EESE Series/1

SC34-0314-2 LICENSED
PROGRAM

File No. S1-35

IBM Series/1

Event Driven Executive

Language Reference

Program Numbers: 5719-LM5 5719-LM6 5719-AM3
5719-XX2 5719-XX3 5719-MS1
5740-LM2 5719-LM3

s=== Series/1

SC34-0314-2 LICENSED
PROGRAM

File No. S1-35

IBM Series/1

Event Driven Executive

Language Reference

Program Numbers: 5719-LM5 5719-LM6 5719-AM3
5719-XX2 5719-XX3 5719-MS1
5740-LM2 5719-LM3

Third Edition (April l980i
Use this publication only for the purpose stated.
Changes are periodically made to the information herein;

before using this publication in connection with the operation
of IBM systems, refer to the 1latest IBM Seriess/1 Graphic

Bibliography, GA34-0055, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or
information about, IBM products ((machines and programs),
programming, or services which are not announced in your coun-—
try. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, program-
ming, or services in your country.

Publications are not stocked at the address given belouw.
Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your local-
ity.

This publication could contain technical 1inaccuracies or
typographical errors. A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Systems Publica-
tions, Department 277, P.0. Box 1328, Boca Raton, Florida
33432. 1IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

(C) Copyright IBM Corporation 1979,1980

SUMMARY OF AMENDMENTS

New Instructions

In Chapter 3 the CONTROL instruction has been added to
support the IBM Series/1 4969 Magnetic Tape Subsystem

Instruction and Statement List

. "Appendix A"™ has been added to list all of the Event
Driven Language statements and instructions with
their available operands and default values.

Modified Instructions

The following instructions and statements have been
modified to include support for the IBM Series/1 4969
Magnetic Tape Subsystem:

. DSCB

. POINT

. PROGRAM

. READ

. WRITE

SC34-031¢ iii

Summary of Amendments continued

Bibliography

The Bibliography lists the books in the EDX library and
a recommended reading sequence. Other publications
related to EDX are also listed,.

Miscellaneous Changes

This manual has been modified to include new function
and to improve technical accuracy and clarity. New mate-
rial and technical changes are indicated by vertical
bars in the left margin.

iv

SC34-0314

@

HOW TO USE THIS BOOK

The material in this section is a guide to the use of this book.
It defines the purpose, audience, and content of the book as
well as listing aids for using the book and background materi-
als.

PURPOSE

The Language Reference contains all details for coding
individual Event Driven Language (EDL) instructions, except
those used exclusively for remote communications and advanced
terminal applications. Examples in the book illustrate the use
of many EDL instructions in different applications.

AUDIENCE

The Language Reference is intended for application programmers
who write and maintain application programs using EDL. The pro-
grammer is expected to know the Event Driven Language. EDL can
be learned by using the IBM Series/1 Event Driven Executive
Event Driven Executive Study Guide, SR30-0436, available
through your local IBM Branch Office.

HOW THIS BOOK IS ORGANIZED

This manual is divided into six chapters and one appendix:

. "Chapter 1l.Introduction”™ describes the Event Driven
Language. It introduces each instruction or statement and
describes its format. It also presents information about
registers and parameter naming operands.

4 "Chapter 2. Instructions and Statements - Overview"
contains the instructions divided into categories accord-
ing to their general use. These categories are arranged in
alphabetical order.

. "Chapter 3. Instructions and Statements - Descriptions"
contains a detailed description of each instruction or
statement in the Event Driven Language, showing syntax
rules, operands, and defaults. Each page contains a name
tab at the top of the page for easy reference.

SC34-0314 v

. "Chapter 4. Indexed Access Method"™ explains how this func-
tion is invoked and gives a detailed description of each
instruction used.

. "Chapter 5. Multiple Terminal Manager™ explains how this
function is invoked and gives a detailed description of
each instruction used.

L "Chapter 6. Programming Examples™ contains coded program
examples that use Event Driven Language instructions.
Some examples do not represent complete programs because
they do not include such instructions as PROGRAM, ENDPROG,
and END statements.

. "Appendix A. Instruction and Statement List" 1lists the
EDL, Communications, Indexed Access Method, and Multiple
Terminal Manager instructions and statements. The lists
also include the operands, their value ranges, and default
values. Once you become familiar with the instructions you
can code most instructions directly from these lists.

EXAMPLES AND OTHER AIDS

Throughout this book, coding examples and illustrations are
used to clarify coding techniques and requirements. Coding
examples are fully executable portions of complete programs
that can be entered as shoun. Coding illustrations are non-
executable portions of incomplete programs that show the cor-
rect format of all required parameters on a statement. Missing
code, or code provided by you, is indicated by a series of three
vertical or horizontal dots.

Several other aids are provided to assist you in using this
book:

. A Summary of Amendments lists the significant changes made
to this publication since the last edition

. A Bibliography:

- Lists the books in the Event Driven Executive library
along with a brief description of each book and a
recommended reading sequence

- Lists related publications and materials

. A Glossary defines terms

. A Common Index which includes entries from each book in the
Event Driven Executive library

vi SC34~-0314

D

C

RELATED PUBLICATIONS

Related publications are listed in the bibliography.

SUBMITTING AN APAR

If you have a problem with the Series/1 Event Driven Executive
services, you are encouraged to fill out an authorized program
analysis report (APAR) form as described in the IBM Series/1
Authorized Program Analysis Report (APAR) User's Guide,

GC34-0099.

SC34-0314 vii

viii 6C34-0314

>

O

Chapter 1. Introduction e e e e e o
Layout and Structure of EDL Programs
General Instruction Format e e e s
Syntax Rules e e e e e e e e e

Address Indexing Feature e e e e e

Use of The Parameter Naming Operands (Px=

Task Code Words o e s e s .« .
Symbolic Sensor Based I/0 A5519nments
Symbolic Terminal I/0 Assignments
Symbolic Disk/Tape 170 Assignments

.

Control Block And Parameter Equate Tables

Chapter 2. Instructions and Statements -

Communications (Reference only) .o e
Data Definition Statements e e s e

Data Formatting Instructions .« e .
Data Manipulation Instructions . e
Vector Data Manipulation v e v e e

Integer And Logical Instructions

.

Overview .

.

Floating-Point Arithmetic Instructions

Disk/Diskette I/0 Instructions
Definitions For Disk Data Sets
EXIO Control Instructions . e
Graphics Instructions . . .
Indexed Access Method Instructlons
Listing Control Statements v e e e s

Multiple Terminal Manager Instructions

Program Control Statements e e e e
Program Module Sectioning Statements
Program Sequencing Instructions .

Queue Processing . e e e e e
Sensor-Based 170 Statements e e e e
System Configuration Statements .
Tape I/0 Instructions
Definitions For Tape Data Se%s .
Task Control Instructions o v e e e
Terminal I/0 Instructions “ e e e e

Timing Instructions e e e s e e s e

.

.

Chapter 3. Instruction and Statement Descriptions

ADD e b e e e e e e e e e e e e e e e
ADDV * 0 * e o o . .

AND e s e e e e s e e e e e e e e e

ATTACH e e e e e s e e e e e e e e e

ATTNLIST c e e e e e e e e e e e e e

BSC (Binary Synchronous Communlcatlons)(Reference only)
BUFFER e e e e e e e e e e e e e e e

CALL e e e e e e e e e e e e e e e e

CALLFORT e e e e e e e e e e

CONCAT 4 * L . . . L] L
CONTROL & v ¢ ¢ v ¢ v v o o o o o o o @

.

.

.

.

.

.

. . .

Contents

.

CONTENTS

ix

CONVTB . .
CONVTD . .
COPY . . .
CSECT . . .
DATA/DC . .
DCB
DEFINEQ . .
DEQ
DEQT . . .
DETACH . .
DIVIDE . .
DO
ENDDO . . .
DSCB . . .
ECB
EJECT . . .
ELSE . . .
END
ENDATTN . .
ENDDO . . .
ENDIF . .

ENDPROG . .
ENDTASK . .
ENQ
ENQT . . .
ENTRY
EOR
EQU
ERASE . . .
EXIO . . .
EXOPEN . .
EXTRN/WXTRN
FADD . . .
FDIVD . . .
FIND . ..
FINDNOT . .
FIRSTQ . .
FMULT . . .
FORMAT . .

Conversion of Nume
Alphameric Data Specification
Blank Lines in Qutput Records
Repetitive Specification
Storage Considerations

FPCONV o .
FSUB o« o e
GETEDIT . .
GETTIME . .
GETVALUE .
GIN o« e e e
GOTO . v
I1DCB N
IF ¢«
ELSE .« .
ENDIF o ..

x S5C34-0314

e o o o

e o * o o

e o o e e o

e e ¢ o

e o & e o o

e e o o

.

.

.

« o o o e o

e e ¢ ¢ o

e e o o o o

.

ric Dat

e e & ¢ o o e o e ¢ o o ¢ e o & o o+ o ¢ o

e & e o * e o

a

.

3

* e o & o & o

e o o o o o

.

e e« & e

¢ & e e e o o e e ¢ e o o

e & & o &« o o o e

« o e o

-

101

79
82
86
87
88
91
94
95
97
98
99

103
105
107
109
110
111
112
113
114
115
116
117
119
121
122
124
126
128
129
134
135
137
139
141
143
144
146
148
152
155

155

156
157
159
162
167
169
172
173
175
177
178
178

INTIME
10CB .
I0DEF

SPECPI - Proc

I0R o .
LASTQ
LOAD .
MOVE .
MOVEA
MULTIPLY
NEXTQ .
NOTE
PLOTGIN

.

.

.

.

.

Plot Control

POINT
POST
PRINDATE
PRINT
PRINTEXT
PRINTIME
PRINTNUM
PROGRAM
PROGSTOP
PUTEDIT
QCB . e
QUESTION
RDCURSOR
READ
READTEXT
RESET .
RETURN
SBIO .

Analog Inp

.

.

ut

ess Interrupt User

.

Analog OQutput
Digital Input

Digital Output

SCREEN
SHIFTL
SHIFTR
SPACE .
SPECPIRT
SQRT .
STATUS
STIMER
SUBROUT
SUBTRACT
TASK
TERMCTRL
TEXT
TITLE

TP Host Communications (Reference only)

USER
WAIT .
WHERES
WRITE

.

.

.

.

.

.

.

.

.

3

.

.

.

.

.

.

.

.

. L] L] L]
. L] * .
.« e e e
Routine
.
. .
.
. . * .
. *
.
o e e e
. . . .
- »
*
- L) .
. Q »
L) . -
L] L] -
L] .
. . *
. . - L]
L) L] L)
L] L] .
. . . L]
L] .
.
. . .
L] . -
. .
Ll . .
.
- . .
* . . L]
. . L] L]
. L] *
- L] L]
L . .
. . L -
. . - 1]
L] .
« e e e
. L] . *
. .
. *
L) *
* . .
.
L] L] .
- . .

.

.

Contents

181
183
185
189
191
193
194
201
2046
205
207
209
210
210
212
213
215
216
217
221
222
225
234
236
240
262
246
245
251
258
259
260
263
264
265
267
270
271
273
275
276
277
278
280
281
283
285
288
305
308
309
310
313
315
317

Xi

WXTRN/EXTRN T T T T

XYPLOT
YTPLOT

.

.

. . e e o o o o . . . e o ¢ e+ e * e+ e . * o . . .

Chapter 4. Indexed Access Method e o o o s o e u s o

DELETE
DISCONN
ENDSEQ
EXTRACT
GET .
GETSEQ
LOAD
PROCESS
PUT .
PUTDE
PUTUP
RELEASE

Chapter
ACTION
BEEP
CDATA
CHGPAN
CYCLE
FAN .
FILEIQ
FTAB
LINK
LINKON
MENU
SETCUR
SETPAN
WRITE

Chapter
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

. . . * e s e . (3

. . . LI SR . o o . . - e o

. . o o .

. . . e v ®

5. Multiple Terminal Managenr e e s e e s e e .

9:
10:
11:
12:
13:
14:
15
16:

17:
18:
19:

. . ¢ e
. . 3 .« s .

. 3

. e L) * e * . . . 3
. .

¢ . o e * o o . - ¢ . . .

Programming Examples e e e e s s s e e s e
Read and Print Date C e e e e e e e e e e e
Analog Input o e v s e e e e e e e e e s
Analog Input Hith Bufferlng To Disk e v e e

¢t Digital Input and Averaging e e e e e e e
! Index Register UUsage e s e e e e s e e s

Use of Movea N . e e e e e s
A Two Task Program Nlth ATTNLIST e e v e
Program Loading Functions e e e e e e e e
Floating Point, WAIT/P0OST, GETEDIT/PUTEDIT
User Exit Routine e e e e e e e e e e e e
I/0 Level Control Program . . . « ¢« ¢« + « &
Graphics Instructions Programming Example
Format and Display Trace Data e s v s s
Use of Indexed Access Method e e e e e e
Write data to tape data set o e .« .
Processing Standard Labels Using BLP . .
Write A Data Set To A SL Tape Then Read It
Initialize and WRITE a NL Tape e v e e e e
READ the third file on tape e e e e e e e e

xii SC34-0314

323
324
325

327
329
332
334
336
338
341
344
367
350
352
354
356

359
360
361
362
364
365
366
367
372
374
376
377
378
379
381

383
384
386
387
390
392
394
395
397
398
400
403
408
411
414
419
420
422
624
426

O

| Appendix A: Instruction and Statement List

Event Driven Language Instructions .« .
Indexed Access Method e e e e e e e e e s
Multiple Terminal Manager e 4 e e v e

BibliographyY . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o« o o o &«
Event Driven Executive Library Summary
Event Driven Executive Library e e
Summary of Library v e e e e e e e e
System Guide e e s e e e e e e e e
Utilities e e e e e e e e e e e e e
Language Reference e v e s e e e e s
Communications Guide e e e e e e e s
Internal Design e e e e e e e e e e

Reference Summary e e b e e e e e e
Tabs e e e 4 e e e e e e e e e e e e
Reading Sequence e e e s e e e e e e

Other Event Driven Executive Programming
Other Series/1 Programming Publications
Other Programming Publications « e e e
Series/1 System Library Publications .

Glossary

Common Index

Contents

429
429
437
438

439
439
%39
440
440
440
G641
461
661
462
442
442
443
443
464
4G4

447

459

xiii

Xiy

SC34-0314

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

11.

13.
14.
15.
16.
17.
18.
19.
20.

Symbolic I/70 Assignment

The Control Mechanism of Queue Processing .

o o

LIST OF FIGURES

The Concurrent Execution of Multiple Tasks

Function of ATTNLIST e e e e
BUFFER Statement e e e e e e

Execution of Subroutines . e
EXIO Return Codes e e e e e e
EXIO Interrupt Codes e s e e e
GETEDIT Overvienw e e e e e e s

. Two Ways of Loading a Program

Terminal I/0 Return Codes .
READ/WRITE return codes « e
Terminal I/70 Return Codes . .

Virtual Terminal Communication
Terminal I/0 - ACCA Return Code
Text Statement e e e e e e

. .

¢ e

.

.

.

Return

s

.

Codes

. . .

Calling A User Exit Routine and Returning .

READ/WRITE return codes .« e e
Graphic Program Qutput -
Format and Display Trace Data

List of Figures

10

38

43

63

67

69
131
132
166
200
219
249
255
256
301
307
311
321
410
413

xXv

XV i SC34-0314

CHAPTER 1. INTRODUCTION

The Language Reference is written for programmers who write and
maintain application programs in the Event Driven Language
(EDL). You are expected to be familiar with the overview infor-
mation in the System Guide. -

The Event Driven Language is a programming language designed
for coding application programs. The language is designed at a
level that allows flexibility for the application programmer
without sacrificing productivity and 1is efficient in exe-
cution. The language can be used effectively for virtually any
type of application.

The Event Driven Language contains many advanced features
which provide great flexibility in application programming.
For example, it allows exiting to and returning from other pro-
grams or routines where this level of complexity is5 required.
It provides automatic translation for reading and writing
alphabetic, numeric, or alphameric data to and from graphic
screens. The language provides different levels of control for
I1/0 operations. You can use the Event Driven Language to
program I/0 and allow the program to be device independent in
most cases or you can control I/0 devices at the machine
instruction level.

An application program consists of instructions combined to
form a task. A program can consist of one or more tasks. Each
task has an assigned priority which is used by the supervisor
to allocate system resources for task execution.

Application programs or tasks are made up of Event Driven Lan-
guage instructions that. have been processed by a compiler or
assembler and prepared for execution by the $UPDATE/LINK sys-—
tem utilities. At execution time, the Event Driven Executive
(EDX) Supervisor/Emulator analyzes the compiled or assembled
format of an instruction and links to the appropriate supervi-
sor routine to perform the operation. Following the completion
of each instruction, the supervisor processes the next sequen-
tial instruction in the highest priority task that is in a
ready state.

Programs uwritten using the statements in this manual can be
processed by any one of the following:

. Event Driven Language compiler SEDXASM (5719-XX2 or
5719-XX3)

. Macro Assembler, $S1ASM (5719-ASA), in conjunction with
the macro library of program number 5719-LM5 or 5719-LM6

Chapter 1. Introduction 1

. S/7370 Program Preparation Facility (5798-NNQ) which will
be referred to as the host assembler in conjunction with
the macro library of 5740-LM2 or 5740-LM3

Note: Throughout this manual, the S/370 facility is referred
to as the host assembler.

LAYOUT AND STRUCTURE OF EDL PROGRAMS

There are three basic components in an Event Dirven Executive
application:

L The Seriess/1 machine configuration definition
. The application 170 definitions

. The instructions and data areas comprising the application
program

This three—-part division minimizes the dependence of the
application program on a particular system hardware configura-
tion. In addition, the sensor based 1/0 definitions are
checked against the machine configuration to reduce the exe-
cution time errors resulting from incorrect 170 assignments.

The "System Configuration™ section of the System Guide
describes the statements which define the hardware features on
the Series/1l. There are many optional components in the Event
Driven Executive supervisor; their selection depends upon the
configuration of the Series/1 for which the supervisor is com-—
piled or assembled. A set of configuration statements begin-
ning with SYSTEM are used to compile the configuration data
which is then stored with the supervisor during installation,.

The I/0 devices and data sets used by an application are
defined in the program itself. The PROGRAM statement must be
the first statement in every EDL program. Operands on the PRO-
GRAM statement and several I/0 definition statements are pro-
vided to specify the symbolic device names, data set names,
options, techniques and defaults to be used by the program,.
These optional statements are normally grouped together imme-
diately following the PROGRAM statement Every program is auto-
matically provided with a default definition of one terminal,
the terminal from which the program was invoked. Up to 9 data
sets can be made available for use simply by identifying them
with the DS operand of PROGRAM. Many applications require no
additional I1/0 descriptions.

The balance of an application program consists of its logic,
data manipulations, I/0 requests, and data. Because the Event
Driven Language is both simple and pouwerful, it often requires
very few instructions to describe a complete application pro-

2 5SC34-0314

gram.
A user application program has the following basic structure:

PROGRAM
other I/0 definitions

application program instructions

application program data

.

ENDPROG
END

A complete source program starts with a PROGRAM statement and
ends with the ENDPROG and END statements.

GENERAL INSTRUCTION FORMAT

Beginning with "Chapter 3. Instruction and Statement
Descriptions”™ on page 51, each instruction is described in
detail with brief remarks about the function, the syntax to be
used to invoke a particular operation, the required parame-
ters, and the defaults used if parameters are not specified.
Each operand (or parameter) is listed and described.

Event Driven Language instructions have the following struc-
ture?

label operation operands

The operands field in many cases has multiple entries, as indi-
cated by the following example:

label op opndl,opnd2,..,0opndn,Pl=,P2=,...,Pn=
label The label field, containing a symbolic label with
a maximum of 8 characters. In most cases the label

is optional. If used it must start incolumn 1.

operation The operation field (or op) containing the
instruction or statement.

operands The operands field, containing the operands or
parameters for the instruction.

Chapter 1. Introducfion' 3

P1=,P2=,Pn= The parameter-naming operands used to allow
modification of the instruction parameters at exe-
cution time.

SYNTAX RULES

Syntactical coding rules are the same as those for the IBM
Series/1 Macro Assembler. Some specific rules are as follouws:

U] An alphabetic string is 1 or more alphabetic characters (A
- 2) oar ¢, #, and @, the special characters.

. An alphameric string is 1 or more alphabetic characters or
numeric characters (0 - 9).

. All upper case letters shown in the syntax descriptions
starting in "Chapter 3. Instruction and Statement
Descriptions” on page 51 must be coded as shown. This also
applies to the comma immediately preceding the parameter
and the equal sign (=) following. For example:

» PREC=

. Ellipses (...) indicate that a parameter may be repeated a
variable (n) number of times.

° The vertical bar (]) between two operands indicates mutu-
ally exclusive operands; one or the other can be used but
not both.

. All labels, instruction mnemonics, and parameter names

must be alphameric strings of 1 to 8 characters in length,
the first being alphabetic.

. Statement labels must begin in column 1. To continue a
statement on another line, code a symbol in column 72, for
example an asterisk (%), and begin the next line in colunmn
l16. Examples shown in this manual may not conform to the
column spacing conventions due to limitations in the
length of printed lines.

e Several instructions allow the use of immediate data or
constants. These are called self-defining terms and
improve the flexibility and ease of programming.

. Variable names, which are defined elsewhere by means of the
EQU statement, must be coded with a leading plus sign (+)
for proper compiler operation.

. The following labels are reserved for system use:

4 S5C34-0314

O

- All labels beginning with a $¢
- RO, R1, R2, R3, R4, R5, R6, R7, FRO, FR1, FR2, FR3
- #1, #2

- RETURN (except when used in the instruction to end a
user exit routine)

- SETBUSY
- SUPEXIT
- SvVC

U The operands, opndl,opnd2,...0pndn, are labels, names, or
values defined for each instruction. Operands may also
take the form NAME=name. This is called a "keyword"” oper-
and., Within any one instruction, the total positional and
keyword operands must not exceed 50.

The parameter naming operands, Pl=,P2=,...Pn=, or P=(,..)
are used to allow modification of instruction parameters
at execution time. This is discussed further on the follow~-
ing pages.

Instruction formats are illustrated in the following example
of a simple program with a primary task ADDTEN. The first
statement, PROGRAM, starts the program and defines the entry
point as DOTEN. The DATA statement defines the variable COUNT
to be 0. The first instruction has the label DOTEN, which
starts a DO loop with a count of 10. The next instruction adds
1l to a variable, COUNT, which was initialized to 0 by the DATA
statement. The ENDDO specifies the end of a DO loop. The ADD
instruction is executed 10 times, then PRINTEXT and PRINTNUM
instructions print the result on a terminal. The PROGSTOP
statement terminates the program execution. The ENDPROG and
END statements must be the last two statements of an Event
Driven Executive application source program.

ADDTEN PROGRAM DOTEN
COUNT DATA F'0°’ INITIALIZE COUNT TO 0
DOTEN DO 10, TIMES LOOP 10 TIMES
ADD COUNT, 1 INCREMENT COUNT BY 1
ENDDO
ENQT

PRINTEXT 'RESULT ="
PRINTNUM COUNT

DEQT

PROGSTOP

ENDPROG
END

Chapter 1. Introduction 5

The message will be: RESULT=10. This will be displayed on the
terminal invoking this program.

Note: The program examples, starting in "Chapter 6.
Programming Examples" on page 383 can be of great assistance in
understanding the usage of many of the instructions introduced
here and described in detail beginning in "Chapter 3.
Instruction and Statement Descriptions™ on page 51.

ADDRESS INDEXING FEATURE

Two software registers are available to you for each task and
may be referenced in many instructions to provide indexed
addressing. The registers themselves are referenced by the
names #1 and #2. Except where specifically prohibited, the reg-
isters may be used in the same manner as any other variable in
the program. For example, the integer arithmetic, logical,
data movement, and program sequencing instructions may be used
to set, modify, and test these registers. Other instructions
are only permitted to use these index registers in the parame-
ter format (parameter,#r). For example, the instruction

MOVE #1,0
will set register #1 to the value 0. The instruction
MOVE #2,A

Wwill set register #2 to the contents of the variable A. An exam-
ple of the use of the register as the from parameter is:

ADD A,¥1
Here, the contents of register #1 will be added to the variable
A and the result will be placed in A. It may be necessary to set

a register to the address of a variable or vector. This is
accomplished with the MOVEA instruction. For example,

MOVEA #2,BUFFER1
sets register #2 to the address of the variable BUFFERL.

The syntax of an instruction parameter in which an index regis-
ter is specified is in the form:

(parameter, #r)

where parameter is either an address or a constant and r is
either a 1 or a 2. The effective address will result from the
sum of the address (or constant) specified by parameter and the
current contents (constant or address) of the referenced index
register, 0Only one of the variables, either the parameter or

6 SC34-0314

/ﬂ/ *\W\\

W

the index register, can be an address; the other must be a dis—
placement constant.

For example, if #1 = 2 then the indexed instruction
MOVE A,(B,#1)

would be equivalent to the nonindexed instruction

MOVE A,B+2
as would
MOVE A, (2,%#1)

if register #1 contained the address of B. The following exam-
ple illustrates the use of the indexing feature in a DO loop to
find a value of =350 in a vector containing 1000 elements:

MOVE #1,0

DO 1000, TIMES
IF ((BUF,#%1),EQ,-350),G0T0, FOUND
ADD #1,2

ENDDO

did not find a match

FOUND MOVE DISP, #1

.

.

~The index register, #1, is set to 0, a DO loop is started to

execute 1,000 times. The buffer BUF has an implied length of
1,000 words (2,000 bytes). A test is made on the first value of
the buffer, and if a match occurs, a branch to the label FOUND
is made. If not, the register is incremented by 2 (2 bytes =1
word) and the second value tested, and so on. MWhen the value
-350 is found in the buffer, the displacement from the start of
the buffer, which is now contained in #l1, is saved at the
location DISP.

Each task has its own #1 and #2 index registers and the supervi-
sor always interprets instructions using the currently execut-
ing task's registers. Thus, individual programs and
individual task within the same program will have different
values in their respective index registers. If a subroutine is
called by several different tasks, it uses the calling task's
#1 and #2. Overlays, however, are independent programs with
their own tasks and therefore have their own registers and do
not use the invoking task's registers. Also, when moving data
into or out of #1 or #2 with the cross—-partition facility of
MOVE, remember that the index registers are in the executing
programs partition. '

Chapter 1. Introduction 7

USE OF THE PARAMETER NAMING OPERANDS (PX=)

In some programs it is necessary to complete the parameters
used in certain instructions during execution. The Px operands
permit this to be done easily. The Px operands refer to other
operands within the same instruction in the following manner:
Pl refers to opndl, P2 refers to opnd2, and so on, through the
instruction according to the syntax for each instruction. For
example, the number of times to execute a loop may not be knouwn
at compile time. You may assign a name to a parameter by adding
the keyword Px=NAME to the instruction definition, where x is
the operand number (1,2,..). The operand number specified in
the Px keyword is given the name specified by the Px operand.
This name can then be used as an operand in other instructions
that modify the parameter at execution time. The following
example shouws a typical use of a Px operand. The P1=M operand on
the ADD instruction causes the label M to be placed on the first
operand in the ADD parameter list. The parameter list is shouwn
as DC instructions; these are automatically generated by the
compiler. The MOVEA instruction (prior to the ADD) uses the
label M to modify the variable to be used by the ADD
instruction.

MOVEA M, NAME address of name
ADD A,B,Pl=M
+ DC A(SADD) ADD operation
+M DC ACA) parameter 1
+ DC A(B) parameter 2

.

Execution of the MOVEA instruction changes the contents of the
first operand of the ADD instruction from:

+M DC ACA)

+M DC ACNAME)

and execution of the ADD instruction would result in the addi-
tion of the contents of NAME and B.

| TASK CODE WORDS

Each task in the Event Driven Executive environment has a task
control block (TCB) associated with it. The first two words of
the TCB are called task code words and can be accessed using the

8 SC34-0314

taskname. The taskname is described more fully in "Chapter 3.
Instruction and Statement Descriptions” on page 51 under the
statements PROGRAM and TASK.

The first task code word (word 0) is used by the EDX supervisor
to store the return code of various instructions. This word can
be tested to determine the value of the return code of those
instructions that return a code following their execution.
This test must be performed immediately after the instruction
execution because the task code word may be overlaid by the
return code of the next instruction.

The second task code word (word 1) may contain additional
information unique to the function being used or the condition
encountered.

SYMBOLIC SENSOR BASED I/0 ASSIGNMENTS

The sensor—-based I/0 instruction (SBI0O) refers to the 1I/0
devices using a 3- or 4-character name. The first 2 characters
identify the type of device: AI, DI, PI, AO, and DO for analog
input, digital input, process interrupt, analog output, and
digital output, respectively. The next 1 or 2 characters are
the user identification for the device, a number between 1 and
99. For example, the user may have three analog input termi-
nals assigned to him. He identifies them as AIl, AI2, and AI3.
The assignment of the actual physical addresses is done prior
to compiling the application program using the sensor based 170
definition statement (IODEF). Therefore, all SBIO
instructions become independent of the physical location of
the sensor I/0 points.

The assignment of sensor I/0 symbolic addresses is described
under "IODEF" on page 185. Figure 1 on page 10 depicts the
relationship between symbolic I/0, IODEF, and the physical 1/0
unit.

Chapter 1. Introduction 9

Sensor-based Sensor-based Physical
1/0O execution 1/0 definition sensor-based
instruction instruction 1/0 address
SBIO |IODEF SENSORIO
CCx CCx
Address > @ @
Specifying Specifying Describes
the action the physical physical
location device
CC can be A1, AO, Specifies
DI, DO x can be logical
from 1 to 99 device

Figure 1. Symbolic 170 Assignment

SYMBOLIC TERMINAL I/0O ASSIGNMENTS

Symbolic addressing is also used for terminal devices. In the
application the terminal is identified with a name which at
execution time is related to the TERMINAL system configuration
statement with a label of the same name. A default terminal can
be accessed by omitting the terminal name from the terminal 1/0
statements in the application. This causes the terminal which
invoked the application to be used for the I/0 and makes the
application completely independent of terminal addresses.

SYMBOLIC DISK/TAPE I/0 ASSIGNMENTS

Symbolic addressing for disk, diskette, or tape devices is
achieved by having all I/0 statements in the application refer
to the symbolic data set control block DSCB name. At execution
time, the data set and volume defined by the DSCB are found, and
I/0 is directed to the proper physical device addresses. If
desired, the data set and volume names can be supplied by you at
the terminal when the program is loaded for execution.

10 SC34-031¢

N
7

CONTROL BLOCK AND PARAMETER EQUATE TABLES

Application programmers sometimes wish to obtain data directly
from system control blocks when coding specialized functions
such as terminal commands (ATTNLIST exits), error exits (TASK
ERRXIT or TERMERR) or a binary synchronous communication
application. Many parameter lists and control blocks have
equate tables which provide symbolic names for various values
and the offset of each field relative to the beginning of the
control block. Symbolic field names can be used in conjunction
Wwith index registers (see the "Address Indexing Feature™ topic
in this manual) to address the data in the control blocks. The
symbolic values are often used as parameters.

These equate tables are:

BSCEQU DSCBEQU PROGEQU
CCBEQU ERRORDEF TCBEQU
CMDEQU FCBEQU TDBEQU
DDBEQU IAMEQU

Each equate table consists of a series of EQU statements which
can be included in your program using the COPY statement.
Although EQUs can be placed anywhere in a program, they are
usually grouped together at either the beginning or the end.
Some of the commonly used copy-code tables are briefly
explained in the following sections. The control blocks them-
selves are described in Internal Design.

When compiling programs with the host or Series/1 Macro Assem-—
blers, many equate tables are automatically included when a
PROGRAM instruction is assembled. Tables included this way are
PROGEQU, TCBEQU, DDBEQU, CMDEQU, and DSCBEQU.

BSCEQU

The BSCEQU equate table provides a map of the control block
built by the BSCLINE system configuration statement.

BSCEQU is also the name of a macro in the macro libraries used
with the host or Series/1 macro assembler. Do not attempt to
COPY BSCEQU when using either macro assembler.

CCBEQU

The CCBEQU equate table provides a map of the control block

(CCB) built by the TERMINAL system configuration statement.

Chapter 1. Introduction 11

CMDEQU

The CMDEQU equate table provides a map of the supervisor's emu-
lator command table.

DDBEQU

The DDBEQU equate table provides a map of the device data block
(DDB) built by the DISK system configuration statement.

DSCBEQU

The DSCBEQU equate table provides a map of the data set control
block (DSCB) built by either the PROGRAM or DSCB statements.

ERRORDEF

The ERRORDEF equate table provides symbolic values for use in
checking the return codes from the LOAD, READ, WRITE, and SBIO
instructions.

FCBEQU

The FCBEQU equate table provides a map of an Indexed Access
Method file control block (FCB) for use with the EXTRACT func-—
tion.

IAMEQU

The IAMEQU equate table provides a set of symbolic parameter
values for use in constructing parameter lists for CALLs to
Indexed Access Method functions.

12 SC34-0314

O

PROGEQU

The PROGEQU equate table provides maps of the program header
(built by the PROGRAM statement) and the supervisor's communi-
cation vector table (CVT).

TCBEQU

The TCBEQU equate table provides a map of the task control
block (TCB) built by either the TASK or PROGRAM statements.

| 1DBEQU

The TDBEQU equate table provides a map of the tape data block
(TDB) built by the TAPE system configuration statement.

Chapter 1. Introduction 13

14 SC34-0314

®

CHAPTER 2. INSTRUCTIONS AND STATEMENTS -~ OVERVIEW

This chapter presents the coding instructions and statements
grouped by functions and their usage and listed in alphabetical
order according to function. For example, the WRITE
instruction falls into the application type listed under
"Disk/Diskette I/0 Instructions” on page 22 and also repeated
under "Tape I/70 Instructions" on page 40. There are
programming considerations with each group of instructions and
you should be familiar with these considerations prior to cod-
ing the individual instructions.

Some instructions/Zinstruction groups require the support of
optional features in your hardware configuration. Before these
features are accessible by your programs, various supervisor
modules must be included in $LNKCNTL during yvyour system gener-—
ation. Refer to the System Guide for supervisor modules
required for optional features support.

For detailed descriptions of individual instructions see
"Chapter 3. Instruction and Statement Descriptions”™ on page 51
of this manual.

Chapter 2. Instructions and Statements - Overview 15

COMMUNICATIONS (REFERENCE ONLY)

Binary Synchronous Communication Instructions

BSCCLOSE
BSCIOCB
BSCOPEN
BSCREAD
BSCWRITE

Binary synchronous communication instructions allow vyou to
read and write data to a host system in binary synchronous
mode. These instructions are described in detail in the
Communications and Terminal Applications Guide.

Host Communications Facility Instructions (TP)

TP CLOSE TP RELEASE ﬁg)
TP FETCH TP SET LY
TP OPENIN TP SUBMIT

TP OPENOUT TP TIMEDATE

TP READ TP WRITE

The TP instruction provides services used to communicate with
the Host Communications Facility installed user program (IUP)
on a S$/370 processor. Detailed descriptions are described for
these instructions in the Communications and Terminal
Applications Guide.

16 SC34-0314

DATA DEFINITION STATEMENTS

BUFFER EQU
DATA STATUS
bC TEXT

Use the data definition statements to define storage areas and
the data initially placed in these areas. The DATA and DC
statements perform the same function and have the same oper-
ands. The Series/1 and host macro assemblers provide some
additional operands for DC, but all operands shown in the
DATA/DC description are accepted by both macro assemblers and
SEDXASM unless otherwise noted.

Chapter 2. Instructions and Statements - QOverview 17

DATA FORMATTING INSTRUCTIONS

CONVTD
CONVTB
FORMAT
GETEDIT
PUTEDIT

The data formatting instructions allows you to prepare format-
ted data for display on the terminals or printers attached to
the Series/1. In addition, you can format data in storage and
then allow the program to determine the destination.

The data formatting instructions FORMAT, GETEDIT, and PUTEDIT
require that your object program be processed by the link edit
program, S$LINK, to include the formatting routines which are
supplied as object modules. The EXTRN statements necessary to
reference these modules are generated as part of the compila-
tion of the instruction. The modules can be automatically
included in your program when required by using the $LINK
autocall facility and the $AUTD autocall list provided in
ASMLIB. For information on the use of the AUTOCALL option of
S$LINK, refer to Utilities, Operator Commands, Program

Preparation, Messages and Codes.

You may also build your own autocall list or include the format
modules yourself. The modules names are:

$GPLIST $PUAC
$GEER $PUFC
$GESC $PUIC
$GEAC ¢PUXC
$GEFC $PUHC
$GEIC $PUSC
$GEXC $PUEC
SGEPM

18 SC34-0314

U

O

DATA MANIPULATION INSTRUCTIONS

ADD FDIVD MOVEA
ADDV FMULT MULTIPLY
AND FPCONV SHIFTL
DIVIDE FSUB ’ SHIFTR
EOR I0OR SQRT
FADD MOVE SUBTRACT

| vector Data Manipulation

A vector is defined in this manual as a series of contiguous
data elements; bytes, words, or double words. Operand 1l deter-
mines the beginning location of a vector and the count value
determines the vector length. Operand 2 is applied to each
element of the vector.

The ADDV and MOVE instructions are exceptions to this because
they establish 2 vectors: operand 1 and operand 2 along with
the count value. In these cases the first element of operand 2
is applied to the first element of operand 1, then the second
element of operand 2 is applied to the second element of oper-
and 1, and so on, until the count is exhausted.

If the MOVE instruction operand 2 is immediate data, an explic-
it constant, then only operand 1l is a vector.

Integer And Logical Instructions

Integer arithmetic, logical, and data movement operations are
performed with instructions which have a common general form.

Data Representation

Arithmetic operands are interpreted as signed-binary integers
with negative values represented in twos complement form.
Single-precision operands consist of 16 bits including sign;
double-precision operands consist of 32 bits including sign.
Logical operands are interpreted as bit strings of the appro-
priate length: byte, word, or doubleword. Single- and
double-precision operands of both types must be located on even
address boundaries.

Chapter 2. Instructions and Statements - Overview 19

| Overflow

Overflow conditions encountered during the integer
instructions ADD, ADDV, SUBTRACT, and MULTIPLY are not
reported by EDX.

O

Mixed-precision Operations

Allowable precision combinations for integer arithmetic oper-
ations are listed in the following table:

opndl opnd2 Result Abbreviation Remarks

S S S S default

S S D SSD -

D 3 D D -

D D D DD -

D S S DSS DIVIDE only
Legend: S = single precision

D = double precision

Operations Using Index Registers

Index registers may generally be treated as ordinary single-—
precision integer arithmetic or logical variables. However,
results of a vector operation directed at the registers (#1 and
#2) may not extend beyond #2.

Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions share a common format.
Attempts to perform floating—-point operations on a Series/l
not equipped with the floating-point hardware result in a pro-
gram check error. Floating-point support must also be included
in the supervisor when it is generated. FLOAT=YES must be
specified on both the PROGRAM and TASK statements whenever
floating-point instructions are used in any task within a pro-
gram.

20 SC34-0314

O

Data Representation

Arithmetic operands are interpreted as signed floating-point
numbers in either single- or extended-precision. Single—-
precision, for floating-point instructions, is 32 bits;
double-precision is 64 bits. Further, the second data operand
may be coded as an integer value between -32768 and +32767.
This immediate data will be converted to a single precision
floating point number prior to the arithmetic operation to be
performed.

Operations Using Index Registers

The index registers (#1 and #2) cannot be used as operands in
floating—point operations because the index registers are only
16 bits in size. These registers may be used to specify the
address of a floating-point operand.

Return Codes

Floating—-point operations produce return codes which are
placed in the task code word. This word is referred to by
taskname (see PROGRAM/TASK statements). These codes must be
tested immediately after the floating-point instruction is
executed or the code may be destroyed by subsequent
instructions. The return codes are listed following the
description of each individual floating-point instruction,

Chapter 2. Instructions and Statements - Overview 21

DISK/DISKETTE I/0 INSTRUCTIONS

DSCB
NOTE
POINT
READ
WRITE

You are provided with both sequential and random access to disk
or diskette data sets. When a program is first loaded for exe-
cution, all of your data sets have been opened for access
(reading or writing) beginning with the first record. Sequen-
tial and random access operations may be intermixed. For
instance, if five READ instructions, consisting of one record
each have been initially issued to a data set, then the next
sequential operation will normally take place with record num-
ber 6. A random access READ could be issued for some other
record, say record 23, and the next sequential operation would
still take place with record 6.

To open a data set during the execution of your program, you
Wwill need an OPEN subroutine. (For details on the OPEN subrou-
tine, see "DSOPEN SUBROUTINE"™ in the System Guide).

Definitions For Disk Data Sets

Record: The basic unit of direct access storage available to an
application program is a record on disk or diskette which con-
tains 256 bytes of data. Records are contained in data sets, or
may be free space in a library. Data set record numbering
begins with 1.

Data Set: A data set is a group of reserved contiguous records
which have have been assigned collectively a data set name con-
sisting of 1 to 8 bytes. No special restrictions exist within
the system for valid names, but the use of standard system
utility programs for data set access and allocation dictates
that an alphameric character string be used as a name. Data
sets are contained in libraries.

A data set can contain either data or an executable program.
The term member (of the library) is sometimes used when refer-—
ring to either type of data set. These data sets can be further
subdivided with the use of the $PDS utility which can partition
an Event Driven Executive data set. $PDS uses the term members
to describe a group of contiguous records within the parti-
tioned data set which have been assigned a name.

Volume/Library: A library is a set of contiguous records which

contains (1) a directory and either or both of the following:
(2) a set of allocated data sets, (3) space available for the

22 SC34-0314

allocation of new data sets. A directory is a series of contig-
uous records which describe the library contents in terms of
allocated data sets and free space. These records are at the
beginning of the library. A library is contained in a volume.

A volume is a physical direct access storage device, or a sub-
set thereof. Each volume is assigned a volume name of 1 to 6
alphameric characters. A volume begins on a cylinder boundary
and contains an integral number of cylinders. The maximum vol-
ume size is 32,767 records. Only one volume can be placed on a
diskette or in the fixed—-head area of a disk, but disks may have
as many volumes as disk storage will permit. Each volume can
contain only one library.

Notes:

1. Additional information on direct access devices and organ-
ization can be found in the System Guide.

2. For each data set defined in a PROGRAM statement, a data
set control block (DSCB) is generated in the program head-
er. A DSCB is used to contain information about the cur-
rent use of a data set within an active program such as the
location of the data set and the next record number for
sequential I/0. This allows the system to properly control
access to the same data set by separate programs.

3. A DSCB is a serially reusable program resource; therefore,
within a single program it is your responsibility to pre-
vent simultaneous access to the same data set from separate
tasks. It is recommended that access to a data set within a
given program come from a single task. If, however, it is
necessary in a given application to access the same data
set from within different tasks in the same program the
user should use ENQ and DEQ to ensure serialized use of the
affected DSCB.

Chapter 2. Instructions and Statements - Overview 23

EXIO CONTROL INSTRUCTIONS

DCB
EXIO
EXCPEN
IDCB

1/0 level control functions allow you to control, at a low lev-
el, any I/0 device attached to the system. They give you the
ability to control devices not otherwise available using Event
Driven Language instructions. They also give you the ability
to gain closer control of a device than is provided by other I/0
facilities.

To use the EXIO control functions you should be familiar with
I/0 programming in assembler language. Refer to the section on
Input/0Output Operations in the manuals describing the process-
ors for general descriptions of the immediate device control
block (IDCB) and the device control block (DCB) and their use,
and to the manuals describing the particular 170 device for
specific information for that device.

You must be thoroughly familiar with the device to be con-
trolled. The facilities provided by these instructions are
approximately those provided by the Series/1 hardware for 1/0.
You must, by using EXIO instructions, explicitly control every
aspect of the device's operations.

After you define each device to be controlled by an EXIODEV
statement (see the System Guide), you can use the EXIO and
EXOPEN instructions.

Each device must be controlled from one task at a time. Before
a task relinquishes control of a device, it must assure that
all interrupts from that device have been serviced.

You must not alter a DCB until the operation caused by the EXIO
instruction which referenced it is complete. The IDCB may be
modified after its use in an EXIO instruction.

I1/0 commands produced by the COMMAND operand of the IDCB state-
ment are those used by IBM I/0 devices and described in the pub-
lications which describe the processors and I1/0 devices. Any
other device must be designed to respond to these same commands
if these instructions are to be used to control it.

If an EXIO0 device produces interrupts, yvyou must:
1. Open the device by executing an EXOPEN instruction. This

allows the interrupt handler to return device information
to the user's program.

24 SC34-031¢4

Prepare the device by executing an EXIO instruction, so
that it can interrupt the processor.

WAIT in one or more tasks for one or more ECBs which will be
posted when an interrupt is received.

Obtain all information required to service the interrupt.
This information is available from:

a. Code word in ECB posted

b. Interrupt identification word and level status regis-
ter (see "EXOPEN" on page 129)

c. Residual status (refer to the description of DVPARM4
operand statement in "DCB" on page 91)

d. Cycle steal status (see description of listaddr oper-
and of refid='exope', the EXOPEN instruction, and the
description of COMMAND=SCSS operand of "IDCB" on page
175%)

Prevent further interrupts if the interrupt servicing task
is to terminate. This may be done by executing an EXIO
instruction which specifies an IDCB with COMMAND=PREPARE
and IBIT=0FF.

Chapter 2. Instructions and Statements - Overview 25

GRAPHICS INSTRUCTIONS

CONCAT SCREEN
GIN XYPLOT
PLOTGIN YTPLOT

The graphics instructions provide a tool for the development of
graphics applications. They can aid in the preparation of
graphic messages, allow interactive input, and draw curves on a
display terminal.

These instructions are only valid for ASCII terminals having a
point—-to—-point vector graphics capability and compatible with
the coordinate conversion algorithm for graphics mode control
characters. This is described in detail in Internal Design.
The function of the various ASCII control characters used by a
terminal are described in the manual for that terminal. Such
terminals may be connected to the Series/1 using the teletype-
writer adapter.

When the Event Driven Executive instructions are used,
detailed manipulation of terminal instructions and text mes-
sages is not required. All of the graphics instructions deal
with ASCII data; therefore when an ASCII text string is sent to
the terminal the XLATE=NO parameter should be coded,

There are six graphic instructions. They are used in the same.
manner as other instructions, except that the supporting code
will be included in your program, rather than in the supervi-
sor. If all instructions are coded in a program, this code
requires approximately 1500 bytes of storage.

Use of the graphics instructions requires that your object
program be processed by the link edit program, $LINK, in order
to include the graphics functions which are supplied as object
modules. EXTRN statements for the necessary modules are
included in your program when the instructions are coded. The
modules ($$CONCAT, $$SCREEN, $$YPLOT, $$GIN, and $SPGIN) can
be automatically included in your program when required using
the $LINK autocall facility. Use the $AUTO autocall list pro-
vided in ASMLIB for this purpose. Refer to Utilities, Operator
Commands, Program Preparation, Messages and Codes for
information on the use of the autocall option of $LINK.

For a list of terminals supported, see "Terminal Support™ in
the sttem Guide.

26 SC36-031%4

INDEXED ACCESS METHOD INSTRUCTIONS

DELETE GET PUTDE
DISCONN GETSEQ PUTUP
ENDSEQ LOAD PROCESS
EXTRACT PUT RELEASE

The Indexed Access Method is a data management system that
operates under the IBM Series/1 Event Driven Executive. It
provides callable interfaces to build and maintain indexed
data sets and to access, by key or sequentially, the records in
that data set. In an indexed data set, each of the records is
identified by the contents of a predefined field called a key.
The Indexed Access Method builds into the data set an index of
keys that provides fast access to the records. Features of the
Indexed Access Method include:

. Direct and sequential processing. Multiple levels of
indexing are used for direct access; sequence chaining of
data blocks is used for sequential access.

. Support for high insert and delete activity without sig-
nificant performance degradation. Free space is distrib-
uted both throughout the data set and in a free pool at the
end so that inserts can be made in place; space provided by
deletes can be immediately reclaimed.

. Concurrent access to a single data set by several request-
ers. These requests can come from either the same or dif-
ferent programs. Data integrity is maintained by a file,
block, and record level locking system that prevents
access to that portion of the file that is being modified.

U Implementation as an independent task. A single copy of
the Indexed Access Method serves and coordinates all
requests. The buffer pool supports all requests and opti-
mizes the space required for physical I/0; in the user pro-
gram, the only buffer required is the one for the record
currently being processed.

. An Indexed Access Method utility program which provides
the capability to create, format, load, unload and reor-
ganize an indexed data set.

The callable functions that comprise the Indexed Access Method
are described in "Chapter 4. Indexed Access Method" on page 327
of this manual. They appear in alphabetic sequence by their
function name, such as DELETE, DISCONN, and so on.

"Example 14: Use of Indexed Access Method™ on page 414 is a
complete program which illustrates many of the Indexed Access
Method services. This example should help you understand the
use of these services,

Chapter 2. Instructions and Statements - Overview 27

The Event Driven Executive Indexed Access Method Licensed Pro-
gram (5719-AM3) is required to use these facilities. , (:)

LISTING CONTROL STATEMENTS

EJECT
PRINT
SPACE
TITLE

Listing control statements are used to identify program output
listings, to provide blank lines in an assembly listing, and to
designate how much detail is to be included in the listing. In
no case are instructions or constants generated in the object
program. With the exception of PRINT, listing control state-
ments are not printed in the listing itself.

The format used to describe these instructions is the same as
that used for describing the Event Driven Executive
instruction set. However, they are part of the assembler facil-
ity itself and are not elements of the Event Driven Executive
instruction set.

28 SC364-0314

MULTIPLE TERMINAL MANAGER INSTRUCTIONS

ACTION FAN MENU
BEEP FILEIO SETCUR
CHGPAN FTAB SETPAN
CDATA LINK WRITE
CYCLE LINKON

The Multiple Terminal Manager is an optional licensed program
which provides the Event Driven Executive user with a set of
high-level functions designed to simplify the definition of
transaction-oriented applications such as inquiry, file
update, data collection, and order entry.

Transaction-oriented means that program execution is driven
by terminal operator actions, typically, responses to prompts
from the system. For example, a program executing under con-
trol of the Multiple Terminal Manager displays a menu screen
offering the operator a choice of functions. Based on the oper—
ator's selection, the application program then performs proc-
essing operations such as reading information from a data file,
displaying the data at the terminal, and waiting for the next
response.,

This prompt-response-process cycle betuween the Series/1 pro-
gram and the terminal operator is the basic principle for the
design of applications using the Multiple Terminal Manager.

The terminal manager simplifies such transactions by:

U Automatically allocating input and output buffers for the
application program.

. Performing I/0 operations to access fixed-screen formats
from the screen file. The term screen in this discussion
refers to the image which is displaved on the screen of an
IBM 4979, 4978 or 3101 Display Station. Fixed—~-screen for-
mats consist of unmodifiable text and definitions of pos~-
sible areas for data input. On other systems, these may be
referred to as maps, formats, or panels. Screens are built
using the $IMAGE wutility. (See Utilities, Operator
Commands, Program Preparation, Messages and Codes for

additional information.)

. Returning control to the user program to allow modifica-
tion of the input buffer containing the screen.

. Performing the set of I/0 operations involved in writing on
the terminal screen, filling in unprotected fields with
user-defined output data, and reading the data entered by
the operator before returning control to the application
program that requested the action. The terminal manager
assumes that each action request involves both output and
input operations, thus eliminating the need for the appli-

Chapter 2. Instructions and Statements - Overview 29

cation program to make separate requests.

In addition, the Multiple Terminal Manager provides storage,
file, program management, and terminal transaction statistics,
sign on programs for password validation, error recovery for
I/0, and program check conditions.

Multiple Terminal Manager application programs can be written
in Event Driven Language, assembhler language, COBOL, PL/I, or
FORTRAN IV. Disk I/0 can be performerd using indexed-access or
direct-access methods. Terminal support is provided for IBM
4979, 4978, and 3101 Display Stations and teletypewriter com-
patible terminals attached using the single line or multiline
asynchronous communication adapters.

Note: Throughout the manual, when reference is made to the IBM
3101 Display Station, it is inferred to mean model 1 and model
2. However, model 2 is considered only in block mode (full
screen).

The functions provided by the Multiple Terminal Manager are
callable routines that perform terminal, disk and diskette
input/output operations and control the execution of applica-
tion programs.

The program—execution control and terminal I/0 functions
include:

. A routine (ACTION) to initiate the prompt-response termi-
nal I/0.cycle.

A routine (CDATA) which provides information about the
terminal which is controlling an executing program.

. Two routines (LINK and LINKON) to link to 38 new program
from the currently executing program.

. A routine (MENU) to terminate program execution and return
control to the Multiple Terminal Manager.

A routine (CYCLE) to voluntarily give up control of the
program area to other users. This allows a user controlled
form of time sharing.

The Multiple Terminal Manager provides four callable functions
for the specific control of the IBM 4978/76979 Display. They
are:

. A routine (SETPAN) to retrieve a screen panel from disk and
move it into the input and output buffers.

. A routine (SETCUR) to override the initial cursor posi-
tion defined for that screen format.

30 SC34-031¢

L A routine (BEEP) to request the 4978 audible alarm be
sounded on the next terminal I1/0 cycle.

. A routine (CHGPAN) to notify the terminal manager of
changes to a screen before it is written.

For the teletypewriter user, the following functions are pro-
vided:

. A routine (ACTION) to write to the terminal and read a
reply.

. A routine (WRITE) to write to the terminal without waiting
for an operator response. Multiple writes may be used to
write long messages, wWwith the last message being written
using ACTION.

. A routine (BEEP) to cause a bell character to be included
in the next output line.

The FILEIO function provides the following for disk and
diskette files:

. Automatic open of the requested file
. Indexed file support
. Direct file support

. Storage conservation through automatic open and close
functions

Two programming aids are available using the Multiple Terminal
Manager:

. A no-operation (FAN) adds programming compatibility with
other programming environments.

. An unprotected field descriptor function (FTAB) describes
the fields of the screen image in the input buffer.

The coding syntax for these functions are described in detail
in "Chapter 5. Multiple Terminal Manager™ on page 359 and are
organized alphabetically by function name, such as ACTION,
LINK, LINKON, and so on.

Use of these facilities requires the Multiple Terminal Manager

Licensed Program (5719-MS1) and also the Indexed Access Method
Licensed Program (5719-AM3) if indexed files will be used.

Chapter 2. Instructions and Statements - Overvieuw 31

PROGRAM CONTROL STATEMENTS

CALL
CALLFORT
RETURN
SUBROUT
USER

Program control statements are used to define and control
subsections within a program and can provide flexibility and
save space. CALL, SUBROUT, and RETURN provide for the defi-
nition and use of a reusable section of code. Calling a subrou-
tine and the returning to the mainstream program reduces
repetition of code and program complexity.

CALL is also used to invoke the individual functions of the
optional licensed programs Indexed Access Method and Multiple
Terminal Manager.

The USER statement allows Event Driven Executive programs to
utilize the Series/]1 assembler language in those specialized
cases where the Event Driven Language does not meet application
requirements.

CALLFORT is used to invoke FORTRAN programs and subroutines.

32 SC34-0314

PROGRAM MODULE SECTIONING STATEMENTS

COPY

CSECT
ENTRY
EXTRN
WXTRN

The COPY statement allows you to copy into the your program a
predefined source-program module from a data set.

The CSECT statement allows you to give names to the separately
assembled modules of a program. These modules are then link-
edited together to form a complete program.

The ENTRY, EXTRN, and WXTRN statements provide the information
which allows the linkage editor ($LINK) to resolve symbolic
address references among separately assembled program modules
during link-edit processing.

Labels defined by CSECT and ENTRY statements, along with their

addresses in the link—-edited program are listed in the MAP
portion of $LINK output.

Chapter 2. Instructions and Statements - QOverview 33

PROGRAM SEQUENCING INSTRUCTIONS

DO FIND

ELSE FINDNOT
ENDIF G070
ENDDO IF

The IF, DO, and GOTO instructions provide the means for
sequencing a program through the correct logic path based on
the data and conditions generated during the execution of the
program. IF and DO involve the use of relational statements
which, based on a true or false condition, determine the next
instruction to be executed. That next instruction must begin on
a full-word boundary. Relational statements consist of a com-
bination of data elements and are of the following:

EQ -- Equal

NE -—- Not equal

GT -- Greater than

LT -- Less than

GE -- Greater than or equal
LE -- Less than or equal

The comparison is always arithmetic. A relational statement
has the general format:

(datal,relcond,data2,width)

where:

width is optional,

relcond is one of the relational condition mnemonics,
datal and data2 are data elements coded with the same
syntax as other Event Driven Language instruction
operands. Only datal2 can contain immediate data. The
immediate data can be decimal, hexadecimal, or EBCDIC

data, must be an integer betuween -32768 and +32767,
and will be converted to floating-point if necessary.

The default data width is 1 word (16 bits). The following table
shows the allowed width specifications.

Specification Data Element Width

BYTE 1 byte (8 bits)

WORD 1 word (16 bits) (integer)

DWORD Doubleword (32 bits) (integer)

FLOAT Single-precision floating-point (32 bits)
DFLOAT Extended-precision floating-point (64 bits)
n n bytes (relcond may only be EQ or NE)

364 SC364-0314

<

The last form (n) provides a means for comparing data strings.
For example, two 8-byte character strings may be compared or,
similarly, two data buffers may be checked for equality. This
form implies that both datal and data?2 are storage locations;
an immediate second operand is not permitted.

Several forms of the IF and DO instructions are allowed. They
are described in detail in the instruction descriptions in
"Chapter 3., Instruction and Statement Descriptions™ on page
51. The simplest form of the IF instruction is

IF (A,EQ,B)
If the word contained in the variable A is equal to the word
contained in the variable B, the next sequential instruction
will be executed. This is called the true portion of the
IF-ELSE-ENDIF structure. For example:

IF (A,EQ,B)

oe oo

(code for true condition)
ELSE

: (code for false condition)
ENDIF

ELSE is an optional part of the structure, and if coded, the
instructions following it are referred to as the false part of
the structure. Therefore, in the example above, the
instruction following the ELSE instruction will be executed if
A is not equal to B. If ELSE is not coded, control passes to the
instruction following the ENDIF if the condition is false.

The IF and DO instructions permit logically connected state-
ments of the form:

statement,0OR,statement

statement,AND,statement
More than two statements may be logically connected in an
instruction. Logically connected statement strings are not
evaluated according to normal Boolean reduction. Instead, the
string is evaluated to be true or false by evaluating each
sequence of:

statement,conjunction
to be true or false as follous:
1. The expression is evaluated from left to right.
2. If the condition is true and the next conjunction is OR, or

if there are no more conjunctions, the string is true and
evaluation ceases.

Chapter 2. Instructions and Statements - Overview 35

3. If the condition is false and the next conjunction is OR,
the next condition is checked.

4. If the condition is false and the next conjunction is AND,
or if there are no more conjunctions, the string is false
and evaluation ceases.

5. If the condition is true, and the next conjunction is AND,
the next condition is checked.

The order of the statements and conjunctions in a statement
string determines the evaluation of the string. It may be pos-
sible, by reordering the sequence of statements and conjunc-
tions, to produce a statement string that will be evaluated to
the same results as Boolean reduction of the statement. For
example, the statement string

(A,EQ,B),AND, (C,GT,D),0R,(CE,LT,F)
could be reordered as
(E,LT,F),0OR,(A,EQ,B),AND,(C,GT,D)

-without changing the results if evaluated by Boolean
reduction. As a statement string in the IF or DO instructions,
however, the two forms produce different evaluations. If A is
not equal to B, but E is less than F, the first statement string
Wwill be evaluated false and evaluation will cease as soon as
(A,EQ,B) is evaluated; houwever, the second statement string
will be evaluated true if E is less than F, as would be expected
from Boolean reduction for either the first or second statement
string.

When writing code with structures, program readability is
improved by indenting nested structures. Two spaces for each
nesting level is recommended. For example:

IF (A,EQ,B)

.
.

Do WHILE, (X,NE,Y)

IF (#1,EQ,1)

.

ENDIF
ENDDO
ELSE

ENDIF

36 SC34-0314

QUEUE PROCESSING

DEFINEQ
FIRSTQ
LASTQ
NEXTQ

FIRSTQ, LASTQ, and NEXTQ provide the user with the capability
to add entries to, or delete entries from a queue (defined by
DEFINEQ) on a first—-in-first-out or last-in-first-out basis.
Entries are logically chained together and no associated data
movement is required in the process. An entry is a 16—-bit word
which may, for example, be a data item, a record number in a
data set, or the address of an associated data buffer. A queue
is composed of a queue descriptor (QD) and one or more queue
entries (QEs).

A QD is created by DEFINEQ and is 3 words in length. Word 1l is a
pointer to the most recent entry on a chain of active QEs. Word
2 is a pointer to the oldest entry on a chain of active QEs.
Word 3 is a pointer to the first QE on a chain of free QEs. If a
queue is empty, Wwords 1 and 2 contain the address of the queue
(the address of the QD). If the queue is full, word 3 contains
the address of the queue.

QEs are also created by DEFINEQ and are also 3 words in length.
Word 1 is a pointer to the next oldest entry on a chain of
active QEs. Word 1 of the most recent entry points to the QD.
Word 2 is a pointer to the next most recent entry on a chain of
active QEs. HWord 2 of the oldest entry points to the QD. Word 3
of a free QE is a pointer to the next element in the free chain
of QEs. Word 3 of the last QE in the free chain is a pointer to
the QD. Word 3 of an active QE is the queue entry as described
above.

Figure 2 on page 38 shows how a group of QEs are chained from a
QD.

Chapter 2. Instructions and Statements - Overview 37

Queue processing

Oldest
entry

Most
recent
entry

First
free
entry

Active
QE
chain

Free
¢ QE
chain

Qb QE chain
0500 | 3000 —l 1000 2000 |-
A A /
1000 0500
4000 = Queue
entry
e 2000 | 3000 |
L———— 1000
Queue
entry
» 3000 0500 f=
l 2000
Queue
entry
> 4000
5000 -—I
5000
0500 —l
Figure 2. The Control Mechanism of Queue Processing

38

$C34-0314

-

SENSOR-BASED I/0 STATEMENTS

IODEF
SBIO
SPECPIRT

The sensor-based I/0 statements provide the means for defining
the devices, device addresses, and the general operating envi-
ronment for the sensor-based application program. See Figure 1
on page 10 for a diagram showing the relationships.

The purpose of a sensor I/0 application program is to communi-
cate with sensor I/0 units. This communication is used for mon-
itoring or controlling a process outside the Series’/l
processor from a program within the processor.

In sensor applications, a process produces either digital or
analog signals. These signals are sensed by sensor devices and
transferred through a sensor I/0 unit to your sensor program.
These signals can bhe compared to stored digital data for moni-
toring. For process control, the application program must
write new values to the sensor units.

SYSTEM CONFIGURATION STATEMENTS

BSCLINE HOSTCOMM TAPE
DISK SENSORIO TERMINAL
EXIODEV SYSTEM TIMER

These statements are used only during the generation of a
supervisor. For more information on System Configuration and a
description of each statement, refer to the "System Configura-
tion" topic in the System Guide.

Chapter 2. Instructions and Statements - Overview 39

TAPE I/70 INSTRUCTIONS

CONTROL POINT
DSCB READ
NOTE WRITE

These instructions control the IBM Series/]1 4969 Magnetic Tape
Subsystem and provide sequential access to magnetic tape data
sets. When a program is first loaded for execution, all the
data sets named in your PROGRAM statement have been opened for
access (reading or writing) and are positioned to the first
record.

Definitions For Tape Data Sets

Tape Label: A tape label consists of at least two 80-character
records which describe the tape contents, such as date the tape
was created, the block size and record length, and other perti-
nent data. This data is wusually in a specific format and
referred to as a standard label. Non-standard labels may be
used but no automatic processing will be performed on such
labels by EDX. There is also a trailer label which has a stand-
ard format and contains record count, block count, and so on
for the tape. The use of labels is optional and if they are pre-
sent they can either be processed or bypassed.

Record: The basic unit of tape data storage available to an
application program is a record. A record may be any size
between 18 and 32767 bytes. The default size of a record is 256
bytes.

File: A file is all the records between any beginning tape mark
(TM) and an ending TM. The term file and data set are sometimes
used interchangeably in tape record references, however, data
set is the preferred term here.

Data Set: A tape data set is a set of consecutive records
recorded on a magnetic tape. No special restrictions exist
within the system for valid names, but the use of standard sys-
tem utility programs for data set access and allocation dic~-
tates that an alphameric character string be used as a name.

A tape data set can only contain data, not executable code.
Volume: A volume is all of the records recorded on a reel of
magnetic tape. Each volume is assigned a volume name of 1 to 6
alphameric characters.

Load Point: The beginning of tape (BOT) where the load point

sticker is located. Normally this location is approximately 25
feet from the leading end of a reel of magnetic tape and placed

40 S5C34-0314

O

C

on the glossy side of the tape near the front edge.

End of Tape (EOT): The EOT sticker which is located near the
physical end of a reel of magnetic tape. During a WRITE or CON-
TROL WTM command, the tape drive sensing this sticker will
raise the EOT condition in the tape drive causing a return code
value of 24 to be returned. This sticker is normally far enough
from the physical end of tape to allow a complete block of
records to be written after it is sensed. It is located on the
glossy side of tape near the rear edge.

Notes:

1. Additional information on magnetic tape devices and organ—
ization can be found in the System Guide.

2. For each data set defined in a PROGRAM statement, a data
set control block (DSCB) is generated in the program head-
er. A DSCB is used to contain information about the cur-
rent usage of a data set within an active program such as
the location of the data set and the next record number for
sequential I/70. This allows the system to properly control
access to the same data set by separate programs.

3. A DSCB is a serially reusable program resource; therefore,
within a single program it is your responsibility to pre-
vent simultaneous access to the same data set from separate
tasks. It is recommended that access to a data set within a
given program come from a single task. If, however, it is
necessary to access the same data set from within different
tasks in the same program, vou should use ENQ and DEQ to
ensure serial use of the affected DSCB.

4, A tape drive cannot be shared by multiple programs at the
same time. You should not create or open multiple DSCBs
for the same tape volume. If you pass a tape data set to
another program (DS= operand of LOAD), the DSCB of the pro-
gram issuing the LOAD will be disconnected from the tape
data set to allow it to be passed to the program being
loaded.

5. When passing DSCBs to overlay programs, it is suggested
that the address of the DSCB in the root program be passed
and not the data set itself. If the data set is passed,
close offline (CLSOFF) will be invoked when the overlay
terminates; when the overlay executes a PROGSTOP state-
ment.

Chapter 2. Instructions and Statements - Overview 41

TASK CONTROL INSTRUCTIONS

ATTACH ENDATTN PROGSTOP

ATTNLIST ENDTASK QCB

DEQ ENDPROG RESET

DETACH ENQ TASK

ECB LOAD WAIT

END POST WHERES
PROGRAM

The basic unit of a program is a task. The PROGRAM statement
defines the initial task. Many tasks may be active concurrent-
ly and asynchronously in a program. A task may be activated or
attached, using the ATTACH command, by the primary task or by
other tasks. Any combination of instructions may be used with-
in a task and will be executed independently of other tasks.
Tasks within a program may communicate with each other through
common storage areas or through system instructions and event
control blocks. The facilities of the Event Driven Executive
supervisor provide the capability of synchronizing task exe-
cution.

A user-written application program is composed of one or more
tasks. The instructions listed here are used to define tasks
and to control which of the tasks are active at any given
moment, plus other related functions. "Example 7: A Two Task
Proagram With ATTNLIST"™ on page 395 and "Example 9: Floating
Point, WAIT/POST, GETEDIT/PUTEDIT" on page 398 illustrate the
use of several task—-control instructions.

Several programs, each composed of one or more tasks, may be
loaded from disk and run concurrently. WHhen a user task gains
control of the system, its instructions are executed until a
higher priority task becomes ready, at which time the higher
priority task gains control of the system.

A program may have more than one independently operating task
and these tasks may communicate with one another using data
storage locations or event control blocks within the specific
program of which they are a part. Communication among tasks in
separate programs can be accomplished using the cross-—
partition facilities provided with many of the task control
instructions. Communication can also be accomplished using a
user—-provided common data storage area ($SYSCOM) in the super-
visor. The services available for cross partition communi-
cation are described further in the System Guide under "Cross
Partition Services."”

It is your responsibility to write programs in such a way that
the tasks operate in the desired sequence and terminate proper-
ly.

Concurrent execution of multiple tasks is shown in Figure 3 on
page 43

62 SC34-031¢4

>

O

Storage LOAD

Overview of the functions

PROGSTOP

TASKA TASK

ENDTASK

ENDPROG
END

PRIMTASK PROGRAM PROGRAM
. TASK
. ATTACH
ATTACH TASK1 || A LOAD
. ENDTASK
. PROGSTOP
PROGSTOP ENDPROG
END
TASK1 ~ TASK
L
L]
i .
ATTACH TASK2 || B
.
[]
ENDTASK
TASK2 TASK
.
y C
LOAD PROGL
L]
L]
L]
ENDTASK
3
ENDPROG o]
END — PROGL
PROGL PROGRAM |
.
L]
ATTACH TASKA || D

Concurrent execution

Ref. PRIMTASK TASK1 TASK2 PROGL

Figure 3. The Concurrent Execution of Multiple Tasks

Chapter 2. Instructions and Statements

Overvieuw

TASKA

63

TERMINAL I/0 INSTRUCTIONS

DEQT 10CB READTEXT

ENQT PRINTEXT RDCURSOR

ERASE PRINTIME QUESTION

GETVALUE PRINDATE TERMCTRL
PRINTNUM

With few exceptions, you can write the terminal 1/0
instructions in an application program without concern for the
type of terminal used or its hardware address. The terminal
used by a program is assigned dynamically by the system as the
one used to invoke the program and may vary from one invocation
to the next without program change. Exceptions to this rule may
exist with terminals which use special control characters or
which have unique hardware capabilities such as graphics oper-
ations. Certain screen-oriented instructions are applicable
only to the IBM 497874979 display.

The Event Driven Executive provides facilities to prevent con-
flicts among multiple programs using the same terminal. Each
individual operation (read, write, or control) acquires exclu-
sive control of the terminal for its duration. If you desire
exclusive control for the duration of a sequence of
instructions, for example to print a report, you can use the
ENQT and DEQT instructions.

Error Handling

The application program may provide response to errors by means
of the TERMERR operand in the PROGRAM and TASK statements. In
programs or tasks for which the TERMERR operand is coded with
the 1label of an instruction, control is given to that
instruction when an unrecoverable terminal I/0 error occurs.
At that point the task code word, whose label is the task name,
contains the error code, and the following word contains the
address of the instruction during which the error occurred. If
TERMERR is not coded, the error code is available in the task
code word but program flow is not interrupted. Error codes are
shown with the READTEXT, PRINTEXT, and TERMCTRL instructions
in this manual. Use of TERMERR is the recommended method for
detecting errors because the task code word is subject to
modification by numerous system functions and may not always
reflect the true status of the terminal I1/0 operations.

Because TERMERR receives control only when an actual I70 error
occurs, it is important to note the way a PRINTEXT statement
executes. A PRINTEXT statement does not result in immediate I/0
operation or possible I/0 error unless the TEXT statement con-
tains an @ character or, the SKIP operand is specified in a sub-
sequent PRINTEXT statement. This information should be

44 SC34-031¢4

O

considered when coding a TERMERR routine.

Data Representation

Output: Normally, alphameric text data to be written to a ter-—-
minal is represented internally as a string of EBCDIC charac-

ters. The system translates the data to the code expected by~
the device. Means are also provided for writing untranslated'"™

data to the device for special purposes.

Integer numeric data is represented internally as binary inte-
gers of single-precision (2 byte) or double-precision (4
byte), or as floating—-point numbers of single-precision (4
byte) or extended-precision (8 byte). You can specify trans-
lation to a designated external graphic form with numeric out-
put instructions.

Input: Programs may request entry of text data in word mode
without imbedded blanks. When several words are entered on a
line, they must be separated from each other, and from any
numeric entries on the same line, by one or more blanks. Pro-
grams such as the text-editor utility will also expect data
entry in line mode, in which case the entire input 1line is
stored internally as a string of EBCDIC characters. The ENTER
key terminates an input operation in either word mode or line
mode.

Integer numeric entries may be either decimal or hexadecimal,
depending upon the program request. Decimal entries may
include a plus (+) or minus (-) sign. MWhen multiple numeric
entries are made on the same line, the entries may be separated
by blanks or by the delimiters comma (,) or slash (/). In con-
junction with this rule, there are two means of indicating
omitted values in a8 numeric sequence, namely the use of an
asterisk (%) or two consecutive delimiters. Omitted values
result in no change to the corresponding internal values, and
their interpretation depends upon the utility or application
program requesting the input. Allowable ranges for integer
numeric input are given with the DATA instruction description
in "Chapter 3. Instruction and Statement Descriptions” on page
51.

Forms Control

In order to achieve a high degree of device independence, all
terminals, whether their display media be perforated paper,
paper rolls, or electronic display screens, are treated
according to line printer conventions. This means that within
the limits imposed by differing page sizes and margins, the

Chapter 2. Instructions and Statements — Overview 45

output from an application program will be identical in format
for all terminal types. It is also possible to exercise direct
control of forms movement by using the direct I/0 capabilities
of terminal I/0 at the expense of device independence.

The forms control keyword parameters are common to several of
the terminal I/0 instructions. The values specified for any of
the forms control parameters (SKIP, LINE, or SPACES) may be
either constants or variables, and they may be indexed. Note
that when forms parameters are specified on an I/70 instruction,
the forms operation always takes place before the data trans-
fer.

Output Line Buffering: Two successive output instructions
without the occurrence of the SKIP or LINE options, or the new
line character 3, result in concatenation of the data to form a
single output line. The line is not displayed until a new line
is indicated or the terminal is released through an explicit
DEQT command, or the program terminates, or an input operation
is performed., Normally, when concatenated output exceeds the
line-buffer capacity, subsequent output is lost until a new
line indication is given; however, you can allow the generation
of overflow lines by coding OVFLINE=YES in the TERMINAL state-
ment for the device in question.

Forms Interpretation for Electronic Display Screens: The
PAGSIZE parameter for the IBM 497874979 Display is forced to
24, The margin settings TOPM,BOTM,LEFTM and RIGHTM delimit a
logical screen which may be accessed independently of other
logical screens. Once a logical screen has been defined and
accessed, all I/70 and forms control operations are defined rel-
ative to the margins of that screen. See the TERMCTL, ENQT, and
IOCB statements in YChapter 3. Instruction and Statement
Descriptions™ on page 51. Screen operations are described more
fully under "Screen Management™ on page 48.

Burst Output With Electronic Display Screens: UWhenever the
number of consecutive output lines reaches the logical screen
size (BOTM-TOPM+1), the system will suspend further output,
allowing the terminal operator to view the display. Upon oper-
ator signal (pressing the ENTER key on the 4978 or 4979), out-
put continues until the screen is again filled or a pause for
input occurs.

Prompting and Advance Input

As a terminal user, your interactive response with an applica-
tion or utility program is generally conducted through prompt-
ing messages which request you to enter data. Once you have
become familiar with the dialogue sequence, however, prompting
becomes less necessary. The instructions READTEXT and
GETVALUE include a conditional prompting option which enables

46 SC34-0314

»

you to enter data in advance and thereby inhibit the associated
prompting messages. Advance input is accomplished simply by
entering more data on a line than may have been requested by the
program. Subsequent input instructions which specify
PROMPT=COND will then read data from the remainder of the buf-
fered line, and will issue a prompting message only when the
line has been exhausted. If you specify PROMPT=UNCOND with an
input instruction, an associated prompting message is issued
and the system waits for your input. The prompt message
causes, as does every output message, cancellation of any out-
standing advance input.

Attention_Handling

Attention Keys: Program operation may be interrupted by press-
ing the keyboard ATTN key. MWhen this key is recognized, the
greater than symbol (>) is displayed and the operator may enter
either a system function code (for example, $L) or a program
function code defined by an active ATTNLIST. For ASCII termi-
nals, the keys with character codes X'1B' (normally marked ESC
on the keyboard) and X'7D' (normally the right brace) are both
recognized as the attention key.

Program Function Keys: All program function keys on the IBM
497874979 Display Terminal are recognized by the attention
list code $PF. 1In addition, individual keys may be separately
recognized by $PF1 to $PF254. It is possible to provide sepa-
rate entry points to the application code for particular keys,
or for rapid response, a single entry for all keys. When the
application program attention handler is entered for any
program function key, the code for that key is placed in the
second word of the keyboard task control block.

The order in which the program function key codes appear in the
attention list is significant. For example:

ATTNLIST ($PF1,ENT1,$PF5,ENT2,$PF,ENT3)

would cause the program to be entered at ENT3 for all program
function keys except PF1 and PF5.

KEYBOARD AND ATTNLIST TASKS: When the ATTN key or one of the PF
keys is pressed on a terminal, the keyboard task for that ter-
minal gets control. Except for the hardcopy key (normally
PFé6), the PF keys are always matched against vour ATTNLIST(s).
For an ATTN, you enter a command which is first matched against
the system ATTNLIST and then against your ATTNLIST(s). If the
command matches the system ATTNLIST, appropriate system action
is taken ($D, $L, etc.). If there is no match against any
ATTNLIST, the message FUNCTION NOT DEFINED is displayed on the
terminal. For a PF key or an ATTN command match against your
ATTNLIST, the corresponding attention list task is given con-—-

Chapter 2. Instructions and Statements —~ Overviewn 47

trol. The appropriate application program attention routine
then runs under this task. If the ATTNLIST task is already
busy, the message, "> NOT ACKNOWLEDGED" is displayed on the
terminal. You the have the option of reentering the command or
pressing the PF key at a later time.

When the application program attention handler is entered, the
index registers are initially set as followus:

#1 Address of task control block (TCB)
#2 Address of terminal control block (CCB)

The code for an interrupting key may therefore be obtained by
coding, for example:

MOVE CODE, (2,#%#1)

Screen Management

Support for the 497874979 display allows the application pro-
gram to partition the screen into logical screens, and to man-
age a logical screen according to one of two basic modes, roll
or static. The roll screen mode operates in a manner which sim-
ulates a typewriter terminal, while the static screen mode pro-
vides a convenient means for data display and data entry. The
static screen mode is supplied only for the IBM 4978/4979 Dis—
play Terminals,

Roll Screens: Roll screens differ from typewriter printing
media only in the absence of hardcopy and in the limited amount
of display history which can be retained. The amount of histo-
ry to be retained on a roll screen is specified through the
NHIST parameter on the TERMINAL or IOCB statements. The value
of this parameter defines the boundary between two areas of the
screen, the history area (extending from TOPM to
TOPM+NHIST-1), and the working area (extending from TOPM+NHIST
to BOTM). The top of the working area is line 0 for purposes of
forms control; the display proceeds from line 0 to the bottom
margin, after which the working area is shifted into the histo-
ry area, the working area is erased, and the display begins
again at line 0.

Since screen shifting is implemented through a hardware mech—-
anism which affects the entire physical screen line, shifting
is not performed for roll screens whose left and right margins
are other than 0 and 79. This protects adjacent logical
screens from alteration. All other aspects of roll screen man-
agement are preserved.

static Screens: The object of static screen management is to

provide the application program with complete control over the
screen image, and to allow the terminal operator to modify an

48 SC34-0314

entire screen image before data entry. Static screens are
therefore distinguished from roll screens in the following
ways: ‘

. Forms control operations which would cause a page-eject
for roll screens simply wrap around to the top for static
screens. No automatic erasure is performed; selected
portions of the screen are erased with the ERASE command.

. Protected fields may be written; this function is not
available for roll screens.

. The cursor position, relative to the logical screen mar-
gins, may be sensed by the application program through the
RDCURSOR command.

. Input operations directed to static screens normally do
not cause a task suspension wait for the ENTER key; they
are executed immediately. This allows the program to read
selected fields from the screen after the entire display
has been modified locally without program interaction by
the operator. Operator/program signaling is provided
through the program function keys and a special
instruction, WAIT KEY.

. In order to allow convenient operator/program interaction
to take place on a static screen, the QUESTION, READTEXT,
and GETVALUE instructions are executed as if they were
directed to a roll screen (automatic task suspension for
input). READTEXT and GETVALUE are treated this way only
when a prompt message is specified in the instruction.

. The character @ is treated as a normal data character. It
does not indicate new line.

The utility program $IMAGE (see Utilities, Operator Commands,
Program Preparation, Messages and Codes) can be used to

construct formatted screen images in a user—interactive mode
and save them in disk or diskette data sets, In addition, the
images may be retrieved and displayed by application programs
through the use of system provided subroutines. See "Formatted
Screen Images”™, in the System Guide for details.

Operator Signals: An application program may wait at any point
for a 4978764979 terminal operator to press the ENTER key or one
of the program function keys. This is done by issuing the WAIT
KEY instruction.

When a key is pressed and the program operation resumes, the
key is identified in the second task code word at taskname+2
(see "Attention Handling™ on page 47). The code value for the
ENTER key is 0. For the program function keys, the value is the
integer corresponding to the assigned function code; 1 for
$PFl1, 2 for $PF2, and so on.

Chapter 2. Instructions and Statements - Overview 49

The program function keys do not generate attention interrupts
during execution of the WAIT KEY instruction. They only cause
that instruction to terminate, allowing subsequent
instructions to be executed.

TIMING INSTRUCTIONS

GETTIME
INTIME
PRINDATE
PRINTIME
STIMER

The timing functions are used in many different ways in the
Event Driven language programs. The time-of-day clock can be
displayed or it can be stored for data collection purposes. It
can also be used to start and stop the execution of tasks.

Interval timers are also available foruse by user programs and
have a minimum time increment of 1 millisecond. The 4952
clock/comparator and the 4953764955 timer feature #7840 are
supported.

50 SC34-0314

C

CHAPTER 3. INSTRUCTION AND STATEMENT DESCRIPTIONS

The Event Driven Language instructions and statements are pre—
sented here in alphabetic order. A brief description of the use
of the instructions is provided where appropriate, followed by
information on how to invoke any particular operation, the
required parameters, and the defaults used if parameters are
not specified. Each operand (or parameter) is listed and
described. Event Driven Language instructions have the stand-
ard Series/1 macro assembler format.

Each instruction is described in detail using the following
format:

Instruction name
Functional description
Syntax

Operands

Coding examples

The "Address Indexing Feature™ on page 6 can be used only with
certain instructions and operands. The syntax description of
each instruction specifies which operands, if any, are
indexable.

The instructions are grouped by function beginning in "Chapter
2. Instructions and Statements — Overview”™ on page 15 and each
functional group is presented alphabetically. Also, general
information that is common to each group is discussed there.

You should note in this chapter that the functional group of
each instruction is identified at the top of the first page of
each instruction. You can use this functional identifier to
refer back to the discussion in Chapter 2 of each functional
group.

Some instructions are also shown in various programming exam-—
ples beginning in "Chapter 6. Programming Examples™ on page
383, These examples will give further assistance in the proper
use of the more complex instructions.

Chapter 3. Instruction and Statement Descriptiqns 51

ADD

ADD

Data Manipulation

The ADD instruction adds the signed value of operand 2 to the
signed value of operand 1. The value of operand 2 remains

unchanged.

| Note: An overflow condition is not indicated by EDX.

Syntax
label ADD opndl,opnd2,count,RESULT=,PREC=,
Pl=,P2=,P3=

Required:
Defaults:

Indexable: opndl,opnd2,RESULT

opndl,opnd?2
count=1,RESULT=0opndl, PREC=S

Operands Description

opndl The name of the variable to which the operation
applies; it cannot be a constant.

opnd?2 This operand determines the value by which the
first operand is modified. Either the name of a
variable or an explicit constant may be specified.

count The number of consecutive variables in opndl or
RESULT upon which the operation is to be performed.
The maximum value allowed is 32767.

RESULT= The name of a variable or vector in which the result
is placed. The variable specified by the first
operand is not modified. This operand is optional.

PREC=XYZ The precision value X applies to opndl, Y to opnd2,

and Z to the result. The value may be either §
(single-precision) or D (double-precision). The
three operand specification may be abbreviated
according to the following rules:

52 SC34-0314

w

Px

Mixed-precision Operations:

ADD

If no precision is specified, all operands are

single precision.

. If a single letter (S or D) is specified, it
applies to the first operand and result, with
the second operand defaulted to single

precision.

If tuo letters are specified, the first applies
to the first operand and result, and the second
to the second operand.

~ "Use
on page

of The
8 for

operands. See
(Px=)"

Parameter naming
Parameter Naming Operands
further descriptions.

Allowable precision combinations

for ADD operations are listed in the following table:

opndl opnd2 Result Abbreviation Remarks
S S S S default
. S S D SSD -
O D s D D -
D D D DD -
Note: Operand 2 is either one or two words depending on the

precision specified with the keyword PREC.
is determined by the operand 1 precision multiplied

operand 1

The total length of

by the value in the count operand.

xample

ADD #1,2
ADD E,»15
ADD Vl,A

Chapter 3.

add 2 to index register 1

s PREC=D add 15 to double-prec value

s 3, RESULT=V2 add the value in A to each
of 3 words starting at V1
and place the results in 3
words starting at V2. Vi
and A remain unchanged.

Instruction and Statement Descriptions 53

ADDV

ADDV

Data Manipulation

The add vector instruction (ADDV) is used to add the components
of operand 2 to the corresponding components of operand 1.
Consecutive variables contained in operand 2 are added to the
corresponding variables contained in operand 1.

Note: An overflow condition is not indicated by EDX.

Syntax

label ADDV opndl,cpndZ,count;RESULT=,PREC=,
Pl=,P2=,P3=

Required: opndl,opnd2,count
Defaults: RESULT=0opndl,PREC=S
Indexable: opndl,opnd2,RESULT

Operands Description
opndl The name of the variable to which the operation

applies; it cannot be a constant.

opnd?2 The value by which the first operand is modified.
Either the name of a variable or an explicit con-
stant may be specified.

count The number of consecutive variables in both opndl
and opnd2 upon which the operation is to be per-
formed. The maximum value allowed is 32767.

RESULT= The name of a variable or vector in which the result
is placed. In this case the variable specified by
the first operand is not modified. This operand is
optional.

PREC=XYZ The precision value X applies to opndl, Y to opnd2,
and 2 to the result. The value may be either §
(single-precision) or D (double-precision). The
three operand specification may be abbreviated
according to the following rules:

54 SC34-0314

S
-

S

ADDV

U If no precision is specified, all operands are
single-precision,

. If a single letter (S or D) is specified, it
applies to the first operand and result, with
the second operand defaulted to single
precision.

] If two letters are specified, the first applies
to the first operand and result, and the second
to the second operand.

Px= Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for
further descriptions.

Mixed-precision Operations: Allowable precision combinations
for integer arithmetic operations are listed in the following
table:

obndl opnd2 Result Abbreviation Remarks
S S S S default
S S D §SD -
D S D D -
D D D DD -

Operations On_Index Registers

Index registers may generally be treated as ordinary single-
precision integer arithmetic or logical variables. However,
results of a vector operation directed at the registers, #1 and
#2 may not extend beyond #2.

Chapter 3. Instruction and Statement Descriptions 55

ADDV

A4
Example
Vi DATA 32F'1?
V2 DATA 32F'2!
ADDV vVi,ve,32 add V2 to V1, 32 values
(After execution, V! contains 32F'3'")
ADDV #1,v3,2 add V3 to #1 and V4 to #2
V3 DATA Frie
V4 DATA Fr2°
(#1 is incremented by 1 and #2 is incremented by 2.)
‘/“\
NS

56 SC34-0314

AND

AND

Data Manipulation

The AND instruction causes a logical anding together of the bit
positions in operand 2 to operand 1. The operands are treated
as bit strings and a comparison of each of the corresponding
bits in each string is made. If the operand bits are both 1,
the corresponding result bit is also set to 1. If either or
both of the operand bits is a 0, the corresponding bit in the
result is set to 0.

Syntax

label AND opndl,opnd2,count,RESULT=,
Pl=,P2=,P3=

Required: opndl,opnd?
Defaults: count=(1,WORD),RESULT=0pndl,
Indexable: opndl,opnd2,RESULT

Operands Description
opndl The name of the variable to which the operation

applies; it cannot be a constant., The length of
opndl is determined by multiplying count times pre-
cision.

opnd?2 The value by which the first operand is modified.
Either the name of a variable or an explicit con-
stant may be specified.

count The number of consecutive variables in opndl upon
which the operation is to be performed. The maximum
value allowed is 32767.

The count operand can include the precision of the
data. Because these operations are parallel (the
two operands and the result are implicitly of like
precision) only one precision specification is
required. That specification may take one of the
following forms:

Chapter 3. Instruction and Statement Descriptions 57

AND

RESULT=

Px

Example

]

AND

AND

BYTE --~ byte precision
WORD -- word precision
DWORD -~ doubleword precision

This optional operand represents a variable or
vector in which the result is to be placed. In this
case the variable specified by the first operand is
not modified.

Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for
further descriptions.

A, X'O0FF"® AND bit positions of the constant

X'00FF with variable A

B,A,(1,BYTE) AND bit positions of A with B

In the following example a mask value is ANDed with a data field
to turn off the low order 4 bits in the data byte without
affecting the other bits. After execution of the AND, the
field DATA contains X'EO' (binary 1110 0000).

58

DATA
MASK

AND DATA1l,MASK, (1,BYTE)

bC X'E7' binary 1110 0111
DC X'FO" binary 1111 0000

S$C34-0314

T

¥

C

ATTACH

ATTACH

Task Control

The ATTACH instruction activates execution of another task. If
the named task is already in the attached state, no operation
occurs.

The task to be attached is normally assumed to be in the same
partition as the ATTACH instruction. However, it is possible
to ATTACH a task in another partition using the cross-partition
capability of ATTACH. For more information refer to
"Cross—Partition Services”™ in the System Guide.

When an ATTACH statement is issued, the address of either the
default terminal or the currently active terminal for the task
issuing the ATTACH, is placed into $TCBCCB of the target task.
Therefore, the same terminal is active for both tasks.

Syntax

label ATTACH taskname,priority,CODE=value,
Pl=,P2=,P3=

Required: taskname
Defaults: CODE=-1
Indexable: none

Operands Description

taskname Name of the task to be attached. This task must be
defined with a TASK statement.

priority A priority to be assigned to the task. This
priority will override and replace the one ori-
ginally assigned in the TASK statement. It remains
in effect unless superceded by a subsequent ATTACH
statement. See the description of "TASK"™ on page
285 for a complete definition of priority.

CODE= A code word to be inserted in the first word of the
task control block of the task being attached. The
code word may be tested in the attached task by
referring to the taskname operand. Sometimes when

Chapter 3. Instruction and Statement Descriptions 59

ATTACH

a task is attached from more than one point, it may
be desirable to inform the task of the origin of the
attachment. The code word value provides a simple
mechanism for accomplishing this. Note that the
code word should be examined immediately upon entry
to the attached task, since execution of certain
instructions (for example, I/0 instructions) will
cause the task code word to bhe overlaid.

Parameter naming operands. See "Use of The
Parameter Naming Operands (Px=)" on page 8 for fur-—
ther descriptions.

60 SC34-0314

AN

J

O

ATTNLIST

ATTNLIST

Task Control

The ATTNLIST statement provides entry to one or more user writ-
ten asynchronous attention interrupt handling routines. When
the attention key is pressed on a user terminal, the system
will query the user for a 1-8 character command. By con-
vention, commands beginning with $§ are reserved for system use.
All other character combinations are allowed.

The ATTNLIST statement produces a list of command names and
associated routine entry points., Therefore, this statement
should not be placed betuween executable instructions. If the
command entered is specified in the 1list, control will be
passed to the associated user routine. This provides you with
a mechanism for interactive control of programs from a termi-
nal. These routines should be short because they are executed
on hardware interrupt level 1; therefore, they may interfere
with the execution of any other user programs. They must end
with the ENDATTN instruction.

Coding of a LOCAL or a GLOBAL ATTNLIST causes a special
ATTNLIST task control block (named $ATTASK) to be generated
within your program. Routines invoked by ATTNLIST statements
operate under the ATTNLIST task asynchronously with the other
user or system tasks. System operator commands, however, oper-
ate as part of the system keyboard task within the supervisor.
The following instructions are not recommended for use in an
ATTNLIST routine: DETACH, ENDTASK, PROGSTOP, LOAD, STIMER,
WAIT, TP, READ, WRITE, ENQT, and DEQT.

If the $DEBUG utility program is to be used to test vyour
program, then the $DEBUG commands, listed in the Utilities,
Operator Commands, Program Preparation, Messages and Codes
cannot also be defined in an ATTNLIST in the program to be
tested.

Chapter 3. Instruction and Statement Descriptions 61

ATTNLIST

Syntax
label ATTNLIST (ccl,locl,cc2,1l0c2,...5ccn,locn),
SCOPE=
SCOPE=
Required: ccl,locl
Defaults: SCOPE=L0OCAL
Indexable: none

Operands

ccl

locl

SCOPE=

Description

The command identification requiring 1- to 8-
alphameric characters. One exception is that ¢ is
reserved for system use as a first character,
except as noted under "Attention Handling" on page
47. The use of the 497974978 terminal program func-—
tion keys to invoke ATTNLIST routines are defined
there. Also see use of $DEBUG commands in Utili-
ties, Operator Commands, Program Preparation, Mes-—
sages and Codes.

Name of the routine to be invoked.

An indicator of where the ATTNLIST is invoked from,
either GLOBAL or LOCAL. GLOBAL allows the ATTNLIST
command routines to be invoked from any terminal
assigned to the same storage partition. LOCAL lim-
its the invoking of the commands to the specific
terminal (assigned to the same partition) from
which the program containing the command Was
loaded. This is based on the premise that the parti-
tion assignment of the terminal has not been dynam-
ically changed by a $CP command. A program may have
one LOCAL ATTNLIST and one GLOBAL ATTNLIST.

Note: The following conditions apply to the ATTNLIST:

1. The S$ED

XASM compiler allows only one list with a maximum of

254 characters.

2. The Ser
multipl
list.

ies/1 macro assembler and host assemblers allow
e lists but with a maximum of 125 characters per

62 SC34-0314

S

PCODE1l

PCODE2

ATTNLIST

ATTNLIST (PC1,PCODEL,PC2,PCODE2)

MOVE: CODE,1 ENTER HERE BY PRESSING
ENDATTN ATTENTION AND KEYING 'PC1’
POST EVENT,2 ENTER HERE BY PRESSING
ENDATTN ATTENTION AND KEYING 'PC2'

Figure 4 shows the functional flow when ATTNLIST is used. Also
see "Example 7: A Two Task Program With ATTNLIST" on page 395.

ATTNLIST
abc - gbc,exitl
| e ®
P °
— - |
Q:L xyz,exit2 » exitl .
s . ENDATTN
/ L]
....”” exit2 e
[
ENDATTN

Figure 4.

Function of ATTNLIST

Chapter 3. Instruction and Statement Descriptions 63

BSC

BSC (BINARY SYNCHRONOUS COMMUNICATIONS)(REFERENCE ONLY)

Telecommunications

BSCCLOSE

(o]

SCREAD

BSCIOB

BSCOPEN

BSCWRITE

The Binary Synchronous instructions are described in detail in
the Communications and Terminal Applications Guide

64 SC34-0314

BUFFER

BUFFER

Data Definition

The BUFFER statement defines a data storage area. The standard
buffer contains an index, a length, and a data buffer. The
index may be used to indicate the current total number of words
stored in the buffer. Both the index and the data buffer are
initialized to O.

Certain instructions, for example INTIME and SBIO, have an
optional indexing facility wherein they can be used to add new
entries sequentially to a buffer by implicitly referencing and
incrementing the index word. The index can be thought of as a
subscript to a one dimensional array. If a buffer becomes full
and is to be reused, the index word must be reset to 0. Examina-
tion of the index word also indicates how many entries are cur-
rently in use in a buffer. You may assign a name to the index
word in the BUFFER statement to provide for such program refer-
ences.

BUFFER can be used to define the specialized storage area
needed for use wWith the Host Communication Facility TP
READ/WRITE instruction, and can also be used with the Terminal
I/0 instructions. Use of BUFFER for terminals is explained
under the I0OCB statement.

For a physical layout of a buffer see Figure 5 on page 67.

Syntax

label BUFFER count,item, INDEX=

Required: count
Defaults: item=WORD
Indexable: none

Operands Description
count The length of the buffer in terms of the item

specified. In addition to the buffer 1i1tself, 2
words of control information are allocated.

Chapter 3. Instruction and Statement Descriptions 65

BUFFER

item Buffer type indicator. Code BYTE or BYTES if the
buffer length is defined in terms of bytes. Code
WORD or WORDS if the buffer length is defined in
terms of words. The default for this operand is
WORD.

Code TPBSC to generate a buffer for use with the TP
READ and HWHRITE statements (Host Communications
Facility). BUFFER length must be specified in
bytes if TPBSC is used.

INDEX= A symbolic name assigned to the buffer index word.
The parameter cannot be used if the item parameter
is coded as TPBSC.

Note: Count and INDEX are maintained in terms of the number of
data items (words or bytes) which the buffer can contain (total
size) or currently contains, respectively. Index may also be
regarded as the displacement of the next available location
relative to the start of the buffer.

66 SC34-031¢4

®

£
* /

Standard BUFFER

label BUFFER count,item,INDEX=name

name

index

count

> |abel

X

X

Oo|lo|o|jojo X} X

‘) TPBSC BUFFER

label BUFFER count, TPBSC

L.

count

pad

request

> label

data

pad

Figure 5. BUFFER Statement

2 words
index
Countin
bytes or
words
size in bytes 1 word
DLE/STX 1 word

TP request block 8 words

‘count’
bytes

ETX 1 word

Chapter 3. Instruction and Statement Descriptions

67

CALL

CALL

Program Control

The CALL instruction executes a user—uwritten or system subrou-
tine. Up to five parameters may be passed as arguments to the
subroutine. The first instruction of the subroutine is identi-
fied by a SUBROUT statement. If the called subroutine is a sep-
arate object module to be link-edited with your program, then
you must also code an EXTRN statement for the subroutine name
in the calling program.

Syntax

label CALL name,parl,...,par5,Pl=,...,P6=

Required: name
Defaults: none
Indexable: none

Operands Description

name The name of the subroutine to be executed.

parn The parameters associated with the subroutine. Up
to five, explicit, single precision, integer con-
stants or the symbolic labels of single-precision
integer variables which wWill be passed to the
subroutine. The actual constant or the value at the
named location is moved to the corresponding sub-
routine parameter. Updated values of these parame-
ters are returned by the subroutine.

If the parameter name is enclosed in parentheses,
for example, (parl), the address of the variable is
passed to the subroutine parameter. Such an
address may be the label of the first word of any
type of data item or data array. HWithin the subrou-
tine it will be necessary to move the passed address
of the data item into one of the index registers, #1
or #2, in order to reference the actual data item
location in the calling program. If the parameter
name enclosed in parentheses is5 a symbol defined by
an EQU statement, the value of the symbol is passed

68 SC34-0314

A

£

C

Px=

Example

CALL PROG, 5

CALL

as the parameter.

If the parameter to be passed is the value of a sym-
bol defined by an EQU statement, it can also be pre-
ceded by a plus (+) sign. This causes the value of
the EQU to be passed to the subroutine. If not
preceded by a +, the EQU is assumed to represent an
address and the data at that address is passed as
the parameter.

Parameter naming operands. See "Use of The

Parameter Naming Operands (Px=)" on page 8 for
further descriptions.

The value 5 is passed to PROG

CALL SUBROUT,PARM1, (PARM2),+FIVE

The parameters passed to SUBROUT
are the contents of