in a program. You are responsible for
ensuring that all other tasks in a program are inactive at the
time when the last active task of the program executes a
PROGSTOP. The results of executing a PROGSTOP in a program
with multiple active tasks are unpredictable.

You are also responsible for assuring that no asynchronous
events remain outstanding. If your program contains an ECa for
an event that has not yet occurred, you must WAIT on the event
before PROGSTOP. The following instructions can generate
asynchronous events: READ, WRITE, STIMER, LOAD, ENQ, and ENQT.
Also, if your program can be posted by another program, you
must WAIT for the POST or proh i bit the other program from post­
i ng before execut i ng PROGSTOP.

PROGSTOP wi 11 perform a close (CONTROL CLSOFF) for any open
tape data set that was defined by the PROGRAM statement or
passed by another program.

Note that comments cannot be included on a PROGSTOP statement,
unless one or both of the allowable operands are included in
the instruction.

Syntax

label PROGSTOP code,LOGMSG=,Pl=

Required: none
Defaults: code = -1, LOGMSG=YES
Indexable: none

Operands Description

code The posting code to b~'inserted in the EVENT named
in the assoc i ated LOAD statement.

234 SC34-0314

(-~'
,I, •.•)

/" ,

o

o

o

LOGMSG=

P1=

PROGSTOP

Code either YES or NO to indicate whether or not a
"PROGRAM ENDED" message is to be typed on the term i­
na 1 be i ng used by th is program.

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

Chapter 3. Instruction and Statement Descriptions 235

PUTEDIT

PUTEDIT

Data Formatting

PUTEDIT is used to get data from variables within the program,
convert it to a character str i ng, and either store it in an out­
put text buffer or send it to a termi nal.

PUTEDIT uses the specified FORMAT statement and the data list
and converts and moves the elements one by one into the text
buffer.

Syntax

label

Required:

Defaults:

PUTEDIT format,text,(list),(format list),
ERROR=,ACTION=,SKIP=,LINE=,SPACES=,
PROTECT=

text, (list), and either format
OR (format list)
ACTION=IO,PROTECT=NO

Indexable: none

operands

format

text

Description

The name of a FORMAT statement or the name to be
attached to the format list optionally included
within this instruction. This statement or list
wi 11 be used to control the conversion of the data.
Th is operand is requ ired if the program is comp i led
with $EDXASM.

The name of a text statement defining the teJCt
buffer. If data ;s moved to the terminal, this buff­
er stores the data (as an EBCDIC character string)
after; t ; s converted from the var; abIes and before
it is sent to the term; nal.

~: This TEXT statement must be large enough to
contain all the EBCDIC characters generated by this
instruction.

236 SC34-0314

o

o

()

o

list

PUTEDIT

A description of the variables or locations which
conta in the input data, hav i ng the form:

((variable,count,type),----)
or
(variable,----)
or
((variable,count),----)
or
((variable,type),----)

where:

variable - is the name of a variable or group of
variables that are to be converted to EBCDIC.

count - is the number of variables that are to be
converted.

type - is the type of the variable to be converted

S - Single-precision integer (Default)
D - Double-precision integer
F - Single-precision floating-point
L - Extended-precision floating-point

Type will default to S for integer format data
and to F for floating-point format data.

format list A FORMAT list. If you wish to refer to this format
statement from another PUTEDIT instruction, then
both the format and format list operands must be
coded. Refer to the FORMAT statement for coding
instructions. This operand is not allowed if the
program is assemb led with $EDXASM.

ERROR- The name of a user's routine to branch to ff an
error fs detected durfng the PUTEDIT eKecution.
Errors that m; ght occur that will cause th t 5 act i on
to take place are:

• Use of t ncorrect format If st

• Not enough space in text buffer to sattsfy the
data list

The error indicators (return codes) follow:

Chapter 3. Instruction and Statement Descriptions 237

PUTEDIT

Return Codes

Code Description

-1 Successful completion
1 No data in field
2 Field omitted
3 Conversion error

ACTION= 10 causes a PRINTEXT to be executed following the
data convers; on.

SKIP=

LINE=

SPACES=

STG causes the conversion and movement of data
i n't 0 ate x t b u f fer. No I/O t a k e s p I ace.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page si ze (BOTM-TOPM­
NHIST), then it is divided by the page size, and
the remainder is used in place of the specified
value.

This operand is used to specify th, line at which
the next I/O operation will take place. Code a
number between 0 and the number of the last usable
line on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwise to that line on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O position for a terminal or logical screen
is defined by the line number and the position,
within that line, of the typing element or cursor.
The SPACES parameter is used to specify an incre­
ment to the cursor position. It does not imply
over-printing with blank characters on display
screens. Whenever LINE or SKIP is specified on an
instruction, the current indent is reset to zero

238 SC34-0314

(

I, ~
"J

..)1

o

o

o

PROTECT=

Example

TEXTl
FM

PUTEDIT

(carriage return). For static screens in partic­
u I a r, s p e c i f i cat ion 0 f bot h LIN E and SPA C E S des ,i g­
nates a character position in 2-coordinate form.'
If SPACES is specified without LINE or SKIP, then
t'he indent value is incremented by the value spec­
ified.

Code PROTECT=YES to write protected characters to
a screen device for which this feature is sup­
ported. (The IBM 4978/4979 display). This oper­
and is meaningful only for STATIC logical screens.

PUTEDIT

TEXT
FORMAT

FM,TEXTI,(A,(B,F),(C,L»

LENGTH=28
(I4/F6.2,2X,'DATA=',EIO.4)

The above example will convert the integer A into the first 4
pos it ions of TEXTl 'followed by a carr i age return command.
Then, the next 6 positions will contain the variable B followed
by 2 spaces. The literal 'DATA=' will then follow with the
extended precision variable C converted into the last 10 posi­
tions.

Note: $LINK must he used in order to include the formatting
routines which are supplied as object modules. Refer to "Data
Formatting Instructions" on page 18 for additional"
information.

Chapter 3. Instruction and Statement Descriptions 239

QCB

Task Control

QCB generates a fi ve-word Queue Control Block (QCB) for use
with the E N Q and D E Q instructions.

Normally this statement will not be needed in application pro­
grams if the program is to be assemb led by the Host or Ser i es/1
macro assemblers. In this case queue control blocks are auto­
matically generated for the user as a consequence of naming a
resource ina DEQ instruct i on. However, it may be used for spe­
cial purposes such as controlling their location within a pro­
gram. The user must exp Ii cit 1 y code any necessary QCBs in
programs that are to be comp i led by $EDXASM.

A maximum of 25 QCB statements may be coded in a program. If
more than 25 QCBs are required, they must be coded using the
DATA statement. For example:

QCB1 QCB

is equivalent to coding,

QCB1 DATA
DATA
DATA

F'-1'
2F'0'
2F'0'

Note that QCB is not an executable statement and should there­
fore not be p laced between executable instruct ions.

Syntax

label QCB code

Required: label
Defaults: code = -1
Indexable: none

240 SC34-0314

,/

o

o

0 1
I,'

Oeerands

label

code

Description

The label of the QCB statement is used as the name
of the resource it represents. It is used as an
operand in ENQ and DEQ instruct ions.

Initial value of the code field (word 1). If this
word is non-zero, the resource whose usage is con­
trolled by this QCB is defined as not in use.

Chapter 3. Instruction and Statement Descriptions 241

QUESTION

QUESTION

Terminal I/O

QUESTION allows the terminal operator to choose the direction
of a conditional branch in the program. The prompt message
(normally in the form of a question) is printed uncondi­
tionally, after which the operator may enter Y (or any string
beginning with Y) for yes, or N (or any string beginning with N)
for no. Note that advance input may accompany the response. If
an invalid response is entered, the operator is prompted until
a Y or N is entered. The QUESTION instruction must be issued
only to terminals which have input capability for response to
the prompt.

Syntax

label

Required:
Defaults:

QUESTION pmsg,YES=,NO=,SKIP=,lINE=,
SPACES=,Pl=

pmsg and either YES= or NO=
If either YES or NO is not specified,
the corresponding response (Y or N)
will cause the next instruction to be
executed.

Indexable: pmsg,SKIP,lINE,SPACES

Operands

pmsg

YES=

NO=

SKIP=

Description

The prompt message, specified either as the name of
a TEXT statement or as an explicit message enclosed
in quotes.

label of the command at which execution
cont i nue if the answer is YES.

wi 11

The label at which execution will continue if the
answer is NO.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size

242 SC34-0314

o

o

o

o

o

LINE=

SPACES=

PI=

Example

QUESTION

(BOTM-TOPM-NHIST), then it is divided by the page
size, and the remainder is used in place of the
specified value.

This operand is used to specify the line at which
the next I/O operation will take place. Code a num­
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the spec if i ed 1 i ne on the
next page, otherwise to that line on the current
page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O position for a terminal or logical screen is
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor position. It does not imply
over-printing with blank characters on display
screens. Whenever LINE or SKIP is specified on an
instruct i on, the current indent is reset to zero
(carr i age return). For stat i c screens in part i c­
ular, specification of both LINE and SPACES desig­
nates a character pos i t i on in 2-coord i nate form.
If SPACES is specified without LINE or SKIP, then
the indent va I ue is incremented by the va I ue spec i­
fied.

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

QUESTION
QUESTION
QUESTION

TEXT3,VES=POINTI
'DO IT AGAIN?',NO=EXIT
'RESTART?'.,VES=INITIAL,NO=ENDP

TEXT3 TEXT 'GO TO POINTI?'

Chapter 3. Instruction and Statement Descriptions 243

RDCURSOR

RDCURSOR

Terminal I/O

RDCURSOR is effective only for IBM 4978/4979 terminals
accessed in STATIC mode. It is used to store the cursor posi­
tion (line number and indent relative to the logical screen
mar gin s) i n use r - 5 P e c i fie d v a ria b 1 e s • For m 0 rei n format i on on
STATIC screens refer to "Terminal I/O Instructions" on page 44.

Syntax

label RDCURSOR line, indent

Required: line, indent
Defaults: none
Indexable: line, indent

Operands

line

indent

Example

RDCURSOR
RDCURSOR

Descrjption

The name of the var i able in wh i ch the cursor
position, relative to the top margin of the logical
screen accessed, is to be stored. I f the cursor
lies outside the line range of the logical screen,
then -1 is stored.

The name of the var i ab Ie in wh i ch the cursor
position, relative to the left margin of the log­
ical screen, is to be stored. If the cursor posi­
tion is not within the left and right margins of the
logical screen, then -1 is stored.

LN,SP
(V,ll),(X,ll)

244 SC34-0314

o

o

o

READ

READ

Disk/Tape I/O

READ is used to retrieve one or more records from a direct
access or tape data set into a user storage buffer. It is your
responsibility to ensure that sufficient buffer space has been
defined. Direct access data sets can be read either sequen­
tially or randomly. These data sets are read in 256-byte record
increments.

Tape data sets are read sequenti ally only. A tape READ
retrieves a record from 18 to 32767 bytes long, as specified by
the blksi ze parameter.

Syntax

label READ DSx,loc,count,relrecnolblksize,
END=,ERROR=,WAIT=,P2=,P3=,P4=

Required: DSx,loc
Defaults: count=l,relrecno=O or blksize=256,WAIT=VES
Indexable: loc,count,relrecno or blksize

Operands Description

DSx

loc

count

x specifies the relative data set number in a list
of data sets defined by the user on the PROGRAM
statement. It must be in the range of 1 to n, where
n is the number of data sets def i ned in the 1 i st. A
DseB name def i ned by a DSCB statement can be subst i­
tuted for DSx.

The label of the area into which the data is read.

The number of contiguous records to be read. If
this field is set to 0 by the program, no I/O oper­
ation wi 11 be performed. A count of the actual num­
ber of records transferred will be returned in the
second word of the task control block if WAIT=VES is
coded. Note, however, if the incorrect blocksize
was specified, the actual blocksize will be stored
in the second word of the TeB, not the number of
records transferred. I f an end-of-data cond it i on

Chapter 3. Instruction and Statement Descriptions 245

READ

relrecno

blksize

f

occurs (fewer records remaining in the data set
than specified by the count field) the system will
first read the rema i nder and then an end-of-data
return code wi 11 be set.

T h i so per and s p e c i fie s the n u m b e r of the record,
relative to the origin of the data set, to be read.
Numbering begins with 1. This parameter may be a
constant or the label of the .value to be used. A
specification of 0 or default to 0 indicates a
sequential READ. Note however, if 0 is specified,
the end-of-data will be the physical end-of-data,
but if relrecno defaults to 0 end-of-data will be
the logical end-of-data.

This disk READ operand cannot be used in the same
instruction with the tape READ blksize operand.

Sequential READs and WRITEs start with relative
record 1 or the record number specified by a POINT
instruction. The supervisor keeps track of sequen­
ti al READs and WRITEs and increments an internal
next record pointer for each record read or written
in sequential mode (relrecno is 0). Direct READs
and WR I TEs (re I recno is not 0) may be i nterm i xed
with sequential operations, but these do not alter
the next sequential record pointer used by sequen­
tialoperations.

This operand determines the number of bytes to be
read from a tape data set. The range is from 18 to
32767. The value can either be a constant or the
label of the value to be used. If this operand is
not coded, orif o. is coded, the default value of
256 bytes wi 11 be substituted.

The first word of the TCB will contain the return
code for the READ operation. If the specified
blksi ze does not equal the actual blksi ze, the
ERROR path will be taken and the second word of the
TCB will contain the actual blksize. Note, however,
that the blksize is only stored in the second word
of the TCB if WAIT=YES is coded, or WAIT is not
coded and allowed to default to YES. If you code
WAIT=NO and the bl.sksize specification is incor­
rect, you can check the $DSCBR3 field in the DSCB
for the actual number of records read or the actual
blksize.

246 SC34-0314

o

()

o

o

o

END=

ERROR=

WAIT=

Px=

READ

This tape READ operand cannot be used in the same
instruction with the disk READ relrecno operand.

Use this operand to specify the first instruction
of the routine to be invoked if an end-of-data-set
condition is detected (return code=10). If this
operand is not specified, an EOD will be treated as
an error. This operand must not be used if WAIT=NO
is coded.

For tape data sets, if END is not coded, reading a
tapemark wi 11 also be treated as an error. The phys­
i cal p 0 sit i on of the tape , under t his con d i t ion, i s
the read/write head position is immediately follow­
ing the tapemark. See CONTROL close functions for
repositioning of the data set. Remember also that
the count field might not be decremented to zero.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after the READ and
you must test the return code in the task code word
for errors. Th is operand must not be used if
WAIT=NO is coded.

If this operand is allowed to default or if it is
coded as WAIT=YES, the current task wi 11 be sus­
pended unt i 1 the operat i on is complete.

If the operand is coded as WAIT=NO, control will be
returned after the operation is initiated and a
subsequent t~AIT DSx must be issued in order to
determ i ne when the operat ion is comp lete.

END and ERROR cannot be coded if WAIT=NO is coded.
You must subsequently test the return cod~ in the
Event Control Block (ECB) named DSx or in the task
code word (referred to by 'taskname'). Two codes
are of special significance. A -1 indicates a suc­
cessful end of operation. A +10 indicates an 'End
of Data Set- and may be of logical significance to
the program rather than be i ng an error. For
programming purposes, any other return codes should
be treated as errors.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Chapter 3. Instruction and Statement Descriptions 247

READ normally assumes the buffer (lac operand) is in the same
partition as the currently executing program. However, a READ
into a buffer in another partition is possible using the
cross-part it i on capab iIi ty of READ. See the System Gu i de top i c
on "Cross-Partition Services" for more information.

Disk/Tape Return Codes

Disk/tape I/O return codes are returned in two places:

• The first word of the DSCB (either DSn or DSCB name) named
DSn, where n is the number of the data set being refer­
enced.

I. The task code word (referred to by taskname).

The possible return codes and their meaning for disk and tape
are shown in tab les later in th is sect i on.

Fa llow i ng an error cond it i on on tape, the read/wr i te head pas i­
tion is immediately following the error record. The error retry
has been attempted, but was unsuccessful. The count field may
or may not have been decremented to zero under th i s cond it i on.

If detailed information concerning an error is desired, it may
be obtained by printing all or part of the contents of the disk
data blocks (DDBs) or tape data blocks (TDBs), located in the
supervisor area of partition 1. This can be accomplished in
either of two ways: (a) by using the SLOG utility (see System
Guide for details of use), or (b) by using the following inf.or­
mati on. The starting address of the DDBs/TDBs may be obtained
from the link-edit map of the supervisor. DDBs/TDBs can also be
located by the field SDISKDDB in the communications vector
table (CVT). Use the PROGEQU equate table to reference
SDISKDDB, DDBEQU equate table for DDB, and the TDBEQU equate
tab Ie for the TDB fie Ids. The contents of the DDBs and the TDBs
are descr i bed in the IBM Ser i es/l Event Dr i ven Execut; ve
Internal Design, LY34-0168, under the headings of 'Disk Data
Block', 'DDB Equates'. Of particular value are the Cycle Steal
Status Words and the Interrupt Status Word save areas, along
wi th the contents of the word wh i ch conta i ns the address of the
next DDB/TDB in storage.

248 SC34-0314

o

(f-·~

\~~,,)

o

o

C
·!l\~,:

!

o

READ

Disk/diskette Return Codes

READ/WRITE return codes are returned in two places:

• The Event Control Block (ECB) named DSn, where n is the
number of the data set being referenced.

• The task code word referred to by taskname.

The poss i b Ie return codes and the i r mean i ng are shown in
Figure 18 on page 321.

If further information concerning an error is required, it may
be obtained by printing all or part of the contents of the Disk
Data Blocks (DDBs) located in the Supervisor. The starting
address of the DDBs may be obta i ned from the linkage ed i tor map
of the supervisor. The contents of the DDBs are described in
the Internal Design. Of particular value are the Cycle Steal
status Words and the Interrupt Status Word save areas, along
wi th the contents of the word wh i ch conta i ns the address of the
next DDB in storage.

Code Description

-1 Successful completion.
1 I/O error and no device status present

(This code may be caused by the I/O area starting
at an odd byte address).

2 I/O error trying to read device status.
3 I/O error retry count exhausted.
4 Error on issuing I/O instruction to read device

status.
5 Unrecoverable I/O error.
6 Error on issuing I/O instruction for normal I/O.
7 A 'no record found' condition occurred, a seek

for an alternate sector was performed, and another
'no record found' occurred i.e., no alternate is
assigned.

9 Device was 'offline' when I/O was requested.
10 Record number out of range of data set--may be an

end-of-file (data set) condition.
11 Device marked 'unusable' when I/O was requested.

Figure 12. READ/WRITE return codes

Chapter 3. Instruction and Statement Descriptions 249

READ

Tape Return Codes

Code Description

-1
1
2
4
5
6

10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
76

Example

ABC
STARTl

Successful completion
Exception but no status
Error reading STATUS
Error issuing STATUS READ
Unrecoverable I/O error
Error issuing I/O command
Tape mark (EOD)
Device in use or offline
Wrong length record
Not ready
File protect
EOT
load point
Uncorrected I/O error
Attempt WRITE to unexpired data set
Invalid blksize
Data set not open
Incorrect device type
Incorrect request type on close request
Block count error during close
EOVI label encountered during close
DSN not found

PROGRAM
READ

STARTl,DS=CCMYDATA,234567»
DS1,BUFF,1,327,END=END1,ERROR=ERR,WAIT=YES

This statement reads a single 327-byte record from a
standard labeled CSl) tape. If an end of data set tapemark
is detected, control is transferred to the statement named
ENOl. If an error occurred, control transfers to the
statement named ERR.

ABCD
START2

PROGRAM
READ

START2,DS=C(MYDATA,234567»
DSl,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES

This statement performs the same as the previous example
except that 2 records are read into your storage buffer
(BUFF2). BUFF2 must be 654 bytes in length.

250 SC34-03l4

(}

o

o

C"

o

READTEXT

READTEXT

Terminal I/O.

READTEXT is used to read an alphameric text string entered by
the term ina 1 operator. The pr i nt i ng of an assoc i ated prompt i ng
message may be either unconditional or conditional depending
upon the absence of advance input.

Syntax

label READTEXT loc,pmsg,PROMPT=,ECHO=,TVPE=,
MODE=,XLATE=,SKIP=,LINE=,SPACES=

Required: loc
Defaults: PROMPT=UNCOND,ECHO=VES,TVPE=DATA,MODE=WORD,

XLATE=YES,SKIP=O,LINE=current line,SPACES=Q
Indexable: 10c,pmsg,SKIP,LINE,SPACES

Operands

loc

Description

This operand is normally the label of a TEXT
statement defining the storage area which is to
rece i ve the data; the storage area may be def i ned by
DATA or DC statements as well, but the format
produced by the TEXT statement must be adhered to.
In ord~r to satisfy the length specification, the
input will be either truncated or padded to the
right with blanks as necessary.

If the length specification is greater than the
system buffer size, then the length will be lim i ted
to the buffer size. I f a user buffer is spec i f i ed on
the IOCB statement and you have issued an ENQT to
the ·corresponding terminal, then the user buffer
si ze wi 11 apply to the input length.

This operand may also be the label of a BUFFER
statement referenced by an active IOCB statement.
In this case the input is "direct;" the maximum
input count is taken from the word at loc-2, i mbed­
ded blanks are allowed, and the final input count is
placed in the buffer index word at 10c-4.

Chapter 3. Instruction and Statement Descriptions 251

READTEXT

pmsg

PROMPT=

ECHO=

MODE=

The max i mum line size for the termi nal is estab­
lished by the TERMINAL statement used to define the
terminal when the system was configured. Refer to
the TERMINAL statement in the System Gu i de for
information on the default sizes.

The name of a TEXT statement or an explicit text
message enclosed in apostrophes. This defines the
prompting message which wi 11 be issued according to
the value of the PROMPT operand.

Code PROMPT=COND (conditional)
PROMPT=UNCOND (unconditional).

or
If

the default
conditional

prompt i ng is spec if i ed and the term ina 1 user enters
advance input, the message def i ned by the pmsg
operand is not displayed. Unconditional prompting
causes the message to be displayed without regard
to the presence of advance input.

Note: If PROMPT=COND is coded without
specification of a prompt message, then the system
wi 11 not wait for user input if advance input is not
presented; instead, the rece i vi ng TEXT buffer is
fi lIed with blanks and its input count is set to O.

Code ECHO=NO if the input text is not to be printed
on the terminal. This operand is effecti ve only for
dev ices wh i ch requ ire the processor to 'echo' input
data for printing.

~: The specification PROTECT=VES is equivalent.

Code MODE=WORD if the input
terminated by the entry of
(space).

operation
a blank

is to ~e
character

Code MODE=LINE if the string to be read can include
imbedded blanks.

Any portion of the input which extends beyond the
count indicated in the recelvlng TEXT statement
will be ignored and will not be retained as advance
input.

When READTEXT is directed to a stat i clog i cal
screen, the inp~t operation is normally terminated
by the count being decremented to zero (the input
buffer size), by the beg i nn i ng of a protected
field, or by the end of the logical line. However,
if MODE=LINE, the TVPE operand will determine
whether protected fie Ids are sk i pped and whether
they contribute to the count, and the input oper-

252 SC34-0314

o

;r- -~,

\ ,.)

c

o

eM", . . ",

I

o

TYPE

XLATE=

SKIP=

LINE=

READTEXT

at i on may cont i nue beyond the log i ca 1 screen bound­
ary to the end of the phys i cal screen. In th i s
case, input cont i nues from the end of each phys i ca 1
screen 1 i ne to the beg i nn i ng of the next 1 i ne.

This parameter is used to specify the type of data
to be transferred from 4978/4979 terminals.

The default is TYPE=DATA.
transferred.

Only data fields are

Code TYPE=ALL to transfer both protected and data
(non-protected) fields.

TYPE=MODDATA is used to transfer only those data
fields which have been modified by the terminal
operator (4978 only).

Code TYPE=MODALL to transfer, along with each modi­
fied data field, the protected fields which precede
it.

Code XLATE=NO ; f the input 1; ne is not to be
translated to EBCDIC. Note that the character
delete and line delete codes lose their special
functions under this option, and that MODE=LINE is
implied •

.1:i£.t..g,: If the terminal is of the type that transmits
characters in "mi rror i mage" format, the characters
wi 11 be placed in storage in that format if XLATE=NO
is used. XLATE=VES causes the superv i sor to trans­
late the terminal's binary code to EBCDIC, the
standard Ser i es/l representat i on of data.

The number of lines to be skipped before the next
operation. If a current concatenated line has not
been written, then the first skip causes output of
that line. If the value specified is greater than
or equal to the logical page size
(BOTM-TOPM-NHIST), then it is divided by the page
size, and the remainder is used in place of the
specified value.

This operand is used to specify the line at which
the next I/O operation wi 11 take place. Code a num­
ber between 0 and the number of the last usable line
on the page (BOTM-TOPM-NHIST). For hardcopy
devices or roll screens, if the value specified is
less than or equal to the current line number, then
the forms will move to the specified line on the
next page, otherwise to that line on the current

Chapter 3. Instruction and Statement Descriptions 253

READTEXT

SPACES=

page. In any case, if the value exceeds the last
usable line number, then it is divided by the log­
ical page size, and the remainder is used in place
of the specified value.

The I/O po sit ion for ate r min a lor log i cal s c r e e n i s
defined by the line number and the position, within
that line, of the typing element or cursor. The
SPACES parameter is used to spec i fy an increment to
the cursor pos it i on. It does not imply
over-p r i nt i ng with b lank characters on d i sp lay
screens. Whenever LINE or SKIP is specified on an
instruct i on, the current indent is reset to zero
(carriage return). For static screens in partic­
ular, specification of both LINE and SPACES desig­
n ate sac h a r act e r p o·s i t ion i n 2 -c 00 r din ate f d r m •
If SPACES is specified without LINE or SKIP, then
the indent value is increased by the value speci­
fied.

254 SC34-0314

()

,'{_. '1\
I

\~-~

o

o

o

READTEXT

Return Codes

Code

-1
1
2
3
4
5
6
7

>10

Description

Successful completion
Device not attached
System error (busy condition)
System error (busy after reset)
System error (command reject)
Device not ready
Interface data check
Overrun received
Codes greater than 10 represent possible
multiple errors. To determine the errors,
subtract 10 from the code and express the result
as an 8-bit binary value. Each bit (numbering
from the left) represents an error as follows:

Bit Description

o
1
2
3
4
5
6
7

Unused
System error (command reject)
Not used
System error (DCB specification check)
Storage data check
Invalid storage address
Storage protection check
Interface data check

Fi gure 13. Terminal I/O Return Codes

Note: If for devices supported by 1052741 (2741, PROC) an error
code greater than 128 is returned, subtract 128; the result
then contains status word 1 of the ACCA. Refer to the
Communications.Features Description manual for determination
of the special error condition.

Chapter 3. Instruction and Statement Descriptions 255

READTEXT

Value Transmit Receive

x'BFnn' NA LINE=nn received
x'BEnn' NA SKIP=nn received

-2 NA Line received (no CR)
-1 Successful completion New line received

1 Not attached Not attached
5 Disconnect Disconnect
B Break Break

Figure 14. Virtual Terminal Communication Return Codes

Following is a further description of the above values for a
receive operation:

LINE=nn (x'SFnn'): This code is Pbsted for READTEXT or GETVALUE
instructions if the other side sent the LINE forms control
operation; it is transmitted so that the receiving program may
reproduce on a real terminal (for printer spooling applica­
tions for example) the output format intended by the sending
program.

SKIP=nn (x'SEnn'): The sending program transmitted SKIP=nn.

L;ne Rece;ved (-2): This code indicates that the sending pro­
gram did not send a new line indication, but that the line was
transmitted because of execution of a control operation or a
transition to the read state. This is how, for example, a
prompt message is usually transmitted with READTEXT or
GETVALUE.

New L; ne Rece; ved (-1): Th is code i nd i cates transm iss i on of the
carr i age return at the end of the data. The d i st i nct ion
between a new line transmission and a simple line transmission
is, again, made only to allow preservation of the original out­
put format.

Not attached (1): If the virtual terminal accessed for the
operation does not reference another virtual terminal, then
th is code is returned.

D;sconnect (5): This code value corresponds to the not-ready
indication for real terminals; its specific meaning for vir­
tual terminals is that the program at the other end of the chan­
nel terminated either through PROGSTOP or operator
intervention.

256 SC34-0314

o

o

o

C)

o

READTEXT

Break (8): The break code indicates that the other side of the
channel is in a state (transmit or receive) which is incompat­
ible with the attempted operation. If only one end of the chan­
nel is defined with SYNC=YES (on the TERMINAL statement), then
the task on that end will always receive the break code, wheth­
er or not it attempted the operation first. If both ends are
def i ned with SYNC=YES, then the code will be posted to the task
wh i ch last attempted the operat ion. The break code may thus be
understood as follows: when reading (READTEXT or GETVALUE),
the other program has stopped send i ng and is wa it i ng for input;
when writing (PRINTEXT or PRINTNUM), the other program is also
attempting to write. Note that current Event Driven Executive
programs, or future programs, which do not interpret the break
code, must always communicate through a virtual terminal which
is defined with SYNC=NO (the default).

Example

OPTION
NAME
PASSWORD
NEXTLINE

READTEXT
READTEXT
READTEXT
READTEXT

TEXT
TEXT
TEXT
TEXT

OPTION,'ENTER OPTION: ',PROMPT=COND
NAME,'ENTER YOUR NAME: '
PASSWORD,'ENTER PASSWORD: ',PROTECT=YES
NEXTLINE,MODE=LINE

LENGTH=2
LENGTH=44
LENGTH=8
LENGTH=80

Chapter 3. Instruction and Statement Descriptions 257

RESET

RESET

Task Control

RESET is used to reset or clear an event or a Process Interrupt.

When an event occurs for which a task is waiting, the task will
again become active. If the task were subsequently to issue
another WAIT instruction for the same event, without taking any
special action, the event is still defined as having occurred
and no wait would be performed. It is necessary to define the
event as not occurred in order to cause a new wait. This is the
funct i on of the RESET instruct ion.

The RESET instruct i on need not be used for the event def i ned by
the EVENT operand of either a PROGRAM or a TASK statement.
RESET must not be used for this event prior to executing the
ATTACH instruction, since RESET will cause the ATTACH to oper­
ate as though the task were already attached.

Events are named logical entities which are represented in
storage by a system control block called an Event Control Block
(ECB). Resetting an event is physically done by setting the
fir s t wo r d 0 fit sEC B toO.

Syntax

label RESET event,Pl=

Required: event
Defaults: none
Indexable: event

Operands Description

event The symbol i c name of the event be i ng reset. For
process i n t err u p t , use PIx , where x is a user pro c -
ess interrupt number in the range 1-99.

Pl= Parameter nam i ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

258 SC34-0314

"Use of
on page 8

The
for

()

o

o

o

RETURN

RETURN

Program Control

RETURN is used in a subroutine to provide linkage back to the
ca 11 i n9 program. A subrout i ne can conta in more than one RETURN
instruction.

Syntax

label RETURN

Required: none
Defaults: none
Indexable: none

Operands Description

none none

Chapter 3. Instruction and Statement Descriptions 259

SBIO

SBIO

Sensor Based 1./0

SBIO provides communication using analog and digital I/O. Many
options provide flexibility. Optional automatic indexing is
provided using the previously defined BUFFER statement. A
buffer address in the SBIO instruction can be automatically
updated after each operat ion. A short form of the instruct ion,
omitting loc (data location) is provided. When used, a data
address within the SBIOCB is implied. Options available with
digital input and output provide PULSE output and the manipu­
lation of portions of a group with the BITS=(u,v) keyword
parameter.

SBIO instructions are hardware address independent. The actual
operation performed is determined by the definition of the sen­
sor address in the referenced 100EF statement.

An INPUT/OUTPUT CONTROL BLOCK (SBIOCB) is automatically
inserted into the user's program for each referenced sensor I/O
device. It supplies necessary information to the supervisor.
These control blocks each contain two items, a data I/O area
and an ECB. When an SBIO instruction is executed, the supervi­
sor either stores (AI and 01 operations) or fetches (AD and DO
ope rat ions) data from a locat i on in the IOCB with the labe 1
equivalent to the referenced 1/0 point (for example, All, 012,
0033, AOl). These locations may be referenced in the applica­
tion program in the same manner .s any other variable. This
allows the user to use the short form of the SBIO instruction
(for example, SBIO 011), and subsequently reference 011, in
other ins t r u c t ion s • It may also be con v e ni e n t to equate a more
descriptive label to the symbolic names (for example SWITCH EQU
0115). However, the SBIO instruct i on must use the symbo Ii c name
as descr i bed above.

Each control block also contains an ECB to be used by those
oper.tions which require the supervisor to service an inter­
rupt and 'post' an operation complete. These include analog
input (AI), proces~ interrupt (PI), and digital I/O with
external sync (01/00). For process interrupt, the label on the
ECB is the same as the symboli c I/O po i nt (for example PIx). For
analog and digital I/O the label is the same as the symbolic I/O
point with the suffix 'END' (for example DlxEND).

For brevity, operands common
descr i bed here and not in
descriptions.

260 SC34-0314

to all
the

versions
individual

of SBIO are
instruction

o

o

o

ERROR=

EOB=

INDEX

BITS=

5810

ERROR= specifies the label of the instruction to be
executed if the SaIO instruction is unsuccessful
after two retr i es. If ERROR is not coded, execut i on
wi 11 proceed sequentially. In either case, the task
code word, whose implicit label is the task name,
will contain the return code. The return codes are
shown later in th is sect i on.

EOB= may be specified for buffer operations with
automat i c index i ng. A branch is taken to the spec i­
fied label under two conditions. In the first case,
if the last element of the buffer is used during exe­
cution of the SBIO, the branch will be taken with a
return code of $OK in the task name. Second I y, if
the buffer is either full (AI/DI) or logically empty
(AO/DO) when the SaIO is executed, the branch wi 11 be
taken wi thout execut i ng the SBIO and a code of
$BFRPFE will be in the task name. In either case,
the buffer count is not reset. Th is is the user's
responsibility. (See 'Return Codes' in this
section)

A keyword used to spec i fy that automat i c index i ng
(i ncrement i ng of the effect i ve address) of the
def i ned BUFFER is to be performed as part of the exe­
cution of this SBIO.

BITS=(u,v) is used to specify the portion of a
digital group or subgroup defined in the referenced
IODEF, to be used in an I/O operat i on. BITS= may not
be used with either AI, AO, DO PULSE or external sync
DI/DO operations. u is the starting bit number
(0-15) relative to the start of the defined group or
subgroup. v is the length of the bit string (=1 to
16-u, or as Ii mi ted by the IODEF subgroup def i­
nition).

Chapter 3. Instruction and Statement Descriptions 261

SBlO

Return Codes

The task name is the label of a location which will contain a
return code after a sensor based I/O operation. These codes
should be referenced by the symbolic names shown in the return
code table which follows, instead of by an absolute number, to
allow future programming flexibility. If any sensor I/O is
used, these labels are automatically defined.

Code

-1
90
91
92
93
94
95
96
97
98

100
101

102

104

EQU

$OK
$DNA
$DNU
$BAR
$CMDREJ
$INVREQ
$IDC
$CTLBSV
$OVRVOLT
$INVRG
$INVCHA
$INVCNT

$BFRPFE

$DCMDREJ

For example:

Description

Command successful
Device not attached
Busy or in exclusive use
Busy after RESET
Command reject
Invalid request
Interface data check
Controller busy
AI over voltage
AI invalid range
AI invalid channel (point)
Invalid count field

(AI/DI/DO count)
Buffer previously full or

empty (indexing)
Delayed command reject

SBIO Al1,ERROR=AIERR

AIERR IF (taskname,EQ,+$OVRVOLT),GOTO,REDO

If All is over voltage go to label REDO.
Note that the use of '+' when referencing equated
values is necessary for proper assembler operation.

262 SC34-0314

()

(",- "'\
\ I
\~

o

o

o

SBIO

Analog Input

Syntax

label SBIO AIx,Pl=
or

label SBIO AIx,loc,Pl=,P2=
or

label SBIO AIx,loc,INDEX,EOB=,Pl=,P2=
or

label SBIO AIx,loc,op3,SEQ=YES,Pl=,P2=,P3=

Required: AIx
Defaults: no indexing, SEQ=NO
Indexable: loc

Operands Description

AIx

loc

op3

SEQ=NO

SEQ=VES

Analog input symbolic reference number defined in
an IODEF statement and the label of a single data
storage locat i 6n if loc is not spec if i ed.

Buffer address or location where analog input value
is to be stored, if required.

If op3 equals INDEX then automat i c index i ng is
used. If op3 is a label or constant then AI sequen­
tial read is used.

op3 is the number of times to repeat same po i nt.

op3 is the number of consecut i ve AI po i nts.

The input voltage converted by the analog-to­
digital converter (ADC) is represented in a 16-bit
data wo r d by 11 bin a r y bit s p I us a s i g n bit, de pen d­
ing on the amplifier range selected. Bits 13 - 15
of this word is the binary number representing the
range of the AI reading. Bit 12 will be zero.

Note: Refer to the 4982 Sensor I/O
manual, for a detailed discussion of
to-digital conversion.

Description
the ana log-

Chapter 3. Instruction and Statement Descriptions 263

5810

Px= Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Example: SBIO instructions and IODEF statements for Read Ana­
log Input

IODEF AII,ADDRESS=72,POINT=5

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
or

SBIO

All
AII,DAT
AII,BUF,INDEX
AII,(BUF,#I)
AII,BUF,2,SEQ=YES

AII,BUF,2

AII,BUF,2,SEQ=NO

DATA INTO LOCATION All
DATA INTO LOCATION DAT
All INTO NEXT LOC OF 'BUF'
All INTO LOCATION (BUF,#I)
READ 2 SEQUENTIAL AI PTS INTO
NEXT 2 LOCATIONS OF 'BUF'
READ THE SAME POINT TWO TIMES
AND PUT INFORMATION IN TWO
LOCATIONS OF BUFF

Analog Output

Syntax

label
or

label
or

label

SBIO

SBIO

SBIO

Requ ired: AOx
Defaults: no indexing
Indexable: loc

Operands Description

AOx

loc

Analog output symbolic reference number defined in
an IODEF statement and the label of a single data
storage locat ion if loc is not spec if i ed.

An explicit constant or an address of the location
of the output data, if requ ired.

264 SC34-0314

()

/(- --""

\'cc/

o

o

o

op3

Px=

5810

If op3 equal INDEX then automatic indexing is used.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Us·e of
on page 8

The
for

Examele: SBIO instructions and IODEF statements for Wr i te Ana-
log Output

IODEF AOl,ADDRESS=63

SBIO A01 SET A01 TO VALUE IN 'A01'
SBIO AOl,DATA SET AOl TO VALUE IN 'DATA'
SBIO A01,1000 SET ADl TO 1000
SBIO AD 1 , (0 , # 1) SET AD1 TO VALUE IN (0,i1)
SBIO A01,BUF,INDEX SET A01 TO VALUE IN NEXT

Dig;tal Input

Syntax

label SBIO DIx,Pl=
or

label SBIO Dlx,loc,Pl=,P2=
or

label SBIO Dlx,loc,INDEX,EQB=,P1=,P2=
or

label SBIO Dlx,loc,BITS=(u,v),lSB=,P1=,P2=
or

label SBIO Dlx,loc,op3,Pl=,P2=,P3=

Required: Dlx
Defaults: no indexing,LSB=15
Indexable: loc

Oeerands Description

Dlx Digital input symbolic reference number defined in
an IODEF statement and the label of a single data
storage locat i on if loc is not spec if i ed.

Chapter 3. Instruction and Statement Descriptions 265

S810

loc

op3

BITS=(u,v)

LSB=

Px=

Buffer address or locat i on where dig i tal input
value is to be stored.

If op3 = INDEX, automatic indexing is used.

If op3 is the label of a variable or a constant
representing the count of external synchronization
read cycles, external synchronization is implied
and EXTSYNC must have been specified in the associ­
ated IODEF statement. This form also provides a
latched 01 operation. The entire 16-bit group is
read.

If EXTSYNC was spec if jed but op3 is not, then a s i n­
gle unsynchron i zed I/O operat ion is performed.

Th i s parameter .j nd i cates that the value of a
port i on of a 01 group is to be read start i ng at bit u
for a length v. Bits are numbered from 0 - 15. Bit u
is the relative bit number starting at 0, within the
group or subgroup def i ned in the IODEF statement.

This parameter may only be used if BITS= is
specified in the SBIO statement. It defaults to bit
15. Input data will be right justified to this bit
with all unused bits set to O.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Example: SBIO instructions and IODEF statements for Read Dig­
i tal Input:

266 SC34-0314

o

/""""
\'\.,,,)

o

o

o

S8IO

IODEF DI1,TVPE=GROUP,ADDRESS=49
IODEF OI2,TVPE=SUBGROUP,AOORESS=48,BITS=(7,3)
IOOEF OI3,TVPE=EXTSYNC,ADORESS=62

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
SBIO
5810
SBIO
SBIO

SBIO

011
OI1,DATA
011,(0,#1)
OI1,BUF,INOEX
OIl,BOAT,BITS=(3,S)

DATA INTO LOC 'DIl'
011 INTO LOC 'DATA'
011 INTO LOC (0,#1)
011 INTO NEXT LOC OF 'BUF'
BITS 3 TO 7 OF 011 INTO 'BOAT'

012 BITS 7-9 OF 012 INTO '012'
OI2,OAT2 BITS 7 TO 9 OF DI2 INTO 'OAT2'
OI2,0,BITS=(0,3) BITS 7-9 OF 012 INTO '0'
OI2,E,BITS=(Q,1) BIT 7 OF DI2 INTO 'E'
DI2,F,BITS=(2,1),LSB=7 BIT 9 OF 012 INTO

LOCATION F BIT 7
DI3,G,128 READ 128 WORDS INTO 'G'

USING EXTERNAL SYNC

D;g;tal output

label SBIO OOx,Pl=
or

label SBIO 00x,loc,Pl=,P2=
or

label SBIO DOx,loc,INDEX,EOB=,Pl=,P2=
or

label SBIO 00x,loc,BITS=(u,v),LSB=,Pl=,P2=
or

label SBIO DOx,loc,op3,Pl=,P2=,P3=
or

label SBIO OOx,(PULSE,dir)

Requ ired: DOx
Defaults: no indexing,LSB=15
Indexable: loc

Operands Description

Chapter 3. Instruction and Statement Descriptions 267

SBIO

DOx

loc

op3

Digital output symbolic reference number defined in
an IODEF statement and the label of a single data
storage location if loc is not specified.

An exp lie it constant or an address where data to be
wr i tten is stored. Data must be right just if i ed.

If op3 equal INDEX then automatic indexing is used.
If op3 is 'a label or constant then external sync is
used.

BITS=(u,v) This parameter indicates that the specified value
1S to be written into a portion of the DO group
start i ng at bit u for a length of v, without affect­
ing the condition of the -other bits of the same
group. Bits are numbered from 0 - 15. Bit u is the
relative bit number (starting at 0, within the
group or subgroup defined in the referenced IODEF
statement.

LSB= Th i s parameter may only be used if BITS= is coded on
the SBIO statement. It defaults to bit 15. Output
data will be taken from the output word with this
bit being the least significant bit.

(PULSE,dir) Specifies a pulse is to
associated digital output
Di.rections accepted are ON
DOWN) •

be generated on the

Px=

group or subgroup.
(or UP) and OFF (or

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

268 SC34-0314

o

o

o

C'~,\
/

o

SBIO

Example: SBIO instructions and IODEF statements:

Write Digital Output

IODEF D03,TVPE=GROUP,ADDRESS=4B
IODEF D012,TVPE=5UBGROUP,ADDRESS=4A,BITS=C5,4)
IODEF D013,TVPE=EXTSYNC,ADDRESS=4F

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
SBIO

SBIO
SBIO

D03
D03,DODATA
D03,1023
003,COATA,t1)
D03,7,BITS=C3,3)

0012,15
D012,X,BITS=CO,4),

0012,1,BIT5=CO,I)
DOI3,V,80

Example: Pulse Digital Output:

VALUE OF LOCATION '003' to 003
VALUE OF 'DODATA' TO D03
SET D03 TO 1023
VALUE AT (DATA,il) TO 003
SET BITS 3 TO 5 OF 003 TO 7

SET BITS 5 TO 8 OF 0012 TO 15
SET BITS 5 TO 8 OF D012

TO VALUE IN 'X'
SET BIT 5 OF 0012 TO 1
WRITE 80 LOCATIONS OF 'V'

TO 0013 EXTERNAL SYNC

IOOEF DOI3,TVPE=SUBGROUP,BITS=C3,1)
IODEF DOI4,TVPE=SUBGROUP,BITS=C7,4)

SBIO D013,(PULSE,UP)

SBIO DOI4,CPULSE,DOWN)

PULSE 0013 BIT 3 TO ON
AND THEN OFF

PULSE D014 BITS 7-10
OFF AND THEN ON

Chapter 3. Instruction and Statement Descriptions 269

SCREEN

SCREEN

Graphics

SCREEN converts x and y numbers representing a point on the
screen of a terminal to the 4-character text string which will
be interpreted by the terminal as the graphic address of the
point. The length of the text string is set to 5 if CONCAT=NO
and ENHGR=YES. The length of the text string is set to 4 if
CONCAT=NO and ENHGR=NO. Used with CONCAT, this instruction can
bui ld a graphical message to the terminal.

Syntax

label SCREEN text,x,y,CONCAT=,ENHGR=,Pl=,P2=,P3=

Required:
Defaults:
Indexable:

text,x,y
CONCAT=NO,ENHGR=NO
none

Operands

text

x,y

CONCAT=

ENHGR=

Px=

D,escr i pt ion

Locat i on of text str i ng at least 4 characters long.

Screen coordinates of point to be translated.
Range is 0 to 1023 for full width of the screen and 0
to 779 for the screen height. Operands x and y may
be locations containing data or explicit values,
but both must be of the same type. Refer to ENHGR
below for enhanced range of 0 to 4086.

YES - Allows the concatenation of this conversion
to whatever is already in text. The text string
length is modified plus 4 or (plus 5 if ENHGR=YES is
coded).

YES - Extends the range to 0 to 4095 for full width
of the screen and 0 to 3120 for the screen height.
When coded YES, a 5 character graph i ca 1 instruct ion
is compiled.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

270 SC34-0314

,1C-"',

\,,,")

o

o

o

SHIFTL

SHIFTL

Data Manipulation

Contents of operand 1 are sh i fted left by the number of bit
positions specified by operand 2. Vacated positions on the
right are filled with zeroes. If operand 2 is a variable, it is
assumed to be single-precision, and the shift count is its val­
ue. If the value exceeds the precision in bits, of operandI,
the value is divided by the precision and the remainder is used
in place of the original value.

Syntax

label SHIFTl opndl,opnd2,count,RESUlT=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=l,RESUlT=opndl
Indexable: opndl,opnd2,RESUlT

Operands

opndl

opnd2

count

Description

The name of the variable to which the operation
app lies; it cannot be a constant.

T his 0 p'e ran d de t e r min est he val u e by w hie h the
first operand is mod if i ed. Either the name of a
var i able or an expl i cit constant may be spec if i ed.

~
Specify the number of consecutive variables in
opndl upon which the operation is to be performed.
The maximum value allowed is 32767.

The count operand can include the precision of the
data. Because these operations are parallel (the
two operands and the result are implicitly of like
precision) only one precision specification is
requ ired. That spec if i cat i on may take one of the
followi ng forms:

BYTE -- Byte precision
WORD -- Word precision ~

DWORD -- Doubleword precision

Chapter 3. Instruction and Statement Descriptions 271

SHIFTL

RESULT=

Px=

Example

This operand may optionally be coded with the name
of a variable or vector in which the result is to be
placed. In th is case the var i able spec if i ed by the
first operand is not modified.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
fo r

SHIFTL A,2 SHIFT A LEFT 2 BIT POSITIONS

272 SC34-0314

o

/<. '~l\

'~J)

o

o

o

SHIFTR

SHIFTR

Data Manipulation

Contents Qf operand 1 are shifted right by the number of bit
positions specified by operand 2. Vacated positions on the left
are fi lIed with zeros. If operand 2 is a variable it is assumed
to be single-precision, and the shift count is its value. If
the value exceeds the precision in bits, of operandi, the value
is divided by the precision and the remainder is used in place
of the original value.

Syntax

label SHIFTR opndl,opnd2,count,RESULT=,
Pl=,P2=,P3=

Required: opnd!,opnd2
Defaults: count=!,RESULT=opndl
Indexable: opndl,opnd2,RESULT

Qper;ands

opnd!

opnd2

Desc;rjption

The name of the variable to which the operation
applies; it cannot be a constant.

Thi$ operand determines the value by ,which the
first operand is modified. Either the name of a
variable or an explicit constant may be specified.

Spec i fy the number of consecut i ve var i abIes in
opnd! upon which the operation is to be performed.
The maximum value allowed is 32767.

The count operand can include the precision of the
data. Because these operations are parallel (the
two operands and the result are implicitly of like
precision) only one precision specification is
required. That specification may take one of the
following forms:

BVTE -- Byte precision
WORD -- Word precision
DWORD -- Doubleword precision

Chapter 3. Instruction and Statement Descriptions 273

SHIFTR

RESULT=

Px=

Example

This operand may optionally be coded with the name
of a variable or vector in which the result is to be
placed. In this case the variable specified by the
first operand is not modified.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

SHIFTR C,24,DWORD,RESULT=E SHIFT C RIGHT 24 BITS,
STORE RESULT AT E

274 SC34-0314

o

o

o

o

o

SPACE

SPACE

Listing Control

The SPACE statement is used to insert one or more b lank lines in
the listing.

Syntax

blank SPACE value

Required: none
Defaults: value = 1

Operands Description

value A decimal value specifying the number of blank
lines to be inserted. If no value; s entered, one
blank will be inserted. If this value exceeds the
number of lines rema i n i ng on the page then the
statement will have the same effect as an EJECT
statement.

Chapter 3. Instruction an~ Statement Descriptions 275

------ "

SPECPIRT

SPECPIRT

SPECPIRT 1 s used to return to the superv 1 sor from a spec; al
process interrupt (SPECPI) rout i ne. I f the user rout i ne is; n
partition 1, a branch instruction is used to return. Return
from another partition requires execution of a Series/1 assem­
bler SELB instruction after registers RO and R3 are saved in
t he I eve I b I 0 C k to b e s e I e c ted • S P E C P I R Tis us ed 0 n I y for
TVPE=BIT SPECPI rout i nes. See the descr i pt i on of IODEF
(SPECPI) for additional information.

Syntax

label SPECPIRT

Requ ired: none
Defaults: none
Indexable: none

Operands Description

none none

276 SC34-0314

01 ",' II, I

I ,

~'

o

o

o

o

SQRT

SQRT

Data Manipulation

This instruction is used to find the square root of a double
precision integer variable. The instruction is implemented
through the USER instruction facility. It is not included in
the superv lsor. Imp lementat i on of th i s instruct i on i \5

described further in the Utjlities, Operator Commands, Program
preparation, Messages and Codes as an example of how the user
may add new instruct ions to the Event Dr i ven Execut i ve
instruction set. If the program is assembled with $EDXASM,
$LINK must be used to include the SQRT object module ($$SQRT).
The autocall feature of $LINK may be used. For details on the
use of the autoca 11 feature, see the Ut iIi ties, Operator
Commands, Program Preparation, Messages and Codes.

Syntax

label SQRT

Required: rsq,root,rem
Defaults: none
Indexable: none

Operands Description

rsq

root

rem

Px=

The name of a double precision integer that the
square root routine is to use. This value must be
between 0 and 1,073,741,823 inclusive.

The name of a single precision integer where the
square root is to be stored.

The name of a sing Ie prec i s i on integer where the
rema i nder is to be stored.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Chapter 3. Instruction and Statement Descriptions 277

STATUS

STATUS

Data Definition

STATUS is used to define th~ fields required for referencing a
record in the "System Status Data Set" on the host computer.

A STATUS statement is referenced by the TP SET, TP FETCH, and TP
RELEASE instructions. See 'Host Communications', in the
Communications and Terminal Applications Guide for a
description of these instructions and the System Guide for a
d esc rip t ion 0 f t he "s y s t em S tat us D at a Set".

Syntax

label

Required:
Defaults:

STATUS index,key,length,Pl=,P2=,P3=

label,index,key
length=O

Indexable: none

Operands

index

key

length

Description

A 1 - 8 alphameric character string. This defines
an index in the status data set.- One or more
entr i es may be assoc i ated wi th th is index, each
with a unique key field. It is suggested that a
un i que index be spec if i ed for each Ser i es/l, but
this is not a requirement.

A 1 - 8 alphanumeric character string.
and key together define a unique status
entry. A different key mi ght be used
application program on a Series/l which
cates to a host.

The index
data set
for each
communi-

Spec i fi es the length of an opt i onal buffer to be
used in the SET, FETCH, and RELEASE funct ions of the
TP instruct ion.

The maximum buffer length, which may be specified
in bytes, is 256. If this operand is omitted, no
buffer is defined. If a buffer is specified with a
length greater than 0, then.it may be named by using

278 SC34-0314

()

c

o

Pl=

o

STATUS

the Px= operand.

The contents of the buffer can be stored in the Sys­
tem Status data set with a TP SET instruction. For
a TP FETCH or TP RELEASE, this buffer will serve as
an input area.

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px;:)" on page 8 for further
description'!;.

Chapter 3. Instruction and Statement Descriptions 279

STIMER

STIMER

Timing

STIMER is used to start a software timer and provide an inter­
rupt after the specified number of milliseconds have elapsed.
It allows a means of periodically executing a portion of the
user task or providing program delays. The minimum timer set­
ting is 1 millisecond and the maximum setting is 60,000 milli­
seconds or 60 seconds.

Note: When using a model 4952 or 4953 Processor the minimum
sett i ng shou 1d not be less than 3 mill i seconds.

STIMER may be used in conj unct i on wi th the WAIT instruct i on.

Two STIMER instructions without an intervening WAIT will cause
the tim e i n t e r val s p e c i f' i e d b y the fir s t S TIM E R t 0 b ere p I ace d
by the interval specified by the second STIMER.

Syntax

label STIMER count,WAIT,Pl=

Required: count
Defaults: none
Indexab1e: count

Operands

count

WAIT

Pl=

Description

The address of a word, or an explicit constant,
which specifies the timer setting in milliseconds.
The value is an unsigned, 16 bit integer.

Specifies that control will not return to the next
instruction unti 1 the time interval has elapsed.
I f WAIT is not spec if i ed, then a subsequent WA IT
instruction must be issued with the keyword 'TIMER'
spec if i ed as the event be i ng wa i ted upon.

Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

280 SC34-0314

0,
' ~_'i"

o

o

0',', ,I

SUB ROUT

SUB ROUT

Program Control

SUBROUT is used to define the entry point of a subroutine. Up
to five parameters may be spec if i ed as arguments in the subrou­
tine. The subrout i ne must have a RETURN instruct i on to prov ide
1 i nkage back to the ca 11 i ng task. Nested sub rout i nes are
allowed, and a maximum of 99 subroutines are permitted per
Event Driven Executive program. If a subroutine is to be
assembled as an object module which can be link-edited, an
ENTRY statement must be coded for the subroutine entry point
name.

A sub rout i ne may be ca lIed from more than one task. When
called, the subroutine will execute as part of the calling
task. If the subroutine is not re-entrant, it may be desirable
to enforce serial usage of the subroutine using ENQ/DEQ
instructions.

The TASK statement must not be coded ina subrout i ne.

Syntax

label SUBROUT name,par1, ••• ,parS

Requ ired: name
Defaults: none
Indexable: none

Operands Description

name

par1, •••

Name of the subrout i ne.

Names used within the subroutine for arguments or
parameters passed from the calling program. These
names must be unique to the whole program. All
parameters def i ned outs i de the subrout i ne are known
within the subroutine. Thus, only parameters which
may vary with each call to a subroutine need to be
defined in the SUBROUT instruction. These parame­
ters are defined automatically as single precision
values.

Chapter 3. Instruction and Statement Descriptions 281

SUBROUT

For instance, assume two calls to the same subrou­
tine. At the first, parameters A and C are to be
passed, wh i Ie at the second, Band C are to be
passed. Because Cis common to both, it need not be
def i ned in the SUbROUT statemeht. However, a new
parameter 0 would be specified to account for pass­
ing either A or B.

282 SC34-0314

o

o

o

C
'·II~.

'I
'I

o

SUBTRACT

SUBTRACT

Data Manipulation

Si gned subtract i on of operand 2 from operand 1. May be abbrev i­
ated SUB.

Note: An overflow condition is not indicated by EDX.

Syntax

label SUBTRACT opndl,opnd2,count,RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2
Defaults: count=l,RESULT=opndl,PREC=S
Indexable: opndl,opnd2,RESULT

Operands

opndl

opnd2

count

RESULT=

PREC=XYZ

Descriptjon

The name of the variable to which the operation
applies; it cannot be a constant.

This operand determines the value by which the
first operand is m~dified. Either the name of a
variable or an explicit constant may be specified.

Specify the number of consecutive variables in
opndl upon which the operation is to be performed.
The max i mum value allowed is 32767.

This operand may optionally be coded with the name
of a variable or vector in which the result is to be
placed. In th is case the va,r i ab Ie spec if i ed by the
first operand is not modified.

Where X applies to opndl, Y to opnd2, and Z to the
result. The value may be either S (single-
precision) or D (double-precision). 3-operand
specification may be abbreviated according to the
following rules:

If no precision is specified, then all operands
are single-precision.

Chapter 3. Instruction and Statement Descriptions 283

SUBTRACT

Px=

• If a single letter (S or D) is specified, then
it applies to the first operand and result,
with the second operand defaulted to single­
precision.

• If two letters are specified, then the first
applies to the first operand and result, and
the second to the second operand.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Mjxed Precision Operations: Allowable precision combinations
for subtract operat ions are listed in the fo llow i ng tab Ie:

opndl I opnd2 I Result I Abb ... ev;at;on I Remarks

S S S S default
S S D SSD
D S D D
D D D DD

Example

SUB A,B single-precision subtract
SUB A,(2,12) subtract data at (2,12) from A

284 SC34-0314

o

o

o

o

TASK

TASK

Task Control

The TASK statement defines the beginning of a block of
instructions which wi 11 execute asynchronously with the
attaching task, (and other tasks in the system), according to
its assigned priority.

~: TASK statements may only be coded within main programs,
not w; th in subprograms wh i ch will later be 1 i nk ed; ted to a
main program.

Each task in a program, except the initial task, begins with a
TASK statement and must be terminated with an ENDTASK. The
initial task begins with the PROGRAM statement and is termi­
nated by ENDPROG.

Syntax

taskname

Required:
Defaults:

TASK start,priority,EVENT=,TERMERR=,FLOAT=,
ERRXIT=

Indexable:

taskname,start
priority=15Q,FLOAT=NO
none

Operands

taskname

start

Descriptjon

The name of the task. A system control block is
generated for each task in an application program.
This is known as the task control block (TCB). The
first word of the TCB is ass i gned the name spec if i ed
in the taskname operand. This word is known as the
task code word and has special significance in pro­
gram operat ion. For examp Ie, in I/O ope rat ions, it
is used to store a return code for the user. Thus,
the task name may be used in an IF instruction to
test for a successful completion of an I/O oper­
ation.

The label of the first instruction to be executed
when the task is first attached.

Chapter 3. Instruction and Statement Descriptions 285

TASK

priority

EVENT=

TERMERR=

FLOAT=

ERRXIT=

The priority to be a~signed to the task. The range
is from 1 (highest priority) to 510 (lowest priori­
ty). Tasks with priorities 1-255 are run in fore­
ground (Interrupt Level 2) and those with 256-510
are run in background (Interrupt Level 3).

Priorities separate tasks according to their real
tim e nee d s for pro c e s 5 0 r till: e • P rio r i t y ass i 9 n­
ments m~st therefore account for other progr~ms

ex pee ted to bee x e cut i n g s i m u I tan e 0 u sly

Name of an end event. This event will be posted
complete at the termination of this task. The
attach i ng task can, if des ired, synchron i ze its
operation by issuing a WAIT fOr this event. This
event name must not be defined explicitly by an ECB
since it wi 11 be generated automatically.

See "Error Hand 1 i ng" on page 44 for a descr i pt i on of
the use of this operand.

Spec i fy F LOAT=YES iff 1 oat i ng-po i nt instruct ions
are use d b y t h 1S t ask •

Specifies the label of a 3 word list which points to
a routine which is to receive control if a hardware
error or program exception occurs whi Ie the primary
task is execut i ng. Th is task error ex i trout i ne
must be prepared to completely handle any type of
program or machine error. See the System Guide
sect i on on Task Error Ex i ts before attempt i ng to
use the operand.

I f the pr i mary task is part of a program wh i ch
shares resources such as QCBs, ECBs, or Indexed
Access Method update records with other programs,
it is often necessary to release these resources
even though your program cannot cont i nue because of
an error. The superv i sor does not re lease
resources for you, but the task error ex i t fac iii ty
enables you to take whatever action that is appro­
priate.

The format of the task error ex it 1 i st is:

286 SC34-0314

o

o

o

o

o

WORD 1

WORD 2

WORD 3

TASK

The count of the number of parameter
words which follow (always F'2')

The address of the user's error exit
routine

The address of a 24 byte area in
which the level Status Block (lSB)
and Processor Status Word (P5W)
from the point of error are placed
before the exit routine is entered.
Refer to a Series/l processor
description m~nual for a description
of the LSB and PSW.

Example: See "Example 7: A Two Task Program With ATTNLIST" on
page 395 for TASK coding example.

Chapter 3. Instruction and Statement Descriptions 287

TERMCTRL

TERMCTRL

Terminal I/O

The TERMCTRl instruction is used to request execution of
special terminal control functions. These functions are gen­
erally device dependent; the form of the instruction depends on
the device.

TERMCTRl may be used with the following device types:

Dev;ce

2741 Communications
Terminal

4013 Graphics Terminal

4973 Printer

4974 Printer

4978 Display

4979 Display

ACCA devices

Teletypewriter
equivalent devices

Virtual terminals
(DEVICE=VIRT)

Other processors
(DEVICE=PROC)

Ex~mples of Funct;ons

Set the attention function

Set the attention function

Set lines per inch

Set the 4974 control storage

Write or read 4978 storage
Blink the cursor
Blank the screen

Blank the screen
Lock/unlock the keyboard

Control the modem

Write buffered output

Set the attention function
Pass function codes

Same as Virtual tetminals

I The syntax of TERMCTRl, by device, is as follows:

288 SC34-0314

o

o

o

o

TERMCTRL

2741 Commun;cat;ons Term;nal

Syntax

label TERMCTRL function,ATTN=

Required: function
Defaults: none
Indexable: none

Operands Description

function:

ATTN=

Examples:

SETATTN
WRITEPTR

SET

DISPLAV

Enables the attention function
for the device (when ATTN=YES)
or disables the attention
function for the device
(when ATTN=NO).

Causes any buffered output to
be written to the 2741.

NO, to d i sab Ie the attent i on funct i on.

YES, to enable the attention function.

This operand must be used in conjunction with the
SET function.

TERMCTRL
TERMCTRL

SET,ATTN=YES
DISPLAY

Chapter 3. Instruction and Statement Descriptions 289

TERMCTRL

4013 Graph; cs Term; na1

Syntax

label TERMCTRL function,ATTN=

Required: function
Defaults: none
Indexable: none

Operands Description

function:

ATTN=

Examples:

ATTNOFF
WRITEPTR

SET

DISPLAY

Enables the attention function
for the device (when ATTN=YES)
or disables the attention
function for the device
(when ATTN=NO).

Causes any buffered output to
be written to the 4013.

NO, to d i sab Ie the attent i on funct ion.

VES, to enab Ie the attent i on funct i on.

Th i s operand is requ i red when funct i on is SET.

TERMCTRL SET,ATTN=NO
TERMCTRL DISPLAY

290 SC34-0314

o

o

o

c

o

TERMCTRL

4973 Printer

Syntax

label TERMCTRL function,LPI=

Required: function
Defaults: none
Indexable: none

Operands Description

function:

LPI=

Examples:

SETLPI6
WRITEPTR

SET

DISPLAY

Sets the number of lines
per inch. When SET is
specified, the LPI operand
is required.

Causes any buffered output to
be written to the 4973.

The number of lines, either 6 or 8, the 4973 is to
print per inch. This operand is required when func­
tion is SET.

TERMCTRL SET,LPI=6
TERMCTRL DISPLAY

Chapter 3. Instruction and Statemen't Descriptions 291

TERMCTRL

4974 Pr; nter

Syntax

label TERMCTRL function,opl,op2,count,TVPE=

Required: function
Defaults: none
Indexable: op1,op2

Operands

function:

op1

op2

count

I TYPE=

Description

DISPLAY

PUTSTORE

GETSTORE

Causes any buffered output to
be written to the 4974.

Transfers control data from
the processor to the 4974
wire image ·buffer. If PUTSTORE
is specified, operands op1, op2,
count, and TYPE are required.

Transfers control data from the
4974 wire image buffer to the
processor. If GETSTORE is specified,
operands op1, op2, count, and
TYPE are required.

The address in the processor from which or into
w h i c. h the i n for mat ion i s t 0 bet ran s fer red •
Requ i red when funct i on is PUTSTORE or GETSTORE.

The address in the 4974 wire image buffer to which
or from which the information is to be transferred.
Requ i red when funct i on ; s PUTSTORE or GETSTORE.

The number of bytes to be transferred. Required
when funct i on is PUTSTORE or GETSTORE.

The type of GETSTORE/PUTSTORE operation to be
performed.

1, to transfer data between the processor and the
4974 wire image buffer. If 1 is specified, function
must be either PUTSTORE or GETSTORE.

292 SC34-0314

()

o

o

o

Example 1:

TERMCTRL

2, to i nd i cate that the 4974 wire i mage buffer is to
be in it i a I i zed with the standard 64-character
EBCDIC set. If the count operand is zero, no data
is transferred. If the count is 8 or less, each bit
of the data string indicates replacement (1) or
non-replacement (0) of the corresponding character
in the standard set with the alternate character as
defined in the attachment. If 2;s specified, func­
t i on must be PUTSTORE.

Initialize a 4974 wire image buffer

TERMCTRl PUTSTORE,*,*,O,TVPE=2

Example 2: Initialize the 4974 wire image buffer to the stand­
ard EBCDIC character set and replace the standard dollar sign
($) with its alternate, the English sterling symbol (hex code
58) and the standard cent sign (¢) with its alternate, dollar
sign ($), (hex code 4A).

REPLACE
TERMCTRL
DATA

PUTSTORE,REPLACE,,2,TVPE=2
X'1200'

Chapter 3. Instruction and Statement Descriptions 293

TERMCTRL

4978 Oi splay

Syntax

label TERMCTRL function,op!,op2,count,TYPE=,ATTN=

Required: function
Defaults: none
Indexable: op!,op2

Operands Description

function:

BLANK

DISPLAY

TONE

BLINK

UNBLINK

LOCK

UNLOCK

294 SC34-0314

Inhibits display of the
contents of the 4978 screen.
The contents of the internal
buffer remain unchanged. If
specified, no other operands
are required.

Causes the screen contents
to be displayed if previously
blanked by the BLANK function.
Any buffered output is also
displayed and the cursor
position is updated
accordingly.

Causes the audible alarm to
be sounded if the audible
alarm is installed.

Sets the cursor to the blinking
state.

Sets the cursor to the
non-blinking state.

Locks the keyboard.

Unlocks the keyboard.

o

o

opl

op2

count

ATTN=

TYPE=

o

SET

PUTSTORE

GETSTORE

TERMCTRL

Enables the attention function
for the device (when ATTN=YES)
or disables the attention
function for the device
(when ATTN=NO).

Transfers data from the processor
to storage in the 4978. If specified,
operands opl, op2, count, and TYPE=
are required.

Transfers data from storage in the
4978 to the processor. If specified,
operands opI, op2, count, and TYPE
are required.

The address in the processor from which or into
wh i ch the data j s to be transferred.

The address in 4978 storage to which or from which
data is to be transferred.

The number of bytes to be transferred.

NO, to d j sab Ie the attent i on funct i on.

YES, to enable the attention function.

This operand must be used in conjunction with the
SET functi on.

1, to indicate access to the character image buffer
(a 2048-byte table, 8 bytes for each of the EBCDIC
codes).

2 , to i n die ate access to the control store (4 0 9 6
bytes). The end cond it i on (requ i red when wr i t i ng
the contro I store) may be i nd i cated by sett i n9 bit 0
on in the second operand. For example, to wr i te the
last 1024 bytes of the control store (#2 contains
the contro I store address), code the fo llow i ng:

TERMCTRl PUTSTORE,BUFFER,(X'8000',#2),1024,TYPE=2

4, to indicate transfer of the field table from the
device to the processor. If this option is speci­
fied, function must be GETSTORE. The input area
must be def i ned wi th a BUFFER statement. At
completion of the operation, the number of field
addresses stored (addresses of unprotected fields)
is placed in the control word at BUFFER-4.

Chapter 3. Instruction and Statement Descriptions 295

TERMCTRL

Examples:

s, to indicate transfer of the field table from the
device to the processor. If this option is speci­
fied, function must be GETSTORE. A field table is
transferred as for TYPE=4, but the addresses are
those of the protected fie Ids.

6, to indicate that the field table transferred
contains only the addresses of modified fields. If
this option is specified, function must be
GETSTORE.

7, to indicate that the field table transferred
conta ins address of the protected port ions of mod i­
fied fields. If this option is specified, function
must be GETSTORE.

TERMCTRL BLANK * BLANK SCREEN

PRINTEXT
TERMCTRL

* MODIFY DISPLAY

LINE=A,SPACES=B * DEFINE CURSOR POSITION
DISPLAY * ENABLE DISPLAY

TERMCTRL GETSTORE,BUFFER,O,2048,TVPE=1 * READ 4978
* IMAGE STORE

296 SC34-0314

()

c

o

o

TERMCTRL

4979 D; splay

Syntax

label TERMCTRL function,ATTN=

Required: function
Defaults: none
Indexable: none

Operands Description

function:

BLANK

DISPLAY

LOCK

UNLOCK

SET

Inhibits display of the
contents of the 4979 screen.
The contents of the internal
buffer remain unchanged. If
specified, no other operands
are required.

Causes the screen contents
to be displayed if previously
blanked by the BLANK function.
Any buffered output is also
displayed and the cursor
position is updated
accord.; ngl y.

Locks the keyboard.

Unlocks the keyboard.

Enables the attention function
for the device (when ATTN=YES)
or disables the attention
function for the device
(when ATTN=NO).

ATTN= NO, to d i sab Ie the at tent ion funct i on.

YES, to enab Ie the at tent i on funct ion.

Chapter 3. Instruction and Statement Descriptions 297

TERMCTRL

This operand must be used in conjunction with the
SET funct i on.

Examples:

TERMCTRL BLANK

PRINTEXT LINE=A,SPACES=B
TERMCTRL DISPLAY

298 SC34-0314

* BLANK SCREEN

* MODIFY DISPLAY

* DEFINE CURSOR POSITION
* ENABLE DISPLAY

/'''---'\
I I

\\.ccy

o

o

o

TERMCTRL

ACCA Attached Dev; ces

Syntax

label TERMCTRL function

Required: function
Defaults: none
Indexable: none

Operands Description

function:

RING

RINGT

ENABLE

Waits until the Ring Indicator
(RI) is presented to the Series/l
from the modem. No timeout is
provided.

Waits until the Ring Indicator (RI)
is presented to the Series/l from
the modem. If no Ring Indicator
(RI) occurs after 60 seconds, this
instruction is terminated
and an error condition is
returned to the application program
in the first word of the TCB.

Activates Data Terminal Ready (DTR)
if not jumpered on and waits for
Data Set Ready (DSR) to be
returned by the modem. No timeout
is provided.

Chapter 3. Instruction and Statement Descriptions 299

TERMCTRL

ENABLET

ENABLEA

ENABLEAT

DISABLE

Examples:

TERMCTRL RING
TERMCTRL DISABLE

300 SC34-0314

Activates Data Terminal Ready (DTR)
if not jumpered on and waits for
Data Set Ready (DSR) to be returned
by the modem. If Data Set Ready
(DSR) is not returned within 15
seconds, the instruction is
terminated and an error condition
is returned to the application
program in the first word of the
TCB.

Activates Data Terminal Ready (DTR)
if not jumpered on and waits for
Data Set Ready (DSR) to be
returned by the modem. When Data
Set Ready (DSR) is returned, an
answer tone is activated for three
seconds. The modem must allow for
the control of the answer tone.

Combines the functions of ENABLET
and ENABLEA.

Disables Data Terminal Ready (DTR)
if not jumpered on and waits for 15
secnnds. This function is used to
disconnect (hang up) the modem.

* WAIT WITH NO TIMEOUT
* BREAK COMMUNICATION

o

o

o

o

TERMCTRL

I ACCA Support Return Codes

Fo llow i n9 each TERMCTR L instruct i on that is issued by an app 1 i­
cation program to an ACCA device, a return code is provided in
the first word Ctaskname) of the TCB. The bits of the first
word are interpreted as fo llows:

-1 Successful completion.

Bit Description

0 Unused
1-8 ISB of last operation (I/O complete)
9-10 Unused

11 1 i f a write or control operation (I/O complete)
12 Read operation (I/O complete)
13 Unused

14-15 Condition code +1 after I/O start (or)
Condition code after I/O complete

I Figure 15. Terminal I/O - ACCA Return Codes

Chapter 3. Instruction and Statement Descriptions 301

TERMCTRL

Teletypewriter Egu;valent Devices

Syntax

label TERMCTRL function,ATTN=

Required: function
Defaults: none
IndexabIe: none

Operands Description

function:

ATTN=

Examples:

SETATTN
WRITEPTR

SET

DISPLAV

Enables the attention function
for the device (when ATTN=VES)
or disables the attention
function for the device
(when ATTN=NO).

Causes any buffered output.to
be written to the teletypwriter.

NO, to disable the attention function.

VES, to enab Ie the attent ion funct i on.

This operand must be used in conjunction with the
SET function.

TERMCTRL SET,ATTN=NO
TERMCTRL DISPLAV

302 SC34-0314

o

o

C~'~,':
1'1/

o

TERMCTRL

V;rtual Term;nal

Synta)(

label TERMCTRL function,code,ATTN=

Required: function
Defaults: none
Inde)(able: none

Operands Description

function:

PF

SET

Causes a simulated attention
interrupt or program function key
interrupt to be presented if the
program is commun i cat i ng wi,th
another program in the same
processor (DEVICE=VIRT) or with a
program in another processor
(DEVICE=PROC)~

If the code is not specified or is
zero, the keyboard task responds to
the ne)(t READTEXT with ,> ' and waits
for an attention list code to be
returned. If code has a non-zero
value,)(, the attention list code
$PF)(is automatically generated and
the ,> ' response does not occur.

note: The 'code' may be a
self-defining term or a variable
containing the desired value.

Enables the attention function
for the device (when ATTN=YES)
or disables the attention
function for the device
(when ATTN=NO).

code The attention or PF key value to be presented when
us i ng the PF funct i on. Th i s operand determ i nes the
attent i on or funct i on key va 1 ue.

Chapter 3. Instruction and Statement Descriptions 303

TERMCTRL

ATTN= NO, to d i sab Ie the attent ion funct ion.

YES, to enab Ie the attent ion funct i on.

This operand must be used in conjunction with the
SET funct ion.

304 SC34-0314

(.~.'
."j

o

o

o

TEXT

TEXT

Data Definition

TEXT is used to define a standard text message or text buffer.
The characters are stored in EBCDIC or ASCII code. The PRINTEXT
instruction may be used to print this message buffer on a ter­
minal. READTEXT may be used to read a character string from a
terminal into the TEXT buffer. A count field is maintained as
part of the TeXT buffer and indicates the number of characters
in the message received or to be printed. The contents of the
buffer will be:

BYTE
o
1
2

CONTENT
Length
Count
First byte of text (addressed by 'label')

For a diagram of a buffer layout see Figure 16 on page 307.

Syntax

label TEXT 'message',LENGTH=,CODE=

Required:
Defaults:

'message'
CODE=E

Indexable: none

Operands Description

or LENGTH=
EBCDIC is the standard internal
representation of all character
data

label Refers to the add res s 0 f fir s t by teo f t ext .U sed in
GETEDIT, PUTEDIT, READTEXT, and PRINTEXT.

'message' Any text str i ng def i ned between apostrophes. If
th is operand is not coded, LENGTH must be coded and
the buffer will be filled with EBCDIC spaces. The
count field wi 11 equal the actual number of charac­
ters between apostrophes and if LENGTH is not
coded, LENGTH=count.

Chapter 3. Instruction and Statement Descriptions 305

TEXT

LENGTH=

CODE=

Example

MSGl

MSG2

MSGi

Use two apostrophes to represent each printable
apostrophe

The symbol 'a' will cause a carriage return return
or line feed to occur for nonstatic screen termi­
nals only.

Defines the maximum size (in bytes) of the text
buffer. If this operand is not coded, 'message'
must be coded and LENGTH equals the actual number of
messages will occur if LENGTH is exceeded. The max­
imum value is 254.

If 'message' is not coded, the text area will be
initialized to EBCDIC blanks and the count byte
will be equal to the length byte.

If thi s operand is coded for a text buffer whose
initial use will be for input, then the 'message'
parameter should not be coded and the defined buff­
er will initially contain EBCDIC blanks.

Defines the data type. Code E for EBCDIC, or A for
ASCII. E is the default.

TEXT 'A MESSAGE'

TEXT , ABC·' , LEN G T H = 1 0 , COD E = A

TEXT LENGTH=20

306 SC34-0314

~.
i"l .. "i

o

o

c

o

label TEXT 'message',LENGTH = length,CODE =

I
L length

count

label m
e

s

s count -

a
g

e

blank

blank

blank

Figure 16. Text Statement

ASCII
or
EBCDIC

} 2 bytes

Length in bytes

TEXT

Chapter 3. Instruction and Statement Descriptions 307

TITLE

TITLE

Listing Control

The TITLE statement enables you to place a title at the top of
each page of the assembly listings or at the top of individual
pages. It is not supported by $EDXASM and wi 11 be treated as an
EJECT instruction if encountered.

Syntax

blank TITLE message

Required: message
Defaults: none

Operands

message

Description

An a lphamer i c character str i ng up to 100 characters
in length. Th is must be enc losed in apostrophes.

A program may conta i n more than one TITLE state­
ment. Each one causes following pages to begin with
the new message. This heading is repeated on each
new page following a TITLE statement until a, new
TITLE statement is encountered.

308 SC34-0314

o

o

o

c

TP HOST COMMUNICATIONS

TP HOST COMMUNICATIONS (REFERENCE ONLY)

TP OPENIN
TP CLOSE
TP SET
TP RELEASE

TP OPENOUT
TP SUBMIT
TP TIMEDATE

Telecommunications

TP WRITE
TP READ
TP FETCH

The Host Communications Facilities are described in the
Communications and Terminal Applications Guide.

Chapter 3. Instructfon and statement Descriptions 309

USER

Program Control

USER creates linkage to a user exit routine. This provides the
user a means of programming (in Series/l assembler language) a
function which is not supported by the Event Driven Executive
instruction set. The user exit routine must set the registers
correctly to return control to the system at the end of the rou­
tine. Details of the conventions that must be followed are
described below.

Syntax

label USER name,PARM=(parml, ••• ,parmn),
P=(namel, ••• ,namen)

Requ ired: name
Defaults: none
Indexable: none

Operands

name

PARM=

P=

Description

The entry po; nt name of the user-ex i trout; ne.

A list of parameters that are to be passed to the
user rout; ne.

A list of names to be attached to the PARM operands.

Upon entry to the user rout i ne, reg i ster 1 po i nts to the user's
first parameter. I f no parameters were passed to the user ex i t
rout i ne, reg i ster 1 will po i nt to the address of the ne xt
statement following the USER instruction. Register 2 contains
the address of the current tasks TCB. The user routine must
preserve the contents of register 2 for eventual return to the
supervisor. Your routine must also provide in register 1 the
address of the next Event Driven language instruction to be
executed when returning to the supervisor. If parameters are
passed to the user routine, register 1 must be incremented
within the user exit routine by double the number of parameters
used before returning to the supervisor. If it is desired to
return to an instruction other than the instruction following
the USER statement, reg i ster 1 may be set to the address 0 f the

310 SC34-0314

o

o

C"

o

USER

desired instruction. In all cases, the assembly language rou­
tine must exit by a branch to the label RETURN. Use of the USER
routine requires that $LINK be used to include the RETURN
object module, $$RETURN. The Autocall feature of $LINK may be
used. See the Utilities, Operator Commands, Program
Preparat ion, Messages and Codes for add it i onal i nformat ion.
Figure 17 shows the control flow to a user exit routine.

No parameters

•
•

USER name1
+ DC A (name1)

R1 EDX-instruction

•
•

With parameters

+
R1~ +

+

•
•

USER name1,PARM = (a,b)
DC A (name1)
DC A (a)
DC A (b)
EDX-instruction
•
•

-
~

Note: + indicates statements generated by $S1 ASM.

~ name1 EOU *

•
•

Series/1 assembler instructions

•
•

B RETURN

-- RETU RN interface routine

name1 EOU*

•
•

Series/1 assembler instructions

•
•

ABI4,R1
B RETURN

RETURN interface routine

Figure 17. Calling A User Exit Routine and Returning

It will often be necessary for you to pass parameters to your
routine. Parameters may be passed in the form of constants,
which will be stored in the calling list, or as symbolic names
(addresses) of the parameters. In the latter case, the address
of the parameter is conta i ned in the ca 11 i ng list. I f the
parameter is a constant ~ it may be addressed through reg i ster 1
which points to the first parameter on entry to the user rou­
tine. The instruct i on

Chapter 3. Instruction and Statement Descriptions 311

MVW (Rl,0),R3

will load the parameter into Register 3.
The second parameter may be likewise loaded by

MVW (Rl,2),R3

The following instruction illustrates the method for acquiring a
parameter (in this case, the second) whose address is passed in the
calling sequence.

The user exit routine is free to use all of the registers as
long as registers 1 and 2 are set properly for return to the
superv i sor, The last instruct i on of the user rout i ne must
branch to RETURN which is an entry point in the interface mod­
ule $$RETURN. This module must be link-edited with the user
exit routine using the $LINK utility.

It may be useful in special cases to intermix Event Driven
Language instructions and assembler instructions. This can be
done by using the following coding convention:

MOVE A,B STANDARD INSTRUCTION EXAMPLE
ADD A,10 ANOTHER INSTRUCTION

USER *+2 USER EXIT TO ASSEMBLER CODE

ASSEMBLER CODE

OK BAL RETURN,Rl SET REG 1 AND RETURN

MOVE B,A NOW BACK INTO THE EVENT DRIVEN
SUB B,10 EXECUTIVE INSTRUCTION SET

In this example, the USER *+2 and BAL RETURN,R1 provide the
linkage to assembler code and back to the supervisor, respec­
tively. See "Example 10: User Exit Routine" on page 400 for an
examp Ie of a user ex i trout i ne. The above cod i ng techn i que can
only be used with the Series/l assembler or the host assembler.
$EDXASM does not allow mixing Series/l code with the Event
Driven Language instructions.

If $EDXASM is used to assemble the source program, an EXTRN
must be used to refer to the user exit routine. Then, $LINK
must be used to link the module with the user exit routine mod­
ule produced by the Ser i es/l or host assembler.

312 SC34-0314

f) I

~.

' ~
"~,,

c

o

o

WAIT

WAIT

Task Control

WAIT is used to wa it for the occurrence of an event such as the
comp let i on of an I/O operat i on or a process interrupt. An
event has an associated name sp.ecified by you. The initial sta­
tus of any event defined by you is "event occurred" unless you
explicitly reset the event with the RESET instruction before
issuing the WAIT or reset the event in the WAIT instruction.

Syntax

label WAIT event,RESET,Pl=

Requ ired: event
Defaults: event not reset before wait
Indexable: event

Operands

event

RESET

Description

The symbolic name of the event being waited upon.

For process interrupt, use PIx, where x is a user
process interrupt number in the range 1-99.

For time intervals set by STIMER, use TIMER as the
event name. Do not code RESET with TIMER.

For disk I/O events, use DSn or the DSCB name from a
DSCB statement as the event name. For terminals,
use KEY to cause the task to wa i t for an operator to
press the ENTER key or any PF key. Do not code RESET
with KEY. Coding KEY with asynchronous supported
terminals wi 11 give unpredictable results.

Reset (clear) the event before waiting. Using
RESET wi 11 force the wa it to occur even if the event
has occurred and been posted comp lete.

This parameter must not be specified when the WAIT
is to be performed for the event specified in the
EVENT operand of either a PROGRAM or a TASK state~
mente

Chapter 3. Instruction and Statement Descriptions 313

WAIT

PI= Parameter naming operand. See "Use of The Parameter
Naming Operands (Px=)" on page 8 for further
descriptions.

WAIT norma 11 y assumes the event is in the same part it i on as the
currently executing program. However, it is possible to wait
on an event in another partition using the cross-partition
capab j 1 i ty 0 f WAIT. See the System Gu i de sect i on on
Cross-Partition Services.

When comp iIi ng programs wi th $SIASM or the host assembler, ECBs
are generated automatically by the POST instruction when
needed. When using $EDXASM, ECBs must be explicity coded
unless one of the system event names 1 i sted above is used.

314 SC34-0314

o

o

o

WHERES

WHERES

Task Control

WHERES is used to locate another program execut i ng elsewhere in
the system.

Syntax

label WHERES progname,address,KEY=,Pl=,P2=,P3=

Required: progname, address
Defaults: none
Indexable: none

Operands

progname

address

KEY=

Px=

Description

The I abe I 0 f a 8 by tea rea co n t a i n i n g t he 1-8
character program name of the program to be located

. If less than 8 characters, the program name must be
left-justified and padded with blanks.

The label of a word in which the loadpoint address
of the located program will be returned if the pro­
gram is found. Th is address is the first byte of
the program and is also the beginning of the program
header.

I f the program is not located, a -1 is stored at
this location.

The label of a word in which the address key of the
partition containing the located program will be
returned if the program is found. The address key
is one less than the part i t i on number.

Parameter naming operands. See "Use of
Parameter Nam i ng Operands (Px=)" on page 8
further descriptions. P3 is the name of the
operand.

The
for
KEY

Each partition, beginning with partition number 1, is searched
to determine if the named program is loaded there. Partitions
are search~d in ascending order. The return code placed in the

Chapter 3. Instruction and Statement Descriptions 315

WHERES

task code word indicates the result of the search. If more than
one copy ex i sts, on I y the first one found is reported.

The WH E R ES f unct i on accomp lis hes c ommun i eati on among i ndepend­
ently loaded programs. The address key value can be used as
input to the cross-part it i on opt ions of WAIT, POST, READ,
WRITE, ATTACH, ENQ, DEQ, BSCREAD, BSCWRITE, and MOVE. The
address can be used in conj unct ion with an app I i cat i on-def i ned
convention to gain addressability to data or code routines
within another program. One such technique is to obtain the
contents of the $STORAGE word from the located program's header
and use that to address data which the program has previously
placed in its dynamic area. WHERES can also be used to deter­
mine if a particular program is-already loaded, this can avoid
the need to load another copy. Refer to the top i c of
"Cross-Partition Services" in the System Guide for additional
i nformat i on on the use of WHERES.

Return Codes

Code Description

-1 Program found
o Program not found

Example

WHERES PROG,ADDR,KEV=KEV

ADDR
KEY
PROG

DATA
DATA
DATA

F' 0 '
F ' 0 '
C'PROGNAME'

After successful execution, ADDR contains the address of the
program named PROGNAME and KEY conta ins the address key.

316 SC34-0314

o

o

o

o

WRITE I
WRITE

Disk/Tape I/O

~: The Multiple Terminal Manager WRITE function is located
in "WRITE" on page 381

WRITE is used to transfer one or more records from a storage
buffer into a data set. For disk or diskette data sets you can
write data either sequentially or randomly by relati ve record.
The records are 256 bytes in length.

For tape data sets you can write data sequentially only. Tape
records can be any even numbered length from 18 to 32766 bytes.

Syntax

label

Required:
Defaults:

WRITE

DSx,loc

DSx,loc,count,relrecnolblksize.
END=,ERROR=,WAIT=. P2=,P3=,P4=

Indexable:
count=l, relrecno=O or blksize=256, WAIT=YES
loc, count, relrecno or blksize

Operands

DSx

loc

count

Description

x specifies the relative data set number in a list
of data sets def i ned by the user in the OS parameter
of the PROGRAM statement. It must be in the range
of 1 to n, where n is the number of data sets defined
in the list. A DSCB name defined by a DSCB state­
ment can be subst i tuted for DSx.

The symbolic name of the area from which data is to
be transferred.

Spec if i es the number of cont i guous records to be
written. The maximum value for this field is 255.
If you code 0 for this field, no I/O operation will
be performed. A count of the actual number of
records transferred will be returned in the second
word of the task control block. If an end of data
set cond it i on occurs (fewer records rema i n i ng in
the data set than specified by the count field) the

Chapter 3. Instruction and Statement Descriptions 317

WRITE

relrecno

blksize

END=

system will first write as many records as there is
space rema i n i ng ina disk data set and then an
end-of-data-set return code wi 11 be set.

The number of the record, re lat i ve to the or i gin of
the data set, wh i ch is to be wr i tten. Number i ng
begins with 1. This parameter may be either a con­
stant or the label of the value to be used. A spec­
ification of 0 for relrecno indicates a sequential
WRITE.

Sequential READs and WRITEs start with relative
record one or the record number spec if i ed by a POINT
instruct i on. The superv i sor keeps track of sequen­
tial READs and WRITEs and increments an internal
next record po inter for each record read or wr i tten
in sequent i a 1 mode (re 1 recno -parameter is 0).
Direct READs and WRITEs (relrecno parameter is not
0) may be i nterm i xed with sequent i a 1 operat ions,
but these do not alter the next sequential record
po inter used by sequent i a 1 ope rat ions.

This disk WRITE operand cannot be used in the same
instruction with the tape WRITE blksize operand.

This optional parameter specifies the size, in
bytes, of the record to be written to a tape data
set. The range is 18 to 32766 and the value must be
an even number. The value can either be expressed as
a constant or as the label of the value to be used.
If this operand is not coded, or if 0 is coded, the
default value of 256 bytes is substituted.

This tape WRITE operand cannot be used in the same
instruction with the disk WRITE relrecno operand.

For disk or diskette, use this optional operand to
specify the first instruction of the routine to be
invoked if an end-of-data-set cond it i on is detected
(Return Code= 10) • If th i s operand is not spec i­
fied, an EOO will be treated as an error. This
operand must not be used if WAIT=NO is coded.

For tape, if an end-of-tape (EOT) cond it ion is
detected, the EOT path will be taken with return
code 24, even though the block was successfully
written. See the CONTROL statement for setting the
proper end-of-data (EOO) indicators for an output
tape. Multiple blocks (if specified by the count
field) might not have been successfully written.
The second word of the TCB contains the actual num­
ber of blocks written. This parameter is not valid

318 SC34-0314

o

o

o

o

o

ERROR=

WAIT=

Px=

WRITE

when WAIT=NO is coded.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after the WRITE
and you must test for any errors. Th is operand must
not be used if WAIT=NO is coded.

For tape, if END is not coded, an EOT wi 11 be
treated as an error with an EOT return code. The
ERROR path is taken for a 11 return codes other than
EOT or a -1. An attempt to wr i te to a tape wh i ch has
an unexp i red date is also an error.

If this operand is allowed to default, or if it is
coded as WAIT=YES, the current task wi 11 be sus­
pended unti 1 the operation is complete.

If the operand is coded as WAIT=NO, control will be
returned after the operation is initiated and a
subsequent WAIT DSx must be issued in order to
determine when the operation is complete.

END and ERROR cannot be coded if WAIT=NO is coded.
You must subsequently test the return code in the
Event Control Block (ECB) named DSx or in the task
code word (referred to by taskname). Two codes are
of spec i al sign if i cance. A -1 i nd i cates a success­
ful end of operation. A +10 indicates an
End-of-Data-Set and may be of logical significance
to the program rather than being an error. For
programming purposes, any other return codes should
be treated as errors.

Note: The return codes for disk/diskette and tape
are listed later in this section.

Parameter naming operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

WRITE normally assumes the buffer (loc operand) is in the same
partition as the currently executing program. However, it is
possible to use a buffer in another partition using the cross­
part i t i on capab iii ty of WR ITE. See the System Gu i de sect i on on
Cross-Partition Services.

Chapter 3. Instruction and Statement Descriptions 319

WRITE

Disk/Tape Return Codes

Di sk/tape I/O return codes are returned in two places:

• The first word of the DSCB (either DSn or DSCB name) named
DSn, where n is the number of the data set being refer­
enced.

I. The task code word (referred to by taskname).

The possible return codes and their meaning for disk and tape
are shown in tab les later in th is sect i on.

Fa llow i ng an error cond it i on on tape, the read/wr i te head pas i­
tion is immediately following the error record. The error retry
has been attempted, but was unsuccessful. The count field, in
the WRITE instruction, mayor may not have been decremented to
zero under this condition.

If detailed information concerning an error is desired, it may
be obtained by printing all or part of the contents of the disk
data blocks (DDBs) or tape data blocks (TDBs), located in the
superv i sor area of part it i on 1. Th is can be accomp 1 i shed in
either of two ways: (a) by using the $LOG utility (see System
Guide for detai Is of use), or (b) by using the following infor­
mation. The starting address of the DDBs/TDBs may be obtained
from the link-edit map of the supervisor. DDBs/TDBs can also be
located by the field $DISKDDB in the communications vector
table (CVT). Use the PROGEQU equate table to reference
$DISKDDB, DDBEQU equate table for DDB, and the TDBEQU equate
table for the TOB fields. The contents of the DDBs and the TOBs
are described in the IBM Serjes/l Event Driven Executive
Internal Design, LY34-0168, under the headings of 'Disk ~ata
Block', and 'DDB Equates'. Of particular value are the Cycle
Steal Status Words and the Interrupt Status Word save areas,
along with the contents of the word which contains the address
of the next DDB/TDB in storage.

320 SC34-0314

I' 'I (.
-l\

I' i

/-,,\

,-~

o

()

o

I WRITE

Disk/diskette Return Codes

READ/WRITE return codes are returned in two places:

• The Event Control Block (ECB) named DSn, where n is the
number of the data set be i ng referenced.

• The task code word referred to by taskname.

The poss i b Ie return codes and the i r mean i ng are shown in
Figure 12 on page 249.

If further information concerning an error is required, it may
be obtained by printing all or part of the contents of the Disk
Data Blocks (DDBs) located in the Supervisor. The starting
address of the DDBs may be obta i ned from the linkage ed i tor map
of the supervisor. The contents of the DDBs are described in
the Internal Design. Of particular value are the Cycle Steal
Status Words and the Interrupt Status Word save areas, along
wi th the contents of the word wh 1 ch conta 1 ns the address of the
next DDB in storage.

Code Description

-1 Successful completion.
1 I/O error and no device status present

(This code may be caused by the I/O area starting
at an odd byte address).

2 I/O error trying to read device status.
3 I/O error retry count exhausted.
4 Error on issuing I/O instruction to read device

status.
5 Unrecoverable I/O error.
6 Error on issuing I/O instruction for normal I/O.
7 A 'no record found' condition occurred, a seek

for an alternate sector was performed, and another
'no record found' occurred i.e., no alternate 15
assigned.

9 Device was 'offline' when I/O was requested.
10 Record number out of range of data set--may be an

end-of-file (data set) condition.
11 Device marked 'unusable' when I/O was requested.

Figure 18. READ/WRITE return codes

Chapter 3. Instruction and Statement Descriptions 321

Tape Return Codes

Code Description

-1
1
2
4
5
6

10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
76

Example

Successful completion
Exception but no status
Error reading STATUS
Error issuing STATUS READ
Unrecoverable I/O error
Error issuing I/O command
Tape mark (EOD)
Device in use or offline
Wrong length record
Not ready
File protect
EOT
Load point
Uncorrected I/O error
Attempt WRITE to unexpired data set
Invalid blksize
Data set not open
Incorrect device type
Incorrect request type on close request
Block count error during close
EOV1 label encountered during close
DSN not found

TASK1 PROGRAM
START1 WRITE

START1,DS=((OUTDATA,1025»
DS1,BUFFl,1,1000,ERROR=ERR

This example writes a single 1000 byte record from
location BUFF1, to a tape data set named OUTDATA, on
a standard labeled (SL) tape that has volume serial
number 1025.

TASK2 PROGRAM
START2 WRITE

START2,DS=((OUTDATA,1025))
DS1,BUFF2,2,502,ERROR=ERR

This example writes two records to the tape data
set. Each record is 502 bytes in length. Record
one is located at BUFF2, record two is located at
BUFF2 + 502 bytes.

322 SC34-0314

o

o

I C.'·'

o

WXTRN/EXTRN

WXTRN/EXTRN

Program Module Sectioning

Both of these statements i dent i fy symbo Is wh i ch are not def i ned
with in the program modu Ie conta i n i ng the EXTRN/WXTRN state­
ment. References to these symbols wi 11 be resolved when the
program module is link edited with a program m6dule containing
an ENTRY definition for the subject symbol. If no such symbol
is found during link-edit, the symbol is said to be unresolved
and it is ass i gned the same address as the beg inn i ng of the pro­
gram.

WXTRN symbols are resolved only by symbols that are contained
in modules that are included by the INCLUDE statement in the
link-edit process or by symbols found in modules that have been
brought in by the AUTOCALL function. However, WXTRN itself
does not tr i gger AUTOCALL process i ng.

Only symbols defined by EXTRN statements wi 11 be used as search
arguments during the AUTOCALL processing function of $LINK.
Any additional external symbols found in the module found by
AUTOCALL will be used to resolve bot~ EXTRN and WXTRN symbols.
See the description of $LINK in Utilities, Operator Commands,
Program Preparat i on, Messages and Codes for further
information.

Syntax

blank
blank

WXTRN
EXTRN

One or more relocatable symbols
that are external to this
program, separated by commas

Required: One symbol
Defaults: none
Indexable: none

Operands Description

One or more external symbols which wi 11 be resolved
by link editing to a program module which contains
the same symbol def i ned by an ENTRY statement.

Chapter 3. Instruction and Statement Descriptions 323

XYPLOT

XYPLOT

Graphics

XYPLOT is used to draw a curve on the d i sp lay connect i ng po i nt s
specified by arrays of x and y values. Data values are scaled
to screen addresses according to the plot control block, and
points outside the plot area are placed on the nearest bounda­
ry.

Syntax

label XYPLOT x,y,pcb,n,P1=,P2=,P3=,P4=

Required: x,y,pcb,n
Defaults: none
Indexable: none

Operands

x

y

pcb

n

Px=

Description

Address of array of x data values.

Address of array of y data values.

Label of 8-word Plot Control Block (see "PLOTGIN"
on page 210 for a description of a Plot Control
Block) .

Add res s 0 flo cat i o\n w hie h con t a ins n u m be r a f poi n t s
to be drawn.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Example: See "Example 12: Graphics Instructions Programming
Example" on page 408 for an example of cod i ng XYPLOT.

324 SC34-0314

(,1- "\
\ J

,,,"-/1

o

o
YTPLOT

YTPLOT

Graphics

YTPLOT is used to draw a curve on the d i sp lay connect i ng po i nts
equally spaced horizontally and having heights specified by an
array of y values. Data values are scaled to screen addresses
according to the plot control block, and points outside the
range are placed on the boundary of the plot area.

Syntax

label

Required: y,x1,pcb,n,inc
Defaults: none
Indexable: none

Operands

y

xl

pcb

n

inc

Px=

Description

Address of array of y data values.

Address of x data value associated with first
point.

Label of 8-word Plot Control Block (see "PLOTGIN"
on page 210 for a description of a Plot Control
Block).

Address of locat ion wh i ch conta ins number of po i nts
to be drawn.

Explicit value of increment of x data value between
po i nts. Inc must not be zero and must be an exp 1 i cit
value.

Parameter nami ng operands. See
Parameter Naming Operands (Px=)"
further descriptions.

"Use of
on page 8

The
for

Chapter 3. Instruction and Statement Descriptions 325

C"
\1)

o
326 SC34-0314

o

o

CHAPTER 4. INDEXED ACCESS METHOD

This chapter describes the requests that make the Indexed
Access Method avai lable to the user: PROCESS, LOAD, GET,
GETSEQ, PUT, PUTUP, PUTDE, RELEASE, DELETE, ENDSEQ, EXTRACT,
and DISCONN. Included for each request is a description of the
purpose of the request, the deta i led cod i ng syntax, a
description of each parameter, and all of the return codes
assoc i ated wi th use of these requests. The Indexed Access
Method Licensed Program must be installed to use any of these
services.

The information in this chapter is intended for use as a refer­
ence when coding. For a complete description of the Indexed
Access Method refer to System Gu i de.

All Indexed Access Method services are requested by use of the
CALL instruction. Call parameters can have the following
forms:

NAME: passes the value of the variable with the label 'NAME'

(NAME): passes the address of the variable 'NAME' or the value
of a symbol def i ned us i ng an EQU statement

For add it i ana I i nformat i on refer to "CAL L" on page 68.

The general form of all Indexed Access Method calls is as fol­
lows:

CALL IAM,(func),iacb,(parm3),(parm4),(parmS)

The request type is determined by the operand func. Depending
on the type of ,funct i on the rema i n i ng parameters mayor may not
be required. The symbols used for func and parmS are provided
by EQU statements in the IAMEQU copycode module and are coded
as shown in the syntax descriptions. These symbols are treated
as addresses; therefore the MOVEA instruct i on should be used if
it is necessary to move them into a parameter list. Si nce these
symbols are equated to constants, they may also be manipUlated
using other instructions by prefixing them with a plus (+)

sign. Use the COpy statement to include IAMEQU in your pro­
gram.

Programs which call the Indexed Access Method must be processed
by $LINK to include the subroutine module lAM. IAMEQU has an
EXTRN statement for lAM. Refer to the chapter on "$LINK" in
Utilities, Operator Commands, Program Preparation, Messages
and Codes for i nformat i on on how to perform the link ed it proc­
ess.

Chapter 4. Indexed Access Method 327

All Indexed Access Method requests pass a return code reflect­
ing a condition that prevailed when the request completed.
This code is passed in the Task Code Word (referred to by task
name) of the TCB associated with the requesting task. These
return codes fa 11 into three categor i es:

-1 = Successful completion
Positive = Error
Negative = Warning (other than -1)

The return codes as soc i ated with each request are inc I uded with
the description of the request. Parameters parm3, parm4, and
parm5 are set to zero by the Indexed Access Method before
returning. These parameters must be reinitialized before exe­
cuting the CALL instruction again.

"Example 14: Use of Indexed Access Method" on page 414 is a
complete program which illustrates many of the Indexed Access
Method services. This example should help you understand the
use of these serv ices.

328 SC34-0314

o

o

o

DELETE

DELETE

Indexed Access Method

The DELETE request deletes a specific record from the data set.
The record to be deleted is identified by its key. The deletion
makes space ava i lable for a future insert. The data set must be
opened in the PROCESS mode.

Syntax

label CALL IAM,(DELETE),iacb,(key)

Required: all
Defaults: none
Indexable: none

Operands

iacb

(key)

Description

The label of a word containing the IACB address
returned by PROCESS.

The labe I of your key area conta i n i ng the key
i dent i fyi ng the record to be retr i eved and preceded
by the lengths of ~he key and area. This area has
the standard TEXT format and may be declared using
the TEXT statement. Th i s format; s as fo llows:

Offset
key -2
key -1
key

length

klen

Field
LENGTH (1 byte)
KLEN (1 byte)
Key area ("LENGTH" bytes)

The length of the key area.
equal to or greater than the
length for the file in use.

It must
full

be
key

The actual length of the key in the key
area to be used as the search argument
for the operation. It must be less than
or equal to the full length of the keys in
the file in use. If klen is 0, the full
key length is assumed. If klen is

Chapter 4. Indexed Access Method 329

DELETE I

key area

between 0 and the full key length, a
generic key search is performed.

A gener i c key search is performed when
klen is less than the full key size. The
first n bytes (as specified by klen) of
the key area are matched aga i nst the
first n bytes of the keys in the file. The
first matching key determines the record
to be accessed. The full key of the
record is returned in the key area.

The area conta i n i ng the key to be used as
a generic search argument. After a suc­
cessful generic key search, this area
conta i ns the full key of the record
accessed.

Return Codes

Code

-1
-85

7
8

10
12
13
22
80

100
101

Condition

Successful
Record not found
Link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid IACB address
Write error - FCB
Read error
Write error

330 SC34-0314

o

DELETE

o
Example

CALL IAM,(DELETE),FILEl,(KEY)

FILEI DATA F'O' IACB address from PROCESS
KEY TEXT 'KEY0001',LENGTH=7

o
Chapter 4. Indexed Access Method 331

DISCONN

DISCONN

Indexed Access Method

The DISCONN request disconnects an IACB from an indexed data
set and releases the storage used for the IACB. It releases any
locks he ld by that IACB and wr; tes out any mod; f i ed b locks from
the data set that is being held in the system buffer. Other
users connected to th i s data set are not affected.

Syntax

label CALL

Required: all
Defaults: none
Indexable: none

IAM,(DISCONN),iacb

Operands Description

iacb The label of a word containing the IACB address
returned by PROCESS or LOAD.

332 SC34-0314

o

o

o

DISCONN

Return Codes

Code

-1
7
8

12
13
22

100
101
110

Condition

Successful
Link module in use
Unable to load $IAM
Data set shut down
Module not included in load module
Invalid lACS address
Read error
Write error
Write error, data set closed

Chapter 4. Indexed Acce~s Method 333

ENDSEQ

ENDSEQ

Indexed Access Method

The ENDSEQ request ends sequential processing, during which a
block is locked and fixed in the system buffer. Sequential
process i ng ; s norma 11 y term i nated by an end-of-data cond it ion.
The ENDSEQ request is useful for freeing the locked block when
the sequence need not be completed. ENDSEQ is valid only dur­
ing sequential processing.

Syntax

label CALL

Required: all
Defaults: none
Indexable: none

IAM,(ENDSEQ),;acb

Operands Description

iacb The label of a word containing the IACB address
returned by PROCESS

334 SC34-0314

C' .. 1

\ ' .) .,

o

o

0 ,",
"

ENDSEQ

Return Codes

Code

-1
7
8

10
12
13
22

Condition

Successful
Link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid IACB address

Chapter 4. Indexed Access Method 335

EXTRACT

EXTRACT

Indexed Access Method

The EXTRACT request returns information from a Fi Ie Control
Block to the user's area. The FCB contains such things as the
blocksi ze, key length, and data set and volume names of the
indexed file. The FCBEQU copycode module contains a set of
equates to map the File Contro I Block.

Syntax

label CALL IAM,(EXTRACT),iacb,(buff),(size)

Required: all
Defaults: size=full FCB
Indexable: none

Operands

iacb

(buff)

(size)

Description

The label of a word conta i n i ng the IACB address
returned by PROCESS or LOAD.

The label of the user area into which the Fi Ie
Control Block (FCB) is returned. The area must be
large enough to contain the requested portion of
the FCB. Use the COPY statement to include FCBEQU
in your program so that the FCB fields can be refer­
enced by symbol i c names.

The number of bytes of the area into which the FeB
is to be copied. A full FCB requires 256 bytes. The
symbol FCBSIZE in the FCBEQU equate table repres­
ents the actual size of the data in the FCB and can
be used as th i s parameter.

336 SC34-0314

./ "\

(.\. ~

o

o

Return Codes

Code

-1
7
8

12
13
22

Condition

Successful
Link module in use
Unable to load SIAM
Data set shutdown
Module not included in load module
Invalid IACB address

EXTRACT

Chapter 4. Indexed Access Method 337

GET

Indexed Access Method

The GET request retrieves a single record from the indexed data
set and places the record in a user area. The data set must be
opened in the PROCESS mode.

The requested record is located by key. The search may be mod i­
fied by a key relation (krel) or a key length (klen). The first
record in the data set that satisfies the key condition is the
one that is retr i eved.

Retr i eve for update can be spec if i ed if the requested record is
intended for possible modification or deletion. The record is
locked and remains unavailable to any other requests until the
update is completed by a PUTUP, PUTDE or by a RELEASE. The
record is also released if an error occurs or processing is
ended with a DISCONN.

During an update, you. should not change the key field in the
record or the field addressed by the key parameter. The
Indexed Access Method checks for and prohibits key modifica­
tion.

Syntax

label

Required:

CALL lAM, (GET), iacb, (buff), (key),
(mode/krel)

Defaults:
lndexable:

all
mode/krel=EQ
none

Opera-nds

iacb

(buff)

Description

The label of a word containing the IACB address
returned by PROCESS.

The labe I of the user area into wh i ch the requested
record is placed.

338 SC34-0314

o

c

o

o

(key) The label of your key area conta in i ng the key
i dent i fy i ng the record to be retr i e ved and preceded
by the lengths of the key and area. This area has
the standard TEXT format and may be declared using
the TEXT statement. Th i s format is as follows:

Offset
key -2
key -1
key

length

klen

key area

Field
LENGTH (1 byte)
KLEN (1 byte)
Key area ("LENGTH" bytes)

The length of the key area.
equal to or greater than the
length for the file in use.

It must
full

be
key

The actual length of the key in the key
area to be used as the search argument
for the operation. It must be less than
or equal to the full length of the keys in
the file in use. If klen is 0, the full
key length is assumed. If k len is
between 0 and the full key length, a
gener i c key search is performed.

A generic key search is performed when
klen is less than the full key size. The
first n bytes (as specified by klen) of
the key area are matched aga i nst the
first n bytes of the keys in the file.
The first matching key determines the
record to be accessed. The fu 11 key of
the record is returned in the key area.

The area containing the key to be used as
a generic search argument. After a suc­
cessful generic key search, this area
conta i ns the full key of the record
accessed.

(mode/krel) Retrieval type and key relational operator to be
used. The following are defined:

EQ Retrieve only key equal
GT Retrieve only key greater than
GE Retrieve only key greater than or equal
UPEQ Retrieve for update key equal
UPGT Retrieve for update key greater than
UPGE Retrieve for update key greater than or equal

Chapter 4. Indexed Access Method 339

Return Codes

Code

-1
-58
-80

7
8

10
12
13
22

100
101

Condition

Successful
Record not found
End of data
link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid lACS address
Read error
Write error

340 SC34-0314

!' ~

\<_)

o

o
GETSEQ

GETSEQ

Indexed Access Method

The GETSEQ request retrieves a single record from the indexed
data set and places the record in a user area (buff). The data
set must be opened in the PROCESS mode.

The first GETSEQ of a sequence is performed like a GET; the
first record in the data set that satisfies the key conditions
is the one that is retrieved. If key is zero, the first record
in the data set is retr i eved. Subsequent requests in the
sequence locate the next sequential record in the data set and
the key parameter is ignored if specified. The sequence is
terminated by an end-of-data condition, by an ENDSEQ, by a
DISCONN, or by an error. During the sequence, direct-access
requests are i nva lid. Retr i eva I for update can be spec if i ed if
the requested record is intended for possible modification or
deletion. If update is used the record is locked and remains
unavai lable to any other requests unti I the update is completed
by a PUTUP, PUTDE or RELEASE. The record is also released by
end i ng the sequence wi th an ENDSEQ or by end i ng process i ng with
a DISCONN or by an occur.

During an update, the user must not change the key field in the
record or the fie ld addressed by the key parameter. The
Indexed Access Method checks for and prohibits key modifica­
tion.

Syntax

label

Required:
Defaults:

CALL IAM,(GETSEQ),iacb,(buff),(key),
(mode/krel)

Indexable:

all
mode/krel=EQ
none

Operands

iacb

Description

The label of a word containing the lACS address
returned by PROCESS.

Chapter 4. Indexed Access Method 341

GETSEQ

(buff)

(key)

The label of the user area into wh i ch the requested
record is placed.

The label of the user key area containing the key
i dent i fyi ng the record to be retr i eved and preceded
by the lengths of the key and area. If the first
record of the data set is to be retrieved, this
field as specified should be O. The key field, if
specified, has the standard TEXT format and may be
declared using the TEXT statement. This format is
as follows:

Offset
key -2
key -1
key

length

klen

key area

Field
LENGTH (1 byte)
KLEN (1 byte)
Key area ("LENGTH" bytes)

The length of the key area.
equal to or greater than the
length for the file in use.

It must
full

be
key

The actual length of the key in the key
area to be used as the search argument
for the operat i on. It must be less than
or equal to the full length of the keys in
the file in use. If klen is 0, the full
key length is assumed. If k len . i s
between 0 and the full key length, a
gener i c key search is performed.

A gener i c key search is performed when
klen is less than the full key size. The
first n bytes (as specified by klen~ of
the key area are matched against the
first n bytes of the keys in the file.
The first matching key determines the
record to be accessed. The full key of
the record is returned in the key area.

The area conta i n i ng the key to be used as
a generic search argument. After a suc­
cessful gener i c key search, th i s area
conta ins the full key of the record
accessed.

(mode/krel) Retrieval type and key relational operator to be
u s·e d. The follow i n gar e d e fin e d :

342 SC34-0314

o

(~(-.~

\"" =,,!

o

0

C:

o

GETSEQ

EQ Retrieve only key equal
GT Retrieve only key greater than
GE Retrieve only key greater than or equal
UPEQ Retrieve for update key equal
UPGT Retrieve for update key greater than
UPGE Retrieve for update key greater than or equal

After the first GETSEQ of a sequence only the retrieval type is
meaningful. The keys are not checked for equal or greater than
relationship.

Return Codes

Code Condition

-1 Successful
-58 Record not found
-80 End of data

7 Link module in use
8 Unable to load $IAM

10 Invalid request
12 Data set shut down
13 Module not included in load module
22 Invalid lACB address

100 Read error
101 Write error

Chapter 4. Indexed Access Method 343

LOAD

Indexed Access Method

Note: Task control LOAD is located under "LOAD" on page 194.

The LOAD'request builds an indexed access control block (IACB)
associated with the data set specified by dscb. The address
returned in the iacb variable is the address used to connect
requests under th; s LOAD to th is data set.

LOAD opens the data set for loading base records; the only
acceptable processing requests in this mode are PUT, EXTRACT
and DISCONN. Only one user of a data set can use the LOAD func­
tion at one time.

If an error exit is specified, the error exit routine is exe­
cuted whenever any Indexed Access Method request under th is
LOAD term i nates with a pos it i ve return code.

Syntax

label

Required:
Defaults:

CALL IAM,(LOAD),iacb,(dscb),(opentab),
(mode)

Indexable:

all
mode=(SHARE)
none

Operands

iacb

(dscb)

Description

The labe I of a I-word var i ab Ie into wh i ch the
address of the indexed access control block (IACB)
is returned.

The name of a valid DSCB. This name is DSn, where n
is a number from 1 - 9, corresponding to a data set
defined by the PROGRAM statement. It can also be a
name supplied by a DseB statement. In the latter
case you must have previously opened the DSeB with
either the $DISKUT3 uti lity or with a DSOPEN state­
ment.

344 SC34-0314

o

o

o

o

LOAD

(opentab) The label of a 3 word open-table. The open table
conta i ns i nformat i on used dur i ng th is LOAD. The
format of th i s tab Ie is as fo llows:

(mode)

Offset
o
2
4

Where:

SYSRTCD

ERREXIT

Field
SYSRTCD
ERREXIT
(0) reserved

A I-word variable in which the system
return code is placed if a system func­
tion requested under this LOAD by the
Indexed Access Method terminates with a
pos it i ve return code.

The user's error ex j trout i ne address.
If this address is zero, the error exit
wi 11 not be taken. Note that error exits
hand Ie on I y pos it i ve returns.

RESERVED Must be 0 for LOAD requests.

Specifies shared or exclusive use of the data set.

SHARE

EXCLUSV

Allows shared read/write access by
PROCESS requests.

You are allowed access to the data set
only if there are no outstanding PROCESS
or LOAD requests. No other user can
access the data set while exclusive use
is granted to another.

Chapter 4. Indexed Access Method 345

LOAD

Return Codes

Code

-1
-57

7
8

12
13
23
50
51
52
54
55
56

E)(ample

IACB
OPEN

CALL

DATA
DATA
DATA
DATA

Condition

Successful
Data set has been loaded
Link module in use
Unable to load $IAM
Data set shut down
Module not includ~d in load module
Insufficient IACBs
File opened exclusive
Opened in load mode
File in use, cannot open exclusive
Invalid blocksize
Insufficient FCBs
Read error - FCB

IAM,(LOAD),IACB,(OS3),(OPEN),(EXCLUSV)

F ' 0 '
F ' 0 '
A'ERROR'
F ' 0 '

return codes
error e)(it
not used

346 SC34-0314

o

;,(--",

U

o

o

C:

PROCESS

PROCESS

Indexed Access Method

The PROCESS request builds an indexed access control block
(IACB) associated with the data set specified by DSCB. The
address returned in the IACB variable is the address used to
connect requests under th i s PROCESS to th is data set.

PROCESS opens the data set for retrievals, updates,
insertions, and deletions. Multiple users can PROCESS the same
data set. However, only one user at a time can use the LOAD
funct i on for a given data set.

If ERREXIT is specified, the error exit routine is executed
whenever any Indexed Access Method request under this PROCESS
terminates with a positive return code. If EODEXIT is speci­
fied, the end-of-data exit routine is executed whenever a
GETSEQ associated with PROCESS attempts to access a record
after the last record in the data set.

Syntax

label

Required:
Defaults:

CALL IAM,(PROCESS),iacb,(dscb),(opentab),
(mode)

Indexable:

all
mode=(SHARE)
none

Operands

iacb

(dscb)

Description

The label of a I-word var i able into wh i ch the
address of the indexed access control block (IACB)
is returned.

The name of a valid DSCB. This name is DSn, where n
is a number from 1 - 9, corresponding to a data set
defined by the PROGRAM statement. It can also be a
name suppl i ed by a DSCB statement. In the latter
case you must have previously opened the DSCB with
e i the r the $ DIS K U T 3 uti lit y 0 r wit haD SOP ENs tate -
ment.

Chapter 4. Indexed Access Method 347

PROCESS

(opentab) The label of a 3 word open table. The open table
conta ins i nformat i on used dur i ng th is PROCESS. The
format of th is tab Ie is as fo llows:

(mode)

Offset
o
2
4

Where:

SYSRTCD

ERR EXIT

EODEXIT

Field
SYSRTCD
ERREXIT
EODEXIT

A I-word var i able in wh i ch the system
return code is placed if a system func­
tion requested under this PROCESS by the
Indexed Access Method terminates with a
pos i t i ve return code.

Your error ex i trout i ne address. If th i s
address is 0, the error exit will not be
used. Note that error exits handle only
pos it i ve return codes.

Your end-of-data exit
If this address is 0,
exit will not be used.

rout i ne address.
the end-of-data

Spec if i es shared or exc I us i ve access to the data
set.

SHARE

EXCLUSV

Allows shared read/write access by
multiple PROCESS or LOAD requests.

The user is a llowed access to the data
set only if there are no outstanding
PROCESS or LOAD requests. No other user
can access the data set while exclusive
use is granted to another.

348 SC34-0314

;(' .. ",

\~)

o

o

o

Return Codes

Code

-1
-57

7
8

12
13
23
50
51
52
54
55
56

Example

Condition

Successful
Data set has been loaded
Link module in use
Unable to load $IAM
Data set shut down
Module not included in load module
Insufficient IACBs
File opened exclusive
Opened in load ,mode
File in use, cannot open exclusive
Invalid blocksize
Insufficient FCBs
Read error - FCB

PROCESS

CALL IAM,(PROCESS),IACB,(DS1),(OPENTAB),(SHARE)

OPENTAB DATA
DATA
DATA

IACB DATA

F ' 0 '
ACERROR)
ACEND)
F ' 0 '

return codes
address of error exit
address of EOD exit

Chapter 4. Indexed Access Method 349

PUT

Indexed Access Method

The PUT request processes the record that is in your buffer
(buff) according to the way the data set was opened (LOAD or
PROCESS).

If the current open is for LOAD, the record must have a higher
key than the highest key already in the data set and only base
records are used (refer to the System Guide for information on
LOAD mode). If the current open is for PROCESS, the record may
have any key and is placed in either a base or a free record
slot.

Syntax

label CALL IAM,(PUT),iacb,(buff)

Required: all
Defaults: none
Indexable: none

Operands

iacb

(buff)

Description

The label of a word containing the lAce address
returned by PROCESS or LOAD.

The label of the user area containing the record to
be added to the data set.

350 SC34-0314

,,A~-,\

\
I

"J
i

o

o

o

Return Codes

Code

-1
7
8

10
12
13
22
60

61
62
70

100
101

Condition

Successful
Link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid IACB address
Out of sequence or duplicate key
(LOAD only)
End of file
Duplicate key found (PROCESS only)
No space for insert
Read error
Write error

Chapter 4. Indexed Access Method 351

PUTDE

PUTDE

Indexed Access Method

PUTDE deletes a record from an indexed data set. The record
must have been prev; ous 1 y retr i eyed by a GET or GETSEQ 1 n
update mode. De let i ng the record creates free space in the data
set. The PUTDE releases the lock placed on the record by the
GET or GETSEQ.

Syntax

label CALL IAM,(PUTDE),iacb,Cbuff)

Required: all
Defaults: none
Indexable: none

Operands

iacb

(buff)

Description

The label of a word containing the IACB address
returned by PROCESS.

The name of the area conta i n i ng the record
previously retrieved by GET or GETSEQ.

352 SC34-0314

o

o

o

PUTDE

Return Codes

Code

-1
7
8

10
12
13
22
85

100
101

Condition

Successful
link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid lACB address
Key was modified by user
Read error
Write error

Chapter 4. Indexed Access Method 353

PUTUP

PUTUP

Indexed Access Method

The record in your buffer (buff) replaces the record in the
data set. The record must have been retr i eved by a GET or
GETSEQ in update mode. You must not change the key field in the
record or the contents of the key variable in the GET request.
The Indexed Access Method checks for and prohibits key modifi­
cation. The PUTUP releases the lock placed on the record by the
GET or GETSEQ.

Syntax

label CALL IAM,(PUTUP),iacb,(buff)

Required: all
Defaults: none
Indexable: none

Operands

iacb

(buff)

Description

The label of a word containing the IACB address
returned by PROCESS.

The label of the user area containing the record to
replace the one previously retrieved.

354 SC34-0314

Oi,"

.,jJ

o

o

o

PUTUP

Return Codes

Code

-1
7
8

10
12
13
22
85

100
101

Condition

Successful
Link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid IACB address
Key was modified by user
Read error
Write error

Chapter 4. Indexed Access Method 355

RELEASE

RELEASE

Indexed Access Method

The RELEASE request frees a record that has been locked by a GET
or GETSEQ for update. A record lock is normally released by a
PUTUP or PUTDE. The RELEASE request is useful for freeing the
locked record when the update need not be completed. RELEASE
is val i d only when a record is locked for update.

Syntax

label CALL

Required: all
Defaults: none
Indexable: none

IAM,(RELEASE),iacb

Operands Description

iacb The label of a word containing the IACB address
returned by PROCESS.

356 SC34-0314

o

o

0 ,
' '1'1

RELEASE

Return Codes

Code

-1
7
8

10
12
13
22

Condition

Successful
link module in use
Unable to load $IAM
Invalid request
Data set shut down
Module not included in load module
Invalid IACB address

Chapter 4. Indexed Access Method 357

o
358 SC34-0314

o

C"

o

CHAPTER 5. MULTIPLE TERMINAL MANAGER

The services of the Multiple Terminal Manager are requested
us i ng the instruct i on "CALL" on page 68. Th is sect i on descr i bes
each of the functions and the coding syntax of the CALL, the
parameters and the return codes.

The use, purpose, and messages for the Mu I tip Ie Term i na 1 Manag­
er functions are described further in the Communications and
Terminal Applications Guide.

The general format of a Multiple Terminal Manager request is:

CALL routine,(parml),~parm2) •••••

All parameters are enclosed in parentheses and are the
addresses of variables in the requesting program.

Chapter 5. Multiple Terminal Manager 359

ACTION

ACTION

Multiple Terminal M~nager

ACTION begins the prompt-response terminal I/O cycle. For IBM
4978/4979/3101 displays the parameter list is ignored (i f
spec if i ed). The input buffer is wr i tten protected to the
screen if a CALL SET PAN or CALL CHGPAN command was executed
previously during this execution. The output buffer is scatter
written into the unprotected fields on the screen. If no SETPAN
or CHGPAN precedes the ACTION, only the output buffer is writ­
ten. The terminal then waits for operator input and reenters
the current program (with operator input in the input buffer)
at the next sequential instruction after CALL ACTION.

For asynchronous terminals, ACTION does the following:

1. Wr i tes the spec if i ed buffer contents to the termi nal
(performs the Multiple Terminal Manager WRITE function).

2. Wa i ts for the operator to respond

3. Reenters the current program at the instruct i on follow­
ing the CALL ACTION.

Syntax

label CALL ACTION,(buffer),(length),(crlf)

Requ ired: none
Defaults: none
Indexable: none

Operands Description

(buffer)

(length)

(crlf)

A buffer of EBCDIC text of any length.

The number of characters in the buffer.

A binary value of 1 specifies that the terminal is
to be issued a CR and LF after the message is sent.
Any other value results in no CRLF being sent.

360 SC34-0314

o

o

o

o

o

BEEP

BEEP

Multiple Terminal Manager

.-
CALL BEEP causes the audible alarm (optional feature) to be
sounded at the current terminal following the next output
cycle. The IBM 4979 terminal has no audible alarm and ignores
this request. The current display and cursor position for 4978,
4979 and 3101 are not affected. When executed for an asynchro­
nous terminal, this request causes the next output line to be
followed by a bell character.

Syntax

label CALL BEEP

Requ ired: none
Defaults: none
Indexable: none

Operands Description

none none

Chapter 5. Multiple Terminal Manager 361

CDATA

CDATA

Multiple Terminal Manager

Al tho ugh the t e r min a len v. i ron men t b 10 c k can be a c c e sse d
directly because its address is a user program parameter, you
may find it more convenient with your program to use the ~DATA
function, to determine the attributes of the calling terminal.
The CDATA subroutine returns data concerning the terminal
which is currently executing the program.

Syntax

label CALL CDATA,(type),(userid),(userclass),
(termname),(buffsize)

Required: all
Defaults: none
Indexable: none

Operands

(type)

(userid)

Description

A word where:

o = Terminal is an IBM 4978, 4979, or 3101
2 = Terminal is an ASR 33/35 or equivalent

The 16-bit value returned by the SIGNON program
when the current terminal signed on. If the current
terminal does not use SIGNON, this value is set to
zero.

(userclass) The 16-bit value returned by the SIGNON program
when the current terminal signed on. If the current
terminal does not use SIGNON, this value is set to
zero.

(termname) The label of a field containing the 8-byte name
(r i ght padded with blanks, if necessary) of the
current termi nal.

362 SC34-·0314

o

o

o

o

CDATA

(buffsize) The length of the terminal's input buffer. For
asynchronous terminals this is 150 bytes. For IBM
4978, 4979, or 3101 terminals, this is the number of
unprotected blanks in the last screen panel which
was set using SETPAN or CHGPAN.

Chapter 5. Multiple Terminal Manager 363

CHGPAN

CHGPAN

Multiple Terminal Manager

After a CAll SETPAN, the protected characters of the screen
panel specified have been placed 1n the input buffer. You can
add data to the image prior to the next output cycle, and the
data is displayed as protected data. If you do this, you must
also CAll CHGPAN to inform the Multiple Terminal Manager that
it needs to recompute the location of the first unprotected
character pos it i on in the cur rent pane 1 and the count of unpro­
tected characters. CHGPAN a Iso sets the SETPAN i nd i cator,
allowing applications to dynamically develop protected screen
panels.

Syntax

label CAll CHGPAN

Required: none
Defaults: none
Indexable: none

Operands Description

none None

364 SC34-0314

o

o

o

CYCLE

CYCLE

Multiple Terminal Manager

When CALL CYCLE executes, the program may be swapped out as all
other term ina Is are given an opportun i ty to process; nputs. The
program and the output buffer are preserved but the contents of
the input buffer are lost (set to blanks) .If a SETPAN or
CHGPAN has been executed, the screen in the input buffer is
displayed protected at this time to free up the input buffer.

After all other terminals have processed their
program is swapped into the program area and
returned to the instruct i on after the CALL CYCLE.

Syntax

label CALL CYCLE

Requ ired: none
Defaults: none
Indexable: none

Operands Description

none none

inputs,
control

the
is

Chapter 5. Multiple Terminal Manager 365

FAN

Multiple Terminal Manager

The FAN function is a no-operation in the EDX environment. It
is provided only for compatibility with other implementations.

Syntax

label CALL FAN

Requ ired: none
Defaults: none
Indexable: none

Operands Description

none none

366 SC34-0314

o

o

o

o

FILEIO

FILEIO

Multiple Terminal Manager

When executing programs under the Multiple Terminal Manager,
all requests for disk/diskette I/O are by means of a call to the
FILEIO routine. FILEIO provides the following functions:

• Automat i c open of the requested data set.

• Di rect access support where records are accessed by a
re lat i ve record number (RRN).

• Support for Indexed Access Method files, prov i ding a
high-level language interface to most Indexed Access Meth­
od serv ices.

• Data i ntegr i ty, us i ng automat icc lose of term ina I man­
ager shutdown and automat i c wr i te back of data buffers.

FILEIO automatically controls the opened/closed status of a
data set. Thus data set names must not be coded on the PROGRAM
statement of programs to be executed using the Multiple Termi­
nal Manager. If the data set is not open when a request is
made, the data set is opened. Because many terminals can
require many data sets, some common and some unique, you may
find that there is no storage ava i lab Ie to open a requested
d a t a set. In 0 r d e r to a v 0 i d t his sit u at ion, a lim i tis. set for
the number of open data sets. Multiple Terminal Manager is
distributed with space allocated for 14 open data sets. When
this limit is reached, the least recently accessed data set is
closed, and the space it requ ired is reused. A data set is not
available for automatic close if it has an update pending. The
user can adjust the maximum number of open data sets by chang~
ing the file table in the Multiple Terminal Manager source mod­
u Ie CDMCOMMN.

FILE 10 prov i des the fac iii ty to access prev i ous I y created
files using the CALL interface described earlier. These files
must have been p~eviously defined and, if indexed, they must
have been previously loaded.

Syntax

Chapter 5. Multiple Terminal Manager 367

FILEIO

label CALL FILEIO,(fca),(buffer),(code)

Required: all
Defaults: none
Indexable: none

Operands Description

(fca) Fi Ie Control Area (FCA) - The label of a table with
the parameters descr i bing the requested oper­
ations. Some fields are defined differently depend­
i ng on the request type spec if i ed. The format of
the FCA is shown be low:

o

4

12

12

14

368 SC34-0314

Request Type

Data Set Name

Key Relation

Number of
Records

Key Length

A 4-byte EBCDIC request
Valid request types are
shown below

An 8-byte EBCDIC data set
name, left justified and
padded with blanks

A 2-byte EBCDIC key rela­
ion Operator, GT, GE, EQ
(indexed files only)

A word value for the number
of 256 byte records
to be read or written
(direct file requests only)

A word specifying the
lengthof the key to be used
for retrieval. If the
length specified is less
than the actual key length,
the first n bytes of the key
are used (indexed files only)

o

o

o

0":
" 'I

(buffer)

(code)

16

16

18

20

22

28

Key Location

or
EOD Record
Number

Reserved

Relative Record
Number (RRN)

Volume Name

Search Key

FILEIO

The address of the key to be
used (indexed requests only).
For a COBOL program, this
should be zero.

The system-maintained logical
EOD record number passed back
to the application after each
direct file READ or WRITE
(direct file requests only).

Must be zero

A word value for the
RRN. The first record is
record number 1 (direct
file requests only)

A 6-byte EBCDIC volume
name left justified and
padded with blanks

Used only by COBOLpro­
grams to specify the key
for indexed requests

The name 0 f the user program I/O buffer. Th i s
buffer conta i ns the record to be wr i tten or
rece i ves the record read.

The name of the 2-byte field to contain the return
code passed back by F I LEI o. T his can be a F I LEI 0
return code, a system error code or it can be passed
from the Indexed Access Method.

Indexed File Request Types

RELS Release from sequential processing mode (ENDSEQ)

RElR Release a record held for update (RELEASE)

PUTU Put operation, update mode (PUTUP)

Chapter 5. Multiple Terminal Manager 369

FILEIO

PUTD Put operation, delete mode (PUTDE)

PUTN Put operation, new mode, adds a record to the file (PUT)

GETD Get operation, direct read (GET)

GETS Get operation, 'sequential read (GETSEQ)

IDEL Delete operation (DELETE)

IClS Close an Indexed data set (DISCONN)

GTRU Direct get, update mode (GET)

GTSU Sequential get, update mode (GETSEQ)

Indexed file requests cause invocation of the Indexed Access
Method function shown in parentheses. Files are accessed in
the PROCESS mode and are shared. See "Chapter 4. Indexed
Access Method" on page 327 for more i nformat ion.

Direct File Request Types

READ

WRIT

SEOD

Read the record defined by the RRN field of the FCA
into the user-provided buffer

Write the record defined by the RRN field of the
FCA into the user-provided buffer

Set the system maintained EOD pointer to the record
number provided in the RRN field of the FCA

370 SC34-0314

o

o

C>

o

FILEIO

FILEIO Return Codes

Code

-1
201
202
203

204
205
206
207
208

Description

Successful operation
Data set not found
Volume not found
No file table entries are available; all have
updates outsta-nd i ng.
I/O error reading volume directory
I/O error writing volume directory
Invalid function request
Invalid key operator
SEOD record number greater than data set length

Other return codes not shown above are returned by the
Indexed Access Method or by the system data management support.

For further information on CALL FILEIO see the Communications
and Terminal Applications Gyide

Chapter 5. Multiple Terminal Manager 371

FTAB

FTAB

Multiple Terminal Manager

The FTAB function sets up a table which describes the unpro­
tected (input) fields placed in the input buffer following a
SETPAN or CHGPAN operation. This description is useful for such
things as positioning the cursor to a specific field or to a
precise location within a field.

The FTAB code must be included in the application link-edit
step in order to be ava i lab Ie to the app 1 i cat i on program. Re fer
to the Ut iIi ties, Operator Commands, Program Preparat i on,
Messages and Codes for deta i 15 on 1 i nk-ed it i n9.

Syntax

label CALL FTAB,(table),(size),(return code)

Required: all
Defaults: none
Indexable: none

Operands

table

Description

The table operand is made up of a sequence of
three-word entries. Each three-word entry
describes an unprotected field of the screen image
in the input buffer in the order: row, column, and
length. The sequence begins at the location of the
variable named in the table operand and is repeated
for each successive field of the screen. Following
is an example of the table format:

372 SC34-0314

o

.,,1'" '\

''''--Y

o

o

o

size

I return code

TABLE

TABLE+6

row
column
length
row
column
length

TABLE+12 row

n

column
length

FlAB

(word one of the first field)
(word two of the first field)
(word three of the first field)
(second field)

(third field)

where n is equal to the value of the size operand

Th is operand is one word long and conta i ns the
number of entries in the table. This decimal value
can be in the range I to 32767.

Note: Unused fields in the FTAB table are always
set to zero.

Th i s operand is the name a f a one-word fie ld
reserved for a return code that represents the cam­
p let i on status of the FTAB funct ion.

Return Codes

Code

-2
-1

1
2

Description

FTAB code not link-edited with application
successful return
no data fields found
data table truncated

Chapter 5. Multiple Terminal Manager 373

LINK

LINK

Multiple Terminal Manager

A CALL to LINK causes the named Multiple Terminal Manager pro­
gram to be loaded and executed (replacing the current program).

If a SETPAN or CHGPAN precedes the LINK, the contents of the
input buffer will be displayed for 4978, 4979, or 3101 termi­
nals and the buffer freed. The output buffer is passed
unchanged to the next program.

The program be i ng linked to rece i ves the standard parameter
list for application programs (input buffer, output buffer,
etc.).

Syntax

label CALL LINK,(pgmname)

Required: all
Defaults: none
Indexable: none

Operands Description

pgmname The name of the var i ab Ie conta in i ng the 8-byte
program name (right padded with blanks, if neces­
sary).

If the program name is invalid or cannot be found, this module
returns to the caller; therefore, any return to the user from
CALL LINK is an error condition.

374 SC34-0314

l,f,\,
I !

"l.J

o

o

o

Example

PROG

CAll
GOTO

DATA

LINK,(PROG)
ERROR

C'PROGNAME'

LINK

Chapter 5. Multiple Terminal Manager 375

LINKON

LINKON

Multiple Terminal Manager

A CALL to LINKON provides the same function as CALL LINK,
except that a full output cycle is taken and the terminal man­
ager wa its for an operator response. The named program is
then entered at its entry point with the input buffer contain­
ing the unprotected characters from the screen or all the char­
acters entered from the asynchronous termi nal.

Syntax

label CALL LINKON,(pgmname)

Required: all
Defaults: none
Indexable: none

Operands Description

(pgmname) The name of a variable containing the 8-byte
program name (right padded with blanks, if neces­
sary).

If the program name is invalid or cannot be found, this module
returns to the caller; therefore, any return to the user from
CALL LINKON is an error condition.

Example

PROG

CALL
GOTO

..
DATA

376 SC34-0314

LINKON,(PROG)
ERROR

CL8'PROG'

o

c

o

o

MENU

MENU

Multiple Terminal Manager

CALL MENU immediately aborts the current dialogue and causes
the terminal's menu screen (or request for program name mes­
sage) to be d i sp layed.

The operator can cause this at any time by press~ng PF3 on an­
IBM 4979/4978/3101, or by typing OUT on an asynchronous termi­
nal while in a dialogue.

Syntax

label CALL MENU

Required: none
Defaults: none
Indexable: none

Operands Descrjption

none none

Chapter 5. Multiple Terminal Manager 377

SETCUR

SETCUR

Multiple Terminal Manager

CALL SETCUR specifies the position at which the cursor is to be
displayed for the next output cycle. The cursor position is
expressed as a pa i r of row and co I umn coord i nates on the
screen.

Each screen panel specifies a cursor position to be used while
. the screen is active (until the next SETPAN or CHGPAN). This
function permits you to override the cursor position for the
next output.

Syntax

label CALL SETCUR,trow),(column)

Required: all
Defaults: none
Indexable: none

Operands

(row)

(column)

Example:

Description

The labe I of a word conta i n i ng the row number at
which the cursor is to be set. Allowable row num­
bers are 0-23; row 0 is the top line of the screen.

The label of a word containing the column number at
which the cursor is to be set. Allowable column
numbers are 0-79; column 79 is the rightmost posi­
tion of a row.

Set cursor position to lower righthand corner
of a 4978 or 3101 display.

ROW
COLUMN

CALL

DATA
DATA

378 SC34-0314

SETCUR,(ROW),(COLUMN)

F'23'
F'79'

BOTTOM LINE
RIGHTMOST CHARACTER

()

/' .. _._'\

(0

o

o

o

SETPAN

SETPAN

Multiple Terminal Manager

The SET PAN rout i ne causes the spec i f i ed screen format to be
read into the input buffer (replacing the last operator
input) and sets a sw itch to cause the screen format to be wr i t­
ten to the screen during the next output cycle. Any nulls
(X'OO') in the screen image will be written unprotected. All
other characters will be wr i tten protected. In add it i on to
placing the 1920 byte screen panel into the input buffer, any
unprotected defaults that were specified when the screen was
bui It are moved, concatenated, into the output buffer. The cur­
sor position for the next display after SETPAN will be set to
the first unprotected character position. Before executing a
CALL SETPAN, be sure to save any needed information which is in
the buffers as it wi 11 be overlaid by the panel definition.

Syntax

label CALL SETPAN,(dsname),(code)

Required: all
Defaults: none
Indexable: none

Operands Descriptinn

(dsname)

(code)

The name of a variable containing the 8 byte data
set name of the desired screen format in the SCRNS
volume.

The label of a word in which SETPAN wi 11 place a
return code.

The SETPAN return codes are:

Chapter 5. Multiple Terminal Manager 379

SETPAN

Code

-501

-500

Description

Screen data set not found.

This terminal is not an IBM 4978/4979/3101;
no action has been taken.

-1 Successful, new panel in buffer

1

2

Other

Example

SCREENOI
RC

Warning, the data set does not contain a
valid screen image. The input buffer has
been set to unprotected blanks (X'OO') and
the cursor position set to O.

Warning, too many unprotected default
characters in the screen definition. The
number of default characters that will
be displayed has been truncated. This
return code will be received if there are no
default unprotected characters in the screen.
The $IMAGE utility initially assigns 1920
unprotected characters to a screen. This
number is unchanged if the data
(non-protected) was not modified using the
edit mode of the $IMAGE utility.

Return code from disk READ.

CALL

DATA
DATA

SETPAN,(SCREEN01),(RC)

C'SCREEN01'
F ' 0 '

380 SC34-0314

(f-~\

~)

o

c

WRITE

WRITE

Multiple Terminal Manager

Note: The EDL task control WRITE is located under "WRITE" on
p ag e 317.

The Multiple Terminal Manager provides CALL WRITE to write out­
put messages to asynchronous terminals without allowing opera­
tor response. It writes the specified buffer contents to the
current terminal. Whi Ie writing, other terminals are permitted
to operate. When I/O is complete, the current user program is
reloaded and reentered at the ne)(t sequential instruction
after CALL WRITE.

No operator entry is perm i tted (see ACTION if operator entry is
required). Printers and 4978/4979 displays are not supported
by CALL WRITE.

Syntax

label CALL WRITE,(buffer),(length),(crlf)

Required: all
Defaults: none
Indexable: none

Operands Description

(buffer)

(length)

(crlf)

The label of a buffer of EBCDIC text of any length.

The 1 abe 1 of a word conta i n i ng the number of
characters in the buffer.

The label of a word specifying the CRLF option. A
binary value of 1 in a word specifies that the
terminal is to be issued a CR and LF after the
message is sent. Any other value results in no
CRLF be i ng sent.

If no CRLF is specified (crlf word is not 1), trailing blanks
in the buffer are transm i tted to perm it you to pos i t i on the
terminal for the next message or operator response.

Chapter S. Multiple Terminal Manager 381

WRITE

The Multiple Terminal Manager does not keep track of current
terminal cursor or carriage position. No CRLF is inserted
if, due to messages without CRLF, or a buffer size larger
than the term ina I line length, the right marg in is reached.

If executed when using an IBM 4978/4979, control returns imme­
diately to the caller.

Upon comp let i on, the contents of the buffer are unchanged.

382 SC34-0314

o

o

C
'" :,

/

o

CHAPTER 6. PROGRAMMING EXAMPLES

In this chapter several examples are presented to demonstrate
the use of the Event Driven Language instructions for typical
applications.

It should be noted that most of the examples shown here are not
complete programs in that they do not contain PROGRAM, IODEF,
ENDPROG, and END statements.

Following is a list of the examples that are included, along
with the title of each example.

Example 1 Read and pr i nt date

Example 2 Ana log input

Example 3 Analog input with buffering to disk

Example 4 Digital input and averaging

Example 5 Index register usage

Example 6 Use of MOVEA

Example 7 A two task program with ATTNLIST

Example 8 Program loading functions

Example 9 Floating point, WAIT/POST, GETEDIT/PUTEDIT

Example 10 User ex it rout i ne

Example 11 I/O level control program

Example 12 Graphics example

Example 13 Format and display trace data

Example 14 Use of Indexed Access Method

Example 15 Wr i te data to tape data set

Example 16 Process i ng stand a rd 1 abe Is us i ng BlP

Example 17 Wr i te a data set to a Sl tape then READ it

Example 18 Initialize and WRITE a Nl tape

Example 19 READ the th i rd file on tape

Chapter 6. Programming Examples 383

EXAMPLE 1: READ AND PRINT DATE

Read in and print the date on a terminal.

* ENQUEUE
START

FOR THE TERMINAL
ENQT
PRINTEXT '~EXAMPLE! - ENTER THE DATE~'

* DEQUEUE

*
DAY
MONTH
YEAR

GETVAlUE
GETVAlUE
GETVALUE
PRINTEXT
PRINTNUM
PRINTEXT

TERMINAL
DEQT

DAY,' DAY? '
MONTH,' MONTH? '
YEAR,' YEAR? '
, THE DATE ',SKIP=S
DAY,3 PRINT DAY, MONTH
SKIP=! SKIP TO NEW LINE

CONTINUE PROGRAM

DATA
DATA
DATA

F ' 0 '
F ' 0 '
F ' 0 '

& YEAR

The program enqueues for the terminal in order to provide
uninterrupted use while keying in the date and printing it
back. An introductory message is typed, preceded and
followed by carriage returns, followed by three input
requests using the GETVAlUE instruction. Five lines are
skipped, and the date message is printed. Since the DAY,
MONTH, and YEAR are stored in adjacent locations, only one
PRINTNUM statement is needed to print all three numbers. At
the end of the program, the terminal is dp.queued to allow
access by other users.

In this example, the program may be simplified by using
one GETVALUE instruction to read all three values. The
output from this program is illustrated in the following
example.

384 SC34-0314

(-~'
\I~

o

o
EXAMPLE 1 - ENTER THE DATE

DAY ? 30
MONTH ? 7
YEAR ? 79

THE DATE: 30 7 79

c
Chapter 6. Programming Examples 385

EXAMPLE 2: ANALOG INPUT

This program takes 256 samples from analog input address All
at a sampling rate of 10 points/second. Set the run light on
in the lab at the start of the run and turn it off at the end.
The run light is connected to bit 3 of group D02.

TKNAME

START

*

PROGRAM
IODEF
IODEF
SBIO

START
D02,TVPE=GROUP,ADDRESS=87
AIl,ADDRESS=83
D02,1,BITS=(3,1) TURN ON RUN LIGHT

DO 256,TIMES SET UP FOR 256 PTS
STIMER 100 SET TIMER FOR 100 MS
SBIa AIl,BUFR,INDEX READ All WITH

* AUTOMATIC INDEXING INTO THE BUFFER 'BUFR'
* AND THEN WAIT FOR THE TIMER TO EXPIRE

*
*
* BUFR

WAIT TIMER
ENDDO END OF LOOP

SBIO D02,0,BITS=(3,1) TURN OFF RUN LIGHT

CONTINUE PROGRAM

BUFFER 256 256 WORD BUFFER

The program begins by writing a 1 into bit 3 of digital output
group D02. A loop is initialized for 256 cycles using the DO
command. At this point, a software timer is set up for 100
milliseconds to provide sampling at 10 points/second. The
analog data is read into BUFR using the SBIO instruction with
automat i c index i ng. After the data is read, the program
waits for the timer to expire before returning for the next
sample. When all the data is collected, the run light is
turned off by w ri tin gaO into b it 3 of DO 2 •

/

386 SC34-0314

o

o

EXAMPLE 3: ANALOG INPUT WITH BUFFERING TO DISK

This program takes analog data readings at equal time inter­
vals. The number of data points and the time interval in
milliseconds are read in from the operator's terminal. The
program will allow from 10 to 10,000 data points to be taken
at time intervals between 10 milliseconds and 10 seconds
(10, 000 ms e c). The d a t a co 11 e c t i on i sin i t i a ted by apr 0 c e s s
interrupt start signal. The program is aborted by using the
keyboard f~nction 'AB'. Also, a second keyboard function,
'NP', is used to print a status switch. The switch wi 11 be
equal to zero if the start signal has not been received or
equal to the number of data points to be read if the start
signa 1 has been rece i ved and data co llect; on has begun.

* TITLE 'SAMPLE ANALOG DATA ACQUISITION PROGRAM'

*
* READATA PROGRAM BEGIN,DS=??

ATTNLIST (AB,ABORT,NP,SWPRNT)

* * ABORT THE EXPERIMENT

* ABORT MOVE SWITCH,l
ENDATTN

*
* PRINT OUT EXPERIMENT SWITCH

* SWPRNT

*

*

PRINTEXT TXTlO
PRINTNUM SWITCH
PRINTEXT SKIP=1
ENDATTN

IODEF
IODEF

AI1,ADDRESS=91,POINT=0
PI1,ADDRESS=94,BIT=l5

* EXPERIMENT INITIALIZATION

* BEGIN

GETINT

GETPTS

*

PRINTEXT TXT1
GETVALUE RUNUM,TXT2 REQUEST RUN IDENTIFIER
GETVALUE INTVL,TXT3 REQUEST TIME INTERVAL
I F (I NT V L , L T , 1 0) "OR , (I NT V L , G T , 1 0 0 0 0) , GOT 0 , GET I NT
GETVALUE NPTS,TXT4 REQUEST NO. OF POINTS
IF (NPTS,LT,10),OR,(NPTS,GT,lOOOO),GOTO,GETPTS

WRITE DSl,RUNUM
RESET SWITCH
PRINTEXT TXT9
WAIT PIl,RESET
MOVE SWITCH,NPTS

RUN PARAMETERS IN 1ST SECTOR

PRINT READY MESSAGE
WAIT FOR START SIGNAL
SET SWITCH TO NPTS

Chapter 6. Programming Examples 387

* THIS IS THE DATA ACQUISITION PORTION OF THE PROGRAM

* ATTACH

DO NPTS LOOP COUNT SET ABOVE
STIMER INTVL TIME INTERVAL SET ABOVE
SBIO All,BUFFER,INDEX READ A DATA POINT
IF (BUFINDEX,EQ,128),GOTO,ATTACH 1ST BUFFER

FULL?
IF (BUFINDEX,NE,256),GOTO,TWAIT •• NO, IS 2ND

FULL?
MOVE BUFINDEX,O •• YES, RESET BUFFER INDEX
ADD POINTCNT,256 INCREMENT DATA COUNTER

IF (DISK,NE,-l),GOTO,STOP IS DISK TASK
ATTACHED?

* START DISK OUTPUT TASK
ATTACH DISKTASK

* TWAIT

END LOOP

*

* STOP

*
*
*
*
*
*
*
*
*
*
*
*
*

TIMER WAIT FOR END OF TIME INTERVAL WAIT
IF
ENDDO

(SWITCH,EQ,I),GOTO,STOP TEST FOR 'ABORT'

IF (BUFINDEX,EQ,O),OR,(BUFINDEX,EQ,128),GOTO,STOP
WAIT DSI .• YES, WAIT FOR DISK WRITE
ADD POINTCNT,BUFINDEX UPDATE DATA COUNTER
.ATTACH DISKTASK START LAST DISK OUTPUT

WAIT DS1
ENQT
PRINTEXT TXT6
PRINTNUM POINTCNT
PRINTEXT TXT7
DEQT
PROGSTOP

WAIT FOR LAST OUTPUT OPERATION
GET CONTROL OF TERMINAL
PRINT TERMINATING MESSAGE

RELEASE TERMINAL

THIS IS THE DATA RECORDING TASK
IT IS ATTACHED BY THE DATA ACQUISITION TASK EACH
TIME THAT 128 WORDS OF DATA HAVE BEEN READ IN.
ONE PORTION OF THE BUFFER WILL BE TRANSFERRED TO
DISK WHILE DATA IS SIMULTANEOUSLY BEING READ INTO
THE OTHER PORTION OF THE BUFFER.

THIS TASK RUNS ON LEVEL 3 AT A LOWER PRIORITY THAN
THE DATA ACQUISITION TASK IN ORDER TO MAXIMIZE
TIMING ACCURACY.

DISKTASK TASK DISK1,300,EVENT=DISK
DISK1 WRITE DS1,BUFFER1,ERROR=DISKERR

DETACH -1 •• OK
WRITE DS1,BUFFER2,ERROR=DISKERR
DETACH -1 •. OK
GOTO DISK1

388 SC34-0314

(f-~\

',,----y'

o

o

o

* PRINT DISK ERROR MESSAGE

* DISKERR MOVE ERROR,DISKTASK SAVE ERROR CODE

*
*
*
* TXT1
TXT2
TXT3
TXT4
TXT5
TXT6
TXT7
TXT9
TXT10

* POINTCNT
SWITCH
RUNUM
INTVL
NPTS
ERROR
BUFFER
BUFFER1
BUFFER2

*

ENQT GET CONTROL OF TERMINAL
PRINTEXT TXT5
PRINTNUM ERROR
PRINTEXT SKIP=1
DEQT RELEASE TERMINAL
ENDTASK 1 DETACH WITH CODE = 1

DATA AND CONSTANTS

TEXT '~SAMPLE ANALOG DATA ACQUISITION PROGRAM~'

TEXT '~ENTER RUN NUMBER '
TEXT '~ENTER INTERVAL IN MS (10-10000) ,
TEXT '~ENTER NO. OF POINTS (10-10000) ,
TEXT '~DISK ERROR '
TEXT '~RUN ENDED AFTER '
TEXT ' POINTS~'
TEXT '~READV FOR PI SIGNAL TO BEGIN TAKING DATA~'

TEXT '~EXPERIMENT SWITCH = ,

DATA F'O'
DATA F'O'
DATA F'O'
DATA F'O'
DATA F'O'
DATA F'O'

NUMBER OF POINTS TAKEN
SET TO '1' FOR 'ABORT'
RUN IDENTIFIER
TIME INTERVAL
NUMBER OF POINTS TO TAKE

BUFFER 256,INDEX=BUFINDEX DATA BUFFERS
EQU BUFFER FIRST 128 WORDS
EQU BUFFER+256 SECOND 128 WORDS

ENDPROG
END

Chapter 6. Programming Examples 389

EXAMPLE 4: DIGITAL INPUT AND AVERAGING

This example illustrates the programming of a simple time
averaging application. The program should read digital
input group Dl1 every time a process interrupt occurs on PI2.
One complete scan is 128 data points. Each scan is to be
added to a double-precision averaging buffer. The number of
scans is read from the terminal as an initialization parame­
ter. Also, the program asks whether to reset the averaging
buffer before starting to scan. The maximum number of scans
must be less than 1000.

START

BEGIN

GETVALUE
IF
RESET
QUESTION
MOVE
DO
DO
WAIT
RESET
SBIO
ENDDO

NSCAN,TXT1 GET NO. OF SCANS
(NSCAN,GE,1000),GOTO,ERROR
PI2
TXT2,NO=BEGIN
ABUFR,0,256
NSCAN
128
PI2
PI2
Dl1,BUFR,INDEX

RESET AVERG. BUFFER?
YES - RESET IT
SET UP FOR NSCANS
SET FOR 128 POINTS
WAIT FOR INTERRUPT
RESET INTERRUPT

READ Dl1(INDEXING)

*
*
*

ONE SCAN COMPLETE - MOVE DATA TO AVERG BUFFER

*
*

TXT1
TXT2
TXT3
NSCAN
BUFR
ABUFR

* ERROR

TXT4

ADD V
MOVE
ENDDO

ABUFR,BUFR,128,PREC=D
1,0 RESET BUFFER INDEX

ALL SCANS COMPLETE
PRINTEXT TXT3

TEXT
TEXT
TEXT
DATA
BUFFER
BUFFER

PRINTEXT
GOTO
TEXT

THE REST OF THE PROGRAM

'~NUMBER OF SCANS - ,
, RESET AVERAGING BUFFER? '
, ALL SCANS COMPLETEa'
F ' 0 '
128,INDEX=I
256

TXT4 PRINT ERROR MESSAGE
START RETURN FOR INPUT
, TOO MANY SCANS - RE-ENTERa'

In this example, the number of scans to be done is read from
the terminal and checked against 1000. If it is greater than
or equa I, an error message is pr i nted and the program returns
for a new input parameter. The operator is asked if the aver­
aging buffer is to be reset. If yes, the MOVE instruction
sets the averaging buffer (ABUFR) to o. A loop is then ini­
tialized for the number of scans desired. A second loop is

390 SC34-0314

tf-~\

I~y;

o

o

o

set up for a single scan of 128 points. The program waits for
an interrupt on PI2 and, when it occurs, resets the interrupt
for the next point, reads the digital input DI1 using auto­
matic indexing into the buffer BUFR. When a scan is com­
plete, the data is added to the ABUFR buffer. The buffer
index, I, is reset to o. When a 11 scans are camp lete, a mes­
sage is printed. The output from the program is illustrated
in the following example.

NUMBER OF SCANS - 33
RESET AVERAGING BUFFER? y
ALL SCANS COMPLETE

Chapter 6. Programming Examples 391

EXAMPLE 5: INDEX REGISTER USAGE

This example illustrates the use of the Event Driven Execu­
tive index registers. The two registers are symbolically
referred to by #1 and 12. In this example, a vector BUFA, of
length 1000, is to be compressed, removing all words equal to
o and stor i ng the compressed vector in the buffer 'BUFB'.
When the buffer has been scanned, the length of the new buff­
er, BUFB, is to be printed on the terminal.

The example begins by initializing the two registers, 11 and
12. A DO loop is set up to scan the BUFA buffer of length
1000. If the value of BUFA is equal to 0, only the first reg­
i ster is incremented. Therefore, 11 is used to index through
BUFA and 12 is used to index through the new buffer, BUFB. If
the value of BUFA is non-zero, the data is moved to BUFB and
both registers are incremented. When the scan is complete,
the value of #2 is saved at the location NUMBERB and the mes­
sage printed on the terminal. This program will display the
following line on the terminal:

392 SC34-0314

o

THE LENGTH OF BUFB = 2

c

o
Chapter 6. Programming Examples 393

EXAMPLE 6: USE OF MOVEA

Th is examp Ie shows the use of the MOVEA instruct ion in estab­
Ii sh i ng addressab iIi ty and i nde xab iIi ty through a buffer.
It is desired to average all values in the buffer and print
the result.

MOVEA
DO
ADD
ADD
ENDDO
DIVIDE
PRINTEXT
PRINTNUM
PRINTEXT

11,BUFFER1 MOVE ADDRESS
256
RESULT,(O,iL),PREC=D SUM THE BUFFER
#1,2

RESULT,256,PREC=D
'~AVERAGE VALUE OF ALL READINGS IS '
RESULT,DWORD
SKIP=1

CONTINUE PROGRAM

BUFFER1 BUFFER
RESULT DATA

256
2F'O'

* CONTINUE PROGRAM

DOUBLE PRECISION

In this example the address of the buffer, BUFFER1 is moved
into register II. The DO loop is entered, and for each pass
through the loop, register #1 is incremented to the next
word. RESULT is declared as 2 words, the ADD has a PREC=D
parameter in order to hold the sum. After the division,
RESULT is printed. The output from this proQram is illus­
trated in the following example.

AVERAGE VALUE OF ALL READINGS IS 1

394 SC34-0314

o

o

o

EXAMPLE 7: A TWO TASK PROGRAM WITH ATTNLIST

The preceding examples illustrate the use of many of the
Event Driven Executive instructions. This example is given
to illustrate a program containing two simultaneously exe­
cut i ng tasks and the ATTNL 1ST statement be i ng used for opera­
tor control.

The problem is to count the number of process interrupts
occurring on process interrupt PI! for an extended period,
printing the total number recorded on the terminal every min­
ute. In add it i on, the program must be started, stopped, and
restarted from the terminal. The complete program follows:

* COUNT PROCESS INTERRUPTS

* TASK!

* i

START

* STOPIT

* PICOUNT
MINCOUNT
COUNTS
SWITCH
RUNECB
TXTl
TXT2

*

PROGRAM TABLl,lOO
ATTNlIST (RUN,START,STOP,STOPIT)
ATTENTION ROUTINES

INPUT CODES

MOVE PICOUNT,O
MOVE MINCOUNT,O
POST RUNECB
ENDATTN

MOVE SWITCH,l
ENDATTN
DATA AND TEXT MESSAGES
DATA F ' 0 '
DATA F' 0 '
DATA F ' 0 '
DATA F ' 0 '
ECB
TEXT , NUMBER OF
TEXT , MINUTES -

SET PI COUNTER=O
SET MINUTES=O
START RUN
RETURN TO SUPERVISOR

SET STOP SWITCH

PI COUNTER
MINUTES
SAVE WORD
STOP SWITCH

INTERRUPTS AFTER ,
,

*
*

TASK 1 - PRINT NUMBER OF INTERRUPTS
TERMINAL

TABLl

AWAIT

EVERY MINUTE ON
ATTACH TASK2
RESET RUNECB
WAIT RUNECB
STIMER 60000
MOVE COUNTS,PICOUNT
ENQT $SYSPRTR

START TASK 2
RESET THE RUN EVENT
WAIT FOR START CODE
SET TIMER FOR 1 MIN
SAVE PIeOUNT

Chapter 6. Programming Examples 395

*
*
* TASK2

* TABL2

*

PRINTEXT TXT1 PRINT PI COUNTS
PRINTNUM MINCOUNT AND MINUTES
PRINTEXT TXT2
PRINTNUM COUNTS
PRINTEXT SKIP=1
DEQT
WAIT TIMER WAIT FOR TIMER
ADD MINCOUNT,1 INCREMENT MINUTES
IF (SWITCH,EQ,O),GOTO,AWAIT
ENQT $SYSPRTR
PRINTEXT 'a COUNT PROCESS INTERRUPTS ENDINGa'
DEQT
PROGSTOP

TASK 2 - WAIT FOR A PROCESS INTERRUPT AND
INCREMENT THE COUNTER

TASK

STIMER

ADD
GOTO
ENDTASK
ENDPROG
END

TABL2,10

1S000,WAIT

PICOUNT,l
TABL2

SET TIMER FOR 15 SECONDS
AND WAIT FOR INTERRUPT
INCREMENT COUNTER AND
RETURN TO WAIT

END OF PROGRAM

PROGRAM names the primary task, TASKl, gives the label of the
first instruction, TABL1, and defines the priority of the
pr i mary task as 10.0. Key i ng RUN or STOP causes the user pro­
gram to be entered at START or STOPIT, respect i vely. and exe­
cuted under the ATTNLIST task. START resets the interrupt and
minute counters and releases TASKI by posting the event
RUNECB.

TASKI is started automaticallY by the system. It starts
TASK2 v i a the ATTACH instruct ion. TASK2 starts at the
instruction with label TABL2 and has a priority of 10. The
event RUNECB is reset and the program issues a WAIT for the
event. TASKI is now suspended until RUN is keyed. When the
event is posted, the program sets a timer for 60000 mill i sec­
onds (1 minute). The number of interrupts is saved in
COUNTS. The terminal is enqueued, the message printed, the
terminal dequeued, the minute counter is incremented, and
the program wa its for the next i nterva I. If, dur i ng the time
period, STOP was keyed, the program will print a termination
message and terminate. TASK2 sets a timer interrupt for 4
seconds and waits on the interrupt, increments the counter,
and returns to wait for the next interrupt. This will con­
tinue indefinitely.

This example illustrates the use of parallel running tasks
and the possibilities for operator control and interaction.

396 SC34-0314

o

o

c

o

EXAMPLE 8: PROGRAM LOADING FUNCTIONS

The following program illustrates the process of one program
loading another with the LOAD instruction. The program TESTl
pr i nts two open i ng messages separated by 2 blank 1 i nes, loads
the program TEST2, tests for a successful LOAD and then WAITs
for the loaded program to end. Th is illustrates how programs
can be synchron i zed.

TESTl

* STARTl
AGAIN

*
*

*
*
STOPl
EVl

PROGRAM STARTl

PRINTEXT
PRINTEXT

LOAD

WAIT

'~TEST PROGRAM LOADING~~'

'~HELLO - TESTl WILL LOAD TEST2a'

TEST2,LOGMSG=NO,EVENT=EVl,ERROR=STOPl

EVl WAIT FOR TEST2 TO END

QUESTION 'aEND THE PROGRAM (Y OR N) ?',NO=AGAIN
PROGSTOP
ECB
ENDPROG
END

Th is is the program to be loaded, TEST2. It can a Iso be
loaded independently from a terminal. A message is printed,
the program wa its 5 seconds, pr i nts aga in, and ends; TESTl is
not if i ed by the superv i sor that TEST2 has ended.

TEST2
START2

PROGRAM
PRINTEXT
STIMER
PRINTEXT
PROGSTOP
ENDPROG
END

START2
'aTEST2 HERE, I WILL DELAY 5 SECONDSa'
SOOO,WAIT
'aTIME IS UP, RETURNING TO TESTlaa'
LOGMSG=NO

Chapter 6. Programming Examples 397

EXAMPLE 9: FLOATING POINT, WAIT/POST, GETEDIT/PUTEDIT

The program prompts the user for two numbers, each can be up
to 20 digits, with or without decimal points. It then per­
forms floating-point addition, subtraction, multiplication,
and division, and prints the results in floating-point
notation with up to 14 digits after the decimal point.

The use of the GETEDIT and PUTEDIT instruct ions us i ng format­
ting are illustrated, as well as WAIT and POST and floating
point arithmetic.

FPDEMO PROGRAM START,FLOAT=VES

* ATTNLIST ATTNLIST (STOP,POST1,CALC,POST2)

* POST1 POST KBEVENT,l
ENDATTN

* POST2 POST KBEVENT
ENDATTN

START EQU * LOOP EQU * PRINTEXT 'PRESS "ATTN" ENTER "CALC" OR "STOP" 01'
WAIT KBEVENT,RESET WAIT TILL CALC ENTERED
IF KBEVENT,NE,-l,STOP GO TO STOP IF

* STOP ENTERED

* READA EQU * PRINTEXT 'A = ',SKIP=2
GETEDIT FMT1,WORK,(CA,1,L»,SCAN=FREE GET A

* READB EQU * PRINTEXT 'B = ',SKIP=2
GETEDIT FMT1,WORK,(CB,1,L»,SCAN=FREE GET B

398 SC34-0314

((~
\\.~-')

/ -,,\

"-"y/

o

LIST EQU * PRINTEXT 'Ci')A + B = ,

0 FADD A,B,RESULT=C,PREC=LLL
PUTEOIT FMT2,WORK,((C,1,L» PRINT A+B

*
PRINTEXT 'Ci')A - B = ,
FSUB A,B,RESULT=C,PREC=LLL
PUTEOIT FMT2,WORK,((C,1,L» PRINT A-B

PRINTEXT 'Ci')A * B = ,
FMULT A,B,RESULT=C,PREC=LLL
PUTEOIT FMT2,WORK,((C,1,L» PRINT A*B

*
PRINTEXT 'Ci')A / B = ,
FDIVO A,B,RESULT=C,PREC=LLL
PUTEOIT FMT2,WORK,((C,1,L» PRINT A/B

*
PRINTEXT SKIP=!
GOTO LOOP

*
STOP EQU * PROGSTOP
*
A DC 2D'0'
B DC 20'0'
C DC 20'0'
D DC 2D'0'

C! WORK TEXT LENGTH=20
FMTI FORMAT (F20.0)
FMT2 FORMAT (E20.!4)
KBEVENT ECB

ENDPROG
END

o
Chapter 6. Programming Examples 399

EXAMPLE 10: USER EXIT ROUTINE

These examples (actual code from the Event Driven Executive)
illustrate:

1. How an instruct i on can be added to the Event Dr i ven Exec­
ut i ve Macro L i brar i es by the user, us i ng the USER
instruction.

2. How a user ex i trout i ne is structured.

The following macro definition illustrates how the user who
understands assembler coding can create his own Event Driven
Executive instructions using macros and the Event Driven
Executive USER instruction.

The SQRT macro call in the programming example is described
under "SQRT" on page 277.

LABEL SQRT rsq, root, rem

is converted by the following macro definition (in MACLIS)
and the Ser i es/l Macro or Host Assembler.

&LABEL

&LABEL

$SQ&SYNDX
.DONE
&SQRT

.ERI

to:

LABEL

$SQnn

MACRO
SQRT
GBLB
AIF
USER

AIF
GOTO
$SQRT
EQU
ANOP
SETB
MEXIT
ANOP
MNOTE
MEND

USER
GOTO
$SQRT
EQU *

&RSQ,&ROOT,&REM,&Pl=,&P2=,&P3=
&SQRT
(N'&SYSLIST NE 3).ERl
SQRT,PARM=(&RSQ,&ROOT,&REM), C
P=(&Pl,&P2,&P3)
(&SQRT).DONE
$SQ&SYNDX

*
1

8,'** NUMBER OF OPERANDS NOT 3 **'

SQRT,PARM=(RSQ,ROOT,REM)
$SQnn On 1st occurrence

of SQRT instruction
only

where $SQRT is used to include the actual user exit routine
(SQRT) which calculates the square root. This routine could
h a v e bee n e x p I i cit' 1 y s tat e din the mac rod e fin i t ion w her e
$SQRT is coded, or, as in th i s case, brought in from the macro
library where it was stored as the macro definition $SQRT.
This technique for including the user exit routine relieves

400 SC34-0314

c

o

o

o

the end user of the need to know whether the routine has or
has not been inc I uded in his program.

The user exit routine SQRT which is brought into the user
program when $SQRT is encountered illustrates the consider­
at ions wh 1 ch are noted under USER instruct ion descr i pt ion.

SQRT EQU

* MVD
SQOO MVW

MVWI
SRL
JZ
J

SQOl AW
IR
SLL
SLC
JCY
JEV
ABI

SQOIA SW
JCY

SQ02 IR
AW

SQ03 SRL
JNZ
SRL

SQ04 ABI
MVW
ABI
MVW
ABI
ax
AW
IR
SW
J

SQ06 JEV
ABI

SQ06A SW
J

SQ07 MVBl
MVBl
J

*
(Rl)*,R3
R3,R6
X'8000',R5
14,R3
SQOl
SQ07
RS,R3
R6,R3
I,R3
I,R4
SQ06
SQOIA
I,R3
R6,R3
SQ05
R6,R3
R5,R3
1,R5
SQOl
1,R3
2,Rl
R3,(Rl)*
2,Rl
R6,(Rl)*
2,Rl
RETURN
R6,R3
R6,R3
R5,R3
SQ03
SQ06A
I,R3
R6,R3
SQ02
O,R3
O,R6
SQ04

SQUARE ROOT ROUTINE

LOAD VALUE
SAVE HIGH ORDER
PUT CONSTANT IN R5
CHECK INPUT FOR TOO LARGE
IF ZERO ITS IN RANGE
IF NOT, BACK TO CALLER
ASSUME NEXT BIT IS A 1
SWAP ROOT AND REMAINDER
MPY REM BY 2
MPY REM LOW ORDER BY 2
NEXT ROOT BIT IS A 0
SKIP UNLESS LOW ORDER OF LW
ADD CARRY TO HI ORDER OF LW
SUB TRIAL ROOT FROM REM
GO FIX REM
SWAP REM AND TRIAL ROOT
DOUBLE DIGIT FOR NEXT PASS
HALF ADJUST FACTOR
NOT DONE, GO AGAIN
CORRECT ROOT
POINT TO ROOT SAVE ADDR
SAVE ROOT
POINT TO REM SAVE ADDR
SAVE REM
POINT TO NXT INSTR
SWITCH BACK TO EDL
CORRECT REM
SWAP REM AND ROOT
SET THIS DIGIT TO ZERO
GO SET UP FOR NEXT PASS
SKIP UNLESS LOW WORD
ADD CARRY TO HI ORDR WD
SUB ROOT FROM REM
GO SET UP FOR NXT PASS
ZERO ROOT
ZERO REM
GO SET UP FOR EXIT

1. The SQRT EQU * statement def i nes the entry po i nt for the
USER instruct i on generated above.

2. On entry, Rl points to the location where the address of
the f 1 rst parameter is stored. The first instruct ion
moves the double word (VALUE) to register 3 and 4.

Chapter 6. Programming Examples 401

3. At location SQ04, Rl is incremented by 2 to point to the
location where the address of the second parameter
(ROOT) is stored. Two lines lower, at the ABI
instruction, Rl is again incremented to point to the
location where the address of the third parameter (REM)
is stored.

4. Two lines lower, Rl is again incremented by 2 to point to
the return address - the Event Driven instruction fol­
low i ng the USER instruct ion.

5. At the line prior to SQ05, the routine branches back to
the user.

6. As required, R2 has not been changed by the routine.

402 SC34-0314

, I (",~\
" --,

c

o

c

o

EXAMPLE 11: I/O LEVEL CONTROL PROGRAM

This program illustrates the use of EXIO control functions to
provide your own support for an I/O device. Its use would
require definition of the EXIO devices by including state­
ments similar to the following in the 'System Configuration'
statements:

EXIODEV
EXIODEV

EO,MAXDCB=l
E4,MAXDCB=3,RSB=6,END=VES

The devices to be controlled are the controller and one line
of PCS CIBM 4987, Programmable Communication Subsystem).
The program prepares both devices to interrupt and loads con­
troller storage.

LDPCS PROGRAM PSTART

* * Attach Interrupt Handler Tasks

* These tasks will wait until the EXIO interrupt handler
posts an appropriate ECB. They will then service that
particular interrupt.

* PSTART

*
*

ATTACH
ATTACH

DEINT
EXCINT

HANDLES DEVICE END
HANDLES OTHER INTERRUPTS

* Place a User List Address in the Device Descriptor Block

* PCSLIST points to a list of 3 addresses used by the EXIO
* interrupt handler:

* PCSID
PCSECB
PCSSDCB

*
*

STORES 3 WORDS DESCRIBING THE INTERRUPT
A LIST OF ECBS
A DCB USED TO START CYCLE STEAL STATUS

EXOPEN
EXOPEN

EO,PCSLIST,ERROR=OPNERR
E4,PCSLIST,ERROR=OPNERR

Chapter 6. Programming Examples 403

* Prepare the Controller to Interrupt

* * The instruction points to the IDCB 'PRPIDCBO' which
* describes an 10 operation which will prepare the device
* at address EO to interrupt on hardware level 1. If the
* 10 instruction is not accepted, execution will resume at
* 'PREPERR'.

*
* EXIO PRPIDCBO,ERROR=PREPERR

* * Prepare Line 4 to Interrupt

*

*
*

EXIO PRPIDCB4,ERROR=PREPERR

* Load PCS Controller Storage

* * The IDCB points to a DCB, 'LDDCB', which describes an 10
* operation which will load the controller with the data at
* 'PSCORE'.

*
*
*
*

EXIO LDIDCB,ERROR=LDERR

* Wait for the Load to Complete

* * This will be indicated by the posting of the ECB
* 'DONECB'. 'DONECB' will be posted by the interrupt
* handler task 'DEINT'. The task 'DEINT' will execute when
* the ECB 'PDEECB' is posted. 'PDEECB' will be posted by
* the EXIO interrupt handler when an interrupt with a ccode
* 3 (device end) is received.

*
*
PREND

404 SC34-0314

WAIT
PROGSTOP

DONECB

o

~~
I

~~

o

o

* Enter here if EXOPEN instruction executes with error

*
* OPNERR

*
*

MOVE
ENQT
PRINTEXT
PRINTNUM
DEQT
GO TO

CC,LDPCS

'~EXOPEN REJECTED, CC =
CC,MODE=HEX

PREND

* Enter here if Prepare Command is not accepted

*
* PREPERR

*
*

MOVE
ENQT
PRINTEXT
PRINTNUM
DEQT
GOTO

CC,LDPCS

'~PCS PREPARE EXIO REJECTED, CC = ,
CC,MODE=HEX

PREND

* Enter here if LOAD command is not accepted

*
* LDERR

*
*

EQU
MOVE
ENQT
PRINTEXT
PRINTNUM
DEQT
GOTO

* CC,LDPCS

'~LOAD EXIO REJECTED, CC =
CC,MODE=HEX

PREND

* Execute if interrupt other than 'Device End' is received

* EXCINT
EXCSTART

TASK
WAIT
AND
ENQT
PRINTEXT
PRINTNUM
DEQT
POST
ENDTASK

EXCSTART
PEXCECB,RESET
PEXCECB,X'7FFF'

,~ INTERRUPT, CCODE & DEV ADR =
PEXCECB,MODE=HEX

DONECB,2

Chapter 6. Programming Examples 405

* Execute if 'Device End' interrupt is received

*
* DEINT
DESTART

DESTART
PDEECB,RESET

TASK
WAIT
ENQT
PRINTEXT
DEQT
POST
ENDTASK

'apcs CONTROL STORAGE LOADEDa'

*
*

DONECB,-l

* Define where information is to be stored after EXIO
* device interrupt

*
* PCSLIST

*
*

DATA
DATA
DATA

ACPCSID)
ACPCSECB)
A(PCSSDCB)

* Will Receive: Interrupt ID Word, LSR, ADDR of ECB Posted

*
* PCSID

*
*

DATA 3F'O'

* Addresses of ECB's to be posted

*
* PCSECB DATA A(PEXCECB)

DATA A(PEXCECB)
DATA A(PEXCECB)
DATA A(PDEECB)
DATA ACPEXCECB)
DATA ACPEXCECB)
DATA ACPEXCECB)
DATA A(PEXCECB)

* PEXCECB ECB 0
PDEECB ECB 0
DONEeB ECB 0

406 SC34-0314

CONTROLLER END
PCI
EXCEPTION
DEVICE END
ATTENTION
ATTN + PCI
ATTN + EXC
ATTN + DE

(\

~-f'

o

o

o

* This DCB will be used to start Cycle Steal Status if an
* interrupt is received.

*
* PCSSDCB
CSSDATA
CC

* PRPIDCBO
PRPIDCB4
LDIDCB

LDDCB

*

DCB
DATA
DATA

IDCB
IDCB
IDCB

DCB

IOTYPE=INPUT,COUNT=IO,DATADDR=CSSDATA
SF'O' CYCLE STEAL STATUS DATA
F ' 0 '

COMMAND=PREPARE,ADDRESS=EO
COMMAND=PREPARE,ADDRESS=E4
COMMAND=START,ADDRESS=EO,

MOD4=6,DCB=lDDCB
DVPARMl=0200,COUNT=PCSLCNT,

DATADDR=PCSCORE

* PCS Controller Storage Load

* PCSCORE

PCSEND
PCSLCNT

EQU
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
EQU
EQU
ENDPROG
END

* 64F'O'
X'9284',X'928A',X'OOOl',X'9352',X'OOOO'
X'OOOl',X'928F',X'OOOl'
97F'0'
X'000S',X'935E',X'0000',X'0000',X'OOOO'
X'936A',X'0800',X'0400',X'SBOO',X'9368'
X'4800',X'A220',X'0700',X'OSOl',X'3D04'
X'937A',X'A204',X'0002',X'0101',X'OOOO'
7 F ' 0 '
X'0003',X'OD07',X'OAOO'

* PCSEND-PCSSCORE

Chapter 6. Programming Examples 407

EXAMPLE 12: GRAPHICS INSTRUCTIONS PROGRAMMING EXAMPLE

In the following example the graphic control characters (GS,
US, ESC, etc.) are assumed to have certain meanings for the
terminal. A different terminal may require the use of dif­
ferent contro I characters to per form a s i m i lar funct ions.

The example illustrates tha use of the graphics instructions
described on the preceding pages. This program will print a
message, plot a curve with axes, put the cross-hair on the
screen, wait for the user to position the cross-hair and
depress a key and carriage return, and then display the char­
act e r entered and x, yeo 0 r di nates of the c r 0 s s - h air p 0 s i -
t i on. The user may then end the program or start it aga in.

The program starts at the label START where a short message
is printed. The text string character count is reset, and
the ESC code is put into TEXTl, followed by the FF character.
The sequence ESC FF will erase the screen and send the alpha
cursor to the home pos it ion (upper left corner). The
PRINTEXT instruction will cause this to occur. Now, depend­
i ng on the type of term ina I and the 1 i ne speed, it may be
necessary to delay for a s~c~ndto allow the erase sequence
to complete. This is accomplished by the STIMER instruction.
The text string is reset again and the graph mode character,
GS, is added to the text string. The SCREEN instruction is
used to form the 4 characters required to draw a dark vector
to the screen address (520,300). The 4 characters represent
the Hi V, Lo V, Hi X, and Lo X values. To write an axis label
at this position, it is necessary to return to alpha mode.
This requires the US character. The two PRINTEXT
instructions are executed to perform the full operation.
Note XLATE=NO on PRINTEXT prevents conversion of data as it
is already in ASCII.

Now the data, YDATA (8 points), is plotted using the YTPlOT
ins t rue t ion. The plot are a and coo r din ate s are g i v e n by the 8
words at the label PCB. The plot area in screen addresses is
500 to 1000 in the x-direction (horizontal) and 100 to 600 in
the y-direction (vertical). The corresponding plot area in
the user's coord i nates is 0 to 10 in the x-d i rect i on and -5 to
5 in the y-direction. The X and Y axes are drawn by the next
two XVPlOT instructions. Each of these is simply a 2-point
plot, from the origin to the end point. The cross-hair cur­
sor is now put on the screen by the PlOTGIN instruction. The
user should position the cursor and enter a character. When
the character is received, the cursor position is converted
to the plot coordinates as specified at PCB, and the results
are stored at X and V. The next few instruct ions pr i nt out the
results of this action and ask if the user wishes to end the
program.

408 SC34-0314

o

c

PRINT NOGEN
GTEST PROGRAM START

0 START EQU * PRINTEXT 'GRAPHICS TEST PROGRAM PRESS ENTER a'
READTEXT TEXTl
CONCAT TEXTl,ESC,RESET
CONCAT TEXTl,FF
PRINTEXT TEXT1,XLATE=NO
STIMER 1000,WAIT
CONCAT TEXTl,GS,RESET
SCREEN TEXT1,S20,300,CONCAT=YES
CONCAT TEXT1,US
PRINTEXT TEXT1,XLATE=NO
PRINTEXT TEXT3
YTPLOT YDATA,X1,PCB,NPTS,1
XYPLOT YAXISX,YAXISV,PCB,TWO
XYPLOT XAXISX,XAXISY,PCB,TWO
PLOTGIN X,Y,CHAR,PCB
PRINTEXT TEXT4
PRINTEXT CHAR,XLATE=NO
PRINTEXT TEXTS
PRINTNUM X,2
QUESTION TEXT6,NO=START
PROGSTOP

TEXT1 TEXT LENGTH=30
TEXT3 TEXT 'X-AXIS LABEL'
TEXT4 TEXT 'aCHARACTER STRUCK WAS ,

C:) TEXTS TEXT 'ax,y COORDINATES = ,
TEXT6 TEXT 'Q)END PROG (Y/N)? ,

DATA X'0201'
CHAR DATA F ' 0 '
VDATA DATA F ' 0 '

DATA F ' 1. '
DATA F ' 0 '
DATA F ' 2 '
DATA F ' 0 '
DATA F ' 1 '
DATA F'-2'
DATA F ' -1 '

Xl DATA F ' 0 '
NPTS DATA F ' 8 '
YAXISX DATA 2F'0'
VAXISY DATA F'-S'

c
Chapter 6. Programming Examples 409

DATA F ' 5 '
XAXISX DATA F ' 0 '

DATA F ' 10'
XAXISV DATA 2F'O'
TWO DATA F ' 2 '
PCB DATA F'500'

DATA F'1000'
DATA F ' 0 '
DATA F'10'
DATA F'lOO'
DATA F'600'
DATA F'-5'
DATA F ' 5'

X DATA F ' 0 '
V DATA F ' 0 '

ENDPROG
END

Figure 19. Graph i c Program Output: Th is figure shows the
result of the preceding program.

410 SC34-0314

.~\
"'_~'

./ "\

"oj>'"

o

I

o

o

EXAMPLE 13: FORMAT AND DISPLAY TRACE DATA

This program formats and displays the contents of the soft­
ware trace table. The first entry displayed is the one that
was most recently entered. The user is requested to enter
the hexadecimal address of the trace table. Sample output is
shown fo llow i ng the source code.

$FORMAT
START

PROGRAM
EQU *
PRINTEXT
GETVALUE
MOVE
PRINTEXT
PRINTEXT
PRINTEXT
MOVE
PRINTNUM
PRINTEXT
PRINTEXT
MOVE
SUB
DIVIDE
IF

ENDIF

START

'ENTER CIRCBUFF ENTRY POINT: ',LINE=O
CIRENTRY,MODE=HEX
11,CIRENTRY II = A(TRACE TBL)
'MACHINE/PROGRAM CHECK STATUS REPORT',LINE=O
SKIP=3
'SINCE IPL '
CIRCNT,(+$CIRCNT,ll)
CIRCNT,TYPE=S,FORMAT=(S,O,I)
, STATUS ENTRIES HAVE BEEN RECORDEQ'
SKIP=2
12,(+$CIRSTR,ll) 12 = A(FIRST ENTRY)
(+$CIREND,ll),12,RESULT=BYTESIZE
BYTESIZE,(+$CIRESIZ,ll),RESULT=ENTRYCNT
(CIRCNT,NE,O) IF THERE WERE ENTRIES
PRINTEXT HEADING
PRINTEXT SKIP=2
MOVE 12,(+$CIRIN,ll) 12 = A(NEXT ENTRY)
DO ENTRYCNT,TIMES

ENDDO

SUB 12,(+$CIRESIZ,il) 12 = A(PREV ENTRY)
IF i2,LT,(+$CIRSTR,ll)

MULT (+$CIRESIZ,ll),ENTRYCNT,
RESULT=NUMBER

SUB NUMBER,(+$CIRESIZ,ll)
ADD (+$CIRSTR,il),NUMBER,RESULT=12

ENDIF
IF (+$CIRPSW,i2),EQ,O

IF «+$CIRlSB,i2),EQ,O),GOTO,FINISH
ENDIF
MOVE
PRINTNUM
PRINTNUM
PRINTNUM
PRINTNUM
PRINTNUM
PRINTEXT

NUMBER,(+$CIRSTAT,i2)
NUMBER,MODE=HEX ST VAR/EAK
(+$CIRTCBA,12),MODE=HEX A(TCB)
(+$CIRPSW,12),MODE=HEX PSW
(+$CIRSAR,i2),MODE=HEX SAR
(+$CIRLSB,12),II,MODE=HEX LSB
SKIP=1

GOTO FINISH

PRINTEXT 'NO ENTRIES TO DUMP'
FINISH EQU *

PROGSTOP

Chapter 6. Programming Examples 411

BYTESIZE
ENTRYCNT
LOCATION
NUMBER
CIRENTRY
CIRCNT
HEADING

$CIRSTR
$CIRIN
$CIREND
$CIRCNT
$CIRESIZ
$CIRESTR
$CIRSTAT
$CIREAK
$CIRTCBA
$CIRPSW
$CIRSAR
$CIRLSB

DATA
DATA
DATA
DATA
DATA
DATA
TEXT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
ENDPROG
END

412 SC34-0314

3

F' 0'
F ' 0 '
F'O"
F ' 0 '
F' 0 '
F' 0 '
'S/EAK TCBA
4 5 6 7'

o
$CIRSTR+2
$CIRIN+2
$CIREND+2
$CIRCNT+2
$CIRESIZ+2
o
$CIRSTAT+1
$CIRSTAT+2
$CIRTCBA+2
$CIRPSW+2
$CIRSAR+2

SIZE OF TRACE TABLE ENTRY
I OF ENTRIES IN TABLE FOR
LOCATION POINTER
NUMERIC WORK WORD
TRACE TABLE ENTRY POINT
I OF ENTRIES IN BUFFER

PSW SAR IAR AKR LSR 0

SPACE
DISPLAY

C···) -Y

1 2 X

o

o

ENTER CIRCBUFF ENTRY POINT~ 62EE

MACHIN~/PROGRAM CHECK STATUS REPORT

SINCE IPL 10 STATUS ENTRIES HAVE BEEN RECORDED

BlEAK lCBA psw SAR IAR AKR LSR 0 1 2 3 4 ~
~ 0 7

0100 0138 8002 6C31 lE6A 0000 88DO 6C30 6B7E 6C38 6C31 6[32 005e 00B8 0000
0100 0138 8002 6C31 lE6A 0000 8800 6C30 6B7E 6C38 6C31 6C32 005e 00D8 0000
0100 Oo~~ u~, 0802 0000 0000 0000 88DO 6E30 6E54 7352 6DFA 6E58 8023 0046 0000
0100 0138 8002 6[31 lE6A 0000 88DO 6C30 6B7E 6C38 6C31 6C32 005C 00B8 0000
0100 0138 8002 6C31 lE6A 0000 88DO 6C30 6B7E 6C38 6C31 6C32 OOSC 00B8 0000
0100 0852 0802 0000 0000 0000 88DO 6E30 6[54 7352 6DFA 6E58 8023 0046 0000
0100 0138 8002 6C31 lE6A 0000 88DO 6C30 6B7E 6C38 6C31 6C32 005C 00D8 QOOO
0100 0138 8002 6C31 lE6A 0000 88DO 6C30 bB7E 6C38 6C31 6C32 oose 00B8 0000

F i gure 20 Format and D i sp lay Trace Data . Th i s f i gure shows . .
the result of the preced i ng program .

o
Chapter 6. Programming Examples 413

EXAMPLE 14: USE OF INDEXED ACCESS METHOD

This program gives an example for each of the Indexed Access
Method function calls. The indexed data set is opened first
in LOAD mode and ten base records are loaded followed by a
DISCONNECT. Next the same data set is opened for process i ng.
A GET request is performed for the first record whose key is
greater than 'JONES PW'. Two more records are retrieved
sequentially and then the ENDSEQ call releases the file from
sequential mode. A record is then retrieved directly by key
and updated. Another record is retrieved sequentially and
deleted. A new record is inserted and another one is deleted
by the i r un i que keys. F ina 11 y, an examp Ie of extract i ng
information from the file control block is shown. Upon suc­
cessful completion the message "Verification Complete" will
be displayed upon the console. This program requires that an
Indexed Access Method data set has been de fin e d- w i -t h the
$IAMUTI utility according to the following specifications:

414 SC34-0314

BASEREC
BLKSIZE
RECSIZE
KEVSIZE
KEVPOS
FREEREC
FREEBLK
RSVBLK
RSVIX
FPOOL
DELTHR

10
256

80
28

1
1

10
o
o
o
o

o

o

o

o

o

SAMPLE
START

*
*

*

PROGRAM START,DS=??,ERRXIT=TEECB
EQU *

ENQT
PRINTEXT LOGON,LINE=O PRINT LOGON MESSAGE
DEQT

* OPEN the Indexed Access Method data set for loading

CALL IAM,(LOAD),IACB,(DS1),(OPENTAB),(SHARE)

* * LOAD the Indexed Access Method data set

*

*

MOVEA POINTER,RECORDI POINTER <== A(RECORDl)
DO RECNUM,TIMES

CALL IAM,(PUT),IACB,(*),P4=POINTER
ADD POINTER,80 POINT TO NEXT RECORD

ENDDO
GET OUT OF LOAD MODE

CALL IAM,(DISCONN),IACB
EJECT

* OPEN the indexed file for processing

*
*

CALL IAM,(PROCESS),IACB,(DS1),(OPENTAB),(SHARE)

* Perform a direct retrieval of the first record whose key is
* greater than 'JONES PW'. The key field will be modified to
* reflect the key of the record retrieved.

*

CALL
MOVE
IF

IAM,(GET),IACB,(BUFF),(KEV3),(GT)
RTCODE,SAMPLE
(SAMPLE,NE,-I),GOTO,IAMERR

* Perform a sequential retrieval of the first two records
* whose keys are greater than or equal to 'JONES PW'

CALL
MOVE
IF
CALL
MOVE
IF
CALL

IAM,(GETSEQ),IACB,(BUFF),(KEVl),(GE)
RTCODE,SAMPLE
(SAMPLE,NE,-I),GOTO,IAMERR
IAM,(GETSEQ),IACB,(BUFF)
RTCODE,SAMPLE
(SAMPLE,NE,-I),GOTO,IAMERR
IAM,(ENDSEQ),IACB,(BUFF) END SEQUENTIAL MODE

Chapter 6. Programming Examples 415

* * Update the record whose key is 'JONES PW' by a
* direct update

*

*

CALL
MOVE
IF

IAM,(GET),IACB,(BUFF),(KEVl),(UPEQ)
RTCODE,SAMPLE
(SAMPLE,NE,-I),GOTO,IAMERR

* Make the desired modifications to the record now in BUFFER

* * MOVE BUFF+30,O
CALL IAM,(PUTUP),IACB,(BUFF)

* * Delete the record whose key is 'JONES PW' by a
* sequential update

*

*

CALL
MOVE
IF
CALL
CALL

IAM,(GETSEQ),IACB,CBUFF),(KEVl),(UPEQ)
RTCODE,SAMPLE
(SAMPLE,NE,-I),GOTO,IAMERR
IAM,(PUTDE),IACB,(BUFF)
IAM,(ENDSEQ),IACB END SEQUENTIAL MODE

* Insert a new record with a key of 'MATHIS GR'

* CALL IAM,(PUT),IACB,(NEWREC)

*
* Delete the record whose key is 'LANG LK'

* CALL IAM,(OELETE),IACB,(KEY2)
MOVE RTCODE,SAMPLE
IF (SAMPLE,NE,-I),GOTO,IAMERR
EJECT

* * Extract the file control block into the extract buffer

*

*

CALL IAM,(EXTRACT),!ACB,(EXTBUF),(FCBSIZE),128
MOVEA 11,EXTBUF 11 <-- ACEXTRACT BUFFER)
MOVE FLAGBYTE,(O,ll),BYTE OBTAIN FCB FLAG BYTE
SPACE 5

* Write verification complete message to the operator

* ENQT

DEQT

PRINTEXT SKIP=1
PRINTEXT VERIF,SPACES=U

GOTO FINISH
SVSERR EQU *

JUMP AROUND ERROR ROUTINES
GETS CONTROL ON SVSIPGM CHECK

416 SC34-0314

o

o

()

c

* When a task error exit is specified in an Indexed
* Access Method program, you can release all active
* record and block level locks as well as disconnect
* the file itself issuing the 'DISCONN' call for each
* file that is open.

GOTO FINISH
EJECT

IAMERR EQU * GETS CONTROL UPON INDEXED
METHOD ERRORS

MOVE RTCODE,SAMPLE
ENQT

DEQT

PRINTEXT SKIP=2
PRINTEXT RTCODMSG
PRINTNUM RTCODE,TYPE=S,FORMAT=(3,O,I)
PRINTEXT SKIP=!
PRINTEXT ERRMSG,SPACES=O

FINISH EQU *
CALL IAM,(DISCONN),IACB
PROGSTOP
EJECT

* Data definition and storage areas

* RECNUM
RTCODE
OPENTAB

RECORD!
RE,CORD2
RECORD3
RECORD4
RECORDS
RECORD6
RECORD7
REC.ORD8
RECORD9
RECORDIO
FLAGBYTE

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

F'lO' NUMBER OF RECORDS TO LOAD
F' 0 '
F ' 0 '
ACIAMERR)

INDEXED ACCESS METHOD RETURN CODE
SYSTEM RETURN CODE ADDRESS
ERROR EXIT ROUTINE ADDRESS
END OF DATA ROUTINE ADDRESS F ' 0 '

CL80'BAKER RG'
CL80'DAVIS EN'
CL80'HARRIS SL'
CL80'JONES PW'
CL80'JONES TR'
CL80'LANG LK'
CL80'PORTER JS'
CL80'SMITH AR'
CL80'SMITH GA'
CL80'THOMAS SN'
H ' 0 '
H ' 0 '

FCB FLAG BYTE

Chapter 6. Programming Examples 417

NEWREC DATA CL80'MATHIS GR'
BUFF DATA CL80' ,

DATA X'IC' TOTAL LENGTH OF KEY
DATA X'OO' USE ALL OF THE KEY

KEYI DATA CL28'JONES PW'
DATA X'lC'
DATA X'OO'

KEY2 DATA CL28'LANG LK'
DATA X'lC'
DATA X'OO'

KEY3 DATA CL28'JONES PW'
IACB DATA F ' 0 ' ADDR OF IACB PUT HERE
EXTBUF DATA 64F'O' FCB PUT HERE BY EXTRACT
LOGON TEXT 'INSTALLATION VERFICATION PROGRAM ACTIVE'
VERIF TEXT 'VERIFICATION COMPLETE'
ERRMSG TEXT 'VERIFICATION INCOMPLETE DUE TO BAD RETURN CODES'
RTCODMSG TEXT 'INDEXED ACCESS METHOD RETURN CODE: ,

EJECT

* * The following storage is used by task error exit handling

* TEECB EQU
DATA
DATA
DATA

*
F ' 2 '
A(SYSERR)
ACHSA)

TASK ERROR EXIT CONTROL BLOCK
i OF DATA WORDS THAT FOLLOW
ADDRESS OF EXIT ROUTINE
ADDRESS OF HARDWARE STATUS AREA

* Hardware status area. This storage will be filled in by
* hardware upon system or program check interrupt
HSA EQU *

DATA F'O' PROCESSOR STATUS WORD
HSALSB EQU * LEVEL STATUS BLOCK:

DATA F'O'
DATA F'O'
DATA F'O'
DATA 8F'0'
COpy IAMEQU
COpy FCBEQU
ENDPROG
END

418 SC34-03l4

ADDRESS KEY REGISTER
INSTRUCTION ADDR REGISTER
LEVEL STATUS REGISTER
GENERAL REGISTERS 0-7

()

,/' ""'\

'\II,,"J

c

(~~/

c

EXAMPLE 1S: WRITE DATA TO TAPE DATA SET

This example generates a 300 byte record using a DATA state­
ment. The record cons i sts of the word TEST, repeated 75
times. The record is then written to a tape data set that is
named by you when prompted by the PROGRAM statement. Any
tape related error condition will print a return code (RC)
using the PRINTEXT statement at location ERR. If no errors
occur, after 300 records have been written the tape data set
will be closed, the tape will be rewound and the tape drive
wi 11 be placed in an off-l i ne status by the CONTROL statement
at location ENDIT.

TEST

*
*

PROGRAM

START EQU *
PRINTEXT

*
* DO

WRITE
ENDDO

*
* ENDIT EQU

CONTROL

* PRINTEXT

* PROGSTOP

*
* ERR EQU * PRINTEXT

* PRINTNUM

* PRINTEXT

* GOTO

*
* BUFF DATA

* ENDPROG
END

START,DS=(??)

'~BEGIN TEST PROGRAM~'

300,TIMES
DSl,BUFF,l,300,ERROR=ERR,WAIT=VES

* DSl,CLSOFF

'0) END TEST PROGRAMo)'

'0)1/0 ERROR - RC=

DSl

'TEST PROGRAM ENDINGo)'

ENDIT

75C'TEST'

C hap t e r 6. Pro 9 ram m_ i n g E x amp I e s 4 1 9

EXAMPLE 16: PROCESSING STANDARD LABELS USING BLP

This example reads and processes the records of standard
labels prior to reading and processing the data records in
the tape data set. The tape is mounted on a tape drive whose
configurated TAPEID is TAPEOI. The tape drive has been
ass i gned the attr i bute of BLP.

The first instruction reads the volume label (VOLI), whose
length is 80 bytes, into a buffer labeled BUFFER, where it
can be processed by your appl i cat i on program. The same buffer
is used throughout the program. The second read instruction
reads the first header label (HDRI), whose length is 80
bytes, into the buffer for process i ng by your app I i cat i on
program. A CONTROL command (FSF) is then issued to space the
tape past any additional header labels by searching for a
tape mark. The program now reads data records from the tape,
one record at a time, into the buffer for processing by your
program. The data records are each 50 bytes long. When the
last data record has been read and processed the 80 byte
trailer record (EOFI) is read into the buffer and can be
processed by your program.

If any errors are detected, while reading labels, the error
routine named ERR I is gi ven control and the message LABEL
ERROR - RC= is printed and the associated return code is
pr i nted to he lp you determ i ne what type of error was encount­
ered. If an error is detected during the reading of data
records, the error routine named ERR2 is given control-and
the message READ ERROR - RC= ;s printed along with the
return code wh i ch i nd i cates the type of error encountered.

SLPROC PROGRAM START,DS=«XYZ,TAPEOl»
START EQU *

* * PROCESS THE HEADER LABEL GROUP

* READ DSl,BUFFER,1,80,ERROR=ERRl Read the volume
1 label (VOLI) *

* * PROCESS THE VOLUME 1 RECORD

*
/

READ DSl,BUFFER,1,80,ERROR=ERRl Read the header
label (HDRl) *

* * PROCESS THE HEADER 1 RECORD

*
*
*
*

CONTROL DSl,FSF

420 SC34-0314

Space the tape past
any other label
records and the
tape mark

o

o

o

*' *' PROCESS THE DATA ON THE TAPE

*' LOOP EQU
READ * DSl,BUFFER,1,50,ERROR=ERR2,END=ALLDONE

*' *' PROCESS THE TAPE DATA RECORD JUST READ INTO BUFFER.
*' YOU MAY WISH TO:
*' PRINT IT
*' WRITE IT TO DISK OR DISKETTE
*' DISPLAY IT ON A TERMINAL
*' USE IT IN CALCULATIONS

*

*'
*'

GO TO

ALLDONE EQU

*'

LOOP

*' PROCESS THE TRAILER LABEL GROUP

*'

Return to LOOP to
read the next data
record

READ DSl,BUFFER,l,80,ERROR=ERRl

*' *' PROCESS THE END OF FILE CEOF1) RECORD

* ENDIT EQU *

*' ERRI

ERR2

*' BUFFER

PROGSTOP

EQU *
PRINTEXT '~LABEL ERROR - RC= ,
PRINTNUM DSl
GOTO ENDIT
EQU *
PRINTEXT
PRINTNUM
QUESTION

DATA

ENDPROG
END

'~READ ERROR - RC= ,
DS!

'DO YOU WANT TO CONTINUE? '
YES=LOOP,NO=ENDIT

40F'O'

Chapter 6. Programming Examples 421

EXAMPLE 17: WRITE A DATA SET TO A SL TAPE THEN READ IT

Th is examp Ie uses a standard labe led (SL) tape to wr i te a
data set. The tape data set name is MYDATA and the volume
serial number is 1004. The tape record must be created prior
to the WRITE statement by moving a data record into BUFFER.
The records are assumed to be 500 bytes long; longer records
would be truncated to 500 bytes, shorter records would be
padded to 500 bytes. After wr i t i ng the data set, the tape is
rewound. The tape data set is then reopened by a CALL to
DSOPEN and the records are read back into storage at locat i on
BUFFER.

WRTAPE PROGRAM START,DS=((MYDATA,1004»
START EQU *
* DO 100,TIMES Write 100 records to tape

* * YOU MUST CREATE THE TAPE RECORD HERE; THE RECORD TO
* BE WRITTEN TO TAPE MUST BE AT LOCATION BUFFER FOR
* THIS EXAMPLE.

* WRITE DS1,BUFFER,1,500,ERROR=ERR1
ENDDO

DONE1 EQU *

*
*
*

*
*
it

*
it

CONTROL DS1,CLSRU

SET THE DSOPEN ERROR EXITS

MOVEA
MOVEA
MOVEA
MOVEA

$DSNFND,ERRDSN
$DSBIODA,ERRIODA
$DSBVOL,ERRVOL
$DSIOERR,ERRIO

OPEN THE DATA SET
CALL DSOPEN,(DS1) Reopen the data set

indicated in the
PROGRAM statement

* READ AND PROCESS THE RECORDS JUST CREATED AND WRITTEN
* TO THE TAPE DATA SET NAMED MYDATA
it

LOOP

*

EQU
READ * DSl,BUFFER,1,500,ERROR=ERR2,END=DONE2,

WAIT=YES

* HERE THE RECORDS MUST BE MOVED OUT OF LOCATION BUFFER
* BY YOUR PROGRAM, TO PREVENT THEM BEING OVER WRITTEN
* BY THE NEXT RECORD FROM TAPE.

* GO TO LOOP
DONE2 EQU *

CONTROL DSl,CLSOFF
PROGSTOP

422 SC34-0314

/,/ "\
I.\,--~

o

o

o

ERR!

* ERR2

EQU *
PRINTEXT
PRINTNUM
QUESTION

EQU *
PRINTEXT
PRINTNUM
QUESTION

'@WRITE ERROR - RC= ,
DS!

'DO YOU WANT TO CONTINUE? '
YES=START,NO=DONEI

'@READ ERROR - RC= ,
DS!

'@DO YOU WANT TO CONTINUE? '
YES=LOOP,NO=DONE2

* BUFFER DATA 250F'0' Define a buffer of 500
bytes and initialize
it to zeros

* * DSOPEN ERROR EXITS, BUFFER AREA, AND COpy CODE

* ERRDSN EQU

*

MOVEA
GOTO

ERRIODA EQU

* ERRVOL

* ERRIO

MOVEA
GO TO

EQU
MOVEA
GOTO

EQU
MOVEA

* MSGX,MSG1
ERRMSG

* MSGX,MSG2
ERRMSG

* MSGX,MSG3
ERRMSG

* MSGX,MSG$

* ERRMSG EQU *

MSG!
MSG2
MSG3
MSG4

DISKBUFR

*
*
*

PRINTEXT
PRINTEXT
PRINTEXT
GOTO
TEXT
TEXT
TEXT
TEXT
COpy
COpy
COpy
COpy
DATA

ENDPROG
END

'@DSOPEN ERROR - ,
MSG!,P1=MSGX
SKIP=1
DONE2
'DATA SET NOT FOUND'
'VOLUME NOT FOUND'
'I/O ERROR'
'DATA SET NOT FOUND'
DSOPEN
DSCBEQU
DDBEQU
PROGEQU
128F'0' Define a buffer area of

256 bytes and initialize
to zeros

Chapter 6. Programming Examples 423

EXAMPLE 18: INITIALIZE AND WRITE A NL TAPE

This example uses the Utilities, Operator commands, and EDL
instructions to initialize a tape and write a data set to the
tape wi thout us i ng tape labels.

You must mount the tape on a drive defined for NL processing.
If the dr i ve is not def i ned for NL, then use $TAPEUTI ut iii ty
and the subcommand CT, to change the label processing attri­
bute to NL. The procedure for preparing the tape for use fol­
lows and the bold type represents what you must enter from
the keyboard:

$L $TAPEUTI (This loads the tape utility)

COMMAND (?) l.I (This selects the initialize utility)

TAPE ADDR (1 - 2 HEX CHARS): 48 (Select the drive to
be used)

NO LABEL 1600 BPI? Y

TAPE INITIALIZED

COMMAND? EN

$VARYON 48
TAPEOI ONLINE

$L PRGTAPE

(Verifies the tape attributes)

(Tape has been initialized)

(This ends the tape utility session)

(This will vary the tape online)
(The system responds with the tape
ID that was assigned during system
configuration)

(System will load your program
PRGTAPE and write the tape
data set)

The program writes data to the tape to create the tape data
set defined as MYDATA. It writes one record each time the DO
loop is executed. The records are specified to be 50 bytes
long. The data records are taken from a location labeled
BUFFER. If a tape I/O error is detected during the writing of
the data set, the program branches to label ERRI. In the
error routine, ERR1, the return code indicating the type of
error encountered is displalyed and you are requested to
respond whether you wish to resume the WRITE operation or
not. If you reply YES on the keyboard, the DO loop will be
r e,s u me d. I f you rep I y NO, the pro g ram bra n c he s tot he end i n g
routine labeled ALLDONE.

424 SC34-0314

C\
.~J

c

o

o

PRGTAPE
START

*

PROGRAM START,DS=CCMYDATA,TAPEOl»
EQU *
DO lOO,TIMES

* Create or build the tape record so that the data
* you wish to write to tape is at location BUFFER.
* For example you may:
* - read from" disk or diskette to BUFFER
* - read from a terminal to BUFFER
* - move records from a calculation in storage
* to BUFFER

*

* ALLDONE

*

WRITE
ENDDO

EQU *

DSl,BUFFER,!,50,ERROR=ERRl

CONTROL DSl,CLSOFF
PROGSTOP

ERRl EQU *

*

* BUFFER

*

*

PRINTEXT 'aWRITE ERROR - RC= ,
PRINTNUM DS!

QUESTION 'aDO YOU WISH TO RESUME?',YES=START,NO=ALLDONE

DATA

COpy

ENDPROG
END

25F'O'

TDBEQU

Creates the area from
which the source data
records will be written

Required for all
CONTROL requests

Chapter 6. Programming Examples 425

EXAMPLE 19: READ THE THIRD FILE ON TAPE

This example shows the procedure for setting up an existing
tape to read the th i rd file whose data set name is MYDATA. The
third file will be read one record at a time. The records are
expected to be 50 bytes long. The records could be any length
but the READ statement wi 11 only read 50 bytes and place them
into location BUFFER. If the records in the third file are
not 50 bytes in length longer records will be truncated to
the right and shorter records will be padded on the right to
fill the 50 word buffer.

When a tape mark is read, at the end of the third file, the
tape will be close and placed offline by the CONTROL state­
ment at label all done.

I f a tape I/O error occurs wh i Ie read i ng records from the
fi Ie, the return code wi 11 be printed on the terminal and you
will be prompted with a question. If you reply YES, the pro­
gram will attempt to continue reading records from the third
fi Ie. If you reply NO, the program wi 11 branch to label
ALLDONE and the program wi 11 close the data set and place the
tape offline.

The procedure for preparing the tape for use follows and the
bold type represents what you must enter from the keyboard:

$VARYON 48,3
TAPEO! ONLINE

$L RDTHIRD

The EDL program fo llows:

426 SC34-0314

(This will vary the tape onli,ne)
(The system responds with the tape
ID that was assigned during system
configuration)

(System will load your program
RDTHIRD and read the tape
data set)

/ ... ~ ..

''\.,.,'

o

o

c

RDTHIRD
START

*

PROGRAM
EQU
READ

START,DC=(MYDATA,lOOl04»

* DSl,BUFFER,l,50,END=ALLDONE,ERROR=ERRl

* Process the tape record. For example, you may:
* - PRINT it
* - WRITE it to disk, or diskette
* - DISPLAY it on a terminal
* - Use it in calculations

* * The record must be moved from BUFFER to prevent
* the next record from overlaying it.

* GOTO

* ALLDONE

* ERRl

* BUFFER

START

EQU *
CONTROL DSl,CLSOFF
PROGSTOP

EQU
PRINTEXT
PRINTNUM
QUESTION

DATA
COPY
ENDPROG
END

*
'~REAO ERROR - RC = ,
OSl
,~ DO YOU WISH TO CONTINUE?',
YES=START,NO=ALLDONE

25F'O'
TOBEQU

Chapter 6. Programming Examples 427

o
428 SC34-0314

o

o

APPENDIX A: INSTRUCTION AND STATEMENT LIST

EVENT DRIVEN LANGUAGE INSTRUCTIONS

The following syntax conventions are used for the Event
Driven Language descriptions.

• Superscript 0 indicates indexable operand

• Brackets [) 1 nd i cate opt i ona I operands

• Operands not enclosed in brackets are requ ired

• Underscored items are default values

• The OR symbol I indicates mutually exclusi ve operands

Instruction Operands

ADD opndlo,opnd20[,count ~ -
32767)[,RESULT=oopndil

ADDV

AND

ATTACH

ATTNLIST

BSCCLOSE

BSCIOCB

BSCLINE

BSCOPEN

BSCREAD

variable)[,PREC=~ID][,Pl=,P2=,P3=)

opndlo,opnd2°,count 1 -
32767[,RESULT=oopndll
v a r i able] [.p R E C = .s. I D) [, P 1 =, P 2 = , P 3 =]

opndlO,opnd20(,count (~-
32767,BYTEIWORDIDWORD»)
[,RESULT=oopndilvarlvector)[,PI=,P2=,P3=]

taskname[,priority 1- 5IOI256)[,CODE=code
word I .::.l] [, PI=, P2=, P3=]

(ccl,locl[, ••• ,ccn,locn)[,SCOPE=LOCALIGlOBAl]

bsciocbO[,ERROR=label)[,PI=,P2=)

lineaddr[,bufferl addr,lengthl)[,buffer2
addr,
length2)[,pollseq)[,pollsize)(,PI=, ••• ,P7=)

[ADDRESS=O - FFI~)[,TYPE=PTISMISAIMCIMT)
[,RETRIES=~lvalue][,MC=NOIYES)[,END=NOIYES)

bsciocbO(,ERROR=label)[,Pl=,P2=)

type CIDIEIIIPIQIR/U,bsciocbO[,ERROR=label)
[, END= labe I](, TIMEOUT=YES I NO) [, PI =, P2=, P3=)

Appendix A: Instruction and Statement List 429

BSCWRITE

BUFFER

CALL

CALLFORT

CONCAT

CONTROL

CONVTB

CONVTD

COpy

CSECT

DATA

DC

DCB

DEFINEQ

DEQ

DEQT

DETACH

DIVIDE

DO

430 SC34-03l4

type
ClcvICVXICX,CXBIDIEIEXIIIIVIIVXIIXIIXBIQINI
UIUX,bsciocbO[,ERROR=label][,END=label]
[, CHECK=YESI NO] [, Pl=, P2=, P3=]

count 1 - 32767[,WORDIBYTE][,INDEX=name]

name[,parl, ••• ,parS][,Pl=, ••• ,P6=]

name[, (al,a2, ••. ,an,)][,P=(pl,p2, ••• pn)]

textl,text2(,RESET](,REPEAT=~ - 32767]
[,Pl=,P2=]

DSx,BSFIFSFIBSRIFSRIWTMIREWIROFFIOFFlcLSRUICLSOFF
[,countO ~ - 32767][,END=labell
[,ERROR=label][,WAIT=YESINO][,P3=]

opndlO ,opnd20[,PREC=~IDI F I L][,FORMAT=(w,d,t) I
(~,Q,1.)][,Pl=,P2=]

o p n d 1 ° , op n d 2 ° [, PRE C = , ~ I D I F I L] [, FOR MAT = (w , d , t) I
(~,Q,1.)][, Pl=, P2=]

symbol

(label required)

[dup]

[dup]

type CIX1BIFIHIDIEILIA

type CIXIBIFIHIDIEILIA

value

value

[,PCI=NOIYES](,IOTYPE=OUTPUTIINPUT]
[,XD=NOIYES](,SE=NOIYES][,DEVMOD=hex value]
(,DVPARMl=valuel+label][,DVPAR~2=valuel+label]
[,DVPARM3=valuel+label][,DVPARM4=valuellabel]
[,CHAINAD=label][,COUNT=O - 3327671+label]
[,DATADDR=label] (label required)

COUNT=value[,SIZE=value) (label required)

resourceO[,code valuel.::.l][,Pl=,P2=J

none

[code valuel.::.!][,Pl=]

opndlO,opnd20[,count
valuel~][,RESULT=olabell
opndl][,PREC=~lsSDIDIDDIDSS][,Pl=,P2=,P3=]

count 0 -
32767 0[,TIMES][,INDEX=label][,Pl=]1
UNTIL,statementIWHILE,statement

o

(:r'-~,,\

I~.~

o

o

o

DSCB

ECB

EJECT

ELSE

END

ENDATTN

ENDDO

ENDIF

ENDPROG

ENDTASK

ENQ

ENQT

ENTRY

EOR

EQU

ERASE

EXIO

EXOPEN

EXTRN

FADD

FDIVD

FIND

DSi=name,DSNAME=name[,VOlSER=namelnull][,DSlEN=
Q - maximum-direct-access-space-value]

[code value I.::.!.] (label required)

none (label not allowed)

none

none (label not allowed)

none

none

none

none (label not allowed)

[.::.llposting code value][,PI=]

resourceO[,BUSV=busy addr][,PI=]

[name][,BUSY=](,PI=]

symboll[, •.• ,symboln]

opndIO,opnd20[,(count ~ -
32767,BYTEIWORDIDWORD)]
(,RESUlT=oopndllvariable][,PI=,P2=,P3=]

value (label required)

(counto=maximumlvalue][,MODE=FIElDllINEISCREEN]
[,TVPE=DATAIAllll,SKIP=oQ -
pagesize][,lINE=oQ - pagesizelcurrent
line][,SPACES=oQ - line spaces

idcbaddrO[,ERROR=label](,PI=]

de va d dr, lis tad d r ° (, ERR 0 R = lab e 1] [, P 1.= , P 2 = I

symboll(, •• ,symboln]
allowed)

(label not

opndIO,opnd20(,RESUlT=Oopndllvariable]
[,PREC=FFFIDSDISSDlsSSIDSS](,Pl=,P2=,P3=]

opndlO,opnd20[,RESUlT=OopndllvariableJ
[,PREC=FFFIDSDlssolsSSloss][,PI=,P2=,P3=]

character,stringO,lengthO,whereO,notfound
[,OIR=FORWARDIREVERSE][,Pl=,P2=,P3=,P4=,P5=]

Appendix A: Instruction and statement list 431

FINDNOT

FIRSTQ

FMULT

FORMAT

FPCONV

FSUB

GETEDIT

GETTIME

GETVALUE

GIN

GOTO

GOTO

IDCB

IF

INTIME

IOCB

432 SC34-0314

character,stringO,lengthO,whereO,notfound
[,DIR=FORWARDIREVERSE][,PI=,P2=,P3=,P4=,PS=]

qnameO, local ,EMPTY= J[,Pl=,P2=]

opndl°,opnd20(,RESULT=oopndllvariable]
[,PREC=FFFIDSDISSDISSSIDSS][,PI=,P2=,P3=]

(list),[GETIPUTIBOTH]

opndIO,opnd20[,COUNT=~ - 32767]
[,PREC=~I*ILDIDLISFIFS][,PI=,P2=,P3=]

opndl° ,opnd20[, RESULT=oopndll variable]
[,PREC=FFFI*lany combination][,PI=,P2=,P3=]

text,(list)formatl(format
list)[,ERROR=label]
[,ACTION=lQISTG][,SCAN=FIXEDIFREE] [,SKIP=O
- pagesize][,LINE=O - pagesize] [,SPACES=O
- linesize][,PROTECT=NQ!YES]

locol ,DATE=NOIVES][,PI=]

locOI,pmsgOllabel][,count ~ - 327671(count
value, BYTEIWORDIDWORD)]
[,MODE=DECIHEX]I,PROMPT=UNCONDICOND]
[, FORMAT= (~,Q,!') I (w, d, f) II , TYPE=.s.1 D I F I L]
[,SKIP=o,~ - pagesize][,LINE=ocurrent linel
o - pagesize][,SPACES=o~ -
1 i n e 5 i ze] [, PI =, P 2 = , P 3 =]

loc[,Pl=]

(10 cO [, 10 c I , I oc 2, ••• , 10 c 4 9]) I , i n d ex °] I , PI = , P 2 =]

COMMAND=READIREADIIREADIDIRSTATUSIWRITEIWRITEll
PREPAREICONTROLIRESETISTARTISCSS,ADDRESS=label[,
DCB=dcb
label][,DATA=addr J[,MOD4=modifier][,
LEVEL=O - 31~][,IBIT=ONIOFF] (label
required)

statement[,GOTO,loc]

reltime, loci, INDEX](,P2=]

[namel[,PAGSIZE=][,TOPM=~ - pagesize-l]
[,BOTM=O - pagesize-l][,LEFTM=Q -
linesize-l] [,RIGHTM=O -
linesize-l](,SCREEN=ROLLISTATIC] ,[NHIST=Q
- pagesize-2]
[,OVFLINE=NOIYES](BUFFER=RITHTM+l - 32767]

()

o

c

IODEF

IODEF

IODEF

IODEF

IODEF

lOR

LASTQ

LOAD

LOAD

MOVE

MOVEA

MULTIPLY

NEXTQ

NOTE

PLOTeB

PLOTGIN

POINT

POST

PRINDATE

Plx,ADDRESS=OO -
FF[,·TVPE=GROUP J I [TYPE=BIT, J BIT=O -
ls[,SPECPI= J

DOx,TVPE=GROUPISUBGROUP,BITS=(u 0 - 15,v 1
- 16-u)1 EXTSYNCADDRESS=OO - FF

Dlx,TVPE=GROUPISUBGROUP,BITS=(u 0 - ls,v 1
- 16-u) I EXTSYNCADDRESS=OO - FF

AOx,ADDRESS=OO - FF,POINT=O - 1

Alx,ADDRESS=OO - FF,POINT=O - 7 for relay,
o - 15 for ss,RANGE=sVI500MVI200MVI100MVI
SOMVI20MVIIOMV,ZCOR=NOIYES

opnd1°,opnd20[,count ~ -
32767,BYTEIWORDIDWORD) [,RESUlT=oopndll
variable)[,P1=,P2=,P3= J

qnameO,locO[,EMPTV=label J[,Pl=,P2=J

prog name[[,parm
name J [, DS= (dsname 1, ••• , dsname9))
[,EVENT=event name][,lOGMSG=VESINOJ[,PART=l
- 8J [,ERROR=label][,STG=..Q. - 6s53s][,P2=]

PGMx[[,parm name)[,DS=(DSx, .•.) J[,
EVENT=event nameJ[,lOGMSG=VESINOJ[,
ERROR=label J[,P2= J

opndlO,opnd20[,count ~ -
32767,BVTEIWORDIDWORDJ
[,FKEY= J[,TKEY=][,Pl=,P2=,P3=]

opnd1°,opnd20[,count ~ - 32767J
[,RESUlT=oopnd1Ivariable, J[,PREC=~IDJ
[,P1=,P2=,P3=J

qnameO,locO[,FUll=][,Pl=,P2=]

DSx, locO [, P2= J

8 data statements with explicit values

X,y[,char],pcb[,Pl=,P2=,P3=,P4=]

DS x, reI r e c n 0 ° [, P 2 = J

eventO[,code =1 - FF[,Pl=,P2=]

none

Appendix A: Instruction and statement list 433

PRINT

PRINTEXT

PRINTIME

PRINTNUM

PROGRAM

PROGSTOP

PUTEDIT

QCB

QUESTION

RDCURSOR

READ

READTEXT

434 SC34-0314

[ONIOFFJ[,GENINOGENJ[,DATAINODATAJ
(label not allowed)

msgOI[,SKIP=°.Q. - pagesizeJI [,LINE=o
current lineJIISPACES=oQ - line

length-l][,XLATE=oYESINO]
[, MODE= J [, PROTECT=NO I YES J [, Pl=]

none

locO[,count ~ - 32767,WORDIDWORDJ [,nline=1
- line length-I) [nspace=~line length-2]
[,MODE=DECIHEXJ[FORMAT=(~,.Q.,~)I(w,d,f)J
[,TYPE=.s.IDIFIL)
[,SKIp=oQlpagesize-IJ[,LINE=ocurrent linel
pagesize-l)[SPACES=°.Q. linesize-I)
PROTECT=NOIYES][,PI=, •• ,P4=]

start label[,priority=15011 -
510][, EVENT=name]
[, DS= (dsname I, •. , dsname9)) [, PARM=.Q. - 368 J
[,PGMS=(pgmnamel, .• ,pgmname9)]
[TERMERR=label,] [, FLOAT=NO I YES] [MAIN=YES I NO]
(,ERRXIT=labelJ[STG=O -
65535)[,WXTRN=YESINOJ (taskname required
for label)

[code =l - FF][,LOGMSG=YESINO][,PI=J

text,(list),formatl(format
list),[ERROR=label] [,ACTION=l.QIGJ(,SKIP=O
- pagesize-lJ [,LINE=l -
pagesize-l)[,SPACES=O - linelength-l]
[,PROTECT=NOIYES]

[code..=.l - 99) (label required)

pmsgO YES=labelINO=label[,SKIP=oO -
pagesize-lJ [,LINE=ol -
pages i ze-I) [, SPACES=o I -
1 i nelength-l][, PI=]

DSx,locO[,count O ~ - 327670 [,relrecnooQ -
max records-llblksizeo 2561[18 - 32767)J
[,END=label][,ERROR=label][,WAIT=YESINO[,P2=,P3=,P4=)

locO[,pmsgO][,PROMPT=UNCONDICONDJ
[,ECHO=NO)[,TYPE=DATAIMODDATAIALLIMODALLJ
[,MODE=WORDILINE][,XLATE=NOJ[,SKIP=oQ -
pagesize-l) [,LINEo=current line - bottom
line-lJ [,SPACES=oQ - line length-I) o

o

C'" I"
I

o

RESET

RETURN

SBIO

SBIO

SBIO

SBIO

SBIO

SBIO

SBIO

SCREEN

SHIFTL

SHIFTR

SPACE

SPECPIRT

SQRT

STATUS

STIMER

SUB ROUT

SUBTRACT

TASK

eventO or for PI 1 - 99[,Pl=]

none

Alx[[,locO],op3 labellINDEX][,SEQ=NOIVES]
[,Pl=,P2=,P3=]

AOx[,loc O][INDEX][,EOB=label Jt ,Pl=,P2=]

Dlx [, locO] [INDEX][, EOB=label][ERROR=label]
[,Pl=,P2=]

DIx[[,loc O][,BITS=(u 0 - 15,v 0 n»)[,
ERROR=labell[,Pl=,P2=]

DOx[[,locO](,BITS=(u 0 - 15,v 0 - n)][,
ERROR=label)[LSB=O - 12][,Pl=,P2=]

DOx[,locO][,op3 labeIIINDEX][,
ERROR=label][,Pl=,P2=,P3=,]

DOx,(PULSE,ONIOFFl

text,x,y[,CONCAT=NOIVES][,ENHGR=NOIVES]
[,Pl=,P2=,P3=]

opndl°,opnd20[,count ~ - 32767[,BVTEIWOROI
DWORO)] [, RESUL T=oopndillabel] [, Pl=, P2=, P3=)

opndl°,opnd20[,count ~ - 32767[,BVTEIWORDI
DWORD)] [, RESUL T=oopnd11Iabel] [, Pl=, P2=, P3=]

[value ~ - pagesize-1] (label not allowed)

index,key[,length Q - 256][,Pl=,P2=,P3=]
(label required)

countO .1 - 32767[,WAIT I [, Pl= I

n a me [, par 1 , ••• , par 5 I

opndlO',opnd20[,count 1 -
32767)[RESULT=oopndl]
[PREC=,S,1 D] [, Pl=, P2=, P3=]

start[,priority 15011 - 510][EVENT=name]
[,TERMERR=label][FLOAT=VES)[ERRXIT=label]
(taskname required for label)

Appendix A: Instruction and Statement List 435

TERMCTRL

TEXT

TITLE

TP

TP

TP

TP

TP

TP

TP

TP

TP

TP

USER

WAIT

WHERES

WRITE

WXTRN

XYPLOT

YTPLOT

436 SC34-0314

function
BLANKIDI"SPLAYITONEIBLINKIUNBLINKILOCKI
UNLOCKIPF,codeISET,ATTN=YESINOILET,
LPI=618IpUTSTOREIGETSTORE [,opl°
addr][,op2° addr][,TYPE=11214151617]

'message'ILENGTH=1 - 254[,CODE=~IAJ

message (label not allowed)

CLOSE[,ERROR=J

FETCH,stlocO[,lengthO Q -
256] [, ERROR=label] [, P2=, P3=]

OPENIN,dsnlocO[,ERROR=label J[,P2=]

OPENOUT,dsnlocO[,ERROR=label][,P2=]

READ,bufferO[,countO 1 - 32767][,END=label]
[,ERROR=label][,P2=,P3=]

RELEASE,stlocO[,lengthO Q -
256 J[,ERROR=label J [,P2=,P3=]

SET,stlocO[,lengthO Q - 256][,ERROR=label]
[,P2=,P3=]

SUBMIT,dsnlocO[,ERROR=labelJ[,P2=]

TIMEDATE,locO[,ERROR=label J(,P2= J

WRITE,bufferO[,countO 1 - 32767]
[,relrecnoo Q - 327671blksizeo 2561[18 -
32767] [, END=label] [, ERROR=label] [P2=, P3= J

name [, PARM= (parmI, .• , parmn)]
[,P=(namel, •. ,namen)]

eventO [, RESET] [, P1=]

prognme,address[,KEV][,Pl=,P2=,P3=]

DSx,locO[,countO 1 - 32767] [,relrecnooQ -
max records-llblksizeo ~1[18 - 32766]]
[,END=labelJ [,ERROR=label]
[WAIT=VESINO][,P2=,P3=,P4=J

symboll[,symbo12, ••• ,symboln J

o

o

o

0

o

INDEXED ACCESS METHOD

Instruction Operands

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

lAM, (DEFINE)

IAM,(DELETE),iacb,(key)

IAM,(DISCONN),iacb

IAM,(ENDSEQ),iacb

IAM,(EXTRACT),iacb,(buff-addr) [,(size
~Ibyte-value)]

IAM,(GET),iacb,(buff-addr),(key)[,(SHARE)1
(EXCLUSV)/(EQ) I (GT) I (GE) I (UPEQ) I (UPGT) I (UPGE)]

IAM,(GETSEQ),iacb,(buff-addr),(key)[(SHARE)1
(EXCLUSV)/(EQ) I (GT) I (GE) I (UPEQ) I (UPGT) I (UPGE)]

IAM,(LOAD),iacb,(dscb-addrIDSn),(opentab-addr)
[, (SHARE) I (EXCLUSV)]

IAM,(PROCESS)(dscb-addr),(opentab-addr)
[,(SHARE)I(EXCLUSV)]

IAM,(PUT),iacb,(buff-addr)

IAM,(PUTDEL),iacb

IAM,(PUTUP),iacb,(buff-addr)

IAM,(RELEASE),iacb

Appendix A: Instruction and Statement List 437

MULTIPLE TERMINAL MANAGER

()
Instruct;on Operands

CALL ACTION[,(buffer-addr),(length),(crlf addr)]

CALL BEEP

CALL CDATA,(type),(user;d),(userclass),
(termname),(buffersize)

CALL CHGPAN

CALL CYCLE

CALL FAN

CALL FILEIO,(FCA-addr),(buffer-addr),(return-code-addr)

CALL FTAB,(table),(s;ze),(return-code-addr)

CALL LINK,(pgmname)

CALL LINKON,(pgmname)

CALL MENU

CALL SETCUR,(row-addr),(column-addr)

/--'"

~::,~:

CALL SETPAN,(dsname-addr),(return-code-addr)

CALL WRITE,(buffer-addr),(length),(crlf addr)

o
438 SC34-0314

o

o

BIBLIOGRAPHY

EVENT DRIVEN EXECUTIVE LIBRARY SUMMARY

The library summary is a guide to the Event Driven Execu­
tive library. By briefly listing the content of each book
and prov i ding a suggested read i ng sequence for the
library, it should assist you in using the library as a
whole as well as direct you to the individual books you
require.

Event Driven Executive Library

The IBM Series/l Event Driven Executive library materials
consist of five full-sized books, a quick reference pocket
book, and a set of tabs:

• IBM Series/l Event Driven Executive System Guide (or
System Guide), SC34-0312

• IBM Series/l Event Driven Executive Utilities, Opera­
tor Commands, Program Preparation, Messages and Codes
(or Utilities), SC34-0313

• IBM Ser i es/l Event Dr i ven Execut i ve Language Reference
(or Language Reference), SC34-0314

• IBM Ser i es/l Event Dr i ven Execut i ve Commun i cat ions and
Terminal Application Guide (or Communications Guide),
SC34-0316

• IBM Series/l Event Driven Executive Internal Design
(or Internal Design), LV34-0168

• IBM Series/l Event Driven Executive Multiple Terminal
Manager Internal Design (or Multiple Terminal Manager
Internal Design), LV34-0190

• IBM Series/l Event Driven Executive Indexed
Method Internal Design (or Indexed Access
Internal Design), LV34-0189

Access
Method

• IBM Series/l Event Driven Executive Reference Summary
(or Reference Summary), SX34-0101

• IBM Series/l Event Driven Executive Tabs (or Tabs),
SX34-0030

Bibliography 439

System Guide

The System Gujde introduces the concepts and capabilities
of the Event Dr i ven Execut i ve system. It discusses
multi-tasking, program and task structure, program over­
lays, storage management, and data management.

Planning aids include hardware and software requirements,
along with guidelines for storage estimating.

The SYstem Gu i de a Iso presents step-by-step procedures for
generat i ng a superv i sor ta i lored to your Ser i es/l hardware
conf i gurat i on and software needs.

The description of the Indexed Access Method contains the
information on how to write applications that use indexed
data sets.

The description of the session manager includes a proce­
dure for modifying the session manager to include applica­
tion programs in the primary option menu so that you can
execute them under the sess i on manager. You can also add a
procedure to comp i Ie, 1 i nk, and update programs.

Information is also provided concerning partitioned data
sets, tape data organization, diagnostic aids,
inter-program communication, logical screens, and dynamic
data set allocat i on.

Utilities

Utilities describes:

• Event Dr i ven Execut i ve ut iIi ty programs

• Operator commands

• Procedures to prepare and execute system and applica­
t i on programs

• The sess i on manager -- a menu-dr i ven interface program
that will invoke the programs .required for program
development

• Messages and codes issued by the Event Driven Execu­
ti ve system

440 SC34 0314

/' "" \

o

o

C)

c

The operator commands, program preparat ion fac iii ties, and
sess i on manager are grouped by funct i on and discuss ions
include detailed' syntax and explanations. The utilities
are presented in alphabetical order.

Lanauage Reference

The Language Reference familiarizes you with the Event
Driven Language by first grouping the instructions into
functional categories. Then the instructions are listed
alphabetically, with complete syntax and an explanation of
each operand.

The final section of the Language Reference contains exam­
ples of using the Event Driven language for applications
such as:

• Program loading

• User exit routine

• Graphics

• I/O level control program

• Index i ng and hardware reg i ster usage

Communications Guide

The Communications Guide introduces th~ Event Driven Exec­
utive communications support -- binary synchronous commu­
n i cat ions, asynchronous commun i cat ions, and the Host
Communications Facility.

The Communications Guide contains coding details for all
ut iii ties and Event Dr i ven language i nstr uct ions needed
for communications support and advanced terminal applica­
tions.

Internal Design

Interna 1 Des i gn descr i bes the i nterna I log i c f low and
specifications of the Event Driven Executive system so
that you can understand how the system interfaces with
application programs. It familiarizes you with the design
and implementation by describing the purpose, function,

Bibliography 441

and operation of the various Event Driven Executive system
programs.

Multiple Terminal Manager Internal Design and Indexed
Access Method Internal Design describe the internal logic
flow and specifications of these programs.

Unlike the other manuals in the library, the Internal
Design books contain material that is the licensed proper­
ty of IBM and they are available only to licensed users of
the Event Dr i ven Execut i ve system.

Reference Summary

The Reference Summary is a pocket-sized booklet to be used
for qu i ck reference. It lists the Event Dr i ven language
instructions with their syntax, the utility and program
preparation commands, and the completion codes.

The tabs package must be ordered separately. The package
contains 33 index tabs by SUbject, with additional blank
tabs. These extended tabular pages can be inserted at the
front of various sections of the library. The tabs are
color coded according to the major library topics.

Reading Sequence

All readers of the Event Driven Executive library should
begin with the first three chapters of the System Guide
("Introduction," "The Supervisor and Emulator," and "Data
Management") for an overview of the Event Driven Executive
concepts and facilities.

Readers responsible for installing and preparing the
system should then continue in the System Guide with "Sys­
tem Conf i gurat i on" and "System Generat ion."

All readers should review the Utilities "Introduction" to
become familiar with the utility functions available for
the Event Driven Executive system. Then you can read more
specific sections for particular utilities, operator com­
mands, and program preparat i on fac iii ties.

442 SC34-0314

c '" 'I

'.,;.;,J

o

o

o

o

After you have a basic understanding of the Event Driven
Executive system and how you can best use the system for
your applications, you should read the Language Reference
"Introduction." This will familiarize you with the poten­
tial of the Event Driven Language and prepare you to start
coding application programs.

If you have communications support for your Event Driven
Executive system, you should read the Communications
Gu ide, wh i ch is an extens i on of the System Gu i de,
ut i lit i es, and the Language Reference.

After you know the functions of the various Event Driven
Language instructions, utilities, and program preparation
f a c iIi tie s , yo u may w ish tore fer 0 n 1 y tot he Ref ere n c e
Summary for correct syntax whi Ie coding your applications.

Only readers responsible for the support or modification
of the Event Driven Executive system need to read Internal
Design.

OTHER EVENT DRIVEN EXECUTIVE PROGRAMMING PUBLICATIONS

•

•

IBM Series/l Event Driven Executive FORTRAN IV User's
Guide, SC34-0315.

IBM Ser I es/l Event Dr i ven Execut i ve PL/I Language
Reference, GC34-0147.

• IBM Ser i es/l Event Dr i ven Execut I ve PL/I User's Gu ide,
GC34-0148.

• IBM Ser I es/l Event Dr i ven Execut I ve COBOL Programmer's
Guide, SL23-0014.

• IBM Ser i es/l Event Dr I ven Execut i ve Sort/Merge Pro­
grammer's Guide, SL23-0016

• IBM Ser i es/l Event Dr i ven Execut i ye Macro Assemb ler
Reference,GC34-0317.

• IBM Ser i es/l Event Dr i ven Execut i ve study Gu ide,
SR30-0436.

OTHER SERIES/l PROGRAMMING PUBLICATIONS

• IBM Series/l Programming System Summary, GC34-028S.

• IBM Series/l COBOL Language Reference, GC34-0234 •

• IBM Ser i es/l FORTRAN IV language Reference, GC34-0 133.

• IBM Ser i es/l Host Commun i cat ions Fac iIi ty Program
Description Manual, SH20-1819.

• IBM Ser i es/1 Mathemat i ca land Funct i ona I Subrout i ne
library User's Guide, SC34-0139.

• IBM Series/l Macro Assembler Reference Summary,
SX34-0128

• IBM Series/l Data Collection Interactiye Programming
RPQ P82600 User's Gu i de, SC34-1654.

OTHER PROGRAMMING PUBLICATIONS

• IBM Data Processjng Glossary, GC20-1699.

• IBM Serjes/1 Graphic Bibliography, GA34-0055.

• IBM OS/VS Bas j c Te lecommyn i cat ions Access Method
(BTAM), GC27-6980.

• General Information Binary Synchronoys
Communications, GA27-3004.

• IBM System/370 Program preparation Facility,
SB30-1072.

SERIES/l SYSTEM LIBRARY PUBLICATIONS

• IBM Series/1 4952 Processor and Processor Features
Description, GA34-0084.

• IBM Serj!!::;!/1 4223 Proce:zsor aDd ProCg:!sor Fea:tures
Description, GA34-0022.

• IBM Serjes/1 4955 Proce:!sor and Proc!!::;!sor Fea:turgs
DescriptioD' GA34-0021.

• IBM Ser i es/l Commun i cat ions Fgature:! Descr i pt i on,
GA34 -0028.

• IBM Series/l 3101 Djsplay T!!:rminal Description,
GA34-2034.

• IBM Series/l 4962 Disk Storage Unit and 4964 Diske:t:te
Unjt Descrip:tion, GA34-0024.

444 SC34-0314

o

1'11!'--,,\

"'\.;I

c

o

o

o

•

•

IBM Series/l 4963 Disk Subsystem Description,
GA34-0051.

IBM Series/l 4966 Diskette Magazine Unit Description,
GA34-0052.

• IBM Ser i es/l 4969 Magnet i c Tape Subsystem Descr i pt ion,
GA34-0087.

• IBM Ser i es/l 4973 Line Pr inter pescr j pt i on, GA34-0044.

• IBM Ser i es/l 4974 Pr j nter pescr i pt ion, GA34-0025.

• IBM Series/l 4978-1 pisplay Station (RPQ P02055) and
Attachment CRPQ D02038) General Information,
GA34-1550

• IBM Series/l 4978-1 Display Station, Keyboard (RPQ
lL02056) General Information, GA34-1551

• IBM Series/l 4978-1 Display Station, Keyboard (RPQ
D02057) General Information, GA34-1552

• IBM Series/l 4978-1 Display Station Keyboards (RPQ
P02064 and D02065) General Information, GA34-1553

• IBM Series/l 4979 Display Station Description,
GA34-0026

• IBM Series/l 4982 Sensor Input/Output Unit
pescription, GA34-0027

• IBM Series/l Data Collection Interactive RPQs 002312,
002313, and D023'14 Custom Feature, GA34-1567

Bibliography 445

o

o
446 SC34-0314

o

c

c

GLOSSARY

This glossary contains terms that are used in the Series/1 Event Driven
Executive software publications. All software and hardware terms are
Series/1 oriented. This glossary defines terms used in this library and
serves as a supplement to the IBM Data Processing Glossary (GC20-1699).

$SYSLOGA. The name of the
alternate system logging device.
This device is optional but, if
defined, should be a terminal with
keyboard capability, not just a
printer.

the Multiple Terminal Manager
facilities.

asynchronous commun;cations con­
trol adapter. An ASCII terminal
attached via 11610, #2091 with
#2092, or 12095 with 12096 adapt-

$SVSLOG. The name of the system ers.
logging device or operator
station; must be defined for every
system. It should be a terminal
with keyboard capability, not just
a printer.

$SVSPRTR. The name of the system
printer.

ACCA. See asynchronous
communications control adapter.

address key. Identifies a set of
Series/1 segmentation registers
and represents an address space.
It is one less than the partition
number.

address space. The logical
storage identified by an address
key. An address space is the
storage for a partition.

application program manager. The
component of the Multiple Terminal
Manager that provides the program
management facilities required to
process user requests. It con­
trols the contents of a program
area and the execution of programs
within the area.

application program stub. A
collection of subroutines that are
appended to a program by the link­
age editor to provide the link
from the application program to

attention list. A series of pairs
of 1 to 8 byte EBCDIC strings and
addresses pointing to EDL
instructions. When the attention
key is pressed on the terminal,
the operator can enter one of the
strings to cause the associated
EDL instructions to be executed.

backup. A copy of data to be used
in the event the original data is
lost or damaged.

base records. Records that have
been placed into an indexed data
set while in load mode.

basic exchange format. A standard
format for exchanging data on
diskettes between systems or
devices.

binary synchronous device data
block (BSCDDB1. A control block
that provides the information to
control one Series/1 Binary Syn­
chronous Adapter. It determines
the line characteristics and pro­
vides dedicated storage for that
line.

block. (1) See data block or
index block. (2) In the Indexed
Method, the unit of space used by
the access method to contain
indexes and data.

Glossary 447

aSCDDB. See binary synchronous
device dat~ block.

buffer. An area of storage that
is temporarily reserved for use in
performing an input/output oper­
ation, into which data is read or
from which data is written. See
input buffer and output buffer.

bypass label processing. Access
of a tape without any label proc­
essing support.

CCB. See terminal control block.

character image. An alphabetic,
numeric, or special character
defined for an IBM 4978 Display
Station. Each character image is
defined by a dot matrix that is
coded into eight bytes.

character image table. An area
containing the 256 character
images that can be defined for an
IBM 4978 Display Station. Each
character image is coded into
eight bytes, the entire table of
codes re~uiring 2048 bytes of
storage.

cluster. In an indexed file, a
group of data blocks that is
pointed to from the same
primary-level index block, and
includes the primary-level index
block. The data records and
blocks contained in a cluster are
logically contiguous, but are not
necessarily physically contiguous.

COD (change of direction). A
character used with ACCA terminal
to indicate a reverse in the
direction of data movement.

com~and. A character string from
a source external to the system
that represents a request for
action by the system.

common area. A user-defined data
area that is mapped into every
partition at the same address. It

448 SC34-0314

can be used to contain control
blocks or data that will be
accessed by more than one program.

complet;on code. An indicator
that reflects the status of the
execution of a program. The com­
pletion code is displayed or
printed on the program's output
device.

conversion. See update.

cross partition service. A
function that accesses data in two
partitions.

data block. In an indexed file,
an area that contains control
information and data records.
These blocks are a multiple of 256
bytes.

data set. A group of contiguous
records within a volume pointed to
by a directory member entry in the
directory for the volume.

data set control block (DSCS1. A
control block that provides the
information required to access a
data set, volume or directory
using READ and WRITE.

data set shut down. An indexed
data set that has been marked (in
main storage only) as unusable due
to an error.

DeE. See directory control entry.

DDB. See disk data block.

direct access. (1) The access
method used to READ or WRITE
records on a disk or diskette
device by specifying their
location relative the beginning of
the data set or volume. (2) In
the Indexed Access Method, locat­
ing any record via its key without
respect to the previous operation.

o

o

c

0:
,,"1,

d;rectory. A series of contiguous
records in a volume that describe
the contents in terms of allocated
data sets and free spaces.

d;rectory control entry
(DCE). The first 32 bytes of the
first record of a directory in
which a description of the direc­
tory is stored.

d;rectory member entry (DME). A
32-byte directory entry describing
an allocated data set.

disk data block (DDB). A control
block that describes a direct
access volume.

display stat;on. An IBM 4978 or
4979 display terminal or similar
terminal with a keyboard and a
video display.

DME. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of
storage that is appended to a pro­
gram when it is loaded.

end-of-data ;nd;cato~. A code
that signals that the last record
of a data set has been read or
written. End-of-data is deter­
mined by an end-of-data pointer in
the DME or by the physical end of
the data set.

ECB. See event control block.

EDL. See Event Driven language.

emulator. The portion of the
Event Driven Executive supervisor
that interprets EDl instructions
and performs the function speci­
fied by each EDl statement.

end-of-tape (EOT). A reflective
marker placed near the end of a
tape and sensed during output.
The ma~ker signals that the tape
is nearly full.

event control block (ECS). A
control block used to record the
status (occurred or not occurred)
of an event; often used to syn­
chronize the execution of tasks.
ECBs are used in conjunction with
the WAIT and POST instructions.

event driven language (EDL1. The
language for input to the Event
Driven Executive compiler
($EDXASM), or the Macro and Host
assemblers in conjunction with the
Event Driven Executive macro
libraries. The output is inter­
preted by the Event Driven Execu­
tive emulator.

EXIO (execute input or
output). An EDL facility that
provides user controlled access to
Series/l input/output devices.

external label. A label attached
to the outside of a tape that
identifies the tape visuallY. It
usually contains items of iden­
tification such as file name and
number, creation data, number of
volumes, department number, and so
on.

external name (EXTRN1. The 1- to
8-character symbolic EBCDIC name
for an entry point or data field
that is not defined within the
module that references the name.

FCA. See file control area.

FCB. See file control block.

file control area (FCA). A
Multiple Terminal Manager data
area that describes a file access
request.

file control block (FCB). In an
indexed data set, the first block
of the data set. It contains
descriptive information about the
data contained in the data set.

Glossary 449

file manager. A collection of
subroutines contained within the
program manager of the Multiple
Terminal Manager that provides
common support for all disk data
transfer operations as needed for
transaction-oriented application
programs. It supports indexed and
direct files under the control of
a single callable function.

formatted screen ;mage. A
collection of display elements or
display groups (such as operator
prompts and field input names and
areas) that are presented together
at one time on a display device.

free pool. In an indexed data
set, a group of blocks that can be
used as either a data block or an
index block. These differ from
other free blocks in that these
are not initiallY assigned to spe­
cific logical positiQns in the
data set.

free space. In the Indexed Access
Method, record spaces or blocks
that do not currently contain
data, and are available for use.

free space entry (FSE). A 4-byte
directory entry defining an area
of free space within a volume.

FSE. See free space entry.

hardware timer. The timer
features available with the
Series/I processors. Specif­
ically, the 7840 Timer Feature
card or the native timer (4952
only). Only one or the other is
supported by the Event Driven
Executive.

host assembler. The assembler
licensed program that executes in
a 370 (host) system and produces
object output for the Series/I.
The source input to the host
assembler is coded in Event Driven
Language or Series/l assembler
language. The host assembler

450 SC34-03I4

refers to the System/370 Program
Preparation Facility (5798-NNQ).

host system. Any system whose
resources are used to perform
services such as program prepara­
tion for a Series/I. It can be
connected to a Series/! by a com­
munications link.

IACB. See indexed access control
block.

IAR. See instruction address
register.

ICB. See indexed access control
block.

lIB. See interrupt information
byte.

image store. The area in a 4978
that contains the character image
table.

index. In the Indexed Access
Method, an ordered collection of
pairs, each consisting of a key
and a pointer, used to sequence
and locate the records in an
Indexed Access Method data set.

index block. In an indexed file,
an area that contains control
information and index entries.
These blocks are a multiple of 256
bytes.

indexed access control block
(IACB/ICBl. The control block
that relates an application pro­
gram to an indexed data set.

indexed ~ccess method. An access
method for direct or sequential
processing of fixed-length records
by use of a record's key.

indexed data set. A data set
specifically created, formatted
and used by the Indexed Access
Method. An indexed data set may
also be called an indexed file.

()

,;'1'

\,_.;.1

o

o

o

indexed file. Synonym for indexed
data set.

index ent~y. In an indexed file,
a key-pointer pair, where the
pointer is be used to locate a
lower-level index block or a data
block.

index re9ister (~l, #2). Two
words defined in EDL and contained
in the task control block for each
task. They are used to contain
data or for address computation.

input buffer. (1) See buffer.
(2) In the Multiple Terminal Man­
ager, an area for terminal input
and output.

input output control block
(IOCB). A control block contain­
ing information about a terminal
such as the symbolic name, size
and shape of screen, the size of
the forms in a printer.

instruction ~ddress register
(IAR). The pointer that identi­
fies the instruction currently
being executed. The Series/l
maintains a hardware IAR to deter­
mine the Series/l assembler
instruction being executed. It is
located in the level status block
elSB).

interactive. The mode in which a
program conducts a continuous
dialogue between the user and the
system.

internal label. An area on tape
used to record identifying infor­
mation (similar to the identifying
information placed on an external
label). Internal labels are
checked by the system to ensure
that the correct volume is
mounted.

interrupt information byte
(lIB). In the Multiple Terminal
Manager, a word containing the
status of a previous input/output

request to or from a terminal.

job. A collection of related
program execution requests pre­
sented in the form of job control
statements, identified to the
jobstream processor by a JOB
statement.

job control statement. A
statement in a job that specifies
requests for program execution,
program parameters, data set defi­
nitions, sequence of execution,
and, in general, describes the
environment required to execute
the program.

job stream processor. The job
processing facility that reads job
control statements and processes
the requests made by these state­
ments. The Event Driven Executive
job stream processor is $JOBUTIL.

key. In the Indexed Access
Method, one or more consecutive
characters in a data record, used
to identify the record and estab­
lish its order with respect to
other records. See also key
field.

key field. A field, located in
the same position in each record
of an' Indexed Access Method data
set, whose content is used for the
key of a record.

level status block (lSB). A
Series/1 hardware data area that
contains processor status.

library. A set of contiguous
records within a volume. It con­
tains a directory, data sets
and/or available space.

line. A string of characters
accepted by the system as a single
input from a terminal; for exam­
ple, all characters entered before
the carriage return on the tele­
typewriter or the ENTER key on the
display station is pressed.

Glossary 451

l;nk ed;t. The process of
resolving symbols in one or more
object modules to produce another
single module that is the input to
the update process.

load mode. In the Indexed Access
Method, the mode in which records
are initiallY placed in an indexed
file.

load module. A single module
having cross references resolved
and prepared for loading into
storage for execution. The module
is the output of the $UPDATE or
$UPDATEH utility.

load point. A reflective marker
placed near the beginning of a
tape to indicate where the first
record is written.

lock. In the Indexed Access
Method, a method of indicating
that a record or block is in use
and is not available for another
request.

LSB. See level status block.

member. A term used to identify a
named portion of a partitioned
data set (PDS). Sometimes member
is also used as a synonym for a
data set. See data set.

menu. A formatted screen image
containing a list of options. The
user selects an option to invoke a
program.

menu-driven. The mode of
processing in which input consists
of the responses to prompting from
an option menu.

multif;le volume. A unit of
recordjng media, such as tape reel
or disk pack, that contains more
than one data file.

mult;ple terminal manager. An
Event Driven Executive licensed
program that provides support for

452 SC34-0314

transaction-oriented applications
on a Series/1. It provides the
capability to define transactions
and manage the programs that sup­
port those transactions. It also
manages multiple terminals as
needed to support these trans­
actions.

multivolume file. A data file
that, due to its size, requires
more than one unit of recording
media (such as tape reel or disk
pack) to contain the entire file.

non-labeled tapes. Tapes that do
not contain identifying labels (as
in standard labeled tapes) and
contain only files separated by
tapemarks.

null character. A user-defined
character used to define the
unprotected fields of a formatted
screen.

option selection menu. A full
screen display used by the Session
Manager to point to other menus or
system functions, one of which is
to be selected by the operator.
(See primary option menu and sec­
ondary option menu.)

output buffer. (1) See buffer.
(2) In the Multiple Terminal Man­
ager, an area used for screen
output and to pass data to subse­
quent transaction programs.

overlay. The technique of reUs1ng
a single storage area allocated to
a program during execution. The
storage area can be reused by
loading it with overlay programs
that have been specified in the
PROGRAM statement of the program.

overlay area. A storage area
within a program reserved for
overlay programs specified in the
PROGRAM statement.

o

o

o

c

o

parameter selection menu. A full
screen display used by the Session
Manager to indicate the parameters
to be passed to a program.

partition. A contiguous
fixed-sized area of storage. Each
partition ;s a separate address
space.

physical timer. Synonym for
hardware timer.

prefind. To locate the data sets
or overlay programs to be used by
a program and to store the neces­
sary information so that the time
required to load the prefound
items is reduced.

primary-level index block. In an
indexed data set, the lowest level
index block. It contains the rel­
ative blQck numbers (RBNs) and
high keys of several data blocks.
See cluster.

primary menu. The program
selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first
full screen display provided by
the Session Manager.

primary task. The first task
executed by the supervisor when a
program is loaded into storage.
It is identified by the PROGRAM
statement.

priority. A combination of
hardware interrupt level priority
and a software ranking within a
level. Both primary and secondary
tasks will execute asynchronously
within the system according to the
priority assigned to them.

process mode. In the Indexed
Access Method, the mode in which
records may be retrieved, updated,
inserted or deleted.

processor status word (PSW1. A
16-bit register used to (1) record
error or exception conditions that
may prevent further processing and
(2) hold certain flags that aid in
error recovery.

program. A disk- or
diskette-resident collection of
one or more tasks defined by a
PROGRAM statement; the unit that
is loaded into storage. (See pri­
mary task and secondary task.)

pro3ram header. The control block
found at the beginning of a
program that identifies the prima­
ry task, data sets, storage
requirements and other resources
required by a program.

pro3ram/storage manager. A
component of the Multiple Terminal
Manager that controls the
execution and flow of application
programs within a single program
area and contains the support
needed to allow multiple oper­
ations and sharing of the program
area.

protected field. On a display
device, a field in which the oper­
ator cannot enter, modify, or
erase data from the keyboard. It
can contain text that the user can
read.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCB). A data
area used to serialize access to
resources that cannot be shared.
See serially reusable resource.

queue descriptor (QD). A control
block describing a queue built by
the DEFINEQ instruction.

Glossary 453

queue element (QE). An entry in
the queue defined by the queue
descriptor.

record. (1) The smallest unit of
, direct access storage that can be

accessed by an application program
on a disk or diskette using READ
and WRITE. Records are 256 bytes
in length. (2) In the Indexed
Access Method, the logical unit
that is transferred between $IAM
and the user's buffer. The length
of the buffer is defined by the
user.

recovery. The use of backup data
to recreate data that has been
lost or damaged.

reflective marker. A small
adhesive marker attached to the
reverse (nonrecording) surface of
a reel of magnetic tape.
Normally, two reflective markers
are used on each reel of tape.
One indicates the beginning of the
recording area on the tape (load
point), and the other indicates
the proximity to the end of the
recording area (EDT) on the reel.

relative record number. An
integer value identifying the
position of a record in a data set
relative to the beginning of the
data set. The first record of a
data set is record one, the second
is record two, the third is record
three.

reorganize. For an indexed data
set, the copying of the data to a
new indexed data set in a manner
that rearranges the data for more
optimum processing and free space
distribution.

return code. An indicator that
reflects the results of the exe­
cution of an instruction or sub­
routine. The return code is
placed in the task code word (at
the beginning of the task control
block).

454 SC34-0314

roll screen. A display screen on
which data is displayed 24 lines
at a time or data is entered lin.
by line, beginning with line 0 at
the top of the screen and continu­
ing through line 23 at the bottom
of the screen. When a roll screen
device's screen is full (all 24
lines used), an attempt to display
the next line results in removal
of the old screen (screen is
erased) and the new line on line 0
is displayed at the top of the
screen.

SBIOCB. See sensor based 1/0
control block.

second-level index block. In an
indexed data set, the
second-lowest level index block.
It contains the addresses and high
keys of several primary-level
index blocks.

secondary option menu. In the
Session Manager, the second in a
series of predefined procedures
grouped together in a hierarchical
structure of menus. Secondary
option menus provide a breakdown
of the functions available under
the session manager as specified
on the primary option menu.

secondary task. Any task other
than the primary task. A second­
ary task must be attached by a
primary task or another secondary
task.

sector. The smallest addressable
unit of storage on a disk or
diskette. A sector on a 4962 or
4963 disk is equivalent to an
Event Driven Executive record. On
a 4964 or 4966 diskette, two sec­
tors are equivalent to an Event
Driven Executive record.

sensor based lID control block
(SBIOCB1. A control block con­
taining information related to
sensor I/O operations.

o

o

o

o

c

sequential accoss. The processing
of a data set in order of occur­
rence of the records in the data
set. (1) In the Indexed Access
Method, the processing of records
in ascending collating sequence
order of the keys. (2) When using
READ/WRITE, the processing of
records in ascending relative
record number sequence.

se~ially reusable rC50u~ce
(SRR1. A resource that can only
be accessed by one task at a time.
Serially reusable resources are
usually managed via (1) a QCB and
ENQ/DEQ statements or (2) an ECB
and WAIT/POST statements.

session manage~. A series of
predefined procedures grouped
together as a hierarchical struc­
ture of menus from which you
select the utility functions, pro­
gram preparation facilities, and
language processors needed to pre­
pare and execute application pro­
grams. The menus consist of a
primary option menu that displays
functional groupings and secondary
option menus that display a break­
down of these functional
groupings.

shared resource. A resource that
can be used by more than one task
at the same time.

shut down. See data set shut
down.

source module/pro9~am. A
collection of instructions and
statements that constitute the
input to a compiler or assembler.
Statements may be created or modi­
fied using one of the text editing
facilities.

st~nd~rd labels. Fixed length
BO-character records on tape con­
taining specific fields of infor­
mation (a volume label identifying
the tape volume, a header label
preceding the data records, and a

trailer label following the data
records).

static scre~n. A display screen
formatted with predetermined
protected and unprotected areas.
Areas defined as operator prompts
or input field names are protected
to prevent accidental overlay by
input data. Areas defined as
input areas are not protected and
are usually filled in by an opera­
tor. The entire screen is treated
as a page of information.

subroutine. A sequence of
instructions that may be accessed
from one or more points in a pro­
gram.

supervisor. The component of the
Event Driven Executive capable of
controlling execution of both sys­
tem and application programs.

system configuration. The process
of defining devices and features
attached to the Series/1.

SYSGEN. See system generation.

system generation. The processing
of user selected options to create
a supervisor tailored to the needs
of a specific Series/l configura­
tion.

system partition. The partition
that contains the supervisor (par­
tition number 1, address space 0).

tapemark. A control character
recorded on tape used to separate
files.

task. The basic executable unit
of work for the supervisor. Each
task is assigned its own priority
and processor time is allocated
according to this priority. Tasks
run independently of each other
and compete for the system
resources. The first task of a
program is the primary task. All
tasks attached by the primary task

Glossary 455

are secondary tasks.

task code word. The first two
words (32 bits) of a task's TCB;
used by the emulator to pass
information from system to task
regarding the outcome of various
operations, such as event com­
pletion or arithmetic operations.

task control block (TCB). A
control block that contains infor­
mation for a task. The informa­
tion consists of pointers, save
areas, work areas, and indicators
required by the supervisor for
controlling execution of a task.

task superv;sor. The portion of
the Event Driven Executive that
manages the dispatching and
switching of tasks.

TCB. See task control block.

termin~l. A display station,
teletypewriter or printer.

terminal control block (CCB). A
control block that defines the
device characteristics, provides
temporary storage, and contains
links to other system control
blocks for a particular terminal.

terminal environment block
(TEB). A control block that con­
tains information on a terminal's
attributes and the program manager
operating under the Multiple Ter­
minal Manager. It is used for
processing requests between the
terminal servers and the program
manager.

terminal screen manager. The
component of the Multiple Terminal
Manager that controls the presen­
tation of screens and communi­
cations between terminals and
transaction programs.

terminal server. A group of
programs that perform all the
input/output and interrupt handl-

456 SC34-0314

ing functions for terminal devices
under control of the Multiple Ter­
minal Manager.

trace range. A specified number
of instruction addresses within
which the flow of execution can be
traced.

transaction oriented
applications. Program execution
driven by operator actions, such
as responses to prompts from the
system. Specifically, applica­
tions executed under control of
the Multiple Terminal Manager.

transaction program. See
transaction-oriented applications.

transaction selection m~nu. A
Multiple Terminal Manager display
screen (menu) offering the user a
choice of functions, such as read­
ing from a data file, displaying
data on a terminal, or waiting for
a response. Based upon the choice
of option, the application program
performs the requested processing
operation.

unprotected field. On a display
device, a field in which the user
can enter, modify, or erase data
using the keyboard. Unprotected
fields on a static screen are
defined by the null character.

update. (1) To alter the contents
of storage or a data set. (2) To
convert obj ect modules, produce,d
as the output of an assembly or
compilation, or the output of the
linkage editor, into a form that
can be loaded into storage for
program execution and to update
the directory of the volume on
which the loadable program is
stored.

user exit. (1) Assembly language
instructions included as part of
an EDL program and invoked via the
USER instruction. (2) A point in
an IBM-supplied program where a

C'I

-,;J'

(- ".
\ I

'~#'

o

o

C· '\

)

o

user written routine can be given
control.

vary offline. (1) To change the
status of a device from online to
offline. When a device is off­
line, no data set can be accessed
on that device. (2) To place a
disk or diskette in a state where
it is not available for use by the
system; however, it will still be
available for executing I/O at the
basic access level (EXIO).

vary online. To restore a device
to a state where it is available
for use by the system.

volume. A disk or diskette
subdivision defined during system
configuration. A volume may con­
tain up to 32,767 records. As
many volumes may be defined for a
disk as will physically fit. A
diskette is limited to one volume.

volume label. A label that
uniquely identifies a single unit
of storage media.

Glossary 457

c
458 SC34-0314

0 ':' , ,

o

COttMON INDEX

This index is common to the Event Driven Executive library. The index
includes entries from the seven publications listed below. (The Glossary
is not indexed.) Each publication has a copy of the index, which provides
a cross-reference between the publications.

Each page number entry contains a single letter prefix which identifies
the publication where the listed subject can be found. The letter pre­
fixes have the following meanings:

• C = Communications and Terminal Application Guide

• I = Internal Design

• L = Language Reference

• 5 = 5ystem Guide

• U = Utilities, Operator Commands, Program Preparation, Messages and
Codes

• M = Multiple Terminal Manager Internal Design

• A = Indexed Access Method Internal Design

spec;al Characters

$$EDXLIB system name L-228, 5-57
$$EDXVOL system name L-228, 5-57
$A display active programs,
operator command 5-63, U-II

$ATTA5K special task control
block L-61

$AUTO link edit auto call data
set 5-403, U-401

$B blank (clear) screen, operator
command 5-63, U-12

$B5CTRCE trace utility for B5C
lines C-6I

$B5CUTI trace printing utility for
B5C C-62

$B5CUT2 test utility for B5C
lines C-64

$C cancel a program, operator
command 5-63, U-13

$COMPRE5 library compress 5-64,
U-57

$COPY copy data sets 5-64, U-59
$COPYUTI copy data sets with
allocation 5-64, U-64

$CP change terminal's partition
assignment command

overview 1-73, 5-63
syntax U-14

$D dump storage, operator command
5-63, U-15

$DA5DI format disk or diskette
5-64, U-68

$DBUGNUC debug module description
1-77

$DEBUG debugging tool U-82
$D1COMP display composer

command description U-I06
create partitioned data set

member 5-247
invoking U-I05
overview 5-67

$DIINTR display interpreter U-150

$DI5KUTI allocate/delete, list
directory data

$JOBUTIL procedure 5-229
allocate partitioned data set

5-248
command descriptions U-135
overview 5-64

$DI5KUT2 patch, dump, or clear
member

description U-142
overview 5-64
printing I/O error logs 5-275
syntax U-143

$DISKUT3 data management utility
description 5-315
input to 5-316
request block contents 5-317
return codes 5-319, U-444

$DIUTIL display data base utility
5-248, U-150

$DUMP dump saved storage and
registers utility U-163

$E eject printer page, operator
command 5-63, U-16

$EDITl/$EDITlN text editors
command syntax

EDIT U-174
EDIT mode subcommands

U-182
END U-175
LIST U-176
READ U-177
SUBMIT U-179
L·JRITE U-180

control keys U-172
data set requir~ments U-169
line editing commands U-203
overview 5-66, U-169
summary of commands and

subcommands U-171
$EDXASM Event Driven Language

compiler
features supported U-361
internal overview 1-5, 1-211
invoking

with $JOBUTIl U-368

Common Index 459

with $l . U-370
with session manager

, U-369
listing program ($EDXlI5T)

U-370
options U-358
output U-359
overlay program example 1-244
overview 5-71, U-356
programming considerations

U-361
arithmetic expression

operators U-365
ATTNlIST U-365
COpy 5tatement~ U-362
ECB and QCB U-362
EQU U-365
GETEDIT and PUTEDIT U-365
instructions requiring
support modules U-365

IODEF statement placement
U-364

multiple declarations on
DATA/DC U-363

source line continuation
U-361

required data sets U-357
usage example S-397
using the compiler U-356

$EDXATSR supervisor interface
routine 1-48

$EDXDEF hardware configuration
editing to match hardware con­
figuration S-117

overview 1-5, 1-6
storage map 1-7

$EDXL language control data set of
$EDXASM 1-221, U-357

$EDXL1ST compiler listing program
U-370

$EDXNUC supervisor data set
in system generation S-126
overvim<J 1-5
with $LINK utility U-399

$EDXNUC supervisor data sets
U-399

$EXEC language emulator linkage
1-279, 1-313

$EXEC session manager option,
S-216, U-41

$FONT 4978 character image tables
utility 5-68, U-205

$FSEDIT full-screen editor, host
and native

data set requirements U-209
options

BROWSE U-213
EDIT U-214
END U-218
READ U-216
SUBMIT U-217
WRITE U-216

overview 5-66, U-209
primary commands U-218
program function (PF) keys

U-211
scrolling U-210
summary of options and

commands U-212
$HCFUTI Host Communications
Facility utility C-I07

$IAM Indexed Access Method load
module S-155

$IAM task error exit 5-178

460 SC34-0314

$IAMUTI Indexed Access Method
utility 5-148, U-235

$IDEF $EDXASM instruction
definition

description 1-241
instruction format 1-226

$IMAGE define screen image
utility S-68, U-250

usage example S-387
$IMDATA subroutine S-303

usage example S-375
$IMDEFN subroutine S-301

usage example S-375·
$IMOPEN subroutine S-300

usage example S-374
$IMPROT subroutine S-302

usage example S-375
$INDEX subroutine, $EDXASM 1-233
$INITDSK initialize or verify

volume S-64, U-256
$INITIAL automatic initialization
and restart

description 5-129
with session manager 5-209,

U-28
$IOTEST test sensor I/O, list con­
figuration S-67, U-263

$JOBUTIL job stream processor
S-69, U-271

commands U-272
set up procedure U-271
usage example S-408, U-290

$L load program, operator command
internals 1-23
overvi e~<J S-63
syntax U-17

$LEMSG $LINK message data set
U-401

$LINK linkage editor
data set requirements U-400
description U-390
in system generation 1-5
invoking

with $JOBUTIL U-405
with $L U-405
with session manager
U-406

overview S-71
usage example S-402

$LNKCNTL data set S-118
$LOADER 1-19, 1-22

module description 1-78
$LOG I/O error logging utility

description S-270, U-292
overview S-67

$LPARSE subroutine 1-240
$MOVEVOl disk volume dump/restore

5-65, U-294
$P patch storage, operator

command S-63, U-18
$PACK/$UNPACK subroutines S-309
$PDS partitioned data set utility

in a program S-259
overview S-65 /

$PFMAP identify 4978 program
function keys S-68, U-301

$PREFIND prefind data sets and
overlays S-69, U-302

$PRT2780 spooled print utility
C-72

$PRT3780 spooled print utility
C-72

$RJE2780 remote job entry utility
C-73, 5-66

o

r"-'"'" , \
, I

\1\Y'

o

o

o

o

$RJE3780 remote job entry utility
C-73, S-66
$RMU (see Remote Management Util­
ity)

$SMCTL session manager program
S-209, S-212

$SMEND session manager program
S-212

$SMJOBR session manager program
S-212

$SMLOG session manager program
S-212

$SMMAIN session manager program
S-210, S-212, U-28

$SMMLOG, logon menu for session
manager S-212

$SMMPRIM, primary option menu for
session manager S-212, U-27,
U-35

$SMM02, program preparation sec­
ondary option menu S-214, U-37

$SMM03, data management secondary
option menu S-215, U-39

$SMM04, terminal utilities
secondary option menu S-215,
U-41

$SMM05, graphics utilities second­
ary option menu S-216, U-41

$SMM06, execute program utilities
secondary option S-216

$SMM07, job stream processor
utilities secondary option S-216

$SMM08, communications utilities
option S-217, U-43

$SMM09, diagnostic utilities
S-217, U-44

$START supervisor entry point
1-279, 1-313

$STOREMAP example 1-27
$SYSCOM data area 1-12, 1-279,

1-313, S-113
$SYSLOG system logging device

overview S-110
$SYSLOGA alternate system logging
device

overview S-111
$SYSPRTR system printer

overview S-111
$SIASM Series/1 macro assembler

description U-372
internals 1-5, 1-253
overview S-9
storage map,> general 1-256

$T set date/time, operator
command S-63, U-19

$TAPEUTI tape management utility
U-311

$TCBCCB (ATTACH) L-59
$TERMUTI change terminal
parameters S-68, U-334

$TERMUT2
process 4978 image or control
store S-68, U-339

restore 4974 image U-339
$TERMUT3 send message to a
terminal S-68, U-344

$TRAP class interrupt trap
utility S-67, U-348

$UNPACK/$PACK subroutines S-309
$UPDATE object program converter

description U-408
in system generation 1-5
overview S-69
usage example S-407

$UPDATEH object program converter
(host) S-69, U-418

$VARYOFF set disk, diskette, or
tape offline S-63, U-20

$VARYON set disk, diskette, or
tape online S-63, U-22

with standard labeled tape
S-237

$W display date/time, operator
command S-63, U-25

#1 index register 1 L-6
#2 index register 2 L-6

A after, $FSEDIT line command
U-226

A-conversion L-153
A/I (see analog input)
A/O (see analog output)
abort task level (SVC abend) 1-49
ACCA terminal C-7, L-295
Access Method, Indexed

(see Indexed Access Method)
ACTION, Multiple Terminal Manager

CALL
coding description C-130,

L-360
internals M-9
overview C-117, L-29

activate

AD

add

error logging, $LOG utility
U-293

realtime data member, RT
$OICOMP subcommand U-124

stopped task, GO $OEBUG
command U-93

task supervisor execution
state 1-43

TRAP function of storage dump,
$TRAP utility U-348

add member, $DICOMP command
U-106

advance, $DICOMP subcommand
U-l11

advance X,Y (POS) S-255
assign define key, $TERMUT2

command U-342

add member, AD $OICOMP com­
mand U-106

null data set on tape volume,
TA $TAPEUTI command U-330

options to the session
manager S-224

support for new I/O terminals
1-117

calling conventions 1-118
code translation tables

1-118
linkage conventions 1-119
terminal instruction
modification 1-119

ADD data manipulation instruction
coding description L-52
overview L-19
precision table l-53

address relocation translator
1-71, S-42

addressing indexing feature l-6

Common Index 461

ADDV data manipulation
instruction

coding description L-54
index register use L-55
overvie~..s L-19
precision table l-55

advance, AD $DICOMP subcommand
U-111 .

advance and prompting input, ter­
minal I/O L-46

AI (see analog input)
AL

allocate
command

allocate
command

allocate
command

data member, $DIUTIL
U-151

data set, $DI5KUT1
U-137

data set, $JOBUTIl
U-273

allocate member, $DICOMP
command U-107

allocate
data set

$JOBUTIl command U-273
AL $DI5KUT1 command U-137
ALLOCATE function C-214
tape, TA $TAPEUTl command

U-333
member

$DICOMP command U-107
$DIUTIl command U-151
$PD5 5-261

ALLOCATE function C-216, 1-166,
1-174

allowable precision table L-20
alter member AL $DICOMP command

U-107
alter terminal configuration,

$TERMUT1 U-334
alternate system logging device

($5Y5LOGA) 5-47
alternate tracks 5-58, U-73, U-78
ALTIAM Indexed Access Method

subroutine S-167
analog input S-49

AI $IOTEST command U-268
control block 1-129
IODEF statement L-187
overv i et..s S-49
SBIO instruction L-263
SENSORIO configuration

statement L-39
analog output

AO $IOTEST command U-264
control block 1-129
description S-49
IODEF statement L-186
SBIO instruction L-264
SENSORIO configuration

statement L-39, S-84
AND data manipulation instruction

coding description L-57
overview L-19

AO (see analog output)
application program

automatic initialization and
restart 5-129

indexed access S-149
introduction L-1
manager C-119
preparation U-351
size estimating 5-344
structure L-8
support S-20

ASCII terminals
codes S-110

462 SC34-0314

configuring S-96
devices supported C-6, 5-14
graphics L-26, 5-46
TERMINAL statement examples
5-106

ASMERROR, $EDXASM instruction
1-230

assembler
(see $EDXA5M)
(see $SlASM)
(see host assembler)

assign
alternate for defective 4963

sector, $DASDI utility U-78
DEFINE key in 4978 control
store, AD $TERMUT2 command
U-341

asynchronous communications con­
trol adapter (see ACCA)

AT set breakpoints and trace
ranges, $DEBUG command U-90

ATTACH task control instruction
coding description L-59
internals 1-44
overview L-42, 5-34

attention handling, terminal I/O
1-108, L-47, S-63

attention keys, terminal I/O L-47
attention list (see ATTNLIST)
ATTN key (see attention handling)
ATTNLIST task control statement

$ATTA5K L-61
coding description L-61
overview L-42, 5-30

attribute character, 3101 C-122
autocall

option, $LINK U-401
AUTOCALL statement requirement

(WXTRtn L-323
automatic

application initialization
5-13, S-129

application restart S-13,
5-129

B before, $FSEDIT line command
U-226

backup disk or disk volume on
tape, 5T $TAPEUTI command U-330

backup dump restore utility,
$MOVEVOL U-294

base records, indexed data set
definition 5-149
loading 5-160

basic exchange
diskette data set copy utili­
ty, $COPY U-S9

basic supervisor and emulator (see
supervisor/emulator)

batch job processing (see
$JOBUTIL)

BEEP, Multiple Terminal Manager
CALL

coding description C-137,
L-361

internals M-9
overview C-117, L-29

binary synchronous communications
automatic retry 5-17
BSCAM/B5CAMU module

()

o

o
descriptions 1-80

BSCLINE configuration state­
ment C-42~ S-76

control flow (BSCAM) 1-147
device data block (BSCDDB)

I-133
features C-35~ S-16
Host Communications Facility
protocol 1-156

instruction formats C-38,
1-144

multipoint operation C-36,
S-16

overview S-16
point-to-point lines S-16
Remote Management Utility

requirements C-208
sample programs C-59
special labels for,
description 1-149

system internal design 1-133
test utility, $BSCUT2 C-64
trace printing routine,

$BSCUTI C-62
trace routine, $BSCTRCE C-61

blank screen, $B operator command
S-63, U-12

BLANK TERMCTRL function L-288
BLDTXT subroutine, $EDXASM 1-237
BLINK TERMCTRL function L-288
BLP (see bypass label processing)
BOT (beginning-of-tape) L-40
BOTTOM reposition line pointer,

$EDIT1/N editor subcommand U-183
boundary requirement, full-word

DO L-34
IF L-34
PROGRAM L-225

BP list breakpoints and trace
ranges, $DEBUG command U-92

breakpoints and trace setting, AT
$DEBUG command U-90

BROWSE display data set, $FSEDIT
option U-213

BSC (see binary synchronous
communications)

BSCAM (see binary synchronous com­
munications)

BSCCLOSE BSC statement 1-144,
1-148

coding description C-38
BSCDDB binary synchronous device
data block

description of 1-133
equates 1-291

BSCEQU L-11
BSCIA immediate action routine

(BSC) 1-148
BSCIOCB BSC statement C-39, 1-144
BSCl1NE configuration statement

C-42, S-76
BSCOPEN BSC statement C-44,

1-145, 1-148
BSCREAD BSC statement C-45,
1-145~ I-148

BSCWR1TE BSC statement C-49,
1-146, 1-148

BSF (backward space file) L-75
BSR (backward space record) L-75
BTE, buffer table entry A-20
BU build data member, $DIUTIL

command U-153
buffer

table entry
definition A-20

description A-31
terminal I/O buffer

management 1-109
BUFFER data definition statement

coding description L-65
overvieloJ L-17

build data member, BU $DIUTIL
command U-153

building an indexed data set
U-247

burst output with electronic dis­
play screens L-46

bypass label processing U-311
description S-244

C
change a key definition,

$TERMUT2 command U-342
copy line, $FSEDIT line

command U-226
CA cancel

assembly, $EDXASM attention
request U-358

copy, $COPYUT1 attention
request U-64

list option, $FSEDIT attention
request U-217

listing~ $EDXlIST attention
request U-358

CAD copy all data members,
$COPYUT1 command U-64

CALL
copy all members, $COPYUT1

command U-64
program control instruction

coding description L-68
Indexed Access Method
syntax S-146

Multiple Terminal Manager
syntax l-359

overview l-32, S-31
program L-68
subroutine l-68

callable routines L-30
CAlLFORT program control
instruction

coding description l-70
overview l-32

cancel
$C operator command U-13
assembly, CA $EDXASM attention

request U-358
copy, CA $COPYUT1 attention

request U-64
dump, CA $DUMP command U-165
list option, CA $FSEDIT
attention request U-217

listing, CA $EDIT/N attention
request U-172

CAP copy all programs, $COPYUT1
command U-64

CC copy block, $FSEDIT line
command U-226

CCB
equate table 1-292
internals 1-105, 1-119
interprocessor communications

C-30
use in terminal I/O support

1-113

Common Index 463

CCBEQU l-11
CD

clear data set, $DISKUT2 com­
mand U-144

copy data set, $COPY command
U-61

copy data set, $TAPEUT1
command U-313

CDATA, Multiple Terminal Manager
CALL

coding description C-139,
L-362

internals M-9
overview L-29

CDRRM equates C-292
CG copy all members (generic)

$COPYUT1 command U-64
CH

change hardcopy device,
SBSCUT2 command C-70

change host library, SUPDATEH
command U-420

chain, ECB/QCB/TCB I-55
CHAIN supervisor service routine

I-54
CHAIND supervisor service routine

I-54
CHAINE supervisor service routine

I-54
chaining L-27
CHAINP supervisor service routine

I-54
change

address assignment of termi­
nal, RA STERMUTI command
U-336

base address, QUALIFY SDEBUG
command U-101

character string, CHANGE
$EDITI/N editor subcommand
U-184

character string, change
$FSEDIT primary command
U-219

execution sequence, GOTO SDE­
BUG command U-94

graphics or report display
profile, $DICOMP utility
U-105

hardcopy device, CH SBSCUT2
command C-70

hardcopy device, RH STERMUT1
command U-338

host library, CH SUPDATEH
command U-420

key definition in 4978 control
store, C $TERMUT2 U-342

name of logical device, RE
$TERMUT1 command U-337

output volume, CV $UPDATE
command U-409

page formatting parameters of
a terminal, CT $TERMUT1
U-335

partition assignment, $CP
operator command U-14

realtime data member name RT
($PDS) S-258

tape label support U-322
volume

CV SBSCUT1 command C-62
CV SCOPYUT1 command U-64
CV $D1SKUT1 command U-137
CV $DISKUT2 command U-143
CV $UPDATEH command U-418

464 SC34-0314

character constants l-89
character image table U-205
CHGPAN, Multiple Terminal Manager

CALL
coding description C-135,

l-364
internals M-9
overview C-124, L-29

Cl clear work data set, SFSEDIT
primary command U-221

class interrupt vector table
1-10, 1-277

class interrupts, intercepting,
STRAP utility U-348

clear
data set, CD $DISKUT2 command

U-144
screen, SB operator command

U-12
CLOSE Host Communications Facili-
ty, TP operand C-90

ClSRU (close tape data set) l-75
cluster, indexed data set S-200
CM copy member

$COPYUT1 command U-64
$DIUTll command U-155

CMDEQU L-12
CMDSETUP 1-13, 1-67
CNG copy all members

(non-generic),$COPYUTl command
U-64

CO command, $RJE2780/$RJE3780
C-76

COBOL
execution requirements S-23
link editing S-71
overview S-7
program preparation

requirements S-23
use with Multiple Terminal

Manager C-193
code translation

new support tables 1-111
terminal I/O layer 2 1-109

code words, task l-8
COlS display columns, $FSEDIT line

command U-228
command area, $EDXASM 1-214
command descriptions U-235
COMMAND send to host,

$RJE2780/$RJE3780 C-75
command table 1-68, I-282, 1-301
common data area (see $SYSCOM)
common emulator setup routine

command table 1-13, 1-282,
1-301

operating conventions 1-67
communication error function

1-166
communications utilities

SBSCTRCE C-61
SBSCUT1 C-62
$BSCUT2 C-64
SHFCUT1 C-107
SPRT2780 C-72
SPRT3780 C-72
$RJE2780 C-73
SRJE3780 C-73
SR~1U C-282

communications utilities (session
manager) 5-217, U-42

communications vector table 1-11,
1-278, 1-313

compiler (see $EDXA5M)
o

o

o

completion codes (see return
codes)

$EDXA5M U-436
$IAMUTI U-437
$JOBUTIL U-439
$LINK U-440
$UPDATE U-443

compress
data base, CP $DIUTIL command

U-154
library, $COMPRE5 utility

U-57
compressed byte string 5-309
CONCAT graphics instruction

coding description L-72
overview l-26

concatenating indexed data sets
5-167

concurrent access L-27
concurrent execution L-42
configuration statements 5-75
configure terminal CT $TERMUT1

command U-335
connecting an indexed data set

5-159
continuation, source program line,

$EDXA5M U-361
control, device instruction level

L-24
control block (see D5CB)
control block and parameter
tables

BSCEQU 1-133, 1-291, L-11
CCBEQU (see also CCB) L-11
CMDEQU (see also emulator

command table) L-12
DDOEQU 1-92, 1-308, l-12
DSCBEQU (see also DSCB) L-12
ERRORDEF L-12
FCBEQU A-20, L-12
IAMEQU L-12
PROGEQU 1-312, L-13
referencing 1-289
TCBEQU (see also TCB) L-13

control block module (ASMOBJ)
description 1-76

CONTROL IDCB command L-175
control keys for text editors

U-172
control records, $LINK U-396
control statements, program

listing L-28
task L-42
terminal I/O forms control

L-45
CONTROL tape instruction L-74
conversion

algorithm for graphics 1-201
alphameric data L-152
definition
EBFLCVT module description

1-30
floating point/binary 1-205
numeric data L-148
program modules by $UPDATE/H

U-418
terminal I/O binary/EBCDIC

1-110
CONVTB data formatting

instruction
coding description L-79
internals 1-207
overview L-18

CONVTD data formatting
instruction

copy

coding description L-82
internals 1-207
overview L-18

block of text, CC $FSEDIT line
command U-226

data members, all, CAD
$COPYUT1 command U-64

data set, CD $COPY command
U-61

data sets with allocation,
$COPYUT1 utility U-64

line of text, C $FSEDIT line
command U-226

member
CM $COPYUT1 command U-64
CM $DIUTIL command U-155

members
all, CALL $COPYUT1 com­

mand U-64
generic, CG $COPYUT1

command U-64
non-generic, CNG $COPYUTI

command U-64
programs, all, CAP $COPYUTI

command U-64
text, $EDITI/N editor

subcommand U-186
volume, CV $COPY command U-62

copy code library, instruction
parsing ($EDXA5M) 1-222

COpy instruction
coding description L-86
overv i eL.J L -33

Count record C-256
CP compress data base, $DIUTIL

command U-154
CR invoke $DISKUTl, $IAMUTI

command U-236
create

character image tables, $FONT
U-205

source data set, $FSEDIT
U-214

supervisor for another
5eries/1 S-132

unique labels, $SY5NDX
($EDXASM) 1-242

create indexed data set 5-156
cross partition instructions I-71
cross partition services 5-286
CSECT list, supervisor

Version 1.1 S-347
Version 2 5-357

C5ECT program module sectioning
statement

CT

CV

coding description L-87
overview L-33

change tape drive attributes,
$TAPEUTI command U-315

configure terminal, $TERMUTI
command U-335

change output volume U-409
$UPDATE command U-409
$UPDATEH command U-418

change volume
$B5CUTl command C-62
$COPYUT1 command U-64
$DI5KUTl command U-137
$DI5KUT2 command U-143

copy volume, $COPY command
U-59

Common Index 465

CYCLE
coding description C-132,

L-365
internals M-9
overview C-116, L-29

cylinder 5-60
cylinder track sector (CT5) U-135

D delete line, $F5EDIT line com-
mand U-228

D/I (see digital input)
D/O (see digital output)
data

conversion (see conversion)
conversion specifications (see
also conversion) L-146

definition statements L-17
files for $51A5M 1-254
floating-point arithmetic

instructions l-20
formatting functions L-18
formatting instructions L-18
integer and logical
instructions L-19

length of transmitted, host
communications 1-159

management 5-45
management system, Indexed

Access Method L-27
manipulation instructions

L-19
record contents, text editor

1-325
representation L-20

floating-point L-20
integer L-19
terminal input L-45
terminal output L-45

transfer initialization,
terminal I/O support 1-112

transfer rates, Host
Communications Facility C-84

transfer ready, (DTR) B5COPEN
1-148

Data Collection Interactive 5-11
DATA data definition statement

coding description l-88
overview L-17

data management utilities
$COMPRE5 5-64, U-57
$COPY 5-64, U-59
$COPYUTI 5-64, U-64
$DA5DI 5-64, U-68
$DI5KUT1 5-64, U-135
$DI5KUT2 5-64, U-142
$DI5KUT3 5-315
$IAMUT1 5-148, U-235
$INITD5K 5-64, U-256
$MOVEVOl 5-65, U-294
$PD5 5-247
$TAPEUT1 U-3l1
session manager 5-215, U-38

data manipulation, vector L-19
data manipulation instructions

L-19
Data record C-257
data representation, terminal I/O

L-45
data set

allocation/deletion

466 SC34-031{.

$DI5KUT1 U-137
$DI5KUT3 5-315
$JOBUTIL U-273
$PD5 5-248
session manager U-29

characteristics, HCF C-83
format

$F5EDIT U-210
$PD5 5-249
$PRT2780 C-72
$PRT3780 C-72

naming conventions C-82, 5-56
transfer

RECEIVE function C-243
5END function C-247

utilities (see data management
utilities)

data set naming conventions, Host
Communications Facility C-82

data-set-shut-down condition
5-179

date/time
display, $W operator command

U-25
set, $T operator command U-19

DC data definition statement
coding description l-88
overvie~..J L-17

DCB EXIO control statement
coding description L-91
overview L-24

DCE directory control entry
format 1-88

DCI (Data Collection Interactive)
5-11

DD block delete, $F5EDIT line
command U-228

DDB disk data block
description 1-92
equate table 1-308

DDBEQU l-12
DE delete member

$DI5KUTl command U-137
$DIUTIL command U-156
delete data set, $JOBUTIL

command U-274
deadlocks C-238, 5-180
debug

$EDXA5M overlay programs
1-248

aids (see also diagnostic
aids) 5-18

facility, $DEBUG utility U-82
define

horizontal tabs, HTAB $IMAGE
command U-252

image dimensions, DIM5 $IMAGE
command U-251

indexed data set, DF $IAMUT1
command U-237

null representation, NULL
$IMAGE command U-253

vertical tabs, VTAB $IMAGE
command U-254

DEFINEQ queue processing
statement

coding description l-94
overview L-37

definition statements, data L-17
delete

data set
$JOBUTIL command U-274
DELETE function C-216
tape data set, TA $TAPEUTI

command U-333

()

c

o

o

elements, IN $DICOMP command
U-107

member

text

$PDS S-261 .
DE $DISKUT1 command U-137
DE $DIUTIL command U-156

$EDIT1(N) editor subcom­
mand U-188

line, D $FSEDIT line
command U-228

with $PREF1ND U-305
DELETE function C-216, 1-166,

1-174
DELETE instruction

coding description L-329
overview L-27, S-147
return codes L-330

DEQ task control instruction
coding description L-95
internals I-59
overview L-42, S-33
supervisor function 1-46

DEQBSC dequeue BSC DDB routine
1-149

DEQT terminal I/O instruction
coding description L-97
overview L-44, S-47

DETACH task control instruction
coding description L~98
internals 1-45
overview L-42, S-30

detached, task supervisor
execution state 1-43

device
busy (EXOPEN) L-129
data block description, EXIO

1-123
instruction level control
l-24

interrupt handling, EXIO
I-125

test utility, $IOTEST U-263
vector table 1-11, 1-278

DF define indexed file, $IAMUT1
command U-237

DI (see digital input)
diagnostic

aids S-265
summarized S-18

utilities
$DEBUG U-82
$DUMP U-163
$IOTEST U-263
$LOG U-292
$TRAP U-348
with session manager

S-217, U-38
digital input

$IOTEST command U-266
digital I/O control block

1-129
direct output,$DICOMP subcom­

mand U-112
direct output to another
device ($PDS) S-255

display parameters, $IAMUT1
comrnand U-239

external sync, XI $IOTEST
command U-266

IODEF statement L-186
overview S-48
SBIO instruction l-265
SENSORIO configuration

statement 5-84

digital output
digital I/O control block

1-129
DO $IOTEST command U-265
external sync, XO $IOTEST

command U-266
IODEF statement L-186
overview 5-48
SBIO instruction L-267
SENSORIO configuration

statement L-84
DIMS define image dimensions,

$IMAGE command U-251
direct access common I/O mod~le,

DISKIO, description 1-77
direct access storage device
organization 5-52

direct output, DI $DICOMP
subcommand U-112

directory
control entry (DCE) 1-88
entries 5-249
member entry (DME) 1-89

disaster recovery from tape, RT
$TAPEUTI command U-326

DISCONN Indexed Access Method
CALL

coding description L-332
overview L-27, 5-148
return codes L-333

DISCONNECT Multiple Terminal
Manager utility C-119, C-159

disconnecting an indexed data set
5-159

DISK configuration statement S-78
disk/diskette

capacity S-58
data block (DDB) 1-92
fixed-head S-15, S-61
I/O task 1-95
IPL S-16, 5-61
primary volume S-60
resident loading code 1-19
secondary volume 5-60
symbolic addressing l-lO
utilities

$COMPRES S-64, U-57
$COPY 5-64, U-59
$COPYUTI S-64, U-64
$DASDI 5-64, U-68
$DI5KUTl 5-64, U-135
$DI5KUT2 5-64, U-142
$DISKUT3 5-315
$IAMUT1 5-148, U-235
$IHITD5K 5-64, U-256
$MOVEVOL 5-65, U-294
$PD5 5-247

utility function table U-49
volume 5-16, 5-52

disk I/O instructions L-22
DI5KIO direct access common I/O

module description 1-77
display (see also list)

character image tables, DISP
$FONT command U-205

contents of storage or
registers, LIST $DEDUG com­
mand U-95

control member ($PDS) 5-250
control member format ($PDS)

5-252
initial data values for image
5-303

processor composer, $DICOMP
U-105

Common Index 467

processor interpreter,
$OIINTR U-150

processor uti·lity, $OIUTIl
U-150

processor utility, general
description U-I05

profile elements ($POS) S-252
protected and null fields of

an image S-302
report line items ($POS)

S-255
status of all tasks, WHERE

$OEBUG command U-102
storage, $0 operator command
S-63, U-15

time and data, TO ($POS)
S-258

time and date, $W operator
command S-63, U-25

utility program set ($POS)
S-248

variable, VA($POS) S-254
4978 program function keys,

$PFMAP utility U-301
DISPLAY TERMCTRl function l-288
DIVIDE data manipulation
instruction

coding description l-99
overview l-19
precision table L-I00

DME directory member entry
format 1-89

DO
updated by SETEOD S-324

digital output (see digital
output)

program sequencing
instruction

coding description l-lOl
overview L-34

double-precision L-19
floating-point arithmetic

L-21
integer and logical L-19

DOWN move line poiner, $EDITI/N
editor subcommand U-189

DP
dump to printer

$D1SKUT2 command U-144
$TAPEUT1 command U-317

print trace file, $BSCUT1
command C-62

DR draw symbol, $OICOM?
subcommand U-112

DR draw symbol ($PDS) S-254
draw

line, L1 $OICOMP subcommand
U-120

line relative lR ($PDS) S-257
symbol, DR $D1COMP subcommand

U-112
DS data set identifier, $JOBUT1l

command U-275
DSCB data set control block
statement

coding description l-105
equate table, DSCBEQU 1-311
for tape, internals 1-99
internals 1-92
overview l-22

DSCBEQU L-12
DSECT (see control block and

parameter equate tables) l-11
DSOPEN subroutine

description S-322

468 SC34-0314

OSR data set ready in BSCOPEN
1-148

DTR data transfer ready in
BSCOPEN I-148

DU

dump

dump on terminal, $DISKUT2
command U-144

dump trace file on terminal,
$BSCUTI command C-62

restore volume utility
$MOVEVOl U-294

storage partition, DUMP
function C-218

to printer
$DUMP utility U-163
DP $D1SKUT2 command U-143
DP $TAPEUT1 command U-317
PR $DICOMP command U-I08

to terminal
$DUMP utility U-163
DP $TAPEUT1 command U-317
DU $OISKUT2 command U-143
PR $D1COMP command U-108

trace file on printer, DP
$BSCUT1 command C-62

trace file on terminal, DU
$BSCUT1 command C-62

DUMP function C-218, 1-166, 1-175
D4969, tape device handler module
description 1-82

E-conversion (Ew.d) L-150
EBFlCVT, EBDIC to floating-point
conversion 1-205

module description 1-80
EC control echo mode, $1AMUTI

command U-240
ECB task control statement

coding description L-107
internals I-55

EDIT

overview L-42, S-30
with SBIOCB 1-128

begin editing source data,
$EDITI/N command U-174

create or change data set,
$FSEDIT option U-214

enter edit mode, $FONT
command U-205

enter edit mode, $IMAGE
command U-251

edit data set subroutine examples,
text editor 1-326

editor subcommands, $EDITI/N
U-182

EDL (see Event Driven Language)
compiler ($EDXASM) U-356
instruction format 1-67
interpreter, EDXALU, module
description 1-77

operation codes I-67
EDXALU Event Driven Language
interpreter description 1-5,
I-77

EDXFLOAT floating-point operations
module description 1-79

EDXIN1T supervisor initialization
control module 1-15

description 1-81

o

/'1'" ",
1\ '

.",-,

o

o

o

EDXLIST host listing formatter
U-383

EDXSTART supervisor initialization
task module description 1-81

EDXSVCX/EDXSVCXU task supervisor
addr. trans. support desc 1-5,
1-76

EDXSYS system data tables,
description 1-75

EDXTIMER 7840 timer feature card
module description 1-80

EDXTIMR2 4952 timer module
description 1-80

EDXTIO terminal I/O
EDXTIO/EDXT10U module
description 1-78

internals 1-105
EJECT listing control statement

coding description L-l09
overview L-28

eject printer page
$E operator command U-16

ELSE program sequencing
instruction

coding description L-110,
l-178

overview l-34
emulator (see

supervisor/emulator)
emulator command table 1-13,

1-282, 1-301
emulator functional flow 1-69
emulator setup routine I-67

command table 1-13, 1-282,
1-301

EN end program, $IAMUT1 command
U-235

END
$lINK control record U-396
option selection, $EDXASM

command U-358
option selection, $EDXLIST

command U-371
option selection, $S1ASM

U-378
primary command input, $FSE01T

primary command U-221
task control statement

coding description L-111
overv i e~" l-42

end display, EP $D1COMP
subcommand U-118

end-of-file, indicating with
SETEOO S-324

ENDATTN task control instruction
coding description L-112
overview L-42, S-30

ENDDO program sequencing
instruction

coding description L-I03,
L-113

overview l-34
ENOIF program sequencing
instruction

coding description L-114,
L-178

overview l-34
ENDPROG task control statement

coding description L-115
overview l-42, S-30

ENDSEQ Indexed Access Method CALL
coding description L-334
overview L-27, S-147
return codes L-335

ENDSPOOl switch spool to print,
$RJE2780/$RJE3780 C-75

ENDTASK task control instruction
coding description L-116
overview L-42, S-30

ENQ task control instruction
coding description L-117
internals 1-60
overview L-42, S-33
supervisor function 1-45

ENQT terminal I/O instruction
S-293

coding description l-ll9
overview L-44, S-47

enqueue, task supervisor function
(see ENQ)

entering and editing source state­
ments S-66, U-192

entry points, supervisor
Version 1.1 S-347
Version 2 S-357

ENTRY program module sectioning
statement

coding description l-121
overvi e~oJ L-33

EOF (end-of-file) L-74
EOJ end of job, $JOBUTIL command

U-276
EOP end of nested procedure,

$JOBUTIl command U-276
EOR data manipulation instruction

coding description L-122
overvie~oJ L-19

EDT (end-of-tape) L-41
EP end display, $DICOMP

subcommand U-118
EQ (equal) L-34
EQU data definition instruction

coding description L-124
overview L-17

equate tables
$EDXASM compiler common area

1-214
BSCDDS, SSC line control

block 1-291
CCS, terminal control block

1-292
DDB, disk/diskette control

block 1-308
DDS for sensor I/O 1-309
DSCB, data set control block

1-311
emulator command table 1-282,

1-301
Indexed Access Method A-19
parameter and control block

l-11
program header 1-312

referencing 1-30
supervisor 1-279, 1-313
TCB, task control block 1-314

ERASE terminal I/O instruction
coding description L-126
overview L-44, S-47

error codes (see return codes)
error handling

I/O error logging S-270
Indexed Access Method error
exit S-178

Remote Management Utility
C-277

software trace S-265
task error exit S-33, S-268
terminal I/O L-44

ERRORDEF l-12

Common Index 469

ERRORS list error option
$EDXASM command U-358
$EDXLI5T command U-370

estimating storage (see storage
estimating)

event control block (see ECB)
Event Driven Language (see EDL)
EX exercise tape, $TAPEUT1 com-
mand U-319

EXEC function C-220, 1-166, 1-178
EXEC load and execute program,

$JOBUTIL command U-277
execute program

EXEC function C-220
PASSTHRU function C-225
SHUTDOWN function C-251
utilities (session manager)

5-216
executing, task supervisor exe­
cution state 1-43

exercise tape, EX $TAPEUT1
command U-319

EXFLIH command start 1-125
EXIO control instruction

coding description L-128
EXIODDB device data block
description I-123

internals 1-125
overview L-24, S-51

EXIOCLEN, EXIO termination module
1-126

EXIODEV configuration statement
5-82

EXIOIH1T, system initialization
I-125

EXOPEH EXIO control instruction
coding description L-129
internals 1-125
interrupt codes L-132
overview L-24
return codes L-131

external sync 01/00, XI/XO $IOTEST
command U-266

EXTRACT, Indexed Access Method
CALL

coding description L-336
overview L-26, S-148
return codes L-337

EXTRH program module sectioning
statement

coding description L-134
overview L-33

F-conversion (Fw.d) L-149
FAOO data manipulation
instruction

coding description L-135
overview L-19
return codes L-136

FAN, Multiple Terminal Manager
CALL

coding description C-139,
L-366

overview L-31
FCA file control area, Multiple
Terminal Manager C-143

FCB file control block for Indexed
Access Method

definition A-9, A-20
description A-ll, A-21, 5-194

470 5C34-0314

location A-20
map provided by FCBEQU 5-155

FCBEQU Indexed Access Method copy
code module L-12, 5-155

FDIVO data manipulation
instruction

coding,description L-137
overvie~", L-19
return codes L-138

FETCH Host Communications
Facility, TP operand C-92

fetch record ($POS) 5-261
fetch status, FE $HCFUTI command

C-I10
file L-75

backward space file (BSF)
L-75

control area (see FCA)
control block (see FCB)
definition L-40
forward space file (F5F) L-75
manager, Multiple Terminal

Manager ~1-8
tape control commands L-75

FILEIO, Multiple Terminal Manager
CALL

FIND

coding description C-14l,
L-367

internals M-9
overview C-118, L-29

editor commands
character string, $EOIT1/N

subcommand U-191
character string, $F5ED1T

primary command U-222
program sequencing
instruction

coding description L-139
overview L-34

FINDHOT program sequencing
instruction

coding description L-141
overview L-34

FIRSTQ queue processing
instruction

coding description L-143
overview L-37, 5-32

fixed-head devices 5-61
fixed storage area, contents 1-9
floating-point

arithmetic instruction
equates 1-283, 1-303

arithmetic instructions L-20
binary conversions 1-205
command entries module,

NOFLOAT, description 1-79
operat ions modu Ie,' EOXFL OAT,
description 1-79

return codes 'L-21
FMULT data manipulation
instruction

coding description L-144
overview L-19
return codes L-145

format
illustrated L-5
instruction (general) L-3

FORMAT data, formatting statement
'A' conversion L-153
'E' conversion L-150
'F' conversion L-149
'H' conversion L-152
'I' conversion L-148
coding description L-146

0, .. J

;ff'~,

I
',~#

o

o

o

conversion of alphameric data
L-153

conversion of numeric data
L-148

data conversion spectfica-
tions L-146

module names L-18
multiple field format L-155
overview L-18
repetitive specification

L-155
using multipliers L-155
X-type format L-154

formatted screen images S-300,
U-250

formatting instructions, data
L-18

forms control
burst output with electronic
display screens L-46

forms interpretation L-46
output line buffering L-46
parameters, terminal I/O L-44
terminal I/O L-45

FORTRAN IV
execution requirements S-24
link editing S-71
overv i e10J S-6
program preparation

requirements S-24
use with Multiple Terminal

Manager C-197
FPCONV data manipulation
instruction

coding description L-157
overview L-19

free pool in Indexed Access
Method L-27

free space
definition S-148
estimating S-168
in Indexed Access Method L-27

free space entry 1-90
FREEMAIN storage allocation
function 1-25

FSE free space entry 1-90
FSR (forward space record) L-75
FSUB data manipulation
instruction

coding description L-159
index registers L~160
overview L-19
return codes L-160

FTAB, Multiple Terminal Manager
CALL

coding description C-138,
L-372

overview C-124, L-31
return codes L-373

full-screen static configuration
S-293

full-screen text editor host and
native, $FSEDIT U-209

full-word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

function process overlays 1-162
function process subroutines

1-162, 1-170
new subroutines 1-187

function table I-164, 1-167

GE (greater than or equal) L-34
general instruction format L-3
generating the supervisor S-115
GENxxxx macro 1-120
GET Indexed Access Method CALL

coding description l-338
overview L-27, S-147
return codes L-340

GETED1T data formatting
instruction

coding description l-162
o v e r v i e~.J L -18

GETMAIN storage allocation
instruction 1-25

GETPAR3 1-69
GETSEQ Indexed Access Method CAll

coding description L-342
overview L-27, S-147
return codes l-343

GETSTORE TERMCTRl function l-288
GETTIME timing instruction

coding description L-167
overview L-50, S-32

GETVAL subroutine, $EDXASM 1-234
GETVALUE terminal I/O instruction

coding description L-169
overview l-44, S-47

GIN graphics instruction
coding description l-172
overview l-26

global area, $EDXASM 1-224
GLOBAL ATTNlIST L-61
GO activate stopped task, $DEBUG

command U-93
GOTO

change execution sequence,
$DEDUG command U-94

coding sequencing instruction
coding description L-173
overview l-34

graphics
conversion algorithm 1-201
functions overview l-26
hardware considerations C-6,

C-300
instructions l-26

CONCAT l-72
GIN l-172
PlOTGIN L-210
SCREEN L-270
XYPLOT L-324
YTPLOT L-325

requirements L-26
terminals S-46
utilities

$DICOMP U-I05
$D1INTR U-127
$DIUTIL U-150
session manager S-216,

U-40
summarized S-64, U-5

GT (greater than) L-34

Common Index 471

H-conversion L-152
hardcopy function for terminals

PF6 1-114, U-7
hardware levels 5-30
HCF (see Host Communications
Facility)

HDRI tape label 5-239
header labels, tape 5-235
header record

Remote Management Utility
C-209

header record format, text editor
1-323

HELP list debug commands, $DEBUG
command U-94

higher-level index block 5-197
horizontal tabs, defining with

$H1AGE U-252
host assembler U-382
Host Communications Facility

C-Bl, 1-153
data set nami~g conventions

C-82
Program Preparation

5ystem/370 1-153, U-382
TPCOM module description 1-81
utility program, $HCUT1 C-107

host program, Remote Management
Utility C-205

host system considerations C-83
H05TCOMM configuration statement

5-83
HX display hex words, $DICOMP

subcommand U-118

I
initialization, $INITD5K com­
mand U-257

insert line, $F5EDIT line
command U-229

I-conversion (1w) L-148
I/O device instruction level L-24
I/O error logging

data set list utility,
$D15KUT2 U-142

device table 5-276
invoking 5-273, U-292
log control record 5-276
log data set U-292
LOG macro

equates 5-278
syntax 5-272

printing the errors 5-275
recording the errors 5-270
tape log entries 5-245
utility, $LOG U-292

I/O functions
disk/diskette 1-95, L-22

summarized 5-46
EXIO control 1-123, L-24

summarized 5-51
H05TCOMM configuration

statement L-39, 5-83
overview 5-45
sensor 1-127

summarized 5-51

472 5C34-0314

tape L-40, L-75
terminal 5-46
timers L-50, 5-32

I/O instructions
disk L-22
diskette L-22
tape L-40

IACB indexed access control block
built by connecting data set

5-159
definition A-20
description A-35
location A-14

lAM Indexed Access Method link
module 5-155

IAMEQU Indexed Access Method copy
code module L-12, 5-155

IDCB EXIO control statement
coding description L-175
overview L-24

IDCHECK function C-223, 1-166,
1-177

identification, verify
host system C-223
IDCHECK function C-223
remote system C-223

IF program sequence instruction
coding description L-177
overview L-34

II insert block, $F5EDIT line
command U-231

lIB interrupt information byte,
Multiple Terminal Manager C-128

1M insert member
$DICOMP subcommand U-118
$PD5 5-257

image dimensions, define, DIMS
$IMAGE command U-251

image store U-205
immediate action routines 1-46

binary synchronous access
'method 1-149
specifying maximum number
5-88

task supervisor 1-48
immediate data L-4
IN

initialize data base, $DIUTIL
command U-157

insert or delete elements,
$DICOMP command U-107

INCLUDE $LINK control record
U-398

INCLUDE statement requirement
(EXTRN) L-134

index block A-20, A-33
overview 5-151

index entry A-12
index record contents, text
editor 1-323

index registers
floating-point operations
using L-21

integer operations using L-19
software introduction L-6

indexed access control block (see
lACB/lCB)

Indexed Access Method L-26, L-327
$IAM load module 5-155
$IAMUT1 utility U-235

overview 5-148
parameters 5-187
used in data set

reorganization 5-166
application program

/.c~~' "\

l,._/

01
: . ",,'

o

o

preparation
$JOBUTIl procedure 5-158
link edit control 5-158

CALL instruction syntax l-68,
5-146

CAll processing A-4
coding instructions L-327
control block linkages A-15
control flow A-3
data block location
calculation A-9

devices supported by 5-146
diagnostic aids A-10
I/O requests

DELETE L-329, 5-147
DlSCONN l-332, 5-148
END5EQ l-334, 5-147
EXTRACT L-336, S-148
GET L-338, 5-147
GETSEQ L-341, 5-147
LOAD l-344, 5-147
PROCE5S l-347, S-147
PUT l-350, 5-147
PUTDE l-352, 5-147
PUTUP L-354, 5-147
RELEA5E L-356, 5-147

lAM link module 5-155
operation 5-148
overview L-27, 5-145
performance S-205
program preparation procedure

5-155
record processing A-6
request processing A-5
request verification A-10
storage requirements 5-204

indexed applications, planning and
designing

connecting and disconnecting
data sets 5-159

handling errors
data-set-shut-down condi­
tion 5-179

deadlocks 5-180
error exit facilities

S-178
long-lock-time condition
5-180

system function return
codes 5-179

loading base records 5-160
processing indexed data sets

delete 5-165
direct read 5-161
direct update 5-162
extract 5-165
insert 5-146
sequential read 5-162
sequential update 5-146

resource contention 5-181
indexed data set

base records 5-149
building U-247
concatenating with ALTIAM
subroutine 5-167

control block arrangement A-8
creation with $IAMUT1 utility

U-236
formatting 5-187
procedure 5-156

design A-7
determining size and format

U-247
format

blocks 5-192

cluster 5-200
data block 5-194
file control block (FCB)

5-151, 5-194
free blocks 5-200
free pool 5-203
free records 5-200
free space 5-184
higher-level index block

5-197
index 5-195
index block 5-194
introduction 5-151
last cluster 5-203
primary-level index block

(PIXB) 5-152, 5-195
relative block number

(RBN) 5-152
reserve blocks 5-201
reserve index entries
5-202

second-level index block
(5IXB) 5-152, 5-197

sequential chaining 5-203
loading and inserting records
5-150

maintenance
backup and recovery 5-165
deleting 5-167
dumping 5-167
recovery without backup
5-166

reorganization 5-166
overv i EH.J 5-148
physical arrangement A-8
preparing the data

defining the key 5-166
estimating free space

5-168
selecting the block size

5-167
putting records into 5-149
RBN, relative block number

A-7, A-12
record locking 5-146, 5-160
verification A-11

indexed data set, defining U-237
indexed file (see Indexed Access
Method)

indexing, address feature l-6
initial program load (see also

IPL) 1-15
initialization

automatic application 5-129
disk (4962) U-68, U-73
disk (4963) U-68, U~78
diskette (4964,4966) U-68
libraries, $IHITD5K utility

U-256
modules 1-16
nucleus 1-15
Remote Management Utility,

internals 1-166, 1-171
tape, $TAPEUT1 utility U-322
task 1-15

initialize data base, IN $DIUTIl
command U-157

initializing secondary volumes
5-132

INITMOD5, initialization modules
1-16

INITTA5K, initialization task
1-15

input, terminal I/O l-46

Common Index 473

Input Buffer, Multiple Terminal
Manager C-116

contents during 4978/4979/3101
buffer operation C-129

description C-116
input data parsing, description
of 1-218

Input Error function 1-166, 1-182
input/output (see I/O)
input output control block (see

IOCB)
INPUT switch to input mode,

$EDIT1/N editor subcommand U-192
insert

block, II $FSEDIT line com­
mand U-231

elements, IN $DICOMP command
U-I07

line, I $FSEDIT line command
U-229

member, 1M $DICOMP subcommand
U-118

instruction address register (see
IAR)

instruction and statements - over­
view L-15

instruction definition and
checking ($EDXASM) 1-241

instruction format, Event Driven
Language 1-67, L-3

instruction format, general L-3
instruction operands L-3
integer and logical instructions

L-19
interactive program debugging
5-67, U-82

interface routines, supervisor
1-61

interprocessor communications
C-29

interprogram dialogue S-282
interrupt, from EXIO device 1-125
interrupt information byte (see
lIB)

interrupt line 5-313
interrupt servicing 1-46, 1-113
INTIME timing instruction

coding description L-181
overview L-50, S-32

introduction to EDL L-l
invoking the loader 1-23
invoking the session manager U-27
invoking the utilities U-47
IOCB terminal I/O instruction

coding description L-183
constructing, for formatted

screen ($IMDEFN) S-301
overview L-44, S-47
structure S-296
terminal I/O instruction

L-183
TERMINAL statement converted

to S-96
IODEF sensor based I/O statement

U-364
coding description L-185
overview L-39, S-51
SPECPI - process interrupt

user routine L-189
IOLOADER, function of 1-127
IOLOADER/IOLOADRU sensor based I/O
init. module desc. 1-78

lOR data manipUlation instruction
coding description l-191
overview L-19

474 SC34-0314

IPL
automatic application initial­

ization and restart S-129
messages U-421

date and time U-425
IPl operation U-421
load utility location

U-424
sensor I/O status check

U-424
storage map generation

U-423
tape initialization U-423
volume initialization

U-422
procedure U-421

IPLSCRN, Multiple Terminal
Manager C-125

job U-278
job control statement U-278
JOB job identifier, $JOBUTIL

command U-278
job stream processor, $JOBUTIL
S-69, U-271

job stream processor utilities
(session manager) S-216

JP
jump ($PDS) 5-255
to address, $DICOMP

subcommand U-118
JR jump reference, $DICOMP

subcommand U-118
JUMP, $JOBUTIL command U-279
jump reference, JR $DICOMP

subcommand U-118
jump to address, JP $DICOMP

subcommand U-118

key (see program function (PF)
keys

keyboard and ATTNlIST tasks, ter­
minal I/O l-47

keyboard define utility for 4978,
$TER~'UT2 U-339

KEYS list program function keys
$IMAGE command U-253

keyword operand L-5

LA
display directory, $DIUTIL

command U-158
list all members, $DISKUT1

command U-135, U-136
list terminal assignment,

$TERMUT1 command U-336
label L-3

field L-3
syntax description L-4 o

o

o

LABEL end jump, $JOBUT1L command
U-280

labels, tape (see tape)
LABELS subroutine, $EDXASM 1-238
LACTS list all members CTS mode,

$DISKUTl command U-135
language control data set,

$EDXASM I-221, U-357
LASTQ queue processing
instruction

coding description L-l91
overview L-37, S-32

layers, terminal I/O 1-108
LB display characters

$DICOMP display character sub­
command U-119

$PDS S-252
LC load control store, $TERMUT2

command U-342
lD

list all hardware devices,
$IOTEST command U-269

list data members, $DISKUTl
command U-138

lDCTS list data members CTS mode,
$DISKUTI command U-135

lE (less than or equal) L-34
level status block (see LSB)
lEWORKl work data set for $LINK

U-400
lEWORK2 work data set for $LINK

U-400
lH display member header, $DIUTIl

command U-l59
l1

draw line $DICOMP subcommand
U-120

draw line $PDS S-253
load image store, $TERMUT2

command U-342
library

definition S-52
directory, disk or diskette

1-87
origin S-60

line
commands, $FSEDIT U-229
continuation, source

statement L-4
editing, $EDITl/N U-203
pointer reposition (see move
line pointer)

source line continuation
U-36l

lINK, Multiple Terminal Manager
CALL

coding description C-l31,
L-374

internals M-9
overview C-115, L-29

link edit process, $lINK U-394
autocall option U-393
building an EDX supervisor

U-394
combining program modules

U-392
control records U-396
elimination of duplication
control sections U-393

formatting modules for
$UPDATE U-392

input to $LINK U-396
multiple control sections

U-392
object module record format

U-407
output from $LINK U-403
storage map U-393

link edit program object modules
U-390

link module, Indexed Access
Method S-155

linkage editor S-71, U-353
LIHKOH, Multiple Terminal Manager

CALL
coding description C-l32,

L-376
internals M-9
overview C-ll5, l-29

list
active programs, $A operator

command U-ll
breakpoints and trace ranges,

BP $DEBUG command U-92
characters, lB $DICOMP

subcommand U-119
data members, LD $DISKUTl

command U-l38
data members, LDCTS $DISKUTl

command U-l35
data set

BROWSE $FSEDIT option
U-2l3

LP $DISKUT2 command U-l43
LU $DISKUT2 command U-l46
status, ST $DIUTIL

command U-162
date/time, $W operator

command U-25
date/time, TD $DICOMP

subcommand U-124
devices, LD $IOTEST command

U-269
end, EP $DICOMP subcommand

U-1l7
error specification, ERRORS

$EDXASM command U-358
hardware configuration, LD

$IOTEST command U-264
insert mask, MASK $FSEOIT line
command U-232

member, lM $DISKUTl command
U-l38

member, PR $DICOMP command
U-I08

member header, LH$OIUTIL com­
mand U-159

members, all
LA $DISKUTI command U-135
LA $DIUTIL command U-158
LACTS $DISKUTl command

U-135
processor program, $EDXLIST

U-370
program function

$PFMAP utility
program function

$INAGE command
program members,

command U-l39

key codes,
U-301
keys, KEYS
U-253
lP $DISKUTl

program members, LPCTS
$DISKUTI command U-135

status of all tasks, WHERE
$DEBUG command U-I02

storage, $0 operator command
U-15

terminal
names/types/addresses, LA
$TERMUTI command U-335

variables, VA $DICOMP

Common Index 475

subcommand U-l25
volume information, VI $IOTEST

command U-270
LIST commands

data set
LIST $EDITI/N command

U-l93
LIST $FSEDIT option U-217

display lines of text,
$EDIT1/N editor subcommand
U-193

display storage or registers,
$DEBUG command U-95

lines of text, LIST $EDIT1/N
editor command U-l76

list device option, $EDXASM
command U-358

list device option, $EDXLIST
command U-370

obtain full listing, LIST
$EDXASM command U-358

print dDta set, $EDITI/N
command U-176

print data set, $FSEDIT
option U-217

registers, LIST $DEBUG
command U-95

storage, LIST $DEBUG command
U-95

listing control functions U-29
listing control instructions

EJECT L-I09
overv i eL.J L -28
PRINT L-216
SPACE L-275
TITLE L-308

LISTP list to $SYSPRTR, $DI5KUTl
command U-135

LISTT list to terminal, $DISKUTl
commC1nd U-135

LL list log data set, $DISKUT2
command U-145

LM list member, $DISKUT1 command
U-138

LO load indexed file, $IAMUTI
command U-241

LOAD
Indexed Access Method CALL

coding description L-344
connect file S-159
overview L-27, S-146
return codes L-346

task control instruction
coding description L-194
internals 1-24
overv i e~.J L -42
return codes L-199

used with automatic
initialization S-129

used with overlays S-40
load mode S-149
load point defined L-40
load program

$L operator command 1-23,
U-17

automatic initialization
S-129

EXEC $JOBUTIL command U-277
loading overlays 1-22
loading programs I-19
locate data sets and overlay

programs, $PREFIND U-302
LOCATE locate requested line

number $FSEDIT primary cornman
U-223

476 SC34-0314

location dictionary I-250
lock

locks, block and record A-16
locks, file A-l7
record 5-146

LOCK TERMCTRL function L-288
LOG

I/O error logging macro S-271
job processor commands,

$JOBUTIL command U-281
log data set for I/O errors U-292
logical end-of-file on disk S-324
logical screens S-293
logon menu for session manager
S-212, U-27

long-Iock-time condition 5-180
low storage

LP

during IPL 1-16
during program load 1-20

list data set on printer,
$DI5KUT2 command U-144

list program members, $DI5KUT1
command U-139

LPCTS list program members CT5
mode, $DISKUTl command U-135

LR draw line relative

LS

$DICOMP subcommand U-121
$PD5 5-257

list space, $DISKUTl command
U-140

list supervisor configuration,
$IOTE5T command U-270

LSB level status block I-52,
U-427

LT (less than) L-34
LU list data set on console,

$DISKUT2 command U-146
LV list through volumes, $DI5KUTl

U-141

M move line, $FSEDIT line command
U-233

macro assembler
internal overview $SlASM
1-253

overview S-9
macro library 5-6
macro library/host S-5
magazine diskette (see 4966
diskette magazine unit)

magnetic tape (see tape)
MASK display insert mask, $FSEDIT
line command U-232

master control block (see MCB)
Mathematical and Functional Sub­

routine Library 5-6
MeB mDster control block

$PDS S-260
definition A-20
description A-28

MD move data base, $DIUTIL
command U-160

member area S-250
member control block (MCB) 5-260
MENU

Multiple Terminal Manager
CALL

coding description C-137,

o

/"""'''-'\

I .

\""-~

o

o

o

L-377
internals M-9
overview C-116, L-29

return to primary option,
$FSEDIT U-223

menu-driven U-2
menus

(see option selection menu)
(see parameter selection
menu)

(see primary menu)
(see primary option menu)
(see secondary option menu)
(see session manager, menus)
(see transaction selection
menu)

MENUSCRN, Multiple Terminal Manag­
er C-126

MERGE merge data, $FSEDIT option
U-217

message, PRINTEXT instruction
L-217

message sending utility, $TERMUT3
U-344

messages U-421
error U-427

$DUMP U-431
$LOG U-432
$RMU U-433
$TRAP U-435
program check U-427
system program check

U-429
IPL (see IPL messages)
Multiple Terminal Manager

C-178
Remote Management Utility

C-279
minimum execution system config­
uration S-22

minimum program preparation
requirements S-22

mirror image
description C-7, S-109
in TERMINAL configuration
statement S-101

mixed precision combinations L-20
MM move block, $FSEDIT line

command U-233
modified data S-307
modify character image tables

U-339
modify character string, CHANGE

$EDIT1/N editor subcommand
U-184

$FSEDIT primary command U-219
modify default storage allocation,

$DISKUT2 U-149
modifying an existing data set,

$FSEDIT U-215
modifying TERMINAL statement for

new I/O terminal 1-119
module descriptions

$S1ASM I-269
supervisor 1-75

module names and entry points,
supervisor

move

Version 1.1 S-347
Version 2 S-357

block, MM $FSEDIT line com­
mand U-233

line pointer
BOTTOM $EDIT1/N editor

subcommand U-183

DOWN $EDIT1/N editor
subcommand U-189

TOP $EDITI/N editor
subcommand U-200

UP $EDITI/N editor
subcommand U-201

tape U-324
text

$EDITI/N editor subcom­
mand U-195

$FSEDIT line command
U-233

volumes on disk or diskette,
$MOVEVOL utility U-294

MOVE data manipUlation
instruction

coding description L-201
overview L-19

MOVEA data manipulation
instruction

coding description L-204
overview L-19

MOVEBYTE subroutine, $EDXASM
!-236

MP
move beam, $OICOMP subcommand

U-121
move position ($POS) 5-253

MT move tape, $TAPEUTl command
U-324

MTMSTORE file, Multiple Terminal
Manager C-120, C-171, M-12

MTMSTR, Multiple Terminal Manager
C-169, C-170, M-12

multiple field format L-155
multiple program execution 1-36
multiple program structure 5-26
multiple-task programs !-33
Multiple Terminal Manager

accessing the terminal envi­
ronment block C-139, M-22

application program C-116
application program languages

L-30
application program manager

C-119, M-4
automatic OPEN/CLOSE C-140,

M-8
CALL

ACTION C-130, L-360
BEEP C-137, L-361
CDATA C-139, L-362
CHGPAN C-135, L-364
CYCLE C-132, L-365
FAN C-139, L-366
FILEtO C-141, L-367
FTAB C-138, L-372
LINK C-131, L-374
LINKON C-132, L-376
MENU C-137, L-377
SETCUR C-137, L-378
SETPAN C-134, L-379
WRITE C-133, L-381

coding instructions L-359
components C-123, M-4
considerations for 3101
terminal C-122

data files C-120
MTMSTORE file C-120,

C-171, M-12
PRGRMS volume C-120,

C-173
5CRNS volume C-120, C-173
TERMINAL volume C-120,

C-171

Common Index 477

direct file request types
C-144, L-370

disk file support C-140
distribution and installation

C-161
dynamic screen modification

and creation C-136
file control area C-142
file I/O considerations (Event

Driven Executive) C-146
file management C-118, M-8
FILEIO, disk file support

C-140
FILEIO Indexed Access Method
considerations C-148

fixed-screen formats C-125
functions (callable routines)

C-117, C-124
indexed file request types
C-144, L-369

indexed file support C-140,
L-367

initialization programs
C-119, C-158, M-4, M-6

Input Buffer C-116, C-127
Input Buffer Address C-116
Input Buffer during
4978/4979/3101 buffer oper­
ation C-127

interrupt information byte
C-128

messages C-178
module list M-4
operation C-115
Output Buffer C-116
Output Buffer Address C-127
Output Buffer during

4978/4979/3101 buffer oper­
ation C-128

overview L-29, S-10
program management C-115, M-4
program preparation

COBOL C-166
Event Driven Language

C-164
FORTRAN C-165
PL/I C-167

programming considerations
COBOL C-153
Event Driven Language

C-151
FORTRAN C-152
PL/I C-155

return codes (FILEIO) C-145,
L-371

screen definition C-121
screen formats C-125

IPL5CRN C-125
MENUSCRN C-126
SCRNSREP C-126
SIGNONSC C-126

screen panel manager M-7
SIGNON/SIGNOFF C-156

5IGNONFL C-174
storage requirements C-168
swap out data set C-116
system generation
considerations C-169

data set requirements
C-171, C-175

volume requirements C-169
terminal environment block

(TEB) C-128, M-13
TERMINAL file C-124, C-172
terminal manager C-121

478 SC34-0314

terminal/screen management
C-117

terminal server C-119, M-7
terminal support C-114, C-126
transaction oriented
applications C-121

user application programs
C-124

utilities C-159
DISCONNECT turn off
specified terminals
C-159

programs report C-159
RECONNECT turn on
specified terminals
C-159

screens report C-160
terminal activity report

C-159
work areas, control blocks and
tables M-11

buffer areas M-15, M-29
common area M-11, M-25
file table M-15, M-27
MTMSTORE data set M-12
program table M-14, M-21
screen table M-14, M-21
terminal environment block

(TEB) M-13, M-22
terminal table M-13, M-21

MULTIPLY data manipulation
instruction

coding description l-205
overview L-19
precision table L-206

multiprogramming
automatic application initial­

ization 5-129
design feature 5-13

multitasking 1-42

NE (not equal) L-34
newline subroutine, terminal I/O

1-112
NEXTQ queue processing
instruction

coding description L-207
overview L-37, 5-32

NOFLOAT floating-point command
entries module description 1-79

NOLIST no list option, $EDXASM
command U-358

NOMSG message suppression,
$JOBUTIL command U-282

non-compressed byte string S-309
non~labeled tapes

description 5-241
layout 5-242
processing 5-243

NOTE disk/tape I/O instruction
coding description L-209
overv i evJ L -22

notify of an event (see POST)
NQ reset prompt mode, $COPYUTI

command U-64
nucleus initialization 1-15
null character U-253
NULL define null representation

$IMAGE command U-253

,Ai",
I:
".-/

o

o

o

null representation, defining
U-253

number representation conversion
(see conversion)

object data set for SEDXASM U-357
object module record format,

SLINK U-407
object text elements, format of,

$EDXASM 1-215
OFF (set tape offline) l-75
OFF remove breakpoints and trace

ranges, $DEBUG command U-97
OLE operand list element, SEDXASM

format of I-216
in instruction parsing

(SEDXASN) 1-220
used in $IDEF 1-241

online debug aids S-67
op (operation field) L-3
OPCHECK subroutine, $EDXASM I-232
opcode table, instruction parsing

($EDXASM) 1-220, I-223
open a data set

disk or diskette I-90
tape I-99

open EXIO device, EXOPEN I-125
open member ($PDS) S-261
OPENIN Host Communications
Facility, TP operand C-93

OPENOUT Host Communications
Facility, TP operand C-94

operands
defined L-3
keyword L-5
parameter naming (Px) l-8

operating conventions, supervisor
program 1-67

operating environment S-22
operation code, instruction
parsing ($EDXASM) 1-220

operation codes, Event Driven
Language I-68

operations using index registers
l-20

6perator commands 5-63, U-9
operator signals, terminal I/O

L-49
option selection menu U-33
optional features support L-15
OTE define object text element

$EDXA5M instruction 1-227
OUTPUT SLINK control record U-399
Output Buffer, Multiple Terminal

Manager C-116, C-128
contents during 4978/4979/3101
buffer operation C-129

definition M-29
overflow L-20
overlay function processor table

1-167, I-220
overlay program S-40

instructions, SEDXASM 1-259
loading 1-22
locating, $PREFIND U-302
subroutines, $EDXA5M 1-231
user 1-38

overlay program execution I-38
overlay selection, instruction
parsing ($EDXA5M) 1-223

overlay table 1-167, 1-220
overview

data definition statements
L-17

data formatting instructions
L-18

data format module names
L-18

data manipulation
instructions L-19

data representation L-19
mixed-precision

operations L-20
operations using index
registers L-20

overflow L-20
vector L-19

disk I/O instructions L-22
EXI0 control instructions
l-24

floating-point arithmetic
L-20

floating-point arithmetic
instructions L-20

data representation L-21
operations using index
registers l-21

return codes L-21
graphics instructions L-26
Indexed Access Method
instructions L-27

instructions and statements
L-15

integer and logical
instructions L-19

listing control statements
L-28

Multiple Terminal Manager
instructions L-29

program control statements
l-32

program module sectioning
statements L-33

program sequencing
instructions L-34

queue processing L-37
sensor-based I/O statements

L-39
single-precision L-19
system configuration
statements l-39

tape I/O instructions L-40
task control instructions

L-42
terminal I/O instructions

L-44
timing instructions L-50

P/I (see process interrupt)
PA patch, SDISKUT2 command U-147
page eject 5-63, U-16
parameter equate tables L-l1
parameter naming operands in the

instruction format L-8
parameter passing, Remote

Management Utility C-212
parameter selection menu U-33
parameter tables, control block
and L-l1

Common Index 479

PARM program parameter passing,
$JOBUTIL command U-283

parsing, input data;($EDXA5M)
1-218 .

partition assignment changing, $CP
operator command U-14

partitioned data sets S-247
partitions S-42
PA5STHRU function

conducting a session C-227
establishing a session C-225
internals 1-166, 1-179
overview C-225
programming considerations

C-237
sample program C-265
types of records C-232
virtual terminals C-239

Passthru record C-209
patch

disk/diskette, PA $DISKUT2
command U-147

Remote Management Utility
defaults C-283

storage, $P operator command
5-63, U-18

storage or registers, PATCH
$DEBUG command U-98

PATCH modify storage or registers,
$DEBUG, command U-98

PAUSE operator intervention,
$JOBUTIL command U-284

PC plot curve
$DICOMP subcommand U-119
from plot curve data member

($PDS) 5-255
PD pulse DO, $IOTEST command

U-265
PF,code TERMCTRL function L-288
PF keys (see program function

keys)
phase execution and loading,

$S1ASM 1-255
PI process interrupt (see process

interrupt) U-267
prD program directory S-27
PIXB (see primary-level index

block)
PL/I ,

execution requirements 5-24
link editing 5-71
overview 5-8
program preparation

requirements 5-23
supported by Multiple Terminal

Manager C-200
PL plot data, $DICOMP subcommand

U-122
plot control block (see PLOTCB)
plot curve data member ($PD5)

5-251
PLOTCB graphics plot control

block L-210
PLOTGIN graphics instruction

coding description L-210
overview L-26

POINT
disk/tape instruction

coding description L-212
overview L-22, 5-54

point-to-point (B5C) 5-65
point-to-point vector drawing

5-46
POST

post an event, $DEBUG command

480 SC34-0314

U-100
task control instruction

coding description L-213
internals I-58
overview L-42, 5-34
supervisor function 1-46

power outage, restoring after
5-129

PR print member, $OICOMP command
U-I08

precision L-19
floating-point arithmetic

L-21
integer and logical L-19
precision combinations,

allol.Jed L-20
precision table

ADD L-53
ADDV L-54
DIVIDE L-lOI
MULTIPLY L-206
overviel.J L-20
SUBTRACT L-284

prefind U-302
PREPARE IOCB command L-175
PRGRMS volume, Multiple Terminal

Manager C-120, C-173
primary

commands, $F5EOIT U-218
option menu, $F5EDIT U-213
option menu, session manager
5-218, U-35

task
internals 1-29
overview 5-29

volume S-60
primary-level index block

description 5-195
overview 5-151

PRINDATE terminal I/O instruction
coding description L-215
overview L-44, 5-47
timer-related instruction

5-33
PRINT listing control statement

coding description L-216
overview L-28

print member, PR $DICOMP command
U-I08

PRINTEXT terminal I/O instruction
coding description L-217
overview L-44, 5-47
return codes L-219

PRINTIME terminal I/O instruction
coding description L-221
overview L-44, L-50, 5-47
timer-related instruction
5-33

PRINTNUM terminal I/O instruction
coding description L-222
overview L-44, 5-47

PRINT ON define terminal name,
SRJE2780/$RJE3780 C-75

priority
assigned to tasks 5-29
design feature 5-13
illustrated 5-38
internals 1-31
task L-226, L-286

PROC identify nested procedure,
SJOBUTIL command U-286

procedures, session manager (see
session manager)

PROCESS Indexed Access Method
CALL

o

o

o

o

coding description L-347
overview L-27, S-147
return codes L-349

process interrupt
control block (SBIOCB) 1-128
description S-48
IODEF statement L-189
IOTEST command U-267
supported by sensor I/O S-15
user routine (SPECPI) L-189

process mode
definition S-150

processing compiler output with
$LINK or $UPDATE U-360

processor status word (see PSW)
PROGEQU L-13
program

equates 1-312
assembly/compilation U-352
control L-32
disabling S-102
entry (see $FSEDIT, $EDITl/H)
function (PF) keys L-47

internals 1-108
listing, KEYS $IMAGE

command U-253
listing 4978, $PFMAP
utility U-301

when using $FONT edit
mode U-206

when using $FSEDIT U-211
when using $IMAGE edit

mode U-255
when using session

manager U-28
header 1-30
identifier, $JOBUTIL command

U-287
internal processing 1-30
library update (see $UPDATE)
load process, $PREFIND U-302
loading (see also LOAD) 1-19
module sectioning functions

L-33
organization S-29
sequencing functions L-34
structure S-29
termination, EXIO I-126
types 1-32

program check error messages
U-427

program execution via Remote Man-
agement Utility

EXEC function C-220
PASSTHRU function C-225
SHUTDOWN function C-251

PROGRAM identifier, $JOBUTIL
command U-287

program preparation
$EDXASM 1-211, U-356
$SIASM 1-253, U-372
host assembler U-382
of Remote Management Utility

1-184
summary S-18
usage example S-367

Program Preparation Facility
description S-71
overview S-5

program preparation utilities
U-351

program preparation utili·ties
(session manager)OU-36, S-214

program/storage manager, Multiple
Terminal Manager M-4

program structure S-36
internals 1-33

program/task concepts 1-29, S-29
PROGRAM task control instruction

coding description L-225
internals 1-30
overview L-42, S-31

PROGSTOP task control statement
coding description L-234
overview L-42, S-31

prompting and advance input,
terminal I/O L-46

protected field 5-307, U-253
protocol, BSC transmission 1-156
PSW processor status word U-430
PU PUNCHO/PUNCHS function,

$RJE2780/$RJE3780 reset type
C-76

pulse a digital output address, PD
$IOTEST command U-264

PUNCHO/PUNCHS define output file,
$RJE2780/$RJE3780 C-75

purpose of EDl L-1
PUT Indexed Access Method CALL

coding description L-350
overv; et... l-27
return codes L-351

PUTDE Indexed Access Method CALL
coding description L-352
overv i e1... l-27
return codes l-353

PUTEDIT data formatting
instruction

coding description L-236
overview l-18
return codes L-238

PUTSTORE TERMCTRL function L-288
PUTUP Indexed Access Method CAll

coding description L-354
overview L-27
return codes L-355

Px L-8

QCB task control statement S-33
coding description L-240
overview l-42
queue control block 1-45,

I-54
QD queue descriptor 1-64, L-37
QE queue entry

functions 1-64
overview L-37
processing S-32

QUALIFY modify base address,
$DEBUG command U-I01

QUESTION terminal I/O instruction
coding description L-242
overview L-44, S-47

queuable resource S~33
queue control block (see QCB)
queue descriptor (see QD)
queue entry (see QE)
queue processing 1-64
queue processing instructions

l-37
queue processing support module,

QUEUEIO, description 1-81
QUEUEIO queue processing support

module description 1-81

\

Common Index 481

RA reassign address, $TERMUT1 com­
mand U-336

random access 5-53
random work file operation,

$SlASM 1-260
RCB (see Remote Management
Utility, control block)

RDCUR50R terminal I/O instruction
coding description L-244
overview L-44, 5-47

RE

read

copy from basic exchange data
set, $COPY command U-59

rename, $TERMUT1 command
U-337

rename member, $DISKUT1 com­
mand U-135, U-136

rename member, $DIUTIL
command U-161

reset parameters, $IAMUT1
command U-243

restore 4974 to standard
character set, $TERMUT2
U-339

analog input, AI $IOTEST
U-268

character image table from
4978, GET $FONT U-206

data set into work file
$EDIT1 U-177
$EDIT1N U-176
$FSEDIT U-216

digital input, DI $IOTEST
command U-266

digital input using external
sync U-266

Host Communications Facility,
TP operand C-95

IDCB command L-175
operations (BSC) 1-157
program, RP command

$UPDATE U-410
$UPDATEH U-419

READ instruction
disk/diskette return codes

L-249, U-455
disk/diskette(tape I/O

instruction
coding description L-245
overv i eLoJ L -22

tape return codes L-249,
U-456

READDATA read data from host,
$HCFUTI command C-108

READID IDCB command L-175
READOBJ read object module,

$HCFUTI command C-I09
READTEXT terminal I/O instruction

coding description L-251
overview L-44, S-48
return codes L-255
return codes, virtual terminal
communications L-256

ready a task supervisor execution
state 1-43

READ1 IDCB command L-175
READ80 read 80 byte records,

$HCFUT1 command C-109
real image ACCA terminals C-7

482 SC34-0314

realtime data member
$PDS S-251
RT $DICOMP subcommand U-124

RECEIVE function
overview C-243
sample program C-262

RECONNECT Multiple Terminal
Manager utility C-120, C-159

record
blocking, Remote Management
Utility C-211

definition S-53
exchange, Remote Management
Utility C-208

format for object module,
$LINK U-407

header, Remote Management
Utility C-209

sizes, Host Communications
Facility C-83

reformat diskettes U-68
register, index L-6
register, software L-6
register conventions

$SlASM 1-257
BSCAM processing 1-147
common emulator setup routine

1-68
EBCDIC to floating-point
conversion 1-205

summary chart $S1ASM 1-258
terminal I/O support 1-106

REL release a status record,
$HCFUT1 command C-110

relational statements L-180
RELEASE

Host Communications Facility,
TP operand C-96

Indexed Access Method CP~L
S-147

coding description L-356
overview L-27, S-147
return codes L-357

release a status record, REL
$HCFUT1 command C-110

release space ($PDS) S-261
relocating program loader 1-19
relocation dictionary, $EDXASM

1-250
REMARK operator comment, $JOBUTIL

command U-288
remote job entry to host,

$RJE2780/$RJE3780 C-73
Remote Management Utility

CDRRM equates C-292
control block (RCB)

description 1-164, 1-169
equate tables C-292,

1-295
use in problem determi-
nation 1-190

defaults C-283
error handling C-277
function table 1-164, 1-167
functions C-206, 1-166
installation C-281
interface C-207
internals 1-216
logic flow 1-170
messages C-279
modifying defaults C-283
module descriptions 1-191
module list 1-186
operation C-213
overlay function processor

~«-"\

I \1

'~."' .. /

o

o

c

0'"
"

table 1-167, 1-220
overlay table 1-167, 1-220
overview C-205
program preparation 1-184
requirements C-207
sample host programs C-259
system generation
considerations C-281

TERMINAL statement example
5-107

terminating C-251
remote system (see Remote
Management Utility) C-205

remove breakpoints and trace
ranges, OFF $DEBUG command U-97

rename member
RE $DISKUT1 command U-135,

U-136
RE $DIUTIL command U-161

RENUM renumber lines
$EDIT1/N subcommand U-196
$FSED1T primary command U-224

reorganize an indexed data set
U-242

procedure 5-166
report data member ($PDS) 5-251
reposition line pointer (see move
line pointer)

Request record C-209
reserved labels L-4
reset

function, $RJE2780/$RJE3780
attention request C-76

IDCB command L-176
Indexed Access Method

ECHO mode, EC $IAMUT1 com­
mand U-240

SE command parameters, RE
$IAMUT1 command U-243

line command, $F5EDIT primary
command U-225

RESET task control instruction
coding description L-258
overview L-42, 5-31

resident assembler routines I-256
resolution, enhanced 1-201
resolution, standard graphics
1-201

resource control, superviso~ I-54
restart, automatic 5-129
restore

disk or disk volume from tape,
RT $TAPEUT1 command U-326

dump volume utility, $MOVEVOL
U-294

4974 to standard character
set, RE $TERMUT2 command
U-343

resulting field (EOR) l-122
return codes (see also completion
codes)

$DI5KUT3 5-319, U-444
$PD5 U-445
B5C C-57, U-446
CONVTB L-80
CONVTD L-83
data formatting instructions

U-447
DELETE L-330
DI5CONN L-333
ENDSEQ L-335
EXIO U-448
EXIO instruction l-131
EXIO interrupt l-132
EXTRACT L-337

FADD L-136
FD1VD L-138
FILEIO C-145
floating point instruction

U-450
FMULT L-145
formatted screen image U-450
FSUB L-160
FTAB C-138, L-373
GET L-340
GETSEQ L-343
in Remote Management Utility
control block 1-190

Indexed Access Method U-451
LOAD L-199, U-452
LOAD (Indexed Access Method)

L-346
Multiple Terminal Manager

U-453
PRINTEXT L-219
PROCESS L-349
PUT L-351
PUTDE L-353
PUTED1T L-238
PUTUP L-355
READ disk/diskette L-249,

U-455
READ tape l-250, U-456
READTEXT L-255
RELEASE L-357
5BIO U-457
SBIO instruction l-262
SETPAN C-135
tape L-77
TERMCTRL L-288
terminal I/O L-255, U-458

ACCA U-459
interprocessor
communications C-31,
U-460

virtual terminal L-256,
U-461

TP (Host Communications Facil­
ity) C-I02, U-463

WHERE5 L-316
WRITE disk/diskette L-320,

U-455
WRITE tape L-320, U-456

return from immediate action
routine (SUPEXIT) 1-49

return from task level (SUPRTURN)
1-49

RETURN program control
instruction

coding description L-259
overview L-32, 5-31
supervisor entry point 1-279,

1-313
supervisor interface 1-62

REW (rewind tape) L-75
rewind tape, MT $TAPEUTI command

U-324
RH reassign hardcopy, $TERMUT1

command U-338
RI read
transparent/non-transparent,
$BSCUT2 command C-68

RJE (see Remote Job Entry)
RLOADER 1-19, 1-22

RLOADER/RLOADRU module
description 1-78

RO reorganize indexed file,
$IAMUT1 command U-242

ROFF (rewind offline) l-75

Common Index 483

roll screen, terminal 1/0 L-48,
S-293

RP read program
$UPDATE command U-410
$UPDATEH command U-419

RPQ D02038, 4978 display station
attachment C-6, S-97

different device
configurations C-8

RSTATUS IDCB command L-175
RT

activate realtime data member,
$DICOMP subcommand U-124

change realtime data member
name ($PDS) S-258

disk or disk volume from tape,
$TAPEUT1 utility U-326

RWI readlwrite non-transparent,
$BSCUT2 command C-58

RWIV readlwrite non-transparent
conversational, $BSCUT2 C-71

RWIVXread/write transparent
conversational, $BSCUT2 C-70

RWlX readlwrite transparent,
$BSCUT2 command C-67

RWIXMP readlwrite multidrop
transparent, $BSCUT2 command
C-60

SA save data, $DlCOMP subcommand
U-124

SAVE
data set on disk, $lMAGE com­

mand U-254
work data set, $EDITI/N

subcommand U-197
save current task status

(TASKSAVE) I-54
save data, SA $DICOMP subcommand

U-124
save disk or disk volume on tape,

$TAPEUT1 utility U-330
save storage and registers, $TRAP
, ut iii ty U-348
SB special PI bit, $IOTEST

command U-267
SBAl sensor based lID support

module description 1-80
SBAO sensor based 1/0 support

module description 1-80
SBCOM sensor based 1/0 support

module description I~80
SBDIDO sensor based 1/0 support

module description 1-80
SBIO sensor based 1/0 instruction

coding description L-260
control block (SBIOCB) 1-127
overview L-39, S-51
return codes L-262

SBIOCB sensor based 1/0 control
block 1-127

SBPI sensor based 1/0 support
module description 1-80

SC save control store, $TERMUT2
command U-343

screen format builder utility,
$IMAGE S-68, U-250

SCREEN graphics instruction
coding description L-270
overview L-26

484 SC34-0314

screen image format building
U-250

screen images, retrieving and dis­
playing S-300

screen management, terminal 1/0
L-48

SCRNS volume, Multiple Terminal
Manager C-120, C-173

SCRNSREP, Multiple Terminal
Manager C-125

scrolling, $FSEDIT U-210
5C5S IDeB command L-176
5E set parameters, $IAMUT1

command U-244
5E set status, $HCFUT1 command

C-I10
second-level index block

description 5-197
overview 5-153

secondary
disk volumes S-132
volumes S-60

secondary option menus S-218,
U-36

(see session manager)
sectioning of program modules

L-33
sector S-52
self-defining terms L-4
send

data, HX $DICOMP subcommand
U-118

data set, SEND function C-247
message to another terminal,

$TERMUT3 utility U-344
SEND function

internals 1-166, 1-172
overview C-247
sample program C-274

sensor based 1/0
assignment L-188
1/0 control block (SBIOCB)

1-127
modules (IOLOADER/IOLOADRU)

1-78
statement overview L-39
support module descriptions

1-81
symbolic L-9

SENSORIO configuration statement
5-51, 5-84

sequence chaining L-27
sequencing instructions, program

L-34
sequential access

in Indexed Access Method
5-145

overview S-53
sequential work file operations

($51A5M) 1-259
serially reusable resource (SRR)
I-59, 5-33

session, PA5STHRU
conducting C-227
establishing C-225
logic flow diagram C-230
using $DEBUG utility C-272

session manager U-27
$SMALLOC data set allocation
control data set S-222, U-30

$SMDELET data set deletion
control data set 5-222, U-32

adding an option S-209, 5-224
communications utilities U-42

communications utilities

o

/' -",

I, :

'~"f

o

o

o

o

S-217
data management S-215
diagnostic utilities

5-217
disk utilities (see data

management)
execute program utilities

5-216
graphics utilities 5-216
job stream processor
utilities 5-216

logon menu U-27
primary 5-218, U-35
program preparation
utilities 5-214

secondary S-218, U-36
summary of S-213
terminal utilities S-215
updating primary option

S-224
creating a new menu 5-224
data management U-38
data set deletion U-32
data sets creation U-29
diagnostic utilities U-43
execute program utilities

U-41
graphics utilities U-40
invoking U-27
invoking a $JOBUTIL procedure
5-229

job stream processor
utilities U-42

menus U-33
minimum partition size

required U-27
operational overview S-209
primary option menu, $5MMPRIM

5-218, U-35
procedures

communications utilities
5-217

data management utilities
5-215

diagnostic utilities
5-217

execute program utilities
5-216

graphics utilities 5-216
job stream processor
utilities 5-216

overvi eLoJ 5-220
program preparation
utilities 5-214

terminal utilities 5-215
updating 5-225

program function keys U-28
program preparation utilities

U-36
secondary option menus 5-218,

U-36
storage usage 5-211
terminal utilities U-40
text editing utilities U-36
utilities not supported U-46

5ET,ATTN TERMCTRL function L-288
set breakpoints and trace ranges,

AT $DEBUG command U-90
set date and time, $T operator

command 5-63, U-19
5ET Host Communications Facility

TP operand C-97
5ET,lP1 TERMCTRL function L-288
set status, 5E $HCFUTI command

C-110

set tape offline, MT $TAPEUT1 com­
mand U-324

set time, $T operator command
U-19

5ETBU5Y supervisor busy routine
1-48, 1-63

5ETCUR, Multiple Terminal Manager
CALL

coding description C-137,
L-378

internals M-9
overview C-117, L-29

SETEOD subroutine S-324
SETPAN, Multiple Terminal Manager

CALL
coding description C-134,

L-379
internals M-9
overview C-117, L-29
return codes L-380

setup procedure for $JOBUTIL
U-271

SG special PI group, $IOTEST com­
mand U-267

5H1FTL data manipulation
instruction

coding description L-271
overview L-19

SHIFTR data manipulation
instruction

coding description L-273
overview L-19

SHUTDOWN function C-251, 1-166,
1-181

51 save image store, $TERMUT2 com­
mand U-341

SIGNON/S1GNOFF, Multiple Terminal
Manager C-156

SIGNONFL C-174
single program execution 1-35
single-task program 1-33
single task program S-34
SIXB (see second-level index

block)
SLE sublist element, $EDXASM

format of 1-217
in instruction parsing

($EDXASM) 1-220
instruction descriptio~ and
format 1-229

used in $IDEF 1-241
software register L-6
software trace table S~265
sort/merge S-9
source progr.am compiling S-71
source program entry and editing
5-66, U-351
sourc~ program line continuation
using $EDXASM L-4, U-361

source statements, $EDXASM overlay
generated I-243

SP spool function,
$RJE2780/$RJE3780 reset type
C-76

SPACE listing control statement
coding description L-275
overview L-28

special control characters S-46
special PI

bit, SB $IOTEST command U-267
group, SG $IOTEST command

U-267
specifications, data conversion

L-146

Common Index 485

SPECPI define special process
interrupt L-189

SPECPIRT instruction
Roding description l-276
overview L-39

split scr~en configuration S-293
SPOOL deflne spool file,

$RJE2780/$RJE3780 C-76
SQ set prompt made, $COPYUTl

command U-64
SQRT data manipulation

instruction
coding description l-277
overview L-19

SS set program storage parameter,
$OISKUT2 command U-149

ST
display data s~t status,

$01UTIl command U-162
save disk or disk volume on
tape, lTAPEUTl command U-330

standard labels, tape
EOF1 S-240
EOVI S-239
fields S-238
HORl S-239
header label S-235
layouts 5-236
processing S-236
trailer label 5-235
volume label 5-235
VOL1 5-238

START
IDCB command L-176
PROGRAM statement operand

L-225
start and termination procedure,

$DEBUG U-85
STARTPGM 1-16
statement label l-4
static screen, terminal I/O

accessing example S-297
overview L-48

status, set, SE $HCFUTl command
C-110

STATUS data definition statement
coding description L-278
overview L-17

status data set, system Host
Communications Facility C-85

Status record C-258
STIMER timing instruction

coding description L-280
overview L-50, S-32
with PASSTHRU function C-238

storage estimating
application program size

S-344
supervisor size S-333
utility program size S-342

storage management
address relocation translator

1-71, S-42
allocating 1-25
description S-42
design feature S-13

storage map, resident loader 1-26
storage map ($SlASM) phase to

phase 1-262
storage resident loader, RLOADER

1-19
storage usage during program load

1-20
store next record ($PDS) S-261
store record ($PDS) 5-261

486 SC34-0314

strings, relational statement
l-180

SU
submit (X) function,

$RJE2780/$RJE3780 reset type
C-77

submit job to host, $HCFUT1
command C-l11

SUBMIT
Host Communications Facility,

TP operand C-98
send data stream to host,

$RJE2780/$RJE3780 C-77
submit job to host, $EDITI

command U-179
submit job to host, $FSEOIT
option U-217

SUBMITX send transparent,
$RJE2780/$RJE3780 C-77

SUB ROUT program control statement
coding description L-281
overview L-32, S-31

subroutines
$1MDATA S-303
$1MDEFN S-301
$Ir10PEN S-300
$IMPROT S-302
ALTIAM concatenation S-167
DSOPEN S-322
overview S-31
SETEOO S-324

SUBTRACT data manipulation
instruction

coding description L-283
overview L-19
precision table L-284

suggested utility usage U-48
supervisor/emulator

class interrupt vector table
1-10, 1-277

communications vector table
1-11, 1-278, 1-313

control block pointers 1-11
design features S-13
device vector table 1-11,

1-278
emulator command table 1-13,

1-282, 1-301
entry routines 1-47
equate table 1-279, 1-313
exit routines 1-49
features S-13
fixed storage area 1-9
functions 1-44

calling 1-60
generation 1-5, S-115
initialization control module,

EDXIN1T, description 1-81
initialization task module,

EDX5TART, description 1-81
interface routines 1-61
introduction 1-5
module names and entry points

S-309
module summary 1-8
overview 5-29
PA5STHRU session with C-225
referencing storage locations

in 1-12
service routines I-53
size, estimating S-333
task supervisor work area
·1-13, 1-280
utility functions (see
operator commands)

o

O·.~ I .

o

0'·'"
"

with the address translator
support 1-72

SUPEXIT supervisor exit routine
1-49, 1-63

support for optional features
L-15

SUPRTURN supervisor exit routine
1-49

surface analysis of tape, $TAPEUTI
utility U-319

SVC supervisor entry routine
1-47, 1-62

SVCABEND supervisor exit routine
1-49

SVCBUF supervisor request buffer
1-48

SVCI supervisor entry routine
1-48

symbol dictionary, $EDXASM 1-250
symbol table types, $EDXA5M 1-216
symbolic L-IO

address (disk,tape) L-10
disk/tape I/O assignments

L-10
diskette L-10
reference to terminals 5-110
sensor I/O addresses L-9
terminal I/O L-10

symbols (EXTRN) L-134
symbols (WXTRN) L-323
syntactical coding rules L-4
syntax checking in instruction
parsing ($EDXA5M) 1-221

syntax rules l-4
5Y5GEN (see system generation)
system

alternate logging device
5-46, 5-111

class interrupt vector table
1-10, 1-277

commands (see operator
commands)

common area 1-12
communications vector table

1-11, 1-278, 1-313
control blocks, referencing

1-289
data tables, EDX5Y5, module
description 1-75

device vector table I-II,
1-278

emulator command table 1-13,
I-282, I-301

generation
procedure S-115

host/remote C-205
logging device 5-46, S-110
operational and error
messages U-421

printer S-46, 5-110
program check and error
messages U-427

task supervisor work area
1-13, 1-280

SYSTEM configuration statement
l-39, 5-86

system configuration statements
5-75

system control blocks 5-42
system reserved labels L-4

TA allocate tape data set,
STAPEUT1 command U-333

tables, parameter equate L-11
tabs

HTAB SIMAGE command U-252
TABSET SEDIT1/N subcommand

U-198
VTAB SIMAGE command U-254

TAB5ET establish tab values
SEDIT1/N editor subcommand U-198

tape
bypass label processing 5-244
control L-74
data set L-40
defining volumes 5-62
definitions for data sets

L-40
end-of-tape (EOT) L-41
I/O instructions L-40
internals 1-97
labels

external 5-233
internal 5-233

load point (BOT) L-40
non-label

layout 5-242
processing 5-243
support 5-241

record L-40
return codes l-77, U-455
standard label

fields 5-238
layout 5-236
processing 5-236
support 5-235

storage capacity 5-59
symbolic addressing L-IO
utility, $TAPEUT1 5-233,

U-311
volume l-40

TAPE configuration statement 5-94
tape data set control block 1-99
tape device data block (see TDB)
TAPEINIT, tape initialization mod-
ule description 1-82

tapemark L-74
task

active/ready level table I-50
concepts 1-29
control I-42
control block (see TCB)
definition and control func-
tions

dispatching I-52
error exit facility

check and trap handling
5-268

linkage conventions 5-269
execution states 1-43, 5-39
internals 1-42
multiple-task program 1-33,

S-34
overview l-42, 5-29
priority (see priority, task
execution)

single-task program 1-33,
S-34

states S-39
status display, WHERE $DEBUG

command U-I02
structure 5-29

Common Index 487

supervisor 1-42
superVlsor address translator
support module 1-76

supervisor functions 1-44
supervisor work area 1-13,

1-280
switching I-51, 5-30
synchronization and control
I-54, 5-30

task code words L-8
TA5K task control statement

coding description L-285
overview L-42, 5-31

TA5K5AVE supervisor service
routine I-54

TCB task control block 1-32,
1-43, 1-49, I-56, 1-314

TCBEQU L-13
TO

display line and data ($P05)
5-258

display time and date, $OICOMP
subcommand U-124

test display, $OICOMP command
U-108

TOB, tape device data block
description 1-97
equate listing 1-316

TEB terminal environment block
C-128, M-13

Tektronix C-6
devices supported 5-14, 5-45
support for digital I/O 5-312

teleprocessing (see TP)
teletypewriter adapter C-7, C-21
TERMCTRL terminal I/O instruction

coding description L-288
overv i e~.J L -44
return codes L-301

TERMERR L-44
terminal

#7850 teletypewriter adapter
C-21

ACCA support C-7, L-295
ASCII C-7
assignment list, LA $TERMUTI

command U-336
attention handling L-47
attention keys L-47
code types C-303
configuration utility,

$TERMUTI U-334
connected via digital I/O

5-312
control block (see CCB)
data representation L-46
definition and control
functions S-47

device configurations C-8
EOXTIO/EDXTIOU module
description 1-78

environment block (see TEB)
error handling L-44
forms control L-46
forms interpretation for
display screens L-46

functions
data formatting C-16
definition C-16
interrupt processing C-17

hardware jumpers C-18
I/O L-46

attention handling L-47
data representation L-45
error handling L-44

488 5C34-0314

forms control L-45
prompting and advance

input L-46
screen management L-48

I/O internal design 1-105
I/O support layer 3 1-112
input L-46
keyboard and ATTNLI5T tasks

L-47
message sending utility,

$TERNUT3 U-344
new I/O terminal support

1-117
operations C-14
operator signals L-49
output L-46
output line buffering L-46
program function keys L-47
prompting and advance input

L-46
return codes C-20, L-219,

L-255, U-458
roll screens L-48
sample terminal support

program C-26
screen management L-48
server, Multiple Terminal
Manager C-119, M-7

session manager (see session
manager)

special considerations for
attachments of devices

via #1610 or #2091 with
#2092 adapters C-17

via #2095 with #2096
adapters C-21

special control characters
5-46

static screens L-48
supported devices and
features C-6

terminal I/O L-47
terminology for supported
terminals C-7

transmission protocol C-31
utilities (session manager)
5-215, U-40

virtual I/O 1-115
TERMINAL configuration statement

defaults 5-105
definition 5-96
overview 5-48

TERMINAL volume, Multiple Terminal
Manager C-120, C-171

terminate

test

logging, $LOG utility U-292
Remote Management Utility

C-251

B5C lines, $B5CUT2 utility
C-64

generated report or graphics
profile member U-108

label types, $TAPEUT1 utility
U-319

process interrupt for
occurrence of event, $IOTEST
U-267

TEXT data definition statement
coding description L-305
overview L-17

text editing utilities
edit dataset subroutine exam­
ples 1-326

full screen-editor $F5EDIT
o

o

o

o

U-209
line editors, SEDITI/N U-169
overview 5-66
work data set, format of

1-321
text wrapping, WRAP function

C-254
time/date

display, $W operator command
U-25

set, $T operator command U-19
set, automatic initialization
facility 5-130

time of day
GETTIME instruction l-167

TIMEDATE Host Communications
Facility, TP operand C-I00

TIMER configuration statement
5-33, 5-112

timer control l-50
timer module descriptions

(EDXTIMER, EDXTIMR2) 1-80
timing instructions l-50, 5-32
TITLE listing control statement

coding description l-308
overview l-28

TONE TERMCTRl function l-288
TOP repostiton line pointer,

SEDITI/N editor subcommand U-200
TP host communication instruction
description

coding description C-90
internals 1-153
subcommand operations 1-157

TPCOM host communications support
module description 1-81

trace printing routine for B5C,
$B5CUTl C-62, 5-65

trace ranges and breakpoints
setting, AT $DEBUG command U-90

trace routine for B5C, $B5CTRCE
C-61

trace table, software 5-265
transaction program, Multiple

Terminal Manager
functions L-28
Multiple Terminal Manager

C-121
transfer data set to host

SEND function C-247
WR $HCFUTI command C-l!2
WRITE $EDIT! command U-180
WRITE SF5EDIT option U-2!6

transfer rates for data, Host
Communications Facility C-84

transient program loader 1-19
transmission codes 5-98
transmission protocol, host
communications 1-156

transmitted data, length of, host
communications 1-159

TRAP DUMP force trap dump, STRAP
attention command U-349

TRAP END end STRAP use, STRAP
attention command U-349

TRAPOFF deactivate error trap,
$TRAP attention command U-349

TRAPON activate error trap, $TRAP
attention command U-349

UN unload indexed file, $IAMUTI
command U-246

UNBl1NK TERMCTRl function l-288
undefined length records, tape

5-245
UNLOCK TERMCTRl function l-288
unprotected field 5-307, U-253
UP move line pointer, $EDITI/N
editor subcommand U-201

update utility
$UPDATE convert object program

to disk U-408
$UPDATEH convert host object

program to disk U-418
updating a menu for the session

manager 5-224
user defined data member ($PD5)

5-252
user exit routine L-310

requires Macro Assembler 5-71
user initialization modules 1-17
U5ER program control instruction

coding description L-310
overview L-32

utilities U-47
B5C communications C-61
invoking U-2
listed by type 5-64, U-3
overview 5-5

utilities not supported by session
manager menu U-46

utility program size 5-342
utility usage U-48

V verify, SIN1TD5K command U-260
VA

display, variable, $DICOMP
subcommand U-125

display variable ($PD5) 5-254
variable length record, H05t

Communications Facility C-84
variable length records, tape

5-244
variable names L-4
vary disk, diskette, or tape
offline, $VARYOFF U-20

vary disk, diskette, or tape
online, $VARYON U-22

vector
addition l-19, L-54
data manipulation L-19

vector addition (ADDV)
coding description l-54
overview L-19

verify
disk or diskette data set, V

SINITD5K U-260
tape executing correctly, EX

$TAPEUTI command U-319
tape surface free of defects,

EX $TAPEUTI command U-319
verify and initialize disk or
diskette library, $INITDSK U-256

verify identification
host system C-223
remote system C-223

Common Index 489

VERIFY verify changes, $EDIT1/N
editor subcommand U-202

vertical tabs, defining U-254
VI list volume information,

$IOTE5T command U-270
virtual terminal communications

accessing the virtual termi­
nal 5-281

creating a virtual channel
5-280

establishing the connection
5-280

inter-program dialogue 5-282
internals 1-115
loading from a virtual
terminal 5-281

Remote Management utility
requirements C-281

volume
definitions (disk/diskette)

L-22, 5-52
dump restore utility,

$ r'1O V EV 0 L U-2 9 4
labels 5-60

VTAB define vertical tab setting,
$IMAGE command U-254

WAIT program sequencing statement
coding description L-313
overview L-42, 5-31
supervisor function 1-45,

I-58
wait state, put program in, W5

$IOTEST command U-264
waiting, task execution state

1-43
WE copy to basic exchange diskette

data set, $COPY command U-63
WHERE display status of all tasks,

$DEBUG command U-102
WHERES task control function

coding description L-315
overview L-42, $-287
return codes L-316

WI write non-transparent, $B5CUT2
command C-69

WIX write transparent, $BSCUT2
command C-69

word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

work data set
$EDXASM 1-249
$LINK U-400
$SlA5M 1-258

work files, $SlASM, how used
1-258

WR write a data set to host,
$HCFUT1 command C-112

WRAP function C-254, 1-166, 1-176
WRITE

disk/diskette I/O instruction
coding description L-317
overv i eL<J L -22
return codes L-320, U-455

Host Communications Facility,
TP operand C-IOl

IDCB command L-175
Multiple Terminal Manager

490 SC34-0314

CALL
coding description C-l33,

L-381
internals M-9
overview C-l18, L-29

save work data set
$EDITl command U-180
$EDIT1N command U-181
$F5EDIT primary option

U-216
tape I/O instruction

coding description L-317
overview L-22
return codes L-320, U-456

write data set to host, WR $HCFUT1
command C-112

write operations, HCF 1-156
WRITEl IDCB command L-175
W5 put program in wait state,

$IOTE5T command U-264
WTM (write tape mark) L-75
WXTRN program module sectioning

statement
coding description L-323
overview L-33

x-type format L-154
XI external sync 01, $IOTEST

command U-266
XO external sync DO, $IOTEST

command U-266
XYPLOT graphics instruction

coding description L-324
overvi eL.J L-26

YTPLOT graphics instruction
coding descrition L-325
overview L-26

lCOR, sensor I/O L-189

Numer;c Subjects

1560 integrated digital
input/output non-isolated fea­
ture C-6

different device
configurations C-8

use with different terminals
C-7

1610 asynchronous communications
single line controller C-6

considerations for attachment
of devices C-17

different device
configurations C-8

for interprocessor
communications C-29

to a single line controller
5-99

use with different terminals
C-7

2091 asynchronous communications
eight line controller C-6, S-99

considerations for attachment
of devices C-17

different device
configurations C-8

use with different terminals

()

o

o

c

C-7
2092 asynchronous communications
four line adapter C-6

considerations for ~ttachment
of devices C-17

different device
configurations C-8

to attach ACCA terminal 5-99
use with different terminals

C-7
2095 feature programmable eight
line controller C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2096 feature programmable four
line adapter C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2741 Communications Terminal
supported 5-45
TERMINAL statement example

5-106
3101 Display Terminal

attribute character C-122
block mode considerations

C-25
character mode considerations

C-22
interface with Multiple
Terminal Manager C-121, l-29

TERMINAL configuration
statement examples 5-108

3585 4979 display station
attachment C-6, 5-97

4952 Processor
partitions on 5-42
timer feature installed on

5-32
4953 Processor

partitions on 5-42
timer feature installed on

5-32
4955 Processor

partitions on 5-42
timer feature installed on

5-32
4962 Disk storage Unit

storage capacity 5-58
supported by Indexed Access

Method 5-146
4963 Disk Subsystem

storage capacity 5-58
supported by Indexed Access

Method 5-146
4964 Diskette Storage Unit

part of minimum system config­
uration 5-22

required for program
preparation 5-22

supported by Indexed Access
Method 5-146

4966 Diskette Magazine Unit
part of minimum system config­
uration 5-22

required for program
preparation 5-22

supported by Indexed Access
Method 5-146 '

4969 Magnetic Tape Subsystem
5-233

4973 Line Printer
defined in TERMINAL configura­
tion statement S-96

end of forms 5-307
TERMINAL statement example

S-105
4974 Matrix Printer

defined in TERMINAL configura­
tion statement 5-96

end of forms 5-307
restore to standard character
set, RE $TERMUT2 U-339

TERMINAL statement example
5-105

4978 Display Station
defined in TERMINAL configura­
tion statement 5-96

part of minimum system
configuration 5-22

reading modified data 5-307
required for program
preparation S-22

TERMINAL statement example
S-105

4979 Display Station
defined in TERMINAL configura­
tion statement 5-96

part of minimum system
configuration 5-22

required for program
preparation 5-23

TERMINAL statement example
5-105

4982 sensor I/O unit 5-84
5230 Data Collection Interactive

5-11
5620 4974 matrix printer
attachment C-6

'defined in TERMINAL statement
5-97

different device
configurations C-8

5630 4973 line printer attachment
C-6

defined in TERMINAL statement
5-97

5719-AM3 (see Indexed Access
Method)

5719-ASA (see Macro Assembler)
5719-CB3 (see COBOL)
5719-CB4 (see COBOL)
5719-F02 (see FORTRAN IV)
5719-Lf'13 (see
Mathematical/Functional Subrou-
tine Library) ,

5719-LM5 (see Macro Library)
5719-MSl (see Multiple Terminal

Manager)
5719-SM2 (see Sort/Merge)
5719-UT3 (see Utilities)
5719-UT4 (see Utilities)
5719-XS1 (see Basic Supervisor and

Emulator)
5719-XX2 (see Program Preparation
'Facility)

5740-LM2 (see Macro Library/Host)
5799-TDE (see Data Collection
Interactive)

7850 teletypewriter adapter C-6,
C-21

Common Index 491

o

o
492 SC34-0314

o

n
S-
o ...
6' c:
>
5"
:::I

CQ

C
;

READER'S COMMENT FORM

IBM Series!1 Event Driven Executive
Language Reference

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publ ications. I BM may
use and distribute any of the information you supply in any way it believes appro­
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. I nstead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

SC34·0314·2

Reader's Comment Form

Fold and tape Please Do Not Staple

IIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape

--- ------ - ---- ---- - ---- - - ----------_.-
®

International Business Machines Corporation
General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC34·0314·2
Printed in U.S.A.

o

o

'\ C'

o

." o
0::
»
0'
::J
to

C
::J
CD

READER'S COMMENT FORM

IBM Series/1 Event Driven Executive
Language Reference

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may

use and distribute any of the information you supply in any way it believes appro­

priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. I nstead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or cI arifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an I BM office or representative will be happy to forward your comments.)

SC34-0314-2

Reader's Comment Form

Fold and tape Please Do Not Staple

IIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WI LL BE PAID BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432,

Fold and tape

::::-==--== :: - ---- - ---=.:.::,;,=
®

I nternational Business Machines Corporation
General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC34-0314-2

Printed in U.S.A.

c

--- ------ - ---- ---- - ---- - - ----------_.-
(!)

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.

P. O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(International)

SC34-0314-2
Printed in U.S.A.

