— S =

ACADEMIC INFORMATION SYSTEMS 4.2 FOR THE IBM RT PC

ACADEMIC INFORMATION SYSTEMS

VOLUMEII

Academic Information Systems 4.2
for the
IBM RT PC

PRPQ #5799-CGZ, Release 2

Volume II

Academic Information Systems
International Business Machines Corporation
Palo Alto, CA

NOTICE

This product is distributed by way of license and is copyright |
protected. Unauthorized copying or reproduction by any '
means of any part of this product is expressly prohibited, {
except as provided by the license agreement. ,

WARNING: Any shipment of Academic Information Systems 4.2 (hereinafter referred to as “4.2/RT”) for the IBM
RT PC to a country outside the United States requires a U.S. Government license.

Third Edition (December 1986)

Changes will be made periodically to the information herein; these changes will be incorporated in new editions of this
publication.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these avail-
able outside the United States.

International Business Machines Corporation provides this software and documentation ““as is”, without warranty of any
kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. No assurance of successful installation can be given. IBM may make improvements and/or changes
in the product(s) and/or program(s) described in this manual at any time.

A reader’s comment form has been provided at the back of this publication. If the form has been removed, address com-
ments to Academic Information Systems; University Support, Dept. 6F'R; IBM Corporation; P.O. Box 10500; Palo Alto,
CA 94303.

IBM may use or distribute any of the information you supply in any way it deems appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1985, 1986

15 Dec 1986

Preface

This software and documentation is based in part on the 4.2 Berkeley Software Distribution under
license from The Regents of the University of California. We gratefully acknowledge the follow-
ing individuals and institutions for their role in its development: Computer Science Division,
Department of Electrical Engineering and Computer Science, University of California, Berkeley,
California; Individual Computing Systems, IBM Research, Yorktown Heights, New York; The
IRIS Group, Brown University, Providence, Rhode Island; ITC, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.

IBM

Academic Information Systems
Palo Alto, CA

March 1986

Preface to 4.2 Berkeley Software Distribution

This update to the 4.1 distribution of June 1981 provides support for the VAX! 11/730, full net-
working and interprocess communication support, an entirely new file system, and many other
new features. It is certainly the most ambitious release of software ever prepared here and
represents many man-years of work. Bill Shannon (both at DEC and at Sun Microsystems) and
Robert Elz of the University of Melbourne contributed greatly to this distribution through new
device drivers and painful debugging episodes. Rob Gurwitz of BBN wrote the initial version of
the code upon which the current networking support is based. FEric Allman of Britton-Lee
donated countless hours to the mail system. Bill Croft (both at SRI and Sun Microsystems)
aided in the debugging and development of the networking facilities. Dennis Ritchie of Bell
Laboratories also contributed greatly to this distribution, providing valuable advise and guidance.
Helge Skriverik worked on the device drivers which enabled the distribution to be delivered with a
TUS8 console cassette and RX01 console floppy disk, and rewrote major portions of the stan-
dalone i/o system to support formatting of non-DEC peripherals.

Numerous others contributed their time and energy in organizing the user software for release,
while many groups of people on campus suffered patiently through the low spots of development.
As always, we are grateful to the UNIX? user community for encouragement and support.

Once again, the financial support of the Defense Advanced Research Projects Agency is gratefully
acknowledged.

S. J. Lefller
W. N. Joy
M. K. McKusick

'VAX is a trademark of Digital Equipment Corporation.
2UNIX is a trademark of AT&T Bell Laboratories.

TRADEMARKS

The following trademarks appear in this manual:

UNIX is a trademark of AT&T Bell Laboratories

DEC and VAX are trademarks of Digital Equipment Corporation

AIX, RT, and RT PC are trademarks of International Busincss Machines Corporation
MetaWare, High C, and Professional Pascal arc trademarks of MetaWare Incorporated
Ethernet is a trademark of Xerox Corporation

Documenter’'s Workbench is a registered trademark of AT&T Technologies

4.2 for the IBM RT PC

CONTENTS

VOLUME II. SUPPLEMENTARY DOCUMENTS
Operating Academic Information Systems 4.2
Building 4.2/RT Systems with Config
Assembler Reference Manual for 4.2/RT
Floating Point Arithmetic

The C Subroutine Interface for the IBM Academic
Information Systems Experimental Display

Programmer’s Notes

The IBM 3812 Pageprinter
4.2/RT Linkage Convention
Recompiling with High C
Professional Pascal Differences
4.2/RT Console Emulators

The Remote Virtual Disk System

APPENDICES
Appendix A. Software Description
Appendix B. Graphics Manual Pages

Appendix C. High C Programmer’s Guide

ORDERING INFORMATION FOR METAWARE MANUALS

READER’S COMMENT FORM

35

65

91

93

115

117

149

157

165

169

185

235

237

263

C-1

Contents

15 Dec 1986

4.2 for the IBM RT PC Contents

This page intentionally left blank.

15 Dec 1986

4.2 for the IBM RT PC - Supplementary Documents

VOLUME II. SUPPLEMENTARY DOCUMENTS

This volume provides information for configuring and operating 4.2/RT, as well as information
for the programmer.

e Updates to three articles from the UNIX Programmer’s Manual, Volume 2C:
— Operating Academic Information Systems 4.2
This article provides information helpful in using 4.2/RT.
— Building 4.2/RT Systems with Config

This article describes config, a tool used in building 4.2/RT system images, and
provides information for using config on the IBM RT PC.

— Assembler Reference Manual for 4.2/RT

This article describes the usage and input syntax of as, the 4.2/RT assembler for
the IBM RT PC. v

¢ TFloating Point Arithmetic
This article summarizes floating point arithmetic in 4.2/RT.

. The C Subroutine Interface for the IBM Academic Information Systems Experimental
Display

This article describes a graphics interface for the experimental display.
¢ Programmer’s Notes

This article is a brief compendium of insights, suggestions, and notes gathered from the
programmers who ported applications to 4.2/RT.

¢ The IBM 3812 Pageprinter

This article provides information for installing the IBM 3812 Pageprinter, and instal-
ling and converting fonts.

¢ 4.2/RT Linkage Convention
This article describes the calling sequence used in 4.2/RT.
¢ Recompiling with High C

This article provides guidance to C programmers who recompile existing programs
with High C.

. Professional Pascal Differences

This article describes significant differences between Professional Pascal and the Pascal
compiler provided with 4.2BSD.

. 4.2/RT Console Emulators
This article explains the need for, and design of, emulators for 4.2/RT.
® The Remote Virtual Disk System

This article describes a network service that provides a client computer with the
appearance of removable-media disk drives and an unlimited number of disk packs.

Note that revised and new manual pages for Volume 1 of the UNIX Programmer’s Manual are
found in Volume I of this manual.

1 15 Dec 1986

4.2 for the IBM RT PC Supplementary Documents

This page intentionally left blank.

2 15 Dec 1986

4.2 for the IBM RT PC Supplementary Documents

Operating
Academic Information Systems 4.2

ABSTRACT

This article is a revision of an article entitled “Installing and Operating 4.2BSD on the
VAX,” written in July 1983 by Samuel J. Leffler and William N. Joy, and found in
Volume 2C of the UNIX Programmer’s Manual. The revisions include additions and
changes appropriate to the IBM RT PC. The following table summarizes organizational
changes in the article.

Chapter in
Original Article

Where Found in
4.2/RT Documentation

1. Introduction
2. Bootstrap Procedures

3. Upgrading from a 4BSD
Release

4. System Setup

5. Network Setup

6. System Operation
Appendix A. Bootstrap Details
Appendix B. Loading the Tape
Monitor

Appendix C. Installation

Chapter 1 of this article
Program Directory, Chapter 3,
Installation Procedures
Program Directory, Chapter 2,
Saving Modified Files

Chapter 2 of this article
Chapter 3 of this article
Chapter 4 of this article

Not applicable; dropped

Not applicable; dropped

Not applicable; dropped

Troubleshooting
Chapter 5. “AIX and 4.2/RT
Co-residence” only in 4.2/RT

The article contains the following chapters:

1. Introduction provides information helpful in operating 4.2/RT. It covers hardware sup-
ported, distribution format, 4.2/RT device naming and 4.2/RT block and raw devices.

2. System Setup describes the procedures used to set up a 4.2/RT system.
3. Network Setup describes how to configure your system to use the networking support.
4. System Operation describes some typical 4.2/RT operations on an IBM RT PC.

5. AIX and 4.2/RT Co-residence describes installing and using AIX on a 4.2/RT system.

3 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

1. INTRODUCTION
This article provides information helpful in operating 4.2/RT.

1.1. Hardware Supported

4.2/RT runs on four models of the IBM RT PC: the IBM 6151 Model 010 and Model
015 (desk models) and the IBM 6150 Model 020 and Model 025 (floor models). This sec-
tion describes the standard and optional features supported.

1.1.1. IBM 6151 Model 010 Processor
4.2/RT for the Model 010 desk model supports the following hardware:
e A 6151 System Unit and Keyboard with:
- 2 Mb of memory

e An IBM RT Personal Computer 40 Mb Fixed-Disk Drive (#4735) (stan-
dard)

- An IBM Personal Computer AT Fixed-Disk and Diskette (FD&D)
Drive Adapter (#3428) (standard)

e An IBM Personal Computer AT High Capacity Diskette Drive (#0206)
(standard)

1.1.2. IBM 6151 Model 015 Processor
4.2/RT for the Model 015 desk model supports the following hardware:
® A 6151 System Unit and Keyboard with:
- 2 Mb of memory

¢ An IBM RT Personal Computer 70Mb Enhanced Small Device Interface
(ESDI) Fixed-Disk Drive (#6941) (standard)

- An ESDI Magnetic Media Adapter (#6341) (standard)

® An IBM Personal Computer AT High Capacity Diskette Drive (#0206)
(standard)

1.1.3. IBM 6150 Model 020
4.2/RT for the Model 020 floor model supports the following hardware:
e A 6150 System Unit and Keyboard with:
- 3 Mb of memory
- 2 asynchronous (RS-232C) serial ports in the base unit (standard)

¢ An IBM RT Personal Computer 40 Mb Fixed-Disk Drive (#4735) (stan-
dard)

- An IBM Personal Computer AT FD&D Drive Adapter (#3428) (stan-
dard)

e Up to two additional IBM RT Personal Computer Fixed-Disk Drives:

- 1 or 2 with 40 Mb storage capacity (#4735) (requires an additional
IBM Personal Computer AT FD&D Adapter (#3428) for the third

drive)

- I or 2 with 70 Mb storage capacity (#6941) (requires an additional
ESDI Magnetic Media Adapter (#6341))

4 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

An IBM Personal Computer AT High Capacity Diskette Drive (#0206)
(standard)

1.1.4. IBM 6150 Model 025
4.2/RT for the Model 025 floor model supports the following hardware:

A 6150 System Unit and Keyboard with:
- 3 Mb of memory
- 2 asynchronous (RS-232C) serial ports in the base unit (standard)

An IBM RT Personal Computer 70 Mb ESDI Fixed-Disk Drive (#6941)
(standard)

- An ESDI Magnetic Media Adapter (#6341) (standard)

Up to two additional IBM RT Personal Computer Fixed-Disk Drives:

- 1 or 2 with 40 Mb storage capacity (#4735) (requires an additional
IBM Personal Computer AT FD&D Adapter (#3428))

- 1 or 2 with 70 Mb storage capacity (#6941) (requires an additional
ESDI Magnetic Media Adapter (#6341) for the third drive)

An IBM Personal Computer AT High Capacity Diskette Drive (#0206)
(standard)

1.1.5. Peripherals and Optional Features

4.2/RT also supports the following on all four models:

An IBM RT Personal Computer 1 Mb Memory Expansion (#8222) or an
IBM RT Personal Computer 2 Mb Memory Expansion (#4739) or an IBM
RT Personal Computer 4Mb Memory Expansion (#3156) (up to 8Mb total)

Local area networks (up to two in each system unit):
- IBM RT Personal Computer Token-Ring Network Adapter (#3797)

- IBM RT Personal Computer Baseband Adapter (#6810) for use with
Ethernet

An IBM 6157 Streaming Tape Drive with IBM RT Personal Computer
Streaming Tape Drive Adapter (#4797)

IBM Academic Information Systems experimental display with adapter

IBM 6153 Advanced Monochrome Graphics Display with IBM RT Per-
sonal Computer Advanced Monochrome Graphics Display Adapter (#4765)

IBM 6154 Advanced Color Graphics Display with IBM RT Personal Com-
puter Advanced Color Graphics Display Adapter (#4766)

IBM 6155 Extended Monochrome Graphics Display with IBM RT Personal
Computer Extended Monochrome Graphics Display Adapter (#4768)

An IBM RT Personal Computer Four-Port Asynchronous RS-232C
Adapter (#4763)

An IBM 3812 Pageprinter
An IBM RT Personal Computer Floating Point Accelerator (#4758)
An IBM RT Personal Computer Mouse (#8426)

5 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

. An IBM Monochrome Display and Printer Adapter (#4900)
¢ An IBM 5151 Monochrome Display

¢ An IBM 5152 Graphics Printer

¢ An IBM 4201 Proprinter with adapter

1.2. Distribution Format

The distribution includes a cover letter and program directory, installation diskettes, distri-
bution streaming tapes, and copies of this book, Academic Information Systems 4.2 for the
IBM RT PC.

The 4.2/RT distribution includes all 4.2BSD source files, whether ported or not. (User-
contributed software is not provided. The source distribution is available from the Univer-
sity of California at Berkeley.) However, the distribution includes binary files only for those
programs that have been ported and tested. For more information on the files contained on
the diskettes and tapes, see the Program Directory that accompanies distribution.

1.3. 4.2/RT Device Naming

Devices in 4.2/RT are typically given two- or three-letter names. Volume I, Section 4, of
this book contains a complete list of the devices for which drivers are provided in 4.2/RT.

The normal standalone system that bootstraps the full 4.2/RT system uses two device
names:

fd(y,z) for the floppy disk
hd(y,z) for the hard disk

The value y specifies the device. The value z is a (hard) disk partition (in the range 0-7).

A 4.2/RT physical (hard) disk is divided into eight logical disk partitions, each of which
may occupy any consecutive cylinder range on the physical device. The cylinders occupied
by the eight default partitions for each drive type are specified in the disk description file
fetc/disktab (see disktab(5)). Non-standard partition sizes may be specified on a per disk
basis (see minidisk(8R)). Each partition may be used either to store a 4.2/RT file system
or as a raw data area (such as a paging area). Convention dictates the use of the first three
partitions:

. The first partition (partition 0 on drive 0) stores a root file system from which 4.2/RT

can be bootstrapped. The name of this partition is hd(0,0) for standalone programs,
and /dev/hd0a for programs run under the kernel.

e The second partition -- hd(0,1) or /dev/hd0b -- is a paging area.

¢ The third partition -- hd(0,2) or /dev/hdOc -- allows access to the entire physical dev-
ice.

This partition can be used when making a backup copy. Such a backup must be
restored onto the same disk from which it was backed up. Be extremely careful when
you use this partition. The first cylinder contains bad sector forwarding and
configuration information. If you overwrite these sectors, you will erase the bad
block information.

It is a good idea to copy the first 34 blocks of each disk in case of accident. The
copy should be placed on a separate disk or diskette so it can be recovered if needed.
The standalone COPY command can be used to copy and restore this information.

The remaining five partitions (numbered 3 through 7) can be used for additional mounted
file systems. Partition 6 -- hd(0,6) or /dev/hd0g -- is normally used for the jusr mounted
file system.

6 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

1.4. 4.2/RT Devices: Block and Raw

4.2/RT makes a distinction between block and raw (character) devices. Each disk has a
block device interface that makes the device byte-addressable; you can write a single byte
anywhere on the disk. The system reads the data from the disk sector, inserts the byte to
be written, and writes the modified data. Names like /dev/hd0a indicate block devices.
There are also raw devices available. These have names like /dev/rhdOa, the “r” here
standing for “raw.” The bootstrap procedure often uses the raw device interfaces, because
these tend to work faster in some cases. In general, however, the block device interfaces
are used.

Be aware that it is often important which interface is used: the character device interface
(for efficiency), or the block device interface (to write specific bytes within a sector). Do
not indiscriminately change the installation instructions to use the alternate type of device
interface.

7 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

2. SYSTEM SETUP

This chapter describes procedures used to set up a 4.2/RT system. Use these procedures after
you first install your system or when your system configuration changes.

2.1. Kernel Configuration

This section briefly describes the layout of the kernel code and how files for devices are
made. For a full discussion of configuring and building system images, consult the article
“Building 4.2/RT Systems with Config” later in this manual.

2.1.1. Kernel Organization

As distributed, the kernel source is in fusr/sys. The source may be physically located
anywhere within any file system as long as a symbolic link to the location is created for
the file /sys. (Many files in /usr/include are normally symbolic links relative to /sys.)
In further discussions of the system source all path names will be given relative to /sys.

The directory /sys/sys contains the mainline machine-independent operating system
code. Files within this directory are conventionally named with the following prefixes:

init_ system initialization

kern_ kernel (authentication, process management, etc.)
quota_ disk quotas

Sys_ system calls and similar

tty_ terminal handling

ufs_ file system

uipc_ interprocess communication

vm_ virtual memory

The remaining directories are organized as follows.

/sys/h machine-independent include files
/sys/conf site configuration files and basic templates
/sys/net network-independent, but network-related code

/sys/netinet DARPA Internet code

[sys/netimp IMP support code

/sys/netpup PUP-1 support code

/sys/ca IBM RT PC specific mainline code

/sys/caif IBM RT PC network interface code

[sys/caio IBM RT PC device drivers and related code
/sysjcacons IBM RT PC console device drivers and related code

Many of these directories are referenced through /fusr/include with symbolic links. For
example, /usr/include/sys is a symbolic link to /sys/h. The system code as distributed is
totally independent of the include files in /usr/include. This allows the system to be
recompiled from scratch without the /usr file system mounted if the system sources
have been relocated.

2.1.2. Devices and Device Drivers

Devices supported by 4.2/RT are implemented in the kernel by drivers whose source is
kept in /sys/ca and /sys/caio. These drivers are loaded into the system when included in
a cpu-specific configuration file kept in the conf directory. Devices are accessed through
special files in the file system, made by the mknod(8) program, and normally kept in the
/dev directory. For devices supported by the distribution system, files are created in
/dev by the /dev/MAKEDEYV shell script.

8 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

Determine the set of devices that you have and create a new /dev directory by running
the MAKEDEYV script. First create a new directory /newdev; copy MAKEDEV into it;
edit the file MAKEDEV.local to provide an entry for local needs; run it to generate a
/newdev directory. For instance, if your machine has one hard disk and a diskette, you
would type: :

#od [

#mkdir newdey

#cp dev/MAKEDEYV newdev/MAKEDEV

cd newdev

#MAKEDEYV hd0 fd0 std local

Note the “std” argument causes standard devices such as /dev/console (the machine
console) to be created.

You can then type:
#ed |
#mv dev olddev ; mv newdev dev
#sync

to install the new device directory.

2.1.3. Building New System Images

The kernel configuration of each 4.2/RT system is described by a single configuration
file, stored in the /sys/conf directory. To learn about the format of this file and the pro-
cedure used to build system images, you should:

¢ Read “Building 4.2/RT Systems with Config” later in this Volume.

e Study the manual pages for the devices you have (See Volume I of this manual or
Volume 1 of the UNIX Programmer’s Manual).

¢ Review the sample configuration file in the /sys/conf directory.

The configured system image “vmunix’? should be copied to the root and then booted

to try it out. It is best to name it /newvmunix so as not to destroy the working system
until you are sure it does work:

cp vmunix /newvmunix
sync

It is also a good idea to save the old system under some other name. In particular, we
recommend that you save the generic distribution version of the system permanently as
/genvmunix for use in emergencies.

To boot the new version of the system, power on the IBM RT PC. If it’s already on,
you can perform a hardware boot by using the reboot(8) command. Alternatively, you
can use the sync(1) command, and then press and hold down the following keys:

< Ctrl > - < Alt > - < Pause >
2.2. Disk Configuration

This section describes how to lay out file systems to make use of the available space and to
balance disk load for improved system performance.

3A system configured with the debugger is called “vmunix.ws”.

9 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

2.2.1. Initializing [etc/fstab
Change into the directory /etc and copy the appropriate file from:

fstab.hd.1 (for a one-disk, desk model system)
fstab.hd.3 (for a three-disk, floor model system)

to the file /etc/fstab, i.e.:

cd fetc
cp fstab.hd.x fstab

where x is either 1 or 3.
This will set up the initial information about the usage of disk partitions.

2.2.2. Disk Naming and Divisions

Each physical disk drive can be divided into up to eight partitions; 4.2/RT typically uses
only three or four partitions. The first partition (hd0a) stores a root file system from
which 4.2/RT can be bootstrapped. The second partition is used for paging and swap-
ping. The third partition allows access to the entire physical device.

The disk partition sizes for a drive are based on a set of four default partition tables.
(See diskpart(8).) The particular table uscd depends on the size of the drive. The “a”
partition is the same size across all drives, 15884 sectors. The ‘“b” partition is 33440
sectors on 70-megabyte disks, and 10032 sectors on 40-megabyte disks. The “c” parti-
tion is large enough to access the entire disk, including the space at the front of the disk
reserved for the bad sector forwarding table, and the space at the end of the disk con-
taining the pool of replacement sectors.

Non-standard partition sizes may be specified on a per disk basis (see minidisk(8R)).

2.2.3. Space Available

The space available (in sectors) in the default disk partitions is listed in the following
table.

Name 40 MB 70MB

hd?a 15884 15884
hd? 10032 33440
hd% 87040* 141372*
hd?d 15884 15884
hd%e ----- b 55936
hd?f 43826 19404
hd’g 59721 91476

* Note that a file system on the ‘“‘c” partition can only be 138040 blocks on a 70-
megabyte disk, or 86275 blocks on a 40-megabyte disk, to allow for the reserved
space at the end of the disk.

*+ Partition “e” is not available on a 40-megabyte disk.

Be aware that the disks sizes are measured in disk sectors (512 bytes), while the 4.2/RT
file system blocks are variably sized. User programs report disk space in kilobytes, and
disk sizes in sectors. The /etc/disktab file used in making file systems specifies disk par-
tition sizes in sectors. The default sector size of 512 bytes may be overridden with the
“se” attribute.

10 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

2.2.4. Layout Considerations

There are several considerations in deciding how to arrange your disks. Two major
considerations are adequate space and adequate throughput.

Many common system programs {C, the editor, the assembler, etc.) create intermediate
files in the /tmp directory, so the file system where /tmp is stored should be large
enough to accommodate most high-water marks. If you have several disks, mount
Jtmp in a root (i.e. first partition) file system on another disk. All programs that create
files in /tmp also delete them but may leave dregs. Examine the directory periodically
and delete old files.

On a single-disk system, there may not be sufficient free space on the root file system
for /tmp. You can replace /tmp with a symbolic link to fusr/tmp on the hd0g partition,
which should have sufficient space.

The efficiency with which 4.2/RT is able to use the CPU is often strongly affected by
the configuration of disk controllers. For general time-sharing applications, the best
strategy is to try to split the root file system (/), system binaries (/usr), the temporary
files (/tmp), and the user files among several disk arms, and to interleave the paging
activity among several arms.

It is critical for good performance to balance disk load. There are at least five com-
ponents of disk load that you can divide between available disks:

1. The root (/) file system.

2. The /tmp file system.

3. The /usr file system.

4. The user files.

5. The paging activity.

The following possibilities are ones Berkeley has used when they have had two or three

disks:

disks
what 2 3
/ 1 2
tmp 1 3
usr 1 1
paging ; 1+2 | 1+3
users 2 243
archive | x X

You should try to even out the disk load as much as possible by locating on separate
arms those file systems between which heavy copying occurs. Note that long-term
balancing of the load is not important; it is much more important to balance the load
properly for when the system is busy.

Intelligent experimentation with a few file system arrangements can pay off in much
improved performance. It is particularly easy to move the root, the /tmp file system
and the paging areas. Place the user files and the /usr directory as space dictates, and
experiment with the other, more easily-moved file systems.

2.2.5. File System Parameters

Each file system has associated parameters describing its block size, fragment size, and
the geometry characteristics of the disk on which it resides. Inaccurate specification of
the disk characteristics or haphazard choice of the file system parameters can cause sub-
stantial throughput degradation or significant wasted disk space. As distributed, file

11 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

systems are configured according to the following table.

File system Block size = Fragment size

/ 8 Kbytes 1 Kbyte
usr 4 Kbytes 512 bytes
users 4 Kbytes 1 Kbyte

The root file system block size is made large to optimize bandwidth to the associated
disk. This large block size is important because the /tmp directory is normally part of
the root file. The large block size is also important because many of the most heavily
used programs are demand-paged out of the /bin directory. The fragment size of 1
Kbyte is a “nominal” value to use with a file system. With a 1-Kbyte fragment size,
disk ~ace utilization is approximately the same as with earlier versions of the file sys-
tem.

The /usr file system uses a 4-Kbyte block size with 512-byte fragment size to achieve
high performance while reducing the amount of space wasted by a larger fragment size.
Space conservation is important here because the source code for the system is normally
placed on this file system.

File systems for users have a 4-Kbyte block size with 1-Kbyte fragment size. These
parameters have been selected based on the performance of Berkeley's user file systems.
The 4-Kbyte block size provides adequate bandwidth while the 1-Kbyte fragment size
provides acceptable space conservation and disk fragmentation.

You may chose other parameters in constructing file systems, but the factors involved
in block size and fragment size are many and interact in complex ways. Larger block
sizes result in better throughput to large files in the file system, because larger 1/O
requests can be performed. However, you should consider the average file sizes found
in a file system and the performance of the internal system buffer cache. The system
provides space in the inode for 12 direct block pointers, one single indirect block
pointer, and one double indirect block pointer.* If a file uses only direct blocks, you can
optimize access time to it by maximizing the block size. If a file spills over into an
indirect block, increasing the block size of the file system may decrease the amount of
space used (by eliminating the need to allocate an indirect block). However, if you
increase the block size, and an indirect block is still required, the file will use more disk
space (because indirect blocks are allocated according to the block size of the file sys-
tem).

In selecting a fragment size for a file system, you must consider at least two things. The
major performance tradeoffs are between an 8-Kbyte block file system and a 4-Kbyte
block file system. Because of implementation constraints, the ratio of block size to
fragment size cannot be greater than 8. An 8-Kbyte file system will always have a frag-
ment size of at least 1 Kbyte. If a file system is created with a 4-Kbyte block size and a
1-Kbyte fragment size, and then upgraded to an 8-Kbyte block size and 1-Kbyte frag-
ment size, identical space conservation occurs. However, if a file system has a 4-Kbyte
block size and 512-byte fragment size, converting it to an 8K/IK file system causes
significantly more space to be used. A 4-Kbyte block file system which might be
upgraded to 8-Kbyte blocks for higher performance should use fragment sizes of at least
1 Kbyte to minimize the amount of work required in conversion.

A second, more important, consideration when selecting the fragment size for a file sys-
tem is the level of fragmentation on the disk. With a 512-byte fragment size, storage
fragmentation occurs much sooner, particularly with a busy file system running near full

4A triple indirect block pointer is also reserved, but not supported.

12 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

capacity. By comparison, the level of fragmentation in a 1-Kbyte fragment file system
is much less severe. On file systems where many files are created and deleted, the 512-
byte fragment size is more likely to result in apparent space exhaustion because of frag-
mentation. That is, when the file system is nearly full, file expansion that requires
locating a contiguous area of disk space is more likely to fail on a 512-byte file system
than on a 1-Kbyte file system. To minimize fragmentation problems of this sort, a
parameter in the super block specifies a minimum acceptable free space threshold.
When anyone but the super-user attempts to allocate disk space and the free space
threshold is exceeded, the user is returned an error as if the file system were actually full.
This parameter is nominally set to 10%, and can be changed by supplying a parameter
to newfs, or by patching the super block of an existing file system.

In general, unless a file system is to be used for a special purpose application (for exam-
ple, storing image processing data), Berkeley recommends using the default values sup-
plied. Remember that the current implementation limits the block size to at most 8
Kbytes and the ratio of block size to fragment size must be in the range 1-8.

The disk geometry information used by the file system affects the block layout policies
employed. The file /etc/disktab, as supplied, contains the data for drives supported by
the system. When constructing a file system you should use the newfs(8) program and
specify the type of disk on which the file system resides. This file also contains the
default file system partition sizes, and default block and fragment sizes. To override any
of the default values you can modify the file or use an option of newfs.

2.2.6. Implementing a Layout

To put a chosen disk layout into effect, use newfs (8) to create each new file system,
and add its name to the file /etc/fstab. The system will check and mount each file sys-
tem found in /etc/fstab when the system is bootstrapped.

Consider a system with 70-megabyte drives. On the first drive, (hd0), we put the root
file system in hdOa and the /usr file system in hd0Og. The /tmp directory was part of the
root file system because no file system was mounted on /tmp. On a one-drive model,
we put user files in the hd0Og partition with the system binaries.

On a three-drive model, we created a file system in hldg and put user files there, calling
the file system /mnt. We interleaved the paging between the first and second drives.
To do this we built a system configuration that specified:

config vmunix root on hd0 swap on hd0 and hd1

to get the swap interleaved. We kept a backup copy of the root file system in the hdla
disk partition.
To make the /mnt file system we used the following commands:

#ed [dev

#MAKEDEYV hdl

#newfs hd1g hd70r

(information about file system prints out)

#mkdir /mnt

#mount /dev/hdlg /mnt

2.3. Setup for Remote Virtual Disks (RYD)

For information regarding installing and setting up remote virtual disks, see the ‘The
Remote Virtual Disk System” article.

13 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

2.4. Configuring Terminals

If 4.2/RT is to support simultaneous access from multiple terminals, you must edit the file
Jetc/ttys. (See t2ps(5).)

Terminals connected to the system via RS232 ports are conventionally named ttyxx where
xx identifies the specific line. The lines on 4-way RS232 cards are named /dev/ity00,
/dev/tty01, . . ., /dev/ttyl5 (up to four cards may be installed). The planar serial ports are
known as /dev/ttysO and /dev/ttysl. The asynchronous communications cards are known
as [dev/ttyc0O and /dev/ttycl.

To add a new terminal, be sure the device is configured into the system and the special file
for the device has been made by /dev/MAKEDEV. Then set the first character of the
appropriate line of /etc/ttys to 1 (or add a new line).

The second character of each line in the /etc/ttys file lists the speed and initial parameter
settings for the terminal. The commonly used choices are:

0 300-1200-150-110
2 9600

3 1200-300

5 300-1200

Here the first speed is the speed a terminal starts at; “break” switches speeds. Thus a
newly added terminal /dev/tty00 could be added as

12tty00

if it were wired to run at 9600 baud. The definition of each terminal type is located in the
file /etc/gettytab and read by the getty(8) program. To make custom terminal types, con-
sult gettytab(5) before modifying this file.

Dialup terminals should be wired so that carrier is asserted only when the phone line is
dialed up. For non-dialup terminals from which modem control is not available, you must
either wire back the signals so that the carrier appears always to be present or show in the
system configuration that the carrier is to be assumed to be present. See asy(4) and psp(4)
for details.

You should also edit the file /etc/ttytype, placing the type of each new terminal there. (See
tiytype(5).)

When the system is running in multi-user mode, all terminals are enabled that appear in
[etc/ttys and have a 1 as the first character of their line. If, during normal operations, you
want to disable a terminal line, you can edit the file /etc/ttys, changing the first character of
the corresponding line to a 0. Then send a hangup signal to the init(8) process, using

#kill —11

Similarly, to enable a terminal, change the first character of a line from a 0 to a 1 and send
a hangup signal to init.

Note that several programs, and /usr/src/etc/init.c in particular, will have to be recompiled
if there are more than 100 terminals. Also note that if a special file is inaccessible when init
tries to create a process for it, init will print a message on the console and try to reopen the
terminal every minute, reprinting the warning message every ten minutes.

Finally note that you should change the names of any dialup terminals to ttyd? where ? is
in the range [0-9a-f]; some programs use this property of the names to determine if a termi-
nal is a dialup. You can put shell commands to do this in the /dev/MAKEDEYV local
script.

14 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

While it is possible to use truly arbitrary strings for terminal names, the ps (1) command
makes good use of the convention that tty names (by default, and also after dialups are
named as suggested above) are distinct in the last 2 characters. We don’t recommend you
change this; the heuristic ps (1) uses that are based on these conventions may break down
and ps wili run MUCH slower.

2.5. Adding Users

You can add new users to the system by adding a line to the password file /etc/passwd.
The procedure for adding a new user is described in adduser (8). You should add accounts
for the initial user community, give each a directory and a password, and put users who
wish to share software in the same group.

2.6. Site Tailoring

All programs that require the site name or some similar characteristic obtain the informa-
tion through system calls or from files located in /etc. To supply a site name, edit the file
fetc/rclocal. The first line in this file,

/bin/hostname mysitenarme

defines the value returned by the gethostname system call. Programs such as getty(8),
mail(1), wall(1), and who(1) use this system call so that the binary images are site-
independent.

2.7. Setting Up the Line Printer System

The line printer system consists of at least the following files and commands:

fusr/ucb/lpq spooling queue examination program
Jusr/ucb/lprm program to delete jobs from a queue
Jjusrfucb/lpr program to enter a job in a printer queue
Jetc/printcap printer configuration and capability data base
Jusr/lib/lpd line printer daemon, scans spooling queues
Jetc/lpc line printer control program

The file /etc/printcap is a master data base describing both line printers directly attached to
a machine and printers accessible across a network. The manual page printcap(5) describes
the format of this data base and shows the default values for such things as the directory in
which spooling is performed. The line printer system handles multiple printers, multiple
spooling queues, local and remote printers, and printers attached via serial lines that require
line initialization such as the baud rate.

Remote spooling via the network is handled with two spooling queues, one on the local
machine and one on the remote machine. When a remote printer job is initiated with Jpr,
the job is queued locally and a daemon process is created to oversee the transfer of the job
to the remote machine. If the destination machine is unreachable, the job will remain
queued until it is possible to transfer the files to the spooling queue on the remote
machine. The lpg program shows the contents of spool queues on both the local and
remote machines.

To configure your line printers, consult the printcap(5) man page and the article entitled
“4.2BSD Line Printer Spooler Manual” in Volume 2C of the UNIX Programmer’s
Manual. Include a call to Ipd(8) in Jetc/rc. (See also ibm38/2(8) and ppt(8).)

15 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

2.8. Setting Up the Mail System

The mail system consists of the following commands:

/bin/mail old standard mail program (from 32/V)
Jusr/ucb/mail UCB mail program, described in mail(1)
Jusr/lib/sendmail mail routing program

Jusr/spool/mail mail spooling directory
Jusr/spool/secretmail secure mail directory

Jusr/bin/xsend secure mail sender

Jusr/bin/xget secure mail receiver

Jusr/lib/aliases mail forwarding information
/usr/ucb/newaliases command to rebuild binary forwarding database
Jusr/ucb/biff mail notification enabler

/etc/comsat mail notification daemon

Jetc/syslog error message logger, used by sendmail

Normally, you use the mail/(1) command to send and receive mail. This command pro-
vides a front end to edit the messages sent and received, and passes the messages to send-
mail(8) for routing. To process each piece of mail, the routing algorithm uses knowledge
of the network name syntax, aliasing and forwarding information, and network topology, as
defined in the configuration file jusr/lib/sendmail.cf. The program /usr/bin/mail delivers
local mail by adding it to the mailboxes in the directory /usr/spool/mail/username, using a
locking protocol to avoid problems with simultaneous updates. After mail is delivered, the
local mail delivery daemon /etc/comsat is notified, which in turn notifies users who have
issued a “biff y”’ command that mail has arrived.

Normally, mail queued in the directory /usr/spool/mail can be read only by the recipient.
To send mail that is secure against any possible perusal (except by a code-breaker), you
should use the secret mail facility, which encrypts the mail so that no one can read it.

To set up the mail facility, read the instructions in the file READ_ME in the directory
Just/src/usr.lib/sendmail. Then adjust the necessary configuration files. You should also
set up the file /usr/lib/aliases for your installation, creating mail groups as appropriate.
Documents describing sendmail's operation and installation appear in Volume 2C of the
UNIX Programmer’s Manual.

2.8.1. Setting Up a Uucp Connection

The version of uucp included in 4.2/RT is an enhanced version of that originally distri-
buted with 32/V.> The enhancements include:

¢ support for many auto call units
e breakup of the spooling area into multiple subdirectories

® addition of an L.cmds file to control the set of commands that may be exe-
cuted by a remote site

¢ enhanced “‘expect-send” sequence capabilities when logging in to a remote site
¢ new commands used to poll sites and obtain snapshots of uucp activity

This section gives a brief overview of uucp and points out the most important steps in
its installation.

5The uucp included in this distribution is the result of work by many people; we gratefully acknowledge their con-
tributions, but refrain from mentioning names in the interest of keeping this document current.

16 15 Dec 1986

4.2 for the IBM RT PC : Operating 4.2/RT

To connect two 4.2/RT machines with a wucp network link using modems, one site
must have an automatic call unit and the other must have a dialup port. It is best if
both sites have both.

You should first read the article “Uucp Implementation Description” in Volume 2B of
the UNIX Programmer’s Manual. Tt describes in detail the file formats and conven-
tions, and will give you a little context. In addition, the document setup.tblms, located
in the directory fusr/src/usr.bin/uucp/UUAIDS, may be of use in tailoring the software
to your needs.

The wucp support is located in three major directories: /fusr/bin, fusr/libjuucp, and
Jusr/spooljuucp. User commands are kept in /usr/bin; operational commands are in
Jusr/lib/uucp; and /usr/spool/uucp is used as a spooling area. The commands in

Jusr/bin are:
Jusr/bin/uucp file copy command
Just/bin/uux remote execution command
Jusr/bin/uusend binary file transfer using mail

Jusr/binjuuencode binary file encoder (for wusend)
Jusr/binjuudecode binary file decoder (for uusend)

Just/bin/uulog scans session log files
Jusr/bin/uusnap gives a snapshot of wucp activity
Jusr/binfuupoll polls remote system until an answer is received

The important files and commands in /ust/libjuucp are:

fusr/lib/uucp/L-devices list of dialers and hardwired lines
Jusr/libjuucp/L-dialcodes dialcode abbreviations

fust/lib/uucp/L.cmds commands remote sites may execute

Jusr/libjuucp/L.sys systems to communicate with, how to connect, and when
Just/libjuucp/SEQF sequence numbering control file
fusr/lib/uucp/USERFILE remote site pathname access specifications
Jusr/lib/uucp/uuclean cleans up garbage files in spool area

Just/libjuucp/uucico uucp protocol daemon

Jusr/lib/uucp/uuxqt uucp remote execution server

while the spooling area contains the following important files and directories:

Jusr/spooljuucp/C. directory for command (C.) files
Jusr/spool/uucp/D. directory for data (D.) files
Jusr/spooljuucp/X. directory for command execution (X.) files

Jusr/spool/uucp/D.machine directory for local D. files
Jusr/spoolfuucp/D.machineX directory for local X. files
Jusr/spool/uucp/TM. directory for temporary (TM.) files
Jusr/spool/uucp/LOGFILE log file of uucp activity
Jusr/spool/uucp/SYSLOG log file of uucp file transfers

To install uucp on your system, start by selecting a site name (less than eight charac-
ters). Next, create a uucp account in the /etc/passwd file and set up a password. Then,
create the appropriate spooling directories with mode 755 and owned by user wuucp,
group daemon.

If you have an auto-call unit, create the L.sys, L-dialcodes, and L-devices files. The
L.sys file should contain the phone numbers and login sequences required to establish a
connection with a uucp daemon on another machine. For example, the Berkeley L.sys
file looks something like:

17 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

adiron Any ACU 1200 out0123456789- ogin-EOT-ogin uucp
cbosg Never Slave 300

cbosgd Never Slave 300

chico Never Slave 1200 out2010123456

The first field is the name of a site; the second tells when the machine may be called;
the third specifies how the host is connected (through an ACU, a hardwired line, etc.);
the fourth is the phone number to use in connecting through an auto-call unit; and the
fifth is a login sequence. The phone number may contain common abbreviations that
are defined in the L-dialcodes file. The device specification should refer to devices
found in the L-devices file. Using only ACU causes the uucp daemon, uucico, to search
for any available auto-call unit in L-devices. Berkeley’s L-dialcodes file is of the form:

ucb 2
out 9%

while their L-devices file is:
ACU cul0 unused 1200 ventel

Refer to the README file in the wucp source directory for more information about
installation.

As uucp operates, it creates (and removes) many small files in the directories underneath
Jusr/spool/uucp. Sometimes files are left undeleted; purge them with the uuclean pro-
gram. The log files can grow without bound unless trimmed back; use wulog to main-
tain these files. Many useful aids in maintaining your wuucp installation are included in a
subdirectory UUAIDS beneath /usr/src/usr.bin/fuucp. Peruse this directory, and read
the “setup” instructions also located there.

18 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

3. NETWORK SETUP

4.2/RT provides support for the DARPA standard Internet protocols IP, ICMP, TCP, and
UDP. These protocols may be used on top of a variety of hardware devices ranging from the
IMPs used in the ARPANET to local area network controllers for the Ethernet. Network ser-
vices are split between the kernel (communication protocols) and user programs (user services
such as TELNET and FTP). This section describes how to configure your system to use the
networking support.

3.1. System Configuration

To configure the kernel to include the Internet communication protocols, define the INET
option and include the pseudo-devices “inet”, “pty”, and “loop” in your machine’s
configuration file. The “pty” pseudo-device forces the pseudo terminal device driver to be
configured into the system. See pty(4). The “loop” pseudo-device forces inclusion of the
software loopback interface driver. The loop driver is used in network testing and also by
the mail system.

If you are planning to use the network facilities on a 10Mb/s Ethernet or on the IBM
Token-Ring local area network, the pseudo-device “ether” should also be included in the
configuration; this forces inclusion of the Address Resolution Protocol module used in
mapping between 48-bit Ethermet or 48-bit Token-Ring addresses and 32-bit Internet
addresses.

Also, if you have an imp, you must include the pseudo-device “imp’”. Note that no
hardware drivers are provided that support imp.

Before configuring the appropriate networking hardware, you should consult the manual
pages in Volume 1, Section 4, of this book. Software support exists for the device “‘un,”
the IBM Baseband Adapter for use with Ethernet network, and for the device “lan”, the
IBM Token-Ring local area network interface.

Network interface drivers require some or all of their host address to be defined at boot
time. This is accomplished with ifconfig(8C) commands included in the Jetc/rc.local file.
Interfaces that can dynamically deduce the host part of an address but not the network
number take the network number from the address specified with ifconfig. Hosts that use a
more complex address mapping scheme, such as the Address Resolution Protocol, arp(4),
require the full address. The manual page for each network interface describes the method
used to establish a host’s address. Ifconfig(8) can also set options for the interface at boot
time. These options include disabling the use of the Address Resolution Protocol and/or
the use of trailer encapsulation. These options are useful if a network is shared with hosts
running software that is unable to perform these functions. Options are set independently
for each interface and apply to all packets sent using that interface. An alternative
approach to ARP is to divide the address range, using ARP only for those addresses below
the cutoff and using another mapping above this constant address. See the source
(/sys/netinet/if_ether.c) for more information.

To use the pseudo terminals just configured, device entries must be created in the /dev
directory. To create 16 pseudo terminals (plenty, unless you have a heavy network load)
execute the following commands:

cd [dev
MAKEDEY pty0

More pseudo terminals may be made by specifying pty/, pty2, etc. The kernel normally
includes support for 32 pseudo terminals unless the configuration file specifies a different
number. Each pseudo terminal actually consists of two files in /dev, a master and a slave.
The master pseudo terminal file is named /dev/pty? and the slave is /dev/ttyp?. Pseudo

19 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

terminals are also used by the script(1) program. In addition to creating the pseudo termi-
nals, be sure to install them in the /etc/ttys file (with a ‘0’ in the first column so no getty is
started) and in the /etc/ttytype file (with type “network’).

When configuring multiple networks, some thought must be given to the ordering of the
devices in the configuration file. The first network interface configured in the system is
used as the default network when the system is forced to assign a local address to a socket.
This means that your most widely known network should always be placed first in the
configuration file.

3.2. Network Data Bases

Several data files are used by the network library routines and server programs. Most of
these files are host-independent and updated only rarely.

File Manual reference Use

Jetc/hosts hosts(5) host names

[etc/networks networks(5) network names

[etc/services services(5) list of known services
Jetc/protocols protocols(5) protocol names

Jetc/hosts.equiv rshd(8C) list of “trusted” hosts

[etc/rc.Jocal rc(8) command script for starting servers
[etc/ftpusers Sfipd(8C) list of “‘unwelcome” ftp users

The files distributed are set up for the ARPANET or other Internet hosts. Local networks
and hosts should be added to describe the local configuration. The Berkeley entries may
serve as examples; also see the next section. You must choose network numbers for each
Ethernet. For sites not connected to the Internet, these numbers can be chosen arbitrarily;
ctherwise, you should use the normal channels for allocating netwerk numbers.

3.2.1. Regenerating [etc/hosts and /etc/networks

The host and network name data bases are normally derived from a file retrieved from
the Internet Network Information Center at SRI. (Note that it is your responsibility to
be able to connect to the Internet Network Information Center.) Use the program
Jetc/gettable to retrieve the NIC host data base and the program /etc/htable to convert
it to the format used by the libraries.

cd [usr/src/ucb/netser/htable
[etc/gettable sri-nic
Connection to sri-nic opened.
Host table received.
Connection to sri-nic closed.

[etc/htable hosts.txt
Warning, no localgateways file.

#

The Atable program generates two files of interest in the local directory: hosts and net-
works. If a localhosts file is present in the working directory, its contents are first
copied to the output file. Similarly, a localnetworks file may be prepended to the out-
put created by Atable. It is usually wise to run diff (1) on the new host and network
data bases before installing them in /etc.

3.2.2. /etc/hosts.equiv

The remote login and shell servers use an authentication scheme based on trusted hosts.
The hosts.equiv file contains a list of hosts that are considered trusted and/or under a

20 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

single administrative control. When a user contacts a remote login or shell server
requesting service, the client process passes the user’s name and the official name of the
host on which the client is located. In the simple case, if the host’s name is located in
hosts.equiv and the user has an account on the server’s machine, then service is ren-
dered (i.e. the user is allowed to log in, or the command is executed). Users may con-
strain this “equivalence” of machines by installing a .rhosts file in their login directories.
The root login is handled specially, bypassing the hosts.equiv file and using only the
J.thosts file.

Thus, to create a class of equivalent machines, the hosts.equiv file should contain the
official names for those machines. For example, most machines on Berkeley’s major
local network are considered trusted, so the hosts.equiv file is of the form:

ucbarpa
ucbcalder
ucbdali
ucbernie
ucbkim
ucbmatisse
ucbmonet
ucbvax
ucbmiro
ucbdegas

3.2.3. /etc/rclocal

Most network servers are automatically started up at boot time by the command file
Jetc/rc (if they are installed in their presumed locations). These include the following:

Jetc/rshd shell server
/etc/rexecd exec server
Jetc/rlogind login server
fetc/rwhod system status daemon

To have other network servers started up as well, commands of the following sort
should be placed in the site-dependent file /etc/rc.local.
if [-f fetc/telnetd); then
Jetc/telnetd & echo -n ’ telnetd’ > /dev/console
fi

The following servers are included with the system and should be installed in
Jetc/rc.local as the need arises.

Jetc/telnetd TELNET server

Jetc/ftpd FTP server
fetc/tftpd TFTP server
[eic/sysiog error logging server

Jetc/sendmail SMTP server

Jetc/courierd Courier remote procedure call server
Jetc/routed routing table management daemon
fetc/landump IBM Token-Ring diagnostic daemon

Consult the manual pages and accompanying documentation (particularly for sendmail)
for details about their operation.

21 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

3.2.4. [etc/ftpusers

The FTP server included in the system provides support for an anonymous FTP
account. Because of the inherent security problems with such a facility you should read
this section carefully if you consider providing such a service.

An anonymous account is enabled by creating a user fip. When a client uses the
anonymous account a chroot(2) system call is performed by the server to restrict the
client from moving outside that part of the file system where the user ftp home direc-
tory is located. Because a chroot call is used, certain programs and files must be sup-
plied to the server process for it to execute properly. Further, one must be sure that all
directories and executable images are unwritable. The following directory setup is
recommended:

od ~ftp

chmod 555 .; chown fip .; chgrp ftp .
mkdir bin etc pub

chown root bin etc

chmod 555 bin etc

chown ftp pub

chmod 777 pub

cd bin

cp [binfsh [bin/ls .

chmod 111 sh ls

cd ..[etc

cp [etc/passwd [etc/group .
chmod 444 passwd group

When a local user wishes to place files in the anonymous area, they must be placed in a
subdirectory. In the Berkeley setup, the directory ~ftp/pub is used.

Aside from the problems of directory modes, the ftp server may provide a loophole for
interlopers if certain user accounts are allowed. The file /etc/ftpusers is checked on each
connection. If the requested user name is located in the file, the request for service is
denied. This file normally has the following names on Berkeley systems:

uucp
root

Accounts with nonstandard shells and no passwords (e.g., who or finger) should also be
listed in this file to prevent their use as anonymous accounts with ftp.

3.3. Routing, Gateways, and Bridges

If your environment allows access to networks not directly attached to your host, you need
to set up routing information to allow packets to be properly routed. Two schemes are
supported by the system. The first scheme employs the routing table management daemon
Jetc/routed to maintain the system routing tables. The routing daemon uses a variant of
the Xerox Routing Information Protocol to maintain up-to-date routing tables in a cluster
of local area networks. By using the /etc/gateways file created by /etc/htable, the routing
daemon can also initialize static routes to distant networks. When the routing daemon is
started up (usually from /etc/rclocal), it reads /etc/gateways and installs those routes
defined there, and then broadcasts on each local network to which the host is attached to
find other instances of the routing daemon. If any responses are received, the routing dae-
mons cooperate in maintaining a globally consistent view of routing in the local environ-
ment. This view can be extended to include remote sites also running the routing daemon
by setting up suitable entries in /etc/gateways. Consult routed(8C) for a more thorough

22 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

discussion.

The second approach is to define a wildcard route to a smart gateway and depend on the
gateway to provide ICMP routing redirect information that will dynamically create a rout-
ing data base. This is done by adding an entry of the form

Jetc/route add 0 smart-gateway 1

to Jetc/rclocal. See route(8C) for more information. The wildcard route, shown by a 0-
value destination, will be used by the system as a ‘“last resort” in routing packets to their
destination. Assuming the gateway to which packets are directed is able to generate the
proper routing redirect messages, the system will then add routing table entries based on
the information supplied. This approach has certain advantages over the routing daemon
but is unsuitable in an environment where there are only bridges (i.e. pseudo gateways
that, for instance, do not generate routing redirect messages). Further, if the smart gateway
goes down, the only alternative for maintaining service is manually altering the routing
table entry.

The system always listens to and processes routing table redirect information, so it is possi-
ble to combine both the above facilities. For example, the routing table management pro-
cess might be used to maintain up-to-date information about routes to geographically local
networks, while employing the wildcard routing techniques for “distant” networks. The
netstat(1) program may be used to display routing table contents as well as various routing
oriented statistics. For example,

#netstat —r

will display the contents of the routing tables, while

#netstat —r —s

will show the number of routing table entries dynamically created as a result of routing
redirect messages, etc.

23 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

4. SYSTEM OPERATION
This section describes some typical 4.2/RT operations on an IBM RT PC, including:

e Bootstrapping and shutdown
e Checking system and device error logs
® Checking file systems and performing backups
¢ Moving file systems
¢ Monitoring system performance
¢ Recompiling and reinstalling system software
e Making local modifications
¢ Accounting for connect time and process resources
¢ Controlling resources
¢ Network troubleshooting
¢ Monitoring specific files

Procedures described here are used periodically to reboot the system, analyze error messages
from devices, do disk backups, monitor system performance, recompile system software and
control local changes.

4.1. Bootstrapping and Shutdown

During a normal reboot, the system checks the disks and comes up in multi-user mode
without intervention at the console. To bring the system up in single-user mode, press and
hold down <Ctrl>-<C> as soon as the system prints the date. This interrupts the boot
with only the console terminal active.

To boot from the console, press and hold down the following keys:

< Ctrl > - < Alt > - < Pause >

The system tries to boot from a diskette, then from the hard disk.

You can also boot in single-user mode by explicitly typing the system name in response to
the boot prompt:

-hd(0,8)vimunix

To bring the system up to a multi-user mode from single-user mode, press and hold down
<Ctrl>-<D> on the console. The system executes /etc/rc (a multi-user restart script)
and /etc/rclocal, and comes up on the terminals listed as active in the file /etc/ttys. See
init(8) and ttys(5). Note, however, that this does not do a file system check. If the previ-
ous shutdown was not clean, you should run “fsck —p” or force a reboot with reboot(8)
to check the disks.

When the system is in multi-user mode, you can take it to single-user mode with either:
#kill 1

or the shutdown(8) command. The latter is much more polite if there are other users

logged in. When you are in multi-user mode, either command will kill all processes and

give you a shell on the console, as if you had just booted. File systems remain mounted

after the system becomes single-user. To change to multi-user mode again, use the follow-
ing commands:

24 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

#ed/
[etc/umount -a
<Ctrl>-<D>

Note that the file /usr/adm/shutdownlog records each system shutdown, crash, processor
halt, and reboot, with its associated cause.

4.2. Checking System and Device Error Logs

When errors occur on peripherals or in the system, the system displays a warning diagnos-
tic on the console. These messages are collected regularly and written into the system error
log file /usr/adm/messages.

Error messages issued by the devices in the system are described with the drivers for the
devices in Volume I, Section 4, of this manual. If errors occur suggesting hardware prob-
lems, you should contact your hardware support group. You should check the error log
file regularly, using the command:

tail —r /usr/adm/messages

4.3. Checking File Systems and Performing Backups

You should periodically check all file systems for consistency. Use the fsck(1) command
weekly in the absence of problems, and always (usually automatically) after a crash. You
can use the procedures of reboot(8) to put the system in a state where a file system check
can be performed manually or automatically.

You should also back up file systems regularly. Use dump(8) for both complete and incre-
mental dumps. Berkeley recommends a towers-of-hanoi dump sequence with full dumps
taken every month.

Use three sets of dump media (streaming tape): daily, weekly, and monthly. Perform daily
dumps circularly on the daily set with sequence ‘32547698999... Each weekly is
a level 1; daily dump sequence levels restart after each weekly dump. Full dumps are level
0; daily sequence levels also restart after each full dump.

Thus a typical dump sequence would be:
Dump ID Level Number Date Opr Size

FULL 0 Nov 24, 1984 sy 137K
D1 3 Nov 28, 1984 sy 29K
D2 2 Nov 29, 1984 ac 34K
D3 5 Nov 30, 1984 ac 19K
D4 4 Dec 1, 1984 ac 22K
W1 I Dec 2, 1984 sy 40K
D5 3 Dec 4, 1984 ac 15K
D6 2 Dec S, 1984 sy 25K
D7 5 Dec 6, 1984 sy 15K
D8 4 Dec 7, 1984 ac 19K
72 1 Dec9, 1984 sy 118K
D9 3 Dec 11, 1984 ac 15K
D10 2 Dec 12, 1984 sy 26K
D1 5 Dec 15, 1984 ac 14K
W3 1 Dec 17, 1984 sy 71K
D2 3 Dec 18, 1984 sy 13K
FULL 0 Dec 22, 1984 ac 135K

Take weekly dumps often enough that daily dumps always fit on one streaming tape, and
never get to the sequence of 9’s in the daily level numbers.

25 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

Operators can execute [etc/dump w at login to learn what nceds to be dumped (based on
the /etc/fstab information). Be sure to create a group operator in the file /etc/group so that
dump(8) can notify logged-in operators when it needs help.

Dumping files by name is best done with tar(1) but the amount of data moved is limited to
a single tape. If there are enough drives, you can copy entire disks with dd(1) using the
raw special files and an appropriate blocking factor. The number of sectors per track is
usually a good value to use; consult /etc/disktab.

You should also make full dumps of the root file system on a regular schedule. This is
especially true on a system with only one disk. If the root file system is damaged by a
hardware or software failure, you can rebuild a workable disk by restoring the dump.

Exhaustion of user file space is certain to occur now and then. You can impose disk quo-
tas, or you might use the programs du(1), df(1), and quot(8) combined with messages of
the day and personal letters.

4.4. Moving File Systems

If you have a streaming tape, the best way to move a file system is to dump it to tape
using dump(8), create a new file system using newf5(8), and restore the tape using
restore(8). If you do not have tape, dump accepts an argument telling where to put the
dump; you might use another disk. The restore program uses an “in-place” algorithm that
allows file system dumps to be restored without concern for the original size of the file sys-
tem. Further, portions of a file system may be selectively restored in a manner similar to
the tape archive program.

To merge a file system into an existing one, use tar(1).

To shrink a file system, dump the original and restore it onto the new file system. To
shrink the root file system with only one disk drive, the procedure is more complicated:

(1) Dump the root file system to a remote streaming tape using rdump(8).
(2) Bring the system down.

(3) Load the distribution tape and install the new root file system as you did when
first installing the system.

(4) Boot normally using the newly-created disk file system.

Note that if you change the disk partition tabies or add new disk drivers, you must modify
the default disk partition tables in /etc/disktab and add the drivers to the standalone system
in /sys/standca.

4.5. Monitoring System Performance

The vmstar program provided with the system is designed to be an aid to monitoring
system-wide activity. Together with the ps(1) command (as in “ps av”), it can be used to
investigate system-wide virtual memory activity. By running vmstat when the system is
active you can judge the system activity in several dimensions: job distribution, virtual
memory load, paging and swapping activity, and disk and cpu utilization. Ideally, there
should be few blocked (b) jobs; little paging or swapping activity; available bandwidth on
the disk devices (most single arms peak out at 30-35 tps in practice); and high (above 60%)
user cpu utilization (us).

If the system is busy, then the count of active jobs may be large, and several of these jobs
may often be blocked (b). If the virtual memory is active, then the paging daemon will be
running (sr will be non-zero). It is healthy for the paging daemon to free pages when the
virtual memory gets active; it is triggered by the amount of free memory dropping below a
threshold and increases its pace as free memory goes to zero.

26 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

If you run vmstat when the system is busy (a “vmstat 1” gives all the numbers computed
by the system), you can find imbalances by noting abnormal job distributions. If many
processes are blocked (b), then the disk subsystem is overloaded or imbalanced. If you
have several non-dma devices or open teletype lines that are “ringing,” or user programs
that are doing high-speed non-buffered inpuijfoutput, then the system time may go high
(60-70% or higher). It is often possible to pin down the cause of high system time by see-
ing if there is excessive context switching (cs), interrupt activity (in) or system call activity
(sy)-

If the system is heavily loaded or if you have little memory for your load (1 megabyte is lit-
tle in most any case), then the system may be forced to swap. This is likely to be accom-
panied by a noticeable reduction in system performance and pauses when interactive jobs
such as editors swap out.

4.6. Recompiling and Reinstalling System Software

It is easy to regenerate the system, and it is a good idea to try rebuilding pieces of the sys-
tem to build confidence in the procedures. The system consists of two major parts: the
kernel itself (/sys) and the user programs (/usr/src and subdirectories). The major part of
this is /usr/src.

The major library is the C library in fusr/src/lib/libc. The library is remade by changing
into the correct directory and typing:

make

and then installed by typing:
make install

Similarly, typing:

make clean

cleans up.

NOTE: The code to support IEEE floating point emulation is distributed only in object
form on the system. If the system is rebuilt, be very careful not to delete the
Jusr/srcllibjlibc/ca/gen/xFP*.0 modules. It is strongly recommended that you tar these
modules to a diskette before starting a rebuild.

The source for all other libraries is kept in subdirectories of fusr/src/usr.lib; each has a
makefile and can be recompiled by the above recipe.

If you look at jusr/src/Makefile, you will see that you can recompile the entire system
source with one command. To recompile a specific program, find out where the source
resides with the whereis(1) command, then change to that directory and remake it with the
makefile present in the directory. For instance, to recompile “‘date”, all one has to type is:

whereis date

date: lusr|srcibin|/date.c [bin/date |usr/man/manl|date.l
cd fusr/src/bin

make date

This will create an unstripped version of the binary of “date” in the current directory. To
install the binary image, use the install command:

install —s date /bin/date
The —s option will insure the installed version of date has its symbol table stripped. The

install command should be used instead of mv or cp as it understands how to install pro-
grams even when the program is currently in use.

27 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

If you wish to recompile and install all programs in a particular target area, you can over-
ride the default target by typing:

make
make DESTDIR = pathnare install

To regenerate all the system source you can type:

cd fusr/src
make

If you modify the C library (perhaps to change a system call) and want to rebuild and
install everything from scratch, you have to be careful. You must insure the libraries are
installed before the remainder of the source; otherwise the loaded images will not contain
the new routine from the library. The following steps are recommended:

cd fusr/src

cd lib; make install

#cd ..

make usr.lib

cd usr.lib; make install

#oed..

make bin etc usr.bin ucb games local ibm

for i in bin etc usr.bin ucb games local ibm; do (cd $i; make install); done

4.7. Making Local Modifications

To keep track of changes to system source, Berkeley migrates changed versions of com-
mands in /usr/src/bin, /usr/src/usr.bin, and /usr/src/ucb in through the directory
/usr/src/new and out of the original directory into /usr/src/old for a time before removing
them. locally written commands that aren't distributed are kept in /usr/src/local and their
binaries are kept in /usr/local. This allows fusr/bin, /usr/ucb, and /bin to correspond to
the distribution tape (and to the manuals that people can buy). People wishing to use
Just/local commands are made aware that they aren't in the base manual. As manual
updates incorporate these commands, they are moved to /usr/ucb.

A directory fusr/junk to throw garbage into, as well as binary directories fusr/fold and
fusr/new, are useful. The man command supports manual directories such as
fust/man/manj for junk and /usr/man/mani for local to make this or something similar
practical.

4.8. Accounting for Connect Time and Process Resources

4.2/RT optionally records two kinds of accounting information: connect time accounting
and process resource accounting. The connect time accounting information is stored in the
file /usr/adm/wtmp, and is summarized by the program ac(8). The process time account-
ing information is stored in the file /usr/fadm/acct, which is analyzed and summarized by
the program sa(8).

If you need to charge for computing time, you can implement procedures based on the
information provided by these commands. A convenient way to do this is to give com-
mands to the clock daemon /etc/cron to be executed every day at a specified time. This is
done by adding lines to /usr/lib/crontab; see cron(8) for details.

4.9. Controlling Resources

Resource control in the current version of 4.2/RT is elaborate compared to most UNIX
operating systems. The disk quota facilities developed at the University of Melbourne have
been incorporated in the system and allow control over the number of files and amount of

28 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

disk space each user may use on each file system. In addition, the resources consumed by
any single process can be limited by the mechanisms of setrlimit(2). As distributed, the
latter mechanism is voluntary, though sites may choose to modify the login mechanism to
impose limits not covered with disk quotas.

To use the disk quota facilities, the system must be configured with “options QUOTA”.
Then place file systems under the quota mechanism by creating a null file quotas at the
root of the file system, running quotacheck(8), and modifying /etc/fstab to indicate the file
system is read-write with disk quotas (an “rq” type field). Then run the program quo-
taon(8) to enable quotas.

Apply individual quotas using the quota editor edquota(8). Users may view their quotas
(but not those of other users) with the quota(1) program. Use the repquota(8) program to
summarize the quotas and current space usage on a particular file system or file systems.

You can enforce quotas with soft and hard limits. When a user first reaches a soft limit on
a resource, a message appears on his/her terminal. If the user fails to lower the resource
usage below the soft limit, the next login causes a warning about excessive usage. Should
three login sessions go by with the soft limit breached, the system then treats the soft limit
as a hard limit and disallows any allocations until enough space is reclaimed to bring the
user back below the soft limit. Hard limits are strictly enforced, resulting in errors when a
user tries to create or write a file. Each time a hard limit is exceeded the system will gen-
erate a message on the user’s terminal,

Consult the document “Disc Quotas in a UNIX Environment” in Volume 2C of the
UNIX Programmer’s Manual and the related manual entries for more information.

4.10. Network Troubleshooting

If you have anything more than a trivial network configuration, from time to time you are
bound to run into problems. Before blaming the software, first check your network con-
nections. On networks such as the Ethernet, a loose cable tap or misplaced power cable
can result in severely deteriorated service. The netstat(1) program may b aid in tracking
down hardware malfunctions. In particular, Jook at the —i and s options in the manual
page.

Should you believe a communication protocol problem exists, consult the protocol
specifications, and attempt to isolate the problem in a packet trace. The SO_DEBUG
option may be supplied before establishing a connection on a socket, in which case the sys-
tem will trace all traffic and internal actions (such as timers expiring) in a circular trace
buffer. This buffer may then be printed out with the &pt(8C) program. Most servers dis-
tributed with the system accept a —d option that forces all sockets to be created with
debugging turned on. Consult the appropriate manual pages for more information.

4.11. Monitoring Specific Files

As part of normal system operations, you should periodically review the following files
(some of which are system-specific):

[ete/fstab how disk partitions are used

[etc/disktab disk partition sizes

[ete/printcap printer data base

[etc/gettytab terminal type definitions

[etc[remote names and phone numbers of remote machines for tip(1)
[etc/group group memberships

[etc/motd message of the day

[ete/passwd password file; each account has a line

29 15 Dec 1986

4.2 for the IBM RT PC

Jete/relocal
[etc/hosts
[ete/networks
[ete/services
[etc/hosts.equiv
[etc[securetty
[ete/ttys
[etc/ttytype
[usr/lib/crontab
Jusr flib/aliases
[usr/admfacct
[usr/adm/Ipd-errs
fusr/adm/messages
[usr/adm/ppd-crrs
[usr/adm /shutdownlog
[usr/adm/wtmp

Operating 4.2/RT

local system restart script; runs reboot; starts dacmons
host name data base

network name data base

network services data base

hosts under same administrative control
restricted list of ttys where root can log in
enables/disables ports

terminal types connected to ports
commands that are run periodically

mail forwarding and distribution groups
raw process account data

line printer daecmon error log

system error log

page printer error log

log of system rchoots

login session accounting

30 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

5. ADVANCED INTERACTIVE EXECUTIVE (AIX) AND 4.2/RT CO-RESIDENCE

It is possible to have AIX and 4.2/RT systems on the same machine. Each system should
have its own disk or disks. For the two systems to co-reside, the following steps must be taken
(a two-disk system is described; a three-disk system is similar):

5.1. Installing AIX on an Existing 4.2/RT System

AIX normally expects to be booted from drive 0, so move the 4.2/RT system to drive 1 or
drive 2. This can be done by copying the filesystems (with dump/restore) or by physically
moving the disks. To move the disks, see IBM RT PC User’s Setup Guide, 648967, and
IBM RT PC Options Installation, 55X 8838.

5.1.1. Creating a Minidisk (partition) Table on Existing 4.2/RT Disks

For the AIX installation procedure not to use the 4.2/RT disk (or disks), a minidisk
(partition) table must be established on each 4.2/RT disk that uses all the available
space. This is done by the minidisk(8R) utility, part of the sauti(8R) standalone utility.
This procedure assumes there is no existing 4.2/RT minidisk (partition) table.

The procedure is:

(1) Boot up sautil utility. It is located in /usr/stand/sautil on an installed system, and
on the standalone sautil diskette.

(2) Select the “minidisk” menu item.

(3) Initialize the minidisk directory - this makes all the space on the disk available.

(4) Create the standard partition tables by using the standard command (this
corresponds to the normal a, b, and g partitions of a 4.2/RT disk.) It also creates

@, "

a boot partition to hold the bootstrap, since this exists before the “a’ partition.

5.2. Installing AIX and 4.2/RT on a New Machine
Install 4.2/RT first, then AIX as follows:
¢ create a 4.2/RT minidisk (partition) table as given below on each 4.2/RT disk
e install the 4.2/RT root and usr filesystems onto the first available disk (AIX uses
drive 0 and possibly drive 1; 4.2/RT uses drives after AIX.)

e install AIX -- it should only use the drives set aside for it leaving the 4.2/RT drives
alone because they have valid minidisk tables using all the available space.

5.3. Booting AIX

After AIX is installed, it puts its bootstrap into the boot block of drive zero. This means
when the system is booted, AIX runs (since the default boot order is 0, f1, d0, d1, d2).

5.4. Booting 4.2/RT

There are two alternatives here. The simplest solution is to use a 4.2/RT boot diskette to
boot 4.2/RT from drive 1. This requires manual intervention (or a non-standard boot
diskette) since the the standard boot diskette attempts to boot hd(0,0)vmunix. Since the
4.2/RT root is on drive 1 (or drive 2), you should boot 4.2/RT from hd(1,0)vmunix or
hd(2,0)vmunix as appropriate. A generic kernel then asks for the root disk (which is either
hd1 or hd2 depending upon which drive is used for the root).

The other alternative is to change the boot order in non-volatile ram so the boot order is
fo, f1, d1, d0, d2. This should be done in those cases where AIX is not used frequently.
The “iplsource” option of sautil(8R) describes how to do this. In this case, a non-generic
kernel must be used. See section 2.1.3 “Building New System Images” for information on

31 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

building kernels. A generic kernel attempts to use hd0a as its root device and then panic as
there is not a proper superblock there.

5.5. Creating a Minidisk Partition Table on a New 4.2/RT Disk
There are two reasons for creating a partition table on a 4.2 disk before the 4.2/RT installa-

tion:

to prepare for eventual AIX installation (this is not critical as the partition table can
always be added later)

to use non-standard partitions. This is often done because the standard partitions do
not fit every situation. In particular, it is often the case on small (40Mb) disks, the
swap partition is insufficient to run large applications (such as window managers) and
more swap space must be allocated. In other cases, it is desirable to create more parti-
tions, or to have only a swap area and a large filesystem (on a second drive for exam-
ple) rather than the standard three partitions.

(WARNING: changing the size or location of a partition containing a filesystem effectively
destroys all the contents of that filesystem. You must do a dump/restore to change a
filesystem’s size and keep the contents). The procedure for creating a non-standard mini-
disk (partition) table is:

M
©)]

)
4

(3)

Boot up minidisk(8R) utility (as described earlier).

Initialize the minidisk directory by using the initialization command to make all the
space available.

Create standard partitions by using the standard command.

Delete the partitions not needed (but keep the partition named “boot” as this is
required to align the 4.2/RT minidisks on cylinder boundaries).

Create (or recreate) the new partitions. Usually one makes the ‘b’ (swap) partition
bigger, and the ‘g’ (usr) partition smaller.

5.6. Installing 4.2/RT on an Existing AIX Machine
As AIX automatically uses all the available disks, this is only feasible in two cases:

a new disk can be added. In this case, create the 4.2/RT minidisk (partition) table and
install 4.2/RT on the new disk.

the AIX system must be dumped to tape or diskette. Then 4.2/RT is installed as
described above and AIX is re-installed from the dumped tape or diskette.

5.7. Shared Swap Partitions

4.2/RT can use the AIX swap partition, but a non-generic kernel must be configured to do
so. Assume AIX on drive 0, 4.2/RT on drive 1. This kemel could have a configuration

like:

config vmunix root on hdl swap on hd0 and hdl

5.8. Generating an Sautil Diskette

A bootable standalone diskette is generated by taking the program (such as /boot, or
/sysistandcalsautil.out) and writing it onto a diskette with doswrite (see dosread(1)) with

32 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

the appropriate options.

To generate a standalone bootable sautil diskette, do the following:
cd /sys/standca

make sautil.out
doswrite -1 -b -v sautil.out

33 15 Dec 1986

4.2 for the IBM RT PC Operating 4.2/RT

This page intentionally left blank.

34 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

Building 4.2/RT Systems with Config

ABSTRACT
This article is an updated version of an article entitled “Building 4.2BSD UNIX
Systems with Config,” written in June 1983 by Samuel J. Leffler and found in
Volume 2C of the UNIX Programmer’s Manual. The updates include additions
and changes appropriate to the IBM RT PC. The article contains six chapters
and four appendices:
1. Introduction describes config and its uses.

2. Configuration File Contents defines each element of a configuration file.

3. System Building Process describes the steps that build a bootable system im-
age.

4. Configuration File Syntax describes the rules for writing a configuration file.
5. Sample Configuration File illustrates how to configure a sample IBM RT PC.

6. Adding New System Software describes some of the inner workings of the
configuration process.

Appendix A. Configuration File Grammar is a compressed form of the actual
yace(1) grammar used by config.

Appendix B. Rules for Defaulting System Devices describes how config arrives at
default values for device parameters.

Appendix C. Sample Configuration File lists the complete sample configuration
file developed in Chapter 5.

Appendix D. Kernel Data Structure Sizing Rules describes the rules used at com-
pile time and boot time to size certain system data structures.

35 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

1. INTRODUCTION

Config is a tool used in building 4.2/RT system images. It reads a file describing a system’s
tunable parameters and hardware support, and generates a collection of files used to build a
copy of 4.2/RT appropriate to that configuration. Config simplifies system maintenance by
isolating system dependencies in a single, easy-to-understand file.

This article describes how to use config(8) to configure and create bootable 4.2/RT system
images.

Summary of Changes for the IBM RT PC

Significant changes to the original article are in the following sections:

— 4.1: Global Configuration Parameters

— 4.3: Device Specifications

— Appendix C: Sample Configuration File

36 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

2. CONFIGURATION FILE CONTENTS
A system configuration must include at least the following pieces of information:

¢ machine type
* cpu type
e system identification
e time zone
® maximum Users
¢ location of the root file system

available hardware

Config allows multiple system images to be generated from a single configuration description.
Each system image is configured for identical hardware, but may have different locations for
the root file system and, possibly, other system devices.

2.1. Machine Type

The rachine type identifies the machine on which 4.2/RT will operate. The machine type
is used to locate certain machine-specific data files and to select rules for constructing the
configuration files.

2.2. Cpu Type

The cpu type identifies on which of possibly many cpus 4.2/RT will operate. Specifying
more than one cpu type implies 4.2/RT should be configured to run on all the cpus
specified. For those machines on which this is not possible, config prints a diagnostic mes-
sage.

2.3. System Identification

The system identification is a name attached to the system, and often the machine on
which the system is to run. The system identification is used to create a global C
“4define” that in turn is used to isolate system-dependent code in the kemnel.

The system identifier “GENERIC” is given to a system that will run on any cpu of a par-
ticular machine type; it should not otherwise be used for a system identifier.

2.4. Time Zone

The timezone in which the system will run affects the information returned by the get-
timeofday(2) system call. This value is specified as the number of hours east or west of
GMT. Negative numbers indicate a value east of GMT. The timezone specification may
also indicate the type of daylight savings time rules to be applied.

2.5. Maximum Users
The system allocates system data structures at boot time based on the maximum users th
system will support. This number, maxusers, is normally between 4 and 16, depending on
the hardware and expected job mix. The rules used to calculate system data structures are
discussed in Appendix D of this article.

2.6. Root File System Location

When the system boots it must know the location of the root of the file system tree. This
location and the part(s) of the disk(s) to be used for paging and swapping must be specified
to create a complete configuration description. You use the keyword config to specify

37 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

these values. Config uses rules to calculate default locations for these items. These rules
are described in Appendix B of this article.

When a generic system is configured, the root file system is left undefined until the system
is booted. Therefore, the root file system need not be specified. You need only specify
that the system is a generic system.

2.7. Hardware Devices

Part of the boot process is an autoconfiguration phase, when the system searches for those
hardware devices the system builder has indicated might be present. This probing sequence
requires certain pieces of information such as register addresses. A system’s hardware may
be configured with considerable flexibility or without any flexibility whatsoever. Most peo-
ple do not configure hardware devices into the system unless:

® The devices are currently present on the machine
® The devices are due soon
¢ The devices are a safeguard against a hardware failure somewhere else at the site

(Berkeley recommends configuring extra disks if an emergency requires moving one
from a machine with hardware problems).

The bulk of the configuration file is usually devoted to hardware device specifications.
Much of this article explains these specifications. Section 6.3 describes the
autoconfiguration process for those planning to write new, or modify existing, device
drivers.

2.8. Optional Items

In addition to the mandatory pieces of information described above, you can include vari-
ous optionai system facilities. For example, you can inciude support for monitoring disk
quotas, and for tracing the performance of the virtual memory subsystem. You use the
configuration file to specify any optional facilities to be configured into the system. The
resultant files generated by config will automatically include the necessary pieces of the sys-
tem.

38 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

3. SYSTEM BUILDING PROCESS

This section describes the steps necessary to build a bootable system image. We assume the
system source is located in the /sys directory and that, initially, the system is being configured
from source code.

Under normal circumstances there are five steps in building a system:
(1) Create a configuration file for the system.
(2) Make a directory in which to construct the system.

(3) Run config on the configuration file to generate the files required for compiling and
loading the system image.

(4) Construct the source code dependency rules for the configured system.
(5) Compile and load the system with make(1).

Steps 1 and 2 are usually done only once. When a system configuration changes, you usually
just run config on the modified configuration file, rebuild the source code dependencies, and
remake the system. Sometimes, however, configuration dependencies may not be noticed.
Then it is necessary to clean out the relocatable object files saved in the system’s directory.
This is discussed later.

3.1. Creating a Configuration File

Configuration files normally reside in the /sys/conf directory. It is easiest to construct a
configuration file by copying an existing configuration file and modifying it. This distribu-
tion includes a sample configuration file.

The configuration file must have the same name as the directory in which the configured
system is to be built. Further, config assumes this directory is located in the parent direc-
tory of the directory in which config is run. For example, the generic system has a
configuration file named /sys/conf/GENERIC, and an accompanying directory named
/sys/GENERIC. In general it is unwise to move your configuration directories out of /sys
as most of the system code and the files created by config use pathnames of the ../ form.
If you are running out of space on the file system where the configuration directories are
located, there is a mechanism for sharing relocatable object files between systems. This is
described later.

When building your configuration file, be sure to include the items described in Chapter 2.
In particular, you must specify machine type, cpu type, time zone, system identifier, max-
imum users, and root device. Specifying the hardware present may take a bit of work, par-
ticularly if your hardware is configured at non-standard places (e.g. device registers located
at unexpected places, or devices not supported by the system). Chapters 4, 5, and 6 of this
article should be of help to you. If the devices to be configured are not described in the
sample configuration file, you should check the manual pages in Volume I, Section 4, of
this manual or Volume 1, Section 4, of the UNIX Programmer’s Manual. For each sup-
ported device, the manual page synopsis entry gives a sample configuration line.

Once the configuration file is complete, run it through config and ook for any errors.
Don't try to use a system that config has complained about; the results are unpredictable.
For the most part, config’s error diagnostics are self explanatory; sometimes the line
numbers given with the error messages are off by one.

A successful run of config on your configuration file will generate several files in the
configuration directory. These files are:

® A file to be used by make(1) in compiling and loading the system

¢ One file for each possible system image for your machine, which describes where
swapping areas, the root file system, and other miscellaneous system devices are

39 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

located

® A collection of header files, one per possible device the system supports, which
defines the hardware configured

® A file containing the I/O configuration tables used by the system during its
autoconfiguration phase

Unless you have reason to doubt config or are curious how the system’s autoconfiguration
scheme works, you should never have to look at any of these files.

3.2. Constructing Source Code Dependencies

When config finishes generating the files needed to compile and link your system, it ter-
minates with a message of the form:

Don’t forget to run make depend.

This message is a reminder that you should change to the configuration directory for the
system just configured and type:

make depend

This step builds the rules used by make to recognize interdependencies in the system source
code, and insures that any changes to system source code will result in the proper modules
being recompiled the next time make is run.

This step is particularly important if your site makes changes to the system include files.
The rules specify which source code files are dependent on which include files. Without
these rules, make will not recognize when it must rebuild modules because a system header
file has been modified. Note that dependency rules created by this step only reflect directly
included files. That s, if file A includes a file B, which includes a file C, and then C is
modified, make will not recognize that A should be recompiled. Therefore, it is best to
keep include file dependencies only one level deep.

3.3. Building the System
The makefile constructed by config allows a new system to be rebuilt by simply typing:

make image-name

For example, if you have named your bootable system image ‘‘vmunix”, then make
vmunix will generate a bootable image named “vmunix”. You use a different system image
name if the root file system location and/or swapping configuration differ from those in the
bootable system image. The makefile that config creates has entry points for each system
image defined in the configuration file. Thus, if you have configured “‘vmunix” to be a sys-
tem with the root file system on “hd0” and “hd1lvmunix” to be a system with the root file
system on “hd1,” then make vmunix hdlvmunix will generate binary images for each.

Note that the name of a bootable image is different from the system identifier. All boot-
able images are configured for the same system; only the information about the root file
system and paging devices differ. (This is described in more detail in Chapter 4.)

The last step in the system building process is to rearrange certain commonly used symbols
in the system image symbol table. The makefile generated by config does this automati-
cally for you. This approach is advantageous for programs such as ps(1) and vmstai(1),
that run much faster when the symbols they need are located at the front of the symbol
table. Remember also that many programs expect the currently executing system to be
named /vmunix. If you install a new system and name it something other than /vmunix,
many programs are likely to give strange results.

40 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

If you are making a kernel that contains the debugger, the makefile target is:
make image_name.ws

For example, if the bootable image would normally be vmunix, then vmunix.ws is the
kernel with the debugger and should be specified on the make command line. It
should be installed as /vmunix, of course.

3.4. Sharing Object Modules

If you have many systems that are all built on a single machine there are at least two
approaches to saving time in building system images. The best way is to have a single
system which is run on all machines. This is attractive since it minimizes disk space
used and time required to rebuild systems after making changes. However, it is often
true that one or more systems will require a separately configured system image. This
may be because of limited memory (building a system with many unused device
drivers can be expensive), or configuration requirements (one machine may be a
development machine where disk quotas are not needed, while another is a production
machine where they are). In these cases it is possible for common systems to share re-
locatable object modules that are not configuration-dependent. Most of the modules
in the directory /sys/sys are of this sort.

To share object modules across systems, you should first build a generic system. Then
for each system, configure the system as before, but before recompiling and linking the
system, type:

make links

This step searches the system for source modules that are safe to share between sys-
tems, and generates symbolic links in the current directory to the appropriate object
modules in the ../GENERIC directory. This request also generates a shell script,
“makelinks”, which you may want to check for accuracy. The file /sys/conf/defines
contains a list of symbols that Berkeley feels are safe to ignore when checking the
source code for modules to be shared. Note that this list includes the definitions used
to compile in the virtual memory tracing facilities and the trace point support used
only rarely (even at Berkeley). It may be necessary to modify this file to reflect local
needs. Note further that, as already mentioned, interdependencies that are not directly
visible in the source code are not caught. This means that if you place per-system
dependencies in an include file, they will not be recognized and the shared code may
be selected in an unexpected fashion.

3.5. Building Profiled Systems

It is simple to configure a system that automatically collects profiling information as it
operates. The profiling data can be collected with kgmon(8) and processed with
gprofll) to obtain information regarding the system’s operation. Profiled systems
maintain histograms of the program counter as well as the number of invocations of
each routine. The gprof{1) command also generates a dynamic call graph of the exe-
cuting system, and propagates time spent in each routine along the arcs of the call
graph. (Consult the gprof documentation for more information.) The program counter
sampling can be driven by the system clock or a real time clock (if you have one).
The latter is highly recommended; using the system clock results in statistical
anomalies, and time spent in the clock routine will not be accounted for correctly.

To configure a profiled system, the —p option should be supplied to config. A
profiled system is about 5-10% larger in its text space because of the calls to count the
subroutine invocations. When the system executes, the profiling data is stored in a
buffer that is 1.2 times the size of the text space. The overhead for running a profiled

41 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

system varies; under normal load Berkeley sees 5-25% of the system timc spent in the
profiling code.

Note that systems configured for profiling should not be shared as described above un-
less all the other shared systems are also to be profiled.

3.6. Building a System with pcc

In building a system with pcc rather than Ac, be aware of two problems caused by the
larger kernels pcc generates. The first problem is caused by the kernel debugger
becoming larger than the kernel assumes an Ac-compiled debugger will be. (The as-
sumption is set in the file /sys/ca/rdb.h.) If the debugger exceeds that size, the make of
rdb.ws will fail, generating an error message advising you to increase the value of
RDB_END.

The second problem is that kernels having several options and pseudo devices defined
may become too large to boot, when generated by pcc. This will be true if the total
kernel size -- the size of the kernel bss plus the total boot size -- is larger than 1 Mb.

42 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

4. CONFIGURATION FILE SYNTAX

This section describes the specific rules used in writing a configuration file. A complete
grammar for the input language is in Appendix A, and may be useful for resolving syntax
errors.

A configuration file contains three logical pieces of information:
¢ parameters global to all system images
e parameters specific to each system image to be generated

¢ device specifications

4.1. Global Configuration Parameters

The global configuration parameters are machine type, cpu types, options, time zone,
system identifier, and maximum users. Each is specified with a separate line in the
configuration file.

machine type
The system runs on the machine type specified. No more than one machine
type can appear in the configuration file. For the IBM RT PC, ca is the legal
value.

cpu “type”
This system runs on the cpu type specified. More than one cpu type
specification can appear in a configuration file. "IBMRTPC?” is the legal value
on the IBM RT PC. Note that the quotation marks are required.

options optionlist
The listed optional code is compiled into the system. Options in this list are
separated by commas. Possible options are listed at the top of the generic
makefile. A line of the form “options DEBUG” generates a define of the form
—DDEBUG in the resulting makefile. A line of the form ‘“options
ROROOTDEY = 0x0200" generates a line of the form
—DROROOTDEV =0x0200. An option may be given a value by following its

name with “="'" and the value enclosed in (double) quotes. None of the stan-
dard options use such a value. The available options appear in the following
table.
Option Effect

DEBUG Compiles various debugging code into the kernel

SHOW_LOAD Shows load average in front panel LED displays

QUOTA Compiles code for disk quotas

INET Compiles code for network support

LF_DELAY=n Specifies a line-feed delay for console mono-
chrome output, making kernel debugging mes-
sages easier to read

LP_LOG=n If n! = 0 then log console messages on the printer

GPROF Includes kernel profiling code

43 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

Option Effect
CLOCKDEBUG Includes clock debugging code
IODEBUG Includes SLIH tracing 10 debugging code
SYSCALLTRACE Traces system calls and their arguments
RDB Specifies that the kernel will interface with the debugger
AEDDEBUG Includes debugging code for the experimental display
PGINPROF Profiles VM usage
ROROOTDEV=0xmmnn Causes the root disk to be mounted read-only if it’s

major/minor

XWM Must be defined to use a pseudo-device xemul
SECURE Allows kbdlock(1) to lock the console keyboard
DUALCALL Allows running a.outs with either calling sequence

Additional options associated with certain peripheral devices are listed in the Synopsis
section of the manual page for the devices.

timezone number | dst [number | |

This specifies the timezone you are in: the number of hours your time zone is west
of GMT. EST is five hours west of GMT; PST, eight. Negative numbers indicate
hours east of GMT. If you specify dst, the system will operate under daylight savings
time. An optional integer or floating point number can be included to specify a par-
ticular daylight saving time correction algorithm. The default value is 1, for the Unit-
ed States. Other values are: 2 (Australia), 3 (Western Europe), 4 (Middle Europe),
and 5 (Eastern Europe). See gettimeofday(2) and ctime(3) for more information.

ident name
This system is known as name. The sample configuration file uses the name SAM-
PLE.

maxusers number
This is the maximum number of simultaneously active users expected on the system,
and 1s used to size several system data structures. On the IBM RT PC, the minimum
value for maxusers is 4.

4.2. System Image Parameters

Multiple bootable images may be specified in a single configuration file. The systems will
have the same global configuration parameters and devices, but the location of the root file
system and other system specific devices may be different. You specify a system image us-
ing a “config” line:

config sysname config-clauses

The sysname field is the name given to the loaded system image; almost everyone names
their standard system image ‘“‘vmunix”. The configuration clauses are one or more
specifications showing where the root file system is located, how many paging devices there
are, and where they go. The device used by the system to process argument lists during ex-
ecve(2) calls can also be specified, though in practice this is almost always done by config
using one of its rules for selecting default locations for system devices.

A configuration clause is one of the following

root [on] root-device

swap | on | swap-device | and swap-device |

dumps | on | dump-device

args [on | arg-device
(The “on” is optional.) Multiple configuration clauses are separated by white space; config
allows specifications to be continued across multiple lines by beginning the continuation

44 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

line with a tab character. The “root” clause specifies where the root file system is located,
the “swap” clause specifies swapping and paging area(s), the “dumps” clause can be used
to force system dumps to a particular device, and the “args’ clause can be used to force ar-
gument list processing for execve to a particular disk.

The device names supplied in the clauses may be fully specified as a device, unit, and file
system partition; or underspecified, in which case config will use its own rules to select de-
fault unit numbers and file system partitions. The defaulting rules are a bit complicated, as
they are dependent on the overall system configuration. For example, the swap area need
not be specified at all if the root device is specified; the swap area is placed in the “‘b” parti-
tion of the disk where the root file system resides. Appendix B contains a complete list of
the defaulting rules used in selecting system configuration devices.

The device names are translated to the appropriate major and minor device numbers on a
per-machine basis. A file, /sys/conf/devices.machine (where “machine” is the machine type
specified in the configuration file), is used to map a device name to its major block device
number. The minor device number is calculated using the standard disk partitioning rules:

on unit 0, partition ““a” is minor device 0, partition “b” is minor device 1, and so on; for
units other than 0, add 8 times the unit number to get the minor device.

If the default mapping of device name to major/minor device number is incorrect for your
configuration, it can be replaced by an explicit specification of the major/minor device.
You do this by substituting

major x minor y
where the device name would normally be found.

Normally, the areas configured for swap space are sized by the system at boot time. If a
non-standard partition size is to be used for one or more swap areas, you can add a ‘“size”
specification to the device name for the swap area. For example,

config vmunix root on hd0 swap on hd0b size 1200

would force swapping to be done in partition ‘“b” of “hd0” and the swap partition size
would be set to 1200 sectors. A swap area sized larger than the associated disk partition is
trimmed to the partition size.

To create a generic configuration, only the clause “swap generic” should be specified; any
extra clauses will cause an error.

4.3. Device Specifications

You must specify to config each device attached to a machine, so that the generated system
will know to probe for it during the autoconfiguration process at boot time. Hardware
specified in the configuration file need not actually be present on the machine where the
generated system is run. Only the hardware actually found at boot time will be used by the
system.

The specification of hardware devices in the configuration file parallels the interconnection
hierarchy of the machine to be configured. A configuration file must identify what adapters
are present. A device description can provide a complete definition of the possibie
configuration parameters, or can leave certain parameters undefined; at boot time the sys-
tem probes for these missing values. The latter approach allows a single device
configuration list to match many possible physical configurations. This approach, termed
wildcarding, provides more flexibility in the physical configuration of a system. If a disk
must be moved for some reason, the system will still locate it at the alternate location.

For the IBM RT PC, a device specification takes one of the following forms:

45 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

controller device-name device-info

device device-name device-info

disk device-name device-info

tape device-name device-info
A controller is an adapter that controls one or more disks or tapes, everything else is a dev-
ice.

The device-name is one of the standard device names, concatenated with the logical unit
number assigned to the device. (The logical unit number may differ from the physical unit
number shown on the front of a device like a disk; the logical unit number refers to the
4.2/RT device, not the physical unit number). Standard device names for the IBM RT PC
are documented in Volume I,, Section 4, of this manual.

The device-info clause specifies how the hardware is connected in the interconnection
hierarchy. The beginning of the hierarchy is defined as follows:

controller iocc0 at nexus ?
The remaining legal interconnections are:
® A controller can be connected to another controller
® A disk or tape is always attached to a controller
¢ Devices are always attached to controllers
On the IBM RT PC, the controller specification takes the form:

controller Xxcn at ioccO csr addr priority irq
where

“xx" is the two- or three-letter name of the device

“n” is the controller number (0, 1, 2, 3, etc.)

“addr” is the controller adapter base address

“irq" is the PC/AT IRQ level for the adapter
For example, the line:

controller hdc0 at ioccO csr 0xf00001f0 priority 14

specifies that the hard disk controller (adapter) is at ioccO (required); its csr address is™
0xf00001f0; and its device interrupt request level is 14. Note that interrupt service routines
are not specified here. Each adapter has only one intcrrupt service routine, specified in the
iocc_driver structure within the device driver.

For a slave device on the IBM RT PC, the specification takes one of the following forms:

disk xxn at xxcy drive z
tape xxn at xxcy drive z
where
“xx” is the two- or three-letter name of the device
“n” is the unit number
Hy” is the controller number
AN is the slave unit number

For example, the following is a specification for a hard disk:
disk hd0 at hdc0 drive 0

For a non-slave device on the IBM RT PC, the specification takes the form:
device xxn at ioccQ csr addr priority irq

where

46 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

“xx” is the two- or three-letter name of the device
“n” is the adapter unit number (0, 1, 2, 3, etc.)
“addr” is the device adapter base address
“irq” is the PC/AT IRQ level for the adapter
For example, the following is a specification for the four-line serial card:
device asy0 at iocc0 csr 0xf0001230 priority 9

Any piece of hardware that can be connected to a specific controller can also be wildcarded
across multiple controllers, by specifying the controller number as “7”.

The final piece of information needed by the system to configure devices is some indication
of where or how a device will interrupt. On the IBM RT PC, interrupt routines are
specified in the driver rather than in the configuration file.

Certain device drivers require extra information passed to them at boot time to tailor their
operation to the actual hardware present. The drivers for the terminal multiplexors need to
know which lines are attached to modem lines so that no one will be allowed to use them
unless a connection is present. Therefore, one last parameter may be specified for a device,
a flags field. It has the syntax

flags number

and is usually placed after the csr specification. The number is passed directly to the associ-
ated driver. You should consult the manual pages in Volume I, Section 4, of this manual
to determine how each driver uses this value (if at all). Communications interface drivers
commonly use the flags to indicate whether modem control signals are in use.

The exact syntax for each specific device is given in the Synopsis section of its manual page
in Volume I, Section 4, of this manual.

4.4. Pseudo-Devices

Some drivers and software subsystems are treated like device drivers without any associated
hardware. To include any of these pieces, a “pseudo-device” specification must be used.
A specification for a pseudo-device takes the form

pseudo-device device-name | howmany |

Examples of pseudo-devices are bk, the Berknet line discipline; pty, the pseudo terminal
driver (where the optional Aowmany value indicates the number of pseudo terminals to
configure, with 32 as the default); and inet, the DARPA Internet protocols (one must also
specify INET in the “options” statement). Other pseudo-devices for the network include
loop, the software loopback interface; imp (required when a CSS or ACC imp is
configured); and ether (used by the Address Resolution Protocol on 10 Mb/sec Ethernets).
More information on configuring each of these can also be found in Section 4 of the UNIX
Programmer’s Manual.

Other pseudo-devices specific to the IBM RT PC are ms for the mouse, mono for the
monochrome display, aed for the IBM Academic Information Systems experimental
display, apasixteen for the IBM 6155 Extended Monochrome Graphics Display, apaeightc
for the IBM 6154 Advanced Color Graphics Display, apaeight for the IBM 6153 Advanced
Monochrome Graphics Display, xemul for the X support, and ap for the IBM 3812 Page-
printer.

47 15 Dec 1986

4.2 for the IBM RT PC

5. SAMPLE CONFIGURATION FILES

This chapter illustrates how to configure a sample IBM 6150 Model 25 (floor model) that will
run in a networking environment.

5.1. Floor Model
The following table lists the hardware to be configured.

Building Systems with Config

Item Connection Name | Reference
cpu “IBMRTPC”
controller nexus ? ioccO
U-B Ethernet card ioccO unl un(4)
disk controller ioccO hdc0 | hd(4)
disk controller ioccl hdcl
diskette controller iocc0 fdcO fd(4)
disk hdc0 hd0 hd(4)
disk hdc0 hdl
disk hdcl hd2
async controller ioccO asy0 asy(4)
async controller iocc0 asyl asy(4)
async controller iocc0 asy4 asy(4)
async controller iocc0 psp0 psp(4)
experimental display ioccO aed ibmaed(4)
advanced monochrome display ; ioccO apa8 ibmé6153(4)
extended monochrome display | iocc0 apal6 | ibm6155(4)
monochrome display iocc0 mono | ibm5151(4)
printer controller iocc0 1p0 Ip(4)
diskette fdc0 fd0 fd(4)
tape controller iocc0 stc0 st(4)
tape stc0 st0 st(4)

The following steps illustrate how to build the configuration file for this system.

(M

#

Sample Configuration Fiie for the IBM RT PC
#

machine ca

cpu "IBMRTPC”

ident SAMPLE

timezone 8 dst

maxusers 16

options INET

Fill in the global configuration parameters.

The machine is an IBM RT PC, with a machine type of ca. This system is to run
only on this one processor; the cpu type is IBMRTPC”. We will use the INET op-
tion, because we plan to use the DARPA standard Internet protocols. The system
identifier is SAMPLE. The maximum users we plan to support is about 16. Thus
the beginning of the configuration file looks like this:

(2) Add the specification for a single system image.

48

15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

Our standard system has the root on “hd0” and swapping on both ‘““hd0” and
“hdl))‘

config ymunix root on hd0 swap on hd0 and hd1

(3) Specify the hardware.
Transcribe the information from the preceding table:

controller iocc0 at nexus ?

device un0 at iocc0 csr 0xf4080000 priority 6
controller hdc0 at ioccO csr 0xfO00010 priority 14
controller hdcl at ioccO csr 0xf0000170 priority 14
controller fdc0 at ioccO csr Oxf00003f2 priority 6

disk hd0 at hdc0 drive 0

disk hd1 at hdc0 drive 1

disk hd2 at hdel drive 0

device asy0 at ioccO csr 0xf0001230 priority 9 flags 0x0f
device asyl at ioccO csr 0xf0002230 priority 10

device asy4 at ioccO csr 0xf00003f8 priority 4

device 1p0 at iocc0 csr 0xf00003bc priority 7

device fdo at fdc0 drive 0

controller stc0 at ioccO csr 0xf00001e8 priority 12

tape st0 at stc0 drive 0

device psp0 at ioccO csr 0xf0008000 priority 2 flags 0x03

(4) Add the required pseudo-devices:

pseudo-device mono
pseudo-device pty
pseudo-device loop
pseudo-device inet
pseudo-device ether
pseudo-device ms
pseudo-device aed
pseudo-device apaeight
pseudo-device apaeightc
pseudo-device apasixteen

This completes the sample configuration file. It appears in its entirety in Appendix C.

5.2. Miscellaneous Comments

Note that the sample system does not use either disk quotas or 4.1BSD compatibility
mode. To use these optional facilities or others, Berkeley recommends cleaning out
your current configuration, reconfiguring the system, then recompiling and relinking
the system image(s). You could avoid this, of course, by figuring out which relocat-
able object files are affected by the reconfiguration, and then reconfiguring and recom-
piling only the affected files. Use this technique carefully.

49 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

6. ADDING NEW SYSTEM SOFTWARE
This chapter is not for the novice. It has four sections:
¢ how to modify system code
. how to add a device driver to 4.2/RT
¢ how device drivers are autoconfigured under 4.2/RT
. how to add non-standard system facilities to 4.2/RT

6.1. How to Modify System Code
To make site-specific modifications to the system, it is best to bracket them with
#ifdef SITENAME

dendif

This allows your source to be distributed to others easily, and also simplifies diff{1)
listings. If you choose not to use a source code control system (e.g. SCCS, RCS), and
perhaps even if you do, it is recommended that you save the old code with something
of the form:

sifndef SITENAME
Hendif

Berkeley tries to isolate site-dependent code in individual files that may be configured
with pseudo-device specifications.

Identify machine-specific code with “#ifdef ca”.

6.2. How to Add Device Drivers to 4.2/RT

The I/O system and config have been designed so you can add new device support
easily. The system source directories are organized as follows:

/sys/h machine independent include files

/sys/sys machine independent system source files
/sys/conf site configuration files and basic templates
/sys/net network independent, but network related code
/sys/netinet DARPA Internet code

/sys/ca IBM RT PC specific mainline code

/sys/caif IBM RT PC network interface code
/sys/caio IBM RT PC device drivers and related code
/sys/cacons IBM RT PC console device drivers and related code

Existing block and character device drivers for the IBM RT PC reside in “/sys/ca” and
“Jsys/caio”. Network interface drivers reside in ““/sys/caif”’. Any new device drivers should
be placed in the appropriate source code directory and named so as not to conflict with ex-
isting devices. Normally, definitions for things like device registers are placed in a separate
file in the same directory. For example, “psp.c” is the name of the “psp” device driver,
and “pspreg.h” is the name of its associated include file.

Once the source for the device driver has been placed in a directory, you should modify
/sys/conf/files.machine and, possibly, /sys/conf/devices.machine. The two “files” files in
the conf directory contain a line for each source or binary-only file in the system.
Machine-independent files are located in /sys/conf/files, while machine-specific files are in
/sys/conf/files.machine. The devices.machine file is used to map device names to major

50 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

block device numbers. If the device driver being added provides support for a new disk,
you will want to modify this file. (The format is obvious.) Note that the .machine suffix
refers to the specific machine on which you're working. On the IBM RT PC, .machine be-

comes .cd.
The format of these two files has grown somewhat complex over time. Entries are normai-
ly of the form:

caio/foo.c optional foo device-driver

where the keyword optional indicates that to compile the “foo” driver into the system,
it must be specified in the configuration file. If instead the driver is specified as stan-
dard, the file will be loaded no matter what configuration is requested. This is not
normally done with device drivers.

Aside from including the driver in the appropriate “files” file, it must also be added to
the device configuration tables. These are located in the /sys/ca/conf.c file. If you
don’t understand what to add to this file, you should study an entry for an existing
driver. Remember that the position in the block device table specifies what the major
block device driver number is; this number is needed in the ‘“devices.machine” files if
the device is a disk.

With the configuration information in place, your configuration file appropriately
modified, and a system reconfigured and rebooted, you should incorporate the shell
commands needed to install the special files in the file system to the /dev/MAKEDEV
or /dev/MAKEDEV.local file. This is discussed in the article “Operating Academic
Information Systems 4.2.”

6.3. Autoconfiguration on the IBM RT PC
4.2/RT requires all device drivers to conform to a set of rules that allow the system to:
(1) Support system configuration at boot time, and
(2) Manage resources so as not to crash when devices request unavailable resources.

The IBM RT PC I/O control channel (I0CC) uses a set of translation control word
(TCW) registers to convert from the PC/AT I/O bus address space into the IBM RT
PC address space when using direct memory access (DMA). There is a structure of
type struct iocc_hd in the system per DMA channel used to manage these resources.
This structure also contains a linked list where devices waiting for resources to com-
plete DMA activity have requests waiting.

There are three central structures used to write drivers for controllers:
struct iocc_ctlr -- the controller structure
struct iocc_driver -- the driver structure
struct iocc_device -- the device structure

These are defined in the . . . /caio/ioccvar.h file.

The elements are analogous to the VAX structures, except for the following:

ic_irq is the irq level specified as ‘priority’ for a controller
iod_irq is the irq level specified as ‘priority’ for a device
idr_intr specifies the interrupt service routine for this driver

51 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

idr_csr is the offset to a read/write register that can be in-
terrogated for the existence of the device. Values
at addr{csr+ 0] and addr{csr + 1] will be tested for a
non-existent device (compared to the contents of a
“standard” non-existent device).

Devices that do not do DMA I/O can often use only two of these structures (iocc_driver
and iocc_device). Each controller specified in the config file has an associated line in struct
iocc_ctlr iocc_cinit] and each device or slave has an entry in struct iocc_device iocc_dinit[]
generated automatically in ioconf.c in the config directory. The iocc_ctlr and iocc_device
structures are in one-to-one correspondence with the definitions of controllers and devices
in the system configuration. Each driver has a struct iocc_driver structure specifying an
internal interface to the rest of the system.

The specification:
controller hdc0 at iocc0 csr 0xf00001f0

would cause a struct iocc_ctlr to be declared and initialized in the file ioconf.c for the
system configured from this description. Similarly specifying:

disk hd0 at hdc0 drive 0

would declare a related iocc_device in the same file. The Ad.c driver which implements
this driver specifies in declarations:

int hdprobe(), hdslave(), hdattach(), hdint();
int hdwstart, hdwatch(); /* watch routine */

/* hddinfo contains pointers to the slaves (drives) */
struct iocc_device *hddinfo[NHDJ;

struct iocc_ctlr *hdminfo{[NHDC]J;

struct iocc_driver hdcdriver = {
hdprobe, hdslave, hdattach,

/* dgo addr dname dinfo mname minfo intr csr */
0, hdstd, "hd”, hddinfo, "hdc”, hdminfo, hdint, 2

which initializes the iocc_driver structure. The driver will support some number of
controllers named hdc0, hdc/, etc, and some number of drives named Ad0, hdl, etc.
where the drives may be on any of the controllers (that is, there is a single linear name
space for devices, separate from the controllers.)

We now explain the fields in the various structures. It may help to look at a copy of
caiolioccreg.h, caiofioccvar.h and drivers such as hd.c and asy.c while reading the
descriptions of the various structure fields.

6.3.1.1. iocc_driver structure

One of these structures exists per driver. It is initialized in the driver and con-
tains functions used by the configuration program and by the DMA resource
routines. The fields of the structure are:

idr_probe

The probe routine is given the adapter base address and should return one of
the following values:

52 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

PROBE_BAD (0) The device is bad, didn’t really exist, etc.

PROBE_NOINT (1) The device is there, but either cannot
interrupt easily or the driver isn’t smart
enough to do so. Use the irq from the
configuration information.

PROBE_OK (2) The device is there, is healthy, and
should have interrupted. If it did not
actually interrupt, then a message will
be printed and the device ignored.

The PROBE_DELAY(n) macro can be used when waiting for an interrupt to hap-
pen in the probe routine. It behaves exactly like DELAY(n), which delays for # mi-
croseconds, but will return as soon as an interrupt has happened.

idr_slave
This routine is called with a iocc_device structure (yet to be described) and the
address of the device controller. It should determine whether a particular slave
device of a controller is present, returning 1 if it is and 0 if it is not.

idr_attach
The attach routine is called after the autoconfigure code and the driver concur
that a peripheral exists attached to a controller. This is the routine where
internal driver state about the peripheral can be initialized.

The attach routine performs a number of functions. The first time any drive is
attached to the controller it starts the timeout routine which watches the disk
drives to make sure that interrupts aren’t lost. It also initializes, for devices
which have been assigned iostat numbers (when iod->iod dk > = 0), the
transfer rate of the device in the array dk_mspw, the fraction of a second it
takes to transfer a 16-bit word. It increments the count of the number of dev-
ices on this controller, so that search commands can later be avoided if the
count is exactly 1.

idr_dgo
Is the routine which is called by the DMA resource management routines
when an operation is ready to be started (because the required resources have
been allocated). It is not used by programmed I/O routines, such as hd.c.

idr_addr
"~ Are the conventional addresses for the device control registers. This informa-
tion is used by the system to look for instances of the device supported by the
driver. When the system probes for the device it first checks for a control-
status register located at the address indicated in the configuration file (if sup-
plied), then uses the list of conventional addresses pointed to be idr_addr.

idr_dname
Is the name of a device supported by this controller; thus the disks on a fixed
disk controller are called Ad0, Ad/, etc. That is because this field contains Ad.

idr_dinfo
Is an array of back pointers to the iocc_device structures for each device at-
tached to the controller. Each driver defines a set of controllers and a set of
devices. The device address space is always one-dimensional, so that the pres-
ence of extra controllers may be masked away (e.g. by pattern matching) to
take advantage of hardware redundancy. This field is filled in by the
configuration program, and used by the driver.

53 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

idr_mname
The name of a controller, e.g. hdc for the Ad.c driver. The first controller is
called Adc0, etc.

idr_minfo
The backpointer array to the structures for the controllers.

idr_intr
The interrupt routine is called after the device receives an interrupt. It returns
0 if the interrupt really was for that device. Otherwise, it returns 1 so that mul-
tiple devices may share the same interrupt level.

idr_csr
The offset from idr_addr that PROBE uses to see if a device exists; idr_csr
must be the offset to a read-write location that is safe for PROBE to read-
write during autoconfig.

6.3.1.2. iocc_ctlr structure

One of these structures per controller exists. The fields link the controller to its
adapter and contain the state information about the devices on the controller. The
fields are:

ic_driver
A pointer to the struct iocc_driver for this driver, which has fields as defined
above.

ic_ctir
The controller number for this controller, e.g. the 0 in shdc0.

ic_alive
Set to 1 if the controller is considered alive; currently, always sct for any struc-
ture encountered during normal operation. That is, the driver will have a han-
dle on a iocc_ctir structure only if the configuration routines set this field to a 1
and entered it into the driver tables.

ic_tab

This buffer structure is a place where the driver hangs the device structures
which are ready to transfer. Each driver allocates a buf structure for each dev-
ice {e.g. hddiab in the Ad.c driver) for this purpose. You can think of this
structure as a device-control-block, and the buf structures linked to it as the
unit-control-blocks. The code for dealing with this structure is stylized; see the
fd.c or hd.c driver for the details. If the dmago routine is to be used, the struc-
ture attached to this buf structure must be:

® A chain of buf structures for each waiting device on this controller.

U] On each waiting buf structure another buf structure which is the one con-
taining the parameters of the I/O operation.

ic_addr
Address of the device in I/O space.

ic_irqThe interrupt request level for this device.

ic_channel
The device’s dma channel (dma devices only).

ic_party
The device’s dma party type. It must be set to DM_THIRDPARTY (dma
devices only).

54 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

ic_transfer

Transfer flags for dma (dma devices only).
ic_cmd

Not used

6.3.1.3. iocc_device structure

One of these structures exist for each device. Devices which are not attached to con-

trollers or which perform no DMA I/O may have only a device structure. Thus asy

and Ip devices have only iocc_device structures. The fields are:

iod_driver
A pointer to the struct iocc_driver structure for this device type.

iod_unit
The unit number of this device, e.g. 0 in hd0, or 1 in asyl.

iod_ctlr
The number of the controller on which this device is attached, or —1 if this
device is not on a controller.

iod_slave
The slave number of this device on the controller which it is attached to, or
—1 if the device is not a slave. Thus a disk which was unit 0 on a disk
adapter would have iod _slave 0. Tt might or might not be Ad0, that depends
on the system configuration specification.

iod_irq
The interrupt request level for this device.

iod_addr
The control-status register address of this device.

iod_dk
The iostat number assigned to this device. Numbers are assigned to disks
only, and are small positive integers which index the various dk_* arrays in
<sys/dk.h>.

iod_flags
The optional “flags xxx” parameter from the configuration specification was
copied to this field, to be interpreted by the driver. If flags was not specified,
then this field will contain a 0.

iod_alive
The device is really there. Presently set to 1 when a device is determined to be
alive, and left 1.

iod_type
The device type, to be used by the driver internally.
iod_physaddr
The physical memory address of the device controi-status register. This is used
in the device dump routines typically.
jiod_mi
A struct iocc_ctlr pointer to the controller (if any) on which this device resides.
iod_hd
A struct iocc_hd pointer to the DMA channel this device uses.

55 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

6.3.1.4. DMA Resource Management Routines

DMA drivers are supported by a collection of utility routines which manage DMA
resources. If a driver attempts to bypass the DMA routines, other drivers may not
operate properly. The major routines are: dma_setup to allocate DMA resources,
dma_done to release previously allocated resources, and dma_go to initiate DMA.

If the presentation here does not answer all the questions you may have, consult the
file /sys/caio/dma.c

6.3.2. Autoconfiguration Requirements

Basically all you have to do is write a idr_probe and a idr_attach routine for the con-
troller. It suffices to have a idr_probe routine which just returns PROBE_NOINT, and
a idr_attach routine which does nothing. Making the device fully configurable requires,
of course, more work, but is worth it if you expect the device to be in common usage
and want to share it with others.

If you managed to create all the needed hooks, then make sure you include the neces-
sary header files; the ones included by caio/lp.c are nearly minimal. Order is important
here, don’t be surprised at undefined structure complaints if you order the includes
wrongly. Finally if you get the device configured in, you can try bootstrapping and see
if configuration messages print out about your device. It is a good idea to have some
messages in the probe routine so that you can see that you are getting called and what
is going on. If you do not get called, then you probably have the control-status register
address wrong in your system configuration. The autoconfigure code notices that the
device doesn’t exist in this case and you will never get called.

Assuming that your probe routine works and you manage to generate an interrupt, then
you are basically back to where you would have been under older versions of UNIX
operating systems. Just be sure to use the iod_ctlr field of the iocc_device structures to
address the device; compiling in funny constants will make your driver less portable.

6.4. Adding Non-Standard System Facilitics

This section describes the work needed to augment config's data base files for non-standard
system facilities.

For config, non-standard facilities fall into two categories, those for kernel-profiling and
those that are configuration-dependent. Files used for kernel profiling appear in the “files”
files with a profiling-routine keyword. For example, the current profiling subroutines are
found in a separate file with the following entry:

sys/subr_mcount.c optional profiling-routine
The profiling-routine keyword prohibits config from compiling the source file with the
—pg option.

The keyword for the second category is config-dependent. This makes config compile
the appropriate module with the global configuration parameters. This allows certain
modules such as machdep.c to size system data structures based on the maximum users
configured for the system. ‘

56 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yacc(l) grammar used by
config to parse configuration files. Terminal symbols are shown all in upper case,
literals are emboldened; optional clauses are enclosed in brackets " and “|”’; zero or
more instantiations are denoted with ““*”.

Configuration ::= [Spec; |*

Spec = Config_spec
| Device_spec
| trace

] /* lambda */
/* configuration specifications */

Config_spec ::= machine ID
| cpu ID
| options Opt _list
| ident ID
| System_spec
| timezone [— | NUMBER [dst | NUMBER }]
| timezone [— | FPNUMBER [dst | NUMBER | |
| maxusers NUMBER

/* system configuration specifications */

System_spec ::= config ID System_parameter [System_parameter |*
System_parameter ::= swap_spec | root_spec | dump_spec | arg_spec
swap_spec = swap [on | swap_dev [and swap_dev]*

swap_dev ::= dev_spec [size NUMBER]

root_spec ::= root [on | dev_spec

dump spec ::= dumps | on | dev_spec

arg_spec ::= args [on] dev_spec

dev_spec ::= dev_name | major_minor

major_minor = major NUMBER minor NUMBER
dev_name ::= ID [NUMBER[ID ||

/* option specifications */

Opt _list ::= Option [, Option]*

Option ::= ID[= Opt_value]

Opt_value ::= ID | NUMBER

57 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

/* device specifications */

Device_spec ::= device Dev_name Dev_info Int_spec
| master Dev_name Dev_info
| disk Dev_name Dev_info
| tape Dev_name Dev_info
| controller Dev_name Dev_info | Int_spec |
| pseudo-device Dev | NUMBER |

Dev_name ::= Dev NUMBER

Dev ::= wuba | mba | ID

Dev_info ::= Con_info [Info J*

Con_info ::= at Dev NUMBER
| at nexus NUMBER

Info ::= esr NUMBER
| drive NUMBER
| slave NUMBER
| flags NUMBER

Int_spec ::= vector ID [ID |*
| priority NUMBER

Lexical Conventions
The terminal symbols are loosely defined as:

ID
One or more alphabetics, either upper or lower case, and underscore.

NUMBER
Similar to the C language specification for an integer number. That is, a leading
“0x” indicates a hexadecimal value, a leading 0" indicates an octal vaiue, other-
wise the number is expected to be a decimal value. Hexadecimal numbers may
use either upper or lower case alphabetics.

FPNUMBER
A floating point number without exponent. That is a number of the form
“nnn.ddd”, where the fractional component is optional.

In special instances a question mark (?), can be substituted for a “NUMBER” token.
This is used for wildcarding in device interconnection specifications.

Comments in configuration files being with a “#"" character; the remainder of the line
is discarded.

A specification is interpreted as a continuation of the previous line if the first character
of the line is tab.

58 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When config processes a “config” rule that does not fully specify the location of the
root file system, paging area(s), device for system dumps, and device for argument list
processing it applies a set of rules to define those values left unspecified. The follow-
ing list of rules are used in defaulting system devices.

(1) If a root device is not specified, the swap specification must indicate a “‘generic”
system is to be built.

(2) If the root device does not specify a unit number, it defaults to unit 0.

(3) If the root device does not include a partition specification, it defaults to the “a”
partition.

(4) If no swap area is specified, it defaults to the “b” partition of the root device.

(5) If no device is specified for processing argument lists, the first swap partition is
selected.

(6) If no device is chosen for system dumps, the first swap partition is selected (see
below to find out where dumps are placed within the partition).

The following table summarizes the default partitions selected when a device
specification is incomplete (e.g. “hd0’").

Type Partition |
root “a” l
swap “b”
args “b”
dumps “b” I

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a “pri-
mary” swap area that is always used. The remaining partitions are then interleaved into
the paging system at the time a swapon(2) system call is made. This is normally done at
boot time with a call to swapon(8) from the /etc/rc file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver for
the “dumps” device supports this. The dump contains the contents of memory, but not
the swap areas. Normally the dump device is a disk; the information is copied to a loca-
tion near the back of the partition. The dump is placed in the back of the partition be-
cause the primary swap and dump device are commonly the same device and this allows
the system to be rebooted without immediately overwriting the saved information. When a
dump has occurred, the system variable dumpsize is set to a non-zero value indicating the
size (in bytes) of the dump. The savecore(8) program ihen copies the information from the
dump partition to a file in a “crash” directory and also makes a copy of the system that
was running at the time of the crash (usually “/vmunix”). The offset to the system dump
is defined in the system variable dumplo (a sector offset from the front of the dump parti-
tion). The savecore program operates by reading the contents of dumplo, dumpdev, and
dumpmagic from /dev/kmem, then comparing the value of dumpmagic read from
/dev/kmem to that located in corresponding location in the dump area of the dump parti-
tion. If a match is found, savecore assumes a crash occurred and reads dumpsize from the
dump area of the dump partition. This value is then used in copying the system dump.

59 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

Refer to savecore(8) for more information about its operation.
The value dumplo is calculated to be
dumpdev-size — MAXDUMP

where dumpdev-size is the size of the disk partition where system dumps are to be
placed, and MAXDUMP is 4 megabytes. If the disk partition is not large enough to
hold a 4-megabyte dump, dumplo is set to 0 (the front of the partition).

60 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

APPENDIX C. SAMPLE CONFIGURATION FILE

The following sample configuration file is developed in Chapter 5; it is included here
for completeness.

#

Sample Configuration File for the IBM RT PC

#

machine ca

cpu "IBMRTPC”

ident SAMPLE

timezone 8 dst

maxusers 16

options INET

config vmunix root on hd0 swap on hd0 and hdl
controller iocc0 at nexus ?

device un0 at iocc0 csr 0xf4080000 priority 6
controller hdc0 at ioccO csr 0xf0000110 priority 14
controller hdcl at iocc0 csr 0xf0000170 priority 14
controller fdcO at iocc0 csr 0xf00003f2 priority 6
controller stcO at 10cc0 csr 0xf00001e8 priority 12
disk hdo at hdc0 drive 0

disk hdl at hdc0 drive 1

disk hd2 at hdcl drive 0

device asy0 at ioccQ csr 0xf0001230 priority 9
device asyl at iocc0 csr 0xf0002230 priority 10
device asy4 at iocc0 csr 0xf00003f8 priority 4
device 1p0 at iocc0 csr 0xf00003bc priority 7
device fdo at fdc0 drive 0

tape st0 at stcO drive 0

pseudo-device mono

pseudo-device pty

pseudo-device loop

pseudo-device inet

pseudo-device ether

pseudo-device ms

pseudo-device aed

pseudo-device apaeight

pseudo-device apaeightc

pseudo-device apasixteen

61 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

APPENDIX D. KERNEL DATA STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum
simultaneous users expected, while others are calculated at boot time based on the
physical resources present. This appendix lists both sets of rules and also includes
some hints on changing built-in limitations on certain data structures.

Compile time rules

The file /sys/conf/param.c contains the definitions of almost all data structures sized at
compile time. This file is copied into the directory of each configured system to allow
configuration-dependent rules and values to be maintained. The rules implied by its
contents are summarized below (here MAXUSERS refers to the value defined in the
configuration file in the “maxusers” rule).
nproc
The maximum number of processes which may be running at any time. It is
defined to be 20 + 8 * MAXUSERS and referred to in other calculations as
NPROC.

ntext
The maximum number of active shared text segments. Defined as 24 +
MAXUSERS + NETSLOP, where NETSLOP is 20 when the Internct proto-
cols are configured in the system and 0 otherwise. The added size for supporting
the network is to take into account the numerous server processes that are likely
to exist.

ninode
The maximum number of files in the file system that may be active at any time.
This includes files in use by users, as well as directory files being read or written
by the system and files associated with bound sockets in the 4.2/RT ipc domain.
This number is defined as (NPROC + 16 + MAXUSERS) + 32.

nfile
The number of “file table” structurcs. One file table structure is used for each
open, unshared, file descriptor. Multiple file descriptors may reference a single
file table entry when they arc created through a dup call, or as the result of a
fork. This value is defined to be

16 * (NPROC + 16 + MAXUSERS)/ 10 + 32 + 2 * NETSLOP
where NETSLOP is defined as for ntext.

ncallout
The number of “callout” structures. One callout structure is used per internal
system event handled with a timeout. Timeouts are used for terminal delays,
watchdog routines in device drivers, protocol timeout processing, etc. This
number is defined as 16 + NPROC.

nclist
The number of “c-list” structures. C-list structures are used in terminal I/O.
This number is defined as 100 + 16 * MAXUSERS.

nmbclusters
The maximum number of pages that may be allocated by the network. This is
defined as 256 (a quarter megabyte of memory) in /sys/h/mbufh. In practice,
the network rarely uses this much memory. It starts off by allocating 64 kilo-
bytes of memory, and then requests more as required. This value represents an
upper bound.

62 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

nquota
The number of “quota” structures allocated. Quota structures are present only
when disc quotas are configured in the system. One quota structure is kept per
user. This number is defined to be (MAXUSERS *9) /7 + 3.

ndquot

The number of “dquot” structures allocated. Dquot structures are present only
when disc quotas are configured in the system. One dquot structure is required
per user, per active file system quota. That is, when a user manipulates a file on
a file system on which quotas are enabled, the information regarding the user’s
quotas on that file system must be in-core. This information is cached, so that
not all information must be present in-core all the time. Dquot is defined as
(MAXUSERS * NMOUNT) / 4 + NPROC, where NMOUNT is the max-
imum number of mountable file systems.

Run-time calculations

The most important data structures sized at run-time are those used in the buffer
cache. Allocation is done by swiping physical memory (and the associated virtual
memory) immediately after the system has been started up; look in the file
/sys/ca/machdep.c.

The buffer cache is comprised of several “buffer headers” and a pool of pages attached
to these headers. Buffer headers are divided into two categories, those used for swap-
ping and paging and those used for normal file I/O. The system tries to allocate 10%
of available physical memory for the buffer cache (where available does not count that
space occupied by the system’s text and data segments). If the result is fewer than 16
pages of memory allocated, then 16 pages are allocated. This value is kept in the ini-
tialized variable bufpages so that it may be patched in the binary image (to allow tun-
ing without recompiling the system). Adequate file I/O buffer headers are then allocat-
ed to allow each to hold 2 pages each, and half as many swap I/O buffer headers are
then allocated. The number of swap I/O buffer headers is constrained to be no more
than 256.

System size limitations

As distributed, the sum of the virtual sizes of the core-resident processes is limited to
512M bytes. The size of the text, and data segments of a single process are currently
limited to 24M bytes each, and the stack segment size is limited to 512K bytes as a
soft, user-changeable limit, and may be increased to 24M with the setrlimit(2) system
call. If these are insufficient, they can be increased by changing the constants
MAXTSIZ, MAXDSIZ and MAXSSIZ in the file /sys/ca/vmparam.h, as well as
changing the definitions in /sys/h/dmap.h and /sys/h/text.h. In making this change, be
sure you have adequate paging space. As normally configured, the system has only
16M bytes per paging area. The best way to get more space is to provide multiple,
thereby interleaved, paging areas.

To increase the amount of resident virtual space possibie, you can aiter the constani

USRPTSIZE (in /sys/ca/vmparam.h). To allow 1 gigabyte of resident virtual space
one would change the 1 to a 2.

Because the file system block numbers are stored in page table pg_blkno entries, the
maximum size of a file system is limited to 219 2048 byte blocks. Thus no file sys-
tem can be larger than 1 gigabyte.

The count of mountable file systems is limited to 15. This should be sufficient. If you
have many disks, it makes sense to make some of them single file systems; the paging
areas don’t count in this total. To increase this, it will be necessary to change the

63 15 Dec 1986

4.2 for the IBM RT PC Building Systems with Config

core-map /sys/h/cmap.h, since a 4 bit field is used here. The size of the core-map then
expands to 16 bytes per 1024 byte page. (Remember to change MSWAPX and
NMOUNT in /sys/h/param.h.)

The maximum value NOFILE (open files per process limit) can be raised to is 30 be-
cause of a bit field in the page table entry in /sys/machine/pte.h.

64 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual
Assembler Reference Manual for 4.2/RT

ABSTRACT

This article is an updated version of an article entitled Berkeley VAX/UNIX As-
sembler Reference Manual, written in November 1979 by John F. Reiser and
Robert R. Henry and revised in February 1983. The original article, which is in
Volume 2C of the UNIX Programmer’s Manual, has been rewritten and includes
additions and changes for 4.2/RT and corrections where appropriate.

65 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

1. INTRODUCTION

This document describes the usage and input syntax of the 4.2/RT assembler for the IBM
RT PC, as. As assembles the code produced by the C compiler. This article is intended
for those writing a compiler or maintaining the assembler; it is not a user's guide for writ-
ing assembler code.

FExamples of syntax in this article use the following conventions:

¢ [Argument] means that the specified argument is optional; 0 or more instances may
be included.

¢ Words in boldface must appear literally.

¢ Words in italics represent specific values to be supplied.

66 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

2. USAGE
As is invoked with these command arguments:
as [—LVWRDT | [—t directory | | —o outfile | [name|] . . . [name,]

The arguments are explained below:

-L Instructs the assembler to save labels beginning with an “L” in the symbol table
portion of the file specified as outfile. Labels are not saved by default, as the de-
fault action of the link editor /d is to discard them anyway.

-V Tells the assembler to place its interpass temporary file in virtual memory. In
normal circumstances, the system manager will decide where the temporary file
should lie. Experiments with a temporary file of 115 kbytes have shown this op-
tion to have a negligible (1-2%) effect on assembly time on an unloaded

machine.
-W Turns off all warning error reporting.
-R Make initialized data segments read-only by concatenating them to the text seg-

ments. This obviates the need to run editor scripts on assembler source to
“read —only” fix initialized data segments. Uninitialized data (via .lcomm and
.comm directives) are still assembled into the bss segment.

-D Prints assembler debugging information and dumps the symbol table, provided
the assembler has been compiled with DEBUG defined.

-T Prints the token file, provided the assembler has been compiled with DEBUG
defined. This information is useful when debugging the assembler.

-t Causes the assembler to place its single temporary file in directory instead of in
/tmp , provided the —V flag is not set.
-0 Causes the output to be placed in the file outfile. By default, the output of the

assembler is placed in the file a.out in the current directory.

name, Causes input to be taken sequentially from the files name, . . . name . The files
are not assembled separately; name, is effectively concatenated to name, so multi-

ple definitions cannot occur among the input sources. By default, input is taken
from the standard input.

1-n

Note: Arguments -J and -d are ignored.

67 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

3. LEXICAL CONVENTIONS

Assembler tokens include identifiers (alternatively, “symbols” or ‘‘names’’), constants, and
operators.

3.1. Identifiers

An identifier consists of a sequence of alphanumeric characters, including the special
characters period (.), underscore (), and dollar ($). The first character may not be a
digit or a dollar sign. For all practical purposes, the length of identifiers is arbitrary; all
characters are significant. All keywords, operation mnemonics, register names, and
macro names are reserved and are not available as user-defined names.

3.2. Constants
3.2.1. Integral Constants

All integral (non floating point) constants are (potentially) 64 bits wide. Integral
constants are initially evaluated to a full 64 bits, but are pared down by discarding
high order copies of the sign bit and categorizing the number as a long (32 bits) or
double-long (64 bits) integer. Numbers with less precision than 32 bits are treated
as 32-bit quantities. As cannot perform arithmetic on constants larger than 32 bits
and supports 64-bit integers only so they can be used to fill initialized data space.

The digits are “‘0123456789abcdefABCDEF” with the obvious values.

A decimal constant consists of a sequence of digits without a leading zero.

An octal constant consists of a sequence of digits with a leading zero.

A hexadecimal constant consists of the characters “0x” (or “0X”") followed by a se-
quence of digits.

A single-character constant consists of a single quote (*) followed by an ASCII
character, including ASCII newline. The constant’s value is the code for the given
character.

3.2.2. Floating Point Constants

IEEL single and double precision constants are supported by the .float and .double
directives respectively. The atof (3) man page describes the range of representable
values and their syntax. There is presently no support for IEEE double extended
precision constants. For a description of the IEEE representations, please see the
IEEE Standard 754 for Binary Floating Point Arithmetic. The assembler uses the
library routine atof (3) to convert floating point numbers.

The operand field syntax of .float and .double is:
Olexpel([+ -]) [dec] " () dec] Y[exptl([+ -I)(dec] *))
where:
expe An exponent delimiter and type specification character (fFFdD).
dec A decimal digit (01234567809).
expt A type specification character (eEfFdD).

*

X 0 or more occurrences of x.

x* 1 or more occurrences of x.

The standard semantic interpretation is used for the signed integer, fraction and
signed power of 10 exponent. If the exponent delimiter is specified, it must be ei-
ther an “‘e” or “E”’, or must agree with the initial type specification character that is
used. A .double constant must have d or D specified as its type specification char-

68 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

acter; a .float constant must have f or F specified as its type specification character.

Collectively, all floating point numbers, together with double-long integral
numbers, are called “bignums”. When as requires a bignum, a 32-bit scalar quanti-
ty may also be used.

3.2.3. String Constants

A string constant is defined using the same syntax and semantics as the C language
uses. Strings begin and end with a double quote (). All C backslash conventions
are observed. Strings are known by their value and their length; the assembler does
not implicitly end strings with a null byte.

3.3. Operators
There are several single-character operators; see Section 6.1.
3.4. Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be
used within tokens (except characier constanis). A blank or tab is required to separate
adjacent identifiers or constants not otherwise separated.

3.5. Single Line Comments

The character “#” introduces a comment which extends through the end of the line.
Comments starting in column 1, having the format “# expression string”, are interpret-
ed as an indication that the assembler is now assembling file string at line expression.
Thus, one can use the C preprocessor on an assembly language source file, and use the
#include and #define preprocessor directives. Other comments may not start in
column 1 if the assembler source is given to the C preprocessor because the preproces-
sor will misinterpret them. Comments are otherwise ignored by the assembler.

To retain compatibility with existing .s files, comments beginning with “|”” are also ac-
cepted. However, this use is deprecated, and support for this feature will be removed
in subsequent releases.

3.6. C Style Comments

The assembler will recognize C style comments, introduced with the prologue [* and
ending with the epilogue */. C style comments may extend across multiple lines and
are the preferred comment style to use if you choose to use the C preprocessor.

If a C style comment does extend across “n” lines, the line numbers in any subsequent
error messages generated by the assembler will be low by n-1 lines, since the assembler
increments the line count only once for a multiple C style comment.

69 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

4. SEGMENTS AND LOCATION COUNTERS

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The operating system makes some assumptions about the content
of these segments; the assembler does not. Within the text and data segments there are a
number of sub-segments, distinguished by number (“text 07, “text 17, “‘data 0", “‘data 1”
y - . .). Currently there are four subsegments each in text and data. The subsegments are
for programming convenience only.

Before writing the output file, the assembler zero-pads each text subsegment to a multiple
of eight bytes and then concatenates the subsegments in order to form the text segment;
an analogous operation is done for the data segment. Requesting that the loader define
symbols and storage regions is the only action allowed by the assembler with respect to
the bss segment. Assembly begins in “text 0.

Associated with each (sub)segment is an implicit location counter which begins at zero
and is incremented by 1 for each byte assembled into the (sub)segment. There is no way
to explicitly reference a location counter. Note that the location counters of subsegments
other than “text 0” and ‘“‘data 0" behave peculiarly due to the concatenation used to form
the text and data segments.

70 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

5. STATEMENTS

A source program is composed of a sequence of statements. Statements are separated by
newlines or by semicolons. There are two kinds of statements: null statements and key-
word statements. Either kind of statement may be preceded by one or more labels.

5.1. Named Labels

A named label consists of a name followed by a colon. The effect of a named label is
to assign the current value and type of the location counter to the name. An error is
indicated in pass 1 if the name is already defined; an error is indicated in pass 2 if the
value assigned changes the definition of the label.

Named labels beginning with an “L” are not retained in the a.out symbol table uniess
the —L option 1s in effect.

5.2. Numeric Local Labels

A numeric label consists of a digit between 0 and 9 followed by a colon. A numeric
label defines temporary symbols of the form “nb” and “nf”’ where 7 is the digit of the
label. As in the case of named labels, a numeric label assigns the current value and
type of the location counter to the temporary symbol. However, several numeric la-
bels with the same digit may be used within the same assembly. References to sym-
bols of the form “nb” refer to the first numeric label n: backward from the reference;
“nf” symbols refer to the first numeric label n: forward from the reference.

As turns local labels into labels of the form Lz\001m for internal purposes.

5.3. Null Statements

A null statement is an empty statement ignored by the assembler. A null statement
may be labeled, however.

5.4. Keyword Statements

A keyword statement begins with one of the many predefined keywords known to as;
the syntax of the remainder of the statement depends on the keyword. All instruction
opcodes, listed in Section 8, are keywords. The remaining keywords are assembler
pseudo-operations, also called “directives.” The pseudo-operations are listed in Section
7, together with the syntax they require.

7 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

6. EXPRESSIONS

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, operators, and parentheses. Each expression has a type.

All operators in expressions are fundamentally binary in nature. Arithmetic is two’s com-
plement and has 32 bits of precision. As cannot perform arithmetic operations on floating
point numbers or on double-long integral numbers. There are four levels of precedence,
listed here from lowest precedence level to highest:

precedence operators

binary + -
binary & ~ !
binary * | %
unary - -

All operators of the same precedence are evaluated strictly left to right, except for the evalua-
tion order enforced by parentheses.

6.1. Expression Operators
The operators are:

operator meaning

+ addition

- (binary) subtraction

* multiplication

/ division

% modulo

- (unary) two’s complement

bitwise exclusive or
bitwise or not
bitwise ones’ complement
> logical right shift
> > logical right shift
< logical left shift
<< logical left shift

& bitwise and
1

Expressions may be grouped with parentheses.
6.2. Data Types

Every user-defined symbol has one of the following types. The type propagation rules in
the next section describe how expression types are derived from symbol types.

undefined Upon first encounter, each symbol is undefined unless its first encounter defines
it. It may become undefined if it is assigned an undefined expression. The as-
sembler changes all undefined types to undefined external just prior to pass 2.

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor /d must be used
to load the assembler’s output with another routine that defines the undefined
reference.

absolute An absolute symbol is defined in a .set by an expression of type absolute. Con-
stants have type absolute.

72 15 Dec 1986

4.2 for the

text

data

bss

IBM RT PC Assembler Reference Manual

A symbol appearing as a label in a text segment has type text, as does a symbol
defined in a .set by an expression of type text. The value of a text symbol is
measured with respect to the beginning of the text segment of the program. If
the assembler output is link-edited, its text symbols may change in value since
the program need not be the first in the link ediior’s output.

A symbol appearing as a label in a data segment has type data, as does a sym-
bol defined in a .set by an expression of type data. The value of a data symbol
is measured with respect to the origin of the data segment of a program. The
value of a data symbol may change during a subsequent link-editor run since
previously loaded programs may have data segments.

A symbol defined in a .comm or Jcomm directive has type bss, as does a symbol
defined in a .set by an expression of type bss. The value of a bss symbol is
measured from the beginning of the bss segment of a program. The value of a
bss symbol may change during a subsequent link-editor run, since previously
loaded programs may have bss segments.

external absolute, text, data, or bss

63. Ty

Symbols declared .globl and defined within an assembly as absolute, text, data,
or bss types may be used exactly as if they were not declared .globl; however,
their value and type are available to the link editor so that the program may be
loaded with others that reference these symbols.

pe Propagation in Expressions

When operands are combined by expression operators, the result has a type which depends
on the types of the operands and on the operator. The rules involved are complex to state
but were intended to be sensible and predictable. For purposes of expression evaluation,
the important types are:

The
(1)
(2
3)

(4)

&)

undefined

absolute

text

data

bss

undefined external

relocatable: any of text, data, bss, or undefined external

combination rules are:
If one of the operands is undefined, the result is undefined.
If both operands are absolute, the result is absolute.

An absolute operand may be added to or subtracted from any other type, and
the type of the result is that of the other operand.

An operand of type text, data, or bss may be subtracted from an operand having
the same type, and the type of the result is absolute.

Any other combination is an error.

73 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

7. PSEUDO-OPERATIONS (DIRECTIVES)

The keywords listed below introduce pseudo-operations (directives) to influence the later
behavior of the assembler, define symbols, or create data. They are grouped below into
functional categories.

7.1. Interface to a Previous Pass

ABORT

As soon as the assembler sees this directive, it ignores all further input (but it does
read to the end of file) and aborts the assembly. No files are created. It is anticipated
that this would be used in a pipe interconnected version of a compiler, where the first
major syntax error would cause the compiler to issue this directive, saving unnecessary
work in assembling code that would have to be discarded anyway.

file string

This directive causes the assembler to think it is in file string, so that error messages
reflect the proper source file.

dine expression

This directive causes the assembler to think it is on line expression so that error mes-
sages reflect the proper source line.

The only effect of assembling multiple files specified in the command string is to insert
the file and line directives, with the appropriate values, at the beginning of the source
from each file.

expression string

This is the only instance where a comment is meaningful to the assembler. The “#”
must be in the first column. This meta comment causes the assembler to believe it is
on line expression. The second argument, if included, causes the assembler to believe
it is in file string; otherwise the current file name does not change.

7.2. Location Counter Control

data [expression]
text [expression]

These two directives cause the assembler to begin assembling into the indicated text or
data subsegment. If specified, expression must be defined and absolute; an omitted ex-
pression is treated as zero. Assembly starts in the .text 0 subsegment.

The directives .align and .org also control the placement of the location counter.

“ 9

While the comments within the assembler may refer to the location counter as ““.” or
“dot”, there is no explicit reference allowed to the location counter. Numeric local la-
bels may be used with almost equal convenience and more predictable results.

74 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

7.3. Filled Data

.align align_expr
The location counter is adjusted so that the align expr lowest bits of the location
counter become zero. This is done by assembling from 0 to 2%%#"-¢®" .| bytes of 0.

Thus “.align 2” pads by null bytes to make the location counter evenly divisible by 4.
The align_expr must be defined, absolute, nonnegative, and less than 16.

Warning: the subsegment concatenation convention and the current loader conven-
tions may not preserve attempts at aligning to more than 3 low-order zero bits.

org org expr| fill expr]

The location counter is set equal to the value of org_expr, which must be of type text
or data and greater than the current value of that segment’s location counter. Space
between the current value of the location counter and the desired value are filled with
bytes taken from the low order byte of fili expr, which must be absolute and defaults
to 0.

space space_expr| fill_expr]

The location counter is advanced by space_expr bytes. Space_expr must be defined
and absolute. The space is filled in with bytes taken from the low order byte of
fill_expr, which must be defined and absolute. Fill_expr defaults to 0. The fill direc-
tive is a more general way to accomplish the .space directive.

Aill rep_expr, size_expr, fill_expr
All three expressions must be absolute. Fill expr, treated as an expression of size
size_expr bytes, is assembled and replicated rep _expr times. The effect is to advance

the current location counter rep_expr * size_expr bytes. Size expr must be between 1
and 8.

7.4. Initialized Data

.byte expr,expr]. ..
short expr{,expri. . .
.int expri,expr]. . .

dong expr{,expr]. ..
Expr represents an expression. Expressions are truncated to the size indicated by the key-

word in the table below, and assembled in successive locations. Non-absolute expressions
in a .byte or .short engender a warning message.

keyword length (bits)

.byte 8
.short 16
int 32
Jong 32

Each expression may optionally be of the form:

expression, : expression,

75 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

In this case, the value of expression, is truncated to expression, bits, and assembled in
the next expression bit field which fits in the natural data size being assembled. Bits
which are skipped because a field does not fit are filled with zeros. Thus, “.byte 123"
is equivalent to “.byte 8:123”, and “‘.byte 3:1,2:1,5:1” assembles two bytes, containing
the values 0x28 and 0x08.

dlong number{,number]. . .
float number|,number]. . .
double number{,number]. . .

These initialize bignums (see Section 3.2.2) in successive locations whose size is a function
of the keyword. The type of the bignum (determined by the exponent field, or lack
thereof) may not agree with the type implied by the keyword. The following table shows
the keywords, their size, and the data types for the bignums they expect.

keyword format length (bits) valid number (s)

.dlong integral 64 integral
float ieee single 32 floating and integral
double ieee double 64 floating and integral

.ascii string|, string]. . .
.asciz string|, string]. . .

Cach string in the list is assembled into successive locations, with the first letter in the
string being placed into the first location, etc. The .ascii directive will not null terminate
the string; the .asciz directive will null terminate the string. (Recall that strings are known
by their length and need not be terminated with a null, and that the C conventions for es-
caping are understood.) The .ascii directive is identical to:

byte string,, string,, . . .

comm name, expression

Provided the name is not defined elsewhere, its type is made ‘“‘undefined external’, and
its value is expression. In fact the name behaves in the current assembly just like an
undefined external. However, the link editor /d has been special-cased so that all
undefined external symbols that have a non-zero value are dcfined to lie in the bss seg-
ment, and space is reserved after the symbol to hold expression bytes.

Jcomm name, expression

Expression bytes will be allocated in the bss segment and rame assigned the location of
the first byte, but the name is not declared as global and hence will be unknown to the
link editor.

.globl name

This directive makes name external. If it is otherwise defined (by .set or by appearance
as a label) it acts within the assembly exactly as if the .globl directive were not given;
however, the link editor may be used to combine this object module with other
modules referring to this symbol.

Conversely, if the given symbol is not defined within the current assembly, the link ed-
itor can combine the output of this assembly with that of others which define the sym-
bol.

76 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

set name, expression

The (name, expression) pair is entered into the symbol table. Multiple .set statements
with the same name are legal; the most recent value replaces all previous values.

Isym name, expression

A unique instance of the (name, expression) pair is created in the symbol table. This
mechanism can be used to pass local symbol definitions to the link editor and de-
bugger. Note that name may not be referenced.

stabs string, expr,, expr,, expr, expr,

stabn expr,, expr,, expr,, exr,

.stabd expr |, expr,, expr,

The stabx directives place symbols in the symbol table for the symbolic debugger,
dbx. A “stab” is a symbol table entry. The .stabs is a string stab, the .stabn is a stab
not having a string, and the .stabd is a “dot” stab that implicitly references “dot”, the
current location counter.

The string in the .stabs directive is the name of a symbol. If the symbol name is zero,
the .stabn directive may be used instead.

The other expressions are stored in the name list structure of the symbol table and

preserved by the loader for reference by dbx; the values of the expressions are peculiar
to formats required by dbx.

expr, Isused as a symbol table tag (nlist field n_type).
expr, Is always zero (nlist field n_other).

expr, Is used for either the source line number, or for a nesting level (nlist field
n_desc).
expr, Is used as tag specific information (nlist field n_value). In the case of the

.stabd directive, this expression is nonexistent, and is taken to be the value of
the location counter at the following instruction. Since there is no associated
name for a .stabd directive, it can be used only in circumstances where the
name is zero. The effect of a .stabd directive can be achieved by one of the
other .stabx directives in the following manner:

stabn expr,, expr,, expr,, LL_
LLn:

The .stabd directive is preferred, because it does not clog the symbol table with labels
used only for the stab symbol entries.

77 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

7.5. Addressability
using expr,register,. .

The .using directive tells the asscmbler that it can rely on the value in a register for the
purpose of creating base + displacement addresses for machine instructions.

Expr may be any relocatable expression of type text or data. The register is assumed
to contain an address pointing to the storage location described by the relocatable ex-
pression. Fach additional specified register is assumed to contain an address 0x8000
bytes greater than the previous register.

There may be one .using specified for each text subsegment and one for each data sub-
segment (i.e. up to eight .using’s may be in effect at any time). If a .using is not pro-
vided for a .text or for a .data subsegment but is provided for a lower-numbered text
or data subsegment, the one for the lower-numbered subsegment will be used. If no
.using is provided for any text subsegment, reference to an address of type text encodes
a warning message and register 11 is assumed to point to the beginning of the text 0
subsegment. If no .using is provided for any data subsegment, reference to an address
of type data engenders an error message. If a proper register and displacement cannot
be formed from a .using statement, an error message is issued.

If a second .using is specified while one is active within the same subsegment, the
second replaces the first. A .using followed by a relocatable expression without a regis-
ter unassigns the base register.

Symbols in the relocatable expression nced not be defined before the appearance of the
.sing directive.

7.6. Literal Operands

The following construct may be used in machine instructions wherever a relocatable
instruction operand may be used:

S$.data-directive expression

The arguments are explained below:

data-directive Any of .byte, .short, .int, Jlong, .dlong, .float, .double, .ascii, or
.asciz,

expression Any single expression that is legal for the respective assembler
directive.

The following lines show examples of litcrals:

Ic rl,$.byte 0x18
lh r2,$.short (4< <8)
1 r2,$.int 123456

The line:
1 r7,%.long root

is equivalent to:
1 r7,200001

Z00001: long root

78 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

Literals are accumulated into a pool and duplicates are removed. Literals are con-
sidered duplicates when they are written in exactly the same way; constants which as-
semble to the same value but which have different source forms are different literals,
except that long and .int are considered to be equal. String literals are never con-
sidered to be equal. The literal pool is soried such that the items with the more res-
trictive alignment are placed first. The beginning of the literal pool is aligned to the
boundary implied by the first literal in the pool.

Itorg

This directive indicates the start of a literal pool and causes the accumulated literal
values to be emitted. The .ltorg directive can appear in either a text or data segment,
and it can appear more than once. If literals are used and no .ltorg follows, a warning
will be issued and the literals will be emitted at the end of the .text 0 subsegment.

79 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

8. MACHINE INSTRUCTIONS

This section describes the machine instructions, extended branch mnemonics, and macro
instructions supported by as.

8.1. Summary of Machine Instructions
The symbols used to describe the source syntax are:

abs An absolute expression representing a displacement
from a base.
f An absolute value representing a register bit position.

An absolute expression representing an immediate
value, optionally preceded by a “‘$”.

-

Ibl A name of type text, data, or undefined external.

rayb,re Register expressions. A register expression is one of
the predefined symbols 10, . . . r15, sp, or a “%" fol-
lowed by an absolute in the range 0-15. sp is
equivalent to rl.

reloc An address operand of one of the following forms:
1 abs(register-expression)
1 $literal expn
An expression of type text or data covered by a
base register defined in a “.using” directive.

The following symbols are used to show the assembled result. A character repeated indi-
cates that the field is wider that one hex digit.

abc Registers ra, rb, and rc.

f A register bit position.
n A numeric field.
d A displacement from a register or the current location.

Most numeric fields and displacements represent sign-extended two’s complement quanti-
ties. In the Operations column of the following table, “(unsigned)” indicates instructions
that do not sign-extend.

80 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual
Assembled
Source Syntax Format Operation
a ra,rb elab Add
abs ra,rb elab Absolute
ae ra,rb flab Add Extended
aei ra,rb,i dlab nnnn Add Extended Immediate
at ra, [rb,] i {Macro) See Section 8.3
ail ra,rb,i clab nnnn Add Immediate Long
ais ra,i 90an Add Immediate Short
bala Ibl 8ann nnnn Branch and Link Absolute (unsigned)
balax 1bl 8bnn nnnn Branch and Link Absolute with Execute (unsigned) **
bali ra,lbl 8cad dddd Branch and Link Immediate
balix ralbl 8dad dddd Branch and Link Immediate with Execute **
balr ra,rb ecab Branch And Link Register
balrx ragsb edab Brand And Link Register with Execute **
bb f,lbl 8efd dddd Branch on Bit
bbr fra eefa Branch on Bit
bbrx fra effa Branch on Bit with Execute
bbx f,1bl 8ffd dddd Branch on Bit with Execute
bnb f,1bl 88fd dddd Branch on Not Bit
bnbr fra e8fa Branch on Not Bit
bnbrx fra e9fa Branch on Not Bit with Execute
bnbx flbl 89fd dddd Branch on Not Bit with Execute
c ra,rb bdab Compare
calé ra,rb flab Compute Address 16-bit
cal rasreloc | c8ab dddd Compute Address Lower Half
call6 rareloc | c2ab dddd Compute Address Lower Half 16-bit (unsigned)
cas ra,rb,rc 6abc Compute Address Short
cau ra,reloc | d8ab dddd Compute Address Upper Half (unsigned)
ci ra, i (Macro) See Section 8.3
cil ra,i d40a nonn Compare Immediate Long
cis ra,i 94an Compare Immediate Short
cl ra,rb b3ab Compare Logical
ch ra, i (Macro) See Section 8.3
clil ra,i d30a nnnn Compare Logical Immediate Long
clrbl ra,i 99an Clear Bit Lower
cltbu ra,i 98an Clear Bit Upper
clrsb ra,i 95an Clear SCR Bit
clz ra,rb f5ab Count Leading Zeros
d ra,rb b6ab Divide Step
dec ra,i 93an Decrement
exts ra,rb blab Extend Sign
get* ra,$expr (Macro) See Section 8.3
get* ra,reloc {(Macro) See Seciion 8.3
inc ra,i 9lan Increment
ior ra,reloc cbab dddd Input/Output Read (unsigned)
iow ra,reloc dbab dddd Input/Output Write (unsigned)
ib f,lbl 08dd to 0fdd | Jump on Bit
jnb f,lbl 00dd to 07dd | Jump on Not Bit

** If a two-byte instruction follows a Branch and Link with Execute, as appends a ‘jnop’.

81 15 Dec 1986

4.2 for the IBM RT PC

Assembler Referecnce Manual

Assembled

Source Syntax Format Operation
| ra,reloc cdab dddd | l.oad
le ra,reloc ceab dddd | Load Character
Ics ra,reloc 4dab L.oad Character Short
lh ra,reloc daab dddd | Load Half
lha ra,reloc caab dddd | Load Ialf Algebraic
lhas ra,reloc 5dab Load Half Algebraic Short
lhs ra,0(rb) ebab Load Half Short
lis ra,i adan Load Immecdiate Short
load* ra,expr{(rb)] (Macro) See Section 8.3
Im ra,reloc c9ab dddd | Load Multiple
Ips i,reloc dOnb dddd | Load Program Status
Is ra,reloc 7dab Load Short
m ra,tb ebab Multiply Step
mc03 ra,rb 9ab Move Character 0 from 3
mcl3 ra,b faab Move Character 1 from 3
mc23 ra,rb fbab Move Character 2 from 3
mc30 ra,rb fdab Move Character 3 from 0
mc31 ra,rb feab Move Character 3 from 1
mc32 ra,tb flab Move Character 3 from 2
mc33 ra,rb fcab Move Character 3 from 3
mfs ra,rb 96ab Move From SCR ra to register rb
mfitb ra,rb bcab Move I'rom Test Bit
mitbil raj 9dan Move From Test Bit Immediate Lower
mftbiu raj 9can Move I'rom Test Bit Immediate Upper
mr ra,rb (Macro) See Section 8.3
mts ra,rb bSab Move To SCR ra from register rb
mttb ra,tb bfab Move To Test Bit
mttbil ra,i 9fan Move To Test Bit Immediate Lower
mttbiu ra,i 9ean Move To Test Bit Immediate Upper
n ra,rb eSab And
ni ra,rbi (Macro) Sce Section 8.3
nilo ra,rb,i c6ab nnnn | And Immediate Lower Half Extended Ones (unsigned)
nilz ra,rb,i c5ab nnnn | And Immediate Lower 1alf Extended Zeros (unsigned)
niuo ra,rb,i d6ab nnnn | And Immediate Upper Half Extended Ones (unsigned)
niuz ra,rb,i d5ab nnnn | And Immediate Upper Ialf Extended Zeros (unsigned)
o] ra,rb elab Or
o1 ra,rb,i (Macro) Sce Section 8.3
oil ra,rb,i cdab nnnn | Or Immediate Lower Half (unsigned)
oiu ra,rb,i c3ab nnnn | Or Immediate Upper Half (unsigned)
onec ra,rb f4ab Ones’ Complement
put* ra,reloc (Macro) Sce Section 8.3
s ra,rb e2ab Subtract
sar ra,rb b0ab Shift Algebraic Right
sari ra,i alan Shift Algebraic Right Immediate
saril6 ra,i alan Shift Algebraic Right Immediate plus 16
se ra,rb f2ab Subtract Extended
setbl ra,i 9ban Set Bit Lower

82 15 Dec 1986

4.2 for the IBM RT PC

Assembler Reference Manual

Assembled

Source Syntax Format Operation
setbu ra,i 9aan Set Bit Upper
setsb ra,i 97an Set SCR Bit
sf ra,rb b2ab Subtract From
sfi rarbi d2ab nnnn | Subtract From Immediate
shl ra,i (Macro) See Section 8.3
shla ra,i (Macro) See Section 8.3
shr ra,i (Macro) See Section 8.3
shra rai (Macro) See Section 8.3
si ra,[rb,)i (Macro) See Section 8.3
sil ra,rb,i (Macro) See Section 8.3
sis a1 92an Subtract Immediate Short
sl ra,tb baab Shift Left
sli ra,i aaan Shift Left Immediate
slilé ra,i aban Shift Left Immediate plus 16
slp ra,rb bbab Shift Left Paired
slpi ra,i aean Shift Left Paired Immediate
slpilé raji afan Shift Left Paired Immediate plus 16
st ra,rb b8ab Shift Right
sri ra,i a8an Shift Right Immediate
sril6 rafd a%n Shift Right Immediate plus 16
Stp ra,rb b9ab Shift Right Paired
srpi ra,i acan Shift Right Paired Immediate
srpil6 rafi adan Shift Right Paired Immediate plus 16
st ra,reloc ddab dddd | Store
stc ra,reloc deab dddd | Store Character
stcs ra,reloc 1dab Store Character Short
sth ra,reloc dcab dddd ! Store Half
sths ra,reloc 2dab Store Half Short
stm ra,reloc d9ab dddd | Store Multiple
store* ra,expr{(rb)],rc (Macro) See Section 8.3
sts ra,reloc 3dab Store Short
sve abs(ra) c00a nnnn | Supervisor Call (unsigned)
tgte ra,rb bdab Trap if Register Greater Than or Equal
ti frai ccfa nnnn | Trap on Condition Immediate
tht ra,rb beab Trap if Register Less Than
tsh ra,reloc cfab dddd | Test and Set Half
twoc ragb edab Two's Complement
wait 000 Wait
X ra,rb e7ab Exclusive Or
xi ra,rb,i (Macro) See Section 8.3
xil ra,rb,i c¢7ab nnnn | Exclusive Or Immediate Lower Half (unsigned)
xiu ra,rb,i d7ab nnnn | Exclusive Or immediate Upper Haif (unsigned)

83 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

8.2. Extended Mnemonics: Branch on Bit

Assembled
Source Syntax Format Operation
b Ibl 888d dddd | Branch

bc0 1bl 8ecd dddd | Branch on Carry 0

be Ibl 8ead dddd | Branch on Equal

beq 1bl 8ead dddd | Branch on Equal

bh Ibl 8ebd dddd ; Branch on High

bhe 161 889d dddd | Branch on High or Equal
bl bl 8e¢9d dddd | Branch on Low

ble 1bl 88bd dddd | Branch on Low or Equal
bm 1bl 8e¢9d dddd | Branch on Minus

bncO0 1bl 88cd dddd | Branch on Not Carry 0
bne Jol 88ad dddd | Branch on Not Equal
bnh 1bl 88bd dddd | Branch on Not High

bnl 1bl 889d dddd | Branch on Not Low
bnm 1bl 889d dddd ; Branch on Not Minus
bno 1bl 88ed dddd | Branch on Not Overflow
bnp 1bl 88bd dddd | Branch on Not Plus
bntb 1bl 88fd dddd | Branch on Not Test Bit
bnz 1bl 88ad dddd | Branch on Not Zero

bo 1bl 8eed dddd | Branch on Overflow

bp Ibl 8ebd dddd | Branch on Plus

btb 16l 8efd dddd | Branch on Test Bit

bz 1ol 8ead dddd | Branch on Zero

nop lbl 8eod dddd | No Operation

bcOx 1bl 8fcd dddd | Branch on Carry 0 with Execute

beqx Ibl 8fad dddd | Branch on Equal with Execute

bex Ibl 8fad dddd | Branch on Equal with Execute

bhex 1bl 899d dddd | Branch on High or Equal with Execute
bhx 16l 8fbd dddd | Branch on High with Execute

blex Ibl 89bd dddd | Branch on Low or Equal with Execute
bix 1bl 89d dddd | Branch on Low with Execute

bmx Ibl 8f9d dddd | Branch on Minus with Execute

bncOx 1bl 89cd dddd | Branch on Not Carry 0 with Execute
bnex Ibl 89ad dddd | Branch on Not Equal with Execute
bnhx 1bl 89bd dddd | Branch on Not High with Execute
bnlx 1bl 899d dddd | Branch on Not Low with Execute
bnmx Ibl 899d dddd | Branch on Not Minus with Execute
bnox 1bl 89%d dddd | Branch on Not Overflow with Execute
bnpx 1bl 89bd dddd | Branch on Not Plus with Execute
bntbx bl 89fd dddd | Branch on Not Test Bit with Execute
bnzx 1bl 89ad dddd | Branch on Not Zero with Execute
box Ibl 8fed dddd | Branch on Overflow with Execute

bpx Ibl 8fbd dddd | Branch on Plus with Execute

btbx Ibl 8ffd dddd Branch on Test Bit with Execute

bx Ibl 898d dddd | Branch with Execute

bzx Ibl 8fad dddd | Branch on Zero with Execute

nopx bl 8f8d dddd | No Operation with Execute

84 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

8.3. Extended Mnemonics: Branch Register

Assembled
Source Syntax Format Opcration
belr ra eeca Branch on Carry 0
beqr ra eeaa Branch on Equal
ber ra eeaa Branch on Equal
bher ra e89a Branch on High or Equal
bhr ra eeba Branch on High
bler ra e8ba Branch on Low or Equal
blr ra ee9a Branch on Low
bmr ra ee9a Branch on Minus
bncOr ra e8ca Branch on Not Carry 0
bner ra e8aa Branch on Not Equal
bnhr ra e8ba Branch on Not High
bnlr ra e89a Branch on Not low
bnmr 1a e89a Branch on Not Minus
bnor ra e8ea Branch on Not Overflow
bnpr 1a e8ba Branch on Not Plus
bntbr ra e8fa Branch on Not Test Bit
bnzr ra e8aa Branch on Not Zero
bor ra eeea Branch on Overflow
bpr 1a eeba Branch on Plus
br ra e88a Branch
btbr ra eefa Branch on Test Bit
bar ra eeaa Branch on Zero
nopr ra ee8a No Operation
bcOrx ra efca Branch on Carry 0 with Execute
beqrx ra efaa Branch on Equal with Execute
berx ra efaa Branch on Equal with Execute
bherx ra €9%a Branch on High or Equal with Execute
bhrx ra efba Branch on High with Execute
blerx ra e9ba Branch on Low or Equal with Execute
blrx ra ef9a Branch on Low with Execute
bmrx ra ef9a Branch on Minus with Execute
bnclrx ra edca Branch on Not Carry 0 with Execute
bnerx ra e9aa Branch on Not Equal with Execute
bnhrx ra e9ba Branch on Not High with Execute
bnlrx ra €99%a Branch on Not Low with Execute
bnmrx ra €9%a Branch on Not Minus with Execute
bnorx ra e9ea Branch on Not Overflow with Execute
bnprx ra e9ba Branch on Not Plus with Execute
bntbrx ra e9fa Branch on Not Test Bit with Execute
bnzrx ra €9aa Branch on Not Zero with Execute
borx ra efea Branch on Overflow with Execute
bprx ra efba Branch on Plus with Execute
brx ra e98a Branch with Execute
btbrx ra effa Branch on Test Bit with Execute
bzrx ra efaa Branch on Zero with Execute
noprx ra ef8a No Operation but with Execute

85 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

8.4. Extended Mnemonics: Jump

The operand field consists of a label defined in the same text or data segment as the jump
instruction, and located within -256 to + 254 bytes.

Assembled
Source Syntax Format Operation
i Ibl 00dd Jump
jc0 16l Ocdd Jump on Carry 0
je Ibl Oadd Jump on Equal
jeq 1bl Oadd Jump on Equal
jh 1bl 0bdd Jump on High
jhe Ibl 0ldd Jump on High or Equal
il 1bl 09dd Jump on Low
jle 1bl 03dd Jump on Low or Equal
jm Ibl 09dd Jump on Minus
jnc0 1bl 04dd Jump on Not Carry 0
jne 1bl 02dd Jump on Not Equal
jnh 1bl 03dd Jump on Not High
jnl 1bl 01dd Jump on Not Low
jnm 1bl 01dd Jump on Not Minus
jno Ibl 06dd Jump on Not Overflow
jnop 1bl 08dd No Operation
jnp 1bl 03dd Jump on Not Positive
jntb 1bl 07dd Jump on Not Test Bit
jnz Ibl 02dd Jump on Not Zero
jo Ibl Oedd Jump on Overflow
ip Ibl Obdd Jump on Positive
itb 1bl 0fdd Jump on Test Bit
jz 1bl Oadd Jump on Zero

86 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

8.5. Macro Instructions

The macro instructions generate different instruction sequences depending upon the value
of an operand:

sil ra,rb,i
generates an ‘ail’ with the value of i negated; i must be between — 32767 and 32768.

mr ra,rb

generates a ‘cas’ with r0 as the third operand.

ai ra, [rb,] i
si ra, [rb] i
ci ra, i
cli ra, i

generates a long or short format instruction depending upon the value of i, and substitutes
ra for an omitted rb.

ni ra,rb,i

gives the effect of an and with a 32-bit i by generating a sequence of one or two ‘niuz’,
‘muo’, ‘nilz’, and ‘nilo’ instructions.

Xi ra,rb,i

gives the effect of an exclusive or with a 32-bit i by generating ‘xiu’, ‘xil’, ‘xiu’ and ‘xil’, or
‘cal’ and ‘x’.

oi ra,rb,i

gives the effect of an inclusive or with a 32-bit i by generating ‘oiu’, ‘oil’, ‘oiu’ and ‘oil’, or
‘cal’ and ‘o’.

shl ra,i
shla ra,i

generates a ‘sli’ or ‘slil6’, depending on i. i must be in 0-31.

shr ra,

generates a ‘sri’ or ‘sril6’, depending on the value of i. i must be in 0-31.

shra ra,i

generates a ‘sari’ or ‘sarilé’, depending on the value of i. i must be in 0-31.

87 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

get ra, reloc
getha ra, reloc
geth ra, reloc
getc ra, reloc
put ra, reloc
puth ra, reloc
putc ra, reloc

generates a storage reference instruction in long or short form depending on the value of
the displacement.

The following macros facilitate generating address constants, and loading and storing in ar-
bitrary memory locations, by exploiting split address relocation. (See a.out(5).)

get ra, Sexpr[(rb)]

getha ra, Sexpr

geth ra, Sexpr

getc ra, Sexpr

If the optional index (rb) is present, as generates a ‘cau’ and ‘cal’. Otherwise, for an abso-
lute $expr, as generates a ‘lis’, ‘cal’, ‘call€é’, or ‘call6’ and ‘oiu’, depending upon the value
of expr. For a relocatable or external $expr, as generates a ‘call6’ and ‘oiu’.

load ra, expri(rb)]
load ra, expri(rb)]
loadh ra, expr{(rb)]
loadha ra, expri(rb)]
loadc ra, expr|(rb)]

As generates a ‘cau ra’ followed by ‘1, ‘lh,’ ‘lha,’ or ‘Ic’. expr may be absolute, relocatable,
or external. ra may not be 10.

store ra, expri(rb)],rc
storeh ra, expri(rb)],rc
storeha ra, expri(rb)],rc
storec ra, expri(rb),re

As generates a ‘cau rc’ followed by ‘st’, ‘sth’, or ‘stc’. expr may be absolute, relocatable, or
external. rc is a temporary register and may not be r0. storeha is equivalent to storeh.

88 15 Dec 1986

4.2 for the IBM RT PC Assembler Reference Manual

9. DIAGNOSTICS

Diagnostics are written to standard output. They are intended to be self-explanatory and re-
port errors and warnings. Error diagnostics complain about lexical, syntactic and some seman-
tic errors, and abort the assembly.

The assembler may abandon a statement in error and continue processing sometimes on the
same line, sometimes on the next. The result is that one error may lead to spurious diagnostic
messages and sometimes ‘‘phase errors’ where a label has a changed value in the second pass.

89 15 Dec 1986

4.2 for the IBM RT PC

10. LIMITS
limit

Assembler Reference Manual

what

arbitrary®
BUFSIZ
arbitrary

arbitrary

arbitrary

4

4

Files to assemble

Significant characters per name
Characters per input line
Characters per string

Symbols

Text segments

Data segments

The number of tokens in a literal definition is limited by the size of the tokenized literal (i.e.
by the size of the literal after it has been scanned by the assembler to form a string of tokens).
The effective limit is approximately twenty terms in one literal expression.

SAlthough the number of characters available to the argv line is restricted by UNIX operating systems to 10240,

90 15 Dec 1986

4.2 for the IBM RT PC Floating Point Arithmetic

Floating Point Arithmetic

Floating point arithmetic on the IBM RT PC conforms to IEEE Standard 754 for binary
floating point arithmetic. Single- and double-precision representations are supported; extended
is not.

IEEE arithmetic produces results that in general are at least as accurate as those from IBM
System/370 arithmetic. Single precision is very similar to VAX F-format in range and preci-
sion. Double precision is comparable to VAX D-format; see (1) below.

The salient differences from the F- and D-format arithmetic used in C and 4.2BSD on the
VAX are as follows:

(1) Type double has a mantissa of 53 bits rather than 56; the exponent range is approxi-
mately 3e-308 to 1e308, rather than 3e-39 to 1e38. Magnitudes as small as 3e-324
are represented with reduced precision.

(2) IEEE arithmetic includes representations for plus and minus infinity and a collection
of “Not-a-Number” (NaN) values. Printf (3S) represents these on output as INF
and NAN(). Signed zero values are also supported; + 0= —0, but 1/—0= —INF.

(3) Rounding modes and exception handling are supported; user code can change the
settings via the swapround, swapfpflag and swapfptrap functions. See ieee(3). IEEE
default settings are in force initially: the rounding mode is round to nearest; on an
exception, proceed without trap (i.e. return a reasonable result).

(4) With the default exception handling, several arithmetic operations that signal
SIGFPE on the VAX do not on the IBM RT PC. Exponent overflow receives
IEEE default handling, which is to return infinity. Other values larger than le38 are
represented correctly rather than overflowing. 0/0, INF/INF and certain other
operations produce NaNs, which will propagate through subsequent arithmetic
operations. Library functions that signaled SIGFPE, however, continue to do so.

(5) VAX F and D formats differ only in mantissa width: the first word in D-format has
the same interpretation as an F-format number. Consequently, on a VAX, type
mismatches can produce plausible incorrect results, differing from the correct results
by one part in a million. IEEE single and double formats differ in exponent width
as well as mantissa width, so type mismatches (from nonportable unioning, function
calls, or using “%e” for “%]le” in scanf (38), for instance) generally produce answers
that are dramatically, rather than subtly, wrong.

(6) The IEEE recommended functions are supported; see ieee(3) for details.

Also, two new functions are provided to perform the IEEE required operations of
round floating-point number to integral value (according to the current rounding
mode) and floating-point remainder. These are rint (see floor(3M)) and drem (see
ieee(3)), respectively.
Floating point operations are performed either by the hardware Fioating Poini Accelerator
(FPA) or by a software FPA emulator. The compiled or “.0” form of a program is suitable
for either environment. When .0’s are linked into an object program, /d(1) generates either a
“compatible” or “direct” form, depending on the -lfpa flag. By default, /d generates an object
program that performs floating point arithmetic through the compatibility interface, using the
FPA fif it is present or the emulator if it is not. With the -lfpa option, /d generates an object
program that presumes the FPA’s presence to reduce execution-time overhead. Such a pro-
gram runs without an FPA present; however, each floating point operation causes a kernel in-
terrupt, making execution very slow.

91 15 Dec 1986

4.2 for the IBM RT PC Floating Point Arithmetic

Compilers also accept the -lfpa flag, and pass it on to /d. Only the -lfpa flag can specify a
“direct” object program; the presence of an FPA on the machine performing compilation and
linking has no bearing. See fpa(3X) and “4.2/RT Linkage Convention" in Volume II, Supple-

mentary Documents.

92 15 Dec 1986

4.2 for the IBM RT PC Experimental Display Interface

The C Subroutine Interface for the
IBM Academic Information Systems Experimental Display

This paper describes a subroutine interface for the IBM Academic Information Systems exper-
imental display transported for use under the C programming language and 4.2/RT. It con-
tains the following chapters and appendices:

1. Introduction contains some background information on the experimenial display.
2. Controlling the Interface describes the subroutines that control the interface session.

3. Setting Graphics Parameters describes the subroutines that set graphics parameters.
Graphics parameters modify the way in which subroutines that update the screen operate.

4. Querying Graphics Parameters describes the subroutines that return the current values
of graphics parameters.

5. Issuing Graphics Primitives describes the subroutines that build orders that update the
screen.

6. Controlling the Cursor describes the subroutines that enable programs to control the
experimental display cursor.

7. Defining Fonts describes the orders that control the experimental display font mechan-
ism.

8. Manipulating Fonts describes the subroutines that manipulate fonts.
Appendix A describes the format of a font file.
Appendix B describes character definitions.

Appendix C describes aedjournal(1) and aedrunner(1), supplied programs which display
and run commands in a log file.

Appendix D describes the examples supplied with the subroutine interface.

93 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

{. INTRODUCTION

The experimental display is a black-and-white, all-points-addressable, bit-mapped display that
attaches to the IBM RT PC. The experimental display features 819,200 points on the screen,
each one individually selectable. The experimental display adapter contains a very fast on-
board processor that allows text and graphics to be drawn at a rate much faster than the host
alone would allow. The experimental display processor is programmed to accept high-level
orders from the host, and to present the results on the screen.

The characteristics of communicating with the experimental display are determined by the mi-
croprogram running in the experimental display adapter processor. This program is stored in
writable control store and is loadable from the host.

The interface described in this paper is a set of functions designed to support a window
manager, and is composed primarily of subroutines, as distinguished from functions. A typical
subroutine uses parameters to receive input as well as to return output. C passes parameters
by value; to call a subroutine which returns information, you must supply an address for the
returning value as the parameter.

Calls that supply an address for return in this package should usually supply the address of a
short (16-bit) integer. Calls that pass integer values can usually get by with either short or int.
See the individual routines.

Many of the subroutines do return a value as a function would. Generally, values are used for
error return codes and special case handling. It is strongly recommended that applications
monitor return codes in order to prevent bizarre events and possibly more severe errors.

When linking, you must specify -/aed to pick up the experimental display library.

94 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

2. CONTROLLING THE INTERFACE
This chapter describes the subroutines that control the interface.

2.1. VL Init: Initialize the Subroutine Interface
VI _Init initializes the experimental display and returns the dimensions of the screen.
Current display models are 1024 bits wide by 800 bits high. The top left point is (0,0) and
the bottom right point is (1023,799). A 16-bit word used as an image on the experimental
display will have its least significant bits to the right. [usr/lib/aed|whim.aed must be acces-
sible at run time.
Because VI [nit initializes the experimental display, it should be called before the other
routines of the package.
If another user has opened the /dev/aed device, that user has graphics control of the experi-
mental display and VI [nit will fail. For more information, see ibmaed(4).

V1_Init has the following format:

V1 _Init(wd,ht)
short *wd, *ht; /* screen dimensions */

2.2. VI_Force: Force Output of Graphics Orders

Commands built with subroutines described in ‘‘Setting Graphics Parameters” and “Is-
suing Graphics Primitives” later in this paper generally do not send their output to the
screen immediately. Instead the output remains in a buffer until the buffer is full,
when its output is sent to the screen. Use VI _Force to force output in the current
buffer to be transmitted before the buffer is full.

VI Force has the following format:
VI_Force()

2.3. VI_Login: Begin Logging Subroutine Calls

VI_Login specifies that subsequent subroutine calls are to be echoed into the specified
file. If a log file is already open, VI _Login closes it before opening the new file;
VI_Login overwrites an existing file. All orders to the experimental display are logged
until a logout call (Logout?) is issued. The log file may later be executed from within a
program using VI _Run or on its own using aedrunner(l). It may also be examined
with aedjournal(1). (Appendix C of this paper describes these programs.) VI _Login re-
turns a negative value if there is an error, and a nonnegative value if the call is success-
ful.

VI_Login has the following format:
int VI_Login(filename)
char *filename; /* file to log to */
2.4. VI_Logout: Close a Log File
VI _Logout closes the log file and returns one of three values:

Value Meaning

0 Normal completion
-1 Error in closing file
-2 No file found to close

VI_Logout has the following format:
int VI_Logout()

95 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

2.5. VI_Run: Process a Log File

VI_Run executes the commands logged in the specified file; filename is the name of a
log file that was created by VI Login. Using VI_Run with a log file has the same
effect of executing aedrunner(l) from within a program, allowing a series of orders
which require much calculation to be figured only once, logged, then quickly retrieved
when needed. VI _Run returns 0 for a normal completion, and -1 for an error condi-
tion.

VI_Run has the following format:
int VI_Run(filename)
char *filename; /* log file name */
2.6. VI_Term: Terminate the Subroutine Interface

VI_Term completes processing, closes the log file, and forces transmission of the
graphics buffer to the experimental display.

VI_Term has the following format:
VI_Term()

96 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

3. SETTING GRAPHICS PARAMETERS

Graphics parameters modify the way in which the primitives described later in this paper
operate. This chapter describes the subroutines that set graphic parameters. The initial
values of these parameters are:

Clipping window The clipping window is set to the whole screen.

Screen color The screen color is white 1’s on black 0’s, color 0.

Dash pattern The line dash pattern is solid 1’s.

Font The font is 0. No font is selected.

Merge mode The merge mode is 12, for replace mode. Data bits replace screen
bits.

Line width Line width is 1.

3.1. VI_Clip: Set Clipping Window
V1 _Clip specifies that subsequent primitives drawn on the screen are to be clipped to

the specified area. It is the user’s responsibility to ensure the sensibility of the window
definition.

VI _Clip has the following format:

VI Clip(lx,ly,hx,hy)
int Ixly; /* top left corner of clipping area */
int hx,hy; /* bottom right corner of area */

3.2. VI_Color: Change Screen Color

VI _Color sets the color of the screen to the specified value: 0 means that bits having
the binary value “0” will be black on the screen; 1 means that bits having the binary
value ““1” will be black on the screen. If this value is different from the previous value,
the screen will be inverted, so as to make the change transparent to the application.

VI Color has the following format:

V1 _Color(color)
int color; /* new color, true for white */

3.3. VI_Dash: Set Line Dash Pattern

If no dash pattern has been set, lines drawn with the VI_RLine and VI_ALine subrou-
tines described in “‘Issuing Graphics Primitives” are solid lines of 1's. If a pattern has
been set, the bits of the pattern word are used in sequence whenever the vector genera-
tor would normally output a 1. Setting a pattern of 0x5555 produces a very acceptable
dotted line. Other patterns may be used to vary the size of dashes in the line. The
length of the pattern can range from 1 to 16 bits. The pattern bits should be left-
justified. Setting the pattern length to 0 specifies a return to solid lines.

VI Dash has the following format:
VI1_Dash(dash,dashlen)
unsigned short dash; /* dash pattern */
short dashlen; /* dash pattern length */
3.4. VI_Font: Select Font

The current font affects the results of the VI_String primitive described under “Issuing
Graphics Primitives.” Font IDs range from 0 to 255 and are returned by calls to
VI GetFont. See “Defining Fonts” later in this paper for more information.

97 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

VI _Font has the following format:

VI1_Font(fontid)
int fontid; /* font ID */

3.5. VI_Merge: Set Merge Mode

The merge mode is a number from 0 to 15 that specifies how the bits generated by
primitives are to be combined with bits already on the screen. The merge mode is
simply an encoding of the logical function used to combine screen bits and data bits.
Encoding the desired result of each of the combinations in the table below generates
the merge mode that should be used to get that effect. For example, to or the data
you are adding with the data already on the screen, you would use a merge mode of

14:

Data Bit 1 1 0 O

Screen Bit 1 0 1 0
Example: ORmode 1 1 1 0 =14

VI_Merge has the following format:
VI_Merge(merge)
int merge; /* merge mode */
3.6. VI_Width: Set Line Width

VI_Width specifies a value between | and 16 that is to be the line width. Normally,
lines are 1 bit thick.

VI_Width has the following format:
VI_Width(width)

int width; /* line width */

98 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

4. QUERYING GRAPHICS PARAMETERS

The subroutines in this chapter return the current values of the graphics parameters
described above. Each subroutine requires an address in which to store the value to be re-
turned. All of these subroutines force transmission of graphics data in the current buffer.

4.1. VI_QClip: Query Clipping Rectangle
VI_QClip returns the current clipping rectangle.
VI_QClip has the following format:
VI_QClip(Ix,ly,hx,hy)
short *Ix,*ly; /*top left comer of clipping area*/
short *hx,*hy; /* bottom right comer */
4.2. VI_QColor: Query Current Color

VI _QColor returns the current color of the screen: 0 means that bits having the binary
value “0” will be black on the screen; 1 means that bits having the binary value “1”
will be black on the screen.

VI _QColor has the following format:

VI_QColor(color)
short *color; /* current color, true for white */

4.3. VI_QDash: Query Dash Pattern
VI _QDash returns the current line dash pattern in the format described for VI_Dash.
If dashlen is 0, the lines are solid.
VI_QDash has the following format:

VI_QDash(dash,dashlen)
unsigned short *dash; /* dash pattern */
short *dashlen; /* length of dash pattern */

4.4. VI_QFont: Query Font

VI _QFont returns the ID and name of the current font. The font ID is 0 if no font
has been set. The pointer fontname should point to a block of characters large enough
to hold a file name (including an extension) on your operating system, along with a
string-termination byte. If you know beforehand the size of your file name, you may
allow only as many bytes as required. Be aware of the string-terminator byte; there
must be room for it.

VI_QFont has the following format:
VI_QFont(fontid,fontname)
short *fontid; /* current font ID */
char *fontname; [* current font name */
4.5. VI_QMerge: Query Merge Mode

VI_QMerge returns the current merge mode in the format described for the VI _Merge
subroutine described in ‘“‘Setting Graphics Parameters.”

VI_QMerge has the following format:

VI_QMerge(merge)
short *merge; /* current merge mode */

99 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

4.6. VI_QPoint: Query Current Point

VI_QPoint returns the location of the current point. This command is especially use-
ful after a VI_String primitive has been issued, since character definitions can change
the current point in unpredictable ways.

VI_QPoint has the following format:
VI_QPoint(x,y)
short *x,*y; /* current point */
4.7. VI_QWidth: Query Line Width
VI_QWidth returns the current line width as a number between 1 and 16.
VI_QWidth has the following format:

VI_QWidth(width)
short *width; /* line width */

100 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

5. ISSUING GRAPHICS PRIMITIVES

This chapter describes the subroutines that build orders that update the screen. Orders are
transmitted only when the buffer is full, when specified with VI_Force, or when other
non-graphics subroutines are called.

The graphics primitives work in screen coordinates: x represents the horizontal axis on the
screen, and increases to the right; y represents the vertical axis and increases to the bottom
of the screen. The coordinates (0,0) represent the top-left corner of the screen. Subrou-
tines will accept coordinates that are off the screen; the behavior is as if there were a clip-
ping window the size of the screen in a larger universe.

Several of the primitives depend on the current point. This point is initially set to (0,0)
and can be modified by primitives.

5.1. VI_AMove: Move the Current Point to an Absolute Location

VI_AMove moves the current point to the specified coordinates. No change is made
to the screen.

VI_AMove has the following format:
VI_AMove(x,y)
int x,y; /* new point */
5.2. VI_RMove: Move the Current Point to a Relative Location

VI_RMove moves the current point by the specified displacement. No change is made
to the screen.

VI _RMove has the following format:
VI_RMove(dx,dy)
int dx,dy; /* displacement from old point */
5.3. VI_ALine: Draw a Line with an Absolute Location

VI ALine draws a line from the current point to the specified point (the line’s end
point) according to the current values of the width and dash pattern parameters. A
line is normally of 1’s, and is merged with the window data according to the current
merge mode. The specified point becomes the current point.

VI_ALine has the following format:
VI_AlLine(x,y)
int x,y; /* end point of line */
5.4. VI_RLine: Draw a Line with a Relative Location

VI _RLine draws a line from the current point to the current point displaced by the
specified values, according to the current values of the width and dash pattern parame-
ters. A line is normally of 1’s, and is merged with the window data according to the
current merge mode. The current point is incremented by the displacement.

VI_RLine has the following format:
VI_RLine(dx,dy)
int dx,dy; /* displacement to endpoint */
5.5. VI_Circle: Draw a Circle

VI _Circle draws a circle with the specified radius and the current point as its center.
The current point is unchanged.

101 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

VI_Circle has the following format:

VI_Circle(radius)
int radius; /* circle radius */

5.6. VI_MImage: Draw an Image from Memory

VI_MImage draws an image of the specified dimensions whose top left corner is at the
current point. The current point is not changed.

Data must be the first byte of an image large enough to fill the rectangle specified by
wd and At, or an addressing error may result. The image data should be in scanline
order, from top to bottom, with each scanline padded to the next 16-bit word. For
example, for a width of WD and height of HT, there should be 2*HT*(WD + 15)/16
bytes of image data.

VI_MImage has the following format:

VI_MImage(wd,ht,data)
int wd,ht; /* dimensions of image */
unsigned short *data; /* first byte of image */

5.7. VI_Flmage: Draw an Image from a File

VI _Flmage draws the image contained in the specified file, placing its top left corner at
the current point. The current point is unchanged.

The image file must have the format shown below. The data words should be in the
same format as for the VI_MImage subroutine.

Offset (bytes) Description

0 The width of the image
2 The height of the image
4 Image data

VI_FImage has the following format:

VI_FImage(filename)
char *filename; /* file name of image to draw */

5.8. VI_Tile: Tile a Rectangie

VI Tile fills a rectangle of the specified dimensions with the specified pattern. The
rectangle’s top left corner will be at the current point. The tile pattern must follow the
rules for images (see the VI _MImage subroutine above), and can be of any size. The
tile pattern is aligned to multiples of twd and tA¢, not to the bounds of the tiled rectan-
gle, so that rectangular subareas of larger figures can be tiled without regard to their
bounds, and the tile patterns will match. The current point is unchanged.

A full rectangle black or white fill can be most quickly drawn by requesting a one-by-
one tile. Clearly, only all ON or all OFF may be drawn with this method, but any
merge mode may be used.

V1 Tile has the following format:

VI_Tile(wd,ht,twd,tht tile)
int wd ht; /* dimensions of rectangle */
int twd,tht; /* dimensions of tile */
unsigned short *tile; /* first byte of pattern */

102 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

5.9. VI_String: Draw a String

VI _String draws the specified string at the current point. Since a character definition is
really a sequence of other graphics commands (usually VI_MImage and VI_RMove),
the way in which characters are positioned, stepped, and drawn depends on the font
definition. Character definitions typically modify the current point. See “Defining
Fonts” later in this paper for more information.

103 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

VI_String has the following format:
VI_String(s)
char *s; /* string to draw */
5.10. VI_Copy: Copy an Area

VI_Copy duplicates the rectangle at sx,sp with the dimensions wd At to the point x,p.
The copied bits are merged with the target area using the specified merge mode, not
the merge mode set by VI_Merge.

Both the source and destination rectangles must be completely on the screen. The
current setting of the clipping window is ignored.

VI _Copy has the following format:
VI_Copy(sx,sy,tx,ty,wd,ht,merge)

int sx,sy; /* source top-left */
int tx,ty; /* target top-left */

int wd ht; /* rectangle dimensions */
int merge; /* merge mode */

5.11. VI_MRead: Read Display Data into Memory

VI_MRead reads the specified area of the screen into the array passed as data. Image
bytes are in the same format as expected by V/_MImage. If the screen color is white,
the bits are inverted on readback to make the data read back independent of screen
color. The area to be read must be completely on the screen. The current setting of

the clipping window is ignored.
VI_MRead has the following format:

VI_MRead(x,y,wd,ht,data)
int x,y; /* top-left corner of area */
int wd,ht; /* dimensions of area */
unsigned short *data; /* first byte of data */

5.12. VI_FRead: Read Display Data into a File

VI_FRead reads the specified area of the screen and places it in the specified file. The
file has the same format as expected by VI_Flmage. If the window color is white, data
bits are inverted to make the data independent of the screen color. The area to be
read must be completely on the screen. The current setting of the clipping window is
ignored.

VI _FRead has the following format:
V1_FRead(x,y,wd,ht filename)

int x,y; /* top-left comner of areca */
int wd,ht; /* dimensions of area */
char *filename; /* name of file to place image in */

104 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

6. CONTROLLING THE CURSOR
The following routines allow programs to control the experimental display cursor by
defining it, enabling and disabling it, and changing its position. Note that because the ex-
perimental display maintains the cursor separately from the display buffer, the cursor does
not have to be removed when a graphics primitive intersects its position.

Initially the cursor is transparent and disabled, and is positioned at the center of the
screen.

6.1. VI_MDefnCur: Set Cursor Pattern from Memory

VI_MDefnCur sets the cursor as specified. xoff,poff is the displacement of the cursor
pattern from the current position of the cursor. For example, a value of (32,32) would
center the cursor pattern around the current point.

The cursor pattern itself is a 64-by-64 bit image, with two planes. A 1 in the black
plane indicates that that bit of the cursor should be black. A 1 in the white plane indi-
cates that the cursor should be white in that position. If a bit has a 0 in both planes,
the cursor is transparent in that position. If a bit is 1 in both planes, the cursor is
white.

The two planes are images in the same format as accepted by VI _MImage, and must
be 64-by-64, or 512 bytes each.

VI_MDefnCur has the following format:

VI_MDefnCur(xoff,yoff,black,white)
int xoff; /* x offset of cursor center */
int yoff; /* y offset of cursor center */
unsigned short *black; /*first byte black mask */
unsigned short *white; /*first byte white mask */

6.2. VI_FDefnCur: Set Cursor Pattern from File

VI _FDefnCur sets the cursor to the definition in the specified file. The file has the fol-
lowing format:

Offset (bytes) Description

0 XOFF

2 YOFF

4 BLACK bit pattern
516 WIHITE bit pattern

See the description of VI_MDefnCur for a description of the fields.
VI _FDefnCur has the following format:
VI_FDefnCur(filename)
char *filename; /* name of cursor definition file */
6.3. VI_EnCur: Enable Cursor

VI_EnCur enables the cursor and displays it if it is not already present. Disabling and
reenabling the cursor do not affect its position.

VI_EnCur has the following format:
VI_EnCur()

105 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

6.4. VI_DisCur: Disable Cursor

VI_DisCur disables the cursor and removes it from the screen if it is present. Disa-
bling and reenabling the cursor do not affect its pattern or position.

VI_DisCur has the following format:
VI_DisCur()

6.5. VI_PosnCur: Set Cursor Position

VI_PosnCur moves the cursor to the specified position. The cursor cannot be moved
off the screen.

VI_PosnCur has the following format:

VI_PosnCur(x,y)
int x,y; /* new cursor position */

106 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

7. DEFINING FONTS

The font mechanism supported by the experimental display is very general. Characters
are not simply raster patterns; instead, each character definition is a simple graphics sub-
routine, able to move the current point, draw images, change the merge mode, etc. The
orders that can occur in a character definition are a subset of the orders built by the
graphics primitives subroutines. In addition, two orders, push and pop, control parameters
within a character definition.

7.1. Standard Raster Characters

The most typical use of the font mechanism is for standard raster characters. The se-
quence of orders is similar to the following:

(1) VI_Image at the current point.
(2) VI _RMove right by the width of the characters.

This example draws all characters down from the current y value.

7.2. Raster Character with Baseline Defined for the Font

The next most common use is a raster character with a baseline defined for the font.
The sequence of orders would be similar to the following:

(1) VI_RMove up by the ascender height (height above baseline).
(2) VI _Image at the current point.
(3) VI_RMove down and right by the ascender height and character width.

7.3. Stroked Fonts

Stroked fonts can be defined using V/_RMove and VI_RLine commands. Stroked
characters can be mixed freely with raster characters.

7.4. Three-Color Characters
Three-color characters can be defined with a sequence such as the following:
(1) VI _RMove to top of character image.

(2) VI Merge 2, which turns off the screen data having the binary value “1”, and
leaves it unchanged for screen data having the binary value 0.

(3) VI _Image, with a pattern that turns off the black bits of the character.
(4) VI Merge 14, OR mode.

(5) VI _Image, with a pattern that turns on the white bits.

(6) VI_RMove to start of next character.

With this font selected, characters drawn by the VI String command would draw
black, white and transparent patterns, suitable for text drawn over a complex graphics
image.

107 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

8. MANIPULATING FONTS

Fonts are stored in files, which are loaded into the IBM RT PC memory when requested
by applications using the VI_GetFont subroutine. Once a font is loaded, it is kept in
memory until the program ends, unless explicitly dropped with the VI_DropFont subrou-
tine.

8.1. VI_GetFont: Load a Font into Memory

VI_GetFont loads the specified font into memory, if it is not already present. If the
font is successfully loaded, the font ID is returned. Setting the current font to this ID
with the VI_Font routine causes subsequent strings to be displayed in the font. If a
font ID of 0 is returned, either the font could not be found, or it did not fit in
memory. If the font did not fit in memory, a message will be sent to stderr.

VI_GetFont has the following format:

VI_GetFont(name fontid)
char *name; /* font name */
short *fontid; /* font 1D */

8.2. VI_DropFont: Release Font

VI _DropFont drops the specified font from memory. The application should not at-
tempt to use the font ID again. If the font is required, a new font ID should be gen-
erated by a request to VI_GetFont.

VI_DropFont has the following format:

VI_DropFont(fontid)
int fontid; /* 1D of font to release */

108 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

APPENDIX A. FORMAT OF A FONT FILE

A font definition file begins with an index by character codepoint. The first entry is
for codepoint 0x00, the second for 0x01, and so on, up to 0xFF. An index entry has
the following format:

Offset Length in bytes Description

0 4 Offset of the character definition in the file;
an undefined character has an offset of zero.

4 2 Width of inner box of the character.

6 2 Height of inner box of the character.

8 2 Total x displacement caused by character.

10 2 Total y displacement caused by character.

12 2 Distance from the initial x position to the left edge of the inner box.
14 2 Distance from the initial y position to the top edge of the inner box.

A font file consists largely of character definitions, which follow the index. Character
definitions do not necessarily appear in order. Undefined characters are not included.
Each character definition has the following format:

Offset Length in bytes Description

0 2 Character codepoint, in the low byte of the word.

2 2 Length of character definition, in 16-bit words, not including the count.
The length of a character definition must be less than 2000 words.

4 count*2 Character definition. A definition consists of a series of orders,

as described in Appendix B of this article.

109 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

APPENDIX B. CHARACTER DEFINITIONS

Before reading this, you should understand the format of the font file, which contains char-
acter definitions, described in Appendix A of this article.

Character definitions consist of a string of orders from the following list. Note that param-
eter changes made by character definitions do not persist after the character has been com-

pleted.
Set Merge Mode
Offset in 16-bit words Value
0 Merge Command (= 1)
1 Merge Mode

The merge mode is changed to the specificd value. The format is the same as described for
the VI_Merge subroutine.

Set Line Dash Pattern

Offset in 16-bit words Value

0 Set Dash Command (= 3)
1 Dash Pattern

2 Pattern length

Lines drawn after this command use the specified pattern. A pattern length of zero
specifies a return to normal solid lines. The pattern is from 1 to 16 bits, lcft-justified in the
pattern word.

Set Line Width
Offset in 16-bit words Value

0 Set Width Command (= 4)
1 Line Width

Subsequent lines are drawn with the specified width.

Push Modes
Offset in 16-bit words Value
0 Push Command (= 12)

The modifiable parameters (merge mode, dash pattern, line width) are pushed onto an
internal stack. They may be changed and then later restored with the pop order. When a
character definition ends, the original modes are restored, regardless of push or pop orders

within a definition.

Pop Modes

Offset in 16-bit words Value

0 Pop Command (= 13)

The modifiable parameters (merge mode, dash pattern, line width) are restored from the
internal stack. When a character definition ends, the original modes are restored, regardless

110 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

of push or pop orders within a definition.

Move Relative

Offset in 16-bit words Value

0 Move Relative Command (= 6)
1 X displacement

2 Y displacement

The indicated displacement is added to the current point. If either coordinate of the
current point goes outside the range -32768 to 32767, the value wraps (overflows or
underflows).

Draw Line Relative

Offset in 16-bit words Value

0 Draw Line Relative Command (= 8)
1 X displacement

2 Y displacement

A line is drawn from the current point to the current point plus the displacement. The
ending point becomes the new current point. If either coordinate of the current point goes
outside the range -32768 to 32767, the value wraps (overflows or underflows).

Draw Circle

Offset in 16-bit words Value
0 Draw Circle Command (= 14)
1 Circle Radius

A circle with the specified radius is drawn around the current point. The current point is
unchanged.

Draw Image

Offset in 16-bit words Value

0 Draw Image Command (=9)
1 Image width

2 Image height

3 Image data

The image given is drawn with its top left corner at the current point. The current point is
unchanged.

The scanlines of the image must be padded to the next 16-bit word. Thus, the number of
words in the image is height*(width + 15) / 16.

Tile Rectangle
Offset in 16-bit words Value
Tile Command (= 10)
1 Rectangle width

111 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

2 Rectangle height
3 Tile width

4 Tile height

5 Tile data

The tile image is repeated over the whole area of the indicated rectangle. The tile image
data has the same format as data in the V/_Image order described above.

112 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

APPENDIX C. AEDJOURNAL AND AEDRUNNER

Aedjournal(1) and aedrunner(l) are supplied programs which use the interface. Both
operate on a log file created with VI _Login and VI _Logout. Aedjournal displays the com-
mands built into the file; aedrunner executes those commands.

Debugging with aedjournal
acdjournal file

Although there is no debugging facility as such supplied with this package, you can use
VI Login and VI_Logout with aedjournal to help follow your application program’s
actions. Aedjournal deciphers a file produced by VI _Login and reports to standard
output all orders passed to the experimental display. Standard output may be redirect-
ed as usual. You may inspect this output to discover unintended results.

Beware of the length of logged files. It is very easy to generate thousands of display
orders for a seemingly simple picture; thus, try to log the smallest group of orders you
believe contains the error. The log routines may be cailed several times in one applica-
tion to produce several files of orders, requiring only that each call to VI _Login pro-
vide a distinct file name.

Executing a log file with aedrunner

aedrunner file ...

Aedrunner executes the orders logged into the specified file, which must have been
created with VI Login and VI _Logout. Aedrunner terminates upon discovery of any
error or inconsistency in the file. All additional files which were needed when the log
file was constructed must be available in the current directory. Such files are any font,
image, or cursor definition files you may have used, and /usr/libjaed/whim.aed must
exist. Images, cursors, or tiles defined from memory are handled by the log routines
and do not require regeneration.

113 31 Mar 1986

4.2 for the IBM RT PC Experimental Display Interface

APPENDIX D. SUPPLIED EXAMPLES

All files associated with this package reside in the directory
usr|srclusr.libllibaed]examples.

Among the files supplied with the microcode and subroutine library arc some source
and executable files for you to investigate. The following list includes some of those
files, and brief descriptions. It should be easy to figure out the nature of any other
files from their names, behavior, or above documentation.

The following programs are copyrighted property of International Business Machines
Corporation.

* fnt Files with the extension .fnt are font files.

showfont A program that shows a font on the experimental display. The syntax is
showfont filename.

showfont.c Source for showfont.

zip A demo that takes up to thrce parameters. Parameter 1 is number of
vectors to remain on the screen. Parameter 2 is minimum dclta for each
new vector endpoint. It is roughly equivalent to the speed of the zipper.
Parameter 3 is maximum delta. The default is zip 30 2 /4.

7ip2 Like zip but with two zippers. It takes up to 6 parameters. The default is
zip2 30 2 14 90 1 4.
zipn Like zip but with 1 to 16 zippers. Parameter 1 is number of zippers.

Parameters 2, 3, and 4 are number vectors for zipper 1, minimum delta,
and maximum delta. Parameters 5, 6, and 7 are for zipper 2, etc. The
default for unspecified zippers is 30, 2,/4. The default is zipn /.

zZip.c Zip source code.
aedrunner.c Aedrunner source code.

114 31 Mar 1986

4.2 for the IBM RT PC Programmer’s Notes
Programmer’s Notes

1. INTRODUCTION

This article is a compendium of insights, suggestions, and notes gathered from the program-
mers who ported applications to 4.2/RT. The information could save you time and frustra-
tion as you port programs to operate under 4.2/RT.

2. SAMPLE FILES PROVIDED

Four sample files (.login, .cshre, .logout, and .profile) are provided in /fusr/skel. Using these
files will simplify initial installation and operation of 4.2 on the IBM RT PC.

3. CHARACTER TYPE IS UNSIGNED

Variables of type char are unsigned (range 0..255) by default on the RT PC, in contrast to the
VAX, where they are signed (range -128..127) by default. With the High C compiler (Ac(1)),
the type signed char is available, as well as a command-line option
-Hoff= char_default_unsigned to make characters signed by default. This option generally pro-
duces less efficient code, but can be of value in determining whether signedness is the cause of
a bug.

The unsigned default uncovers a machine dependency in a common technique for end-of-file
testing. In the following program fragment

char c;
if (c = getchar()) = = EOF) ...

the test always fails, since EOF is -1 and c is in 0..255. Declaring ¢ as an int is a good
machine-independent solution.
With pec(1), there is no type signed char, but the following macro might be useful if you need
to use an unsigned character as though it were signed:

#E\377 < 0

#define Signed(x) (x)

#else

#define Signed(x) (((x)~128)-128)

#endif

4. BYTE ORDERING IS DIFFERENT

The IBM RT PC has sixteen 32-bit general registers. Memory on the IBM RT PC is byte-
addressed, but differently than on the VAX.

On the VAX, high order bits are at higher addresses, thus:

| ---word2---]---wordl---]---word0---]

|Cc3,C2,C1,C0|]C3,C2,C1,C0|C3,C2,C1,CO0|

I B31. BO|B31...... BO|B31...... BO |
On the IBM RT PC, high order bits are at lower addresses, thus:

| ---word0---]---wordl---]---word2---]

jco,Cct,cz2,c3|jco,C1,C2,C3|Cco,C1,C2,C13|

JBO B31|BO...... B31]BO...... B31|

115 15 Dec 1986

4.2 for the IBM RT PC Programmer’s Notes

Non-portable code which depends upon byte ordering for retrieving data must be rewritten.

5. ALL MEMORY REFERENCES ARE ALIGNED

Word and half-word data are stored most significant byte first and aligned on natural boun-
daries. Off-boundary storage references are not supported. The low two or one address bits
are silently ignored, creating unexpected results.

If lint(1) is run against such programs, it complains about a “possible alignment problem.”

6. FLOATING POINT IS IEEE STANDARD

4.2/RT conforms to IEEE Standard 754 for binary floating point arithmetic. The article
“Floating Point Arithmetic” in Volume II notes the differences from VAX floating point.

A class of programming errors easily overlooked on the VAX -- treating the first half of a dou-
ble quantity as a float quantity, or vice versa -- is highly visible on the RT PC. If numeric
results are incorrect, look first for unions, casts, or function arguments that mismatch double
and float. The scanf format “%f"’ instead of “%lIf’ is particularly subtle.

7. OLD CALLING SEQUENCE IS NO LONGER SUPPORTED

The subroutine calling sequence currently used in 4.2/RT first appeared in the March 1986
release. As a transition aid, that release also supported the old calling sequence.

The December 1986 release (PRPQ #5799-CGZ, Release 2) supports only the current calling
sequence. In the unlikely event that your installation still has programs not recompiled since
you installed the March release, you must rccompile and relink them. In the current release,
running an old a.out will produce the message: old calling sequence, then terminate.

In the even more unlikely event that the source for the old program is no longer available, you
can reinstate support for the old calling sequence in the current release (with a performance
penalty) by specifying “‘option DUALCALL” in the kernel config file and rebuilding the ker-
nel. See the article “Building 4.2/RT Systems with Config" in Volume II.

Some of the IBM Support tools provided in the March release used the old calling sequence.
Be sure to replace these by the versions provided in the December release.

8. CAUTION WHEN USING THE 4.3 AT COMMAND

The 4.3 at(1) command does not pass the environmental variable TERM into a uscr’s at spool
file. Spool-file processing may break if the user's .cshre file includes a reference of the form
"$TERM” and the user’s environmental shell is csh. To be defensive, csh users should code
their .cshrc files in such a way as to test whether a variable is set before being referenced. For
example:

if ($7TERM) then # is TERM defined?
if $STERM = = h19) then
setenv MORE -c
endif
endif
(This is good programming practice for .login files as well).

9. CAUTION WHEN USING THE 4.3 CSH ON SETUID SCRIPTS

The 4.3 csA(1) command requires that a -b flag be used on the interpreter line of setuid csh
scripts. Csh exits with a “‘Permission denied” error message if the -b flag is not specified.

116 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

The IBM 3812 Pageprinter

ABSTRACT
This article provides information for using the IBM 3812 Pageprinter’ attached to an
IBM RT PC, and installing and converting fonts.
The article contains the following chapters and appendices:
1. Introduction provides general information about the 3812.

2. Printer Installation explains how to install the 3812 on an IBM RT PC running
4.2/RT.

3. Printing Text Files describes pprini(1), a command used to print text files on the
3812.

4. Printing Ditrofl Files describes how to print ditroff files on the 3812. Ditroff
(device-independent troff) support for the IBM 3812 Pageprinter® is a separately-
licensed feature of 4.2/RT. It is a modified version of the Documenter’s Workbench®
ditroff.

5. Fonts describes how to install both the uniformly-spaced fonts provided with
4.2/RT and the separately-orderable fonts available from IBM.

6. Using Code Page Tables gives information about generating fonts for use with the
3812.

Appendix A. Fonts Available on the 3812 lists the IBM fonts that are available for
printing with the 3812.

Appendix B. Code Page Tables lists the characters in each code page.

7 Hereinafter referred to as “the 3812”.
8 Hereinafter referred to as “ditroff.”
? Documenter’s Workbench is a registered trademark of AT&T Technologies.

117 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

i. INTRODUCTION

This article provides information helpful in installing and using the 3812 on the IBM RT
PC. The 3812 is a multifunction, nonimpact, tabletop page printer. It provides cut-sheet,
letter-quality text and all-points-addressable graphics at a maximum rate of 12 pages per
minute and a resolution of 240 points per inch. The 3812 attaches to an asynchronous
port on an IBM RT PC. The printer can serve users on that machine or other machines
on the network. The standard spooling system commands are used to send files to the
printer, query their status, and cancel them (sce {pr(1), {prm(1), Ipq(1), and Ipc(8)).

Several manual pages describe support for the 3812:

ap(4) Defines the asynchronous line protocol that supports the 3812
cvi3812(8) Converts IBM 3820 and 3800 fonts to 3812 format
Sfont3812(5) Defines the 3812 font structures

ibm3812pp(8) Describes the 3812 print server daemon

pic(1) Draws simple pictures on the 3812
pprint(1) Prints text files on the 3812

ppi8) Describes the spooling system filter
printer3812(S) Defines printer status information
ptroff(1) Prints ditroff files on the 3812

width38/12(8) Builds table widths for 3812 fonts

118 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

2. PRINTER INSTALLATION

2.1. Hardware Requirements
To connect the 3812 to an IBM RT PC, you must have the following:

A 3812 with an IBM 3812 PC diskette
An IBM RT PC running 4.2/RT
An RS232 4-port asynchronous adapter (in the IBM 6151 only)

An IBM 3812 Printer Cable, part number 1348421 and an IBM RT PC Modem Ca-
ble, part number 6298240

OR
An IBM IBM RT PC Printer cable, part number 6298525, option number 6294803

(Note that the single IBM IBM RT PC Printer Cable replaces both the IBM 3812
Printer Cable and the IBM RT PC Modem Cable.)

2.1.1. 3812 Setup

This section describes 3812 setup.

2.1.1.1. DIP Switches

On the inside of the back panel of the 3812 is the set of printer DIP switches. To
run at 19200 baud, switches three (3) and seven (7) must be on; the rest must be off.

3 = asynchronous data communications mode
7 = 19200 baud
To run at other than 19200 baud, consult the IBM 38/2 Pageprinter Programming

Reference (S544-3268) for proper DIP switch settings.
2.1.1.2. 3812 Diskette

Inside the front cover of the IBM 3812 Pageprinter is a diskette drive. Load the
diskette labeled “IBM 3812 PC”or “IBM 3812 RT” into the drive.

2.1.2. 3812 to IBM RT PC Connection

If you are using two separate cables, follow these steps:

(1) Connect the 3812 Printer Cable to the plug labeled “RS232C” in the back of the
3812.

(2) Connect the other end of the 3812 Printer Cable to the Modem Cable.

(3) Connect the Modem Cable to one of the serial ports on the back of the IBM RT
PC.

If you are using the single IBM RT PC printer cable, follow these steps:

(1) Connect the IBM RT PC printer cable to the plug labeled “RS232C” in the back
of the 3812.

(2) Connect the other end of the cable to one of the serial ports on the back of the
IBM RT PC.

Throughout this article, we will assume the cable is connected to the port corresponding
to /dev/tty00.

119 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

2.2. Software Requirements
This section describes the steps required to identify the 3812 to the system.

2.2.1. Verifying Device Files and Entries

Verify that the special file for the printer (/dev/tty00) is read/write and owned by dae-
mon. To do so, use the following command:

chown daemon [dev/ity00

Is -1 /dev/tty00
The result should look like this:

CrW==-==-~ ! daemon 1, 0 Feb 3 15:05 |dev/tty00
Verify that the entry for tty00 in the file /etc/ttys (ttys(5)) has as the first character
an ASCII zero (0). To do so, use the following command:

grep tty00 [etc/ttys

The result should be of the form:
02tty00

If the result you get is, for example, /2tty00, you must edit the file to change that
line to 02tty00.

2.2.2. Establishing a Symbolic Link

Establish a symbolic link from /dev/pp to /dev/tty00. To do so, use the following
command:

In -s [dev/tty00 /dev/pp

2.2.3. Verifying Printcap Entries

To identify the 3812 to the spooling system, the proper entries must be in
Jete/printcap. As distributed, 4.2/RT has the entries described here; you may need
to modify them for local use.

Three sample printcap entries are shown below. The first defines a 3812 attach-
ment on a remote IBM RT PC. The name of the remote host must be substituted
for the words remote 3812 print server name. The second entry defines a 3812 at-
tachment on the local IBM RT PC. The third entry selects one of the two previ-
ous entries. This must be changed to refer to the local entry when installing the
3812.

120 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

#
Sample Printcap Entries for 3812

#
Sample for Remote 3812 Pageprinter
#
rpp|remote 3812 Pageprinter:\
Ip=:rm = remote 3812 print server name:rp = pp:sd = /usr/spool/rppd
#
Sample for Locally Attached 3812 Pageprinter, connected at /dev/pp
#
Ippllocal 3812 Pageprinter:\
Ip = /dev/null:sd = /usr/spool/ppd:\
If = Jusr/adm/ppd-errs:\
:af = Jusr/adm/acct-pp:\
:PP=/dev/pp:\
:SS = Jusr/spool/ppd/status3812:\
br#19200:\
:shi\
;if = fusr/lib/p3812/txt3812:\
:vf= /usr/lib/p3812/pmp3812:\
pl#66:pw#80:px#2040:py#2460
#
Change the rpp to Ipp in the next line if the 3812 is attached locally

#
pp|3812 Pageprinter:\

tc=rpp:

Refer to printcap(5) for a complete description of the printcap file.

The spool directory (sd), accounting file (af), and log file ({f) must be created
read/write by daemon. To do so, issue the following commands:

cd Jete
Jusr[srefete/printcap.install

Note that the filename at the end of the path in the accounting file entry (af) must
end with a “-” followed by the printer name. In this example, the name is “pp”.

Two new printcap capabilities, SS and PP, are defined for the 3812. The SS entry
identifies the printer log file for the 3812. The current status message from the
printer will be written to this log. It will contain the intervention-required mes-
sages such as “PAPER JAM,” “OUT OF PAPER,”or “TONER LOW.” A list of
printer messages can be found in printer3812(5).

The PP entry identifies the special file where the 3812 is attached. It is usually a
symbolic link to a specific tty port on the multiport adapter card. This information
is not provided by the line printer ({p) entry. The spooling system does not open
or close the device where the printer is attached. Instead, the device is managed by
the 3812 print server (ibm3812pp(8)), using a special asynchronous line protocol
(ap(4)) that supports the 3812 printer. The ap line discipline is conditionally com-
piled and must be specified in the kernel configuration file if the 3812 is to be sup-
ported. The 3812 print server runs as a daemon and is started by ppt(8) when the
first file is sent to the printer.

The sh entry indicates that spooling system header pages are suppressed. The indi-
vidual filters (if, vf) will print header pages if requested.

121 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

The following filters are specified in this printcap entry: the text filter (if) converts
ASCII data to printer commands; the PMP filter (v/) sends Page Map Primitive
(PMP) commands to the printer. PMP commands provide for vector graphics,
font downloading, and all-points-addressable printing on the 3812. PMP is
described in the manual entitled /BM 3812 Pageprinter Programming Reference,
S544-3268.

2.3. Starting the 3812

Once you have completed the steps described thus far, you are ready to print your first
document. Turn the printer on and check that paper is loaded in both paper cassettes.
The 3812 uses the alternate paper cassette to print document separator pages; using
colored paper here will make output separation easier. After a few minutes, a ‘701’
will appear on the printer display, indicating that the printer is ready.

The print server (ibm38/2pp(8)) starts when the first job is sent to be printed. To start
the print server, for example, you can print a copy of /etc/printcap:

pprint /etc/printcap

The ‘701’ disappears from the printer display, the online light appears, and the docu-
ment is printed.

2.4. Monitoring the 3812

The current status of the printer is recorded in the spool directory in the status38/2 file
(SS in /etc/printcap). The following command displays the current status:

cat [usr/spool/ppd/status3812
Error messages are recorded in the log file (!f in /etc/printcap). The following com-
mand monitors the 3812 error log while documents are printing:

tail -f /usr/adm/ppd-errs
The error log (If) and accounting file (af) will grow as documents arc printed, and
should be truncated periodically by your system administrator.

The print server (ibm38/2pp(8)) runs as a daemon. It can be terminated by issuing the
L 1N nnerenman A £, +

1N vy w
reieey 1) COININANG 17O 100

122 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

3. PRINTING TEXT FILES

Pprint(1) prints text files on the 3812. It filters input through pr and sends the resulting
output to the spooling system. See the pprint(1) manual page for the various options.
The file /etc/printcap must contain an entry for the 3812 as described in Section 2.2.3,
“Verifying Printcap Entries.”

See Appendix A of this article for a list of fonts that can be specified with the -f option of
pprint.

123 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

4. PRINTING DITROFF FILES

With the ditroff feature installed, device independent files are generated by [usr/ibm/troff.
The new command ptroff{1) processes troff source for printing on the 3812, See the
ptroff(1) manual page for the various options. The file /etc/printcap must contain an en-
try for the 3812 as described in Section 2.2.3, “‘Verifying Printcap Entries.” See Appendix
A of this article for a list of fonts that are available for use with troff, and Appendix B for
a list of troff character names.

Ditroff includes modifications to troff, eqn, pic, and a makedev in Documenter’s Work-
bench. These routines have been modified to use the 3812 fonts (-T3812); otherwise, the
documentation for troff, pic, and eqn has not changed. The output file generated by troff
has not been redefined. Only the format of the width tables has been changed. The
width tables in Documenter’s Workbench contain widths for only one character size, size
12. The width of a character in other sizes is calculated by scaling the base width: if the
A in size 12 is 32 pels, the A in size 6 is 16 pels, and the A in size 24 is 64 pels. The 3812
fonts are designed individually for each size, so the width tables have been augmented to
contain the width of every character in every size.

Because of the changes to the width tables, use /usr/ibmjtroff, [usr/ibm/pic, and
[usr/ibmjegn with -T3812. You can expect errors if you use /usr/bin/troff or [usr/binjeqn
with -T3812.

124 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

5. FONTS

The 3812 uses either the fonts provided on the 3812 diskette or fonts that are downloaded
from the host. There are two sets of fonts: a set of uniformly-spaced fonts is provided
with 4.2/RT for downloading, and several typographical fonts can be ordered from IBM
as separate products. This chapter describes both groups of fonts.

5.1. Typographic Fonts

5.1.1. Ordering Typographic Fonts
The available typographic fonts include:

Sonoran Serif!® Program Number 5669-161, Feature 5124
Sonoran Sans Serif'! Program Number 5669-162, Feature 5125
Pi & Special'? Program Number 5669-163, Feature 5126

These fonts are shipped on diskettes. Samples of each font are shown in the /BM
3800 Printing Subsystem Model 111 Font Catalog, SH35-0053, and in Appendix A
of this article.

5.1.2. Installing Typographic Fonts

When the typographic fonts are installed in [usr/lib/font/dev3812/fonts, they are
available for use with pprint(1) for printing on the 3812. To use these fonts with
ditroff, the ditroff feature for the 3812 must be ordered and installed according to its
installation procedures. Licensed ditroff users should refer to the Program Directo-
ry - Ditroff for the IBM 3812 Pageprinter for installation information.
(1) Login as root.
(2) Load the fonts from diskette.

There are three subdirectories in [usr/src/usr.lib/font{dev3812/fonts that con-

tain makefiles and tables for building fonts. Use dosread(1) to load the fonts
from diskette to the IBM RT PC into the appropriate subdirectory.

(3) To load the Sonoran Serif font (Program Number 5669-161, Feature 5124),
follow these steps:

ed fusr/src/usr.lib/font/dev3812/fonts/serif
Insert the first diskette of the Sonoran Serif font into the diskette reader, then
type the following:

dosread

Repeat this step for all 12 diskettes in the Sonoran Serif font.

To load the Sonoran Sans Serif font (Program Number 5669-162, Feature
5125), follow these steps:

cd fusr/srcfusr.Jib/font/dev3812/fonts/sans

Insert the first diskette of the Sonoran Sans Serif font into the diskette reader,
then type the following:

10 Functional equivalent of Monotype Times New Roman, a trademark of The Monotype Corporation, Limited.
Contains data derived under license from The Monotype Corporation, Limited.

11 Functional equivalent of Monotype Ariel, a trademark of The Monotype Corporation, Limited. Contains data
derived under license from The Monotype Corporation, Limited.

12 Contains data derived under license from The Monotype Corporation, Limited.

125 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

(4)

&)

dosread

Repeat this step for all 12 diskettes in the Sonoran Sans Serif font.

To load the Pi & Special font (Program Number 5669-163, Feature 5126),
follow these steps:

cd /usr/src/usr.lib/font/dcv3812/fonts/pispecial
Insert the first diskette of the Pi & Special font into the diskette reader, then
type the following:

dosread

Repeat this step for both of the diskettes in the Pi & Special font.
Loading all the fonts from diskette takes approximately twenty-five minutes.
Convert the fonts to 3812 format.

Makefile in Jusr/srcjusr.lib/font/dev3812/fonts descends into the subdirectories
and performs the makes on them.

Make automatically converts the fonts into the 3812 format (cvt38/2(8)), and
builds the width tables (width38/2(8)). Type the following:

cd [usr/src/usr.lib/font/dev3812/fonts
make
This step takes approximately thirty minutes.
Install the fonts for use with the 3812.
Make with the install option does the following:
. Copies the width tables to /usr/lib/font/dev3812.
. Copies the font raster pattern to /usr/lib/font/dev3812/fonts.
To install, type the following:

cd [usr/src/usr.lib/font/dev3812/fonts
make install

5.2, Uniformly-spaced Fonts

These fonts are provided in jusr/lib/font/dev3812/fonts. They are shown in the IBM
3812 Pageprinter Introduction and Planning Guide, (G544-3265, and the IBM 3800
Printing Subspstem Model 111 Font Catalog, SH35-0053. Their format is described in
Sfont3812(5).

126 15 Dec 1986

Orator Bold
Prestige Pica *
Roman Text
Serif Italic
Serif Text
Shalom

Math Symbol
OCR-A **
OCR-B **
Format

Prestige Elite Bold *
Prestige Elite Italic *
Script

Serif Bold

Serif Italic

Shalom

Math Symbol
Format

20-pitch Gothic Text
27-pitch Gothic Text
15-pitch Format

4.2 for the IBM RT PC The IBM 3812 Pageprinter
10-pitch 12-pitch Other fixed-pitch Proportionally-spaced
APL Courier * 13-pitch Letter Gothic
Courier * Gothic Bold 15-pitch Gothic Text
Courier Italic Gothic Italic 15-pitch Serif Text Boldface Italic *
Gothic Bold Gothic Text 15-pitch Shalom Document *
Gothic Text Letter Gothic * 20-pitch Shalom
Katakana Letter Gothic Bold * | 20-pitch APL Essay Bold *
Orator Prestige Elite * 20-pitch APL Essay Italic *

Essay light *
Gothic Tri-pitch

* These fonts contain international character sets of 221 printable characters.

** The 3812 prints the OCR-A and OCR-B fonts with the same high quality as other
type styles. IBM does not warrant and has not tested that these characters are read-
able by all OCR reading devices, Users of these fonts should test read compatibility
before relying on the 3812 for OCR applications.

127

15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

6. USING CODE PAGE TABLES

A code page table identifies the set of characters to be used from one or more fonts. A font
contains the graphic pel pattern for each character along with its IBM character name. An en-
try in a code page table associates an IBM character name with a troff character name. The
entry’s position in the table gives the character’s ASCII code.

Lowercase “‘a”, for example, has the IBM character name LA010000 regardless of font or
point size, and would be represented by a code page table entry containing “a LA010000".
The ASCII code is 97, so the entry is the 97th unique table entry.

Similarly, the pound symbol (£), if it is in the table at all, is represented by an entry containing
“£ §C020000”. Since it has no ASCII code, the entry may appear in any unused position.

A code page table may contain up to 256 unique entries, plus synonym entries. Appendix A
of this article gives a list of the fonts and their corresponding code page tables; Appendix B
lists the information appearing in the code page tables.

Two examples are given here. The first example shows how to modify an existing code page
table for use with ditroff. The second shows how to make a new code page table.

Example 1

If you want to change the troff name assigned to a character, or if you want to change
the graphic associated with a troff name, you must modify the code page table according-
ly. For example, to change the troff names of left double quote \(LQ and right double
quote \(RQ to \(L” and \(R"” respectively, you would change the troff names in code
page table stdcp. Then you would need to rebuild the width tables for all fonts that use
that code page table and copy the resulting width tables to /usr/lib/font/dev38]2. Copy
the resulting code page index files to Jusr/lib/font|dev3812/fonts.

In this example, R, I, B, BI, H, HI, HB, HY, D, and SP use the stdep code page table
and need to be rebuilt. You would rebuild the width tables by typing the following:

cd /usr/srcfusr.lib/font/dev3812/fonts/serif

make serif

cp R 1 B BI /usr/lib/font/dev3812
cp *.stdep [usr/lib/font/dev3812/fonts

cd fusr/srcfusr.lib/font/dev3Bi2/fonis/sans
make sans

cp H HI HB HY /usr/lib/font/dev3812

cp *.stdep /usr/lib/font/dev3812/fonts

cd /usr/src/usr.lib/font/dev3812/fonts/pi
make special

cp D SP Jusr/libffont/dev3812

cp *.stdep [usr/lib/font/dev3812/fonts

Next, build the binary form of the widths. This step depends on having the ditroff
feature installed. Go to /usr/lib/font/dev3812 and build the binary form of the troff
width tables:

cd /usr/lib/font/dev3812
makedev R I B BI H HI HB HY D SP DESC

Now the new character name is ready to be used by troff.

128 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

Example 2

The APL font is built using the fcp code page table, but there are IBM character
names in the APL font that are not referenced by .fcp. To determine all the IBM
character names in a font use the -N option on cvt38/2(8). The following command
generates all the IBM names for characters in the APL font:

cvt20to12 -N c0s0ae10 > [tmp/names

The IBM character names are documented in the IBM 3800 Printing Subsystemn
Model 111 Font Catalog, SH35-0053. Each element of /timp/names has the following
format:

raster for x xx SL.110000

SL11000 is the IBM character name. The “xx” in the list of character names is re-
placed with a troff character name. For example, the following will assign the name
\(CS to the APL character Circle Star:

raster for x CS SL110000

Copy fep to aplep and add the new entries from /tmp/names to aplep into unused
positions. Once the characters have been assigned a name, use width38/2(8) to
build the width table and the code page index files:

width3812 -s 5 10 0 -c aplcp -n AP APL

This will build the AP width tables for sizes 5 and 10, using the code page table
aplcp. The width table (4P) must be copied to [usr/lib/font/dev3812 to be used by
troff. The code page index files (4PL./0.aplcp and APL.S.aplcp) must be copied to
Jusr/lib]font/dev3812/fonts. This file can now be used with pprint(1). The following
command will print a file using the APL font.

pprint -fTAPL.10.aplcp filename
To use the font in a troff document, use makedev to generate the binary form of the
troff width table:

cd Jusr/lib/font/dev3812

makedev AP

Now use the troff commands for changing fonts (.ft AP) to print characters from the
font.

129 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

APPENDIX A. FONTS AVAILABLE ON THE 3812

This appendix shows examples of the fonts available on the 3812. The typographic fonts are
available for license from IBM; the uniformly-spaced fonts are provided with 4.2/RT.

Typographic Fonts

The following fonts are available for license from IBM. All are in the Sonoran type face,
except for the Display and Petite fonts. Unless otherwise indicated, all are in point sizes 6,
7, 8,9, 10, 11, 12, 14, 16, 18, 20, 24, 30, 36. Samples of these fonts are found later in this
section.

Sonoran Serif Typeface

ptrofff pprint Point Code Page

Name Name Size Table Notes Font Name

R s All stdcp ¢)) Serif Roman

I s.] All stdcp (0))] Serif Italic

B s.B All stdep H Serif Bold

BI s.BI All stdcp n Serif Bold ltalic

S - 6-12 picp 2) Serif PI (symbols)

SB - 6-12 picp 2 Serif PI Bold (symbols)

L - All latincp Serif Roman Latin Characters
LI - All latincp Serif Italic Latin Characters
LB - All latincp Serif Bold Latin Characters
LY - All latincp Serif Bold Italic Iatin Characters
A - 6-12 addcp 2 Serif Additional Characters

Sonoran Sans Serif Typeface

ptroff pprint Point Code Page

Name Name Size Table Notes Font Name

H §§ All stdcp n Sans Serif Roman

HI ss.] All stdep H Sans Serif Italic

HB ss.B All stdcp 9)) Sans Serif Bold

HY ss.BI All stdcp €)) Sans Serif Bold Italic

HS - 6-12 picp 2 Sans Serif PI (symbols)

HZ - 6-12 picp (2) Sans Serif PI Bold (symbols)

K - All latincp Sans Serif Roman Latin Characters
KI - All latincp Sans Serif Italic Latin Characters
KB - All latincp Sans Serif Bold Latin Characters
KY - All latincp Sans Serif Bold Italic Latin Characters
Notes:

(1) When using pprint, these fonts lack the ~ and ~ characters.
(2) Font sizes 7, 9, and 11 are duplicates of 6, 8, and 10 respectively.

130 15 Dec 1986

4.2 for the IBM RT PC

Special Fonts

The IBM 3812 Pageprinter

ptroff pprint Point Code Page- Font |
Name Name Size Table Notes Name g
D d 20, 36 stdcp (N Display |
Sp pe 4 stdcp) Petite |

Uniformly-Spaced Fonts

The following fonts are provided for use with pprint(1) and peroff{1). These fonts are built
with either the fcp or the acp code page table and contain all the ASCII characters. Samples
of these fonts are found in the IBM 3800 Printing Subsystem Model 11l Font Catalog,

SH35-0053.
ptroff pprint Point Code Page
Name Name Size Table Notes Font Name
Bb BOOK.B 10 fcp Book Bold (proportionally spaced)
Bi BOOK.BI 10 fep Book Bold Italic (proportionally spaced)
CwW COURIER 10 fep Courier
Cw Courier 4, 10 acp 3) Courier
Cb Courier.B 10 acp 3) Courier Bold
Cc Courier.C 10 acp 3) Courier Condensed
Cd Courier.CB 10 acp 3) Courier Condensed Bold
Ce Courier.E 10 acp 3 Courier Expanded
Cf Courier.EB 10 acp 3 Courier Expanded Bold
Du DOCUMENT 10 fep Document (proportionally spaced)
E ESSAY 10 fep Essay (proportionally spaced)
EB ESSAY.B 10 fep Essay Bold (proportionally spaced)
EI ESSAY.] 10 fep Essay Italic (proportionally spaced)
EL ESSAY.L 10 fep Essay Light (proportionally spaced)
Lr LETTER 9 fep Letter Gothic
Lb LETTER.B 9 fep Letter Gothic Bold
PP PRESTIGE 9,10 fep Prestige
PB PRESTIGE.B 9 fcp Prestige Bold
PI PRESTIGE.I 9 fep Prestige Italic
Notes:

(1) When using pprint, the Display font lacks the following characters:
t<=>@l]1~_{}"
(2) When using pprint, the Petite font lacks the ~ and ~ characters.

3) These fonts are IBM 5152 Printer Emulation fonts.

131

15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

Examples of Typographic Fonts

The Sonoran fonts shown here are printed in 10-point sizes, with a vertical spacing of 12
points and with non-alphanumeric characters separated by 1/4-em space. These examples
are representative selections of the available characters in each font; not every available char-
acter is shown. See Appendix B for the code page tables for each font.

Serif Fonts

Serif Roman (R)

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

1$%&()"*+ — ., /=7
o — - Vah Vafififffifilct’
A< >{}#@+ 8

» «

I
T¢
i

Serif Italic (I)

abedefghijklimnopqrstivwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

183% &()""*+ — .,]:;=2[]]
« - — Ve %fAfRHCF ¢
AL <> {}{@+r§ 0 f

» «

Serif PI - symbols (S)
aBydel{nbikAipvéon

POTVLO XY ®©
I"AOA"HZYGD\PQ

Serif Additional Characters (A)

JHHH sV e 2

132

Serif Bold (B)

abedefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

1$% &) >+ — ., [:5=2]]]

s —-—YaYaYafififffifiot ¢

P\ I<>{}f@+*§ 1

» «

Serif Bold Italic (BI)

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIIKLMNOPQRSTUVWXYZ
1234567890

IS%&() "+ =, [= 2]

o —-—Ya L aifiTHRM T ¢
A <> (M@ r§}

» «

Serif PI Bold - symbols (SB)
afPydelnOixipvion

POTVO LY O
FéOAEﬂEY(D‘PQ

15 Dec 1986

4.2 for the IBM RT PC

Sans Serif Fonts

Sans Serif Roman (H)

abcdefghijkimnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

1$% &) "+ — ., /:;=711]

o —-— Yoo Yufifififfiffict ¢
A< >{#@+ s

» «

Sans Serif ltalic (H})

abcdefghijkimnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

1$% &() "+ — ., 1:;=2[]]

o —-— Va2 Y fifIffffiffi°t ¢
A< >{}f@t § ¢

» «

Sans Serif Pl - symbols (HS)
aByvydel{nBikApvionpo
TUG XYW
FZ}@/\EHZYCD‘PQ

X
A

133

The IBM 3812 Pageprinter

Sans Serif Bold (HB)

abcdefghijkimnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

1$%&() '+ —.,/:;=7[1]

o —-— Yo' Vafifififfiffiot ¢
PAN_TI<>{}f@+*§¢

» <«

Sans Serif Bold Italic (HY)

abcdefghijkimnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

1$%&() "+ —.,1:;=2[]]

o~ - VfifiIffffifflict ¢
A <>{#@t st

» «

Sans Serif Pl Bold - symbols (HZ)

aBydelndikApuviomnp
CTUP XY W
FAOAZNZIYODPWQ
VTESS~ =4l
3+ U Nc>o0d®O
=f{cfge®@ oD

15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

Special Fonts
Two special fonts are available. Both are built with code page table stdcp.

The Display font is printed in 20 points, with a vertical spacing of 30 points and with
non-alphanumeric characters separated by 1/4-em space. This font is available only in
point sizes 20 and 36.

abevefahijhimnopgrstubtoxys

ABCHBEF GBIFRIMPOPARSTUHYWXDZ
1234567890

9% &O)*-“7 .,

The Petite font is printed in 4 points, with a vertical spacing of 6 points and with
non-alphanumeric characters separated by 1/4-em space. This font is available only in
a 4-point size.

abcdefghijklmnopqgrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234587890
(S RO e Iin?l])

Latin Characters

The Latin and special characters shown below are available in both the Sonoran Serif and
Sans Serif font families in roman, italic, bold, and bold italic. They are built with code page
table latincp.

-
, Y

Az E¢CéEeREele

aAaAaAiaAAa
EeEififilililijtLaNaNaN
60606A6665amgﬂBuUuU Ui
UaOaUyYe<=>+xs2*0Ym§T
%"i’()'-'(,u

134 1S Dec 1986

4.2 for the IBM RT PC

The IBM 3812 Pageprinter

APPENDIX B. CODE PAGE TABLES

This appendix lists the characters in each code page, with their troff, IBM, and descriptive names.
Refer to files in [usr/src/usr.lib/font/dev3812/fonts/*cp for precise code page contents.

STANDARD CODE PAGE (stdcp)

Y8

ST 0 T - a\u

2t wn o9

<

th &

* *v/"\%

Troff
Char
Name

(i
\(f
\d
\(Fi
\(F1
\(br
\(12
\(14
\(34
\(18
\(38
\(58
\(78
\(dg
\(dd
\(VB
\(de
\(fg
\(or
\(fm
\(bu
\(sc
\(hy
\(LQ
\(RQ
\(ct
\(Lb
\(mi
\(no
\(em
Q(QM
\(SP

1

”

#
$
%

IBM
Char
Name

LF510000
LF530000
LF550000
LF 576000
LF590000
SM130000
NF010000
NF040000
NF050000
NF180000
NF 190000
NF200000
NF210000
SM340000
SM350000
SM650000
SM190000
SC070000
SM 130000
SP050000
SM 570000
SM240000
SP100000
SP210000
SP220000
SC040000
SC020000
SA000000
SM660000
SA000000
SP040000
SA000000
SP010000
SP020000
SP220000
SM010000
SC030000
SM020000
SM030000
SP060000
SP(70000
SM040000
SM040000

Description

ff ligature

fi ligature

fl ligature

ffi ligature

fH ligature

Vertical bar, logical OR
Numeric fraction one-half
Numeric fraction one-quarter
Numeric fraction three-quarters
Numeric fraction one-eighth
Numeric fraction three-eighths
Numeric fraction five-eighths
Numeric fraction seven-eighths
Dagger

Double dagger

Vertical broken line

Degree symbol

Florin or guilder

Vertical bar, logical OR
Apostrophe

Bullet

Section symbol (USA), paragraph symbol (Europe)
Hyphen

Left double quotes

Right double quotes

Cent

Pound

Minus

Logical NOT

Minus

Quotation marks

Minus

Interword space

Exclamation point

Right double quotes

Number

Dollar

Percent

Ampersand

Left parenthesis

Right parenthesis

Asterisk

Asterisk

135 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

+ + SA010000 Plus

, , SP080000 Comma

- - SP100000 Hyphen

/ / SP120000 Slash

0 0 ND100000 Numeric decimal zero
1 1 NDO010000 Numeric decimal one
2 2 ND020000 Numeric decimal two
3 3 NDO030000 Numeric decimal three
4 4 ND040000 Numeric decimal four
5 5 ND050000 Numeric decimal five
6 6 ND060000 Numeric decimal six
7 7 ND070000 Numeric decimal seven
8 8 ND080000 Numeric decimal eight
9 9 ND090000 Numeric decimal nine
: SP130000 Colon

; ; SP140000 Semicolon

< < SA030000 Less-than

= = SA040000 Equals

> > SA050000 Greater-than

? ? SP150000 Question mark

@ @ SM050000 At

A A LA020000 A capital

B B LB020000 B capital

C C L.C020000 C capital

D D LD020000 D capital

E E LLE020000 E capital

F F LIF020000 F capital

G G L.G020000 G capital

H H L11020000 H capital

I I 1.1020000 I capital

J J 1.J020000 J capital

K K LK 020000 K capital

L L L1.020000 L capital

M M LM020000 M capital

N N LN020000 N capital

0] o L.0020000 O capital

P P LP020000 P capital

Q Q L.Q020000 Q capital

R R LR020000 R capital

S S 1.5020000 S capital

T T 1.T020000 T capital

U U LU020000 U capital

v \Y% L.V020000 V capital

w w LW020000 W capital

X X L.X020000 X capital

Y Y 1.Y020000 Y capital

Z Z 1.Z020000 Z capital

{ [SM060000 Left bracket

\ \ SM070000 Reverse slash

]] SM080000 Right bracket

« \(< < SP170000 Left angle quotes

SP090000 Continuous underscore, underline
SP190000 Left single quote

136 15 Dec 1986

4.2 for the IBM RT PC

gy mNY Xg<g Tt 00Oop g TRRTTOR ™ WO O

AN M g E TP R 0T OB TRSDR e Ao o

\(> >
\(UN
\(ul
\(ru
\(th
\(rh
\(pl
\(sl

LA010000
L.B010000
L.C010000
LD010000
LE010000
LF010000
LG010000
LLI1010000
11010000
LJO10000
LK010000
L.L010000
1.M010000
LLN010000
1.0010000
LP010000
1.Q010000
LR010000
LS010000
LT010000
[.U010000
LV010000
LwW010000
1. X010000
LY010000
L.Z010000
SM 110000
SM 130000
SM 140000
SP180000
SV320000
SP090000
SM900000
SP170000
SP180000
SA010000
SP120000

The IBM 3812 Pageprinter

a small

b small

¢ small

d small

e small

f small

g small

h small

1 small

j small

k small

1 small

m small

n small

o small

p small

q small

r small

s small

t small

u small

v small

w small

X small

y small

z small

Left brace

Vertical bar, logical OR
Right brace

Right angle quotes
Replacement symbol (for undefined code points)
Continuous underscore, underline
Rule

Left angle quotes
Right angle quotes
Plus

Slash

137

15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

LATIN CODE PAGE (latincp)

Troff IBM
Char Char
Name Name Description

O
=
®
8

\(a' LA110000 a acute small

(A" LAI120000 A acute capital

\(a' LA130000 a grave small

\(A* LA140000 A grave capital

\(a® LLA150000 a circumflex small

\(A~ LA160000 A circumflex capital
\(a: 1.A170000 a diaeresis/umlaut small
\(A: LAI180000 A diaeresis/umlaut capital
\(A~ LA200000 A tilde capital

\(a. LLA270000 a overcircle small

\(A. LA280000 A overcircle capital

\(ae L.AS10000 ae diphthong small
\(AE L.AS520000 AE diphthong capital
\(c, L.C410000 ¢ cedilla small

\(C, LC420000 C cedilla capital

\(e’ LE110000 ¢ acute small

\(E® LE120000 E acute capital

\(e* LE130000 e grave small

\(E* LE140000 E grave capital

\(e» LE150000 e circumflex small

\(E~ LE160000 E circumflex capital

\(e: LE170000 e diaeresis/umlaut small
\(E: LE180000 E diaeresis/umlaut capital
\(e- LE2106000 C caron small

\(E- LE220000 E caron capital

\(@@ L.1110000 i acute small

\(r L.1120000 I acute capital

\@* L.1130000 i grave small

\(I¢ L.1140000 I grave capital

\(in L1150000 i circumflex small

\(I~ LI160000 I circumflex capital

\(@i: L1170000 i diaeresis/umlaut small
\(I: L1180000 I diaeresis/umlaut capital
\G~ 1190000 i tilde small

\(I~ LI200000 I tilde capital

\(ij L1510000 ij ligature small
\(1. LL630000 1 middle dot small
\(L. LL640000 L middle dot capital
\(n’ LN110000 n acute small
(N’ LN120000 N acute capital
\(n~ LN190000 n tilde small

\(N* LN200000 N tilde capital
\(n- LN210000 n caron small
\(N- LN220000 N caron capital
\(o’ LO110000 o acute small
\(O’ LO120000 O acute capital
\(o L.0O130000 O grave small

o- o,o~ z(;j(zl',;n z,:j\ [t e g D 0 bt Ry Y e (DC TR O3 ITH O T O T O () O E’ 8 >.w- >¢>:h>'- >,$D> >AN' >\AN‘

138 15 Dec 1986

4.2 for the IBM RT PC

~oso éeﬁw";?.{m * VN oA x4

Vol A B ChEe (R e HhE L e QR eg O OO0 OO O

(O
\(o"
\(On
\(o:
\(O:
\(0~
\(O~
\(oe
\(OE
\(o/
\(O/
\(ss
\(’
W
\(u'
\(U*
\(un
\(ur
\(u:
W(U:
\(u~
\(U~
\Wu.
\(U.
\(y:
\(Y:
\(S-
\(S<
\(S=
\(S>
\(S/
\(Sx
\(S1
\(Sg
\(S!
\(Ic
(Y-
\(Ps
\(SS
\(PS
\(PM
\(I
\(R’
\(So
\(Sc
\(Sm
\(Sh
\(Sp
\(I?
\(L:
\(RS
\(UN

L.0O140000
LO150000
LO160000
LO170000
LO180000
10190000
L.0O200000
LO510000
1.O520000
LO610000
10620000
LS610000
LU110000
LU120000
L.U130000
LU140000
LU150000
LU160000
L U170000
L U180000
LU190000
LU200000
LU270000
LU280000
LY 170000
LY 180000
SA021000
SA031000
SA041000
SA051000
SA061000
SA071000
SAS521000
SA531000
SA541000
SC010000
SC050000
SC060000
SM240000
SM250000
SM 560000
SP030000
SP050000
SP061000
SP071000
SP081000
SP101000
SP111000
SP160000
SP230000
SP300000
SV320000

The IBM 3812 Pageprinter

O grave capital

o circumflex small

O circumflex capital

o diaeresis/umlaut small

O diaeresis/umlaut capital

o tilde small

O tilde capital

oe diphthong small

OE diphthong capital

o slash small

O slash capital

s sharp small

u acute small

U acute capital

u grave small

U grave capital

u circumflex small

U circumflex capital

u diaeresis/umlaut small

U diaeresis/umlaut capital

u tilde small

U tilde capital

u overcircle small

U overcircle capital

y diaeresis/umlaut small

Y diaeresis/umlaut capital
Plus-or-minus superscript
Less-than superscript

Equals superscript
Greater-than superscript
Divide superscript

Multiply superscript
Less-than-or-equal superscript
Greater-than-or-equal superscript
Not-equal superscript
International currency

Yen

Peseta

Section symbol (USA), paragraph symbol (Europe)
Paragraph symbol (USA)
Per mill symbol
Exclamation point, inverted
Apostrophe

Left parenthesis superscript
Right parenthesis superscript
Comma superscript

Hyphen superscript

Period, full stop superscript
Question mark, inverted
Left lower double quotes (German)
Required space

Replacement symbol (for undefined code points)

139 15 Dec 1986

4.2 for the IBM RT PC

P1 CODE PAGE (picp)

Troff
Char
Char Name

(@
\(*a
\(*b
\(*d
\(*e
\(*y
\(H
\(*g
\(*x
\(H
\(*k
\(*
\(*m
\(*n
\(*o
\(*w
\(*p
\(*q
\(*r
\(*s
\(M
\(*h
\(*u
\(*¢
\(*z
\(*D
\(*F
\(*G
\(*L
\(*W
\(*P
\(*Q
\(*S
\(*H
\(*C
\(Ma
\(Fe
\(Rx
\(Ri
\(La
\(Rn
\(Fs
\(De
\(In
\(AO
W(CO
\(BS

LN SN KRR EOGNOMETO>TIODINC DI QD EAZOCE XA RIS3I " o g

IBM
Char
Name

Sv320000
GA010000
GB010000
GD010000
GE010000
GE310000
GF010000
GGO010000
GHO010000
GI1010000
GK010000
GL.010000
GM010000
GNO010000
GO010000
G0310000
GP010000
GP610000
GR010000
GS010000
GTO010000
GT610000
GU010000
GX010000
GZ010000
GD020000
GF020000
GG020000
GL020000
G0320000
GP020000
GP620000
GS020000
GT620000
GX020000
SM280000
SM290000
SM550000
SS470000
SS480000
SS460000
55440000
SM990000
SM950000
SS650000
SS640000
SS630000

Description

Replacement symbol (for undefined codepoints)

Alpha small
Beta small

Delta small
Epsilon small
Eta small

Phi small
Gamma small
Chi small

Iota small
Kappa small
L.ambda small
Mu small

Nu small
Omicron small
Omega small

Pi small

Psi small

Rho small
Sigma small

Tau small

Theta small
Upsilon small
Xi small

Zeta small

Delta capital

Phi capital
Gamma capital
Lambda capital
Omega capital

Pi capital

Psi capital
Sigma capital
Theta small

Xi capital

Male symbol
Female symbol
Prescription symbol
Riemann integral
LaPlace symbol
“Real number” symbol
Function symbol
Decrease
Increase
“Account of”’ symbol
“Care of’'symbol
Bottle symbol

140

The IBM 3812 Pageprinter

15 Dec 1986

4.2 for the IBM RT PC

<X

SCNUM8KRNIPTHOM™ k- R T TPCE0O0® ZYpe> O %

s~ Mo

T s

\(PT
\(CS
\(TD
\(RA
\(SU
\(ct
\(OT
\(SD
\(ST
\(AT
\(TM
\(rg
\(co
\(sq
\(da
\(ua
\(->
(<~
\(sr
\(m
\(DU
\(CE

\(UM

\(ga
\(aa
\(Md
\(Pd
\(Ae
\(mo
\(Di
\(Cs
\(is
\(pd

SS§610000

SS8580000

SS540000

SS430000

S§400000

SM750000
SM730000
SM610000
SM600000
SM 590000
SM 540000
SM 530000
SM 520000
SM450000
SM330000
SM320000
SM310000
SM300000
SM230000
SM 150000
SM 100000
SD410000
SD196000
SD176000
SD150000
SD130000
SD110000
SA790000
SA780000
SA700000
SA670000
SA660000
SA550000
SAS510000
SA490000
SA480000
SA470000
SA450000
SA430000
SA410000
SA400000
SA390000
SA380000
SA370000
SA360000
SA350000
SA340000
SA 160000
LY110000
LY 120000
LT630000
LT640000
LL610000

The 1BM 3812 Pageprinter

“Plaintiff” symbol
Closed star upright
“Because” symbol

Ratio symbol
Summation symbol
Open circle

Open triangle, mode change
Solid diamond

Solid triangle

Arrow indicator
Trademark symbol
Registered trademark symbol
Copyright symbol

Open square

Down arrow

Up arrow

Right arrow

Left arrow

Tape mark, radical
Overline

Double underscore
Cedilla

Tilde

Diaeresis or umlaut
Circumflex

Grave

Acute

Dot multiply, middle dot
Perpendicular to

Nearly equals

“Is an element of”’
Diamond

Closed sum

Integral symbol

Partial differential symbol
Identity symbol
Proportional to

Infinity symbol
Congruent to

Includes, a superset of
Included in, a subset of
Union, logical sum
Intersection, logical product
Therefore symbol

Is not an element of
Angle symbol

Parallel symbol

Cycle symbol, equivalent to
y acute small

Y acute capital

Thorn Icelandic small
Thorn Icelandic capital

1 stroke small

141 15 Dec 1986

4.2 for the IBM RT PC

[R I Y N oN:x,<,_]~Uozgw—-mw>-ﬂN'Ax o0+ | o © ’°N‘9ﬁ®l{%>"n wQsOX,mo(h - pe

\(L2
\(11
\(El
\(E2
\(D3
\(DI
\(D2
\(Ul
(U2
\(HO
\(FO
\(CH
\(TO
\(TC
\(0/
\(Lt
\(ML
\(FE
\(b/
\(en
\(mi
+
\(+-
\(eq
\(di
\(mu
\(<=
\(> =
\(!=
\(BV
\(*A
\(*B
\('E
\(*I
\(*K
\(*M
\(*N
\(*O
\(*R
\(*T
\(*U
\(*X
\(*Y
\(*Z
\(0S
\(1S
\(28
\(3S
\(4S
\(58
\(6S
\(7S
\(8S

LL620000
11610000
1.E430000
LE440000
L.D630000
L.D610000
1.D620000
1.A430000
1.A440000
SO000000
SO010000
S0020000
S$§670000
SS§700000
ND100008
SM 160000
SM200000
SM210000
SM670000
SS680000
SA000000
SA010000
SA020000
SA040000
SA060000
SA070000
SA520000
SAS530000
SA 540000
SM650000
GA020000
GB020000
GE020000
G1020000
GK020000
GM020000
GN020000
G0O020000
GR020000
GT020000
GU020000
GH020000
GE320000
GZ020000
ND101000
NDO011000
ND021000
ND031000
ND041000
NDO051000
ND061000
ND071000
ND081000

The IBM 3812 Pageprinter

L stroke capital

i dotless small

e ogonek small

E ogonck capital

eth Icelandic small

d stroke small

D stroke capital and Eth Icelandic capital
a ogonek small

A ogonek capital

Hook

Fork

Chair

Telephone symbol (open)
Telephone symbol (closed)
Numeric decimal zero slash

Litre symbol

Ordinal indicator - masculine
Ordinal indicator - feminine
Substitute blank

En-dash

Minus

Plus

Plus-or-minus

Equals

Divide

Multiply

Less-than-or-equal
Greater-than-or-equal

Not-equal

Vertical broken linc

Alpha capital

Beta capital

Epsilon capital

Iota capital

Kappa capital

Mu capital

Nu capital

Omicron capital

Rho capital

Tau capital

Upsilon capital

Chi capital

Eta capital

Zeta capital

Numeric decimal zero superscript
Numeric decimal one superscript
Numeric decimal two superscript
Numeric decimal three superscript
Numeric decimal four superscript
Numeric decimal five superscript
Numeric decimal six superscript
Numeric decimal seven superscript
Numeric decimal eight superscript

142 15 Dec 1986

4.2 for the IBM RT PC

~ -~

N‘<?‘i<f-’”m”-ﬂuoaauﬂ‘h'—‘z‘@'ﬁﬂﬂﬂc‘oﬁ.2'

\(9S
\(IW
\(LZ
\(MI
\(NO
\(So
\(Sc
\(Sm
\(Sp
\(SE
\(Ss
\(bs
\(aS
\(bS
\(cS
\(dS
\(eS
\(fS
\(gS
\(hS
\@S
\(GS
\(kS
\(S
\(mS
\(nS
\(oS
\(PS
\(aS
\(xS

\(sS
\(tS

\(uS
\(vS
\(wS
\(xS

\(yS
\(zS

ND091000
SP010000

SM490000
SM 500000
SM660000
SP061000

SP071000

SP081000

SP111000

SM510000
SM470000
$5700000

LA011000
LB011000
LC011000
LD011000
LE011000
LF011000
LG011000
LH011000
L1011000

LJ011000

LKO011000
LL011000

LMO011000
LN011000
LO011000
LP011000
LQ011000
LR011000
15011000

LT011000
LU011000
LV011000
LW011000
LX011000
LY011000
LZ011000

The IBM 3812 Pageprinter

Numeric decimal nine superscript
Interword space

Lozenge

Minutes symbol

Logical NOT, end of line
Left parenthesis superscript
Right parenthesis superscript
Comma superscript

Period, full stop superscript
Seconds symbol

Solid square, histogram
Telephone symbol, closed
a small superscript

b small superscript

¢ small superscript

d small superscript

e small superscript

f small superscript

g small superscript

h small superscript

i small superscript

j small superscript

k small superscript

1 small superscript

m small superscript

n small superscript

o small superscript

p small superscript

q small superscript

r small superscript

s small superscript

t small superscript

u small superscript

v small superscript

w small superscript

x small superscript

y small superscript

z small superscript

143 15 Dec 1986

4.2 for the IBM RT PC

The IBM 3812 Pageprinter

ADDITIONAL CODE PAGE (addcp)

Troff
Char
Char Name

\(It
\(lk
\(Ib
\(bv
\(rt
\(rk
\(rb
\(ib
\(ip
\(gr
\(If
\(le
\(rf
\(rc
\(ts

IBM
Char
Name

ACIS0001
ACIS0002
ACIS0003
ACIS0004
ACIS0005
ACIS0006
ACIS0007
ACIS0008
ACIS0009
ACIS0010
ACIS0011
ACIS0012
ACIS0013
ACIS0014
ACIS0015

Description

left top of big curly bracket

left center of big curly bracket
left bottom of big curly bracket
bold vertical

right top of big curly bracket
right center of big curly bracket
right bottom of big curly bracket
improper subset

improper superset

gradient

left floor (left bottom of big squarc bracket)
left ceiling (top left)

right floor (right bottom)

right ceiling (right top)

terminal sigma

144

15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

FIXED CODE PAGE (fcp and acp)

Troff IBM
Char Char
Char Name Name Description
0 \(0S ND101000 Numeric decimal zero superscript
1 \(1S NDO011000 Numeric decimal one superscript
2 \(2S8 NDO021000 Numeric decimal two superscript
3 \(3S NDO031000 Numeric decimal three superscript
4 \(4S ND041000 Numeric decimal four superscript
5 \(5S ND051000 Numeric decimal five superscript
6 \(6S ND061000 Numeric decimal six superscript
7 \(7S ND071000 Numeric decimal seven superscript
8 \(8S NDO081000 Numeric decimal eight superscript
9 \(9S ND091000 Numeric decimal nine superscript
N \(34 NF050000 Numeric fraction three-quarters
Ce W(Cx SC090000 Cruzeiro
a W(FE SM210000 Ordinal indicator - feminine
e \(ML SM200000 Ordinal indicator - masculine
1 \(PS SM250000 Paragraph symbol (USA)
V(RS SP300000 Required space
§ \(SS SM240000 Section symbol (USA), paragraph symbol (Europe)
(UM SD170000 Diaeresis or umlaut
il W(UN SV320000 Replacement symbol (for undefined code points)
' \(fm SP050000 Apostrophe
. \(bu SM570000 Bullet
) \(ga SD130000 Grave
ij \(jj LI510000 ij ligature small
i \(I! SP030000 Exclamation point, inverted
X \(Ic SC010000 International currency
= \(ss 1.S610000 s sharp small
A (A’ LA120000 A acute capital
A (A~ LA160000 A circumflex capital
A \(A* LA140000 A grave capital
A \(A~ LA200000 A tilde capital
a \(a~ LA190000 a tilde small
\(SP SP010000 Interword space
! ! SP020000 Exclamation point
" ? SP220000 Right double quotes
SM010000 Number
$ $ SC030000 Dollar
% % SM020000 Percent
& & SM030000 Ampersand
((SP060000 Left parenthesis
)) SP070000 Right parenthesis
* * SM040000 Asterisk
+ + SA010000 Plus
, , SP080000 Comma
- - SP100000 Hyphen
/ / SP120000 Slash
0 0 ND100000 Numeric decimal zero
1 1 ND010000 Numeric decimal one

145

15 Dec 1986

4.2 for the IBM RT PC

WOV bh W

)= S NKXIEI<CHNIBOWOZILRUWUHITQHEHODQEWP® VvV I A -

g

HOQAQODE

oo BES Be NI RN A

PTTTINRXE<CHL2ROROCZZIO AT T IQIEBOOWE@ PV I AT

~0o o o

ND020000
ND030000
ND040000
ND050000
ND060000
ND070000
NID(G80000
ND090000
SP130000
SP140000
SA030000
SA040000
SA050000
SP150000
SM050000
LA020000
LB020000
L.C020000
LD020000
LE020000
LI7020000
1.G020000
1.L1H020000
1.1020000
1.J020000
LK 020000
1.L.020000
LM020000
LN020000
1.O020000
LP020000
1.Q020000
LR020000
L.5020000
L'T020000
1.U020000
LV020000
LW020000
L.X020000
LY020000
LZ020000
SM060000
SM070000
SM080000
SD150000
SP090000
SP190000
LA010000
LB010000
LC010000
L.D010000
LLE010000
LIF010000

The IBM 3812 Pageprinter

Numeric decimal two
Numeric decimal three
Numeric decimal four
Numeric decimal five
Numeric decimal six
Numeric decimal seven
Numeric decimal eight
Numeric decimal nine
Colon

Semicolon

Less-than

Equals

Greater-than
Question mark

At

A capital

B capital

C capital

D capital

E capital

F capital

G capital

H capital

I capital

J capital

K capital

L capital

M capital

N capital

O capital

P capital

Q capital

R capital

S capital

T capital

U capital

V capital

W capital

X capital

Y capital

Z capital

Left bracket

Reverse slash

Right bracket
Circumflex
Continuous underscore, underline
Left single quote

a small

b small

¢ small

d small

e small

f small

146 15 Dec 1986

4.2 for the IBM RT PC

) Do I OB ¥ v NN E S A RQT OB 8 HRURTQ

GO @O0 8 Fhvpe 2 b H OO

|-«—*-—--N’~<:>q€<g—»mﬂ_grc’ogau—-wh..._.b.m

\(> >
\(UN
\(C,
\(u:
\(¢’
\(a”
\(a:
\(@*
\(a
\(c,
\(aa
\(e:
\(e*
\(i:
\ar
\(@*
\(A:
\(A.
\(E’
\(ae
\(AE
\(o?
\(o:
\(o°
\(ur
\(u:
\(u’
\(O:
\(U:

L.G010000
LHO010000
LI010000
LJO10000
LK010000
LLO010000
L.M010000
LN010000
1.O010000
LP010000
L.Q010000
L.R010000
L.S010000
LT010000
LUO010000
LV010000
LWw010000
L.X010000
LY010000
L.Z010000
SM110000
SM 130000
SM 140000
SD190000
SP180000
SV320000
L.C420000
LU170000
LE110000
LA150000
LA170000
L.A130000
L.A270000
L.C410000
SD110000
LE170000
LE130000
LI1170000
LI150000
1.1130000
LA180000
1.A280000
LE120000
LA510000
LA520000
LO150000
LO170000
LO130000
LU150000
LU170000
LU130000
LO180000
LU180000

The IBM 3812 Pageprinter

g small

h small

i small

j small

k small

1 small

m small

n small

o small

p small

q small

r small

s small

t small

u small

v small

w small

x small

y small

z small

Left brace

Vertical bar, logical OR
Right brace

Tilde

Right angle quotes
Replacement symbol (for undefined code points)
C cedilla capital

u diaeresis/umlaut small
e acute small

a circumflex small

a diaeresis/umlaut small
a grave small

a overcircle small

¢ cedilla small

Acute (this is SP050000 in acp)
e diaeresis/umlaut small
e grave small

i diaeresisfumlaut small
i circumflex small

i grave small

A diaeresis/umlaut capital
A overcircle capital

E acute capital

ae diphthong small

AE diphthong capital

o circumflex small

o diaeresis/umlaut small
O grave small

u circumflex small

u diaeresis/umlaut small
u grave small

O diaeresis/fumlaut capital
U diaeresis/umlaut capital

147 15 Dec 1986

4.2 for the IBM RT PC The IBM 3812 Pageprinter

\(ct SC040000 Cent

\(Lb SC020000 Pound

\(Y- SC050000 Yen

\(Ps SC060000 Peseta

\(fg SC070000 Florin or guilder

\(a’' LA110000 a acute small

\(@’ L.1110000 i acute small

\(o’ L.O110000 o acute small

\(u’ LU110000 u acute small

\(n~ LNI190000 n tilde small

\(N~ LN200000 N tilde capital

\(1? SP160000 Question mark, inverted
\('=" SA540000 Not-equal

\(no SM660000 Logical NOT, end of line
\(12 NF010000 Numeric fraction one-half
\(14 NF040000 Numeric fraction one-quarter
\(E: LE 180000 E diaeresis/umlaut capital
\W(E~ LE160000 E circumflex capital

\(E* LE140000 E grave capital

\(I: L1180000 I diaeresis/umlaut capital
\(I» LI160000 I circumflex capital
\(I* 11140000 I grave capital

\(O' LO120000 O acute capital

\(O/ LO620000 O slash capital

(O~ LO160000 O circumflex capital
\(O* LO140000 O grave capital

\(MU SM170000 Vertical bar, logical OR
\(O~ L0O200000 0O tilde capital

(U LUI120000 U acute capital

\(U. LU280000 U overcircle capital
(U~ LU160000 U circumflex capital
\(U* LU140000 U grave capital

\(er LE150000 e circumflex small

\(o. L0450000 o small underdot

\(+- SA020000 Plus-or-minus
\(>=SAS530000 Greater-than-or-equal
\(< = SAS520000 Less-than-or-equal

\(di SA060000 Divide

\(de SM190000 Degree symbol

- SA000000 Minus

\(Ss SM470000 Solid square, histogram

O+ INMIVHODOOOCGOGOE OO OHR HEIEDEMNN I H o208 S0 vy F i tnr

REFERENCES

You may want to obtain copies of the following documentation:

e [BM 3812 Pageprinter Introduction and Planning Guide, G544-3265
o IBM 3812 Pageprinter Guide to Operations, S544-3267

. IBM 3812 Pageprinter Programming Reference, S544-3268

e |BM 3800 Printing Subsystem Model 111 Font Catalog, SH35-0053

148 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

4.2/RT Linkage Convention

ABSTRACT

The 4.2/RT linkage convention provides an efficient method of calling, executing and re-
turning from functions. The convention provides support for customary facilities of C,
FORTRAN, and Pascal, including varargs, alloca, and profiling.

This article is intended for compiler writers and others who must write or analyze pro-
grams at the machine-instruction level. It presumes understanding of the RT PC archi-
tecture and the 4.2/RT assembler language.

Also described is the Floating Point Arithmetic linkage, which presents a low-overhead,
uniform interface to the floating point hardware and its software emulation.

149 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

1. Introduction

A C function foo consists of a text area and a data area. The data area is named _foo and, in
addition to quantities specified below, may contain constants and initialized variables. The
text area contains machine instructions followed by a trace table that provides auxiliary infor-
mation for debuggers.

Each call of foo creates a stack frame containing arguments, local variables, and space to save
the caller’s registers to be restored on return to the caller.

When foo is called, the caller first prepares an argument list, then transfers control to the text
location named _.foo, which is foo’s entry point. foo's prolog builds a stack frame to hold
local variables and saves any registers that are to be preserved for the caller. Execution
proceeds through the body of foo, possibly calling other functions, and ends in the epilog,
which prepares the return value, restores the caller’s registers, releases the stack frame, and
transfers control back to the caller.

2. Stack Usage and Stack Frame Format

The stack holds frames for currently active functions and signal handlers. It is word-aligned
and grows downward from approximately 0x1fffe000. A “red zone” of protected addresses
separates the stack from the data segment, which starts at 0x10000000 and may grow upward
as the result of brk(2) and sbrk(2) usage. Register rl indicates the low address of the stack
frame of the currently executing function. Il.ocations above (rl)—0x64 are preserved over
interrupts. Locations below (rl)—0x64 are considered unallocated storage and may be
overwritten if a signal handler is activated.

The stack is not self-describing, but with information from the trace tables in program text, a
debugger can decompose the stack into frames and backtrace through it.

foo's stack frame holds the following areas, from lowest address to highest:

a) Words S through pmax of outgoing argument lists. (pmax represents the number of
words in the longest argument list for functions that foo calls.)

b) Local variables: autos and temporaries.
c) 0-8 words of save area for caller’s floating point registers.
d) 1-16 words of save area for caller’s general registers.

e) 1 word of static link for Pascai procedures: pointer to enclosing procedure’s frame. Not
used by C or FORTRAN.

f) 4 words of linkage area (reserved).
g) 4 words allocated for the first four words of foo's incoming argument list.

foo can use the Store Multiple (stm) and I.oad Multiple (Im) instructions to save and restore
registers, from any starting register through r15. r0-r5 never need to be preserved. Prolog and
epilog examples below show how the caller’s rl is restored.

The floating register save area holds up to 4 doubleword registers ending with register 5. No
space is allocated if no floating registers need to be preserved.

The file /usr/include/frame.h gives symbolic definitions for the sizes and offsets of some of
these areas.

3. Register Usage

Certain registers, such as ri, have specific uses throughout execution; others, like rl5, are
specified during a call and are free at other times. The following table defines register usage at
the call interface.

150 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

Register Preserved over call Usage

10 no called function’s data area pointer

rl yes stack pointer (to caller’s frame)

2 no argument word 1 and returned value

3 no argument word 2 and second word of
a returned double value

r4 no argument word 3

rS no argument word 4

r6-r13 yes register variables, etc.

rl4 yes data area pointer (not required)

rls no return address

mq no multiply/divide register

rl always addresses the bottom of the stack frame of the currently executing function. A com-
piler may assign another register to address the high end of the stack frame. The portable C
compiler, for instance, points r13 at the last 64 bytes of auto storage. The linkage convention
requires this second register only for alloca support (see the section entitled Alloca Storage
Allocation below). The register number and the offset from the frame top, which are arbitrary,
are recorded in the trace table.

Floating-point registers 0, 1, and 6 are not preserved over a call. Registers 2 - 5 must be
preserved. Floating point registers are not used to pass arguments or return results.

4. The Data Area

The data area (also called “constant pool,” which is a misnomer) is addressed by 10 on entry
to foo. The word pointed to by r0 must contain _.foo, the address of foo’s entry point. The
following word supports the profiling option, and if present must be initialized to zero; the
third word, also optional, supports alloca storage allocation.

It is conventional, but not required, for r14 to address the data area during execution. (The
optional profiling linkage, which follows the prolog, does require it momentarily.)

For easy addressability, other data such as static variables, strings, or a literal pool may be
located in the data area, either before or after the word addressed by rl4.

A value &foo of type pointer to function corresponds to the address of _foo, the function’s
data area, not the address of _.foo, the function’s entry point. A program that does arithmetic
on function pointers, assuming that they address entry points, will probably matfunction.

5. Argument Lists

Arguments are word-aligned and allocated to consecutive stack locations. The list spans frame
boundaries: words 1-4 are allocated in the top of the called function’s frame, and the
remainder are stored in the bottom of the caller’s frame, which is adjacent. Argument words
1-4 are passed in registers r2-r5, not on the stack. The called function may choose to store
them in the allocated stack locations, but this is not necessary except in a function like printf’
which accesses its argument list via a pointer variable. Such functions must use the varargs(3)
macros to assure that argument words 1-4 get stored properly.

Arguments are passed as follows, based on argument type:
- An int is passed in a single word.

- A long, short, pointer, or char is treated as an int and passed in a word. A function
pointer is represented by the address of the function’s data area.

- A double is passed in two successive words,

151 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

- A float is converted to a double and passed in two successive words.

- A structure is word-aligned to a full word and left justified, except for structures of 1, 2,
or 3 bytes, which are right justified.

If the function is declared to return a structure, the caller passcs the address of a result area in
r2, and word 1 of the explicit argument list is passed in r3. Subsequent argument words are
shifted accordingly.

6. Calling Sequence
A typical call of a function foo first prepares the argument list, then executes the following:

balix rlS,_foo # call
1 r0,$.long(_foo) # get its data area pointer

Dereferencing a function pointer calls a function without needing to know its name. Suppose
that the function pointer, which addresses the function’s data area, is in 8. A typical instruc-
tion sequence is:

Is t7,0(r8) # get address of entry point
balrx rl15,17 # call whomever
mr r0,r8 # r0 = data area pointer

7. Prolog

The prolog saves the caller’s registers and obtains stack space for the stack frame. A typi-
cal instruction sequence is:

_foo: stm rl10,—60(rl) # save caller’s registers
ai rl,—framesize # allocate our stack frame
mr rl4,r0 # initialize data pointer

Other instruction sequences are needed for frame sizes larger than 32768 bytes. A sequence
that decreases rl in two stages is acceptable if the stack remains protected at all times. An
example of an unacceptable sequence for a frame size of 64536 is

cal rl,—bothalf(rl) # —bothalf = 1000
cau rl,—tophalf(rl) # —tophalf = —1

This momentarily increases rl, letting an ill-timed interrupt destroy the stack.

8. Profiling

If either the -p or -pg option is selected, this instruction sequence follows the prolog and
accomplishes data collection for performance monitoring:

mr 10rl15

bali ri5mcount #r0 = calier’s return address
r14 = our data address
r15 = our return address

9. Epilog

The epilog prepares a result, restores the caller’s environment, and returns control. A typical
instruction sequence is:

lis 12,0 # zero result returned in 12
Im rl0,framesize — 60(r1) # restore registers

152 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

brx rl5 # return

ai rl,framesize # adjust stack frame
The location of the return value depends on the function type:
- An int, long, short, pointer, or char is returned in r2.
- A double is returned in 12 and r3.
- A float is returned as a double.

- A structure result is returned by moving it into the area pointed to by the first argument
list word (in r2 on entry).

10. Alloca Storage Allocation

The implementation-dependent storage allocator alloca (sce malloc(3)) expands its caller’s

stack frame by decreasing rl, to obtain a storage area that is automatically deallocated on

return. The storage area so obtained starts at the end of the maximum-length argument list in

the newly expanded frame. alloca can be called from any function that follows two conven-

tions:

(1) It addresses outgoing argument lists through rl, and addresses all other areas in the stack
frame through some other register (identified in the trace table as frame_reg).

(2) In its data area, which must be addressed by rl4, the halfword at (r14)+ 8 holds the
value 0xf690 (a magic number, used for validity checking). The halfword at (r14)+ 10
holds the length of the longest outgoing argument list (exclusive of the first four words,
which do not occupy space in the frame).

Files compiled with the Ac(1) or pcc(1) option -ma adhere to these conventions.

. Trace Tables

Debuggers rely on a trace table of 6-10 bytes following the text of each function. A debugger
locates a trace table by searching forward through program text (generally from a point indi-
cated by a call’s return address). The search stops when it finds two successive halfwords,
each having Oxdf in its first byte. For compiled C functions, or assembler functions following
the same conventions, the trace table corresponds to the following structure:

struct TT_D_COM {

unsigned magicl : 8 = Oxdf,
code :8 =7,
magic2: 8 = Oxdf,
first gpr : 4,
optw : 1 =1,
optx : 1,
01 =0,
01 =0

char npars : 4,

Loniin oo - A
irame_reg 4,

char first fpr: 4, /* This byte present */
4, /* only if optx= =1 */
char lcl off size : 2, /* Icl_offset is variable length */

lcl_offset] : 6,
Icl_offsetnflcl_off size];

}

153 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

first_gpr is the first register saved by the store multiple instruction in the prolog. This indi-
cates the size of the general register save area.

optx is 1 if the byte holding first_fpr is present; otherwise, it is 0.

npars is the number of words of declared arguments. The maximum value of 15 does not res-
trict the actual length of argument lists.

frame_reg identifies the register used to address local variables, etc., in the stack frame.
Jframe_reg is 1 unless an altcrnative register is used, e.g. r13 for pcc — compiled functions.

first_fpr and the following 4 reserved bits are present only if optx is 1. Values 2, 3, 4, and S
indicate that floating point registers 2-5, 3-5, 4-5, or 5 were saved in the floating register save
area, and indicate the size of the save area. If first_fpr is 0 or not present, no floating registers
are saved.

lcl_offset is an unsigned integer 6, 14, 22, or 30 bits long. It indicates the distance, in words, to
the top of the stack frame from the point addressed by register frame_reg.

12. as(1) Routines
A very simple C function or hand-coded assembler function, that doesn’t call other functions,

can take some shortcuts. It may not nced to save and restore registers, and need not allocate a
stack frame if the protected area between (r1) —0x64 and (r1) gives it suflicient storage.

Such a function has a simpler trace table: the four byte sequence 0xdf02dfG0. Debuggers may
not be able to backtrace from this function if the caller’s r14 and rl5 are disturbed.

Temporarily each file must include the lines:

.globl .0Vncs
.sct .0Vncs,0

This is used by /d(1) to detect use of an obsolcte linkage convention. Compilers generate
definitions of .0Vncs automatically.

13. Floating Point Arithmetic Linkage

The floating point linkage gives access either to the Floating Point Accelerator board, if it is
present, or to the software emulator, if it is not. There is only one source and .0 form; the
same compiled program can be linked either “direct” to assume FPA presence, or ‘‘compati-
ble” for hardware/software compatibility at a small deccreasce in performance.

The FPA is driven by loads and stores to addresses 0xff000000 and above. To use the floating
point linkage, write each floating point load and store to use r2 for data and r3 to hold the
FPA address. Expect that 10 and rl5, and stack locations below (rl), may be destroyed.
Then, in place of

1 r2,0(r3)
write
Jong FPaGETO

and in place of

st r2,0(r3)
write
Jong FPaPUTO

Programs are linked by default for compatible access: FPaGET0 and FPaPUTO resolve into
calls on interface routines that use the FPA if it is present or the software emulator if it is not.
To link a program for direct access, give cc or /d the option -Ifpa. This resolves FPaGET0
and FPaPUTO into load and store instructions, resulting in minimum overhcad and a

154 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

14.

dependence on the FPA.

Addressability in Very Large Modules

When .o files are linked by /d(1), the 2\v'Ssulting object module may be so large that the text of
the caller and callee are more than 2V bytes apart. The balix instruction in the call cannot
then address the callee, and /d modifies the instruction in one of two ways to establish addres-
sability.

A balax _replaces the balix if it can duplicate the balix’s effects, that is, the callee’s address is
below 224 and r15 is the link register. Otherwise, the balix is replaced by a balix to a piece of
“trampoline code” that derives the callee’s entry point address from' the contents of 10 and
branches to it.

Other than in function calls, addresses are always carried as 32-bit values, so addressability is
unaffected by module size.

REFERENCES

(1) Johnson, S. C. and D. M. Ritchie. “The C Language Calling Sequence,” Computing Sci-
ence Technical Report No. 102, Bell Laboratories, Murray Hill, NJ, 1981.

(2) “Assembler Reference Manual for 4.2/RT,” in Volume II, Supplementary Documents.

(3) IBM RT PC Hardware Technical Reference, SV21-8024

155 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Linkage Convention

This page intentionally left blank.

156 15 Dec 1986

4.2 for the IBM RT PC Reccompiling with High C

Recompiling with High C

ABSTRACT

Both pee (the standard C compiler provided with Berkeley systems) and MetaWare High
C are available in 4.2 for the RT PC. Although High C offers significant advantages
over its predecessor, pcc remains the default C compiler. This article serves as a guide
for C programmers in recompiling existing programs with High C. The article contains
three chapters:

1. Introduction describes Iigh C, contrasting it with pcc.

2. Diagnostic Messages explains a sample IHigh C diagnostic message and describes mes-
sages frequently encountered when recompiling programs with High C.

3. Run-Time Differences describes those differences between pcc and High C that may
not manifest themselves until run-time.

157 15 Dec 1986

4.2 for the IBM RT PC Recompiling with High C

1. INTRODUCTION

4.2/RT now provides a new optimizing C compiler, MetaWare High C, in addition to the
standard pcc-based C compiler. High C provides extensive code optimization, producing com-
piled programs that run up to twice as fast as pce-compiled programs. It also generates tighter
code; object file text is typically 15% smaller than with pcc.

Hc has been tested against the C Test Suite provided by Human Computing Resources Cor-
poration, and is used to compile the entire 4.2/RT system (with the exception of assembler
routines and a few other files).

The commands Ac(1) and pcc(1) are available in the /bin directory. Users are not obliged to
use one compiler or the other. The command c¢c(1) in /bin is a symbolic link that may point
to either hc or pcc. In the 4.2/RT system as distributed, /bin/cc points to pcc.

The hc feature you will notice first is probably its meticulous semantic and syntactic checking
and precise diagnostics. Many old programs that compile “error free”” with pcc generate warn-
ings and errors with Ac, usually for good reason. In recompiling 4.2/RT, we found that mes-
sages sometimes pointed out type mismatches, incorrect-length argument lists, and uninitial-
ized or misspelled variables that had been undetected for years. The “Iligh C Programmer’s
Guide” tells how to use flags and toggles to adjust the error and warning sensitivity up or
down; we recommend “up” during program development.

High C represents a significant step toward the draft ANSI C standard, and supports a more
extended C language than does pcc. The IHigh C Language Reference Manual describes the
extensions in full. One extension that may affect cxisting programs is the presence of new key-
words: signed, const, and volatile for ANSI, plus pragma (borrowed from Ada). The keyword
signed is supported; const and volatile are reserved but not implemented due to the preliminary
nature of the ANSI definition. A program using any of these four names for identifiers will
have to be modified.

Two other ANSI-related changes, character escapes and widening rules, are discussed in the
sections on ‘“‘Character Escapes” and “Intcger Widening” below.

In general, High C supports the semantics of ‘“classical” C, where this is not precluded by
adherence to the draft ANSI C standard. FEven so, thcre are circumstances in which a
language construct that is incompletely defincd may execute differently when compiled with Ac
and pcc. Chapter 3, “Run-Time Differences,” discusses constructs whose semantics may
differ.

2. DIAGNOSTIC MESSAGES

This section provides an explanation of a sample diagnostic message and includes a list of
diagnostics frequently produced when recompiling with Ac. The list provides an explanation of
each diagnostic and, where appropriate, a recommended solution.

2.1. Sample Diagnostic Message

The following shows a code fragment, a diagnostic message generated by the code, and an
explanation of the message.

158 15 Dec 1986

4.2 for the IBM RT PC Recompiling with High C

Code Fragment:
1 /* this file is named test.c */
2
3 main()
4
5 {
6 char *j;
7 int i;
8
9 i=3+i
10
11 }

Diagnostic Message:
E *“test.c”, L9/C5:
| Type *Unsigned-Char (at “test.c”, 1L.6/C6) is not assignment compatible with type Signed-Int.
Explanation:
e The “E” stands for Error. Warning messages begin with a “w.”
e ‘“test.c” is the name of the module containing the error.
. 1L9/C5 indicates the error was detected in Line 9, Column 3.

® The body of the error message explains that a value (j + i) of type pointer to
unsigned char was being assigned to a variable (i) of type signed int. This is illegal
(but unchecked by pcc).

. The phrase (at “test.c”’, L6/C6) locates the declaration that gave rise to the value of
type pointer to unsigned char. This is particularly helpful in locating declarations in
#include files.

¢ The vertical bar “|” in the first column indicates a continuation line of a multiline
message.

2.2, Common Diagnostic Messages

This section lists the most frequently encountered messages and suggests ways to resolve
them. See the section on diagnostic messages in the “High C Programmer’s Guide” for a
complete list of warning and error messages.

Type t is not assignment compatible with type t'.

The mismatched-type message appears for any of several reasons. Most fre-
quently, it has to do with pointer conversion, and can be eliminated by using
explicit casts. In this example, the comments propose ways to rewrite each

statement.

main()

{
char *pc;
int *pi, i, x;
pc = pi; /* should be: pc = (char *)pi; */
X = pc + i /* should be: x = (int)(pc + 1); */
i= pc /* should be: i = (int)pc; */

}

159 15 Dec 1986

4.2 for the IBM RT PC Recompiling with High C

Another common cause of this message is shortcuts in structure initialization.
As an example, given the declaration:

struct sl {int i, j; };

the shortcut initialization:

struct sl x = 0;

is allowed by pce, but C syntax (and hc) require braces around the initializer:
struct sl x = {0};

Variable is set but is never referenced.

This message warns of an initialized variable that is not used in the module. It
may be a symptom of a logic error.

This diagnostic prints in another common situation: if RCS or SCCS variables
are contained in the program header. In this case, you can ignore the message.

Result of comparison never varics.

An expression was found whose operands are such that the value of the expres-
sion is always the same. The usual cause is a logic error arising from confusion
over signed/unsigned types. For example, an unsigned char is never negative;
therefore, a comparison with a negative constant will never vary. Look for
assumptions that the type char is really signed.

Variable required.

This generally points out an illegal left-hand side of an assignment. This error
can be produced by statements of the form:

(CONDITION ?i :j) = -1;

which pcc (incorrectly) allows if CONDITION involves only constants and
preprocessor variables. Rewrite it as:

*(CONDITION ? &i : &j) = -1;

This is multiply-declared.

This may be the result of a variable declared extern, then redeclared later in the
same module as static. This is often caused by an extern declaration in an
#include file. Pcc allowed the redeclaration. Correct this by using distinct
names for the two variables.

Local function is never referenced; no code will be generated for it.

A function of storage class static is not called anywhere in the compilation unit.
Since it is not exported, there can be no reference to the function, and it is elim-
inated as dead code. The -g option disables this optimization, so that dbx(1)
sessions can access such functions.

Expression has no side effect and has been deleted.

The value of an expression is not assigned to a variable or otherwise used to
affect the computation. For example, “2+ 3;” is useless and is deleted.
This function declaration is inconsistent with the ‘i
imputed at Ln/Cm.

A function that is called before it is declared is assumed to return int. Any sub-
sequent declaration of the function must declare it to do so.

nt”-returning function declaration

160 15 Dec 1986

4.2 for the IBM RT PC Recompiling with High C

Correct this by placing an explicit declaration of the function with the proper
return type before the first call (and check all calls for their assumptions about
the return type!).

Unexpected char.

Pcc allows multi-character character constants; Ac does not. For example, for
the following declaration:

int x = ’abed’;

pee assigns the value 0x61626364 to x, but Ac generates the above error message.
Fewer arguments given than function has parameters.

Hc checks argument lists in calls of functions that are declared in the same
module.

3. RUN-TIME DIFFERENCES

Some of the differences between Ac and pcc will not manifest themselves until load- or run-
time. This chapter describes these differences and provides an explanation for their causes.

3.1. Order of Execution
C semantics permit subexpressions in a larger expression to be evaluated in any order, or
even concurrently. The statements
i=71+3++;
foo(1, i--);
do not have well-defined meanings and may well execute differently with Ac and pcc. To

assure that side effects like assignment occur in a defined sequence, break such expressions
into multiple statements.

3.2. Multiple Assignments

Look out for multiple assignments that rcquire both narrowing and widening integer
values, such as:

int i; char c;

i = ¢ = integer-expression;

Here the integer-expression is “narrowed” on assignment to c. Language rules require (and
hc supports) assignment of the narrowed value to i, not the original value. Code generated
by pcc often fails to narrow the value correctly, and some incorrect programs may execute
as intended only because of this pcc bug. Reorder the assignments, or write two state-
ments.

3.3. Keyword “asm” Not Supported

Pcc allows inclusion of assembler statements within C programs via the “asm” construct.
As hc does not produce intermediate code and generates code which is optimized across
statements, this keyword is not supported.

Existing code which contains “asm”s will generate errors at load-time, with ¢ .asm” and
g -
“_asm” as unresolved references.

3.4. Volatile Memory
Hc optimizes the following code:
if (*p == 0) buf = *p;

161 15 Dec 1986

4.2 for the IBM RT PC Recompiling with High C

by loading the contents of location p into a register for the comparison, then using this
same register for the assignment as well. If p is the address of memory that is volatile (for
instance, it is an I/O register that is updated after each reference), the assignment will not
reflect the changed value. Since this type of code is common in device drivers (and other
portions of the kernel), hc provides a flag (-Hvolatile) which disables common subexpres-
sion recognition across statement boundaries.

3.5. Use of setjmp(3) and longjmp(3)

Code that uses setjmp and longjmp sometimes makes assumptions about the values of auto
variables. [{c may classify frequently referenced auto variables as register variables, which
generally only improves execution speed and code size. Iowever, register variables may
not have their most current value after longjmp returns to setjmp’s point of call. (This is
linguistically acceptable, but can still be a nuisance.)

You can inhibit allocation of an auto variable v to a register by using the expression &v
anywhere in the function. A broader approach is to use the auto-reg-alloc compiler toggle.
Specifying -Hoff = auto-reg-alloc on the command line prevents Ac from classifying auto
variables as register variables. This toggle can also be turned off around a particular func-
tion via the pragma statement, so that the rest of the module remains fully optimized.

3.6. Character Escapes
Hec supports the draft ANSI complement of character escapes:

\a alert (bell) \t horizontal tab

\b backspace \v vertical tab

\f form feed \xnnn hexadecimal numeric
\n newline \’ single quote

\r return \"" double quote

Use of an undefined character escape results in a warning message.

3.7. Integer Widening: Value-Preserving vs. Unsignedness-Preserving
Historically, C compilers have used either of two widening rules: unsignedness-preserving
(u-p) widens an unsigned char or short to unsigned int; value-preserving (v-p) widens it to
a signed int. U-p is sometimes useful but creates many anomalous situations. Note the
following example.

void £ ()

{
unsigned char ¢ = getchar ();

if(c-'0' < 0|lc-'0>9)
printf("This character is not a digit");

}

Because pcc uses the u-p rule, the test (c - '0° < 0) will always fail (since an unsigned int
can never have a value less than 0). Because Ac uses the v-p rule, ¢ will be widened to a
signed integer; the test will work as expected. The v-p rule almost always produces the
expected result, and is the rule chosen by the ANSI committee in the draft standard.

3.8. Size of Enumerated Types

Hc has a much cleaner implementation of enumerated types, within ANSI rules. Sizes
differ between pcc and Ac. In pce, the size of enums is 4 bytes; in Ac, 1, 2, or 4 bytes.
Incompatibility can occur only if two modules sharing the same enum quantity are

162 15 Dec 1986

4.2 for the IBM RT PC Recompiling with High C

compiled with different compilers.

References
e Appendix C of this manual, which contains the “High C Programmer’s Guide”
e High C Language Reference Manual, available from:

MetaWare Incorporated

903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060

(408) 429-META

. Draft proposed American National Standard for the C Language; contact ANSI
Committee X3J11 for the most recent draft.

163 15 Dec 1986

4.2 for the. IBM RT PC Recompiling with High C

This page intentionally left blank.

164 15 Dec 1986

4.2 for the IBM RT PC Professional Pascal Differences

Professional Pascal Differences

ABSTRACT

Professional Pascal is available as an option with Release 2 of 4.2/RT. Professional Pas-
cal offers significant advantages over other Pascal compilers. It is a highly optimizing
Pascal compiler that conforms to the ANSI Standard, and includes many useful exten-
sions, such as support of varying length strings, bitwise operations, packages, and itera-
tors.

This article points out the major differences between Berkeley Pascal and Professional
Pascal, as an aid to programmers recompiling existing programs with Professional Pascal.
The article has two chapters:

1. Introduction describes Professional Pascal, contrasting it with Berkeley Pascal.
2. Significant Differences briefly describes those differences that may prevent a program

that compiles with Berkeley Pascal from compiling (or executing correctly) with Profes-
sional Pascal.

165 15 Dec 1986

4.2 for the IBM RT PC Professional Pascal Differences

1. Introduction

Pascal programs which are not dependent upon a particular compiler’s extensions, that is, pro-

grams written in ANSI Standard Pascal, should port to 4.2/RT using Professional Pascal! with
little or not effort. However, programs written in Berkeley Pascal may not port so easily.
Berkeley Pascal includes many extensions to standard Pascal (which are outlined in Appendix
A, "Appendix to Wirth’s Pascal Report,” of the “Berkeley Pascal User’s Manual” in UNIX
Programmer’s Manual, 4.2 Berkeley Software Distribution, Volume 2C). If a program uses any
of these extensions, it may not compile or execute as expected.

This article concentrates on the features of the Berkcley Pascal compiler? that are missing or
differ from Professional Pascal. The article does not attempt to point out the many features of
Professional Pascal which are not found in Berkeley Pascal. For a complete description of
Professional Pascal extensions, please sece Professional Pascal Language FExtensions Manual
with Rationale and Tutorials, available from MetaWare Incorporated.

2. Significant Differences

Several differences exist between pp and pc which may affect your programs. This section
points out these differences.

2.1. Case of Identifiers

In pc, the names of identifiers are case-sensitive. In pp, they are case-insensitive; all names
are shifted to lower case. Be sure all identifiers are uniquely named regardless of case.

2.2. In-Line Compiler Directives
Pc supports in-line control of compile-time options from within comments:
{$option}

Pp provides similar support of “toggle” setting via pragma statements. See ‘‘Compiler
Toggles” in the Professional Pascal Programmer’s Guide.

2.3. Octal Constants:

In pe, an integer constant is expressed in octal by a series of digits terminated with “B” or
“b” (e.g. 777b). Pp precedes the digit series with the character string “8#" (e.g. 8#777).

2.4. New Reserved Words

In addition to standard Pascal keywords, the words pragma, package, iterator, value, and
otherwise are reserved in pp. (They are not reserved in pc.)

2.5. Predefined Routines
The following predefined routines found in pc are not supported in pp:

. Predefined procedures: date, flush, linelimit, message, null, pack, remove, stlimit, time,
and unpack.

® Predefined functions: card, expo, random, seed, sysclock, undefined, and wallclock.

The routines argc and argv are not predefined as they are in pc, but they are defined in the
“arg’ package provided with pp. Note, however, the slightly different semantics for these

'Hereinafter referred to as pp.

2Hereinafter referred to as pc. Note that what is true for pc in this article is also true for pi, the Berkeley Pascal
interpreter. Therefore, pc can be taken to mean “pc and pi.”

166 15 Dec 1986

4.2 for the IBM RT PC . . Professional Pascal Differences

routines as they are defined in “Utility Packages” in the Professional Pascal Language
Extensions manual.

Similarly, the clock function is not predefined but is included in the pp “system’ package.

The procedure Aalt is predefined in pp (as it is in pc), but it does not produce a control
flow backtrace upon termination.

2.6. Writing Expression in Octal or Hexadecimal
In pc, the value i is displayed in octal by:

write(i oct)

or in hexadecimal by:

write(i hex)
where i is a boolean, char, integer, pointer or enumerated type. In pp, the equivalent
would be:

write(ord(i):n:8)

or:
write(ord(1):n:16)

where “n” is the minimum field width.

2.7. Reading and Writing Enumerated Types

Reading and writing of enumerated types is not allowed in pp.

2.8. Associating File Name and Variable Name

In pc, a global file variable appearing in the program header is associated with a physical
file of the same name. In pp, file variables appearing in the program header are associated
with file names appearing as command-line arguments. See “Invoking the Compiler” in
the Professional Pascal Programmer’s Guide.

2.9. No Assert Statement
The assert statement of pc is not supported in pp.

2.10. Relational Operators on Sets

The relational operators “ <" and “>"" may not be applied to sets in pp as can be done in
pe.

2.11. Simple Types Integer and Real
In pc, an integer is 32 bits wide. That is, it follows the conceptual definition:
type integer = —2147483648..2147483647;

In pp, an integer is 16 bits wide; it follows the conceptual definition:

type integer = —32768..32767,
Pp predefines the type longint to represent 32-bit integers; it is equivalent to pc's type
integer.

Pc represents a real in double-precision, or 64 bits. Pp represents real in single-precision,
or 32 bits. Pp predefines the type longreal to represent double-precision; it is equivalent to
pc’s type real.

167 15 Dec 1986

4.2 for the IBM RT PC Professional Pascal Differences

If a pc program which is dependent on 32-bit integers and double-precision reals is ported
to pp, the following redefinitions can be used:
type
integer = longint;
real = longreal;
const
magxint = maxlong;

2.12. Predefined Types
Pc predefines the types alfa and intset as:
type

alfa = packed array [1..10] of char;
intset = set of 0..127;

These types are not predefined in pp; the above definitions can be added to existing pro-
grams that depend upon these types.

2.13. Subrange Mapping
In pc, the subrange 0..255 is mapped to a 16-bit word. In pp, it is mapped to an unsigned
byte.
Pc maps the subrange 0..65535 to a 32-bit longword; pp maps it to an unsigned (16-bit)
word.

2.14. Global Variables

In pc, all variables at the outermost level are made global static. In pp, such variables are
made local static by default. The preferred way to share variables across modules in pp is
via interface packages; however, the statement ‘“pragma data(COMMON);” can be
specified before the first variable declaration to achieve the same effect from pp.

2.15. Predefined Constants

Pc predefines the integer constant “minint”; pp does not. The following definition can be
used:

const
minint = —maxint— 1;

M«

The predefined character constants “minchar,” ‘“maxchar,” “bell,” and “‘tab” of pc are not

supported in pp.

References
¢ Appendix C of this manual, which contains the ‘‘High C Programmer’s Guide”
e Professional Pascal Documentation Set, available from:

MetaWare Incorporated

903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060

(408) 429-META

168 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

4.2/RT Console Emulators

This paper explains the need for, and design of, console emulators in 4.2/RT. It contains the fol-
lowing sections: '

1. Overview

. Emulator Package Functions

. Output Emulator Interface

. Input Emulator Interface

. Window Manager Device-dependent Routines
. System Interface to the Emulator

. Console Driver’s Relationship to 4.2/RT

. User Interface to the Emulator

. Files Included with the Emulator

N=BEE- B B WY | R N FS I]

169 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Consolc Emulators

1. OVERVIEW

This emulator package was developed under 4.2/RT to support the complex data streams
characteristic of advanced workstations. Traditional linc disciplines and console driver inter-
faces are not powerful enough to manage claborate bit-mapped displays. Sophisticated key-
boards, mouse devices, and multiple consoles add complexity to console management.

Emulators written using the 4.2/RT emulator package can handle normal line-discipline 1/O
functions as though they were normal ¢ty hardware drivers. The emulator package also sup-
ports window-manager device-dependent routines, allowing an emulator to act as an interface
to a window-manager/graphics system and to control screen output.

1.1. Bit-Map Terminal Requirements

Bit-map terminals are bit-addressable; they deal not with characters, but with individual
bits. To represent a single character on the screen, a bit-map terminal turs bits at
different locations on or off. In scrolling, all bits on a bit-map screen move up a line at a
time, while bits on the bottom line turn off. Some bit-map terminals handle some or all of
this in hardware. Ilowever, to act as a normal glass tty console, each terminal must also
be able to perform standard 1/O operations. Supporting multiple display types requires
code to emulate a glass tty on each display without reproducing the same code for each.

An emulator package solves the inability of bit-map displays to deal directly with charac-
ters. It provides a standard interface nceded by the low-level, device-dependent drivers and
called by the higher-level line disciplines. The device-dependent drivers contain functional
procedurcs that determine where a character appears on the screen, while the device-
independent line disciplines determine what the character looks like. When requested to
display information on the screen, an emulator package works between the two to ensure
that the correct character appears at the correct location.

1.2. Qutput Emulators

Emulator code intercepts characters and analyzes them according to the type of tty emu-
lated, then calls the appropriate routines to operate on the display. Using this design, any
emulator works on any display on the workstation without knowing anything about the
display. This type of emulator is an output emulator.

1.3. Input Emulators

The same design approach applics to input emulation. Any keyboard or mouse on the
system must be able to pass data to the user in a given format. An input emulator accepts
and deciphers data appropriately.

2. EMULATOR PACKAGE FUNCTIONS
The emulator package performs the following functions:
. Initializes each display present on the workstation.

. Provides a default emulator, defined for any particular hardware. An application
does not have to choose an emulator at start-up.

L Allows multiple displays to run on the system simultancously. Each display can be
associated with a different process. This allows a separate login to run on each
display.

The emulator package also allows the user to:

* Decide which display should be the default on system boot.

170 15 Dec 1986

4.2 for the.IBM RT PC

3. OUTPUT EMULATOR INTERFACE

4.2/RT Console Emulators

. Reinitialize any hardware or emulator.

L Select from a set of existing emulators for a display.

e Switch between the displays currently open on the workstation. When you switch
screens, the focus of the keyboard and mouse moves to that display. This allows
you to run a different window system on each display and press a hot-key to switch
between them.

. Find and change the hot-key.

. Lock out the user or the system from a display. User lockout is useful for window
managers that want to keep other applications from taking over the screen. Kernel
or system lockout is useful when you don’t want the kernel to attempt to use a
non-existent display; for example, when an adapter has no display attached to it.

An emulator needs general information about the display it uses, such as the number and
width of lines that fit on the screen in the current font.

The following device-dependent procedures support any basic output emulator:

M
2
)
(4)

)
(6)
Y

Determine whether the display is present.

Initialize the display.

Position the cursor anywhere on the display.

Display a character at the cursor position by putting up a bitmap from an internal data

font.

Blank a given section of the display (by character).

Move a group of lines on the display.

Print screen contents on the standard printer.

The following structure from <machinecons/screen_conf-h> describes the interface between
the emulator and the display-dependent routines. From the top down to flags is the standard

glass tty information; other entries are described later.

[sys]machinecons|screen_conf.c.

struct screen_sw {

char
int
int
int
int
int
int
int
char
short
short
short
short
int
int
int
int

*name;
(*probe)();
(*init)();
(*s_putc)();
(*pos_cur)();
(*blank)();
(*move)();
(*printscreen)();
*rwaddr;
lines;

width;

vbits;

hbits;

flags;

def oute;
(*pos_loc)();
(*load_loc)();

/* Name of display */

/* Probe for screen */

/* Initialize screen */

/* Put character on screen */

/* Position cursor on screen */

[* Blank a section of screen */

/* Move some lines on screen */

/* Routine to print screen */

/* Read & writable addr on screen */
/* Number of lines on screen */

/* Width of screen in characters */
/* Vertical number of screen bits */
/* Horizontal number of screen bits */
/* Some flags about the screen */

/* Default output emulator */

/* Position locator on screen */

/* Load locator description */

171

This structure is initialized in

15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

int (*show_loc)(); /* Show locator on Screen*/
int (*hide_loc)(); /* Hide locator on Screen */
int (*apa_init)(); /* All points addressable screen init */
int fill_int[14]; /* Fill out to 32 ints (275) */

b
The synopsis below from screen_conf.h shows the interface to the above structure. The emu-
lator need only use the following routines and attributes:

/* General Defines for emulators to use with the screen_sw structure */
#define WS - si->which_screen

#define SCREEN_LENGTH (screen_sw[WS].lincs)

#define SCREEN_WIDTH (screen_sw|WS].width)

#define SCREEN_SIZE(SCREEN_LENGTH * SCREEN_WIDTH)
#define STATUS_LINE (SCREEN_LENGTH - 1)

/* Character Attributes */

#define NORMAL_VIDEO 0x01
#define REVERSE_VIDEO 0x02
#define UNDERLINE_VIDEO 0x04
#define HI_INTENSITY 0x08
#define BLINK 0x10

/* Defines for calling console screen dependent switched routines */

/* Put character 'c’ with attribute 'screen_attr’ on console */
#define screen_putc(c, screen_attr) (*screen_sw|{WS].s_putc) (c, screen_attr)

/* Move cursor to x,y position */
#define pos_cursor(x, y) (*screen_sw{WS].pos_cur) (x, y)

/* blank with screen_attribute from start coordinates to end coordinates */
#define screen_blank(s_a, sy, sx, ey, ex) (*screen_sw[WS].blank) (s_a, sy, sx, ey, ex)

/* Macro for blanking a line */
#define blank_line(s_a, line) screen_biank(s_a, line, 0, fine, SCREEN_WIDTH-1)

/* move linel ... line2 to dest */
#define screen_move(l1, 12, dest) (*screen_sw{WS].move) (11, 12, dest)

/* Position screen locator on screen at x,y position with msbox restriction */
#define pos_locator(x, y, msbox) (*screen_sw|WS].pos_loc) (x, y, msbox)

/* Load a new screen locator description with msbox restriction */
#define load_locator(c, msbox) (*screen_sw[WS].load_loc) (c, msbox)

/* Show screen locator with msbox restriction */
#define show_locator(msbox) (*screen_sw|WS].show_loc) (msbox)

/* Hide screen locator */
#define hide_locator() (*screen_sw{WS].hide_loc) ()

/* APA Screen init */
#define apa_initialize() (*screen_sw{WS].apa_init) ()

172 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

4. INPUT EMULATOR INTERFACE

The low-level interface to the input emulator is not defined as strictly as the one for the output
emulator. Basically, a sct of hardware routines in keyboard.c, kis.c, speaker.c, and mouse.c can
be called by an input emulator to control the keyboard, speaker, and mouse. The input emu-
lator receives a data interrupt from the keyboard or mouse. The emulator deciphers the data
and tracks the state of the device; then passes its processed data to the user through a line dis-
cipline or some other emulator-specific method, such as shared memory.

Few procedures are necded to control a keyboard for setting the auto keyclick rate, bell tone,
and key characteristics (repeat rate, make/break, etc.). Because few workstations support mul-
tiple keyboards simultaneously, there is no need to set up a switch table for these hardware
routines. Workstation mouse devices also have few control operations (set sampling or resolu-
tion rate); input emulators do not yet deal with thesc operations directly, but instead pass ioct/
system calls to the appropriate driver.

5. WINDOW MANAGER DEVICE-DEPENDENT ROUTINES

Listed below are the device-dependent routines available with the screen_sw low-level routines.
These are normalily used in an input emulator to control the graphics cursor.

pos_loc()
Position the locator at a given coordinate on the display.

load loc()
Load a locator bitmap for the display. This is the locator until the next load_loc.

show_loc()
Make the locator visible and keep showing when positioned. Usually used after a
hide loc.

hide_loc()
Make the locator invisible, but do not affect the tracking.

apa_init())
Initialize the display for graphic operations nceded by the locator. Useful for displays
with hardware cursors/locators.

6. SYSTEM INTERFACE TO THE EMULATOR

A new emulator should be easy to add to a system and must be able to coexist with other
emulators. An emulator has many functions and system entry points similar to those of a tty
hardware device driver. The main difference is that emulators funnel through a single console
driver and call a common set of hardware routines, while device drivers deal directly with the
hardware.

The emulator switch table below lists all routines nccessary for a device driver to interface with
an emulator. To add an emulator to the system, add the following routines in the switch table
structure shown below. This structure (modeled after line disciplines) is declared in
screen_confh, and the table is initialized in screen_conf.c.

/'li

* Emulator line control switch.
*/

struct emulsw

{
int (*e_open));
int (*e_close)();

173 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

int (*e_read)();

int (*e_write)();

int (*e_ioctl)();

int (*e_rint)();

int (*e_putc)();

int (*e_select)();

int (*e_putstatus)(); /* to put up status information */
int filf7y;

Each emulator, depending on its needs, has the following entry points in the kernel:

e_open()
Open the emulator to do any necessary initialization. Perform initial operations such as
clearing the screen, initializing the cursor, and positioning the cursor on the screen.

e_close() v
Close the emulator; do any cleanup nccessary.

e_read()
Read data from the emulator (used only by input emulators). For most emulators, this
routine forwards the read request to the uscr-defined line discipline. The read routines in
line disciplines currently perform the operations necessary for this routine. This consists
of taking the already-received characters off a clist queue and passing them to the user
program’s read buffer.

e_write()
Write data to the emulator (used only by output emulators). This procedure takes a
character stream passed from the user-level program. Most emulators call the line discip-
line specified by the user to do any character preprocessing. Again, the line discipline
routines already perform the necessary duties for this routine. This routine and the
e_read() routines are in the emulator package for completeness and to allow flexibility.
Some specialized emulators do use these routines for other than calling the associated
line-discipline routines (see buf_emul(4)).

e_ioctl()
I/O control to emulator for changing or sctting characteristics of the emulator or per-
forming operations that do not fit into the normal interface to the emulator. This rou-
tine should return a (— 1) if the command is not recognized.

e_rint()
Reccive interrupt to emulator (used only by input emulators). The emulator receives an
interrupt from a driver’s interrupt routine and processes the data depending on the type
of interrupt reccived. This procedure passes the processed input data to the uscr-assigned
line-discipline input routine. Some specialized window-manager emulators do not for-
ward these data to a line discipline, but do their own queuing and interacting with a win-
dow manager.

e _putc()
Put a character on the display (used only by output emulators). This emulator routine
receives a character from a user’s write or kernel printf. The emulator deciphers the data
and interprets character strings before passing the appropriate characters to the hardware
putc routine. This procedure makes use of the screen switch table (screen_sw) in calling
the device-dependent routines to perform the emulation on any display.

e_select()
Select call to emulator (used only by input emulators). This routine is used to perform

174 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

the normal select duty of informing the user process when new data are ready.

e_putstatus()
Put status call to emulator (used only by output emulators). The emulator takes the
passed string and places it at an offset on the status line.

175 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

7. CONSOLE DRIVER’S RELATIONSHIP TO 4.2/RT

The following diagram shows how the parts of the system described relate to the standard
parts of a 4.2/RT system:

Console System Diagram

llser Ap

plication

System Call Interface

Fvent Queue in

Shared Memory

User Level

t & Low Level Di]g Kerncl Level
Standard Device Drivers 0 v ,el ve R 1Sp ay

Displays/Keyboard/Speaker System or Serial Mouse Hardware

The above is a conceptual view of the system. It does not show all parts and interfaces, but
indicates the levels of flow. The console driver routes normal driver requests to the correct
display and input/output emulator, depending on the minor device specified.

The following shows how the minor device number maps to an emulator and display:

Output Emulator Flag | Bus Display#
bits 7 - 4 bit3 | bits2-0
0or | Oorl [0-7 |

The following is a list of currently-used displays supported by 4.2/RT:

Console Displays
Display # { Symbolic Name | Description
0 CONS_GEN Generic console (current display)
| CONS_AED ACIS experimental display (strcam ordered)
2 CONS_APAL16 | IBM 6155 Extended Monochrome Graphics Display (bitmap)
3 CONS_APASC | IBM 6154 Advanced Color Graphics Display (bitmap)
4 CONS_APAS IBM 6153 Advanced Monochrome Graphics Display (bitmap)
5 CONS_MONO | IBM 5151 Monochrome Display (character driven)

If the bus bit is set, opening the device grants access to the I/O bus. Without this bit, it is
necessary to open /dev/bus to gain access to 1/O space. This bit is provided for compatibility;
new applications should open /dev/bus if they nced bus access.

The emulator field in the minor device number tells the console driver that the default
glass_tty input/output emulators will be used (0}, or indicates that a non-standard ouiput emu-
lator will be used (nonzero). If a non-standard output emulator is used, the system restores
the display to the standard state (default emulators) when the device is closed.

176 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

The following is a list of emulators currently available:

Emulators Available

Emulator # Symbolic Name Description

0

E_KBDINPUT Intelligent keyboard mapping inputv emulator (standard)

1 E_STDOUTPUT | Standard output emulator

2 E IBMOUTPUT | IBM 3101 output emulator

3 E_ANSIOUTPUT | ANSI output emulator (not implemented)
4 E XINPUT X event queuing input emulator

5 'E_BUFOUTPUT | Buffering output emulator o

6 E_AED Raw AED microcode interface emulator

The default enuidators for each display are:

Default Input/Output Emulators for each Display
Display | Input Emulator | Output Emulator
AED E_KBDINPUT | E_STDOUTPUT
APAl16 | E_ KBDINPUT | E_IBMOUTPUT
APASC | E KBDINPUT | E_IBMOUTPUT
APAS E_KBDINPUT | E_IBMOUTPUT
MONO | E KBDINPUT | E IBMOUTPUT

7.1. Input From Keyboard Scenario

(1)
2

&)

4

®)

(6)

O

User types character on keyboard.

Receive interrupt in keyboard driver, keyboard.c, interrupt routine kbdint(). This
routine extracts key code from the hardware.

Call emulator receive-interrupt routine from the switch table indexed by the current
input focus after setting the emulator structure flag, indicating that this was a key-
board interrupt.

Emulator checks whether this was a keyboard interrupt. If so, it either translates
code into a character and calls normal line-discipline routine for this console with the
translated character, or performs some emulator-specific function such as storing the
raw key code in a shared-memory area (X-like) and setting a semaphore, also in
shared memory, to inform the user process that a new event has arrived.

If a line-discipline input routine is called, it performs its previously-described normal
input (editing/mapping) and passes the result to the user through the read system call
interface.

If a shared-memory queue interface is used, the user process notes the queue update
through the semaphore and proceeds to read the data from the shared memory
without performing a read or any other system call.

In either of the above two cases, a sclect would be satisfied if the user had previously
done a select call.

177 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

7.2. Output To Display Scenario

This scenario applies only to glass-tty opcrations. The window-manager system goes
directly to the display hardwarc through its own graphics routines. If a user tries to write
through the system to the display whilc a window manager is controlling the display, a spe-
cial buffer emulator is called instcad of a glass-tty emulator, as in the scenario below.

(M
(2

3

G
&)

(6)

The user performs a write system call with a buffer of data for the display. These
data consist of ASCII data or display order streams.

The console write routine then calls the write routine of the output emulator selected
by the minor device number.

For most emulators, the output-emulator write routine then forwards these data to
the line-discipline write routine specified by the user. Certain emulators, such as the
buffer emulator, intercept these data and capture them for printing later.

The line discipline interprets the data and calls the console start routine to print the
ASCII characters.

The console driver’s start routine loops through dequeuing each character and calling
the output emulator put-character routine, e_putc, for each character.

The output emulator put-character routine then deciphers the data and calls the
appropriate device-dependent routine to display the character or perform the display
command.

8. USER INTERFACE TO THE EMULATORS

The user interface to the emulators consists of system calls to the console driver (see cons(4)
and mouse(4)).

8.1, Interface to Keyboard Input and Display Qutput

8.1

1. Standard Interface

In the simplest case, a user program still performs the same operations as in the past,
allowing previously-written programs to work without change. The following lists the
normal scenario and what the emulator package docs:

Standard Console Interface Device
Permissions | owner | major | minor device
CIW-TW-Tw- root 0 0 /dev/console

(1) An application such as login opens /dev/console. Since /dev/console is the special
CONS_GEN minor device, in “open” the output is mapped to the current
console-focused display. The display at which a program is started is the display
associated with the process. The system starts the default input and output emu-
lators for that display. Input is received only if the input focus is set to
CONS_GEN.

(2) The application reads or writes to the file descriptor returned from the open sys-
tem call. The system maps writes to the CONS_GEN minor device to the display
with the current input focus. This causes the appropriate display-indexed
input/output emulators to be used. Input is focused to CONS_GEN if no con-
sole tty devices and no console graphic devices are open, except when using the
default input emulator (E_KBDINPUT). If the input focus is not on
CONS_GEN, the input focus follows the output focus.

178 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

(3) The application exits or closes the /dev/console file descriptor. The system closes
the input/output emulators and the stream for the display with the current input
focus.

Mapping /dev/console to the current display is important for most applications that do
not need to know on which display they are running. This mapping is also important
at system bootup time where the single-user shell does not know on which display it is
starting and is simply mapped to what the system chooses as the starting input focus.
But some applications (for example, login, window manager) need to know on which
display they should start. Therefore, the following devices are provided to support the
displays available on 4.2/RT:

Standard TTY-like Display Devices

Permissions | Owner | Major | Minor Device
crw-rw-rw- | root 0, 1 jdev/ttyaed
crw-rw-rw- | root 0, 2 /dev/ttyap16
Crw-rw-rw- | root 0, 3 {dev/ttyap8c
crw-rw-rw- | root 0, 4 /dev/ttyapa8
crw-rw-rw- | root 0, 5 J/dev/ttymono

To start an application on a particular display, reassign its standard input and outputs
to any of these devices or have the application specifically open one of them. The sys-
tem routes output from the application to the appropriate display and its default emula-
tors. Input to the application from the keyboard only occurs when the console focus is
assigned to that display. To switch between open displays, press the specified hot-key
for your system or use an application which performs an ioct!/ system call to set the
input focus.

The different displays on the system are specified in the /etc/ttys file that tells the system
to start logins on each of the displays. A user can hot-key to the desired display and,
after logging in, run any application needed. Any application started on that display
stays associated with it, because it was started while the console focus was on that
display. Because this is an application-transparent mapping to that display taking place
in the kernel, a user can log on simultaneously to as many displays as needed.

8.1.2. Nonstandard Interface

For applications that call for a specific non-default emulator, the following devices are
provided:

Nonstandard Display Devices

Permissions | Owner | Major | Minor Device
crw-rw-rw- | root 0, 65 /dev/aed
crw-rw-rw- | root 0, 66 /dev/apal6
crw-rw-rw- | root 0, 67 fdevjapa8c
Crw-rw-rw- | root 0, 68 /dev/apa8
crw-rw-rw- | root 0, 69 /dev/mono

The emulator flag is nonzero for each of these devices. This indicates to the system
that a nonstandard input and/or output emulator is going to be used on this display and
that, on close, the system should return the display to its default emulators. The system
opens the standard input emulator and a special buffering output emulator, because
most applications that open the nonstandard device take over the screen and want

179 15 Dec 1986

4.2 for the IBM RT PC

4.2/RT Console Emulators

output from other sources (such as kernel printfs) to be buffered and displayed when
the display is closed. See bufermui(4) for more information. If bus access is required on
open, add 8 to each minor device number.

The following is a list of commands available through the ioct/ system call to the con-

sole emulator package:

Toctl Commands to Emulator Package

Command Read | Write Description

CON_SELECT SCREEN Yes Yes Output focus is set to display number (arg > 0) or to
next display in list (arg < 0). Previous display
number is returned.

CON_GET _SCREEN Yes No Just returns the current output focus display number.

EIGETD Yes No Get the number of the current input emulator for
this display.

EOGETD Yes No Get the number of the current output emulator for
this display.

EISETD Yes Yes Set the input emulator and return the previous for
this display.

EOSETD Yes Yes Set the output emulator and return the previous for
this display.

CON_INIT_SCREEN No Yes Initialize the specified display (arg > = 0) or
this display (arg < 0).

CON_GET_FOCUS_CODE | Yes No Get the current keyboard code for setting the console
focus (xemul only).

CON_SET_FOCUS_CODE | Yes Yes Set the current keyboard code for setting the console
focus (xemul only), and return the previous code.

SCRIOCGETF Yes Yes Get screen control flags for the given display number.

SCRIOCSETC Yes Yes Set screen control flags for the given display number.

All of the above commands take integer arguments except the last two.

SCRIOCGETF and SCRIOCSETC use the following structure:
struct screen_control {

int device; /* which screen/display to control */
int switches; /* Flags for this screen */
b
Flags for Each Display
Flag Description

CONSDEV_PRESENT

Display is present on this system.

CONSDEV_KERNEL

Display is available to the kernel.

CONSDEV_USER

Display is available to the user.

CONSDEV_INIT

Display has been initialized for output.

CONSDEV_TTY

Tty display has been opened directly by minor device number.

CONSDEV_GRA

Graphics display has been opened directly by minor device number.

All of the above ioct! system calls are device-independent controls for dealing with the

emulators.

180

15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

Each emulator has its own set of ioctls for its own emulation purposes. These other
ioctls are used in window-manager emulators for operations such as passing/positioning
the mouse locator for/on the display. See the man page for any particular emulator for
more information.

8.2. Mouse Input Interface

The interface to the system mouse is similar to that of the keyboard. If the generic mouse
device /dev/mouse, minor device 0, is opened, the mouse input is attached to the display
which has the current input focus. Opening any other mouse device attaches the mouse
input stream to the process only when the input focus is on the associated display.

The following mouse devices are provided:

Mouse Input Devices
Permissions | Owner | Major | Minor Device
crw-rw-rw- | root 15, 0 /dev/mouse
crw-rw-rw- | root 15, 1 /dev/msaed
Crw-rw-rw- | root 15, 2 Jdev/msmono
crw-rw-rw- | root 15, 3 /dev/msapa8
crw-rw-rw- | root 15, 4 /dev/msapal6
crw-rw-rw- | root 15, 5 /dev/msapa8c

The system mouse driver is essentially the same as those in other 4.2BSD-based systems.
This driver hooks into the emulator package by selecting a special line discipline. The line
discipline filters the mouse data and then passes a generic data packet to the user through
normal read system calls or calls the user-specified emulator with the data packet. This line
discipline is explained in the th(4) manual page.

For compatibility, the default line discipline may be set using the upper four bits of the
minor device number. To get the device interface specified in mouse(4), use the discipline
MSLINEDISC from < achineio/mouseio.h>. Any new software that uses the mouse
should set its desired discipline explicitly.

9. FILES INCLUDED WITH THE EMULATOR

The following tables briefly explain the files contained in the emulator package. The tables
specify files according to function. Each table states where the files are located and describes
what each file contains. Tables with a column marked User distinguish between purely kernel
files and user/kernel-shared include files. These user include files are needed to access emulator
functions.

181 15 Dec 1986

4.2 for the IBM RT PC 4.2/RT Console Emulators

Emulator Control Files

[sys/machinecons
File User Description
cons.c no Console driver routes requests to appropriate emulator and its input/output

device or to the emulator controller. Console driver is also responsible
for console message forwarding.

consdefs.h no |This file contains hardware interface information about system input
devices. Emulators as well as device dependent routines use this to
interface with each other and the hardware.

consio.h yes |Defines which displays and screen controls/flags are available. The
ioctl commands and structure for screen_control are in this file.
This file is indirectly included by screen_conf.h.

consvars.h no |Emulator control variables are declared here.

bus.c no |I/O bus control driver, which allows access to the I/O bus on a per-process
basis. Window managers that need to get directly at the display from user
space should open /dev/bus.

screen_conf.c | no {Where all the displays and emulators are configured for the system. This
file also contains the emulator control routines discussed in ‘“Emulator
Package Functions”, above.

screen_conf.h | yes |Where all the structures, defines, and macros for the emulator package
live. This contains all the macros for an emulator to interface with the
device-dependent routines as well as the ioctl information for the user to
interface with the emulator package.

Emulators
[sys/machinecons
File User Description
aed.c AED raw microcode graphic emulator
acddefs.h no
buf emul.c no | Buffering emulator, which saves messages sent to display, then flushes
them when the output emulator is changed
ibm_emul.c IBM310! output emulator; takes a considerable subset of
mono_tcap.h 19 | IBM3101 commands defined in tcap
kbd_emul.c A keyboard emulator which allows mapping of key codes to a character
kbd_emul.h no | stream
kbde_codes.h
std_emul.c Standard output emulator routines, which send raw characters to the
std_emul.h no | display on output. This output emulator is used for displays
that perform their own emulations.
x_emul.c no | X window system input emulator, which queues up keyboard and mouse
events into a memory area shared between kernel and user. This
emulator also has a variety of ioctls for controlling the locator
on a display, as well as performing other X-related functions
(e.g. tracking the cursor, etc.).
xio.h yes | X-dependent structures and defines for kernel and usr process
gevent.h yes | Event Queue structures and defines used by the X emulator

182 15 Dec 1986

4.2 for the IBM RT PC

4.2/RT Console Emulators

New/Changed Line Discipline files

/sys/sys and [sys/h

File User Description
tty_conf.c no Line discipline configure file
tty.h yes Line discipline structures and defines
tty tb.c no Normal tablet line discipline changed to support system/serial type
mouse devices also; also changed for forwarding data packets
to input emulator if specified
tbdefs.h no Tablet/mouse generic data packet structures and defines
tbioctlL.h yes Toctl commands and structures
Low Level Output Display Dependent Files
[sysfmachinecons
File Description
aed tty.h Macros and defines for interfacing with the glass tty microcode for the

AED display

aed_tty_mcode.h

Glass tty microcode for download to the AED display

aedloc.c

AED locator low-level device-dependent routines

aedtty.c AED glass tty low-level device-dependent routines
apal6loc.c APA16 locator low-level device-dependent routines
apal6tty.c APAL16 glass tty low-level device-dependent routines
apalé6tty.h APA16 device-dependent structures and define

apal6tty font.h APA16 font for glass tty emulation

apa8cloc.c APAS color locator low-level device-dependent routines
apa8ctty.c APABS color glass tty low-level device-dependent routines
apa8ctty.h APAS color device-dependent structures and define
apa8loc.c APAB locator low-level device-dependent routines
apa8tty.c APAS glass tty low-level device-dependent routines
apa8tty.h APAS device-dependent structures and define

apa8tty font.h

APAS and APAS color font for glass tty emulation

apa_fontblt.c

Generic routines for font manipulation on APA displays

apa_structs.h

Generic structures and defines for font manipulation on APA displays

apaaed.h Structures and defines for dealing with the AED as an APA display
mono.c Monochrome glass tty low-level device-dependent routines
monocons.h Monochrome device-dependent structures

monodefs.h Monochrome device-dependent defines

183 15 Dec 1986

4.2 for the IBM RT PC

4.2/RT Console Emulators

Low Level Keyboard Device Dependent Routines
[sys/machinccons
File Description
keyboard.c System keyboard hardware routines
keyboard.h System keyboard hardware structures and defines
" kls.c Keyboard/mouse/speaker common routines
kis.h Keyboard/mouse/speaker low level defines
System Mouse Device Driver
[sys/machineio
File User Description
mouse.c no Driver for system mouse
mouseio.h yes System mouse structures and defines; also includes ioctl
controls/defines for user processes
mousereg.h no System mouse driver declarations
speaker.c no Speaker driver
speakerio.h yes Speaker structures and defines
speakervar.h no Internal speaker data structures

184 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

The Remote Virtual Disk System

This article is ah updated version of several articles.written by J. 1. Saltzer, J. Van Sciver, L. W.
Allen, P. Prindeville, and Michael Greenwald at MIT between 1983 and 1986. The original arti-
cles, based on MIT’s Project Athena, have been rewritten and include additions and changes for

the IBM RT PC and 4.2/RT.

This article describes the Remote Virtual Disk (RVD) system for use with 4.2/RT on the IBM
RT PC. It contains the following chapters:

1. Overview contains background information on RVD.

2. RVD Structure describes the structure of the RVD system.

3. Installing RVD describes RVD installation.

4. RVD Protocol Specification describes the RVD communications protocol (optional read-
ing).

5. RVD Control Protocol Specification describes the RVD remote server maintenance proto-
col (optional reading).

185 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

1. OVERVIEW

The Remote Virtual Disk (RVD) system is a network service that provides a client computer
with the appearance of removable-media disk drives and an unlimited number of removable
disk packs. The removable disk packs are actually stored in private regions of large disks on
an RVD server. When a remote disk pack is “‘spun up”, it appears to most software to be
just another disk drive. Although read and writc requests arc actually accomplished by send-
ing messages across the network to the server, on a local area network the performance of a
remote disk pack is only slightly less than that of a local fixed disk.

RVD is a very simple system. Its only addition to the usual list of functions of a hardware
disk is remote access. Its design makes little use of operating system features, so it is fairly
independent of the operating system. An RVD client may be implemented for any operating
system that allows installation of device drivers, and an RVD: server may be implemented
under any operating system that permits access to either disk partitions or large files. A server
that runs under one operating system may be uscd by a client that runs under another.

1.1. Remote Virtual Disk Packs

A remote virtual disk pack is a portion of a real disk, located on an RVD server. RVD
packs are named and allocated by an administrator for the particular RVD server. The
name (a character string) and the size (measured in sectors of 512 bytes) are negotiated
between the administrator and the prospective user. Once allocated, the space is reserved
on the physical disk for the lifetime of the RVD pack.

When a client computer uses (“spins up”) an RVD pack, the client specifics one of two
modes of access: read-only access or read/write exclusive access. These modes follow the
usual rules for read/write compatibility: there may be several simultaneous readers, or
exactly one exclusive-mode user of any one virtual disk.

Access to an RVD pack may be protected by passwords, with a separate one for each of
the modes of access. Thus one might protect an RVD pack used as a group library by
requiring one password (or no password at all) for read access, and a different password for
exclusive access. A private RVD pack might use the same password for both modes. It is
also possible, by arrangement with the server’s administrator, to specify (by internet
address) a preferred client that may spin up a password-protected RVD pack without pro-
viding the password.

When a new RVD pack is aliocated, the first thing one normally does is create an initial-
ized, empty file system on that pack.

1.2. Supporting Tools

Normally one treats a remote disk pack just like any removable storage medium; all stan-
dard commands and tools are applicable. In addition, there are a few specialized tools that
are useful in managing the remote disk system.

Client management: The RVD client code is packaged as a driver. There are com-
mands that display information and state of the client part of the RVD system.

Server management: The RVD server is designed to be operated from a distance via a
network connection. Client commands are available to invoke any remote manage-
ment operation of the server.

Remote pack management: A high-spced copy command provides a high-
performance way of duplicating the contents of one remote pack onto a second one.

186 15 Dec 1986

4.2 for the. IBM RT PC Remote Virtual Disk System

1.3. Hazards

RVD is an example of a distributed system, in which failures of the server and of the data
communication network. can occur independently of failures in the client. This failure-
independence can lead to some situations that might not have been anticipated, or that are
so rare when using a locali disk that they are not handled well, in the writing of the software
of the client operating system or applications.

The most common failure is that a packet is lost in the data communication network. The
RVD client-server protocol includes a sophisticated request-retry procedure that will
immediately and automatically recover from occasional lost packets. It will also automati-
cally recover from short network outages (up to a minute or so,) although some applica-
tion programs may have timers that get impatient with the delays involved in waiting for a
network to recover.

Generally, longer network outages, or crash and restart of the server, are reported as errors
back to the invoking file system; whether or not the user is able to recover depends on the
application’s response to these errors.

If the client crashes and requires rebooting or is powered down while it has RVD packs
spun up, it loses its local record of spunup packs, but the server still has a record. There is
a general cleanup function, named rvdflush(8), that sends a request to a server to spin down
all RVD packs associated with this client. It is general good practice to spin down all
packs at the end of a client session, and to run rvdflush at the beginning of every client ses-
sion, in case the previous session ended with a crash.

Most operating systems have a file system integrity-checking program. It is usually neces-
sary to use such a program to review, and if necessary, to repair, the contents of an RVD
pack following a crash, just as with a local disk. It is also good practice to run such a pro-
gram just before using any newly spunup pack, especially if that pack may be used by
other clients.

As a general rule, all software works correctly with RVD unless it is written to be depen-
dent on hardware parameters of specific physical disks. However, most operating systems
have some programs that know too much; those programs must be avoided.

1.4. Network Protocols

The Remote Virtual Disk system uses two network protocols, named RVD and
RVDCTL. The client driver and the server communicate with the RVD protocol, to per-
form spinup, disk read/write, and spindown. The RVD protocol is a transport protocol,
using the Internet Protocol (IP) as its base. It is described in detail in Chapter 3 of this
article.

The Remote Virtual Disk Control (RVDCTL) protocol supplies a Remote Virtual Disk
server with both operating instructions and information about its configuration. An RVD
server process comes into existence with no knowledge of the physical configuration of the
system in which it is embedded or the logical configuration of the (possibly already exist-
ing) virtual disk packs it is to manage. By supplying this information via a network con-
nection instead of from files on the server host, it becomes possible to administer all
aspects of server operation remotely. RVDCTL is an application protocol, using the User
Datagram Protocol (UDP) as its base. It is described in detail in Chapter 5 of this docu-
ment.

187 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

2. RVD STRUCTURE

This section describes the general structure of the RVD server. The RVD server is organized
as a user program that requires little of the underlying operating system apart from access to a
disk device. It is started by invoking (as root, or in /etc/rc.local) the command rvdsrv(8), nor-
mally run in the background. The server has no configuration description files. Instead, it
opens a network listening port (the RVDCTL port) and expects that someone will send its
configuration and all operating instructions to it on that port.

2.1. Authorization

The installer of RVD should create a file named /etc/rvd/rvdauth, owned by root and read-
able only by root. It contains an unencrypted ASCII authorization password that the
server demands on most uses of the RVDCTL connection. If the contents of rvdauth are
changed, the change takes effect the next time the control request “require_authorization”
is sent to the server, or the next time the server is started.

2.2. File Placement

The server program is installed in /usr/ibm/rvdsrv. There is a set of server-management
commands in Jusr/ibm.

For convenience, the directory /etc/rvd contains the RVD initialization data file, the text of
any user message, and RVD operation logs. These files are described in the next two sec-
tions.

2.3. Initialization

As mentioned, the RVD server, once started, takes its configuration initialization, as well as
operating instructions and also instructions to change its configuration, as a scries of opera-
tion requests sent to it over a UDP socket. Since all operation requests for the RVD
server are ASCII text strings, RVD server initialization is conventionally accomplished by
maintaining somewhere on the server an ASCII text file containing the sequence of initiali-
zation instructions. A program named rvdsend(8) can be used to send the contents of that
file over the control connection.

If a user message is posted at the server, it is a good idea to keep a copy of its text in a
standard place so that it can be reposted if the server needs to be reinitialized.

it is convenient to divide the initialization instructions into two files, one of which,
nvddb(5), initializes only the configuration, while the other (rvdenable) contains instructions
to start the server operating. A typical invocation of RVD at boot time then appears as
the following sequence in the file /etc/rvd/rvdstart:

Jetc/rvd/rvdsrv -1 11 & # start server with logging
Jete/rvd/rvdsend Jetc/rvd/rvddb # set up server configuration
Jetc/rvd/rvdsend /etc/rvd/rvdenable # tell server to start work

where the file /etc/rvd{rvdenable contains:

operation = allow_spinups
mode= 5
operation = require_authorization

One reason for dividing the initialization instructions into two files is that there is a
configuration-management program, vddb(8), that provides a convenient user interface
for creating and changing a file that contains the disk-pack configuration. A second is
that while the system is in single-user mode, the file rvdenable may temporarily be re-
placed with an alternate file that starts the server in a different way, perhaps by forbid-
ding any but operations use.

188 15 Dec 1986

4.2 for the IBM RT PC : Remote Virtual Disk System

2.4. Logging

The RVD server uses the spslog(8) facility. All RVD server logging is to the syslog
identifier LOCAL7. The RVD server uses the conventional spslog levels as follows:

ALERT o)} serious server problems from which recovery is unlikely
ERROR) recoverable server errors such as bad disk blocks
INFO 2 spinups, spindowns, and name exchanges
(8) errors made by clients: bad passwords,
attempt to read packs that aren’t spun up, etc.
DEBUG 4 all read and write requests

(16) complete packet level trace of RVD operation

The numbers in the above list are logging classes. Items in class zero are always
logged; RVD has a log control system that allows one to turn each of the other classes
of logging on or off independently. The command invocation line for the server in-
cludes a parameter (the sum of the class numbers) to turn on the initial logging classes.
The command rvdchlog(8) sends a control protocol request to change the classes of
events that are logged.

The spslog configuration file (/etc/syslog.conf) can direct all logging output from LO-
CAL7 to an appropriate file, for example, fetc/rvd/rvdlog. In addition, if there is a sys-
tem log that is reviewed daily, RVD logging output of levels ALERT and ERROR
might appropriately be directed there, too.

Logging all read/write requests or every packet produces a noticeable performance de-
gradation of the server, so it is not recommended for normal operation. Logging spin-
ups and client errors provides information about usage of the RVD service and also
often records entries that suggest particular clients are misconfigured or are having
some problem. If spinups and spindowns are logged, a busy server can fill 100 Kbytes
of log in a day. Thus it is a good idea that a crontab (see cron(8)) entry invoke a
nightly script to move the RVD log aside and start a new one.

2.5. Remote Management

The RVD server is designed to allow all management to be done remotely. The pro-
gram that manages the initialization data, named vddb, can be run either locally on the
server, or elsewhere in the network. Remote management of several servers can be ac-
complished by setting up a directory on the management host that contains a copy of
the rvddb initialization file for each server to be managed, named with the network
name of the server. When vddb is invoked with the name of the server, all
configuration changes that the system administrator requests are made to the central
rvddb initialization file for that server and they are also performed, via the control con-
nection, on the server itself. If the server is set up to reboot and reinitialize itself au-
tomatically from a local copy of the rvddb initialization file, the system administrator
should, when vddb has completed, copy the newly modified initialization file to the
server.

2.6. Remote Partition Management

The command savervd(8) copies virtual disk packs to tape, and zaprvd (see savervd(8))
does the reverse. If the server does not have a tape drive attached, it is possible to do
this operation remotely, by using RVD twice. The basic trick is to set up links in /dev
so that there are two names for every disk partition managed by the RVD server. The
server uses one of these names (e.g. vdsrv/) for virtual pack assignment; it uses the oth-
er name (e.g. rdvdsrvl) for a single virtual pack that overlays the entire partition. That
overlaying virtual pack can then be spun up on a remote system that has a tape drive
available. Once spun up, the raw RVD device that represents the spunup virtual pack

189 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

can be treated just like a local disk partition on the remote system, and another copy
of the RVD server can be operated on that system. A symbolic link to that raw RVD
device, but with the same name as the link used for virtual pack assignment on the ori-
ginal system (e.g. vdsrv/) allows a copy of the rvddb from the first server to be reused
at the remote site. This trick allows savervd and zaprvd to think they are operating on
the original server.

190 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

3. INSTALLING RVD

This section describes how to install RVD on an IBM RT PC running 4.2/RT. The first
part gives a description of installation; the second part is a step-by-step description of in-
stallation.

3.1. Description of RVD Installation

As the RVD system follows a client-server model, there are two kinds of installation
procedures. Two scripts in /etc/rvd facilitate these procedures: rvd.mkserver for the
server machine, and rvd.mkclient for the client machine. These scripts are user-friendly
front ends for RVD installation procedures.

3.1.1. Installing an RVD Server Machine
Installing an RVD server machine involves the following tasks:
¢ Creating the required virtual disks
¢ Configuring the file systems that the RVD disk packs will hold
e Starting the RVD server program

3.1.1.1. Creating Virtual Disks

Creating the disks requires assigning local physical disk drives to hold the re-
quired file systems, and configuring a data base file rvddb for the RVD software
(see rvddb(5) and vddb(8)). The rvd.mkserver script will prompt the user for ex-
isting devices, and will create links (named vdsrv0 through vdsrv9) to these dev-
ices. These links serve as RVD’s interface to the physical disks. During the
creation of the rvddb data base, the vddb program prompts the user for informa-
tion associated with the partitioning of the chosen disk drives and the allotment
of these partitions to RVD disk packs. The program uses the information sup-
plied by the user to create the rvddb file, which is in turn used by the RVD
server program.

3.1.1.2. Configuring the File Systems

The administrator for the RVD server system will determine what file systems
the RVD packs will hold. The decision is not particularly sensitive, except in
the case where one mounts the /usr file system via RVD. Because the /usr file
system is particularly large, it is desirable to mount it via RVD on client
machines. However, the /usr file system contains files and directories which
must be local to the client machine. (Generally, any file or directory which
must be writable must be local.) When “usr” is specified as a pack name, the
rvd.mkserver script creates and makes symbolic links to a new file system, /site,
which is set up to contain the necessary local files and directories. Some of
these files and directories, such as /usr/spool, are put in /site by default; others
are put in the usr RVD pack by default. The user is prompted to determine the
disposition of files and directories in /usr which are not recognized by
rvd.mkserver.

Because there will most likely be occasional changes made to the usr pack, it
will be necessary to keep a backup usr pack on the server machine. Making
changes to an RVD pack requires that that pack be spun up in the exclusive
read/write mode, an operation which cannot be performed on a pack spun up
by any other RVD user. In general, when configuring an RVD server machine,
one should keep in mind the need for space for a backup copy of any RVD
pack that will require changes while in service.

191 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

3.1.1.3. Starting the RVD Server Program

Finally, rvd.mkserver prompts the user to set the RVD command authorization
password, if it has not already been set in the file /etc/rvd/rvdauth, and the RVD
server program rvdsrv is started. Full RVD services are available at the comple-
tion of the rvd.mkserver script.

3.1.2. Installing an RVD Client Machine
Installing an RVD client machine involves the following tasks:

¢ Creating the rvdtab data base (see rvdtab(5)) and, perhaps, modifying
[etc/fstab

J Rebooting the client machine to reconfigure and remount its file sys-
tems if the /usr file system is being mounted by RVD.

e Setting up the rvdusr file tree if the rvdusr pack is to be used

3.1.2.1. Creating the rvdtab Data Base

The first thing the rvd.mkclient script does is check for the existence of the
rvdtab file (nominally at /etc/rvd/rvdtab). If the rvdtab file already exists,
rvd.mkclient echoes its contents to the user. Then rvd.mkclient prompts the
user for the information required to build or extend the rvdtab file. When the
file is completed, its contents are echoed to the user for inspection.

After dealing with the rvdtab file, rvd.mkclient creates the directories used as
mount points for selected RVD packs, e.g. rvdusr and src. If the usr pack is go-
ing to be used, the /site directory is created and /etc/fstab is modified so that the
local /usr file system will be mounted at /site upon reboot. The usr pack spun
up from a server comes with symbolic links to /site for all files and directories
required to be kept in local (non-RVD) storage. These links are set up au-
tomatically when the RVD wusr pack is created using rvd.mkserver.

3.1.2.2. Rebooting the Client Machine

Rvd.mkclient gives its user a 30-second warning before calling for a system shut-
down in one minute. After shutdown, the system automatically reboots, com-
ing back up with the appropriate RVD client configuration. At this time any
packs designated as ‘“‘default” in the creation of rvdtab are spun up (barring net-
work and server problems). If the usr pack is being used, it is spun up at this
juncture; any network or server problems preventing the spinup of the usr pack
will cause the reboot process to hang. (This is one good reason to have the usr
pack available on more than one server machine.)

3.1.2.3. Setting up the rvdusr File Tree

After the client machine is rebooted, the user needs to spin up any packs
currently needed but not specified as default packs in the creation of rvdtab. If
the rvdusr pack is being spun up to have parts of the /usr file system accessed
via RVD, the user will want to execute the rvdusr.config script. This script goes
through all files and directories at the level directly below the root of the /rvdusr
file system (that is, the rvdusr pack) one at a time, and tells the user exactly how
much local disk space can be saved by accessing that file or directory via RVD.
This part of the process takes about 30 minutes. The user is then prompted for
the choice between RVD and local storage, and the appropriate action is taken.
If the choice is local storage, nothing is done (i.e. the file/directory stays on the
local /jusr file system disk). If the choice is to put the file/directory on RVD, it is

192 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

removed from the local disk and replaced by a symbolic link to the correspond-
ing file or directory in /rvdusr. The space previously occupied by that file or
directory on the local disk is then free for other uses.

3.1.3. Notes on Installing RVD

When a client machine is mounting its /usr file system via RVD, it is prudent to
have the /usr pack available on more than one server machine. A client machine
cannot afford to be without a /usr file system, since the executable code for many
fundamental 4.2/RT utilities resides in the /usr directory. Thus the loss of access to
the server for the wusr pack, for any reason, is a serious handicap and should be
avoided through having multiple servers available with this pack. Rvd.mkclient
reminds the user of this when creating the rvdiab file.

The Jusr/src file system is also a good candidate for installation as an RVD pack. It
must be mounted separately from the usr pack, as it is a distinct file system. Note
that this file system has the classic characteristics of a gopod RVD pack candidate: it
requires a large amount of disk space, will not be written to by the average user,
and will be written to or changed (by anyone) only infrequently. Such file systems
can be accessed in read-only mode by many users simultaneously, and rarely re-
quire any attention on the part of the system administrator.

Care should be taken if new workstations are to be installed at your site via net-
work connections (see “RVD Installation Steps” below). The source machine for
such installations should in general NOT be an RVD server; if it is, the target
machine will end up being an identical server machine. (However, this might be
useful for servers featuring the usr pack.) Also, target machines should be installed
over the network before their configuration as RVD clients. This maintains full
flexibility in that configuration process.

3.2. RVD Installation Steps

This section describes the steps involved in installing an RVD server machine and an
RVD client machine, and the scripts (Jetc/rvd/rvd.mkserver and [etc/rvd|rvd.mkclient)
used to do this.

3.2.1. Installing an RVD Server Machine

Installing an RVD server machine is done by using the rvd.mkserver script, which
resides in /etc/rvd. This script provides an easy and thorough procedure for the in-
stallation. This document describes the prompts provided by rvd.mkserver and the
appropriate user responses.

3.2.1.1. Starting the rvd.mkserver Script

Before using rvd.mkserver, you must first su to root, because of the major
changes being made. Failure to do so will result in the following error message:

you must su to root to run this script
3.2.2. Creating Virtual Disks
Upon successful invocation, #vd.mkserver responds with the following:

creating virtual disk drives:

we will create links to existing devices, which

should be drivers for existing local disk drives.
here is a list of currently mounted physical devices:

What follows is the output of the command mount which shows the available
mounted physical disk drives. These drives are candidates for use in creation of the

193 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

RVD virtual disk drives. Note that there may also be unmounted disk drives which
could also be used.

There are 10 links, named vdsrv0 through vdsrv9, that rvd.mkserver makes available.
Rvd.mkserver automatically keeps track of the next available link and presents the
following prompt, where X is between 0 and 9:

next available link is vdsrvX - make link? (yin)

A response of y or yes (referred to as an “affirmative”response in this chapter) will
continue the process of creating the link; all other responses will cause rvd.mkserver
to move on to creating the rvddb data base file (see below).

An affirmative response to the above prompt generates this prompt:
which device to link to? (< list of devices> CR)
where </list of devices> is a list of (mounted) candidate devices.
Type your response in the following format:
[dev/disk_driveX
or
disk_driveX

or <CR>, where disk_driveX is an existing block special or character special file.
A carriage return (< CR>) will go on to the next available device; an incorrect
response will generate the error message:

device must be a disk driveX, (your reply) is not

Rvd.mkserver will loop until it receives a satisfactory reply. Once that reply is re-
ceived, it responds as follows, where X is again between 0 and 9:

linking |dev/vdsrvX to (your reply)
3.2.2.1. Creating the rvddb Data Base File
Next rvd.mkserver will respond:
creating rvd data base |etc/rvd/rvddb...
If there is already a file /etc/rvd/rvddb in existence, rvd.mkserver responds with:
[etc/rvd|rvddb already exists - it looks like this:

whereupon the contents of that file are echoed to the terminal. (Note that the
file may be empty!)

The rvddb file is a data base of RVD virtual disk partitions (see rvddb(5)).
Rvd.mkserver gives the user an opportunity to create or modify rvddb with the
following prompt:

do you wish to modify |etc/rvd[rvddb? (y/n)

There is a standard RVD utility program vddb (see vddb(8)) used for creating
and modifying rvddb which rvd.mkserver calls upon an affirmative response,
with this message:

calling vddb (see vddb(8)).

As vddb is a fairly obscure program to the new user, rvd.mkserver offers the user
a glimpse of what a typical session with vddb might look like, with the prompt:

would pou like to see an example first? (y/n)
An affirmative response generates the following:

194 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

a typical session might go like this:

Ready

> add physical

Physical disk file name: [dev/vdsrv0

Size in 512-byte blocks: 88536 (note: see diskpart(8) for more info on this)
Are you sure (y or n)?y

Ready

> add virtual

Virtual disk name: src

Description: [usr/src file system
Read-only password:

Exclusive password: src_password
Shared password:

Disk size in 512-byte blocks: 88536
Allowable modes: 5

Owning host (< CR> for none):
Physical disk name (< CR> for any): |dev|vdsrv0
Are you sure (y or n)?y

Ready
> quit

hit return key to begin vddb session:

Pressing < Enter > causes rvd.mkserver to invoke vddb. Invoking vddb requires
the RVD command authorization password, which rvd.mkserver will prompt you
for. Note that this password will be the null string (equivalent to a carriage re-
turn) if it has not been previously set, thus the prompt for a password may be
ignored. If it has been set it will be found in /etc/rvd/rvdauth, where it is read-
able by root.

3.2.2.2. Configuration of a usr RVYD Pack

After finishing the session with vddb, rvd.mkserver will search the /etc/rvd/rvddb
data base file to see if a pack named usr is being created. If it finds mention of
such a pack in /etc/rvd/rvddb, a complex series of actions is initiated. If your in-
stallation does not include a usr pack, you may skip this section.

Rvd.mkserver signals that it has found that a wsr pack is being created with this
message:

Jusr will be an rvd disk pack, must make arrangements...

The usr RVD pack is used to hold the fusr file system. The /usr file system is
complex, and contains several directories which generally must be local (i.e.,
non-RVD) because they require write permission. Thus rvd.mkserver proceeds
to create a directory /site in the root (or /) file system to hold these local direc-
tories. First rvd.mkserver checks to see if there is enough free space on the root
file system for the directories which it knows that /site must hold. If
rvd.mkserver finds that there is not enough space it will display the following:

there is not enough space on | for [site
we need X kilobytes for [site

there are only Y kilobytes available on |
exiting

195 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

If this happens, rvd.mkserver exits and the system administrator must
reconfigure the local disks to provide the necessary space if he or she wishes to

have the usr RVD pack.!

If rvd.mkserver finds that there is sufficient space for /site, it will respond with
the following:

creation of [site will require X kilobytes in | file system
there are Y kilobytes free in | file system
do you wish to proceed with creating |site? (y/n)

An affirmative response generates:
proceeding...
Any other response causes rvd.mkserver to exit with:
exiting
The above choice is given because the figures given by rvd.mkserver may indi-
cate that the creation of /site will leave an unacceptably small amount of free

space on the root file system. Thus the system administrator may wish to
reconfigure the local disks to allow more space on the root file system.

If the user has chosen to proceed with the creation of /site, rvd.mkserver
displays the following:

creating [site on | file system to store local |usr files

At this juncture rvd.mkserver creates and/or set the correct access modes on
/site, then proceeds to move those directories it knows in advance must be local
from /usr to /site with this message:

moving (adm guest msgs preserve spool tmp) from [usr to [site:

Before actually moving a directory, rvd.mkserver will check to see if that directo-
ry has already been linked to /site. If it is, this message will appear:

[usr/(directory) is already linked to |site] (directory)

where (directory) is the directory in question. Also, rvd.mkserver will check to
see if a directory of that name already exits in /site. If it finds one, this appears:

[site] (directory) already exists - best check it. we will proceed.

and no action is taken. If neither of the above errors occurs the move and link
are made and the directory name is echoed. When finished with all directories,
rvd.mkserver outputs:

...done.

Next rvd.mkserver moves and links /usr/lib/crontab to /site with the message:
moving and linking |usr/lib/crontab to /site/lib/crontab

If Jusr/lib]crontab is already linked to /site, this message will appear:
Jusr/lib/crontab already linked to [site/lib/crontab

Rvd.mkserver has a list of directories it expects to find in all /usr file systems,
and automatically disposes as RVD or local. It also checks for directories not in
that list and prompts the user to determine their disposal. That process begins
with this message:

INote that there may be even more space required for /site than is indicated by rvd.mkserver at this step. The esti-
mate given is based only on the space required by the directories that rvd.mkserver knows a priori must be local. There
may be other directories peculiar to your site that must also be local, and thus accommodated on /site.

196 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

looking at other files & directories in |usr to make local or remote
default is local (not on rvd pack)

One by one rvd.mkserver gets the size of each directory, reviews the space left
on the root file system, and responds with:

looking at |usr|(directory)...

there are X kilobytes left on [site

Jusr| (dirvectory) requires Y kilobytes

put |usr](directory) on usr rvd pack? (default is move to [site) (y/n)

An affirmative response means that the directory will stay on the /usr file system
rather than being moved to /site. Such directories will then be available to
RVD clients on the usr RVD pack. Each client that uses the usr pack will save
the ”Y” kilobytes of local disk space required by that directory, but that client
will generally not be able to write to that directory. Thus write permission and
space savings are the two factors that should be weighed in deciding this
response. An affirmative response generates the reply:

Jusr| (directory) will be on usr rvd pack

A non-affirmative response means that the directory should be local. Thus
rvd.mkserver attempts to move the directory to /site and make a link from /usr
to /site. If the directory is already a link to /site rvd.mkserver displays:

Jusr|(directory) already linked to [site] (directory)
If a directory of the same name already exists on /site, this appeafs:
[site] (directory) already exists - best check it. we will proceed.
and rvd.mkserver proceeds without taking any action.
Otherwise, if all goes well, this appears:
moving and linking [usr/ (directory) to |site/(directory)
3.2.2.3. Setting the RVD Command Password

The RVD system requires a command authorization password to accompany all
network commands for remote maintenance of the RVD server. If this pass-
word is not already set (in the file jetc/rvdjrvdauth) rvd.mkserver prompts the
user to set that password:

setting rvd command authorization password
enter new password:

After the user has entered the password, rvd.mkserver responds:
installing new password in etc/rvd/rvdauth... done.
3.2.2.4. Setting RVD Operation Modes

Another requirement for RVD operation is a file /etc/rvd/rvdenable which con-
tains information on the operational modes of the RVD server. If it doesn’t al-
ready exist, rvd.mkserver creates that file and displays the following:

creating [etc/rvd[rvdenable file... done.
Note that this step requires no input from the user.

3.2.2.5. Starting the RVD Server Daemon

Finally, rvd.mkserver starts the RVD server daemon after displaying this mes-
sage:

197 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

starting rvd server program

and prompting for the command authorization password (which again will be
null if not previously set in /etc/rvd/rvdauth). If the RVD server daemon was
already running at this point rvd.mkserver displays:

rvd server program is already running - no further actions will be taken
3.2.2.6. Setting the RVD System Mecssage

An RVD server has an RVD system message option. This message is used to
communicate with RVD clients about new packs, changes to existing packs, etc.
Rvd.mkserver calls rvdsetm(8) to allow the user to set this RVD system message.
Rvdsetm(8) prompts for the message, which you type in and terminate with a
<CTRL-D>. Then rvdsetm(8) will prompt for the RVD command authoriza-
tion password, which may again be the null string.

The installation of the RVD server is now complete. Rvd.mkserver exits with a
status of 0, and all RVD services are now available on this server machine.

3.2.3. Installing an RVD Client Machine

Installing an RVD client machine is done using the rvd.mkclient script, which re-
sides in /etc/rvd. This script provides an easy and thorough procedure for the in-
stallation. This section describes the prompts provided by rvd.mkclient and the ap-
propriate user responses.

3.2.3.1. Starting the rvd.mkclient Script

Before starting you must su to root, because of the major changes being made.
Failure to do so will result in the following error message:

you must su to root to run this script

Upon successful invocation, rvd.mkclient will first check to see if the RVD dev-
ices exist in /dev. If not, rvd.mkclient will create them with a call to MAKEDEV
after presenting this message:

making rvd devices...

If rvd.mkclient makes the RVD devices, it will next show the user what devices
it created:

here is a list of currently available rvd devices:

crw-rw-rw- | root 17, 0 Aug 7 11:47 |dev/rvdOa
crw-rw-rw- | root 17, 1 Aug 7 11:21 |dev/rvdla
crw-rw-rw- [root 17, 2 Aug 7 11:2] |dev/rvd2a
crw-rw-rw- [root 17, 3 Aug 7 11:2] |dev/rvd3a
crw-rw-rw- [root 17, 4 Aug 7 11:2] |dev/rvd4a
crw-rw-rw- [root 17, 5 Aug 7 11:21 |dev/rvdSa
crw-rw-rw- [root 17, 6 Aug 7 11:2] |dev/rvd6a
crw-rw-rw- [root 17, 7 Aug 7 11:2] |dev/rvd7a
brw-rw-rw- [root 0 Aug 7 11:2] /dev/vdOa
brw-rw-rw- [root ! Aug 7 11:2] |devivdla
brw-rw-rw- [root 2 Aug 7 11:2] |dev|vd2a
brw-rw-rw- [root 3 Aug 7 11:21 |dev/vd3a
brw-rw-rw- [root 4 Aug 7 11:2] |dev/vdda
brw-rw-rw- [root S5 Aug 7 11.:21 |dev/vdSa
brw-rw-rw- [root 6 Aug 7 11:2] |dev/vd6a
brw-rw-rw- [root 7 Aug 7 11:21 |dev/vd7a

SRR B R R R

198 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

Note that this process requires no input from the user.
3.2.3.2. Creating rvdtab

The next step rvd.mkclient takes is to give the user a chance to create or modify
the /etc/rvdjrvdtab file (see rvdtab(5)). Rvdtab stores information concerning the
RVD packs that this client uses; rvd.mkclient will allow the user to easily build
or extend this file. Rvd.mkclient announces this phase of the installation pro-
cedure with this message:

creating/modifying [etc/rvd[rvdtab...

First rvd.mkclient checks for the existence of /etc/rvd/rvdtab. If the file is found,
rvd.mkclient gives this message:

Jetc/rvd|rvdtab already exists - it looks like this:

After this the contents of fetc/rvd/rvdtab are echoed to the user. (Note that the
file may be empty!)

Then rvd.mkclient gives the user the chance to add new RVD packs to the
rvdtab file with this prompt:

enter a new pack into database? (y/n)

An affirmative response to this query causes rvd.mkclient to prompt the user for
all the fields required for an rvdtab entry. This process will be repeated until
rvd.mkclient receives a non-affirmative response from the user. If rvd.mkclient
receives such a non-affirmative response when there was previously no rvdtab
file and no packs have been added to rvdiab, this message appears:

you must create an rvdtab file to have an rvd client machine
exiting

and the script exits.

3.2.3.2.1. Pack Name

First rvd.mkclient prompts for the RVD pack name. This name must be the
same as the pack name on the server machine, typically something such as
usr or src. (Note that the pack name is not necessarily the same as the
pack’s pathname; for example, the pack named usr is mounted as /usr.)
Rvd.mkclient asks for the pack name:

what will the pack’s name be?
Type the pack name after this prompt.
3.2.3.2.2. RVD Pack Mounting Status

Next rvd.mkclient asks the user what the mounting status of this pack is to
be. The pack may be specified as an essential pack which must be mounted
for client operation (as with the usr pack), in which case there will be several
attempts to spin it up at boot time; as a "default” pack for which one at-
tempt to spin up should be made at boot time; or as a pack which is not to
be mounted automatically at boot time. Rvd.mkclient asks for this informa-
tion with this message:

is this pack to be mounted by default (d) or is it
absolutely-must-be-mounted (a)? (default is no mount)
enter a, d, or < Enter>:

If rvd.mkclient does not recognize the user’s response, it goes back to the be-
ginning of the add-new-pack loop with this error message:

199 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

flag (response) is not known, starting over
where (response) is the user’s input.

If the name of this pack is usr, rvd.mkclient does not prompt the user for in-
put, but rather responds with:

usr pack is being made a must-be-mounted pack

This done because the usr pack is assumed to contain the /usr file system,
without which the functionality of a UNIX operating system machine is
severely compromised.

3.2.3.2.3. RVD Pack Spinup Modes

Now rvd.mkclient needs to know what spinup mode(s) to allow for this
pack. There are three options: read-only, exclusive read/write, or both.
Rvd.mkclient prompts the user with:

what spinup mode, read-only (r), exclusive readjwrite (x),
or both (rx), do you want? (default is read-only)
If rvd.mkclient gets either a null string or an unrecognized response it
responds with:
using default (read-only) mode
and will make this pack a read-only pack in rvdtab.
3.2.3.2.4. Server Machine for RVD Pack

Next rvd.mkclient needs to know upon which server this pack resides. Since
having the usr pack spun up is essential to the normal operation of an RVD
client which uses that pack, rvd.mkclient reminds its user of the importance
of having the usr pack available on more than one server for reliability’s sake
with this message (given only if the pack name is us?):

NOTE: we suggest that usr pack be available on more than one server
(Note that only ONE server machine may be specified per entry in rvdtab.)
Rvd.mkclient then prompts with:

on what server(s) does this pack reside?

If the response received is nuil (i.e., <Enter>) rvd.mkclient gives this mes-
sage:

this is not an optional field...
and prompts for the server machine again.
3.2.3.2.5. RVD Drive Number

There are ten drives available for RVD packs. A particular drive number
may be specified, but generally the default (< Enter>) is used:

what drive number (0-9)? (default is don’t care)
If a null or unrecognized response is received, rvd.mkclient responds with:
using default any-number-available drive number
and uses the default (any drive number) for this pack.
3.2.3.2.6. Mount Point

Next comes the issue of where this pack will be mounted. This is an option-
al field, with defaults for some pack names:

where do you want to mount this file system? (default is [usr for

200 15 Dec 1986

4.2 for the IBM RT PC ‘ Remote Virtual Disk System

usr pack, [rvdusr for rvdusr, and [usr/src for src)
Here you shoﬁld enter the pathname of the directory where this RVD pack
is to be mounted when spun up.
3.2.3.2.7. RVD Pack Password

There may be passwords required for access to an RVD pack. If these pass-
words exist and are known, they may be entered at this prompt:

enter the password for this pack, if any:
Null responses to the above prompt are typical.
3.2.3.2.8. Comments in rvdtab

There may be (single line) comments associated with each pack in the rvdtab
file. This comment is optional, and can be typed in response to this prompt:

any conwment to associate with this pack in the data base entry?
3.2.3.2.9. Finishing the Loop

At this point rvd.mkclient will ask again if the user wishes to enter another
pack in rvdtab. The user may enter as many or as few packs as desired.
When a non-affirmative response to the offer to enter a new pack causes
rvd.mkclient to exit that loop and the user has altered rvdtab by adding one
or more packs, this message appears:

Jetc/rvdlrvdtab now looks like this:
and the contents of the rvdtab file are echoed to the user.
3.2.3.3. Creating Mount Points

It is the user’s responsibility to provide the mount directories for an RVD pack
(see mkdir(8)). In the case of the usr pack, rvd.mkclient assumes that this mount
point already exists. In the case that RVD packs rvdusr and/or src have been
added to rvdtab, and no other mount point was specified by the user when
prompted, rvd.mkclient will respond:

making [rvdusr as remote mount point
or
making [usr|src as remote mount point

or both. Rvd.mkclient creates the directories mentioned, if these messages ap-
pear.

3.2.3.4. Rebooting the Client Machine for usr Pack

If the usr RVD pack is being used, the file systems on the client machine must
be reshuffled to move the [usr file system to /site, thus clearing the way for the
usr pack to be mounted as the fusr file system. Rvd.mkclient will do this au-
tomatically, after giving the user this warning:

starting major changes in 30 seconds, interrupi now

if you don’t want your [usr mounted via rvd

At this juncture, rvd.mkclient will edit /etc/fstab to have the jusr file system re-
mounted as /site, if not interrupted by the user with < CTRL-C>. Then
rvd.mkclient gives a second warmning:

You have 30 seconds to cancel an automatic system reboot

If not interrupted in this time, rvd.mkclient will call for a system shutdown in
one minute:

201 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

shutting down in | minute...

When the machine has been successfully rebooted it will have the wusr RVD
pack in place and spun up. Note that the /usr file system has been moved to
/site at this point and may have redundant files (to be found on the usr RVD
pack) which may be culled to save disk space.

3.2.4. Configuring an rvdusr Pack on a Client Machine

The rvdusr RVD pack is used when a client does not want to rely upon a server
machine for its entire /usr file system, but would like to access selected directories
in fusr via RVD in order to save space on local disks. When a client machine de-
cides to use the rvdusr pack, the system administrator needs to decide which files
and directories in /usr to delete from local storage and link the rvdusr pack (which
is mounted as /rvdusr by default). The rvdusr.config script found in /etc/rvd is
designed to facilitate this process.

3.2.4.1.1. Invoking rvdusr.config

The user of rvdusr may need to have special permissions in order to remove
the necessary directories from /usr. Check the ownership and permissions in
Jusr before running this script, or simply su to root before using the script.

3.2.4.1.2. Running rvdusr.config

Rvdusr checks to see what directories are available in /rvdusr and, one by
one, offers you the choice of removing the corresponding directory from the
local Jusr file system and replacing it with a link to rvdusr. After this is done,
all accesses to that directory are made via RVD and the space taken up by
that directory on the local /usr file system is freed for other uses. Note that
RVD access to files and directories generally read-only; this should be taken
into account when deciding about whether to keep a directory locally or ac-
cess it via RVD.

For each directory in /rvdusr rvdusr.config will first display this message:
looking at |usr/(directory)...

where (directory) is the next directory, alphabetically. At this point
rvdusr.config gets the amount of space that that directory occupies on the lo-
cal disk, and comes back with this:

you can save X blocks by putting (directory) on rvd
put (directory) on wd? (keep local is defaudt) (y/n)

An affirmative response causes rvdusr.config to remove (directory) from the
Jusr file system and to replace it with a symbolic link to /rvdusr with this
message:

linking [usr/(directory) to [rvdusr|(directory)...
and after a brief pause during which the changes are made:
done

If the response is not affirmative, rvdusr.config uses the default action, which
is to leave things as they are:

keeping |usr|(directory) on local disk drive

After all directories in /rvdusr are covered, rvdusr.config exits with a status of
0.

202 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

3.2.4.1.3. Recovering RVD Directories to Local Storage

Should the user(s) of the RVD client machine ever wish to return any direc-
tory of /rvdusr to local storage in jusr, the symbolic link to /rvdusr can be
removed and the directory copied from /rvdusr back to [usr.

203 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

4. RVD PROTOCOL SPECIFICATION

This section is optional reading.
4.1. Introduction

4.1.1. Motivation

The Remote Virtual Disk (RVD) Protocol provides the ability to dynamically at-
tach arbitrary disks of different sizes to arbitrary computers. It is especially useful
when the computers are physically remote or when user intervention is impractical
(e.g. when local disks are non-removable, removable packs are expensive, or a wide
variety of disk sizes is desired). The RVD Protocol allows either exclusive or
shared use of remote devices. The latter mode is useful as a low overhead means of
sharing read-only data among physically remote machines.

4.1.2. Scope

The Remote Virtual Disk Protocol simply allows network access to additional disk
drives. The protocol does not provide any services beyond those provided by exist-
ing disk drives. Specifically, the RVD Protocol:

e does not implement sharing, or any form of object storage or naming
mechanism, other than that found on any disk drive.

® does not guarantee reliable writes to the disk.

e does not attempt to resolve architectural byte ordering differences among
machines.

This design of this protocol has been concerned primarily with simplicity of imple-
mentation, ease of use, and performance.

4.1.3. Use

The RVD protocol is layered on top of the DoD IP protocol and an IP protocol
number of 66 decimal (102 octal) has been assigned. This protocol corresponds to
level three of the ISO networking standard.

The RVD protocol allows a client machine to communicate with a remote server
machine’s disk drives as if they were local drives. On the client side, the protocol is
used by the I/O subsystem software, typically a device driver, to communicate
with the remote drive. All client software would then use the client device driver to
treat the remote drive as if it were just another local device. On the server side, ei-
ther an application process or the addition of operating system support could be
used to make the connection between protocol requests and local disk requests.
The level at which the server is implemented is not part of this specification.

4.2. Specification

The RVD Protocol is used in a client/server scenario. The client makes requests and
the server responds. The protocol defines four request/response pairs and an error
response. The pairs are (request/response): ’
SPIN-UP/SPIN-ACK:
The client requests use of one of the server’s drives, and the server acknowledges
the client’s spin-up request.

SPIN-DOWN/SPIN-DOWN-ACK:
The client disconnects from one of the server’s drives, and the server ack-
nowledges the disconnection.

204 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

READ/BLOCK:
The client requests one or more blocks from a spun-up device, and the server
responds with the requested data blocks.

WRITE/WRITE-ACK:
The client writes blocks to a spun-up device, and the server acknowledges one or
more write requests.

ERROR:
The server reports a protocol error while processing a client request; e.g., an error
response would be used if the client had omitted a required field in an RVD
packet. This response is not used for operation errors; e.g., if a failure occurs
when writing to a physical disk then this failure is reported in the status word of
the WRITE-ACK response.

The request/response dialog is conducted by exchanging packets between the client
and server. All RVD packets consist of a standard header followed by data or parame-
ters specific to the packet type. Descriptions of the RVD packet header and of each
packet type follow.

205 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

4.2.1. RVD Packet Format
Generalized Format of RVD Packet

<Byte 0> | <Byte 1> | <Byte 2> <Byte 3>
Packet Type Padding RVD Version
Drive

Nonce
Index
Checksum
Reserved
Specific Parameters

J Packet Type
This byte specifies one of nine RVD packet types:

SPIN-UP
SPIN-ACK
SPIN-DOWN
SPIN-DOWN-ACK
READ

BLOCK

WRITE
WRITE-ACK
ERROR

. Padding

These two bytes are unused by most of the packet types. SPIN-UP and ER-
ROR do allocate the first byte of this field for their own purposes.

® RVD Version

The client and server set this field to the version number of the RVD Proto-
col being used. If either party discovers a mismatch between version numbers
then an error occurs. If the server makes the discovery it returns a protocol
ERROR packet to the client. This packet will describe the mismatch error.

L Drive

An index that represents the drive number on the client machine. It is used
by the client to specify a virtual disk drive on the server. This index is an in-
teger between zero and (2**32)-1 and is encoded as a 32 bit binary integer.
Drive numbers are unique on a given client but there is no correlation
between drive numbers on different clients. The server uniquely identifies a
virtual disk by the client-drive pair. The server returns the given drive
number in its response to the client.

L Nonce

A 32-bit unique identifier. The nonce is an unsigned integer between zero and
(2%*32)-1, encoded as a 32-bit binary integer. Since the nonce is a fixed range
number it will be unique only over a fixed period of time. It is assumed to be
unique for an interval of time that is several times the lifetime of a single
packet. The nonce is used to identify a request/response dialog between the
client and server. As such, the client inserts a nonce value into its request
packet and the server will insert the same nonce into the appropriate response
packet.

206 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

. Index

The index is a hint to the server on how to find connection specific informa-
tion. (A connection is a virtual drive/client drive pairing.) The index has no
predefined meaning and the server may use it as any manner of hint desired.
The only client request which does not specify an index is SPIN-UP. The
responding SPIN-ACK packet will contain, among other things, the server
Index, representing the connection that was created by the SPIN-UP request.
It is up to the client to return this index with every packet that goes out to
this virtual drive.

If the user ever submits an incorrect Index the server will still find the connec-
tion information. It will then send an ERROR packet specifying the correct
index. The server would still process the request normally.

o Checksum

A 32-bit checksum of the packet. The checksum is the only assurance of reli-
able data transfer. It is assumed that if the checksum is correct then the data
is the same as on the disk.

The checksum is computed by adding together all the 32-bit words in the
packet. The checksum field is considered to be zero for this computation. If
the packet does not end on a 32 bit boundary, then the checksum computa-
tion assumes that the packet is padded out by zeros. The low order 32 bits
are then used as the checksum. (The 32 bit sum is taken modulo 2**32.)
Checksurn is computed in Vax byte ordering.

. Specific Parameters
See the descriptions of the packet types for additional parameters.

207 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

4.2.2. Packet Format: SPIN-UP
Format of SPIN-UP Packet

< Byte 0> <Byte 1> | <Byte 2> <Byte 3>
Packet Type Mode Padding RVD Version
Drive
Nonce
Index
Checksum
Reserved
Pack Name
Capability
Padding | Blocking Factor

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-
sum.)

4.2.2.1. Field Definitions for Packet Type: SPIN-UP
L Mode

This byte describes the access mode of the virtual drive. Once a virtual drive is
spun-up in a particular mode any other client who wants to use that same
drive (even from another machine) must open it in the same mode. The mode
is one of three values:

— READ-ONLY gves the client read-only access to the drive. Any other

client can read the drive as long as they have also spun it up in READ-
ONLY mode.

— SHARED allows read/write access to the drive by more than one user.

— EXCLUSIVE gives the client read and write access to the disk, but locks
the disk so that no other client can access the disk while it is spun up.

® Index
this is the only packet type that does not specify an index. The server will re-

turn an appropriate index in the SPIN-ACK response packet. This value must
then be included in all future client request packets.

1 Pack Name

An ASCII string representing the name of the virtual disk pack that a client
wishes to associate with the specified local disk drive. The pack name field is a
fixed length string of 32 characters. Each of these characters is represented as
an 8-bit byte. The string is null terminated unless the name length is greater
than or equal to 32 characters. In that case, the string is truncated to the 32-
byte pack name field size.

¢ Capability

This field is, like the pack name, a maximum 32-character, null terminated,
ASCII string. There are separate capabilities for each drive in each of the
spin-up modes. If the mode were, for example, READ-ONLY, then the client
would fill in the capability field with the READ-ONLY capability string for
this drive.

208 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

] Blocking Factor

This is the read blocking factor, the maximum number of blocks the client can
read at one time in a single packet. More exactly, it is the maximum number
of 512 byte data blocks that the client will accept in a BLOCK packet type. If
the blocking factor is greater than the maximum number of blocks the server
can send it will be modified in the SPIN-ACK response packet.

4.2.2.2. Operation

Spinning up a disk establishes a connection between the server’s virtual drive and the
client’s local drive. For example, if the client MYMACHINE wishes to spin up the
remote virtual disk “Foo” as his local drive 3, then he sends a SPIN-UP packet to
the server. He fills in Packet Type with SPIN-UP and Mode with a valid mode. He
fills in Drive with the integer 3. He also supplies the capability for that mode and
places the string “Foo” in the Pack Name field.

Upon receipt of the SPIN-UP packet, the server would attempt to fulfill the request.
If everything is correct (the drive exists, the capability is correct and so on), the
server associates virtual disk “Foo” with drive 3 from client MYMACHINE. From
now on, any reference from client MYMACHINE to drive 3 will refer to virtual disk
“Foo”. The server responds with a SPIN-ACK packet back to the client.

If the server detects an error, it will reply with an ERROR packet. This ERROR
packet can be caused by many different classes of errors. First, “real” disk errors; for
example, the physical disk containing “Foo” is trashed, or any error that might oc-
cur when accessing a physical disk. This is different than the typical case of a com-
puter connected to a physical disk. When accessing a local drive, the error would
not be detected until an operation was performed on the drive.

Another type of error is invalid argument values such as a non-existent virtual drive,
a bad password, or a bad checksum. There can also be incomnsistency errors: a disk is
already spun up as drive 3, or another client has disk “Foo” spun-up in a conflicting
mode. All of these errors will be reported via the ERROR reply.

209 15 Dec 1986

4,2 for the IBM RT PC

4.2.3. Packet Format: SPIN-ACK
Format of SPIN-ACK Packet

Remote Virtual Disk System

<Byte 0> | <Byte 1> | <Byte 2> < Byte 3>
Packet Type Padding RVD Version
Drive
Nonce
Index
Checksum
Reserved
Number of Blocks on Drive
Burst ! Queue Length
Padding [Blocking Factor

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-

sum.)

4.2.3.1. Field Definitions for Packet Type: SPIN-ACK

Index
The client must save the server’s index for use in all future transmissions.
Number of Blocks

The server returns the size of the drive in 512 byte blocks. The client should
not send any read or write requests for blocks cutside of the drive boundaries.
If the client does attempt an out of bounds request the server will inform him
using the status word in the BLOCK or WRITE-ACK reply packet. The ER-
ROR packet is primarily used for protocol errors.

Burst

This is a 2-byte integer that represents the maximum number of packets the
server will handle in a single transmission. This value and the blocking factor
value are then used by the client when partitioning read and write requests.

Queue Length

This is the maximum number of outstanding requests the server will handle for
a virtual drive at any one time. This value is different than burst size. The
client can send multiple transmissions of burst size packets until the number of
packets equals queue length. The client has then saturated the server for this
drive and must wait for the server’s response.

Blocking Factor

This is the read blocking factor, the maximum number of blocks the client can
read at one time in a single packet. The value of this field is not necessarily
the same value transmitted by the client in the SPIN_UP packet. If the
transmitted blocking factor is greater than the maximum number of blocks the
server can send, it will be modified in the SPIN-ACK response packet.

4.2.3.2. Operation

The server sends a SPIN-ACK packet in response to a valid SPIN-UP packet. This
indicates to the client that the connection request for the server’s virtual drive to the

210 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

client’s local drive was successful.

In addition to returning the size of the drive and other connection details, the server
provides an index value. Although it is recommended that the client use this index
value in all future requests, the server can operate with incorrect Index values. If the
server receives a bad index, it will send an ERROR packet of BAD-INDEX type to
the user, but the operation will still occur correctly. The most likely cause of a bad
index would be the client crashing then attempting to reuse the connection. In all
probability the index would be lost, but the BAD-INDEX packet would correct
that.

An example helps in explaining the difference between burst size, queue length, and
blocking factor. Suppose the client must read forty blocks and that the SPIN-ACK
response has reported a blocking factor of two, a burst size of five, and a queue
length of ten. The blocking factor limits each read request to two blocks. Thus the
client must transmit two sets of five read request packets for the first twenty blocks,
wait for the server to respond with the data, then transmit the next two sets of five
requests.

211 15 Dec 1986

4.2 for the IBM RT PC ' Remote Virtual Disk System

4.2.4. Packet Format: SPIN-DOWN
Format of SPIN-DOWN Packet

<Byte 0> | <Byte 1> | <Byte 2> <Byte 3>
Packet Type - Padding RVD Version
- Drive ‘
- Nonce
Index
Checksum
Reserved
Capability

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-
sum.)

4.2.4.1. Field Definitions for Packet Type: SPIN-DOWN
e Index

Should be the index returned by the server for this drive in the SPIN-ACK
packet.

4.2.4.2. Operation

If a user wishes to spin down the virtual disk in his local drive 3, then he simply
sends a SPIN-DOWN packet to the server. He fills in Packet Type with SPIN-
DOWN, and he fills in drive with the 32 bit integer 3. Upon receipt of the SPIN-
DOWN packet, the server would attempt to terminate the connection between the
client, local drive 3, and the virtual drive. If this worked correctly, the server sends a
SPIN-DOWN-ACK back to the client. If the drive was not spun up, or there were
some other error, then the server replies with an ERROR packet. It is not polite for
a user to consider his disk spun down until he receives the SPIN-DOWN-ACK
from the server.

212 15 Dec 1986

4.2 for the IBM RT PC

4.2.5. Packet Format: SPIN-DOWN-ACK
Format of SPIN-DOWN-ACK Packet

Remote Virtual Disk System

<Byte 0>

<Byte 1> | <Byte 2>

< Byte 3>

Packet Type

Padding

RVD Version

Drive

Nonce

Index

Checksum

Reserved

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-

sum.)

4.2.5.1. Field Definitions Packet Type: SPIN-DOWN-ACK

4.2.5.2. Operation

This is the success acknowledgment to a client’s spin-down request. Drive, nonce,
and index have the same values as those specified by the client.

213

15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

4.2.6. Packet Format: READ
Format of READ Packet

<Byte 0> | <Byte > | <Byte2> <Byte 3>
Packet Type Padding RVD Version

Drive
Nonce
Index

Checksum

Reserved

Starting Block Number
Block Count

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-
sum.)

4.2.6.1. Field Definitions Packet Type: READ
° Starting Block

The number of the first block that the client wishes to read. This is an abso-
lute offset from the beginning of the virtual drive. This number is a 32 bit in-
teger with a range of zero to (2**32)-1.

. Block Count
The number of blocks that the client wishes to read.

4.2.6.2. Operation

To read data from a local drive, the client sends a READ packet with the appropri-
ate values. (This drive must have been associated with a virtual disk through a pre-
vious spin-up request.) The Drive field is filled with the drive number; the nonce, in-
dex, and checksum fields are initialized appropriately; and the desired block offset
and number of blocks are written into the packet. Upon receiving the packet, the
server looks up the connection between the client’s local drive and the server's virtu-
al drive.

If the connection exists, the server then tries to send the requested data to the client.
If the read request is within the bounds of the disk and the physical read is success-
ful, the server responds with a BI,LOCK packet. A BLLOCK packet contains a block
of data, a block number, and a 32 bit status word.

If the server detects an error, it still sends a BLOCK packet, although it has a non-
zero status word. Errors can be the result of physical errors on the disk or any of the
assorted things that can go wrong on a disk. If the data in the packet is valid, then
the invalid-data field in the status word must be zero. The count field in the status
word is set to the number of times the server attempted to read the block before it
was successful. (Le., if the first try succeeded, the count is zero, if the second try suc-
ceeded, count is one, and so on.) If the count exceeds the size of the field, then
count is set to the maximum in the field. If the Start Block was invalid, then the bad
block address field in the status word will be set. If a multiple block read extends
beyond the drive boundaries, then only the in-bounds disk blocks will be returned
and the bad-block address field in the status word will be set.

214 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

The only time the server sends an ERROR packet in response to a READ is in the
case of a malformed READ packet. Protocol errors cause ERROR packets and
disk errors cause non-zero status word. Typically ERROR packets will be sent for
invalid checksums, bad index, or a zero in the Block Count field.

READs can timeout. This protocol does not guarantee delivery of packets. It is as-
sumed that most packets will reach their intended destination, but there are no
guarantees. It is up to clients to handle READ timeouts the same way they would
treat physical disk timeouts.

215 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

4.2.7. Packet Format: BLOCK
Format of BLOCK Packet

<Byte 0> | <Byte 1> | <Byte2> <Byte 3>
Packet Type | ., Padding RVD Version

. Drive.
Nonce
Index

Checksum

Reserved

Block Number
Drive Status

Data

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-
sum.)

4.2.7.1. Field Definitions Packet Type: BLOCK
. Block Number
This identifies this block in the virtual disk.
] Drive Status

Drive Status is a 32-bit status word describing the status of the virtual disk.
Disk errors are reported through this word. Protocol errors are reported with
an ERROR packet.

. Data

This is data read from the virtual disk. There are (512 x blocking_factor) bytes
of data in this field. The checksum guarantees reliable data transmission. (The
protocol cannot guarantee the accuracy of the disk to protocol data transmis-
sion.)

4.2.7.2. Operation

The BLOCK packet is the response to the READ request. It includes the data re-
quested and enough information to allow the client to determine which request this
is in response to. (Note that there can be many outstanding READ requests, even in
the case where a drive’s access is restricted to a single outstanding request. A client
can always have requests out to more than one drive.)

In case of an error, the server fills in the appropriate bits in the status. The client
must check the data-valid field in the status as the data may be valid even in the case
of a non-zero status.

216 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

4.2.8. Packet Format: WRITE
Format of WRITE Packet

<Byte 0> | <Byte 1> | <Byte2> | <Byte3>
Packet Type ~ Padding RVD Version

Drive
Nonce
Index

Checksum

Reserved

Block Number
Total Blocks in Request
Index of this Block in Request

Data

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-

sum.)

4.2.8.1. Field Definitions for Packet Type: WRITE
. Block Number
This is the starting block number for the write. It is an integer that represents

the absolute block offset from the beginning of the virtual drive for this data
block.

¢ Total Blocks
This is the total number of blocks in a sequence of write requests.

U Block Index
This is the block number of this request.

L Data
This is the data that is to be written to the virtual drive starting at the specified
block number. The data bytes are ordered in the packet exactly the way they
are ordered on disk. The bits in a byte are ordered in accordance with the IP
specification. The size of the data field is determined by subtracting the size of

the header fields from the total size of the packet. The packet size is given by
the IP protocol.

4.2.8.2. Operation

The WRITE packet type has been designed to be sent as a burst of packets. If a
client wishes to write data io the virtual disk, it creates a sequence of packets, each
with the same Total Blocks value but incrementing the Block Number and Block
Index. The data is then copied to the data fields of these sequential packets in
1024/512 byte chunks.

Upon receipt of this burst of WRITE packets the server orders the packets, copies
the data to a single contiguous buffer, and does the write as one operation. The
server sends a WRITEACK if the write was a success, but only for the first packet
in the burst.

217 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

The WRITEACK includes a 32-bit status word. In the case of a disk error, a WRI-
TEACK with a non-zero status word will be returned. Generally these will be the
same type of errors as on a READ request. Additionally, if you try to write to a
READ-ONLY disk, then the no-write-permission field is set in the status word.
Protocol errors will cause ERROR packets to be sent.

Writes can timeout. Again, clients are expected to deal with a WRITE timeout in
the same way in which they would deal with a disk timeout.

218 15 Dce 1986

4.2 for the IBM RT PC

4.2.9. Packet Format: WRITEACK
Format of WRITEACK Packet

Remote Virtual Disk System

<Byte 0>

<Byte 1> | <Byte 2>

<Byte 3>

Packet Type

Padding

RVD Version

Drive

Nonce

Index

Checksum

Reserved

Block Number

Drive Status

Number of Blocks for this ACK

(Sec the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-

sum.)

4.2.9.1. Field Definitions for Packet Type: WRITEACK

. Block Number

The number of the block that the server is acknowledging having written.

. Status

The 32-bit Status word that represents the state of the disk and reports errors
in the write procedure.

L Number of Blocks

The number of blocks that have been successfully written.

4.2.9.2. Operation

WRITEACK is the response to the WRITE request. It signals the completion of
the WRITE request. The WRITEACK is not sent until after the burst of write re-
quests has been written to the physical disk. Only one WRITEACK is sent per

burst.

Disk errors are reported through the status word.

219

15 Dec 1986

4.2 for the IBM RT PC

4.2.10. Packet Format: ERROR
Format of ERROR Packet

Remote Virtual Disk System

< Byte 0>

< Byte 1>

< Byte 2>

< Byte 3>

Packet Type

Error Type

Padding

RVD Version

Drive

Nonce

Index

Checksum

Reserved

Error Dependent Data

Up to RVDDSIZE (512) Bytes of

(See the section on RVD Packet Format for a complete description of the fields in the
standard RVD header: Packet Type, RVD Version, Drive, Nonce, Index, and Check-

sum.)

4.2.10.1. Field Definitions for Packet Type: ERROR

. Error Type

A byte representing the type of error that the ERROR packet is reporting.

4.2.10.2. Operation

ERROR packets are sent out when the scrver wants to tell the user that some error
has occurred. They are usually sent when the error was in the protocol, or some
other high levei thing wrong with the virtual disk system. Errors that are roughly
equivalent to those that a physical disk would give are typically returned in the 32
bit status word that is part of BLOCK and WRITEACK.

220

15 Dec 1986

4.2 for the IBM RT PC

RVDVERSION

/*

* IP protocol number
*/

RVDPROTO 66

/* Packet types */
RVDSPIN
RVDSDOWN 2
RVDREAD
RVDWRITE 4
RVDSPACK 17
RVDERROR 18
RVDACK
RVDBLOCK 20
RVDWACK

/*
* Status word masks
*
RVDSTVAL 0001
RVDSTCNT 0036
RVDSTADR 0040
RVDSTWRL 0100

l’*

* Opening modes
*/

RVDMRO
RVDMSHR
RVDMEXC

/*

* Error types
¥/
RVDENOER
RVDEND
RVDEBPWD
RVDEOMD
RVDECKSM
RVDEIDX
RVDEPACK
RVDESPN
RVDEBMD
RVDEPKT
RVDENAH

0000

0002

0004

0006

4.2.11. RVD Protocol Constants

4

21

0001
0002
0004

0001
0003
0005
0007
0010

0011
0012

Remote Virtual Disk System

{* Current protocol version */

/* SPIN-UP packet */

/* SPIN-DOWN packet */
/* READ packet */

/* WRITE packet */

/* Ack for SPIN-UP */

/* ERROR packet */

/* Ack for SPIN-DOWN */
/* Block of data */

/* Ack for WRITE ¥/

/* If 0 then valid data */

/* Count of tries on foreign end - 1 */
/* Bad block address */

/* Write attempted on read-only disk */

/* Read-only mode */
/* Shared mode */
/* Exclusive mode */

/* No error */

/* Non-existent drive */

/* Bad password for mode */
/* Already open in a different mode */
/* Invalid Checksum */

/* Index correction */

/* Non-existent disk-pack */
/* Drive already spun up */
/* Bad mode */

/* Unknown packet type */
/* Non Active Host */

221 15 Dec 1986

4.2 for the IBM RT PC

RVDEXMD
RVDEZBL
RVDETBL
RVDEPNM
RVDETCG
RVDETGH
RVDESNA
RVDEIDA

RVDERQU
RVDETIM
RVDEBVER 0065

0013
0014
0015
0016
0017
0020
0021
0022

0023
0064

Remote Virtual Disk System

/* Pack was spun up in EXCLUSIVE mode */

/* Zero blocks requested */

/* Too many blocks requested */

/* Pack not physically mounted */

/* Too many connections for this server */

/* Too many connections for this host */

/* Scrver not currently active */

/* Identical pack already spun up in this
drive, in the requested mode */

/* Requested mode unavailable. */

/* Timeout */

/* Invalid version */

222 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

5. RVD CONTROL PROTOCOL SPECIFICATION

This section is optional reading.

5.1. Overview

The Remote Virtual Disk Control (RVDCTL) protocol supplies a Remote Virtual Disk
server with both operating instructions and information about its configuration. An RVD
server process comes into existence with no knowledge of the physical configuration of the
system in which it is embedded or the logical configuration of the virtual disk packs it is to
manage. These virtual disk packs may already exist. Supplying this information via a net-
work connection instead of from files on the server host makes it possible to administer all
aspects of server operation remotely.

This description assumes that the reader is already familiar with the basic concepts and ter-
minology of the Remote Virtual Disk system, as described in Chapter 1 of this article.

* QOperations and operands marked with an asterisk to the left have not yet been imple-
mented.

There are four scenarios in which the RVDCTL protocol is used:

(1) Initialization
The first step after creating an RVD server process is to send it, using the RVDCTL
protocol, a description of the physical and virtual disk configuration it is to manage.

Because RVDCTL is a network protocol, the permanent data base that contains this
state description may be managed on a machine different from that of the server.

(2) Permanent changes

When permanent changes to the physical and virtual disk pack configuration are
desired, a management program both updates the permanent data base and sends to
the server the same updates, again using the RVDCTL protocol.

(3) Temporary changes, for maintenance.

A client that can supply an operations password can invoke certain maintenance
functions of the RVDCTL protocol, such as changing the logging level, shutting
down the server, posting a message, or forcing off certain clients. For operations pur-
poses, it is possible to invoke any of the update functions normally associated with
permanent changes. Although a running RVD server would operate on the updated
basis, if that server process were killed and recreated, such temporary changes would
be forgotten, because the new server would receive its initialization from the per-
manent data base.

(4) Client use

RVD clients use the RVDCTL protocol for certain client-server interactions, such as
flushing out old spinups, and inquiring about current operations.

There are several programs that invoke the RVDCTL protocol. Corresponding to the
second scenario, above, is a data base management program (vddb(8)), which operates as
follows:

e The person in charge of maintaining the data base runs the data base management
program, which prompts for and validates input.

e The data base management program updates the disk files containing the permanent
data base.

e The data base management program opens a control connection to the currently-
running server and sends the server the updated information.

223 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

® The server modifies its state tables according to the requests.
L The server acknowledges the modification.

For simplicity, the data base management program stores its permanent data base in the
form of a sequence of already-formatted protocol messages, so the initialization scenario is
accomplished simply by sending a copy of the permanent data base to the server on the
RVDCTL network connection. The rvdsend(8) program does this job.

The programs that perform the third and fourth scenarios are commands that can be run
on any client (perhaps on behalf of another client) to invoke one or more specific
RVDCTL functions at the server directly, without involving the database program.

Because most control operations for the RVD server require transferring only small
amounts of data, and one wants to be able to implement servers on machines that do not
provide a full TCP, the control protocol is UDP-based. It is a simple, lock-step, idempo-
tent, message-response protocol. For all the control functions of interest, the control data
fit into a single packet, which further simplifies the protocol. Idempotent means that if a
client receives no response to a request (and is therefore unsure of whether or not the
server acted on it), it is always safe to resend the same request, because by design successive
repetitions of all RVDCTL operations have no ill effects.

The RVDCTL protocol carries very little traffic in comparison with the RVD protocol, so
ease of construction and debugging therefore has a higher priority than performance. So
that the control connection can handle operations of varying parameter requirements (to
avoid the need to design a new packet format every time a new control function is added),
and so that a single source implementation can apply to machines of different byte order,
all data is transmitted as ASCII strings. For simplicity in parsing, arguments are transmit-
ted in the format “keyword =value”. This approach also makes RVDCTL packets self-
explanatory when encountered during monitoring or auditing.

5.2. Syntax
< message > == <opcode> <operands>
<opcode > == operation= <value> |

success= < value > |

failure= <value > error= <value >
<operand > | <operands> <operand >
<keyword > = <vaiue >

<string >

< string >

<operands> :=
<operand > =
<keyword> :=
<value > 1=

il

<string > is a string of network ASCII characters, terminated by a separator charac-
ter. The separator characters are space, tab, newline, carriage return, and formfeed.
One or more separators must appear between operands. Separators may be included
in strings by quoting them. The quote character is the backslash (\). A backslash may
be included in an string by doubling it (\). Also, to include an equals sign (=) in a
string, it must be quoted.

The particular keywords used depends on the operation being invoked. The keywords

1 €8 1« A Y

“operation”, “‘password”, “nonce’’, “‘success”, “failure”, and “‘error” are universal.

(1) The “operation” keyword must be the first keyword in each request packet. Its
value is the name of the requested operation.

(2) The “password”keyword operation requires one. There are three kinds of pass-
words. The operations password authorizes shutdown, logging, and physical
configuration management. The administrative password authorizes allocation
and deallocation of virtual disks. Individual pack passwords authorize usage of

224 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

those packs.

(3) The “nonce” keyword appears in every request, with a value chosen by the re-
quester to be different from any other request for which a late response might
still arrive. Every response contains a copy of the nonce of the request to which
it responds.

(4) The “success” keyword must be the first keyword in a response to a successful
request. Its value is the name of the operation performed.

(5) The “failure” keyword must be the first keyword in a response to an unsuccessful
request. Its value is the name of the operation that failed. It may be accom-
panied by an “error="" operand describing the error which occurred. The value
of the “error” keyword is a human-readable string describing the error which oc-
curred.

1 1

Except for “operation”, “success”’, “failure”, be the first keyword in a message, the
order of operands in a message is unimportant.

Where a number is called for, it is represented in the operand value string as an ASCII
decimal integer. Where an Internet Protocol (IP) Address is called for, it is represented
in the operand value string as .q "A.B.C.D”, in network standard ASCII decimal form.
Where a mode is called for, it is represented in the operand value string as an ASCII
decimal number coded in the following way, in any sum desired:

1 = read-only spinups allowed

2 = shared spinups allowed (not currently implemented)
4 = exclusive spinups allowed

0 = no spinups allowed

Port: The RVDCTL protocol operates on UDP port 531.

5.3. Operations

(1) Add a physical device partition to the set of partitions managed by the RVD
server.

operation =add_physical

Required operands:

password The operations password for the RVD server.

filename Path name of the device to be managed as a physical
partition.

blocks The number of 512-byte sectors in this physical
partition.

The device need not be a real physical disk; any device (e.g., a file) that behaves
like a raw disk partition will work equally well.

* If the server finds it is unable to open the physical device it marks the physical
device as “‘disused”, and returns an error. (See disuse_physical.)

Note that add physical is normally invoked as part of updating the permanent
data base that describes the server configuration. If add physical is invoked
without a data base update, the next time the server is shut down the change

225 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

made by the add_physical operation will be forgotten.

(2) Delete a physical device partition from the set of partitions managed by the RVD
server.

operation =delete_physical

Required operands:

password The operations password for the RVD server.
filename Path name of the device to be managed as a physical
partition.

If there are any virtual disk packs allocated on this physical device,
delete_physical returns an error response, and does not delete the device.

Note that the delete_physical operation is normally invoked as part of updating
the permanent data base that describes the server configuration. If
delete_physical is invoked without a data base update, the next time the server is
shut down the change made by the delete_physical operation will be forgotten.

(3) Stop using a physical disk partition.
operation = disuse_physical

Required operands:

password The operations password for this RVD server.
physical The pathname of the device partition to be
disused.

The disuse_physical operation allows an operator to take a partition out of use,
for example because the disk is getting hard errors. (The server may, on its own,
place a partition that is getting errors in disused mode.) Add virtual and
delete_virtual operations may be exccuted on a disused partition. Attempts to
spinup packs that are located on a disused partition receive the error response
“pack temporarily unavailable.” The scrver continues to maintain records of ex-
isting connections and to allow spindowns, but attempts to read or write a previ-
ously spunup pack receive an error packet containing the error code “pack tem-
porarily unavailable.”

(4) Try to use a physical disk partition.
operation = use_physical

Required operands:

password The operations password for this RVD server.
physical The pathname of the device partition to be
used.

226 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

If a physical partition is currently disused, this operation puts the partition back
into service. If the physical partition does not exist or is already in use,
use_physical returns an error.

(5) Allocate a virtual disk pack.
operation=add_virtual

Required operands:

password The administrative password for this RVD server.
physical The pathname of the device partition this
virtual disk pack is to be on.
name The name of this virtual disk pack (n.b., upper
and lower case are distinguished.)
packid * The unique id of this pack on this server.
owner The name of this virtual disk pack”s owner.
rocap The read-only mode password (may be null).
excap The exclusive mode password (may be null).
shcap The shared mode password (may be null).
modes The allowable modes this virtual disk pack
may be spun up in.
offset The offset, in blocks, of this virtual disk pack
from the start of the physical partition.
blocks The number of 512-byte blocks in this virtual disk.

Optional operands:

ownhost Internet address of the owning host of this
virtual disk pack. If none is supplied, the disk
is assumed to not have an owning host.

Add_virtual is normally invoked as part of updating the permanent data base that
describes the server configuration. If add_virtual is invoked without a data base
update, the next time the server is shut down the addition made by add _virtual
operation will be forgotten.

(6) Deallocate a virtual disk pack
operation = delete_virtual
Required operands:
password Administrative password.

Optional operands:

packid * The unique identifier of the virtual disk
pack to be deallocated

name The name of the virtual disk pack to be
deallocated.

One of the operands {packid, name} must be present. If both are present, they
must refer to the same pack.

Delete_virtual is normally invoked as part of updating the permanent data base
that describes the server configuration. If delete_virtual is invoked without a data

227 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

(7

(8)

base update, the next time the server is shut down the deletion made by
delete_virtual operation will be forgotten.

Modify the definition of a virtual disk pack.
operation =modify_virtual

Required operands:

password Administrative password.
name The name of the virtual disk pack whose
description is to be modified.

Optional operands (any operand present supersedes the value previously supplied
by add_virtual or modify_virtual of the corresponding parameter for this virtual
disk pack):
packid * The unique identifier of this pack. If
provided, this operand is used to identify
pack to be modified, and the name operand
is taken to be a new pack name.

owner The name of this virtual disk pack”s owner.
rocap The read-only mode password
excap The exclusive mode password
shcap The shared mode password
modes The allowable modes this virtual disk pack

may be spun up in, as an ASCII decimal number.
blocks The number of 512-byte blocks in this virtual

disk. Must be less than or equal to the current
number of blocks on this disk. In general,
changing a disk”s size is a bad idea, especially
if it is currently in use.
ownhost Internet address of the owning host of this disk.

Modify_virtual is normally invoked as part of updating the permanent data base
that describes the server configuration. If modify virtual is invoked without a
data base update, the next time the server is shut down the changes made by the
modify virtual operation will be forgotten.

Exchange the names of two virtual disk packs.
operation = exchange_names

Required operands:

namel Desired name for the first virtual disk pack

packidl * Unique identifier of first pack

password|1 The exclusive mode password of the first
virtual disk pack

name2 Desired name for the second virtual disk pack

packid2 * Unique identifier of second pack

password2 The exclusive mode password of the second

The operands name/ and name2 must be the names presently associated with the
two packs. Success for this operation means that those two names are now asso-
ciated with the packs in the order requested, whether or not they were before the
operation.

228 15 Dec 1986

4.2 for the IBM RT PC ~ Remote Virtual Disk System

)

(10)

(11

This operation is used as part of an update procedure, in which two copies of a
library virtual disk pack are maintained. One copy is normally spun up by
clients in read-only mode; the other is the “maintenance” copy, to which the
owner makes changes. Once a consistent set of changes are ready for release, the
owner exchanges the names of the packs. Other users can then spin the pack
down and back up again by name to get the new copy. If the server shuts down
and restarts, clients that have temporarily cached the packid can respin up the
old pack by packid, to complete their session without being forced prematurely
to switch to the new library.

Exchange _names is normally invoked as part of updating the permanent data
base that describes the server configuration. If exchange _names is invoked
without a data base update, the next time the server is shut down
exchange_names will be forgotten.

Force a virtual disk pack to be spun down.
operation = spindown_virtual

Required operands:

name The name of the virtual disk pack to be forced
down.
password The exclusive mode password of the virtual

disk pack to be forced down.

This operation is normally used by the owner of a virtual disk pack that was
spun up on a machine that crashed. It forces the specified virtual disk pack to be
spun down from all the machines that have it spun up.

Force all virtual disk packs of a given client at this server to be spun down.
operation = spindown_host

Required operands:

name The Internet address of the client whose disk
packs are to be forced down.

Optional operands:

password If the spindown_host request was not sent from
the client whose disks are to be spun down,
the operations password must be supplied.

This operation has two uses:

a) It should appear in a 4.2/RT client’s /etc/rc file, or a DOS client”s
autoexec.bat file, so thai when a host recovers from a crash, all iis previous-
ly spunup virtual disk packs are spun down. This spindown insures that
the server state agrees with the client state.

b) An operator can use this operation to force down the virtual disks of a
client which has crashed and that may be down for some time.

Display all spinups involving a virtual disk pack, or a client.

operation = display_virtual

229 15 Dec 1986

4.2 for the IBM RT PC

Remote Virtual Disk System

Required operands (exactly one of the following must be present):

name

host

Optional operand:

start = < value >

password

The name of a virtual disk pack. If present,

display virtual returns a list of all the spinups

of this disk pack. These are the spinups that

would be forced down if a spindown_virtual operation
naming this pack were performed.

The IP address of a client. If present,

display virtual returns a list of all the spinups

of this client. These are the spinups that

would be forced down if a spindown_host operation
naming this client were performed.

An ASCII decimal integer giving the offset
of the first spinup description wanted.
This operand is normally supplied if

a previous invocation of display_virtual
contained the response "more = true”.

If the display_virtual operation requests
information about a client different from the
one making the request, the operations
password must be supplied.

This operation returns a success packet containing an ASCII text string describ-

ing the spinups (host/drive number pairs) of this virtual disk. The response

packet contains:

success = display_virtual
number= <valuel >

connections = <value2 >

more = true (optional responsc)
<valuel >
The number of currently active spinups for this virtual disk pack or client.
<value2 >

A canonicalized string, with one line per spinup, containing as many spinup
descriptions as will fit in one UDP packet. Each line is a collection of space-

separated tokens, as follows:

pack = library host=18.72.0.5 drive=9 mode =4

Since the string is canonicalized, all spaces and CRLF sequences are quoted.

If there were more spinup descriptions than would fit in a single packet, the response
operand ‘‘more = true” will appear.

(1)

Log statistics of external interactions.

operation = log_external_statistics

Required operand:

password

The operations password

230 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

2

&)

4

(3

(6

Dump into the log file all statistics kept by the RVD server concerning interac-
tions with clients--number of packets exchanged, disk operations, etc.)

Log all statistics

operation =log_all_statistics

Required operand:

password The operations password

Dump into the log file all statistics kept by the rvd server.
Shut down server

operation = shutdown

Required operands:
password The operations password

Log all statistics, then perform a clean shutdown of the server.
Change log level

operation = log_level

Required operands:

password The operations password

level New log level as a hex number (N.B., not decimal.)
Change which events are logged; see specification of the RVD protocol for
definition of log levels.
Truncate log

operation = log_truncate

Required operands:
password The operations password
Truncate the log file to keep it from growing too large. [In the BSD 4.3 UNIX

implementation of RVD, logging is done with the UNIX logging system (sys-
logd), so this operation has no effect.]

Allow spinups
operation = allow_spinups
Required operands:
password The operations password, for a physical
device, or the exclusive mode pack
password, for a single virtual pack,
mode The mode of allowed spinups.
Optional operands:

physical Path name of the device partition to which
this mode setting applies. (If absent,
the mode applies to all partitions managed by
this server.)

231 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

name The name of a virtual disk pack to
which this mode setting applies.

Response operand:

oldmode The spinup mode that was formerly allowed for
this partition or virtual pack.

This operation is used to prevent or allow further spinups of a single virtual
pack, or all the virtual packs on a given device partition of this RVD server; it
has no effect on spinups already in force. When a server first comes up it allows
no spinups (mode=0), so an invocation of allow_spinups is required as part of
starting a server.

A separate allowed spinup mode value is maintained for each pack and for each
partition; the actual modes permitted for a pack are given by the logical AND of
the mode value for the pack and the mode value for the partition on which it is
located.

The server rejects spinups that would be allowed by the static pack description
but that are prevented by the current setting of allow_spinups with a distinct error
code indicating temporary unavailability.

Usage scenarios: If a server is to be dumped, one might allow only read spinups
during the dump; if a server is to be taken down one might sometime earlier al-
low no new spinups. The maintainer of a library disk pack that needs to be up-
dated might first allow no spinups, then after a period of time adequate for most
clients to finish their sessions, do a spindown_virtual to get rid of any remaining
spinups.

(7) Post an operations message.

operation = set_message

Required operands

password The operations password

message= <string> The (canonicalized) message <string> replaces
any previous operations message. If <string>
is null, any previous message is cleared. The
content of the message is limited to 400 bytes,
and is network ASCII (lines terminated with
canonicalized CRLF"s).

This operation, together with the next one, allows an operator to post a message
(e.g., "server going down at 5:00 p.m. for preventive maintenance”) for clients of
an RVD server.

(8) Get the operations message.

operation = get_message (no required or optional operands)

Response operands:

success = get_message

message = < string > <string > is a canonicalized string of network
ascii to be displayed as an operations message.
If there is no current operations message,
<string> is null. (Note that in either case
<string > is terminated by an operand separator.)

232 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

This operation would normally be invoked by a client as part of bringing up a
system that uses RVD and also whenever spinning up a virtual disk pack.

(9) Change a user password.

operation = change_password

Required operands

packname The name of the virtual disk pack whose password
is to be changed.

mode The spinup modes for which a new password is being
supplied. If more than one mode is specified,
the operation will be rejected unless the old
passwords for the several modes are all the same
as the old_password operand.

old_password The current password for this pack and mode;
a null string if there is no current password.

new_password The new password; a null string if there is to be
no password.

Note that this function is not intended for direct use by a client, but rather for
use by the database update system; if used by a client without also updating the
database, the password will be restored to its old value the next time the RVD
server is restarted.

(10) Return a list of active virtual packs

operation = display_active

Optional operands:

filename Path name of device partition for which a
list of active virtual packs is wanted. If omitted,
a list of all active virtual packs is returned.

start = <value > A number giving the offset of the first information
line wanted. This operand is normally supplied if
the previous invocation of display active
included the response operand "more = true”.

Response operand:

number= <valuel >
activity = <value2 >
more = true (optional response)

<valuel >
The number of currently active packs on this partition or, if no partition was
specified, on this server.

<value2 >
A single canonicalized netascii string containing one line of information for each

233 15 Dec 1986

4.2 for the IBM RT PC Remote Virtual Disk System

active virtual pack. A typical line looks like:

partition = /dev/ra0g pack = library mode = | connections = $ idle = 1721
If there were morc activity descriptions than would fit in a single packet, the
response operand "more = true” will appear.

Idle time is measured in seconds since most recent access. Note that the idle
time is purely an activity hint, to determine whether or not a pack that appears
to be spun up is actively in use. It is maintained by the server only to a rough
approximation.

(11) Obtain server load statistics

operation = get_load

Required operands:

password The operations password for the RVD server.
Response:
load = <string> <string> 1is a canonicalized netascii string

containing load statistics ready for display.

(12) Change authorization for operations and administrative operations.

operation =require_authorization (no required or optional operands)

When an RVD server begins operation, it accepts RVD control protocol requests
only from the same host on which it is operating, and it does not require opera-
tions or administrative passwords. (Starting without passwords allows automat-
ing initialization without the need to store those passwords in clear form.) The
require_authorization operation causes the server to read operations and adminis-
trative passwords from a file in the file system of the server’s host. After
require_authorization is executed all operations listed above as requiring either an
administrative or operations password do actually require them. Whenever
require_authorization is invoked, the RVD server rcinitializes its copy of the
operations and administrative passwords from /etc/rvdauthor.

There are two scenarios of use of require_authorization. The first is at system in-
itialization time:

- start server

- send initializing control sequences, if any

- send require_authorization

- await success of require_authorization
- declare initialization successful.

The second scenario is to change the operations or administrative passwords.

- modify file containing operations and maintenance passwords.
- send require_authorization

234 15 Dec 1986

4.2 for the IBM RT PC Appendices

APPENDICES

The following appendices are provided:
e Appendix A. Software Description
contains a list of functions supported in this distribution.
. Appendix B. Graphics Manual Pages

contains manual pages for the graphics routines used by the C subroutine interface
described in Volume II.

L Appendix C. High C Programmer’s Guide

contains a guide for programming in C, using the High C compiler from MetaWare
Incorporated.

235 15 Dec 1986

4.2 for the IBM RT PC Appendices

This page intentionally left blank.

236 15 Dec 1986

4.2 for the IBM RT PC Software Description

Appendix A. Software Description

This appendix contains listings of supported and unsupported functions found in 4.2/RT.

1. SUPPORTED FUNCTIONS

The following sections list the functions supported in this distribution. Items marked with an
asterisk (*) are 4.2/RT functions not found in 4.2BSD. Items marked with a dagger (1) were
developed or revised at the University of California at Berkeley after the release of 4.2BSD.

1.1. Section 1: Commands and Application Programs.

Man Page Name Section and Description
adb adb (1) debugger
addbib addbib (1) create or extend bibliographic database
* aedjournal aedjournal (1) display commands in a log file
* aedrunner aedrunner (1) execute graphics commands in a log file
apply apply (1) apply a command to a set of arguments
apropos apropos (1) locate commands by keyword lookup
ar ar (1) archive and library maintainer
as as (1) assembler
t at at (1) execute commands at a later time
+ atq atq (1) print the queue of jobs waiting to be run
t atrm atrm (1) remove the jobs spooled by at
awk awk (1) pattern scanning and processing language
basename basename (1) strip filename affixes
be be (1) arbitrary-precision arithmetic language
biff biff (1) be notified if mail arrives and sender
binmail binmail (1) send or receive mail among users
* bitprt bitprt (1) capture the image on a bitmap display and print
it on an IBM printer
cal cal (1) print calendar
calendar calendar (1) reminder service
t cat cat (1) concatenate and print
cb cb (1) C program beautifier
cc cc (1) default C compiler
cd cd (1) change working directory
checknr checknr (1) check nroff/troff files
chfn chfn (1) change finger entry
t chgrp chgrp (1) change group
+ chmod chmod (1) change mode
chsh chsh (1) change default login shell
clear clear (1) clear terminal screen
cmp cmip {1} compare two files
col col (1) filter reverse line feeds
colert colert (1) filter nroff output for CRT previewing
* colpro colpro (1) column filter for IBM 4201 Proprinter
colrm colrm (1) remove columns from a file
comm comm (1) select or reject lines common to two sorted files
compact ccat (1) compress and uncompress files and cat them
compact compact (1) compress and uncompress files and cat them
compact uncompact (1) compress and uncompress files and cat them

237 15 Dec 1986

4.2 for the IBM RT PC

—+

* Ok * *

compress
compress
cp

crypt

csh

ctags
date

dbx

dc

dd

deroff

df
diction
diction
diff

diff3
dosread
du
dumpaed
dumpapal6
dumpapa8
dumpapa8c
echo

ed

efl

eqn

eqn

eqn

error

ex

ex
expand
expand
expr
eyacc

£77

false

false

file

find
finger
fmt

fold

fpr

from
fsplit

ftp

geore
gprof
graph
grep

grep

grep

uncompress
zcat

cp

crypt

csh

ctags
date

dbx

dc

dd

deroff

df
diction
explain
diff

diff3
dosread
du
dumpaed
dumpapal6
dumpapa8
dumpapa8c
echo

ed

efl
checkeq
eqn

neqn
error

edit

ex
expand
unexpand
expr
eyacc

77

false

true

file

find
finger
fmt

fold

fpr

from
fsplit

fip

geore
gprof
graph
egrep
fgrep
grep

(D
(D
(h
)
(N
(1
(1
(D
(N
(D
M
(M
(N
(N
(1
(N
(1
(D
(N
(N
(N
(N
(N
(N
(D
(1
(N
(N
(D
()
(D
(N
(M
(D
(N
(M
(N
(1
(M
(M
(N
(M
(1)
(n
(D
(1)

Software Description

compress and expand data

compress and expand data

copy

encode/decode

a shell (command interpreter) with C-like syntax
create a tagsfile

print and set the date

debugger

desk calculator

convert and copy a file

remove nroff,troff, tbl and eqn constructs
disk free

print wordy sentences; thesaurus for diction
print wordy sentences; thesaurus for diction
differential file and directory comparator
3-way differential file comparison

read, write, dir, delete on PC-DOS diskette
summarize disk usage

dump aed display memory as a binary file
dump apal6 display memory as a binary file
dump apa8 display memory as a binary file
dump apa8c display memory as a binary file
echo arguments

text editor

Extended FORTRAN I.anguage

typeset mathematics

typeset mathematics

typeset mathematics

analyze and disperse compiler error messages
text editor

text cditor

expand tabs to spaces and vice versa

expand tabs to spaces and vice versa
evaluate arguments as expressions

modified yacc allowing much improved error recovery
FORTRAN 77 compiler

provide truth values

provide truth values

determine file type

find files

user information lookup program

simple text formatter

fold long lines for finite width output device
print FORTRAN file

from whom is my mail?

split a multi-routine FORTRAN file into individual files

(1C) file transfer program

)
(D

get core images of running processes
display call graph profile data

(1G) draw a graph

(D
(N
(M

238

search a file for a pattern
search a file for a pattern
search a file for a pattern

15 Dec 1986

4.2 for the IBM RT PC

—

—+

— b

—+

groups
he

head
hostid
hostname
indent
install
intro
jostat
join
kbdlock
kill

last
lastcomm
Id

learn
leave
lex

lint

In

lock
login
look
lookbib
lookbib
lorder

Ipq
lpr
Iprm
Is
m4
mail
make
man

mesg
mkdir
mkstr
more
more
msgs

mset

mt

mv
netstat
newaliases
nice

nice

nm

nroff

od
pagesize
passwd

groups
he

head
hostid
hostname
indent
install
intro
iostat
join
kbdlock
kill

last
lastcomm
Id

learn
leave
lex

lint

In

lock
login
look
indxbib
lookbib
lorder
Ipq

lpr
Iprm

Is

m4
mail
make
man

mesg
mkdir
mkstr
more
page
msgs
mset

mt

mv
netstat
newaliases
nice
nohup
nm
nroff
od
pagesize
passwd

M
(N
(D
M
8
)
(0
(D
(M
(D
(D
)
(N
(D
(1
(N
(1
(M
(M
(1
(1
(D
(O
(M
(1
(D
(D
(N
(1
(D
(D
(h
(h
(D)

(M
(N
(N
(D
(D
(h
(D
(N
(N
(N
(0
(M
(M
(D
(D
(h
(1)
(N

Software Description

show group memberships

High C compiler

give first few lines

set or print identifier of current host system
set or print name of current host system
indent and format C program source

install binaries

introduction to commands

report 1/O statistics

relational database operator

lock the keyboard of the IBM RT PC
terminate a process with extreme prejudice
indicate last logins of users and teletypes
show last commands executed in reverse order
link editor

computer-aided instruction about UNIX
remind you when you have to leave
generator of lexical analysis programs

a C program verifier

make links

reserve a terminal

sign on

find lines in a sorted list

build inverted index for a bibliography

find references in a bibliography

find ordering relation for an object library
spool queue examination program

off-line print

remove jobs from the line printer spooling queue
list contents of directory

Macro processor

send and receive mail

maintain program groups

find manual information by keywords; print out the
manual

permit or deny messages

make a directory

create an error message file by massaging C source
file perusal filter for CRT viewing

file perusal filter for CRT viewing

system messages and junk mail program
ASCII to IBM 3270 keyboard map
magnetic tape manipulating program

move or rename files

show network status

rebuild the data base for the mail aliases file
run a command at low priority (sh only)
run a command at low priority (sh only)
print name list

text formatting

octal, decimal, hex, ASCII dump

print system page size

change login password

239 15 Dec 1986

4.2 for the IBM RT PC

pce
pf
pic

plot
PP

pr
prfl

print
printenv
prmail
prof
proff

ps
pti
ptroff

ptx
pwd
quota
ranlib
ratfor
rcp
refer
reset
rev
rlogin
m

m
rmail
rmdir
rmidir
roffbib
rsh
ruptime
rwho
scale
script
sed
sendbug
sh

size
sleep
soelim
sort
sortbib
spell
spell
spell
spline

pcc
pf
pic

plot
pp

pr
prfl

print
printenv
prmail
prof
proff

ps
pti
ptroff

ptx
pwd
quota
ranlib
ratfor
rcp
refer
reset
rev
rlogin
rm
rmdir
rmail
rm
rmdir
roffbib
rsh
ruptime
rwho
scale
script
sed
sendbug
sh

size
sleep
soelim
sort
sortbib
spell
spellin
spellout
spline

Software Description

(1) pec-based C compiler

(1) set keyboard program-function keys

(1) troff preprocessor for drawing simple pictures
(part of optional ditroff feature)

(1G) graphics filters

(1) Professional Pascal compiler (part of optional Professional
Pascal feature)

(1) print file

(1) IBM 4201 Proprinter/IBM 5152 Graphics Printer nroff

post-processing filter

(1) pr to the line printer

(1) print out the environment

(1) print out mail in the post office

(1) display profile data

(1) nroff for the IBM 5152 Graphics Printer

and IBM 4201 Proprinter

(1) process status

(1) phototypesetter interpreter

(1) print troff files on IBM 3812 Pageprinter
(part of optional ditroff feature)

(1) permuted index

(1) working directory name

(1) display disc usage and limits

(1) convert archives to random libraries

(1) Rational FORTRAN dialect

(1C) remote file copy

(1) find and insert litcrature references in documents

(1) reset the teletype bits to a sensible state

(1) reverse lines of a file

(1C) remote login

(1) remove (unlink) files or directories

(1) remove (unlink) files or directories

(1) handle remote mail received via uucp

(1) remove (unlink) directories or files

(i) remove (unlink) directonies or files

(1) run off bibliographic database

(1C) remote shell

(1C) show host status of local machines

(1C) who is logged in on local machines

(1) resize a bit image

(1) make typescript of terminal session

(1) stream editor

(1) mail a system bug report to 4bsd-bugs

(1) command language

(1) size of an object file

(1) suspend execution for an interval

(1) eliminate .so’s from nroff input

(1) sort or merge files

(1) sort bibliographic database

(1) find spelling errors

(1) find spelling errors

(1) find spelling errors

(1G) interpolate smooth curve

240 15 Dec 1986

4.2 for the IBM RT PC

—

-+

split
strings

strip
struct
stty
style

su

sum
symorder
sysline
tabs
tail
talk

tar

tbl

tee
telnet
test
titp
time
tip

tip
tn3270
touch
tr
trman
troff
troff
true
true
tset
tsort
tty

ul
unifdef
unig
units
up

up
uptime
users
uucp
uucp
uuencode
uuencode
uusend
uux
vacation
vgrind

vi
vmstat

split
strings

strip
struct
stty
style

su

sum
symorder
sysline
tabs
tail
talk

tar

tbl

tee
telnet
test
tftp
time

cu

tip
tn3270
touch
tr
trman
nroff
troff
false
true
tset
tsort
tty

ul
unifdef
uniq
units
down
up
uptime
users
uucp
uulog
uudecode
uuencode
uusend
uux
vacation

vgrind

vi
vmstat

Software Description

(1) split a file into pieces

(1) find the printable strings in an object or other
binary file

(1) remove symbols and relocation bits

(1) structure FORTRAN programs

(1) set terminal options

(1) analyze surface characteristics of a document

(1) substitute user id temporarily

(1) sum and count blocks in a file

(1) rearrange name list

(1) display system status on siatus line of a terminal

(1) set terminal tabs

(1) deliver the last part of a file

(1) talk to another user

(1) tape archiver

(1) format tables for nroff or troff

(1) pipe fitting

(1C) user interface to the TELNET protocol

(1) condition command

(1C) trivial file transfer program

(1) time a command

(1C) connect to a remote system

(1C) connect to a remote system

(1) full-screen remote login to IBM VM/CMS

(1) update file date last modified

(1) translate characters

(1) translate version 6 manual macros to version 7 macros

(1) text formatting and typesetting

(1) text formatting and typesetting

(1) provide truth values

(1) provide truth values

(1) terminal dependent initialization

(1) topological sort

(1) get terminal name

(1) do underlining

(1) remove ifdef’ed lines

(1) report repeated lines in a file

(1) conversion program

(1) client Remote Virtual Disk (RVD) utilities
(1) client Remote Virtual Disk (RVD) utilities
(1) show how long system has been up

(1) compact list of users who are on the system
(1C) UNIX to UNIX copy

(1C) UNIX to UNIX copy

(1C) encode/decode a binary file for transmission via mail
(1C) encode/decode a binary file for transmission via mail

(1C) send a file to a remote host
(1C) UNIX to UNIX command execution
(1) return “I am on vacation” indication
(1) grind nice listings of programs for the
IBM 3812 Pageprinter
(1) screen oriented (visual) display editor based on ex
(1) report virtual memory statistics

241 15 Dec 1986

4.2 for the IBM RT PC Software Description

w w (1) who is on and what they are doing

wait wait (1) await completion of process

wall wall (1) write to all users

wce we (1) word count

what what (1) show what versions of object modules were used to con-
struct a file

whatis whatis (1) describe what a command is

whereis whereis (1) locate source, binary, and/or manual for program

which which (1) locate a program file including aliases and paths (csh
only)

who who (1) who is on the system

whoami whoami (1) print effective current user id

t write write (1) write to another user

xsend enroll (1) secret mail

xsend xget (1) secret mail

xsend xsend (1) secret mail

xstr xstr (1) extract strings from C programs to implement shared
strings

yacc yacc (1) yet another compiler-compiler

yes yes (1) be repetitively aflirmative

1.2. Section 2: System Calls

Man Page Name Section and Description

accept accept (2) accept a connection on a socket
access access (2) determine accessibility of file
acct acct (2) turn accounting on or off

bind bind (2) bind a name to a socket

brk brk (2) change data segment size

brk sbrk (2) change data segment size

chdir chdir (2) change current working directory
chmod chmod (2) change mode of file

chmod fchmod (2) change mode of file

chown chown (2) change owner and group of a file
chown fchown (2) change owner and group of a file
chroot chroot (2) change root directory

close close (2) delete a descriptor

connect connect (2) initiate a connection on a socket
creat creat (2) create a new file

dup dup (2) duplicate a descriptor

dup dup2 (2) duplicate a descriptor

execve execve (2) execute a file

exit _exit (2) terminate a process

fent] fentl (2) file control

flock flock (2) apply or remove an advisory lock on an open file
fork fork (2) create a new process

fsync fsync (2) synchronize a file’s in-core state with that on disk

getdtablesize getdtablesize (2) get descriptor table size
* getfpemulator getfpemulator (2) return address of the floating point
emulator if no FPA hardware is present
getgid getegid (2) get group identity
getgid getgid (2) get group identity

242 15 Dec 1986

4.2 for the IBM RT PC

getgroups
gethostid
gethostid
gethostname
gethostname
getitimer
getitimer
getpagesize
getpeername
getpgrp
getpid
getpid
getpriority
getpriority
getrlimit
getrlimit
getrusage
getsockname
getsockopt
getsockopt
gettimeofday
gettimeofday
getuid

getuid

intro

ioctl

kill

killpg

link

listen

Iseek

mkdir
mknod
mount
mount

open

pipe

profil

ptrace

quota

read

read
readlink
reboot

recv

recv

recv

rename
rmdir

select

send

send

send

getgroups
gethostid
sethostid
gethostname
sethostname
getitimer
setitimer
getpagesize
getpeername
getpgrp
getpid
getppid
getpriority
setpriority
getrlimit
setrlimit
getrusage
getsockname
getsockopt
setsockopt
gettimeofday
settimeofday
geteuid
getuid

intro

ioctl

kill

killpg

link

listen

Iseek

mkdir
mknod
mount
umount
open

pipe

profil

ptrace
quota

read

readv
readlink
reboot

recv
recvfrom
recvmsg
rename
rmdir

select

send
sendmsg
sendto

(2
(2
(2
(2)
e
(2
()
(2
(2
)
2
()
)
©)
(2)
)
e
(2
()
(2
2
(2
(2
(2
)
(2)
@)
2
¢)
2
(2)
2
(2
(2
(2)
e
()
o)
2
(2
2
(2
(2
(2
2
()
(2
(2
0)
(2
e
(2
2

243

Software Description

get group access list

get/set unique identifier of current host
get/set unique identifier of current host
get/set name of current host

get/set name of current host

get/set value of interval timer

get/set value of interval timer

get system page size

get name of connected peer

get process group

get process identification

get process identification

get/set program scheduling priority
get/set program scheduling priority
control maximum system resource consumption
control maximum system resource consumption
get information about resource utilization
get socket name

get and set options on sockets

get and set options on sockets

get/set date and time

get/set date and time

get user identity

get user identity

introduction to system calls and error numbers
control device

send signal to a process

send signal to a process group

make a hard link to a file

listen for connections on a socket

move read/write pointer

make a directory file

make a special file

mount or remove file system

mount or remove file system

open a file for reading or writing, or create a new file

create an interprocess communication channel
execution time profile

process trace

manipulate disk quotas

read input

read input

read value of a symbolic link

receive a message from a socket
receive a message from a socket
receive a message from a socket
change the name of a file
remove a directory file
synchronous I/O multiplexing
send a message from a socket
send a message from a socket
send a message from a socket

15 Dec 1986

4.2 for the IBM RT PC

setgroups
setpgrp
setquota
setregid
setreuid
shutdown
sigblock
sigpause

sigsetmask
sigstack
sigvec
socket
socketpair
stat

stat

stat
swapon
symlink
sync
syscall
truncate
truncate
umask
unlink
utimes
vdspin
vdspin
vdstats
viork
vhangup
wait
wait
write
write

Man Page

abort
abs
atof
atof
atof
bstring
bstring
bstring
bstring
crypt
crypt
crypt
ctime

setgroups
setpgrp
setquota
setregid
setreuid
shutdown
sigblock
sigpause

sigsetmask
sigstack
sigvec
socket
socketpair
fstat

Istat

stat
swapon
symlink
sync
syscall
ftruncate
truncate
umask
unlink
utimes
vdspin
vdspind
vdstats
viork
vhangup
wait
wait3
write
writev

1.3. Section 3: C Library Subroutines

Name

abort
abs
atof
atoi
atol
bemp
beopy
bzero
ffs
crypt
encrypt
setkey
asctime

(2
(2
(2
(2)
(2)
(2
()
2

()
(2
(2
(2)
0]
()
e)
(2
(2
()
(2)
(2
(2)
(2)
(2)
(2)
()
()
(2)
(2
(2
(2)
(2)
()
(2)
(2)

Software Description

set group access list

set process group

enable/disable quotas on a file system

sct real and effective group ID

set real and effective user ID

shut down part of a full-duplex connection

block signals

automatically relcase blocked signals and wait for

interrupt

set current signal mask

set and/or get signal stack context

software signal facilities

create an endpoint for communication

create a pair of connected sockets

get file status

get file status

get file status

add a swap device for interleaved paging/swapping
make symbolic link to a file

update super-block

indirect system call

truncate a file to a specified length

truncate a file to a specified length

set file creation mode mask

remove directory entry

set file times

spin up or spin down a Remote Virtual Disk (RVD)
spin up or spin down a Remote Virtual Disk (RVD)
acquire client Remote Virtual Disk (RVD) statistics
spawn new process in a virtual memory efficient way
virtually “hangup”’ the current control terminal

wait for process to terminate

wait for process to terminate

write on a file

write on a file

Section and Description

©)
()
)
(3
3
&)
©)
(3
)
©)
3)
©)
&)

244

generate a fault

integer absolute value

convert ASCII to numbers
convert ASCII to numbers
convert ASCII to numbers

bit and byte string operations
bit and byte string operations
bit and byte string operations
bit and byte string operations
DES encryption

DES encryption

DES encryption

convert date and time to ASCII

15 Dec 1986

4.2 for the IBM RT PC Software Description

ctime ctime (3) convert date and time to ASCII

ctime gmtime (3) convert date and time to ASCII

ctime localtime (3) convert date and time to ASCII

ctime timezone (3) convert date and time to ASCII
T ctype isalnum (3) character classification macros
+ ctype isalpha (3) character classification macros
+ ctype isascii (3) character classification macros
+ ctype iscntrl (3) character classification macros
t ctype isdigit (3) character classification macros
t ctype isgraph (3) character classification macros
t ctype islower (3) character classification macros
t ctype isprint (3) character classification macros
+t ctype ispunct (3) character classification macros
t ctype isspace (3) character classification macros
+ ctype isupper (3) character classification macros
t ctype isxdigit (3) character classification macros
+ ctype toascii (3) character classification macros
¥ ctype tolower (3) character classification macros
t ctype toupperisupper (3) character classification macros

directory closedir (3) directory operations

directory opendir (3) directory operations

directory readdir (3) directory operations

directory rewinddir (3) directory operations

directory seekdir (3) directory operations

directory telldir (3) directory operations

ecvt ecvt (3) output conversion

ecvt fevt (3) output conversion

ecvt gevt (3) output conversion

end edata (3) last locations in program

end end (3) last locations in program

end etext (3) last locations in program

execl execl (3) execute a file

execl execle (3) execute a file

execl exect (3) execute a file

execl execv (3) execute a file

exit exit (3) terminate a process after flushing any pending output

frexp frexp (3) split into mantissa and exponent

frexp Idexp (3) split into mantissa and exponent
* frexp modf (3) split into mantissa and exponent

getenv getenv (3) value for environment name

getgrent endgrent (3) get group file entry

getgrent getgrent (3) get group file entry

getgrent getgrgid (3) get group file entry

getgrent getgrnam (3) get group file entry

getgrent setgrent (3) get group file entry

getlogin getlogin (3) get a login name

getpass getpass (3) read a password

getpwent endpwent (3) get password file entry

getpwent getpwent (3) get password file entry

getpwent getpwnam (3) get password file entry

getpwent getpwuid (3) get password file entry

getpwent setpwent (3) get password file entry
+ getwd getwd (3) get current working directory path name

245 15 Dec 1986

4.2 for the IBM RT PC

* ¥ F T ¥ O F * * * B O F *

b =

icee

iece

ieee

ieee

ieee
icee

ieee

ieee

ieee

ieee

ieee

ieee

ieee

ieee
insque
insque
intro
malloc
malloc
malloc
malloc
mktemp
monitor
monitor
monitor
nlist
perror
popen
popen
psignal
gsort
random

random
random
random

regex
regex
scandir
scandir
setjmp
setjmp
setjmp
setjmp
setuid
setuid
setuid
setuid
setuid
setuid

classdouble
classfloat
copysign
drem

finite

isnan

logb
nextdouble
nextfloat
scalb
swapfpflag
swapfptrap
swapround
unordered
insque
remque
intro

calloc

free

malloc
realloc
mktemp
moncontrol
monitor
monstartup
nlist

perror
pclose
popen
psignal
gsort
initstate

random
setstate
srandom

re_comp
re_exec
alphasort
scandir
_longjmp
_setjmp
longjmp
setjmp
setegid
seteuid
setgid
setrgid
setruid
setuid

Software Description

(3) IEEL arithmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE arithmetic support functions

(3) IEEL arithmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE anthmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE anthmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE arithmetic support functions

(3) IEEE arithmetic support functions

(3) insert/remove element from a queue

(3) insert/remove element from a queue

(3) introduction to library functions

(3) memory allocator

(3) memory allocator

(3) memory allocator

(3) memory allocator

(3) make a unique file name

(3) prepare execution profile

(3) prepare execution profile

(3) prepare execution profile

(3) get entries from namelist

(3) system error messages

(3) initiate I/O to/from a process

(3) initiate I/O to/from a process

(3) system signal messages

(3) quicker sort

(3) better random number generator; routines for changing
generators

(3) better random number generator; routines for changing
gencrators

(3) better random number generator; routines for changing
generators

(3) better random number generator; routines for changing
generators

(3) regular expression handler

(3) regular expression handler

(3) scan a directory

(3) scan a directory

(3) non-local goto

(3) non-local goto

(3) non-local goto

(3) non-local goto

(3) set user and group ID

(3) set user and group ID

(3) set user and group ID

(3) set user and group ID

(3) set user and group ID

(3) set user and group ID

246 15 Dec 1986

4.2 for the IBM RT PC

sleep
string
string
string
string
string
string
string
string
string
swab
syslog
syslog
syslog
system
ttyname
ttyname
ttyname
valloc
varargs
varargs
varargs

Man Page

access
alarm
bessel
bessel
bessel
bessel
bessel
bessel
bit
chdir
chmod
etime
etime
exit
fdate
fimin
flmin
flmin
fimin
fimin
fimin
fimin
flush
fork
fseek
fseek

sleep
index
rindex
strcat
stremp
strcpy
strlen
strncat
strnemp
strnepy
swab
closelog
openlog
syslog
system
isatty
ttyname
ttyslot
valloc
va_arg
va_end
va_start

1.4. Section 3F: FORTRAN Library

Name

access
alarm
besj0
besijl
besjn
besy0
besyl
besyn
bit
chdir
chmod
dtime
etime
exit
fdate
dflmax
dfimin
dffrac
firac
fimax
fimin
inmax
flush
fork
fseek
fell

(3)
&)
©)
©)
(3)
©)
)
©)
&)
)
©)
©)
3)
)
()
)
3
)
()
©)
()
()

Software Description

suspend execution for interval
string operations

string operations

string operations

string operations

string operations

string operations

string operations

string operations

string operations

swap bytes

control system log
control system log
control system log
issue a shell command
find name of a terminal
find name of a terminal
find name of a terminal
aligned memory allocator
variable argument list
variable argument list
variable argument list

Section and Description

(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(F)

247

determine accessibility of a file

execute a subroutine after a specified time
functions of two kinds for integer orders
functions of two kinds for integer orders
functions of two kinds for integer orders
functions of two kinds for integer orders
functions of two kinds for integer orders
functions of two kinds for integer orders
and, or, xor, not, rshift, Ishift, bitwise functions
change default directory

change mode of file

return elapsed execution time

return elapsed execution time

terminate process with status

return date and time in an ASCII string
return date and time in an ASCII string
return date and time in an ASCII string
return date and time in an ASCII string
return date and time in an ASCII string
return date and time in an ASCII string
return extreme values

return extreme values

flush output to a logical unit

create a copy of this process

reposition a file on a logical unit
reposition a file on a logical unit

15 Dec 1986

4.2 for the IBM RT PC

getarg
getarg
getc
getc
getewd
getenv
getlog
getlog
getpid
getuid
getuid
hostnm
idate
idate
index
index
index
index
intro
ioinit
kill
link
link
loc
long
long
perror
perror
perror
putc
putc
gsort
rand
rand
rand
range
range
range
range
range
rename
signal
sleep
stat
stat
stat
system
time
time
time
time
topen
topem

getarg
iargc
getc
fgetc
getcwd
getenv
getlog
getlog0
getpid
getuid
getgid
hostnm
idate
itime
index
len
Inblnk
rindex
intro
ioinit
kill
link
symlink
loc
long
short
gerror
ierror
perrno
putc
fputc
qgsort
drand
irand
irand
dfimax
dfimin
flmax
flmin
inmax
rename
signal
sleep
fstat
Istat
stat
system
ctime
gmtime
Itime
time
tclose
topen

(3r)
(3r)
(3F)
(3F)
(30)
(3F)
(3F)
(3r)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3r)
(3F)
(r)
(3F)
(F)
(3F)
(3F)
(3r)
(3F)
(3F)
(36)
(3F)
(3F)
()
(3F)
(3r)
(3F)
(3r)
(3F)
(3F)
(3F)
(3F)
(3r)
(3F)
(3F)
(3F)
(3F)
(3F)
(3F)
(3K)
(3F)
(3K)
(3F)
(3F)
(3F)
(3F)

248

Software Description

return command line arguments
return command line arguments

get a character from a logical unit

get a character from a logical unit

get pathname of current working directory
get value of environmental variables
get user’s login name

get user’s login name

get process id

get user or group ID of the caller

get user or group ID of the caller

get name of current host

return date or time in numerical form
return date or time in numerical form
tell about character objects

tell about character objects

tell about character objects

tell about character objects
introduction to FORTRAN library functions
change 77 1/O initialization

send a signal to a process

make a link to an existing file

make a link to an existing file

return the address of an object
integer object conversion

integer object conversion

get system error messages

get system error messages

get system error messages

write a character to a FORTRAN logical unit
write a character to a FORTRAN logical unit
quick sort

return random values

return random values

return random values

return extreme values

return extreme values

return extreme values

return extreme values

return extreme values

rename a file

change the action for a signal
suspend execution for an intervai

get file status

get file status

get file status

execute a UNIX command

return system time

return system time

return system time

return system time

f77 tape 1/0

f77 tape 1/O

15 Dec 1986

4.2 for the IBM RT PC Software Description

topen tread (3F) {77 tape I/O

topen trewin (3F) 77 tape 1/O

topen tskipf (3F) 77 tape 1/O

topen tstate (3F) {77 tape 1/O

topen twrite (3F) 77 tape 1jO

traper traper (3F) trap arithmetic errors

trapov trapov (3F) trap and repair floating point overflow
trpfpe fpecnt (3T%) trap and repair floating point faults
trpfpe trpfpe (3F) trap and repair floating point faults
ttynam isaty (3F) find name of a terminal port
ttynam ttynam (3F) fine name of a terminal port
unlink unlink (3F) remove a directory entry

wait wait (3F) wait for a process to terminate

1.5. Section 3M: Math Library

Man Page Name Section and Description
+ asinh acosh (3M) inverse hyperbolic functions
+ asinh asinh (3M) inverse hyperbolic functions
+ asinh atanh (3M) inverse hyperbolic functions
t erf erf (3M) error functions
t erf erfc (3M) error functions
exp exp (3M) exponential, logarithm, power
exp expml (3M) exponential, logarithm, power
exp log (3M) exponential, logarithm, power
exp logl10 (3M) exponential, logarithm, power
exp loglp (3M) exponential, logarithm, power
exp pow (3M) exponential, logarithm, power
exp sqrt (3M) exponential, logarithm, power
floor ceil (3M) absolute value, floor, ceiling functions
floor fabs (3M) absolute value, floor, ceiling functions
floor floor (3M) absolute value, floor, ceiling functions
gamma lgamma (3M) name changed to lgamma
hypot hypot (3M) Euclidean distance
hypot cabs (3M) Euclidean distance
intro intro (3M) introduction to mathematical library functions
i0 j0 (3M) Bessel functions
j0 jl (3M) Bessel functions
i0 in (3M) Bessel functions
j0 y0 (3M) Bessel functions
i0 yl (3M) Bessel functions
i0 yn (3M) Bessel functions
t lgamma lgamma (3M) log gamma function
sin acos (3M) trigonometric functions
sin asin (3M) trigonometric functions
sin atan (3M) trigonometric functions
sin atan2 (3M) trigonometric functions
sin cos (3M) trigonometric functions
sin sin (3M) trigonometric functions
sin tan (3M) trigonometric functions
+ sinh cosh (3M) hyperbolic functions

249 15 Dec 1986

4.2 for the IBM RT PC

—+

1.6. Section 3N: Internet Network Library

sinh
sinh
sqrt
sqrt

Man Page

byteorder
byteorder
byteorder
byteorder
gethostent
gethostent
gethostent
gethostent
gethostent
getnetent
getnetent
getnetent
getnetent
getnetent
getprotoent
getprotoent
getprotoent
getprotoent
getprotoent
getservent
getservent
getservent
getservent
getservent
inet

inet

inet

inet

inet

inet

intro

sinh
tanh
cbrt
sqrt

Name

htonl

htons

ntohl

ntohs
endhostent
gethostbyaddr
gethostbyname
gethostent
sethostent
endnetent
getnetbyaddr
getnetbyname
getnetent
setnetent
endprotoent
getprobyname
getprobynumber
getprotoent
setprotoent
endservent
getservbyname
getservbyport
getservent
setservent
inet_addr
inet_Inaof
inet_makeaddr
inet_netof
inet_network
inet_ntoa
intro

Software Description

(3M) hyperbolic functions
(3M) hyperbolic functions
(3M) cube root, square root
(3M) cube root, square root

Section and Description

(3N) convert values between host and network byte order
(3N) convert values between host and network byte order
(3N) convert values between host and network byte order
(3N) convert values between host and network byte order
(3N) get network host entry

(3N) get network host entry

(3N) get network host entry

(3N) get network host entry

(3N) get network host entry

(3N) get network entry

(3N) get network entry

(3N) get network entry

(3N) get network entry

(3N) get network entry

(3N) get protocol entry

(3N) get protocol entry

(3N) get protocol entry

(3N) get protocol entry

(3N) get protocol entry

(3N) get service entry

(3N) get service entry

(3N) get service entry

(3N) get service entry

(3N) get service entry

(3N) internet address manipulation routines

(3N) internet address manipulation routines

(3N) internet address manipulation routines

(3N) internet address manipulation routines

(3N) internet address manipulation routines

(3N) internet address manipulation routines

(3N) introduction to network library functions

1.7. Section 3S: C Standard I/O Library Subroutines

e T I Ny

Man Page

fclose
fclose
ferror
ferror
ferror
ferror
fopen
fopen
fopen

Name

fclose
filush
clearerr
feof
ferror
fileno
fdopen
fopen
freopen

Section and Description

(3S) close or flush a stream
(3S) close or flush a stream
(3S) stream status inquiries
(3S) stream status inquiries
(3S) stream status inquiries
(3S) stream status inquiries
(3S) open a stream
(3S) open a stream
(3S) open a stream

250 15 Dec 1986

4.2 for the IBM RT PC

— = b~k b b b

—

fread
fread
fseek
fseek
fseek
getc
getc
getc
getc
gets
gets
intro
printf
printf
printf
putc
putc
putc
putc
puts
puts
scanf
scanf
scanf
setbuf
setbuf
setbuf
stdio
ungetc

fread
fwrite
fseek
ftell
rewind
fgetc
getc
getchar
getw
fgets
gets
stdio
fprintf
printf
sprintf
fputc
putc
putchar
putw
fputs
puts
fscanf
scanf
sscanf
setbuf
setbuffer
setlinebuf
stdio
ungetc

1.8. Section 3X: Other Libraries

Man Page

assert
curses
dbm

dbm

dbm

dbm

dbm

dbm

fpa
getdiskbyname
getfsent
getfsent
getfsent
getfsent
getfsent
getfsent
initgroups
intro

plot

Name

assert
Cursecs
dbminit
delete
fetch
firstkey
nextkey
store

fpa
getdiskbyname
endfsent
getfsent
getfsfile
getfsspec
getfstype
setfsent
initgroups
intro

arc

Software Description

(3S) buffered binary input/output

(38S) buffered binary input/output

(3S) reposition a stream

(3S) reposition a stream

(3S) reposition a siream

(3S) get character or word from stream
(3S) get character or word from stream
(3S) get character or word from stream
(3S) get character or word from stream
(3S) get a string from a stream

(3S) get a string from a stream

(3S) standard buffered 1/O package
(3S) formatted output conversion

(3S) formatted output conversion

(3S) formatted output conversion

(3S) put character or word on a stream
(3S) put character or word on a stream
(3S) put character or word on a stream
(3S) put character or word on a stream
(3S) put a string on a stream

(3S) put a string on a stream

(3S) formatted input conversion

(3S) formatted input conversion

(3S) formatted input conversion

(3S) assign buffering to a stream

(3S) assign buffering to a stream

(3S) assign buffering to a stream

(3S) standard buffered input/output package
(3S) push character back into input stream

Section and Description

(3X) program verification

(3X) screen functions with optimal cursor motion

(3X) data base subroutines
(3X) data base subroutines
(3X) data base subroutines
(3X) data base subroutines
(3X) data base subroutines
(3X) data base subroutines

(3X) direct interface to floating point accelerator

(3X) get disk description by its name
(3X) get file system descriptor file entry
(3X) get file system descriptor file entry
(3X) get file system descriptor file entry
(3X) get file system descriptor file entry
(3X) get file system descriptor file entry
(3X) get file system descriptor file entry
(3X) initialize group access list

(3X) introduction to miscellaneous library functions

(3X) graphics interface

251 15 Dec 1986

4.2 for the IBM RT PC Software Description

plot cont (3X) graphics interface

plot circle (3X) graphics interface

plot closepl (3X) graphics interface

plot erase (3X) graphics interface

plot label (3X) graphics interface

plot line (3X) graphics interface

plot linemod (3X) graphics interface

plot move (3X) graphics interface

plot openpl (3X) graphics interface

plot point (3X) graphics interface

plot space (3X) graphics interface

rcmd remd (3X) routines for returning a stream to a remote command
remd rresvport (3X) routines for returning a stream to a remote command
rcmd ruserok (3X) routines for returning a stream to a remote command
rexec rexec (3X) return stream to a remote command

termeap tgetent (3X) terminal independent operation routines

termcap tgetflag (3X) terminal independent operation routines

termcap tgetnum (3X) terminal independent operation routines

termcap tgetstr (3X) terminal independent operation routines

termcap tgoto (3X) terminal independent operation routines

termcap tputs (3X) terminal independent operation routines

1.9. Section 3C: Compatibility Library Subroutines

Man Page Name Section and Description

alarm alarm (3C) schedule signal after specified time

getpw getpw (3C) get name from uid

intro intro (3C) introduction to compatibility library functions
nice nice (3C) set program priority

pause pause (3C) stop until signal

rand rand (3C) random number generator

rand srand (3C) random number generator

signal signal (3C) simplified software signal facilities

stty gity (3C) set and get terminal state (defunct)

stty sty (3C) set and get terminal state (defunct)

time ftime (3C) get date and time

time time (3C) get date and time

times times (3C) get process times

utime utime (3C) set file times

vlimit vlimit (3C) control maximum system resource consumption
vtimes vtimes (3C) get information about resource utilization

1.10. Section 3G: Graphics Subroutines (located in Appendix C)

Man Page Name Section and Description

* circle VI_Circle (3G) draw a circle

* clip VI _Clip (3G) set clipping window

* color VI_Color (3G) change screen color

* copy VI_Copy (3G) copy an area

* cursor VI_DisCur (3G) control the display cursor
* cursor VI_EnCur (3G) control the display cursor
* cursor VI_FDefnCur (3G) control the display cursor

252 15 Dec 1986

4.2 for the IBM RT PC

* Ok X K K K %k K K F K E X kK K % X K K kX K E K % K O % E N

o—
.

—
—

cursor VI_MDefnCur
cursor VI_PosnCur
dash VI_Dash
font VI_DropFont
font VI_Font
font VI_GetFont
force VI Force
image VI_FlImage
image VI_MImage
init VI Init
init VI_Term
intro intro
log VI_Login
log VI _Logout
line VI_ALine
line VI Rline
move VI_AMove
move VI_RMove
merge VI _Merge
query VI_QClip
query VI_QColor
query VI _QDash
query VI_QFont
query VI_QMerge
query VI_QPoint
query VI_QWidth
read VI_FRead
read VI_MRead
run VI_Run
string VI _String
tile VI _Tile
width VI_Width

. Section 4: Special Files
Man Page Name
aedemul aedemul
ap ap
arp arp
asy asy
autoconf autoconf
bk bk
bufemul bufemu
bus bus
cons cons
disk disk
drum drum
fd fd
hd hd
ibm5151 ibm5151

Software Description

(3G) control the display cursor

(3G) control the display cursor

(3G) set line dash pattern

(3G) select and manipulate fonts

(3G) select and manipulate fonts

(3G) select and manipulate fonts

(3G) force output of graphics orders

(3G) draw an image

(3G) draw an image

(3G) initialize and terminate the subroutine interface
(3G) initialize and terminate the subroutine interface
(3G) introduction to display graphics subroutines
(3G) begin logging subroutine calls and close a log file
(3G) begin logging subroutine calls and close a log file
(3G) draw a line

(3G) draw a line

(3G) move the current point

(3G) move the current point

(3G) set merge mode

(3G) query graphics parameters

(3G) query graphics parameters

(3G) query graphics parameters

(3G) query graphics parameters

(3G) query graphics parameters

(3G) query graphics parameters

(3G) query graphics parameters

(3G) read display data

(3G) read display data

(3G) process a log file

(3G) draw a string

(3G) tile a rectangle

(3G) set line width

Section and Description

(4) graphics interfaces for the IBM Academic
Information Systems experimental display

(4) asychronous data mode protocol line discipline

(4P) Address Resolution Protocol

(4) multi-port asynchronous communications RS232C

interface

(4) diagnostics from the autoconfiguration code

(4) line discipline for machine-machine communication

(4) kernel buffering emulator

(4) control of access to the system I/O bus

(4) keyboard and monochrome screen console interface

(4) format of reserved areas of the hard disk

(4) paging device

(4) diskette interface

(4) PC/AT hard disk controller interface

(4) IBM 5151 Monochrome Display interface

253 15 Dec 1986

4.2 for the IBM RT PC

— ® * * #

1.12.

ibm5151
ibmé6153

ibm6153
ibm6154
ibmé6154
ibm6155
ibm6155

ibmaed
ibmemul
imp
inet
intro
intro

ip
kbdemul
lan

lo

Ip
mem
mem
mouse
mtio
null
psp

pty

pup
pup

rvd
speaker
st
stdemul
tb

tcp

tty

udp

un
xemul

mono
apa8

ibm6153
apa8c
ibm6154
apal6
ibm6155

ibmaed
ibmemul
imp

inet
intro
networking
ip
kbdemul
lan

lo

Ip
kmem
mem
mouse
mtio
null

psp

pty

pup

pup

rvd
speaker
st
stdemul
tb

tcp

tty

udp

un
xemul

Section 5: File Formats

Man Page

a.out
acct
aliases
ar

Name

a.out
acct
aliases
ar

Software Description

(4) IBM 5151 Monochrome Display intcrface

(4) IBM 6153 Advanced Monochrome Graphics Display
interface

(4) IBM 6153 Advanced Monochrome Graphics Display
interface

(4) IBM 6154 Advanced Color Graphics Display
interface

(4) IBM 6154 Advanced Color Graphics Display
interface

(4) IBM 6155 Extended Monochrome Graphics Display
interface

(4) IBM 6155 Extended Monochrome Graphics Display
interface

(4) IBM Academic Information Systems experimental display

(4) IBM 3101 emulator

(4P) IMP raw socket interface

(4F) Internet protocol family

(4) introduction to special files and hardware support

(4N) introduction to networking facilities

(4P) Internet Protocol

(4) default keyboard emulator

(4) IBM 6100 Token-Ring Network Adapter

(4) software loopback network interface

(4) line printer

(4) main memory

(4) main memory

(4) mouse interface

(4) UNIX magtape interface

(4) data sink

(4) planar serial port RS232C interface

(4) pseudo terminal driver

(4T) Xerox PUP-I protocol family

(4P) raw PUP socket interface

(4P) Remote Virtual Disk protocol

(4) console speaker interface

(4) streaming-tape interface

(4) standard output emulator

(4) line discipline for digitizing devices

(4P) Internet Transmission Control Protocol

(4) general terminal interface

(4P) Internet User Datagram Protocol

(4) IBM RT PC Baseband Adapter for use with Ethernet

(4) X input emulator for queuing keyboard and
mouse events

Section and Description
(5) assembler and link editor output
(5) execution accounting file

(5) aliases file for sendmail
(5) archive (library) file format

254 15 Dec 1986

4.2 for the IBM RT PC

Software Description

consoles consoles (5) utility data base of display screens
core core (5) format of memory image file
dir dir (5) format of directories
disktab disktab (5) disk description file
dump dump (5) incremental dump format
dump dumpdates (5) incremental dump format
font3812 font3812 (5) font structures for the 3812 fonts
fs fs (5) format of file system volume
fs inode (5) format of file system volume
fstab fstab (5) static information about the file systems
gettytab gettytab (5) terminal configuration data base
group group (5) group file
hosts hosts (5) host name data base
keyboard_codes keyboard codes (5) keyboard scancode table
map3270 map3270 (5) data base for mapping ASCII keystrokes into
IBM 3270 displays
mtab mtab {5) mounted file system table
networks networks (5) network name data base
passwd passwd (5) password file
phones phones (5) remote host phone number data base
plot plot (5) graphics interface
printcap printcap (5) printer capability data base
printer3812 printer3812 (5) IBM 3812 Pageprinter status information
protocols protocols (5) protocol name data base
remote remote (5) remote host description file
rvddb rvddb (5) Remote Virtual Disk (RVD) server configuration table
rvdtab rvdtab (5) information about client Remote Virtual Disks (RVDs)
services services (5) service name data base
stab stab (5) symbol table types
tar tar (5) tape archive file format
termcap termcap (5) terminal capability data base
ttys ttys (5) terminal initialization data
ttytype ttytype (5) data base of terminal types by port
types types (5) primitive system data types
utmp utmp (5) login records
utmp witmp (5) login records
uuencode uuencode (5) format of an encoded uuencode file
viont viont (5) font formats for the Benson-Varian or Versatec
1.13. Section 6: Games
NONE
1.14. Section 7: Miscellaneous
Man Page Name Section and Description
ascii ascii (7) map of ASCII character set
environ environ (7) user environment
eqnchar eqnchar (7) special character definitions for eqn
hier hier (7) file system hierarchy
intro miscellaneous (7) miscellaneous useful information pages
mailaddr mailaddr (7) mail addressing description
man man (7) macros to typeset manual

255 15 Dec 1986

4.2 for the IBM RT PC

Man Page

ac
adduser
aedtest

analyze
arcv
badsect
bugfiler
catman
chown
clri
comsat
config
crash
cron
cvt3812

cvt3812
cvt3812

cvisym
dcheck
debug
diskpart
dmesg
drtest
dump
dumpfs
edquota
fastboot
fastboot
fdformat
flcopy
format
fsck
ftpd
gettable
getty
halt
htable
ibm3812pp
icheck
ifconfig
init

me
ms
term

1.15. Section 8: System Maintenance

Name

ac
adduser
aedtest

analyze
arcv
badsect
bugfiler
catman
chown
clri
comsat
config
crash
cron
cvt3812

cvt20tol2
cvt00to12

cvisym
dcheck
debug
diskpart
dmesg
drtest
dump
dumpfs
edquota
fastboot
fasthalt
fdformat
flcopy
format
fsck
ftpd
gettable
getty
halt
htable
ibm3812pp
icheck
ifconfig
init

Software Description

(7) macros for formatting papers
(7) text formatting macros
(7) conventional names for terminals

Section and Description

(8) login accounting
(8) procedure for adding new users
(8) IBM Academic Information Systems experimental
display self-tests
(8) virtual UNIX postmortem crash analyzer
(8) convert archives to new format
(8) create files to contain bad sectors
(8) file bug reports in folders automatically
(8) create the cat files for the manual
(8) change owner
(8) clear i-node
(8C) biff server
(8) build system configuration files
(8R) what happens when the system crashes
(8) clock daemon
(8) convert IBM 3820 and IBM 3800 fonts for
use with the IBM 3812 Pageprinter
(8) convert IBM 3820 and IBM 3800 fonts for
use with the IBM 3812 Pageprinter
(8) convert IBM 3820 and IBM 3800 fonts for
use with the IBM 3812 Pageprinter
(8) convert symbol table
(8) file system directory consistency check
(8) debugger for the IBM RT PC
(8) calculate default disk partition sizes
(8) collect system diagnostic messages to form error log
(8) standalone disk test program
(8) incremental file system dump
(8) dump file system information
(8) edit user quotas
(8) reboot/halt the system without checking the disks
(8) reboot/halt the system without checking the disks
(8R) format diskettes
(8R) copier for diskettes
(8R) format hard disks
(8) file system consistency check and inieractive repair
(8C) DARPA Internet File Transfer Protocol daemon
(8C) get NIC-format host tables from a host
(8) set terminal mode
(8) stop the processor
(8) get NIC-format host tables from a host
(8) IBM 3812 Pageprinter server
(8) file system storage consistency check
(8C) configure network interface parameters
(8) process control initialization

256 15 Dec 1986

4.2 for the IBM RT PC

intro

kgmon
landump
Ipc

Ipd
Ipfilter

Ipfilter
Ipfilter

makedev
makekey
makesym
minidisk
mkfs

mklost + found

mknod
mkproto
mount
mount
ncheck
newfs
omerge
pac

ppt
pstat
quot
quotacheck
quotaon
quotaon
Ic
rdump
reboot
renice
repquota
restore
rexecd
rlogind
rmt
route
routed
rrestore
rshd
rvdchlog

rvddown
rvdexch

rvdflush

intro

kgmon
landump
Ipc

Ipd
ibmbit

ibmgra
ibmpro

makedev
makekey
makesym
minidsk

mkfs

mklost + found

mknod
mkproto
mount
umount
ncheck
newfs
omerge
pac

ppt
pstat
quot
quotacheck
quotaoff
quotaon
Ic
rdump
reboot
renice
repquota
restore
rexecd
rlogind
rmt
route
routed
rrestore
rshd
rvdchlog

rvddown
rvdexch

rvdfiush

Software Description

(8) introduction to system maintenance and operation
commands
(8) generate a dump of the operating system'’s profile buffers
(8R) dump IBM Token-Ring Personal Computer Adapter
(8) line printer control program
(8) line printer daecmon
(8R) output filters for the IBM 4201 Proprinter
and IBM 5152 Graphics Printer
(8R) output filters for the IBM 4201 Proprinter
and IBM 5152 Graphics Printer
(8R) output filters for the IBM 4201 Proprinter
and IBM 5152 Graphics Printer
(8) make system special files
(8) generate encryption key
(8) make debugger symbol table
(8R) minidisk maintenance utility
(8) construct a file system
(8) make a lost + found directory for fsck
(8) build special file
(8) construct a prototype file system
(8) mount and dismount file system
(8) mount and dismount file system
(8) generate names from i-numbers
(8) construct a new file system
(8) merge object files
(8) printer/plotter accounting information
(8) text filter for the IBM 3812 Pageprinter
(8) print system facts
(8) summarize file system ownership
(8) file system quota consistency checker
(8) turn file system quotas on and off
(8) turn file system quotas on and off
(8) command script for auto-reboot and daemons
(8C) file system dump across the network
(8) UNIX bootstrapping procedures
(8) alter priority of running processes
(8) summarize quotas for a file system
(8) incremental file system restore
(8C) remote execution daemon
(8C) remote login daemon
(8C) remote magtape protocol module
(8C) manually manipulate the routing tables
(8C) network routing daemon
(8C) restore a file system dump across the network
(8C) remote shell daemon
(8) change logging level of Remote Virtual Disk
(RVD) server
(8) force spindown of a Remote Virtual Disk
(RVD) pack
(8) exchange names of two Remote Virtual Disk
(RVD) packs
(8) spindown client’s Remote Virtual Disk
(RVD) packs

257 15 Dec 1986

4.2 for the IBM RT PC

* rvdgetm

* rvdlog
* rvdsend
* rvdsetm

* rvdshow
* rvdshut
* rvdsrv
rwhod
sa
sa
* sautil
savecore
* savervd

* savervd
* savervd

sendmail
* setscreen
shutdown
¥ spinup
* spinup
sticky
swapon
sync
syslog
telnetd
tftpd
trpt
tunefs
update
uuclean
uusnap
vddb
vdstats
vipw
* width3812

rvdgetm

rvdlog
rvdsend
rvdsetm

rvdshow
rvdshut
rvdsrv
rwhod
accton
sa

sautil
savecore
savephys

savervd
zaprvd

sendmail
setscreen
shutdown
spindown
spinup
sticky
swapon
sync
syslog
telnetd
tftpd

trpt
tunefs
update
uuclean
uusnap
vddb
vdstats
vipw
width3812

Software Description

(8) get operations message from Remote Virtual Disk
(RVD) server

(8) cause Remote Virtual Disk (RVD) server to log statistics

(8) send control stream to Remote Virtual Disk (RVD) server

(8) set operations message on Remote Virtual Disk
(RVD) server

(8) show connections to Remote Virtual Disk (RVD) server

(8) force shutdown of Remote Virtual Disk (RVD) server

(8) Remote Virtual Disk (RVD) server daemon

(8C) system status daemon

(8) system accounting

(8) system accounting

(8R) standalone utility package

(8) save a core dump of the operating system

(8) back up and restore Remote Virtual Disk (RVD) packs
to and from tape

(8) back up and restore Remote Virtual Disk (RVD) packs
to and from tape

(8) back up and restore Remote Virtual Disk (RVD) packs
to and from tape

(8) send mail over the Internet

(8) control display screen access

(8) close down the system at a given time

(8) spin up/down Remote Virtual Disk (RVD) pack

(8) spin up/down Remote Virtual Disk (RVD) pack

(8) executable files with persistent text

(8) specify additional device for paging and swapping

(8) update the super block

(8) log systems messages

(8C) DARPA TELNET protocol daemon

(8C) DARPA Trivial File Transfer Protocol server

(8C) transliterate protocol trace

(8) tune up an existing file system

(8) periodically update the superblock

(8C) uucp spool directory clean-up

(8C) show snapshot of the UUCP system

(8) Remote Virtual Disk (RVD) data base manager

(8) list client Remote Virtual Disk (RVD) statistics

(8) edit the password file

(8) build width tables for the IBM 3812

Pageprinter

258 15 Dec 1986

4.2 for the IBM RT PC Software Description

2. UNSUPPORTED FUNCTIONS

The following sections list the functions of 4.2BSD for the VAX which are not supported by
4.2/RT.

2.1. Section !: Commands and Application Programs.

Man Page Name Section and Description
fed fed (1) font editor
fp fp (1) functional programming language compiler/interpreter
lisp lisp (1) Lisp interpreter
liszt liszt (1) compile a Franz Lisp programx
Ixref Ixref (1) Lisp cross reference program
pc pc (1) Pascal compiler
pdx pdx (1) Pascal debugger
pi pi (1) Pascal interpreter code translator
pix pix (1) Pascal interpreter and executor
pmerge pmerge (1) Pascal file merger
pX pX (1) Pascal interpreter
PXp pxp (1) Pascal execution profiler
pxref pxref (1) Pascal cross-reference program
tc tc (1) phototypesetter simulator
tp tp (1) manipulate tape archive
tk tk (1) paginator for the Tektronix 4014
vfontinfo vfontinfo (1) inspect and print out information about UNIX fonts
vlp vlp (1) format Lisp programs to be printed with nroff, vtroff, or
troff
vpr vpq (1) raster printer/plotter spooler
vpr vpr (1) raster printer/plotter spooler
vpr vprint (1) raster printer/plotter spooler
vpr vprm (1) raster printer/plotter spooler
vtroff viroff (1) troff to a raster plotter
vwidth vwidth (1) make troff width table for a font
2.2. Section 2: System Calls
NONE
2.3. Section 3: C Library Subroutines
NONE
2.4. Section 3F: FORTRAN Library
NONE
2.5. Section 3G: AED Graphics Subroutines
NONE
2.6. Seciion 3M: Math Library
NONE
2.7. Section 3N: Internet Network Library
NONE
2.8. Section 3S: C Standard I/O Library Subroutines
NONE

259 15 Dec 1986

4.2 for the IBM RT PC Software Description

2.9. Section 3X: Other Libraries

Man Page Name Section and Description
1ib2648 1ib2648 (3X) subroutines for the HP 2648 graphics terminal
2.10. Section 3C: Compatibility Library Subroutines
NONE
2.11. Section 4: Special Files
Man Page Name Section and Description
acc acc (4) ACC LH/DH IMP interface
ad ad (4) Data Translation A/D converter
css css (4) DEC IMP-11A LH/DH IMP interface
ct ct (4) phototypesetter interface
dh dh (49 DH-11/DM-11 communications multiplexer
dmc dmc (49) DEC DMC-11/DMR-11 point-to-point communications
device
dmf dmf (4) DMF-32, terminal multiplexer
dn dn (4) DN-11 autocall unit interface
dz dz (4) DZ-11 communications multiplexer
ec ec (4) 3Com 10 Mb/s Ethernet interface
en . en (4) Xerox 3 Mb/s Ethernet interface
fi fl (4) console diskette interface
hk hk (4) RK6-11/RK06 and RK07 moving head disk
hp hp (4) MASSBUS disk interface
ht ht (9 TM-03/TE-16,TU-45TU-77 MASSBUS magtape interface
hy hy (4) Network Systems Hyperchannel interface
ik ik (4) Ikonas frame buffer, graphics device interface
il il (4) Interlan 10 Mb/s Ethernet interface
imp imp (4) 1822 network interface
kg kg (4) KL-11/DL-11W line clock
mt mt (4) TM78/TU-78 MASSBUS magtape interface
pcl pel (4) DEC CSS PCL-11 B Network Interface
ps ps {4) Evans and Sutherland Picture System 2 graphics device
interface
rx X (4) DEC RXO02 diskette interface
tm tm (49 TM-11/TE-10 magtape interface
ts ts (4) TS-11 magtape interface
tu tu (4) /730 and VAX-11/750 TUS58 console cassette interface
uda uda (4) UDA-50 disk controller interface
up up (4) unibus storage module controller/drives
ut ut (4) UNIBUS TU4S tri-density tape drive interface
uu uu (4) TUS8/DECtape I1 UNIBUS cassette interface
va va (4) Benson-Varian interface
vp vp (4) Versatec interface
vV vv (4) Proteon proNET 10 Megabit ring
2.12. Section 5: File Formats
Man Page Name Section and Description
tp tp (5) DEC/mag tape formats

260 15 Dec 1986

4.2 for the IBM RT PC Software Description

viont viont (5) font formats for the Benson-Varian or Versatec

vgrindefs vgrindefs (5) vgrind’s language definition data base
2.13. Section 6: Games

Man Page Name Section and Description

aardvark aardvark (6) yet another exploration game

adventure adventure (6) an exploration game

arithmetic arithmetic (6) provide drill in number facts

backgammon backgammon (6) the game of backgammon

banner banner (6) print large banner on printer

bed bed (6) convert to antique media

boggle boggle (6) the game of boggle

canfield canfield (6) the solitaire card game Canfield

canfield cfscores (6) the solitaire card game Canfield

chess chess (6) the game of chess

ching ching (6) the book of changes and other cookies

cribbage cribbage (6) the card game cribbage

doctor doctor (6) interact with a psychoanalyst

fish fish (6) play Go Fish

fortune fortune (6) print a random, hopefully interesting, adage

hangman hangman {6) computer version of the game hangman

mille mille (6) play Mille Bournes

monop monop (6) the game of Monopoly

number number (6) convert Arabic numerals to English

quiz quiz (6) test your knowledge

rain rain (6) animated raindrops display

rogue rogue (6) exploring the dungeons of doom

snake snake (6) display chase game

snake snscore (6) display chase game

trek trek (6) trekkie game

worm worm (6) the growing worm game

worms worms (6) animate worms on a display terminal

wump wump (6) the game of hunt-the-wumpus

2.14. Section 7: Miscellaneous
NONE
2.15. Section 8: System Maintenance

Man Page Name Section and Description

arfl arff (8R) archiver and copier for diskette

arff flcopy (8) archiver and copier for diskette

bad144 bad144 (8) read/write DEC standard 144 bad sector information
implog implog (8C) IMP log interpreter

implogd implogd (8C) IMP logger process

rxformat rxformat (8V) format diskettes

261 15 Dec 1986

4.2 for the IBM RT PC Software Description

This page intentionally left blank.

262 15 Dec 1986

4.2 on the IBM RT PC

Graphics Manual Pages

Appendix B. Graphics Manual Pages for the
IBM Academic Information Systems Experimental Display

This section contains the manual pages for section 3G; they describe the display graphics subrou-

tines. You may want to file these manual pages in Volume 1.

intro (3G)
circle (3G)
clip (3G)
color (3G)
copy (3G)
cursor (3G)
dash (3G)
font (3G)
force (3G)
image (3G)
init (3G)

263

line (3G)
log (3G)
merge (3G)
move (3G)
query (3G)
read (3G)
run (3G)
string (3G)
tile (3G)
width (3G)

15 Dec 1986

4.2 on the IBM RT PC Graphics Manual Pages

This page intentionally left blank.

264 15 Dec 1986

CIRCLE(3G) CIRCLE(3G)

NAME
VI _Circle — draw a circle
SYNOPSIS
VI_Circle(radius)
int radius; /* circle radius *{
DESCRIPTION

VI Circle draws a circle with the specified radius and the current point as its center. The current
point is unchanged.

NOTE
VI Circle applies only to the IBM Academic Information Systems experimental display. The line
attributes ¥I_Dash and VI _Width do not apply to VI _Circle.

Nothing is drawn if the radius is less than or equal to zero. You cannot use concentric circles to
do a solid area fill.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

CIRCLE(3G) CIRCLE(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

CLIP(3G)

CLIP(3G)
NAME
VI Clip — set clipping window
SYNOPSIS
VIL_Clip(Ix,ly,hx,hy)
int Ix ly; /* top left corner of clipping area */
int hx,hy; /* bottom right corner of clipping area */
DESCRIPTION

VI _Clip specifies that subsequent primitives drawn on the screen are to be clipped to the specified
area. It is the user’s responsibility to ensure the sensibility of the window definition. The clipping

window is initially set to the whole screen.

NOTE
VI_Clip applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
query(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985

CLIP(3G) CLIP(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

COLOR(3G) COLOR(3G)

NAME

VI_Color — change screen color
SYNOPSIS

VI_Color(color)

int color; /* new color, true for white */

DESCRIPTION
VI Color sets the color of the screen to the specified value: 0 means that bits having the binary
value “0” will be black on the screen; 1 means that bits having the binary value “1” will be black
on the screen. If this value is different from the previous value, the screen will be inverted, so as
to make the change transparent to the application. The screen color is initially white 1’s on black
0’s, color 0.

NOTE
VI _Color applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
query(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 31 Mar 1986 1

COLOR (3G) COLOR (3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 31 Mar 1986 2

COPY (3G) COPY(3G)

NAME
VI _Copy — copy an area
SYNOPSIS
VI_Copy(sx sy,tx,ty,wd,ht,merge)
int sx,sy; [* source top-left */
int tx,ty; /* target top-left */
int wd,ht; [* rectangle dimensions */
int merge; /* merge mode */
DESCRIPTION

VI_Copy duplicates the rectangle at sx,sy with the dimensions wd, At to the point ¢x,zy. The copied
bits are merged with the target area using the specified merge mode, not the merge mode set by
merge(3G). See merge(3G) for a description of merge modes.

Both the source and destination rectangles must be completely on the screen. The current setting
of the clipping window is ignored.

NOTE
VI _Copy applies only to the IBM Academic Information Systems experimental display.

VI_Copy cannot copy an area onto itself with a mode change, e.g. for highlighting. A fast way to
highlight is to use VI_Merge with XOR mode and VI Tile.

SEE ALSO
merge (3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

COPY (3G) COPY(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

CURSOR(3G) CURSOR (3G)

NAME
VI_MDefnCur, VI_FDefnCur, VI_EnCur, VI_DisCur, VI_PosnCur — control the display cursor

SYNOPSIS
VI_MDefnCur(xoff,yoff,black,white)
int xoff; [* x offset of cursor center */
int yoff; [* y offset of cursor center */
unsigned short *black; /* first byte of black mask */
unsigned short *white; [* first byte of white mask */

VI_FDefnCur(filename)

char *filename; /* name of cursor definition file */
VI_EnCur()
VI_DisCur()
VI_PosnCur(x,y)
int x,y; [* new cursor position */
DESCRIPTION

These subroutines allow programs to control the display cursor by defining it, enabling and disa-
bling it, and changing its position. Disabling and reenabling the cursor do not affect its pattern or
position. Because the display maintains the cursor separately from the display buffer, the cursor
does not have to be removed when a graphics primitive intersects its position. Initially the cursor
is transparent and disabled, and is positioned at the center of the screen.

VI_MDefnCur Sets the cursor as specified. xoff,yoff is the displacement of the cursor pattern
from the current position of the cursor. For example, a value of (32,32) would
center the cursor pattern around the current point. The cursor pattern itself is a
64-by-64 bit image, with two planes. A 1 in the black plane indicates that that bit
of the cursor should be black. A 1 in the white plane indicates that the cursor
should be white in that position. If a bit has a 0 in both planes, the cursor is
transparent in that position. If a bit is 1 in both planes, the cursor is white. The
two planes are images in the same format as accepted by MImage, and must be
64-by-64, or 512 bytes each.

VI _FDefnCur Sets the cursor to the definition in the specified file. The file has the format
shown below; the fields are explained under MDefnCur.
Offset (bytes) Description

0 XOFF
2 YOFF
4 BLACK bit pattern
516 WHITE bit pattern

See the description of MDefnCur for a description of the fields.
VI _EnCur Enables the cursor and displays it if it is not already present.
VI_DisCur Disables the cursor and removes it from the screen if it is present.
VI_PosnCur Moves the cursor to the specified position. It cannot be moved off the screen.

NOTE
VI Cursor applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
image(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

CURSOR(3G) CURSOR (3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

DASH(3G) DASH(3G)

NAME
VI_Dash — set line dash pattern
SYNOPSIS
VI_Dash(dash,dashlen)
unsigned short dash; [* dash pattern */
short dashlen; [* dash pattern length */
DESCRIPTION

If no dash pattern has been set, lines drawn with the VI _RLine and VI_ALine subroutines
described under line(3G) are solid lines of 1's. If a pattern has been set, the biis of the pattern
word are used in sequence whenever the vector generator would normally output a 1. Setting a
pattern of 0x5555 produces a very acceptable dotted line. Other patterns may be used to vary the
size of dashes in the line. The length of the pattern can range from 1 to 16 bits. The pattern bits
should be left-justified. Setting the pattern length to 0 specifies a return to solid lines. The line
dash pattern is initially set to solid 1’s.

SEE ALSO
line(3G), merge(3G), query(3G), width(3G)

NOTE
VI_Dash applies only to the IBM Academic Information Systems experimental display. VI_Dash
does not support VI_Circle.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

DASH(3G) DASH (3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

FONT(3G) FONT(3G)

NAME
VI_Font, VI_GetFont, VI_DropFont — select and manipulate fonts
SYNOPSIS
VI1_Font(fontid)
int fontid; [* font ID */
VI_GetFont(name,fontid)
char *name; /* font name */
short *fontid; [* font 1D */
VI_DropFont(fontid)
int fontid; /* ID of font to release */
DESCRIPTION

Fonts are stored in files, which are loaded into the workstation memory when requested by appli-
cations using VI_GetFont. Once a font is loaded, it is kept in memory until the program ends,
unless explicitly dropped with VI DropFont.

VI _GetFont Ioads the specified font into memory, if it is not already present. If the font is

successfully loaded, the font ID is returned. Setting the current font to this ID
with VI Font causes subsequent strings to be displayed in the font.

VI Font Selects the font with the specified font 1. Font IDs range from 0 to 255 and are
returned by calls to VI_GetFont.

VI DropFont Drops the specified font from memory. The application should not attempt to
use the font ID again. If the font is required, a new font ID should be generated
by a request to VI_GetFont.

NOTE
VI _Font applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
string(3G)

DIAGNOSTICS
If VI _GetFont returns a font ID of 0, either the font could not be found, or it did not fit in

memory. If the font did not fit in memory, a message will be sent to stderr.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

FONT(3G) FONT(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Scp 1985 2

FORCE(3G) FORCE(3G)

NAME
VI_Force — force output of graphics orders

SYNOPSIS
VI_Force()

DESCRIPTION
Commands built with subroutines described in “Setting Graphics Parameters” and ‘“Issuing
Graphics Primitives” in “The C Subroutine Interface for the IBM Academic Information Systems
Experimental Display” generally do not send their output to the screen immediately. Instead the
output remains in a buffer until the buffer is full, when its output is sent to the screen. Use
VI Force to force output in the current buffer to be transmitted before the buffer is full.

NOTE
VI Force applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
init(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 |

FORCE(3G) FORCE(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

IMAGE(3G) IMAGE (3G)

NAME
VI MImage, VI_FImage — draw an image
SYNOPSIS
VI_MImage(wd,ht,data)
int wd,ht; [* dimensions of image */
unsigned short *data; [/* first byte of image */
VI_FImage(filename)
char *filename; [* file name of image to draw */
DESCRIPTION

These functions draw an image from memory or from a file. The current point is unchanged.
The image data should be in scanline order, from top to bottom, with each scanline padded to the
next 16-bit word. For example, for a width of WD and height of HT, there should be
2*HT(WD + 15)/16 bytes of image data.

Vi_Mimage Draws an image of the specified dimensions whose top left comer is at the current
point. data must be the first byte of an image large enough to fill the rectangle
specified by wd and At, or an addressing error may result.

VI_FlImage Draws the image contained in the specified file, placing its top left corner at the
current point. The image file must have the following format:

Offset (bytes) Description

0 The width of the image
2 The height of the image
4 Image data
NOTE
VI Image applies only to the IBM Academic Information Systems experimental display.
SEE ALSO

read(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

IMAGE (3G) IMAGE (3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

INIT (3G) INIT(3G)

NAME
VI Init, VI_Term — initialize and terminate the subroutine interface
SYNOPSIS
VI_Init(wd,ht)
short *wd,*ht; /* screen dimensions */
VI_Term()
DESCRIPTION

These functions initialize and terminate the subroutine interface.

VI _Init Initializes the display and returns the dimensions of the screen. The display currently
has a width of 1024 bits and a height of 800 bits. VI _/nit must be the first call. The
top left point is (0,0); the bottom right point is (1023,799).

VI_Term Completes processing, closes any log files, and forces transmission of the graphics
buffer to the display.

FILES
Jdev/aed
Jusr/libjaed/whim.aed
Jusr/lib/aed/pcfont.fnt

NOTE
VI _Init applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
force(3G), log(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 31 Mar 1986 1

INIT (3G) INIT(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 31 Mar 1986 2

INTRO(3G) INTRO(3G)

NAME
intro — introduction to display graphics subroutines

DESCRIPTION
This section describes the subroutines that are part of the interface for the IBM Academic Infor-
mation Systems experimental display (herein after called “the experimental display”). The sub-
routines are graphics routines for controlling the experimental display in all-points addressable
mode.

The interface described in this section provides access to a set of functions designed to support a
window manager, and is composed primarily of subroutines, as distinguished from functions. A
typical subroutine uses parameters to receive input and return output. C passes parameters by
value; to call a subroutine which returns information, you must supply an address for the return-
ing value as the parameter.

Calls that supply an address for return in this package should usually supply the address of a short
(16-bit) integer. Calls that pass integer values can usually get by with either short or int. See the
individual routines.

Many of the subroutines do return a value as a function would, generally for error return codes
and special case handling. It is strongly recommended that applications monitor return codes to
prevent bizarre events and possibly more severe errors. When linking, specify -laed to pick up the
experimental-display library.

All subroutines use screen coordinates with the origin in the upper left corner of the experimental

display.
LIST OF FUNCTIONS
Name Appears on Page Description
VI_ALine line.3g draw a line to an absolute location
VI_AMove move.3g move the current point to an absolute location
VI_Circle circle.3g draw a circle
VI Clip clip.3g set clipping window
VI _Color color.3g change screen color
VI_Copy copy.3g copy an area
VI Dash dash.3g set line dash pattern
VI_DisCur cursor.3g disable cursor
VI_DropFont font.3g release font
VI_EnCur cursor.3g enable cursor
VI_FDefnCur cursor.3g set cursor pattern from file
VI Flmage image.3g draw an image from a file
VI Font font.3g select font
VI _Force force.3g force output of graphics orders
VI Fread read.3g read experimental-display data into a file
VI _GetFont font.3g load a font into memory
VI_Init init.3g initialize the subroutine interface
VI Login log.3g begin logging subroutine calls
VI_Logout log.3g close a log file
VI _MDefnCur cursor.3g set cursor pattern from memory
VI_Merge merge.3 set merge mode
VI MImage image.3g draw an image from memory
VI_MRead read.3g read experimental-display data into memory
VI _PosnCur cursor.3g set cursor position
VI_QClip query.3 query clipping rectangle
VI_QColor query.3g query current color
VI_QDash query.3g query dash pattern

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 31 Jan 1985 1

INTRO(3G)
VI_QFont query.3g
VI QMerge query.3g
VI_QPoint query.3g
VI_QWidth query.3g
VI_RLine line.3g
VI_RMove move.3g
VI_Run run.3g
VI_String string.3g
VI_Term init.3g
VI_Tile tile.3g
VI_Width width.3g

FILES
Jusr/lib/aed/whim.aed
Just/lib/aed/pcfont.fnt
Jusr/lib/libaed.a

NOTE

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2

Jusr/src/ust.lib/libaed/examples

/dev/aed

INTRO(3G)

query font

query merge mode

query current point

query line width

draw a line to a relative location
move the current point to a relative location
process a log file

draw a string

terminate the subroutine interface
tile a rectangle

set line width

These subroutines apply only to the IBM Academic Information Systems experimental display.

SEE ALSO
“The C Subroutine Interface for the IBM Academic Information Systems Experimental Display”
in Volume II, Supplementary Documents.

31 Jan 1985 2

LINE(3G) LINE(3G)

NAME
VI_ALine, VI_RLine — draw a line
SYNOPSIS
VI_ALine(x,y)
int x,y; /* end point of line */
VI_RLine(dxdy)
int dx,dy; /* displacement to end point */
DESCRIPTION

These functions draw a line to an absolute or a relative location. A line is normally of 1’s, and is
merged with the window data according to the current merge mode.

VI_ALine Draws a line from the current point to the specified point (the line’s end point)
according to the current values of the merge, width, and dash pattern parameters. The
specified point becomes the current point.

VI_RLine Draws a line from the current point to the current point displaced by the specified
values, according to the current values of the merge, width, and dash pattern parame-
ters. The current point is incremented by the displacement.

NOTE
VI _Line applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
clip(3G), dash(3G), merge(3G), width(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985

LINE(3G) LINE(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

LOG(3G) LOG(3G)

NAME
VI _Login, VI Logout — begin logging subroutine calls and close a log file
SYNOPSIS
int VI_Login(filename)
char *filename; [* file to log to */
int VI_Logout()
DESCRIPTION

These subroutines begin logging subroutine calls and close the log file.

VI Login Specifies that subsequent subroutine calls are to be echoed into the specified file. If
a log file is already open, VI _Login closes it before opening the new file; VI Login
overwrites an existing file. All orders to the display are logged until a logout call
(VI _Logout) is issued. The log file may later be executed from within a program
using VI Run or on its own using aedrunner(1). It may also be examined with
aedjournal(l).

VI_Logout Closes the log file.

NOTE
VI _Log applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
aedjournal(1), aedrunner(1), init(3G), run(3G)
“The C Subroutine Interface for the IBM Academic Information Systems Experimental Display”
in Volume II.

DIAGNOSTICS
VI Login returns a negative value if there is an error, and a nonnegative value if the call is suc-
cessful.

VI _Logout returns one of three values:
Value Meaning

0 Normal completion
-1 Error in closing file
-2 No file found to close

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

LOG(3G) LOG(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

MERGE (3G) MERGE((3G)

NAME

VI Merge — set merge mode

SYNOPSIS

VI_Merge(merge)
int merge; /* merge mode */

DESCRIPTION

NOTE

The merge mode is a number from 0 to 15 that specifies how the bits generated by primitives are
to be combined with bits already on the screen, as shown in the following table:

Merge Mode Meaning

OFF

NOR

NOT DATA AND SCREEN
NOT DATA

DATA AND NOT SCREEN
NOT SCREEN

XOR (NEQ)

NAND

AND

EQ

10 SCREEN (ignore)

11 NOT DATA OR SCREEN
12 DATA (replace)

13 DATA OR NOT SCREEN
14 OR

15 ON

The merge mode is initially set to 12, for replace mode. Data bits replace screen bits. The merge
mode is simply an encoding of the logical function used to combine screen bits and data bits.
Encoding the desired result of each of the combinations in the table below generates the merge
mode that should be used to get that effect. For example, to or the data you are adding with the
data already present on the screen, you would use a merge mode of 14:

(Vo lo BN B NV N N FER N B o]

Data Bit 1 1 0 0
Screen Bit 1 0 1 O

Example: ORmode 1 1 1 0 =14

VI_Merge applies only to the IBM Academic Information Systems experimental display.

SEE ALSO

circle(3G), color(3G), line(3G), query(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

MERGE(3G) MERGE(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

MOVE (3G) MOVE(3G)

NAME
VI _AMove, VI_ RMove — move the current point
SYNOPSIS
VI_AMove(x,y)
int x,y; /* new point */
VI_RMove(dx,dy)
int dx,dy; /* displacement from old point */
DESCRIPTION

These functions move the current point; they do not change the screen. The current point is ini-
tially set to (0,0).

VI_AMove Moves the current point to the specified coordinates.
VI_RMove Moves the current point by the specified displacement.

NOTE
VI_Move applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
query(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

MOVE(3G) MOVE(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

QUERY (3G)

NAME

QUERY(3G)

VI_QClip, VI_QColor, VI_QDash, VI_QFont, VI_QMerge, VI_QPoint, VI QWidth — query
graphics parameters

SYNOPSIS

VI_QClip(Ix,ly hx;hy)

short *Ix,*ly; [* top left corner of clipping area */

short *hx,*hy; /* bottom right corner *{
V1_QColor(color)

short *color; [* current color, true for white */
VI_QDash(dash dashlen)

unsigned short *dash; [* dash pattern */

short *dashlen; [* length of dash pattern */
VI_QFont(fontid,fontname)

short *fontid; [* current font ID */

char *fontname; /* current font name */
VI_QMerge(merge)

short *merge; /* current merge mode */
VI_QPoint(x,y)

short *x,*y [* current point */
VI_QWidth(width)

short *width; [* line width */

DESCRIPTION

These subroutines return the current values of the graphics parameters. Each subroutine requires
an address in which to store the value to be returned. All of these subroutines force transmission
of graphics data in the current buffer.

VI_QClip
VI_QColor

VI_QDash

VI_QFont

VI_QMerge

VI_QPoint

VI_QWidth
NOTE

Returns the the current clipping rectangle.

Returns the current color of the screen: 0 means that bits having the binary value
“0” will be black on the screen; 1 means that bits having the binary value “1” will
be black on the screen.

Returns the current line dash pattern in the format described for dash (3G). If
dashlen is 0, the lines are currently solid.

Returns the ID and name of the current font. The font ID is 0 if no font has been
set. The pointer fontname should point to a block of characters large enough to
hold a file name along with a string-termination byte. If you know beforehand the
size of your file name, you may allow only as many bytes as required. Be aware of
the string-terminator byte; there must be room for it.

Returns the current merge mode in the format described for merge(3G).

Returns the location of the current point. This command is especially useful after
string(3G) has been issued, since character definitions can change the current point
in unpredictable ways.

Returns the current line width as a number between 1 and 16.

VI _Query applies only to the IBM Academic Information Systems experimental display.

SEE ALSO

clip(3G), color(3G), dash(3G), merge(3G), move(3G), string(3G), width(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 31 Mar 1986 1

QUERY(3G) QUERY (3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 31 Mar 1986 2

READ(3G) READ(3G)

NAME
VI_MRead, VI_FRead — read display data
SYNOPSIS
VI_MRead(x,y,wd ht,data)
int x,y; [* top left corner of area */
int wd,ht; [* dimensions of area */
unsigned short *data; [* first byte of data */
VI_FRead(x,y,wd,ht,filename)
int x,y; [* top left corner of area */
int wd,ht; /* dimensions of area */
char *filename; [* name of file to place image in */
DESCRIPTION

These functions read display data into memory or into a file. The area to be read must be com-
pletely on the screen. The current setting of the clipping window is ignored.

VI_MRead Reads the specified area of the screen into the array passed as data. Image bytes are
in the same format as expected by MImage. If the screen color is white, the bits are
inverted on readback to make the data read back independent of screen color. The
area to be read must be completely on the screen.

VI FRead Reads the specified area of the screen and places it in the specified file. The file has
the same format as expected by Fimage. If the window color is white, data bits are
inverted to make the data independent of the screen color.

NOTE
VI _Read applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
image(3QG)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

READ(3G) READ(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

RUN(3G) RUN(3G)

NAME
VI_Run — process a log file

SYNOPSIS

int VI_Run(filename)
char *filename; [* log file name */

DESCRIPTION
VI _Run executes the commands logged in the specified file; filenarme is the name of a log file that
was created by VI Login. Using VI _Run with a log file has the same effect as executing
aedrunner{1) from within a program, allowing a series of orders which require much calculation to
be figured only once, logged, then quickly retrieved when needed.

NOTE
VI_Run applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
aedjournal(1), aedrunner(1), log(3G)

DIAGNOSTICS
VI Run returns 0 for normal completion, and -1 if it detects any kind of inconsistency or unex-

plained results in the file.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985

RUN(3G) RUN(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

STRING(3G)

STRING(3G)
NAME
VI _String — draw a string
SYNOPSIS
VI_String(s)
char *s; [* string to draw */
DESCRIPTION

VI _String draws the specified string at the current point. Since a character definition is really a
sequence of other graphics commands (usually VI_MImage and VI_RMove), the way in which
characters are positioned, stepped, and drawn depends on the font definition. Character

definitions typically modify the current point.

NOTE
VI _String applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
font(3G)

“Defining Fonts” in “The C Subroutine Interface for the IBM Academic Information Systems
Experimental Display”

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985

STRING(3G) STRING(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

TILE(3G) TILE(3G)

NAME
VI _Tile — tile a rectangle
SYNOPSIS
VI_Tile(wd,ht,twd,tht,tile)
int wd,ht; /* dimensions of rectangle */
int twd,tht; /* dimensions of tile */
unsigned short *tile; [* first byte of pattern */
DESCRIPTION
VI Tile fills a rectangle of the specified dimensions with the specified pattern. The rectangle’s top
left corner will be at the current point. The tile pattern must follow the rules for images as
explained in image(3G), and can be of any size. The tile pattern is aligned to multiples of wd
and tht, not to the bounds of the tiled rectangle, so that rectangular subareas of larger figures can
be tiled without regard to their bounds, and the tile patterns will match. The current point is
unchanged.
A full rectangle black or white fill can be most quickly drawn by requesting a one-by-one tile.
Clearly, only all ON or all OFF may be drawn with this method, but any merge mode may be
used.
NOTE
VI _Tile applies only to the IBM Academic Information Systems experimental display.
SEE ALSO

image(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 1

TILE(3G) TILE(3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

WIDTH(3G) WIDTH (3G)

NAME
VI_Width — set line width
SYNOPSIS
VI_Width(width)
int width; /* line width */
DESCRIPTION
VI _Width specifies a value between 1 and 16 that is to be the line width. Line width is initially
set to 1.
NOTE

VI_Width applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
line(3G), query(3G)

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 , 1

WIDTH(3G) WIDTH (3G)

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.2/RT, Rel. 2 30 Sep 1985 2

4.2 for the IBM RT PC

High C Programmer’s Guide

Appendix C. High C ™ Programmer’s Guide

© Copyright 1983-1986, MetaWare '™ Incorporated, Santa Cruz, CA, U.S.A.
High C and MetaWare are trademarks of MetaWare Incorporated.

ABSTRACT

This is a guide to the operation of the High C compiler as implemented for Academic Information
Systems 4.2 for the IBM RT PC (“4.2/RT”). It contains:

1INTRODUCTION 2
2 INVOKING THE COMPILER 4
2.1 Invoking the C Macro Preprocessor 4
2.2 Command Options 4
3 COMPILER PRAGMAS 8
3.1 Syntax of Pragmas 8
3.2 Compiler Pragma Summaries 8
3.3 Include Pragmas: Including Source

1 5 8
4 COMPILER TOGGLES 10
5 STORAGE MAPPING 15
5.1 Data Typesin Storage 15
5.2 StorageClasses 15
6 RUN-TIME ORGANIZATION 17
6.1 RegisterUsagecccuunn.. 17
62 TheDataAreaccvuvuunnnnn 17
6.3 Stack Frame Layout 18
64 ArgumentPassing 18
6.5 FunctionResults 19
6.6 Calling Sequences 19
67 Prologue ...t 19
6.8 Epilogueol 20
6.9 AssemblerIssues.................. 20
7 EXTERNALS 21
7.1 TheAliasPragma 21

7.2 Data Segmentation: the Data Pragma . 21

C1

8 ASSEMBLY LANGUAGE
COMMUNICATION 23

8.1 Assembly Routines 23

8.2 Function Naming Conventions 23

8.3 Examples: Calling Assembly from C.. 24
8.4 Example: Calling C from Assembly .. 25

8.5 Data Communication............... 25
9 LISTINGS 27
9.1 Pragmas Page, Skip, Title 27
9.2 Formatof Listings 27

10 MAKING CROSS REFERENCES 34

10.1 Features of the Cross Reference 34
10.2 Using the hexref Command 34
10.3 Cross-Reference Format 35
104 Distinction of File Names 36
11 SYSTEM SPECIFICS 37
11.1 Floating-Point Arithmetic 37
11.2 InputLineLength 37
11.3 Some ANSI-Required Specifics 37
12 DIAGNOSTIC MESSAGES 39
121 File/OErrorsccovvvnenenn. 39
12.2 System Errors ...t 39
12.3 User Errors and Warnings 40
12.4 Error and Warning Messages 41
Appendix A CROSS-JUMPING
OPTIMIZATIONS 48
29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

1. INTRODUCTION

This is a guide to the operation of the High C compiler as implemented for Academic Information
Systems 4.2 for the IBM RT PC (“ 4.2/RT”).

The Compiler generates relocatable object modules directly, in contrast to most UNIX C compilers,
which generate assembly files.

High C was designed to facilitate serious professional programming. It supports the draft ANSI
Standard (ANSI document X3J11/85-102, August, 1985) and a few extensions.

C is a mixed-level systems language designed by Dennis Ritchie at AT&T’s Bell Laboratories. It
grew in popularity because of its use in implementing the UNIX operating system, its elegant (and
deceptive) simplicity, and its close-to-the-machine features. As its popularity grew, many software
developers have used it for real-world applications as well as systems software.

Later implementations of C were extended to add enumeration types and a few other features. More
recently many extensions have been proposed to make C a safer language while still being consistent
with the philosophy of the original language. Today there is a core language being standardized by
the American National Standards Institute (ANSI).

High C includes what most likely will be ANSI Standard C and also provides extensions that were
carefully designed to be consistent with the philosophy of C. Some of the best features of such other
languages as Pascal, MetaWare’s Professional Pascal, and Ada were incorporated as extensions.
Incompatibilities were minimized by introducing a minimum of new key words and by retaining the
original syntax. Yet the extensions are such that they will be flagged by any Standard-conforming
compiler.

Portability. Standard C programs can be compiled with an ANSI option that turns off the extensions
and reduces the language to the Standard core. Alternatively, such programs can be gradually
upgraded by not choosing the ANSI option and using more and more extensions.

Safety, efficiency. While the close-to-the-machine features of C are available, High C supplies the
new strong type-checking specified in ANSI C. In addition, the compiler provides many checking
features usually available only in a separate “lint” program. Thus one gets both efficiency and
reliability. It is an excellent language for both applications and systems programming,.

Other important features and extensions include:

- three integer ranges and two floating-point precisions

- many compiler controls and options, including one for strict ANSI Standard checking

- nested functions complete with up-level references, as in Pascal

- nested functions passable as parameters to other functions, as in Pascal

- intrinsic functions, suchas _abs, min, _max, _fill char, for efficiency

- many optimizations, some of which are normally found only in mainframe compilers, including:

common subexpression elimination
retention and reuse of register contents
dead-code elimination

cross jumping (tail merging)
jump-instruction size minimization

constant folding

numerous strength reductions

automatic allocation of variables to registers

This guide contains all system-specific information necessary for using the compiler effectively.
Readers new to the product should scan the Table of Contents for an overview of the guide. Briefly,
the next few chapters describe how to compile, link, and run, and how to use the compiler controls and

C-2 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

options. There follow chapters on machine specifics, such as storage mapping and run-time
organization. Next are chapters on communicating with programs written in other languages, listings,
cross-references, defaults and limits, and error messages. An extensive index provides for quick
reference to all sections that discuss or significantly relate to each topic.

This guide does not explain the High C language or its extensions. They are treated in the MetaWare
High C Language Reference Manual. Neither this gunide nor the manual attempt to teach C
programming; consult the manual for references to several C textbooks.

C-3 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

2. INVOKING THE COMPILER

The he command invokes the High C compiler, which translates C programs into executable load
modules or into relocatable binary object modules suitable for linking with 14, The syntax of the
command is:

he [options]... files...

Any number of options and one or more files may be specified. Each option specified in the
command applies to all the specified files for which it makes sense, except as noted below.

Several types of arguments are allowed. An argument ending with “.c” is taken to be a C source
module. It is compiled and an object module is produced with the same name as the source except
with “. o” substituted for “.c”. The *“.o” file is normally deleted after linking when a single-module
C program is compiled and linked.

An argument whose name ends with “. s” is taken to be an assembly source module and is assembled,
producing a “.o” file. Any other file specification is assumed to be an object module or archive
library to be linked via 1d.

All ““. o” files are placed in the current working directory.

In general, 14 is invoked if no compilation errors were detected and the -c option was not specified.
The resultant load module is named “a . out” unless specified otherwise with the -o option (described
below). Any argument beginning with a dash (*-") is taken as an option specification.

Example. The following command compiles the program in file sort.c, links it, and generates a
load module named sort.

he -o sort sort.c

2.1. Invoking the C Macro Preprocessor

The High C compiler has an integrated “inboard™ macro preprocessor, documented in the High C
Language Reference Manual. The preprocessor conforms to the proposed ANSI C Standard.
However the “outboard” C macro preprocessor on most UNIX operating systems does not conform to
the proposed Standard in some ways.

Since many C programs written for UNIX operating systems depend on minor idiosyncrasies of the
outboard C preprocessor, the -Hepp/-Hnocpp options are provided. The -Hepp option causes the
outboard preprocessor to be invoked on the source file sending the output to a temporary file, which
then serves as input to the compiler. -Hnocpp suppresses this action. The compiler is provided with
the —-Hepp option on by default.

2.2. Command Options

Below is a description of each compiler option. Any option that is not recognized by he is assumed to
be a linker option and is passed on to 1d. Options applicable only to High C are prefixed with an 8.

-Hansi Causes the compiler to accept only those programs conforming to the proposed ANSI
Standard C language.
Note: Since the proposed ANSI Standard is under revision at the time of this writing,
this option’s primary function is to turn off the High C language extensions.

-Hasm Directs the compiler to produce an assembly listing of the generated code on standard
output, by initializing the Asm toggle to on. The assembly listing is annotated with lines
from the main source file but not with lines from any included files, for technical
reasons. These lines appear as comments immediately preceding the corresponding
assembly instructions. If the -8 option (described below) is also specified, the generated

C-4 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

-Bstring

-C

~Hepp

-Hnocpp

-Hdebug

-Dname

. s file is annotated with lines from the source file, and no listing is written on standard
output.

Finds substitute compiler executables in the files named st ring with the suffixes “cpp”
and “hccom”. If no string is given, the default /usr/c/o is used, i.e. the default is
/usx/c/ocpp and /usr/c/ohccom.

Suppresses the invocation of 14, and forces an object file to be produced even if only
one module is compiled.

Specifies that the outboard C macro preprocessor (/1ib/cpp) is to be used, rather than
the inboard preprocessor. -Hepp is the default.

Suppresses the use of the outboard C macro preprocessor in favor of the inboard
preprocessor. See §2.1 for details.

Directs the compiler to emit additional symbol table information for the debugger dbx.
This option is synonymous with -g.

~Dname=def

-g

-Idir

-Hlines=n

-Hlist

Defines the name name to the preprocessor as if by “#define”. If no deris given, the
name is defined to be 1 (one). Note: There is no space between -D and name.

Specifies that the outboard C macro preprocessor is to be invoked and no compilation
done. The preprocessor output is sent to standard output. (-E renders -Hnocpp
irrelevant.)

Specifies that single-precision arithmetic is to be used in computations involving only
float numbers. That is, floating-point operations are not to be performed in double
precision, which is the default. Note that £1lcat arguments to non-prototyped functions
are still converted to double, and functionresults declared to return £1oat are returned
as double. Some programs run much faster with this option, but beware of loss of
significance due to lower-precision intermediate computations. (Also sce toggle
Double math onlyin §4 COMPILER TOGGLES.)

Directs the compiler to emit additional symbol table information for the debugger dbx.
This option is synonymous with -Hdebug.

Specifies an alternate directory to be searched to locate an include file. This option may
be specified several times to indicate several directories to be searched. If a particular
file is not located after searching the specified directories, one or more standard
directories are searched. See §3 COMPILER PRAGMAS. Note: There is no space
between -I and the directory name dir.

Causes a page eject to occur after every n lines written to standard output. The default
of 60 is appropriate for most 6-lines-per-inch printers, which have a total of 66 lines per
page. The setting of lines is intended to allow some blank ‘space at page boundaries.
‘When using 8-lines-per-inch, typically there are 88 lines per page, so ~Hlines should
be set to 80 or 82. This option is used in conjunction with the -Hlist and -Hasm
options. If n is 0, no page ejects are emitted.

Causes the compiler to generate a source listing on standard output. It works by
initializing the List toggle to On. See §4 COMPILER TOGGLES.

Specifies that the outboard C macro preprocessor is to be invoked and Makefile
dependencies are to be generated. The output is sent to standard output. No compilation
occurs.

C-5 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

-mx

-0 output

Specifies a machine-dependent option. Currently available options are:

-ma Specifies that the C library function a11oca may be called from within the source
file(s). alloca must extend the stack frame of alloca’s caller and needs certain
information about the size of the caller’s stack frame. This option makes the
information available in the caller’s data area. If alloca is called from a function
that was not compiled with the -ma option, an error diagnostic is generated at run-
time.

Is passed on to the 1d command and names the final executable output file output.
When this option is used, any existing a.out file is left undisturbed. Note: White
space is required after the -o.

Specifies that all optimizations supported by the compiler are to be performed on the
generated code. This is the default unless -g is specified. Therefore, this option has
meaning only when used in conjunction with -g.

-Hon=toggle
-Hoff=toggle

P

“Pg

-Hppo

Turns a toggle on or 0££. See §4 COMPILER TOGGLES.

Produces code that counts the number of times each function is called during execution,
If 1d is invoked, the profiling library /usx/1ib/libc p.a is searched in lieu of the
standard C library /1ib/1ibc.a. Also replaces the standard start-up function with one
that automatically calls monitor (3) at the start and writes out a mon.out file. An
execution profile can then be generated by use of prof (1).

Invokes a run-time recording mechanism as does -p, but keeps more extensive statistics
and produces a gmon. ocut file. An execution profile can then be generated by use of
gprof (1l).

-Hppo=filename

—-Oname

-v

Specifies that the compiler is to invoke its inboard preprocessor only and send the results
to “rilename”. If -Hppo alone is given, the preprocessor output is printed to the
standard output. No object module is generated, nor is 1d invoked. “ppo” can be read
“pre-process only” or “print preprocessor output”. The preprocessor output is suitable
for input to the compiler.

With -Hppo, any Include pragmas are not processed, since -Hppo turns off all
processing past the preprocessor, and a later phase of the compiler handles the Include
pragma.

Makes all initialized static variables shared and read-only. This option is implemented
by the assembler and therefore requires the compiler to emit an assembly source file. As
a consequence, the ~Hasm option is ignored.

Produces an assembly source file instead of an object file (for each source file). The
assembly source is written into a file with the same name as the C source with “.c”
replaced by “.s”. The file is always placed in the current working directory. No object
file is written, nor is 1d invoked. Note: Unlike other compilers for UNIX operating
systems, the High C compiler normally generates an object module directly, without
producing an assembly file. The -s option essentially directs the last phase of the
compiler to produce assembly source as the object code is generated. If the -Hasm
option is also specified, the “. s” file is annotated with interlisted source file lines.

Removes any initial definition of macro name. See -D above.

Causes the name of each subprocess to be printed as it begins to execute. (To get
announcements of compiler-phase execution also, set ~Hof£=Quiet.)

C-6 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

-w Causes all warning messages from the compiler to be suppressed.

-H+tw Issues ALL warnings. The default is to issue only warnings that pee would issue. This
option comes highly recommended.

C-7 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

3. COMPILER PRAGMAS

The High C compiler provides “pragmas” (the term comes from Ada) that direct compiler operations.
Pragmas control the inclusion and listing of source text, the production of object code files, the
generation of optional additional program and debugging information, and so on.

3.1. Syntax of Pragmas

Compiler pragmas take one of the following general forms:

pragma <Pragma_name>; /* or */
pragma <Pragma_name>(<Pragma_ parameters>);

where <Pragma_parameters> is a list of constant expressions separated by commas. The number
and types of the expressions are dependent upon the particular <Pragma_name>. A pragma can
appear anywhere a statement or declaration can appear. See the High C Language Reference Manual
for a specification of the precise placement of pragmas.

<Pragma_name>$ are case insensitive.

3.2. Compiler Pragma Summaries

The following pragmas are available:

Pragma Purpose
Toggles — see §4 COMPILER TOGGLES:

On,0ff,Pop
Turns On or Of £, or reinstates a prior status of a compiler switch or “toggle”.
Externals — see §7 EXTERNALS:

Alias Specifies the external name to be associated with a global identifier.

Data Specifies the use of named blocks for data storage allocation. This is primarily
intended for communicating with other languages.
Including Source Files — see §3.3 below:

Include Includes the source of another file in the compilation unit.

C_include Conditional form of Include.

R_include Includes the source of another file in the compilation unit treating the path name as
Relative to the directory of the file containing the pragma. This pragma has the same
inclusion effect as the #include preprocessor directive.

RC_include Conditional form of R_include.

3.3. Include Pragmas: Including Source Files

The #include preprocessor directive normally includes source text from an alternate file. The High
C compiler supports pragmas with alternate search strategies for including files. This section
describes the various strategies used to search for include files.

Include pragmas are processed by the compiler itself, not the macro preprocessor. Thus, we
recommend using the #include directive rather than the Include pragma.

The Include pragma is used to include source from other files while the compilation unit is being
compiled. The pragma operates slightly differently from the standard C #include directive. There
are four forms of the Include pragma:

C-8 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

pragma Include (<File name>);
pragma C_include(<File name>);
pragma R_include(<File name>);
pragma RC_include (<File name>);

where <File name> is a string constant denoting the name of a file. Examples:

pragma Include(™a_lot™");
pragma R _include("dclns™);
pragma C include("math.h");

The Include pragma directs the compiler to include a file unconditionally. The C_include pragma
causes the file to be included only if it has not been included before — “conditionally included”.
R_include has exactly the same effect as the standard C #include directive, i.e. it is a “relative
include” (defined below). RC_include does a “conditional relative include”.

The term relative include refers to an include in which the file is first sought in the directory of the file
where the include pragma appears. If the file is not found in that directory, then any directories
specified in any -I command line options are searched in order of appearance. See §2 INVOKING
THE COMPILER for a description of the -I option. If the file is still not found, then one or more
standard directories are searched.

A non-relative include refers to an include in which the current working directory is searched first
irrespective of the location of the file in which the Include pragma appears. If the file is not found in
that directory, then any directories specified in any —I command line options are searched in order of
appearance. See §2 INVOKING THE COMPILER for a description of the -I option. If the file is still
not found, then one or more standard directories are searched.

A file name specification that begins with “/” is assumed to be an absolute file reference and no
directories are searched.

n?

Preprocessor directive “#include *filename"” specifies arelative include.

Directive “#include <filename>” specifies that only the -I and standard directories are searched.

Warning. There should be nothing to the right of an Include pragma. After the Included file is
processed, processing resumes on the line immediately following the one containing the Include
pragma. In effect the rest of the line is a comment.

Identity of file names. For the C_include and RC_include pragmas, file names, including path,
are considered the same only if they are textually identical. Thus, the following two pragmas may
cause two includes to occur:

pragma C include("strings.h"):

pragma C include("/usr/include/strings.h");

even though both includes may refer to the same file.
Methodology. The primary use for conditional includes is to support modularity.

Assume file “trees.h” is merely a collection of declarations defining the interface to a trees
module. Suppose further that trees. h makes reference to a type Symbol in another module defined
in “symbols.h”. If a standard “$includa "symbols.h"” were placed within trees.h, a
duplicate declaration of Symbol would occur in any compilation unit that Included both trees.h
and symbols.h. If, instead, a conditionali Include were used in both trees.h and in any
compilation unit including symbols.h, at most one copy of symbols. h would be included.

With conditional includes, each interface file F can conditionally include all other interface files that
are necessary for the definition of the resources in F. Therefore any user of F can simply Include F
and will automatically get other resources that are needed, without duplication.

C-9 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

4. COMPILER TOGGLES

Pragmas can be used to turn On and of £ various compiler switches or “toggles”. In such cases, the
pragma syntax is simply:

pragma <Pragma_name>(<Pragma_parameter>);

The <Pragma_name> is either On, Off, or Pop, and the single <Pragma_parameter> is the name
of the toggle to be affected. All compiler toggles are described in sections below.

On turns the toggle on; Off turns it off, and Pop reinstates it to a prior value. Toggles operate in a
stack-like fashion, where each On or O£f is a “push” of on or of£, and a Pop “pops” the stack. The
stack for each toggle is at least 16 elements deep, but no diagnostic is given if the stack overflows or
underflows. Examples:

pragma On (List); ~- Turns on the source listing.
pragma Off (Check stack); -- Turns off the run-time
pragma Off (List); -— stack overflow checks.
pragma On (List); -=- Turns on the source listing.
pragma Pop(List); -- Back to off for the listing.
pragma Pop(List); -- Back to on for the listing.

Recall that toggles can also be initialized on the command line, with -Hon and -Hoff. See §2
INVOKING THE COMPILER.

The default values, names, and meanings of the compiler toggles are described below.

Asm -- Daefault: Off

When 0n, causes a (pseudo-) assembly listing to be generated, annotated with source code as
assembly comments. If the Asm toggle is to be turned on and Of £ over sections of a module, the
pragma should appear among executable statements rather than declarations for best results;
otherwise, the point at which the pragma takes effect may not be obvious.

Auto_reg alloc -- Default: On

When 0On, causes the compiler to automatically allocate auto variables to registers. The compiler
weights variables used within loops more heavily than those not so used in making its decision
which variables to allocate to registers; furthermore it will not allocate to registers variables that
are used too infrequently. See §5 STORAGE MAPPING.

Char default unsigned -- Default: On
‘When 0n, causes type char to be unsigned by default.

The ANSI Standard allows the type char by itself, i.e. without the adjectives unsigned or
signed, to be either signed or unsigned. Of course, the types unsigned char and signed
char can be used to explicitly control signedness.

Double math only -- Default: On unless the -f option is specified.
‘When On, causes floating-point operations to be performed in doublae precision.

When two operands of certain arithmetic operations are both of type float, the ANSI Standard
permits an implementation to do one of two things: perform the operation using float
arithmetic, in which case the result of the operation is of type £1loat, or convert both operands to
type double and use double arithmetic, in which case the result of the operation is of type
double. When toggle Double math only is turned Off, the first option is used. When it is
turned On, the second is used instead.

C-10 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Downshift_ file_names -- Default: Off

‘When On, causes the file name specification of any subsequent Include pragma to be interpreted
as if it were in all lower case. This toggle is useful when moving source code to a UNIX
operating system from others in which file name casing is not significant.

Emit line table —- Default: Off

When On, causes the compiler to add entries to the symbol table that associate source line
numbers with object code addresses. Debuggers use this information to associate object code
with source lines.

The -g (-Hdebug) command line option turns this toggle On.

Note: This toggle does not affect the size of the generated code, but it does add about eight bytes
per statement to the object module’s name list.

Int_function warnings -- Default: Off

When Of £, suppresses the warning message normally generated when a function returning int
has no “return exprn;” statement within it, or a function returning int contains a “return;”
within it.

This is to remove frequent warnings for old C source that did not use the reserved word void to
indicate a function returning no result, since such functions return int by default.

List -- Default: Off

‘When On, causes the compiler to produce a listing on standard output. It is typically given when
starting the compilation but may appear in the source file to turn the listing On or Off around a
particular section of source.

Literals_in code -- Dafault: On

‘When On, causes lengthy literals in a program to be placed in the code space rather than in the
data space.

Note: Not all C literals can be placed in code. A string literal is a writable data item and hence
cannot be placed in code; for such a literal Literals in code has no effect. See
Read only_ strings below.

Make externs_global -- Default: On

When On, any local declaration of an object with storage class extern is made global if there is
not already a global declaration of the object. Early C compilers improperly promoted an
extern declaration within a function to the global scope. This toggle supports programs
depending upon that “feature”.

Optimize for spacea -- Default: Off
When On, causes the generation of more space-efficient but potentially less time-efficient code.
Optimize xjmp -- Default:On

When 0On, enables the cross-jumping optimization. While an effective space-saving optimization
that leaves execution time invariant, it slows the code generator a little and can produce code that
is difficult io debug. See Appendix A CROSS-JUMPING OPTIMIZATIONS of this guide for
more information on the specifics of this optimization. See also the Optimize xjmp_space
toggle below.

Optimize xjmp space -- Default: On

When On, enables a cross-jumping optimization that saves space but always at the expense of
time. This toggle takes effect only if Optimize xjmp is also On. This optimization slows the
code generator a little and can produce code that is difficult to debug. See Appendix A CROSS-

C-11 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

JUMPING OPTIMIZATIONS of this guide for more information on the specifics of this
optimization. See also the Optimize xjmp toggle above.

Parm warnings -—- Default: On

When 0n, causes the compiler to produce warnings whenever arguments are passed to a non-
prototype (old-style) function F do not match in type with the declared formal parameters of F,
Frequently this inconsistency is a source of disastrous or difficult-to-find bugs. Example:

double square(x) double xX; {return x*x;}
(...)
printf ("%d\n", square(3));

The call to square passes the integer 3, not the double 3.0, and the compiler issues a warning.
The C language definition prohibits the compiler from casting 3 to a doubla before passing it.

To eliminate the compiler warnings, turn Off the toggle Parm warnings. We recommend,
however, that the program text be repaired to eliminate the offending function calls rather than
eliminating the potentially useful feedback from the compiler.

PCC_msgs -- Dafault: On

When On, the diagnostic capabilities of the compiler are reduced to the pce level in that the
following warnings are not emitted:

Function called but not defined.
Function return value never specified within function,
This "return" should return a value of type ttt
since the enclosing function returns this type.
"=" uysed where "==" may have been intended.
Only fields of type "unsigned int" or
"unsigned long int" are supported.
External function is never referenced.
Declared type is never referenced.

The next four messages are suppressed for global variables when PCC_msgs is On:

Variable is never used.

Variable is referenced before it is set.
Variable is referenced but is never set.
Variable is set but is never referenced.

When all warnings are enabled in High C, code must be “squeaky clean” to get through the
compiler without a warning. Some users have code that was designed with a compiler that is not
so demanding, and would prefer fewer prods from the compiler. Hence the PCC_msgs toggle is
supplied.

Pointers compatible -- Default: Off

When 0n, allows pointers of any type to be compatible with each other. Although this is in
violation of the ANSI Standard and High C specifications, many old C programs improperly
assign pointers of different types to each other. This toggle allows such programs to be compiled
without modification.

Pointers compatible with ints -- Default: Off

When 0n, allows pointers of any type to be compatible with ints. Although this is in violation of
the ANSI Standard and High C specifications, many old C programs improperly assign pointers
and ints back and forth. This toggle allows such programs to be compiled without modification.

ANSI and High C disallow this dangerous practice because pointers are not necessarily the same
size as ints on all machines. The programmer should ensure that intermixed pointer and int
values have the same size; otherwise a pointer stored in an int may not be retrieved as expected
later.

C-12 29 Oct 86

4.2 for the IBMRT PC High C Programmer’s Guide

Print ppo —- Default: Off

When On, causes preprocessed input to be written to standard output. With this toggle, it is
possible to print what the compiler proper receives over a local area of source code. A use would
be to turn the toggle On prior to a complex macro invocation and O£ £ after it, to verify that the
macro expands as expected. Note: This toggle is ignored unless -Hnocpp is specified or is the
default.

Print protos -- Default: Off

When 0On, causes the compiler to write to standard output a new, prototype-style function header
for each function definition. This toggle aids in the conversion of C programs to use the new
ANSI prototype syntax derived from the C++ language. For example, for the function definition

int f(x,y,z) int *x,z[]; doubla (*y)(); {...}
the compiler produces
int f(int *x, doubla (*y) (), int *z);
The old function header can then be replaced with the generated one.

There are some minor pitfalls in having the compiler automatically generate prototype headers.
One is illustrated above: array parameters, according to the semantics of C, are converted to
pointer parameters. Second, enum types are converted to their representation type (one of the int
types). Finally, the compiler does not distinguish the type specifier char from the signed- or
unsigned-char that char alone stands for. This means that for High C, both char and
unsigned char are printed as unsigned char. The enum and char problems can be avoided
by using typedef£s, and using a typedef name for the parameter’s type.

Print_reg vars -- Default: Off

‘When On, causes the compiler to write to standard output the mapping of variables to registers.

This saves the programmer the trouble of looking at the generated code to discover such
information.

Public var warnings -- Dafault: On
‘When O£ £, suppresses the warning messages:

Variable is never used.

Variable is referenced before it is set.
Variable is referenced but is never set.
Variable is set but is never referenced.

for all variables exported, i.e. non-automatic variables not declared static or extern.

These warning messages occur only for such variables that are not declared within a #include-d
file. If one adheres to the discipline that all imported variables are defined in included files, the
message will not occur.

Quiet -- Default: On

When Of £, causes each compilation phase to be announced in turn as the compilation progresses.
(This toggle is not turned O£ by -v.)

Read only strings —- Default: Off

When On, string literals are considered true literals. Identical string literals appear in the object
code only once and the Literals_in_code toggle (see above) takes effect for string literals,
causing them to be placed in code.

C string literals are not true literals since they are writable data items. This means that they
cannot normally be placed in code space. Furthermore, two identical C string literals must
normally be duplicated in a program’s object code, since one might be modified and the other not.

C-13 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

To avoid this, use Read_only strings and Literals_in code. These two toggles cause C
string literals to be placed in code.

The -R option turns Read_only_strings On initially.
Summarize -- Default: Off

When On, causes the production of summaries of compilation activities. The summaries are
produced at various stages of compilation.

Warn -- Default: On

When 0f £, causes warning messages to be suppressed. The —w option turns Warn Off initially.

C-14 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

5. STORAGE MAPPING

5.1. Data Types in Storage

The table below summarizes the size and alignment of various C data types, and whether a variable of
the type can be aliocated to a register.

Data Type Size Alignment Allocable
char 1 (bytes) 1 (bytes} Y
short int 2 2 Y
int 4 4 Y
long int 4 4 Y
float 4 4 Y
double 8 4 Y
long double 8 4 Y
enum See Note 3. See Note 3. -
Pointer 4 4 Y
Full-function! 8 4 N
Tn] n*sizeof (T) Same as T N
struct{...} See Note 1. See Note 2. N
union {...} See Note 1. See Note 2. N

Note 1: The size of a struct is the sum of the sizes of its fields, including alignment padding
between fields. It is padded so that its size is evenly divisible by its alignment. The size of a union is
the size of the biggest field, padded so that its size is evenly divisible by its alignment.

Note 2: A struct or union is aligned according to the requirements of the most stringent member.

Note 3: An enum type is the same as char, short, int, Or long int. The smallest of these
types is chosen such that all values of the enum type can be represented.

Bit fields. Only unsigned bit fields are supported. A bit field may not exceed 32 bits and is packed in
each consecutive byte from left to right. A bit field must fit within a four-byte word that is aligned to
a four-byte boundary. Padding is added where appropriate to make this true.

A bit field of length zero causes alignment to occur at the next full-word boundary, i.e. where an int
would be aligned.

A bit field that is byte-aligned and one byte long is treated as if it were type unsigned char. One
that is two-byte-aligned and one-to-two bytes long is treated as if it were an unsigned short.
Finally, a three-to-four byte field is treated as an int. These treatments afford efficient access.

5.2. Storage Classes

Each static variable is placed in either the BSS section or the DATA section — the latter if it is
initialized.

Each global variable with no extern specifier that is not initialized is defined as a common block; if
it is initialized, it is mapped into the DATA section and given the global attribute. Each extern
variable is given the global and undefined attributes.

Each auto variable is assigned either to a machine register or to storage in the routine’s “stack
frame”. See §6 RUN-TIME ORGANIZATION. The compiler chooses which of the auto-classed

1. A full-function value is a High C extension. It consists of a function address and a static link. See the High C Language
Reference Manual for details.

C-15 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

variables to place in registers based upon the variable’s type, frequency of reference, and whether or
not the “s” operator is ever applied to it.

Each register variable is treated as an auto variable except that it is given extra weight in
assignment to a machine register.

Be warned that use of library functions set jmp and 1ongjmp can produce unpredictable results in the
context of register variables.

C-16 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

6. RUN-TIME ORGANIZATION

High C adheres to the standard linkage convention established by 4.2/RT2. This chapter presumes
knowledge of the RT architecture and assembly language. Throughout this chapter the term “word”
denotes a four-byte storage unit.

6.1. Register Usage

Certain registers, such as r1, have specific uses throughout execution; others, such as r15, are used
during a function call and are free at other times. The following table defines register usage at the call
interface.

Saved
Reg- over
ister call Use
r0 no called-function data area pointer
rl yes stack pointer {(caller’s frame pointer)
r2 no argument word 1 and returned value
r3 no argument word 2 and lower half of
areturned double value
r4 no argument word 3
r5 no argument word 4
r6-rl2 yes register variables, etc.
rl3 yes frame pointer
rl4 yes data area pointer
ris no return address
mg no multiply/divide register

In addition, floating-point registers 0, 1, and 6 are not saved over a call; registers 2-5 are preserved.

6.2. The Data Area

Each C function has an “entry point” and a “data area”. Both must be referenced at the point of a call.

The entry point is where the code of the function begins. The data area (also called a “constant pool”,
which is a misnomer,) contains strings, function addresses, and other literals.

A function foo normally has an entry point named . foo and a data area named _foo.

The call instruction sequence sets r0 to the address of the called-function’s data area. The first word
in the data area is the entry point of the called function. The word following supports the code
profiling option (-p), and if present must be initialized to zero; the third word, also optional, supports
“alloca” storage allocation.

In the function prologue code, r0 is copied to r14; thus, r14 is used to address the associated data
area from within a function.

The data area is placed in the DATA section so that r14 may be used as a base for referencing local
static variables. Static variables are usually mapped before the various data areas; ' therefore, static
variable references employ negative offsets from r14.

When a pointer to a function is assigned the “value” of a function, it is actually assigned the address of
the function’s data area. The first word of the data area always contains the entry point, i.e. the
address of the first instruction of the function.

2. Portions of this chapter copyright International Business Machines Corporation, 1986. Excerpts by permission, from the
manual Academic Information Systems 4.2 for the IBM RT. More information may be found in "4.2/RT Linkage
Convention" in Part I, Supplementary Documents.

C-17 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

6.3. Stack Frame Layout

The stack holds frames for currently active functions. It is word-aligned and grows downward. r1,
the “stack pointer”, indicates the low address of the stack frame of the currently executing function.

A stack frame is divided into the following areas, highest address first:

a) space for incoming argument list (4 words)

b) linkage area (4 words; reserved)

¢) static link (1 word)

d) general register save area (16 words maximum)

e) floating-point register save area (8 words maximum)
f) local variables and temporary storage

g) words 5 through n of out-going argument lists

The static link applies to a function that is nested within another function; it is the address of the
enclosing function’s stack frame. (Nested function definitions, as in Pascal, are a High C extension to
Standard C.) The static link is used to do “up-level addressing”, i.e. referencing local variables of
containing functions. While executing level-one functions, the static link field is uninitialized.

The caller’s return address (r15) is saved at a fixed offset of 10 words below the top of the stack
frame, at the top of the general register save area.

The floating-point register save area holds up to 4 double-word registers ending with register 5. It is
empty if no such registers need preserving.

The compiler uses r13 to reference the top of the stack frame. Since it is more efficient to access
variables with small positive displacements, the compiler often biases the value of r13 to improve the
code for local variable accesses — see §6.7 Prologue below for more information.

6.4. Argument Passing

Arguments are word-aligned and allocated to consecutive words on the stack. The list lies across
frame boundaries: words 1-4 are allocated in the top of the callee’s frame, and the remainder are in
the bottom of the caller’s frame, which is adjacent. In a call, words 1-4 are actually passed in registers
r2-rs5.

Arguments are passed as follows, based on argument type:
- An int is passed in a single word.
- A long, short, pointer, or char is treated as an int and passed in a word.
- A double is passed in two consecutive words.

- A float is converted to double and passed in two consecutive words, unless it is being passed
to a prototyped function that was declared to receive a £loat, in which case it is passed in a
word.

- A structure is aligned to a word and left justified, except for a structure of 1, 2, or 3 bytes, which
is right justified.
- A pointer to a function is passed as a pointer to the function’s data area.

- A full-function value? is passed as two words. The first contains the address of the data area; the
second contains the static link. :

If a function is declared as returning a structure, the caller passes the address of a result area in r2.
The first word of the explicit argument list is passed in r3. Subsequent arguments are shifted
accordingly.

3. A full-function value is a High C extension. It consists of a function address and a static link. See the High C Language
Reference Manual for details.

C-18 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

6.5. Function Results

A result is returned from a function in one of three ways, depending on the function’s return type:
- An int, long, short, pointer or char is returned in r2.
- A doubleisreturned in r2 and r3.
- A float is widened and returned as a double.

- A structure result or full-function value is returned by moving it into the area pointed to by the
first word in the argument list (in r2 on entry).

6.6. Calling Sequences

A call of a known function foo first prepares the argument list, then executes the following:

balix r15, .foo # Call.
1 r0,5.long{_foo) # Get 1ts data area
pointer, rl4 relative.

If the function being called is nested within another function (High C, not plain C), the caller stores
the static link, i.e. the frame pointer of the enclosing function, into -36 (r1) before executing the
balix.

Note that the address of the data area of the function being called is in the data area of the caller and is
referenced off of r14.

A call to a function via a function pointer is done as follows. Recall that a function pointer addresses
the function’s data area. If the pointer is in r8, typical code is:

1ls rt,0(xr8) # Get address of entry point.
balrx rl5,rt # Call.
mnr r0,r8 # Load r0O with data area address.

6.7. Prologue
Prologue code saves the caller’s registers, establishes the frame pointer (r13), and obtains stack
space for the stack frame. Typical code is:

.foo: stm rn,-76+(n-6)*4 (rl)# Save caller’s
registers.,

nmr rl4,r0 # Set up addressability
to data area.
mr rl3,rl # Set up frame pointer.

cal rl, frame size(rl) # Allocate stack frame.

Here n (6£n<13) is the register number of the first general register to be saved, and frame sizeis
the size of the stack frame (word-aligned) including the space required for the caller’s save area.
Other instruction sequences are needed for frame sizes larger than 32,767 bytes.

If floating-point registers need saving, the following code is inserted before the allocation of the stack
frame:

cal rl2,—-fsave{rl) # Locad rl2 with address
of save area.
bali rl15,fpstmn # Call routine to

save registers n-5.

where fsave is the offset of the floating-point register save area that resides immediately below the
general register save area. n (2<n<5) is the first of the floating-point registers 2 through 5 needing
to be saved.

Because the fpstmn functions modify general registers r10 and r11, the registers must be saved by
the previous stm instruction.

C-19 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

As noted earlier, r13 may be biased by some negative amount so as to improve code references to
stack frame variables. For example, “mr r13, r1” may be replaced with “cal r13,-80(r1)”.

6.8. Epilogue

The epilogue restores the caller’s environment and returns control. Typical code is:

mr rl,r13 # Restore stack pointer.
1m rn,-76+(n-6) (rl) # Restore general regq.
br rls # Return to caller.

where n is the same value as in the stm instruction of the corresponding prologue.

If floating-point registers are involved, these instructions appear before the 1m instruction:

cal rl2, fsave(rl) # Load rl2 with address
if save area.
bali rl5,fplmn # Restore floating

registers n thru 5.

6.9. Assembler Issues

Temporarily, all modules linked by 1d must have the global symbol .oVncs defined as an absolute
with value 0. This distinguishes modules using an earlier linkage convention that is now obsolete.
From assembly language, the symbol can be defined via:

.globl .oVncs
.set .oVncs, 0

C-20 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

7. EXTERNALS

The names of variables and functions that are communicated across module boundaries are normally
made global in the resultant object module. In large programs there may be hundreds or even
thousands of such names, so name conflicts are likely to occur.

Unfortunately neither C nor most linkers provide for a structured name space — for named packages
of resources, for example. Thus the well-chosen “internal” names in a program may not also be
usable as “external” names (those known to the linker) as they should be. Thus some method of
aliasing internal names to externals is needed, and High C provides it.

It is important to be able to alias such names to avoid conflicts in the linker’s external symbol
dictionary, rather than being forced to pervert the internal names themselves. It is the internal names
that are most important to be well-chosen “containers of meaning”, for program maintainability *

7.1. The Alias Pragma

This pragma specifies, for a specific internal name, another name for external or public purposes. It is

the alternate name that appears in the object module. The form of the A1ias pragma is as follows:
pragma Alias(<Internal name>,<External name>);

where <Internal name> is the function or variable identifier being aliased and <External name>
is a constant string expression whose value denotes the alternate or external name.

The Alias pragma must appear in the scope of the declaration of the internal name. Example:
void Initialize();

pragma Alias(Initialize,"x initialize"};
/* The function Initialize is referenced in the */

/* object-module name list as "x initialize". */
int A;

pragma Alias(A,"A");

/* "A" is referenced in the name list as "A" x/

/* 1instead of ™ _A". */

7.2. Data Segmentation: the Data Pragma

Audience. This section may be skipped unless there is an interest in either (a) communicating with
programs written in Professional Pascal or (b) using a data communication convention different from
that of standard C.

Communication between separately-compiled modules is achieved by using the extern storage
class in C. Multiple defining declarations of a variable x are allowed, as long as at most one of them
initializes x (thus the extern storage class is not required).

The Data pragma provides an alternative method of sharing data, using named blocks. Its general
usage is illustrated by:
pragma Data(class,"blockname”);
int X, Y, 2: ...;
/* Other normal C declarations may appear here. */

pragma Data;
/* "Turns off" the prior Data pragma. */

4. The external names are also important in that respect, but we believe that the proper solution is a “module interconnection
language” and associated linker with a structured dictionary to match the overall structure of the program.

C-21 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

where class is one of Common, Import, or Export, and "blockname"™ is a constant string
expression. The ending Data pragma has no parameters.

Only the given block name is made known to the linker as a global symbol: each variable is
addressed at a fixed offset within the block. When the Import class is specified, the symbol is given
the undefined global attributes and a value of 0; when Export, the symbol is defined in the module’s
BSS or DATA segment and given the global attribute. When Common, the symbol is flagged as a
named common block, i.e. given the undefined global attributes and a value that is equal to its length.

Scope. Each Data pragma must be terminated or “turned off” as illustrated above in the same scope
in which it is turned on. The storage class specification applies only to variable declarations between
the specification and its termination, not to any variable declared within embedded function
definitions (a High C extension). That is, variables declared at lower levels — local to surrounded
(nested) function declarations — are not affected: at a function declaration, any active Data pragma
temporarily becomes inactive and the default applies through the end of the function.

A compile-time warning is issued if a Data pragma is specified when a prior Data pragma is still
active (in which case the subsequent pragma applies), or if a Data pragma is active at the end of a
function declaration or at the end of a compilation unit. Thus Data pragmas cannot be nested within a
single function, though they can be nested if they apply to the local variables of distinct functions.

Example:

pragma Data (Common, "BLOCK") ;

int Tables_are_ loaded: Boolean;
struct {...} Tables;

pragma Data;

Here, the names, Tables and Tables_are loaded, are mapped at consecutive displacements
(subject to boundary alignment) within the common block “BLOCK”.

C-22 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide
8. ASSEMBLY LANGUAGE COMMUNICATION

8.1. Assembly Routines

The Sections Prologue and Epilogue in §6 RUN-TIME ORGANIZATION describe the code that an

assembly routine must execute in order to be caliable from C. In short, an assembly routine shouid be

coded according to the following guidelines. Symbolsin italics are to be filled in appropriately.
.text

.globl _ .name
.globl name

__.name: stm rn,-76+(n-6)*4{rl)
mr ri4,r0
mr ri3,rl
cal rl, frame size(rl)
The body of the routine goes here.
mr rl,rl3
1lm rn,-76+{n-6)*4 (rl)
lr rl5
.align 2
__name:
.long _ .name

where name is the function’s name as referenced from C; n (6<n<13) is the register number of the
first general register to be saved; frame size is the size of the stack frame (word-aligned) including
the space required for the caller’s save area.

For a description of how arguments are passed and how function results are returned, see §6 RUN-
TIME ORGANIZATION.

8.2. Function Naming Conventions

An identifier that is global, i.e. accessible across module boundaries, must have information provided
to the linker that associates its name with its address. This is done by placing a corresponding name in
the name list of the object module and giving it the “global” attribute.

There are two names associated with every function: one referencing the entry point and one
referencing the associated data area. The name that references the data area of a C function foo is
_foo; the entry point is referenced by _. foo.

C-23 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

8.3. Examples: Calling Assembly from C
Example #1:
High C:

extern void and(int *dest, int *src, int len):;
volid main ()
{

int a{256],b[256];
and{a,b,256);

}

Assembly:
.text
.globl and
.globl _.and
.align 2
_and: .long _.and
_.and:
stm rl3,-48(rl)
mr r14,zr0
mr rl3,rl
cal rl,-48(rl)
L: cis rd4,0
jle exit
ls r0,0(r2)
ls r5,0(zr3)
n r0,r5
sis rd,1
bx L
sts r0,0(xr2)
exit: mr rl,rl3
1m rl13,-48(rl)
br rl5

Since the assembly routine does not modify non-volatile registers and has a zero-length stack frame
(except for the caller’s save area), it can be optimized to the following:

.text
.globl _and
.globl _.and
.align 2
_and: .long _.and
_.and:
L: cis r4,0
bler rlb5
1ls r0,0(r2)
1s r5,0(r3)
n r0,r5
sis rd, 1
bx L
sts r0,0(xr2)

However, if an exception should occur in the optimized routine, e.g. an invalid address passed in, the
debugger may be hampered in identifying the context.

C-24 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Example #2:
High C:
extern char peek(char *adr);
void main () {
char b;

b = peek (0x8000);

}

Assembly:

.text
.globl peek
.globl .peek
.align 2

_peek: .leng _.peek

__.peek: le r2,0(r2) # Return the byte.
br rl5

8.4. Example: Calling C from Assembly

To call a C function foo from assembly language, first store the arguments in r2 through 5 (and on
the stack at 0 off of r1 if applicable) and then execute the following two instructions.

balix rl5, .foo
1 r0,x(rld)

where x (r14) references a memory location containing the address of foo.
Example:
High C:

void write string(char *s)
{
printf ("$s\n",s);

}

Assembly:
.text
.globl write string
.glebl .write_string
_name: .long _ .name
.long write string
_.name: stm rl3,-48(rl)
mr rl3,rl
mr rld4,r0 # Set up reference
.o # to data area.
get r2,msg
balix rl5, .write_string
1l r0,4(rl4)
i.e. _name + 4
msg: .asciz "This is a message.”

8.5. Data Communication

A global variable “x” appears in the name list as “ x”, unless specified otherwise with an Alias
pragma — see §7 EXTERNALS.

C-25 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

§5 STORAGE MAPPING explains how the various C data types are mapped into storage. Note that
uninitialized global variables without the extern qualifier are actually defined as individual common
blocks. The following examples illustrate the sharing of variables across C and assembly modules:

High C:
int alpha,beta;
char hextable[] = "0123456789ABCDEF";

extaern char *names[]; /*A read-only table of names.*/
aextern short status;

Assembly:
. comm _alpha, 4
.comm beta,4
-globl hextable # Imported from C.
.taxt
.globl names # Read-only;
_names: .long LO1 # in text segment.
.long L02
.long LO3
.long 0
LO1: .asciz "alfred"”
L02: .asciz "bonny"
LO03: .asciz 'charlie"”
.data
.globl status
_status:

.short O

High C provides the ability to map more than one variable into a named block, e.g. a common block
as in FORTRAN. This facility is provided by the Data pragma and is documented in §7
EXTERNALS. The following illustrates how such a common block may be accessed from assembly
language.

C Common Block Definition:
pragma Data (Common, "BLOCK_NAME") ;

int a,b;
char c,d;
short e;

pragma Data;

Assembly Language Equivalent:
. comm BLOCK_NAME, 12

.sat a,0
.sat b,4
.sat c,8
.set d,9
.sat e, 10
Usage:
get r2,BLOCK_NAME
1 r3,a(r2) # Load value of a.
1 rd,b(r2) # Load value of b.
le r5,c(r2) # Load value of c, etc.

Note that variables a, b, c, d, and e are not global; that is, they do not appear in the name list with
the “global” attribute. The only name that appears in the name list is BLOCK_NAME.

C-26 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

9. LISTINGS

9.1. Pragmas Page, Skip, Title

To cause n page ejects at some point in the listing, insert:

pragma Page(n); /* where n is the number of ejects. */
To cause n lines to be blank at some point in the listing, insert:

pragma Skip(n); /* where n is the number of blanks. */

To cause a title T to appear at the top of each successive page, place the following pragma in the
source:

pragma Title(T); /* where T is a string constant. */

Each successive Tit 1e pragma changes the title for the next pages; therefore the title does not appear
on the first page.

9.2. Format of Listings

Ruler. The first line after any header and title lines on each page is a “ruler” that defines three fields
for each line. The fields are for: (1) three level numbers, (2) the line number, and (3) the line
contents. The ruler is as follows:

Levels LINE#|-———tm———l=omcdmmmm2mmm—domee3ommfmmmfm o fmmm 5

Level-numbers can be used to find a missing } or comment terminator when a message such as
“Unexpected end-of-file.” is produced by the compiler. All three level-numbers are initially
zero, but they are printed as blank rather than “0”.

The first level-number indicates the scope nesting level for struct or union declarations.

The second level-number indicates the statement nesting level. It is incremented at the beginning of
each { and is decremented at the corresponding .

The third level-number indicates the structure initialization nesting level. It is incremented at the
beginning of each { and decremented at the corresponding }.

Include files. A first-level Include file named File name is indicated as starting after a line
containing “+{(File name” in the line number field, and ending just before a matching
“+)File name” line. The included lines have “+” in the leftmost column of the line-number field,
and those lines are numbered independently of the main source file.

An Included file inside an Include file has an extra “+” on each of its lines for each level of
inclusion, except that line numbers take precedence over “+”s in the line-number field if and when the
“+”s would otherwise intrude into the field.

The listing facility should be used in conjunction with the -Hnocpp option. Otherwise the output of
the outboard C preprocessor will be listed; each Include file specified with the $include
preprocessor statement is back substituted with no indication on the listing.

Example. Since a picture is worth a thousand words, a sample program listing appears on the next
two pages, enhanced with boldface reserved words and followed by the optional assembly listing
requested by -Hasm on the following compile command line:

hec queens.c -Hlist -Hasm -Hnocpp

C-27 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

MetaWare High C Compiler 1.3 07-Jul-86 17:13:14 queens.c Page 1
Copyright (C) 1983-86 MetaWare Incorpcrated.

Target: 4.2/RT (Code generator 1.3)

Levels LINE # |-==-#=wwclomeedocendmem B m o5 ot
1 {/* From Wirth’s Algorithms+Data Structures = Programs.*/
2 |/* This program is suitable for a code-generation */
3 |/* benchmark, especially given common sub-expressions */
4 |/* in array indexing. See the Programmer’s Guide for */
5 |/* how to get a machine code interlisting. */
6 |
7 |pragma Title("Eight Queens problem."™);
8 |

9 |typedef enum {False,True} Boolean;
10 |typedef int Integer;

11 |

12 |#define Asub(I) A[(I)-1] /* C’s restriction that array*/
13 |#define Bsub(I) B[(I)-2] /* indices start at zero */
14 |#define Csub(I) C[(I)+7] /* prompts definition of */
15 |#define Xsub(I) X{(I)-1] /* macros to do subscripting.*/
16 | /* Pascal equivalents: */

17 |statie Boolean A[8]; /* A:array[1.. 8] of Boolean */
18 |static Boolean B[15]; /* B:array[2..16] of Boolean */
19 |static Boolean C[15]; /* C:array[-7.. 7] of Boolean */
20 |static Integer X[8]; /* X:array[1.. 8] of Integer */

21 |
22 |void Try(Integer I, Boolean *Q) {
1 23 | Integer J = 0;
1 24 | do {
2 25 | J++; *Q = False;
2 26 | if (Asub(J) && Bsub{(I+J) && Csub(I-J)) {
3 27 | Xsub(I) = J;
3 28 | Asub(J) = False;
3 29 | Bsub (I+J) = False;
3 30 | Csub(I-J) = False;
3 31 | if (I < 8) {
4 32 | Try (I+1,Q);
4 33 | if ('*Q) {
5 34 | Asub(J) = True;
5 35 | Bsub (I+J) = True;
5 36 | Csub(I-J) = True;
5 37 | }
4 38 | }
3 39 | else *Q = True;
3 40 | }
2 41 | }
1 42 | while (! (*Q || J==8));
1 43 | }
44 |pragma Page(l); /* Page eject reguested. */

C-28 29 Oct 86

4.2 for the IBM RT PC
MetaWare High C Compiler 1.3 07-Jul-86 17:13:14 queens.c Page 2
Eight Queens problem.
Levels LINE # |---—4----l-———4=—w=2-ccuteec—eBmmmfmmem = ——— -5 ————+
45 |void main () {
1 46 | Integer I; Boolean Q;
1 47 | printf ("%s\n", "go");
1 48 | for (I = 1; I <= 8; Asub(I++) = True);
1 49 | for (I = 2; I <= 16; Bsub(I++) = True);
1 50 | for (I = -7; I <= 7; Csub(I++) = True);
1 51 | Try(1l,&Q);
1 52 |pragma Skip(3); /* Skip 3 lines. */
1 53 | if (Q)
1 54 | for (I = 1; I <= 8;) {
2 55 | printf{"%4d",Xsub (I++));
2 56 | }
1 57 | printf("\n");
1 58 | }

C-29

High C Programmer’s Guide

29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

MetaWare High C Compiler 1.3 07-Jul-86 17:13:14 queens.c Page 3

Eight Queens proklem.

Addr Object Source Program and Assembly Listing
.globl .oVncs
.set .oVncs, 0

.globl printf
-globl _ .printf
#/%* From Wirth’s AlgorithmsiData Structures = Programs */
#/* This program is suitable for a code-generation */
#/* benchmark, especially given common sub-expressions */
#/* in array indexing. See the Programmer’s Guide for */
#/* how tc get a machine code interlisting. */
#pragma Title("Eight Queens problem.");
#typedef enum {False,True} Boolean;
#typedef int Integer;

##define Asub(I) A[(I)-1] /* C’'s restriction that array*/
##define Bsub(I) B[(I)-2] /* indices start at zero */
##define Csub(I) C[(I)+7] /* prompts definition of */
##define Xsub(I) X[(I)-1] /* macros to do subscripting.¥*/
/* Pascal equivalents: */
#static Boolean A[8]; /* A:array[1.. 8] of Boolean */
.data
0000 LOO DATA:
0000 00 .byte 0
.set _A,LD0_DATA+0
#static Boolean B[15]; /* B:array[2..16] of Boolean */
0001 .space 7
0008 00 .byte 0
.set _B,LOO_DATA+8
#static Boolean C[15]); /* C:array[-7.. 7] of Booclean */
0009 .space 15
0018 00 .byte 0
.set _C,L0C_DATA+24
#static Integer X[8]; /* X:array[1.. 8] of Integer */
0019 .space 15
0028 00 .byte 0
.set _X,LO0_DATA+40
#void Try(Integer I, Boolean *Q) {
.text
0000 .align 1
0coo L000:
.globl _.Try
_.Try:
0000 D961 FFB4 stm ré,-76(rl)
0004 ©6EOQO0 mr rl4, r0
0006 6D10 nr rl3,rl
0008 C811 FFB4 cal rl,-76(rl)
000C 6C20 mr rl2,r2
000E 6B30 mr rll,r3
Integer J = 0;
0010 a4A0 lis rl0,0
do {
J++; *Q = False;
0012 L01l2:
0012 90Al ais rl0,1
0014 2490 lis r9,0
0016 109B stcs r9,0(rll)
if (Asub(J) && Bsub(I+J} && Csub(I-J)) {
0018 CB82E FFA8 cal r2,-88(rld)
001C 6822 cas r8,r2,rl0
001E CE38 FFFF 1lc r3,-1(c8)
0022 B439 c r3,r9
0024 0A2D je LO7E
0026 63AC cas r3,rl0,rl2
0028 6723 cas r7,r2,r3
0023 4637 lcs r3,6(xr7)

C-30 29 Oct 86

4.2 for the IBM RT PC

MetaWare High C Compiler 1.3

07-Jul-86 17:13:14

Eight Queens problem.

Addr Object Source Program and Assembly Listing
002C B439 c r3,r9
002E 0AZ28 je LO7E
0030 63C0 mr r3,rl2
0032 E23a s r3,rl0
0034 6623 cas ré6,r2,r3
0036 CE36 001F 1lc r3,31¢re)
003a B439 c r3,r9
003c 0Az21 je LO7E
Xsub(I) = J;
003E 63C0 mr r3,rl2
0040 BAA32 sli r3,2
0042 E123 a r2,r3
0044 39A2 sts rl0,36(r2)
Asub(J) = False;
0046 DES8 FFFF stc r9,-1(r8)
Bsub (I+J) = False;
004a 1697 stcs r9,6(r7)
Csub (I-J) = False;
004c 94cs8 cis rl2,8
if (I < 8) {
004E 89900016 bhex L07A
0052 DE96 001F stc r9,31(r6)
Try (I+1,9Q);
0056 62C0 mr r2,rl2
0058 9021 ais r2,1
005A 63B0 mr r3,rll
005C 8DFFFFD2 balix rl5, .Try # Try
0060 CB80E 0000 cal r0,0(rl4)
if (1*Q) {
0064 402B lcs r2,0(rll)
0066 B429 c r2,r9
0068 020B jne LO7E
Asub (J) = True;
006a Rn491 lis r9,1
006C DE98 FFFF ste r9,-1(r8)
Bsub (I+J) = True;
0070 1697 stcs r9,6(r7)
Csub(I-J) = True;
0072 89800006 bx LO7E
007¢ DES96 001F stc r9,31(r6)
}
}
else *Q = True;
007a LO7A:
0072 A421 lis r2,1
007Cc 102B stes r2,0(rll)
}
}
while (! (*Q || J==8));
007E LO7E:
007E 402B lcs r2,0(rll)
0080 9420 cis r2,0
0082 0203 jne 1.088
0084 94a8 cis rlQ,8
0086 02Ceo jne L012
0088 1.088:
0088 61D0 mr rl,rl3
008a C961 FFB4 1m r6,-76(rl)
008E EB88F br rl5
0090 DFO7DF68 .long OxDFO07DF68
First gpr=ré6
0094 2D0O0 .short 0x2D00 # npars=2, off=0
.data 1

C-31

queens.c

High C Programmer’s Guide

29 Oct 86

4.2 for the IBM RT PC

High C Programmer’s Guide

MetaWare High C Compiler 1.3 07-Jul-86 17:13:14 queens.c Page 5
Eight Queens problem.
Addr Object Source Program and Assembly Listing
.globl Try
0058 _Try:
0058 00000000 .long L0OOO
005cC .align 2
}
#pragma Page(l); /* Page eject requested. */
#void main () {
.text
0096 .align 1
0096 L096:
.globl .main
_.main:
0096 DIB1 FFC8 stm rll,-56(rl)
009A 6EOQ0 mr rl4,r0
009c 6D10 mr rl3,rl
009E <C811 FFC4 cal rl,-60(rl)
Integer I; Boolean Q;
$ printf ("%s\n", "go");
00A2 C82E FFEC cal r2,-20(rl4)
00A6 C83E FFFO cal r3,-16(r14)
00A2 8DF00000‘ balix rl5, .printf
00AE CDOE 0004 1 r0,4(r14)
for (I = 1; I <= 8; Asub(I++) = True);
00B2 Aa4cl 1lis rl2,1
00B4 LOB4:
00B4 94cCs8 cis rl2,8
00B6 0BO9 jh L0C8
00B8 A421 lis r2,1
00BA 6BCO mr rll,rl2
00BC E1C2 a rl2,r2
00BE 63BE cas r3,rll,rl4d
00CO0 B898FFFFA bx LOB4
00C4 DE23 FFA3 stc r2,-93(r3)
for (I = 2; I <= 16; Bsub(I++) = True);
00cs8 L0C8:
00C8 A4c2 lis rl2,2
ooca LOCA:
00ca D40co0l0 ci rl2z,16
00CE O0BO9 jh LOEO
00D0 A421 lis r2,1
00D2 6BCO mr rll, rl2
00D4 E1C2 a rl2,r2
00D6 63BE cas r3,rll,rl4
00D8 898FFFF9 bx LOCA
00DC DE23 FFAA ste r2,-86(r3)
for (I = -7; I <= 7; Csub(I++) = True);
00E0 LOEO:
00E0 C8CO FFF9 cal rl2,-7(x0)
00E4 LOE4:
00E4 94cC7 cis rl2,7
00E6 0BO9 jh LOF8
00E8 A421 1lis r2,1
00EA 6BCO mr rll,rl2
00EC E1C2 a rl2,r2
00EE 63BE cas r3,rll,rl4
00F0 898FFFFA bx LOE4
00F4 DE23 FFC3 stc r2,-61(r3)
Try {1, &Q);
00F8 LOF8:
00F8 Aa421 1lis r2,1
00FA C8BD FFC7 cal rll,-57(rl3)
OOFE 63BO mr r3,rll

C-32

29 Oct 86

4.2 for the IBM RT PC

MetaWare High C Compiler 1.3

High C Programmer’s Guide

07-Jul-86 17:13:14 queens.c

Eight Queens problem.

Addr Obiject Source Program and Assembly Listing
0100 8DFFFF80 balix rl5, .Try # Try
0104 CDOE 0008 1
r0,8(rl4)
#pragma Skip(3); /* Skip 3 lines. */
if (Q)
0108 402B les r2,0(rll)
010A 9420 cis r2,0
0l10Cc 0all je LO012E
for (I = 1; I <= 8;) {
010E A4cCl lis rl2,1
0110 L00110:
0110 94cs8 cis rlz, 8
0112 OBOE jh LO012E
printf ("%4d",Xsub(I++));
0114 C82E FFF4 " cal r2,-12(r14)
0118 6BCO mr rll,rl2
011a 90ct ais rl2,1
011C AAR2 sli rlli,2
Cl11E 63RE cas r3,rll,rl4
0120 CD33 FFCS8 1 r3,-56{r3)
0124 8DFO0Q000’ balix rl5, .printf
0128 CDOE 0004 1 r0,4(rl4)
0l2c 00F2 3 L00110
}
printf("\n");
012E LO012E:
012E C82E FFF8 cal r2,-8(rlé)
0132 8DF00000’ balix rl15,_.printf
0136 CDOE 0004 1l r0,4(rl4)
013a 61D0 mr rl,rl3
013C C9B1 FFC8 1m rll,-56(rl)
0140 E88F br rl5
0142 DF07DFBS8 .long 0xDFO07DFB8
First gpr=rll
0146 0DOO .short 0x0D0O0 # npars=0, off=0
.data 1
.globl main
005C _main:
005C 00000096 .long L09%6
0060 00000000’ .long~
_printf
0064 00000058 .long Try
0068 .align 2
.data
0029 .space 31
0048 .LITERALS.:
0048 25730A .asecii "%s\0l2"
004B 00 .byte 0
004C ©676F .ascii "go™
004 00 .byte 0
004F .space 1
0050 253464 .ascii %44~
0053 00 .byte 0
0054 0a .ascii m™\Q12"
0055 00 .byte o]
.data
0056 .space 2

No user errors

End of processing,

4 unprinted warnings

07-Jul-86 17:13:19

C-33

queens.c

29 Oct 86

4.2 for the IBM RT PC - High C Programmer’s Guide

10. MAKING CROSS REFERENCES

This chapter explains how to use the hexref command to generate a cross-reference listing of one or
more High C modules.

10.1. Features of the Cross Reference

Cross references have the following features:

- References to source files. All cross-reference information refers to line numbers within files
compiled, as opposed to line numbers within a listing. Therefore no listing is necessary to use the
cross reference.

- Include files. Included source files are handled properly. That is, they do not interfere with the
process, and their names are included correctly in the results.

- Assignments versus uses. References that assign values into variables are distinguished from
references that use values of variables. '

- Annotated listing. It is possible to generate an annotated source listing of one or more program
files. The listing contains cross-reference information to the right of the source text listed.

- Multi-module cross references. A cross reference can span multiple compilation units by cross-
referencing many modules at once and showing references from one module into the other. Thus,
a single cross reference can be produced for a program that is broken up into separately compiled
modules.

- Inter-module usage summaries. A list of the names that one module uses that are located in other
files can be produced, organized by file. This helps one understand the module interconnectivity
of a large program.

10.2. Using the hexref Command
The hexref command processes one or more High C source files and produces a cross-reference
listing on standard output. The listing consists of up to four components as described in §10.3 below.
The command has the following form:

hexref [-ilmpus] [preprocessor options]... files...

where riles denotes one or more High C source files, and preprocessor options denotes zero
or more preprocessor options (e.g. —1di r or -Dname) that are required when compiling the files.

The -1 option causes a listing of the source files to be generated, annotated with cross-reference
information. Include files are not expanded in the listing unless -1 is also specified.

The -m option causes a listing to be produced, for each module M, of the names referenced in M that
were defined elsewhere.

Names that are declared but not referenced do not appear in the cross reference unless the —u option is
specified.

The -p option causes the outboard C preprocessor to be invoked on each source file. The output of
the preprocessor is then processed by the cross referencer instead of the source files themselves. If
this option is not specified, the inboard preprocessor is used. This option is analogous to the -Hepp
option of the he command. The -1 and -4 options are ignored when used in conjunction with -p.

The -s option specifies that various statistics relating to the cross reference are to be printed.

C-34 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

The hexref command invokes the High C compiler in a special mode to generate the cross-reference
information. Therefore, if any of the source files contains errors, appropriate diagnostics are
generated.

10.3. Cross-Reference Format

Components. Each cross reference is self-documenting and consists of four components:

(1) An alphabetized list of all names declared in the program, together with an ordered list of all the
references to each name.

(2) An alphabetized table of all files used in the program and a file reference number for each.

(3) A list for each module M of all the names used by M that are declared in other files — if requested.
{4) An annotated cross reference for each module — if requested.

‘When the components are produced:

Item (1) is always produced.

Item (2) is produced if the cross reference involves more than one file; this happens if more than one
module is cross-referenced, or if any compiled include files were involved in the modules being cross-
referenced.

Item (3) is produced if the -m option is specified.

Item (4) is produced if the -1 option is specified.

What each component consists of:

Item (1) presents the following information for each distinct name in the program:

- The line and column number of the declaration of the name. If the name occurs in a compiled
include file, or if several modules are being cross-referenced, the file number is also given.

- The declared name N, and its owner: the name of the function that contains N’s declaration.

- Information about the named object, such as its storage class (static, extern, typedef,
register, ¢tc.) and in some cases, the object’s type.

- The numbers of any lines containing references to the name. If the references are not in the
module being cross-referenced, such as in an include file, or if several modules are being cross-
referenced, the line numbers are presented in the format “fn<I>" where n is the number of the
file containing the references and “1” is the list of line numbers. Occasionally the entry in this
field is of the form “resolved at ref” where ref is a line number or £n<. . .> reference as
just described. This means that the name was introduced by an extern declaration whose actual
definition was given at ref.

- References that assign, or may assign, a value to a variable are marked with the character “*”.

Item (2) presents the correspondence between file numbers and file names. References in items (1)
and (3) use the file number rather than file names, to keep the listing brief. Use item (2) to determine
the corresponding file name.

Item (3) is optional. It is requested by the -m option. The output produced is a listing for each module
M of the names used by M that are declared in other files. The list is organized by file. This is useful
for determining the interconnectivity between modules.

In Items (1) and (3) a reference to a name N declared at reference point P is changed to a reference to a
point P, if the definition at P’ resolves the declaration at p. Typically this will happen when N is
declared in an interface file F, is used from a module M, and is defined at P’ in a module M’. The
module usage in Item (3) will show that M refers to P’ in module M’ , not P in interface file F. That is,
one gets references to the implementations rather than the interfaces through which they were
supplied.

C-35 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Item (4) is optional and is is generated by the -1 option. The result is a line-numbered listing of the
source of the program compiled, with each line annotated on the right with the line numbers where the
names used on the line were defined.

If n names are used on the line, n line numbers appear to the right of the line, corresponding
positionally. A line number alone is a reference into the file being listed. If the letter “i” appears
instead, the name referenced is an intrinsic, such as “ find char”or“ abs”. Finally, a line number
followed by “t” and another number means that the name was declared in a file other than the one
being listed; the file number can be used to discover that file’s name in Item(2). “Line#fFile#”
was used instead of “File#<Line#>" as in Item (1) for brevity.

10.4. Distinction of File Names

In a multi-module cross reference, a particular interface file may have been included by several
modules because each of the modules being cross-referenced needs the resources in that file. The
cross-referencer assumes that a repeated declaration of a name in a compiled include file is the same
declaration if it appears at the same line and column number of the same include file.

For purposes of determining “sameness of include files” the cross referencer uses the text of the file
name including the path. Therefore to cross-reference several modules successfully, do not use
different names for the same include file.

For example, if module M1 includes *../utils/trees.h” and M2 includes
“/prog/utils/trees.h” and if these two references denote the same file, the cross referencer will
not recognize them as the same.

C-36 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

11. SYSTEM SPECIFICS

This section contains some system-specific aspects of the High C compiler on 4.2/RT.

11.1. Floating-Point Arithmetic

High C uses the IEEE Standard 754 formats to represent floating-point data.

Each fleat is a 32-bit value with an 8-bit exponent and a 23-bit mantissa. The absolute values of the
representable numbers lie in the range 8.43x1037 to 3.37x10%38,

Each double and long double is a 64-bit value with an 11-bit exponent and a 52-bit mantissa. The
absolute values of the representable numbers lie in the range 4.19x1073%7 0 1.67x10*308,

11.2. Input Line Length

The default maximum input line length for the compiler is 2,000 characters.

11.3. Some ANSI-Required Specifics

Here are some additional system specifics that the ANSI document X3J11/86-102 requests each C
implementation provide.

Identifiers. The number of significant characters in an identifier is 2,000, since that is the longest
input line acceptable to the compiler. Identifiers that are global appear in the object-module name list
with an underscore prefix. Casing is preserved.

Characters. The characters in the source and the execution character set are the standard ASCII
characters. Each character in the source character set maps into the identical character in the
execution character set. Without exception, all character constants map into some value in the
execution character set.

A character is stored in a byte and there are four bytes in an int.

High C does not permit a character constant that contains more than one character. Such a
construction is usually machine-dependent.

The type specifier char, when not accompanied by an adjective, denotes type unsigned char.
However, this can be changed by turning Oz £ the toggle Char default unsigned.

Integers. Integers are represented in twos-complement binary form. The following table illustrates
the ranges of values to which the various integer types are restricted:

Type Range

signed char -128 to 127
unsigned char 0 to 255
short -32,768 to 32,767
unsigned short 0 to 65,535
int -2,147,483,648 to 2,147,483,647
unsigned int 0 to 4,294,967,296
long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,296

Conversion of an integer to a shorter signed integer or int bit field is done by bit truncation; i.e.
when storing an X-bit value into a Y-bit receptacle, where X > Y, the rightmost Y bits of the first
value are stored. Conversion of an unsigned integer U to a signed integer I where sizeof (U) =
sizeof (I) consists in transferring the bits of U into I, whether or not the value of U is representable
inI. For example, (short int) (short unsigned)65535 isthe short int value -1.

C-37 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

The results of bitwise operations on signed integers are the same as if the integers were treated as
unsigned.

The sign of the remainder on integer division is the same as the sign of the dividend.
The right shift of a signed integral type is arithmetic; i.e. the sign bit is propagated to the right.

Floating point. Floating-point representation is IEEE Standard 754. The default rounding mode is
“round to nearest”. See §5 STORAGE MAPPING for the length required for each floating-point type.

When a negative floating-point number is truncated to an integral type, the truncation is toward zero.
Thus -2 .7 is truncated to -2 and -1.2 to -1.

Registers. register class variables of the following types are considered eligible for assignment to
registers: signed or unsigned integer of any size, £loat, doublae, and pointer.

A double can be mapped only to a floating-point register. A £loat can be mapped to either a
floating-point or a general register. All others can be mapped only to general registers.

Potentially, as many variables can be placed in registers as there are “non-volatile” registers. See §6
RUN-TIME ORGANIZATION for a list of the non-volatile registers.

Structures, unions, and bit fields. Only unsigned bit fields are currently supported. A bit field
declared as int is treated as unsigned int. For more information on structures, unions, and bit
fields, see §5 STORAGE MAPPING.

Declarators. There may be at most 65,000 declarators modifying a basic type.
Statements. There may be at most 65,535 cases in a switch statement.

Preprocessing directives. A single-character constant in a constant expression controlling
conditional inclusion is always positive in value, ranging from O to 255.

#pragma directives are neither recognized nor permitted.
For the method of locating includable source files, see §2 INVOKING THE COMPILER.

C-38 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

12. DIAGNOSTIC MESSAGES

Messages from the High C compiler report: (a) file I/O errors, (b) system errors, and (c) user errors
and warnings.

i2.1. Fiie I/O Errors

File I/O errors are fatal. They can occur in attempting to open a non-existent file or in writing a
compiler output file when not enough file space is available. The errors likely to be seen are:
Unable to open file £ff: f£file not found.

This message is produced when any input source file, such as that specified on the command line
or in an Include pragma, cannot be found.

This message is produced twice: it is written once to standard output and once to standard error.
If standard output is not redirected, the message appears on the screen twice.

***Error occurred on writing instruction file:
***Error occurred on writing object file: write failed.
**x*{rite error occurred during tree paging.

Usually caused by too little space on disk. Remove unnecessary disk files and try again.

Note: Fatal errors may result in compiler temporary files being left in the “/tmp” directory. They
should be removed.

12.2. System Errors

System errors are fatal and should rarely occur. They take the following form:

D> S Y STEM ERROR n <<<<<, in Module:Function
Error message text.

where n numbers the occurrences of system errors, Module is the module name, and Function is the
function name. The only system error messages that the user should be concerned with are:

Dynamic array allocation/reallocation failed.
Out of memory.

This error indicates that either a dynamic array in the compiler exceeded 65,535 elements or the
user’s virtual memory quota was exceeded. The former case should not occur unless the source
program is pathologically large.

Exceeded Card char limit.
An input line was encountered that exceeded the limit of 2,000 characters.

Recover: Exceeded the following limit: Limit.

In repairing a syntax error, a table overflowed. The table limit is fixed, so no increase in memory
can improve the situation. Repair the syntax error.

There are many other system error messages that the compiler could produce, but they are associated
with internal compiler errors or inconsistencies that should not occur.

Note: Fatal errors may result in compiler temporary files being left in the “/tmp” directory. They
should be removed.

Stack dump. Compiler system errors are always accompanied by a call-stack dump. The dump can
usually be ignored, but when reporting a problem to the support staff, the history of called functions
can be helpful; include a listing of the dump in any written correspondence. The following is a
sample dump.

C-39 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

>>>>> S Y STEM ERRORI K<L, in Scanner:Read_scan_tables
No scan tables found.

Line

Routine File /Off Addr Parms...

SYSERR syserr.p 66 54d3a ¢09%8,¢080,0,66290,66320
READ_SCAN_TABLES stread.p 69 bef2 2004adc,fffa60,44ed,663c4
GET_SCAN_TABLES.STREAD stread.p 39 c005 663c4,66290,fffadc,14e8,1
ANALDRVR analdrvr.p 19 44ed 1,663c4,66416,0,1,186dc
INITIALIZE_PREFIX.SK skelinit.p 2dc 14e8 fffaec,115a,fffaféd,59645
DOIT skeldrvr.p e 111f fffaf4,K59645,£fffb04,4d,3
pPpP_MAIN skeldrvr.p 6 115a f£ffb04,44,3,fffb08, ££fbl8
_main ppinit id 59645 3,f£ffb08, fffbl8,ufffb3s
start 3d 4d fffb3d, f£fb45,0, fffbdb

Error was severe. Program terminated.

The Routine and File columns are usually sufficient alone when reporting a problem to support
personnel.

System errors due to a bug in the compiler’s code generator are accompanied by a line “Code was
being generated for program text near Ln/Cm.” following the call-stack dump. This helps
isolate the program text causing the problem and may facilitate reducing the problem program to a
few lines, which then can be easily sent to compiler support personnel.

NOTE: When code generator errors occur, they can frequently be “cured” by inserting a label
before the line causing the problem. Even if this cures the problem, please report the problem to
support personnel,

12.3. User Errors and Warnings

User error messages are grouped in the three categories: (1) lexical, (2) syntactic, and (3) constraint.
Warnings do not suppress object file generation; errors always do. Also, some diagnostics that are
warnings become errors when the compiler is run in ANSI mode.

Messages that report errors terminate compilation after the phase issuing the diagnostic, so errors that
would otherwise have been detected by later phases are not reported until the earlier error is repaired
and the compiler is re-invoked.

All user diagnostics are accompanied by the file name, a line number n, and column number m, where
the error was detected, in the form "filename", In/Cm. In addition when -Hlist is specified on
the command line as assumed in the examples below, lexical and syntactic errors are generally
accompanied by the erroneous line with a caret ~ beneath it at the point of error detection. (Errors

[T

begin with “E” and warnings with *“w”, and usually occupy a single line.)

Lexical error messages are produced when an improperly formed word is detected, such as a string
with a missing closing quote. Example:

Levels LINE # |-—=-+--c-loc——t-——=Dommetommn3omaadmem—doe——}———-§
1 |wvoid main() {
11 2 | char *S;
11 3| S = "Hello;
Cl5 —-vmmmmmm e -~
E "file", L3/Cl5: (lexical) Unexpected end-of-line encountered.
11 4 | }

Syntactic error messages are produced for programs that are ill-formed on the phrase level, such as a
missing “;” or inserted spurious symbol. The message is accompanied by a statement of the REPAIR
that the compiler effected so it could keep processing input. Example:

C-40 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Levels LINE # |-—=—4-———lom——4o—m-2ommmfmmm=3mmm—fmmmfom =5
1 |void main() {

11 2 | printf "Hello");
Cll —-=mmmm—— ~
11 3] }
E "file", L2/Cll: (syntactic) unexpected symbol:’<STRING>’:"Hello™

REPAIR: ' (' was inserted before ’<STRING>’:"Hello"@L2/C11

Constraint error and warning messages diagnose more subtle problems, such as an undeclared
identifier or type mismatch. There are nearly 200 such diagnostics, each of which is meant to be self-
explanatory. Most of them prevent the generation of object code, but some are merely warnings and
are intended to assist the programmer. Example:

Levels LINE # |--—=t-=--l-———t—meelmeeetreme3mm——tom— oo —f e
1 |void main() {

11 2 | int i;

11 3| i = Undeclared identifier;

11 4] }

E "file®, L3/C8: Undeclared identifier: This is undeclared.

1 user error No warnings 453K of memory unused.

Levels LINE # |-———=t===-l-—=—t==eePmmmmfmmm 3o e g —p === =5
1 |void main{) {

11 2 | int i, Unused;

11 3 i /= 0;

11 4 }

w "file", L2/C8: i: Variable is set but is never referenced.

w "file", L2/Cll: Unused: Variable is never used.

E "file"™, L3/Cé6: Division by zero.

1 user error 2 warnings 457K of memory unused.

12.4. Error and Warning Messages

This section presents all compiler diagnostic messages, except automatically generated lexical and
syntactic messages, in alphabetical order, with explanations where appropriate.

"=" used where "==" may have been intended.
“=" was detected as an operator in a Boolean expression, such as “if (x = y) (...)”. Often
this is a mistake, as “if (x == y) (...)” was intended.

"auto” must appear within a function.
Storage class auto cannot be given for declarations that do not appear within a function.

"break"” must appear within while, do, for, or switch.
"case" must appear within a "switch",.

"continue"” must appear within while, do, or for.
"default” must appear within a "switch".

"pragma Data™ active at end of module.

"pragma Data" active at end of function.
A “pragma Data(...);” was given in a module or function, with no terminating “pragma
Data;”. This is permitted but the programmer may have forgotten to supply the terminating
pragma, thus perhaps including more data declarations in a data segment than intended.

"register”" is the only allowable storage class for a parameter. Ignored.
In a function definition or declaration, a storage class other than register was given, such as in
“int f(i) statiec i; {...}".

"register" must appear within a function.
Storage class register cannot be given for declarations that do not appear within a function
definition.

"void" is illegal here.

C-41 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

A bit field is not valid as an argument to &.
One cannot take the address of a bit field, since such a field is not necessarily on a byte boundary.

A bit field is not valid as an argument to sizeof.
Since bit fields need not occupy an integral number of bytes, taking their sizeof is prohibited.

A function may not return a function (but may return a pointer thereto).
A function may not return an array (but may return a pointer thereto).

A function may not return an incomplete type.
A function cannot return a struct or union type whose fields have not yet been specified. For
example, “struct s; struct s *f£() {...}” is legal since f returns a pointer to an
incomplete struct type, but “struct s; struct s g() {...}”isillegal.

A functionality typedef cannot be used in a function definition.
“typedef int f(); f g {return 3;}”isillegal: the type definition for £ cannot be used
to specify that g is a function.

A parameter may not be a function (but may be a pointer thereto).
A parameter name must be given here.

For function definitions, parameter names must be supplied. Thus, for example, “void f (int,
float g) {...}”isillegal because the first parameter lacks a name.

A register-class function makes no sense.
For example, “register £() {...}”isillegal.

An array may not contain functions (but may contain pointers thereto).
An array must have a positive number of elements.

An array of objects of an incomplete type is illegal.
An array cannot contain a struct or union type whose fields have not yet been specified. For
@ _

example, “struct s; struct s *a[l10];” is legal since “a” contains pointers to an
incomplete struct type, but “struct s; struct s b[10];”isillegal.

An object of type tft cannot be initialized.
Argument to "#include" must be a string.

Argument type it is not compatible with formal parameter type tit’.
An attempt was made to pass an argument of a wrong type to a function, such as passing a £1loat
for a parameter that is a struct. When using standard C function definitions, this is a warning
only, since C permits such mismatches; but when using prototype syntax, it is an error. This
wamning provides the security of Pascal function call semantics.

Array size exceeds addressability limits.
Bit fields must fit in a register or register pair.

Cannot dereference a pointer to void.
Type *void was introduced as a means of defining a “generic pointer” compatible with other
pointers. But there is no such thing as an object of type void. Therefore, dereferencing a pointer
to voidisillegal.

Cannot initialize a typedef.
Something like “typedef int T = 1;” wasattempted.

Cannot initialize an imported variable.
Something like “extern int T = 1;” wasattempted. A variable may be initialized only by its
definition.

Cannot take sizeof a function type.

C-42 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Cannot take sizeof an incomplete type.
The sizeof a struct or union type whose fields have not yet been specified is not known. For
example, what follows is illegal since the size of the structure is unknown: “struct s; (...)
sizeof (struct s) (...)".

Cannot take sizeof type void.
There are no objects of type void, therefore taking sizeof void makes no sense.

Cannot take the address of a register variable.
Declared type is never referenced.

Divide by zero.
This was detected in a constant expression at compile time.

Enclosing function’s return type is "wvoid"; therefore nothing may be
returned.
“return E;” for some expression E was found in a function whose return type is void.

End of file encountered within #if construct.

End of file encountered within arguments to a macro. Probably a missing
right parenthesis.

End of file encountered within macro definition.
End of file encountered within macro formal parameter list.

Expression has no side effect and has been deleted.
An expression used in a statement context has no side effect; therefore the expression is useless.
For example, “2+3;”.

External function is never referenced.
Fewer arguments given than function has parameters.
for loop will never execute.

Function called but not defined.

Any function that was called but not defined is noted as a warning. Although such practice is
permissible in C, especially useful when calling library functions, a common error is to misspell a
function name. The error goes undetected until link-time without this warning. Furthermore,
errors in parameter linkage can occur when a call is made to an undefined function. We
recommend that the library “.h” header files always be included to get parameter checking, and
that function prototypes be used for external function declarations, rather than making use of the
“feature” of C for calling undefined functions.

Function expected.
The expression £ preceding the arguments in a function call £ (. . .) must denote a function.

Function parameter names are allowed only on function definitions, not
declarations.
“int f(a,b,c);”is afunction declaration that names the parameters (a,b,c). This is illegal
unless function prototype syntax is used, asin “int f (int a, int b, int c);”.

Function return value never specified within function.
A function with a non-void return type contains no return statement. This typically happens
with “old” C programs that did not use void to indicate that a function returns nothing.

Functions may not be nested.
In ANSI-Standard C, functions cannot be declared within functions. In High C they can. This
message is produced when the compiler is doing ANSI checking.

Identifier required after #ifdef or #ifndef.

Identifier required. Pragma ignored.

C-43 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Incompatible tag reference: The it tag class does not match the tag class
ttt’ defined at Ln/Cm,
Something like “struct s; union s {int x;);” was encountered. The tag s cannot
simultaneously be the tag for a struct, union, and/or enum,

Incomplete type: the struct/union type at Ln/Cm must be completed before it
can be used here.
A reference has been detected to a field of a struct or union type whose fields have not yet
been specified.

Incorrect number of parameters to macro. Macro invocation ignored.
The number of arguments to a macro must agree exactly with the number of parameters in its
#define.

Integer constant exceeds largest unsigned number.
Invalid digit in non-decimal number: X.

Local function 1s never referenced; no code will be generated for it.
A function of storage class static is not called anywhere in the compilation unit. Since it is not
exported, there can be no reference to the function and it is essentially deleted.

Lower bound of range is greater than upper bound.
This can only happen in High C case statements where range expressions are allowed as labels
(an extension). Macro name must be an identifier.

Macro parameter must be an ldentifier.

Members cannot be of an incomplete type.
A struct or union cannot contain a struct or union type whose fields have not yet been
specified. For example, “stxruct s; struct t {struct s *p;}” is legal since p is a point-
er to an incomplete struct type, but “struct s; struct t {struct s p;}”isillegal

Mismatched #if-felif-felse-#endif.
More arguments given than function has parameters.

Must be a compile- or load-time computable expression.
The initializers for a static variable must be determinable when a program is loaded.

Must be a compile-time computable constant.

Must be a pointer.

Must be a scalar (int, char, floating, or pointer) type.

Must be a static variable reference.
Must be a string.

Must be a struct or union.

Must be a type.

Must be an identifier.

Must be an integral int or char type.
Must be of a pointer type.

Must be of an extended-function type.

Named parameter association is prohibited for this function since its
declaration near Ln/Cm does not name all parameters.
An attempt was made to call a function F using named parameter association, but F’s declaration
did not name all of its parameters. For example,
void F(int a,float); (...)F(a=>37, 3.3);/*Illegal.*/
void F(int a,float b);(...)F(a=>37,b=>3.3); /*Fine.*/

C-44 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

No "pragma Data" is active.
“pragma Data;” was encountered without a preceding, and matching, “pragma Data(...);”.

No member is declared here.
A declaration with no declared object was found within a struct or union. For example,
struct s {int; float; struct t {int v};}
contains three declarations, none of which declare an object. However, this construct is not
entirely vacuous because the declaration of struct t is visible outside of struct s and
therefore can be used to declare objects of type struct «t.

No object may be of type woid.

No parameter declarations may be given here.
In defining a function using prototype syntax, where the parameter types were specified in the
parameter list, an attempt was made to re-declare the parameters following the parameter list. For
example, “int x,y;”isillegalin “void f(int x, int y) int x,y; { ... }"

Non-decimal constant exceeds largest unsigned number.

Only a parameter may be declared here.
Preceding a function definition’s {, only the function’s parameters may be declared.

Only fields of type "unsigned int" or "unsigned long int" are supported.
Bit fields may be of only these two types. Any bit field of another type is coerced to one of them,
depending upon the size of the bit field.

Only one "default" is permitted in a "switch”.

Operand type inappropriate for operator.
An inappropriate operand was detected for a built-in operator such as &, |, ~, etc. For
example, “float f1,f2; (...)fl = f1 & £2;”isillegal: & requires integral operands.

Parameter not found or specified more than once.
In a function call using named parameter association, a parameter was named twice, or a non-
existent parameter was referenced.

Parameter ppp not supplied.
In a function call using named parameter association, parameter ppp was not given an argument
value.

Parameter separator must be a comma.
In a #define of a macro with parameters, parameter names must be separated by commas. For
example, “fdefine M(a b) c”isillegal; “a,b” is required.

Pointer dereferencing disallowed in static context.
Pragma has too few parameters.
Pragma has too many parameters.

Previous "pragma Data" is still active.
“pragma Data(...);” was given in the context of an already active “pragma Data(...);”.
Insert “pragma Data () ;” preceding the offending pragma to “turn off” the active pragma.

Real constant has too many digits.

Result of comparison never varies.
An expression was found whose operands, while they are not all constants, are such that the value
of the expression is always the same. For example, an expression of type unsigned int is
always less than zero.

Right operand of shift operator 1s negative.

C-45 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Since the first parameter was specified by the type "void", there may be no
other parameters.

The special syntax exemplified by “int £ (void) ;" denotes a function f taking no parameters.
Because of this, no parameter can be specified after “void”™: “int f(void, float, int);”
is illegal.

Size change 1in cast involving pointer type: casted-to type tit is not the
same size as casted-from type fit’.

Specified storage class for this declaration is unnecessary and was ignored.
In a declaration such as “static struct s{int x;};”, the storage class “static” is useless
since no object was declared.

Static initialization of bit fields is not supported.

Storage—class nonsensical for function definition.

String too long for initialized array.

Structure has no contents (is of size zero).

Subscripted expression must be an array or pointer.

The 2nd and 3rd operands of a conditional expression must be both
arithmetic, or of the same type, or one a pointer and the other zero.

The declarator must be a function. This declaration has been discarded.
A declaration such as “int £ {...};” was encountered, where a function body {...} was
given for a non-function.
The rest of this line is extraneous.
The sign (signed/unsigned) has been specified more than once.
The storage-class (auto, extarn, etc.) has been specified more than once.
The width (long/short) has been specified more than once.
This "return" should return a value of type Mt since the enclosing functicn
returns this type.

This can be of an incomplete type only 1f it 1is "extern" or has an
initializer supplying its size.

This code will never be executed.

This construct would have been deleted as an optimization had it contained
no labels.
A construct such as “while (0) {...}” was detected but cannot be deleted due to the presence
of one or more labels within {. . .}. This is questionable programming practice at best.

This function declaration is inconsistent with the "int"-returning function
declaration imputed at Ln/Cm.
A function called before it is declared is assumed to be a function returning int, and any
subsequent declaration of the function must declare it to be so. For example, “main () {
(...) £(3);(...) } void f£() {...}”isillegal since f was called before being defined
and therefore assumed to return int.

This function declaration is inconsistent with the declaration at Ln/Cm.

This is already defined as a macro. Redefinition ignored. '
A redefinition of a macro is permitted only if the redefinition agrees exactly with the previous
definition. To otherwise redefine a macro, use #undef to explicitly undefine the macro before
re-defining it.

This is multiply declared.

This is permissible only in conjunction with "int" or "char”.

This is permissible only in conjunction with "int" or "double™.

C-46 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

This 1s permissible only in conjunction with "int".

This is undeclared.

This may not be a pointer to a function (but may be a pointer to an object).

This tag name is more than 80 characters long.

This type lacks a tag and hence cannot be used.
A declaration such as “struct {int x;};” was encountered. Without a tag the struct cannot
be referenced and hence is useless.

Toggle name required. Pragma ignored.

Too many initializers here.

Type it is not assignment compatible with type ftft7.
(a) In an assignment expression, the right operand of type ttt may not be assigned to the left
operand of type ttt’.

(b) In a function call, an argument of the type ttt may not be passed to a function that expects a
parameter of type ttt’.

Type itt is not compatible with type tit’.
In a comparison, the left operand of type ttt may not be compared with the right operand, of type
te’.

Unexpected symbol in expression. Line ignored.

Unknown preprocessing directive.

Unrecognizable Data class. Static assumed.

Unrecognizable field name.

Unrecognizable pragma name. Pragma ignored.

Unrecognizable toggle name. Pragma ignored.

Up-level reference to a register-class variable is not allowed.

Variable is never used.

Variable is referenced but is never set.

Variable is set but is never referenced.

Variable is referenced before it is set.

Variable required.

In this context a so-called “Ivalue” is required but was not found. An lvalue is something whose
address can be taken, and is required on the left side of an assignment expression and as an
operand to &, ++, and —-—. The rules of C require the automatic conversion of some objects into
non-lvalues. For example, an lvalue of type array-of-T is always converted to a (non-l)value of
type pointer-to-T, so it is never allowable to take the address of an array. So, “int a[10];
(...} f(sa);” produces the “Variable required.” diagnostic due to the application of & to
“a”, which has been converted to the address of the first element. Remove the .

Zero-length bit fields may not be named.
A declaration such as “struct {int i:0,j:2};” was encountered. “i” must be omitted. As
is, it is possible to refer to the field. Such a reference would be illegal.

{...} inappropriate here for initializing a scalar.

C-47 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Appendix A. CROSS-JUMPING OPTIMIZATIONS

MetaWare compilers support a major optimization that usually obtains a 2-5% reduction in code size
and is often accompanied by a decrease in execution time. The optimization is known as “cross-
jumping”. It, along with the two toggles that control it, is explained here.
Consider the following source code:
if (leof) readbytes{&buf,scnt,512); /* Code C. */
/* L: */ while (cnt > 0) {
writebytes (&buf,cnt);

if (!eof) readbytes(&buf,scnt,512); /* Code C’.*/
} /* Implicit jump back to the implicit label.*/

The compiler can improve the code size of this program without any loss in execution speed by
effectively re-writing the code as:

Top: if (l!eof) readbytes(s&buf,scnt,512);
/* Code C =Cr. */
/* L: */ if (cnt > 0) {
writebytes (&buf,cnt);
goto Top;
}

The optimization involves the recognition of some code ¢ immediately preceding a jump j to some
label 1, where some code c’ identical to ¢ immediately precedes 1.. The transformation consists in
deleting ¢ and replacing j with a jump to ¢’ instead:

some code C Jmp L’

Jmp L =>

some code Cf L' some code C = C’
L: N L:

This optimization is called “cross jumping” or “tail merging” in the compiler literature, since it was
first invented to handle common code at the ends of the arms of conditional statements, and was
effected by jumping across from one arm to the other, i.e. by merging the tails of the two arms. It is
surprisingly effective and always saves code space while never giving up execution speed.

Here we include another optimization under that name as well. The second optimization is even more
effective but gains (sometimes considerable) code space in trade for a small loss of speed. Consider
the program fragment
if (buf [cnt]==0) g(&buf);
elsa if (buficnt]== '\n’) {buf(cnt] = 0; g(sbuf);}
else ...

The compiler effectively transforms this into

if (buf [cnt]==0) goto L’;
elsa if (buffcnt]=="\n’) {buflcnt] = 0; L’: g(&buf);}

else ...
Here, both occurrences of “g(sbuf);” precede a jump to the statement following the entire
conditional. One of the instances of “g (sbuf) ; ” is replaced with a jump to the other, saving the code
space for the call to g at the expense of inserting an additional jump. Opportunities for this kind of
optimization are even more frequent than the standard cross-jumping optimization. In general the
optimization can be depicted as follows:

C-48 29 Oct 86

4.2 for the IBM RT PC

some code C

jmp L

some code C'

jmp L

T .
Lia

High C Programmer’s Guide

jmp L’

=> L’: some code C = Cf

L:

Jmp L

Both optimizations are turned on by default. Both may be disabled by turning 0ff the toggle
Optimize xjmp, with either “~-Hof£f=Optimize x3jmp” on the compiler execution line, or including
“pragma Off(Optimize xjmp);” in the program. The second of the two optimizations can be
disabled by turning Off the toggle Optimize x3jmp space, so named because the second
optimization saves space but always increases execution time.

During the development phase of a project it may be desirable to tum Optimize xjmp Off. The
reason is that the optimization can cause such a contortion of code that using debuggers, whether
assembly-langunage level or line-oriented symbolic, is difficult. As a case in point consider the
following program, which compares the fields of two different structures to see if they are the same:

union {
struct {int
struct {int
struct {int
struct {int
} ul,u2;
int f(i) int i;
switch(i) {
case 1:

case 2:

case 3:

case 4:

case 5:

b

X,¥5}

a,b,c;}

e, f;}

f1;
£2;
£3;

g,h; int 1[10];} f£f4;

{

/* What kind

return

return

return

return

return

ul.
ul.
ul.
ul.
ul.
ul.
ul.
ul.

fl.
f1.
f2.
£2.
f2.
£3.
£3.
f4.

of structure to compare? */

OO PO X

e}

[
o

u2.
u2.
u2.
.f2.a &&
u2.
u2.
u2.
u2.

u2

fl.x &&
fl.y;
f2.c &&

£f2.b;
f3.e &&
£3.f;
f4.g &&

memcmp {ul.f4.i,u2.£4.1,
sizeof(ul.fd.i)) 1=0;

ul.f4.h == u2.f4.h &s&

memcmp (ul.f4.i,u2.f4.1,
sizeof(ul.f4.i)) 1=0;

Here cases 1 and 3 are recognized as being identical, and matching the tail end of case 2. Furthermore
cases 4 and 5 share a common tail. Compiling the code produces the following tightly-coded result
that surpasses the usual patience of even a skilled assembly-language programmer in optimizing:

f1;
£2;
£3

37

{int g,h; int i[10];} £f4;

{ /* What kind of structure to compare? */

.globl .oVncs
.set .oVnes, 0
.globl memcmp
.globl _ .memcmp
.comm _ul,48
. comm _uz,48
#union {
struct {int x,y;}
struct {int a,b,c;}
struct {int <,f;}
struct
} ul,u2;
#int £(i) int i; {
switch (i)
.text
.align 1
Lo00:
.globl _.f
_.f:
stm rl2,-52(rl)

C-49 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

mr rld, r0

mr rl3, rl

cal rl,=52(rl)

mr rl2, r2

mr rls5,rl2

sis rl5,1

eli rl5,4

jh LOCO

a rl5,rl15

get r2,$L02a

a rl5,r2

lhas ri5,0(rl5)

a rl5, r2

br rl5
LO2A:

.short 1L052-1L022

.short 1L034-L022

.short L052-102A

.short L074-L02A

.short L08C-L02A
case 1: return ul.fl.x == u2.fl.x &&
ul.fl.y == u2.fl.y;
case 2: return ul.f2.c == u2.f2.c &&
L034:

get r2,$_ul

1ls r3,8(r2)

get rd4,5_u2

ls r5,8(rd)

c r3,r5

jne LOBE

bx 1064

1s r3,0(r2)
ul.f2.a == v2.f2.a &&
ul.f2.b == u2.£f2.b;
case 3: return ul.f3.e == u2.f3.e &&
L052:

get r2,$_ul

1s r3,0(r2)

get r4,$ u2
L064:

1s r5,0(r4)

c r3,r5

jne LOBE

1s r2,4(r2)

1s r3,4(rd)

c r2,r3

ine LOBE

3 LOBA
ul.f3.f == uv2.£f3.f;
case 4: return ul.f4.g == u2.fd.g &&
L074:

get r2,% ul

1s r3,0(r2)

get r4,$ u2

bx LOAO

1s r5,0{rd)
memcmp (ul.f4.i,u2.f4.1,sizeof(ul.f4.1)) !=0;
¥ case 5: return ul.fd4.h == u2.f4.h &&
1L.08C:

get r2,$ _ul

ls r3,4(r2)

get r4,$ u2

1s r5,4(rd)
LOAD:

c r3,r5

jne LOBE

inc r2,8

C-50 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

cal r3,8(r4)
cal r4,40(r0)
balix rl5, .memcmp
1 r0,4(rl4)
cis r2,0
je LOBE

LOBA:
lis r2,1
3j L0CcOo

LOBE:
lis r2,0

LOCO:
mr rl,rl3
1m rl2,-52(rl)
br rl5
.long O0xDFO7DFC8 # First gpr=rl2
.short 0x1D0O # npars=1l, off=0
.data 1
.globl £

_f:
.long L0OO
.long _memcmp
.align 2
.data

In summary:

1. Cross-jumping is an amazingly effective optimization.

2. Toggle “Optimize xJjmp” is set On by default and turning it O£ £ disables all cross-jumping.

3. Toggle “Optimize xjmp space” is On by default and turning it off disables cross-jumping
optimization that decreases space at the expense of time.

The cross-jumping optimization adds perhaps 20% to the execution time of the code generator phase
of the compiler, thus perhaps 3% overall.

C-51 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

INDEX OF APPENDIX C

Starting below is a “permuted key word in context” index for this document. In the center column is
the particular key word W being indexed, in the context of a phrase or sentence containing W. The
phrase appears to the left and right of W,

Occasionally the text of the phrase preceding W does not fit in the space to the left of W. In that case
the index entry looks like

is text that was too long to precede the WORD being indexed. Thisc..covvvinnn.... 7

where the first word “This” of the sentence did not fit on the left. Similarly the text to the right of W
can be crowded:

right. This WORD is followed by toomuch textonthe 7
where “the right” did not fit on the right.
After locating an entry, proceed directly to the referenced page.

.o texttoleft WORDtexttorght .. o ovvvinnneineennennnennnn. Page

up-level addressing.o il 18

addressing local and exported variables. 15

pragma Alias. ...t e 21

Allas. .o e 8

The AliasPragma.cioiiiiiiiiiinininenn ., 21

case shifting in aliasing conventions.coeivuiiierneennnnnann 21
aliasing variable for functionnames. 21

data type alignmentsandsizes. i iiiiiiin.. 15

-ma: provide stack frame information for alloca. o i i i i 5
cross reference. annotated inter-modular, inter-lingua 34
annotated multi-modular cross reference. 34

Annotated_listing, list_module_usage. 35

compilation phase anNOUNCEMENLS.cvvuntvreurennenrnneeeeenennnn.s 13
Some ANSI-Required Specifics.ooovvviiiiiiiil 37

TheData Area.cc.oiiiiiiiiiiiiiiiiiiiiiiir e, 17
ArgumentPassing. ...l 18

Floating-Point Arithmetic.o vviiiiviiniiiicrn e 37

-f: use single precision arithmetic.coiiiiiiiiiiiiiiiiianan. S
ASIL L e 10

AssemblerIssues.c i 20

Example: Calling Cfrom Assembly.coiiiiiiiiiii i, 25
Calling AssemblyfromC.ttt 23

Examples: Calling AssemblyfromC.l 24
ASSEMBLY LANGUAGE COMMUNICATION. 23

assembly listing. i, 10

-Hasm: produce assembly listing.ccooiveviiiiiiiiieiiiiin,, 4
AssemblyRoutines.l 23

-S: produce assembly source.iiiiiiiiiiiiiiiia. 6

global and automaticdata. i, 21
Auto reg alloc.vviii i 10

-B: invoke substitute compiler.l 5

struct padding, bitfields. il 15

Calling Assembly from C.ottt i i 23
Examples: Calling Assemblyfrom C.oviiniiiiiiii i 24
Example: Calling Cfrom Assembly.o o 25
Invoking the C Macro Preprocessor.cooviiieieiinn... 4

module. -c: suppress linkage, createobjectiL.l.. 5

post-mortem call trace call-stack dump.l 11
call-chain stackdump.c.oooiiiiiii i, 11

post-mortem call trace call-stackdump.o o il 11
Calling Assembly fromC.oiia 23

Examples: Calling Assembly fromC................. e 24

Example: Calling C from Assembly.oooiiiiiii.. 25

Calling Sequences.ceveverierirenineniirannns 19

case shifting in aliasing conventions. 21

C-52 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Char_default_unsigned.t ii... 10

external name clashes: linker limitations., 21

Storage Classes.oiiiiiiiiiiiiiiii . 15

prologue code........ ... i e 19

-p: produce profiling code.t e 6
-pg:produce profiling Code.ot e e 6
code OpHMIZAtoN.oovuuiiieine it 11

literais in data vs. COde SPace.ttt ittt 11,13
Usingthe hexref Command. 34
Command Options.ccviiiiiiiiiininnnnnnnn. 4

Common segments. e 21

ASSEMBLY LANGUAGE COMMUNICATION.c.cvviueiiieeninnnnennnnnn. 23
Data CommuniCation.c.cceeveeeeneanneneennnnnnn 25

modules. data communication in separately compiled 21

pointer compatibility. il 12

compilation phase announcements.oouue... 13

compilation statistics and summary.c.coiaun.... 14

data communication in separately compiledmodules. ittt 21
INVOKING THE COMPILER. ...t 4

-B: invoke substitute compiler. it e 5
compiler or source listing. e 11

Compiler Pragma Summaries. oL 8
COMPILERPRAGMAS.ot 8

compiler switches ortoggles. 10

COMPILER TOGGLES.ottt cieiiiiieeen 10

conditional source file inclusion. L 8

CONSEANE POOL. + o v ittt e vt 17

CONSITAML BITOT. .« . eeseeneieeeneeereneaeeenneanans 41

case shifting in aliasing CONVENLIONS.ttt itiiennnennninneneeneeneans 21
Function Naming Conventions.ceveeuerereniuneeennnnnuesenns 23

-c: suppress linkage, create objectmodule.ciiiiiiiiiiiiiaiii 5
annotated multi-modular crossreference. i, 34
Features of the Cross Reference.cooiiviiiiiiiinn... 34
annotated inter-modular, inter-lingua crossreference.oiiiiiiiiiiiiii i 34
cross reference, listing.cooveininennnnnenennn 35

MAKING CROSSREFERENCES.cccviiiiiiieiinnnn.. 34

sameness of include files for cross references. il 36
CROSS-JUMPING OPTIMIZATIONS.t e 48

Cross-Reference Format.ol 35

Cinclude. ..o i e e e e 8

pragmas Include, C_include, R_include, and RC_include. 8
-D:fdefineasymbol. il 5

global and automatic data.c.uiiiiiiiiiii i e 21
Data. c.e i e e 8

The Data Area.covuiniiiiiiiieniineiinneineenns 17

Data Communication.ceeueuuueeunnnnnnns 25

modules. data communication in separately compiled e 21

Data Segmentation: the DataPragma.ol 21
Data Segmentation: the Data Pragma.cooonnn. 21

data type alignments and sizes. 15

Data TypesinStorage.cocoeiiuinienennnnn... 15

literals in data vs.code space. «.....covvuvuriiiinireneinnnnn 11,13

~giemit DBXrecords.oiiiiii e 5

-Hdebug: emit DBXrecords.cocoviiuiiiiniiiiiiinnn, 5
emitting debugging information.c.oiiiiiiiiina. 11

-D: #defineasymbol..........ol 5

-M: generate Makefile dependencies.cooiiiiiineiiiiiinenannaas 5
DIAGNOSTICMESSAGES.covvviiiiiivennnn.. 39

-dir: specify include directory.cciiiiiainn 5

-dir: specify include directory.ooitiiiiiiii i 5
directory search forinputfiles. 8

Distinction of File Names.o, 36

Double_math_only.ccoiiiiiiiiniinnn, 10

Downshift_file names.cooiiiieiiieiinan.. 10

callchainstack dump.oiiiiiii i 11
post-mortem call trace call-stack dump.t e 11
-E: invoke outboard preprocessoronly.oiui.n 5

C-53 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

-Hlines: emit page ejecteverynlines.c.viiviineniniennnnnn... 5
-Hdebug: emitDBX records.oovviiivvniinrnininnannan. 5
-gremitDBXrecords. ... i 5

-Hlines: emit page ejecteverynlines.oooin.n... S

emitting debugging information. 11

Emit_line table., 11

MY POINL. ¢ vttt et ittt titeee e eeae e eeeiineanas 17

Epilogue.oooiviiii 20

CONSITAINE BITOT.tinttineieeeennnneeaeeneeennnnnns 41

Error and Warning Messages.c..c.ovuvnnen... 41

System Emrors. ...t 39

FileI/O Errors.coiuiiiuiiniiiiit i, 39

User Errorsand Wamnings.oovviievneennnunnneana.., 40

Errors, file I/O. i e 39

-Hlines: emit page eject everynlines.uviiniiieiiiniiinrennnnnenn 5
Example: Calling C from Assembly.c....... 25

Examples: Calling Assembly fromC. 24

addressing local and exported variables.c.coiiiiiiiiiii i 15
-Hansi: tum off extensions.c.co il 4
external name clashes: linker limitations. 21

EXTERNALS.t e 21

-f: use single precision arithmetic.s 5

Features of the Cross Reference. 34

struct padding, bit fields.o i 15
Include file. ... 27
-ormameoutput file. e e e 6
Errors, fileI/O. ..oiuiiinii i 39
FilleJJOEIMOrs. ... oot 39

conditional source fileinclusion. o i, 8
Distinction of File Names.ovveientiniureriereeinrnnnnans 36
include filesearchpath., 8

Include files.ovvueiiii i i e 34

directory search forinput files.ovvuinii i i e 8
Include Pragmas: Including Source Files.ovtvueinirinnieiiiiiainrainanns 8
sameness of include files for cross references.ooiii il 36
Floating-Point Arithmetic.oviverennnne.. .. 37

Cross-Reference Format..........coviiiieiiiiiinnn i 35
Formatof Listings.cciiiiiiiiniinn, 27

-ma: provide stack frame information foralloca. 5
Stack Frame Layout.ooiiiiiiiiniiineann. 18

aliasing variable for functionnames.oiiiiiiiiiiiiain... 21
Function Naming Conventions. 23

FunctionResults. ... 19

-gremit DBXrecords.ol 5

-M: generate Makefile dependencies. 5

-Hlist: generate source listing.cvviiiiirennnnann 5

global and automaticdata.oooiiiiii it 21

-H+w: produce wamings. 7

-Hansi: wm off extensions.ooel. 4

-Hasm: produce assembly listing. 4

e 4

-Hepp: use outboard preprocessor.ovvevevnnnn. 5

Using the hexref Command.ccoviiieiiiiinneennnnn... 34
-Hdebug: emit DBX records.oovinnninnna., 5

-Hlines: emit page ejecteverynlines. 5

-Hlist: generate source listing.covvuiuuneennn.. 5

-Hnocpp: use inboard preprocessor. 5

-Hoff=toggle: tums toggleoff. 6

-Hon=toggle: tumstoggleon. 6

-Hppo: invoke inboard preprocessor only 6

Errors, file J/O. oo vvvieiiie ettt e e 39

File JOEMmOrs.coviiiiiiiiiniiii i iiiiaiaann 39

-Hnocpp: use inboard preprocessor.o.evereiniqennennneenen s 5
-Hppo: invoke inboard preprocessoronly.ceoiieiiiiiniian... 6
inboard vs outboard preprocessor.iii i 4

Include.ovvivviii i 8

-dir: specify include directory.cocveveeeniii., RN 5

C-54 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

Includefile. i i 27

include file searchpath.l ..., 8

Includefiles.coiiiiiiiii i, 34

sameness of include files for cross references. 36

Include Pragmas: Including Source Files. 8

RC_include. pragmas Include, C_include, R_include,and 8
Include Pragmas: Including Source Files. 8
conditional source file inclusion. N 8
emitting debugging information. i i i, 1

-ma: provide stack frame information foralloca. Ll 5
directory search for inputfiles. i, 8
InputLinelength. it 37

annotated inter-modular, inter-lingna cross reference. 34
reference. annotated inter-modular, inter-lingua crossc..ueei.... 34
INTRODUCTION. .. .ttiiiniieiiie e iiaeenenn, 2

Int_function_wamings.c.c.coeieeiieniaaen.... 11

-Hppo: invoke inboard preprocessoronly. 6

-E: invoke outboard preprocessoronly.o.o.... 5

-B: invoke substitute compiler. il 5

Invoking the C Macro Preprocessor. 4

INVOKING THECOMPILER.ccciiinnn. 4

Assembler Issues.o 20

ASSEMBLY LANGUAGE COMMUNICATION.c..... 23

Stack Frame Layout. il 18

linking with 1d. e 20

InputLine Length.oueii i 37

external name clashes: linker limitations.oo it 21
Input LineLength. ... i, 37

line-numbers, scope-level, nesting-level. 27

-Hlines: emit pageejecteveryn lines...........cooiii it iin ittt 5
static HnK. . .oenntt i e s 18

-c: suppress linkage, create objectmodule.l 5

external name clashes: linker imitations.ocoveetn i eiaenneann, 21
linkingwithld.ot i 20

5 11

assembly listing.o il e 10
compilerorsource listing.coiviirriiiiiiiiiiiit ittt 1
Queens program LSHNZ.vunenntetiiiiiiieeeeteeaneeeeeans 28

cross reference, listing.oiiiiiiiiiiiiii e 35

-Hasm: produce assembly Listing.cooieiiiiiiiiiiiiiiiii .. 4
-Hlist: generate source LSHNZ. . .vviuvettinneetreeenneinnneeonnnaneeeenns 5
listingruler. i 27

LISTINGS. ..ttt 27

Formatof Listings.ottt 27
Annotated_listing, list_module_usage.c.ciiiiiiiiiiiiiiiiii.n. 35

literals in data vs. code space.covviniieinnn. 11,13

Literals_in_code.ottt 11

addressing local and exported variables. L.l 15

-M: generate Makefile dependencies. 5

alloca. -ma: provide stack frame informationfor 5

Invoking the C Macro Preprocessor.cooiiiiiiiiiiiiin.n, 4

-R: make static variables read-only.6

-M: generate Makefile dependencies. il 5
Make_externs_global. oo, 11

MAKING CROSSREFERENCES.co0vinnnn 34

STORAGE MAPPING.cviiiniiiiiiniiiiiiiianeinanannss 15
DIAGNOSTIC MESSAGES. . ..ottt et 39

Errorand Waming Messages. « oo ovviveinitieeiineinnnierannnieianen. 41

-c: suppress linkage, create object module. il 5
data communication in separately compiled modules.o i 21
annotated multi-modular cross reference.00enn. 34

-Hlines: emit page eject every Nlnes.o.uuuuiniiiniunorineenennrennnnenonns S
external name clashes: linker limitations. 21

-o: nameoutputfile. i 6

SEZMENL TAMIES. .o« vveveeeeaeeeneeneeneeeneseeaennesnnnnnes 21

aliasing variable for function mames.iiiiiiiiiiiii i 21
Distinction of File Names.cvvtiiiiiiiriiiiiiiiiieeaneneen 36

C-55 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

-V print SUDPrOCESS MAMES.ttt it intinineeineainnanneananans 6
Function Naming Conventions.covuierennnn... 23
line-numbers, scope-level, nesting-level.ot 27
-o:nameoutputfile. il 6

SOtopHMIZE. ...t e 6

-c: suppress linkage, create objectmodule.iiiiiiiiiii i S
objinit. ... 4

On, Off, POP.ivtiit i 8

On, Off, Pop. o i e e e 8

-E: invoke outboard preprocessor Only.ouiiuie et enteie i, 5
-Hppo: invoke inboard preprocessor Only.vuuvuue ettt ii it 6
code OPUMIZAtON.ovviirenerininrevnnnnneennnennnns 11
CROSS-JUMPING OPTIMIZATIONS.otitiitiitan i eiiannanns 48
S0 OPHMIZE. vttt e 6
Optimize_for_space.coiiiiiiininnein.. 11

OptimizZe_XJmP. . ..ot oreeeeieiiiene e iieiainaneanans 11
Optimize_Xjmp_SPace. . ..ceuuururerennneernnneennnnn 11

Command Options.ciiiiutierennereeennrnaanreanens 4
RUN-TIME ORGANIZATION.coviutinuinnrnannnnnannnnns 17

inboard vs outboard preprocessor.iiiiiiiiiieeeaaae.n 4

-Hepp: use outboard preprocessor.vevvinninennnniinnnnnnenn 5

-E: invoke outboard preprocessoronly. 0ol 5

-o:name outputfile. e 6

-p: produce profiling code. oL 6

struct padding, bitfields.o i 15

-Hlines: emit pageejecteverynlines.ccviiuuinniieeennnn.. 5
Pragmas Page, Skip, Title.o, 27

PArameler Passing. « ..o vvvvvtitt ittt 18

Parm_wamings. ..ottt 12

Argument Passing. il e 18

parameter PassilE.c.uuenuetiiiii ittt 18
includefilesearch path. i 8
PCC_msgs. . .oviiiiiiiiiii i e 12

-pg: produce profiling code.o, 6

compilation phase annOUNCEMENLS. vvvvvrereeeeruennnaoeeeennn 13

ENAMTY POIML ittt ettt ie e, 17

pointer compatibility.o o oo 12

Pointers_compatible. i, 12
Pointers_compatible_with_ints. 12

constant Pool.l i e e 17

Pop. e 10

On,Off, Pop. «.vviiii i i 8

post-mortem call trace call-stack dump. 11

The Alias Pragma. ittt 21

Data Segmentation: the Data Pragma.o, 21
pragma Alias. e 21

Compiler Pragma Summaries.oovinniiiiiiinineeieeens 8
COMPILER PRAGMAS. e 8
Syntaxof Pragmas.ottt 8
RC_include. pragmas Include, C_include, R_include,and 8

Pragmas Page, Skip, Title.o, 27

Include Pragmas: Including Source Files. 8

-f: use single precision arithmetic.ovviiiniviuieinnnnnnnns 5

inboard vs outboard Preprocessor.eieiiiiiiii i 4
Invoking the C Macro Preprocessor.c.vvviieiiinenenennnnnn. 4
-Hepp: use outboard preprocessor.ooviiiii it 5
-Hnocpp: use inboard PreproCessor.c.veieuuuereineeineerennneeens 5
-E: invoke outboard preprocessoronly.oiiiiiiiiiiiiii i 5
-Hppo: invoke inboard preprocessoronly.covviiiiiiiin e, 6
-V: Print SUDPIOCESS NAMES. « + v v vt v vt e inanneeeneens 6

PHOL PPO. o vvii i e 13

Print_protos.ccooiiiiiiiiiiiiiiii 13

Print_reg Vars.ooiuiniriiiiiiiieaiiiiaes 13

-Hasm: produce assembly listing.ooiiiiiiat, 4

-S: produce assembly source. il 6

-pg: produceprofilingcode.l 6

-p: produce profilingcode.l 6

C-56 29 Oct 86

4.2 for the IBM RT PC High C Programmer’s Guide

-H+w: produce warmings.coeeverneenuunrennnnnn.. 7

-p:produce profilingcode. i 6

-pg: produce profilingcode. 6

Queens program listing.coiiiiiiiiiiiiiiiian... 28

Prologue. i 19

prologuecode. ...ttt e i 19

alloca. -ma: provide stack frame information for 5
Public_var_wamings.0 i, 13

Queens program listing.ccoiiiiiiiiiiia.... 28

QUIEL. .« . et e 13

-R: make static vanables read-only.l 6

RCNCIudE. .. ovteii ittt e e e 8

pragmas Include, C_include, R _include,and RC include., 8
-R: make static variables read-only.c.ooiiiii it i 6
Read only_strings.ciiiiiiiiiiiiiiinn.. 13

-giemitDBX records. ... e 5

-Hdebug: emit DBX records.cooiiiiiiiiiiiiiiiiiiiiiiii ., 5
annotated multi-modular cross reference. o 34
Features of the Cross Reference. ittt 34
inter-modular, inter-lingua cross reference. annotated oo i, 34
cross reference, listing. il 35

MAKING CROSS REFERENCES.ttt iiiiiiiiiieaeaenn 34
sameness of include files for cross references.o il i 36
RegisterUsage. oo, 17

SAVINE TEISIEIS. .ottt it ittt it tiii e e 18

Function Resulls.cotinniiinoeie it iiineeennnnns 19

Assembly Routines.coouiiiiiiiiiiiiiiiniiinan., 23

BiSting TUlEL. o ov vttt ittt iet e teiaaenaesennnannns 27

RUN-TIME ORGANIZATION.ccvnnvvnnnnnn. 17

Rinclude. ..ottt i i 8

pragmas Include, C_include, R_include,andRC include. o ..., 8
-S: produce assembly source.ol 6

references. sameness of include files forcross 36

SAVING TEGISTETS. + oo vttt et ettt eeeeseneeiannannnnnns 18

line-numbers, scope-level, nesting-level. 27

directory search forinputfiles.ooviiiiiiiiin... 8

include file searchpath.ottt 8
SEGMENLMAIMES. .o vvvunreerunnnnecennennneonnnennnns 21

Data Segmentation: the DataPragma. 21

Common SEZMENS.vuurueteurunnnnenuenereneeneeneenens 21

data communication in separately compiledmodules. o oL 21
Calling Sequences.cvvieiuiiiiiiieinninieennnennnns 19

case shifting in aliasing conventions. 21

-f: use single precision arithmetic.cooiiiin. 5

data type alignmentsand Sizes.oiiiiiiiiiieiaa., e 15
Pragmas Page, Skip, Title. i, .27

Some ANSI-Required Specifics.ooinnt.. 37

-S: produce assembly SOUICE. «.uvivtetnrineneaeenoiersoannneanoneuannnns 6
conditional source fileinclusion.ol 8

Include Pragmas: Including Source Files.o it an.. 8
compileror source Histing.ooovvuiiiiin i 11

-Hlist: generate source listing. covvnn it i 5

literals in data vs. code SPAcCe.coviiiiiiint it 11,13
SYSTEM SPECIFICS.ottt it ee eieee e e 37

Some ANSI-Required Specifics.cooiiiiiiiiiiiiiiiiiii i 37
-dir: specify include directory.ciiiiiiiiiiiiiienn. 5

call-chain stackdump.c.coiiiiiiiiiiiiiii i 11

-ma: provide siack frame information foralloca. AU 1

Stack Frame Layout. e 18

staticlink. il 18

-R: make static variablesread-only., 6

compilation statistics and summary. ol n.. 14

Data Typesin StOrage.ovveineiinnetineeineianeinneennnens 15

Storage Classes. . .o vvvvvennernseeieeanreanieeiens 15

STORAGEMAPPING.oviviiiniii i 15

struct padding, bit fields. ool 15

-V: PrNt SUDPIOCESSMAMES. oot vvvvnveneenneneenenananennnnns 6

C-57 29 Oct 86

4.2 for the IBM RT PC

High C Programmer’s Guide

-B: invoke substitute compiler. i 5
Compiler Pragma Summaries.coiiiiiiiiiiiiiiiien. 8
Summarize. 14

compilation statistics and SUMMATY.ovututernninnieininnaiaeeeennn 14
-c: suppress linkage, create objectmodule. 5

~W: SUPPIESS WAIMINGS. + o« v vvvt vt vnneeeennarnannneeeanans 7

compiler switchesortoggles.cooiiiiiiiiiiine... 10
-Didtdefinea symbol.ci it e S
-Usdfundefa symbol. 6
Syntaxof Pragmas.coiiiiiiiiiiia., 8

System Errors. oo i 39
SYSTEMSPECIFICS.o, 37

INVOKING THECOMPILER.o i 4
Pragmas Page, Skip, Title. e 27
-Hoff=toggle: turns toggleoff. i 6
-Hon=toggle: turns t0ggle Om.voviniti it iiii i 6
COMPILER TOGGLES.civiiiiiiiiiiiiii i 10
compiler switches or toggles.oitit i e 10
post-mortem call trace call-stackdump. ool 11
-Hansi: tumoff extensions.o 4
-Hoff=toggle: tumstoggleoff. i it 6
-Hon=toggle: tumstoggleon.iiiiiiiiiinininnnnnn. 6

data type alignmentsand sizes., 15

Data Typesin Storage.ooviiiiiiiniiiiiienaneen 15
-U:#undefasymbol.oooiiiii L, 6

-U: #undefasymbol.o i 6

up-level addressing.o i 18

Register Usage.oininiiuniniiiiii i it i 17

-Hnocpp: use inboard preprocessor. i, 5

-Hepp: use outboard preprocessor.ooviiiiiiiiin. 5

f: use single precision arithmetic. 5

User Errorsand Wamings.covnnann, 40

Using the hexref Command. 34

-v: print subprocessnames. i, 6

aliasing variable for functionnames. 21

addressing local and exported variables. il 15
-R: make static variablesread-only. il 6
inboard vs outboard preprocessor.ciiiiiiiiaiiiiiin, 4

-W: SUDPIESS WAMNINES. .« . oot vevnnernernnnnneneeenunnns 7

WML .« o vt e i 14

Error and Waming Messages.ottt 41
UserErrorsand Wamings.ttt iiiiiiiiinnnnnnn, 40
~W: SUPPIESS WAMINES. & .oontittttt et eneererriasineinnnnnensnnns 7
-H+w:produce wamings.ooiiiiiiiiiiiiiii i 7

C-58 29 Oct 86

ORDERING INFORMATION

Copies of the High C ™ Language Reference Manual may be ordered directly from MetaWare™,
The manual retails for $16.95 and is available at an educational discounted price of $12.95.

If your system includes the Professional Pascal ™ compiler, you may want the three-manual set,
including the programmer’s guide, primer, and language extensions manual. This set retails for
$32.95 and is available at an educational discounted price of $24.95. The manual set may also be
ordered from MetaWare.

These prices include mail/shipping costs. California residents please add 6.5% sales tax. Please send:
(1) an indication of educational affiliation, if appropriate, and (2) a check, money order, or written
authorization to charge to your MasterCard or VISA account, with account number and expiration
date to:

MetaWare Incorporated
903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060-4429
(408) 429-META (=6382)

High C, Professional Pascal, and MetaWare are trademarks of MetaWare Incorporated.

4.2 for the IBM RT PC Ordering Information

This page intentionally left blank.

15 Dec 1986

Academic Information Systems 4.2
‘ for the IBM RT PC
READER’S COMMENT FORM

You may use this form to communicate your comments about this publication, its organi-
zation, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation
to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate.

If you wish, give your name, university or site, mailing address, and date:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments,
or you may mail directly to the address in the Edition Notice on the back of the title

page.)

15 Dec 1986

Reader’'s Comment Form

Fold and tape

Fold and tape

<|||
1
o

Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Academic Information Systems

University Support, Dept. 6FR

P.O. Box 10500

Palo Alto, CA 94303-9974

Piease Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold and tape

o o . e e e e e e o e e e e U7} HUOJY PIO A 40 IND

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	replyA
	replyB

