

--------- - ------- - ---- -- -----------,-

l

Application Systeml400™

Machine Interface
Functional Reference

SC21-8226-0

First Edition (August 1990)

The functions described in this publication apply to the IBM AS/400 machine interface.

Order publications through your IBM representative or the IBM branch serving your locality. Publica­
tions are not stocked at the address given below.

A form for readers' comments is provided at the back of this publication. If the form has been
removed. you may address your comments to:

IBM Corporation. Department 245. 3605 North Highway 52 and 37th Street NW. Rochester. MN
55901-9986 USA.

When you send information to IBM. you grant IBM a non-exclusive right to use or distribute the infor­
mation in any way it believes appropriate without incurring any obligation to you or restricting your use
of it.

© Copyright International Business Machines Corp., 1990. All rights reserved.

Note to US Government users - Documentation related to Restricted Rights - Use, duplication. or dis­
closure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

J

l

l

Special Notices
References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this publica­
tion is not intended to state or imply that only IBM's program or other product
may be used.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (*) in this publication, are trade­
marks of the IBM Corporation in the United States and/or other countries:

Application System/400 AS/400
400

IBM

This publication could contain technical inaccuracies or typographical errors.

The information herein is subject to change.

iii

-JI

J

J

iv AS/400 M I Functional Reference

About This Manual

The information contained in ASI400 Machine Interface Functional Reference has
not been submitted to any formal IBM test and is distributed on an 'as is' basis
without any warranty either expressed or implied. This manual is written for
release 3 of AS/400 Vertical Licensed Integrated Code (VUC) and may not
discuss all the functions available on your AS/400 system.

The ASI400 Machine Interface Functional Reference is a new manual.

The ASI400 Machine Interface Functional Reference defines the AS/400 Machine
Interface to instructions, exceptions, and events.

This manual may refer to products that are announced but are not yet available.

Who Should Use This Manual
This manual is intended for knowledgeable system programmers having sub­
stantial experience on AS/400 computer systems.

What You Should Know
The reader should know one more high level languages, assembly languages of
other computers, and understand instruction set architectures. The reader
would do well to study capability-based computer architectures.

The reader should be familiar with AS/400 objects and their intended use.

How This Manual Is Organized
The ASI400 Machine Interface Functional Reference is organized into three parts:

1. Basic Function Instructions

© Copyright IBM Corp. 1990

These instructions provide a basic set of functions commonly needed by
most programs executing on the machine. Because of the basic nature of
these instructions, they tend to experience less change in their operation in
different machine implementations than the extended function instructions.

2. Extended Function Instructions

These instructions provide an extended set of functions which can be used to
control and monitor the operation of the machine. Because of the more com­
plicated nature of these instructions, they are more exposed to changes in
their operation in different machine implementations than the basic function
instructions.

3. Instruction Support Interfaces

This part of the document defines those portions of the Machine Interface
which provide support for functions or data used pervasively on all
instructions. It discusses the exceptions and program objects which can be
operated on by instructions.

v

J

vi AS/400 MI Functional Reference

L

Contents

Basic Function Instructions

Chapter 1. Computation and Branching Instructions 1-1
1.1 Add Logical Character (ADDLC) 1-1
1.2 Add Numeric (ADDN) 1-4
1.3 And (AND) 1-8
1.4 Branch (B)
1.5 Clear Bit in String (CLRBTS)
1.6 Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)
1.7 Compare Bytes Left-Adjusted with Pad (CMPBLAPB or CMPBLAPI)
1.8 Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)
1.9 Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI)
1.10 Compare Numeric Value (CMPNVB or CMPNVI)
1.11 Compute Array Index (CAl)
1.12 Compute Math Function Using One Input Value (CMF1)
1.13 Compute Math Function Using Two Input Values (CMF2)
1.14 Concatenate (CAT)
1.15 Convert BSC to Character (CVTBC)
1.16 Convert Character to BSC (CVTCB)
1.17 Convert Character to Hex (CVTCH)
1.18 Convert Character to MRJE (CVTCM)
1.19 Convert Character to Numeric (CVTCN)
1.20 Convert Character to SNA (CVTCS)
1.21 Convert Decimal Form to Floating-Point (CVTDFFP)
1.22 Convert External Form to Numeric Value (CVTEFN)
1.23 Convert Floating-Point to Decimal Form (CVTFPDF)
1.24 Convert Hex to Character (CVTHC)
1.25 Convert MRJE to Character (CVTMC)
1.26 Convert Numeric to Character (CVTNC)
1.27 Convert SNA to Character (CVTSC)
1.28 Copy Bits Arithmetic (CPYBTA)
1.29 Copy Bits Logical (CPYBTL)
1.30 Copy Bits with Left Logical Shift (CPYBTLLS)
1.31 Copy Bits with Right Arithmetic Shift (CPYBTRAS)
1.32 Copy Bits with Right Logical Shift (CPYBTRLS)
1.33 Copy Bytes Left-Adjusted (CPYBLA)
1.34 Copy Bytes Left-Adjusted with Pad (CPYBLAP)
1.35 Copy Bytes Overlap Left-Adjusted (CPYBOLA)
1.36 Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)
1.37 Copy Bytes Repeatedly (CPYBREP)
1.38 Copy Bytes Right-Adjusted (CPYBRA)
1.39 Copy Bytes Right-Adjusted with Pad (CPYBRAP)
1.40 Copy Bytes to Bits Arithmetic (CPYBBT A)
1.41 Copy Bytes to Bits Logical (CPYBBTL)
1.42 Copy Extended Characters Left-Adjusted With Pad (CPYECLAP) .. .
1.43 Copy Hex Digit Numeric to Numeric (CPYHEXNN)
1.44 Copy Hex Digit Numeric to Zone (CPYHEXNZ)
1.45 Copy Hex Digit Zone To Numeric (CPYHEXZN)
1.46 Copy Hex Digit Zone To Zone (CPYHEXZZ)

~ Copyright IBM Corp. 1990

1-11
1-13
1-15
1-18
1-21
1-24
1-27
1-30
1-32
1-42
1-47
1-49
1-53
1-57
1-59
1-65
1-68
1-78
1-81
1-84
1-87
1-89
1-94
1-97

1-109
1-111
1-113
1-115
1-118
1-121
1-123
1-125
1-127
1-129
1-131
1-133
1-135
1-137
1-139
1-143
1-145
1-147
1-149

vII

1.47 Copy Numeric Value (CPYNV) 1-151
1.48 Divide (DIV) 1-154
1.49 Divide with Remainder (DIVREM) 1-158
1.50 Edit (EDIT) 1-162
1.51 Exchange Bytes (EXCHBY) 1-171
1.52 Exclusive Or (XOR) 1-173
1.53 Extended Character Scan (ECSCAN) 1-176
1.54 Extract Exponent (EXTREXP) 1-180
1.55 Extract Magnitude (EXTRMAG) 1-183
1.56 Multiply (MULT) 1-186
1.57 Negate (NEG) 1-190
1.58 Not (NOT) 1-193
1.59 Or (OR) 1-196
1.60 Remainder (REM) 1-199
1.61 Scale (SCALE) 1-203
1.62 Scan (SCAN) 1-207
1.63 Scan with Control (SCANWC) 1-210
1.64 Search (SEARCH) 1-219
1.65 Set Bit in String (SETBTS) 1-222 J
1.66 Set Instruction Pointer (SETIP) 1-224
1.67 Store and Set Computational Attributes (SSCA) 1-226
1.68 Subtract Logical Character (SUBLC) 1-231
1.69 Subtract Numeric (SUBN) 1-234
1.70 Test and Replace Characters (TSTRPLC) 1-238
1.71 Test Bit in String (TSTBTSB or TSTBTSI) 1-240
1.72 Test Bits Under Mask (TSTBUMB or TSTBUMI) 1-243
1.73 Translate (XLATE) 1-246
1.74 Translate with Table (XLATEWT) 1-249
1.75 Trim Length (TRIML) 1-252
1.76 Verify (VERIFY) 1-254

Chapter 2. Pointer/Name Resolution Addressing Instructions 2-1
2.1 Compare Pointer for Object Addressability (CMPPTRAB or CMPPTRAI) 2-1
2.2 Compare Pointer Type (CMPPTRTB or CMPPTRTI) 2-4
2.3 Copy Bytes with Pointers (CPYBWP) 2-7
2.4 Resolve Data Pointer (RSLVDP) 2-10
2.5 Resolve System Pointer (RSLVSP) 2-13

Chapter 3. Space Object Addressing Instructions 3-1
J

3.1 Add Space Pointer (ADDSPP) 3-1
3.2 Compare Pointer for Space Addressability (CMPPSPADB or

CMPPSPADI) 3-3
3.3 Compare Space Addressability (CMPSPADB or CMPSPADI) 3-6
3.4 Set Data Pointer (SETDP) 3-9
3.5 Set Data Pointer Addressability (SETDPADR) 3-11
3.6 Set Data Pointer Attributes (SETDPAT) 3-13
3.7 Set Space Pointer (SETSPP) 3-16
3.8 Set Space Pointer with Displacement (SETSPPD) 3-18
3.9 Set Space Pointer from Pointer (SETSPPFP) 3-20
3.10 Set Space Pointer Offset (SETSPPO) 3-23
3.11 Set System Pointer from Pointer (SETSPFP) 3-25
3.12 Store Space Pointer Offset (STSPPO) 3-27
3.13 Subtract Space Pointer Offset (SUBSPP) 3-29

Chapter 4. Space Management Instructions 4-1

viii AS/400 MI Functional Reference

4.1 Materialize Space Attributes (MATS) 4-2
4.2 Modify Space Attributes (MODS) 4-6

Chapter 5. Program Management Instructions 5-1
5.1 Materialize Program (MATPG) 5-2

Chapter 6. Program Execution Instructions 6-1
6.1 Activate Program (ACTPG) 6-1
6.2 Call External (CALLX) 6-5
6.3 Call Internal (CALLI) 6-11
6.4 Clear Invocation Exit (CLRIEXIT) 6-13
6.5 De-Activate Program (DEACTPG) 6-14
6.6 End (END) 6-16
6.7 Modify Automatic Storage Allocation (MODASA) 6-17
6.8 Return External (RTX) 6-20
6.9 Set Argument List Length (SETALLEN) 6-23
6.10 Set Invocation Exit (SETIEXIT) 6-25
6.11 Store Parameter List Length (STPLLEN) 6-28
6.12 Transfer Control (XCTL) 6-30

Chapter 7. Program Creation Control Instructions 7-1
7.1 No Operation (NOOP) 7-2
7.2 No Operation and Skip (NOOPS) 7-3
7.3 Override Program Attributes (OVRPGATR) 7-5

Chapter 8. Independent Index Instructions 8-1
8.1 Find Independent Index Entry (FNDINXEN) 8-2
8.2 Insert Independent Index Entry (INSINXEN) 8-6
8.3 Materialize Independent Index Attributes (MATINXAT) 8-9
8.4 Modify Independent Index (MODINX) 8-13
8.5 Remove Independent Index Entry (RMVINXEN) 8-16

Chapter 9. Queue Management Instructions 9-1
9.1 Dequeue (DEQ, DEQB, or DEQI) 9-2
9.2 Enqueue (ENQ) 9-8
9.3 Materialize Queue Attributes (MATQAT) 9-11
9.4 Materialize Queue Messages (MATQMSG) 9-15

Chapter 10. Object Lock Management Instructions 10-1
10.1 Lock Object (LOCK) 10-2
10.2 Lock Space Location (LOCKSL) 10-8
10.3 Materialize Allocated Object Locks (MATAOL) 10-10
10.4 Materialize Data Space Record Locks (MATDRECL) 10-13
10.5 Material ize Object Locks (MATOBJ LK) 10-17
10.6 Materialize Process Locks (MATPRLK) 10-21
10.7 Materialize Process Record Locks (MATPRECL) 10-24
10.8 Materialize Selected Locks (MATSELLK) 10-28
10.9 Transfer Object Lock (XFRLOCK) 10-31
10.10 Unlock Object (UNLOCK) 10-35
10.11 Unlock Space Location (UNLOCKSL) 10-39

Chapter 11. Exception Management Instructions 11-1
11.1 Materialize Exception Description (MATEXCPD) 11-1
11.2 Modify Exception Description (MODEXCPD) 11-5
11.3 Retrieve Exception Data (RETEXCPD) 11-8

Contents ix

11.4 Return From Exception (RTNEXCP) 11-12
11.5 Sense Exception Description (SNSEXCPD) 11-16
11.6 Signal Exception (SIGEXCP) 11-20
11.7 Test Exception (TESTEXCP) 11-25

Extended Function Instructions

Chapter 12. Context Management Instructions 12-1
12.1 Materialize Context (MATCTX) 12-2

Chapter 13. Authorization Management Instructions
13.1 Materialize Authority (MATAU)
13.2 Materialize Authority List (MAT AL)
13.3 Materialize Authorized Objects (MATAUOBJ)
13.4 Materialize Authorized Users (MATAUU)
13.5 Materialize User Profile (MATUP)
13.6 Test Authority (TEST AU)
13.7 Test Extended Authorities (TESTEAU)

13-1
13-2
13-7

13-12
13-17
13-22
13-26
13-31

Chapter 14. Process Management Instructions 14-1
14.1 Materialize Process Attributes (MATPRATR) 14-2
14.2 Wait On Time (WAITTIME) 14-15

Chapter 15. Resource Management Instructions
15.1 Ensure Object (ENSOBJ)
15.2 Materialize Access Group Attributes (MATAGAT)
15.3 Materialize Resource Management Data (MATRMD)
15.4 Set Access State (SETACST)

15-1
15-2
15-4
15-8

15-26

Chapter 16. Dump Space Management Instructions 16-1
16.1 Materialize Dump Space (MATDMPS) 16-2

Chapter 17. Machine Observation Instructions 17-1
17.1 Materialize Instruction Attributes (MATINAT) 17-2
17.2 Materialize Invocation (MATINV) 17-8

~

J

17.3 Materialize Invocation Entry (MATINVE) 17-13 '\
17.4 Materialize Invocation Stack (MATINVS) 17-18,
17.5 Materialize Pointer (MATPTR) 17-22
17.6 Materialize Pointer Locations (MATPTRL) 17-27
17.7 Materialize System Object (MATSOBJ) 17-30

Chapter 18. Machine Interface Support Functions Instructions 18-1
18.1 Materialize Machine Attributes (MATMATR) 18-2

Instruction support Interfaces

Chapter 19. Exception Specifications
19.1 Machine Interface Exception Data
19.2 Exception List

02 Access Group
04 Access State .
06 Addressing ..
08 Argument/Parameter

X AS/400 MI Functional Reference

19-1
19-2
19-3

19-10
19-10
19-11
19-14

~

l

OC Computation ...
OE Context Operation
10 Damage
16 Exception Management
1 A Lock State
1E Machine Observation
20 Machine Support
22 Object Access
24 Pointer Specification
26 Process Management
2A Program Creation
2C Program Execution
2E Resource Control Limit
32 Scalar Specification
36 Space Management
38 Template Specification
3A Wait Time-Out
3C Service

Appendix A. Instruction Summary
Number Of Operands
Extender Usage ...
Resulting Conditions
Optional Forms

A.1 Instruction Stream Syntax
Program Object Definitions
System Object Declarations
Resulting Conditions Definitions
Instruction Summary (Alphabetical Listing by Mnemonic)

Index

19-15
19-24
19-25
19-28
19-29
19-31
19-32
19-34
19-35
19-36
19-37
19-41
19-43
19-44
19-45
19-47
19-49
19-49

A-1
A-1
A-1
A-2
A-2
A-3
A-4
A-5
A-6
A-8

X-1

Contents xi

J

xii AS/400 MI Functional Reference

'l

Basic Function Instructions

These instructions provide a basic set of functions commonly needed by most
programs executing on the machine. Because of the basic nature of these
instructions, they tend to experience less change in their operation in different
machine implementations than the extended function instructions. Therefore, it
is recommended that, where possible, programs be limited to using just these
basic function instructions to minimize the impacts which can arise in moving to
different machine implementations.

© Copyright IBM Corp. 1990

AS/400 MI Functional Reference

Add Logical Character (ADDLC)

Chapter 1. Computation and Branching Instructions

This chapter describes all the instructions used for computation and branching.
These instructions are arranged in alphabetic order. For an alphabetic summary
of all the instructions, see Appendix A, "Instruction Summary."

1.1 Add Logical Character (ADDLC)

Optional Forms

Op Code (Hex)
1023

Operand 1
Sum

Operand 2
Addend 1

Operand 3
Addend 2

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

op Code
Mnemonic (Hex) Form Type
ADDLCS 1123 Short

ADDLCI 1823 Indicator

ADDLCIS 1923 Indicator, Short

ADDLCB 1C23 Branch

ADDLCBS 1D23 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The unsigned binary value of the addend 1 operand is added to the
unsigned binary value of the addend 2 operand and the result is placed in the
sum operand.

Operands 1, 2, and 3 must be the same length; otherwise, the Create Program
instruction signals an invalid length exception. The length can be a maximum of
256 bytes.

The addition operation is performed according to the rules of algebra. The result
value is then placed (left-adjusted) in the receiver operand with truncating or
padding taking place 011 the right. The pad value used in this instruction is a
byte value of hex 00.

© Copyright IBM Corp. 1990 1-1

Add Logical Character (ADDLC)

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share

J all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
pred ictable.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: The logical sum of the character scalar operands is zero
with no carry out of the leftmost bit position, not-zero with no carry, zero with
carry, or not-zero with carry.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing J
01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered J
04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X J 03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X j
07 Invnlid operand attribute X X X

1-2 AS/400 MI Functional Reference

Add Logical Character (ADDLC)

Operands

l
Exception 1 2 3 Other

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-3

Add Numeric (ADDN)

1.2 Add Numeric (ADDN)

Optional Forms

Op Code (Hex)
1043

Operand 1
Sum

Operand 2
Addend

Operand 3
Augend

Operand 1: Numeric variable scalar

Operand 2: Numeric scalar

Operand 3: Numeric scalar

Op Code
Mnemonic (Hex) Form Type
ADDNS 1143 Short

ADDNR 1243 Round

ADDNSR 1343 Short, Round

ADDNI 1843 Indicator

ADDNIS 1943 Indicator, Short

ADDNIR 1A43 Indicator, Round

ADDNISR 1B43 Indicator, Short, Round

ADDNB 1C43 Branch

ADDNBS 1D43 Branch, Short

ADDNBR 1 E43 Branch, Round

ADDNBSR 1 F43 Branch, Short, Round

Caution:

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always \
predictable. ..""

The short form of the ADD NUMERIC instruction accepts two operands. The first
operand is the Addend and Sum. The Addend is replaced by the Sum after the
instruction completes. The second operand is the Augend.

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

1-4 AS/400 MI Functional Reference

L

Add Numeric (ADDN)

Description: The Sum is the result of adding the Addend and Augend.

Operands can have floating-point, packed or zoned decimal, signed or unsigned
binary type.

Source operands are the Addend and Augend. The receiver operand is the
Sum.

If operands are not of the same type, addends are converted according to the
following rules:

1. If anyone of the operands has floating point type, addends are converted to
floating point type.

2. Otherwise, if anyone of the operands has zoned or packed decimal type,
addends are converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Addend and Augend are added according to their type. Floating point operands
are added using floating point addition. Packed decimal addends are added
using packed decimal addition. Unsigned binary addition is used with unsigned
addends. Signed binary addends are added using two's complement binary
addition.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary additions execute faster than either packed decimal or
floating point additions.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

For a decimal operation, alignment of the assumed decimal point takes place by
padding with D's on the right end of the addend with lesser precision.

Floating-point addition uses exponent comparison and significand addition.
Alignment of the binary point is performed, if necessary, by shifting the
significand of the value with the smaller exponent to the right. The exponent is
increased by one for each binary digit shifted until the two exponents agree.

The operation uses the lengths and the precision of the source and receiver
operands to calculate accurate results. Operations performed in decimal are
limited to 31 decimal digits in the intermediate result.

The addition operation is performed according to the rules of algebra.

The result of the operation is copied into the sum operand. If this operand is not
the same type as that used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is adjusted to the length
of the sum, aligned at the assumed decimal point of the sum operand, or both
before being copied. If nonzero digits are truncated on the left end of the
resultant value, a size exception is signaled.

When the target of the instruction is signed or unsigned binary size exceptions
can be suppressed.

Chapter 1. Computation and Branching Instructions 1-5

Add Numeric (ADDN)

Exceptions

For the optional round form of the instruction, specification of a floating-point
receiver operand is invalid.

For fixed-point operations, if nonzero digits are truncated off the left end of the
resultant value, a size exception is signaled.

For floating-point operations involving a fixed-point receiver field, if nonzero
digits would be truncated off the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point sum, if the exponent of the resultant value is either too large
or too small to be represented in the sum field, the floating-point overflow and
floating-point underflow exceptions are signaled, respectively.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

Resultant Conditions: Positive, negative, or zero - The algebraic value of the
numeric scalar sum operand is positive, negative, or zero. Unordered - The
value assigned a floating-point sum operand is ~hN.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

02 Decimal data

03 Decimal point alignment

06 Floating-point overflow

07 Floating-point underflow

09 Floating-point invalid operand

OA Size

OC Invalid floating-point conversion

00 Floating-point inexact result

10 Damage encountered

1C

04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storaoe limit exceeded

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

1-6 AS/400 M I Functional Reference

J

J

Add Numeric (ADDN)

Operands
Exception 1 2 3 Other
20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OC Invalid operand adt reference X X X

00 Reserved bits are not zero X X X X

l 2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-7

And (AND)

1.3 And (AND)

Optional Forms

Op Code (Hex)
1093

Operand 1
Receiver

Operand 2
Source 1

Operand 3
Source 2

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Op Code
Mnemonic (Hex) Form Type
ANDS 1193 Short

ANDI 1893 Indicator

ANDIS 1993 Indicator, Short

ANDB le93 Branch

ANDBS 1 D93 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: The Boolean AND operation is performed on the string values in
the source operands. The resulting string is placed in the receiver operand.
The operands may be character or numeric scalars. They are both interpreted
as bit strings. Substringing is supported for both character and numeric oper­
ands.

The length of the operation is equal to the length of the longer of the two source
operands. The shorter of the two operands is logically padded on the right with
hex 00 values. This assigns hex 00 values to the results for those bytes that
correspond to the excess bytes of the longer operand.

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit
1 1 1

0 0

0 0

0 0 0

1-8 AS/400 MI Functional Reference

J

..J

l

l
Exceptions

And (AND)

The result value is then placed (left-adjusted) in the receiver operand with trun­
cating or padding taking place on the right. The pad value used in this instruc­
tion is a byte value of hex 00.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1, 2, and 3. The effect of specifying
a null substring reference for either or both of the source operands is that the
result is all zero and instruction's resultant condition is zero. When a null sub­
string reference is specified for the receiver, a result is not set and the
instruction's resultant condition is Zero regardless of the values of the source
operands.

When the receiver operand is a numeric variable scalar, it is possible that the
result produced will not be a valid value for the numeric type. This can occur
due to padding with hex 00, due to truncation, or due to the resultant bit string
produced by the instruction. The instruction completes normally and signals no
exceptions for these conditions.

Resultant Conditions: Zero - The bit value for the bits of the scalar receiver
operand is either all zero or a null substring reference is specified for the
receiver. Not zero - The bit value for the bits of the scalar receiver operand is
not all zero.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

Operands
1 2 3

X

X

X

X

X

X

X

x
X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-9

And (AND)

Operands
Exception 1 2 3 Other

J 22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit ~
01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

J

1-10 AS/400 MI Functional Reference

l

l

Branch (B)

1.4 Branch (B)

Exceptions

Op Code (Hex)
1011

Operand 1
Branch Target

Operand 1: Instruction number, relative instruction number, branch point,
instruction pointer, or instruction definition list element.

Description: Control is unconditionally transferred to the instruction indicated in
the branch target operand. The instruction number indicated by the branch
target operand must be within the instruction stream containing the branch
instruction.

The branch target may be an element of an array of instruction pointers or an
element of an instruction definition list. The specific element can be identified by
using a compound subscript operand.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

22 Object access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer specification

2A

01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

Operand
1 Other

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-11

Branch (B)

Operand
Exception 1 Other

07 Invalid operand attribute X J 09 Invalid branch target operand X

OC Invalid operand odt reference X

00 Reserved bits are not zero X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

J

J

1-12 AS/400 MI Functional Reference

Clear Bit in String (SETBTS)

1.5 Clear Bit in String (CLRBTS)

Exceptions

Op Code (Hex) Operand Operand 2
1

102E Receiver Offset

Operand 1: Character Variable Scalar or Numeric Variable Scalar.

Operand 2: Binary Scalar.

Description: Clears the bit of the receiver operand as indicated by the bit offset
operand.

The selected bit from the receiver operand is set to a value of B'O'.

The receiver operand can be character or numeric. The leftmost bytes of the
receiver operand are used in the operation. The receiver operand is interpreted
as a bit string with the bits numbered left to right from 0 to the total number of
bits in the string minus 1.

The receiver cannot be a variable substring.

The offset operand indicates which bit of the receiver operand is to be cleared,
with a offset of zero indicating the leftmost bit of the leftmost byte of the receiver
operand.

If a offset value less than zero or beyond the length of the string is specified a
"scalar value invalid" exception is raised.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

Operands
1 2 Other

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-13

Clear Bit In String (SETBTS)

Operands
Exception 1 2 Other
22 Object access

~ 02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

03 Scalar value invalid X

36 Space management ~
01 space extension/truncation X

1-14 AS/400 MI Functional Reference

l

l

Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)

1.6 Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)
Op Code (Hex) Extender Operand 1 Operand 2 Operand

3 [4,5]
1CC2 Branch Compare Compare Branch

options operand 1 operand 2 target

18C2 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3 [4, 5]:

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the instruction. The extender
field is required along with from one to three branch targets (for branch option)
or one to three indicator operands (for indicator option). The branch or indicator
operands are required for operand 3 and optional for operands 4 and 5. See
Chapter 1. "Introduction" for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of two left­
adjusted compare operands. The logical string value of the first compare
operand is compared with the logical string value of the second compare
operand (no padding done). Based on the comparison, the resulting condition is
used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric oper­
ands are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions performed. The length of the operation is equal to the
length of the shorter of the two compare operands. The comparison begins with
the leftmost byte of each of the compare operands and proceeds until all bytes
of the shorter compare operand have been compared or until the first unequal
pair of bytes is encountered.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of sp€cifying a
null substring reference for either or both compare operands is that the
instruction's resultant condition is equal.

Chapter 1. Computation and Branching Instructions 1-15

Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)

Resultant Conditions: The scalar first compare operand has a higher, lower, or
equal string value than the second compare operand.

Exceptions
Operands

Exception 1 2 3 [4,5] Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered J 04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X ~
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

~ 04 Branch target invalid X

1-16 AS/400 MI Functional Reference

Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)

Operands
Exception 1 2 3 [4,5] Other
2E Resource control limit

01 user profile storage limit exceeded x

36 Space management

01 space extension/truncation x

Chapter 1. Computation and Branching Instructions 1-17

Compare Bytes Left-Adjusted with Pad (CMPBLAPB or CMPBLAPI)

1.7 Compare Bytes Left-Adjusted with Pad (CMPBLAPB or
CMPBLAPI)

Op Code (Hex)

1CC3

18C3

Extender Operand 1 Operand 2 Operand 3 Operand
4 [5,6]

Branch Compare Compare Pad Branch
options operand 1 operand 2 target

Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the instruction. The extender
field is required along with from one to three branch targets (for branch optiOn), '~ ,
or one to three indicator operands (for indicator option). The branch or indicator ..."
operands are required for operand 4 and optional for operands 5 and 6. See
Chapter 1. "Introduction" for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of two left­
adjusted compare operands (padded if needed). The logical string value of the
first compare operand is compared with the logical string value of the second
compare operand. Based on the comparison, the resulting condition is used
with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric oper­
ands are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions being performed.

The length of the operation is equal to the length of the longer of the two
compare operands. The shorter of the two compare operands is logically
padded on the right with the 1-byte value indicated in the pad operand. If the
pad operand is more than 1 byte in length, only its leftmost byte is used. The
comparison begins with the leftmost byte of each of the compare operands and j
proceeds until all the bytes of the longer of the two compare operands have

1-18 AS/400 MI Functional Reference

l

Exceptions

Compare Bytes Left-Adjusted with Pad (CMPBLAPB or CMPBLAPI)

been compared or until the first unequal pair of bytes is encountered. All excess
bytes in the longer of the two compare operands are compared to the pad value.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for one of the compare operands is that the other
compare operand is compared with an equal length string of pad character
values. When a null substring reference is specified for both compare operands,
the resultant condition is equal.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

Resultant Conditions: The scalar first compare operand has a higher, lower, or
equal string value than the second compare operand.

Operands
Exception 1 2 3 4 [5,6] Other

06 Addressing

01 Spacing addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability X X X X
invalid

08 Argument/parameter

01 Parameter reference vio- X X X X
lation

10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-dependent exception

03 Machine storage limit X
exceeded

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program creation

Chapter 1. Computation and Branching Instructions 1-19

Compare Bytes Left-Adjusted with Pad (CMPBLAPB or CMPBLAPI)

Operands
Exception 1 2 3 4 [5,6] Other

05 Invalid op-code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X

OA Invalid operand length X X

OC Invalid operand odt refer- X X X X
ence

00 Reserved bits are not zero X X X X X

2C Program execution

04 Branch target invalid X

2E Resource control limit

J 01 user profile storage limit X
exceeded

36 Space management

01 space extension/truncation X

1-20 AS/400 MI Functional Reference

Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)

1.8 Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)
Op Code (Hex) Extender Operand 1 Operand 2 Operand

3 [4. 5]
1CC6 Branch Compare Compare Branch

options operand 1 operand 2 target

18C6 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3 [4, 5]:

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by the instruction. The
extender field is required along with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and optional for operands 4 and 5.
See Chapter 1. "Introduction" for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of two right­
adjusted compare operands. The logical string value of the first compare
operand is compared with the logical string value of the second compare
operand (no padding done). Based on the comparison, the resulting condition is
used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either string or numeric. Any numeric operands
are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions performed. The length of the operation is equal to the
length of the shorter of the two compare operands. The comparison begins with
the leftmost byte~Jf each of the compare operands and proceeds until all bytes
of the shorter compare operand have been compared or until the first unequal
pair of bytes is encountered.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either or both compare operands is that the
instruction's resultant condition is equal.

Chapter 1. Computation and Branching Instructions 1-21

Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)

Resultant Conditions: The scalar first compare operand has a higher, lower, or
equal string value than the second compare operand.

Exceptions
Operands

Exception 1 2 3 [4, 5J Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

J 04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X J
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

04 Branch target invalid X X

1-22 AS/400 M I Functional Reference

Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)

Operands
Exception 1 2 3 [4,5] Other

l
2E Resource control limit

01 user profile storage limit exceeded x

36 Space management

01 space extension/truncation x

l
Chapter 1. Computation and Branching Instructions 1-23

Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI)

1.9 Compare Bytes Right-Adjusted with Pad (CMPBRAPB or
CMPBRAPI)

Op Code
(Hex)

1CC7

18C7

Extender Operand 1 Operand 2 Operand 3 Operand
4 [5,6]

Branch Compare Compare Pad Branch
options operand 1 operand 2 target

Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by the instruction. The
extender field is required along with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator option). The branch or
indicator operands are required for operand 4 and optional for operands 5 and 6.
See Chapter 1. "Introduction" for the bit encoding ofthe extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of the right­
adjusted compare operands (padded if needed). The logical string value of the
first compare operand is compared with the logical string value of the second
compare operand. Based on the comparison, the resulting condition is used .J .•.
with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

• Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric oper­
ands are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions performed.

The length of the operation is equal to the length of the longer of the two
compare operands. The shorter of the two compare operands is logically
padded on the left with the 1-byte value indicated in the pad operand. If the pad .. ~
operand is more than 1 byte in length, only its leftmost byte is used. The com-"
parison begins with the leftmost byte of the longer of the compare operands.

1-24 AS/400 MI Functional Reference

l

Exceptions

Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI)

Any excess bytes (on the left) in the longer compare operand are compared with
the pad value. All other bytes are compared with the corresponding bytes in the
other compare operand. The operation proceeds until all bytes in the longer
operand are compared or until the first unequal pair of bytes is encountered.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for one of the compare operands is that the other
compare operand is compared with an equal length string of pad character
values. When a null substring reference is specified for both compare operands,
the instruction's resultant condition is equal.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

Resultant Conditions: The scalar first compare operand has a higher, lower, or
equal string value than the second compare operand.

Operands
Exception 1 2 3 4 [5, Other

6]

06 Addressing

01 Spacing addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized ·addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

Chapter 1. Computation and Branching Instructions 1-25

Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI)

Operands
Exception 1 2 3 4 [5, Other

6] J ~ 2A Program creation " I

05 Invalid op-code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X

OA Invalid operand length X X

OC Invalid operand odt reference X X X X

00 Reserved bits are not zero X X X X X

2C Program execution

04 Branch target invalid X X

2E Resource control limit J
01 user profile storage limit X
exceeded

36 Space management

01 space extension/truncation X

J

1-26 AS/400 MI Functional Reference

l

Compare Numeric Value (CMPNVB or CMPNVI)

1.10 Compare Numeric Value (CMPNVB or CMPNVI)
Op Code (Hex) Extender Operand 1 Operand 2 Operand

3 [4-6]
1C46 Branch Compare Compare Branch

options operand 1 operand 2 target

1846 Indicator Indicator
options target

Operand 1: Numeric scalar.

Operand 2: Numeric scalar.

Operand 3 [4-6]:

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the instruction. The extender
field is required along with from one to four branch targets (for branch option) or
one to four indicator operands (for indicator option). The branch or indicator
operands are required for operand 3 and optional for operands 4 and 5. See
Chapter 1. "Introduction" for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: The numeric value of the first compare operand is compared with
the signed or unsigned numeric value of the second compare operand. Based
on the comparison, the resulting condition is used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

• Assign a value to each of the indicator operands (indicator form).

For a decimal operation, alignment of the assumed decimal point takes place by
padding with O's on the right end of the compare operand with lesser precision.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

When both operands are signed numeric or both are unsigned numeric the
length of the operation is equal to the length of the longer of the two compare
operands.

When one operand is signed numeric and the other operand unsigned numeric
the unsigned operand is converted to a signed value with more precision than its
current size. The length of the operation is equal to the length of the longer of
the two compare operands. A negative Signed numeric value will always be less
than a positive unsigned value.

Floating-point comparisons use exponent comparison and significand compar­
ison. For a denormalized floating-point number, the c()mparison is performed as
if the denormalized number had first been normalized.

Chapter 1. Computation and Branching Instructions 1-27

Compare Numeric Value (CMPNVB or CMPNVI)

Exceptions

For floating-point, two values compare unordered when at least one comparand
is NaN. Every NaN compares unordered with everything including another NaN
value.

Floating-point comparisons ignore the sign of zero. Positive zero always com­
pares equal with negative zero.

A floating-point invalid operand exception is signaled when two floating-point
values compare unordered and no branch or indicator option exists for any of
the unordered, negation of unordered equal, or negation of equal resultant con­
ditions.

When a comparison is made between a floating-point compare operand and a
fixed-point decimal compare operand that contains fractional digit positions, a
floating-point inexact result exception may be signaled because of the implicit
conversion from decimal to floating-point.

Resultant Conditions: High, low, or equal-The first compare operand has a
higher, lower, or equal numeric value than the second compare operand.
Unordered-The first compare operand is unordered compared to the second
compare operand.

Operands
Exception 1 2 3 [4-6] Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

03 Decimal point alignment X X

09 Floating-point invalid operand X X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

1-28 AS/400 M I Functional Reference

J

~

~

Compare Numeric Value (CMPNVB or CMPNVI)

Operands

l
Exception 1 2 3 [4-6] Other
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OC Invalid operand odt reference X X X

OD Reserved bits are not zero X X X X

2C Program execution

04 Branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-29

Compute Array Index (CAl)

1.11 Compute Array Index (CAl)
Op Code (Hex)
1044

Operand 1
Array
index

Operand 2
Subscript
A

Operand 1: Binary(2) variable scalar.

Operand 2: Binary(2) scalar.

Operand 3: Binary(2) scalar.

Operand 3 Operand 4
Subscript B Dimension

Operand 4: Binary(2) constant scalar object or immediate operand.

Description: This instruction provides the ability to reduce multidimensional
array subscript values into a single index value which can then be used in refer­
encing the single-dimensional arrays of the system. This index value is com­
puted by performing the following arithmetic operation on the indicated
operands.

Array Index = Subscript A + ((Subscript B-1) X Dimension)

The numeric value of the subscript B operand is decreased by 1 and multiplied
by the numeric value of the dimension operand. The result of this multiplication
is added to the subscript A operand and the sum is placed in the array index
operand.

All the operands must be binary with any implicit conversions occurring ~
according to the rules of arithmetic operations. The usual rules of algebra are,
observed concerning the subtraction, addition, and multiplication of operands.

This instruction provides for mapping multidimensional arrays to single­
dimensional arrays. The elements of an array with the dimensions (d1, d2, d3,
... , dn) can be defined as a single-dimensional array with d1*d2*d3* ... *dn ele­
ments. To reference a specific element of the multidimensional array with sub­
scripts (s1,s2,s3, ... sn), it is necessary to convert the multiple subscripts to a
single subscript for use in the single-dimensional AS/400 array. This single sub- J.
script can be computed using the following:

sl+((s2-1)*dl)+(s3-1)*dl*d2)+ ... +((sn-l)*d*d2*d3* ... *dm)

where m = n-1

The CAl instruction is used to form a single index value from two subscript
values. To reduce N subscript values into a single index value, N-1 uses of this
instruction are necessary.

Assume that S1, 82, and S3 are three subscript values and that 01 is the size of
one dimension, 02 is the size of the second dimension, and the 0102 is the
product of 01 and 02. The following two uses of this instruction reduce the three
subscripts to a single subscript.

CAl INDEX, Sl, S2, Dl Calculates sl+(s2-1)*dl
CAl INDEX, INDEX, S3, DID2 Calculates sl+(s2-1)*dl+(s3-1)*d2*dl

1-30 AS/400 MI Functional Reference

Compute Array Index (CAl)

Exceptions

l Operands
Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

OC Computation

OA size X

10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program creation

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OC Invalid operand odt reference X X X X

OD Reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-31

Compute Math Function Using One Input Value (CMF1)

1.12 Compute Math Function Using One Input Value (CMF1)

Optional Forms

Op Code (Hex)
100B

Operand 1
Receiver

Operand 2
Controls

Operand 1: Numeric variable scalar.

Operand 2: Character(2) scalar.

Operand 3: Numeric scalar.

Mnemonic

CMF11

CMF1B

Op Code
(Hex)

180B

1COB

Form Type

Indicator

Branch

Extender: Branch options or indicator options.

Operand 3
Source

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: The mathematical function, indicated by the controls operand, is
performed on the source operand value and the result is placed in the receiver
operand.

The calculation is always done in floating-point.

The result of the operation is copied into the receiver operand.

The controls operand must be a character scalar that specifies which mathemat- J.
ical function is to be performed. It must be at least 2 bytes in length and has the
following format:

• Controls operand

Hex 0001 = Sine
Hex 0002 = Arc sine
Hex 0003 = Cosine
Hex 0004 = Arc cosine
Hex 0005 = Tangent
Hex 0006 = Arc tangent
Hex 0007 = Cotangent
Hex 0010 = Exponential function

Char(2)

Hex 0011 = Logarithm based e (natural logarithm)
Hex 0012 = Sine hyperbolic
Hex 0013 = Cosine hyperbolic
Hex 0014 = Tangent hyperbolic
Hex 0015 = Arc tangent hyperbolic
Hex 0020 = Square root

1-32 AS/400 MI Functional Reference

Compute Math Function Using One Input Value (CMF1)

- All other values are reserved

The controls operand mathematical functions are as follows:

• Hex 0001-Sine

The sine of the numeric value of the source operand, whose value is consid­
ered to be in radians, is computed and placed in the receiver operand.

The result is in the range:

-1 S sIN(x) S 1

• Hex 0002-Arc sine

The arc sine of the numeric value of the source operand is computed and the
result (in radians) is placed in the receiver operand.

The result is in the range:

-pij2 S AsIN(x) S +pij2

• Hex 0003-Cosine

The cosine of the numeric value of the source operand, whose value is con­
sidered to be in radians, is computed and placed in the receiver operand.

The result is in the range:

-1 S COS (x) S 1

• Hex 0004-Arc cosine

The arc cosine of the numeric value of the source operand is computed and
the result (in radians) is placed in the receiver operand.

The result is in the range:

El S ACOs(x) S pi

• Hex 0005-Tangent

The tangent of the source operand, whose value is considered to be in
radians, is computed and the result is placed in the receiver operand.

The result is in the range:

-infinity S TAN (x) S +infinity

• Hex 0006-Arc tangent

The arc tangent of the source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:

-pij2 S ATAN(x) S pij2

• Hex 0007-Cotangent

The cotangent of the source operand, whose value is considered to be in
radians, is computed and the result is placed in the receiver operand.

The result is in the range:

-infinity S COT (x) S +infinity

• Hex 0010-Exponential function

Chapter 1. Computation and Branching Instructions 1-33

Compute Math Function Using One Input Value (CMF1)

The computation e power (source operand) is performed and the result is
placed in the receiver operand.

The result is in the range:

o S EXP(x) S +infinity

• Hex 0011-Logarithm based e (natural logarithm)

The natural logarithm of the source operand is computed and the result is
placed in the receiver operand.

The result is in the range:

-infinity S LN(x) S +infinity

• Hex 0012-Sine hyperbolic

The sine hyperbolic of the numeric value of the source operand is computed
and the result (in radians) is placed in the receiver operand.

Th~ result is in the range:

-infinity S SINH(x) S +infinity

• Hex 0013-Cosine hyperbolic

The cosine hyperbolic of the numeric value of the source operand is com­
puted and the result (in radians) is placed in the receiver operand.

The result is in the range:

+1 S COSH(x) S +infinity

• Hex 0014-Tangent hyperbolic

The tangent hyperbolic of the numeric value of the source operand is com­
puted and the result (in radians) is placed in the receiver operand.

The result is in the range:

-1 S TANH(x) S +1

• Hex 0015-Arc tangent hyperbolic

The inverse of the tangent hyperbolic of the numeric value of the source
operand is computed and the result (in radians) is placed in the receiver
operand.

The result is in the range:

-infinity S ATANH(x) S +infinity

• Hex 0020-Square root

The square root of the numeric value of the source operand is computed and
placed in the receiver operand.

The result is in the range:

o S SQRT(x) S +infinity

The following chart shows some special cases for certain arguments (X) of the
different mathematical functions.

1-34 AS/400 MI Functional Reference

Compute Math Function Using One Input Value (CMF1)

X Masked Unmasked Maximum Minimum
Function NaN NaN + infinity -infinity +0 -0 Value Value Other

Sine 9 A(e) A(f) A(f) +0 -0 A(1,f) A(1,f) 8(3)

Arc sine 9 A(e) A(f) A(f) +0 -0 A(6,f) A(6,f) -

Cosine 9 A(e) A(f) A(f) +1 +1 A(1,f) A(1,f) 8(3)

Arc cosine 9 A(e) A(f) A(f) +pi/2 +pi/2 A(6,f) A(6,f) -

Tangent 9 A(e) A(f) A(f) +0 -0 A(1,f) A(1,f) 8(3)

Arc tangent 9 A(e) +pil2 -pil2 +0 -0 - - -
Cotangent 9 A(e) A(f) A(f) +inf -inf A(1,f) A(1,f) 8(3)

Exponent 9 A(e) +inf +0 +1 +1 C(4,a) D(5,b) -
Logarithm 9 A(e) +inf A(f) -inf -inf - - A(2,f)

Sine 9 A(e) +inf -inf +0 -0 - - -
hyperbolic

Cosine 9 A(e) +inf +inf +1 +1 - - -
hyperbolic

Tangent g A(e) +1 -1 +0 -0 - - -
hyperbolic

Arc tangent 9 A(e) A(Q A(f) +0 -0 A(6,f) A(6,f) -
hyperbolic

Square root g A(e) +inf A(f) +0 -0 - - A(2,f)

Figure 1-1. Special cases for arguments of eMFl mathematical functions.

Capital letters in the chart indicate the exceptions, small letters indicate the
returned results, and Arabic numerals indicate the limits of the arguments (X) as
defined in the following lists:

A = Floating-point invalid operand (no result stored if unmasked; if masked,
occurrence bit is set)

B = Floating-point inexact result (result is stored whether or not exception is
masked)

C = Floating-point overflow (no result is stored if unmasked; if masked, occur­
rence bit is set)

D = Floating-point underflow (no result is stored if unmasked; occurrence bit is
always set)

a = Result follows the rules that depend on round mode

b = Result is +0 or a denormalized value

c = Result is + infinity

d = Result is -infinity

e = Result is the masked form of the input NaN

f = Result is the system default masked NaN

9 = Result is the input NaN

Chapter 1. Computation and Branching Instructions 1-35

Compute Math Function Using One Input Value (CMF1)

inf = Result is infinity

1 = I pi * 2**50 I = Hex 432921 FB54442D18

2 = Argument is in the range: -inf < x < -0

3 = I pi * 2**26 I =Hex 41A921FB54442D18

4 = 1n(2**1023) Hex 40862E42FEFA39EF

5 = 1 n(2**-1021.4555) = Hex C086200000000000

6 = Argument is in the range: -1 :S x :S +1

The following chart provides accuracy data for the mathematical functions that
can be invoked by this instruction.

1-36 AS/400 MI Functional Reference

Compute Math Function Using One Input Value (CMF1)

Accuracy Data

Sample Selection Relative Error (e) Absolute Error (E)

Function
Name A Range of x 0 MAX(e) SO(e) MAX(E) SD(E)

Arc cosine 9 o < = x < = 3.14 U 8.26 * 10**-14 2.11 * 10**-15

Arc sine 10 -1.57 <= x <= 1.57 U 1.02 * 10**-13 2.66 * 10**-15

Arc tangent 1 -pi/2 < x < pi/2 1 3.33 * 10**-16 9.57 * 10**-17

Arc tangent 14 -3<=x<=3 U 1.06 * 10**-14 1.79 * 10**-15
hyperbolic

Cosine (See Sine below)

Cosine (See Sine Hyperbolic)
hyperbolic below)

Cotangent 11 -10 < = x < = 100 U 4.83 * 10**-16 1.48 * 10**-16
.000001 < = x < = .001 U 4.36 * 10**-16 1.49 * 10**-16
4000 < = x < = 400000(U 5.72 * 10**-16 1.46 * 10**-16

Exponential 2 -100 <= x < = 300 U 5.70 * 10**-14 1.13 * 10**-14

Natural 3 0.5 < = x < = 1.5 U 2.77 * 10**-16 8.01 * 10**-17

logarithm 4 -100 < = x < = 700 E 2.17 * 10**-16 7.37 * 10**-17

Sine cosine -10 < = x < = 100 U 2.22 * 10**-16 1.31 * 10**-16

5 .000001 < = x < = .001 U 2.22 * 10**-16 1.56 * 10**-16

4000 < = x < = 400000(U 2.22 * 10**-16 1.28 * 10**-16

-10 < = x < = 100 U 3.33 * 10**-16 8.39 * 10**-17

6 .000001 < = x < = .001 U ~.33 * 10**-19 1.28 * 10**-19

4000 < = x < = 4oo000(U 3.33 * 10**-16 8.17 * 10**-17

Sine/cosine 12 -100 < = x < = 300 U 6.31 * 10**-16 1.97 * 10**-16
hyperbolic

Square root 7 -100 < = x < = 700 E 4.13 * 10**-16 1.27 * 10**-16

Tangent -10 < = x < = 100 U 4.59 * 10**-16 1.54 * 10**-16

8 .000001 < = x < = .001 U 4.42 * 10**-16 1.44 * 10**-16 3.25 * 10**-19 8.06 * 10**-20

~OOO < = x < = 400000(U 4.77 * 10**-16 1.43 * 10**-16

Tangent 13 -100 < = x < = 300 U 8.35 * 10**-16 3.87 * 10**-17 2.22 * 10**-16 3.17 * 10**-17
hyperbolic

Figure 1-2 (Part 1 of 2). Accuracy data for eMF1 mathematical functions.

Chapter 1. Computation and Branching Instructions 1·37

Compute Math Function Using One Input Value (CMF1)

Algorithm Notes:

1. f(x) = x, and g(x) = AT AN(TAN(x».
2. f(x) = e**x, and g(x) = e**(1n(e**x».
3. f(x) = 1n(x), and g(x) = 1n(e**(1n(x))).
4. f(x) = x, and g(x) = 1n(e**x).
5. Sum of squares algorithm. f(x) = 1, and g(x) = SIN(x»)**2 + (COS(x»**2.
6. Double angle algorithm. f(x) - SIN(2x), and g(x) = 2*(SIN(x)*COS(x».
7. f(x) = e(**x, and g(x) = (SQR(e**x»**2.
8. f(x) = TAN(x), and g(x) = SIN(x) / COS(x).
9. f(x) = x, and g(x) = ACOS(COS(x».

10. f(x) = x, and g(x) = ASIN(SIN(x)).
11. f(x) = COT(x), and g(x) = COS(x) / SIN(x).
12. f(x) = SINH(2x), and g(x) = 2*(SINH(x)*COSH(x».
13. f(x) = TANH(x), and g(x) = SINH(x) / COSH(x).
14. f(x) = x, and g(x) = ATANH(TANH(x».

Distribution Note: The sample input arguments were tangents of numbers, x, uniformly distributed
between -pi/2 and + pi/2.

Figure 1-2 (Part 2 of 2). Accuracy data for eMF1 mathematical functions.

The vertical columns in the accuracy data chart have the following meanings:

• Function Name: This column identifies the principal mathematical functions
evaluated with entries arranged in alphabetical order by function name.

• Sample Selection: This column identifies the selection of samples taken for a
particular math function through the following subcolumns:

A: identifies the algorithm used against the argument, x, to gather the
accuracy samples. The numbers in this column refer to notes describing
the functions, f(x) and g(x), which were calculated to test for the antic­
ipated relation where f(x) should equal g(x). An accuracy sample then, is
an evaluation of the degree to which this relation held true. The algo­
rithm used to sample the arctangent function, for example, defines g(x) to
first calculate the tangent of x to provide an appropriate distribution of
input arguments for the arctangent function. Since f(x) is defined simply
as the value of x, the relation to be evaluated is then
x=ARCTAN(TAN(x»). This type of algorithm, where a function and its
inverse are used in tandem, is the usual type employed to provide the
appropriate comparison values for the evaluation.

"Range of x": gives the range of x used to obtain the accuracy samples.
The test values for x are uniformly distributed over this range. It should
be noted that x is not always the direct input argument to the function
being tested; it is sometimes desirable to distribute the input arguments
in a nonuniform fashion to provide a more complete test of the function
(see column D below). For each function, accuracy data is given for one
or more segments within the valid range of x. In each case, the numbers
given are the most meaningful to the function and range under consider­
ation.

D: identifies the distribution of arguments input to the particular functionJ
being sampled. The letter E indicates an exponential distribution. The

1-38 AS/400 MI Functional Reference

Exceptions

Compute Math Function Using One Input Value (CMF1)

letter U indicates a uniform distribution. A number refers to a note pro­
viding detailed information regarding the distribution.

• Accuracy Data: The maximum relative error and standard deviation of the
relative error are generally useful and revealing statistics; however, they are
useless for the range of a function where its value becomes zero. This is
because the slightest error in the argument can cause an unpredictable fluc­
tuation in the magnitude of the answer. When a small argument error would
have this effect, the maximum absolute error and standard deviation of the
absolute error are given for the range.

Relative Error (e): The maximum relative error and standard deviation
(root mean square) of the relative error are defined:

MAX(e) = MAX(ABS«f(x) - g(x)) I f(x)))

SD(e) =

where: MAX selects the largest of its arguments and ABS
takes the absolute value of its argument.

SQR((1/N) SUMSQ«f(x) - g(x)) I f(x)))

where: SQR takes the square root of its argument and
SUMSQ takes the summation of the squares of its argu­
ments over all of the test cases.

Absolute Error (E): The maximum absolute error produced during the
testing and the standard deviation (root mean square) of the absolute
error are:

MAX(E) = MAX(ABS(f(x) - g(x)))

where: the operators are those defined above.

SD(E) = SQR((1/N) SUMSQ(f(x) - g(x)))

where: the operators are those defined above.

Limitations: The following are limits that apply to the functions performed by
this instruction.

The source and receiver operands must both be specified as floating-point with
the same length (4 bytes for short format or 8 bytes for long format).

Null substring references (a length value of zero) cannot be specified for this
instruction.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
receiver operand is positive, negative, or zero. Unordered-The value assigned
to the floating-point result is NaN.

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

Chapter 1. Computation and Branching Instructions 1-39

Compute Math Function Using One Input Value (CMF1)

Operands
Exception 1 2 3 Other

~I 08 Argument/par ameter

01 Parameter reference violation X X X

OC Computation

06 Floating-point overflow X

07 Floating-point underflow X

09 Floating-point invalid operand X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X ~ 03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OC Invalid operand adt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

02 Process storage limit exceeded X

J 32 Scalar specification

01 Scalar type invalid X X X

1-40 AS/400 MI Functional Reference

Compute Math Function Using One Input Value (CMF1)

Exception
03 Scalar value invalid

36 Space management

01 space extension/truncation

Operands
1 2 3

X
Other

X

Chapter 1. Computation and Branching Instructions 1-41

Compute Math Function Using Two Input Values (CMF2)

1.13 Compute Math Function Using Two Input Values (CMF2)

Optional Forms

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4
100C Receiver Controls Source 1 Source 2

Operand 1: Numeric variable scalar.

Operand 2: Character(2) scalar.

Operand 3: Numeric scalar.

Operand 4: Numeric scalar.

Op Code
Mnemonic (Hex) Form Type
CMF21 180C Indicator

CMF2B 1COC Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The mathematical function, indicated by the controls operand, is
performed on the source operand values and the result is placed in the receiver
operand.

The calculation is always done in floating-point.

The controls operand must be a character scalar that specifies which mathemat- "\
ical function is to be performed. It must be at least 2 bytes in length and have ""'"
the following format:

• Controls operand Char(2)

Hex 0001 = Power (x to the y)

All other values are reserved

The computation x power y, where x is the first source operand and y is the
second source operand, is performed and the result is placed in the receiver
operand.

The following chart shows some special cases for certain arguments of the
power function (x**y). Within the chart, the capitalized letters X and Y refer to
the absolute value of the arguments x and y; that is, X = Ixl and Y = Iyl·

1-42 AS/400 M I Functional Reference

l

Compute Math Function Using Two Input Values (CMF2)

y -inf y<o, y<O y<O -I -112 +0 + 112 +1 y>O y>O y>O +inf M- UnM-

y= y=2n real or y= y=2n real NaN NaN

x 2n+ 1 -0 2n+ 1

+inf +0 +0 +0 +0 +0 +1 + inf +inf +inf +inf +inf + inf b A(e)

+1 +1 +1 +1 +1
x> 1 +0 - - - - -- +1 SQRT(x) x ><""y ><""y ><""y +inf b A(e)

X-Y X-Y X-Y x SQRT(x)

x= +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 b A(e)

+1 +1 +1 +1 +1
O<x<1 + inf - - - - -- +1 SQRT(x) x ><""y ><""y ><""y +0 b A(e)

X-Y X-Y X-Y x SQRT(x)

x= +0 E(f) E(f) E(f) E(f) E(f) E(f) +1 +0 +0 +0 +0 +0 +0 b A(e)

x=-O E(f) E(g) E(f) E(f) E(g) E(g) +1 -0 -0 -0 +0 +0 +0 b A(e)

-I +1 -I
O>x>-1 A(a) - - A(a) - A(a) +1 A(a) x -X*'y X*'y A(a) A(a) b A(e)

X-V X-V X

x=-1 A(a) -1 +1 A(a) -1 A(a) +1 A(a) -1 -1 +1 A(a) A(a) b A(e)

-1 +1 -1
x< -1 A(a} - - A(a) - A(a} +1 A(a) x -X*'y X*'y A(a) A(a) b A(e)

X-V X-V X

x=-inf A(a) -0 +0 A(a) -0 A(a) +1 A(a) -inf -inf +inf A(a) A(a) b A(e)

Masked b b b b b b b b b b b b b d A(e)
NaN

Un-
masked A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e) A(e)
NaN

Figure 1-3. Special cases of the power function (x**y)

Capital letters in the chart indicate the exceptions and small letters indicate the
returned results as defined in the following list:

A Floating-point invalid operand

E Divide by zero

a Result is the system default masked NaN

b Result is the same NaN

c Result is the same NaN masked

d Result is the larger NaN

e Result is the larger NAN masked

f Result is + infinity

g Result is -infinity

The following chart provides accuracy data for the mathematical function that
can be invoked by this instruction.

Chapter 1. Computation and Branching Instructions 1-43

Compute Math Function Using Two Input Values (CMF2)

Sample Selection Accuracy Data

Function
Name x y MAX(e) SD(e)

Power 1/3 -345 < = Y < = 330 4.99 * 10**-16 1.90 * 10**-16

.75 1320 < = Y < = 1320 2.96 * 10**-16 2.39 * 10**-16

.9 3605 < = Y < = 3605 1.23 * 10**-16 1.02 * 10**-16

10 -165 < = Y < = 165 7.10 * 10**-16 3.18 * 10**-16

712 -57 < = Y < = 57 1.75 * 10**-15 7.24 * 10**-16

Figure 1-4. Accuracy data for CMF2 mathematical functions.

The vertical columns in the accuracy data chart have the following meanings:

• Function Name: This column identifies the mathematical function.

• Sample Selection: This column identifies the selection of samples taken for
the power function. The algorithm used against the arguments, x and y, to
gather the accuracy samples was a test for the anticipated relation where
f(x) should equal g(x,y):

where:

f (x)= x
g(x,y)= (x**y)**(l/y)

An accuracy sample then, is an evaluation of the degree to which this
relation held true.

The range of argument values for x and y were selected such that x was held
constant at a particular value and y was uniformly varied throughout a range
of values which avoided overflowing or underflowing the result field. The
particular values selected are indicated in the subcolumns entitled x and y.

• Accuracy Data: The maximum relative error and standard deviation (root
mean square) of the relative error are generally useful and revealing statis­
tics. These statistics for the relative error, (e), are provided in the following
subcolumns: J
MAX (e) = MAX(ABS((f(x) - g(x)) 1 f(x)))

SD(e) =

where: MAX selects the largest of its arguments and ABS takes
the absolute value of its argument.

SQR((1/N) SUMSQ((f(x) - g(x)) 1 f(x»)

where: SQR takes the square root of its argument and SUMSQ
takes the summation of the squares of its arguments over all of
the test cases.

Limitations: The following are limits that apply to the functions performed by
this instruction.

The source and receiver operands must both be specified as floating-point with
the same length (4 bytes for short format or 8 bytes for long format).

1-44 AS/400 MI Functional Reference

Compute Math Function Using Two Input Values (CMF2)

Substring operand references that allow for a null substring reference (a length

value of zero) may not be specified for this instruction.

l Resultant Conditions: Positive, negative, or zero-The algebraic value of the
receiver operand is positive, negative, or zero. Unordered-The value assigned
to the floating-point result is NaN.

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment violation X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OC Computation

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X X

OC invalid floating-point conversion X

OD floating-point inexact result X

OE floating-point zero divide X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

2A Program creation

05 irwalid op code extender field X

Chapter 1. Computation and Branching Instructions 1-45

Compute Math Function Using Two Input Values (CMF2)

Operands
Exception 1 2 3 4 Other

06 invalid operand type X X X X

07 invalid operand attribute X X X X

08 invalid operand value range X X X X

09 invalid branch target operand X

OC invalid operand odt reference X X X X

OD reserved bits are not zero X X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

02 process storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

1-46 AS/400 MI Functional Reference

l

Concatenate (CAT)

1.14 Concatenate (CAT)

Exceptions

Op Code (Hex)

10F3

Operand
1
Receiver

Operand
2
Source
1

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Operand 3

Source 2

Description: The character string value of the second source operand is joined
to the right end of the character string value of the first source operand. The
resulting string value is placed (left-adjusted) in the receiver operand.

The length of the operation is equal to the length of the receiver operand with
the resulting string truncated or is logically padded on the right end accordingly.
The pad value for this instruction is hex 40.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1, 2, and 3. The effect of specifying
a null substring reference for one source operand is that the other source
operand is used as the result of the concatenation. The effect of specifying a
null substring reference for both source operands is that the bytes of the
receiver are each set with a value of hex 40. The effect of specifying a null sub­
string reference for the receiver is that a result is not set regardless of the value
of the source operands.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

Other

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-47

Concatenate (CAn

Operands
Exception 1 2 3 Other

22 Object access ~ 01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X X X ..J OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

..J

1-48 AS/400 MI Functional Reference

Convert BSC to Character (CVTBC)

1.15 Convert BSC to Character (CVTBC)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2

10AF Receiver Controls Source

Operand 1: Character variable scalar.

Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Mnemonic

CVTBCI

CVTBCB

Op Code
(Hex)

18AF

1CAF

Form Type

Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts a string value from the BSC (binary syn­
chronous communications) compressed format to a character string. The opera­
tion converts the source (operand 3) from the BSC compressed format to
character under control of the controls (operand 2) and places the result into the
receiver (operand 1).

The source and receiver operands must both be character strings.

The controls operand must be a character scalar that specifies additional infor­
mation to be used to control the conversion operation. It must be at least 3
bytes in length and have the following format:

• Controls operand

Source offset

Record separator

Char(3)

Bin(2)

Char(1)

The source offset specifies the offset where bytes are to be accessed from the
source operand. If the offset is equal to or greater than the length specified for
the source operand (it identifies a byte beyond the end of the source operand), a
template value invalid exception is signaled. As output from the instruction, the
source offset is set to specify the offset that indicates how much of the source is
processed when the instruction ends.

The record separator, if specified with a value other than hex 01, contains the
value used to separate converted records in the source operand. A value of hex

Chapter 1. Computation and Branching Instructions 1-49

Convert BSC to Character (CVTBC)

01 specifies that record separators do not occur in the converted records in the
source.

Only the first 3 bytes of the controls operand are used. Any excess bytes are
ignored.

The operation begins by accessing the bytes of the source operand located at
the offset specified in the source offset. This is assumed to be the start of a
record. The bytes of the record in the source operand are converted into the
receiver record according to the following algorithm.

The strings to be built in the receiver are contained in the source as blank com­
pression entries and strings of consecutive nonblank characters.

The format of the blank compression entries occurring in the source are as
follows:

• Blank compression entry

Interchange group separator

Count of compressed blanks

Char(2)

Char(1)

Char(1)

The interchange group separator has a fixed value of hex 10.

The compressed blanks count provides for describing up to 63 compressed
blanks. The count of the number of blanks (up to 63) to be decompressed is
formed by subtracting hex 40 from the value of the count field. The count field
can vary from a value of hex 41 to hex 7F. If the count field contains a value. ",,'.
outside of this range, a conversion exception is signaled. ...",

Strings of blanks described by blank compression entries in the source are
repeated in the receiver the number of times specified by the blank compression
count.

Nonblank strings in the source are copied into the receiver intact with no alter­
ation.

If the receiver record is filled with converted data without encountering the end
of the source operand, the instruction ends with a resultant condition of com­
pleted record. This can occur in two ways. If a record separator was not speci­
fied, the instruction ends when enough bytes have been converted from the
source to fill the receiver. If a record separator was specified, the instruction
ends when a source byte is encountered with that value prior to or just after
filling the receiver record. The offset value for the source locates the byte fol­
lowing the last source record (including the record separator) for which conver­
sion was completed. When the record separator value is encountered, any
remaining bytes in the receiver are padded with blanks.

If the end of the source operand is encountered (whether or not in conjunction
with a record separator or the filling of the receiver). the instruction ends with a
resultant condition of source exhausted. The offset value for the source locates
the byte following the last byte of the source operand. The remaining bytes in
the receiver after the converted record are padded with blanks.

1-50 AS/400 MI Functional Reference

l

Exceptions

Convert BSC to Character (CVTBC)

If the converted form of a record cannot be completely contained in the receiver,
the instruction ends with a resultant condition of truncated record. The offset
value for the source locates the byte following the last source byte for which
conversion was performed, unless a blank compression entry was being proc­
essed. In this case, the source offset is set to locate the byte after the blank
compression entry. If the source does not contain record separators, this condi­
tion can only occur for the case in which a blank compression entry was being
converted when the receiver record became full.

Any form of overlap between the operands on this instruction yields unpredict­
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Completed record-The receiver record has been com­
pletely filled with converted data from a source record. Source exhausted-All of
the bytes in the source operand have been converted into the receiver operand.
Truncated record-The receiver record cannot contain all of the converted data
from the source record.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment violation

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OC Computation

01 conversion

10 Damage encountered

04 System object damage state

44 partial system object damage

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

Operands
1 2 3

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-51

Convert BSC to Character (CVTBC)

Operands
Exception 1 2 3 Other
24 Pointer specification ..J 01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OA invalid operand length X

OC invalid operand adt reference X X X

00 reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

1-52 AS/400 MI Functional Reference

L

Convert Character to BSC (CVTCB)

1.16 Convert Character to BSC (CVTCB)

Optional Forms

Op Code (Hex) Operand
1

Operand
2

Operand 3

108F Receiver Controls Source

Operand 1: Character variable scalar.

Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Mnemonic
CVTCBI

CVTCBB

Op Code
(Hex)
188F

lC8F

form Type
Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ations immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts a string value from character to BSC
(binary synchronous communications) compressed format. The operation con­
verts the source (operand 3) from character to the BSC compressed format
under control of the controls (operand 2) and places the result into the receiver
(operand 1).

The source and receiver operands must both be character strings.

The controls operand must be a character scalar that specifies additional infor­
mation to be used to control the conversion operation. It must be at least 3
bytes in length and have the following format:

• Controls operand

Receiver offset

Record separator

Char(3)

Bin(2)

Char(1)

The receiver offset specifies the offset where bytes are to be placed into the
receiver operand. If the offset is equal to or greater than the length specified for
the receiver operand (it identifies a byte beyond the end of the receiver), a tem­
plate value invalid exception is signaled. As output from the instruction, the
source offset is set to specify the offset that indicates how much of the receiver
has been filled when the instruction ends.

The record separator, if specified with a value other than hex 01, contains the
value used to separate converted records in the receiver operand. A value of

Chapter 1. Computation and Branching Instructions 1-53

Convert Character to BSC (CVTCB)

hex 01 specifies that record separators are not to be placed into the receiver to
separate converted records.

Only the first 3 bytes of the controls operand are used. Any excess bytes are
ignored.

The source operand is assumed to be one record. The bytes of the record in the
source operand are converted into the receiver operand at the location specified
in the receiver offset according to the following algorithm.

The bytes of the source record are interrogated to identify the strings of consec­
utive blank (hex 40) characters and the strings of consecutive nonblank charac­
ters which occur in the source record. Only three or more blank characters are
treated as a blank string for purposes of conversion into the receiver.

As the blank and non blank strings are encountered in the source they are pack­
aged into the receiver.

Blank strings are reflected in the receiver as one or more blank compression
entries. The format of the blank compression entries built into the receiver are
as follows:

• Blank compression entry

Interchange group separator

Count of compressed blanks

Char(2)

Char(1)

Char(1)

The interchange group separator has a fixed value of hex 10.

The compressed blanks count provides for compressing up to 63 blanks. The
value of the count field is formed by adding hex 40 to the actual number of
blanks (up to 63) to be compressed. The count field can vary from a value of hex
43 to hex 7F.

Nonblank strings are copied into the receiver intact with no alteration or addi­
tional control information.

When the end of the source record is encountered the record separator value if
specified is placed into the receiver and the instruction ends with a resultant
condition of source exhausted. The offset value for the receiver locates the byte
following the converted record in the receiver. The value of the remaining bytes
in the receiver after the converted record is unpredictable.

If the converted form of a record cannot be completely contained in the receiver
(including the record separator if specified). the instruction ends with a resultant
condition of receiver overrun. The offset value for the receiver remains
unchanged. The remaining bytes in the receiver, starting with the byte located
by the receiver offset, are unpredictable.

Any form of overlap between the operands on this instruction yields unpredict­
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

1-54 AS/400 M I Functional Reference

Convert Character to BSC (CVTCB)

Resultant Conditions: Source exhausted-All of the bytes in the source operand

have been converted into the receiver operand. Receiver overrun-An overrun

condition in the receiver operand was detected before all of the bytes in the

source operand were processed.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment violation X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OA invalid operand length X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

Chapter 1. Computation and Branching Instructions 1-55

Convert Character to BSC (CVTCB)

Operands
Exception 1 2 3 Other

2E Resource control limit .j
01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

1-56 AS/400 MI Functional Reference

Convert Character to Hex (CVTCH)

1.17 Convert Character to Hex (CVTCH)

Exceptions

Op Code (Hex) Operand Operand 2
1

1082 Receiver Source

Operand 1: Character variable scalar.

Operand 2: Character variable scalar.

Description: Each character (8-bit value) of the string value in the source
operand is converted to a hex digit (4-bit value) and placed in the receiver
operand. The source operand characters must relate to valid hex digits or a
conversion exception is signaled.

Characters Hex Digits

Hex FO-hex F9 = Hex O-hex 9

Hex C1-hex C6 = Hex A-hex F

The operation begins with the two operands left-adjusted and proceeds left to
right until all the hex digits of the receiver operand have been filled. If the
source operand is too small, it is logically padded on the right with zero charac­
ters (hex FO). If the source operand is too large, a length conformance or an
invalid operand length exception is signaled.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with a value of hex 00. The effect of specifying a null substring reference for
the receiver is that no result is set.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OC Computation

01 conversion

C8 length conformance

10 Damage encountered

04 system object damage

44 partial system object damage

1C Machine-dependent exception

Operands
1 2 Other

x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-57

Convert Character to Hex (CVTCH)

Operands
Exception 1 2 Other

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-58 AS/400 MI Functional Reference

Convert Character to MRJE (CVTCM)

1.18 Convert Character to MRJE (CVTCM)

Optional Forms

Op Code (Hex)
108B

Operand 1
Receiver

Operand 2
Controls

Operand 1: Character variable scalar.

Operand 3
Source

Operand 2: Character(13) variable scalar (fixed-length).

Operand 3: Character scalar.

Mnemonic

CVTCMI

CVTCMB

Op Code
(Hex)

188B

1C8B

Form Type

Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts a string of characters to MRJE
(MULTI-LEAVING remote job entry) compressed format. The operation converts
the source (operand 3) from character to the MRJE compressed format under
control of the controls (operand 2) and places the results in the receiver
(operand 1).

The source and receiver operands must both be character strings. The source
operand cannot be specified as either a signed or unsigned immediate value.

The source operand can be described through the controls operand as being
composed of one or more fixed length data fields, which may be separated by
fixed length gaps of characters to be ignored during the conversion operation.
Additionally, the controls operand specifies the amount of data to be processed
from the source to produce a converted record in the receiver. This may be a
different value than the length of the data fields in the source. The following
diagram shows this structure for the source operand.

Chapter 1. Computation and Branching Instructions 1-59

Convert Character to MRJE (CVTCM)

Actual Source Operand Byte.

L...-_d_flt_fl_fl_el_d_ [~~~] data field [~~ -, dfltfl field

Data Proceaaed as Source Recorda

record ree ord record record ree

The controls operand must be a character scalar that specifies additional infor­
mation to be used to control the conversion operation. It must be at least 13
bytes in length and have the following format:

• Controls operand Char(13)

Offset into the receiver operand Bin(2)

Offset into the source operand Bin(2)

Algorithm modifier Char(1)

Source record length Char(1)

Data field length Bin(2)

Offset to next gap in source operand Bin(2)

Gap length Bin(2)

Record control block (RCB) value Char(1)

As input to the instruction, the source and receiver offset fields specify the
offsets where bytes of the source and receiver operands are to be processed. If
an offset is equal to or greater than the length specified for the operand it corre­
sponds to (it identifies a byte beyond the end of the operand), a template value
invalid exception is signaled. As output from the instruction, the source and
receiver offset fields specify offsets that indicate how much of the operation is
complete when the instruction ends.

The algorithm modifier has the following valid values:

• Hex 00 = Perform full compression.

• Hex 01 = Perform only truncation of trailing blanks.

The source record length value specifies the amount of data from the source to
be processed. If a source record length of 0 is specified, a template value
invalid exception is signaled.

The data field length value specifies the length of the data fields in the source.
Data fields occurring in the source may be separated by gaps of characters,
which are to be ignored during the conversion operation. Specification of a data
field length of 0 indicates that the source operand is one data field. In this case,
the gap length and gap offset values have no meaning and are ignored.

~

The gap offset value specifies the offset to the next gap in the source. This value ..J
is both input to and output from the instruction. This is relative to the current
byte to be processed in the source as located by the source offset value. No

1-60 AS/400 MI Functional Reference

Convert Character to MRJE (CVTCM)

validation is done for this offset. It is assumed to be valid relative to the source
operand. The gap offset value is ignored if the data field length is specified with
a value of O.

The gap length value specifies the amount of data occurring between data fields
in the source operand which is to be ignored during the conversion operation.
The gap length value is ignored if the data field length is specified with a value
ofO.

The record control block (RCB) field specifies the RCB value that is to precede
the converted form of each record in the receiver. It can have any value.

Only the first 13 bytes of the controls operand are used. Any excess bytes are
ignored.

The operation begins by accessing the bytes of the source operand at the
location specified by the source offset. This is assumed to be the start of a
source record. Only the bytes of the data fields in the source are accessed for
conversion purposes. Gaps between data fields are ignored, causing the access
of data field bytes to occur as if the data fields were contiguous with one
another. Bytes accessed from the source for the source record length are con­
sidered a source record for the conversion operation. They are converted into
the receiver operand at the location specified by the receiver offset according to
the following algorithm.

The RCB value is placed into the first byte of the receiver record.

An SRCB (sub record control byte) value of hex 80 is placed into the second byte
of the receiver record.

If the algorithm modifier specifies full compression (a value of hex 00) then:

The bytes of the source record are interrogated to locate the blank character
strings (2 or more consecutive blanks), identical character strings (3 or more
consecutive identical characters), and nonidentical character strings occurring in
the source. A blank character string occurring at the end of the record is treated
as a special case (see following information on trailing blanks).

If the algorithm modifier specifies blank truncation (a value of hex 01) then:

The bytes of the source record are interrogated to determine if a blank character
string exists at the end of the source record. If one exists, it is treated as a
string of trailing blanks. All characters prior to it in the record are treated as
one string of nonidentical characters.

The strings encountered (blank, identical, or nonidentical) are reflected in the
receiver by building one or more SCBs (string control bytes) in the receiver to
describe them.

The format of the SCBs built into the receiver is:

• SCB format is 0 k 1 jjjjj

The bit meanings are:

Chapter 1. Computation and Branching Instructions 1-61

Convert Character to MRJE (CVTCM)

Bit
o

k

jjjjj

1 jjjjj

Value
o

o

o

Meaning
End of record; the EOR SeB is hex 00.

All other SeBs.

The string is compressed.

The string is not compressed.

For k = 0:

Blanks (hex 40s) have been deleted.

Nonblank characters have been deleted. The next character
in the data stream is the specimen character.

For k = 1:

This bit is part of the length field for length of uncompressed
data.

Number of characters that have been deleted if k = O. The
value can be 2-31.

Number of characters to the next SeB (no compression) if k =
1. The value can be 1-63. The uncompressed (nonidentical
bytes) follow the SeB in the data stream.

When the end of a source record is encountered, an EOR (end of record) SCB
(hex 00) is built into the receiver. Trailing blanks in a record including a record
of all blanks are represented in the receiver by an EOR character if either full
compression or trailing blank truncation is specified.

If the end of the source operand is not encountered, the operation then continues
by reapplying the above algorithm to the next record in the source operand.

If the end of the source operand is encountered (whether or not in conjunction
with a record boundary), the instruction ends with a resultant condition of source
exhausted. The offset value for the source locates the byte following the last
source record for which conversion was completed. The gap offset value indi­
cates the offset to the next gap relative to the source offset value set for this
condition. The gap offset value has no meaning and is not set when the data
field length is O. The offset value for the receiver locates the byte following the
last fully converted record in the receiver. The value of the remaining bytes in
the receiver after the last converted record is unpredictable.

If the converted form of a record cannot be completely contained in the receiver,
the instruction ends with a resultant condition of receiver overrun. The offset
value for the source locates the byte following the last source record for which
conversion was completed. The gap offset value indicates the offset to the next
gap relative to the source offset value set for this condition. The gap offset value
has no meaning and is not set when the data field length is O. The offset value
for the receiver locates the byte following the last fully converted record in the
receiver. The value of the remaining bytes in the receiver after the last con­
verted record is unpredictable.

Any form of overlap between the operands of this instruction yields unpredict­
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

1-62 AS/400 MI Functional Reference

Exceptions

l.

Convert Character to MRJE (CVTCM)

Resultant Conditions: Source exhausted-All complete records in the source
operand have been converted into the receiver operand. Receiver overrun-An
overrun condition in the receiver operand was detected prior to processing all of
the bytes in the source operand.

If source exhausted and receiver overrun occur at the same time, the source
exhausted condition is recognized first. When source exhausted is the resultant
condition, the receiver may also be full. In this case, the offset into the receiver
may contain a value equal to the length specified for the receiver, and this condi-
tion will cause an exception on the next invocation of the instruction. The proc-
essing performed for the source exhausted condition provides for this case when
the instruction is invoked multiple times with the same controls operand tem-
plate. When the receiver overrun condition is the resultant condition, the source
always contains data that can be converted.

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment violation X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

Chapter 1. Computation and Branching Instructions 1-63

Convert Character to MRJE (CVTCM)

Operands
Exception 1 2 3 Other

-.J 07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X X X

OA invalid operand length X

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

j

1-64 AS/400 MI Functional Reference

Convert Character to Numeric (CVTCN)

1.19 Convert Character to Numeric (CVTCN)
Op Code (Hex)
1083

Operand 1
Receiver

Operand 2
Source

Operand 3
Attributes

Operand 1: Numeric variable scalar or data-pointer-defined numeric scalar.

Operand 2: Character scalar or data-pointer-defined character scalar.

Operand 3: Character(7) scalar or data-pointer-defined character scalar.

Description: The character scalar specified by operand 2 is treated as though it
were a numeric scalar with the attributes specified by operand 3. The character
string source operand is converted to the numeric forms of the receiver operand
and moved to the receiver operand. The value of operand 2. when viewed in
this manner. is converted to the type. length. and precision of the numeric
receiver. operand 1. foHowing the rules for the Copy Numeric Value instruction.

The length of operand 2 must be large enough to contain the numeric value
described by operand 3. If it is not large enough. a scalar value invalid excep­
tion is signaled. If it is larger than needed. its leftmost bytes are used as the
value. and the rightmost bytes are ignored.

Normal rules of arithmetic conversion apply except for the foHowing. If operand
2 is interpreted as a zoned decimal value, a value of hex 40 in the rightmost byte
referenced in the conversion is treated as a positive sign and a zero digit.

If a decimal to binary conversion causes a size exception to be signaled. the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

The format of the attribute operand specified by operand 3 is as follows:

• Scalar attributes

Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex OA = Unsigned binary

Scalar length

If binary:

Length (L) (where L = 2 or 4)

If floating-point:

Length (L) (where L = 4 or 8)

If zoned decimal or packed decimal:

Fractional digits (F)

Total digits (T)
(where 1 :S T:S 31 and 0 :S F :s n

Char(7)

Char(1)

Bin(2)

Bits 0-15

Bits 0-15

Bits 0-7

Bits 8-15

Chapter 1. Computation and Branching Instructions 1-65

Convert Character to Numeric (CVTCN)

- Reserved (binary 0) Bin(4)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

04 external data object not found X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X X

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X

OA size X

OC floating-point conversion X J
00 floating-point inexact result X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation J
06 invalid operand type X X X

1-66 AS/400 MI Functional Reference

Convert Character to Numeric (CVTCN)

Operands
Exception 1 2 3 Other

07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attribute invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-67

Convert Character to SNA (CVTCS)

1.20 Convert Character to SNA (CVTCS)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2

10CB Receiver Controls Source

Operand 1: Character variable scalar.

Operand 2: Character(15) variable scalar (fixed length).

Operand 3: Character scalar.

Mnemonic
CVTCSI

CVTCSB

Op Code
(Hex)
18CB

1CCB

Form Type
Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts the source (operand 3) from character to
SNA (systems network architecture) format under control of the controls
(operand 2) and places the result into the receiver (operand 1).

The source and receiver operands must both be character strings. The source
operand may not be specified as an immediate operand.

The source operand can be described by the controls operand as being one or
more fixed-length data fields that may be separated by fixed-length gaps of char­
acters to be ignored during the conversion operation. Additionally, the controls
operand specifies the amount of data to be processed from the source to
produce a converted record in the receiver. This may be a different value than
the length of the data fields in the source. The following diagram shows this
structure for the source operand.

Actual Source Operand Bytes

I

I I

I L~~~J data fleld gap data field gap data fleld

----- -----

Data Proceased u Source Recorda

record ree ord record record rec

MC01O-O

1-68 AS/400 MI Functional Reference

J

Convert Character to SNA (CVTCS)

The controls operand must be a character scalar that specifies additional infor­
mation to be used to control the conversion operation. The operand must be at
least 15 bytes in length and has the following format:

• Controls operand Char(15)

Bin(2)

Bin(2)

Char(1)

Char(1)

Bin(2)

Bin(2)

Bin(2)

Char(1)

Char(1)

Char(1)

Offset into the receiver operand

Offset into the source operand

Algorithm modifier

Source record length

Data field length

Gap offset

Gap length

Record separator character

Prime compression character

Unconverted source record bytes

When the source and receiver operands are input to the instruction, they specify
the offsets where the bytes of the source and receiver operands are to be proc­
essed. If an offset is equal to or greater than the length specified for the
operand, the offset identifies a byte beyond the end of the operand and a tem­
plate value invalid exception is signaled. When the source and the receiver are
output from the instruction, they specify offsets that indicate how much of the
operation is complete when the instruction ends.

The algorithm modifier specifies the optional functions to be performed. Any
combination of functions can be specified as indicated by the bit meanings in the
following chart. At least one of the functions must be specified. If all of the algo­
rithm modifier bits are zero, a template value invalid exception is signaled. The
algorithm modifier bit meanings are:

Bits Meaning
o 0 ... Do not perform compression.

1 - Perform compression.

1-2 00 - Do not use record separators and no blank truncation. Do not

3

4-7

perform data transparency conversion.
01 - Reserved.
10 -= Use record separators and perform blank truncation. Do not perform

data transparency conversion.
11 - Use record separators and perform blank truncation. Perform data

transparency conversion.

o - Do not perform record spanning.
1 - Perform record spanning. (allowed only when bit 1 - 1)

(Reserved)

The source record length value specifies the amount of data from the source to
be processed to produce a converted record in the receiver. Specification of a
source record length of zero results in a template value invalid exception.

The data field length value specifies the length of the data fields in the source.
Data fields occurring in the source may be separated by gaps of .:;haracters that
are to be ignored during the conversion operation. Specification of a data field

Chapter 1. Computation and Branching Instructions 1-69

Convert Character to SNA (CVTCS)

length of zero indicates that the source operand is one data field. In this case,
the gap length and gap offset values have no meaning and are ignored.

The gap offset value specifies the offset to the next gap in the source. This value
is both input to and output from the instruction. This is relative to the current
byte to be processed in the source as located by the source offset value. No
validation is done for this offset. It is assumed to be valid relative to the source
operand. The gap offset value is ignored if the data field length is specified with
a value of zero.

The gap length value specifies the amount of data that is to be ignored between
data fields in the source operand during the conversion operation. The gap
length value is ignored if the data field length is zero.

The record separator character value specifies the character that precedes the
converted form of each record in the receiver. It also serves as a delimiter
when the previous record is truncating trailing blanks. The Convert SNA to
Character instruction recognizes any value that is less than hex 40. The record
separator value is ignored if record separators are not used as specified in the
algorithm modifier.

The prime compression character value specifies the character to be used as
the prime compression character when performing compression of the source
data to SNA format. It may have any value. The prime compression character
value is ignored if the compression function is not specified in the algorithm
modifier.

The unconverted source record bytes value specifies the number of bytes
remaining in the current source record that are yet to be converted.

When the record spanning function is specified in the algorithm modifier, the
unconverted source record bytes value is both input to and output from the
instruction. On input, a value of hex 00 means it is the start of a new record and
the initial conversion step is yet to be performed. That is, a record separator
character has not yet been placed in the receiver. On input, a nonzero value
less than or equal to the record length specifies the number of bytes remaining
in the current source record that are yet to be converted into the receiver. This
value is assumed to be the valid count of unconverted source record bytes rela­
tive to the current byte to be processed in the source as located by the source
offset value. As such, it is used to determine the location of the next record
boundary in the source operand. This value must be less than or equal to the
source record length value; otherwise, a template value invalid exception is sig­
naled. On output this field is set with a value as defined above that describes
the number of bytes of the current source record that have not yet been con­
verted.

When the record spanning function is not specified in the algorithm modifier, the
unconverted source record bytes value is ignored.

Only the first 15 bytes of the controls operand are used. Any excess bytes are
ignored.

The description of the conversion process is presented as a series of separately ...J
performed steps that may be selected in allowable comhinations to accomplish
the conversion function. It is presented this way to allow for describing these

1-70 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

functions separately. However, in the actual execution of the instruction, these
functions may be performed in conjunction with one another or separately
depending upon which technique is determined to provide the best implementa­
tion.

The operation is performed either on a record-by-record basis, record proc­
essing, or on a non record basis, string processing. This is determined by the
functions selected in the algorithm modifier. Specifying the use record separa­
tors and do blank truncation function indicates record processing is to be per­
formed. If this is not specified, in which case compression must be specified, it
indicates that string processing is to be performed.

The operation begins by accessing the bytes of the source operand at the
location specified by the source offset.

When record processing is specified, the source offset may locate the start of a
full or partial record.

When the record spanning function has not been specified in the algorithm modi­
fier, the source offset is assumed to locate the start of a record.

When the record spanning function has been speCified in the algorithm modifier,
the source offset is assumed to locate a point at which processing of a possible
partially converted record is to be resumed. In this case the unconverted source
record bytes value contains the length of the remaining portion of the source
record to be converted. The conversion process in this case is started by com­
pleting the conversion of the current source record before processing the next
full source record.

When string processing is specified, the source offset locates the start of the
source string to be converted.

Only the bytes of the data fields in the source are accessed for conversion pur­
poses. Gaps between data fields are ignored causing the access of data field
bytes to occur as if the data fields were contiguous. A string of bytes accessed
from the source for a length equal to the source record length is considered to
be a record for the conversion operation.

When during the conversion process the end of the source operation is encount­
ered, the instruction ends with a resultant condition of source exhausted.

When record processing is specified in the algorithm modifier, this check is per­
formed at the start of conversion for each record. If the source operand does
not contain a full record, the source exhausted condition is recognized. The
instruction is terminated with status in the controls operand describing the last
completely converted record. For source exhausted, partial conversion of a
source record is not performed.

When string processing is specified in the algorithm modifier, then compression
must be specified and the compression function described below defines the
detection of source exhausted.

If the converted form of the source cannot be completely contained in the
receiver, the instruction ends with a resultant condition of receiver overrun. See
the description of this condition in the conversion process described below to

Chapter 1. Computation and Branching Instructions 1-71

Convert Character to SNA (CVTCS)

determine the status of the controls operand values and the converted bytes in
the receiver for each case.

When string processing is specified, the bytes accessed from the source are
converted on a string basis into the receiver operand at the location specified by
the receiver offset. In this case, the compression function must be specified and
the conversion process proceeds with the compression function defined below.

When record processing is specified, the bytes accessed from the source are
converted one record at a time into the receiver operand at the location speci­
fied by the receiver offset performing the functions specified in the algorithm
modifier in the sequence defined by the following algorithm.

The first function performed is trailing blank truncation.

A truncated record is built by logically appending the record data to the record
separator value specified in the controls operand and removing all blank charac-
ters after the last nonblank character in the record. If a record has no trailing ... "
blanks, then no actual truncation takes place. A null record, a record consisting ...",
entirely of blanks, will be converted as just the record separator character with
no other data following it. The truncated record then consists of the record sep-
arator character followed by the truncated record data, the full record data, or no
data from the record.

If either the data transparency conversion or the compression function is speci­
fied in the algorithm modifier, the conversion process continues for this record
with the next specified function.

If not, the conversion process for this record is completed by placing the trun­
cated record into the receiver. If the truncated record cannot be completely con­
tained in the receiver, the instruction ends with a resultant condition of receiver
overrun. When the record spanning function is specified in the algorithm modi­
fier, as much of the truncated record as will fit is placed into the receiver and the
controls operand is updated to describe how much of the source record was suc­
cessfully converted into the receiver. When the record spanning function is not
specified in the algorithm modifier, the controls operand is updated to describe
only the last fully converted record in the receiver and the value of the remaining
bytes in the receiver is unpredictable.

The second function performed is data transparency conversion.

Data transparency conversion is performed if the function is specified in the
algorithm modifier. This provides for making the data in a record transparent to
the Convert SNA to Character instruction in the area of its scanning for record
separator values. Transparent data is built by preceding the data with 2 bytes of
transparency control information. The first byte has a fixed value of hex 35 and
is referred to as the TRN (transparency) control character. The second byte is a
1-byte hexadecimal count, a value ranging from 1 to 255 decimal, of the number
of bytes of data that follow and is referred to as the TRN count. This contains
the length of the data and does not include the TRN control information length.

Transparency conversion can be specified only in conjunction with record proc­
essing and, as such, is performed on the truncated form of the source record.
The transparent record is built by preceding the data that follows the record sep­
arator in the truncated record with the TRN control information. The TRN count

1-72 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

in this case contains the length of just the truncated data for the record and does
not include the record separator character. For the special case of a null record,
no TRN control information is placed after the record separator character
because there is no record data to be made transparent.

If the compression function is specified in the algorithm modifier, the conversion
process continues for this record with the compression function.

If not, the conversion process for this record is completed by placing the trans­
parent record into the receiver. If the transparent record cannot be completely
contained in the receiver, the instruction ends with a resultant condition of
receiver overrun.

When the record spanning function is specified in the algorithm modifier, as
much of the transparent record as will fit is placed into the receiver and the con­
trols operand is updated to describe how much of the source record was suc­
cessfully converted into the receiver. The TRN count is also adjusted to describe
the length of the data successfully converted into the receiver; thus, the trans­
parent data for the record is not spanned out of the receiver. The remaining
bytes of the transparent record, if any, will be processed as a partial source
record on the next invocation of the instruction and will be preceded by the
appropriate TRN control information. For the special case where only 1 to 3
bytes are available at the end of the receiver, (not enough room for the record
separator, the transparency control, and a byte of data) then just the record sep­
arator is placed in the receiver for the record being converted. This can cause
up to 2 bytes of unused space at the end of the receiver. The value of these
unused bytes is unpredictable.

When the record spanning function is not specified in the algorithm modifier, the
controls operand is updated to describe only the last fully converted record in
the receiver and the value of the remaining bytes in the receiver is unpredict­
able.

The third function performed is compression.

Compression is performed if the function is specified in the algorithm modifier.
This provides for reducing the size of strings of duplicate characters in the
source data. The source data to be compressed may have assumed a partially
converted form at this point as a result of processing for functions specified in
the algorithm modifier. Compressed data is built by concatenating one or more
compression strings together to describe the bytes that make up the converted
form of the source data prior to the compression step. The bytes of the con­
verted source data are interrogated to locate the prime compression character
strings (two or more consecutive prime compression characters), duplicate char­
acter strings (three or more duplicate non prime characters) and nonduplicate
character strings occurring in the source.

The character strings encountered (prime, duplicate and nonduplicate) are
reflected in the compressed data by building one or more compression strings to
describe them. Compression strings are comprised of an SCB (string control
byte) possibly followed by one or more bytes of data related to the character
string to be described.

The format of an SCB and the description of the data that may follow it are:

Chapter 1. Computation and Branching Instructions 1-73

Convert Character to SNA (CVTCS)

• SCB

Control

Char(1)

Bits 0-1

00 = n nonduplicate characters are between this SCB and the next one;
where n is the value of the count field (1-63).

01 = Reserved
10 = This SCB represents n deleted prime compression characters;

where n is the value of the count field (2-63). The next byte is the
next SCB.

11 = This SCB represents n deleted duplicate characters; where n is the
value of the count field (3-63). The next byte contains a specimen of
the deleted characters. The byte following the specimen character
contains the next SCB.

Count Bits 2-7

This contains the number of characters that have been deleted for a
prime or duplicate string, or the number of characters to the next SCB
for a nonduplicate string. A count value of zero cannot be produced.

When record processing is specified, the compression is performed as follows.

The compression function is performed on just the converted form of the current
source record including the record separator character. The converted form of
the source record prior to the compression step may be a truncated record or a
transparent record as described above, depending upon the functions selected in
the algorithm modifier. The record separator and TRN control information is
always converted as a nonduplicate compression entry to provide for length .~

adjustment of the TRN count, if necessary. """"

The conversion process for this record is completed by placing the compressed
record into the receiver. If the compressed record cannot be completely con­
tained in the receiver, the instruction ends with a resultant condition of receiver
overrun.

When the record spanning function is specified in the algorithm modifier, as
much of the compressed record as will fit is placed into the receiver and the
controls operand is updated to describe how much of the source record was suc­
cessfully converted into the receiver. The last compression entry placed into the
receiver may be adjusted if necessary to a length that provides for filling out the
receiver. This length adjustment applies only to compression entries for nondu­
plicate strings. Compression entries for duplicate strings are placed in the
receiver only if they fit with no adjustment. For the special case where data
transparency conversion is specified, the transparent data being described is not
spanned out of the receiver. This is provided for by performing length adjust­
ment on the TRN count of a transparent record, which may be included in the
compressed data so that it describes only the source data that was successfully
converted into the receiver. For the special case where only 2 to 5 bytes are
available at the end of the receiver, not enough room for the compression entry
for a nonduplicate string containing the record separator and the TRN control,
and up to a 2-byte compression entry for some of the transparent data, the non­
duplicate compression entry is adjusted to describe only the record separator.
By doing this, no more than 3 bytes of unused space will remain in the receiver.
The value of these unused bytes is unpredictable. Unconverted source record
bytes, if any, will be processed as a partial source record on the next invocation

1-74 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

of the instruction and will be preceded by the appropriate TRN control informa­
tion when performing transparency conversion.

When the record spanning function is not specified in the algorithm modifier, the
controls operand is updated to describe only the last fully converted record in
the receiver. The value of the remaining bytes in the receiver is unpredictable.

When string processing is specified, the compression is performed as follows.

The compression function is performed on the data for the entire source operand
on a compression string basis. In this case, the fields in the controls operand
related to record processing are ignored.

The conversion process for the source operand is completed by placing the com­
pressed data into the receiver.

When the compressed data cannot be completely contained in the receiver, the
instruction ends with a resultant condition of receiver overrun. As much of the
compressed data as will fit is placed into the receiver and the controls operand
is updated to describe how much of the source data was successfully converted
into the receiver. The last compression entry placed into the receiver may be
adjusted if necessary to a length that provides for filling out the receiver. This
length adjustment applies only to compression entries for nonduplicate strings.
Compression entries for duplicate strings are placed in the receiver only if they
fit with no adjustment. By doing this, no more than 1 byte of unused space will
remain in the receiver.

When the compressed data can be completely contained in the receiver, the
instruction ends with a resultant condition of source exhausted. The compressed
data is placed into the receiver and the controls operand is updated to indicate
that all of the source data was successfully converted into the receiver.

At this point, either conversion of a source record has been completed or con­
version has been interrupted due to detection of the source exhausted or
receiver overrun conditions. For record processing, if neither of the above con­
ditions has been detected either during conversion of or at completion of conver­
sion for the current record, the conversion process continues on the next source
record with the blank truncation step described above.

At completion of the instruction, the offset value for the receiver locates the byte
following the last converted byte in the receiver. The value of the remaining
bytes in the receiver after the last converted byte are unpredictable. The offset
value for the source locates the byte following the last source byte for which
conversion was completed. When the record spanning function is specified in
the algorithm modifier, the unconverted source record bytes value specifies the
length of the remaining source record bytes yet to be converted. When the
record spanning function is not specified in the algorithm modifier, the uncon­
verted source record bytes value has no meaning and is not set. The gap offset
value indicates the offset to the next gap relative to the source offset value set
for this condition. The gap offset value has no meaning and is not set when the
data field length is zero.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Chapter 1. Computation and Branching Instructions 1-75

Convert Character to SNA (CVTCS)

Exceptions

Any form of overlap between the operands on this instruction yields unpredict­
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Source exhausted - All bytes in the source operand have
been converted into the receiver operand. Receiver overrun - An overrun condi­
tion in the receiver operand was detected before all of the bytes in the source
operand were processed.

Programming Notes:

If the source operand does not end on a record boundary, in which case
the last record is spanned out of the source, this instruction performs con­
version only up to the start of that partial record. In this case, the user of
the instruction must move this partial record to combine it with the rest of
the record in the source operand to provide for its being processed cor­
rectly upon the next invocation of the instruction. If full records are pro­
vided, the instruction performs its conversions out to the end of the
source operand and no special processing is required.

For the special case of a tie between the source exhausted and receiver
overrun conditions, the source exhausted condition is recognized first.
That is, when source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the receiver operand may
contain a value equal to the length specified for the receiver, which would
cause an exception to be detected on the next invocation of the instruc- ~
tion. The processing performed for the source exhausted condition """"
should provide for this case if the instruction is to be invoked multiple
times with the same controls operand template. When the receiver
overrun condition is the resultant condition, the source will always contain
data that can be converted.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1 C Machine-dependent exception

03 Machine storage limit exceeded

Operands
1 2

X X

X X

X X

X X

X x

3

X

X

X

X

x

Other

x
X

X

J

1-76 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

Operands
Exception 1 2 3 Other
20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X

OC Invalid operand odt reference X X X

OD Reserved bits are not zero X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 Template value invalid X

Chapter 1. Computation and Branching Instructions 1-77

Convert Decimal Form to Floating-Point (CVTDFFP)

1.21 Convert Decimal Form to Floating-Point (CVTDFFP)
Op Code (Hex) Operand Operand Operand 3

1 2
107F Receiver Decimal Decimal

expo- significand
nent

Operand 1: Floating-point variable scalar.

Operand 2: Packed scalar or zoned scalar.

Operand 3: Packed scalar or zoned scalar.

Description: This instruction converts the decimal form of a floating-point value
specified by a decimal exponent and a decimal significand to binary floating­
point format, and places the result in the receiver operand. The decimal expo­
nent (operand 2) and decimal significand (operand 3) are considered to specify a
decimal form of a floating-point number. The value of this number is considered
to be as follows:

Value = S * (19**E)

where:

S = The value of the decimal significand operand.
E = The value of the decimal exponent operand.
* Denotes multiplication.
** Denotes exponentiation.

The decimal exponent must be specified as a decimal integer value; no frac­
tional digit positions may be specified in its definition. The decimal exponent is
a signed integer value specifying a power of 10 which gives the floating-point
value its magnitude. A decimal exponent value too large or too small to be
represented in the receiver will result in the detection of the appropriate floating­
point overflow or floating-point underflow exception.

The decimal significand must be specified as a decimal value with a single
integer digit position and optional fractional digit positions. The decimal
significand is a signed decimal value specifying decimal digits which give the
floating-point value its precision. The significant digits of the decimal significand
are considered to start with the leftmost nonzero decimal digit and continue to
the right to the end of the decimal significand value. Significant digits beyond 7
for a short float receiver, and beyond 15 for a long float receiver exceed the pre­
cision provided for in the binary floating-point receiver. These excess digits do
participate in the conversion to provide for uniqueness of the conversion as well
as for proper rounding.

The decimal form floating-point value specified by the decimal exponent and
decimal significand operands is converted to a binary floating-point number and
rounded to the precision of the result field as follows:

Source values which, in magnitude M, are in the range where (10**31-1) * 10**-31
< = M < = (10**31-1) *10**+31 are converted subJ·ect to the normal rounding
error defined for the floating-point rounding modes.J

1-78 AS/400 MI Functional Reference

Exceptions

Convert Decimal Form to Floating-Point (CVTDFFP)

Source values which, in magnitude M, are in the range where (10**31-1) * 10**-31
> M > (10**31-1) *10** + 31 are converted such that the rounding error incurred
on the conversion may exceed that defined above. For round to nearest, this
error will not exceed by more than .47 units in the least significant digit position
of the result in relation to the error that would be incurred for normal rounding.
For the other floating-point rounding modes, this error will not exceed 1.47 units
in the least significant digit position of the result.

The converted and rounded value is then assigned to the floating-point receiver.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

02 Decimal data

06 Floating-point overflow

07 Floating-point underflow

00 Floating-point inexact result

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

02 Function check

22 Object access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer specification

01 Pointer does not exist

02 Pointer type invalid

2A Program creation

05 Invalid op-code extender field

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-79

Convert Decimal Form to Floating-Point (CVTDFFP)

Operands
Exception 1 2 3 Other

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

1-80 AS/400 MI Functional Reference

·L

L

Convert External Form to Numeric Value (CVTEFN)

1.22 Convert External Form to Numeric Value (CVTEFN)
Op Code (Hex) Opera.nd Operand Operand 3

1 2
1087 Receiver Source Mask

Operand 1: Numeric variable scalar or data-pointer-defined numeric scalar.

Operand 2: Character scalar or data-pointer-defined character scalar.

Operand 3: Character(3) scalar, null, or data-pointer-defined character(3) scalar.

Description: This instruction scans a character string for a valid decimal
number in display format, removes the display character, and places the results
in the receiver operand. The operation begins by scanning the character string
value in the source operand to make sure it is a valid decimal number in display
format.

The character string defined by operand 2 consists of the following optional
entries:

• Currency symbol - This value is optional and, if present, must precede any
sign and digit values. The valid symbol is determined by operand 3. The
currency symbol may be preceded in the field by blank (hex 40) characters.

• Sign symbol - This value is optional and, if present, may precede any digit
values (a leading sign) or may follow the digit values (a trailing sign). Valid
signs are positive (hex 4E) and negative (hex 60). The sign symbol, if it is a
leading sign, may be preceded by blank characters. If the sign symbol is a
trailing sign, it must be the rightmost character in the field. Only one sign
symbol is allowed.

• Decimal digits - Up to 31 decimal digits may be specified. Valid decimal
digits are in the range of hex FO through hex F9 (0-9). The first decimal digit
may be preceded by blank characters (hex 40), but hex 40 values located to
the right of the leftmost decimal digit are invalid.

The decimal digits may be divided into two parts by the decimal point symbol:
an integer part and a fractional part. Digits to the left of the decimal point are
interpreted as integer values. Digits to the right are interpreted as a fractional
values. If no decimal point symbol is included, the value is interpreted as an
integer value. The valid decimal point symbol is determined by operand 3. If
the decimal point symbol precedes the leftmost decimal digit, the digit value is
interpreted as a fractional value, and the leftmost decimal digit must be adjacent
to the decimal point symbol. If the decimal point follows the rightmost decimal
digit, the digit value is interpreted as an integer value, and the rightmost decimal
digit must be adjacent to the decimal point.

Decimal digits in the integer portion may optionally have comma symbols sepa­
rating groups of three digits. The leftmost group may contain one, two, or three
decimal digits, and each succeeding group must be preceded by the comma
symbol and contain three digits. The comma symbol must be adjacent to a
decimal digit on either side. The valid comma symbol is determined by operand
3.

Chapter 1. Computation and Branchi n9 Instructions 1-81

Convert External Form to Numeric Value (CVTEFN)

Exceptions

Decimal digits in the fractional portion may not be separated by commas and
must be adjacent to one another.

Examples of external formats follow. The following symbols are used.

$ currency symbol
decimal point
comma

D digit (hex FO-F9)
blank (hex 40)

+ positive sign
negative sign

Format Comments

$+ DDDD.DD Currency symbol, leading sign, no comma separators

DD,DDD- Comma symbol, no fraction, trailing sign

-.DDD No integer, leading sign

$DDD,DDD- No fraction, comma symbol, trailing sign

$ + DD.DD Embedded blanks before digits

Operand 3 must be a 3-byte character scalar. 8yte 1 of the string indicates the
byte value that is to be used for the currency symbol. 8yte 2 of the string indi­
cates the byte value to be used for the comma symbol. 8yte 3 of the string indi­
cates the byte value to be used for the decimal point symbol. If operand 3 is
nUll, the currency symbol (hex 58), comma (hex 68), and decimal point (hex 48)
are used.

If the syntax ru les are violated, a conversion exception is signaled. If not, a
zoned decimal value is formed from the digits of the display format character
string. This number is placed in the receiver operand following the rules of a
normal arithmetic conversion.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

Substring operand references that allow for a null substring reference (a length ..J
value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

Operands
123

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

1-82 AS/400 MI Functional Reference

Convert External Form to Numeric Value (CVTEFN)

Operands
Exception 1 2 3 Other

L 01 Conversion X

OA Size X

10 Damage encountered

04 System object damage X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

02 Scalar attribute invalid X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-83

Convert Floating-Point to Decimal Form (CVTFPDF)

1.23 Convert Floating-Point to Decimal Form (CVTFPDF)

Optional Form

Op Code (Hex) Operand Operand Operand 3
1 2

10BF Decimal Decimal Source
expo- significand
nent

Operand 1: Packed variable scalar or zoned variable scalar.

Operand 2: Packed variable scalar or zoned variable scalar.

Operand 3: Floating-point scalar.

Mnemonic
CVTFPDFR

Op Code
(Hex)
12BF

Form Type
Round

Description: This instruction converts a binary floating-point value to a decimal
form of a floating-point value specified by a decimal exponent and a decimal
significand, and places the result in the decimal exponent and decimal
significand operands.

The value of this number is considered to be as follows:

Value = S * (10**E)

where:

S = The value of the decimal significand operand.

E = The value of the decimal exponent operand.

Denotes multiplication.

Denotes exponentiation.

The decimal exponent must be specified as a decimal integer value. No frac­
tional digit positions are allowed. It must be specified with at least five digit
positions. The decimal exponent provides for containing a signed integer value
specifying a power of 10 which gives the floating-point value its magnitude.

The decimal significand must be specified as a decimal value with a single
integer digit position and optional fractional digit positions. The decimal
significand provides for containing a signed decimal value specifying decimal
digit is which give the floating-point value its precision. The decimal significand
is formed as a normalized value, that is, the leftmost digit position is nonzero for
a nonzero source value.

When the source contains a representation of a normalized binary floating-point
number with decimal significand digits beyond the leftmost 7 digits for a short
floating-point source or beyond the leftmost 15 digits for a long floating-point
source, the precision allowed for the binary floating-point source is exceeded.

When the source contains a representation of a denormalized binary f1oating­
point number, it may provide less precision than the precision of a normalized
binary floating-point number, depending on the particular source value. Decimal

1-84 AS/400 MI Functional Reference

Exceptions

Convert Floating-Point to Decimal Form (CVTFPDF)

significand digits exceeding the precision of the source are set as a result of the
conversion to provide for uniqueness of conversion and are correct, except for
rounding errors. These digits are only as precise as the floating-point calcu­
lations that produced the source value. The floating-point inexact result excep­
tion provides a means of detecting loss of precision in floating-point calculations.

The binary floating-point source is converted to a decimal form floating-point
value and rounded to the precision of the decimal significand operand as
follows:

• The decimal significand is formed as a normalized value and the decimal
exponent is set accordingly.

• For the nonround form of the instruction, the value to be assigned to the
decimal significand is adjusted to the precision of the decimal significand, if
necessary, according to the current float rounding mode in effect for the
process. For the optional round form of the instruction, the decimal round
algorithm is used for the precision adjustment of the decimal significand.
The decimal round algorithm overrides the current floating-point rounding
mode that is in effect for the process.

• Source values which, in magnitude M, are in the range where (10**31-1) *
10**-31 < = M < = (10**31-1) * 10**+31 are converted subject to the normal
rounding error defined for the floating-point rounding modes and the optional
round form of the instruction.

• Source values which, in magnitude M, are in the range where (10**31-1) *
10**-31 > M > (10**31-1) * 10**+31 are converted such that the rounding
error incurred on the conversion may exceed that defined above. For round
to nearest and the optional round form of the instruction, this error will not
exceed by more than .47 units in the least significant digit position of the
result, the error that would be incurred for a correctly rounded result. For
the other floating-point rounding modes, this error will not exceed 1.47 units
in the least significant digit position of the result.

• If necessary, the decimal exponent value is adjusted to compensate for
rounding.

• The converted and rounded value is then assigned to the decimal exponent
and decimal significand operands.

A size exception cannot occur on the assignment of the decimal exponent or the
decimal significand values.

Limitations: The following are limits that apply to the functions performed by
this instruction.

The result of the operation is unpredictable for any type of overlap between the
decimal exponent and decimal significand operands.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

Operands
123

x
X

X

X

X

X

X

X

X

Other

Chapter 1. Computation and Branching Instructions 1-85

Convert Floating-Point to Decimal Form (CVTFPDF)

Operands
Exception 1 2 3 Other

06 Optimized addressability invalid X X X ~,
08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

OC Invalid floating-point conversion X X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

~ 20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X ~
08 Invalid operand value range X X X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

04 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

1-86 AS/400 MI Functional Reference

Convert Hex to Character (CVTHC)

1.24 Convert Hex to Character (CVTHC)

Exceptions

Op Code (Hex) Operand Operand 2
1

1086 Receiver Source

Operand 1: Character variable scalar.

Operand 2: Character variable scalar.

Description: Each hex digit (4-bit value) of the string value in the source
operand is converted to a character (8-bit value) and placed in the receiver
operand.

Hex Digits Characters

Hex 0-9 = Hex FO-F9

Hex A-F = Hex C1-C6

The operation begins with the two operands left-adjusted and proceeds left to
right until all the characters of the receiver operand have been filled. If the
source operand contains fewer hex digits than needed to fill the receiver, the
excess characters are assigned a value of hex FO. If the source operand is too
large, a length conformance or an invalid operand length exception is signaled.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with a value of hex FO. The effect of specifying a null substring reference for
the receiver is that no result is set.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

08 Length conformance

10 Damage encountered

1C

04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Operands
1 2 ~her

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-87

Convert Hex to Character (CVTHC)

Operands
Exception 1 2 Other
20 Machine support ~ 02 Machine check X

02 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X j
07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OA Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-88 AS/400 MI Functional Reference

Convert MRJE to Character (CVTMC)

1.25 Convert MRJE to Character (CVTMC)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2

10AB Receiver Controls Source

Operand 1: Character variable scalar.

Operand 2: Character(6) variable scalar (fixed-length).

Operand 3: Character scalar.

Mnemonic
CVTMCI

CVTMCB

Op Code
(Hex)
18AB

1CAB

Form Type
Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts a character string from the MRJE
(MULTI-LEAVING remote job entry) compressed format to character format. The
operation converts the source (operand 3) from the MRJE compressed format to
character format under control of the controls (operand 2) and places the results
in the receiver (operand 1).

The source and receiver operands must both be character strings. The source
operand cannot be specified as either a signed or unsigned immediate value.

The controls operand must be a character scalar that specifies additional infor­
mation to be used to control the conversion operation. It must be at least 6
bytes in length and have the following format:

• Controls operand

Offset into the receiver operand

Offset into the source operand

Algorithm modifier

Receiver record length

Char(6)

Bin(2)

Bin(2)

Char(1)

Char(1)

As input to the instruction, the source and receiver offset fields specify the
offsets where bytes of the source and receiver operands are to be processed. If
an offset is equal to or greater than the length specified for the operand it corre­
sponds to (it identifies a byte beyond the end of the operand), a template value
invalid exception is signaled. As output from the instruction, the source and
receiver offset fields specify offsets that indicate how much of the operation is
complete when the instruction ends.

Chapter 1. Computation and Branching Instructions 1-89

Convert MRJE to Character (CVTMC)

The algorithm modifier has the following valid values:

• Hex 00 = Do not move SRCBs (sub record control bytes) from the source
into the receiver.

• Hex 01 = Move SRCBs from the source into the receiver.

The receiver record length value specifies the record length to be used to
convert source records into the receiver operand. This length applies to only the
string portion of the receiver record and does not include the optional SRCB
field. If a receiver record length of 0 is specified, a template value invalid excep­
tion is signaled.

Only the first 6 bytes of the controls operand are used. Any excess bytes are
ignored.

The operation begins by accessing the bytes of the source operand at the
location specified by the source offset. This is assumed to be the start of a
record. The bytes of the records in the source operand are converted into the ... ,-"
receiver operand at the location specified by the receiver offset according to the ..."
following algorithm.

The first byte of the source record is considered to be an RCB (record control
byte) that is to be ignored during conversion.

The second byte of the source record is considered to be an SRCB. If an algo­
rithm modifier of value hex 00 was specified, the SRCB is ignored. If an algo­
rithm modifier of value hex 01 was specified, the SRCB is copied into the
receiver.

The strings to be built in the receiver record are described in the source after
the SRCB by one or more SCBs (string control bytes).

The format of the SCBs in the source are as follows:

o k 1 jjjjj

The bit meanings are:

Bit
a

k

Value
o

o

o

1-90 AS/400 MI Functional Reference

Meaning
End of record;the EOR SCB is
hex 00.

All other SCBs.

The string is compressed.

The string is not compressed.

For k .. 0:

Blanks (hex 40s) have been
deleted.

Nonblank characters have
been deleted. The next char­
acter in the data stream is the
specimen character.

For k - 1:

Bit Value

jjjjj

1 jjjjj

Convert MRJE to Character (CVTMC)

Meaning
This bit is part of the length
field for length of uncom­
pressed data.

Number of characters that
have been deleted if k = o.
The value can be 1-31.

Number of characters to the
next SCB (no compression) if
k = 1. The value can be 1-63.

The uncompressed (noniden­
tical bytes) follow the SCB in
the data stream.

A length of 0 encountered in an SCB results in the signaling of a conversion
exception.

Strings of blanks or nonblank identical characters described in the source record
are repeated in the receiver the number of times indicated by the SCB count
value.

Strings of nonidentical characters described in the source record are moved into
the receiver for the length indicated by the SCB count value.

When an EOR (end of record) SCB (hex 00) is encountered in the source, the
receiver is padded with blanks out to the end of the current record.

If the converted form of a source record is larger than the receiver record length,
the instruction is terminated by signaling a length conformance exception.

If the end of the source operand is not encountered, the operation then continues
by reapplying the above algorithm to the next record in the source operand.

If the end of the source operand is encountered (whether or not in conjunction
with a record boundary, EOR SCB in the source), the instruction ends with a
resultant condition of source exhausted. The offset value for the receiver locates
the byte following the last fully converted record in the receiver. The offset value
for the source locates the byte following the last source record for which conver­
sion is complete. The value of the remaining bytes in the receiver after the last
converted record are unpredictable.

If the converted form of a record cannot be completely contained in the receiver,
the instruction ends with a resultant condition of receiver overrun. The offset
value for the receiver locates the byte following the last fully converted record in
the receiver. The offset value for the source locates the byte following the last
source record for which conversion is complete. The value of the remaining
bytes in the receiver after the last converted record is unpredictable.

If the source exhausted and the receiver overrun conditions occur at the same
time, the source exhausted condition is recognized first. In this case, the offset
into the receiver operand may contain a value equal to the length specified for
the receiver which causes an exception to be signaled on the next invocation of
the instruction. The processing performed for the source exhausted condition
provides for this case if the instruction is invoked multiple times with the same

Chapter 1. Computation and Branching Instructions 1-91

Convert MRJE to Character (CVTMC)

Exceptions

controls operand template. When the receiver overrun condition is the resultant
condition, the source always contains data that can be converted.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Any form of overlap between the operands on this instruction yields unpredict­
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Source exhausted - All full records in the source operand
have been converted into the receiver operand. Receiver overrun - An overrun
condition in the receiver operand was detected prior to processing all of the
bytes in the source operand.

Exception

06 Addressing

08

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

Argument/parameter

01 Parameter reference violation

OC Computation

01 Conversion

08 Length conformance

10 Damage encountered

04 System object damage state

44 Partial system object damage

1 C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

22 Object access

24

01 Object not found

02 Object destroyed

03 Object suspended

Pointer specification

01 Pointer does not exist

Operands
1 2

x
X

X

X

X

X

x
X

X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

1-92 AS/400 MI Functional Reference

Convert MRJE to Character (CVTMC)

Operands
Exception 1 2 3 Other

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 Template value invalid X

Chapter 1. Computation and Branching Instructions 1-93

Convert Numeric to Character (CVTNC)

1.26 Convert Numeric to Character (CVTNC)
Op Code (Hex) Operand Operand Operand 3

1 2
10A3 Receiver Source Attributes

Operand 1: Character variable scalar or data-pointer-defined character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric scalar.

Operand 3: Character(7) scalar or data-pointer-defined character(7) scalar.

Description: The source numeric value (operand 2) is converted and copied to
the receiver character string (operand 1). The receiver operand is treated as
though it had the attributes supplied by operand 3. Operand 1, when viewed in
this manner, receives the numeric value of operand 2 following the rules of the
Copy Numeric Value instruction.

The format of operand 3 is as follows:

• Scalar attributes

Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex OA = Unsigned binary

Scalar length

If binary:

Length (L) (where L = 2 or 4)

If floating-point:

Length (where L = 4 or 8)

If zoned decimal or packed decimal:

Fractional digits (F)

Total digits (T)
(where 1 ~ T ~ 31 and 0 ~ F ~ T)

Reserved (binary 0)

Char(7)

Char(1)

Bin(2)

Bits 0-15

Bits 0-15

Bits 0-7

Bits 8-15

Bin(4)

The byte length of operand 1 must be large enough to contain the numeric value
described by operand 3. If it is not large enough, a scalar value invalid excep­
tion is signaled. If it is larger than needed, the numeric value is placed in the
leftmost bytes and the unneeded rightmost bytes are unchanged by the instruc­
tion.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer Significant nonfractional digits.

1-94 AS/400 MI Functional Reference

Convert Numeric to Character (CVTNC)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X

06 Floating-point overflow X

07 Floating-point underflow X

09 Floating-point invalid operand X

OA Size X

OC Invalid floating-point conversion X

00 Floating-point inexact result X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

Chapter 1. Computation and Branching Instructions 1-95

Convert Numeric to Character (CVTNC)

Exception
08 Invalid operand value range

OA Invalid operand length

OC Invalid operand odt reference

00 Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

32 Scalar specification

01 Scalar type invalid

02 Scalar attribute invalid

03 Scalar value invalid

36 Space management

01 space extension/truncation

1-96 AS/400 MI Functional Reference

Operands
1 2
X X

X

X X

X X

X X

3 Other
X

X

X

X X

X

X

X

X

~I

.J

.
"\ ." . .;,

Convert SNA to Character (CVTSC)

1.27 Convert SNA to Character (CVTSC)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2

100B Receiver Controls Source

Operand 1: Character variable scalar.

Operand 2: Character(14) variable scalar (fixed length).

Operand 3: Character scalar.

Mnemonic
CVTSCI

CVTSCB

Op Code
(Hex)
180B

lCOB

Form Type
Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts a string value from SNA (systems network
architecture) format to character. The operation converts the source (operand 3)
from SNA format to character under control of the controls (operand 2) and
places the result into the receiver (operand 1).

The source and receiver operands must both be character strings. The source
operand may not be specified as an immediate operand.

The controls operand must be a character scalar that specifies additional infor­
mation to be used to control the conversion operation. It must be at least 14
bytes in length and have the following format:

• Controls operand base template

Receiver offset

Source offset

Algorithm modifier

Receiver record length

Record separator

Prime compression

Unconverted receiver record bytes

Conversion status

Unconverted transparency string bytes

Char(14)

Bin(2)

Bin(2)

Char(1)

Char(1)

Char(1)

Char(1)

Char(1)

Char(2)

Char(1)

Chapter 1. Computation and Branching Instructions 1-97

Convert SNA to Character (CVTSC)

- Offset into template to translate table

• Controls operand optional template extension

- Record separator translate table

Bin(2)

Char(64)

Char(64)

Upon input to the instruction, the source and receiver offset fields specify the
offsets where bytes of the source and receiver operands are to be processed. If
an offset is equal to or greater than the length specified for the operand it corre­
sponds to (it identifies a byte beyond the end of the operand), a template value
invalid exception is signaled. As output from the instruction they are set to
specify offsets that indicate how much of the operation is complete when the
instruction ends.

The algorithm modifier specifies the optional functions to be performed. Any
combination of functions not precluded by the bit definitions below is valid
except that at least one of the functions must be specified. All algorithm modi­
fier bits cannot be zero. Specification of an invalid algorithm modifier value
results in a template value invalid exception. The meaning of the bits in the
algorithm modifier is the following:

Bits Meaning
o 0 - Do not perform decompression. Interpret a source character value of

1-2

3-4

5-7

hex 00 as null.
1 - Perform decompression. Interpret a source character value of hex 00 as

a record separator.

00 "" No record separators in source, no blank padding. Do not perform data
transparency conversion.

01 = Reserved.
10 = Record separators in source, perform blank padding. Do not perform

data transparency conversion.
11 = Record separators in source, perform blank padding. Perform data

transparency conversion.

00 = Do not put record separators into receiver.
01 = Move record separators from source to receiver (allowed only when bit

1 = 1)
10 = Translate record separators from source to receiver (allowed only when

bit 1 = 1)
11 = Move record separator from controls to receiver.

Reserved

The receiver record length value specifies the record length to be used to
convert source records into the receiver operand. This length applies only to the
data portion of the receiver record and does not include the optional record sep­
arator. Specification of a receiver record length of zero results in a template
value invalid exception. The receiver record length value is ignored if no record
separator processing is requested in the algorithm modifier.

The record separator value specifies the character that is to precede the con­
verted form of each record in the receiver. The record separator character spec­
ified in the controls operand is used only for the case where the move record
separator from controls to receiver function is specified in the algorithm modi­
fier, or where a missing record separator in the source is detected.

The prime compression value specifies the character to be used as the prime
compression character when performing decompression of the SNA format
source data to character. It may have any value. The prime compression value

1-98 AS/400 MI Functional Reference

~I

L

L

Convert SNA to Character (CVTSC)

is ignored if the decompression function is not specified in the algorithm modi­
fier.

The unconverted receiver record bytes value specifies the number of bytes
remaining in the current receiver record that are yet to be set with converted
bytes from the source.

When record separator processing is specified in the algorithm modifier, this
value is both input to and output from the instruction. On input, a value of hex 00
means it is the start of processing for a new record, and the initial conversion
step is yet to be performed. This indicates that for the case where a function for
putting record separators into the receiver is specified in the algorithm modifier,
a record separator character has yet to be placed in the receiver. On input, a
nonzero value less than or equal to the record length specifies the number of
bytes remaining in the current receiver record that are yet to be set with con­
verted bytes from the source. This value is assumed to be the valid count of
unconverted receiver record bytes relative to the current byte to be processed in
the receiver as located by the receiver offset value. As such, it is used to deter­
mine the location of the next record boundary in the receiver operand. This
value must be less than or equal to the receiver record length value; otherwise,
a template value invalid exception is signaled. On output, this field is set with a
value as defined above which describes the number of bytes of the current
receiver record not yet containing converted data.

When record separator processing is not specified in the algorithm modifier, this
value is ignored.

The conversion status value specifies status information for the operation to be
performed. The meaning of the bits in the conversion status is the following:

Bits Meaning
o 0 = No transparency string active.

1 = Transparency string active. Unconverted transparency string bytes
value contains the remaining string length.

1-15 Reserved

This field is both input to and output from the instruction. It provides for check­
pOinting the conversion status over successive executions of the instruction.

If the conversion status indicates transparency string active, but the algorithm
modifier does not specify perform data transparency conversion, a template
value invalid exception is signaled.

The unconverted transparency string bytes value specifies the number of bytes
remaining to be converted for a partially processed transparency string in the
source.

When perform data transparency conversion is specified in the algorithm modi­
fier, the unconverted transparency string bytes value can be both input to and
output from the instruction.

On input, when the no transparency string active status is specified in the con­
version status, this value is ignored.

Chapter 1. Computation and Branching Instructions 1-99

Convert SNA to Character (CVTSC)

On input, when transparency string active status is specified in the conversion
status, this value contains a count for the remaining bytes to be converted for a
transparency string in the source. A value of hex 00 means the count field for a
transparency string is the first byte of data to be processed from the source
operand. A value of hex 01 through hex FF specifies the count of the remaining
bytes to be converted for a transparency string. This value is assumed to be the
valid count of unconverted transparency string bytes relative to the current byte
to be processed in the source as located by the source offset value.

On output, this value is set if necessary along with the transparency string active
status to describe a partially converted transparency string. A value of hex 00
will be set if the count field is the next byte to be processed for a transparency
string. A value of hex 01 through hex FF specifying the number of remaining
bytes to be converted for a transparency string, will be set if the count field has
already been processed.

When do not perform data transparency conversion is specified in the algorithm '\
modifier, the unconverted transparency string bytes value is ignored. ...",

The offset into template to translate table value specifies the offset from the
beginning of the template to the record separator translate table. This value is
ignored unless the translate record separators from source to receiver function
is specified in the algorithm modifier.

The record separator translate table value specifies the translate table to be
used in translating record separators specified in the source to the record sepa­
rator value to be placed into the receiver. It is assumed to be 64 bytes in length,
providing for translation of record separator values of from hex 00 to hex 3F.
This translate table is used only when the translate record separators from
source to receiver function is specified in the algorithm modifier. See the record
separator conversion function under the conversion process described below for
more detail on the usage of the translate table.

Only the first 14 bytes of the controls operand base template and the optional
64-byte extension area specified for the record separator translate table are
used. Any excess bytes are ignored.

The description of the conversion process is presented as a series of separately
performed steps, which may be selected in allowable combinations to accom­
plish the conversion function. It is presented this way to allow for describing
these functions separately. However, in the actual execution of the instruction,
these functions may be performed in conjunction with one another or separately,
depel)ding upon which technique is determined to provide the best implementa­
tion.

The operation is performed either on a record-by-record basis, record proc­
essing, or on a non record basis, string processing. This is determined by the
functions selected in the algorithm modifier. Specifying the record separators in
source, perform blank padding or move record separator from controls to
receiver indicates record processing is to be performed. If neither of these func­
tions is specified, in which case decompression must be specified, it indicates
that string processing is to be performed.

The operation begins by accessing the hytes of the source operand at the
location specified by the source offset.

1-100 AS/400 MI Functional Reference

Convert SNA to Character (CVTSC)

When record processing is specified, the source offset may locate a point at
which processing of a partially converted record is to be resumed or processing
for a full record is to be started. The unconverted receiver record bytes value
indicates whether conversion processing is to be started with a partial or a full
record. Additionally, the transparency string active indicator in the conversion
status field indicates whether conversion of a transparency string is active for
the case of resumption of processing for a partially converted record. The con­
version process is started by completing the conversion of a partial source
record if necessary before processing the first full source record.

When string processing is specified, the source offset is assumed to locate the
start of a compression entry.

When during the conversion process the end of the receiver operand is encount­
ered, the instruction ends with a resultant condition of receiver overrun.

When record processing is specified in the algorithm modifier, this check is per­
formed at the start of conversion for each record. A source exhausted condition
would be detected before a receiver overrun condition if there is no source data
to convert. If the receiver operand does not have room for a full record, the
receiver overrun condition is recognized. The instruction is terminated with
status in the controls operand describing the last completely converted record.
For receiver overrun, partial conversion of a source record is not performed.

When string processing is specified in the algorithm modifier, then decom­
pression must be specified and the decompression function described below
defines the detection of receiver overrun.

When during the conversion process the end of the source operand is encount­
ered, the instruction ends with a resultant condition of source exhausted. See
the description of this condition in the conversion process described below to
determine the status of the controls operand values and the converted bytes in
the receiver for each case.

When string processing is specified, the bytes accessed from the source are
converted on a string basis into the receiver operand at the location specified by
the receiver offset. In this case, the decompression function must be specified
and the conversion process is accomplished with just the decompression func­
tion defined below.

When record processing is specified the bytes accessed from the source are
converted one record at a time into the receiver operand at the location speci­
fied by the receiver offset performing the functions specified in the algorithm
modifier in the sequence defined by the following algorithm.

Record separator conversion is performed as requested in the algorithm modi­
fier during the initial record separator processing performed as each record is
being converted. This provides for controlling the setting of the record separator
value in the receiver.

When the record separators in source option is specified, the following algorithm
is used to locate them. A record separator is recognized in the source when a
character value less than hex 40 is encountered. When do not perform decom­
pression is specified, a source character value of hex 00 is recognized as a null
value rather than as a record separator. In this case, the processing of the

Chapter 1. Computation and Branching Instructions 1-101

Convert SNA to Character (CVTSC)

current record continues with the next source byte and the receiver is not
updated. When perform data transparency conversion is specified, a character,'"
value of hex 35 is recognized as the start of a transparency string rather than as .""
a record separator.

If the do not put record separators into the receiver function is specified, the
record separator, if any, from the source record being processed is removed
from the converted form of the source record and will not be placed in the
receiver.

If the move record separators from the source to the receiver function is speci­
fied, the record separator from the source record being processed is left as is in
the converted form of the source record and will be placed in the receiver.

If the translate record separators from the source to the receiver function is
specified, the record separator from the source record being processed is trans­
lated using the specified translate table, replaced with its translated value in the
converted form of the source record and, will be placed in the receiver. The
translation is performed as in the translate instruction with the record separator
value serving as the source byte to be translated. It is used as an index into the
specified translate table to select the byte in the translate table that contains the
value to which the record separator is to be set. If the selected translate table
byte is equal to hex FF, it is recognized as an escape code. The instruction ends
with a resultant condition of escape code encountered, and the controls operand
is set to describe the conversion status as of the processing completed just prior
to the conversion step for the record separator. If the selected translate table
byte is not equal to hex FF, the record separator in the converted form of the
record is set to its value.

If the move record separator from controls to receiver function is specified, the
controls record separator value is used in the converted form of the source
record and will be placed into the receiver.

When the record separators in source do blank padding function is requested, an
assumed record separator will be used if a record separator is missing in the
source data. In this case, the controls record separator character is used as the
record separator to precede the converted record if record separators are to be
placed in the receiver. The conversion process continues, bypassing the record
separator conversion step that would normally be performed. The condition of a
missing record separator is detected when during initial processing for a full
record, the first byte of data is not a record separator character.

Decompression is performed if the function is specified in the algorithm modifier.
This provides for converting strings of duplicate characters in compressed
format in the source back to their full size in the receiver. Decompression of the
source data is accomplished by concatenating together character strings
described by the compression strings occurring in the source. The source offset
value is assumed to locate the start of a compression string. Processing of a
partial decompressed record is performed if necessary.

The character strings to be built into the receiver are described in the source by
one or more compression strings. Compression strings are comprised of an
8CB (string control byte) possibly followed by one or more bytes of data related
to the character string to be built into the receiver.

1-102 AS/400 MI Functional Reference

Convert SNA to Character (CVTSC)

The format of an SCB and the description of the data that may follow it is as
follows:

• SCB

Control

Char(1)

Bits 0-1

00 = n nonduplicate characters are between this SCB and the next one;
where n is the value of the count field (1-63).

01 = Reserved.
10 = This SCB represents n deleted prime compression characters;

where n is the value of the count field (1-63). The next byte is the
next SCB.

11 = This SCB represents n deleted duplicate characters; where n is the
value of the count field (1-63). The next byte contains a specimen of
the deleted characters. The byte following the specimen character
contains the next SCB.

Count Bits 2-7

This contains the number of characters that have been deleted for a
prime or duplicate string, or the number of characters to the next SCB
for a nonduplicate string. A count value of zero is invalid and results in
the signaling of a conversion exception.

Strings of prime compression characters or duplicate characters described in the
source are repeated in the decompressed character string the number of times
indicated by the SCB count value.

Strings of nonduplicate characters described in the source record are formed
into a decompressed character string for the length indicated by the SCB count
value.

If the end of the source is encountered prior to the end of a compression string,
a conversion exception is signaled.

When record processing is specified, decompression is performed one record at
a time. In this case, a conversion exception is signaled if a compression string
describes a character string that would span a record boundary in the receiver.
If the source contains record separators, the case of a missing record separator
in the source is detected as defined under the initial description of the conver­
sion process. Record separator conversion, as requested in the algorithm modi­
fier, is performed as the initial step in the building of the decompressed record.
A record separator to be placed into the receiver is in addition to the data to be
converted into receiver for the length specified in the receiver record length
field. The decompression of compression strings from the source continues until
a record separator character for the next record is recognized when the source
contains record separators, or until the decompressed data required to fill the
receiver record has been processed or the end of the source is encountered
whether record separators are in the source or not. Transparency strings
encountered in the decompressed character string are not scanned for a record
separator value. If the end of the source is encountered, the data decompressed
to that point appended to the optional record separator for this record forms a
partial decompressed record. Otherwise, the decompressed character strings
appended to the optional record separator for this record form the decom­
pressed record. The conversion process then continues for this record with the
next specified function.

Chapter 1. Computation and Branching Instructions 1-103

Convert SNA to Character (CVTSC)

When string processing is specified, decompression is performed on a com-
pression string basis with no record oriented processing implied. The conver- ''\ ,
sion process for each compression string from the source is completed by ..",
placing the decompressed character string into the receiver. The conversion
process continues decompressing compression strings from the source until the
end of the source or the receiver is encountered. When the end of the source
operand is encountered, the instruction ends with a resultant condition of source
exhausted. When a character string cannot be completely contained in the
receiver, the instruction ends with a resultant condition of receiver overrun. For
either of the above ending conditions, the controls operand is updated to
describe the status of the conversion operation as of the last completely con-
verted compression entry. Partial conversion of a compression entry is not per-
formed.

Data transparency conversion is performed if perform data transparency conver­
sion is specified in the algorithm modifier. This provides for correctly identifying
record separators in the source even if the data for a record contains value that
could be interpreted as record separator values. Processing of active transpar-'
ency strings is performed if necessary. ..",

A nontransparent record is built by appending the nontransparent and trans­
parent data converted from the record to the record separator for the record.
The nontransparent record may be produced from either a partial record from
the source or a full record from the source. This is accomplished by first
accessing the record separator for a full record. The case of a missing record
separator in the source is detected as defined under the initial description of the
conversion process. Record separator conversion as requested in the algorithm
modifier is performed if it has not already been performed by a prior step; the
rest of the source record is scanned for values of less than hex 40.

A value greater than or equal to hex 40 is considered nontransparent data and is
concatenated onto the record being built as is.

A value equal to hex 35 identifies the start of a transparency string. A transpar­
ency string is comprised of 2 bytes of transparency control information followed
by the data to be made transparent to scanning for record separators. The first
byte has a fixed value of hex 35 and is referred to as the TRN (transparency)
control character. The second byte is a 1-byte hexadecimal count, a value
remaining from 1 to 255 decimal, of the number of bytes of data that follow and
is referred to as the TRN count. A TRN count of zero is invalid and causes a
conversion exception. This contains the length of the transparent data and does
not include the TRN control information length. The transparent data is concat­
enated to the nontransparent record being built and is not scanned for record
separator characters.

A value equal to hex 00 is recognized as the record separator for the next record
only when perform decompression is specified in the algorithm modifier. In this
case, the nontransparent record is complete. When do not perform decom­
pression is specified in the algorithm modifier, a value equal to hex 00 is ignored
and is not included as part of the nontransparent data built for the current
record.

A value less than hex 40 but not equal to hex 35 is considered to be the record
separator for the next record, and the forming of the nontransparent record is
complete.

1-104 AS/400 MI Functional Reference

Convert SNA to Character (CVTSC)

The building of the nontransparent record is completed when the length of the
data converted into the receiver equals the receiver record length if the record
separator for the next record is not encountered prior to that point.

If the end of the source is encountered prior to completion of building the
nontransparent record, the nontransparent record built up to this point is placed
in the receiver and the instruction ends with a resultant condition of source
exhausted. The controls operand is updated to describe the status for the par­
tially converted record. This includes describing a partially converted transpar­
ency string, if necessary, by setting the active transparency string status and the
unconverted transparency string bytes value.

If the building of the nontransparent record is completed prior to encountering
the end of the source, the conversion process continues with the blank padding
function described below.

Blank padding is performed if the function is specified in the algorithm modifier.
This provides for expanding out to the size specified by the receiver record
length the source records for which trailing blanks have been truncated. The
padded record may be produced from either a partial record from the source or
a full record from the source.

The record separator for this record is accessed. The case of a missing record
separator in the source is detected as defined under the initial description of the
conversion process. Record separator conversion, as requested in the algorithm
modifier, is performed if it has not already been performed by a prior step.

The nontruncated data, if any, for the record is appended to the optional record
separator for the record. The nontruncated data is determined by scanning the
source record for the record separator for the next record. This scan is con­
cluded after processing enough data to completely fill the receiver record or
upon encountering the record separator for the next record. The data processed
prior to concluding the scan is considered the nontruncated data for the record.

The blanks, if any, required to pad the record out to the nontruncated data for
the record, concluding the forming of the padded record.

If the end of the source is encountered during the forming of the padded record,
the data processed up to that point, appended to the optional record separator
for the record, is placed into the receiver and the instruction ends with a
resultant condition of source exhausted. The controls operand is updated to
describe the status of the partially converted record.

If the forming of the padded record is concluded prior to encountering the end of
the source, the conversion of the record is completed by placing the converted
form of the record into the receiver.

At this point, either conversion of a source record has been completed or con­
version has been interrupted due to detection ofthe source exhausted or
receiver overrun condition. For record processing, if neither of the above condi­
tions has been detected either during conversion of or at completion of conver­
sion for the current record, the conversion process continues on the next source
record with the decompression function described above.

Chapter 1. Computation and Branching Instructions 1-105

Convert SNA to Character (CVTSC)

At completion of the instruction, the offset value for the receiver locates the byte
following the last converted byte in the receiver. The value of the remaining
bytes in the receiver after the last converted byte are unpredictable. The offset
value for the source locates the byte following the last source byte for which
conversion was completed. When record processing is specified, the uncon­
verted receiver record bytes value specifies the length of the receiver record
bytes not yet containing converted data. When perform data transparency con­
version is specified in the algorithm modifier, the conversion status indicates
whether conversion of a transparency string was active and the unconverted
transparency string bytes value specifies the length of the remaining bytes to be
processed for an active transparency string.

This instruction does not provide support for compression entries in the source
describing data that would span records in the receiver. SNA data from some
systems may violate this restriction and as such be incompatible with the
instruction. A provision can be made to avoid this incompatibility by performing
the conversion of the SNA data through two invocations of this instruction. The
first invocation would specify decompression with no record separator proc­
essing. The second invocation would specify record separator processing with
no decompression. This technique provides for separating the decompression
step from record separator processing; thus, the incompatibility is avoided.

This instruction can end with the escape code encountered condition. In this
case, it is expected that the user of the instruction will want to do some special
processing for the record separator causing the condition. In order to resume
execution of the instruction, the user will have to set the appropriate value for
the record separator into the receiver and update the controls operand offset
values correctly to provide for restarting processing at the right points in the
receiver and source operands.

For the special case of a tie between the source exhausted and receiver overrun
conditions, the source exhausted condition is recognized first. That is, when
source exhausted is the resultant condition, the receiver may also be full. In this
case, the offset into the receiver operand may contain a value equal to the
length specified for the receiver, which would cause an exception to be detected
on the next invocation of the instruction. The processing performed for the
source exhausted condition should provide for this case if the instruction is to be
invoked multiple times with the same controls operand template. When the
receiver overrun condition is the resultant condition, the source will always
contain data that can be converted.

This instruction will, in certain cases, ignore what would normally have been
interpreted as a record separator value of hex 00. This applies (hex 00 is
ignored) for the special case when do not perform decompression and record
separators in source are specified in the algorithm modifier. Note that this does
not apply when perform decompression is specified, or when do not perform
decompression and no record separators in source and move record separator
from controls to receiver are specified in the algorithm modifier.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Any form of overlap between the operands on this instruction yields unpredict­
able results in the receiver operand.

1-106 AS/400 MI Functional Reference

Convert SNA to Character (CVTSC)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Source exhausted-The end of the source operand is
encountered and no more bytes from the source can be converted. Receiver
overrun-An overrun condition in the receiver operand is detected before all of
the bytes in the source operand have been processed. Escape code
encountered-A record separator character is encountered in the source operand
that is to be treated as an escape code.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

~
03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

01 Conversion X

~
10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

Chapter 1. Computation and Branching Instructions 1-107

Convert SNA to Character (CVTSC)

Operands
Exception 1 2 3 Other

09 Invalid branch target operand X

OA Invalid operand length X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 Template value invalid X

1-108 AS/400 MI Functional Reference

Copy Bits Arithmetic (CPYBTA)

1.28 Copy Bits Arithmetic (CPYBT A)

Exceptions

Op Code (Hex) Operand Operand
1 2

102C Receiver Source

Operand
3
Offset

Operand 4

Length

Operand 1: Character Variable Scalar or Numeric Variable Scalar.

Operand 2: Character Variable Scalar or Numeric Variable Scalar.

Operand 3: Signed or Unsigned Binary Immediate.

Operand 4: Signed or Unsigned Binary Immediate.

Description: Copies the signed bit string source operand starting at the speci­
fied offset for a specified length right adjusted to the receiver and pads on the
left with the sign of the bit string source.

The selected bits from the source operand are treated as an signed bit string
and copied to the receiver value.

The source operand can be character or numeric. The leftmost bytes of the
source operand are used in the operation. The source operand is interpreted as
a bit string with the bits numbered left to right from 0 to the total number of bits
in the string minus 1.

The offset operand indicates which bit of the source operand is to be copied,
with a offset of zero indicating the leftmost bit of the leftmost byte of the source
operand.

The length operand indicates the number of bits that are to be copied.

If the sum of the offset plus the length exceed the length of the source an
"invalid operand length" exception will be raised.

Limitations: Neither the receiver nor the source operand can be a variable
length substring.

The length of the receiver cannot exceed four bytes.

The offset must have a non-negative value.

The length operand must be an immediate value between 1 and 32.

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

Chapter 1. Computation and Branching Instructions 1-109

Copy Bits Arithmetic (CPYBTA)

Operands
Exception 1 2 3 4 Other
08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

J 02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X X X J 07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X J
36 Space management

01 space extension/truncation X

1-110 AS/400 MI Functional Reference

L

Copy Bits Logical (CPYBTL)

1.29 Copy Bits Logical (CPVBTL)

Exceptions

Op Code (Hex) Operand Operand
1 2

101C Receiver Source

Operand
3
Offset

Operand 4

Length

Operand 1: Character Variable Scalar or Numeric Variable Scalar.

Operand 2: Character Variable Scalar or Numeric Variable Scalar.

Operand 3: Signed or Unsigned Binary Immediate.

Operand 4: Signed or Unsigned Binary Immediate.

Description: Copies the unsigned bit string source operand starting at the spec­
ified offset for a specified length to the receiver.

If the receiver is shorter than the length, the left most bits are removed to make
the source bit string conform to the length of the receiver. No exceptions are
generated when truncation occurs.

The selected bits from the source operand are treated as an unsigned bit string
and copied right adjusted to the receiver and padded on the left with binary
zeros.

The source operand can be character or numeric. The leftmost bytes of the
source operand are used in the operation. The source operand is interpreted as
a bit string with the bits numbered left to right from 0 to the total number of bits
in the string minus 1.

The offset operand indicates which bit of the source operand is to be copied,
with a offset of zero indicating the leftmost bit of the leftmost byte of the source
operand.

The length operand indicates the number of bits that are to be copied.

If the sum of the offset plus the length exceed the length of the source an
"invalid operand length" exception will be raised.

Limitations: Neither the receiver nor the source operand can be a variable
length substring.

The length of the receiver cannot exceed four bytes.

The offset must have a non-negative value.

The length operand must be an immediate value between 1 and 32.

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation x x

Chapter 1. Computation and Branching Instructions 1-111

Copy Bits Logical (CPYBTL)

Operands
Exception 1 2 3 4 Other

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/par ameter

01 Parameter reference violation X X X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X ..)
00 Reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-112 AS/400 MI Functional Reference

Copy Bits with Left Logical Shift (CPVBTLLS)

1.30 Copy Bits with Left Logical Shift (CPVBTLLS)
Op Code (Hex)

102F

Operand Operand
1 2
Receiver Source

Operand 3

Shift
control

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar or unsigned binary(2) scalar.

Description: This instruction copies the bit string value of the source operand to
the bit string defined by the receiver operand with a left logical shift of the
source bit string value under control of the shift control operand.

The operation results in copying the shifted bit string value of the source to the
bit string of the receiver while padding the receiver with bit values of 0 and trun­
cating bit values of the source as is appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value.
This is true whether the values truncated are 0 or 1.

The operation is performed such that the bit string of the source is considered to
be extended on the left and right by an unlimited number of bit string positions of
value O. Additionally, a receiver bit string view (window) with the attributes of
the receiver is considered to overlay this conceptual bit string value of the
source starting at the leftmost bit position of the original source value. A left
logical shift of the conceptual bit string value of the source is then performed
relative to the receiver bit string view according to the shift criteria specified in
the shift control operand. After the shift, the bit string value then contained
within the receiver bit string view is copied to the receiver.

The source and the receiver can be either character or numeric. Any numeric
operands are interpreted as logical character strings. Due to the operation
being treated as a character string operation, the source operand may not be
specified as a signed immediate operand. Additionally, for a source operand
specified as an unsigned immediate value, only a 1-byte immediate value may
be specified.

The shift control operand may be specified as an immediate operand, as a
character(2) scalar, or as an unsigned binary(2) scalar. It provides an unsigned
binary value indicating the number of bit positions for which the left logical shift
of the source bit string value is to be performed. A zero value specifies no shift.

Operands 1 and 2 may be specified as variable length substring compound oper­
ands.

Operand 3 may not be specified as a variable length substring compound
operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instructicn.

Chapter 1. Computation and Branching Instructions 1-113

Copy Bits with Left Logical Shift (CPYBTLLS)

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invali~ X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

..J
1-114 AS/400 MI Functional Reference

Copy Bits with Right Arithmetic Shift (CPVBTRAS)

1.31 Copy Bits with Right Arithmetic Shift (CPVBTRAS)
Op Code (Hex) Operand Operand Operand 3

1 2
101B Receiver Source Shift

Control

Operand 1: Character variable or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar or unsigned binary(2) scalar.

Description: The instruction copies the bit string value of the source operand to
the bit string defined by the receiver operand with a right arithmetic shift of the
source bit string value under control of the shift control operand.

The operation results in copying the shifted bit string value of the source to the
bit string of the receiver while padding the receiver with bit values of 0 or 1
depending on the high order bit value of the source, and truncating bit values of
the source as is appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value.
This is true whether the values truncated are 0 or 1.

The operation is performed such that the bit string of the source is considered a
signed numeric binary value, with the value of the sign bit of the source concep­
tually extended on the left an unlimited number of bit string positions. A right
arithmetic shift of the conceptual bit string value of the source is then performed
according to the shift criteria specified in the shift control operand. No indication
is given of truncation of bit values from the shifted conceptual source value.
This is true whether the values truncated are 0 or 1. After the shift, the concep­
tual bit string value is then copied to the receiver, right aligned.

Viewing the bit string value of the source and the bit string value copied to the
receiver as signed numeric, the sign of the value copied to the receiver will be
the same as the sign of the source.

A right shift of one bit position is equivalent to dividing the signed numeric bit
string value of the source by 2 with rounding downward, and assigning a signed
numeric bit string equivalent to that result to the receiver. For example, if the
signed numeric view of the source bit string is + 9, shifting one bit position right
yields +4. However if the signed numeric view of the source bit string is -9,
shifting one bit position right yields -5.

If all the significant bits of the conceptual source bit string are shifted out of the
field, the resulting conceptual bit string value will be all zero bits for positive
numbers, and all one bits for negative numbers.

The source and the receiver can be either character or numeric. Any numeric
operands are interpreted as logical character strings. Due to the operation
being treated as a character string operation, the source operand may not be
specified as a signed immediate operand. Additionally, for a source operand
specified as an unsigned immediate value, only a 1-byte immediate value may
be specified.

Chapter 1. Computation and Branching Instructions 1-115

Copy Bits with Right Arithmetic Shift (CPYBTRAS)

The shift control operand may be specified as an immediate operand, as a
character(2) scalar, or as a unsigned binary(2) scalar. It provides an unsigned
binary value indicating the number of bit positions for which the right logical shift .'
of the source bit string value is to be performed. A zero value specifies no shift. ..",

Exceptions

Limitations: The following are limits that apply to the functions performed by
this instruction.

Operands 1 and 2 may be specified as variable length substring compound oper­
ands.

Operand 3 may not be specified as a variable length substring compound
operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

1-116 AS/400 M I Functional Reference

~

j

Copy Bits with Right Arithmetic Shift (CPYBTRAS)

Operands
Exception 1 2 3 Other

08 Invalid operand value range X X X

OA Invalid operand length X X X

DC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

01 space extension/truncation X

L

Chapter 1. Computation and Branchi ng Instructions 1-117

Copy Bits with Right Logical Shift (CPYBTRLS)

1.32 Copy Bits with Right Logical Shift (CPYBTRLS)
Op Code (Hex) Operand Operand Operand 3

1 2
103F Receiver Source Shift

control

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character(2) scalar or unsigned binary(2) scalar.

Description: This instruction copies the bit string value of the source operand to
the bit string defined by the receiver operand with a right logical shift of the
source bit string value under control of the shift control operand.

The operation results in copying the shifted bit string value of the source to the
bit string of the receiver while padding the receiver with bit values of 0 and trun­
cating bit values of the source as is appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value.
This is true whether the values truncated are 0 or 1.

The operation is performed such that the bit string of the source is considered to
be extended on the left and right by an unlimited number of bit string positions of
value O. Additionally, a receiver bit string view (window) with the attributes of
the receiver is considered to overlay this conceptual bit string value of the
source starting at the leftmost bit position of the original source value. A right
logical shift of the conceptual bit string value of the source is then performed
relative to the receiver bit string view according to the shift criteria specified in
the shift control operand. After the shift, the bit string value then contained
within the receiver bit string view is copied to the receiver.

The source and the receiver can be either character or numeric. Any numeric
operands are interpreted as logical character strings. Due to the operation
being treated as a character string operation, the source operand may not be .,.
specified as a signed immediate operand. Additionally, for a source operand"""",
specified as an unsigned immediate value, only a 1-byte immediate value may
be specified.

The shift control operand may be specified as an immediate operand, as a
character(2) scalar, or as a unsigned binary(2) scalar. It provides an unsigned
binary value indicating the number of bit positions for which the right logical shift
of the source bit string value is to be performed. A zero value specifies no shift.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Operands 1 and 2 may be specified as variable length substring compound oper­
ands.

Operand 3 may not be specified as a variable length substring compound
operand.

1-118 AS/400 MI Functional Reference

Copy Bits with Right Logical Shift (CPYBTRLS)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

36 Space management

Chapter 1. Computation and Branching Instructions 1-119

Copy Bits with Right Logical Shift (CPVBTRLS)

Exception
01 space extension/truncation

1-120 AS/400 MI Functional Reference

Operands
123 Other

X

L

Copy Bytes Left-Adjusted (CPYBLA)

1.33 Copy Bytes Left-Adjusted (CPYBLA)

Exceptions

Op Code (Hex)

10B2

Operand
1

Operand 2

Receiver Source

Operand 1: Character variable scalar, numeric variable scalar, data-pointer­
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-painter-defined character
scalar, or data-painter-defined numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (no padding done). The operands
can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The length of the operation is equal to the length of the shorter of the two oper­
ands. The copying begins with the two operands left-adjusted and proceeds until
the shorter operand has been copied.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

If either operand is a character variable scalar, it may have a length as great as
16776191 bytes.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

04 External data Object not found

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1 C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

Operands
1

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-121

Copy Bytes Left-Adjusted (CPYBLA)

Operands
Exception 1 2 Other
22 Object access ;J

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

~ 36 Space management

01 space extension/truncation X

1-122 AS/400 MI Functional Reference

Copy Bytes Left-Adjusted with Pad (CPVBLAP)

1.34 Copy Bytes Left-Adjusted with Pad (CPVBLAP)

Exceptions

Op Code (Hex) Operand Operand Operand 3
1 2

10B3 Receiver Source Pad

Operand 1: Character variable scalar or numeric variable scalar, data-pointer­
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character
scalar, or data-pointer-defined numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (padded if needed).

The operands can be either character or numeric. Any numeric operands are
interpreted as logical character strings.

The length of the operation is equal to the length of the receiver operand. If the
source operand is shorter than the receiver operand, the source operand is
copied to the leftmost bytes of the receiver operand, and each excess byte of the
receiver operand is assigned the single byte value in the pad operand. If the
pad operand is more than 1 byte in length, only its leftmost byte is used. If the
source operand is longer than the receiver operand, the leftmost bytes of the
source operand (equal in length to the receiver operand) are copied to the
receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with the single byte value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is set.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

If either of the first two operands is a character variable scalar, it may have a
length as great as 16776191.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

04 External data object not found

06 Optimized addressability invalid

08 Argument/parameter

Operands
1 2 3 Other

X X X

X X X

X X X

X X

X X X

Chapter 1. Computation and Branching Instructions 1-123

Copy Bytes Left-Adjusted with Pad (CPVBLAP)

Operands
Exception 1 2 3 Other

~ 01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X X

OD Reserved bits are not zero X X X X

2E Resource control limit

~ 01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

1-124 AS/400 MI Functional Reference

Copy Bytes Overlap Left-Adjusted (CPYBOLA)

1.35 Copy Bytes Overlap Left-Adjusted (CPVBOLA)

Exceptions

Op Code (Hex) Operand Operand 2
1

10BA Receiver Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character variable scalar or numeric variable scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (no padding done). The operands
can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The length of the operation is equal to the length of the shorter of the two oper­
ands. The copying begins with the two operands left-adjusted and proceeds until
the shorter operand has been copied. The excess bytes in the longer operand
are not included in the operation.

Predictable results occur even if two operands overlap because the source
operand is, in effect, first copied to an intermediate result.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

Chapter 1. Computation and Branching Instructions 1-125

Copy Bytes Overlap Left-Adjusted (CPVBOLA)

Operands
Exception 1 2 Other

~ 02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X .J
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

1-126 AS/400 MI Functional Reference

Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)

1.36 Copy Bytes Overlap Left-Adjusted with Pad (CPVBOLAP)

Exceptions

Op Code (Hex) Operand Operand Operand 3
1 2

10BB Receiver Source Pad

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character variable scalar or numeric variable scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand.

The operands can be either character or numeric. Any numeric operands are
interpreted as logical character strings.

The length of the operation is equal to the length of the receiver operand. If the
source operand is shorter than the receiver operand, the source operand is
copied to the leftmost bytes of the receiver operand and each excess byte of the
receiver operand is assigned the single byte value in the pad operand. If the
pad operand is more than 1 byte in length, only its leftmost byte is used. If the
source operand is longer than the receiver operand, the leftmost bytes of the
source operand (equal in length to the receiver operand) are copied to the
receiver operand.

Predictable results occur even if two operands overlap because the source
operand is, in effect, first copied to an intermediate result.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with the single byte value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is set.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

Operands
1 2 3

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

Chapter 1. Computation and Branching Instructions 1-127

Copy Bytes Overlap Left-Adjusted with Pad (CPVBOLAP)

Operands
Exception 1 2 3 Other

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-128 AS/400 MI Functional Reference

L

Copy Bytes Repeatedly (CPYBREP)

1.37 Copy Bytes Repeatedly (CPVBREP)

Exceptions

Op Code (Hex) Operand Operand 2
1

10BE Receiver Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed length).

Description: The logical string value of the source operand is repeatedly copied
to the receiver operand until the receiver is filled. The operands can be either
character or numeric. Any numeric operands are interpreted as logical char­
acter strings.

The operation begins with the two operands left-adjusted and continues until the
receiver operand is completely filled. If the source operand is shorter than the
receiver, it is repeatedly copied from left to right (all or in part) until the receiver
operand is completely filled. If the source operand is longer than the receive
operand, the leftmost bytes of the source operand (equal in length to the
receiver operand) are copied to the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

If either operand is a character variable scalar, it may have a length as great as
16776191.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1 C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

Operands
1 2 Other

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-129

Copy Bytes Repeatedly (CPVBREP)

Operands
Exception 1 2 Other
22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X ..J
OC Invalid operand odt reference X X

OD Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-130 AS/400 M I Functional Reference

Copy Bytes Right-Adjusted (CPYBRA)

1.38 Copy Bytes Right-Adjusted (CPYBRA)

Exceptions

Op Code (Hex) Operand Operand 2
1

10B6 Receiver Source

Operand 1: Character variable scalar, numeric variable scalar, data-pointer­
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character
scalar, or data-pointer-defined numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (no padding done). The operands
can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The length of the operation is equal to the length of the shorter of the two oper­
ands. The rightmost bytes (equal to the length of the shorter of the two oper­
ands) of the source operand are copied to the rightmost bytes of the receiver
operand. The excess bytes in the longer operand are not included in the opera­
tion.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

04 External data object not found

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1 C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

22 Object access

Operands
1

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-131

Copy Bytes Right-Adjusted (CPYBRA)

Operands
Exception 1 2 Other

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management J 01 space extension/truncation X

1-132 AS/400 MI Functional Reference

L

L

Copy Bytes Right-Adjusted with Pad (CPVBRAP)

1.39 Copy Bytes Right-Adjusted with Pad (CPVBRAP)

Exceptions

Op Code (Hex)

10B7

Operand
1

Operand
2

Receiver Source

Operand 3

Pad

Operand 1: Character variable scalar, numeric variable scalar, data-pointer­
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character
scalar, or data-pointer-defined numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (padded if needed). The operands
can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The length of the operation is equal to the length of the receiver operand. If the
source operand is shorter than the receiver operand, the source operand is
copied to the rightmost bytes of receiver operand, and each excess byte is
assigned the single byte value in the pad operand. If the pad operand is more
than 1 byte in length, only its leftmost byte is used. If the source operand is
longer than the receiver operand, the rightmost bytes of the source operand
(equal in length to the receiver operand) are copied to the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with the single byte value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is set.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

Chapter 1. Computation and Branching Instructions 1-133

Copy Bytes Right-Adjusted with Pad (CPVBRAP)

Operands
Exception 1 2 3 Other

..J 1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X X

OC Invalid operand adt reference X X X

OD Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management ..J 01 space extension/truncation X

1-134 AS/400 MI Functional Reference

Copy Bytes to Bits Arithmetic (CPYBBTA)

1.40 Copy Bytes to Bits Arithmetic (CPYBBT A)
Op Code (Hex)
104C

Operand 1
Receiver

Operand 2
Offset

Operand 3
Length

Operand 4
Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Signed binary immediate or unsigned binary immediate.

Operand 3: Signed binary immediate or unsigned binary immediate.

Operand 4: Character variable scalar or numeric variable scalar.

Description: This instruction copies a byte string from the source operand to a
bit string in the receiver operand.

The source operand is interpreted as a signed binary value and may be sign
extended or truncated on the left to fit into the bit string in the receiver operand.
No indication is given when truncation occurs.

The location of the bit string in the receiver operand is specified by the offset
operand. The value of the offset operand specifies the bit offset from the start of
the receiver operand to the start of the bit string. Thus, an offset operand value
of 0 specifies that the bit string starts at the leftmost bit position of the receiver
operand.

The length of the bit string in the receiver operand is specified by the length
operand. The value of the length operand specifies the length of the bit string in
bits.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Null operands may not be specified. Variable length substring operands may not
be specified. Substring operand references that allow for a null substring refer­
ence (a length value of zero) may not be specified.

If the source operand and the bit string in the receiver operand overlap, the
results are unpredictable.

A source operand longer than 4 bytes may not be specified.

If the offset operand is signed binary immediate, a negative value may not be
specified.

A length operand with a value less than 1 or greater than 32 may not be speci­
fied.

The bit string specified by the offset operand and the length operand may not
extend outside the receiver operand.

Chapter 1. Computation and Branching Instructions 1-135

Copy Bytes to Bits Arithmetic (CPYBBTA)

Exceptions
Operands

~ Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X J
03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

OD Reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

J

1-136 AS/400 M I Functional Reference

Copy Bytes to Bits Logical (CPYBBTL)

1.41 Copy Bytes to Bits Logical (CPVBBTL)
Op Code (Hex)
103C

Operand 1
Receiver

Operand 2
Offset

Operand 3
Length

Operand 4
Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Signed binary immediate or unsigned binary immediate.

Operand 3: Signed binary immediate or unsigned binary immediate.

Operand 4: Character variable scalar or numeric variable scalar.

Description: This instruction copies a byte string from the source operand to a
bit string in the receiver operand.

The source operand is interpreted as an unsigned binary value and may be
padded on the left with O's or truncated on the left to fit into the bit string in the
receiver operand. No indication is given when truncation occurs.

The location of the bit string in the receiver operand is specified by the offset
operand. The value of the offset operand specifies the bit offset from the start of
the receiver operand to the start of the bit string. Thus, an offset operand value
of 0 specifies that the bit string starts at the leftmost bit position of the receiver
operand.

The length of the bit string in the receiver operand is specified by the length
operand. The value of the length operand specifies the length of the bit string in
bits.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Null operands may not be specified. Variable length substring operands may not
be specified. Substring operand references that allow for a null substring refer­
ence (a length value of zero) may not be specified.

If the source operand and the bit string in the receiver operand overlap, the
results are unpredictable.

A source operand longer than 4 bytes may not be specified.

If the offset operand is signed binary immediate, a negative value may not be
specified.

A length operand with a value less than 1 or greater than 32 may not be speci­
fied.

The bit string specified by the offset operand and the length operand may not
extend outside the receiver operand.

Chapter 1. Computation and Branching Instructions 1-137

Copy Bytes to Bits Logical (CPYBBTL)

Exceptions
Operands

~ Exception 1 2 3 4 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment violation X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X

44 Partial system object damage X

j 1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

02 Object destroyed X X j
03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

j

1-138 AS/400 MI Functional Reference

Copy Extended Characters Left-Adjusted With Pad (CPVECLAP)

1.42 Copy Extended Characters Left-Adjusted With Pad (CPVECLAP)
Op Code (Hex) Operand Operand Operand 3

1 2
1053 Receiver Source Pad

Operand 1: Data-pointer-defined character scalar.

Operand 2: Data-pointer-defined character scalar.

Operand 3: Character(3) scalar or null.

Description: The extended character string value of the source operand is
copied to the receiver operand.

The operation is performed at the length of the receiver operand. If the source
operand is shorter than the receiver, the source operand is copied to the left­
most bytes of the receiver and the excess bytes of the receiver are assigned the
appropriate value from the pad operand.

The pad operand, operand 3, is three bytes in length and has the following
format:

• Pad operand

Single byte pad value

Double byte pad value

Char(3)

Char(1)

Char(2)

If the pad operand is more than three bytes in length, only its leftmost three
bytes are used. Specifying a null pad operand results in default pad values of
X'40', for single byte, and X'4040', for double byte, being used. The single byte
pad value and the first byte of the double byte pad value cannot be either a shift
out control character (SO = 'OE'X) value or a shift in control character (SI = 'OF'X)
value. Specification of such an invalid value results in the signaling of the scalar
value invalid exception.

Operands 1 and 2 must be specified as Data Pointers which define either a
simple (single byte) character data field or one of the extended (double byte)
character data fields.

Support for usage of a Data Pointer defining an extended character scalar value
is limited to this instruction. Usage of such a data pointer defined value on any
other instruction is not supported and results in the signaling of the scalar type
invalid exception.

For more information on support for extended character data fields, refer to the
Set Data Pointer Attributes, Materialize Pointer, and Create Cursor instructions.

Four data types are supported for data pointer definition of extended (double
byte) character fields, OPEN, EITHER. ONLYNS and ONLYS. Except for ONLYNS,
the double byte character data must be surrounded by a shift out control char­
acter (SO = 'OE'X) and a shift in control character (SI = 'OF'X).

• The ONL YNS field only contains double byte data with no SO, SI delimiters
surrounding it.

Chapter 1. Computation and Branching Instructions 1-139

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

• The ONLYS field can only contain double byte character data within a SO .. SI
pair.

• The EITHER field can consist of double byte character or single byte char­
acter data but only one type at a time. If double byte character data is
present it must be surrounded by an SO .. SI pair.

• The OPEN field can consist of a mixture of double byte character and single
byte character data. If double byte character data is present it must be sur­
rounded by an SO .. SI pair.

Specifying an extended character value which violates the above restrictions
results in the signaling of the invalid extended character data exception.

The valid copy operations which can be specified on this instruction are the fol­
lowing:

o Onlyns

p Onlys

Open

2 Either

Op 1

Onlyns Onlys Open Either

yes yes yes yes

yes yes yes yes

no no yes no

no no yes yes

Figure 1-5. Valid copy operations for CPYECLAP

Specifying a copy operation other than the valid operations defined above results
in the signaling of the invalid extended character operation exception.

When the copy operation is for a source of type ON L YNS (no SO/SI delimiters)
being copied to a receiver which is not ONLYNS, SO and SI delimiters are
implicitly added around the source value as part of the copy operation.

When the source value is longer than can be contained in the receiver, trun­
cation is necessary and the following truncation rules apply:

1. Truncation is on the right (like simple character copy operations).

2. When the string to be truncated is a single byte character string, or an
extended character string when the receiver is ONLYNS, bytes beyond those
that fit into the receiver are truncated with no further processing needed.

3. When the string to be truncated is an extended character string and the
receiver is not ON L YNS, the bytes that fall at the end of the receiver are
truncated as follows:

a. When the last byte that would fit in the receiver is the first byte of an
extended character, that byte is truncated and replaced with an SI char­
acter.

b. When the last byte that would fit in the receiver is the second byte of an
extended character, both bytes of that extended character are truncated
and replaced with a SI character followed by a single byte pad value.
This type of truncation can only occur when converting to an OPEN field.

When the source value is shorter than that which can be contained in the
receiver, padding is necessary. One of three types of padding is performed:

1-140 AS/400 MI Functional Reference

Exceptions

L

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

1. Double byte (DB) - the source value is padded on the right with double byte
pad values out to the length of the receiver.

2. Double byte concatenated with a SI value (OBI lSI) - the source double byte
value is padded on the right with double byte pad values out to the second to
last byte of the receiver and an SI delimiter is placed in the last byte of the
receiver.

3. Single byte (SB) - the source value is padded on the right with single byte
pad values out to the length of the receiver.

The type of padding performed is determined by the type of operands involved in
the operation:

1. If the receiver is ONLYNS, DB padding is performed.

2. If the receiver is ONLYS, OBI lSI padding will be performed.

3. If the receiver is EITHER and the source contained a double byte value,
DBIISI padding is performed.

4. If the receiver is EITHER and the source contained a single byte value, SB
padding is performed.

5. If the receiver is OPEN, SB padding is performed.

The above padding rules cover all the operand combinations which are allowed
on the instruction. A complete understanding of the operand combinations
allowed (prior diagram), and the values which can be contained in the different
operand types is necessary to appreciate that these rules do cover all the valid
combinations.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

12 Invalid extended character data X

13 Invalid extended character operation X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

Chapter 1. Computation and Branching Instructions 1-141

Copy Extended Characters Left-Adjusted With Pad (CPVECLAP)

Operands
Exception 1 2 3 Other
1C Machine-dependent exception ..J 03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X ..J
2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X X

00 Reserved bits are not zero X X X X ..J
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

01 Scalar value invalid X

36 Space management

01 space extension/truncation X

1-142 AS/400 M I Functional Reference

L

Copy Hex Digit Numeric to Numeric (CPYHEXNN)

1.43 Copy Hex Digit Numeric to Numeric (CPYHEXNN)

Exceptions

Op Code (Hex) Operand Operand 2
1

1092 Receiver Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4 bits) of the leftmost byte
referred to by the source operand is copied to the numeric hex digit value (right­
most 4 bits) of the leftmost byte referred to by the receiver operand. The oper­
ands can be either character strings or numeric. Any numeric operands are
interpreted as logical character strings.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

Chapter 1. Computation and Branching Instructions 1-143

Copy Hex Digit Numeric to Numeric (CPYHEXNN)

Operands
Exception 1 2 Other
2A Program creation

~ 06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

~

1-144 AS/400 MI Functional Reference

L

L

Copy Hex Digit Numeric to Zone (CPYHEXNZ)

1.44 Copy Hex Digit Numeric to Zone (CPYHEXNZ)

Exceptions

Op Code (Hex) Operand Operand 2
1

1096 Receiver Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4 bits) of the leftmost byte
referred to by the source operand is copied to the numeric hex digit value (right­
most 4 bits) of the leftmost byte referred to by the receiver operand. The oper­
ands can be either character strings or numeric. Any numeric operands are
interpreted as logical character strings.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

Chapter 1. Computation and Branching Instructions 1-145

Copy Hex Digit Numeric to Zone (CPYHEXNZ)

Operands
Exception 1 2 Other
2A Program creation ..J 06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-146 AS/400 M I Functional Reference

C

C

Copy Hex Digit Zone To Numeric (CPYHEXZN)

1.45 Copy Hex Digit Zone To Numeric (CPYHEXZN)

Exceptions

Op Code (Hex) Operand Operand 2
1

109A Receiver Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of the leftmost byte
referred to by the source operand is copied to the numeric hex digit value (right­
most 4 bits) of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric. Any numeric oper-
ands are interpreted as logical character strings.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machi ne-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

Chapter 1. Computation and Branching Instructions 1-147

Copy Hex Digit Zone To Numeric (CPYHEXZN)

Operands
Exception 1 2 Other

2A Program creation ~
06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-148 AS/400 MI Functional Reference

C

Copy Hex Digit Zone To Zone (CPYHEXZZ)

1.46 Copy Hex Digit Zone To Zone (CPYHEXZZ)

Exceptions

Op Code (Hex) Operand Operand 2
1

109E Receiver Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of the leftmost byte
referred to by the source operand is copied to the zone hex digit value (leftmost
4 bits) of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric. Any numeric oper­
ands are interpreted as logical character strings.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

Chapter 1. Computation and Branching Instructions 1-149

Copy Hex Digit Zone To Zone (CPYHEXZZ)

Operands
Exception 1 2 Other

2A Program creation ~
06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

OD Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-150 AS/400 MI Functional Reference

Copy Numeric Value (CPYNV)

1.47 Copy Numeric Value (CPYNV)

Optional Forms

Op Code (Hex) Operand Operand 2
1

1042 Receiver Source

Operand 1: Numeric variable scalar or data-pointer-defined numeric scalar.

Operand 2: Numeric scalar or data pointer-defined-numeric scalar.

Mnemonic

CPYNVR
CPYNVI
CPYNVIR
CPYNVB
CPYNVBR

Op Code
(Hex)

1242
1842
1A42
1C42
1E42

Form Type

Round
Indicator
Indicator, Round
Branch
Branch, Round

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The numeric value of the source operand is copied to the numeric
receiver operand.

I

Both operands must be numeric. If necessary, the source operand is converted
to the same type as the receiver operand before being copied to the receiver
operand. The source value is adjusted to the length of the receiver operand,
aligned at the assumed decimal point of the receiver operand, or both before
being copied to it. If significant digits are truncated on the left end of the source
value, a size exception is signaled. When the receiver is binary this size excep­
tion may be suppressed by using the suppress binary size exception program
attribute on the CRTPG instruction.

If a decimal to binary conversion causes a size exception to be signaled or if the
size exception is suppressed the binary value contains the correct truncated
result only if the decimal value contains 15 or fewer significant nonfractional
digits.

Conversions between floating-point integers and integer formats (binary or
decimal with no fractional digits) is exact, except when an exception is signaled.

An invalid floating-point conversion exception is signaled when an attempt is
made to convert from floating-point to binary or decimal and the result would
represent infinity or NaN, or nonzero digits would be truncated from the left end
of the resultant value.

Chapter 1. Computation and Branching Instructions 1-151

Copy Numeric Value (CPYNV)

Exceptions

For the optional round form of the instruction, a floating-paint receiver operand is
invalid.

For a fixed-point operation, if significant digits are truncated from the left end of
the source value, a size exception is signaled. When the receiver is binary this
size exception may be suppressed by using the suppress binary size exception
program attribute on the CRTPG instruction.

For a floating-point receiver, if the exponent of the resultant value is too large or
too small to be represented in the receiver field, the floating-point overflow and
floating-point underflow exceptions are signaled, respectively.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
numeric scalar receiver operand is either positive, negative, or zero.
Unordered-The value assigned a floating-point receiver operand is NaN.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

04 External data object not found

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

02 Decimal data

06 Floating-point overflow

07 Floating-point underlow

09 Floating-point invalid operand

OA Size

OC Invalid floatin-point conversion

OA Floating-point inexact result

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

22 Object access

Operands
1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

1-152 AS/400 MI Functional Reference

Copy Numeric Value (CPYNV)

Operands
Exception 1 2 Other

L 01 Object not found X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op code extender field X

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

09 Invalid branch target operand X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-153

Divide (DIV)

1.48 Divide (DIY)

Optional Forms

Op Code (Hex)
104F

Operand 1
Quotient

Operand 2
Dividend

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Op Code
Mnemonic (Hex) Form Type

DIVS 114F Short
DIVR 124F Round
DIVSR 134F Short, Round
DIVI 184F Indicator
DIVIS 194F Indicator, Short
DIVIR 1A4F Indicator, Round

Operand 3
Divisor

DIVISR 1B4F Indicator, Short, Round
DIVB 1C4F Branch
DIVBS 1D4F Branch, Short
DIVBR 1E4F Branch, Round
DIVBSR 1F4F Branch, Short, Round

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands wi" immediately follow the last operand listed above. See Chapter 1. ..,J
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Quotient is the result of dividing the Dividend by the Divisor.

Operands can have floating-point, packed or zoned decimal, signed or unsigned
binary type.

Source operands are the Dividend and Divisor. The receiver operand is the
Quotient.

If operands are not of the same type, source operands are converted according
to the following rules:

1. If anyone of the operands has floating point type, source operands are con- ~.
verted to floating point type.,

1-154 AS/400 MI Functional Reference

L

L

L

L

Divide (DIV)

2. Otherwise, if anyone of the operands has zoned or packed decimal type,
source operands are converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Floating point operands
are divided using floating point division. Packed decimal operands are divided
using packed decimal division. Unsigned binary division is used with unsigned
source operands. Signed binary operands are divided using two's complement
binary division.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary division execute faster than either packed decimal or
floating point division.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

If the divisor has a numeric value of zero, a zero divide or floating-point zero
divide exception is signaled respectively for fixed-point versus floating-point
operations. If the dividend has a value of zero, the result of the division is a
zero quotient value.

If the divisor has a numeric value of 0, a zero divide exception is Signaled. If the
dividend has a value of 0, the result of the division is a zero value quotient.

For a decimal operation, the precision of the result of the divide operation is
determined by the number of fractional digit positions specified for the quotient.
In other words, the divide operation will be performed so as to calculate a
resultant quotient of the same precision as that specified for the quotient
operand. If necessary, internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure the correct precision for
the resultant quotient value. These internal alignments are not subject to
detection of the decimal point alignment exception. An internal quotient value
will be calculated for any combination of decimal attributes which may be speci­
fied for the instruction's operands. However, the assignment of the result to the
quotient operand is subject to detection of the size exception thereby limiting the
assignment to, at most, the rightmost 31 digits of the calculated result.

Floating-point division uses exponent subtraction and significand division.

If the dividend operand is shorter than the divisor operand, it is logically
adjusted to the length of the divisor operand.

For fixed-point computations and for the significand division of a floating-point
computation, the division operation is performed according to the rules of
algebra. Unsigned binary is treated as a positive number for the algebra.

For a floating-point computation, the operation is. performed as if to infinite preci­
sion.

The result of the operation is copied into the quotient operand. If this operand is
not the same type as that used in performing the operation, the resultant value
is converted to its type. If necessary, the resultant value is adjusted to the

Chapter 1. Computation and Branching Instructions 1-155

Divide (DIV)

Exceptions

length of the quotient operand, aligned at the assumed decimal point of the quo­
tient operand, or both before being copied to it.

If significant digits are truncated on the left end of the resultant value, a size
exception is signaled.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

For the optional round form of the instruction, specification of a floating-point
receiver operand is invalid.

For fixed-point operations in programs that request to be notified of size
exceptions, if nonzero digits are truncated from the left end of the resultant
value, a size exception is signaled.

For floating-point operations that involve a fixed-point receiver field, if nonzero
digits would be truncated from the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point quotient operand, if the exponent of the reSUltant value is
either too large or too small to be represented in the quotient field, the floating­
point overflow and floating-point underflow exceptions are signaled, respectively.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
numeric scalar quotient is positive, negative, or zero. Unordered-The value
assigned a floating-point quotient operand is NaN.

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

06 Floating-point overflow X

07 Floating-point underlow X

09 Floating-point invalid operand X X X

OA Size X

OB Zero divide X

OC Invalid floatin-point conversion X

OD Floating-point inexact result X

1-156 AS/400 MI Functional Reference

.j

.j

Divide (DIV)

Operands
Exception 1 2 3 Other

OE Floating-point divide by zero X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

L 05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-157

Divide with Remainder (DIVREM)

1.49 Divide with Remainder (DIVREM)

Optional Forms

Op Code (Hex)
1074

Operand 1
Quotient

Operand 2
Dividend

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4: Numeric variable scalar.

Operand 3
Divisor

(The optional forms apply to the quotient only.)

Op Code
Mnemonic (Hex) Form Type

DIVREMS 1174 Short
DIVREMR 1274 Round
DIVREMSR 1374 Short, Round
DIVREMI 1874 Indicator
DIVREMIS 1974 Indicator, Short
DIVREMIR 1A74 Indicator, Round
DIVREMISR 1B74 Indicator, Short, Round
DIVREMB 1C74 Branch
DIVREMBS 1074 Branch, Short
DIVREMBR 1E74 Branch, Round
DIVREMBSR 1F74 Branch, Short, Round

Operand 4
Remainder

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Quotient is the result of dividing the Dividend by the Divisor.
The Remainder is the Dividend minus the product of the Divisor and Quotient.

Operands can have packed or zoned decimal, signed or unsigned binary type.

Source operands are the Dividend and Divisor. The receiver operands are the
Quotient and Remainder.

If operands are not of the same type, source operands are converted according
to the following rules:

1-158 AS/400 MI Functional Reference

L

L

Divide with Remainder (DIVREM)

1. If anyone of the operands has zoned or packed decimal type, source oper­
ands are converted to packed decimal.

2. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Packed decimal operands
are divided using packed decimal division. Unsigned binary division is used with
unsigned source operands. Signed binary operands are divided using two's
complement binary division.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary division execute faster than packed decimal division.

Floating-point is not supported for this instruction.

If the divisor operand has a numeric value of 0, a zero divide exception is sig­
naled. If the dividend operand has a value of 0, the result of the division is a
zero value quotient and remainder.

For a decimal operation, the precision of the result of the divide operation is
determined by the number of fractional digit positions specified for the quotient.
In other words, the divide operation will be performed so as to calculate a
resultant quotient of the same precision as that specified for the quotient
operand. If necessary, internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure the correct precision for
the resultant quotient value. These internal alignments are not subject to
detection of the decimal point alignment exception. An internal quotient value
will be calculated for any combination of decimal attributes which may be speci­
fied for the instruction's operands. However, the assignment of the result to the
quotient operand is subject to detection of the size exception thereby limiting the
assignment to, at most, the rightmost 31 digits of the calculated result.

If the dividend operand is shorter than the divisor operand, it is logically
adjusted to the length of the divisor operand.

The division operation is performed according to the rules of algebra. Unsigned
binary is treated as a positive number for the algebra. The quotient result of the
operation is copied into the quotient operand. If this operand is not the same
type as that used in performing the operation, the resultant value is converted to
its type. If necessary, the resultant value is adjusted to the length of the quotient
operand, aligned at the assumed decimal point of the quotient operand, or both
before being copied to it. If significant digits are truncated on the left end of the
resultant value, a size exception is signaled.

After the quotient numeric value has been determined, the numeric value of the
remainder operand is calculated as follows:

Remainder = Dividend - (Quotient*Divisor)

If the optional round form of this instruction is being used, the rounding applies
to the quotient but not the remainder. The quotient value used to calculate the
remainder is the resultant value of the division. The resultant value of the calcu­
lation is copied into the remainder operand. The sign of the remainder is the
same as that of the dividend operand unless the remainder has a value of 0, in
which case its sign is positive. If thl~ remainder operand is not the same type as

Chapter 1. Computation and Branching Instructions 1-159

Divide with Remainder (DIVREM)

Exceptions

that used in performing the operation, the resultant value is converted to its type.
If necessary, the resultant value is adjusted to the length of the remainder
operand, aligned at the assumed decimal point of the remainder operand, or
both before being copied to it. If significant digits are truncated off the left end of
the resultant value, a size exception is signaled.

If a decimal to binary conversion causes a size exception to be signaled (in pro­
grams that request size exceptions to be signalled), the binary value contains
the correct truncated result only if the decimal value contains 15 or fewer signif­
icant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric scalar quotient is pos­
itive, negative, or O.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

OC Computation

02 Decimal data

OA Size

OB Zero divide

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

22 Object access

24

01 Object not found

02 Object destroyed

03 Object suspended

Pointer specification

01 Pointer does not exist

02 Pointer type invalid

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

X

X

X

X

X

X

X

X

4

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

1-160 AS/400 MI Functional Reference

Divide with Remainder (DIVREM)

Operands
Exception 1 2 3 4 Other
2A Program creation

05 Invalid op code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X

OC Invalid operand odt reference X X X X

00 Reserved bits are not zero X X X X X

2C Program execution

04 Invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

L

Chapter 1. Computation and Branching Instructions 1-161

Edit (EDIT)

1.50 Edit (EDIT)
Op Code (Hex)

10E3

Operand Operand Operand
1 2 3
Receiver Source Edit

Mask

Operand 1: Character variable scalar or data-pointer-defined character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric scalar.

Operand 3: Character variable scalar or data-pointer-defined character scalar.

Description: The value of a numeric scalar is transformed from its internal form
to character form suitable for display at a source/sink device. The following
general editing functions can be performed during transforming of the source
operand to the receiver operand:

• Unconditional insertion of a source value digit with a zone as a function of
the source value's algebraic sign

• Unconditional insertion of a mask operand character string

• Conditional insertion of one of two possible mask operand character strings
as a function of the source value's algebraic sign

• Conditional insertion of a source value digit or a mask operand replacement
character as a function of source value leading zero suppression

• Conditional insertion of either a mask operand character string or a series of ..J
replacement characters as a function of source value leading zero sup-
pression

• Conditional floating insertion of one of two possible mask operand character
strings as a function of both the algebraic sign of the source value and
leading zero suppression

The operation is performed by transforming the source (operand 2) under control
of the edit mask (operand 3) and placing the result in the receiver (operand 1).

The mask operand (operand 3) is limited to no more than 256 bytes.

Mask Syntax: The source field is converted to packed decimal format. The edit
mask contains both control character and data character strings. Both the edit
mask and the source fields are processed left to right, and the edited result is
placed in the result field from left to right. If the number of digits in the source
field is even, the four high-order bits of the source field are ignored and not
checked for validity. All other source digits as well as the sign are checked for
validity, and a decimal data exception is signaled when one is invalid. Overlap­
ping of any of these fields gives unpredictable results.

Nine fixed value control characters can be in the edit mask, hex AA through hex
AD and hex AF through hex B3. Four of these control characters specify strings
of characters to be inserted into the result field under certain conditions; and the
other five indicate that a digit from the source field should be checked and the .~

appropriate action taken. ""'"

1-162 AS/400 MI Functional Reference

Edit (EDIT)

One variable value control character can be in the edit mask. This control char­
acter indicates the end of a string of characters. The value of the end-of-string
character can vary with each execution of the instruction and is determined by
the value of the first character in the edit mask. If the first character of the edit
mask is a value less than hex 40, then that value is used as the end-of-string
character. If the first character of the edit mask is a value equal to or greater
than hex 40, then hex AE is used as the end-of-string character.

A significance indicator is set to the off state at the start of the execution of this
instruction. It remains in this state until a nonzero source digit is encountered in
the source field or until one of the four unconditional digits (hex AA through hex
AD) or an unconditional string (hex 83) is encountered in the edit mask.

When significance is detected, the selected floating string is overlaid into the
result field immediately before (to the left of) the first significant result character.

When the significance indicator is set to the on state, the first significant result
character has been reached. The state of the significance indicator determines
whether the fill character or a digit from the source field is to be inserted into the
result field for conditional digits and characters in conditional strings specified in
the edit mask field. The fill character is a hex 40 until it is replaced by the first
character following the floating string specification control character (hex 81).

When the significance indicator is in the off state:

• A conditional digit control character in the edit mask causes the fill character
to be moved to the result field.

• A character in a conditional string in the edit mask causes the fill character
to be moved to the result field.

When the significance indicator is in the on state:

• A conditional digit control character in the edit mask causes a source digit to
be moved to the result field.

• A character in a conditional string in the edit mask is moved to the result
field.

The following control characters are found in the edit mask field.

End-of-String Character: One of these control characters (a value less than hex
40 or hex AE) indicates the end of a character string and must be present even if
the string is nUll.

Static Field Character:

Hex AF This control character indicates the start of a static field. A static field
is used to indicate that one of two mask character strings immediately
following this character is to be inserted into the result field, depending
upon the algebraic sign of the source field. If the sign is positive, the
first string is to be inserted into the result field; if the sign is negative,
the second string is to be inserted.

Static field format:

Hex AF positive string .. .less than hex 40 or hex AE negative string ..
. hex AE

Chapter 1. Computation and Branching Instructions 1-163

Edit (EDIT)

Floating String Specification Field Character:

Hex 81 This control character indicates the start of a floating string specifica- '\
tion field. The first character of the field is used as the fill character; ..."
following the fill character are two strings delimited by the end-of-string
control character. If the algebraic sign of the source field is positive,
the first string is to be overlaid into the result field; if the sign is nega-
tive, the second string is to be overlaid.

The string selected to be overlaid into the result field, called a floating
string, appears immediately to the left of the first significant result char­
acter. If significance is never set, neither string is placed in the result
field.

Conditional source digit positions (hex 82 control characters) must be
provided in the edit mask immediately following the hex 81 field to
accommodate the longer of the two floating strings; otherwise, a length
conformance exception is signaled. For each of these B2 strings, the fill
character is inserted into the result field, and source digits are not con- .. "
sumed. This ensures that the floating string never overlays bytes pre- .."
ceding the receiver operand.

Floating string specification field format:

Hex B1 fill character positive string. .. end-of-string character nega­
tive
string ... end-of-string character

Hex B2 .. .

Conditional String Character:

Hex BO This control character indicates the start of a conditional string, which
consists of any characters delimited by the end-of-string control char­
acter. Depending on the state of the significance indicator, this string
or fill characters replacing it is inserted into the result field. If the sig­
nificance indicator is off, a fill character for every character in the con­
ditional string is placed in the result field. If the indicator is on, the
characters in the conditional string are placed in the result field.

Conditional string format:

Hex BO conditional string ... end-of-string character

Unconditional String Character:

Hex B3 This control character turns on the significance indicator and indicates
the start of an unconditional string that consists of any characters
delimited by the end-of-string control character. This string is uncondi­
tionally inserted into the result field regardless of the state of the signif­
icance indicator. If the indicator is off when a B3 control character is
encountered, the appropriate floating string is overlaid into the result
field before (to the left of) the B3 unconditional string (or to the left of
where the unconditional string would have been if it were not nUll).

Unconditional string format:

Hex B3 unconditional string ... end-of-string character

Control Characters That Correspond to Digits In the Source Field:

1-164 AS/400 MI Functional Reference

L

L

Table 1-1 (Page

Mask
Character

AF

AA

Edit (EDIT)

Hex B2 This control character specifies that either the corresponding source
field digit or the floating string (hex B1) fill character is inserted into the
result field, depending on the state of the significance indicator. If the
significance indicator is off, the fill character is placed in the result field;
if the indicator is on, the source digit is placed. When a source digit is
moved to the result field, the zone supplied is hex F. When significance
(that is, a nonzero source digit) is detected, the floating string is over­
laid to the left of the first significant character.

Control characters hex AA, hex AB, hex AC, and hex AD turn on the significance
indicator. If the indicator is off when one of these control characters is encount­
ered, the appropriate floating string is overlaid into the result field before (to the
left of) the result digit.

Hex AA This control character specifies that the corresponding source field digit
is unconditionally placed in the 4 low-order bits of the result field with
the zone set to a hex F.

Hex AB This control character specifies that the corresponding source field digit
is unconditionally placed in the result field. If the sign of the source
field is positive, the zoned portion of the digit is set to hex F (the pre­
ferred positive sign); if the sign is negative, the zone portion is set to
hex D (the preferred negative sign).

Hex AC This control character specifies that the corresponding source field digit
is unconditionally placed in the result field. If the algebraic sign of the
source field is positive, the zone portion of the result is set to hex F (the
preferred positive sign); otherwise, the source sign field is moved to the
result zone field.

Hex AD This control character specifies that the corresponding source field digit
is unconditionally placed in the result field. If the algebraic sign of the
source field is negative, the zone is set to hex D (the preferred negative
sign); otherwise, the source field sign is moved to the zone position of
the result byte.

The following table provides an overview of the results obtained with the valid
edit conditions and sequences.

of 3). Valid Edit Conditions and Results
Previous
Significance Source
Indicator Digit

Off/On Any

Off/On Any

Off 0-9

Off 0-9

On 0-9

Source
Sign

Positive

Negative

Positive

Negative

Any

Result
Character(s)

Positive string
inserted

Negative string
inserted

Positive floating
string overlaid; hex
F, source digit

Negative floating
string overlaid; hex
F, source digit

Hex F, source digit

Resulting
Significance
Indicator

No Change

No Change

On

On

On

Chapter 1. Computation and Branching Instructions 1-165

Edit (EDIT)

Table 1-1 (Page 2 of 3). Valid Edit Conditions and Results
Previous Resulting

.~ Mask Significance Source Source Result Significance
Character Indicator Digit Sign Character(s) Indicator

AB Off 0-9 Positive Positive floating On
string overlaid; hex
F, source digit

Off 0-9 Negative Negative floating On
string overlaid; hex
D, source digit

On 0-9 Positive Hex F, source digit On

On 0-9 Negative Hex D, source digit On

AC Off 0-9 Positive Positive floating
string overlaid; hex
F, source digit

Off 0-9 Negative Negative floating On ..J string overlaid;
source sign and digit

On 0-9 Positive Hex F, source digit On

On 0-9 Negative Source sign and digit On

AD Off 0-9 Positive Positive floating On
string overlaid;
source sign and digit

Off 0-9 Negative Negative floating On
string overlaid; hex
D, source digit

On 0-9 Positive Source sign and digit On

On 0-9 Negative Hex D, source digit On

BO Off Any Any Insert fill character Off
for each BO string
character

On Any Any Insert BO character On
string

B1 (including Off Any Any Insert the fill char- No Change
necessary B2s) acter for each B2

character that corre-
sponds to a char-
acter in the longer of
the two floating
strings

B2 (not for a B1 Off 0 Any Insert fill character Off
field)

Off 1-9 Positive Overlay positive On
floating string and
insert hex F, source
digit

Off 1-9 Negative Overlay negative On
floating string and
insert hex F, source
digit

1-166 AS/400 MI Functional Reference

L

Table

Mask

1-1 (Page 3 of 3). Valid Edit Conditions and Results
Previous

Edit (EDIT)

Character
Significance
Indicator

Source
Digit

Source
Sign

Result
Character(s)

Resulting
Significance
Indicator

On 0-9

B3 Off Any

Off Any

On Any

Note:

Any

Positive

Negative

Any

Hex F, source digit

Overlay positive
floating string and
insert B3 character
string

Overlay negative
floating string and
insert B3 character
string

Insert B3 character
string

On

On

On

1. Any character is a valid fill character, including the end-of-string character.
2. Hex AF, hex B1, hex BO, and hex B3 strings must be terminated by the end-of-string character even if they are

null strings.
3. If a hex B1 field has not been encountered (specified) when the significance indicator is turned on, the floating

string is considered to be a null string and is therefore not used to overlay into the result field.
4. If the positive and negative strings of a static field are of unequal length, additional static fields are necessary

to ensure that the sum of the lengths of the positive strings equal the sum of the lengths of the negative
strings; otherwise, a length conformance exception is signaled because the receiver length does not corre­
spond to the length implied by the edit mask and source field sign.

The following figure indicates the valid ordering of control characters in an edit
mask field.

Chapter 1. Computation and Branching Instructions 1-167

Edit (EDIT)

AA, AB, AC, AD

Control Character Y

Control
Characte rX

AF

BO

81

B2

B3

0

0

1

1

1

0

AF BO

0 2

0 0

0 0

0 1

0 0

0 2

B1 B2 B3

2 2 0

0 0 0

2 0 1

3 1 1

2 0 1

2 2 0

MCO"~

Explanation:

Condition Definition

o Both X and Y can appear in the edit mask field in either order.
1 Y cannot precede X.
2 X cannot precede Y.
3 Both control characters (two B1 's) cannot appear in an edit mask field.

Violation of any of the above rules will result in an edit mask syntax exception.

Figure 1-6. Edit Mask Field Control Characters

The following steps are performed when the editing is done:

• Convert Source Value to Packed Decimal

• Edit

The numeric value in the source operand is converted to a packed
decimal intermediate value before the editing is done. If the source
operand is binary, then the attributes of the intermediate packed field
before the edit are calculated as follows:

Binary(2) = packed (5,0) or
Binary(4) = packed (10,0)

- The editing of the source digits and mask insertion characters into the
receiver operand is done from left to right.

• Insert Floating String into Receiver Field

If a floating string is to be inserted into the receiver field, this is done
after the other editing.

Edit Digit Count Exception: An edit digit count exception is signaled when:

• The end of the source field is reached and there are more control characters
that correspond to digits in the edit mask field.

1-168 AS/400 MI Functional Reference

Exceptions

Edit (EDIT)

• The end of the edit mask field is reached and there are more digit positions
in the source field.

Edit Mask Syntax Exception: An edit mask syntax exception is signaled when an
invalid edit mask control character is encountered or when a sequence rule is
violated.

Length Conformance Exception: A length conformance exception is signaled
when:

• The end of the edit mask field is reached and there are more character posi­
tions in the result field.

• The end of the result field is reached and more positions remain in the edit
mask field.

• The number of 82s following a 81 field cannot accommodate the longer of
the two floating strings.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 3 Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X

04 Edit digit count X

05 Edit mask syntax X

08 Length conformance X

10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

Chapter 1. Computation and Branching Instructions 1-169

Edit (EDIT)

Operands
Exception 1 2 3 Other

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

..J 08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

~ 01 Scalar type invalid X X X

02 Scalar attributes invalid X

36 Space management

01 space extension/truncation X

1-170 AS/400 MI Functional Reference

Exchange Bytes (EXCHBY)

1.51 Exchange Bytes (EXCHBY)

Exceptions

Op Code (Hex) Operand Operand
1 2

10CE Source Source
1 2

Operand 1: Character variable scalar (fixed-length) or numeric variable scalar.

Operand 2: Character variable scalar (fixed-length) or numeric variable scalar.

Description: The logical character string values of the two source operands are
exchanged. The value of the second source operand is placed in the first source
operand and the value of the first source operand is placed in the second
operand.

The operands can be either character or numeric. Any numeric operands are
interpreted as logical character strings. Both operands must have the same
length.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

Chapter 1. Computation and Branching Instructions 1-171

Exchange Bytes (EXCHBY)

Operands
Exception 1 2 Other
24 Pointer specification ;J

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X ;J
36 Space management

01 space extension/truncation X

1-172 AS/400 MI Functional Reference

Exclusive Or (XOR)

1.52 Exclusive Or (XOR)

Optional Forms

Op Code (Hex)
109B

Operand 1
Receiver

Operand 2
Source 1

Operand 3
Source 2

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Op Code
Mnemonic (Hex) Form Type

XORS 119B Short

XORI 189B Indicator

XORIS 199B Indicator, Short

XORB 1C9B Branch

XORBS 1 D9B Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: The Boolean EXCLUSIVE OR operation is performed on the string
values in the source operands. The resulting string is placed in the receiver
operand.

The operands may be character or numeric scalars. They are both interpreted
as bit strings. Substringing is supported for both character and numeric oper­
ands.

The length of the operation is equal to the length of the longer of the two source
operands. The shorter of the two operands is padded on the right. The opera­
tion begins with the two source operands left-adjusted and continues bit by bit
until they are completed.

The bit values of the result are determined as follows:

Source 1
Bit
1

o

Source 2
Bit
1

o

Result
Bit
o
o

Chapter 1. Computation and Branching Instructions 1-173

Exclusive Or (XOR)

Exceptions

Source 1
Bit
1

o

Source 2
Bit
o

Result
Bit
1

The result value is then placed (left-adjusted) in the receiver operand with trun­
cating or padding taking place on the right.

The pad value used in this instruction is a hex 00.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1, 2, and 3. The effect of specifying
a null substring reference for one source operand is that the other source
operand is EXCLUSIVE ORed with an equal length string of all hex OOs. When a
null substring reference is specified for both source operands, the result is all
zero and the instruction's resultant condition is zero. When a null substring ref­
erence is specified for the receiver, a result is not set and the instruction's
resultant condition is zero regardless of the values of the source operands. ...)

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

When the receiver operand is a numeric variable scalar, it is possible that the
result produced will not be a valid value for the numeric type. This can occur
due to padding with hex 00, due to truncation, or due to the resultant bit string
produced by the instruction. The instruction completes normally and signals no
exceptions for these conditions.

Resultant Conditions: Zero-The bit value for the bits of the scalar receiver
operand is either all zero or a null substring reference is specified for the
receiver. Not zero-The bit value for the bits of the scalar receiver operand is not
all zero.

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 lJartial system object damage X X X X
~

1-174 AS/400 MI Functional Reference

Exclusive Or (XOR)

Operands
Exception 1 2 3 Other
1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OA invalid operand length X X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-175

Extended Character Scan (ECSCAN)

1.53 Extended Character Scan (ECSCAN)

Optional Forms

Op Code (Hex)
1004

Operand 1
Receiver

Operand 2
Base

Operand 3
Compare
operand

Operand 1: Binary variable scalar or binary array.

Operand 2: Character variable scalar.

Operand 3: Character scalar.

Operand 4: Character(1) scalar.

Mnemonic

ESCANI

ESCANB

Op Code
(Hex)

1804

1C04

Form Type

Indicator

Branch

Extender: Branch or indicator options.

Operand 4
Mode
operand

Either the branch option or indicator option is required by the instruction. The
extender field is required along with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and optional for operands 4 and 5.
See Chapter 1. "Introduction" for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction scans the string value of the base operand for
occurrences of the string value of the compare operand and indicates the rela­
tive locations of these occurrences in the receiver operand. The character string
value of the base operand is scanned for occurrences of the character string
value of the compare operand under control of the mode operand and mode
control characters embedded in the base string.

The base and compare operands must both be character strings. The length of
the compare operand must not be greater than that of the base string. The base
and compare operand are interpreted as containing a mixture of 1-byte (simple)
and 2-byte (extended) character codes. The mode, simple or extended, with
which the string is to be interpreted, is controlled initially by the mode operand
and thereafter by mode control characters embedded in the strings. The mode
control characters are as follows:

• Hex OE = Shift out of simple character mode to extended mode.

• Hex OF = Shift into simple character mode from extended mode. This is
recognized only if it occurs in the first byte position of an extended
character code.

The format of the mode operand is as follows:

• Mode operand

- Operand 2 initial mode indicator

Char(1)

Bit 0

1-176 AS/400 M I Functional Reference

Extended Character Scan (ECSCAN)

a = Operand starts in simple character mode.
1 = Operand starts in extended character mode.

Operand 3 initial mode indicator Bit 1

o = Operand starts in simple character mode.
1 = Operand starts in extended character mode.

Reserved (binary 0) Bits 2-7

The operation begins at the left end of the base string and continues character
by character, left to right. When the base string is interpreted in simple char­
acter mode, the operation moves through the base string 1 byte at a time. When
the base string is interpreted in extended character mode, the operation moves
through the base string 2 bytes at a time.

The compare operand value is the entire byte string specified for the compare
operand. The mode operand determines the initial mode of the compare
operand. The first character of the compare operand value is assumed to be a
valid character for the initial mode of the compare operand and not a mode
control character. Mode control characters in the compare operand value partic­
ipate in comparisons performed during the scan function except that a mode
control character as the first character of the compare operand causes unpre­
dictable results.

The base string is scanned until the mode of the characters being processed is
the same as the initial mode of the compare operand value. The operation con­
tinues comparing the characters of the base string with those of the compare
operand value. The starting character of the characters being compared in the
base string is always a valid character for the initial mode of the compare
operand value. A mode control character encountered in the base string that
changed the base string mode to match the initial mode of the compare operand
value does not participate in the comparison. The length of the comparison is
equal to the length of the compare operand value and the comparison is per­
formed the same as performed by the Compare Bytes Left Adjusted instruction.

If a set of bytes that matches the compare operand value is found, the binary
value for the relative location of the leftmost base string character of the set of
bytes is placed in the receiver operand.

If the receiver operand is a scalar, only the first occurrence of the compare
operand is noted. If the receiver operand is an array, as many occurrences as
there are elements in the array are noted.

If a mode change is encountered in the base string, the base string is again
scanned until the mode of the characters being processed is the same as the
initial mode of the compare operand value, and then the comparisons are
resumed.

The operation continues until no more occurrences of the compare operand
value can be noted in the receiver operand or until the number of bytes
remaining to be scanned in the base string is less than the length of the
compare operand value. When the second condition occurs, the receiver value
is set to zero. If the receiver operand is an array, all its remaining elements are
also set to zero.

Chapter 1. Computation and Branching Instructions 1-177

Extended Character Scan (ECSCAN)

Exceptions

If the escape code encountered result condition is specified (through a branch or
indicator option), verifications are performed on the base string as it is scanned.
Each byte of the base string is checked for a value less than hex 40. When a)
value less than hex 40 is encountered, it is then determined if it is a valid mode ..",
control character.

If a byte value of less than hex 40 is not a valid mode control character, it is
considered to be an escape code. The binary value for the relative location of
the character (simple or extended) being interrogated is placed in the receiver
operand, and the appropriate action (indicator or branch) is performed according
to the specification of the escape code encountered result condition. If the
receiver operand is an array, the next array element after any elements set with
locations or prior occurrences of the compare operand, is set with the location of
the character containing the escape code and all the remaining array elements
are set to zero.

If the escape encountered result condition is not specified, verifications of the
character codes in the base string are not performed.

Resultant Conditions: Positive or zero-The numeric value(s) of the receiver
operand is either positive or zero. In the case where the receiver operand is an
array, the resultant condition is zero if all elements are zero. Escape code
encountered-An escape character code value was encountered during the scan­
ning of the base string. Substring operand references that allow for a null sub­
string reference (a length value of zero) may not be specified for this instruction.

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment violation X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OC Computation

08 length conformance X X X

10 Damage encountered

04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

~

j

j

1-178 AS/400 M I Functional Reference

Extended Character Scan (ECSCAN)

Operands
Exception 1 2 3 4 Other

L 22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X X

07 invalid operand attribute X X X X

L 08 invalid operand value range X X X X

09 invalid branch target operand X

OA invalid operand length X X

OC invalid operand odt reference X X X X

00 reserved bits are not zero X X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-179

Extract Exponent (EXTREXP)

1.54 Extract Exponent (EXTREXP)

Optional Forms

Op Code (Hex)
1072

Operand 1
Receiver

Operand 1: Binary variable scalar.

Operand 2: Floating-point scalar.

Mnemonic

EXTREXPI

EXTREXPB

Op Code
(Hex)

1872

1C72

Operand 2
Source

Form Type

Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operations immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction extracts the exponent portion of a floating-point
scalar source operand and places it into the receiver operand as a binary vari­
able scalar.

The operands must be the numeric types indicated because no conversions are
performed.

The source floating-point field is interrogated to determine the binary floating­
point value represented and either a signed exponent, for number values, or a
special identifier, for infinity and NaN values, is placed in the binary variable
scalar receiver operand.

The value to be assigned to the receiver, is dependent upon the floating-point
value represented in the source operand as described below. It is a signed
binary integer value and a numeric assignment of the value is made to the
receiver.

When the source represents a normalized number, the biased exponent con­
tained in the exponent field of the source is converted to the corresponding
signed exponent by subtracting the bias of 127 for short or 1023 for long to deter­
mine the value to be returned. The resulting value ranges from -126 to + 127 for
short format, -1022 to + 1023 for long format. When the receiver is unsigned
binary a negative exponant will result in a size exception unless size exceptions
are suppressed by using the suppress binary size exception program attribute
on the CRTPG instruction.

When the source represents a denormalized number, the value to be returned is
determined by adjusting the signed exponent of the denormalized number. The
signed exponent of a denormalized number is a fixed value of -126 for the short

1-180 AS/400 MI Functional Reference

L

Exceptions

Extract Exponent (EXTREXP)

format and -1022 for the long format. It is adjusted to the value the signed expo­
nent would be if the source value was adjusted to a normalized number. The
resulting value ranges from -127 to -149 for short format, -1023 to -1074 for long
format.

When the source represents a value of zero, the value returned is zero.

When the source represents infinity, the value returned is + 32767.

When the source represents a not-a-number, the value returned is -32768 for a
signed binary receiver. For an unsigned binary(2) a value of 32768 is returned,
and for a unsigned binary(4) a value of 4294934528 is returned.

Resultant Conditions: Normalized-The source operand value represents a nor­
malized binary floating-point number. The signed exponent is stored in the
receiver. Denormalized-The source operand value represents a denormalized
binary floating-point number. An adjusted signed exponent is stored in the
receiver. Infinity-The source operand value represents infinity. The receiver is
set with a value of + 32767. NaN-The source operand value represents a not-a­
number. The receiver is set with a value of -32768 when signed binary, with a
value of 32768 when unsigned binary(2), and with a value of 4294934528 when
unsigned binary(4).

Exception

06 Addressing

01 space addressing violation

02 boundary alignment violation

03 range

06 optimized addressability invalid

08 Argument/parameter

10

01 parameter reference violation

Damage encountered

04 System object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

24 Pointer specification

Operands
1 2 Other

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 1. Computation and Branching Instructions 1-181

Extract Exponent (EXTREXP)

Operands
Exception 1 2 Other

01 pointer does not exist X X

~ 02 pointer type invalid X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

09 invalid branch target operand X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

1-182 AS/400 MI Functional Reference

L

Extract Magnitude (EXTRMAG)

1.55 Extract Magnitude (EXTRMAG)

Optional Forms

Op Code (Hex)
1052

Operand 1
Receiver

Operand 2
Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

op Code
Mnemonic (Hex) Form Type

EXTRMAGS 1152 Short

EXTRMAGI 1852 Indicator

EXTRMAGIS 1952 Indicator, Short

EXTRMAGB 1C52 Branch

EXTRMAGBS 1052 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The numeric value of the source operand is converted to its abso­
lute value and placed in the numeric variable scalar receiver operand.

The absolute value is formed from the source operand as follows:

• Signed binary

- Extract the numeric value and form twos complement if the source
operand is negative.

• Unsigned signed binary

- Extract the numeric value.

• Packed/Zoned

- Extract the numeric value and force the source operand's sign to posi­
tive.

• Floating-point

- Extract the numeric value and force the significand sign to positive.

The result of the operation is copied into the receiver operand according to the
rules of the Copy Numeric Value instruction. If this operand is not the same type

Chapter 1. Computation and Branching Instructions 1-183

Extract Magnitude (EXTRMAG)

Exceptions

as that used in performing the operation, the resultant value is converted to its
type. If necessary, the resultant value is adjusted to the length of the receiver
operand, or aligned at the assumed decimal point of the receiver operand, or
both before being copied to it. If significant digits are truncated on the left end of
the resultant value, a size exception is signaled. An attempt to extract the mag­
nitude of a maximum negative binary value to a binary scalar of the same size
also results in a size exception.

When the source floating-point operand represents not-a-number, the sign field
of the source is not forced to positive and this value is not altered in the
receiver.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

For a fixed-point operation, if significant digits are truncated from the left end of
the resultant value, a size exception is signaled. An attempt to extract the abso­
lute value of a maximum negative binary value into a binary scalar of the same
size also results in a size exception.

For floating-point operations that involve a fixed-point receiver field, if nonzero
digits would be truncated from the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point receiver operand, if the exponent of the resultant value is
either too large or too small to be represented in the receiver field, the floating­
point overflow or the floating-point underflow exception is signaled.

Resultant Conditions: Positive or zero-The algebraic value of the receiver
operand is either positive or zero. Unordered-The value assigned a floating­
point receiver operand is NaN.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OC Computation

02 decimal data X

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X

OA size X

1-184 AS/400 MI Functional Reference

Extract Magnitude (EXTRMAG)

Operands
Exception 1 2 Other

00 floating-point inexact result X

10 Damage encountered

04 system object damage X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

L
01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

09 invalid branch target operand X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

L 2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-185

Multiply (MUL T)

1.56 Multiply (MUL T)

Optional Forms

Op Code (Hex)
104B

Operand 1
Product

Operand 2
Multipli­
cand

Operand 3
Multiplier

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Op Code
Mnemonic (Hex) Form Type

MULTS 114B Short

MULTR 124B Round

MULTSR 134B Short, Round

MULTI 184B Indicator

MULTIS 194B Indicator, Short

MULTIR 1A4B Indicator, Round

MULTISR 1B4B Indicator, Short, Round

MULTB 1C4B Branch

MULTBS 104B Branch, Short

MULTBR 1E4B Branch, Round

MULTBSR 1 F4B Branch, Short, Round

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Product is the result of multiplying the Multiplicand and the
Multiplier.

Operands can have floating-point, packed or zoned decimal, signed or unsigned
binary type.

Source operands are the Multiplicand and Multiplier. The receiver operand is
the Product.

1-186 AS/400 MI Functional Reference

Multiply (MULT)

If operands are not of the same type, source operands are converted according
to the following rules:

1. If anyone of the operands has floating point type, source operands are con­
verted to floating point type.

2. Otherwise, if anyone of the operands has zoned or packed decimal type,
source operands are converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Source operands are multiplied according to their type. Floating point operands
are multiplied using floating point multiplication. Packed decimal operands are
multiplied using packed decimal multiplication. Unsigned binary multiplication is
used with unsigned source operands. Signed binary operands are multiplied
using two's complement binary multiplication.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary multiplication execute faster than either packed decimal or
floating point multiplication.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

If the multiplicand operand or the multiplier operand has a value of 0, the result
of the multiplication is a zero product.

For a decimal operation, no alignment of the assumed decimal point is per­
formed for the multiplier and multiplicand operands.

The operation occurs using the specified lengths of the multiplicand and multi­
plier operands with no logical zero padding on the left necessary.

Floating-point multiplication uses exponent addition and significand multipli­
cation.

For nonfloating-point computations and for significand multiplication for floating­
point operations, the multiplication operation is performed according to the rules
of algebra. Unsigned binary operands are treated as positive numbers for the
algebra.

The result of the operation is copied into the product operand. If this operand is
not the same type as that used in performing the operation, the resultant value
is converted to its type. If necessary, the resultant value is adjusted to the
length of the product operand, aligned at the assumed decimal point of the
product operand, or both before being copied to it.

For the optional round form of the instruction, specification of a floating-point
receiver operand is invalid.

For fixed-point operations in programs that request to be notified of size
exceptions, if nonzero digits are truncated from the left end of the reSUltant
value, a size exception is signaled.

Chapter 1. Computation and Branching Instructions 1-187

Multiply (MULl)

Exceptions

For floating-point operations involving a fixed-point receiver field (if nonzero
digits would be truncated from the left end of the resultant value), an invalid
floating-point conversion exception is signaled.

For a floating-point product operand, if the exponent of the resultant value is
either too large or too small to be represented in the product field, the f1oating­
point overflow or the floating-point underflow exception is signaled.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
numeric scalar product is positive, negative, or zero. Unordered-The value
assigned a floating-point product operand is NaN.

Operands
Exception 1 2 3 [4,5] Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X X

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X X X

OA size X

OC invalid floating-point conversion X

OD floating-point inexact result X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

1-188 AS/400 M I Functional Reference

.~

Multiply (MUL T)

Operands
Exception 1 2 3 [4,5] Other
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pOinter does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-189

Negate (NEG)

1.57 Negate (NEG)

Optional Forms

Op Code (Hex)
1056

Operand 1
Receiver

Operand 2
Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Op Code
Mnemonic (Hex) Form Type

NEGS 1156 Short

NEGI 1856 Indicator

NEGIS 1956 Indicator, Short

NEGB 1C56 Branch

NEGBS 1056 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The numeric value in the source operand is changed as if it had
been multiplied by a negative one (-1). The result is placed in the receiver
operand.

The sign changing of the source operand value (positive to negative and nega­
tive to positive) is performed as follows:

• Binary

- Extract the numeric value and form the twos complement of it.

• Packed/Zoned

- Extract the numeric value and force its sign to positive if it is negative or
to negative if it is positive.

• Floating-point

- Extract the numeric value and force the significand sign to positive if it is
negative or to negative if it is positive.

The result of the operation is copied into the receiver operand. If this operand is
not the same type as that used in performing the operation, the resultant value
is converted to its type. If necessary, the resultant value is adjusted to the

1-190 AS/400 MI Functional Reference

L

L

Exceptions

L

Negate (NEG)

length of the receiver operand, aligned at the assumed decimal point of the
receiver operand, or both before being copied to it. If significant digits are trun­
cated on the left end of the resultant value, a size exception is signaled. An
attempt to negate a maximum negative signed binary value to a signed binary
scalar of the same size also results in a size exception. When the receiver is
binary the size exception may be suppressed by using the suppress binary size
exception attribute on the CRTPG instruction. If a packed or zoned a is negated,
the result is always positive O.

When the source floating-point operand represents not-a-number, the sign field
of the source is not forced to positive and this value is not altered in the
receiver.

For a fixed-point operation, if significant digits are truncated from the left end of
the resultant value, a size exception is signaled. An attempt to negate a
maximum negative binary value into a binary scalar of the same size also
results in a size exception.

For floating-point operations that involve a fixed-point receiver field, if nonzero
digits would be truncated from the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point receiver operand, if the exponent of the resultant value is
either too large or too small to be represented in the receiver field, the f1oating­
point overflow and the floating-point underflow exceptions are signaled.

If a decimal to binary conversion causes a size exception to be signaled or if the
size exception was suppressed, the binary value contains the correct truncated
result only if the decimal value contains 15 or fewer significant nonfractional
digits.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
receiver operand is either positive, negative, or zero. Unordered-The value
assigned a floating-point receiver operand is NaN.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OC Computation

02 decimal data X

06 floating-point overflow X

07 floating-point underflow X

09 floating-point invalid operand X X

Chapter 1. Computation and Branchi ng Instructions 1-191

Negate (NEG)

Operands
Exception 1 2 Other

~ OA size X

OC invalid floating-point conversion X

00 floating-point inexact result X

10 Oamage encountered

04 system object damage X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

09 invalid branch target operand X

OC invalid operand odt reference X X J 00 reserved bits are not zero X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-192 AS/400 MI Functional Reference

L

L

Not (NOT)

1.58 Not (NOT)

Optional Forms

Op Code (Hex)
108A

Operand 1
Receiver

Operand 2
Source

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character variable scalar or numeric variable

Op Code
Mnemonic (Hex) Form Type

NOTS 118A Short

NOTI 188A Indicator

NOTIS 198A Indicator, Short

NOTB 1C8A Branch

NOTBS 1D8A Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: The Boolean NOT operation is performed on the string value in the
source operand. The resulting string is placed in the receiver operand.

The operands may be character or numeric scalars. They are both interpreted
as bit strings. Substringing is supported for both character and numeric oper­
ands.

The length of the operation is equal to the length of the source operand.

The bit values of the result are determined as follows:

Source Bit Result Bit

1 0

o 1

The result value is then placed (left-adjusted) in the receiver operand with trun­
cating or padding taking place on the right. The pad value used in this instruc­
tion is a hex 00 byte.

Chapter 1. Computation and Branching Instructions 1-193

Not (NOT)

Exceptions

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source operand is that the result is all zero and
the instruction's resultant condition is zero. When a null substring reference is
specified for the receiver, a result is not set and the instruction's resultant condi­
tion is zero regardless of the value of the source operand.

When the receiver operand is a numeric variable scalar, it is possible that the
result produced will not be a valid value for the numeric type. This can occur
due to padding with hex 00, due to truncation, or due to the resultant bit string
produced by the instruction. The instruction completes normally and signals no
exceptions for these conditions.

Resultant Conditions: Zero-The bit value for the bits of the scalar receiver
operand is either all zero or a null substring reference is specified for the
receiver. Not zero-The bit value for the bits of the scalar receiver operand is not
all zero.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pOinter does not exist X X

02 pointer type invalid X X

2A Program creation

1-194 AS/400 M I Functional Reference

..J

J

J

Not (NOT)

Operands
Exception 1 2 Other

05 invalid op code extender field X

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

09 invalid branch target operand X

OA invalid operand length X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

L 01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-195

Or (OR)

1.59 Or (OR)

Optional Forms

Op Code (Hex)
1097

Operand 1
Receiver

Operand 2
Source 1

Operand 3
Source 2

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Op Code
Mnemonic (Hex) Form Type

DRS 1197 Short

ORI 1897 Indicator

ORIS 1997 Indicator, Short

ORB 1C97 Branch

ORBS 1097 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or Indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: The Boolean OR operation is performed on the string values in the
source operands. The resulting string is placed in the receiver operand.

The operands may be character or numeric scalars. They are both interpreted
as bit strings. Substringing is supported for both character and numeric oper­
ands.

The length of the operation is equal to the length of the longer of the two source
operands. The shorter of the two operands is logically padded on the right with
hex 00. The excess bytes in the longer operand are assigned to the results.

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit
1 1 1

0

0

1-196 AS/400 MI Functional Reference

Exceptions

L

Source 1
Bit
o

Source 2
Bit
o

Result
Bit
o

Or (OR)

The result value is then placed (left-adjusted) in the receiver operand with trun­
cating or padding taking place on the right. The pad value used in this instruc­
tion is a hex 00.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1, 2, and 3. The effect of specifying
a null substring reference for one source operand is that the other source
operand is ORed with an equal length string of all hex ~Os. This causes the
value of the other operand to be assigned to the result. When a null substring
reference is specified for both source operands, the result is all zero and the
instruction's resultant condition is zero. When a null substring reference is spec­
ified for the receiver, a result is not set and the instruction's resultant condition
is zero regardless of the values of the source operands.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

When the receiver operand is a numeric variable scalar, it is possible that the
result produced will not be a valid value for the numeric type. This can occur
due to padding with hex 00, due to truncation, or due to the resultant bit string
produced by the instruction. The instruction completes normally and signals no
exceptions for these conditions.

Resultant Conditions: Zero-The bit value for the bits of the scalar receiver
operand is either all zero or a null substring reference is specified for the
receiver. Not zero-The bit value for the bits of the scalar receiver operand is not
all zero.

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

Chapter 1. Computation and Branching Instructions 1-197

Or (OR)

Operands
Exception 1 2 3 Other .) 03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 . Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

~ 2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OA invalid operand length X X X

~ OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-198 AS/400 MI Functional Reference

L

L

Remainder (REM)

1.60 Remainder (REM)

Optional Forms

Op Code (Hex)
1073

Operand 1
Remainder

Operand 2
Dividend

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Op Code
Mnemonic (Hex) Form Type

REMS 1173 Short

REMI 1873 Indicator

REMIS 1973 Indicator, Short

REMB 1C73 Branch

REMBS 1073 Branch, Short

Operand 3
Divisor

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Remainder is the result of dividing the Dividend by the Divisor
and placing the remainder in operand 1.

Operands can have packed or zoned decimal, signed or unsigned binary type.

Source operands are the Dividend and Divisor. The receiver operand is the
Remainder.

If operands are not of the same type, source operands are converted according
to the following rules:

1. If anyone of the operands has zoned or packed decimal type, source oper­
ands are converted to packed decimal.

2. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Packed decimal operands
are divided using packed decimal division. Unsigned binary division is used with

Chapter 1. Computation and Branching Instructions 1·199

Remainder (REM)

unsigned source operands. Signed binary operands are divided using two's
complement binary division.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary division execute faster than packed decimal division.

Floating-point is not supported for this instruction.

If the divisor has a numeric value of 0, a zero divide exception is signaled. If the
dividend has a value of 0, the result of the division is a zero value remainder.

For a decimal operation, the internal quotient value produced by the divide oper­
ation is always calculated with a precision of zero fractional digit positions. If
necessary, internal alignment of the assumed decimal point for the dividend and
divisor operands is performed to insure the correct precision for the resultant
quotient value. These internal alignments are not subject to detection of the
decimal point alignment exception. An internal quotient and the corresponding
remainder value will be calculated for any combination of decimal attributes . ~
which may be specified for the instruction's operands. However, as described ""tIl
below, the assignment of the remainder value is limited to that portion of the
remainder value which fits in the remainder operand.

If the dividend is shorter than the divisor, it is logically adjusted to the length of
the divisor.

The division operation is performed according to the rules of algebra. Unsigned
binary is treated as a positive number for the algebra. Before the remainder is
calculated, an intermediate quotient is calculated. The attributes of this quotient
are derived from the attributes of the dividend and divisor operands as follows:

Dividend Divisor
IM,SIM or SBIN(2) IM,SIM or SBIN(2)

IM,SIM or SBIN(2) SBIN(4)

IM,SIM,SBIN(2) or UBIN(2) DECIMAL(P2,02)

IM,SIM,SBIN(2) or SBIN(4) UBIN(2) or UBIN(4)

UBIN(2) or UBIN(4) IM,SIM,SBIN(2) or
SBIN(4)

UBIN(2) or UBIN(4) UBIN(2) or UBIN(4)

SBIN(4) IM,SIM or SBIN(2)

SBIN(4) or UBIN(4) DECIMAL(P2,02)

DECIMAL(P1 ,01) IM,SIM,SBIN(2) or
UBIN(2)

DECIMAL(P1 ,01) SBIN(4) or UBIN(4)

DECIMAL(P1 ,01) DECIMAL(P2,02)

1M = IMMEDIATE
SIM = SIGNED IMMEDIATE
SBIN = SIGNED BINARY
UBIN = UNSIGNED BINARY

I nte rmediate
Quotient
SBIN(2)

SBIN(4)

DECIMAL(5+02,0)

UBIN(4)

UBIN(4)

UBIN(4)

SBIN(4)

DECIMAL(10+02,0)

DECIMAL(P1,0)

DECIMAL(P1,0)

DECI MAL(P1-01 +0,0)

Where 0 - Larger of 01 or
02

1-200 AS/400 MI Functional Reference

Exceptions

L

Remainder (REM)

DECIMAL = PACKED OR ZONED

After the intermediate quotient numeric value has been determined, the numeric
value of the remainder operand is calculated as follows:

Remainder = Dividend - (Quotient*Divisor)

When signed arithmetic is used, the sign of the remainder is the same as that of
the dividend unless the remainder has a value of O. When the remainder has a
value of 0, the sign of the remainder is positive.

The resultant value of the calculation is copied into the remainder operand. If
this operand is not the same type as that used in performing the operation, the
resultant value is converted to its type. If necessary, the resultant value is
adjusted to the length of the remainder operand, aligned at the assumed decimal
point of the remainder operand, or both before being copied to it.

If significant digits are truncated on the left end of the resultant value, a size
exception is signaled for those programs that request to be notified of size
exceptions.

If a decimal to binary conversion causes a size exception to be signaled in pro­
grams that request to be notified of size exceptions, the binary value contains
the correct truncated result only if the decimal value contains 15 or fewer signif­
icant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric scalar remainder is
positive, negative, or o.

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X X

OA size X

OB zero divide X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

Chapter 1. Computation and Branching Instructions 1-201

Remainder (REM)

Operands
Exception 1 2 3 Other

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target X

OC invalid operand odt reference X X X j 00 reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-202 AS/400 M I Functional Reference

L

L

L

Scale (SCALE)

1.61 Scale (SCALE)

Optional Forms

Op Code (Hex)
1063

Operand 1
Receiver

Operand 2
Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Binary(2) scalar.

Op Code
Mnemonic (Hex) Form Type

SCALES 1163 Short

SCALEI 1863 Indicator

Operand 3
Scale factor

SCALEIS 1963 Indicator, Short

SCALEB 1C63 Branch

SCALEBS 1063 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The scale instruction performs numeric scaling of the source
operand based on the scale factor and places the results in the receiver
operand. The numeric operation is as follows:

Operand 1 = Operand 2 *(B**N)

where:

N is the binary integer value of the scale operand. It can be positive, nega­
tive, or O. If N is 0, then the operation simply copies the source operand
value into the receiver operand.

B is the arithmetic base for the type of numeric value in the source operand.

Base Type B

Binary 2

Packed/Zoned 10

Floating-point 2

The scale operation is a ~hift of N binary, packed, or zoned digits. The shift is to
the left if N is positive, to the right if N is negative. For a floating-point source

Chapter 1. Computation and Branching Instructions 1-203

Scale (SCALE)

operand, the scale operation is performed as if the source operand is multiplied
by a floating-point value of 2**N.

If the source and receiver operands have different attributes, the scaling opera­
tion is done in an intermediate field with the same attributes as the source
operand. If a fixed-point scaling operation causes nonzero digits to be truncated
on the left end of the intermediate field, a size exception is signaled. For a
floating-point scaling operation, the floating-point overflow and the floating-point
underflow exceptions can be signaled during the calculation of the intermediate
result.

The resultant value of the calculation is copied into the receiver operand. If this
operand is not the same type as that used in performing the operation, the
resultant value is converted to its type. If necessary, the resultant value is
adjusted to the length of the receiver operand, aligned at the assumed decimal
point of the receiver operand, or both before being copied to it. For fixed-point
operations, if nonzero digits are truncated off the left end of the resultant value,
a size exception is signaled.

For floating-point operations involving fixed-point receiver fields, if nonzero digits
would be truncated from the left end of the resultant value, an invalid f1oating­
point conversion exception is signaled.

For floating-point receiver fields, if the exponent of the resultant value is either
too large or too small to be represented in the receiver field, the floating-point
overflow or floating-point underflow exception is signaled.

A scalar value invalid exception is signaled if the value of N is beyond the range ..J
of the particular type of the source operand as specified in the following table.

Source Operand Type
Signed Binary(2)

Unsigned Binary(2)

Signed Binary(4)

Unsigned Binary(4)

Decimal(P,Q)

Maximum Value of N
-1SSNS1S

-16SNS16

-31 S N S 31

-32 S N S 32

-31 S N S 31

For a scale operation in floating-point, no limitations are placed on the values
allowed for N other than the implicit limits imposed due to the floating-point
overflow and underflow exceptions.

Limitations: The following are limits that apply to the functions performed by
this instruction.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

Resultant Condition: Positive, negative, or zero-The algebraic value of the
receiver operand is positive, negative, or zero. Unordered-The value assigned a
floating-point receiver operand is NaN.

1-204 AS/400 MI Functional Reference

Scale (SCALE)

Exceptions

L
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OC Computation

02 decimal data X

06 floating-point overflow X

L 07 floating-point underflow X

09 floating-point invalid operand X X

OA size X

OC invalid floating-point conversion X

00 floating-point inexact result X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

L 22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target X

Chapter 1. Computation and Branching Instructions 1-205

Scale (SCALE)

Operands
Exception 1 2 3 Other

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

.j

1-206 AS/400 MI Functional Reference

Scan (SCAN)

1.62 Scan (SCAN)

Optional Forms

Op Code (Hex)
1003

Operand 1
Receiver

Operand 2
Base

Operand 3
Compare
operand

Operand 1: Binary variable scalar or binary array.

Operand 2: Character variable scalar.

Operand 3: Character scalar.

Mnemonic

SCANI

SCANB

Op Code
(Hex)

1803

1C03

Form Type

Indicator

Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator targets (for indicator options). The branch or indicator targets
immediately follow the last operand listed above. See Chapter 1. "Introduction"
for the encoding of the extender field and the allowed syntax of the branch and
indicator operands.

Description: The character string value of the base operand is scanned for
occurrences of the character string value of the compare operand.

The base and compare operands must both be character strings. The length of
the compare operand must not be greater than that of the base string.

The operation begins at the left end of the base string and continues character
by character, from left to right, comparing the characters of the base string with
those of the compare operand. The length of the comparisons are equal to the
length of the compare operand value and function as if they were being com­
pared in the Compare Bytes Left-Adjusted instruction.

If a set of bytes that match the compare operand is found, the binary value for
the ordinal position of its leftmost base string character is placed in the receiver
operand.

If the receiver operand is a scalar, only the first occurrence of the compare
operand is noted. If it is an array, as many occurrences as there are elements
in the array are noted.

The operation continues until no more occurrences of the compare operand can
be noted in the receiver operand or until the number of characters (bytes)
remaining to be scanned in the base string is less than the length of the
compare operand.

Chapter 1. Computation and Branching Instructions 1-207

Scan (SCAN)

Exceptions

When the second condition occurs, the receiver value is set to O. If the receiver
operand is an array, all its remaining elements are also set to O.

The base operand and the compare operand can be variable length substring
compound operands.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 2 and 3. The effect of specifying a
null substring reference for the compare operand or both operands is that the
receiver is set to zero (no match found) and the instruction's resultant condition
is null compare operand. Specifying a null substring reference for just the base
operand is not allowed due to the requirement that the length of the compare
operand must not be greater than that of the base string.

Resultant Conditions: Zero or positive-The numeric value(s) of the receiver
operand is either zero or positive. When the receiver operand is an array, the
resultant condition is zero if all elements are zero. One of these two conditions
will result when the compare operand is not a null substring reference. Null
compare operand-The compare operand is a null substring reference; therefore,
the receiver has been set to zero which indicates that no occurrences were
found.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OC Computation

08 length conformance

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

1-208 AS/400 MI Functional Reference

Scan (SCAN)

Operands
Exception 1 2 3 Other

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OA invalid operand length X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-209

Scan with Control (SCANWC)

1.63 Scan with Control (SCANWC)

Optional Forms

Op Code (Hex)
10E4

Operand 1
Base
locator

Operand 1: Space pointer.

Operand 2
Controls

Operand 3
Options

Operand 2: Character(8) variable scalar (fixed length).

Operand 3: Character(4) scalar (fixed length).

Operand 4
Escape
target or null

Operand 4: Instruction number, relative instruction number, branch point,
instruction pointer, instruction definition list element, or null.

Op Code
Mnemonic (Hex) Form Type

SCANWC 10E4 Short

SCANWCI 18E4 Indicator

SCANWCB 1C84 Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The base string to be scanned is specified by the base locator and
controls operands. The base locator addresses first character of the base string.
The controls specifies the length of the base string in the base length field.

The scan operation begins at the left end of the base string and continues char- ...J
acter by character, left-to-right. The scan operation can be performed on a base
string which contains all simple (1-byte) or all extended (2-byte) character codes
or a mixture of the two. When the base string is being interpreted in simple
character mode, the operation moves through the base string one byte at a time.
When the base string is being interpreted in extended character mode, the oper-
ation moves through the base string 2 bytes at a time. The character string
value of the base operand is scanned for occurrences of a character value satis-
fying the criteria specified in the control and options operands.

The scan is completed by updating the base locator and controls operands with
scan status when a character value being scanned for is found, the end of the
base string is encountered, or an escape code is encountered when the escape
target operand is specified. The base locator is set with addressability to the
character (simple or extended) which caused the instruction to complete exe­
cution. The controls operand is set with information which identifies the mode
(simple or extended) of the base string character addressed by the base locator
and which provides for resumption of the scan operation with minimal overhead.

1-210 AS/400 MI Functional Reference

L

Scan with Control (SCANWC)

The controls and options operands specify the modes to be used in interpreting
characters during the scan operation. Characters can be interpreted in one of
two character modes: simple (1-byte) and extended (2-byte). Additionally, the
base string can be scanned in one of two scan modes, mixed (base string may
contain a mixture of both character modes) and nonmixed (base string contains
one mode of characters).

When the mixed scan mode is specified in the options operand, the base string
is interpreted as containing a mixture of simple and extended character codes.
The mode, simple or extended, with which the string is to be interpreted, is con­
trolled initially by the base mode indicator in the controls operand and thereafter
by mode control characters imbedded in the base string. The mode control
characters are as follows:

• Hex OE = Shift out (SO) of simple character mode to extended mode.

• Hex OF = Shift in (SI) to simple character mode from extended mode. This
is only recognized if it occurs in the first byte position of an extended char­
acter code.

When the nonmixed scan mode is specified in the options operand, the base
string is interpreted using only the character mode specified by the base mode
indicator in the controls operand. Character mode shifting can not occur
because no mode control characters are recognized when scanning in nonmixed
mode.

The base locator operand is a space pointer which is both input to and output
from the instruction. On input, it locates the first character of the base string to
be processed. On output, it locates the character of the base string which
caused the instruction to complete.

The controls operand must be a character scalar which specifies additional infor­
mation to be used to control the scan operation. It must be at least 8 bytes long
and have the following format:

• Controls operand Char(8)

Control indicators Char(1)

Reserved Char(1)

Comparison characters Char(2)

Reserved Char(1)

Base end Char(3)

- Instruction work area Char(1)

- Base length Char(2)

Only the first 8 bytes of the controls operand are used. Any excess bytes are
ignored. Reserved fields must contain binary zeros. The control indicators field
has the following format:

• Control indicators

Base mode

o = Simple
1 = Extended

Char(1)

Bit 0

Comparison character mode Bit 1

Chapter 1. Computation and Branching Instructions 1-211

Scan with Control (SCANWC)

o = Simple
1 = Extended

Reserved (must be 0)

Scan state

o = Resume scan
1 = Start scan

Bit 2-6

Bit 7

The base mode is both input to and output from the instruction. In either case, it
specifies the mode of the character in the base string currently addressed by the
base locator.

The comparison character mode is not changed by the instruction. It specifies
the mode of the comparison character contained in the controls operand.

The scan state is both input to and output from the instruction. As input, it indi­
cates whether the scan operation for the base string is being started or
resumed. If it is being started, the instruction assumes that the base length
value in the base end field of the controls operand specifies the length of the
base string, and the instruction work area value is ignored. If it is being
resumed, the instruction assumes the base end field has been set by a prior
start scan execution of the instruction with an internal machine value identifying
the end of the base string.

For a start scan execution of the instruction, the scan state indicator is reset to
indicate resume scan to provide for subsequent resumption of the scan opera­
tion. Additionally, for a start scan execution of the instruction, the base end field
is set with an internally optimized value which identifies the end of the base
string being scanned. This value then overlays the values which were in the
instruction work area and base length fields on input to the instruction. Predict­
able operation of the instruction on a resume scan execution depends upon this
base end field being left intact with the value set by the start scan execution.

For a resume scan execution of the instruction, the scan state and base end
fields are unchanged.

The comparison character is input to the instruction. It specifies a character
code to be used in the comparisons performed during the scanning of the base
string. The comparison character mode in the control indicators specifies the
mode (simple or extended) of the comparison character. If it is a simple char­
acter, the first byte of the comparison character field is ignored and the compar­
ison character is assumed to be specified in the second byte. If it is an extended
character, the comparison character is specified as a 2-byte value in the com­
parison character field.

The base end field is both input to and output from the instruction. It contains
data which identifies the end of the base string. Initially, for a start scan exe­
cution of the instruction, it contains the length of the base string in the base
length field. Additionally, the base end field is used to retain information over
multiple instruction executions which provides for minimizing the overhead
required to resume the scan operation for a particular base string. This informa­
tion is set on the initial start scan execution of the instruction and is used during
subsequent resume scan executions of the instruction to determine the end of ...)
the base string to be scanned. If the end of the base string being scanned must
be altered during iterative usage of this instruction, a start scan execution of the

1-212 AS/400 MI Functional Reference

L

L

L

Scan with Control (SCANWC)

instruction must be performed to provide for correctly resetting the internally
optimized value to be stored in the base end from the values specified in the
base locator operand and base length field.

For the special case of a start scan execution where a length value of zero (no
characters to scan) is specified in the base length field, the instruction results in
a not found resultant condition. In this case, the base locator is not verified and
the scan state indicator, the base end field, and the base locator are not
changed. The options operand must be a character scalar which specifies the
options to be used to control the scan operation. It must be at least 4 bytes in
length and has the following format:

• Options operand

Options indicators

Reserved

Char(4)

Char(1)

Char(3)

The options operand must be specified as a constant character scalar.

Only the first 4 bytes of the options operand are used. Any excess bytes are
ignored. Reserved fields must contain binary zeros. The option indicators field
has the following format:

• Option indicators

Reserved

Scan mode

o = Mixed
1 = Nonmixed

Reserved

Comparison relation

- Equal, (=) relation

- Less than, «) relation

- Greater than, (» relation

a = No match on relation
1 = Match on relation

Reserved

Char(1)

Bit 0

Bit 1

Bits 2-3

Bits 4-6

Bit 4

Bit 5

Bit 6

Bit 7

The scan mode specifies whether the base string contains a mixture of character
modes,or contains all one mode of characters; that is, whether or not mode
control characters should be recognized in the base string. Mixed specifies that
there is a mixture of character modes and, therefore, mode control characters
should be recognized. Nonmixed specifies that there is not a mixture of char­
acter modes and, therefore, mode control characters should not be recognized.
Note that the base mode indicator in the controls operand specifies the char­
acter mode of the base string character addressed by the base locator.

The comparison relation specifies the relation or relations of the comparison
character to characters of the base string which will satisfy the scan operation
and cause completion of the instruction with one of the height, low, or equal
resultant conditions. Multiple relations may be specified in conjunction with one
another. Specifying all relations insures a match against any character in tl1e
base string which is of the same mode as the comparison character. Specir"ying

Chapter 1. Computation and Branching Instructions 1-213

Scan with Control (SCANWC)

no relation insures a not found resultant condition, in the absence of an escape
due to verification, regardless of the values of the characters in the base string
which match the mode of the comparison character.

An example of comparison scanning is a scan of simple mode characters for a
value less than hex 40. This could be done by specifying a comparison char­
acter of hex 40 and a comparison relation of greater than in conjunction with a
branch option for the resultant condition of high. This could also be done by
specifying a comparison character of hex 3F and comparison relations of equal
and greater than in conjunction with branch options for equal and high. The
target of the branch options in either case would be the instructions to process
the character less than hex 40 in value.

The escape target operand controls the verification of bytes of the base string for
values less than hex 40. Verification, if requested, is always performed in con­
junction with whatever comparison processing has been requested. That is, ver­
ification is performed even if no comparison relation is specified. This operand
is discussed in more detail in the following material.

During the scan operation, the characters of the base string which are not of the
same mode as the comparison character are skipped over until the mode of the
characters being processed is the same as the mode of the comparison char­
acter. The operation then proceeds by comparing the comparison character with
each of the characters of the base string. These comparisons behave as if the
characters were being compared in the Compare Bytes Left Adjusted instruction.

If a base string character satisfying the criteria specified in the controls and J"
options operands is found, the base locator is set to address the first byte of it,
the base mode indicator is set to indicate the mode of the base string as of that
character, and the instruction is completed with the appropriate resultant condi-
tion based on the relation (high, low, or equal) of the comparison character to
the base string character.

If a matching base string character is not found prior to encountering a mode
change, the characters of the base string are again skipped over until the mode
of the characters being processed is the same as the mode of the comparison
character before comparisons are resumed.

If a matching base string character is not found prior to encountering the end of
the base string, the base location is set to address the first byte of the character
encountered at the end of the base string, the base mode indicator is set to indi­
cate the mode of the base string as of that character, and the instruction is com­
pleted with the not found resultant condition. A mode control string results in
the changing of the base string mode, but the base locator is left addressing the
mode control character.

If the escape target operand is specified (operand 4 is not null), verifications are
performed on the characters of the base string prior to their being skipped or
compared with the comparison character. Each byte of the base string is
checked for a value less than hex 40. Additionally, for a mixed scan mode, when
such a value is encountered, it is then determined if it is a valid mode control
character.

• Hex OE (SO) when the base string is being interpreted in simple character
mode.

1·214 AS/400 MI Functional Reference

L

Scan with Control (SCANWC)

• Hex OF (51) in the left byte of the character code when the base string is
being interpreted in extended character mode.

If a byte value of less than hex 40 is not a valid mode control character, it is
considered to be an escape code. The base locator is set to address the first
byte of the base string character (simple or extended) which contains the escape
code, the base mode indicator is set to indicate the mode of the base string as
of that character, and a branch is taken to the target specified by the escape
target operand. When the escape target branch is performed, the value of any
optional indicator operands is meaningless.

If the escape target operand is not specified (operand 4 is nUll), verifications of
the character codes in the base string are not performed. However, for a mixed
scan mode, mode control values are always processed as described previously
under the discussion of the mixed scan mode.

Substring operand references which allow for a null substring reference (a
length value of zero) may not be specified for this instruction.

Variable length substring compound operands may not be speCified for operands
two and three.

If possible, use a Space Pointer Machine Object for the base locator, operand 1.
Appreciably less overhead is incurred in accessing and storing the value of the
base locator if this is done.

If possible, specify through its OOT definition, the controls operand on an 8-byte
multiple (doubleword) boundary relative to the start of the space containing it.
Appreciably less overhead is incurred in accessing and storing the value of the
controls if this is done.

For the case where a base string is to be just scanned for byte values less than
hex 40, two techniques can be used.

• A direct simple mode scan for a value less than hex 40 without usage of the
escape target verification feature.

• A scan for any character with usage of the escape target verification feature.

The direct scan approach, the former, is the more efficient.

The following diagram defines the various conditions which can be encountered
at the end of the base string and what the base locator addressability is in each
case. The solid vertical line represents the end of the base string. The dashes
represent the bytes before and after the base string end. The V is positioned
over the byte addressed by the base locator in each case. These are the condi­
tions which can be encountered when the base locator input to the instruction
addresses a byte prior to the base string end. When the base length field speci­
fies a value of zero for a start scan execution of the instruction, or the input base
locator addresses a point beyond the end of the instruction, no processing is
performed and the instruction is immediately completed with the not found
resultant condition.

Chapter 1. Computation and Branching Instructions 1-215

Scan with Control (SCANWC)

Address.bllity

V

V

V

Ending Condition

(One byte code at string end)

• Simple character

• Shift In/out encountered

• Escape code In sImple
character

(Extended character split
across string end)

• Extended character

• Escape code In extended
character

(Extended character at
string end)

• Extended character

• Escape code In extended
character

Instruction Response

• Appropriate resultant
condition Indicating
found or not found

• Mode Bhlft performed,
and not found reBultant
condition

• Branch takan

• Not found resultant
condition

• Branch taken

• Appropriate resultant
condition Indicating
found or not found

• Branch taken

An analysis of the diagram shows that normally, after appropriate processing for
the particular found, not found, or escape condition, the scan can be restarted at
the byte of data which would follow the base string end in the data stream being
scanned. Any mode shift required by an ending mode control character will
have been performed.

However, one ending condition may require subsequent resumption of the scan
at the character encountered at the end of the base string. This is the case
where the instruction completes with the not found resultant condition and the
base string ends with an extended character split across string end. That is, the
base mode indicator specifies extended mode, the base locator addresses the
last byte of the base string, and that byte value is not a shift out, hex OE char­
acter. In this case, complete verification of the extended character and relation
comparison could not be performed. If this extended character is to be proc­
essed, it must be done through another execution of the Scan instruction where
both bytes of the character can be input to the instruction within the confines of
the base string.

1-216 AS/400 MI Functional Reference

Scan with Control (SCANWC)

Resultant Conditions

L
• High, Low, Equal: A character value was found in the base string which sat-

isfies the criteria specified in the controls and options operands in that the
comparison character is of higher, lower, or equal string value to the base
string character.

• Not found: A character value was not found in the base string which satis-
fied the criteria specified in the controls and options operands.

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OC Computation

08 length conformance X X

10 Damage encountered

L 04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X X

07 invalid operand attribute X X X X

08 invalid operand value range X X X X

09 invalid branch target operand X X

Chapter 1. Computation and Branching Instructions 1-217

Scan with Control (SCANWC)

Operands
Exception 1 2 3 4 Other

OA invalid operand length X X

OC invalid operand odt reference X X X X

00 reserved bits are not zero X X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X X

03 scalar value invalid X X

36 Space management

01 space extension/truncation X

1-218 AS/400 MI Functional Reference

L

Search (SEARCH)

1.64 Search (SEARCH)

Optional Forms

Op Code (Hex)
1084

Operand 1
Receiver

Operand 2
Array

Operand 3
Find

Operand 1: Binary variable scalar or binary variable array.

Operand 2: Character array or numeric array.

Operand 4
Location

Operand 3: Character variable scalar or numeric variable scalar.

Operand 4: Binary scalar.

Op Code
Mnemonic (Hex) Form Type

SEARCHI 1884 Indicator

SEARCHB 1C84 Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator targets (for indicator options). The branch or indicator targets
immediately follow the last operand listed above. See Chapter 1. "Introduction"
for the encoding of the extender field and the allowed syntax of the branch and
indicator operands.

Description: The portions of the array operand indicated by the location
operand are searched for occurrences of the value indicated in the find operand.

The operation begins with the first element of the array operand and continues
element by element, comparing those characters of each element (beginning
with the character indicated in the location operand) with the characters of the
find operand. The location operand contains an integer value representing the
relative location of the first character in each element to be used to begin the
compare.

The integer value of the location operand must range from 1 to L, where L is the
length of the array operand elements; otherwise, a scalar value invalid exception
is signaled. A value of 1 indicates the leftmost character of each element.

The array and find operands can be either character or numeric. Any numeric
operands are interpreted as logical character strings. The compares between
these operands are performed at the length of the find operand and function as if
they were being compared in the Compare Bytes Left-Adjusted instruction.

The length of the find operand must not be so large that it exceeds the length of
the array operand elements when used with the location operand value. The
array element length used is the length of the array scalar elements and not the
length of the entire array element, which can be larger in noncontiguous arrays.

Chapter 1. Computation and Branching Instructions 1-219

Search (SEARCH)

Exceptions

As each occurrence of the find value is encountered, the integer value of the
index for this array element is placed in the receiver operand. If the receiver
operand is a scalar, only the first element containing the find value is noted. If
the receiver operand is an array, as many occurrences as there are elements
within the receiver array are noted.

If the value of the index for an array element containing an occurrence of the
find value is too large to be contained in the receiver, a size exception is sig­
naled.

The operation continues until no more occurrences of elements containing the
find value can be noted in the receiver operand or until the array operand has
been completely searched. When the second condition occurs, the receiver
value is set to LB-1, where LB is the value of the lower bound index of the array.
If LB is the most negative 32-bit integer, then LB-1 is the most positive 32-bit
integer; otherwise, LB-1 is 1 less than LB. If the receiver operand is an array, all
its remaining elements are also set to LB-1. The find operand can be a variable
length substring compound operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: The numeric value(s) of the receiver operand is either
LB-1 or in the range LB through UB, where UB is the value of the upper bound
index of the array. When the receiver is LB-1, the resultant condition is zero.
When the receiver is in the range LB through UB, the resultant condition is posi­
tive. When the receiver is an array, the resultant condition is zero if all elements
are LB-1; otherwise, it is positive. The resultant condition is unpredictable when
the No Binary Size Exception program template option is used.

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OC Computation

08 length conformance X X

OA size X

10 Damage encountered

04 system object damage state X X X X X

44 partial system object damage X X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

1-220 AS/400 MI Functional Reference

Search (SEARCH)

Operands
Exception 1 2 3 4 Other
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X X

07 invalid operand attribute X X X X

08 invalid operand value range X X X X

09 invalid branch target operand X

OA invalid operand length X

OC invalid operand odt reference X X X X

L 00 reserved bits are not zero X X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

L

Chapter 1. Computation and Branching Instructions 1-221

Set Bit in String (SETBTS)

1.65 Set Bit in String (SETBTS)

Exceptions

Op Code (Hex) Operand Operand 2
1

101E Source Offset

Operand 1: Character Variable Scalar or Numeric Variable Scalar.

Operand 2: Binary Scalar.

Description: Sets the bit of the receiver operand as indicated by the bit offset
operand.

The selected bit from the receiver operand is set to a value of B'1'.

The receiver operand can be a character or numeric variable. The leftmost
bytes of the receiver operand are used in the operation. The receiver operand is
interpreted as a bit string with the bits numbered left to right from 0 to the total
number of bits in the string minus 1.

The receiver cannot be a variable substring.

The offset operand indicates which bit of the receiver operand is to be set, with a
offset of zero indicating the leftmost bit of the leftmost byte of the receiver
operand. This value may be specified as a constant or any valid binary scalar
variable.

If a offset value less than zero or beyond the length of the receiver is specified a
"scalar value invalid" exception is raised.

Exception

06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation

10 Damage encountered

04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

20

03 Machine storage limit exceeded

Machine support

02 Machine check

03 Function check

Operands
1 2 Other

X X

X X

X X

X X

X X

X

X

X

X

X

1-222 AS/400 M I Functional Reference

Set Bit in String (SETBTS)

Operands
Exception 1 2 Other

22 Object access

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X

00 Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

L

Chapter 1. Computation and Branching Instructions 1-223

Set Instruction Pointer (SETIP)

1.66 Set Instruction Pointer (SETIP)

Exceptions

Op Code (Hex)
1022

Operand 1
Receiver

Operand 1: Instruction pointer.

Operand 2
Branch
target

Operand 2: Instruction number, relative instruction number, or branch point.

Description: The value of the branch target (operand 2) is used to set the value
of the instruction pointer specified by operand 1. The instruction number indi-
cated by the branch target must provide the address of an instruction within the
program containing the Set Instruction Pointer instruction.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X

1-224 AS/400 MI Functional Reference

~

~

j

Set Instruction Pointer (SETIP)

Operands
Exception 1 2 Other

08 invalid operand value range X

09 invalid branch target operand X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2C Program execution

04 branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-225

Store and Set Computational Attributes (SSCA)

1.67 Store and Set Computational Attributes (SSCA)
Op Code (Hex)
1078

Operand 1
Receiver

Operand 2
Source

Operand 3
Controls

Operand 1: Character(5) variable scalar (fixed length).

Operand 2: Character(5) scalar or null (fixed length).

Operand 3: Character(5) scalar or null (fixed length).

Description: This instruction stores and optionally sets the attributes for control­
ling computational operations for the process this instruction is executed in.

The receiver is assigned the values that each of the computational attributes had
at the start of execution of the instruction. It has the same format and bit assign­
ment as the source.

The source specifies new values for the computational attributes for the process.
The particular computational attributes that are selected for modification are
determined by the controls operand. The source operand has the following
format:

• Floating-point exception masks

o = Disabled (exception is masked)
1 = Enabled (exception is unmasked)

Reserved (binary 0)

Floating-point overflow

Floating-point underflow

Floating-point zero divide

Floating-point inexact result

Floating-point invalid operand

Reserved (binary 0)

• Floating-point exception occurrence flags

o = Exception has not occurred
1 = Exception has occurred

Reserved (binary 0)

Floating-point overflow

Floating-point underflow

Floating-point zero divide

Floating-point inexact result

Floating-point invalid operand

Reserved (binary 0)

• Modes

1-226 AS/400 MI Functional Reference

Char(2)

Bits 0-9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Char(2)

Bits 0-9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Char(1)

~

L

Store and Set Computational Attributes (SSCA)

Reserved

Floating-point rounding mode

00= Round toward positive infinity
01 = Round toward negative infinity
10= Round toward zero
11 = Round to nearest (default)

Reserved

Bit 0

Bits 1-2

Bits 3-7

The controls operand is used to select those attributes that are to be set from
the bit values of the source operand. The format of the controls is the same as
that for the source. A value of one for a bit in controls indicates that the corre­
sponding computational attribute for the process is to be set from the value of
that bit of the source. A value of zero for a bit in controls indicates that the
corresponding computational attribute for the process is not to be changed, and
will retain the value it had prior to this instruction. For an attribute controlled by
a multiple-bit field, such as the rounding modes, all of the bits in the field must
be ones or all must be zeros. A mixture of ones and zeros in such a field results
in a scalar value invalid exception.

If the source and controls operands are both null, the instruction will just return
the current computational attributes. If the source is specified, the computational
attributes of the process are modified under control of the controls operand. If
the source operand is specified and the controls operand is null, the instruction
will change all of the computational attributes to the values specified in the
source. If the source operand is null and the controls operand is specified, an
invalid operand type exception is signaled.

With the floating-point exception masks field, it is possible to unmask/mask the
exception processing and handling for each of the five floating-point exceptions.
If an exception that is unmasked occurs, then the corresponding exception
occurrence bit is set, and the exception is signaled. If an exception that is
masked occurs, the exception is not signaled, but the exception occurrence flag
is still set to indicate the occurrence of the exception.

The floating-point exception occurrence flag for each exception may be set or
cleared by this instruction from the source operand under control of the controls
operand.

Unless specified otherwise by a particular instruction, or precluded due to
implicit conversions, all floating-point operations are performed as if correct to
infinite precision, and then rounded to fit in a destinations format while poten­
tially signaling an exception that the result is inexact. To allow control of the
floating-point rounding operations performed within a process, four floating-point
rounding modes are supported. Assume y is the infinitely precise number that is
to be rounded, bracketed most closely by x and z, where x is the largest repre­
sentable value less than y and z is the smallest representable value greater than
y. Note that x or z may be infinity. The following diagram shows this relation­
ship of x, y, and z on a scale of numerically progressing values where the ver­
tical bars denote values representable in a floating-point format.

Chapter 1. Computation and Branching Instructions 1-227

Store and Set Computational Attributes (SSCA)

x y z

Smaller < _"--_..L.-_-'-_--'--_---L_-.l_ > Larger

MCO'I8-O

Given the above, if y is not exactly representable in the receiving field format,
the rounding modes change y as follows:

Round to nearest with round to even in case of a tie is the default rounding
mode in effect upon the initiation of a process. For this rounding mode, y is
rounded to the closer of x or z. If they are equally close, the even one (the one
whose least significant bit is a zero) is chosen. For the purposes of this mode of
rounding, infinity is treated as if it was even. Except for the case of y being
rounded to a value of infinity, the rounded result will differ from the infinitely
precise result by at most half of the least significant digit position of the chosen
value. This rounding mode differs slightly from the decimal round algorithm per­
formed for the optional round form of an instruction. This rounding mode would
round a value of 0.5 to 0, where the decimal round algorithm would round that
value to 1.

Round toward positive infinity indicates directed rounding upward is to occur.
For this mode, y is rounded to z.

Round toward negative infinity indicates directed rounding downward is to occur.
For this mode, y is rounded to x.

Round toward zero indicates truncation is to occur. For this mode, y is rounded
to the smaller (in magnitude) of x or z.

Arithmetic operations upon infinity are exact. Negative infinity is less than every
finite value, which is less than positive infinity.

The computational attributes are set with a default value upon process initiation.
The default attributes are as follows:

• The floating-point inexact result exception is masked. The other f1oating­
point exceptions are unmasked.

• All occurrence bits have a zero value.

• Round to the nearest rounding mode.

These attributes can be modified by a program executing this instruction. The
new attributes are then in effect for the program executing this instruction and
for programs invoked subsequent to it unless changed through another exe­
cution of this instruction. External exception handlers and invocation exit rou­
tines are invoked with the same attributes as were last in effect for the program
invocation they are related to. Event handlers do not really relate to another
invocation in the process. As such, they are invoked with the attributes that
were in effect at the point the process was interrupted to handle the event.

Upon return to the invocation of a program from subsequent program inv­
ocations, the computational attributes, other than exception occurrence attri­
butes, are restored to those that were in effect when the program gave up
control. The exception occurrence attributes are left intact reflecting the occur-

1-228 AS/400 MI Functional Reference

" . ..I

L

Exceptions

L

Store and Set Computational Attributes (SSCA)

rence of any floating-point exceptions during the execution of subsequent inv­
ocations.

Internal exception handlers execute under the invocation of the program con­
taining them. As such, the above discussion of how computational attributes are
restored upon returning from an external exception handler does not apply. The
execution of an internal exception handler occurs in a manner similar to the exe­
cution of an internal subroutine invoked through the Call Internal instruction. If
the internal exception handler modifies the attributes, the modification remains
in effect for that invocation when the exception handler completes the exception.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

Chapter 1. Computation and Branching Instructions 1-229

Store and Set Computational Attributes (SSCA)

Operands
Exception 1 2 3 Other

08 invalid operand value range X X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

03 scalar value invalid X X

36 Space management

01 space extension/truncation X

.)

1-230 AS/400 MI Functional Reference

,
L

Subtract Logical Character (SUBLC)

1.68 Subtract Logical Character (SUBLC)

Optional Fonns

Op Code (Hex)
1027

Operand 1
Difference

Operand 2
Minuend

Operand 3
Subtrahend

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Op Code
Mnemonic (Hex) Form Type

SUBLCS 1127 Short

SUBLCI 1827 Indicator

SUBLCIS 1927 Indicator, Short

SUBLCB 1C27 Branch

SUBLCBS 1027 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The unsigned binary value of the subtrahend operand is subtracted
from the unsigned binary value of the minuend operand, and the result is placed
in the difference operand.

Operands 1, 2, and 3 must be the same length; otherwise, the Create Program
instruction signals an invalid length exception.

The subtraction operation is performed as though the ones complement of the
second operand and a low-order 1-bit were added to the first operand.

The result value is then placed (left-adjusted) into the receiver operand with
truncating or padding taking place on the right. The pad value used in this
instruction is a byte value of hex 00.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share

Chapter 1. Computation and Branching Instructions 1-231

Subtract Logical Character (SUBLC)

all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with

;J variable lengths, and arrays with variable subscripts), the results are not always
predictable.

Resultant Conditions: The logical difference of the character scalar operands is
zero with carry out of the high-order bit position, not-zero with carry, or not-zero
with no carry.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception j
03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand ODr reference X X X

1-232 AS/400 MI Functional Reference

Subtract Logical Character (SUBLC)

Operands

L
Exception 1 2 3 Other

00 Reserved bits are not zero X X X X

2C Program Execution

04 Invalid branch target X

2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X X

02 Scalar attributes invalid X X X

36 Space Management

01 Space Extensionrrruncation X

Chapter 1. Computation and Branching Instructions 1-233

Subtract Numeric (SUBN)

1.69 Subtract Numeric (SUBN)

Optional Forms

Op Code (Hex)
1047

Operand 1
Difference

Operand 2
Minuend

Operand 3
Subtrahend

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Op Code
Mnemonic (Hex) Form Type

SUBNS 1147 Short

SUBNR 1247 Round

SUBNSR 1347 Short, Round

SUBNB 1C47 Branch

SUBNBS 1047 Branch, Short

SUBNBR 1 E47 Branch, Round

SUBNBSR 1 F47 Branch, Short, Round

SUBNI 1847 Indicator

SUBNIS 1947 Indicator, Short

SUBNIR 1A47 Indicator, Round

SUBNISR 1B47 Indicator, Short, Round.

The short form of the SUBTRACT NUMERIC instruction accepts two operands.
The first operand is the Minuend before execution and the Difference after exe­
cution. The Minuend is replaced by the Difference after the instruction com­
pletes. The second operand is the Subtrahend.

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
"Introduction" for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Difference is the result of subtracting the Subtrahend from the
Minuend.

Operands can have floating-point, packed or zoned decimal, signed or unsigned
binary type.

Source operands are the Minuend and Subtrahend. The receiver operand is the ." '
Difference. ..",

1-234 AS/400 MI Functional Reference

Subtract Numeric (SUBN)

If operands have different types, source operands, Minuend and Subtrahend, are
converted according to the following rules:

1. If anyone of the operands has floating point type, source operands are con­
verted to floating point type.

2. Otherwise, if anyone of the operands has zoned or packed decimal type,
source operands are converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Minuend and Subtrahend are subtracted according to their type. Floating point
operands are subtracted using floating point subtraction. Packed decimal oper­
ands are subtracted using packed decimal subtraction. Unsigned binary sub­
traction is used with unsigned binary operands. Signed binary operands are
subtracted using two's complement binary subtraction.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary subtractions execute faster than either packed decimal or
floating point subtractions.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

For a decimal operation, alignment of the assumed decimal point takes place by
padding with D's on the right end of the source operand with lesser precision.

Floating-point subtraction uses exponent comparison and significand subtraction.
Alignment of the binary point is performed, if necessary, by shifting the
significand of the value with the smaller exponent to the right. The exponent is
increased by one for each binary digit shifted until the two exponents agree.

The operation uses the length and the precision of the source and receiver oper­
ands to calculate accurate results. Operations performed in decimal are limited
to 31 decimal digits in the intermediate result.

The subtract operation is performed according to the rules of algebra.

The result of the operation is copied into the difference operand. If this operand
is not the same type as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant value is adjusted to the
length of the difference operand, aligned at the assumed decimal point of the
difference operand, or both before being copied to it. For fixed-point operation, if
significant digits are truncated on the left end of the resultant value, a size
exception is signaled.

For the optional round form of the instruction, specification of a floating-point
receiver operand is invalid.

For floating-point operations involving a fixed-point receiver field, if nonzero
digits would be truncated off the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

Chapter 1. Computation and Branching Instructions 1-235

Subtract Numeric (SUBN)

Exceptions

For a floating-point difference operand, if the exponent of the resultant value is
either too large or too small to be represented in the difference field, the
floating-point overflow or the floating-point underflow exception is signaled.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con­
tains 15 or fewer significant nonfractional digits.

Size exceptions can be inhibited.

Limitations: The following are limits that apply to the functions performed by
this instruction.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
numeric scalar difference is positive, negative, or zero. Unordered-The value
assigned a floating-point difference operand is NaN.

Operands
Exception 1 2 3 [4,5] Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/Parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

03 Decimal point alignment X X

06 Floating-point overflow X

07 Floating-point underflow X

09 Floating-point invalid operand X X X

OA Size X

OC Invalid floating-point conversion X

OD Floating-point inexact result X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception

1-236 AS/400 MI Functional Reference

J

J

J

Subtract Numeric (SUBN)

Operands
Exception 1 2 3 [4,5] Other

L 03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

L
OC Invalid operand oor reference X X X

00 Reserved bits are not zero X X X X

2C Program Execution

04 Invalid branch target X

2E Resource Control Limit

01 User Profile storage limit exceeded X

36 Space Management

01 Space ExtensionfTruncation X

Chapter 1. Computation and Branching Instructions 1-237

Test and Replace Characters (TSTRPLC)

1.70 Test and Replace Characters (TSTRPLC)

Exceptions

Op Code (Hex)
10A2

Operand 1
Receiver

Operand 2
Replacement

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Description: The character string value represented by operand 1 is tested byte
by byte from left to right. Any byte to the left of the leftmost byte which has a
value in the range of hex F1 to hex F9 is assigned a byte value equal to the left­
most byte of operand 2. Both operands must be character strings. Only the first
character of the replacement string is used in the operation.

The operation stops when the first nonzero zoned decimal digit is found or when
all characters of the receiver operand have been replaced.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

1-238 AS/400 MI Functional Reference

j

Test and Replace Characters (TSTRPLC)

Operands
Exception 1 2 Other

L 02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X

00 Reserved bits are not zero X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

36 Space Management

01 Space ExtensionfTruncation X

L

L

Chapter 1. Computation and Branching Instructions 1·239

Test Bit in 5tring (T5TBT5B or T5TBT51)

1.71 Test Bit in String (TSTBTSB or TSTBTSI)
Op Code (Hex) Extender Operand 1 Operand 2 Operand

3 [4]
1COE Branch Source Offset Branch

options target

180E Indicator Indicator
options target

Operand 1: Character scalar or numeric scalar.

Operand 2: Binary Scalar.

Operand 3 [4]:

• Branch Form-Instruction Number or Relative Instruction Number or Branch
Point or Instruction Pointer or Instruction Definition Element.

• Indicator Form-Numeric Variable Scalar or Character Variable Scalar.

X'F1' - If the result of the test matches the corresponding indicator
option.

X'FO' - If the result of the test does not match the corresponding indicator
option.

Extender: Branch or indicator options.

Either the branch option or the indicator option is required by the instruction. The
extender field is required along with one or two branch targets (for the branch
option) or one or two indicator operands (for indicator option). See Chapter 1.
"Introduction" for the bit encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: Tests the bit of the source operand as indicated by the offset
operand to determine if the bit is set or not set.

Based on the test, the resulting condition is used with the extender field to either

• Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

• Assign a value to each of the indicator operands (indicator form).

The source operand can be character or numeric. The leftmost bytes of the
source operand are used in the operation. The source operand is interpreted as
a bit string with the bits numbered left to right from 0 to the total number of bits
in the string minus one.

The source operand cannot be a variable substring.

The offset operand indicates which bit of the source operand is to be tested, with
a offset of zero indicating the leftmost bit of the leftmost byte of the source
operand.

If an offset value less than zero or beyond the length of the string is specified a
Hscalar value invalidH exception is raised.

1-240 AS/400 MI Functional Reference

Test Bit in String (TSTBTSB or TSTBTSI)

Resultant Conditions: Zero, One: The selected bit of the bit string source
operand is either zero or one.

L Exceptions
Operands

Exception 1 2 3 [4] Other

06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered

L 04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

L
03 Function check X

22 Object access

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

03 Scalar value invalid X

Chapter 1. Computation and Branching Instructions 1-241

Test Bit in String (TSTBTSB or TSTBTSI)

Operands
Exception 1 2 3 [4] ~her
36 Space management

01 space extension/truncation x

1-242 AS/400 MI Functional Reference

1.72

Test Bits Under Mask (TSTBUMB or TSTBUMI)

Test Bits Under Mask (TSTBUMB or TSTBUMI)
Op Code (Hex) Extender Operand 1 Operand 2 Operand

3 [4.5]
1C2A Branch Source Mask Branch

Options target

182A Indicator Indicator
Options target

Operand 1: Character variable scalar or numeric variable scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3 [4, 5]

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is required by the instruction.
The extender field is required along with from one to three branch targets (for
branch option) or one to three indicator operands (for indicator option). The
branch or indicator operands are required for operand 3 and optional for oper­
ands 4 and 5. See Chapter 1. "Introduction" for the bit encoding of the extender
field and the allowed syntax of the branch and indicator operands.

Description: Selected bits from the leftmost byte of the source operand are
tested to determine their bit values.

Based on the test, the resulting condition is used with the extender field to:

• Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

• Assign a value to each of the indicator operands (indicator form).

The source and the mask operands can be character or numeric. The leftmost
byte of each of the operands is used in the operands. The operands are inter­
preted as bit strings. The testing is performed bit by bit with only those bits indi­
cated by the mask operand being tested. A 1-bit in the mask operand specifies
that the corresponding bit in the source value is to be tested. A O-bit in the
mask operand specifies that the corresponding bit in the source value is to be
ignored.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: The selected bits of the bit string source operand are all
zeros. all ones, or mixed ones and zeros. A mask operand of all zeros causes a
zero resultant condition.

Chapter 1. Computation and Branching Instructions 1-243

Test Bits Under Mask (TSTBUMB or TSTBUMI)

Exceptions
Operands

Exception 1 2 3 [4.5] Other J 06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception j
03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

J 02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X j
06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target X

OA invalid operand length X X

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2C Program execution

04 branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

1-244 AS/400 MI Functional Reference

L

L

Test Bits Under Mask (TSTBUMB or TSTBUMI)

Operands
Exception 1 2 3 [4,5]

01 space extension/truncation
Other
X

Chapter 1. Computation and Branching Instructions 1-245

Translate (XLATE)

1.73 Translate (XLA TE)
Op Code (Hex)
1094

Operand 1
Receiver

Operand 2
Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar or null.

Operand 4: Character scalar.

Operand 3
Position

Operand 4
Replacement

Description: Selected characters in the string value of the source operand are
translated into a different encoding and placed in the receiver operand. The
characters selected for translation and the character values they are translated
to are indicated by entries in the position and replacement strings. All the oper­
ands must be character strings. The source and receiver values must be of the
same length. The position and replacement operands can differ in length. If
operand 3 is nUll, a 256-character string is used, ranging in value from hex 00 to
hex FF (EBCDIC collating sequence).

The operation begins with all the operands left-adjusted and proceeds character
by character, from left to right until the character string value of the receiver
operand is completed.

Each character of the source operand value is compared with the individual \
characters in the position operand. If a character of equal value does not exist ...",
in the position string, the source character is placed unchanged in the receiver
operand. If a character of equal value is found in the position string, the corre-
sponding character in the same relative location within the replacement string is
placed in the receiver operand as the source character translated value. If the
replacement string is shorter than the position string and a match of a source to
position string character occurs for which there is no corresponding replacement
character, the source character is placed unchanged in the receiver operand. If
the replacement string is longer than the position string, the rightmost excess
characters of the replacement string are not used in the translation operation
because they have no corresponding position string characters. If a character in
the position string is duplicated, the first occurrence (leftmost) is used.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

The receiver, source, position, and replacement operands can be variable length
substring compound operands.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for all of the operands on this instruction. The \
effect of specifying a null substring reference for either the position or replace- .""",
ment operands is that the source operand is copied to the receiver with no

1-246 AS/400 MI Functional Reference

Translate (XLATE)

change in value. The effect of specifying a null substring reference for both the
receiver and the source operands (they must have the same length) is that no

L result is set.

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/Parameter

01 Parameter reference violation X X X X

OC Computation

08 Length conformance X X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

. 03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

L
03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program Creation

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X X X

OC Invalid operand ODT reference X X X X

00 Reserved bits are not zero X X X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

Chapter 1. Computation and Branching Instructions 1-247

Translate (XLATE)

Exception
36 Space Management

01 Space ExtensionlTruncation

1-248 AS/400 MI Functional Reference

Operands
123 4 Other

x

J

J

L
1.74 Translate with Table (XLATEWT)

Op Code (Hex)
109F

Operand 1
Receiver

Operand 2
Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Translate with Table (XLATEWT)

Operand 3
Table

Description: The source characters are translated under control of the translate
table and placed in the receiver. The operation begins with the leftmost char­
acter of operand 2 and proceeds character-by-character, left-to-right.

Characters are translated as follows:

• The source character is used as an offset and added to the location of
operand 3.

• The character contained in the offset location is the translated character.
This character is copied to the receiver in the same relative position as the
original character in the source string.

If operand 3 is less than 256 bytes long, the character in the source may specify
an offset beyond the end of operand 3. If operand 2 is longer than operand 1,
then only the leftmost portion of operand 2, equal to the length of operand 1, is
translated. If operand 2 is shorter than operand 1, then only the leftmost portion
of operand 1, equal to the length of operand 2, is changed. The remaining
portion of operand 1 is unchanged.

If operand 1 overlaps with operand 2 and/or 3, the overlapped operands are
updated for every character translated. The operation proceeds from left to
right, one character at a time. The following example shows the results of an
overlapped operands translate operation. Operands 1, 2, and 3 have the same
coincident character string with a value of hex 050403020103.

Hex 050403020103-lnitial value

Hex 030403020103-After the 1st character is translated

Hex 030103020103-After the 2nd character is translated

Hex 030102020103-After the 3rd character is translated

Hex 030102020103-After the 4th character is translated

Hex 030102020103-After the 5th character is translated

Hex 030102020102-After the 6th character, the final result

Note that the instruction does not use the length specified for the table operand
to constrain access of the bytes addressed by the table operand.

If operand 3 is less than 256 characters long, and a source character specifies
an offset beyond the end of operand 3, the result characters are obtained from

Chapter 1. Computation and Branching Instructions 1-249

Translate with Table (XLATEWT)

Exceptions

byte locations in the space following operand 3. If that portion of the space is
not currently allocated, a space addressing exception is signaled. If operand 3 is
a constant with a length less than 256, source characters specifying offsets . "
greater than or equal to the length of the constant are translated into unpredict- ."",
able characters.

All of the operands support variable length substring compound scalars.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for all of the operands on this instruction. Speci­
fying a null substring reference for the table operand does not affect the opera­
tion of the instruction. In this case, the bytes addressed by the table operand
are still accessed as described above. This is due to the definition of the func­
tion of this instruction which does not use the length specified for the table
operand to constrain access of the bytes addressed by the table operand. The
effect of specifying a null substring reference for either or both of the receiver
and the source operands is that no result is set.

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

Operands
123

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

1-250 AS/400 MI Functional Reference

Translate with Table (XLATEWT)

Operands

L Exception 1 2 3 Other
08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X X

36 Space Management

01 Space ExtensionlTruncation X

L

Chapter 1. Computation and Branching Instructions 1-251

Trim Length (TRI M L)

1.75 Trim Length (TRIML)

Exceptions

Op Code (Hex)
10A7

Operand 1
Receiver
length

Operand 2
Source
string

Operand 1: Numeric variable scalar.

Operand 2: Character scalar.

Operand 3: Character(1) scalar.

Operand 3
Trim char­
acter

Description: The operation determines the resultant length of operand 2 after
the character specified by operand 3 has been trimmed from the end of operand
2. The resulting length is stored in operand 1. Operand 2 is trimmed from the
end as follows: if the rightmost (last) character of operand 2 is equal to the
character specified by operand 3, the length of the trimmed operand 2 string is
reduced by 1. This operation continues until the rightmost character is no longer
equal to operand 3 or the trimmed length is zero. If operand 3 is longer than
one character, only the first (leftmost) character is used as the trim character.

Operands 2 and 3 are not changed by this instruction. Operand 2 or 3 may be
variable length substring compound scalars.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

01 Parameter reference violation

OC Computation

OA Size

10 Damage Encountered

44 Partial system object damage

1 C Machi ne-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

Operands
123

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

x

X

1-252 AS/400 MI Functional Reference

Trim Length (TRIML)

Operands
Exception 1 2 3 Other
22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

00 Reserved bits are not zero X X X X

2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X X

36 Space Management

01 Space Extensionrrruncation X

Chapter 1. Computation and Branching Instructions 1-253

Verify (VERIFY)

1.76 Verify (VERIFY)

Optional Forms

Op Code (Hex)
1007

Operand 1
Receiver

Operand 2
Source

Operand 3
Class

Operand 1: Binary variable scalar or binary array.

Operand 2: Character scalar.

Operand 3: Character scalar.

Mnemonic
VERIFYI

VERIFYB

Op Code
(Hex)
1807

lCD7

Form Type
Indicator

Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: Each character of the source operand character string value is
checked to verify that it is among the valid characters indicated in the class
operand.

The operation begins at the left end of the source string and continues character
by character, from left to right. Each character of the source value is compared
with the characters of the class operand. If a match for the source character
exists in the class string, the next source character is verified. If a match for the
source character does not exist in the class string, the binary value for the rela­
tive location of the character within the source string is placed in the receiver
operand.

If the receiver operand is a scalar, only the first occurrence of an invalid char­
acter is noted. If the receiver operand is an array, as many occurrences as
there are elements in the array are noted.

The operation continues until no more occurrences of invalid characters can be
noted or until the end of the source string is encountered. When the second
condition occurs, the current receiver value is set to o. If the receiver operand is
an array, all its remaining entries are set to D's.

The source and class operands can be variable length substring compound oper­
ands.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 2 and 3. The effect of specifying a
null substring reference for the class operand when a nonnull string reference is
specified for the source is that all of the characters of the source are considered

1-254 AS/400 MI Functional Reference

Verify (VERIFY)

invalid. In this case, the receiver is accordingly set with the offset(s) to the bytes

L
of the source, and the instruction's resultant condition is positive. The effect of
specifying a null substring reference for the source operand (no characters to
verify) is that the receiver is set to zero and the instruction's resultant condition
is zero regardless of what is specified for the class operand.

Resultant Conditions: The numeric value(s) of the receiver is either 0 or posi-
tive. When the receiver operand is an array, the resultant condition is 0 if all
elements are O.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OA invalid operand length X

Chapter 1. Computation and Branching Instructions 1-255

Verify (VERIFY)

Operands
Exception 1 2 3 Other

~ OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2C Program execution

04 branch target invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-256 ASI400 MI Functional Reference

Compare Pointer for Object Addressability (CMPPTRAB or CMPPTRAI)

Chapter 2. Pointer/Name Resolution Addressing Instrudions

This chapter describes the instructions used for pointer and name resolution
functions. These instructions are in alphabetic order. See Appendix A, "Instruc­
tion Summary," for an alphabetic summary of all the instructions.

2.1 Compare Pointer for Object Addressability (CMPPTRAB or
CMPPTRAI)

Op Code (Hex) Extender Operand Operand Operand 3
1 2 [4]

1C02 Branch Compare Compare Branch
options operand operand target

1 2

1802 Indi- Indicator
cator target
options

Operand 1: Data pointer, space pointer, system pointer, or instruction pointer.

Operand 2: Data pointer, space pointer, system pointer, or instruction pointer.

Operand 3 [4]:

• Branch Form -Instruction number, relative instruction number, branch point,
or instruction pointer .

• Indicator Form - Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is required by the instruction.

The extender field is required along with one or two branch targets (for branch
option) or one or two indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and optional for operand 4. See
Chapter 1. "Introduction" for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: The object addressed by operand 1 is compared with the object
addressed by operand 2 to determine if both operands are addressing the same
object. Based on the comparison, the resulting condition is used with the
extender to transfer control (branch form) or to assign a value to each of the
indicator operands (indicator form).

If operand 1 is a data pointer, a space pointer, or a system pointer, operand 2
may be any pointer type except for instruction pointer in any combination. An
equal condition occurs if the pointers are addressing the same object. For space
pointers and data pointers, only the space they are addressing is considered in
the comparison. That is, the space offset portion of the pointer is ignored.

For system pointer compare operands, an equal condition occurs if the system
pointer is compared with a space pointer or data pointer that addresses the

© Copyright rSM Corp. 1990 2-1

Compare Pointer for Object Addressability (CMPPTRAB or CMPPTRAI)

space that is associated with the object that is addressed by the system pointer.
For example, a space pointer that addresses a byte in a space associated with a
system object compares equal with a system pointer that addresses the system
object.

For instruction pointer comparisons, both operands must be instruction pointers;
otherwise, an invalid pointer type exception is signaled. An equal condition
occurs when both instruction pointers are addressing the same instruction in the
same program. A not equal condition occurs if the instruction pointers are not
addressing the same instruction in the same program.

A pointer does not exist exception is signaled if a pointer does not exist in either
of the operands.

Resultant Conditions: Equal, not equal.

Authorization Required
• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

OA Authorization

01 Unauthorized for operation X X

10 Damage encountered

04 System object damage state X X X X X

05 authority verification terminated X
due to damaged object

44 Partial system object damage X X X X X

1A Lock state

01 Invalid lock state X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

2-2 AS/400 MI Functional Reference

~

Compare Pointer for Object Addressability (CMPPTRAB or CMPPTRAI)

Operands
Exception 1 2 3 4 Other
20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

07 authority verification terminated X
due to destroyed object

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program creation

05 Invalid op code extender field X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X X

00 Reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

L
01 space extension/truncation X

Chapter 2. Pointer/Name Resolution Addressing Instructions 2-3

Compare Pointer Type (CMPPTRTB or CMPPTRTI)

2.2 Compare Pointer Type (CMPPTRTB or CMPPTRTI)
Op Code (Hex) Extender Operand Operand Operand 3

1 2 [4]
1CE2 Branch Compare Compare Branch

options operand operand target
1 2

18E2 Indi- Indicator
cator target
options

Operand 1: Data pointer, space pointer, system pointer, or instruction pointer.

Operand 2: Character(1) scalar or null.

Operand 3 [4]:

• Branch Form -Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form - Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is required by the instruction.

The extender field is required along with one or two branch targets (for branch
option) or one or two indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and optional for operand 4. See
Chapter 1. "Introduction" for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: The instruction compares the pointer type currently in operand 1
with the character scalar identified by operand 2. Based on the comparison, the
resulting condition is used with the extender to transfer control (branch form) or
to assign a value to each of the indicator operands (indicator form).

Operand 1 can specify a space pointer machine object only when operand 2 is
null.

If operand 2 is null or if operand 2 specifies a comparison value of hex 00, an
equal condition occurs if a pOinter does not exist in the storage area identified
by operand 1.

Following are the allowable values for operand 2:

Hex 00 - A pOinter does not exist at this location

Hex 01 - System pointer

Hex 02 - Space pointer

Hex 03 - Data pointer

Hex 04 - Instruction pointer

2-4 AS/400 MI Functional Reference

..J

L

Compare Pointer Type (CMPPTRTB or CMPPTRTI)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Equal, not equal.

Authorization Required
• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

OA Authorization

01 Unauthorized for operation X

10 Damage encountered

04 System object damage state X X X X X

05 authority verification terminated X
due to damaged object

44 Partial system object damage X X X X X

1A Lock state

01 Invalid lock state X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

07 authority verification terminated X
due to destmyed object

Chapter 2. PointerlName Resolution Addressing Instructions 2-5

Compare Pointer Type (CMPPTRTB or CMPPTRTI)

Operands
Exception 1 2 3 4 Other

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

2A Program creation

05 Invalid op code extender operand X

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

09 Invalid branch target operand X X

OA Invalid operand length X X X

OC Invalid operand odt reference X X X X

OD Reserved bits are not zero X X X X X ..J
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

2-6 AS/400 MI Functional Reference

Copy Bytes with Pointers (CPYBWP)

2.3 Copy Bytes with Pointers (CPYBWP)
Op Code (Hex) Operand Operand 2

1
0132 Receiver Source

Operand 1: Character variable scalar, space pointer, data pointer, system
pointer, or instruction pointer.

Operand 2: Character variable scalar, space pointer data object, data pointer,
system pointer, instruction pointer, or null.

Description: If either operand is a character variable scalar, it can have a
length as great as 16776191 bytes.

This instruction copies either the pointer value or the byte string specified for the
source operand into the receiver operand depending upon whether or not a
space pointer machine object is specified as one of the operands.

Operations involving space pointer machine objects perform a pointer value
copy operation for only space pointer values or the pointer does not exist state.
Due to this, a space pointer machine object may only be specified as an operand
in conjunction with another pointer or a null second operand. The pointer does
not exist state is copied from the source to the receiver pointer without signaling
the pointer does not exist exception. Source pointer data objects must either be
not set or contain a space pointer value when being copied into a receiver space
pointer machine object. Receiver pointer data objects will be set with either the
system default pointer does not exist value or the space pointer value from a
source space pointer machine object.

Normal pointer alignment checking is performed on a pointer data object speci­
fied as an operand in conjunction with a space pointer machine object.

Operations not involving space pointer machine objects, those involving just data
objects as operands, perform a byte string copy of the data for the specified
operands.

The value of the byte string specified by operand 2 is copied to the byte string
specified by operand 1 (no padding done).

The byte string identified by operand 2 can contain the storage forms of both
scalars and pointers. Normal pointer alignment checking is not done.

When the OVRPGATR instruction is not used to override CPYBWP, the only align­
ment requirement is that the space addressability alignment of the two operands
must be to the same position relative to a 16-byte multiple boundary. A
boundary alignment exception is signaled if the alignment is incorrect. The
pointer attributes of any complete pointers in the source are preserved if they
can be completely copied into the receiver. Partial pointer storage forms are
copied into the receiver as scalar data. Scalars in the source are copied to the
receiver as scalars.

When the OVRPGATR instruction is used to override this instruction the align­
ment requirement is removed. If the space addressability alignment of the two

Chapter 2. PointerlName Resolution Addressing Instructions 2-7

Copy Bytes with Pointers (CPYBWP)

Exceptions

operands is the same relative to 16-byte multiple boundary then this instruction
will work the same as stated above. If the space addressability alignment is dif­
ferent then this instruction will work like a CPYBLA and the pointer attributes of
any complete pointers in the source are not preserved in the receiver.

If a pointer data object operand contains a data pointer value upon execution of
the instruction, the pointer storage form is copied rather than than the scalar
described by the data pointer value. The character variable scalar reference
allowed on either operand cannot be described through a data pointer value.

The length of the operation is equal to the length of the shorter of the two oper­
ands. The copying begins with the two operands left-adjusted and proceeds until
completion of the shorter operand.

Operand 1 can specify a space pointer machine object only when operand 2 is
null.

If operand 2 is null, operand 1 must define a pointer reference; otherwise, an
exception is signaled. When operand 2 is null, the byte string identified by
operand 1 is set to the system default pointer does not exist value.

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer specification

01 Pointer does not exist X X

2-8 AS/400 MI Functional Reference

j

j

j

Copy Bytes with Pointers (CPYBWP)

Operands
Exception 1 2 Other

02 Pointer type invalid X X

2A Program creation

06 Invalid operand type X X

07 Invalid operand attribute X

08 Invalid operand value range X X

OA Invalid operand length X

OC Invalid operand odt reference X X

OD Reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 2. Pointer/Name Resolution Addressing Instructions 2-9

Resolve Data Pointer (RSLVDP)

2.4 Resolve Data Pointer (RSLVDP)
Op Code (Hex)
0163

Operand 1
Pointer for
address­
ability to
data object

Operand 1: Data pointer.

Operand 2
Data object
identifica­
tion

Operand 3
Program

Operand 2: Character(32) scalar (fixed-length) or null.

Operand 3: System pointer or null.

Description: A data pointer with addressability to and the attributes of an
external scalar data element is returned in the storage area identified by
operand 1. The following describes the instruction's function when operand 2 is
null:

• If operand 1 does not contain a data pointer, an exception is signaled.

• If the data pointer specified by operand 1 is not resolved and has an initial
value declaration, the instruction resolves the data pointer to the external
scalar that the initial value describes. The initial value defines the external
scalar to be located and, optionally, defines the program in which it is to be
located. If the program name is specified in the initial value, only that pro­
gram's activation entry is searched for the external scalar. If no program is
specified, programs associated with the activation entries in the process
static storage area are searched in reverse order of the activation entries,
and operand 3 is ignored.

• If the data pointer is currently resolved and defines an existing scalar, the
instruction causes no operation, and no exception is signaled.

The following describes the instruction's function when operand 2 is not null:

• A data pointer that is resolved to the external scalar identified by operand 2
is returned in operand 1. Operand 2 is a 32-byte value that provides the
name of the external scalar to be located.

• Operand 3 specifies a system pointer that identifies the program whose acti­
vation is to be searched for the external scalar definition. If operand 3 is
null, the instruction searches all activations in the process, starting with the
most recent activation and continuing to the oldest. The activation under
which the instruction is issued also participates in the search. If operand 3
is not null, the instruction searches the activation of the program addressed
by the system pointer.

If the external scalar is not located, the object not found exception is signaled. If
an unresolved system pointer is encountered when the program searches the
activation entries, the pointer not resolved exception is signaled. If the PSSA
chain being modified bit is on when this instruction is executed, a stack control
invalid exception is signaled.

Substring operand references that allow for a null substring reference (a length j
value of zero) may not be specified for this instruction.

2-10 AS/400 MI Functional Reference

Resolve Data Pointer (RSLVDP)

Authorization Required
• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X

06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X X

10 Damage encountered

04 System object damage state X X X X

05 authority verification terminated due to X
damaged object

44 Partial system object damage X X X X

1A Lock state

01 Invalid lock state X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

04 Pointer not resolved X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

Chapter 2. Pointer/Name Resolution Addressing Instructions 2-11

Resolve Data Pointer (RSLVDP)

Operands
Exception 1 2 3 Other

01 Pointer does not exist X X X j
02 Pointer type invalid X X X

04 Pointer not resolved X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand odt reference X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2C Program execution

03 Stack control invalid X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X X

02 Scalar attributes invalid X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

2-12 AS/400 MI Functional Reference

2.5

Resolve System Pointer (RSLVSP)

Resolve System Pointer (RSLVSP)
Op Code (Hex) Operand 1 Operand 2 Operand Operand 4

3
0164 Pointer for Object Context Authority

address- identifica- through to be setl

ability to tion and which
object required objects

authori- is to be
zation located

Operand 1: System pointer.

Operand 2: Character(34) scalar (fixed-length) or null.

Operand 3: System pointer or null.

Operand 4: Character(2) scalar (fixed-length) or null.

Description: This instruction locates an object identified by a symbolic address
and stores the object's addressability and authorityl in a system pointer. A
resolved system pOinter is returned in operand 1 with addressability to a system
object and the requested authority currently available to the process for the
object.

Note: The ownership flag is never set in the system pointer.

Operand 2 specifies the symbolic identification of the object to be located.
Operand 3 identifies the context to be searched in order to locate the object.
Operand 4 identifies the authority states to be set in the pointer. First, the
instruction locates an object based on operands 2 and 3. Then, the instruction
sets the appropriate authority states in the system pointer.

The following describes the instruction's function when operand 2 is null:

• If operand 1 does not contain a system pointer, an exception is signaled.

• If the system pointer specified by operand 1 is not resolved but has an initial
value declaration, the instruction resolves the system pointer to the object
that the initial value describes. The initial value defines the following:

Object to be located (by type, subtype, and name)

Context to be searched to locate the object (optional)

Minimum authority required for the object

If a context is specified, only that context is referenced to locate the object,
and operand 3 is ignored. If no context is specified, the context(s) located by
the process name resolution list is used to locate the object, and operand 3
is ignored. If the object is of a type that can only be addressed through the
machine context, then only the machine context is searched, and the context
(if any) identified in the initial value or identified in operand 3 is ignored.

1 Programs executing in user-domain may not assign authority in the resulting system pointer. The value in operand 4 is
ignored and no exception is raised.

Chapter 2. Pointer/Name Resolution Addressing Instructions 2-13

Resolve System Pointer (RSLVSP)

If the minimum required authority in the initial value is not set (binary 0), the
instruction resolves the operand 1 system pointer to the first object encount­
ered with the designated type code, subtype code, and object name without
regard to the authorization available to the process for the object. If one or
more authorization (or ownership) states are required (signified by binary
1's), the context(s) is searched until an object is encountered with the desig­
nated type, subtype, and name and for which the process currently has all
required authorization states.

• If the system pointer specified by operand 1 is currently resolved to address
an existing object, the instruction does not modify the addressability con­
tained in the pointer and causes only the authority attribute in the pointer to
be modified based on operand 4.

If operand 2 is not nUll, the operand 1 system pointer is resolved to the object
identified by operand 2 in the context(s) specified by operand 3. The format of
operand 2 is as follows:

• Object specification

Type code

Subtype code

Object name

• Required authorization (1 = required)

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Ownership

Excluded

Authority List Management

Reserved (binary zero)

The allowed type codes are as follows:

Hex 01 = Access group
Hex 02 = Program
Hex 04 = Context
Hex 06 = Byte string space
Hex 07 = Journal space
Hex 08 = User profile
Hex 09 = Journal port
Hex OA = Queue
Hex OB = Data space
Hex OC = Data space index

2-14 AS/400 M I Functional Reference

Char(32)

Char(1)

Char(1)

Char(30)

Char(2)

Bit a
Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11-15

Resolve System Pointer (RSLVSP)

Hex OD = Cursor
Hex OE = Index
Hex OF = Commit block
Hex 10 = Logical unit description
Hex 11 = Network description
Hex 12 = Controller description
Hex 13 = Dump space
Hex 14 = Class of Service Description
Hex 15 = Mode Description
Hex 19 = Space
Hex 1A = Process control space
Hex 1 B = Authorization List
Hex 1 C = Dictionary

All other codes are reserved. If other codes are specified, they cause a scalar
. value invalid exception to be signaled.

Operand 3 identifies the context in which to locate the object identified by
operand 2. If operand 3 is nUll, then the contexts identified in the process name
resolution list are searched in the order in which they appear in the list. If
operand 3 is not nUll, the system pointer specified must address a context, and
only this context is used to locate the object. If the object is of a type that can
only be addressed through the machine context, then only the machine context
is searched, and operand 3 and the process name resolution list are ignored.

If the required authorization field in operand 2 is not set (binary D's), the instruc­
tion resolves the operand 1 system pointer to the first object encountered with
the designated type code, subtype code, and object name without regard to the
authorization currently available to the process. If one or more authorization (or
ownership) states are required (signified by binary 1's), the context is searched
until an object is encountered with the designated type, subtype, name, and the
user profiles governing the instruction's execution that have all the required
authorization states.

Once addressability has been set in the pointer, operand 4 is used to determine
which, if any, of the object authority states is to be set into the pointer. Only the
object authority states correlating with bits 0 through 7, that is, object control
through update, can be set into the pointer. This restriction applies whether the
authority mask controlling which authorities to set in the pointer comes from
operand 4, operand 2, or the initial value for the system pointer.

If operand 4 is nUll, the object authority states required to locate the object are
set in the pointer. This required object authority is as speCified in operand 2 or
in the initial value for operand 1 if operand 2 is null. If the process does not
currently have authorized pointer authority for the object, no authority is stored
in the system pointer, and no exception is signaled.

If operands 2 and 4 are null and operand 1 is a resolved system pOinter, the
authority states in the pointer are not modified.

If operand 4 is not nUll, it specifies the object authority states to be set in the
resolved system pointer. The format of operand 4 is as follows:

• Requested authorization (1 = set authority)

Object control

Char(2)

Bit 0

Chapter 2. Pointer/Name Resolution Addressing Instructions 2-15

Resolve System Pointer (RSLVSP)

Object management Bit 1

Authorized pointer Bit 2

Space authority Bit 2

Retrieve Bit 4

Insert Bit 5

Delete Bit 6

Update Bit 7

Reserved (binary 0) Bits 8-15

The authority states set in the resolved system pointer are based on the fol­
lowing:

• The authority already stored in the pointer can be increased only when the
process has authorized pointer authority to the referenced object. If this
authority is not available and the pointer was resolved by this instruction, the
authority in the operand 1 system pointer is set to the not set state, and no
exception is signaled. If operand 2 is null, if operand 1 is a resolved system
pointer containing authority, and if authorized pointer authority is not avail­
able to the process, additional authorities cannot be stored in the pointer.

• If the process does not currently have all the authority states requested in
operand 4, only the requested and available states are set in the pointer, and
no exception is signaled.

• Note that the authority stored in the operand 1 system pointer is a source of
authority applies to this instruction when operand 2 is null and operand 1 is
a resolved system pointer with authority stored in it.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Authorization Required
• Retrieve

- Contexts referenced for address resolution (including operand 3)

Lock Enforcement
• Materialization

- Contexts referenced for address resolution (including operand 3)

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized addressability invalid X X X X

08 Argument/parameter

01 Parameter reference violation X X X X

2-16 AS/400 MI Functional Reference

~

Resolve System Pointer (RSLVSP)

Operands
Exception 1 2 3 4 Other

OA Authorization

01 Unauthorized for operation X X

10 Damage encountered

02 Machine context damage state X

04 System object damage state X X X X X

05 authority verification terminated X
due to damaged object

44 Partial system object damage X X X X X

1A Lock state

01 Invalid lock state X X

20 Machine support

02 Machine check X

03 Function check X

22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

07 authority verification terminated X
due to destroyed object

24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

04 Pointer not resolved X

2A Program creation

06 Invalid operand type X X X X

L 07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X X

00 Reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space management

01 space extension/truncation X

Chapter 2. Pointer/Name Resolution Addressing Instructions 2-17

Resolve System Pointer (RSLVSP)

2-18 AS/400 MI Functional Reference

L

Add Space Pointer (ADDSPP)

Chapter 3. Space Object Addressing Instructions

This chapter describes the instructions used for space object addressing. These
instructions are in alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A, "Instruction Summary"

3.1 Add Space Pointer (ADDSPP)
Op Code (Hex)
0083

Operand 1
Receiver
Pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand 2
Source
Pointer

Operand 3
Increment

Description: This instruction adds a signed or unsigned binary value to the
offset of a space pointer. The value of the binary scalar represented by operand
3 is added to the space address contained in the space pointer specified by
operand 2, and the result is stored in the space pointer identified by operand 1.
Operand 3 can have a positive or negative value. The space object that the
pointer is addressing is not changed by the instruction.

Operand 2 must contain a space pointer when the execution of the instruction is
initiated; otherwise, an invalid pointer type exception is signaled. When the
addressability in a space pointer is modified, the instruction signals a space
addressing exception only when the space address to be stored in the pointer
has a negative offset value or when the offset addresses beyond the largest
space allocatable in the object. This maximum offset value is dependent on the
size and packaging of the object containing the space and is independent of the
actual size of the space allocated. If the exception is signaled by this instruction
for this reason, the pointer is not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently allocated extent of the
space and the maximum allocatable extent of the space cause the space
addressing exception to be signaled.

The object destroyed exception, optimized addressability invalid exception,
parameter reference violation exception, and pointer does not exist exception
are not signaled when operand 1 and operand 2 are space pointer machine
objects. This occurs when operand 2 contains an internal machine value that
indicates one of these error conditions exists. If the corresponding exception is
not signaled, operand 1 is set with an internal machine value that preserves the
exception condition that existed for operand 2. The appropriate exception condi­
tion will be signaled for either pointer when a subsequent attempt is made to
reference the space data that the pointer addresses.

~ Copyright IBM Corp. 1990 3-1

Add Space Pointer (ADDSPP)

Exceptions
Operands

~ Exception 1 2 3[4-6] Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X ~
07 invalid operand attribute X X X

08 invalid operand value range X X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

3-2 AS/400 MI Functional Reference

L

L

Compare Pointer for Space Addressability (CMPPSPADB or CMPPSPADI)

3.2 Compare Pointer for Space Addressability (CMPPSPADB or
CMPPSPADI)

Op Code (Hex) Extender Operand 1 Operand 2 Operand
3 [4-6]

1CE6 Branch Compare Compare Branch
Operations 'operand 1 Operand 2 target

18E6 Indicator Indicator
options target

Operand 1: Space pointer or data pointer.

Operand 2: Numeric variable scalar, character variable scalar, numeric variable
array, character variable array, space pointer, or data pointer.

Operand 3 [4-6]:

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is required by the instruction.

The extender field is required along with from one to four branch targets (for
branch option) or one to four indicator operands (for indicator option). The
branch or indicator operands are required for operand 3 and optional for oper­
ands 4-6. See Chapter 1. Introduction for the bit encoding of the extender field
and the allowed syntax of the branch and indicator operands.

Description: The space addressability contained in the pointer specified by
operand 1 is compared with the space addressability defined by operand 2.

The value of the operand 1 pointer is compared based on the following:

• If operand 2 is a scalar data object (element or array), the space address­
ability of that data object is compared with the space addressability con­
tained in the operand 1 pointer.

• If operand 2 is a pointer, it must be a space pointer or data pointer, and the
space addressability contained in the pointer is compared with the space
addressability contained in the operand 1 pointer.

Based on the results of the comparison, the resulting condition is used with the
extender to transfer control (branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are not in the same space,
the resultant condition is unequal. If the operands are in the same space and
the offset into the space of operand 1 is larger or smaller than the offset of
operand 2, the resultant condition is high or low, respectively. An equal condi­
tion occurs only if the operands are in the same space at the same offset.
Therefore, the resultant conditions (high, low, equal, and unequal) are mutually
exclusive. Consequently, if you specify that an action be taken upon the nonex­
istence of a condition, this results in the action being taken upon the occurrence

Chapter 3. Space Object Addressing Instructions 3-3

Compare Pointer for Space Addressabillty (CMPPSPADB or CMPPSPADI)

Exceptions

of any of the other three possible conditions. For example, a branch not high
would result in the branch being taken on a low, equal, or unequal condition.

The object destroyed exception, optimized addressability invalid exception,
parameter reference violation exception, and pointer does not exist exception
are not signaled when operand 1 or operand 2 is a space pointer machine object
or when operand 2 is a scalar based on a space pointer machine object. This
occurs when the space pointer machine object contains an internal machine
value that indicates one of these error conditions exists. If the corresponding
exception is not signaled, the resulting condition of the comparison operation is
not defined other than that it will be one of the four valid resultant conditions for
this instruction.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: High, low, equal, unequal.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

04 external data object not found

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

24 Pointer specification

01 pointer does not exist

02 pointer type invalid

Operands
1 2 3 [4-6]

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

3-4 AS/400 MI Functional Reference

Compare Pointer for Space Addressability (CMPPSPADB or CMPPSPADI)

Operands
Exception 1 2 3 [4-6] Other
2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X

OC invalid operand odt reference X X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 3. Space Object Addressing Instructions 3-5

Compare Space Addressability (CMPSPADB or CMPSPADI)

3.3 Compare Space Addressability (CMPSPADB or CMPSPADI)
Op Code (Hex) Extender Operand 1 Operand 2 Operand

3 [4-6]
1CF2 Branch Compare Compare Branch

options operand 1 operand 2 target

18F2 Indicator Indicator
options target

Operand 1: Numeric variable scalar, character variable scalar, numeric variable
array, character variable array, pointer, or pointer array.

Operand 2: Numeric variable scalar, character variable scalar, numeric variable
array, character variable array, or pointer data object array.

Operand 3 [4-6]:

• Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is required by the instruction.

The extender field is required along with from one to four branch targets (for
branch option) or one to four indicator operands (for indicator option). The
branch or indicator operands are required for operand 3 and optional for oper­
ands 4-6. See Chapter 1. "Introduction" for the bit encoding of the extender
field and the allowed syntax of the branch and indicator operands.

Description: The space addressability of the object specified by operand 1 is
compared with the space addressability of the object specified by operand 2.

Based on the results of the comparison, the resulting condition is used with the
extender to transfer control (branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are not in the same space,
the resultant condition is unequal. If the operands are in the same space and
the offset of operand 1 is larger or smaller than the offset of operand 2, the
resultant condition is high or low, respectively. Equal occurs only if the oper­
ands are in the same space at the same offset. Therefore, the resultant condi­
tions (high, low, equal, and unequal) are mutually exclusive. Consequently, if
you specify that an action be taken upon the nonexistence of a condition, this
results in the action being taken upon the occurrence of any of the other three
possible conditions. For example, a branch not high would result in the branch
being taken on a low, equal, or unequal condition.

If a pointer data object operand contains a data pointer value upon execution of
the instruction, the addressability is compared to the pointer data object rather
than to the scalar described by the data pointer value. The variable scalar refer­
ences allowed on operands 1 and 2 cannot be described through a data pointer
value.

3-8 AS/400 MI Functional Reference

~

L

Exceptions

L

Compare Space Addressability (CMPSPADB or CMPSPADI)

The object destroyed exception, optimized addressability invalid exception,
parameter reference violation exception, and pointer does not exist exception
are not signaled when operand 1 or operand 2 is based on a space pointer
machine object. This occurs when the space pointer machine object contains an
internal machine value that indicates one of these error conditions exists. If the
corresponding exception is not signaled, the resulting condition of the compar­
ison operation is not defined other than that it will be one of the four valid
resultant conditions for this instruction.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: High, low, equal, unequal.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

10

01 parameter reference violation

Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

24 Pointer specification

01 pointer does not exist

02 pointer type invalid

2A Program creation

05 invalid op code extender field

06 invalid operand type

07 invalid operand attribute

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3 [4-6]

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

Chapter 3. Space Object Addressing Instructions 3-7

Compare Space Addressability (CMPSPADB or CMPSPADI)

Operands
Exception 1 2 3 [4-6] Other

..J 08 invalid operand value range X X X

09 invalid branch target operand X

OC invalid operand odt reference X X X X

OD reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

3-8 AS/400 MI Functional Reference

Set Data Pointer (SETDP)

3.4 Set Data Pointer (SETDP)

Exceptions

Op Code (Hex)
0096

Operand 1
Receiver

Operand 1: Data pointer.

Operand 2
Source 1

Operand 2: Numeric variable scalar, character variable scalar, numeric variable
array, or character variable array.

Description: A data pointer is created and returned in the storage area speci­
fied by operand 1 and has the attributes and space addressability of the object
specified by operand 2. Addressability is set to the low-order (leftmost) byte of
the object specified by operand 2. The attributes given to the data pointer
include scalar type and scalar length.

If operand 2 is a substring compound operand, the length attribute is set equal to
the length of the substring. If operand 2 is a subscript compound operand, the
attributes and addressability of the single array element specified are assigned
to the data pointer. If operand 2 is an array, the attributes and addressability of
the first element of the array are assigned to the data pointer. A data pointer
can only be set to describe an element of a data array, not a data array in its
entirety.

When the addressability in the data pointer is modified, the instruction signals
the space addressing exception when one of the following conditions occurs:

• When the space address to be stored in the pointer would have a negative
offset value.

• When the offset would address an area beyond the largest space allocatable
in the object. This maximum offset value is dependent on the size and pack­
aging of the object containing the space and is independent of the actual
size of the space allocated.

If the exception is signaled by this instruction for one of these reasons, the
pointer is not modified by the instruction.

Attempts to use a pointer whose offset value lies between the currently allocated
extent of the space and the maximum allocatable extent cause the space
addressing exception to be signaled.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Operands
1 2 Other

x
X

X

X

X

X

X

X

Chapter 3. Space Object Addressing Instructions 3-9

Set Data Pointer (SETDP)

Operands
Exception 1 2 Other
08 Argument/parameter ~ 01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

08 invalid operand value range X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management ~
01 space extension/truncation X

3-10 AS/400 MI Functional Reference

L

Set Data Pointer Addressability (SETDPADR)

3.5 Set Data Pointer Addressability (SETDPADR)

Exceptions

Op Code (Hex)
0046

Operand 1
Receiver

Operand 1: Data pointer.

Operand 2
Source

Operand 2: Numeric variable scalar. character variable scalar. numeric variable
array. or character variable array.

Description: The space addressability of the object specified for operand 2 is
assigned to the data pointer specified by operand 1. If operand 1 contains a
resolved data pointer at the initiation of the instruction's execution. the data
pointer's scalar attribute component is not changed by the instruction. If
operand 1 contains an initialized but unresolved data pointer at the initiation of
the instruction's execution. the data pointer is resolved in order to establish the
scalar attribute component of the pointer. If operand 1 contains other than a
resolved data pointer at the initiation of the instruction's execution. the instruc­
tion creates and returns a data pointer in operand 1 with the addressability of
the object specified for operand 2. and the instruction establishes the attributes
as a character(1) scalar.

When the addressability is set into a data pointer. the space addressing excep­
tion is signaled by the instruction only when the space address to be stored in
the pointer has a negative offset value or if the offset addresses beyond the
largest space allocatable in the object. This maximum offset value is dependent
on the size and packaging of the object containing the space and is independent
of the actual size of the space allocated. If the exception is signaled for this
reason. the pointer is not modified by the instruction. Attempts to use a pointer
whose offset value lies between the currently allocated extent of the space and
the maximum allocatable extent of the space cause the space addressing excep­
tion to be signaled.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

04 external data object not found X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

Chapter 3. Space Object Addressing Instructions 3-11

Set Data Pointer Addressability (SETDPADR)

Operands
Exception 1 2 Other

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X J 02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

3·12 AS/400 MI Functional Reference

L

Set Data Pointer Attributes (SETDPAT)

3.6 Set Data Pointer Attributes (SETDPAT)
Op Code (Hex)
004A

Operand 1
Receiver

Operand 1: Data pointer.

Operand 2
Attributes

Operand 2: Character(7) scalar (fixed-length).

Description: The value of the character scalar specified by operand 2 is inter­
preted as an encoded representation of an attribute set that is assigned to the
attribute portion of the data pointer specified by operand 1. The addressability
portion of the data pointer is not modified. If operand 1 contains an initialized
but unresolved data pointer at the initiation of the instruction's execution, the
data pointer is resolved in order to establish the addressability in the pointer.
The attributes specified by the instruction are then assigned to the data pointer.
If operand 1 does not contain a data pointer at the initiation of the instruction's
execution, an exception is signaled.

The format of the attribute set is as follows:

• Data painter attributes

Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Hex 06 = Onlyns
Hex 07 = Onlys
Hex 08 = Either
Hex 09 = Open
Hex OA = Unsigned binary

Scalar length

If binary or character:
Length (only 2 or 4 for binary)

If floating-point:
Length (only 4 or 8 for floating-point)

If zoned decimal or packed decimal:
Fractional digits (F)

Total digits (T)
(where 1 ::S T ::S 31, 0 ::S F ::S T)

If character:
Length (L, where 1 ::S L ::S 32767)

If Onlyns:

Char(7)

Char(1)

Bin(2)

Bits 0-7

Bits 8-15

Length = L (where 2 ::S L ::S 32,766) and, L is the number of
bytes, L is even.

If Onlys or Either:
Length = L (where 4 ::S L ::S 32,766) and, L is the number of
bytes, L is even, L includes any SO and SI characters.

If Open:

Chapter 3. Space Object Addressing Instructions 3·13

Set Data Pointer Attributes (SETDPAT)

Exceptions

Length = L (where 4 S L S 32,766) and, L is the number of
bytes, L includes any SO and SI characters.

Reserved (binary 0) Bin(4)

Support for usage of a Data Pointer describing an Onlyns, Onlys, Either, or Open
scalar value is limited to the Copy Extended Characters Left Adjusted With Pad
instruction. Usage of such a data pointer defined value on any other instruction
is not supported and results in the signaling of the scalar type invalid exception.

This support for the Onlyns, Onlys, Either, and Open scalar values is essentially
a primitive supplement to more comprehensive support provided by Data Base
Management. For more information on the meaning and usage of these scalar
values refer to the Create Cursor instruction.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

04 external data object not found X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pOinter does not exist X X

02 pointer type invalid X X

3-14 AS/400 MI Functional Reference

.j

J

Set Data Pointer Attributes (SETDPAT)

Operands
Exception 1 2 Other
2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specifications

02 scaler attributes invalid X

L 03 scalar value invalid X

36 Space management

01 space extension/truncation X

Chapter 3. Space Object Addressing Instructions 3-15

Set Space Pointer (SETSPP)

3.7 Set Space Pointer (SETSPP)

Exceptions

Op Code (Hex)
0082

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Source

Operand 2: Numeric variable scalar, character variable scalar, numeric variable
array, character variable array, or pointer data object.

Description: A space pointer is returned in operand 1 and is set to address the
lowest order (leftmost) byte of the byte string identified by operand 2.

When the addressability is set in a space pointer, the instruction signals the
space addressing exception when the offset addresses beyond the largest space
allocatable in the object or when the space address to be stored in the pointer
has a non positive offset value. This offset value is dependent on the size and
packaging of the object containing the space and is independent of the actual
size of the space allocated. If the exception is Signaled for this reason, the
pointer is not modified by the instruction. Attempts to use a pointer whose offset
value lies between the currently allocated extent of the space and the maximum
allocatable extent of the space cause the space addressing exception to be sig­
naled.

If a pointer data object specified for operand 2 contains a data pointer value
upon execution of the instruction, the addressability is set to the pointer storage
form rather than to the scalar described by the data pointer value. The variable
scalar references allowed on operand 2 cannot be described through a data
pointer value.

The object destroyed exception, the optimized addressability invalid exception,
the parameter reference violation exception, and the pointer does not exist
exception are not signaled when operand 1 is a space pointer machine object
and operand 2 is based on a space pointer machine object. This occurs when
the basing space pointer machine object for operand 2 contains an internal
machine value that indicates one of these error conditions exists. If the corre­
sponding exception is not Signaled, operand 1 is set with an internal machine
value that preserves the exception condition which existed for operand 2. The
appropriate exception condition is signaled for either pOinter upon a subsequent
attempt to reference the space data the pointer addresses.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Operands
1 2 cnher

x
X

X

X

X

X

X

X

3-16 AS/400 MI Functional Reference

Set Space Pointer (SETSPP)

Operands
Exception 1 2 Other

L 08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

L
22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X X

24 Pointer speCification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

L 2E Resource control limit

01 user profile storage limit exceeded X

Scalar specification
pit=S.32

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 3. Space Object Addressing Instructions 3-17

Set Space Pointer with Displacement (SETSPPD)

3.8 Set Space Pointer with Displacement (SETSPPD)
Op Code (Hex)
0093

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Source

Operand 3
Displacement

Operand 2: Numeric variable scalar, character variable scalar, numeric variable
array, character variable array, or pointer data object.

Operand 3: Binary scalar.

Description: A space pointer is returned in operand 1 and is set to the space
addressability of the lowest (leftmost) byte of the object specified for operand 2
as modified algebraically by an integer displacement specified by operand 3.
Operand 3 can have a positive or negative value.

When the addressability is set in a space pointer, the instruction signals the
space addressing exception when the space address to be stored in the pointer
has a negative offset value or when the offset addresses beyond the largest
space allocatable in the object. This maximum offset value is dependent on the
size and packaging of the object containing the space and is independent of the
actual size of the space allocated. If the exception is signaled for this reason,
the pointer is not modified by the instruction. Attempts to use a pointer whose
offset value lies between the currently allocated extent of the space and the
maximum allocatable extent of the space cause the space addressing exception
to be signaled.

If a pointer data object specified for operand 2 contains a data pointer value
upon execution of the instruction, the addressability is set to the pointer storage
form rather than to the scalar described by the data pointer value. The variable
scalar references allowed on operand 2 cannot be described through a data
pointer value.

The object destroyed exception, the optimized addressability invalid exception,
the parameter reference violation exception, and the pointer does not exist
exception are not signaled when operand 1 is a space pointer machine object
and operand 2 is based on a space pointer machine object. This occurs when
the basing space pointer machine object for operand 2 contains an internal
machine value that indicates one of these error conditions exists. If the corre­
sponding exception is not signaled, operand 1 is set with an internal machine
value that preserves the exception condition which existed for operand 2. The
appropriate exception condition is signaled for either pOinter upon a subsequent
attempt is made to reference the space data the pointer addresses.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

3-18 AS/400 M I Functional Reference

Set Space Pointer with Displacement (SETSPPD)

Exceptions
Operands

Exception 1 2 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

L 1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

L 01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 3. Space Object Addressing Instructions 3-19

Set Space Pointer from Pointer (SETSPPFP)

3.9 Set Space Pointer from Pointer (SETSPPFP)
Op Code (Hex)
0022

Operand 1
Receiver

Operand 2
Source
Pointer

Operand 1: Space pointer.

Operand 2: Data pointer, system pointer, or space pointer.

Description: A space pointer is returned in operand 1 with the addressability to
a space object from the pointer specified by operand 2.

The meaning of the pointers allowed for operand 2 is as follows:

Pointer
Data pointer or
space pointer

System pointer

Meaning
The space pointer returned in operand 1 is set to address of the
leftmost byte of the byte string addressed by the source pointer
for operand 2.

The space pointer returned in operand 1 is set to address the first
byte of the space contained in the system object addressed by the
system pointer for operand 2. The space object addressed is
either the created system space or an associated space for the
system object addressed by the system pointer. If the operand 2
system pointer addresses a system object with no associated
space, the invalid space reference exception is signaled.

The object destroyed exception, optimized addressability invalid exception, ...J
parameter reference violation exception, and pointer does not exist exception
are not signaled when operand 1 and operand 2 are space pointer machine
objects. This occurs when operand 2 contains an internal machine value that
indicates one of these error conditions exists. If the corresponding exception is
not signaled, operand 1 is set with an internal machine value that preserves the
exception condition that existed for operand 2. The appropriate exception condi-
tion will be signaled for either pointer when a subsequent attempt is made to
reference the space data that the pointer addresses.

Authorization Required
• Space authority

- Operand 2 (if a system pointer)

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

3-20 AS/400 MI Functional Reference

Set Space Pointer from Pointer (SETSPPFP)

Exceptions
Operands

Exception 1 2 other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

04 external data object not found X

05 invalid space reference X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X

OA Authorization

L 01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

Chapter 3. Space Object Addressing Instructions 3-21

Set Space Pointer from Pointer (SETSPPFP)

Exception
OC invalid operand odt reference

00 reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

3-22 AS/400 MI Functional Reference

Operands
1 2
X X

X X

Other

X

X

X

L

Set Space Pointer Offset (SETSPPO)

3.10 Set Space Pointer Offset (SETSPPO)

Exceptions

Op Code (Hex)
0092

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Binary scalar.

Operand 2
Source 1

Description: The value of the binary scalar specified by operand 2 is assigned
to the offset portion of the space pointer identified by operand 1. The space
pointer continues to address the same space object.

Operand 1 must contain a space pointer at the initiation of the instruction's exe­
cution; otherwise, an invalid pointer type exception is signaled.

When the addressability in the space pointer is modified, the instruction signals
a space addressing exception when one of the following conditions occurs:

• When the space address to be stored in the pointer has a negative offset
value.

• When the offset addresses beyond the largest space allocatable in the
object. This maximum offset value is dependent on the size and packaging
of the object containing the space and is independent of the actual size of
the space allocated.

If the exception is signaled by this instruction for this reason, the pointer is not
modified by the instruction.

Attempts to use a pointer whose offset value lies between the currently allocated
extent of the space and the maximum allocatable extent cause the space
addressing exception to be signaled.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

Operands
1 2 Other

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 3. Space Object Addressing Instructions 3-23

Set Space Pointer Offset (SETSPPO)

Operands
Exception 1 2 Other

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X ..J
08 invalid operand value range X X

OC invalid operand adt reference X X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification ..) 01 scalar type invalid X X

36 Space management

01 space extension/truncation X

3-24 AS/400 MI Functional Reference

L

Set System Pointer from Pointer (SETSPFP)

3.11 Set System Pointer from Pointer (SETSPFP)
Op Code (Hex)
0032

Operand 1
Receiver

Operand 1: System pointer.

Operand 2
Source
pointer

Operand 2: System pointer, space pointer, data pointer, or instruction pointer.

Description: This instruction returns a system pointer to the system object
address by the supplied pointer.

If operand 2 is a system pointer, then a system pointer addressing the same
object is returned in operand 1 containing the same authority as the input
pointer.

If operand 2 is a space pointer or a data pointer, then a system pointer
addressing the system object that contains the associated space addressed by
operand 2 is returned in operand 1.

If operand 2 is an instruction pointer, then a system pointer addressing the
program system object that contains the instruction addressed by operand 2 is
returned in operand 1.

If operand 2 is an unresolved system pointer or data pointer, the pointer is
resolved first.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Contexts referenced for address resolution

• Materialization

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

04 external data object not found

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

Operands
1 2 Other

X X

X X

X X

X X

X X

X

X

Chapter 3. Space Object Addressing Instructions 3-25

Set System Pointer from Pointer (SETSPFP)

Operands
Exception 1 2 Other ..J 10 Damage encountered

02 machine context damage X

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X

J destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

..J

3-26 AS/400 MI Functional Reference

L

L

L

Store Space Pointer Offset (STSPPO)

3.12 Store Space Pointer Offset (STSPPO)

Exceptions

Op Code (Hex)
00A2

Operand 1
Receiver

Operand 1: Binary variable scalar.

Operand 2: Space pointer.

Operand 2
Source

Description: The offset value of the space pointer referenced by operand 2 is
stored in the binary variable scalar defined by operand 1.

If operand 2 does not contain a space pointer at the initiation of the instruction's
execution, an invalid pointer type exception is signaled. If binary size exceptions
are to be signalled either because the program creation attribute indicated to do
so or because a translator directive indicated to do so, they will be signalled
under the following conditions. If the offset value is greater than 32 767 and
operand 1 is a signed binary (2) scalar, a size exception is signaled. If the offset
value is greater than 65 535 and operand 1 is an unsigned binary (2) scalar, a
size exception is signaled.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OC Computations

OA size X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

Chapter 3. Space Object Addressing Instructions 3-27

Store Space Pointer Offset (STSPPO)

Operands
Exception 1 2 Other

24 Pointer specification ..J
01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X

08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management j
01 space extension/truncation X

3-28 AS/400 MI Functional Reference

L

Subtract Space Pointer Offset (SUBSPP)

3.13 Subtract Space Pointer Offset (SUBSPP)

Exceptions

Op Code (Hex)
0087

Operand 1
Receiver
pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand 2
Source
pointer

Operand 3
Decrement

Description: The value of the binary scalar specified by operand 3 is subtracted
from the space address contained in the space pointer specified by operand 2;
the result is stored in the space pointer identified by operand 1. Operand 3 can
have a positive or negative value. The space object that the pointer is
addressing is not changed by the instruction. If operand 2 does not contain a
space pointer at the initiation of the instruction's execution, an invalid pointer
type exception is signaled.

When the addressability in the space pointer is modified, the instruction signals
a space addressing exception when one of the following conditions occurs:

• When the space address to be stored in the pointer has a negative offset
value.

• When the offset addresses beyond the largest space allocatable in the
object. This maximum offset value is dependent on the size and packaging
of the object containing the space and is independent of the actual size of
the space allocated.

If the exception is signaled by this instruction for this reason, the pointer is not
modified by the instruction.

Attempts to use a pointer whose offset value lies between the currently allocated
extent of the space and the maximum allocatable extent cause the space
addressing exception to be signaled.

The object destroyed exception, optimized addressability invalid exception,
parameter reference violation exception, and pointer does not exist exception
are not signaled when operand 1 and operand 2 are space pointer machine
objects. This occurs when operand 2 contains an internal machine value that
indicates one of these error conditions exists. If the corresponding exception is
not signaled, operand 1 is set with an internal machine value that preserves the
exception condition that existed for operand 2. The appropriate exception condi­
tion will be signaled for either pointer when a subsequent attempt is made to
reference the space data that the pointer addresses.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

Operands
1 2 Other

x
X

X

X

X

X

Chapter 3. Space Object Addressing Instructions 3-29

Subtract Space Pointer Offset (SUBSPP)

Operands
Exception 1 2 Other

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X j 03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X j
02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X

08 invalid operand value range X X X

OC invalid operand adt reference X X X

00 reserved bits are not zero X X X X j
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

03 scalar value invalid X X

36 Space management

01 space extension/truncation X

3-30 AS/400 MI Functional Reference

L

L

Space Management Instructions

Chapter 4. Space Management Instructions

This chapter describes the instructions used for space management. These
instructions are in alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A, "Instruction Summary."

© Copyright IBM Corp. 1990 4-1

Materialize Space Attributes (MATS)

4.1 Materialize Space Attributes (MATS)
Op Code (Hex)
0036

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Space object

Description: The current attributes of the space object specified by operand 2
are materialized into the receiver specified by operand 1.

The first 4 bytes that are materialized identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes a
materialization length exception.

The second 4 bytes that are materialized identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception described previously) are signaled in the event that the receiver
contains insufficient area for the materialization.

The template identified by operand 1 must be 16-byte aligned in the space. The
format of the materialization is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin (4)

Number of bytes available for materialization Bin (4)
(always 96 for this instruction)

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Context

o = Addressability not in context
1 = Addressability in context

Access group

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

4-2 AS/400 M I Functional Reference

Materialize Space Attributes (MATS)

o = Not member of access group
1 = Member of access group

Reserved (binary 0)

Initialize space

o = Initialize
1 = Do not initialize

Automatically extend space

0= No
1 = Yes

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

Space alignment

Bits 4-12

Bit 13

Bit 14

Bits 15-31

Char(4)

Bin(4)

Char(1)

Char(4)

Bit 0

o = The space associated with the object is allocated to allow proper
alignment of pointers at 16-byte alignments within the space. If no
space is specified for the object, this value must be specified for the
performance class.

1 = The space associated with the object is allocated to allow proper
alignment of pointers at 16-byte alignments within the space as well
as to allow proper alignment of input/output buffers at 512-byte align­
ments within the space.

Reserved (binary 0)

Main storage pool selection

Bits 1-4

Bit 5

o = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Transient storage pool selection Bit 6

o = Default main storage pool (process default or machine default as
specified for main storage pool selection) is used for object.

1 = Transient storage pool is used for object.

Block transfer on implicit access state modificSid>ii'

o = Transfer the minimum storage transfer size for this object. This
value is 1 storage unit.

1 = Transfer the machine default storage transfer size. This value is 8
storage units.

Unit number

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

Bits 8-15

Bits 16-31

Char(7)

System pointer

System pointer

Chapter 4. Space Management Instructions 4-3

Materialize Space Attributes (MATS)

This instruction cannot be used to materialize the public authority specified cre­
ation option, the initial owner specified creation option, or the template extension
which can be specified on space creation. The Materialize Authority instruction"
can be used to materialize the current public authority for the space. The Mate- ."",
rialize System Object instruction can be used to materialize the current owner of
the space.

Authorization Required

Lock Enforcement

Exceptions

• Operational or space authority

- Operand 2

• Retrieve

- Contexts referenced for address resolution

• Materialize

Operand 2

Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

4-4 AS/400 MI Functional Reference

Operands
1 2 ~her

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Materialize Space Attributes (MATS)

Operands
Exception 1 2 Other

L 22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

L

Chapter 4. Space Management Instructions 4-5

Modify Space Attributes (MODS)

4.2 Modify Space Attributes (MODS)
Op Code (Hex)
0062

Operand 1
System
object.

Operand 1: System pointer.

Operand 2
Space mod­
ification tem­
plate.

Operand 2: Binary scalar or character(28) scalar.

Description: The attributes of the space associated with the system object spec­
ified for operand 1 are modified with the attribute values specified in operand 2.
Operand 1 may address any system object.

The operand 2 space modification template is specified with one of two formats.
The abbreviated format, operand 2 specified as a binary scalar, only provides for
modifying the size of space attribute. The full format, operand 2 specified as a\
character scalar, provides for modifying the full set of space attributes. ..",

When operand 2 is a binary value, it specifies the size in bytes to which the
space size is to be modified. The current allocation of the space is extended or
truncated accordingly to match as closely as possible the specified size. The
modified space size will be of at least the size specified. The actual size allo­
cated is dependent upon the algorithm used within the specific implementation
of the machine. If the space is of fixed size, or if the value of operand 2 is nega­
tive, or if the operand 2 size is larger than that for the largest space that can be
associated with the object, the space extension/truncation exception is signaled.
When operand 2 is a character scalar, it specifies a selection of space attribute
values to be used to modify the attributes of the space. It must be at least 28
bytes long and have the following format:

• Modification selection

Modify space length attribute

a = No
1 = Yes

Mod ify size of space

a = No
1 = Yes

Modify initial value of space

a = No
1 = Yes

Modify performance class

o = No
1 = Yes

Modify initialize space attribute

a = No
1 = Yes

Reinitialize space

4-6 AS/400 MI Functional Reference

Char(4)

Bit a

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

L
0= No
1 = Yes

Modify automatically extend space

attribute

0= No
1 = Yes

Reserved (binary 0)

• Indicator attributes

Reserved (binary 0)

Space length

o = Fixed length
1 = Variable length

Initialize space

o = Initialize
1 = Do not initialize

Automatically extend space

0= No
1 = Yes

Reserved binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

Modify Space Attributes (MODS)

Bit 6

Bits 7-31

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bin(4)

Char(1)

Char(4)

Char(7)

The modification selection indicator fields select the modifications to be per­
formed on the space.

The modify space length attribute modification selection field controls whether or
not the space length attribute is to be modified. When yes is specified, the value
of the space length indicator is used to modify the space to be specified fixed or
variable length attribute. When no is specified, the space length indicator attri­
bute value is ignored and the space length attribute is not modified.

The modify size of space modification selection field controls whether or not the
allocation size of the space is to be modified. When yes is specified, the current
allocation of the space is extended or truncated accordingly to match as closely
as possible the specified size. The modified size will be at least the size speci­
fied. The actual size allocated is dependent upon the algorithm used within the
specific implementation of the machine. When no is specified, the current allo­
cation of the space is not modified and the size of space field is ignored.

Modification of the size of space attribute for a space of fixed length can only be
performed in conjunction with modification of the space length attribute. In this
case, the space length attribute may be modified to the same fixed length attri­
bute or to the variable length attribute. An attempt to modify the size of space

Chapter 4. Space Management Instructions 4-7

Modify Space Attributes (MODS)

attribute for a space of fixed length without modification of the space length attri­
bute results in the signaling of the space extension/truncation exception. Modifi­
cation of the size of space attribute for a space of variable length can always be
performed separately from a modification of the space length attribute.

When the size of space attribute is to be modified, if the value of the size of
space field is negative or specifies a size larger than that for the largest space
that can be associated with the object, the space extension/truncation exception
is signaled. The modify initial value of space modification selection field controls
whether or not the initial value of space attribute is to be modified. When yes is
specified, the value of the initial value of space field is used to modify the corre­
sponding attribute of this space. This byte value will be used to initialize any
new space allocations for this space due to an extension to the size of space
attribute on the current execution of this instruction as well as any subsequent
modifications. When no is specified, the initial value of space field is ignored
and the initial value of space attribute is not modified.

The modify performance class modification selection field controls whether or
not the performance class attribute of the specified system object is to be modi­
fied with the values relating to space objects. When yes is specified, the value
of the performance class field is used to modify the corresponding attribute of
the specified system object. When no is specified, the performance class attri­
bute of the specified system object is not modified.

The modify initialize space attribute modification selection field controls whether
or not the initialize space attribute is to be modified. When yes is specified, the
value of the initialize space indicator attribute is used to modify that attribute of
the specified space to the specified value. When no is specified, the initialize
space indicator attribute value is ignored and the initialize space attribute is not
modified.

Changing the value of the initialize space attribute only affects whether or not
future extensions of the space will be initialized or not. That is, it is the state of
this attribute at the time of allocation of the storage for a space that determines
whether that newly allocated storage area will be initialized to the initial value
specified for the space. Modifications of this attribute subsequent to the allo­
cation of storage to a space have no effect on the value of that previously allo­
cated storage area.

The reinitialize space modification selection field controls whether the storage
allocated to the space is to be reinitialized in its entirety. When no is specified,
the space is not reinitialized. When yes is specified, the space is reinitialized.
This reinitialization is performed after all other attribute modifications which may
also have been specified on the instruction have been made. Thus changes to
the size of the space, the initial value of the space, etc will be put into effect and
be considered the current attributes of the space for purposes of the reinitializa­
tion. The byte value used for the reinitialization is either the current initial value
for the space if the initialize space attribute for the space currently specifies yes,
or a value of X'OO' if the initialize space attribute currently specifies no.

Note that specifying yes for the reinitialize space modification selection field for
a space with current attributes of fixed length size zero results in no operation,
because such a space has no allocated storage to reinitialize. Also, note that
reinitialization of a space will have the side effect of resetting partial d:3mage for
a space object containing the space if the space object had previously been

4-8 AS/400 M I Functional Reference

L

L

Modify Space Attributes (MODS)

marked as having partial damage. This only applies to space objects; i.e. rein­
itialization of an associated space does not have the side effect of resetting
partial damage for the MI object containing it.

The modify automatically extend space attribute modification selection field con­
trols whether or not the automatically extend space attribute is to be modified.
When yes is specified, the value of the automatically extend space indicator attri­
bute is used to modify that attribute of the specified space to the specified value.
When no is specified, the automatically extend space indicator attribute value is
ignored and the automatically extend space attribute is not modified. The auto­
matically extend space attribute can only be specified as yes when the space
length attribute for the space is already variable length, or when the space
length attribute is being modified to variable length. Invalid specification of the
automatically extend space attribute results in the signaling of the invalid space
modification exception.

Modification to or from the state of a space being fixed length of size zero can
not be performed for the following objects:

Class of Service Description

Controller description

Cursor

Data space

Logical unit description

Mode Description

Network description

Space

If such a modification is attempted for these objects, the invalid space modifica­
tion exception is signaled.

Specifying yes for the modify performance class modification selection field is
only allowed when the space to be modified is a fixed length space of size zero.
This modification may be specified in conjunction with other modifications. Only
bit 0 of the performance class field is used to modify the performance class attri­
bute of the specified system object. A bit value of zero requests that the start of
the space storage provide 1B-byte multiple (pointer) machine address alignment.
A bit value of one requests that the start of the space storage provide 512-byte
multiple (buffer) machine address alignment. Bits 1 through 31 are ignored.
Specifying yes for the modify performance class modification selection field
when the space to be modified is not a fixed length space of size zero results in
the signaling of the invalid space modification exception.

A fixed length space of size zero is defined by the machine to have no internal
storage allocation. Due to this, a modification to or from this state is, in
essence, the same as a destroy or create for the space associated with the
specified system object. The effect of modifying to this state is similar to
destroying the associated space in that address references to the space through
previously set pointers will result in signaling of the object destroyed exception.
Additionally, an attempt to set a space pointer to the space associated with the
specified system object through the Set Space Pointer from Pointer instruction
will result in the signaling of the invalid space reference exception. To the con-

Chapter 4. Space Management Instructions 4-9

Modify Space Attributes (MODS)

trary, modifying the space attributes from this state is similar to creating an
associated space in that the Set Space Pointer from Pointer instruction can be
used to set a space pointer to the start of a storage within the associated space
and the allocated space storage can be used to contain space data.

The extension and truncation of a space is always by an implementation-defined
multiple of 256 bytes. This means that if, for example, the implementation
defined multiple is 2 (or 512 bytes), any modification of the space size will be in
increments of 512 bytes.

Authorization Required

Lock Enforcement

Exceptions

• Object management

- Operand 1

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

• Object control

- Operand 1 (when operand 2 is binary)

• Modify

- Operand 1 (when operand 2 is character)

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

1 A Lock state

01 invalid lock state

4-10 AS/400 MI Functional Reference

Operands
1 2 Other

x
X

X

X

X

X

X

X

x

X

X

X

X

X

X

X

X

X

X

Modify Space Attributes (MODS)

Operands
Exception 1 2 Other
1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X

L
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X X

02 invalid space modification X X

Chapter 4. Space Management Instructions 4-11

Modify Space Attributes (MODS)

4-12 AS/400 MI Functional Reference

Program Management Instructions

L Chapter 5. Program Management Instructions

L

This chapter describes all instructions used for program management. These
instructions are in alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A, "Instruction Summary"

© Copyright I BM Corp. 1990

Materialize Program (MATPG)

5.1 Materialize Program (MATPG)
Op Code (Hex)

0232

Operand
1
Attri­
bute
receiver

Operand 1: Space pointer.

Operand 2: S~lstem pointer.

Operand 2

Program

Description: The program identified by operand 2 is materialized into the tem­
plate identified by operand 1.

Operand 2 is a system pointer that identifies the program to be materialized.
The values in the materialization relate to the current attributes of the material­
ized program.

The template identified by operand 1 must be 16-byte aligned.

The first 4 bytes of the materialization template identify the total number of bytes
in the template. This value is supplied as input to the instruction and is not mod­
ified. A value of less than 8 causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization template are modified by the instruc­
tion to contain a value identifying the template size required to provide for the
total number of bytes available to be materialized. The instruction materializes
as many bytes as can be contained in the area specified by the receiver. If the
byte area identified by the receiver is greater than that required to contain the
information requested, then the excess bytes are unchanged. No exceptions
(other than the materialization length exception) are signaled in the event that
the receiver contains insufficient area for the materialization.

The following attributes apply to the materialization of a program:

• The existence attribute indicates whether the program is temporary or per­
manent.

• The observation attribute entry specifies the template components of the pro­
grams that currently can be materialized.

• If the program has an associated space, then the space attribute is set to
indicate either fixed- or variable-length; the initial value for the space is
returned in the initial value of space entry, and the size of space entry is set
to the current size value of the space. If the program has no associated
space, the size of space entry is set to a zero value, and the space attribute
and initial value of space entry values are meaningless.

• If the program is addressed by a context, then the context addressability
attribute is set to indicate this, and a system pointer to the addressing
context is returned in the context entry. If the program is not addressed by a
context, then the context addressability attribute is set to indicate this, and
binary D's are returned in the context entry.

5-2 AS/400 MI Functional Reference

L

Materialize Program (MATPG)

• If the program is a member of an access group, then the access group attri­
bute is set to indicate this, and a system pointer to the access group is
returned in the access group entry. If the program is not a member of an
access group, then the access group attribute is set to indicate this, and
binary o's are returned in the access group entry.

• The performance class entry is set to reflect the performance class informa­
tion associated with the program.

• The user exit attribute defines if the referenced program is allowed to be
used as a user exit program.

The program data cannot be materialized if observability has been removed. If
the program was created with an observation attribute that cannot be material­
ized, the program data (instruction stream, OOV, OES, user data, and object
mapping table components) cannot be materialized by this instruction. If the
program data cannot be materialized, o's are placed in the fields of the program
template that describe the size and offsets to the program data components.
The only information that can be materialized is that part of the program tem­
plate up to and including the offset to the OMT (object mapping template) entry.

The offset to the OMT component entry specifies the location of the OMT compo­
nent in the materialized program template. The OMT consists of a variable­
length vector of 6-byte entries. The number of entries is identical to the number
of OOV entries because there is one OMT entry for each OOV entry. The OMT
entries correspond one for one with the OOV entries; each OMT entry gives a
location mapping for the object defined by its associated OOV entry.

The following describes the formats for an OMT entry:

• OMT entry

Addressability type

Char(6)

Char(1)

Hex 00= Base addressability is from the start of the static storage

Hex 01 = Base addressability is from the start of the automatic storage
area

Hex 02 = Base addressability is from the start of the storage area
addressed by a space pointer

Hex 03 = Base addressability is from the start of the storage area of a
parameter

Hex 04 = Base addressability is from the start of the storage area
addressed by the space pointer found in the process communi­
cation object attribute of the process executing the program

Hex FF = Base addressability not provided. The object is contained in
machine storage areas to which addressability cannot be given,
or a parameter has addressability to an object that is in the
storage of another program

Offset from base Char(3)

For types hex 00, hex 01, hex 02, hex 03, and hex 04, this is a 3-byte
logical binary value representing the offset to the object from the
base addressability. For type hex FF, the value is binary O.

Base addressability Char(2)

Chapter 5. Program Management Instructions 5-3

Materialize Program (MATPG)

For types hex 02 and hex 03, this is a 2-byte binary field containing
the number of the OMT entry for the space pointer or a parameter
that provides base addressability for this object. For types hex 00,
hex 01, hex 04, and hex FF, the value is binary O.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

Operand 2

Contexts referenced for address resolution

• Materialize

Operand 2

Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

1A Lock state

01 invalid lock state

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

5-4 AS/400 MI Functional Reference

Operands
1

X

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

j

~

Materialize Program (MATPG)

Operands
Exception 1 2 Other

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 5. Program Management Instructions 5-5

Materialize Program (MATPG)

5-6 AS/400 MI Functional Reference

L

L

L

L

Activate Program (ACTPG)

Chapter 6. Program Execution Instructions

This chapter describes the instructions used for program execution control.
These instructions are in alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A, "Instruction Summary."

6.1 Activate Program (ACTPG)
Op Code (Hex) Operand Operand 2

1
0212 Program Program

or
program
acti-
vation
entry

Operand 1: Space pointer, system pointer, or data object.

Operand 2: System pointer.

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

Description: This instruction allocates and initializes storage for static objects
that are declared for a specified program within the executing process. The
program identified by operand 2 is activated in the executing process. The
program is activated by allocating an area in the PSSA (process static storage
area) to contain the program static storage. This static storage is then available
each time the program is invoked within the process. The pointer object speci­
fied by operand 1 receives a space pointer addressing the activation of the refer­
enced program. The activation consists of storage for the program's static
objects as well as a system pointer to the associated program, a space pointer
to the next activation entry (if one exists) in the PSSA, a space pointer to the
preceding activation entry in the PSSA, and attributes specifying the status of the
activation. The PSSA is located by a space pointer specified when the process
was initiated. The location identified by the space pointer is considered to be
the beginning of the PSSA and must be 16-byte aligned.

The user must properly initialize the PSSA base entry before the first program is
activated in the process.

A space pOinter locating the PSSA can be materialized using the Materialize
Process instruction.

If the chain being modified bit is on and an attempt is made to activate or de­
activate a program with static storage, a stack control invalid exception is sig­
naled.

The program is activated by allocating an area in the PSSA space sufficient to
contain the activation entry. The area used for allocating the first activation in a
space is located by the next available storage location pointer in the PSSA base

© Copyright IBM Corp. 1990 6-1

Activate Program (ACTPG)

entry; otherwise, this pointer locates the first free byte after all activation entries
in the space. This pointer must address a 16-byte aligned area in the space, or
a boundary alignment exception is signaled. The pointer may be set to address ..j
beyond the currently allocated storage in the space, which is implicitly extended,
and no exception is signaled. If the space is not currently large enough to
contain the entry and if it is extendable, it is implicitly extended by the machine.
The owner's authority to the space is included with the authority of the extending
process when checking for object management authority when the space is
extended. If the space is of a fixed size or cannot be extended to contain the
entry, a space extension truncation exception is signaled.

The new activation entry is initialized as follows:

• The previous activation entry pointer is copied from the most recent acti­
vation entry in the PSSA base entry.

• The next activation entry pointer field is unchanged by the instruction (the
last activation is process pointer in the PSSA base entry specifies the last
activation on the chain).

• The associated program pointer is copied from the operand 2 system
pointer.

• The activation number is set to a value one greater than the activation
number entry in the previous activation.

• The activation is marked as active (the activation status is set to binary 1).

• The invocation count is set to O.

• The activation mark is obtained by incrementing the mark counter field in the
machine by one and copying the resulting value.

• The length field is set to the number of bytes of storage occupied by the
PSSA header and the static data following it.

• The reserved fields are set to binary O.

A space pointer addressing the new activation entry is stored in the last acti­
vation entry pointer of the PSSA base entry, and the next available storage
location in the PSSA base entry is set to address the next available 16-byte
aligned area beyond the new activation entry.

If the referenced program's activation already exists within the process PSSA
chain when the Activate Program instruction is executed, the program's static
storage is reused if the activation was active, and mayor may not be reused if
the activation was inactive. In either case, the storage is reinitialized, the acti­
vation is set to the active state, and the operand 1 space pointer is set to the
reinitialized activation. No chain pointers are modified, and the activation entry
remains at the same relative location in the chain of PSSA entries.

When a new activation is allocated or an existing inactive allocation is reacti­
vated, the mark counter in the machine is incremented by 1 and the resulting
value is copied to the active mark field of the activation. If an attempt is made to
activate an already active activation, the activation mark and mark counter
values are not updated.

When a new activation is allocated, space occupied by other activations in the
inactive state may be used for the new activation. The current PSSA space is

6-2 AS/400 MI Functional Reference

L

L

L

Activate Program (ACTPG)

the space located by the next available location pointer within the PSSA base
entry.

PSSA entries that have all the following conditions are removed from the PSSA
chain:

• Inactive

• Reside in the current PSSA space

• Have an invocation count of 0

• Have no active activations or activations with a nonzero invocation count at a
higher address in the current PSSA space

• Appear as the last entries in the linked PSSA chain

The new activation is placed at the lowest address within the current PSSA
space that is higher than both the address of any activation in the chain which is
in the current PSSA space and the address of any unallocated space between
previously existing noncontiguous activations. If no previous activations remain
in the current PSSA space (after being removed under the above conditions), the
new activation is placed at the lowest address (in the current PSSA space) of the
removed activations. If no previous activations existed in the current PSSA
space, the next available location pointer in the PSSA base entry specifies the
location where the new activation is to be allocated.

If the program addressed by the operand 2 system pointer addresses a program
that requires no static storage, no activation entry is allocated, and the operand
2 system pointer is copied to the operand 1 pointer.

A space pointer machine object may not be specified for operand 1.

Authorization Required

Lock Enforcement

Exceptions

• Operational

- Program referenced by operand 2

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

OA

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Authorization

01 unauthorized for operation

Operands
1 2 Other

X X

X X

X X

X X

X

Chapter 6. Program Execution Instructions 6-3

Activate Program (ACTPG)

,Operands
Exception 1 2 Other

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function chack X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

..J 08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2C Program execution

03 stack control invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

8-4 AS/400 MI Functional Reference

L

Call External (CALLX)

6.2 Call External (CALLX)

Op Code (Hex)
0283

Operand 1
Program to be
called or Call Tem­
plate

Operand 2
Argument list

Operand 3
Return list

Operand 1: System pointer or Space Pointer Data Object.

Operand 2: Operand list or null.

Operand 3: Instruction definition list or null.

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

Description: The instruction preserves the calling invocation and causes control
to be passed to the external entry paint of the program specified by operand 1.

Operand 1 may be specified as a system pointer which directly addresses the
program that is to receive control or as a space pointer to a call template which
identifies the program to receive control. Specifying a template allows for addi­
tional controls over how the specified program is to be invoked. The format of
the call template is the following:

• Call options

Suppress adopted user profiles

o = no
1 = yes

Reserved (binary zero)

Force program state to user state for call

o = no
1 = yes

• Reserved (binary zero)

• Program to be called

Char(4)

Bit 0

Bit 1-30

Bit 31

Char(12)

System Pointer

The suppress adopted user profiles call option specifies whether or not the
program adopted and propagated user profiles which may be serving as sources
of authority to the process are to be suppressed from supplying authority to the
new invocation. Specifying yes causes the propagation of adopted user profiles
to be stopped as of the calling invocation, thereby, not allowing the called invo­
cation to benefit from their authority. Specifying no allows the normal propa­
gation of adopted and propagated user profiles to occur. The called program
may adopt its owning user profile, if necessary, to supplement the authority
available to its invocation.

The force program state to user state option specifies whether or not the call
needs to be done in the current program state or as though the calling program

Chapter 6. Program Execution Instructions 8-5

Call External (CALLX)

were running in the user state without the calling program changing to run in the
user state.

The instruction ensures that the program is properly activated in the process, if
required. The following conditions are allowed:

• If the referenced program requires no static storage, the program is invoked,
and no activation is created.

• If operand 1 is a system pointer to a program that requires static storage,
the program is implicitly activated. The chain of activation entries located by
the PSSA (process static storage area) is searched for an entry for the refer­
enced program. If an entry is located that is not active, it is set to the active
state, and the static storage is reinitialized based on the program definition.
If no activated entry exists for the program, a new entry is allocated and ini­
tialized. See the Activate Program instruction for a definition of this function.
The activation mark value for a newly created activation will be the same as
the invocation mark value described later.

After any needed static storage has been allocated or located, automatic storage
is allocated and initialized for the newly invoked program. The automatic
storage is obtained from the PASA (process automatic storage area).

The update PASA stack program attribute specified on program creation indi­
cates whether or not the program requires that the PASA stack information con­
tained in the PASA base entry and invocation entries must be updated. Refer to
the Create Program instruction for the detail on how to specify this program attri­
bute. Upon invocation of a program that requires that the stack be updated, it is
possible that prior invocations may exist that did not require the stack update.
These invocations would not have their associated stack information updated to
reflect the current chain of invocations active in the PASA. If necessary, the
PASA stack information in the PASA base entry and all prior invocation entries is
updated with the current status prior to continuing with the invocation of a
program requiring update of the PASA stack.

The PASA is located by a space pointer specified when the process is initiated.
The location identified by the space pointer is considered to be the beginning of
the PASA and must be 16-byte aligned. The PASA base entry must be initialized
by the user before the process is initiated. The current invocation entry in
process and next available storage location and mark counter values are
accessed as input to the machine only during the initiation of the process.
Thereafter, the machine maintains these values internally. The PASA base entry
fields are optionally updated on each program invocation depending upon
whether or not the program being invoked has specified the update PASA stack
program attribute.

A space pointer locating the PASA can be materialized by using the Materialize
Process instruction.

A space pointer locating the PASA invocation entry for the currently executing
program can be materialized using the Materialize Invocation Entry instruction.

The program is invoked by allocating an area in the PASA space sufficient to
contain the invocation entry. The area used for allocation is located by the next
available storage location pointer in the PASA bas~ entry for the invocation of
the initial program in the process. For all other invocations of programs within

6-6 AS/400 MI Functional Reference

L

L

Call External (CALLX)

the process, the area used for the allocation is located by an internal machine
value that is maintained with the space address of the next available storage
location. This pointer must address a 16-byte aligned area in the space, or a
boundary alignment exception is signaled. If the space is not currently large
enough to contain the entry and if it is extendable, it is implicitly extended by the
machine. The owner's authority to the space is included with the authority of the
process when checking for object management authority when the space is
extended. If the space is of a fixed size or cannot be extended enough to
contain the entry, a space extension/truncation exception is signaled.

For programs created with the update PASA stack attribute specifying that they
require the PASA stack update, the new invocation entry is updated as follows:

• The previous invocation entry pointer is set from the current invocation entry
in the process address value in the machine.

• The next invocation entry is not modified.

• The associated program pointer is copied from the operand 1 system
pointer.

• The invocation number is incremented by 1 beyond that in the calling invoca­
tion. The first invocation in the current process state has an invocation
number of 1.

• The invocation type value is set to hex 01 to indicate how the program was
invoked.

• The value of the mark counter in the machine is incremented by one and the
new value is copied to the invocation mark field. The new value is also
copied to the activation mark field of the program's activation if the acti­
vation was initialized by this instruction.

• The user area field is set to binary O.

• The program's automatic storage is initialized as defined in the program
definition.

• The invocation count, if any, in the associated activation is incremented by 1.

For programs created with the update PASA stack attribute specifying that they
do not require the PASA stack update, the new invocation entry is updated as
follows:

• The value of the mark counter in the machine is incremented by one. The
new value is also copied to the activation mark field of the program's acti­
vation if the activation was initialized by this instruction.

• PASA stack information necessary to provide for subsequent program inv­
ocations or updating of stack information for this invocation is stored in the
machine. This includes values associated with this invocation for the pre­
vious invocation entry address, next available storage location, program
pointer, invocation number, invocation type, and mark counter.

• The program's automatic storage is initialized as defined in the program
definition.

For programs created with the update PASA stack attribute that specifies that
they require the PASA stack update, a space pointer addressing the new invoca­
tion entry is stored in the next invocation entry pointer of the invoking invocation.

Chapter 6. Program Execution Instructions 6-7

Call External (CALLX)

For programs created with the update PASA stack attribute that specifies that
they require the PASA stack update, a space pointer addressing the new invoca-
tion entry is stored in the current invocation entry pointer of the PASA base entry ..J
and the next available storage location in the PASA base entry is set to address
the next available 16-byte aligned area beyond the new invocation entry.

A program with no automatic data has a PASA entry created for it. The created
PASA entry consists of only a stack control entry.

The user defines the invocation attribute entry. This entry is not used after the
program is initialized.

Following the allocation and initialization of the invocation entry, control is
passed to the invoked program.

Operand 2 specifies an operand list that identifies the arguments to be passed to
the invocation entry to be called. If operand 2 is nUll, no arguments are passed
by the instruction. A parameter list length exception is signaled if the number of
arguments passed does not correspond to the number required by the param­
eter list of the target program.

Operand 3 specifies an IDL (instruction definition list) that identifies the instruc­
tion number(s) of alternate return points within the calling invocation. A Return
External instruction in an invocation immediately subordinate to the calling invo­
cation can indirectly reference a specific entry in the IDL to cause a return of
control to the instruction associated with the referenced IDL entry. If operand 3
is nUll, then the calling invocation has no alternate return points associated with
the call.

Authorization Required
• Operational

- Program referenced by operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

02 parameter list length violation

6-8 AS/400 MI Functional Reference

Operands
123

X

X

X

X

X

X

Other

Call External (CALLX)

Operands
Exception 1 2 3 Other

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

L 03 object suspended X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

L 2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X

08 invalid operand value range X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2C Program execution

03 stack control invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

L 01 space extension/truncation X

38 Tempilte speCification

Chapter 6. Program Execution Instructions 6-9

Call External (CALLX)

Exception
01 template value invalid

6-10 AS/400 M I Functional Reference

Operands
123
X

Other

L

Call Internal (CALLI)

6.3 Call Internal (CALLI)

Exceptions

Op Code (Hex) Operand Operand Operand 3
1 2

0293 Internal Argu- Return
entry ment target
point list

Operand 1: Internal entry point.

Operand 2: Operand list or null.

Operand 3: Instruction pointer.

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

Description: The internal entry point specified by operand 1 is located in the
same invocation in which the Call Internal instruction is executed. A
subinvocation is defined, and execution control is transferred to the first instruc­
tion associated with the internal entry point. The instruction does not cause a
new invocation to be established. Therefore, there is no allocation of objects,
and instructions in the sUbinvocation have access to all invocation objects.

Operand 2 specifies an operand list that identifies the arguments to be passed to
the subinvocation. If operand 2 is null, no arguments are passed. After an argu­
ment has been passed on a Call Internal instruction, the corresponding param­
eter may be referenced. This causes an indirect reference to the storage area
located by the argument. This mapping exists until the parameter is assigned a
new mapping based on a subsequent Call Internal instruction. A reference to an
internal parameter before its being assigned an argument mapping causes a
parameter reference violation exception to be signaled.

Operand 3 specifies an instruction pointer that identifies the pointer into which
the machine places addressability to the instruction immediately following the
Call Internal instruction. A branch instruction in the called subinvocation can
directly reference this instruction pointer to cause control to be passed back to
the instruction immediately following the Call Internal instruction.

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

Chapter 6. Program Execution Instructions 6-11

Call Internal (CALLI)

Operands
Exception 1 2 3 Other

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation

06 invalid operand type X X X

09 invalid branch target X

OB invalid number of operands X

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

6-12 AS/400 MI Functional Reference

L

Clear Invocation Exit (CLRIEXIT)

6.4 Clear Invocation Exit (CLRIEXIT)

Exceptions

Op Code (Hex)
0250

Description: The instruction removes the invocation exit program for the
requesting invocation. No exception is signaled if an invocation exit program is
not specified for the current invocation. Also, an implicit clear of the invocation
exit occurs when the invocation exit program is given control, or the program
which set the invocation exit completes execution.

Exception

10 Damage encountered

04 System object damage state

44 Partial system object damage

1 C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support

02 Machine check

03 Function check

2A Program creation

00 Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

Other

x
X

X

X

X

X

X

X

Chapter 6. Program Execution Instructions 8-13

De-Activate Program (DEACTPG)

6.5 De-Activate Program (DEACTPG)
Op Code (Hex)
0225

Operand 1
Program

Operand 1: System pointer or null.

Description: The instruction locates the activation entry addressed through
operand 1 and marks it as inactive if the appropriate conditions are satisfied.

If operand 1 is null, the program issuing the instruction is to be de-activated. An
activation in use by invocation exception is signaled if the activation entry's invo­
cation count is not equal to 1.

If operand 1 is a system pointer to a program, then that program's activation
entry is de-activated if its invocation count is O. Otherwise, an activation in use
by invocation exception is signaled.

In the previous two cases, if the program has no static storage or no activation,
no operation is performed and no exception is signaled.

The activation is de-activated when the activation status is set to not currently
active (0). When the activation is not active and its invocation count is 0, the
storage occupied by the activation is subject to reuse for allocating other acti­
vations.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

6-14 AS/400 MI Functional Reference

Operand
1 Other

x
X

X

X

X

X

x x

De-Activate Program (DEACTPG)

Operand
Exception 1 Other

L 05 authority verification terminated due'to damaged object X

44 partial system object damage X X

1A Lock state

01 invalid lock state X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed X
object

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

2A Program creation

L 06 invalid operand type X

07 invalid operand attribute X

OA invalid operand value range X

OC invalid operand odt reference X

00 reserved bits are not zero X X

2C Program execution

03 stack control invalid X

05 activation in use by invocation X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X

36 Space management

01 space extension/truncation X

Chapter 6, Program Execution Instructions 6-15

End (END)

6.6 End (END)

Exceptions

Op Code (Hex)
0260

No operands are specified.

Description: The instruction delimits the end of a program's instruction stream.
When this instruction is encountered in execution, it causes a return to the pre­
ceding invocation (if present) or causes termination of the process phase if the
instruction is executed in the highest-level invocation for a process. The End
instruction delineates the end of the instruction stream. When it is encountered
in execution, the instruction functions as a Return External instruction with a null
operand. Refer to the Return External instruction for a description of that
instruction.

Exception

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

2A Program creation

OD reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

Other

x
X

X

X

X

X

X

X

6-16 AS/400 MI Functional Reference

L

Modify Automatic Storage Allocation (MODASA)

6.7 Modify Automatic Storage Allocation (MODASA)

Exceptions

Op Code (Hex) Operand Operand 2
1

02F2 Storage Modifica-
allo- tion size
cation

Operand 1: Space pointer data object or null.

Operand 2: Signed binary scalar.

Description: The size of automatic storage assigned to the invocation of the cur­
rently executing program is extended or truncated by the size specified by
operand 2. A positive value indicates that the storage allocation is to be
extended; a negative value indicates that the storage allocation is to be trun­
cated. The instruction also returns addressability of the allocated or deallocated
storage area in the space pointer identified by operand 1. When allocating addi­
tional space, the space pointer locates the first byte of the allocated area. If
space is deallocated, the space pointer locates the first byte of the deallocated
area. If operand 1 is null, the storage is allocated or deallocated but no address­
ability is returned. The space pointer identified by operand 1 always addresses
storage that is on a 16-byte boundary.

This instruction modifies the next available storage location address value in the
machine. Additionally, if the program executing this instruction specified the
program requires PASA stack update program attribute, the instruction modifies
the next available storage location pointer in the PASA (process automatic
storage area) base entry.

The owner's authority to the space is included with the authority of the process
when a space is extended and when checked for object management authority.

If the space is extended, the new bytes contain the initial value for the space;
otherwise, no initialization is done to the allocated area.

A space extension/truncation exception is signaled if the space containing the
PAS A cannot be extended. A scalar value invalid exception is signaled if trun­
cation causes the next available storage location pointer in the PASA to point to
a location that precedes the beginning of the data of the automatic storage entry
for the executing invocation.

The storage allocated with this instruction is not initialized to any value. If
implicit space extension occurs, however, the extended portion is initialized to
the default value specified for the space when it was created.

A space pointer machine object cannot be specified for operand 1.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation x x

Chapter 6. Program Execution Instructions 6-17

Modify Automatic Storage Allocation (MODASA)

Operands
Exception 1 2 Other

..J 02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

..J 20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X ..J
24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

J 08 invalid operand value range X X

OA invalid operand length X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2C Program execution

03 stack control invalid X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X

03 scalar value invalid X

6-18 AS/400 MI Functional Reference

Modify Automatic Storage Allocation (MODASA)

Operands
Exception 1 2 Other
36 Space management

01 space extension/truncation x

Chapter 6. Program Execution Instructions 6-19

Return External (RTX)

6.8 Return External (RTX)
Op Code (Hex) Operand 1
02A1 Return

point

Operand 1: Signed binary (2) scalar or null.

Description: The instruction terminates execution of the invocation in which the
instruction is specified. All automatic program objects in the invocation are
destroyed by removing the returning program's automatic storage from the
PASA (process automatic storage area) by the updating of the PASA chaining
pointers.

A Return External instruction can be specified within an invocation's
subinvocation, and no exception is signaled.

If a higher invocation exists in the invocation hierarchy, the instruction causes ."
execution to resume in the preceding invocation in the process' invocation hier-,
archy at an instruction location indirectly specified by operand 1. If operand 1 is
binary 0 or nUll, the next instruction following the Call External instruction from
which control was relinquished in the preceding invocation in the hierarchy is
given execution control. If the value of operand 1 is not 0, the value represents
an index into the IDL (instruction definition list) specified as the return list
operand in the Call External instruction, and the value causes control to be
passed to the instruction referenced by the corresponding IDL entry. The first
IDL entry is referenced by a value of one. If operand 1 is not 0 and no return list .. ~
was specified in the Call External instruction, or if the value of operand 1 ...",
exceeds the number of entries in the IDL, or if the value is negative, a return
point invalid exception is signaled.

If the prior invocation is for a program created with the update PASA stack attri­
bute specifying that it requires the PASA stack update, the instruction sets the
current invocation entry in the PAS A base entry to address the immediately pre­
ceding invocation, and it also sets addressability to the returning invocation into
the next available storage location entry in the PASA header.

If the prior invocation is for a program created with the update PASA stack attri­
bute specifying that it does not require the PASA stack update, the instruction
only updates internal machine values related to the invocation stack.

If a higher invocation does not exist, the Return External instruction causes ter­
mination of the current process state. If operand 1 is not 0 and is not nUll, the
return point invalid exception is signaled. Refer to the Terminate Process
instruction for the functions performed in process termination.

If the returning invocation has received control to process an event, then control
is returned to the point where the event handler was invoked. In this case, if
operand 1 is not 0 and is not nUll, then a return point invalid exception is sig­
naled.

If the returning invocation has received control from the machine to process an
exception, the return instruction invalid exception is signaled.

6-20 AS/400 MI Functional Reference

Return External (RTX)

If the returning invocation has an activation, the invocation count in the acti-

C
vation is decremented by 1.

If the returning invocation currently has an invocation exit set, the invocation exit
is not given control and is implicitly cleared.

Exceptions
Operand

Exception 1 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X

44 partial system object damage X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X X

03 object suspended X

L 24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X

07 invalid operand attribute X

08 invalid operand value range X

OA invalid operand length X

OC invalid operand odt reference X

00 reserved bits are not zero X X

2C Program execution

01 return instruction invalid X

02 return point invalid X

Chapter 6. Program Execution Instructions 8-21

Return External (RTX)

Operand
Exception 1 Other
2E Resource control limit

01 user profile storage limit exceeded x

36 Space management

01 space extension/truncation x

8-22 AS/400 MI Functional Reference

L

L

Set Argument List Length (SETALLEN)

6.9 Set Argument List Length (SET ALLEN)

Exceptions

Op Code (Hex) Operand Operand 2
1

0242 Argu- Length
ment
list

Operand 1: Operand list.

Operand 2: Binary scalar.

Description This instruction specifies the number of arguments to be passed on
a succeeding Call External or Transfer Control instruction. The current length of
the variable-length operand list (used as an argument list) specified by operand
1 is modified to the value indicated in the binary scalar specified by operand 2.
This length value specifies the number of arguments (starting from the first) to
be passed from the list when the operand list is referenced on a Call External or
Transfer Control instruction.

Only variable-length operand lists with the argument list attribute may be modi­
fied by the instruction.

The value in operand 2 may range from 0 (meaning no arguments are to be
passed) to the maximum size specified in the OOT definition of the operand list
(meaning all defined arguments are to be passed).

The length of the argument list remains in effect for the duration of the current
invocation or until a Set Argument List Length instruction is issued against this
operand list.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

03 argument list length modification violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1 C Machi ne-dependent exception

03 machine storage limit exceeded

20 Machine s'Jpport

Operands
1 2 Other

X

X

X

X

x
X

X

X

X

X

X

X

X

Chapter 6. Program Execution Instructions 6-23

Set Argument List Length (SETALLEN)

Operands
Exception 1 2 Other

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X

OA invalid operand length X

OC invalid operand odt reference X X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

6-24 AS/400 MI Functional Reference

L

L

L

6.10 Set Invocation Exit (SETIEXIT)
Op Code (Hex)

0252

Operand
1
Invoca­
tion exit
program

Operand 1: System pointer.

Operand 2

Argument
list

Set Invocation Exit (SETIEXIT)

Operand 2: Operand list or null.

Description: This instruction allows the external entry point of the program
specified by operand 1 to be given control when the requesting invocation is
destroyed due to normal exception handling actions, or due to any process ter­
mination. Normal exception handling actions are considered to be those actions
performed by the Return From Exception or the Signal Exception instructions.

Operand 1 is a system pointer addressing the program that is to receive control.
The operand 1 system pointer must be in either the static or automatic storage
of the program invoking this instruction.

Operand 2 specifies an operand list that identifies the arguments to be passed to
the invocation exit program being called. If operand 2 is null, no arguments are
passed to the invocation.

No operand verification takes place when this instruction is executed. Nor are
copies made of the operands, so changes made to the operand values after exe­
cution of this instruction will be used during later operand verification. Operand
verification occurs on the original form of the operands when the invocation exit
program is invoked. At that time operational authorization to the invocation exit
program and retrieve authorization to any contexts referenced for materialization
take place. Also, materialization lock enforcement occurs to contexts referenced
for materialization.

If an invocation exit program currently exists for the requesting invocation, it is
replaced, and no exception is signaled. The invocation exit set by this instruc­
tion is implicitly cleared when the invocation exit program is given control, or the
program which set the invocation exit completes execution.

If any invocations are to be destroyed due to normal exception handling actions,
then those invocation exit programs associated with the invocations to be
destroyed are given control before execution proceeds to the signaled exception
handler.

An invocation exit bypassed due to a RTNEXCP or a SIGEXCP instruction event
is signaled when both of the following conditions occur:

• Exception management is destroying an invocation stack due to a Signal
Exception instruction, a Return From Exception instruction, or process termi­
nation.

• An invocation exit program is to be destroyed due to a second Signal Excep­
tion or a second Return From Exception instruction.

Chapter 6. Program Execution Instructions 6-25

Set Invocation Exit (SETIEXIT)

Exceptions

The invocation exit program that is being destroyed is terminated, and its associ­
ated invocation execution is terminated. Termination of invocations due to a
previous Signal Exception instruction, a Return From Exception instruction, or a
process termination is then resumed.

If a process phase is terminated and the process was not in termination phase,
then the invocations are terminated. Invocation exit programs set for the termi­
nated invocations are allowed to run. If an invocation to be terminated is an
invocation exit program, then the following occurs:

• An invocation exit bypassed due to process termination event is signaled.

• If an invocation exit has been set for this invocation exit, it is allowed to run.

• The invocation exit is terminated and the associated invocation is terminated
(the invocation exit is not reinvoked).

Invocation exit programs for the remaining invocations to be terminated are then
allowed to run.

Exception

06 Addressing

08

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Argument/parameter

Operands
1 2

x
X

X

X

01 parameter reference violation X

10 Damage encountered

1C

04 system object damage state

44 partial system object damage

Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

2A Program creation

06 invalid operand type

07 invalid operand attribute

08 invalid operand value range

OC invalid operand odt reference

00 reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

X

X

X

X

X

X

X

X

3 4

X X

Other

X

X

X

X

X

X

X

6-26 AS/400 MI Functional Reference

Exception
32 Scalar specification

01 scalar type invalid

36 Space management

01 space extension/truncation

L

Set Invocation Exit (SETIEXIT)

Operands
123

x

4 Other

x

Chapter 6. Program Execution Instructions 6-27

Store Parameter List Length (STPLLEN)

6.11 Store Parameter List Length (STPLLEN)

Exceptions

Op Code (Hex)
0241

Operand 1
Length

Operand 1: Binary variable scalar.

Description: A value is returned in operand 1 that represents the number of
parameters associated with the invocation's external entry point for which argu­
ments have been passed on the preceding Call External or Transfer Control
instruction.

The value can range from 0 (no parameters were received) to the maximum size
possible for the parameter list associated with the external entry point.

Exception

06 Addressing

08

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

20

03 machine storage limit exceeded

Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

24 Pointer specification

2A

01 pointer does not exist

02 pointer type invalid

Program creation

06 invalid operand type

07 invalid operand attribute

Operand
1 Other

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

6-28 AS/400 MI Functional Reference

Store Parameter List Length (STPLLEN)

Operand
Exception 1 Other

08 invalid operand value range X

OA invalid operand length X

OC invalid operand odt reference X

00 reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X

02 scalar attributes invalid X

36 Space management

01 space extension/truncation X

L

Chapter 6. Program Execution Instructions 6-29

Transfer Control (XCTL)

6.12 Transfer Control (XCTL)
Op Code (Hex)
0282

Operand 1
Program to be
called or Call tem­
plate

Operand 2
Argument list

Operand 1: System pointer or Space pointer Data Object.

Operand 2: Operand list or null.

Description: The instruction destroys the calling invocation and causes control
to be passed to the external entry point of the program specified by operand 1.

Operand 1 may be specified as a a system pointer which directly addresses the
program that is to receive control or as a space pointer to a call template which
identifies the program to receive control. Specifying a template allows for addi-
tional controls over how the specified program is to be invoked. The format of . .~
the call template is the following: ..",

• Call options

Suppress adopted user profiles

o = no
1 = yes

Reserved (binary zero)

Char(4)

Bit 0

Bit 1-30

Force program state to user state for transfer Bit 31

o = no
1 = yes

• Reserved (binary zero)

• Program to be called

Char(12)

System Pointer

The suppress adopted user profiles call option specifies whether or not the
program adopted and propagated user profiles which may be serving as sources'\
of authority to the process are to be suppressed from supplying authority to the """"
new invocation. Specifying yes causes the propagation of adopted user profiles
to be stopped as of the calling invocation, thereby, not allowing the called invo-
cation to benefit from their authority. Specifying no allows the normal propa-
gation of adopted and propagated user profiles to occur. The called program
may adopt its owning user profile, if necessary, to supplement the authority
available to its invocation.

The force program state to user state option specifies whether or not the transfer
control needs to be done in the current program state or as though the
transfering program were running in the user state without the it changing to run
in the user state.

The invocation count in the activation (if any) of the calling program is decre­
mented by 1. The instruction ensures that the called program is properly acti­
vated in the process, if required. See the Activate Program instruction for a
definition of this activation verification process.

6-30 AS/400 MI Functional Reference

Transfer Control (XCTL)

After any needed static storage has been allocated or located, the invocation
entry to the program issuing the Transfer Control instruction is made available
for the new invocation. Unless precluded by internal machine alignment require­
ments, the new invocation's stack control entry and automatic storage overlay
that of the invocation issuing the Transfer Control instruction. The new invoca­
tion entry is allocated beginning at the same location as that of the current
(transferring) invocation. See the Call External instruction for a definition of a
PASA (process automatic storage area) entry.

The new invocation's stack control entry is initialized as follows:

• The previous invocation entry pointer and the next invocation entry pointer
are the same as that of the invoking program's entry.

• The associated program pointer is copied from the associated activation
entry (or from the operand 1 system pointer if no activation entry exists).

• The invocation number entry is unchanged.

• The invocation type value is set to indicate that the program was invoked via
a Transfer Control instruction (hex 20).

• The program's automatic storage is allocated and initialized as specified in
the program definition.

The invocation entry for the preceding invocation is unchanged by the instruc­
tion. The current invocation entry pointer in the PASA base entry is unchanged
by the instruction. The next available storage location entry in the PASA base
entry is set to address the next available 16-byte aligned area beyond the new
invocation entry.

The program is invoked by allocating an area in the PASA space that is sufficient
to contain the invocation entry. The area used for allocation is located by the
next available storage location pointer in the PASA base entry. This pointer
must address a 16-byte aligned area in the space, or a boundary alignment
exception is signaled.

The maximum addressable location in the PASA space limits the amount of
storage that may be allocated for PASA storage. If this limit is exceeded, the
process storage limit exceeded exception is signaled. If the maximum address­
able location entry does not address the same space as that addressed by the
next available storage location entry, the stack control invalid exception is sig­
naled.

If insufficient space is available in the PASA for the entire new entry, the PAS A
space is implicitly extended by the machine. If the space is fixed size or may
not be extended enough to contain the entry, a space extension/truncation
exception is signaled.

Following the allocation and initialization of automatic storage, control is passed
to the invoked program.

Operand 2 specifies an operand list that identifies the arguments to be passed to
the invocation to which control is being transferred. Automatic objects allocated
by the transferring invocation are destroyed as a result of the transfer operation
and, therefore, cannot be passed as arguments. A parameter list length excep-

Chapter 6. Program Execution Instructions 6-31

Transfer Control (XCTL)

tion is signaled if the number of arguments passed does not correspond to the
number required by the parameter list of the target program.

If the transferring invocation has received control to process an exception, an
event, or an invocation exit, the return instruction invalid exception is signaled.

If the transferring invocation currently has an invocation exit set, the invocation
exit is not given control and is implicitly cleared.

Authorization Required

Lock Enforcement

Exceptions

• Operand 1

- Operational

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

02 parameter list length violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

02 program limitation exceeded

03 machine storage limit exceeded

20 Machine support

6-32 AS/400 M I Functional Reference

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

Transfer Control (XCTL)

Operands
Exception 1 2 Other

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2C Program execution

01 return instruction invalid X

03 stack control invalid X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

Chapter 6. Program Execution Instructions 6-33

Transfer Control (XCTL)

6-34 AS/400 MI Functional Reference

Prog:"'am Creation Control Instructions

Chapter 7. Program Creation Control Instructions

This chapter describes all the instructions used to control the create program
function. These instructions are arranged in alphabetic order. For an alphabetic
summary of all the instructions, see Appendix A, "Instruction Summary."

@ Copyright IBM Corp. 1990 7-1

No Operation (NOOP)

7.1 No Operation (NOOP)
Op Code (Hex)
0000

Description: No function is performed. The instruction consists of an operation
code and no operands. The instruction may not be branched to and is not
counted as an instruction in the instruction stream. The instruction may be used
for inserting gaps in the instruction stream. These gaps allow instructions with
adjacent instruction addresses to be physically separated.

The instruction may precede or follow any machine instruction except the End
instruction, and any number of No Operation instructions may exist in suc­
cession.

7-2 AS/400 MI Functional Reference

L

No Operation and Skip (NOOPS)

7.2 No Operation and Skip (NOOPS)

Exceptions

Op Code (Hex)
0001

Operand 1
Skip count

Operand 1: Unsigned immediate value.

Description: This instruction performs no function other than to indicate a spe­
cific number of bytes within the instruction stream that are to be skipped during
encapsulation. It consists of an operation code and 1 operand. Operand 1 is an
unsigned immediate value that contains the number of bytes between this
instruction and the next instruction to be processed. These bytes are skipped
during the encapsulation of this program. A value of zero for operand 1 indi­
cates that no bytes are to be skipped between this instruction and the next
instruction to be processed.

If the operand 1 skip count indicates that the next instruction to process is
beyond the end of the instruction stream, an invalid operand value range excep­
tion is signaled.

This instruction may be used to insert gaps in the instruction stream in such a
manner that allows instructions with adjacent instruction addresses to not be
physically adjacent.

This instruction may not be branched to, and is not counted as an instruction in
the instruction stream.

The instruction may precede or follow any machine instruction except the End
instruction, and any number of No Operation and Skip instructions may exist in
succession.

Note: When this instruction is used in an existing program template, the fol­
lowing items within the template may be adversely affected:

• The actual count of instructions may be altered to be different than
the count of instructions that is specified in the program template
header.

• Object definitions that reference instructions may now be out of range
or may not reference the intended instruction.

The actual number of bytes skipped includes the bytes containing the instruction
plus the number of bytes specified by the skip count value. The number of bytes
skipped per template version is as follows:

• Version 0 = 4 plus the skip count value.

• Version 1 = 5 plus the skip count value.

Exception

2A Program Creation

06 Invalid operand type

08 Invalid operand value range

Operand
1 Other

x
X

Chapter 7. Program Creation Control Instructions 7-3

No Operation and Skip (NOOPS)

Operand
Exception 1 Other

00 Reserved bits are not zero X X

7-4 AS/400 MI Functional Reference

Override Program Attributes (OVRPGATR)

7.3 Override Program Attributes (OVRPGATR)
Op Code (Hex)
0006

Operand 1
Attribute
identifica­
tion

Operand 2
Attribute
modifier

Operand 1: Unsigned immediate value.

Operand 2: Unsigned immediate value.

Description: This program creation control instruction allows one of a set of
program attributes specified below to be overriden. The overriden program attri­
bute is in effect until it is changed by another OVRPGATR instruction. The initial
program attributes are set to the ones given in the program template for the
CRTPG instruction. These same initial program attributes are the ones that are
materialized when a MATPG is done. That is, the OVRPGATR instruction has no
effect on the materialized attributes.

The OVRPGATR instruction consists of an operation code and two operands.
Operand 1 is an unsigned immediate value that contains a representation of
which program attribute is to be overriden. Operand 2 is an unsigned immediate
value that contains a representation of how the program attribute is to be
overriden.

This instruction may not be branched to, and is not counted as an instruction in
the instruction stream.

The instruction may precede or follow any machine instruction.

The program attributes defined by operand 1 is overriden according to the fol­
lowing selection values:

Attribute Attribute
Identification Description

1 Array constrainment attribute

2

Allowed values for operand 2:

1 = Constrain array references

2 = Do not constrain array references

3 = Fully unconstrain array references

4 = Terminate override of array constrainment attributes and
resume use of the attributes specified in the program
template

String constrainment attribute

Allowed values for operand 2:

1 = Constrain string references

2 = Do not constrain string references

Chapter 7. Program Creation Control Instructions 7-5

Override Program Attributes (OVRPGATR)

Exceptions

3

4

5

3 = Terminate override of string constrainment attribute and
resume use of the attribute specified in the program tem­
plate

Suppress binary size exception attribute

Allowed values for operand 2:

1 = Suppress binary size exceptions

2 = Do not suppress binary size exceptions

3 = Terminate override of suppression of binary size excep­
tion attribute and resume use of the attribute specified in
the program template

Suppress decimal data exception attribute

Allowed values for operand 2:

1 = Suppress decimal data exceptions

2 = Do not suppress decimal data exceptions

3 = Terminate override of suppression of decimal data
exception attribute and resume use of the attribute speci­
fied in the program template

CPYBWP alignment data check attribute

Allowed values for operand 2:

1 = Constrain CPYBWP to require like alignment of operands
(default)

2 = Do not constrain CPWBWP to require like alignment of
operands

Operand
Exception 1 Other

2A Program Creation

06 Invalid operand type

08 Invalid operand value range

00 Reserved bits are not zero

x
X

X X

7-6 AS/400 MI Functional Reference

L

Independent Index Instructions

Chapter 8. Independent Index Instructions

This chapter describes the instructions used for indexes. These instructions are
in alphabetic order. For an alphabetic summary of all the instructions, see
Appendix A, "Instruction Summary."

Cl Copyright IBM Corp. 1990 8-1

Find Independent Index Entry (FNDINXEN)

8.1 Find Independent Index Entry (FNDINXEN)
Op Code (Hex)
0494

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Operand 2
Index

Operand 3
Option list

Operand 4
Search argu­
ment

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

Description: This instruction searches the independent index identified by
operand 2 according to the search criteria specified in the option list (operand 3)
and the search argument (operand 4); then it returns the desired entry or entries
in the receiver field (operand 1). The maximum size of the independent index
entry is 120 bytes.

The option list is a variable-length area that identifies the type of search to be
performed, the length of the search argument(s), the number of resultant argu-
ments to be returned, the lengths of the entries returned, and the offsets to the ...J
entries within the receiver identified by the operand 1 space pointer. The option
list has the following format:

• Rule option Char(2)

• Argument length Bin(2)

• Argument offset Bin(2)

• Occurrence count Bin(2)

• Return count Bin(2)

Each entry that is returned to the receiver operand contains the following:

• Entry length

• Offset

Bin(2)

Bin(2)

The rule option identifies the type of search to be performed and has the fol­
lowing meaning:

Search
Type

>

<

8-2 AS/400 MI Functional Reference

Value (Hex)
0001

0002

0003

Meaning
Find equal occurrences of
operand 4.

Find occurrences that are
greater than operand 4.

Find occurrences that are
less than operand 4.

J

Find Independent Index Entry (FNDINXEN)

Search
Type Value (Hex) Meaning

~ 0004 Find occurrences that are
greater than or equal to
operand 4.

S 0005 Find occurrences that are
less than or equal to
operand 4.

First 0006 Find the first index entry or
entries.

Last 0007 Find the last index entry or
entries.

Between 0008 Find all entries between the
two arguments specified by
operand 4 (inclusive).

The option to find between limits requires that operand 4 be a 2-element vector
in which element 1 is the starting argument and element 2 is the ending argu­
ment. All arguments between (and including) the starting and ending arguments
are returned, but the occurrence count specified is not exceeded.

If the index was created to contain both pointers and scalar data, then the
search argument must be 16-byte aligned. For the option to find between limits,
both search arguments must be 16-byte aligned.

The rule option and the argument length determine the search criteria used for
the index search. The argument length must be greater than or equal to one.
The argument length for fixed-length entries must be less than or equal to the
argument length specified when the index is created.

The argument length entry specifies the length of the search argument (operand
4) to be used for the index search. When the rule option equals first or last, the
argument length entry is ignored. For the option to find between limits, the argu­
ment length option specifies the lengths of one vector element. The lengths of
the vector elements must be equal.

The argument offset is the offset of the second search argument from the begin­
ning of the entire argument field (operand 4). The argument offset field is
ignored unless the rule option is find between.

The occurrence count specifies the maximum number of index entries that
satisfy the search criteria to be returned. This field is limited to a maximum
value of 4095. If this value is exceeded, a template value invalid exception is
signaled.

The return count specifies the number of index entries satisfying the search cri­
teria that were returned in the receiver (operand 1). If this field is 0, no index
arguments satisfied the search criteria.

There are two fields in the option list for each entry returned in the receiver
(operand 1). The entry length is the length of the entry retrieved from the index.
The offset has the following meaning:

• For the first entry, the offset is the number of bytes from the beginning of the
receiver (operand 1) to the first byte of the first entry.

Chapter 8. Independent Index Instructions 8-3

Find Independent Index Entry (FNDINXEN)

• For any succeeding entry, the offset is the number of bytes from the begin­
ning of the immediately preceding entry to the first byte of the entry
returned.

The entries that are retrieved as a result of the Find Independent Index Entry
instruction are always returned starting with the entry that is closest to or equal
to the search argument and then proceeding away from the search argument.
For example, a search that is for < (less than) or S (less than or equal to)
returns the entries in order of decreasing value.

All the entries that satisfy the search criteria (up to the occurrence count) are
returned in the space starting at the location designated by the operand 1 space
pointer.

If the index was created to contain both pointers and scalar data, then each
returned entry is 16-byte aligned.

If the index was created to contain only scalar data, then returned entries are
contiguous.

Every entry retrieved causes the count of the find operations to be incremented
by 1. The current value of this count is available through the Materialize Index
Attributes instruction.

Authorization Required
• Retrieve

Operand 2

Contexts referenced for address resolution

Lock Enforcement
• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X X X

8-4 AS/400 MI Functional Reference

.j

j

Find Independent Index Entry (FNDINXEN)

Operands
Exception 1 2 3 4 Other

05 authority verification terminated X
due to damaged object

44 partial system object damage X X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

L 01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

07 authority verification terminated X
due to destroyed object

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X X X

07 invalid operand attribute X X X X

08 invalid operand value range X X X X

OA invalid operand length X X X X

OC invalid operand odt reference X X X X

00 reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

Chapter 8. Independent Index Instructions 8-5

Insert Independent Index Entry (lNSINXEN)

8.2 Insert Independent Index Entry (INSINXEN)
Op Code (Hex)
04A3

Operand 1
Index

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Operand 2
Argument

Operand 3
Option list

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

Description: This instruction inserts one or more new entries into the inde-
pendent index identified by operand 1 according to the criteria specified in the .~

option list (operand 3).Each entry is inserted into the index at the appropriate """"
location based on the binary value of the argument. No other collating sequence
is supported. The maximum length allowed for the independent index entry is
120 bytes.

The argument (operand 2) and the option list (operand 3) have the same format
as the argument and option list for the Find Independent Index Entry instruction.

The rule option identifies the type of insert to be performed and has the following
meaning:

Insert Type Value
(Hex)

Insert 0001

Insert with 0002
replacement

Insert without 0003
replacement

Meaning

Insert unique argument

Insert argument,
replacing the nonkey
portion if the key is
already in the index

Insert argument only if
the key is not already in
the index

Authorization

Insert

Update

Insert

The insert rule option is valid only for indexes not containing keys. The insert
with replacement rule option and the insert without replacement rule option are
valid for indexes containing either fixed- or variable-length entries with keys.
The duplicate key argument exception is signaled for the following conditions:

• If the rule option is insert and the argument to be inserted (operand 2) is
already in the index

• If the rule option is insert without replacement and the key portion of the
argument to be inserted (operand 2) is already in the index

The argument length and argument offset fields are ignored.

The occurrence count specifies the number of arguments to be inserted. This
field is limited to a maximum value of 4095. If this value is exceeded, a template
value invalid exception is signaled.

8-6 AS/400 MI Functional Reference

L

L

Insert Independent Index Entry (INSINXEN)

If the index was created to contain both pointers and data, then each entry to be
inserted must be 1B-byte aligned. If the index was created to contain variable­
length entries, then the entry length and offset fields must be specified in the
option list for each argument in the space identified by operand 2. The entry
length is the length of the entry to be inserted.

If the index was created to contain both pointer and scalar data, the offset field
in the option list must be supplied for each entry to be inserted. The offset is the
number of bytes from the beginning of the previous entry to the beginning of the
entry to be inserted. For the first entry, this is the offset from the start of the
space identified by operand 2.

The return count specifies the number of entries inserted into the index. If the
index was created to contain only data, then any pointers inserted are invali­
dated.

Authorization Required

Lo~k Enforcement

Exceptions

• Insert or update depending on insert type

- Operand 1

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

• Modify

- Operand 1

Exception

02 Access group

01 object exceeds available space

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

Operands
123

x

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

Chapter 8. Independent Index Instructions 8-7

Insert Independent Index Entry (INSINXEN)

Operands
Exception 1 2 3 Other

..J 05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

18 Independent index

01 duplicate key argument in index X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

20 Machine support

..J 02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to X

J destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X X .j 07 invalid operand attribute X X X

08 invalid operand value range X X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X j

8-8 AS/400 MI Functional Reference

Materialize Independent Index Attributes (MATINXAT)

8.3 Materialize Independent Index Attributes (MATINXAT)
Op Code (Hex) Operand Operand 2

1
0462 Receiver Index

Operand 1: Space pOinter.

Operand 2: System pOinter.

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

D.scrlptlon: The instruction materializes the creation attributes and current
operational statistics of the independent index identified by operand 2 into the
space identified by operand 1. The format of the attributes materialized is as
follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Object Identification Char(32)

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Reserved

Space attribute

o = Fixed-length
1 = Variable-length

Context

o = Addressability not in context
1 = Addressability in context

Access group

o = Not a member of access group
1 = Member of access group

Reserved (binary 0)

Initialize space

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-12

Bit 13

Bits 14-31

Char(4)

Bin(4)

Chapter 8. Independent Index Instructions 8-9

Materialize Independent Index Attributes (MATINXAT)

• Initial value of space Char(1)

Char(4)

Bit 0

• Performance class

•

•

•

•

Space alignment

o = The space associated with the object is allocated to allow proper
alignment of pointers at 16-byte alignments within the space. If no
space is specified for the object, this value must be specified for the
performance class.

1 = The space associated with the object is allocated to allow proper
alignment of pointers at 16-byte alignments within the space as well
as to allow proper alignment of input/output buffers at 512-byte align­
ments within the the space.

Reserved (binary 0)

Main storage pool selection

Bits 1-4

Bit 5

o = Process default main storage pool used for object.
1 = Machine default main storage pool used for object.

Reserved (binary 0)

Block transfer on implicit
access state modification

Bit 6

Bit 7

o = The minimum storage transfer size for this object is a value of 1
storage unit.

1 = The machine default storage transfer size for this object is a value
of 8 storage units.

Reserved (binary 0) Bits 8-31

Reserved (binary 0) Char(7)

Context System pointer

Access group System pointer

Index attributes Char(1)

• Argument length Bin(2)

• Key length Bin(2)

• Index statistics Char(12)

Entries inserted Bin(4)

Entries removed Bin(4)

Find operations Bin(4)

The number of arguments in the index equals the number of entries inserted
minus entries removed. The value of the find operations field is initialized to 0
each time the index is materialized. The value may not be correct after an
abnormal system termination.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

8-10 AS/400 MI Functional Reference

L

L

L

Materialize Independent Index Attributes (MATINXAT)

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged.

No exceptions other than the materialization length exception described previ­
ously are signaled in the event that the receiver contains insufficient area for the
materialization.

The template identified by the operand 1 space pointer must be 16-byte aligned.
Values in the template remain the same as the values specified at the creation
of the independent index except that the object identification, context, and size of
the associated space contain current values.

If the entry length is fixed, then the argument length is the value supplied in the
template when the index was created. If the entry length is variable, then the
argument length entry is equal to the length of the longest entry that has ever
been inserted into the index.

Authorization Required

Lock Enforcement

Exceptions

• Operational

- Operand 2

• Retrieve

- Contexts referenced for address resolution

• Materialize

Operand 2

Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged
object

Operands
1 2 Other

x
X

X

X

X

X

X

X

X

X

X

X

X X

X

Chapter 8. Independent Index Instructions 8-11

Materialize Independent Index Attributes (MATINXAT)

Operands
Exception 1 2 Other

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X ~
OC invalid operand adt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

8-12 AS/400 MI Functional Reference

L

L

Modify Independent Index (MODINX)

8.4 Modify Independent Index (MODINX)
Op Code (Hex)
0452

Operand 1
Inde­
pendent
index

Operand 1: System pointer.

Operand 2: Character (4) scalar.

Operand 2
Modification
option

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

Description: This instruction modifies the selected attributes of the independent
index specified by operand 1 to have the values specified in operand 2. The
modification options specified in operand 2 have the following format:

• Modification selection

Reserved (binary 0)

Immediate update

Char(1)

Bit 0

Bit 1

o = Do not change immediate update attribute
1 = Change immediate update attribute

Reserved (binary 0)

• New attribute value

Reserved (binary 0)

Immediate update

o = No immediate update
1 = Immediate update

Reserved (binary 0)

• Reserved (binary 0)

Bits 2-7

Char(1)

Bit 0

Bit 1

Bits 2-7

Char(2)

If the modification selection immediate update is 0, then the immediate update
attribute is not changed. If the modification selection immediate update bit is 1,
the immediate update attribute is changed to the new immediate update attribute
value.

If the immediate update attribute of the index was previously set to no immediate
update, and it is being modified to immediate update, then the index is ensured
before the attribute is modified.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Chapter 8. Independent Index Instructions 8-13

Modify Independent Index (MODINX)

Authorization Required
• Object management ,J - Operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Modify

- Operand 1

• Materia I ization

- Contexts referenced for address resolution

Exceptions
Operands

,J Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X ,J
OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X ,J
1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X ,J 03 object suspended X X

8-14 AS/400 MI Functional Reference

Modify Independent Index (MODINX)

Operands
Exception 1 2 Other

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer address invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

L OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X

36 Space management

01 space extension/truncation X

L

Chapter 8. Independent Index Instructions 8-15

Remove Independent Index Entry (RMVINXEN)

8.5 Remove Independent Index Entry (RMVINXEN)
Op Code (Hex) Operand Operand Operand

123
0484 Receiver Index

Operand 1: Space pointer or null.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Option
list

Operand 4

Argument

Warning: The following information is subject to change from release to release.
Use it with caution and be prepared to adjust for changes with each new
release.

Description: The index entries identified by operands 3 and 4 are removed from
the independent index identified by operand 2 and optionally returned in the
receiver specified by operand 1. The maximum length of an independent index
entry is 120 bytes.

The option list (operand 3) and the argument (operand 4) have the same format
and meaning as the option list and argument for the Find Independent Index
Entry instruction. The return count designates the number of index entries that
were removed from the index.

The arguments removed are returned in the receiver field if a space pointer is
specified for operand 1. If operand 1 is null, the entries removed from the index
are not returned. If neither space pointer nor null is specified for operand 1, the
entries are returned in the same way that entries are returned for the Find Inde­
pendent Index Entry instruction.

Every entry removed causes the occurrence count to be incremented by 1. The
current value of this count is available through the Materialize Index Attributes
instruction. The occurrence count field must be less then 4096.

Authorization Required
• Delete

- Operand 2

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

• Modify

- Operand 2

8-16 AS/400 MI Functional Reference

Remove Independent Index Entry (RMVINXEN)

Exceptions
Operands

Exception 1 2 3 4 Other

02 Access group

01 object exceeds available space X

06 Addressing

01 space addressing violation X X X X

02 boundary alignment X X X X

03 range X X X X

06 optimized addressability invalid X X X X

08 Argument/parameter

01 parameter reference violation X X X X

OA Authorization

L 01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X X X

05 authority verification terminated X
due to damaged object

44 partial system object damage X X X X X

1A Lock state

01 invalid lock state X X

1C Machine-dependent exception

03 machine storage limit exceeded X

04 object storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X X

02 object destroyed X X X X

03 object suspended X X X X

07 authority verification terminated X
due to destroyed object

24 Pointer specification

01 pointer does not exist X X X X

02 pointer type invalid X X X X

03 pointer addressing invalid object X

L 2A Program creation

06 invalid operand type X X X X

Chapter 8. Independent Index Instructions 8-17

Remove Independent Index Entry (RMVINXEN)

Operands
Exception 1 2 3 4 Other

07 invalid operand attribute X X X X J 08 invalid operand value range X X X X

OC invalid operand odt reference X X X X

OD reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

8-18 AS/400 MI Functional Reference

L

Queue Management Instructions

Chapter 9. Queue Management Instructions

This chapter describes the instructions used for queue management. These
instructions are in alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A, "Instruction Summary."

© Copyright IBM Corp. 1990 9-1

Dequeue (DEQ, DEQB, or DEQI)

9.1 Dequeue (DEQ, DEQB, or DEQI)

Op Code (Hex)
1033

1C33

1833

Extender Operand 1
Message
prefix

Operand 2
Message
text

Operand 3 Operand 4·5

Branch
options

Indicator
options

Queue or
queue tem-
plate

Operand 1: Character variable scalar (fixed-length).

Operand 2: Space pointer.

Operand 3: System pointer or space pointer.

Operand 4-5:

Branch
target

Indicator
target

• Branch Form-Branch point, instruction pointer, relative instruction number, or
absolute instruction number.

• Indicator Form-Numeric variable scalar or character variable scalar.

Extender: Branch or indicator options.

If the branch or indicator option is indicated in the op code, the extender field is
required along with one or two branch operands (for branch option) or one or
two indicator operands (for indicator option). See Chapter 1. "Introduction" for
the bit encoding of the extender field and the allowed syntax of the branch and
indicator operands.

Description: The instruction retrieves a queue message based on the queue
type (FIFO, LIFO, or keyed) specified during the queue's creation. If the queue
was created with the keyed option, messages can be retrieved by any of the fol­
lowing relationships between an enqueued message key and a selection key
specified in operand 1 of the Dequeue instruction: rF, >, <, S, and~. If the
queue was created with either the LIFO or FIFO attribute, then only the next
message can be retrieved from the queue.

If a message is not found that satisfies the dequeue selection criterion and the
branch or options are not specified, the process is put into the wait state until a
message arrives to satisfy the dequeue or until the dequeue wait time-out
expires. If branch or indicator options are specified, the process is not placed in
the dequeue wait state and either the control flow is altered according to the
branch options, or indicator values are set based on the presence or absence of
a message to be dequeued.

A nonzero dequeue wait time-out value overrides any dequeue wait time-out
value specified as the current process attribute. A zero wait time-out value
causes the wait time-out value to be taken from the current process attribute. If
all wait time-out values are 0 (from the Dequeue instruction and the current
process attribute), an immediate wait time-out exception is signaled. The bits in
this field are numbered from 0 to 63, and bit 41 is defined as 1024 microseconds.

9-2 AS/400 MI Functional Reference

L

L

Dequeue (DEQ. DEQB. or DEQI)

The maximum wait time-out interval allowed is a value equal to (248 - 1) micro­
seconds. Any value that indicates more time than the maximum wait time-out
causes the maximum wait time-out to be used.

If operand 3 is a system pointer, the message is dequeued from the queue speci­
fied by operand 3. If operand 3 is a space pointer, the message is dequeued
from the queue which is specified in the template pointed to by the space
pointer. The format of this template is given later in this section. The criteria for
message selection are given in the message prefix specified by operand 1. The
message text is returned in the space specified by operand 2, and the message
prefix is returned in the scalar specified by operand 1. The size of the message
text retrieved is returned in the message prefix. The size of the message text
can be less than or equal to the maximum size of message specified when the
queue was created. When dequeuing from a keyed queue, the length of the
search key field and the length of the message key field (in the message key
prefix specified in operand 1) are determined implicitly by the attributes of the
queue being accessed. If the message text on the queue contains pointers, the
message text operand must be 16-byte aligned. Improper alignment results in
an exception being signaled. The format of the message prefix is as follows:

• Timestamp of enqueue of message

• Dequeue wait time-out value
(ignored if branch options specified)

Char(8)**

Char(8)*

• Size of message dequeued Bin(4)**
(The maximum allowable size of a queue message is 65 000 bytes.)

• Access state modification option indicator and
message selection criteria

Access state modification option when
entering Dequeue wait

o = Access state is not modified
1 = Access state is modified

Char(1)*

Bit 0*

Access state modification option when Bit 1 *
leaving Dequeue wait

o = Access state is not modified
1 = Access state is modified

Multiprogramming level option

o = Leave current MPL set at Dequeue wait

Bit 2*

1 = Remain in current MPL set at Dequeue wait

Time-out option Bit 3*

o = Wait for specified time, then signal time-out exception
1 = Wait indefinitely

Actual key to input key relationship
(for keyed queue)

0010: Greater than
0100: Less than
0110: Not equal
1000: Equal
1010: Greater than or equal
1100: Less than or equal

Bits 4-7*

Chapter 9. Queue Management Instructions 9-3

Dequeue (DEQ, DEQB, or DEQI)

• Search key (ignored for FIFO/LIFO queues
but must be present for FIFO/LIFO
queues with nonzero key length values)

• Message key

Char(key
length)*

Char(key
length)**

Note: Fields shown here with one asterisk indicate input to the instruction, and
fields shown here with two asterisks are returned by the machine.

The access state of the process access group is modified when a Dequeue
instruction results in a wait and the following conditions exist: the process'
instruction wait initiation access state control attribute specifies allow access
state modification, the dequeue access state modification option specifies modify
access state, and the multiprogramming level option specifies leave MPL set
during wait.

The process will remain in the current MPL set for a maximum of two seconds
when a Dequeue instruction results in a wait if the multiprogramming level
option specifies remain in current MPL set at Dequeue wait and the access state
modification when entering Dequeue wait option specifies do not modify access
state. After two seconds, the process will automatically be removed from the
current MPL set. The automatic removal does not change or affect the total wait
time specified for the process by the Dequeue wait time-out value.

Operand 3 can be a system pointer or a space pointer. If it is a system pointer,
this pointer will be addressing the queue from which the message is to be
dequeued. If it is a space pointer, this pointer will be addressing a template
which will contain the system pointer to the queue as well as the Dequeue tem­
plate extension. The template is 32 bytes in length and must be aligned on a
16-byte boundary with the format as follows:

• Queue

• Dequeue template extension

Extension Options

System pointer

Char(16)

Char(1)

- Modify process event mask option Bit 0 *

o = Do not modify process event mask
1 = Modify process event mask

- Reserved (binary 0)

Extension Area

New process event mask

- Previous process event mask

- Reserved (binary 0)

Bits 1-7

Char(15)

Bin(2) *

Bin(2) **

Char(11)

The previous process event mask is only returned when the modify process
event mask option has been set to 1.

Note: Fields shown here with one asterisk indicate input to the instruction, and
fields shown here with two asterisks are returned by the m1chine.

9-4 AS/400 MI Functional Reference

L

L

L

Dequeue (DEQ, DEQB, or DEQI)

The work with process event mask option controls the state of the event mask in
the process executing this instruction. If the event mask is in the masked state,
the machine does not schedule signaled event monitors in the process. The
event monitors continue to be signaled by the machine or other processes.
When the process is modified to the unmasked state, event handlers are sched­
uled to handle those events that occurred while the process was masked and
those events occurring while in the unmasked state. The number of signals
retained while the process is masked is specified by the attributes of the event
monitor associated with the process.

The process is automatically masked by the machine when event handlers are
invoked. If the process is unmasked in the event handler, other events can be
handled if another enabled event monitor within that process is signaled. If the
process is masked when it exits from the event handler, the machine explicitly
unmasks the process.

Valid masking values are:

o Masked
256 Unmasked

Other values are reserved and must not be specified. If any other values are
specified, a template value invalid exception is signaled.

Whether masking or unmasking the current process, the new mask takes affect
upon completion of a satisfied dequeue.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Message dequeued (equal), message not dequeued (not
equal).

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

Operand 3

Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

Operands
123

X X X

X X X

X X X

X X X

Other

Chapter 9. Queue Management Instructions 9-5

Dequeue (DEQ, DEQB, or DEQI)

Operands
Exception 1 2 3 Other

01 parameter reference violation X X X ..J
OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer address invalid object X

J 2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X

08 invalid operand value range X

09 invalid branch target operand X

OA invalid operand length X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

~ 03 scalar value invalid X

9-6 AS/400 MI Functional Reference

L

L

L

Exception
36 Space management

01 space extension/truncation

3A Wait time-out

01 dequeue

Dequeue (DEQ, DEQB, or DEQI)

Operands
1 2 3 Other

x

x

Chapter 9. Queue Management Instructions 9-7

Enqueue (ENQ)

9.2 Enqueue (ENQ)
Op Code (Hex)
0368

Operand 1
Queue

Operand 1: System pointer.

Operand 2: Character scalar.

Operand 3: Space pointer.

Operand 2
Message
prefix

Operand 3
Message text

Description: A message is enqueued according to the queue type attribute
specified during the queue's creation.

If keyed sequence is specified, enqueued messages are sequenced in ascending
binary collating order according to the key value. If a message to be enqueued
has a key value equal to an existing enqueued key value, the message being
added is enqueued following the existing message.

If the queue was defined with either last in, first out (LIFO) or first in, first out
(FIFO) sequencing, then enqueued messages are ordered chronologically with
the latest enqueued message being either first on the queue or last on the
queue, respectively. A key can be provided and associated with messages
enqueued in a LIFO or FIFO queue; however, the key does not establish a mes­
sage's position in the queue. The key can contain pointers, but the pointers are
not considered to be pointers when they are placed on the queue by an Enqueue
instruction.

Operand 1 specifies the queue to which a message is to be enqueued. Operand
2 specifies the message prefix, and operand 3 specifies the message text.

The format of the message prefix is as follows:

• Size of message to be enqueued

• Enqueue key value (Ignored for FIFO/LIFO
queues with key lengths equal to O.
Must be present for all other queues.)

Bin(4r

Char(key
lengthr

Note: Fields annotated with an asterisk indicate input to the instruction.

The size of the message to be enqueued is supplied to inform the machine of the
number of bytes in the space that are to be considered message text. The size
of the message is then considered the lesser of the size of the message to be
enqueued attribute and the maximum message size specified on queue creation.
The message text can contain pointers. When pointers are in message text, the
operand 3 space pointer must be 16-byte aligned. Improper alignment will result
in an exception being signaled.

If the enqueued message causes the number of messages to exceed the
maximum number of messages attribute of the queue, one of the following
occurs:

• If the queue is not extendable, the queue message limit exceeded exception
and the queue message limit exceeded event are signaled. The message is
not enqueued.

9-8 AS/400 MI Functional Reference

L

L

Enqueue (ENQ)

• If the queue is extendable, the queue is implicitly extended by the extension
value attribute. The message is enqueued. No exception is signaled, but the
queue extended event is signaled.

The maximum allowable queue size, including all messages currently enqueued
and the machine overhead, is 16 megabytes.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Authorization Required
• Insert

- Operand 1

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X X

1C Machine-dependent exception

03 machine storage limit exceeded X X

04 object storage limit exceeded X

20 Machine support

02 machine check X

Chapter 9. Queue Management Instructions 9-9

Enqueue (ENQ)

Operands
Exception 1 2 3 Other

03 function check X ..J
22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer address invalid object X

26 Process management ..)
02 queue message limit exceeded X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

9-10 AS/400 MI Functional Reference

L

L

L

Materialize Queue Attributes (MATQAT)

9.3 Materialize Queue Attributes (MATQAT)
Op Code (Hex)
0336

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Queue

Description: The attributes of the queue specified by operand 2 are materialized
into the object specified by operand 1. The format of the materialized queue
attributes must be aligned on a 16-byte multiple. The format is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Object identification Char(32)

Object type Char(1)

Object subtype Char(1)

Object name Char(30)

• Object creation options Char(4)

• Existence attributes Bit 0

o = Temporary
1 = Permanent

• Space attribute Bit 1

o = Fixed-length
1 = Variable-length

• Initial context Bit 2

o = Addressability not in context
1 = Addressability in context

• Access group Bit 3

o = Not a member of access group
1 = Member of access group

• Reserved (binary 0) Bits 4-12

• Initialize space Bit 13

• Reserved (binary 0) Bits 14-31

• Reserved (binary 0) Char(4)

• Size of space Bin(4)

• Initial value of space Char(1)

• Performance class Char(4)

- Space alignment Bit 0

Chapter 9. Queue Management Instructions 9-11

Materialize Queue Attributes (MATQAT)

o = The space associated with the object is allocated to allow proper
alignment of pointers at 16-byte alignments within the space. If no ~"
space is specified for the object, this value must be specified for the
performance class.

1 = The space associated with the object is allocated to allow proper
alignment of pointers at 16-byte alignments within the space as well
as to allow proper alignment of inpuVoutput buffers at 512-byte align­
ments within the the space.

Reserved (binary 0)

Main storage pool selection

Bits 1-4

Bit 5

o = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Reserved (binary 0)

Block transfer on implicit
access state modification

Bit 6

Bit 7

o = Transfer the minimum storage transfer size for this object. This
value is 1 storage unit.

1 = Transfer the machine default storage transfer size. This value is 8
storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

• Queue attributes

Message content

o = Contains scalar data only
1 = Contains painters and scalar data

Queue type

00 = Keyed
01 = Last in, first out
10 = First in, first out

Queue overflow action

o = Signal exception
1 = Extend queue

Reserved (binary 0)

• Current maximum number of messages

• Current number of messages enqueued

• Extension value

• Key length

• Maximum size of message to be enqueued

Bits 8-31

Char(7)

System pointer

System pointer

Char(1)

Bit 0

Bits 1-2

Bit 3

Bits 4-7

Bin(4)

Bin(4)

Bin(4)

Bin(2)

Bin(4)

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and

9-12 AS/400 MI Functional Reference

L

L

L

Materialize Queue Attributes (MATQAT)

is not modified by the instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception described previously) are signaled when the receiver contains
insufficient area for the materialization.

Authorization Required

Lock Enforcement

Exceptions

• Operational

- Operand 2

• Retrieve

- Contexts referenced for address resolution

• Materialize

Operand 2

Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

1A Lock state

01 invalid lock state

20 Machine support

02 machine check

03 function check

Operands
1 2

X X

X X

X X

X X

X X

X

X X

X X

X

Other

X

X

X

X

X

X

X

Chapter 9. Queue Management Instructions 9-13

Materialize Queue Attributes (MATQAT)

Operands
Exception 1 2 Other
22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer address invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X

08 invalid operand value range X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

J 36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

9-14 AS/400 MI Functional Reference

L

Materialize Queue Messages (MATQMSG)

9.4 Materialize Queue Messages (MATQMSG)
Op Code (Hex)
0338

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(16) scalar.

Operand 2
Queue

Operand 3
Message
selection
template

Description: This instruction materializes selected messages on a queue. One
or more messages on the queue specified by operand 2 is selected according to
information provided in operand 3 and materialized into operand 1. The number
of messages materialized and the amount of key and message text data materi­
alized for each message is governed by the message selection template.

Note that the list of messages on a queue is a dynamic attribute and may be
changing on a continual basis. The materialization of messages provided by this
instruction is just a picture of the status of the queue at the point of interrogation
by this instruction. As such. the actual status of the queue may differ from that
described in the materialization when subsequent instructions use the informa­
tion in the template as a basis for operations against the queue.

Operand 1 specifies a space that is to receive the materialized attribute values.

Operand 2 is a system pointer identifying the queue from which the messages
are to be materialized.

Operand 3 is a character (16) scalar specifying which messages are to be mate­
rialized.

The operand 1 space pointer must address a 16-byte boundary. The
materialization template has the following format:

• Materialization size specification Char(8)

Number of bytes provided for materialization 8in(4)

Number of bytes available for materialization 8in(4)

• Materialization data

- Count of messages materialized

• Queue data

• Count of messages on the queue

• Maximum message size

• Key size

• Reserved

• Message data (repeated for each message)

• Message attributes

Char(4)

8in(4)

Char(12)

8in(4)

8in(4)

8in(4)

Char(8)

Char(*)

Char(16)

Chapter 9. Queue Management Instructions 9-15

Materialize Queue Me,sages (MATQMSG)

Message enqueue time Char(8)

Message length Bin(4)

Reserved Char(4)

• Message key Char(*)

• Message text Char(*)

The first 4 bytes of the materialization identify the total quantity of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total quantity of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the

~

receiver is greater than that required to contain the information requested, then .. , :,
the excess bytes are unchanged. No exceptions are signaled in the event that ""'"
the receiver contains insufficient area for the materialization, other than the
materialization length exception described previously.

The maximum message size and key size are values specified when the queue
wa~ created. If the queue is not a keyed queue, the value materialized for the
key size is zero.

The length of the message key and message text fields is determined by values
supplied in operand 3, message selection data. If the length supplied in operand
3 exceeds the actual data length, the remaining space will be padded with binary
zeros.

The message selection template identified by operand 3 must be at least 16
bytes and must be on a 16-byte boundary. The format of the message selection
template is as follows:

• Message selection

Type

0001 = All messages
0010 = First
0100 = Last
1000 = Keyed

All other values are reserved

Key relationship (if needed)

0010 = Greater than
0100 = Less than
0110 = Not equal
1000 = Equal
1010 = Greater than or equal
1100 = Less than or equal

All other values are reserved

Reserved

• Lengths

9-16 AS/400 MI Functional Reference

Char(2)

Bits 0-3

Bits 4-7

Bits 8-15

Char(8)

L

L

Materialize Queue Messages (MATQMSG)

Number of key bytes to materialize Bin(4)

Number of message text bytes to materialize Bin(4)

• Reserved

• Key (if needed)

Char(6)

Char(*)

The message selection type must not specify keyed if the queue was not created
as a keyed queue.

Both of the fields specified under lengths must be zero or an integer multiple of
16. The maximum value allowed for the key length is 256. The maximum value
allowed for the message text is 65536.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

Operand 2

Contexts referenced for address resolution

• Materialization

Operand 2

Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated
due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

20 Machine support

02 machine check

03 function check

Operands
123

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

4

X

Other

X

X

X

X

X

Chapter 9. Queue Management Instructions 9-17

Materialize Queue Messages (MATQMSG)

Operands
Exception 1 2 3 4 Other

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated X
due to destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer address invalid object X

28 Process state

02 process control space not associ- X ..J ated with a process

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X

OC invalid operand octt reference X X X

J 00 reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attributes invalid X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

9-18 AS/400 MI Functional Reference

L

Object Lock Management Instructions

Chapter 10. Object Lock Management Instructions

This chapter describes the lock management instructions. The instructions are
in alphabetic order. For an alphabetic summary of all the instructions, see
Appendix A, "Instruction Summary."

C> Copyright IBM Corp. 1990 10-1

Lock Object (LOCK)

10.1 Lock Object (LOCK)
Op Code (Hex)
03FS

Operand 1
Lock request
template

Operand 1 Space pointer.

Description: The instruction requests that locks for system objects identified by
system pointers in the space object (operand 1) be allocated to the issuing
process. The lock state desired for each object is specified by a value associ­
ated with each system pointer in the lock template (operand 1).

The lock request template must be aligned on a 16-byte boundary. The format is
as follows:

• Number of lock requests in template

• Offset to lock state selection values

• Wait time-out value for instruction

• Lock request options

Lock request type

Bin(4)

Bin(2)

Char(8)

Char(1)

Bits 0-1

00 = Immediate request-If all locks cannot be immediately granted,
signal exception.

01 = Synchronous request-Wait until all locks can be granted.
10 = Asynchronous request-Allow processing to continue and signal

event when the object is available.

Access state modifications

When the process is entering
lock wait for synchronous request:

0= Access state should not be modified.
1 = Access state should be modified.

Bits 2-3

Bit 2

When the process is leaving lock wait: Bit 3

0= Access state should not be modified.
1 = Access state should be modified.

Reserved (binary 0)

Time-out option

Bits 4-5*

Bit 6

0= Wait for specified time, then signal time-out exception.
1 = Wait indefinitely.

Template extension specified

0= Template is not specified.
1 = Template is specified.

• Reserved (binary 0)

• Lock Object template extension

Extension Options

- Modify process event mask option

10-2 AS/400 MI Functional Reference

Bit 7

Char(1)

Char(16)

Char(1)

Bit 0

L
o = Do not modify process event mask
1 = Modify process event mask

- Reserved (binary 0)

Extension Area

- New process event mask

- Previous process event mask

- Reserved (binary 0)

Lock Object (LOCK)

Bits 1-7

Char(15)

Bin(2)

Bin(2)

Char(11)

Modify process event mask being set to 1 is not allowed when the lock
request type is asynchronous.

The previous process event mask is only returned when the modify process
event mask option has been set to 1.

The work with process event mask option controls the state of the event
mask in the process executing this instruction. If the event mask is in the
masked state, the machine does not schedule signaled event monitors in the
process. The event monitors continue to be signaled by the machine or
other processes. When the process is modified to the unmasked state, event
handlers are scheduled to handle those events that occurred while the
process was masked and those events occurring while in the unmasked
state. The number of signals retained while the process is masked is speci­
fied by the attributes of the event monitor associated with the process.

The process is automatically masked by the machine when event handlers
are invoked. If the process is unmasked in the event handler, other events
can be handled if another enabled event monitor within that process is sig­
naled. If the process is masked when it exits from the event handler, the
machine explicitly unmasks the process.

Valid masking values are:

o Masked
256 Unmasked

Other values are reserved and must not be specified. If any other values are
specified, a template value invalid exception is signaled.

Whether masking or unmasking the current process, the new mask takes
affect upon completion of a satisfied lock object.

Lock state selection values located by the offset to lock state selection
values field.

• Object(s) to be locked

• Lock state selection
(repeated for each pointer in the template)

Requested lock state
(1 = lock requested, 0 = lock not requested)

Only one state may be requested.
LSRD lock
LSRO lock
LSUP lock
LEAR lock

System pointer
(one for each
object to be locked)

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3

Chapter 10. Object Lock Management Instructions 10-3

Lock Object (LOCK)

LENR lock

Reserved (binary 0)

Entry active indicator

o = Entry not active-This entry is not used.
1 = Entry active-Obtain this lock.

Bit 4

Bits 5-6*

Bit 7

Note: Entries indicated with an asterisk are ignored by the instruction.

Lock Allocation Procedure

A single Lock instruction can request the allocation of one or more lock states
on one or more objects. Locks are allocated sequentially until all locks
requested are allocated.

When a requested lock state cannot be immediately granted, any locks already
allocated by this Lock instruction are released, and the lock request option spec­
ified in the lock request template establishes the machine action. The lock
request options are described in the following paragraphs.

• Immediate Request-If the requested locks cannot be granted immediately,
this option causes the lock request not grantable exception to be signaled.
No locks are granted, and the lock request is canceled.

• Synchronous Request-This option causes the process requesting the locks to
be placed in the wait state until all requested locks can be granted. If the
locks cannot be granted in the time interval established by the wait time-out
parameter specified in the lock request template, the lock wait time-out .,..
exception is signaled to the requesting process at the end of the interval. No ""'lI
locks are granted, and the lock request is canceled.

• Asynchronous Request-This option allows the requesting process to proceed
with execution while the machine asynchronously attempts to satisfy the lock
request.

When the synchronous request option is specified and the requested locks
cannot be immediately allocated, the access state modification parameter in the
lock request template specifies whether the access state of the process access
group is to be modified on entering and/or returning from the lock wait. The
parameter has no effect if the process instruction wait access state control attri­
bute specifies that no access state modification is allowed. If the process attri­
bute value specifies that access state modification is allowed and the wait on
event access state modification option specifies modify access state, the
machine modifies the access state for the specified process access group.

If a synchronous lock wait is requested and the invocation containing the lock
instruction is terminated, then the lock request is canceled.

If the lock request is satisfied, then the object locked event is signaled to the
requesting process. If the request is not satisfied in the time interval established
by the wait time-out parameter specified in the lock request template, the wait
time-out for pending lock event is signaled to the requesting process. No locks
are granted, and the lock request is canceled. If an object is destroyed while a
process has a pending request to lock the object, the object destroyed event is,' '\
signaled to the waiting process. ...",

10-4 AS/400 MI Functional Reference

L

L

Lock Object (LOCK)

If an asynchronous lock wait is requested and the invocation containing the Lock
instruction is terminated, then the lock request remains active.

The wait time-out parameter establishes the maximum amount of time that a
process competes for the requested set of locks when either the synchronous or
asynchronous wait options are specified. The bits in this field are numbered
from 0 to 63, and bit 41 is defined as 1024 microseconds. The maximum wait
time-out interval allowed is a value equal to (248 - 1) microseconds. Any value
that indicates more time than the maximum wait time-out causes the maximum
wait time-out to be used. If the wait time-out parameter is specified with a value
of binary 0, then the value associated with the default wait time-out parameter in
the process definition template establishes the time interval.

When two or more processes are competing for a conflicting lock allocation on a
system object, the machine attempts to first satisfy the lock allocation request of
the process with the highest priority. Within that priority, the machine attempts
to satisfy the request that has been waiting longest.

If any exception is identified during the instruction's execution, any locks already
granted by the instruction are released, and the lock request is canceled.

For each system object lock counts are kept by lock state and by process. When
a lock request is granted, the appropriate lock count(s) of each lock state speci­
fied is incremented by 1.

If a previously unsatisfied lock request is satisfied by the transfer of a lock from
another process, the lock request and transfer lock are treated as independent
events relative to lock accounting. The appropriate lock counts are incremented
for both the lock request and the transfer lock function.

Authorization Required

Lock Enforcement

Exceptions

• Some authority or ownership

- Objects to be locked

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

08

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

Argument/parameter

01 parameter reference violation

Operands
1 Other

x
X

X

X

X

Chapter 10. Object Lock Management Instructions 10-5

Lock Object (LOCK)

Operands
Exception 1 Other

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 parti ai system object damage X X

1A Lock state

01 invalid lock state X

02 lock request not grantable X

1C Machine-dependent exception

03 machine storage limit exceeded X

06 machine lock limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed X
object

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation j
06 invalid operand type X

07 invalid operand attribute X

08 invalid operand value range X

OC invalid operand odt reference X

00 reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

10-6 AS/400 MI Functional Reference

Lock Object (LOCK)

Operands

L
Exception
3A Wait time-out

02 lock

1 Other

x

L

L

Chapter 10. Object Lock Management Instructions 10-7

Lock Space Location (LOCKSL)

10.2 Lock Space Location (LOCKSL)

Exceptions

Op Code (Hex)
03F6

Operand 1
Space
location

Operand 2
Lock type
request

Operand f:Space pointer data object.

Operand 2:Char(1) scalar.

Description: The space location identified by operand 1 is locked according to
the request specified by operand 2. Locking the space location does not prevent
any byte operation from referencing that location, nor does it prevent the space
from being extended, truncated, or destroyed. Space location locks follow the
normal locking rules with respect to conHicts and waits but are strictly symbolic
in nature.

Following is the format of operand 2:

• Requested lock state

Hex 80 = LSRD lock
Hex 40 = LSRO lock
Hex 20 = LSUP lock
Hex 10 = LEAR lock
Hex 08 = LENR lock

All other values are reserved.

Char(1)

If the requested lock cannot be immediately granted, the process will enter a
synchronous wait for the lock, for a period of up to the interval specified by the
process default time-out value. If the wait exceeds this time limit, a space
location lock wait exception is signaled, and the requested lock is not granted.

During the wait, the process access state may be modified. This can occur if the
process' instruction wait access state control attribute is set to allow access
state modification.

A space pointer machine object cannot be specified for operand 1.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10-8 AS/400 MI Functional Reference

..)

Lock Space Location (LOCKSL)

Operands
Exception 1 2 Other
10 Damage encountered

04 system object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

06 machine lock limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

02 object destroyed X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OC invalid operand odt reference X X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

3A Wait time-out

04 space location lock wait X

L

Chapter 10. Object Lock Management Instructions 10-9

Materialize Allocated Object Locks (MATAOL)

10.3 Materialize Allocated Object Locks (MAT AOL)
Op Code (Hex)
03 FA

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
System
object or
space
location

Operand 2: System pointer or space pointer data object.

Description: This instruction materializes the current allocated locks on a desig­
nated object. If operand 2 is a system pointer, the current allocated locks on the
object identified by the system pointer specified by operand 2 are materialized
into the template specified by operand 1. If operand 2 is a space pointer, the
current allocated locks on the specified space location are materialized into the
template specified by operand 1. The materialization template identified by
operand 1 must be 16-byte aligned. The format of the materialization is as
follows:

• Materialization size specification

• Number of bytes provided for materialization

• Number of bytes available for materialization

• Current cumulative lock status

• Lock states currently allocated (1 = yes)

LSRD
LSRO
LSUP
LEAR
LENR
Locks implicitly set
Reserved (binary 0)

• Reserved (binary 0)

• Reserved (binary 0)

• Number of lock descriptions following

• Reserved (binary 0)

• Lock state descriptors (repeated
for each lock currently allocated)

Process control space

Lock state being described

Hex 80 = LSRD lock request
Hex 40 = LSRO lock request
Hex 20 = LSUP lock request
Hex 10 = LEAR lock request
Hex 08 = LENR lock request

All other values are reserved

10-10 AS/400 MI Functional Reference

Char(8)

Bin(4)

Bin(4)

Char(3)

Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7

Char(2)

Char(1)

Bin(2)

Char(2)

Char(32)

System pointer

Char(1)

L

L

Exceptions

L

Materialize Allocated Object Locks (MATAOL)

Status of lock request Char(1)

A value of 1 in the corresponding bit indicates the condition is true:

Reserved (binary 0)
Implicit lock (machine applied)
Lock held by process

Reserved (binary 0)

Bits 0-5
Bit 6
Bit 7

Char(14)

Locks may be implicitly applied by the machine (status code = hex 02). If the
implicit lock is held for a process, a painter to the associated process control
space is returned. Locks held by the machine but not related to a specific
process, cause the process control space entry to be assigned a value of binary
zero.

Only a single lock state is returned for each lock state descriptor entry.

The first 4 bytes of the materialization identify the total quantity of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than eight causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total quantity of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions are signaled in the event the
receiver contains insufficient area for the materialization, other than the
materialization length exception.

A space pointer machine object cannot be specified for operand 2.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage X X

44 partial system object damage X

1A Lock state

01 invalid lock state X

Chapter 10. Object Lock Management Instructions 10-11

Materialize Allocated Object Locks (MATAOL)

Operands
Exception 1 2 Other j 1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X J OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

10-12 AS/400 MI Functional Reference

L

L

L

Materialize Data Space Record Locks (MATDRECL)

10.4 Materialize Data Space Record Locks (MATDRECL)
Op Code (Hex)
032E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 2
Record
selection
template

Description: This instruction materializes the current allocated locks on the
specified data space record.

The current lock status of the data space record identified by the template in
operand 2 is materialized into the space identified by operand 1.

The record selection template identified by operand 2 must be 16-byte aligned.
The format of the record selection template is as follows.

• Record selection

Data space identification

Record number

Reserved

• Lock selection

Materialize data space locks held

1 = Materialize
o = Do not materialize

Char(24)

System pointer

Bin(4)

Char(4)

Char(8)

Bit 0

Materialize data space locks waited for Bit 1

1 = Materialize
o = Do not materialize

Reserved

Reserved

Bits 2-7

Char(7)

The data space identification must be a system pointer to a data space.

The record number is a relative record number within that data space. If the
record number is zero then all locks on the specified data space will be materi­
alized. If the record number is not valid for the specified data space a template
value invalid exception is signaled.

Both of the fields specified under lock selection are bits which determine the
locks to be materialized. If the first bit is on, the current holders of the specified
data space record lock are materialized. If the second bit is on, any process
waiting to lock the specified data space record is materialized.

The materialization template identified by operand 1 must be 16-byte aligned.
The format of the materialization is as follows:

• Materialization size specification Char(8)

Chapter 10. Object Lock Management Instructions 10-13

Materialize Data Space Record Locks (MATDRECL)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Materialization data Char(8)

Count of locks held Bin(2)

Count of locks waited for Bin(2)

Reserved Char(4)

• Locks held identification Char(32)
(repeated for each lock held)

Process identification System pointer

Record number Bin(4)

Lock state being described Char(1)

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved Char(11)

• Locks waited for identification Char(32)
(repeated for each lock waited for)

Process identification System pointer

Record number Bin(4)

Lock state being described Char(1)

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved Char(11)

The first 4 bytes of the materialization identify the total quantity of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total quantity of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, the
excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the
materialization length exception described previously.

The count of locks held contains the number of locks held. One system pointer
to the PCS (process control space) of each process holding a lock, the relative
record number which is locked, and the lock state are materialized in the area
identified as locks held identification. These fields contain data only if held data
space locks are selected for materialization.

The count of locks waited for contains the number of locks being waited fl)r. One
system pointer to the PCS (process control space) of each process waiting for a

10-14 AS/400 MI Functional Reference

~

J

J

L

L

L

Materialize Data Space Record Locks (MATDRECL)

lock, the relative record number, and the lock state which the process is waitng
for are materialized in the area identified as locks waited for identification.
These fields contain data only if data space record locks waited for are selected
for materialization.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

1A

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

07 authority verification terminated due to
destroyed object

Operands
1

X

X

X

X

X

X

X

X

2

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

X

Chapter 10. Object Lock Management Instructions 10-15

Materialize Data Space Record Locks (MATDRECL)

Operands
Exception 1 2 Other

~ 24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X ~
32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X j
03 materialization length exception X

10-16 AS/400 MI Functional Reference

Materialize Object Locks (MATOBJLK)

10.5 Materialize Object Locks (MATOBJLK)
Op Code (Hex)
033A

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
System
object or
space
location

Operand 2: System pointer or space pointer data object.

Description: If operand 2 is a system pointer, the current lock status of the
object identified by the system pointer is materialized into the template specified
by operand 1. If operand 2 is a space pointer, the current lock status of the
specified space location is materialized into the template specified by operand 1.
The materialization template identified by operand 1 must be aligned on a
16-byte boundary. The format of the materialization is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Current cumUlative lock status Char(3)

Lock states currently allocated (1 = yes)

LSRD
LSRO
LSUP
LEAR
LENR
Locks implicitly set
Reserved (binary 0)

Lock states for which processes
are in synchronous wait (1 = yes)

LSRD
LSRO
LSUP
LEAR
LENR
Implicit lock request
Reserved (binary 0)

Lock states for which processes
are in asynchronous wait (1 = yes)

LSRD
LSRO
LSUP
LEAR
LENR
Reserved (binary 0)

• Reserved (binary 0)

Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7

Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7

Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bits 5-7

Char(1)

Chapter 10. Object Lock Management Instructions 10-17

Materialize Object Locks (MATOBJLK)

• Number of lock descriptions that follow

• Reserved (binary 0)

• Lock state descriptors (repeated for
each lock currently allocated or waited for)

Process control space

Lock state being described

LSRD
LSRO
LSUP
LEAR
LENR
Reserved (binary 0)

Status of lock request

Reserved
Waiting because this lock is not available
Process in asynchronous wait for lock
Process in synchronous wait for lock
Implicit lock (machine- applied)
Lock held by process

Reserved (binary 0)

Bin(2)

Char(2)

Char(32)

System pointer

Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bits 5-7

Char(1)

Bits 0-2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Char(14)

Locks may be applied by the machine (status code = hex 02). If the implicit lock
is held for a process, a pointer to the associated process control space is
returned. Locks held by the machine but not related to a specific process cause
the process control space entry to be assigned a value of binary O.

Only a single lock state is returned for each lock state descriptor entry.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This total is supplied as input to the instruction and
is not modified by the instruction. A total of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception described previously) are signaled if the receiver contains
insufficient area for the materialization.

A space pointer machine object cannot be specified for operand 2.

Authorization Required
• Retrieve

- Contexts referenced for address resolution

10-18 AS/400 MI Functional Reference

Materialize Object Locks (MATOBJLK)

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

L OA Authorization X X

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X
,(

~
03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 inllalid operand attribute X X

Chapter 10. Object Lock Management Instructions 10-19

Materialize Object Locks (MATOBJLK)

Operands
Exception 1 2 Other

08 invalid operand value range X X ..J OA invalid operand length X

OC invalid operand odt reference X X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

..J

10-20 AS/400 MI Functional Reference

L

L

Materialize Process Locks (MATPRLK)

10.6 Materialize Process Locks (MATPRLK)
Op Code (Hex)
0312

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 2
Process
control space

Description: The lock status of the process identified by operand 2 is material­
ized into the receiver specified by operand 1. If operand 2 is null, the lock status
is materialized for the process issuing the instruction. The materialization identi­
fies each object or space location for which the process has a lock allocated or
for which the process is in a synchronous or asynchronous wait. The format of
the materialization is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Number of lock entries

• Expanded number of lock entries

• Reserved (binary 0)

Bin(2)

Bin(4)

Char(2)

• Lock status (repeated for each lock Char(32)
currently allocated or waited for by the process)

Object, space location, or
binary 0 if no pointer exists

Lock state

LSRD
LSRO
LSUP
LEAR
LENR
Reserved (binary 0)

Status of lock state for process

Reserved
Object or space location no longer exists
Waiting because this lock is not available
Process in asynchronous wait for lock
Process in synchronous wait for lock
Implicit lock (machine-applied)
Lock held by process

• Reserved (binary 0)

System pointer
or space pointer

Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bits 5-7

Char(1)

Bits 0-1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Char(14)

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

Chapter 10. Object Lock Management Instructions 10-21

Materialize Process Locks (MATPRLK)

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception described previously) are signaled if the receiver contains
insufficient area for the materialization.

The number of lock entries field identifies the number of lock entries that are
materialized. When a process holds more than 32,767 locks, this field is set with
its maximum value of 32,767. This field has been retained in the template for
compatibility with programs using the template prior to the changes made to
support materialization of more than 32,767 lock entries.

The expanded number of lock entries field identifies the number of lock entries
that are materialized. This field is always set in addition to the number of lock
entries field described previously; however, it does not have a maximum limit of
32,767, so it can be used to specify that more than 32,767 locks have been mate­
rialized. When a process holds more than 32,767 locks, the number of lock
entries field will equal 32,767, which would be incorrect. The expanded number
of lock entries field, however, will identify the correct number of lock entries
materialized. In all cases, this field should be used instead of the number of
lock entries field to get the correct count of lock entries materialized.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Context referenced by address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

1C Machine-dependent exception

10-22 AS/400 MI Functional Reference

Operands
1 2

X X

X X

X X

X X

X X

X X

X X

other

X

X

X

Materialize Process Locks (MATPRLK)

Operands
Exception 1 2 Other

L 03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

L 01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

28 Process state

02 process control space not associated with a X
process

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

L 01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 10. Object Lock Management Instructions 10-23

Materialize Process Record Locks (MATPRECL)

10.7 Materialize Process Record Locks (MATPRECL)
Op Code (Hex)
031E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 2
Process
selection
template

Description: This instruction materializes the current allocated data space
record locks held by the process. The current lock status of the process identi­
fied in the process selection template specified by operand 2 is materialized into
the receiver identified by operand 1. The materialization identifies each data
space record lock which the process has or the process is waiting to obtain.

If the PCS (process control space) pointer is null or all zeros, the lock activity for .~
the process issuing the instruction is materialized. ...",

The process selection template identified by operand 2 must be 16-byte aligned.
The format of the process selection template is as follows:

• Process selection

- Process identification

• Lock selection

Materialize held locks

1 = Materialize
o = Do not materialize

Materialize locks waited for

1 = Materialize
o = Do not materialize

Reserved

Reserved

Char(16)

System pointer

Char(8)

Bit 0

Bit 1

Bits 2-7

Char(7)

The process identification must be a system pointer to a PCS (process control
space) or nUll, all zeros.

Both of the fields specified under lock selection are bits which determine the
locks to be materialized. If the first bit is on, any data base record lock held by
the process is materialized. If the second bit is on, any data base record lock
the process is waiting for is materialized.

The materialization template identified by operand 1 must be 16-byte aligned.
The format of the materialization is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Materialization data Char(8)

10-24 AS/400 MI Functional Reference

L

L

Materialize Process Record Locks (MATPRECL)

Count of locks held

Count of locks waited for

Reserved

• Locks held identification
(repeated for each lock held)

Data space identification

Relative record number

Lock state being described

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved

• Locks waited for id~ntification
(repeated for each lock waited for)

Data space identification

Relative record number

Lock state being described

Hex CO = DLRD lock state
Hex F8 = DLUP lock state

All other values are reserved.

Reserved

Bin(2)

Bin(2)

Char(4)

Char(32)

System pointer

Bin(4)

Char(1)

Char(11)

Char(32)

System pOinter

Bin(4)

Char(1)

Char(11)

The first 4 bytes of the materialization identify the total quantity of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total quantity of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, the
excess bytes are unchanged. No exceptions are signaled in the event that the
receiver contains insufficient area for the materialization, other than the
materialization length exception described previously.

The count of locks held contains the number of locks held by the process. One
system pointer to the data space, relative record number in the data space, and
lock state is materialized in the area identified as locks held identification for
each lock. These fields contain data only if held locks are selected for
materialization.

The count of locks waited for contains the number of locks that the process is
waiting for. One system pointer to the data space, relative record number in the
data space, and lock state is materialized in the area identified as locks waited
for identification for each lock waited for. These fields contain data only if locks
waited for are selected for materialization.

Chapter 10. Object Lock Management Instructions 10-25

Materialize Process Record Locks (MATPRECL)

Authorization Required
• Retrieve

- Contexts referenced for address resolution ..)
Lock Enforcement

• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X ..)
08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X X

~ 05 authority verification terminated due to damaged X
object

44 partial system object damage X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X J
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X ~ 02 pointer type invalid X X

10-26 AS/400 MI Functional Reference

Materialize Process Record Locks (MATPRECL)

Operands
Exception 1 2 Other
2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

L 36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

Chapter 10. Object Lock Management Instructions 10-27

Materialize Selected Locks (MATSELLK)

10.8 Materialize Selected Locks (MATSELLK)
Op Code (Hex)
033E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Object or
space
location tem­
plate

Operand 2: System pointer or space pointer data object.

Description: The locks held by the process issuing this instruction for the object
or space location referenced by operand 2 are materialized into the template
specified by operand 1. The format of the materialization template is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Cumulative lock status for all locks on operand 2 Char(1)

Lock state Char(1)

LSRD Bit 0
LSRO Bit 1
LSUP Bit 2
LEAR Bit 3
LENR Bit 4

Reserved (binary 0) Bits 5-7

• Reserved Char(3)

• Number of lock entries Bin(2)

• Reserved Char(2)

• Lock status (repeated for each lock currently alloc~Bat(2)

Lock state

Hex 80 = LSRD lock request
Hex 40 = LSRO lock request
Hex 20 = LSUP lock request
Hex 10 = LEAR lock request
Hex 08 = LENR lock request

All other values are reserved

Status of lock

Reserved (binary 0)

Implicit lock

o = Not implicit lock
1 = Is implicit lock

Reserved (binary 1)

10-28 AS/400 MI Functional Reference

Char(1)

Char(1)

Bits 0-5

Bit 6

Bit 7

L

Authorization

Lock Enforcement

Exceptions

L

Materialize Selected Locks (MATSELLK)

The first 4 bytes of the materialization identifies the total number of bytes that
may be used by the instruction. This value is supplied as input to the instruction
and is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identifies the total quantity of bytes
available to be materialized. The instruction materializes as many bytes as can
be contained in the area specified as the receiver. If the byte area identified by
the receiver is greater than that required to contain the information requested,
then the excess bytes are unchanged. No exceptions are signaled in the event
that the receiver contains insufficient area for the materialization, other than the
materialization length exception described previously.

A space pointer machine object cannot be specified for operand 2.

• Retrieve

- Context referenced by address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

02 unauthorized for operation

10 Damage encountered

04 system object

05 authority verification terminated due to damaged
object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

Operands
1 2 ~her

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Chapter 10. Object Lock Management Instructions 10-29

Materialize Selected Locks (MATSELLK)

Operands
Exception 1 2 Other ..) 02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X .J
28 Process state

02 process control space not associated with a X
process

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X J
OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

10-30 AS/400 MI Functional Reference

L

L

L

L

Transfer Object Lock (XFRLOCK)

10.9 Transfer Object Lock (XFRLOCK)
Op Code (Hex)
0382

Operand 1
Receiving
process
control
space

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 2
Lock transfer
template

Description: The receiving process (operand 1) is allocated the locks desig­
nated in the lock transfer template (operand 2). Upon completion of the transfer
lock request, the current process no longer holds the transferred lock(s).

Operand 2 identifies the objects and the associated lock states that are to be
transferred to the receiving process. The space contains a system pointer to
each object that is to have a lock transferred and a byte which defines whether
this entry is active. If the entry is active, the space also contains the lock states
to be transferred. Operand 2 must be aligned on a 16-byte boundary. The
format is as follows:

• Number of lock transfer requests in template

• Offset to lock state selection bytes
(1 byte for each lock transfer request)

• Reserved (binary 0)

• Reserved

Reserved

Reserved (binary 0)

• Reserved (binary 0)

• Object lock(s) to be transferred

• Lock state selection (repeated
for each pointer in the template)

Lock state to transfer. Only one
state may be requested. (1 = transfer)

LSRD
LSRO
LSUP
LEAR
LENR

Reserved (binary 0)

Lock count

o = The current lock count is transferred.
1 = A lock count of 1 is transferred.

Bin(4)

Bin(2)

Char(8)*

Char(1)

Bits 0-6*

Bit 7

Char(1)

System pointer
(one for each
object lock to
be transferred)

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Bit 5*

Bit 6

Chapter 10. Object Lock Management Instructions 10-31

Transfer Object Lock (XFRLOCK)

Entry active indicator Bit 7

o = Entry not active This entry is not used.
1 = Entry active This lock is transferred.

Note: Entries indicated by an asterisk are ignored by the instruction.

If the receiving process is issuing the instruction, then no operation is per­
formed, and no exception is signaled. The lock count transferred is either the
lock count held by the transferring process or a count of 1. If the receiving
process already holds an identical lock, then the final lock count is the sum of
the count originally held by the receiving process and the transferred count.

Only locks currently allocated to the process issuing the instruction can be trans­
ferred. If the transfer of an allocated lock would result in the violation of the lock
allocation rules, then the lock cannot be transferred. An implicit lock may not be
transferred.

No locks are transferred if an entry in the template is invalid.

The locks specified by operand 2 are transferred sequentially and individually. If
one lock cannot be transferred because the process does not hold the indicated
lock on the object, then exception data is saved to identify the lock that could not
be transferred. Processing of the next lock to be transferred continues.

After all locks specified in operand 2 have been processed, the object lock trans­
ferred event is signaled to the process receiving the locks if any locks were
transferred. If any lock was not transferred, the invalid object lock transfer
request exception is signaled.

When an object lock is transferred, the transferring process synchronously loses
the record of the lock, and the object is locked to the receiving process.
However, the receiving process obtains the lock asynchronously after the
instruction currently being executed is completed. If the transferring process
holds multiple locks for the object, any lock states not transferred are retained in
the process.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

10-32 AS/400 MI Functional Reference

Operands
1 2 CHher

x
X

X

X

X

X

X

X

Transfer Object Lock (XFRLOCK)

Operands
Exception 1 2 Other

L 08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

L 04 invalid object lock transfer request X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

28 Process state

02 process control space not associated with a X
process

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

Chapter 10. Object Lock Management Instructions 10-33

Transfer Object Lock (XFRLOCK)

Exception
01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

38 Template specification

01 template value invalid

10-34 AS/400 MI Functional Reference

Operands
1 2

X

Other
X

X

L
10.10 Unlock Object (UNLOCK)

Op Code (Hex)
03F1

Operand 1
Unlock tem­
plate

Operand 1: Space pointer.

Unlock Object (UNLOCK)

Description: The instruction releases the object locks that are specified in the
unlock template. The template specified by operand 1 identifies the system
objects and the lock states (on those objects) that are to be released. The
unlock template must be aligned on a 16-byte boundary. The format is as
follows:

• Number of unlock requests in template

• Offset to lock state selection bytes

• Reserved (binary 0)

• Unlock option

Reserved (binary 0)

Unlock type

Bin(4)

Bin(2)

Char(8)*

Char(1)

Bits 0-3*

Bits 4-5

00 = Unlock specific locks now allocated to process
01 = Cancel specific asynchronously waiting lock request or allocated

locks
10 = Cancel all asynchronously waiting lock requests
11 = Invalid

Reserved (binary 0)

Reserved (binary 0)

Reserved (binary 0)

• Object to unlock (one for each unlock request)

• Unlock options (repeated for unlock request)

Lock state to unlock (only one state
can be selected) (1 = unlock)

LSRD
LSRO
LSUP
LEAR
LENR

Lock count option

o = Lock count reduced by 1

Bit 6*

Bit 7

Char(1)

System pointer

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Bit 5

1 = All locks are unlocked- The set lock count = 0

Reserved (binary 0)

Entry active indicators

o = Entry not active- This entry is not used.
1 = Entry active- These locks are unlocked.

Bit 6*

Bit 7

Note: Entries indicated by an asterisk are ignored by the instruction.

Chapter 10. Object Lock Management Instructions 10-35

Unlock Object (UNLOCK)

If all asynchronous lock waits are being canceled (unlock type 10), then system
pointers to the objects and unlock options for each object are not required. If
the asynchronous lock fields are provided in the template, then the data is
ignored.

Unlock type 01 attempts to cancel an asynchronous lock request that is identical
to the one defined in the template. After the instruction attempts to cancel the
specified request, program execution continues just as if unlock type 00 had
been selected. A waiting lock request is canceled if the number of active
requests in the template, the objects, the objects corresponding lock states, and
the order of the active entries in the template all match.

When a lock is released, the lock count is reduced by 1 or set to 0 in the speci­
fied state. This option is specified by the lock count option parameter.

If unlock type 01 is specified and the unlock count option for an object lock is 0
(lock count reduced by 1), then a successful cancel satisfies this request, and no
additional locks on the object are unlocked. If the unlock count option for an'
object lock is set to 1 (set lock count to 0), the results of the cancel are disre- ...""
garded, and all held locks on the object are unlocked.

Specific locks can be unlocked only if they are allocated to the process issuing
the unlock instruction. Implicit locks may not be unlocked with this instruction.
No locks are unlocked if an entry in the template is invalid.

Object locks to unlock are processed sequentially and individually. If one spe-
cific object lock cannot be unlocked because the process does not hold the indi- .~

cated lock on the object, then exception data is saved, but processing of the ...",
instruction continues.

After all requested object locks have been processed, the invalid unlock request
exception is signaled if any object lock was not unlocked.

If unlock type 01 is selected and the cancel attempt is unsuccessful, an invalid
unlock request exception is signaled when any object lock in the template is not
unlocked.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

10-36 AS/400 M I Functional Reference

Operands
1 Other

x
X

X

Unlock Object (UNLOCK)

Operands
Exception 1 Other

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1A Lock state

01 invalid lock state X

03 invalid unlock request X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed X
object

24 Pointer specification

L 01 pointer does not exist X

02 pointer type invalid X

2A Program creation

06 invalid operand type X

07 invalid operand attribute X

08 invalid operand value range X

OC invalid operand odt reference X

00 reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 10. Object Lock Management Instructions 10-37

Unlock Object (UNLOCK)

Operands
Exception 1 Other
38 Template specification

01 template value invalid x

10-38 AS/400 MI Functional Reference

L

L

L

I
~

L

Unlock Space Location (UNLOCKSL)

10.11 Unlock Space Location (UNLOCKSL)

Exceptions

Op Code (Hex)
03F2

Operand 1
Space
location

Operand 2
Lock type

Operand 1: Space pointer data object.

Operand 2: Char(1) scalar.

Description: The lock type specified by operand 2 is removed from the space
location identified by operand 1 (the lock must be held by the process that issues
the instruction). The space location specified by operand 1 need not exist when
this instruction is issued, although the space pointer must be a valid pointer as
used to lock the space location. When multiple locks of the same lock state for
the same space location need to be unlocked, this instruction must be issued for
each lock held for the space location. If an attempt is made to unlock a space
location lock not held by the process, an invalid space location unlock exception
is signaled.

Following is the format of operand 2:

• Lock state to be unlocked

Hex 80 = LSRD lock
Hex 40 = LSRO lock
Hex 20 = LSUP lock
Hex 10 = LEAR lock
Hex 08 = LENR lock

All other values are reserved.

Char(1)

A space pointer machine object cannot be specified for operand 1.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object

44 partial system object damage

1A Lock state

Operands
1 2 ~her

x
X

X

X

X

X X

X

Chapter 10. Object Lock Management Instructions 10-39

Unlock Space Location (UNLOCKSL)

Operands
Exception 1 2 Other ..J 05 invalid space location unlock X

1C Machine-dependent exception

03 machine storage limit exceeded X

06 machine lock limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

02 object destroyed X X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation

06 invalid operand type X

07 invalid operand attribute X

08 invalid operand value range X

OC invalid operand odt reference X

00 reserved bits are not zero X X X ~
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

10-40 AS/400 MI Functional Reference

Materialize Exception Description (MATEXCPD)

L Chapter 11. Exception Management Instructions

L

L

L

This chapter describes all instructions used for exception management. These
instructions are in alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A, "Instruction Summary."

11.1 Materialize Exception Description (MATEXCPD)
Op Code (Hex) Operand Operand Operand 3

1 2
0307 Attri- Excep- Materialization

bute tion option
receiver description

Operand 1: Space pointer.

Operand 2: Exception description.

Operand 3: Character(1) scalar.

Description: The instruction materializes the attributes (operand 3) of an excep­
tion description (operand 2) into the receiver specified by operand 1.

The template identified by operand 1 must be a 16-byte aligned area in the
space if the materialization option is hex 00.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception) are signaled in the event that the receiver operand contains
insufficient area for the materialization.

Operand 2 identifies the exception description to be materialized.

The value of operand 3 specifies the materialization option. If the materialization
option is hex 00, the format of the exception description materialization is as
follows:

C> COpyright IBM Corp. 1990

• Template size Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Control flags Char(2)

- Exception handling action Bits 0-2

11-1

Materialize Exception Description (MATEXCPD)

000 = Do not handle. (Ignore occurrence of exception and continue
processing.)

001 = Do not handle. (Disable this exception description and continue to
search this invocation for another exception description to handle
the exception.)

010 = Do not handle. (Continue to search for an exception description
by resignaling the exception to the preceding invocation.)

100 = Defer handling. (Save exception data for later exception han­
dling.)

101 = Pass control to the specified exception handler.

No data

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0)

User data indicator

o = User data not present
1 = User data present

Reserved (binary 0)

Exception handler type

00 = External entry point
01 = Internal entry point
10 = Branch point

Reserved (binary 0)

Bit 3

Bit 4

Bit 5

Bits 6-7

Bits 8-9

Bits 10-15

• Instruction number to be given control Ubin(2)
(if internal entry point or branch point; otherwise, 0)

• Length of compare value (maximum of 32 bytes) Bin(2)

• Compare value (size established by value of Char(32)
length of compare value parameter)

• Number of exception IDs Bin(2)

• System pointer to the exception handling System pointer
program if an external exception handler is specified

• Pointer to user data (not present if value of
user data indicator is binary 0)

Space pointer

• Exception 10 (one for each exception 10 Char(2)
dictated by the number of exception IDs attribute)

If the materialization option is hex 01, the format of the materialization is as
follows:

• Template size Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Control nags Char(2)

- Exception handling action Bits 0-2

11-2 AS/400 MI Functional Reference

L

Exceptions

Materialize Exception Description (MATEXCPD)

000 = Do not handle. (Ignore occurrence of exception and continue
processing.)

001 = Do not handle. (Disable this exception description and continue to
search this invocation for another exception description to handle
the exception.)

010 = Do not handle. (Continue to search for an exception description
by resignaling the ex- ception to the preceding invocation.)

100 = Defer handling. (Save exception data for later exception han­
dling.)

101 = Pass control to the specified exception handler.

No data

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0)

User data indicator

o = User data not present
1 = User data present

Reserved (binary 0)

Bit 3

Bit 4

Bit 5

Bits 6-15

If the materialization option is hex 02, the format of the materialization is as
follows:

• Template size Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Compare value length (maximum of 32 bytes) Bin(2)

• Compare value Char(32)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

Operands
123

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

Chapter 11. Exception Management Instructions 11-3

Materialize Exception Description (MATEXCPD)

Operands
Exception 1 2 3 Other

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

11-4 AS/400 MI Functional Reference

L

Modify Exception Description (MODEXCPD)

11.2 Modify Exception Description (MODEXCPD)
Op Code (Hex) Operand Operand Operand 3

1 2
03EF Excep- Modi- Modifica-

tion tying tion option
description attri-

butes

Operand 1: Exception description.

Operand 2: Space pointer, or character(2) constant.

Operand 3: Character(1) scalar.

Description: The exception description attributes specified by operand 3 are
modified with the values of operand 2.

Operand 1 references the exception description.

Operand 2 specifies the new attribute values. Operand 2 may be either a char­
acter constant or a space pointer to the modification template. When operand 3
is a constant, operand 2 is a character constant; when operand 3 is not a con­
stant, operand 2 is a space pointer.

The value of operand 3 specifies the modification option. If the modification
option is hex 01 and operand 2 specifies a space pointer, the format of the modi­
fying attributes pointed to by operand 2 is as follows:

• Template size Char(8)

Number of bytes provided for materialization Bin(4)
(must be at least 10)

Number of bytes available for materialization Bin(4)*

• Control flags

Exception handling action

Char(2)

Bits 0-2

000 = Do not handle. (Ignore occurrence of exception and continue
processing.)

001 = Do not handle. (Disable this exception description and continue to
search this invocation for another exception description to handle
the exception.)

010 = Do not handle. (Continue to search for an exception description
by resignaling the exception to the preceding invocation.)

100 = Defer handling. (Save exception data for later exception han­
dling.)

101 = Pass control to the specified exception handler.

No data Bit 3

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0) Bits 4-15

If the exception description was in the deferred state prior to the modification,
the deferred signal, if present, is lost.

Chapter 11. Exception Management Instructions 11-5

Modify Exception Description (MODEXCPD)

Exceptions

When the option to not return exception data is selected, no data is returned for
the Retrieve Exception Data or Test Exception instructions, and the number of
bytes available for the materialization field is set to o. This option can also be
selected in the ODT definition of the exception description.

If the modification option of operand 3 is a constant value of hex 01, then
operand 2 may specify a character constant. The operand 2 constant has the
same format as the control flags entry previously described.

If the modification option is hex 02, then operand 2 must specify a space pointer.
The format of the modification is as follows:

• Template size Char(8)

Number of bytes provided Bin(4)
(must be at least 10 plus the length of the
compare value in the exception description)

Number of bytes available for materialization Bin(4)*

• Compare value length
(maximum of 32 bytes)

• Compare value

Bin(2)*

Char(32)

Note: Entries shown here with an asterisk (*) are ignored by the instruction.

The number of bytes in the compare value is dictated by the compare value
length specified in the exception description as originally specified in the object
definition table.

An external exception handling program can be modified by resolving address­
ability to a new program into the system pointer designated for the exception
description.

The presence of user data is not a modifiable attribute of exception descriptions.
If the exception description has user data, it can be modified by changing the
value of the data object specified in the exception description.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X X

11-6 AS/400 M I Functional Reference

J

~

Modify Exception Description (MODEXCPD)

Operands
Exception 1 2 3 Other

L 44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X

08 invalid operand value range X X

L
OA invalid operand length X

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

L
Chapter 11. Exception Management Instructions 11-7

Retrieve Exception Data (RETEXCPD)

11.3 Retrieve Exception Data (RETEXCPD)
Op Code (Hex) Operand Operand 2

1
03E2 Receiver Retrieve

options

Operand 1: Space pointer.

Operand 2: Character(1) scalar (fixed-length).

Description: The data related to a particular occurrence of an exception is
returned and placed in the specified space.

Operand 1 is a space pointer that identifies the receiver template. The template
identified by operand 1 must be 16-byte aligned in the space.

The value of operand 2 specifies the type of exception handler for which the
exception data is to be retrieved. The exception handler may be a branch point
exception handler, an internal entry point exception handler, or an external entry
point exception handler.

An exception state of process invalid exception is signaled to the invocation
issuing the Retrieve Exception Data instruction if the retrieve option is not con­
sistent with the process's exception handling state. For example, the exception
is signaled if the retrieve option specifies retrieve for internal entry point excep­
tion handler and the process exception state indicates that an internal exception
handler has not been invoked.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the,
receiver is greater than that required to contain the information requested, then """.
the excess bytes are unchanged. No exceptions (other than the materialization
length exception) are signaled in the event that the receiver contains insufficient
area for the materialization.

After an invocation has been destroyed, exception data associated with a sig­
naled exception description within that invocation is lost.

The format of operand 1 for the materialization is as follows:

• Template size

Number of bytes provided for retrieval

Number of bytes available for retrieval

• Exception identification

• Compare value length (maximum of 32 bytes)

11-8 AS/4QO MI Functional Reference

Char(8)

Bin(4)

Bin(4)

Char(2)

Bin(2)

L

L

Retrieve Exception Data (RETEXCPD)

• Compare value

• Reserved (binary 0)

• Exception specific data

• Signaling program invocation

• Signaled program invocation

• Signaling program instruction address

• Signaled program instruction address

• Machine-dependent data

Char(32)

Char(4)

Char(*)

Space pointer

Space pointer

Ubin(2)

Ubin(2)

Char(10)

The signaling program invocation address entry locates the invocation entry in
the PASA (process automatic storage area) that corresponds to the invocation
that caused the exception to be signaled. For machine exceptions, this space
pointer locates the invocation executing when the exception occurred. For user­
signaled exceptions, this space pointer locates the invocation that executed the
Signal Exception instruction. The signaling program instruction address entry
locates the instruction that caused the exception to be signaled.

The signaled program invocation entry locates the invocation entry in the PASA
that is signaled to handle the exception. This invocation is the last invocation
signaled or resignaled to handle the exception. For machine exceptions, the first
invocation signaled is the invocation incurring the exception. For user-signaled
exceptions, the Signal Exception instruction may initially locate the current or
any previous invocation. If the invocation to be signaled handles the exception
by resignaling the exception, the immediately previous invocation is considered
to be the last signaled invocation. This may occur repetitively until no more
prior invocations exist in the process and the signaled program invocation entry
is assigned a value of binary O. If an invocation to be signaled handles the
exception in any manner other than resignaling or does not handle the excep­
tion, that invocation is considered to be the last signaled.

The signaled program instruction address entry specifies the number of the
instruction that is currently being executed in the signaled invocation.

The machine extends the area beyond the exception specific data area with
binary O's so that the pointers to program invocations are properly aligned.

The operand 2 values are defined as follows:

• Retrieve options Char(1)

- Hex 00 = Retrieve for a branch point exception handler
- Hex 01 = Retrieve for an internal entry point exception handler
- Hex 02 = Retrieve for an external entry point exception handler

If the exception data retention option is set to 1 (do not save), the number of
bytes available for retrieval is set to o.

Exception data is always available to the process default exception handler.

Substring operand references that allow for a null substring reference (a length
value Of zero) may not be specified for this instruction.

Chapter 11. Exception Management Instructions 11-9

Retrieve Exception Data (RETEXCPD)

Exceptions
Operands

Exception 1 2 Other ..J 06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

16 Exception management J
02 exception state of process invalid X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X X

OC invalid operand odt reference X X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

11-10 AS/400 M I Functional Reference

L
Exception

01 space extension/truncation

38 Template specification

03 materialization length exception

Retrieve Exception Data (RETEXCPD)

Operands
1 2

x

Other
X

Chapter 11. Exception Management Instructions 11-11

Return From Exception (RTNEXCP)

11.4 Return From Exception (RTNEXCP)
Op Code (Hex)
03E1

Operand 1
Return target

Operand 1: Space pointer.

Description: An internal exception handler sUbinvocation or an external excep­
tion handler invocation is terminated, and control is passed to the specified
instruction in the specified invocation.

The template identified by operand 1 must be 16-byte aligned in the space. It
specifies the target invocation and target instruction in the invocation where
control is to be passed. The format of operand 1 is as follows:

• Invocation address

• Reserved (binary 0)

• Action

Reserved (binary 0)

Unstack Option

Space pointer

Char(1)

Char(1)

Bits 0-5

Bit 6

o = The action performed is determined by the setting of the following
Action Code (bit 7).

1 = If the excpetion handler is an internal exception handler, resume
execution with the instruction that follows RTNEXCP instruction and
terminate the internal exception handler subinvocation.

Action Code Bit 7

o = Re-execute the instruction that caused the exception or the instruc­
tion that invoked the invocation.

1 = Resume execution with the instruction that follows the instruction
that caused the exception or resume execution with the instruction
that follows the instruction that invoked the invocation.

Reserved (binary 0) Char(1)

The invocation address entry is a space pointer that locates an invocation entry
in the PASA (process automatic storage area) chain to which control will be
passed. The current instruction in an invocation is the one that caused another
invocation to be created. If an event handler was invoked, then the current
instruction is the instruction that executed prior to the invocation of the event
handler.

The unstack option is only valid when issued in an internal exception handler
subinvocation and is ignored for an external exception handler invocation. This
option will cause the internal exception handler subinvocation to be terminated
and control will resume at the intruction immediatly following the RTNEXCP
instruction. In effect, this option will cause the current subinvocation to be
unstacked.

If the action code is 0, then the current instruction of the addressed invocation is
reexecuted. If the action code is 1, execution resumes with the instruction fol­
lowing the current instruction of the addressed invocation.

11-12 ASJ400 MI Functional Reference

Return From Exception (RTNEXCP)

When a Return From Exception instruction returns control to an invocation that
was interrupted by an event, the action code in the operand 1 template is
ignored and execution continues at the point of interruption. That is, the inter­
rupted instruction is not reexecuted and execution of the instruction is completed
as if no interruption occurred. For example, if a Dequeue instruction is waiting
for a message to arrive on a queue when an event handler is invoked that
produces an exception, the exception handler returns control to the interrupted
Dequeue instruction and the instruction continues to wait for the message.

The Return From Exception instruction may be issued only from the initial invo­
cation of an external exception handling sequence or from an invocation that has
an active internal exception handler.

If the instruction is issued from an invocation that is not an external exception
handler and has no internal exception handler subinvocations, the return instruc­
tion invalid exception is signaled.

The following table shows the actions performed by the Return From Exception
instruction:

Invocation Addressing Addressing
Issuing Own Higher
Instruction I nvocatio n/Optio n Invocation/Option
Not handling Error 1 Error 1
exception

Handling internal Allowed 2 Allowed 3
exception(s)

Handling external Error Allowed 3
exception(s)

Handling external Allowed 2 Allowed 3
exception(s) and
internal
exception(s)

1. A return instruction invalid exception is signaled. Ifthere are no more
internal exception handler subinvocations active and this invocation is not an
external exception handler, the instruction may not be issued.

2. The current internal exception handler subinvocation is terminated.

3. All invocations after the addressed invocation are terminated and execution
proceeds within the addressed invocation. Any invocation exit programs set
for the terminated invocations will be given control before execution pro­
ceeds within the addressed invocation.

Whenever an invocation is terminated, the invocation count in the corresponding
activation entry (if any) is decremented by 1.

An action code of 1 specifies completion of an instruction rather than execution
of the following instruction if the current instruction in the addressed invocation
signaled a size exception or a floating-point inexact result exception.

Note: The previous condition does not apply if any of the above exceptions were
explicitly signaled by a Signal Exception instruction.

A Return From Exception instruction cannot be used or recognized in conjunction
with a branch point internal exception handler.

Chapter 11. Exception Management Instructions 11-13

Return From Exception (RTNEXCP)

If a failure to invoke an invocation exit handler occurs, a failure to invoke
program event is signaled.

Exceptions ..J
Operands

Exception 1 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X X

44 partial system object damage X X

16 Exception management

03 invalid invocation X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

..J 02 machine check X

03 function check X

22 Object access

02 object destroyed X

03 object suspended X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation

06 invalid operand type X

07 invalid operand attribute X

08 invalid operand value range X

09 invalid branch target operand X

OA invalid operand length X

OC invalid operand odt reference X

00 reserved bits are not zero X X

2C Program execution

01 return instruction invalid X .j

11-14 AS/400 MI Functional Reference

Return From Exception (RTNEXCP)

Operands
Exception 1 Other
2E Resource control limit

01 user profile storage limit exceeded x

36 Space management

01 space extension/truncation x

38 Template specification

01 template value invalid x

Chapter 11. Exception Management Instructions 11-15

Sense Exception Description (SNSEXCPD)

11.5 Sense Exception Description (SNSEXCPD)
Op Code (Hex) Operand Operand Operand 3

1 2
03E3 Attri- Invoca- Exception

bute tion template
receiver tem-

plate

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Description: The Sense Exception Description instruction searches the invoca­
tion specified by operand 2 for an exception description that matches the excep­
tion identifier and compare value specified by operand 3 and returns the user
data and exception handling action specified in the exception description. The
exception descriptions of the invocation are searched in ascending ODT number
sequence.

The exception identifier in the exception description can be specified in one of
the following ways:

Hex 0000 = Any exception ID will result in a match

Hex nnOO = Any exception ID in class nn will result in a match

Hex nnmm = Only exception ID nnmm will result in a match

If a match on exception ID is detected, the corresponding compare values are
matched. If the compare value length in the exception description is less than
the compare value in the search template, the length of the compare value in the
exception description is used for the match. If the compare value length in the
exception description is greater than the compare value in the search template,
an automatic mismatch results.

If a match on exception ID and compare value is detected, the exception han­
dling action of the exception description determines which of the following
actions is taken:

IGNORE The operand 1 template is materialized.

DISABLE The exception description is bypassed and the search for an exception
description continues with the next exception description defined for
the invocation.

RESIGNAL The operand 1 template is materialized.

DEFER The operand 1 template is materialized.

HANDLE The operand 1 template is materialized.

If no exception description of the invocation matches the exception ID and
compare value of operand 3, the number of bytes available for materialization on
the operand 1 template is set to O.

The template identified by operand 1 must be 16-byte aligned.

11-16 AS/400 MI Functional Reference

L

Sense Exception Description (SNSEXCPD)

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exception is signaled in the event the
receiver contains insufficient area for the materialization, other than the
materialization length exception described previously.

The format of the attribute receiver is as follows:

• Template size Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Control flags

Exception handling action

Char(2)

Bits 0-2

000 = Do not handle-ignore occurrence of exception and continue proc­
essing

010 = Do not handle-continue search for an exception description by
resignaling the exception to the immediately preceding invocation

100 = Defer handling-save exception data for later exception handling
101 = Pass control to the specified exception handler

No data

o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0)

User data indicator

o = User data not present
1 = User data present

Reserved (binary 0)

Exception handler type

00 = External entry point
01 = Internal entry point
10 = Branch point

Reserved (binary 0)

• Relative exception description number

• Reserved (binary 0)

• Pointer to user data (binary 0 if value of
user data indicator is binary 0)

Bit 3

Bit 4

Bit 5

Bits 6-7

Bits 8-9

Bits 10-15

Bin(2)

Char(4)

Space pointer

The relative exception description number entry identifies the relative number of
the exception description that matched the search criteria. The order of defi­
nition of the exception descriptions in the COT determines the value of the index.

Chapter 11. Exception Management Instructions 11-17

Sense Exception Description (SNSEXCPD)

Exceptions

A value of 1 indicates that the first exception description defined in the ODT
matched the search criteria.

The template identified by operand 1 must be 16-byte aligned. The invocation
address entry is a space pointer that locates an invocation entry in the PASA
(process automatic storage area). The invocation is searched for a matching
exception description. If the space pointer locates the PASA base entry, the
operand 1 template is materialized with the number of bytes available for
materialization set to O. If the space pointer locates neither a valid invocation
entry nor the PASA base entry, the invalid invocation address exception is sig­
naled.

The first exception description to search entry specifies the relative number of
the exception description to be used to start the search. The number must be a
nonzero positive binary number determined by the order of definition of excep­
tion descriptions in the ODT. A value of 1 indicates that the first exception
description in the invocation is to be used to begin the search. If the value is
greater than the number of exception descriptions for the invocation, the
operand 1 template is materialized with the number of bytes available for
materialization set to O.

The format of the invocation template is as follows:

• Invocation address

• Reserved (binary 0)

• First exception description to search

Space pointer

Char(2)

Bin(2)

The operand 3 exception template specifies the exception-related data to be
used as a search argument. The format of the template is as follows:

• Template size Char(8)

Number of bytes provided for materialization Bin(4)
(must be at least 44)

Number of bytes available for materialization Bin(4)*

• Exception identifier

• Compare value length (maximum of 32)

• Compare value

Char(2)

Bin(2)

Char(32)

Note: Entries noted with an asterisk (*) are ignored by the instruction.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

Operands
1 2 3

X X X

X X X

X X X

X X X

X X X

Other

11-18 AS/400 MI Functional Reference

Sense Exception Description (SNSEXCPD)

Operands
Exception 1 2 3 Other

10 Damage encountered

04 system object damage X

44 partial system object damage X

16 Exception management

03 invalid invocation address X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

L
22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

./

~
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X X

02 template size invalid X

03 materialization length exception X

Chapter 11. Exception Management Instructions 11-19

Signal Exception (SIGEXCP)

11.6 Signal Exception (SIGEXCP)

optional Forms

Op Code (Hex)
10CA

Op Code
Operand 1
Attribute
template

Operand 1: Space pointer.

Operand 2: Space pointer.

Mnemonic Op Code
(Hex)

SIGEXCPI 18CA

SIGEXCPB 1CCA

Operand 2
Exception
data

Form Type

Indicator

Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper­
ands immediately follow the last operand listed above. See Chapter 1. "Intro­
duction" for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: The Signal Exception instruction signals a new exception or .'\
resignals an existing exception to the process. Optionally, the instruction ...",
branches to one of the specified targets based on the results of the signal and
the selected branch options in the extender field, or it sets indicators based on
the results of the signal. The signal is presented starting at the invocation iden-
tified in the signal template.

The template identified by operand 1 specifies the signal option and starting
point. It must be 1B-byte aligned in the space with the following format.

• Signaled to invocation address

• Sig nal option

Signal/resignal option

a = Signal new exception.

Space pointer

Char(1)

Bit a

1 = Resignal currently handled exception (valid only for an external
exception handler).

Invoke PDEH (process default
exception handler) option

Bit 1

a = Invoke PDEH if no exception description found for invocation.
1 = Do not invoke PDEH if no exception description found for invocation

(ignore if PASA base entry specified).

Exception description search control Bit 2

o = Exception description search control not present
1 = Exception description present

11-20 AS/400 MI Functional Reference

- Reserved (binary 0)

• Reserved (binary 0)

• First exception description to search

Signal Exception (SIGEXCP)

Bits 3-7

Char(1)

Bin(2)

The signaled to invocation address entry is a space pointer that locates an invo­
cation entry in the PASA (process automatic storage area). The exception is sig­
naled to this invocation. If the space pointer locates the PASA base entry, the
exception is signaled to the PDEH. If the space pointer locates neither a valid
invocation entry nor the PASA base entry, the invalid invocation address excep­
tion is signaled. If the program associated with the invocation has defined an
exception description to handle the exception, the specified action is taken; oth­
erwise, the PDEH is invoked unless the invoke PDEH option bit is 1 (the excep­
tion is considered ignored). If the PASA base entry is addressed instead of an
existing invocation, the PDEH will be invoked.

Exception descriptions of an invocation are searched in ascending ODT number
sequence. If the exception description search control is not present, the search
begins with the first exception description defined in the ODT. Otherwise, the
first exception description to search value identifies the relative number of the
exception description to be used to start the search. The value must be a
nonzero positive binary number determined by the order of definition of excep­
tion descriptions in the ODT. This value is also returned by the Sense Exception
Description instruction. A value of 1 indicates that the first exception description
in the invocation is to be used to begin the search. If the value is greater than
the number of exception descriptions for the invocation, the template value
invalid exception is signaled.

The template identified by operand 2 must be 16-byte aligned in the space. It
specifies the exception-related data to be passed with the exception signal. The
format of the exception data is the same as that returned by the Retrieve Excep­
tion Data instruction. The format is as follows:

• Template size Char(8)

Number of bytes of data to be signaled Bin(4)
(must be at least 48 bytes)

Number of bytes available for materialization Bin(4)*

• Exception identification

• Compare value length (maximum of 32 bytes)

Char(2)

Bin (2)

Char(32)

Char(4)

Char(*)

• Compare value

• Reserved (binary 0)

• Exception specific data

Note: Entries shown here with an asterisk (*) are ignored by the instruction.

Operand 2 is ignored if operand 1 specifies the resignal option, because the
exception-related data is the same as for the exception currently being proc­
essed; however, it must be specified when signaling a new exception.

The maximum size for exception-related data that is to accompany an exception
signaled by the Signal Exception instruction is 32 608 bytes, including the
standard signal data.

Chapter 11. Exception Management Instructions 11-21

Signal Exception (SIGEXCP)

If an exception ID in an exception description corresponds to the signaled excep-
tion, the corresponding compare values are verified. If the compare value length ~
in the exception description is less than the compare value length in the signal ."",
template, the length of the compare value in the exception description is used
for the match. If the compare value length in the exception description is greater
than the compare value length in the signal template, an automatic mismatch
results. Machine-signaled exceptions have a 4-byte compare value of binary D's.

An exception description may monitor for an exception with a generic ID as
follows:

Hex 0000 = Any signaled exception ID results in a match.

Hex nnOO = Any signaled exception ID in class nn results in a match.

Hex nnmm = The signaled exception ID must be exactly nnmm in order for a
match to occur.

An exception description may be in one of five states, each of which determines
an action to be taken when the match criteria on the exception ID and compare
value are met.

IGNORE No exception handling occurs. The Signal Exception instruction is
assigned a resultant condition of ignored. If a corresponding branch
or indicator setting is present, that action takes place.

DISABLE The exception description is bypassed, and the search for a monitor
continues with the next exception description defined for the invoca­
tion.

RES/GNAL The search for a monitoring exception description is to be reinitiated
at the preceding invocation. A resignal from the initial invocation in
the process results in the invocation of the process default exception
handler. A resignal from an invocation exit program results in an

. unhandled exception that causes process termination.

DEFER The exception description is signaled, and the Signal Exception
instruction is assigned the resultant condition of deferred. If a corre­
sponding branch or indicator setting is present, that action takes
place. To take future action on a deferred exception, the exception
description must be synchronously tested with the Test Exception
instruction in the signaled invocation.

HANDLE Control is passed to the indicated exception handler, which may be a
branch point, an internal subinvocation, or an external invocation.

If the exception description is in the ignore or defer state and if the Signal Excep­
tion instruction does not specify a branch or indicator condition or if it specifies
branch or indicator conditions that are not met, then the instruction following the
Signal Exception instruction is executed.

When control is given to an internal or branch point exception handler, all inv­
ocations up to, but not including, the exception handling invocation are termi­
nated. Any invocation exit programs set for the terminated invocations will be
given control before execution proceeds in the signaled exception handler.

If a failure to invoke an external exception handler or an invocation exit occurs, a
failure to invoke program event is signaled. For each destroyed invocation, the

11-22 AS/400 MI Functional Reference

Signal Exception (SIGEXCP)

invocation count in the corresponding activation entry (if any) is decremented by

L 1.

Resultant Conditions: Exception ignored or exception deferred.

Exceptions
Operands

Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

L
08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

44 partial system object damage X X X

16 Exception management

02 exception state of process invalid X

L 03 invalid invocation X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X

07 invalid operand attribute X X

L-
08 invalid operand value range X X

09 invalid branch target operand X

OC invalid operand odt reference X X

Chapter 11. Exception Management Instructions 11-23

Signal Exception (SIGEXCP)

Operands
Exception 1 2 Other . ..J OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

02 template size invalid X

11-24 AS/400 MI Functional Reference

Test Exception (TESTEXCP)

11.7 Test Exception (TESTEXCP)

Optional Forms

Op Code (Hex) Operand
1

Operand 2

104A Receiver Exception
description

Operand 1: Space pointer.

Operand 2: Exception description.

Mnemonic
TESTEXCPI

TESTEXCPB

Op Code
(Hex)
184A

1C4A

Extender: Branch options.

Form Type
Indicator

Branch

If the branch or indicator option is specified in the op code, the ex1ender field
must be present along with one or two branch targets (for branch options) or one
or two indicator targets (for indicator options). The branch or indicator targets
immediately follow the last operand listed above. See Chapter 1. "Introduction"
for the encoding of the ex1ender field and the allowed syntax of the branch and
indicator operands.

Description: The instruction tests the signaled status of the exception
description specified in operand 2, and optionally alters the control flow or sets
the specified indicators based on the test. Exception data is returned at the
location identified by operand 1. The branch or indicator setting occurs based
on the conditions specified in the ex1ender field depending on whether or not the
specified exception description is signaled.

Operand 2 is an exception description whose signaled status is to be tested. An
exception can be signaled only if the referenced exception description is in the
deferred state.

Operand 1 addresses a space into which the exception data is placed if an
exception identified by the exception description has been signaled.

The template identified by operand 1 must be 16-byte aligned in the space.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception) are signaled in the event that the receiver contains insufficient
area for the materialization.

Chapter 11. Exception Management Instructions 11-25

Test Exception (TESTEXCP)

Exceptions

If the exception description is not in the signaled state, the number of bytes
available for the materialization entry is set to binary O's, and no other bytes are
modified. The format of the data returned in operand 1 is as follows:

• Template size Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin (4)
(0 if exception description is not signaled)

• Exception identification

• Compare value length (maximum of 32 bytes)

• Compare value

• Reserved (binary 0)

• Exception-specific data

• Signaling program invocation address

• Signaled program invocation address

• Signaling program instruction address

• Signaled program instruction address

• Machine-dependent data

Char(2)

Bin(2)

Char(32)

Char(4)

Char(*)

Space pointer

Space pointer

Ubin(2)

Ubin(2)

Char(10)

The area beyond the exception-specific data area is extended with binary O's so
that pointers to program invocations are properly aligned.

If no branch options are specified, instruction execution proceeds at the instruc­
tion following the Test Exception instruction.

If the exception data retention option is set to 1 (do not save). no data is
returned by this instruction.

Resultant Conditions: Exception signaled or exception not signaled.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

16 Exception management

Operands
1 2 Other

x
X

X

X

X

X

X

X

X

X

X

11-26 AS/400 MI Functional Reference

Test Exception (TESTEXCP)

Operands
Exception 1 2 Other

01 exception description status invalid X

1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X

09 invalid branch target operand X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

L 01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

L

Chapter 11. Exception Management Instructions 11-27

Test Exception (TESTEXCP)

11-28 AS/400 MI Functional Reference

Extended Function Instructions

These instructions provide an extended set of functions which can be used to
control and monitor the operation of the machine. Because of the more compli­
cated nature of these instructions, they are more exposed to changes in their
operation in different machine implementations than the basic function
instructions. Therefore, it is recommended that, where possible, programs avoid
using these extended function instructions to minimize the impacts which can
arise in moving to different machine implementations.

C> Copyright IBM Corp. 1990

ASJ400 MI Functional Reference

L

Context Management Instructions

Chapter 12. Context Management Instructions

This chapter describes the instructions used for context management. These
instructions are in alphabetic order. See Appendix A, "Instruction Summary," for
an alphabetic summary of all the instructions.

© Copyright IBM Corp. 1990 12-1

Materialize Context (MATCTX)

12.1 Materialize Context (MATCTX)

Op Code (Hex)
0133

Operand 1
Receiver

Operand 2
Permanent context,
temporary context,
or machine context

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 3
Materialization
options

Operand 3: Character scalar (fixed-length).

Description: Based on the contents of the materialization options specified by
operand 3, the symbolic identification and/or system pointers to all or a selected
set of the objects addressed by the context specified by operand 2 are material­
ized into the receiver specified by operand 1. If operand 2 is null, then the
machine context is materialized.

The materialization control information requirements field in the materialization
options operand specifies the information to be materialized for each selected
entry. Symbolic identification and system pointers identifying objects addressed
by the context can be materialized based on the bit setting of this parameter.
The materialization control selection criteria field specifies the context entries
from which information is to be presented. The type code, subtype code, and
name fields contain the selection criteria when a selective materialization is
specified. j
When type code or type/subtype codes are part of the selection criteria, only
entries that have the specified codes are considered. When a name is specified
as part of the selection criteria, the N characters in the search criteria are com-
pared against the N characters of the context entry, where N is defined by the
name length field in the materialization options. The remaining characters (if
any) in the context entry are not used in the comparison.

The materialization options operand has the following format:

• Materialization control Char(2)

Information requirements (1 = materialize) Char(1)

Reserved (binary 0)
Validation
o = Validate system pointers
1 = No validation
System pointers
Symbolic identification

Selection criteria

Hex 00 - All context entries
Hex 01 - Type code selection

Bits 0-3
Bit 5

Bit 6
Bit 7

Char(1)

Hex 02 - Type code/subtype code selection
Hex 04 - Name selection
Hex 05 - Type code/name selection
Hex 06 - Type code/subtype code/name selection

12·2 ASI400 MI Functional Reference

L

Materialize Context (MATCTX)

Hex OE-Context entries collating at and above the specified Type
code/subtype code/name selection

• Length of name to be used for search argument 8in(2)

• Type code

• Subtype code

• Name

Char(1)

Char(1)

Char(30)

If the information requirements parameter is binary 0, the context attributes are
materialized with no context entries. In this case, the selection criteria field is
meaningless.

If the validation attribute indicates no validation is to be performed, no object
validation occurs and a significant performance improvement results.

Selection criteria value Hex 00, when the number of bytes provided in the
receiver does not allow for materialization of at least one context entry, requests
that as much of the context attributes as will fit be materialized into the receiver
and that an estimate of the the byte size correlating to the full list of context
entries currently in the context be set into the number of bytes available for
materialization field of the receiver. This capability of requesting an estimate of
the size of a full materialization of the context provides a low overhead way of
getting a close approximation of the amount of space that will be needed for an
actual materialize of all context entries.

Selection criteria value Hex 00, when the number of bytes provided in the
receiver allow for materialization of at least one context entry, and values X'01'
through X'06' request that all context entries matching the associated
type code/subtype code/name criteria be materialized into the receiver. The
number of bytes available for materialization field is set with the byte size corre­
lating to the full list of context entries that matched the selection criteria whether
or not the receiver provided enough room for the full list to be materialized.

Selection criteria value Hex OE requests that as many context entries as will fit
which collate at or higher (are equal to or greater) than the specified
type code/subtype code/name criteria be materialized into the receiver. The
number of bytes available for materialization field is set with the byte size corre­
lating to the list of context entries that were actually materialized into the
receiver rather than the full list that may have been available in the context.

When no validation occurs, some of the following pointers may be erroneous:

• Pointers to destroyed objects

• Pointers to objects that are no longer in the context

• Multiple pointers to the same object

The first 4 bytes of the materialization output identify the total number of bytes
available for use by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less than 8 causes
the materialization length exception to be signaled. The instruction materializes
as many bytes and pOinters as can be contained in the receiver. If the byte area
identified by the receiver is greater than that required to contain the information
requested for materialization, the excess bytes are unchanged. No exceptions

Chapter 12. Context Management Instructions 12-3

Materialize Context (MATCTX)

are signaled in the event that the receiver contains insufficient area for the
materialization, other than the materialization length exception signaled above.

The format of the materialization is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Context identification

Object type

Object subtype

Object name

• Context options

Existence attributes

o = Temporary
1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Reserved (binary 0)

Access group

o = Not a member of access group
1 = Member of access group

Reserved (binary 0)

• Recovery options

Automatic damaged context rebuild option

o = Do not rebuild at IMPL
1 = Rebuild at IMPL

• Size of space

• Initial value of space

• Performance class

Space alignment

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bit 0

Bin(4)

Char(1)

Char(4)

Bit 0

o = The space associated with the object is allocated to allow proper
align'ment of pointers at 16-byte alignments within the space, If no
space is specified for the object, this value must be specified for the
performance class.

= The space associated with the object is allocated to allow proper
alignment of pointers at 16-byte alignments within the space as well
as to allow proper alignment of input/output buffers at 512-byte align­
ments within the the space.

Reserved (binary 0)

Main storage pool selection

12-4 AS/400 MI Functional Reference

Bits 1-4

Bit 5

J

L

Materialize Context (MATCTX)

o = Process default main storage pool is used for object.
1 = Machine default main storage pool is used for object.

Reserved (binary 0) Bit 6

Block transfer on implicit access state Bit 7
modification

o = Transfer the minimum storage transfer size for this object. This
value is 1 storage unit.

1 = Transfer the machine default storage transfer size. This value is 8
storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Reserved (binary 0)

• Access group

• Context entry (repeated for each selected entry)

Object identification (if requested)

Type code
Subtype code
Name

Object pointer (if requested)

Bits 8-31

Char(7)

Char(16)

System pointer

Char(16-48)

Char(32)

Char(1)
Char(1)
Char(30)

System pointer

The context entry object identification information, if requested by the
materialization options parameter, is present for each entry in the context that
satisfies the search criteria. If both system pointers and symbolic identification
are requested by the materialization options operand, the system pointer imme­
diately follows the object identification for each entry.

The order of the materialization of a context is by object type code, object
subtype code, and object name, all in ascending sequence.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Operand 2

• Materialization

- Operand 2

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Operands
123

x
X

X

X

X

X

X

X

X

Other

Chapter 12. Context Management Instructions 12-5

Materialize Context (MATCTX)

Operands
Exception 1 2 3 Other

..J 06 Optimized addressability invalid X X X

08 Argument/parameter

01 Parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X

10 Damage encountered

02 Machine context damage state X

04 System object damage state X X X X

05 authority verification terminated due to X
damaged object

44 Partial system object damage X X X X

1A Lock state j
01 Invalid lock state X

1C Machine-dependent exception

03 Machine storage limit exceeded X X

20 Machine support

02 Machine check X

03 Function check X J
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

03 Pointer addressing invalid object X

2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand odt reference X X X

00 Reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

12-6 AS/400 MJ Functional Reference

Materialize Context (MATCTX)

Operands
Exception 1 2 3 Other
32 Scalar specification

02 Scalar attributes invalid X

03 Scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 Materialization length exception X

Chapter 12. Context Management Instructions 12-7

Materialize Context (MATCTX)

12-8 AS/400 MI Functional Reference

L

Authorization Management Instructions

Chapter 13. Authorization Management Instructions

This chapter describes the instructions used for authorization management.
These instructions are in alphabetic order. For an alphabetic summary of all the
instructions, see Appendix A, "Instruction Summary."

~ Copyright IBM Corp. 1990 13-1

Materialize Authority (MATAU)

13.1 Materialize Authority (MATAU)
Op Code (Hex)
0153

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
System
object

Operand 3
User profile
or Source
Template

Operand 3: System pointer or Space pointer Data Object or null.

Description: This instruction materializes the specific types of authority for a
system object available to the specified user profile. The private authorization
that the user profile specified by operand 3 has to the permanent system object
specified by operand 2, and the object's public authorization is materialized in
operand 1. If operand 3 is nUll, then only the object's public authorization is
materialized, and the private authorization field in the materialization is set to
binary o.

Except for certain special cases, the authority to be materialized is determined
by first checking for direct authority to the object itself, then checking for indirect
authority to the object through authority to an authorization list containing the
object. The first source of authority found is materialized and the source is indi­
cated in the materialization.

The special case of the operand 3 user profile having all object special authority ..J
overrides any explicit private authorities that the user profile might hold to the
object or its containing authorization list and results in a materialization showing
that the profile holds all private authorities directly to the object.

The special case of the operand 2 object being in an authorization list which has
the override specific object authority attribute in effect results in the authori­
zation or lack of authorization held to the authorizaiton list completely overriding
the explicit private authorities that the user profile might hold to the object. This
case results in a materialization showing that the profile has just the private
authorities it holds or doesn't hold to the authorization list. That is, if the user
profile has private authority to the object, but doesn't have private authority to
the authorization list, the materialization will show that the user does not have
any private authority to the object. Similarly, if the user profile has both private
authority to the object and to the authorization list, the materialization will show
that the user has only the private authority through the authorization list. If
operand 3 is nUll, then only the object's public authorization is materialized, and
the private authorization field in the materialization is set to binary zeros.

Operand 3 may be specified as a a system pointer which directly addresses the
user profile to be checked as a source of authority or as a space pointer to a
source template which identifies the source user profile. Specifying a template
allows for additional controls over how the materialize operation is to be per­
formed. The format of the source template is the following:

• Source flags

Ignore all object special authority

13-2 AS/400 MI Functional Reference

Char(2)

Bit 0

L

L

0= No
1 = Yes

Reserved (binary zero)

• Reserved (binary zero)

• User profile pointer

Materialize Authority (MATAU)

Bit1-15

Char(14)

System Pointer

The ignore all object special authority source flag specifies whether or not that
special authority is to be ignored during the materialize operation. When yes is
specified, just the explicitly held private authority that the specified user profile
holds either directly to the object or indirectly to an authorization list containing
the object will be materialized. When no is specified, the authority provided by
all object special authority, if held by the source user profile, is included and
results in a materialization showing that the profile holds all private authorities
directly to the object. No is the default for this flag value when the source tem­
plate is not specified.

The user profile pointer field specifies the address of the user profile to be
checked as a source of authority.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized (16 for this instruction). The instruction materializes as
many bytes as can be contained in the area specified as the receiver. If the byte
area identified by the receiver is greater than that required to contain the infor­
mation requested, then the excess bytes are unchanged. No exceptions (other
than the materialization length exception) are signaled in the event that the
receiver contains insufficient area for the materialization.

The format of the materialization is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)
(contains a value of 16 for this instruction)

• Private authorization (1 = authorized)

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Ownership (1 = yes)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Chapter 13. Authorization Management Instructions 13-3

Materialize Authority (MATAU)

Excluded

Authority List Management

Reserved (binary zero)

• Public authorization (1 = authorized)

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Reserved (binary zero)

Excluded

Authority List Management

Reserved (binary zero)

• Private authorization source

o = authority to object
1 = authority to authorization list

• Public authorization source

o = authority from object
1 = authority from authorization list

Bit 9

Bit 10

Bit 11-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11-15

Bin(2)

Bin(2)

Any of the four authorizations-retrieve, insert, delete, or update-constitute opera­
tional authority.

If this instruction references a temporary object, all public authority states are
materialized. Private authority states are not materialized.

Authorization Required

Lock Enforcement

• Operational

- Operand 3

• Retrieve

- Contexts referenced for address resolution

• Materialize

Operand 2

Operand 3

Contexts referenced for address resolution

13-4 AS/40D MJ Functional Reference

Materialize Authority (MATAU)

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X X

L
10 Damage encountered

02 machine context damage state X

04 system object damage state X X X X

05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X X

L 1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

L 01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pOinter addressing invalid object X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X

Chapter 13. Authorization Management Instructions 13-5

Materialize Authority (MATAU)

Operands
Exception 1 2 3 Other

.J OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

13-6 ASJ400 MI Functional Reference

Materialize Authority List (MATAL)

13.2 Materialize Authority List (MAT AL)
Op Code (Hex)
01B3

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 2
Authori­
zation List

Operand 3
Materializations
Options

Description: Based on the contents of the materialization options specified by
operand 3, the symbolic identification and/or system pointers to all or a selected
set of the objects contained in the authorization list specified by operand 2 are
materialized into the receiver specified by operand 1.

The materialization options operand has the following format:

• Materialization control

Information Requirements

Value
(Hex) Meaning

Char(2)

Char(1)

12 Materialize count of entries matching the criteria.

22 Materialize identification of entries matching the criteria with
short description.

32 Materialize identification of entries matching the criteria with long
description.

Selection Criteria

00 All authorization list entries
01 Type code selection
02 Type code/subtype code selection

• Reserved (binary zero)

• Type code

• Subtype code

• Reserved (binary zero)

Char(1)

Bin(2)

Char(1)

Char(1)

Char(30)

The information requirements field specifies the type of materialization, just a
count of entries, short descriptions, or long descriptions, which is being
requested.

The selection criteria field specifies the criteria to be used in selecting the
authorization list entries for which information is to be presented. The type code
and subtype code fields contain the selection criteria when a selective
materialization is specified.

Chapter 13. Authorization Management Instructions 13-7

Materialize Authority List (MATAL)

When type code or type/subtype codes are part of the selection criteria, only
entries that have the specified codes are considered.

The format of the materialization is as follows:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Authorization List Identification

Object type

Object subtype

Object name

• Authorization List Options

Existence attributes

1 = Permanent (always permanent)

Space Attribute

o = Fixed length
1 = Variable length

Reserved

• Reserved

• Size of space

• Initial value of space

• Performance class

• Reserved

• Context

• Reserved

• Authorization list attributes

Override specific object authority

o = No
1 = Yes

Reserved (binary zero)

• Reserved (binary zero)

• Entries header

Number of entries available

Reserved

13-8 AS/400 MI Functional Reference

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2-31

Char(4)

Bin(4)

Char(1)

Char(4)

Char(7)

System Pointer

Char(16)

Char(4)

Bit 0

Bit 1-31

Char(28)

Char(16)

Bin(4)

Char(12)

L

Materialize Authority List (MATAL)

If no description is requested in the materialization options parameter, the above
constitutes the information available for materialization. If a description (short or
long) is requested by the materialization options operand, a description entry is
present (assuming a sufficient size receiver) for each object materialized into the
receiver. Either of the following entry formats may be selected.

• Short description entry Char(32)

Type code Char(1)

Subtype code Char(1)

Reserved Char(14)

System object System Pointer

• Long description entry Char(128)

Type code Char(1)

Subtype code Char(1)

Object name Char(30)

Reserved Char(16)

System object System Pointer

Object owning user profile System Pointer

• Context Char(48)

Type code Char(1)

Subtype code Char(1)

Context name Char(30)

Context pointer System Pointer

The first four bytes of the materialization output identify the total quantity of
bytes available for use by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less than 8 causes
the materialization length exception to be signaled.

The instruction materializes as many bytes and pointers as can be contained in
the receiver. If the byte area identified by the receiver is greater than that
required to contain the information requested for materialization, the excess
bytes are unchanged. No exceptions are signaled in the event that the receiver
contains insufficient area for the materialization, other than the materialization
length exception signaled above.

Refer to the Create Authorization List instruction for a discussion of the creation
attributes materialized in the above template.

The number of entries available field specifies the number of authorization list
entries which satisfied the selection criteria and were therefore materialized. A
value of zero indicates no entries were available.

The object identification information, if requested by the materialization options
parameter, is present for each entry in the authorization list that satisfies the
search criteria.

Chapter 13. Authorization Management Instructions 13-9

Materialize Authority List (MATAL)

The object pointer information, if requested by the materialization options
parameter, is present for each entry in the authorization list that satisfies the
search criteria.

If the object addressed by the system pointer is not addressed by a context, the
context type entry is set to Hex 00 or if the object is addressed by the machine
context, the context type entry is set to Hes 81. Additionally, in either of these
cases, the context pointer is set to the system default "pointer does not exist"
value.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

Operand 2

• Materialization

Operand 2

Exception

06
addressing

01 space addressing violation

02 boundary alignment violation

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage

05 authority verification terminated due to
damaged object

44 partial system object damage

1A Lock state

01 invalid lock state

1C Machine dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

13-10 AS/400 MI Functional Reference

Operands
123

x X X

X X X

X X X

X X X

X X X

X

X

X

X

Other

X

X

X

X

X

X

J

.J

Materialize Authority List (MATAL)

Operands
Exception 1 2 3 Other

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attributes invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

3E Template specification

03 materialization length X

Chapter 13. Authorization Management Instructions 13-11

Materialize Authorized Objects (MATAUOBJ)

13.3 Materialize Authorized Objects (MATAUOBJ)
Op Code (Hex)
0138

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
User
profile

Operand 3: Character(1) scalar (fixed-length).

Operand 3
Materializtion
options

Description: This instruction materializes the identification and the system
pointers to system objects that are privately owned or that are owned by a spec­
ified user profile. The materialization options (operand 3) for the user profile
(operand 2) are returned in the receiver (operand 1). The materialization options
for operand 3 for the short template header have the following format:

Value
(Hex) Meaning

11 Materialize count of owned objects with no description.

12 Materialize count of authorized objects with no description (excludes
owned objects).

13 Materialize count of all authorized and owned objects with no
descri ption.

21 Materialize identification of owned objects with short description.

22 Materialize identification of authorized objects with short description
(excludes owned objects.)

23 Materialize identification of all authorized and owned objects with short
descri ption.

31 Materialize identification of owned objects with long description.

32 Materialize identification of authorized objects with long description
(excludes owned objects).

33 Materialize identification of all authorized and owned objects with long
description.

The long template header materialization options hex 51 through hex 63 are the
same as the short template materialization options hex 11 through 23.

The long template header materialization options hex 71 through hex 73 are the
same as the short template materialization options hex 31 through hex 33 except
that context extension is materialized for each object as well.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes avail- ...J
able to be materializer:!. The instruction materializes as many bytes as can be
contained in the Clrea f.pecified as the receiver. If the byte area identified by the

13-12 AS/400 MI Functional Reference

L

Materialize Authorized Objects (MATAUOBJ)

receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception) are signaled in the event that the receiver contains insufficient
area for the materialization.

The order of materialization is owned objects (if requested by the materialization
options operand) followed by objects privately authorized to the user profile (if
requested by the materialization options operand). No authorizations are stored
in the system pointers that are returned.

The template identified by operand 1 must be 16-byte aligned in the space. For
options hex 11 through hex 33, the short template header is materialized. It has
the following format:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Number of objects owned by user profile

• Number of objects privately
authorized to user profile

• Reserved (binary 0)

Bin(2)

Bin(2)

Char(4)

For options hex 51 through 73, the long template header is materialized. It has
the following format:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Number of objects owned by user profile Bin(4)

• Number of objects privately Bin(4)
authorized to user profile

If no description is requested in the materialization options parameter, the above
constitutes the information available for materialization. If a description (short or
long) is requested by the materialization options parameter, a description entry
is present (assuming there is a sufficient sized receiver) for each object materi­
alized into the receiver. Either of the following entries may be selected.

• Short description entry

Type code

Subtype code

Private authorization (1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retreive
Insert
Delete
Update

Char(32)

Char(1)

Char(1)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Chapter 13. Authorization Management Instructions 13-13

Materialize Authorized Objects (MATAUOBJ)

Ownership (1 = yes)
Excluded
Authority List Management
Reserved (binary zero)

Reserved (binary 0)

System object

• Long description entry

Type code

Subtype code

Object name

Private authorization (1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retreive
Insert
Delete
Update
Ownership (1 = yes)
Excluded
Authority List Management
Reserved (binary zero)

Public authorization

Object control
Object management
Authorized pointer
Space authority
Retreive
Insert
Delete
Update
Reserved (binary zero)
Excluded
Authority List Management
Reserved (binary zero)

Reserved (binary 0)

System object

• Context extension (options hex 71-73)

Type code

Subtype code

Context name

Context pointer

Bit 8
Bit 9
Bit 10
Bit 11-15

Char(12)

System pOinter

Char(64)

Char(1)

Char(1)

Char(30)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit 10
Bit 11-15

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit 10
Bit 11-15

Char(12)

System pointer

Char(48)

Char(1)

Char(1)

Char(30)

System pointer

The context extension portion of the long description entry is optional. It is only
provided as an extension to the base form of the long description entry when
options hex 71 through hex 73 are requested. For these options, if the object

13-14 AS/400 MI Functional Reference

Materialize Authorized Objects (MATAUOBJ)

addressed by the system pointer is not addressed by a context, the context type
entry is set to hex 00 or if the object is addressed by the machine context, the
context type entry is set to hex 81. Additionally, in either of these cases, the
context pointer is set to the system default pointer does not exist value.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Authorization Required

Lock Enforcement

Exceptions

• Operational

- Operand 2

• Retrieve

Contexts referenced for address resolution

Operand 2 if materializing owned objects

• Materialize

Contexts referenced for address resolution

Operand 2 if materializing owned objects

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

02 machine context damage state

04 system object damage state

05 authority verifcation terminated due to
damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1 C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

Operands
123

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

Chapter 13. Authorization Management Instructions 13-15

Materialize Authorized Objects (MATAUOBJ)

Operands
Exception 1 2 3 Other

~ 03 function check X "

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X

04 object not eligible for operation X X

07 authority verifcation terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X

~
2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

~ 38 Template specification

03 materialization length exception X

13-16 AS/400 MI Functional Reference

Materialize Authorized Users (MATAUU)

13.4 Materialize Authorized Users (MAT AUU)
Op Code (Hex)
0143

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
System
object

Operand 3: Character(1) scalar (fixed-length).

Operand 3
Materialization
options

Description: The instruction materializes the authorization states and the iden­
tification of the user profile(s). The materialization options (operand 3) for the
system object (operand 2) are returned in the receiver (operand 1). The
materialization options for operand 3 have the following format:

Value
(Hex) Meaning

11 Materialize public authority with no description.

12 Materialize public authority and number of privately authorized profiles
with no description.

21 Materialize identificataon of owning profile with short description.

22 Materialize identification of privately authorized profiles with short
description.

23 Materialize identification of owning and privately authorized profiles with
short description.

31 Materialize identification of owning profile with long description.

32 Materialize identification of privately authorized profiles with long
descri ption.

33 Materialize identification of owning and privately authorized profiles with
long description.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested. then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception) are signaled in the event that the receiver contains insufficient
area for the materialization.

The order of materialization is an entry for the owning user profile (if requested
by the materialization options operand) followed by a list (0 to n entries) of
entries for user profiles having private authorization to the object (if requested
by the materialization options operand). The authorization field within the
system pointers will not be set.

Chapter 13. Authorization Management Instructions 13-17

Materialize Authorized Users (MATAUU)

The template identified by operand 1 must be 16-byte aligned in the space and
has the following format:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Public authorization (1 = authorized)

Object control

Object management

Authorized pointer

Space authority

Retrieve

Insert

Delete

Update

Reserved (binary zero)

Excluded

Authority List Management

Reserved (binary zero)

• Number of privately authorized user profiles

• Reserved (binary 0)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-15

Bin(2)

Char(4)

If no description is requested by the materialization options operand, the tem­
plate identified by operand 1 constitutes the information available for
materialization. If a description (short or long) is requested by the
materialization options operand, a description entry is present (assuming there
is a sufficient sized receiver) for each user profile materialized or available to be
materialized into the receiver. Either of the following entry types may be
selected.

• Short description entry

User profile type code

User profile subtype code

Private authorization (1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retreive
Insert
Delete
Update
Ownership (1 = yes)
Excluded
Authority List Management

13-18 AS/400 MI Functional Reference

Char(32)

Char(1)

Char(1)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit 10

L

L

Materialize Authorized Users (MATAUU)

Reserved (binary zero)

Reserved (binary 0)

User profile

• Long description entry

User profile type code

User profile subtype code

User profile name

Private authorization (1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retreive
Insert
Delete
Update
Ownership (1 = yes)
Excluded
Authority List Management
Reserved (binary zero)

Reserved (binary 0)

User profile

Bits 11-15

Char(12)

System pointer

Char(64)

Char(1)

Char(1)

Char(30)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit 10
Bits 11-15

Char(14)

System pointer

If this instruction references a temporary object, all public authority states are
materialized. The privately authorized user and owner profile(s) description is
not materialized (binary 0).

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Authorization Required
• Retrieve

- Contexts referenced for address resolution

• Object management or ownership

- Operand 2 object (when object is not an authorizaiton list)

• Authorization list management or ownership

- Operand 2 object (when object is an authorizaiton list)

Lock Enforcement
• Materialize

Operand 2

Contexts referenced for address resolution

Chapter 13. Authorization Management Instructions 13-19

Materialize Authorized Users (MATAUU)

Exceptions
Operands

~ Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X X

05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X ~
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

03 object suspended X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X

OC invalid operand odt reference X X X ~
00 reserved bits are not zero X X X X

13-20 AS/400 MI Functional Reference

Materialize Authorized Users (MATAUU)

Operands
Exception 1 2 3 Other

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 13. Authorization Management Instructions 13-21

Materialize User Profile (MATUP)

13.5 Materialize User Profile (MATUP)
Op Code (Hex)
013E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
User profile

Description: The attributes of the user profile specified by operand 2 are materi­
alized into the receiver specified by operand 1.

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and
is not modified by the instruction. A value of less than 8 causes the
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes are unchanged. No exceptions (other than the materialization
length exception) are signaled in the event that the receiver contains insufficient
area for the materialization.

The receiver identified by operand 1 must be 16-byte aligned in the space. The
following is the format of the materialized information:

• Materialization size specification Char(8)

Number of bytes provided for materialization Bin(4)

Number of bytes available for materialization Bin(4)

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attribute

1 = Permanent

Space attribute

o = Fixed-length
1 = Variable-length

Reserved (binary 1)

Reserved (binary 0)

Initialize space

Reserved (binary 0)

• Reserved (binary 0)

13-22 AS/400 MI Functional Reference

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bits 3-12

Bit 13

Bits 14-31

Char(4)

Materialize User Profile (MATUP)

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

• Reserved (binary 0)

• Reserved (binary 0)

• Privileged instructions (1 = authorized)

Create logical unit description

Create network description

Create controller description

Create user profile

Modify user profile

Diagnose

Terminate machine processing

Initiate process

Modify resource management control

Create mode description

Create class of service description

Reserved (binary zero)

• Special authorizations (1 = authorized)

All object authority

Load (unrestricted)

Dump (unrestricted)

Suspend object (unrestricted)

Load (restricted)

Dump (restricted)

Suspend object (restricted)

Process control

Reserved (binary 0)

Service authority

Auditor authority

Spool Control

Reserved (binary 0)

Modify machine attributes

Group 2
Group 3
Group 4

Bin(4)

Char(1)

Char(4)

Char(7)

Char(16)

Char(16)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-31

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bits 12-23

Bits 24-31

Bit 24
Bit 25
Bit 26

Chapter 13. Authorization Management Instructions 13-23

Materialize User Profile (MATUP)

Group 5
Group 6
Group 7
Group 8
Group 9

Note: Group 1 requires no authorization.

Bit 27
Bit 28
Bit 29
Bit 30
Bit 31

• Storage authorization-The maximum amount of Bin(4)
auxiliary storage (in units of 1024 bytes)
that can be allocated for thestorage
of objects owned by this user profile

• Storage utilization- The current amount of Bin(4)
auxiliary storage (in units of 1024 bytes)
allocated for the storage ofobjects
owned by this user profile

The attributes that the instruction can materialize are described in the Create
User Profile instruction.

Authorization Required

Lock Enforcement

Exceptions

• Operational

- Operand 2

• Materialize

- Operand 2

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

02 machine context

1A

04 system object damage state

05 authority verification terminated due to damaged
object

44 partial system object damage

Lock state

13-24 AS/400 MI Functional Reference

Operands
1 2

X X

X X

X X

X X

X X

x

x x

X X

Other

x
X

X

X

J

Materialize User Profile (MATUP)

Operands
Exception 1 2 Other

01 invalid lock state X

1C Machine-dependent exception X

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

L 36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

L
Chapter 13. Authorization Management Instructions 13-25

Test Authority (TESTAU)

13.6 Test Authority (TESTAU)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2

10F7 Avail- System Required
able object authority
authority or template
tem- object
plate tem-
receiver plate

Operand 1: Character(2) variable scalar or null (fixed-length).

Operand 2: System pointer or space pointer data object.

Operand 3: Character(2) scalar (fixed-length).

Mnemonic
TESTAUI

TESTAUB

Op Code
(Hex)
18F7

1CF7

Form Type
Indicator

Branch

Extender: Branch or indicator options

If the branch option is specified in the op code, the extender field must be
present along with one or two branch targets. If the indicator option is specified
in the op code, the extender field must be present along with one or two indi­
cator operands. The branch or indicator operands immediately follow operand 3.
See Chapter 1. "Introduction" for the encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction verifies that the object authorities and/or owner­
ship rights specified by operand 3 are currently available to the process for the
object specified by operand 2.

If operand 1 is not null, all of the authorities and/or ownership specified bY,
operand 3 that are currently available to the process are returned in operand 1. .."",

If an object template is not specified, operand 2 is a system pointer, the authority
verification is performed relative to the invocation executing this instruction. If
an object template is specified, operand 2 is a space pointer, the authority verifi­
cation is performed relative to the invocation specified in the template. Speci­
fying an invocation causes the invocations subsequent to it to be bypassed in the
authority verification process. This has the influence of excluding the program
adopted user profiles for any of these excluded invocations from acting as a
source of authority to the authority verification process.

The required authorities and/or ownership are specified by the required authority
template of operand 3. This template includes a test option that indicates
whether all of the specified authorities are required or whether anyone or more
of the specified authorities is sufficient. This option can be used, for example, to
test for operational authority by coding a template value of hex OF01 in operandj~
3. Using the any option does not affect what is returned in operand 1. If ...",

13-26 AS/400 MI Functional Reference

L

L

L

Test Authority (TESTAU)

operand 1 is not null and the any option is specified, all of the authorities speci­
fied by operand 3 that are available to the process are returned in operand 1.

If the required authority is available, one of the following occurs:

• Branch form indicated

- Conditional transfer of control to the instruction indicated by the appro­
priate branch target operand.

• Indicator form specified

The leftmost byte of each of the indicator operands is assigned the fol­
lowing values.

Hex F1- If the result of the test matches the corresponding indicator
option

Hex FO- If the result of the test does not match the corresponding indi-
cator option

If no branch options are specified, instruction execution proceeds to the next
instruction. If operand 1 is null and neither the branch or indicator form is used,
an invalid operand type exception is signaled.

The format for the available authority template (operand 1) is as follows: (1 =
authorized)

• Authorization template Char(2)

Object control Bit 0

Object management Bit 1

Authorized pointer Bit 2

Space authority Bit 3

Retrieve Bit 4

Insert Bit 5

Delete Bit 6

Update Bit 7

Ownership (1 = yes) Bit 8

Excluded Bit 9

Authority List Management Bit 10

Reserved (binary zero) Bits 11-15

If operand 2 is a system pointer, it identifies the object for which authority is to
be tested. If operand 2 is a space pointer, it provides addressability to the object
template. The format for the optional object template is as follows:

• Object template

Relative invocation

Reserved (binary 0)

System object

Char(32)

Bin(2)

Char(14)

System pointer

The relative invocation field in the object template identifies an invocation rela­
tive to the current invocation at which the authority verification is to be per-

Chapter 13. Authorization Management Instructions 13-27

Test Authority (TESTAU)

formed. The value of the relative invocation field must be less than or equal to
zero. A value of zero identifies the current invocation, -1 identifies the prior
invocation, -2, the invocation prior to that, and so on. A value larger than the
number of invocations currently on the invocation stack or a positive value
results in the signaling of the template value invalid exception. The program
adopted and propagated user profiles for the identified invocation and older inv­
ocations will be included in the authority verification process. Program adopted
user profiles for invocations newer than the identified invocation will not be
included in the authority verification process. If the current invocation is speci­
fied, its program adopted user profile is included whether or not it is to be prop­
agated.

The system object field specifies a system pointer which identifies the object for
which authority is to be tested.

The format for the required authority template (operand 3) is as follows: (1 =
authorized)

• Authorization template Char(2)

Object control Bit 0

Object management Bit 1

Authorized pointer Bit 2

Space authority Bit 3

Retrieve Bit 4

Insert Bit 5

Delete Bit 6

Update Bit 7

Ownership (1 = yes) Bit 8

Excluded Bit 9

Authority List Management Bit 10

Reserved (binary zero) Bits 11-14

Test option Bit 15

o = All of the above authorities must be present.
1 = Anyone or more of the above authorities must be present.

This instruction will tolerate a damaged object referenced by operand 2 when
the reference is a resolved pointer. The instruction will not tolerate damaged
contexts or programs when resolving pointers. Damaged user profiles encount­
ered during the authority verification processing result in the signaling of the
authority verification terminated due to damaged object exception.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Authorized - the required authority is available. Unauthor­
ized - the required authority is not available.

13-28 AS/400 MI Functional Reference

J

Test Authority (TESTAU)

Authorization Required
• Retrieve

L - Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

L 06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

L 02 machine context damage state X

04 system object damage state X X X X

05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

L 01 pointer does not exist X X X

02 pointer type invalid X X X

Chapter 13. Authorization Management Instructions 13-29

Test Authority (TESTAU)

Operands
Exception 1 2 3 Other
2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X X

07 invalid operand attribute X X X

09 invalid branch target operand X

OC invalid operand odt reference X X X X

00 reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification j
01 scalar type invalid X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X j

13-30 AS/400 MI Functional Reference

L

L

L

Test Extended Authorities (TESTEAU)

13.7 Test Extended Authorities (TESTEAU)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2

10FB Avail- Required Relative
able authority invocation
authority tem-
tem- plate
plate
receiver

Operand 1: Character(8) variable scalar or null (fixed-length).

Operand 2: Character(8) scalar (fixed-length).

Operand 3: Bin(2) scalar or null (fixed-length).

Mnemonic
TESTEAUI

TESTEAUB

Op Code
(Hex)
18FB

1CFB

Form Type
Indicator

Branch

Extender: Branch or indicator options

If the branch option is specified in the op code, the extender field must be
present along with one or two branch targets. If the indicator option is specified
in the op code, the extender field must be present along with one or two indi­
cator operands. The branch or indicator operands immediately follow operand 3.
See Chapter 1. "Introduction" for the encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction verifies that the privileged instructions and special
authorities specified by operand 2 are currently available to the process.

If operand 1 is not null, all of the privileged instructions and special authorities
specified by operand 2 that are currently available to the process are returned in
operand 1.

Note: The term authority verification refers to the testing of the required privi­
leged instruction and special authorities.

If operand 3 is nUll, the authority verification is performed relative to the invoca­
tion executing this instruction. If an operand 3 is specified, the authority verifica­
tion is performed relative to the invocation specified. Specifying an invocation
causes the invocations subsequent to it to be bypassed in the authority verifica­
tion process. This has the influence of excluding the program adopted user pro­
files for any of these excluded invocations from acting as a source of authority to
the authority verification process.

The required privileged instructions and special authorities are specified by the
required authority template of operand 2.

If the required authority is available, one of the following occurs:

• Branch form indicated

Chapter 13. Authorization Management Instructions 13-31

Test Extended Authorities (TESTEAU)

- Conditional transfer of control to the instruction indicated by the appro­
priate branch target operand.

• Indicator form specified

The leftmost byte of each of the indicator operands is assigned the fol­
lowing values.

Hex F1- If the result of the test matches the corresponding indicator
option

Hex FO- If the result of the test does not match the corresponding indi-
cator option

If no branch options are specified, instruction execution proceeds to the next
instruction. If operand 1 is null and neither the branch or indicator form is used,
an invalid operand type exception is signaled.

The format for the available authority template (operand 1) is as follows: (1
authorized)

• Authority Template

Privileged Instruction Template

- Create logical unit description

- Create network description

- Create controller desciption

- Create User Profile

- Modify User Profile

- Diagnose

- Terminate Machine Processing

- Initiate Process

- Modify resource management control

- Create mode description

- Create class of service description

- Reserved (binary zero)

Special Authority template

- All Object

- Load (unrestricted)

- Dump (unrestricted)

- Suspend (unrestricted)

- Load (restricted)

- Dump (restricted)

- Suspend (restricted)

- Process control

- Reserved (binary zero)

- Service

13-32 ASJ400 MJ Functional Reference

Char(8)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-31

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

L

Test Extended Authorities (TESTEAU)

- Auditor Authority Bit 10

- Spool Control Bit 11

- Reserved (binary zero) Bit 12-23

- Modify machine attributes Bit 24-31

• Group 2 Bit 24

· Group 3 Bit 25

• Group 4 Bit 26

• Group 5 Bit 27

• Group 6 Bit 28

• Group 7 Bit 29

• Group 8 Bit 30

• Group 9 Bit 31

The format for the required authority template (operand 2) is as follows: (1 =
authorized)

• Required Authority

Privileged Instruction Template

- Create logoical unit description

- Create network description

- Create controller desciption

- Create User Profile

- Modify User Profile

- Diagnose

- Terminate Machine Processing

- Initiate Process

- Modify resource management control

- Create mode description

- Create class of service description

- Reserved (binary zero)

Special Authority template

- All Object

- Load (unrestricted)

- Dump (unrestricted)

- Suspend (unrestricted)

- Load (restricted)

- Dump (restricted)

- Suspend (restricted)

Char(8)

Char(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bits 11-31

Char(4)

Bit a
Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Chapter 13. Authorization Management Instructions 13-33

Test Extended Authorities (TESTEAU)

- Process control Bit 7

- Reserved (binary zero) Bit 8

- Service Bit 9

- Reserved (binary zero) Bit 10-23

- Modify machine attributes Bit 24-31

• Group 2 Bit 24

• Group 3 Bit 25

• Group 4 Bit 26

• Group 5 Bit 27

• Group 6 Bit 28

• Group 7 Bit 29

• Group 8 Bit 30

• Group 9 Bit 31

The relative invocation operand (operand 3) identifies an invocation relative to
the current invocation at which the authority verification is to be performed. The
value of the relative invocation field must be less than or equal to zero. A value
of zero identifies the current invocation, -1 identifies the prior invocation, -2, the
invocation prior to that, and so on. A value larger than the number of inv­
ocations currently on the invocation stack or a positive value results in the sig­
naling of the template value invalid exception. The program adopted and
propagated user profiles for the identified invocation and older invocations will
be included in the authority verification process. Program adopted user profiles
for invocations newer than the identified invocation will not be included in the
authority verification process. If the current invocation is specified, its program
adopted user profile is included whether or not it is to be propagated.

Damaged user profiles encountered during the authority verification processing
result in the signaling of the authority verification terminated due to damaged
object exception.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Authorized - the required authority is available. Unauthor­
ized - the required authority is not available.

Authorization Required
• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

13-34 AS/400 MI Functional Reference

Test Extended Authorities (TESTEAU)

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

02 machine context damage state X

04 system object damage state X X X X

05 authority verification terminated due to X
damaged object

44 partial system object damage X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X

06 invalid operand type X X X X

07 invalid operand attribute X X X

09 invalid branch target operand X

OC invalid operand odt reference X X X X

00 reserved bits are not zero X X X X

Chapter 13. Authorization Management Instructions 13-35

Test Extended Authorities (TESTEAU)

Operands
Exception 1 2 3 Other

2C Program execution

04 invalid branch target X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X ;)

13-36 AS/400 MJ Functional Reference

Process Management Instructions

Chapter 14. Process Management Instructions

This chapter describes instructions used for process management. These
instructions are in alphabetic order. For an alphabetic summary of all the
instructions, See Appendix A, "Instruction Summary."

© Copyright IBM Corp. 1990 14-1

Materialize Process Attributes (MATPRATR)

14.1 Materialize Process Attributes (MATPRATR)
Op Code (Hex)
0333

Operand 1
Receiver

Operand 2
Process
control
space

Operand 3
Materialization
options

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand 3: Character scalar(1).

Description: The instruction causes either one specific attribute or all the attri­
butes of the designated process to be materialized.

Operand 1 specifies a space that is to receive the materialized attribute values.
The space pointer specified in operand 1 must address a 16-byte aligned area.

Operand 2 is a system pointer identifying the process control space associated
with the process whose attributes are to be materialized. If operand 2 is nUll,
the process issuing the instruction is the subject process. If the subject proc­
ess's attributes are being materialized by another process, that process must be
the original initiator of the subject process or the governing user profile(s) must
have process control special authorization.

Operand 3 is a character scalar(1) specifying which process attribute is to be
materialized. A value of hex 00 results in all the attributes of a process being
materialized in the format described in the Initiate Process instruction for the
process definition template. Other options allow materialization of specialized
process attributes.

The materialization template has the following general format when a process
scalar attribute is materialized:

• Materialization size speCification

Number of bytes provided for materialization

Number of bytes available for materialization

• Process scalar attributes

Char(8)

Bin(4)

Bin(4)

Char(*)

The materialization template has the following general format when a process
pointer attribute is materialized:.

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Reserved (binary 0)

• Process pointer attribute

Char(8)

Bin(4)

Bin(4)

Char(8)

System pointer
or
Space pointer

Note: The values of the entry associated with an ast~risk (*) are ignored by this
instruction.

14-2 AS/400 MI Functional Reference

Materialize Process Attributes (MATPRATR)

The following attributes require materialization targets of varying lengths. The
attributes to be materialized and their operand 3 materialization option values
follow.

• Process control attributes Char(4)

Values hex 01 through hex OB or hex 27 cause the 4-byte process control
attributes value to be placed in the byte area identified by operand 1. The
individual attributes and the corresponding values are as follows:

Process type

o = Dependent process
1 = Independent process

Instruction wait access state
control

o = Access state modification is not allowed

Bit 0

Bit 1

1 = Access state modification is allowed if specified

Time slice end access state control Bit 2

o = Access state modification is not allowed
1 = Access state modification is allowed if specified

Time slice end event option Bit 3

o = Time slice expired without entering instruction wait event is not sig­
naled

1 = Time slice expired without entering instruction wait event is signaled

Reserved (binary 0)

Initiation phase program option

Bit 4

Bit 5

o = No initiation phase program specified (do not enter initiation phase)
1 = Initiation phase program specified (enter initiation phase)

Problem phase program option Bit 6

o = No problem phase program specified (do not enter problem phase)
1 = Problem phase program specified (enter problem phase)

Termination phase program option Bit 7

o = No termination phase program specified (do not enter termination
phase)

1 = Termination phase program specified (enter termination phase)

Process default exception handler option Bit 8

o = No process default exception handler
1 = Process default exception handler specified

Process NRL (name resolution list) option Bit 9

o = No process NRL specified
1 = Process NRL specified

Process access group option Bit 10

o = No process access group specified
1 = Process access group specified

Process adopted user profile list option Bit 11

Chapter 14. Process Management Instructions 14-3

Materialize Process Attributes (MATPRATR)

o = No process adopted user profile list specified
1 = Process adopted user profile list specified

Reserved (binary 0)

• Signal event control mask

The materialization of the control mask is as follows:

- Hex OC = Signal event control mask

• Number of event monitors

The materialization of this attribute is as follows:

- Hex 00 = Number of event monitors

Bits 12-31

Char(2)

Bin(2)

The resource management attributes and data types are as follows:

• Hex OE = Process priority

• Hex OF = Process storage pool 10

• Hex 10 = Maximum temporary
auxiliary storage allowed

• Hex 11 = Time slice interval

• Hex 12 = Default time-out interval

• Hex 13 = Maximum processor time allowed

• Hex 14 = Process multiprogramming level class 10

• Hex 28 = Process category

• Hex 15 = Modification control indicators

Char(1)

Char(1)

Bin(4)

Char(8)

Char(8)

Char(8)

Char(1)

Char(2)

Char(8)

The modification control indicators are materialized when the operand 3 value is
hex 15. Each indicator specifies the modification options allowed to a process
upon itself by the initiating process. The possible values of each modification
control indicator are as follows:

00 = Modification of the attribute is not allowed.

01 = Modification is allowed in the initiation or termination phases only.

10 = Modification is allowed in all phases (initiation, problem, and termination).

The bit assignments of the modification control indicators are as follows:

• Instruction wait access state control

• Time slice end access state control

• Time slice event option

• Reserved (binary 0)

• Problem phase program option

• Termination phase program option

• Process default exception handler option

• Process NRL option

• Signal event control mask

14-4 AS/400 MI Functional Reference

Bits 0-1

Bits 2-3

Bits 4-5

Bits 6-7

Bits 8-9

Bits 10-11

Bits 12-13

Bits 14-15

Bits 16-17

.j

L

Materialize Process Attributes (MATPRATR)

• Process priority Bits 18-19

• Process storage pool identification Bits 20-21

• Maximum temporary auxiliary storage allowed Bits 22-23

• Time slice interval Bits 24-25

• Default time-out interval Bits 26-27

• Maximum processor time allowed Bits 28-29

• Process MPL class ID Bits 30-31

• User profile pointer Bits 32-33

• Process communication object pointer Bits 34-35

• Process NRL pointer Bits 36-37

• Termination phase program Bits 38-39
pointer

• Problem phase program pointer Bits 40-41

• Process default exception handler Bits 42-43

• Process adopted user profile list Bits 44-45

• Process adopted user profile list option Bits 46-47

• Process category Bits 48-49

• Reserved (binary 0) Bits 50-63

The process pointer attributes which may be materialized are the following:

• Hex 16 = Process user profile pointer

The system pointer with addressability to the user profile is placed into the
space addressed by operand 1. If the materialization option (hex 00) is spec­
ified in operand 3, a reserved character(9) field is included at this point. This
user profile is the process user profile assigned by the Initiate Process or
Modify Process Attribute instruction.

• Hex 17 = Process communication object (PCO) pointer

The PCO pointer is placed in the space addressed by operand 1.

• Hex 18 = Process name resolution List

The space pointer to the NRL is placed in the space addressed by operand 1.

• Hex 19 = Initiation phase program pointer

The system pointer to the program is placed in the space addressed by
operand 1.

• Hex 1A = Termination phase program pointer

The system pointer to the program is placed in the space addressed by
operand 1.

• Hex 1 B = Problem phase program pointer

The system pointer to the program is placed in the space addressed by
operand 1.

• Hex 1C = PDEH (process default exception handler program)

Chapter 14. Process Management Instructions 14-5

Materialize Process Attributes (MATPRA TR)

The system pointer to the program is placed in the space addressed by
operand 1.

• Hex 10 = Process automatic storage area

The space pointer with addressability to the PASA is placed in the space
addressed by operand 1.

• Hex 1E = Process static storage area

The space pointer with addressability to the PSSA is placed in the space
addressed by operand 1.

• Hex 1 F = Process access group

The system pointer with addressability to the PAG is placed in the space
addressed by operand 1.

Process status indicators are materialized when the value of operand 3 is hex
20. The format and associated values of this attribute are as follows:

• Process states

External existence state

000 = Suspended
010 = Suspended, in instruction wait
100 = Active, in ineligible wait
101 = Active, in current MPL
110 = Active, in instruction wait

Invocation exit active

Reserved (binary 0)

Internal processing phase

001 = Initiation phase
010 = Problem phase
100 = Termination phase

Reserved (binary 0)

• Process interrupt status (bit 1 denotes pending)

Time slice end pending

Transfer lock pending

Asynchronous lock retry pending

Suspend process pending

Resume process pending

Char(2)

Bits 0-2

Bit 3

Bits 4-7

Bits 8-10

Bits 11-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Resource management attribute modify pending Bit 5

Process attribute modify pending Bit 6

Terminate machine processing pending Bit 7

Terminate process pending Bit 8

Wait time-out pending

Event schedule pending

Machine service pending

14-6 AS/400 MI Functional Reference

Bit 9

Bit 10

Bit 11

L

L

Materialize Process Attributes (MATPRATR)

Invocation exit active

Reserved (binary 0)

• Process initial internal termination status

Initial internal termination reason

Bit 12

Bits 13-15

Char(3)

Bits 0-7

Hex 80 = Return from first invocation in problem phase.
Hex 40 = Return from first invocation in initiation phase. and no problem

phase program specified.
Hex 20 = Terminate Process instruction issued by this process to itself.
Hex 10 = Exception was not handled by the process.
Hex 00 = Process terminated externally.

Initial internal termination code Bits 8-23

The code is assigned in one of the following ways:

1. If the termination is caused by a Return External instruction from the
first invocation. then this code is binary O's.

2. The code is assigned by operand 2 of the Terminate Process instruc­
tion. This code is also given to subordinate processes involved in
the termination.

3. The code is assigned by the original exception code that caused
process termination to commence. This code is also given to subor­
dinate processes involved in the termination.

• Process initial external termination status

Initial external termination reason:

Char(3)

Bits 0-7

Hex 80 = Terminate Process instruction issued explicitly to this process
from another process.

Hex 40 = A superordinate process has been terminated.
Hex 00 = Process terminated internally.

Initial external termination code: Bits 8-23

This code is supplied by the termination code in operand 2 of the Termi­
nate Process instruction.

• Process final termination status

Final termination reason:

Hex 80 = Return instruction from first invocation.

Char(3)

Bits 0-7

Hex 40 = Terminate Process instruction issued by the process being
materialized.

Hex 20 = Terminate Process instruction issued to the process being
materialized by another process.

Hex 10 = Exception not handled by this process.
Hex 08 = Terminate Process instruction issued to superordinate of the

process being materialized.
Hex 04 = Superordinate process of the process being materialized com­

pleted termination phase.

Final termination code is assigned in one of
the following ways:

Bits 8-23

1. If the termination is caused by a Return External instruction from first
invocation, then this code is binary D's.

Chapter 14. Process Management Instructions 14-7

Materialize Process Attributes (MATPRATR)

2. The termination code is assigned by the Terminate Process instruc­
tion.

3. The termination code is assigned by the original exception code that
caused process termination.

The process final termination status is presented as event-related
data in the terminate process event. Usually the event is the only
source of the process final termination status since the process will
cease to exist before its attributes can be materialized.

Process resource usage attributes are materialized when the value of operand 3
is hex 21. The format and associated values of this attribute are as follows:

• Total temporary auxiliary storage used

• Total processor time used

• Number of locks currently held by the process
(including implicit locks)

Bin(4)

Char(8)

Bin(2)

Subordinate processes identification attributes are materialized when the value
of operand 3 is hex 22. The format and associated values of this attribute are as
follows:

• Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

Char(8)

Bin(4)

Bin(4)

• Number of immediately subordinate processes Bin(2)

• Reserved (binary 0) Char(6)

• System pointer to the process control space System pointer(s)
for each subordinate process (repeated for each
immediately subordinate process)

Process performance attributes are materialized when the value of operand 3 is
hex 23. The format and associated values of this attribute are as follows:

• Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Number of synchronous page reads into
main storage associated with data base

• Number of synchronous page reads into
main storage not associated with data base

Char(8)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

• Total number of synchronous page writes from Bin(4)
main storage. This includes writes associated with and
not associated with data base.

14-8 AS/400 MI Functional Reference

L

Materialize Process Attributes (MATPRATR)

• Number of transitions into ineligible wait
state

• Number of transitions into an instruction wait

• Number of transitions into ineligible
wait state from an instruction wait

• Timestamp of materialization

• Number of asynchronous reads into main
storage associated with data base

• Number of asynchronous reads into main
storage not associated with data base

• Number of synchronous writes from main
storage associated with data base

• Number of synchronous writes from main
storage not associated with data base

• Number of asynchronous writes from main
storage associated with data base

• Number of asynchronous writes from main
storage not associated with data base

• Total number of writes from main
storage of permanent objects

• Total reads and writes performed
for checksum updating due to writes
of checksum protected objects

• Number of page faults on process
access group objects

• Number of internal effective address
overflow exceptions

• Number of internal binary
overflow exceptions

• Number of internal decimal
overflow exceptions

• Number of internal floating point
overflow exceptions

• Number of times a page fault occurred
on an address that was currently part of
an auxiliary storage 1/0 operation

• Number of times the process
explicitly waited for outstanding
asynchronous 1/0 operations to complete

Bin(2)

Bin(2)

Bin(2)

Char(8)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Each of the Bin(2) counters has a limit of 32 767. If this limit is exceeded, the
count is set to 0, and no exception is signaled.

The process performance attributes are not supplied with materialization option
hex 00.

Chapter 14. Process Management Instructions 14-9

Materialize Process Attributes (MATPRATR)

The first 4 bytes of the materialization identify the total number of bytes that may
be used by the instruction. This value is supplied as input to the instruction and ".'
is not modified by the instruction. A value of less than 8 causes the ..",
materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes avail­
able to be materialized. The instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the byte area identified by the
receiver is greater than that required to contain the information requested, then
the excess bytes a No exceptions (other than the materialization length excep­
tion described previously) are signaled in the event that the receiver contains
insufficient area for the materialization.

Process execution status attributes are materialized when the value of operand 3
is hex 24. The format and associated values of this attribute are as follows:

• Process priority

Machine interface priority

Machine adjusted priority

Char(2)

Char(1)

Char(1)

Normal value is hex 80. This value is dynamically modified by the
machine.

• Pending interruptions

Time slice end

Transfer lock

Asynchronous lock retry

Suspend process

Resume process

Modify resource management attribute

Modify process attribute

Terminate machine processing

Terminate process

Wait time-out

Event

Machine service

Reserved (binary 0)

• Execution status

Suspended

Instruction wait

In MPL

Ineligible wait

Reserved (binary 0)

• Wait status

• Wait on event

14-10 AS/400 MI Functional Reference

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bits 12-15

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-15

Char(2)

Bit 0

Materialize Process Attributes (MATPRATR)

• Dequeue

• Lock

• Wait on time

• Reserved (binary 0)

• Process class identification

• Storage pool class

• MPL class

• Processor time used

• Performance attributes

Number of synchronous reads into main
storage associated with data base

Number of synchronous reads into main
storage not associated with data base

Bit 1

Bit 2

Bit 3

Bits 4-15

Char(2)

Char(1)

Char(1)

Char(8)

Char(70)

Bin(4)

Bin(4)

Total number of synchronous page writes fromBin(4)
main storage. This includes writes associated with and
not associated with data base.

Transitions to ineligible wait

Transitions to instruction wait

Bin(2)

Bin(2)

Transitions to ineligible from instruction wait Bin(2)

Number of asynchronous reads into main
storage associated with data base

Number of asynchronous reads into main
storage not associated with data base

Number of synchronous writes from main
storage associated with data base

Number of synchronous writes from main
storage not associated with data base

Number of asynchronous writes from main
storage associated with data base

Number of asynchronous writes from main
storage not associated with data base

Total number of writes from main
storage of permanent objects

Total reads and writes performed
for checksum updating due to writes
of checksum protected objects

Number of page faults on process
access group objects

Number of internal effective address
overflow exceptions

Number of internal binary
overflow exceptions

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Chapter 14. Process Management Instructions 14-11

Materialize Process Attributes (MATPRATR)

Number of internal decimal
overflow exceptions

Number of internal floating point
overflow exceptions

Number of times a page fault occurred
on an address that was currently part of
an auxiliary storage lID operation

Number of times the process
explicitly waited for outstanding
asynchronous lID operations to complete

Bin(4)

Bin(4)

Bin(4)

Bin(4)

A system pointer to the process control space is materialized when the value
of operand 3 is hex 25. If a process control space pointer is supplied in
operand 2, it is ignored. A pointer to the process that is executing the
MATPRATR instruction is always materialized.

A materialization option's value of hex 26 causes the adopted user profile list ...J
attributes to be materialized as follows:

• Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Reserved (binary 0)

• Pointer to the adopted user profile list
last used to set this attribute

• Number of user profiles in the
encapsulated adopted user profile list

• Reserved

Char(8)

Bin(4)

Bin(4)

Char(8)

Space pointer

Bin(2)

Char(14)

• List of user profiles in the System pointers
encapsulated adopted user profile list
(one system pointer to each user profile in the list)

Due to verifications performed on the user profiles specified in an adopted
process user profile list input to either the Initiate Process or Modify Process
instructions, the encapsulated adopted user profile list may differ from the
input list. When verification of an input user profile fails, it is not included in
the encapsulated list.

The adopted user profile list attributes are not supplied with materialization
option hex 00.

A materialization option's value of hex 27 causes the process control attri­
butes to be materialized. Refer to the description of this materialization pro­
vided in prior text for this instruction.

Substring operand references that allow for a null substring reference (a
length value of zero) may not be specified for this instruction.

14-12 AS/400 MI Functional Reference

Materialize Process Attributes (MATPRATR)

Authorization Required
• Process control special authorization

- For materializing a process other than the one executing this instruc-
tion

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 3 4 Other

06 Addressing

L 01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

OA Authorization

01 unauthorized for operation X

04 unauthorized for process control X

10 Damage encountered

04 system object damage state X X X X X

05 authority verification terminated X
due to damaged object

44 partial system object damage X X X X X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X X

02 object destroyed X X X

L 03 object suspended X X X

Chapter 14. Process Management Instructions 14-13

Materialize Process Attributes (MATPRATR)

Operands
Exception 1 2 3 4 Other

07 authority verification terminated X

~ due to destroyed object

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

03 pointer addressing invalid object X

28 Process state

02 process control space not associ- X
ated with a process

2A Program creation

06 invalid operand type X X X

07 invalid operand attribute X X X

~ 08 invalid operand value range X X X

OA invalid operand length X

OC invalid operand odt reference X X X

00 reserved bits are not zero X X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

~

14-14 AS/400 MI Functional Reference

L

14.2 Wait On Time (WAITTIME)
Op Code (Hex)
0349

Operand 1
Wait tem­
plate

Operand 1: Character(16) scalar.

Wait On Time (WAITTIME)

Description: This instruction causes the process to wait for a specified time
interval. The current process is placed in wait state for the amount of time
specified by the wait template in accordance with the specified wait options.

The format of the wait template for operand 1 is:

• Wait time interval

• Wait options

Access state control for entering wait

o = Do not modify access state
1 = Modify access state

Char(8)

Char(2)

Bit 0

Access state control for leaving wait Bit 1

o = Do not mod ify access state
1 = Modify access state

MPL (multiprogramming level)
control during wait

o = Do not remain in current MPL set
1 = Remain in current MPL set

Reserved

• Reserved

Bit 2

Bits 3-15

Char(6)

The format of the wait time interval value is that of a 64-bit unsigned binary
value where bit 41 is equal to 1024 microseconds, assuming the bits are
numbered from 0 to 63.

The access state control options control whether the process access group
(PAG) will be explicitly transferred between main and auxiliary storage when
entering and leaving a wait as a result of execution of this instruction. Spec­
ification of modify access state requests that the PAG be purged from main
to auxiliary storage for entering a wait and requests that the PAG be trans­
ferred from auxiliary to main storage for leaving a wait. Specification of do
not modify access state requests that the PAG not be explicitly transferred
between main and auxiliary storage as a result of executing this instruction.

The access state of the PAG is modified when entering the wait if the
process' instruction wait initiation access state control attribute specifies
allow access state modification, if the access state control for entering wait
option specifies modify access state, and if the MPL control during wait
option specifies do not remain in current MPL set.

The MPL control during wait option controls whether the process will be
removed from the current MPL (multiprogramming level) set or remain in the

Chapter 14. Process Management Instructions 14-15

Wait On Time (WAITTIME)

Exceptions

current MPL set when the process enters a wait as a result of executing this
instruction.

When the MPL control during wait option specifies remain in current MPL set
and the access state control for entering wait option specifies do not modify
access state, the process will remain in the current MPL set for a maximum
of 2 seconds. After 2 seconds, the process will automatically be removed
from the current MPL set. The automatic removal does not change or affect
the total wait time specified for the process in the wait time interval.

Substring operand references that allow for a null substring reference (a
length value of zero) may not be specified for this instruction.

Operands
Exception 1 2 3 4 Other

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered

04 system object damage state X

05 authority verification terminated X
due to damaged object

44 partial system object damage X

20 Machine support

02 machine check X

03 function check X

22 Object access

02 object destroyed X

03 object suspended X

07 authority verification terminated X
due to destroyed object

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

2A Program creation

06 invalid operand type X

07 invalid operand attribute X

OA invalid operand length X

OC invalid operand odt reference X

14-16 AS/400 MI Functional Reference

j

j

j

Wait On Time (WAITTIME)

Operands
Exception 1 2 3 4 Other

00 reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X

02 scalar attributes invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

L

L

Chapter 14. Process Management Instructions 14-17

Wall On Time (WAITTIME)

14-18 AS/400 MI Functional Reference

L

Resource Management Instructions

Chapter 15. Resource Management Instructions

(C) Copyright IBM Corp. 1990

This chapter describes the storage and resource management instructions.
These instructions are in alphabetic order. For an alphabetic summary of all
the instructions, see Appendix A, "Instruction Summary."

15-1

Ensure Object (ENSOBJ)

15.1 Ensure Object (ENSOBJ)
Op Code (Hex)
0381

Operand 1
System
pointer

Operand 1: System pointer.

Description: The object identified by operand 1 is protected from volatile
storage loss. The machine ensures that any changes made to the specified
object are recorded on nonvolatile storage media. The access state of the
object is not changed by this instruction. If operand 1 addresses a tempo­
rary object, no operation is performed because temporary objects are not
preserved during a machine failure. No exception is signaled if temporary
objects are referenced.

Authorization Required

Lock Enforcement

Exceptions

• Retrieve

- Contexts referenced for address resolution

• Materialize

- Contexts referenced for address resolution

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

OA Authorization

01 unauthorized for operation

10 Damage encountered

04 system object damage state

05 authority verification terminated due to damaged object

44 partial system object damage

1 A Lock state

01 invalid lock state

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

15-2 AS/400 MI Functional Reference

Operands
1 Other

x
X

X

X

X

X

X

X

X

X

X

X

Ensure Object (ENSOBJ)

Operands
Exception 1 Other

L 02 machine check X

03 function check X

22 Object access

01 object not found X

02 object destroyed X

03 object suspended X

04 object not eligible for operation X

07 authority verification terminated due to destroyed X
object

24 Pointer specification

01 pointer does not exist X

L
02 pointer type invalid X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X

07 invalid operand attributes X

08 invalid operand value range X

OC invalid operand odt reference X

L
00 reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

30 Journal management

02 entry not journaled X

32 Scalar specification

01 scalar type invalid X

L 36 Space management

01 space extension/truncation X

Chapter 15. Resource Management Instructions 15-3

Materialize Access Group Attributes (MATAGAT)

15.2 Materialize Access Group Attributes (MATAGAT)
Op Code (Hex)
03A2

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Access group

Description: The attributes of the access group and the identification of
objects currently contained in the access group are materialized into the
receiving object specified by operand 1.

The materialization must be aligned on a 16-byte boundary. The format is:

• Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Object identification

Object type

Object subtype

Object name

• Object creation options

Existence attributes

o = Temporary
1 = Reserved

Space attribute

o = Fixed-length
1 = Variable-length

Context

o = Addressability not in context
1 = Addressability in context

Reserved (binary 0)

Initialize space

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

- Space alignment

15-4 AS/400 M I Functional Reference

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

Bits 3-12

Bit 13

Bits 14-31

Char(4)

Bin(4)

Char(1)

Char(4)

Bit 0

L

Materialize Access Group Attributes (MATAGAT)

o = The space associated with the object is allocated to allow
proper alignment of pointers at 16-byte alignments within the
space. If no space is specified for the object, this value must be
specified for the performance class.

1 = The space associated with the object is allocated to allow
proper alignment of pointers at 16-byte alignments within the
space as well as to allow proper alignment of inpuVoutput buffers
at 512-byte alignments within the space.

Reserved (binary 0)

Default main storage pool

Bits 1-4

Bit 5

o = Process main storage pool is used for this object.
1 = Machine default main storage pool is used for this object.

Reserved (binary 0) Bit 6

Block transfer on implicit access state Bit 7
modification

o = Minimum storage transfer size for this object is transferred.
This value is 1 storage unit.

1 = Machine default storage transfer size is transferred. This value
is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Context System pointer

• Reserved (binary 0) Char(16)

• Access group size Bin(4)

• Reserved (binary 0) Bin(4)

• Number of objects in the access group Bin(4)

• Reserved (binary 0) Char(4)

• Access group object system pointer System pointer
(repeated for each object currently contained
in the access group)

The receiver space contains the access group's attributes (as defined by the
Create Access Group instruction), the current status of the access group, and
a system pointer to each object assigned to the access group.

The access group size represents the total amount of space that has been
allocated to the access group. The amount of available space represents the
amount of space that is available in the access group for additional objects.

There is one access group object system pointer for each object currently
assigned to the access group. The authorization field within each system
pointer is not set.

Chapter 15. Resource Management Instructions 15-5

Materialize Access Group Attributes (MATAGAT)

Authorization Required
• Retrieve

..J Operand 2

Contexts referenced for address resolution

Lock Enforcement
• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 Other

06 Addressing

01 space addressing violation X X

..J 02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X j
10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1A Lock state

01 invalid lock state X X J
1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

15-6 AS/400 MI Functional Reference

Materialize Access Group Attributes (MATAGAT)

Operands
Exception 1 2 Other

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 15. Resource Management Instructions 15-7

Materialize Resource Management Data (MATRMD)

15.3 Materialize Resource Management Data (MATRMD)
Op Code (Hex)
0352

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Control data

Operand 2: Character(8) scalar (fixed-length).

Description: The data items requested by operand 2 are materialized into
the receiving object specified by operand 1. Operand 2 is an 8-byte char­
acter scalar. The first byte identifies the generic type of information being
materialized, and the remaining 7 bytes further qualify the information
desired.

Operand 1 contains the materialization and has the following format:

• Materialization size specification Char(8)

Number of bytes provided for 8in(4)
materialization

Number of bytes available for 8in(4)
materialization

• Time of day Char(8)

• Resource management data Char(*)

The remainder of the materialization depends on operand 2 and on the
machine implementation. The following values are allowed for operand 2:

• Selection option Char(1)

Hex 01 = Materialize processor utilization data
Hex 03 = Materialize storage management counters
Hex 04 = Materialize storage transient pool information
Hex 08 = Materialize machine address threshold data
Hex 09 = Materialize main storage pool information
Hex OA = Materialize MPL control information
Hex OC = Materialize machine reserved storage pool information
Hex 11 = Materialize user storage area 1
Hex 12 = Materialize auxiliary storage information

• Reserved (binary 0) Char(7)

The following defines the formats and values associated with each of the
above materializations of resource management data.

Processor Utilization (Hex 01):

• Processor time since IPL (initial program load)Char(8)

Processor time since IPL is the total amount of processor time used, both by
instruction processes and internal machine functions, since IPL. The signif­
icance of bits within the field is the same as that defined for the time-of-day
clock.

Storage Management Counters (Hex 03):

• Access pending

15-8 AS/400 MI Functional Reference

8in(2)

..J

L

L

Materialize Resource Management Data (MATRMD)

• Storage pool delays Bin(2)

• Directory look-up operations Bin(4)

• Directory page faults Bin(4)

• Access group member page faults Bin(4)

• Microcode page faults Bin(4)

• Microtask read operations Bin(4)

• Microtask write operations Bin(4)

• Reserved Bin(4)

Access pending is a count of the number of times that a paging request must
wait for the completion of a different request for the same page.

Storage pool delays is a count of the number of times that processes have
been momentarily delayed by the unavailability of a main storage frame in
the proper pool.

Directory look-up operations is a count of the number of times that auxiliary
storage directories were interrogated, exclusive of storage allocation or deal­
location.

Directory page faults is a count of the number of times that a page of the
auxiliary storage directory was transferred to main storage, to perform either
a look-up or an allocation operation.

Access group member page faults is a count of the number of times that a
page of an object contained in an access group was transferred to main
storage independently of the containing access group. This occurs when the
containing access group has been purged or because portions of the con­
taining access group have been displaced from main storage.

Microcode page faults is a count of the number of times a page of microcode
was transferred to main storage.

Microtask read operations is a count of the number of transfers of one or
more pages of data from auxiliary main storage on behalf of a microtask
rather than a process.

Microtask write operations is a count of the number of transfers of one or
more pages of data from main storage to auxiliary storage on behalf of a
microtask, rather than a process.

Storage Transient Pool Information (Hex 04):

• Storage pool to be used for the transient pool Bin(2)

The pool number materialized is the number of the main storage pool, which
is being used as the transient storage pool. A value of 0 indicates that the
transient pool attribute is being ignored.

Machine Address Threshold Data (Hex 08):

• Total permanent addresses possible

• Total temporary addresses possible

Char(8)

Char(8)

Chapter 15. Resource Management Instructions 15-9

Materialize Resource Management Data (MATRMD)

• Permanent addresses remaining

• Temporary addresses remaining

• Permanent addresses threshold

• Temporary addresses threshold

Char(8)

Char(8)

Char(8)

Char(8)

Total permanent addresses possible is the maximum number of permanent
addresses that can exist on the machine.

Total temporary addresses possible is the maximum number of temporary
addresses that can exist on the machine.

Permanent addresses remaining is the number of permanent addresses that
can still be created before address regeneration must be run.

Temporary addresses remaining is the number of temporary addresses that
can still be created before address regeneration must be run.

Permanent addresses threshold is a number that, when it exceeds the
number of permanent addresses remaining, causes the event machine
address threshold exceeded to be signaled. When the event is signaled, the
threshold is reset to O.

Temporary addresses threshold is a number that, when it exceeds the
number of temporary addresses remaining, causes the event machine
address threshold exceeded to be signaled. When the event is signaled, the
threshold is reset to O.

Main Storage Poo//nformation (Hex 09):

• Machine minimum transfer size

• Maximum number of pools

• Current number of pools

• Main storage size

• Reserved (binary 0)

Bin(2)

Bin(2)

Bin(2)

Bin(4)

Char(2)

• Pool 1 minimum size Bin(4)

• Individual main storage pool information Char(32)
(repeated once for each pool, up to the current
number of pools)

Pool size Bin(4)

Pool maintenance Bin(4)

Process interruptions (data base) Bin(4)

Process interruptions (nondata base) Bin(4)

Data transferred to pool (data base) Bin(4)

Data transferred to pool (nondata base) Bin(4)

Reserved (binary 0) Char(8)

Machine minimum transfer size is the smallest number of bytes that may be
transferred as a block to or from main storage.

15-10 AS/400 MI Functional Reference

L

L

Materialize Resource Management Data (MATRMD)

Maximum number of pools is the maximum number of storage pools into
which main storage may be partitioned. These pools will be assigned the
logical identification beginning with 1 and continuing to the maximum
number of pools.

Current number of pools is a user-specified value for the number of storage
pools the user wishes to utilize. These are assumed to be numbered from 1
to the number specified. This number is fixed by the machine to be equal to
the maximum number of pools.

Main storage size is the amount of main storage, in units equal to the
machine minimum transfer size, which may be apportioned among main
storage pools.

Pool 1 minimum size is the amount of main storage, in units equal to the
machine minimum transfer size, which must remain in pool 1. This amount
is machine and configuration dependent.

Individual main storage pool ·information is data in an array that is associ­
ated with a main storage pool by virtue of its ordinal position within the
array. In the descriptions below, data base refers to all other data, including
internal machine fields. Pool size, pool maintenance, and data transferred
information is expressed in units equal to the machine minimum transfer
size described above.

Pool size is the amount of main storage assigned to the pool.

Pool maintenance is the amount of data written from a pool to secondary
storage by the machine to satisfy demand for resources from the pool. It
does not represent total transfers from the pool to secondary storage, but
rather is an indication of machine overhead required to provide primary
storage within a pool to requesting processes.

Process interruptions (data base and nondata base) is the total number of
interruptions to processes (not necessarily assigned to this pool) which were
required to transfer data into the pool to permit instruction execution.

Data transferred to pool (data base and nondata base) is the amount of data
transferred from auxiliary storage to the pool to permit instruction execution
and as a consequence of set access state, implicit access group movement,
and internal machine actions.

Multiprogramming Level Control Information (Hex OA):

• Machine-wide MPL control Char(16)

Machine maximum number of MPL classe93in(2)

Machine current number of MPL classes 8in(2)

MPL (max) 8in(2)

Ineligible event threshold 8in(2)

MPL (current) Bin(2)

Number of processes in ineligible state Bin(2)

Reserved Char(4)

Chapter 15. Resource Management Instructions 15-11

Materialize Resource Management Data (MATRMD)

• MPL class information (repeated for each MPLChar(16)
class, from 1 to the current number of MPL classes)

MPL (max) Bin(2)

Ineligible event threshold Bin(2)

Current MPL Bin(2)

Number of processes ineligible state Bin(2)

Number of processes assigned to class Bin(2)

Transitions (active to ineligible) Bin(2)

Transitions (active to MI wait) Bin(2)

Transitions (MI wait to ineligible) Bin(2)

Machine-Wide MPL Control:

Maximum number of MPL classes is the largest number of MPL classes
allowed in the machine. These are assumed to be numbered from 1 to
the maximum.

Current number of MPL classes is a user-specified value for the number
of MPL classes in use. They are assumed to be numbered from 1 to the
current number.

MPL (max) is the maximum number of processes which may concur­
rently be in the active state in the machine.

Ineligible event threshold is a number which, if exceeded by the machine
number of ineligible processes defined below, will cause the machine
ineligible threshold exceeded event to be signaled. When the event is
signaled, this value is set by the machine to 65 535.

MPL (current) is the current number of processes in the active state.

Number of processes in the ineligible state is the number of processes
not currently active because of enforcement of both the machine and
class MPL rules.

MPL Class Information:

MPL class controls is data in an array that is associated with an MPL
class by virtue of its ordinal position within the array.

MPL (max) is the number of processes assigned to the class which may
be concurrently active.

Ineligible event threshold, MPL (current), and number of processes in
ineligible state are as defined above but apply only to processes
assigned to the class.

Number of processes assigned to class is the total number of processes,
in any state, assigned to the pool.

Transitions count is the total number of transitions by processes
assigned to a class as follows:

1. Active state to ineligible state

2. Active state to wait

3. Wait state to ineligible state

15-12 AS/400 MI Functional Reference

Materialize Resource Management Data (MATRMD)

Note that transitions from wait state to active state can be derived as (2 -
3) and transitions from ineligible state to active state as (1 + 3). These
numbers are unsigned Bin(2) and are maintained by the machine without
regard to overflow conditions.

Machine Reserved Storage Pool Information (Hex DC):

• Current number of pools

• Reserved

• Individual main storage pool information
(repeated once for each pool, up
to the current number of pools)

Pool size

Machine portion of the pool

Number of load/dump sessions

Reserved

Bin(2)

Char(6)

Char(16)

Bin(4)

Bin(4)

Bin(2)

Char(6)

Pool size is the amount of main storage assigned to the pool (including the
machine reserved portion).

Machine portion of the pool specifies the amount of storage from the pool
that is dedicated to machine functions.

User storage area 1 (Hex 11):

• User data Char(*)

The user data previously stored internally in the machine through usage of
the corresponding option on the Modify Resource Management Controls
instruction is materialized into the receiver. The operand 1 template, for this
option, must start on a 16 byte boundary and any pointers contained in the
user data are preserved in the materialization.

The length value materialized in the number of bytes available for
materialization field of operand 1 specifies the length of the entire operand 1
template and is limited, through checks performed on the modify operation,
to a maximum value of 65 504 (64K-32) bytes. The actual length of the user
data materialized is calculated by subtracting 16 from the length value for
the total template length.

Auxiliary Storage Information (Hex 12):

The auxiliary storage information describes the ASPs (auxiliary storage
pools) which are configured within the machine and the units of auxiliary
storage currently allocated to an ASP or known to the machine but not allo­
cated to an ASP.

Note that contrary to the normal case of being able to modify the values
materialized by this option through use of the Modify Resource Management
Controls instruction, modification of most of the auxiliary storage configura­
tion is performed using functions available in DST (the Dedicated Service
Tool).

Chapter 15. Resource Management Instructions 15-13

Materialize Resource Management Data (MATRMD)

Also note that through appropriate setting of the number of bytes provided
field for operand 1, the amount of information to be materialized for this '\ ...
option can be reduced thus avoiding the processing for unneeded informa- .."",
tion. As an example, by setting this field to only provide enough bytes for the
common 16 byte header, plus the option Hex 12 control information, plus the
system ASP entry of the ASP information, you can get just the information up
through the system ASP entry returned and avoid the overhead for the user
ASPs and unit information.

Control information Char(64)
(occurs just once)

• Number of ASPs Bin(2)

• Number of allocated auxiliary storage units Bin(2)

Note: Number of configured, non-mirrored
units + number of mirrored pairs

• Number of unallocated auxiliary storage units Bin(2)

• Control flags

- Main storage dump area unavailable
- Reserved

• Reserved

• Maximum unprotected space used

• Current unprotected space in use

• Checksum main storage

• Unit information offset

• Number of pairs of mirrored units

• Mirroring main storage

• Reserved

Char(1)

Bit 0
Bits 1-7

Char(1)

Bin(8)

Bin(8)

Bin(4)

Bin(4)

Bin(2)

Bin(4)

Char(26)

ASP information Char(160)
(Repeated once for each ASP. Located immediately
after the control information above. ASP 1, always
configured, is first. Configured user ASPs follow
in ascending numerical order.)

• ASP number

• ASP control flags

Suppress threshold exceeded event
User ASP overflow
Checksum protection
Unprotected space overflow
ASP mirrored
User ASP MI State
Reserved

• Reserved

• ASP media capacity

15-14 AS/400 MI Functional Reference

Char(2)

Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7

Char(5)

Bin(8)

Materialize Resource Management Data (MATRMD)

• Reserved Bin(8)

• ASP space available Bin(8)

• ASP event threshold Bin(8)

• ASP event threshold percentage Bin(2)

• Reserved Char(S4)

• ASP checksum information Char(64)

Protected space capacity Bin(8)

Unprotected space capacity Bin(8)

Protected space available Bin(8)

Unprotected space available Bin(8)

Unprotected space on each checksummed Bin(4)
unit

Reserved Char(28)

Unit information Char(208)
(Consists of one entry each for the configured,
non-mirrored units and one unit of the mirrored
pairs, the non-configured units, and the other
unit of the mirrored pairs.

An allocated storage unit (ASU) is either an allocated,
non-mirrored unit or a mirrored pair. Note that the
mirrored pair counts only as one ASU. When used without
qualification, the term unit refers to an ASU.

Unit information start may be located by the Unit
Information Offset in the control information.)

• Device type

- Disk Type
- Disk Model

• Device identification

Unit number
Serial number
Reserved

• Unit relationship

Reserved
Bus information

- Bus number
- Bus unit (lOP)

Controller identification
Actuator identification

• Unit ASP number

• Logical mirrored pair status

Char(8)

Char(4)
Char(4)

Char(8)

Char(2)
Char(4)
Char(2)

Char(4)

Char(1)
Char(1)
Bits 0-2
Bits 3-7
Char(1)
Char(1)

Char(2)

Char(1)

Chapter 15. Resource Management Instructions 15-15

Materialize Resource Management Data (MATRMD)

•

•

•

•

•

•

•

•

Unit mirrored Bit a
Mirrored unit protected Bit 1
Mirrored pair reported Bits 2
Reserved Bits 3-7

Mirrored unit status Char(1)

Unit media capacity Bin(8)

Reserved Bin(8)

Unit space available Bin(8)

Unit reserved system space Bin(8)

Reserved Char(24)

Unit checksum information Char(64)

Unit redundancy space Bin(8)

Unit protected space capacity Bin(b)

Unit protected space available Bin(8)

Unit unprotected space capacity Bin(8)

Unit unprotected space available Bin(8)

Unit checksum set number Char(2)

Reserved Char(22)

Unit usage information Char(64)

Blocks transferred to main storage Bin(4)
Blocks transferred from main storage Bin(4)

Requests for data transfer to main Bin(4)
storage
Requests for data transfer from main Bin(4)
storage
Permanent blocks transferred Bin(4)
from main storage
Requests for permanent data transfer Bin(4)
from main storage
Redundancy blocks transferred Bin(4)
from main storage
Requests for redundancy data transfer froriBin(4)
main storage

Reserved Char(32)

Number of ASPs - is the number of ASPs configured within the machine.
One, the minimum value, indicates just the system ASP exists and that there
are no user ASPs configured. Up to 15 user ASPs can be configured.
Values greater than one indicate how many user ASPs are configured in
addition to the system ASP. The system ASP always exists.

Number of allocated auxiliary storage units - is the number of configured

j

units logically addressable by the system as units. This is the number of . \
configured, non-mirrored units plus the number of mirrored pairs allocated to """'"
the ASPs. The total number of units (actuator arms) on the system is the
sum of the allocated auxiliary storage units plus the number of unallocated

15-16 AS/400 MI Functional Reference

Materialize Resource Management Data (MATRMD)

auxiliary storage units plus the number of pairs of mirrored units. For
example, each 9335 enclosure represents two units. Information on these
units is materialized as part of the unit information. Any two units of the
same type and size may be associated to form a mirrored pair. Association
of two units as a mirrored pair reduces the amount of logically available
storage by the number of bytes contained on one of the mirrored units in the
mirrored pair.

Number of unallocated auxiliary storage units - is the number of auxiliary
storage units that are currently not allocated to an ASP. Information on
these units is materialized as part of the unit information.

Main storage dump area unavailable flag - indicates whether or not the main
storage dump area on the load source disk unit is unavailable. A value of
binary 1 indicates it is unavailable; binary 0 indicates it is available. The
condition where it is unavailable can arise when main storage is added to
the machine, but during subsequent IPL processing the machine can not free
up space on the load source disk unit for the additional dump area needed.
This occurs when there is insufficient space available on the other disk units
in the system ASP to allow for movement of object allocations off of the load
source unit. The corrective action is to free up space in the system ASP and
relPL the machine so the allocation of additional space to the dump area can
be completed.

The main storage dump area is important for recovery and diagnostic pur­
poses. It is used by the machine during certain hardware and power failures
to capture a main storage dump which is used to minimize the object
damage which can result. It is also used by the machine during certain soft­
ware logic failures to capture a main storage dump which is used to deter­
mine the cause of the failure.

Maximum unprotected space used (Checksum field) - is the largest number
of bytes of unprotected storage used at anyone time since the last IPL of the
machine. When checksum protection is not in effect for the system ASP, this
field describes the amount of unprotected storage that would have been
used if checksum protection had been in effect.

Current unprotected space used (Checksum field) - is the current number of
bytes of unprotected storage in use. When checksum protection is not in
effect for the system ASP, this field describes the amount of unprotected
storage that would be in use if checksum protection was in effect.

Checksum main storage (Checksum field) - is the number of bytes of main
storage reserved in the machine storage pool for checksum usage.

Unit information offset - is the offset, in bytes, from the start of the operand 1
materialization template to the start of the unit information. This value can be
added to a space pointer addressing the start of operand 1 to address the
start of the unit information.

Number of pairs of mirrored units - represents the number of mirrored pairs
in the system. Each mirrored pair consists of two mirrored units; however,
only one of the two mirrored units is guaranteed to be operational.

Chapter 15. Resource Management Instructions 15-17

Materialize Resource Management Data (MATRMD)

Mirroring main storage - is the number of bytes of main storage in the
machine storage pool used by mirroring. This increases when mirror syn-. . .. '"
chronization is active. This amount of storage is directly related to the ..",
number of mirrored pairs.

ASP information - is repeated once for each ASP configured within the
machine. The number of ASPs configured is specified by the number of
ASPs field. ASP 1, the system ASP is materialized first. Because the system
ASP always exists, its materialization is always available. The user ASPs
which are configured are materialized after the system ASP in ascending
numerical order. There may be gaps in the numerical order. That is, if just
user ASPs 3 and 5 are configured, only information for them is materialized
producing information on just ASP 1, ASP 3 and ASP 5 in that order.

ASP number - uniquely identifies the auxiliary storage pool. The ASP
number may have a value from 1 through 16. A value of 1 indicates the
system ASP. A value of 2 through 16 indicates a user ASP.

Suppress threshold exceeded event flag - indicates whether or not the
machine is suppressing signaling of the related event when the event
threshold in effect for this ASP has been exceeded. A value of binary 1 indi­
cates that the signaling is being suppressed; binary 0 indicates that the sig­
naling is not being suppressed. The default after each IPL of the machine is
that the signaling is not suppressed; i.e. default is binary O. For the system
ASP, this flag is implicitly set to binary 1 by the machine when the machine
auxiliary storage threshold exceeded event is signaled. For a user ASP, this
flag is implicitly set to binary 1 by the machine when the user auxiliary
storage threshold exceeded event is signaled. This is done to avoid repeti­
tive signaling of the event when the threshold exceeded condition occurs.
Option Hex 12 of the Modify Resource Management Controls instruction can
be used to explicitly reset the suppression of the threshold exceeded event
when it is desirable to again have the machine detect the threshold
exceeded condition and signal the related event.

User ASP overflow flag (Checksum field) - indicates whether or not object
allocations directed into the user ASP have overflowed into the system ASP.
A value of binary 1 indicates overflow; binary 0 indicates no overflow. This
flag does not apply to the system ASP, and is always set to a binary 0 for it.

Checksum protection flag - specifies whether or not the ASP is under
checksum protection. A value of binary 1 indicates that checksum protection
is in effect; a value of binary 0 indicates it is not. Because checksum pro­
tection is only allowed for the system ASP, this flag is only applicable to the
system ASP.

Unprotected space overflow flag (Checksum field) - specifies whether or not
allocations for unprotected data in the ASP have exceeded the unprotected
space capacity and overflowed into the area normally used for allocation of
protected data. A value of binary 1 indicates that such overflow has
occurred; a value of binary 0 indicates it has not. This status is set when the
ASP unprotected space overflow event is signaled; it is reset automatically
on the subsequent IMPL of the machine. Because unprotected storage is
used primarily for allocation of temporary objects which are automatically
deallocated as part of the IPL process, the overflowed allocations are freed
up at IPL, providing for the automatic reset of the overflow condition.

15-18 AS/400 M I Functional Reference

Materialize Resource Management Data (MATRMD)

Because checksum protection is only allowed for the system ASP, this flag is
only applicable to the system ASP.

ASP mirrored flag - specifies whether or not the ASP is configured to be
mirror protected. A value of binary 1 indicates that ASP mirror protection is
configured. Refer to the mirror unit protected flag to determine if mirror pro­
tection is active for each mirrored pair. A value of binary 0 indicates that
none of the units associated with the ASP are mirrored.

User ASP MI State - indicates the state of the User ASP. A value of binary 1
indicates that the User ASP is in the 'new' state. This means that a context
may be allocated in this User ASP. A value of binary 0 indicates that the
User ASP is in the 'old' state. This means that there are no contexts allo­
cated in this User ASP. This flag has no meaning for the System ASP and
will always be set to binary 0 for it.

ASP media capacity - specifies the total space, in number of bytes of auxil­
iary storage, on the storage media allocated to the ASP. This is just the sum
of the unit media capacity fields for (1) the units allocated to the ASP or (2)
the mirrored pairs in the ASP.

ASP space available - is the number of bytes of secondary storage space
that is not currently assigned to objects or internal machine functions, and
therefore, is available for allocation in the ASP when the ASP is not under
checksum protection. Note that a mirrored pair counts for only one unit.
When the ASP is under checksum protection, this value is meaningless and
the ASP checksum information describes the space available values.

ASP event threshold - specifies the minimum value for the number of bytes
of auxiliary storage space available in the ASP prior to the signaling of the
appropriate threshold exceeded event. The threshold exceeded condition
occurs when either the protected space available value or the ASP space
available value, depending upon whether checksum protection is or isn't in
effect for the ASP, becomes equal to or less than the ASP event threshold
value. This condition causes either the auxiliary storage threshold exceeded
event, for the system ASP, or the user ASP threshold exceeded event, for a
user ASP, to be signaled. Redundant signaling of these events is sup­
pressed as indicated by the setting of the suppress threshold exceeded
event flag. Refer to the definition of the suppress threshold exceeded event
flag for more information.

The ASP event threshold value is calculated from the the ASP event
threshold percentage value by multiplying either the protected space
capacity value or the ASP media capacity value, depending upon whether
checksum protection is or isn't in effect for the ASP, by the ASP event
threshold percentage and subtracting the product from that same capacity
value.

ASP event threshold percentage - specifies the auxiliary storage space utili­
zation threshold as a percentage of either the protected space capacity or
the ASP media capacity, depending upon whether checksum protection is or
isn't in effect for the ASP. This value is used, as described above, to calcu­
late the ASP event threshold value. This value can be modified through use
of Dedicated Service Tool DASD configuration options.

Chapter 15. Resource Management Instructions 15-19

Materialize Resource Management Data (MATRMD)

ASP checksum information (Checksum field) - specifies capacity and space
available values that apply when the ASP is under checksum protection. In
this case, the units of auxiliary storage allocated to ASP are formatted with
areas for protected data, unprotected data, and redundancy data. Informa­
tion on the protected and unprotected space is provided both here in these
fields on an ASP basis and under unit information on a per unit basis. Infor­
mation on redundancy space is only provided under unit information on a
per unit basis. When the ASP is not under checksum protection, the values
of these fields are meaningless. Because checksum protection is only
allowed for the system ASP, this information is only applicable to the system
ASP.

Protected space capacity (Checksum field) - specifies the total number of
bytes of auxiliary storage formatted for the storage of protected data in the
ASP.

Unprotected space capacity (Checksum field) - specifies the total number of
bytes of auxiliary storage formatted for storage of unprotected data in the
ASP.

Protected space available (Checksum field) - specifies the number of bytes of
auxiliary storage formatted for storage of protected data that are not cur­
rently assigned to objects or internal machine functions, and therefore, are
available for allocation in the ASP.

Unprotected space available (Checksum field) - specifies the number of bytes
of auxiliary storage formatted for storage of unprotected data that are not
currently assigned to objects or internal machine functions, and therefore,
are available for allocation in the ASP.

Unprotected space on each checksummed unit (Checksum field) - specifies
the number of megabytes (millions of bytes) of auxiliary storage formatted
for storage of unprotected data on each unit allocated to a checksum set in
the ASP. Using the Dedicated Service Tool to modify this value provides for
altering the relation of the protected versus unprotected space capacity
values.

Unit information - is materialized in the following order:

Group 1: Configured units consisting of non-mirrored units and mirrored
units.

Group 2: Non-configured units

Group 3: Configured units consisting of mirrored units.

Internal designators are used to guarantee consistency across DST, SST,
and XPF .No code dependencies may be based on the order in which these
units are materialized. The unit information is located by the unit information
offset field which specifies the offset from the beginning of the operand 1
template to the start of the unit information. The number of entries for each
of the three groups listed above is defined as follows:

Group 1: Number of non-mirrored, configured units + number of mir­
rored pairs

Group 2: Number of non-configured storage units

15-20 AS/400 MI Functional Reference

L

Materialize Resource Management Data (MATRMD)

Group 3: Number of mirrored pairs

For unallocated units, the device type, device identification, unit relationship,
and unit media capacity fields contain meaningful information. The
remaining fields have no meaning for unallocated units because the units
are not currently in use by the system. Mirrored unit entries contain either
current or last known information. The last known data consists of the mir­
rored unit status, disk type, disk model, unit ASP number, disk serial
number, and unit address. Last knows information is provided when the Mir­
rored Unit Reported field is a binary zero.

Disk type - identifies the type of disk enclosure containing this auxiliary
storage unit. This is the four byte character field from the vital product data
for the disk device which identifies the type of drive. For example, the value
is character string '9332' for a 9332 device and '9335' for a 9335 device.

Disk model - identifies the model of the type of disk enclosure containing this
auxiliary storage unit. This is the four byte character field from the vital
product data for the disk device which identifies the model of the drive. For
example, the value is character string '0200' for a model 200 9332 device and
'0400' for a model 400 9332 device.

Unit number - Uniquely identifies each non-mirrored unit or mirrored pair
among the configured units. Both mirrored units of a mirrored pair have the
same unit number. The value of the unit number is assigned by the system
when the unit is allocated to an ASP. For unallocated units, the unit number
is set to binary zero.

Serial number - specifies the serial number of the device containing this aux­
iliary storage unit. This is the four byte serial number field from the vital
product data for the disk device.

Bus number - identifies the 1/0 Bus to which the disk device containing this
auxiliary storage unit is connected.

Bus unit (lOP) - identifies the 1/0 Processor used to access the controller for
the disk device containing this auxiliary storage unit.

Controller identification - specifies the controller for the disk device con­
taining this auxiliary storage unit.

Actuator identification - specifies the actuator associated with this auxiliary
storage unit in the disk device containing it.

Unit ASP number - specifies the ASP to which this unit is currently allocated.
A value of 1 specifies the system ASP. A value from 2 through 16 specifies a
user ASP and correlates to the user ASP number field in the user ASP infor­
mation entries. A value of 0 indicates that this unit is currently unallocated.

Unit mirrored flag - Indicates that this unit number represents a mirrored
pair. This bit is materialized with both mirrored units of a mirrored pair.

Mirrored unit protected flag - indicates the mirror status of a mirrored pair.
A value of binary 1 indicates that both mirrored units of a mirrored pair are
active. A binary 0 indicates that one mirrored unit of a mirrored pair is not

Chapter 15. Resource Management Instructions 15-21

Materialize Resource Management Data (MATRMD)

active. Active means that both units are on line and fully synchronized (ie.
the data is identical on both mirrored units).

Mirrored unit reported flag - indicates that a mirrored unit reported as
present. The mirrored unit reported present during or following IMPL.
Current attachment of a mirrored unit to the system cannot be inferred from
this bit. A binary 0 indicates that the mirrored unit being materialized is
missing. The last known information pertaining to the missing mirrored unit
is materialized. A binary 1 indicates that the mirrored unit being material­
ized has reported. The information for this reported unit is current to the last
time it reported status to the system.

Mirrored unit status - indicates mirrored unit status.

A value of 1 indicates that this mirrored unit of a mirrored pair is active
(ie. on-line with current data).

A value of 2 indicates that this mirrored unit is being synchronized.

A value of 3 indicates that this mirrored unit is suspended.

Mirrored unit status is stored as binary data and is valid only when the unit
mirrored flag is on.

Unit media capacity - is the space, in number of bytes of auxiliary storage,
on the non-mirrored unit or mirrored pair, that is, the capacity of the unit
prior to any formatting or allocation of space by the system it is attached to.
For a mirrored pair, this space is the number of bytes of auxiliary storage on
either one of the mirrored units. The space is identical on both of the mir­
rored units. Caution, do not attempt to add the capacities of the two units of
a mirrored pair together.

Unit space available - is the number of bytes of secondary storage space
that is not currently assigned to objects or internal machine functions, and
therefore, is available for allocation on the unit (or the mirrored pair) when
the ASP containing it is not under checksum protection. When the ASP con­
taining the unit is under checksum protection, this value is meaningless and
the Unit checksum information describes the space available values. For a
mirrored pair, this space is the number of bytes of auxiliary storage available
on either one of the mirrored units. The space is identical on both of the
mirrored units. Caution, do not attempt to add the capacities of the two units
of a mirrored pair together.

Unit reserved system space - is the total number of bytes of auxiliary storage
on the unit reserved for use by the machine. This storage is not available for
storing objects, redundancy data, and other internal machine data. When the
unit is not in a checksum set, the unit checksum set number contains a value
of zero, this reserved space is included in the ASP and unit media capacity
fields and reduces the corresponding space available values. When the unit
is in a checksum set, the unit checksum set number is nonzero, this
reserved space is not included in the ASP and unit checksum information
fields which provide capacity and space information and, therefore, does not
reduce the corresponding space available values.

Unit checksum information (Checksum field) - specifies capacity and space ...)
available values that apply when the ASP containing the unit is under
checksum protection. In this case, when the unit is in a checksum set, the

15-22 AS/400 M I Functional Reference

L

L

L

Materialize Resource Management Data (MATRMD)

unit checksum set number is nonzero, the unit is formatted with areas for
protected data, unprotected data, and redundancy data and these fields
provide information relating to those areas. If the unit is not allocated to a
checksum set, the unit checksum set number contains a value of zero, it is
only formatted for the storage of unprotected data and the other capacity
values will be zero. When the ASP containing the unit is not under
checksum protection, the values of these fields are meaningless, except that
the unit checksum set number field will contain a zero value. Because
checksum protection is only allowed for the system ASP, this information is
only applicable to units allocated to the system ASP.

Unit redundancy space - (Checksum field) is the total number of bytes of aux­
iliary storage on the unit formatted for use for redundancy data. This
storage is not available for storing objects and other internal machine data.

Unit protected space capacity (Checksum field) - is the number of bytes of
auxiliary storage formatted for storage of protected data on the unit. This
field is only nonzero if this unit is allocated to a checksum set. Units not
allocated to a checksum set contain no protected storage area. This value
does not include the size of any data redundancy area which may have been
formatted on the unit as well.

Unit protected space available (Checksum field) - is the number of bytes of
protected space on secondary storage available for allocation on the unit;
that is, not currently assigned to objects or internal machine functions. This
field is only nonzero if this unit is allocated to a checksum set. Units not
allocated to a checksum set contain no protected storage area, unless they
are mirrored. All space of a mirrored pair is protected.

Unit unprotected space capacity (Checksum field) - is the number of bytes of
auxiliary storage formatted for storage of unprotected data on the unit. This
value does not include the size of any data redundancy area which may have
been formatted on the unit as well.

Unit unprotected space available (Checksum field) - is the number of bytes of
unprotected space on secondary storage that are not currently assigned to
objects or internal machine functions, and therefore, are available for allo­
cation on the unit.

Unit checksum set number (Checksum field) - specifies the checksum set to
which this unit is currently allocated. A nonzero value specifies the number
of the checksum set. A zero value specifies that the unit is currently not
assigned to a checksum set.

Unit usage information - specifies statistics relating to usage of the unit. For
unallocated units, these fields are meaningless.

Blocks transferred to/from main storage fields - specify the number of
512-byte blocks transferred for the unit since the last IMPL. These values
wrap around to zero and continue counting in the case of an overflow of the
field with no indication of the overflow having occurred.

Requests for data transfer to/from main storage fields - specify the number
of data transfer (I/O) requests processed for the unit since the last IMPL.
These values wrap around to zero and continue counting in the case of an

Chapter 15. Resource Management Instructions 15-23

Materialize Resource Management Data (MATRMD)

Exceptions

overflow of the field with no indication of the overflow having occurred.
These values are not directly related to the number of blocks transferred for
the unit because the number of blocks to be transferred for a given transfer
request can vary greatly.

Permanent blocks transferred from main storage - specifies the number of
S12-byte blocks of permanent data transferred from main storage to auxiliary
storage for the unit since the last IMPL. In the case of an overflow of the
field, this value wraps around back to zero and continues counting, with no
indication of the overflow condition having occurred.

Requests for permanent data transfer from main storage - specifies the
number of transfer (I/O) requests for transfers of permanent data from main
storage to auxiliary storage that have been processed for the unit since the
last IMPL. In the case of an overflow of the field, this value wraps around
back to zero and continues counting, with no indication of the overflow condi­
tion having occurred. This value is not directly related to the permanent
blocks transferred from main storage value for the unit ASP because the
number of blocks to be transferred for any particular transfer request can
vary greatly.

Redundancy blocks transferred from main storage (Checksum field) - speci­
fies the number of S12-byte blocks of redundancy data transferred from main
storage to auxiliary storage for the unit since the last IMPL. In the case of
an overflow of the field, this value wraps around back to zero and continues
counting, with no indication of the overflow condition having occurred. This
field is only meaningful for a unit in a checksum set.

Requests for redundancy data transfer from main storage (Checksum field) -
specifies the number of transfer (I/O) requests for transfers of redundancy
data from main storage to auxiliary storage that have been processed for the
unit since the last IMPL. In the case of an overflow of the field, this value
wraps around back to zero and continues counting, with no indication of the
overflow condition having occurred. This value is not directly related to the
redundancy blocks transferred from main storage value for the unit because
the number of blocks to be transferred for any particular transfer request can
vary greatly. This field is only meaningful for a unit in a checksum set.

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X

44 partial system object damage X X X

15-24 AS/400 MI Functional Reference

~

Materialize Resource Management Data (MATRMD)

Operands
Exception 1 2 Other

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

L 01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

02 scalar attribute invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 15. Resource Management Instructions 15-25

Set Access State (SETACST)

15.4 Set Access State (SET ACST)
Op Code (Hex)
0341

Operand 1
Access state
template

Operand 1: Space pointer.

Description: The instruction specifies the access state (which specifies the
desired speed of access) that the issuing process has for a set of objects or
subobject elements in the execution interval following the execution of the
instruction. The specification of an access state for an object momentarily
preempts the machine's normal management of an object.

The Set Access State instruction template must be aligned on a 16-byte
boundary. The format is:

• Number of objects to be acted upon

• Reserved (binary 0)

• Access state specifications
(repeated as many times as necessary)

Pointer to object whose
access state is to be changed

Access state code

Reserved (binary 0)

Access state parameter

Access pool 10
Space length
Reserved (binary 0)

Bin(4)

Char(12)

Char(32)

Space pointer
or system pointer

Char(1)

Char(3)

Char(12)

Char(4)
Bin(4)
Char(4)

The number of objects entry specifies how many objects are potential candi­
dates for access state modification. An access state specification entry is
included for each object to be acted upon.

The pointer to object entry identifies the object or space which is to be acted
upon. For the space associated with a system object, the space pointer may
address any byte in the space. This pointer is followed by parameters that
define in detail the action to be applied to the object.

The access state code designates the desired access state. The allowed
values are as follows:

Access State
Code (Hex)
00

Function and Required Parameter
No operations are performed.

01

02

15-26 AS/400 MI Functional Reference

Associated object is moved into main storage (if not already there)
synchronously with the execution of the instruction.

Associated object is moved into main storage (if not already there)
asynchronously with the execution of the instruction.

L

Access State
Code (Hex)
03

04

20

21

40

41

80

81

90

Set Access State (SETACST)

Function and Required Parameter
Associated object is placed in main storage without regard to the
current contents of the object. This causes access to secondary
storage to be reduced or eliminated. For this access state code, a
space pointer must be provided.

Associated object is removed from mainstore in a manner which
reduces or eliminates access to secondary storage. Content of the
object is unpredictable after this operation. For this access state
code, a space pointer must be provided.

Associated object attributes are moved into main storage synchro­
nous with the instruction's execution. The associated attributes are
the attributes that are common to all system objects. The associated
pointer to object must be a resolved system pointer.

Associated object attributes are moved into main storage asynchro­
nous with the instruction's execution. The associated attributes are
the attributes that are common to all system objects. The associated
pointer to object must be a resolved system pointer.

Perform no operation on the associated object. The main storage
occupied by this object is to be used, if possible, to satisfy the
request in the next access state specification entry. Either a space
or system pointer may be provided for this access state code.

Wait for any previously issued but incomplete X'81' or X'91' access
state code operations to complete. This includes all previous X'81'
and X'91' operations that may have been performed on previous Set
Access State instructions within the current process as well as those
that may have been issued in previous access state specification
entries in the current instruction. The pointer is ignored for this
access state code entry.

Object should be written and it is not needed in main storage by
issuing process. Object is written to nonvolatile storage synchro­
nously with the execution of the instruction. Any main storage that
the object occupied is then marked as to make it quickly available for
replacement.

Object should be written and it is not needed in main storage by
issuing process. Object is written to nonvolatile storage asynchro­
nously with the execution of the instruction. Any main storage that
the object occupied is then marked as to make it quickly available for
replacement.

If desired, the process can synchronize with any outstanding X'81'
access state operations by issuing a X'41' access state operations
either within the current instruction or during a subsequent Set
Access State instruction.

Associated object must be insured, but is still needed in main
storage. Object is written to nonvolatile storage synchronously with
the execution of the instruction. Unlike access state codes X'80' and
X'81', this access state code does not mark any main storage occu­
pied by the object as to make it quickly available for replacement.

Chapter 15. Resource Management Instructions 15-27

Set Access State (SETACST)

Access State
Code (Hex)
91

Function and Required Parameter
Associated object must be insured, but is still needed in main
storage. Object is written to nonvolatile storage asynchronously with
the execution of the instruction. Unlike access state codes X'80' and
X'81', this access state code does not mark any main storage occu­
pied by the object as to make it quickly available for replacement.

If desired, the process can synchronize with any outstanding X'91'
access state operations by issuing a X'41' access state operations
either within the current instruction or during a subsequent Set
Access State instruction.

Access state codes hex 03 and hex 04 may be used for spaces only. The
pointer to the object in the access state specification must be a space
pointer. Otherwise, the pointer type invalid exception is signaled.

Access state code hex 40 may be used in conjunction with access state
codes hex 01, hex 02, or hex 03. The access state specification entry with
access state code hex 40 must immediately precede the access state specifi­
cation entry with access state code hex 01, hex 02, or hex 03 with which it is
to be combined. The pointer to the object in both entries must be a space
pointer. Otherwise, the pointer type invalid exception is signaled. The
access state parameter field in the access state specification entry with code
hex 40 is ignored. The access pool 10 and the space length in the entry with
access state code hex 01, hex 02, or hex 03 are used.

The access/pool 10 entry indicates the desired main storage pool in which
the object is to be placed (0-16). The storage pool 10 entry is treated as a
4-byte logical binary value. When a 0 storage pool 10 is specified, the
storage pool associated with the issuing process is used.

The space length entry designates the part of the space associated with the
object to be operated on. If the pointer to the object entry is a system
pointer, the operation begins with the first byte of the space. If the pointer to
the object entry is a space pointer that specifies a location, the operation
proceeds for the number of storage units that are designated. No exception
is signaled when the number of referenced bytes of the space are not allo­
cated. When operations on objects are deSignated by system pointers, this
operation is performed in addition to the access state modification of the
object. This entry is ignored for access state codes hex 20 and hex 21.

Authorization Required
• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

- Contexts referenced for address resolution

15-28 AS/400 MI Functional Reference

Set Access State (SET ACST)

Exceptions
Operands

Exception 1 other

04 Access state

01 access state specification invalid X

06 Addressing

01 space addressing violation X

02 boundary alignment X

03 range X

06 optimized addressability invalid X

08 Argument/parameter

01 parameter reference violation X

OA Authorization

L 01 unauthorized for operation X

10 Damage encountered

04 system object damage state X

05 authority verification terminated due to damaged object X

44 partial system object damage X X

1A Lock state

L
01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

L 01 object not found X

02 object destroyed X

03 object suspended X

07 authority verification terminated due to destroyed X
object

24 Pointer specification

01 pointer does not exist X

02 pointer type invalid X

03 pointer addressing invalid object X

04 pointer not resolved X

2A Program creation

06 invalid operand type X

07 invalid operand attribute X

Chapter 15. Resource Management Instructions 15-29

Set Access State (SETACST)

Operands
Exception 1 Other

08 invalid operand value range X .)
OC invalid operand odt reference X

00 reserved bits are not zero X X

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

15-30 AS/400 MI Functional Reference

Dump Space Management Instructions

Chapter 16. Dump Space Management Instructions

C> Copyright IBM Corp. 1990

This chapter describes all the instructions used for dump space manage­
ment. These instructions are arranged in alphabetical order. For an alpha­
betic summary of all the instructions, see Appendix A, "Instruction
Summary."

16-1

Materialize Dump Space (MATDMPS)

16.1 Materialize Dump Space (MATDMPS)
Op Code (Hex)
04DA

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Dump space

Description: The current attributes of the dump space specified by operand
2 are materialized into the receiver specified by operand 1.

The first 4 bytes of the materialization identify the total quantity of bytes that
may be used by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less then eight
causes the materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total quantity of bytes
available to be materialized. The instruction materializes as many bytes as
can be contained in the area specified as the receiver. If the byte area iden­
tified by the receiver is greater than that required to contain the information
requested, then the excess bytes are unchanged. No exceptions are sig­
naled in the event that the receiver contains insufficient area for the
materialization, other than the materialization length exception described
previously.

The template identified by operand 1 must be 16-byte aligned in the space.
The format of the materialization is as follows:

• Materialization Size Specification

Number of bytes provided for

Number of bytes available for
materialization
(always 128 for this instruction)

• Object Identification

Object type

Object subtype

Object name

• Object Creation Options

Existence attributes

o = Temporary
1 = Permanent

Space attribute

o = Fixed length
1 = Variable length

Context

o = Addressability not in context
1 = Addressability in context

Char(8)

Bin(4) materialization

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(4)

Bit 0

Bit 1

Bit 2

16-2 AS/400 MI Functional Reference

j

Materialize Dump Space (MATDMPS)

Reserved (binary 0) Bit 3-12

Initialize space Bit 13

Reserved (binary 0) Bit 14-31

• Recovery Options Char(4)

• Size of Space Bin(4)

• Initial Value of Space Char(1)

• Performance Class Char(4)

• Reserved Char(7)

• Context System pointer

• Reserved Char(16)

• Dump Space Size Char(4)

• Dump Data Size Char(4)

• Dump Data Size Limit Char(4)

• Reserved Char(20)

The dump space size entry is set with the current size value for the number
of S12-byte blocks of space allocated for storage of dump data within the
dump space.

The dump data size entry is set with the current size value for the number of
S12-byte blocks of dump data contained in the dump space. This value spec­
ifies the number of blocks from the start of the dump space through the block
of dump data which has been placed into the dump space at the largest
dump space offset value. A value of zero indicates that the dump space cur­
rently contains no dump data.

The dump data size limit entry is set with the current size limit for the
number of S12-byte blocks of dump data which may be stored in the dump
space. A value of zero indicates that no explicit limitation is placed on the
amount of dump data which may be stored in the dump space. The machine
implicitly places a limit on the maximum size of a dump space. This value of
this limitation is dependent upon the specific implementation of the machine.

Authorization Required
• Operational

- Operand 2

• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

Operand 2

Contexts referenced for address resolution

Chapter 16. Dump Space Management Instructions 16-3

Materialize Dump Space (MATDMPS)

Exceptions
Operands

Exception 1 2 Other

~ 06 Addressing

01 space addressing violation X X

02 boundary alignment violation X X

03 range X X

06 optimized addressability invalid X X

08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X ..)
05 authority verification terminated due to damaged X
object

44 partial system object damage X

1A Lock state

01 invalid lock state X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

j 03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

03 pointer addressing invalid object X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X j
OC invalid operand odt reference X X

16-4 AS/400 MI Functional Reference

Materialize Dump Space (MATDMPS)

Operands
Exception 1 2 Other

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

L

L

Chapter 16. Dump Space Management Instructions 16-5

Materialize Dump Space (MATDMPS)

16-6 AS/400 M I Functional Reference

Machine Observation Instructions

Chapter 17. Machine Observation Instructions

C> Copyright IBM Corp. 1990

This chapter describes all instructions used for machine observation. These
instructions are arranged alphabetically. For an alphabetic summary of all
the instructions, see Appendix A, "Instruction Summary."

17-1

Materialize Instruction Attributes (MATINAT)

17.1 Materialize Instruction Attributes (MATINAT)
Op Code (Hex)
0526

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Character scalar.

Operand 2
Selection
information

Description: This instruction materializes the attributes of the instruction
that are selected in operand 2 and places them in the receiver (operand 1).

Operand 2 is a 16-byte template. Only the first 16 bytes are used. Any
excess bytes are ignored. Operand 2 has the following format:

• Selection template Char(16)

Invocation number Bin(2)

Instruction number Bin(4)

Reserved (binary 0) Char(10)

The invocation number is a specific identifier for the target invocation, in the
process, that is to be materialized. This program must be observable or the
program not observable exception is signaled.

The instruction number specifies the instruction in the specified program
invocation that is to be materialized.

Operand 1 is a space pointer that addresses a 16-byte aligned template
where the materialized data is placed. The format of the data is as follows:

•

•

•

•

•

Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

Object identification

Program type

Program subtype

Program name

Offset to instruction attributes

Reserved (binary 0)

Instruction attributes

Instruction type

- Instruction version

Hex 0000 = 2-byte operand references
Hex 0001 = 3-byte operand references

- Reserved (binary 0)

17-2 ASI400 MJ Functional Reference

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Bin(4)

Char(8)

Char(*)

Char(2)

Bits 0-3

Bits 4-15

J

Materialize Instruction Attributes (MATINAT)

Instruction length as input
to Create Program

Offset to instruction form specified
as input to Create Program

Reserved (binary 0)

Number of instruction operands

Operand attributes offsets

Bin(2)

Bin(4)

Char(4)

Bin(2)

Char(*)

- An offset is materialized for each of thEBin(4)
the operands of the instruction specifying
the offset to the attributes for the operand

• Instruction form specified as input
to Create Program

Instruction operation code

Char(*)

Char(2)

Optional extender field and operand fields Char(*)

• Operand attributes Char(*)

A set of attributes following this format is materialized for each of the
operands of the instruction. Compound operand references result in
materialization of only one set of attributes for the operand which
describe the substring or array element as is appropriate. See the spe­
cific format described below for each operand type.

Operand type

1 = Data object
2 = Constant data object
3 = Instruction number reference
4 = Argument list
5 = Exception description
6 = Null operand
7 = Space pointer machine object

Operand specific attributes

Bin(2)

Char(*)

See descriptions below for detailed formats. Nothing is provided for
null operands.

• Data object Char(32)

For a data object. the following operand attributes are materialized.

Operand type = 1

Data object specific attributes

Element type
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Hex 08 = Pointer
Element length

Bin(2)

Char(7)

Char(1)

Char(2)

If binary. or character. or floating-point:
Length Bits 0-15

Chapter 17. Machine Observation Instructions 17-3

Materialize Instruction Attributes (MATINAT)

If zoned decimal or packed decimal:
Fractional digits
Total digits

If pointer:
Length = 16

Array size
If scalar, then value of O.
If array, then number of elements.

Reserved (binary 0)

Data object addressability

Addressability indicator

Bits 0-7
Bits 8-15

Bits 0-15
Bin(4)

Char(6)

Char(17)

Char(1)

Hex 00 = Addressability was not established
Hex 01 = Addressability was established

Space pointer to the object if Space pointer
addressability could be established

• Constant data object Char(*)

For a constant data object, the following operand attributes are material­
ized (immediate operands as constants, signed immediates as binary,
and unsigned immediates as character).

Operand type = 2

Constant specific attributes

Element type
Hex 00 = Binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Element length

Bin(2)

Char(7)

Char(1)

Char(2)

If binary, or character, or floating-point:
Length Bits 0-15

If zoned decimal or packed decimal:
Fractional digits
Total digits

Reserved (binary 0)

Reserved (binary 0)

Constant value

• Instruction references

Bits 0-7
Bits 8-15
Bin(4)

Char(7)

Char(*)

Char(*)

For instruction references, either through instruction definition lists or
immediate operands, the following operand attributes are materialized.

Operand type = 3 Bin(2)

Number of instruction reference elements Bin(2)

1 = Single instruction reference
> 1 = Instruction definition list

Reserved (binary 0)

Reference list

17-4 AS/400 M I Functional Reference

Char(12)

Char(*)

L

Materialize Instruction Attributes (MATINAT)

The instruction number of each instruction reference is materialized
in the order in which they are defined.

• Argument list Char(*)

For an argument list, the following operand attributes are materialized.

Operand type = 4

Argument list specific attributes

Actual number of list entries
Maximum number of list entries

Reserved (binary 0)

Addressability to list entries

Bin(2)

Char(4)

Bin(2)
Bin(2)

Char(10)

Char(*)

Space pointer to each list entry for the Space pointer
number of actual list entries. A value of all zeros is materialized if
addressability could not be established.

• Exception description Char(48)

For an exception description, the following operand attributes are materi­
alized.

Operand type = 5

Reserved (binary 0)

Control flags

Exception handling action

Bin(2)

Char(10

Char(2)

Bits 0-2

000 = Ignore occurrence of exception and continue processing
001 = Disabled exception description
010 = Continue search for an exception description by resig­

naling the exception to the immediately preceding invoca­
tion

100 = Defer handling
101 = Pass control to the specified exception handler

Reserved (binary 0)

Compare value length

Compare value

• Space pointer machine object

Bits 3-15

Bin(2)

Char(32)

Char(32)

For a space pointer machine object, the following operand attributes are
materialized.

Operand type = 7

Reserved (binary 0)

Pointer addressability

- Pointer value indicator

Bin(2)

Char(13)

Char(17)

Char(1)

Hex 00= Addressability value is not valid
Hex 01 = Addressability value is valid

Space pointer data object containing the Space pointer
space pointer machine object value if
addressability value is valid.

Chapter 17. Machi ne Observation Instructions 17-5

Materialize Instruction Attributes (MATINAT)

Exceptions

The first 4 bytes of the materialization identify the total number of bytes that
may be used by the instruction. This value is supplied as input to the.<,
instruction and is not modified by the instruction. A value of less than 8 .."
causes the materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes
available to be materialized. The instruction materializes as many bytes as
can be contained in the area specified as the receiver. If the byte area iden­
tified by the receiver is greater than that required to contain the information
requested, then excess bytes are unchanged.

The materialization available for an instruction depends on the execution
status of the program that the instruction is in. If the program has not exe­
cuted to the point of the instruction, little or no meaningful information about
the instruction can be materialized. If the program executes the instruction
multiple times, the materialization will vary with each execution.

No exceptions are signaled in the event that the receiver contains insufficient
area for the materialization, other than the materialization length exception
described previously.

Substring operand references that allow for a null substring reference (a
length value of zero) may not be specified for this instruction.

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

08 Argument/Parameter

10

01 Parameter reference violation

Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

1 E Machine Observation

01 Program not observable

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

17-6 AS/400 MI Functional Reference

Materialize Instruction Attributes (MATI NAT)

Operands
Exception 1 2 Other

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

OC Invalid operand OOT reference X X

00 Reserved bits are not zero X X X

L
2E Resource Control Limit

01 User Profile storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X

02 Scalar attributes invalid X X

03 Scalar value invalid X X

36 Space Management

L 01 Space ExtensionlTruncation X

38 Template Specification

01 Template value invalid X

03 Materialization length exception X

Chapter 17. Machine Observation Instructions 17-7

Materialize Invocation (MATINV)

17.2 Materialize Invocation (MATINV)
Op Code (Hex)
0516

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 2
Selection
information

Description: The attributes of the invocation selected through operand 2 are
materialized into the receiver designated by operand 1.

Operand 2 is a space pointer that addresses a template of the following
form:

• Invocation number

• Offset to list of parameters

• Number of parameter OOV numbers

• Offset to list of exception descriptions

• Number of exception description OOV
(object definition table) numbers

Bin(2)

Bin(4)

Char(2)

Bin(4)

Char(2)

The offset to the list of parameters and the offset to the list of exception
descriptions are both relative to the start of the operand 2 template. Each
list is an array of Char(2) OOV numbers. The number of parameter OOV
numbers and the number of exception description OOV numbers define the
sizes of the arrays.

Operand 2 is a space pointer that addresses a template that has the fol­
lowing format:

• Control information

Template extension

o = Template extension is not present.
1 = Template extension is present.

Invocation number

• Offset to list of parameters

• Number of parameter OOV numbers

• Offset to list of exception descriptions

• Number of exception description
OOV numbers

• Template extension (optional)

Offset to list of space pointer
machine objects

Char(2)

Bit 0

Bits 1-15

Bin(4)

Char(2)

Bin(4)

Char(2)

Char(14)

Bin(4)

Number of space pointer machine object Char(2)
OOV numbers

17-8 AS/400 MI Functional Reference

L

L

Materialize Invocation (MATINV)

- Reserved (binary 0) Char(8)

The offset to the list of space pointer machine objects, offset to the list of
parameters, and the offset to the list of exception descriptions are relative to
the start of the operand 2 template. Each list is an array of Char(2) ODV
numbers. The number of space pointer machine object ODV numbers,
number of parameter ODV numbers, and the number of exception
description ODV numbers define the sizes of the arrays.

Operand 1 is a space pointer that addresses a 16-byte aligned template into
which the materialized data is placed. The format of the data is:

• Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Object identification

Program type

Program subtype

Program name

• Trace specification

Invocation trace status

o = Not tracing new invocations
1 = Tracing new invocations

Return trace

o = Not tracing returns
1 = Tracing returns

Invocation trace propagation

o = Not propagating invocation trace
1 = Propagating invocation trace

Return trace propagation

o = Not propagating return trace
1 = Propagating return trace

Reserved (binary 0)

• Instruction number

• Offset to parameter values

• Offset to exception description value

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-15

Ubin(2)

Bin(4)

Bin(4)

• Offset to space pointer machine object values Bin(4)
(Optional-This data is present only if the
template extension is present in the selection
inform ation.)

• Space pointer machine objects
(Optional-This data is present

Char(*)

Chapter 17. Machine Observation Instructions 17-9

Materialize Invocation (MATINV)

only if the template extension is
present in the selection information.)

For each CDV number specified for a spac€har(32)
pointer machine object, the value of the space
pointer machine object is materialized as follows:

Reserved (binary 0)

Pointer value indicator

00 = Addressability value is not valid
01 = Addressability value is valid

Char(15)

Char(1)

Space pointer data object containing Space pointer
the space pointer machine object
value if addressability value is valid.

• Parameters Char(*)

For each parameter COT number specifiedSpace pointer
the address of the parameter data is materialized
(If no parameter COT numbers are
materialized, this parameter is binary 0.)

• Exception description Char(*)

For each exception description COT numbEflhar(36)
specified, the following is materialized:

Control flags

Exception handling action

Char(2)

Bits 0-2

000 = Ignore occurrence of exception and continue processing
001 = Disabled exception description
010 = Continue search for an exception description by resig­

naling the exception to the immediately preceding invoca­
tion

100 = Defer handling
101 = Pass control to the specified exception handler

Reserved (binary 0)

Compare value length

Compare value

Bits 3-15

Bin(2)

Char(32)

The first 4 bytes of the materialization identify the total number of bytes that
may be used by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less than 8
causes the materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes
available to be materialized. The instruction materializes as many bytes as
can be contained in the area specified as the receiver. If the byte area iden­
tified by the receiver is greater than that required to contain the information
requested, then excess bytes are unchanged.

No exceptions (other than the materialization length exception) are signaled
in the event that the receiver contains insufficient area for the
materialization.

17-10 AS/400 MI Functional Reference

L

Exceptions

L

Materialize Invocation (MATINV)

The instruction number returned depends on how control was passed from
the invocation:

Exit Type Instruction Number

Call External Locates the Call External instruction

Event Locates the next instruction to execute

Exception Locates the instruction that caused the exception

The space pointers that address parameter values are returned in the same
order as the corresponding OOT numbers in the input array. The same is
true for the exception description values.

If the offset to the list of parameters or the number of parameter OOT
numbers is 0, no parameters are returned and the offset to parameters value
is O. If any parameters are returned, they are 1B-byte aligned. If the offset to
list of exception descriptions or the number of exception description OOT
numbers is 0, no exception descriptions are returned and the offset to excep­
tion description values are O.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

1 E Machine observation

01 program not observable

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

24 Pointer specification

Operands
1 2

x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

Chapter 17. Machine Observation Instructions 17-11

Materialize Invocation (MATINV)

Operands
Exception 1 2 Other

j 01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

j 02 scalar attributes invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

01 template value invalid X

03 materialization length exception X

j

17-12 AS/400 MI Functional Reference

Materialize Invocation Entry (MATINVE)

17.3 Materialize Invocation Entry (MATINVE)
Op Code (Hex)
0547

Operand 1
Receiver

Operand 2
Selection

Operand 3
Materialization

information options

Operand 1: Character variable scalar.

Operand 2: Character(B) scalar or null.

Operand 3: Character(1) scalar or null.

Description: This instruction materializes the attributes of the specified invo­
cation entry within the process issuing the instruction. The attributes speci­
fied by operand 3 of the invocation selected through operand 2 are
materialized into the receiver designated by operand 1.

Operand 2 is an B-byte template or a null operand. If operand 2 is null, it
indicates that the attributes of the current invocation are to be materialized.
If operand 2 is not null, it must be an B-byte template which specifies the
invocation to be materialized. Only the first B bytes are used. Any excess
bytes are ignored. It has the following format:

• Selection information

Relative invocation number

Reserved

Char(8)

Char(2)

Char(6)

If operand 2 is not null, it is restricted to a constant with the relative invoca­
tion number field specifying a value of zero, which indicates that the attri­
butes of the current invocation are to be materialized.

Operand 3 is a 1-byte value or a null operand. If operand 3 is null, it indi­
cates that the attributes for a materialization option value of hex 00 are to be
materialized. If operand 3 is not null, it must be a 1-byte value which speci­
fies the type of materialization to be performed. Option values that are not
defined below are reserved values and may not be specified. Only the first
byte is used. Any excess bytes are ignored. It has the following format:

• Materialization options

Hex 00 = Long materialization
Hex 01 = Short materialization type 1
Hex 02 = Short materialization type 2
Hex 03 = Short materialization type 3
Hex 04 = Short materialization type 4
Hex 05 = Short materialization type 5

Char(1)

If operand 3 is not null, it is restricted to a constant character scalar or an
immediate value.

Operand 1 specifies a receiver into which the materialized data is placed. It
must specify a character scalar with a minimum length which is dependent
upon the materialization option specified for operand 3. If the length speci­
fied for operand 1 is less than the required minimum, an exception is sig­
naled. Only the bytes up to the required minimum length are used. Any
excess bytes are ignored. For the materialization options which produce

Chapter 17. Machine Observation Instructions 17-13

Materialize Invocation Entry (MATINVE)

pointers in the materialized data, 16-byte space alignment is required for the
receiver. The data placed into the receiver differs depending upon the ;.
materialization option specified. The following descriptions detail the """"
formats of the optional materializations.

Long Materialization: For a materialization option value of hex 00, the
minimum length for the receiver is 144 bytes. It has the following format:

• Hex 00 = Long materialization Char(144)

Reserved Char(12)

Mark counter Bin(4)

Reserved Char(32)

Associated program pointer System pointer
(zero for data base select/omit program)

Invocation number Bin(2)

Invocation type Char(1)

Hex 00= Data base select/omit program
Hex 01 = Call external
Hex 02 = Transfer control
Hex 03 = Event handler
Hex 04 = External exception handler
Hex 05 = Initial program in process problem state
Hex 06 = Initial program in process initiation state
Hex 07 = Initial program in process termination state
Hex 08 = Invocation exit

Reserved (binary 0) Char(1)

Invocation mark Bin(4)

State invocation was invoked with Char(2)

State for invocation Char(2)

Reserved Char(4)

PASA entry pointer Space pointer

PSSA entry pointer Space pointer

Reserved Char(32)

Short Materialization Type 1: For a materialization option value of hex 01,
the minimum length for the receiver is 16 bytes. It has the following format:

Hex 01 = Short materialization type 1 Char(16)

• Associated program pointer System pointer
(null for data base select/omit program)

Short Materialization Type 2: For a materialization option value of hex 02,
the minimum length for the receiver is 4 bytes. It has the following format:

Hex 02 = Short materialization type 2

• Invocation mark

17-14 AS/400 MI Functional Reference

Char(4)

Bin(4)

..J

L

Materialize Invocation Entry (MATINVE)

Short Materialization Type 3: For a materialization option value of hex 03,
the minimum length for the receiver is 16 bytes. It has the following format:

Hex 03 = Short materialization type 3

• PASA entry pointer

Char(16)

Space pointer

Short Materialization Type 4: For a materialization option value of hex 04,
the minimum length for the receiver is 16 bytes. It has the following format:

Hex 04 = Short materialization type 4

• PSSA entry pointer

Char(16)

Space pointer

Short Materialization Type 5: For a materialization option value of hex OS,
the minimum length for the receiver is 4 bytes. It has the following format:

Hex 05 = Short materialization type 5

• State invocation was invoked with

• State for invocation

Char(4)

Char(2)

Char(2)

The mark counter value represents the current value of a counter used by
the machine to mark all activations and invocations created during the exe­
cution of a process with a unique value. This mark indicates the point at
which the specific entry was allocated relative to the sequence of all acti­
vations and invocations that have been created over time within the process.

The associated program pointer is a system pointer that locates the program
associated with the invocation entry.

The invocation number is a number that uniquely identifies each invocation
in the PAS A. When an invocation is allocated, the invocation number of the
new invocation entry is one more than that in the calling invocation. The
first invocation in the current process state has an invocation number of one.

The invocation type indicates how the associated program was invoked.

The invocation mark indicates the point at which this invocation entry was
allocated relative to the sequence of all activations and invocations that have
been created over time within the process. This is set from the incremented
mark counter value for each new invocation added to the invocation stack.

The state invocation was invoked with value represents the state in which
the machine was running when the program was called or transfered to.

State for invocation value represents the state in which the machine is
running the program.

The PASA entry pointer is a space pOinter that is set to address the start of
the PASAE (program automatic storage area entry) associated with the invo­
cation. The associated program's automatic data starts 64 bytes after the
area addressed by this pointer.

The PSSA entry pointer is a space pointer that is set to address the start of
the PSSAE (program static storage area entry) associated with the invoca­
tion. The associated program's static data starts 64 bytes after the area
addressed by this pointer. The first 64 bytes contain the header information

Chapter 17. Machine Observation Instructions 17-15

Materialize Invocation Entry (MATINVE)

Exceptions

for the PSSAE. Refer to the Create Activation instruction for a description of
this header information. This pointer will be set to a value of all zeros if the
invoked program does not have static data.

The fields labeled reserved in the descriptions of the optional
materializations are currently reserved for future use. These fields may be
altered by this instruction depending upon the particular implementation of
the machine. Any values set into these fields are meaningless.

Substring operand references that allow for a null substring reference (a
length value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation

10 Damage encountered

04 system object damage state

44 partial system object damage

1C Machine-dependent exception

03 machine storage limit exceeded

20 Machine support

02 machine check

03 function check

22 Object access

01 object not found

02 object destroyed

03 object suspended

24 Pointer specification

01 pointer does not exist

02 pointer type invalid

2A Program creation

06 invalid operand type

07 invalid operand attribute

08 invalid operand value range

OA invalid operand length

OC invalid operand odt reference

Operands
1 2

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

3

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

17-16 AS/400 MI Functional Reference

Materialize Invocation Entry (MATINVE)

Operands
Exception 1 2 3 Other

00 reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X X

02 scalar attributes invalid X X X

03 scalar value invalid X X X

36 Space management

01 space extension/truncation X

Chapter 17. Machine Observation Instructions 17-17

Materialize Invocation Stack (MATINVS)

17.4 Materialize Invocation Stack (MATINVS)
Op Code (Hex)
0546

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Process

Operand 2: System pointer or null.

Description: This instruction materializes the current invocation stack within
the specified process.

The attributes of the invocation entries currently on the invocation stack of
the process specified by operand 2 are materialized into the template speci­
fied by operand 1.

Operand 2 is a system pointer or a null operand. If operand 2 is nUll, it indi­
cates that the invocation stack of the current process is to be materialized. If
operand 2 is not nUll, it is a system pointer identifying the process control
space associated with the process for which the invocation stack is to be
materialized. If the subject process, identified by operand 2, is different from
the process executing this instruction, the executing process must be the ori­
ginal initiator of the subject process or must have process control special
authorization to the process control space associated with the subject
process.

Operand 1 is a space pointer that addresses a 16-byte aligned template into
which is placed the materialized data. The format of the data is:

• Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Number of invocation entries

• Mark counter

Char(8)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

• Invocation entries Char(*)
(An invocation entry is materialized
for each of the invocations currently on
the invocation stack of the specified process.)

The invocation entries materialized are each 128 bytes long and have the fol­
lowing format:

• Reserved

• Associated program pointer
(null for data base select/omit
program or a destroyed program)

• Invocation number

• Invocation type

Hex 00 = Data base select/omit program

17-18 AS/400 MI Functional Reference

Char(32)

System pOinter

Bin(2)

Char(1)

Hex 01 = Call external
Hex 02 = Transfer control
Hex 03 = Event handler

Materialize Invocation Stack (MATINVS)

Hex 04 = External exception handler
Hex 05 = Initial program in process problem state
Hex 06 = Initial program in process initiation state
Hex 07 = Initial program in process termination state
Hex 08 = Invocation exit

• Reserved

• Invocation mark

• Instruction number

• Reserved

Char(1)

Bin(4)

Bin(4)

Char(68)

The number of invocations value specifies the number of invocation entries
provided in the materialization.

The mark counter value represents the current value of a counter used by
the machine to mark all activations and invocations created during the exe­
cution of a process with a unique value. This mark indicates the point at
which the specific entry was allocated relative to the sequence of all acti­
vations and invocations that have been created over time within the process.

The associated program pointer is a system pointer that locates the program
associated with the invocation entry.

The invocation number is a number that uniquely identifies each invocation
in the PASA. When an invocation is allocated, the invocation number of the
new invocation entry is one more than that in the calling invocation. The
first invocation in the current process state has an invocation number of one.

The invocation type indicates how the associated program was invoked.

The invocation mark indicates the point at which this invocation entry was
allocated relative to the sequence of all activations and invocations that have
been created over time within the process. This is set from the incremented
mark counter value for each new invocation added to the invocation stack.

The instruction number specifies the number of the instruction last being
executed when the invocation passed control to the next invocation on the
stack.

The fields labeled reserved are currently reserved for future use. These
fields may be altered by this instruction depending upon the particular imple­
mentation of the machine. Any values set into these fields are meaningless.

The first 4 bytes of the materialization identifies the total quantity of bytes
that may be used by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less than 8
causes the materialization length exception to be signaled.

The second 4 bytes of the materialization identifies the total quantity of bytes
available to be materialized. The instruction materializes as many bytes as
can be contained in the area specified as the receiver. If the byte area iden-

Chapter 17. Machine Observation Instructions 17-19

Materialize Invocation Stack (MATINVS)

tified by the receiver is greater than that required to contain the information
requested, the excess bytes are unchanged.

No exceptions are signaled in the event that the receiver contains insufficient
area for the materialization, other than the materialization length exception
described previously.

When the materialization is performed for a process other than the one exe­
cuting this instruction, the instruction attempts to interrogate, snapshot, the
invocation stack of the other process concurrently with the ongoing execution
of that process. In this case, the interrogating process and subject process
may be interleaving usage of the processor resource. Due to this, the accu­
racy and integrity of the materialization is relative to the state, static or
dynamic, of the invocation stack in the subject process over the time of the
interrogation. If the invocation stack in the subject process is in a very static
state, not changing over the period of interrogation, the materialization may
represent a good approximation of a snapshot of its invocation stack. To the
contrary, if the invocation stack in the subject process is in a very dynamic
state, radically changing over the period of interrogation, the materialization
is potentially totally inaccurate and may describe a sequence of invocations
that was never an actual sequence that occurred within the process. In addi­
tion to the above exposures to inaccuracy in attempting to take the snapshot,
the ongoing status of the invocation stack of the subject process may sub­
stantially differ from that reflected in the materialization, due to its continuing
execution after completion of this instruction.

When the materialization is performed for the process executing this instruc- '~

tion, it does provide an accurate reflection of the status of the process' invo- ""'"
cation stack. In this case, concurrent execution of this instruction with
execution of other instructions in the process is precluded.

Authorization Required

Lock Enforcement

Exceptions

• Process control special authorization

- For materializing a different process than the one executing this
instruction

• Retrieve

- Contexts referenced for address resolution

• Materialization

- Contexts referenced for address resolution

Operands
Exception 1 2 Other

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

17-20 AS/400 MI Functional Reference

Materialize Invocation Stack (MATINVS)

Operands
Exception 1 2 Other

L 08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X X

10 Damage encountered

04 system object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

L 01 pointer does not exist X X

02 pointer type invalid X X

28 Process state

02 process control space not associated with a X
process

2A Program creation

06 invalid operand type X X

L 07 invalid operand attribute X X

OC invalid operand odt reference X X

OD reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length X

Chapter 17. Machine Observation Instructions 17-21

Materialize Pointer (MATPTR)

17.5 Materialize Pointer (MATPTR)
Op Code (Hex)
0512

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2
Pointer

Operand 2: System pointer, space pointer data object, data pointer, or
instruction pointer.

Description: The materialized form of the pointer object referenced by
operand 2 is placed in operand 1.

The first 4 bytes of the materialization identify the total number of bytes that
may be used by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less than 8
causes the materialization length exception to be sigr:'laled.

The second 4 bytes of the materialization identify the total number of bytes
available to be materialized. The instruction materializes as many bytes as
can be contained in the area specified as the receiver. If the byte area iden­
tified by the receiver is greater than that required to contain the information
requested, then the excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the event that the
receiver contains insufficient area for the materialization.

The format of the materialization is:

• Materialization size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Pointer type

Hex 01 = System pointer
Hex 02 = Space pointer
Hex 03 = Data pointer
Hex 04 = Instruction pointer

Char(8)

Bin(4)

Bin(4)

Char(1)

Pointer value materialization depends on the pointer type. One of the fol­
lowing pointer type formats is used.

• System pointer description Char(66)

The system pointer description identifies the object addressed by the
pointer and the context which the object specifies as its addressing
context.

Context identification

Context type
Context subtype
Context name

Object identification

17-22 AS/400 MI Functional Reference

Char(32)

Char(1)
Char(1)
Char(30)

Char(32)

L

Materialize Pointer (MATPTR)

Object type Char(1)
Object subtype Char(1)
Object name Char(30)

Pointer authorization Char(2)

Object control Bit 0
Object management Bit 1
Authorization pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Ownership Bit 8
Reserved (binary 0) Bits 9-15

Note: If the object addressed by the system pointer speCifies that it is
not addressed by a context or if the context is destroyed, the
context entry is hex 00. If the object is addressed by the machine
context, a context type entry of hex 81 is returned. No verification
is made that the specified context actually addresses the object.

The following lists the object type codes for system object references:

Value
(Hex)

01
02
04
06
07
08
09
OA
OB
OC
OD
OE
OF

Object Type

Access group
Program
Context
Byte string space
Journal space
User profile
Journal port
Queue
Data space
Data space index
Cursor
Index
Commit block

10 Logical unit description
11 Network description
12 Controller description
14 Class of Service Description
15 Mode Description
19 Space
1A Process control space
1 B Authorization List
1 C Dictionary

Note: Only the authority currently stored in the system pointer is materi­
alized.

• Data pointer description Char(75)

The data pointer description describes the current scalar and array attri­
buteo; and identifies the space addressability contained in the data
pointer.

Chapter 17. Machine Observation Instructions 17-23

Materialize Pointer (MATPTR)

Scalar and array attributes

Scalar type

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character
Hex 06 = Onlyns
Hex 07 = Onlys
Hex 08 = Either
Hex 09 = Open
Hex OA = Unsigned binary

Scalar length

Char(7)

Char(1)

Char(2)

If binary, character, floating-point, Onlyns, Onlys, Either, or Open:

Length Bits 0-15

If zoned decimal or packed decimal:

Fractional digits Bits 0-7
Total digits Bits 8-15

Reserved (binary 0) Bin(4)

Data pointer space addressability Char(68)

Context identification Char(32)

Context type Char(1)
Context subtype Char(1)
Context name Char(30)

Object identification Char(32)

Object type Char(1)
Object subtype Char(1)
Object name Char(30)

Offset into space Bin(4)

Note: If the object containing the space addressed by the data
pointer is not addressed by a context, the context entry is hex
00. If the object is addressed by the machine context, a
context type entry of hex 81 is returned.

Support for usage of a Data Pointer describing an Onlyns,
Onlys, Either, or Open scalar value is limited. For more infor­
mation, refer to the Copy Extended Characters Left Adjusted
With Pad, Set Data Pointer Attributes, and Create Cursor
instructions.

• Space pointer description Char(68)

The space pointer description describes space addressability contained
in the space pointer.

Context identification

Context type
Context subtype
Context name

17-24 AS/400 MI Functional Reference

Char(32)

Char(1)
Char(1)
Char(30)

L

L

Exceptions

L

Materialize Pointer (MATPTR)

Object identification Char(32)

Object type Char(1)
Object subtype Char(1)
Object name Char(30)

Offset into space Bin(4)

Note: If the object containing the space addressed by the space
pointer is not addressed by a context, the context entry is hex
00. If the object is addressed by the machine context, a
context type entry of hex 81 is returned.

• Instruction pointer description

The instruction pointer description describes instruction addressability
contained in the instruction pointer.

Context identification Char(32)

Context type Char(1)
Context subtype Char(1)
Context name Char(30)

Program identification Char(32)

Program type Char(1)
Program subtype Char(1)
Program name Char(30)

Instruction number Bin(4)

If the program containing the instruction currently being addressed by the
instruction pointer is not addressed by a context, the context entry is hex 00.

If the pointer is a system pointer or a data pointer and is initialized but unre­
solved, the pointer is resolved before the materialization occurs.

This instruction will tolerate a damaged object referenced by operand 2
when operand 2 is a resolved pointer. The instruction will not tolerate a
damaged context(s) or damaged programs when resolving pointers. Also, as
a result of damage or abnormal machine termination, this instruction can
indicate that an object is addressed by a context, when in fact the context
will not show this as an addressed object.

A space pointer machine object cannot be specified for operand 2.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

04 external data object not found

06 optimized addressability invalid

Operands
1 2

X X

X X

X X

X

X X

Other

Chapter 17. Machine Observation Instructions 17-25

Materialize Pointer (MATPTR)

Operands
Exception 1 2 Other

08 Argument/parameter .J
01 parameter reference violation X X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
destroyed object

24 Pointer specification ..J
01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

17-26 AS/400 MI Functional Reference

L

L

Materialize Pointer Locations (MATPTRL)

17.6 Materialize Pointer Locations (MATPTRL)
Op Code (Hex)
0513

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: Space pOinter.

Operand 3: Binary scalar.

Operand 2
Source

Operand 3
Length

Description: This instruction finds the pointers in a subset of a space and
produces a bit mapping of their relative locations.

The area addressed by the operand 2 space pointer is scanned for a length
equal to that specified in operand 3. A bit in operand 1 is set for each 16
bytes of operand 2. The bit is set to binary 1 if a pointer exists in the
operand 2 space, or the bit is set to binary 0 if no pointer exists in the
operand 2 space.

Operand 1 is a space pointer addressing the receiver area. One bit of the
receiver is used for each 16 bytes specified by operand 3. If operand 3 is not
a 16-byte multiple, then the bit position in operand 1 that corresponds to the
last (odd) bytes of operand 2 is set to O. Bits are set from left to right (bit 0,
bit 1, ...) in operand 1 as 16-byte areas are interrogated from left to right in
operand 2. The number of bits set in the receiver is always a multiple of 8.
Those rightmost bits positions that do not have a corresponding area in
operand 2 are set to O.

The format of the operand 1 receiver is:

• Template size specification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Pointer locations

Char(8)

Bin(4)

Bin(4)

Char(*)

Operand 2 must address a 16-byte aligned area; otherwise, a boundary
alignment exception is signaled. If the value specified by operand 3 is not
positive, the scalar value invalid exception is signaled.

The first 4 bytes of the materialization identify the total number of bytes that
may be used by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less than 8
causes the materialization length exception to be signaled.

The second 4 bytes of the materialization identify the total number of bytes
available to be materialized. The instruction materializes as many bytes as
can be contained in the area specified as the receiver. If the byte area iden­
tified by the receiver is greater than that required to contain the information
requested, then the excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the event that the
receiver contains insufficient area for materialization.

Chapter 17. Machine Observation Instructions 17-27

Materialize Pointer Locations (MATPTRL)

Exceptions
Operands

Exception 1 2 3 Other .)
06 Addressing

01 space addressing violation X X X

02 boundary alignment X X X

03 range X X X

06 optimized addressability invalid X X X

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered

04 system object damage state X X X X

44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X

J 02 object destroyed X X X

03 object suspended X X X

24 Pointer specification

01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

06 invalid operand type X X X .)
07 invalid operand attribute X X X

08 invalid operand value range X X X

OA invalid operand length X

OC invalid operand odt reference X X X

OD reserved bits are not zero X X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

03 scalar value invalid X

36 Space management

01 space extension/truncation X

17-28 AS/400 MI Functional Reference

L

L

Exception
38 Template specification

Materialize Pointer Locations (MATPTRL)

Operands
123 Other

03 materialization length exception x

Chapter 17. Machine Observation Instructions 17-29

Materialize System Object (MATSOBJ)

17.7 Materialize System Object (MATSOBJ)
Op Code (Hex)
053E

Operand 1
Receiver

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 2
Object

Description: This instruction materializes the identity and size of a system
object addressed by the system pointer identified by operand 2. It can be
used whenever addressability to a system object is contained in a system
pointer.

The first 4 bytes of the materialization identify the total number of bytes that
may be caused by the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A value of less than 8
raises the materialization length exception. J
The second 4 bytes of the materialization identify the total number of bytes
available to be materialized. The instruction materializes as many bytes as
can be contained in the area specified as the receiver. If the byte area iden-
tified by the receiver is greater than that required to contain the information
requested, then the excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the event that the
receiver contains insufficient area for the materialization.

The format of the materialization is:

• Materialization size speCification

Number of bytes provided for
materialization

Number of bytes available for
materialization

• Object state attributes

Suspended state

o = Not suspended
1 = Suspended

Damage state

o = Not damaged
1 = Damaged

Partial damage state

o = No partial damage
1 = Partial damage

Existence of addressing context

Char(8)

Bin(4)

Bin(4)

Char(2)

Bit 0

Bit 1

Bit 2

Bit 3

o = Not addressed by a temporary context
1 = Addressed by a temporary context

Dump for previous release permitted Bit 4

17-30 AS/400 MI Functional Reference

L

L

Materialize System Object (MATSOBJ)

o = Dump for previous release not permitted.
1 = Dump for previous release permitted.

Reserved (binary 0)

• Context identification

Context type

Control subtype

Context name

• Object identification

Object type

Object subtype

Object name

• Timestamp of creation

• Size of associated space

• Object size

• Owning user profile identification

User profile type

User profile subtype

User profile name

• Timestamp of last modification

• Recovery options

• Performance class

• Initial value of space

• Reserved

• Object Authorization List (AL) status

o
1

= object not in an AL
= object in AL

• Authorization List identification

Authorization list (AL) status

o = Valid AL
1 = Damaged AL
2 = Destroyed AL (no name below)

Reserved

Authorization list type

Authorization list subtype

Authorization list name

• Dump for previous release reason code

• Maximum possible associated space size

• Timestamp of last use of object

Bits 5-15

Char(32)

Char(1)

Char(1)

Char(30)

Char(32)

Char(1)

Char(1)

Char(30)

Char(8)

Bin(4)

Bin(4)

Char(32)

Char(1)

Char(1)

Char(30)

Char(8)

Char(4)

Char(4)

Char(1)

Char(3)

Bin(2)

Char(48)

Bin(2)

Char(14)

Char(1)

Char(1)

Char(30)

Bit(64)

Bin(4)

Char(8)

Chapter 17. Machine Observation Instructions 17-31

Materialize System Object (MATSOBJ)

• Count of number of days object was used

• Object domain attributes

Program state provided

o = No program state value
= Program state value present

Reserved (binary 0)

• Domain of object

• State for program

• Reserved

Ubin(2)

Char(2)

Bit 0

Bits 1-15

Char(2)

Char(2)

Char(124)

The timestamp field is materialized as an 8-byte unsigned binary number in
which bit 41 is equal to 1024 microseconds. The timestamp of creation field
is implicitly set when an object is created.

The timestamp of last modification field is explicitly set by the Modify System"
Object instruction. It is implicitly set, except for the objects restricted below, ""'"
by any instruction or IMPL function that modifies or attempts to modify an
object attribute value or an object state. The timestamp of last modification
field is only ensured as part of the normal ensuring of objects.

Implicit setting of the timestamp of last modification field is restricted for the
following objects and will only occur for generic, nonobject specific, oper­
ations on them such as Rename Object for example.

• Logical unit description

• Controller description

• Network description

• Access group

• Queue

No modification time stamp will be provided for the following objects and a
value of zero will be returned in the materialization template for the modifi­
cation time stamp

• Process control space

If the object addressed by the system pointer specifies that it is not
addressed by a context or if the context is destroyed, the context type entry
is hex 00. If the object is addressed by the machine context, a context type
entry of hex 81 is returned. No verification is made that the specified context
actually addresses the object.

If the object is a temporary object and is, therefore, owned by no user
profile, the user profile type entry is assigned a value of hex 00. The object
authorization list status field indicates whether or not the object is contained
in an authorization list. If it is, the authorization list identification information
provides the name of the authorization list, except when the authorization list
is indicated as destroyed, in which case, the name information is meaning­
less.

17-32 AS/400 MI Functional Reference

L

L

L

Materialize System Object (MATSOBJ)

This instruction will tolerate a damaged object referenced by operand 2
when operand 2 is a resolved pointer. The instruction will not tolerate a
damaged context(s) or damaged programs when resolving pointers. Also, as
a result of damage or abnormal machine termination, this instruction can
indicate that an object is addressed by a context, when in fact the context
will not show this as an addressed object. The Modify Addressability instruc­
tion can be used to correct this problem. The existence of addressing
context attribute indicates whether the previously (or currently) addressing
context was (is) temporary. This field is 0 if the object was (is) not
addressed by a temporary context.

The Dump for Previous Release Permitted field will indicate if the object is
eligible for a Request I/O instruction in which a dump for previous is
requested. When this field indicates that the object is not eligible, the Dump
for Previous Release Reason Code can be used to determine why the object
is not eligible.

Currently reason codes are only architected for programs. The reason code
structure for programs is mapped as follows. Note that more than one
reason may be returned.

• Program dump for previous release
reason code

Language version and release reason

Bit(64)

Bit 0

o = Language version and release is not a reason
1 = Language version and release is one reason

Level of machine instructions used Bit 1
reason

o = The level of machine instructions used in the program is not a
reason

1 = Machine instructions not available in the previous release are
used

Program observability reason Bit 2

o = Lack of program observability is not a reason
1 = Program is not observable and must be to be moved to previous

release

Reserved Bits 3-63

If the object has an associated space, the maximum possible associated
space size field will be returned with a value which represents the maximum
size to which the associated space can be extended. This value depends on
the internal packaging of the object and its associated space as well as (pos­
sibly) the maximum space size field as optionally specified during the create
of the object (or on the Create Duplicate Object instruction, if that is how the
object was created).

The timestamp of last use of object field and the count of number of days
object was used field are set by the Modify System Object instruction or by
the Call External or Transfer Control instructions on the objects first use on
that day. The timestamp value is only good for the date, the time value
obtained from this timestamp is not accurate.

Chapter 17. Machine Observation Instructions 17-33

Materialize System Object (MATSOBJ)

The domain of object field contains the value which represents which state
the program which accesses this object must be running in.

The state for program field contains the state the program runs in. It is only
present when the program state provided flag is on.

Valid object type fields and their meanings are:

Value
(Hex) Object Type

01 Access group
02 Program
04 Context
06 Byte string space
07 Journal space
08 User profile
09 Journal port
OA Queue
OB Data space
OC Data space index
OD Cursor
OE Index
OF Commit block
10 Logical unit description
11 Network description
12 Controller description
14 Class of Service Description
15 Mode Description
19 Space
1A Process control space
1B Authorization List
1C Dictionary

Authorization Required
• Retrieve

- Contexts referenced for address resolution

Lock Enforcement
• Materialize

Operand 2

Contexts referenced for address resolution

Exceptions
Operands

Exception 1 2 ~her

06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X

17-34 AS/400 MI Functional Reference

Materialize System Object (MATSOBJ)

Operands
Exception 1 2 Other

L 08 Argument/parameter

01 parameter reference violation X X

OA Authorization

01 unauthorized for operation X

10 Damage encountered

04 system object damage state X X X

05 authority verification terminated due to damaged X
object

44 partial system object damage X X X

1A Lock state

01 invalid lock state X

1C Machi ne-dependent exception

03 machine storage limit exceeded X

20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

07 authority verification terminated due to X
dastroyed object

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

36 Space management

01 space extension/truncation X

Chapter 17. Machine Observation Instructions 17-35

Materialize System Object (MATSOBJ)

Operands
Exception 1 2 Other
38 Template specification

03 materialization length exception x

17-36 AS/400 MI Functional Reference

L

L

L

L

L

Machine Interface Support Functions Instructions

Chapter 18. Machine Interface Support Functions Instructions

C Copyright IBM Corp. 1990

This chapter describes all instructions used for machine interface support
functions. These instructions are arranged in alphabetic order. For an
alphabetic summary of all the instructions, see Appendix A, "Instruction
Summary."

18-1

Materialize Machine Attributes (MATMATR)

18.1 Materialize Machine Attributes (MATMATR)
Op Code (Hex)
0636

Operand 1 Operand 2
Materialization Machine attri­

butes

Operand 1: Space pointer.

Operand 2: Character(2) scalar (fixed-length) or Space pointer.

Warning: The following information is subject to change from release to
release. Use it with caution and be prepared to adjust for changes with each
new release.

Description: The instruction makes available the unique values of machine
attributes. The values of various machine attributes are placed in the
receiver.

Operand 2 - specifies options for the type of information to be materialized.
Operand 2 may be specified as either an attribute selection value
(Character(2) scalar), or as an attribute selection template (Space Pointer).

When operand 2 is specified as an attribute selection value, the machine
attributes are divided into nine groups. Byte 0 of the attribute selection
operand specifies from which group the machine attributes are to be materi­
alized. Byte 1 of the options operand selects a specific subset of that group
of machine attributes.

When operand 2 is specified as an attribute selection template, particular
machine attributes may be selected for materialization through specification
of appropriate selection criteria. At this time, only selector value Hex 0000,
materialize RCR (Resource Configuration Record) information, can be
requested in the attribute selection template. The resource configuration
record is an internal machine data structure which contains information on
the configuration of I/O devices attached to the machine. The format of the
attribute selection template is defined as follows:

• Selector Value
(Only 'OOOO'X, materialize RCR is allowed)

• Reserved

• Size of Selection Template

• Materialization options

• Reserved

Char(2)

Char(14)

Bin(4)

Char(2)

Char(10)

The size of selection template field must specify a value of 22 bytes or
greater for the materialization options to apply. If a value of less than 22 is
specified, then all of the RCR data is materialized.

The materialization options field allows for specification of various bit values
which can be used to select the data to be materialized. The definition of the
options which can be selected is provided in the following tables.

18-2 AS/400 MI Functional Reference

L

Materialize Machine Attributes (MATMATR)

• Bit positions within the table specified as a 0 or a 1 must contain that
value for the specific option.

• Bit positions specified as an 'x' may contain a value of 0 or 1 and
provide additional selection criteria for that option.

• Bit positions specified as a letter other than 'r' may contain values spe­
cific to the option being selected and are defined under the applicable
option.

• Bit positions specified as an 'r' indicate the bit position is reserved.
These bit positions must contain a value of zero, otherwise a template
value invalid exception is signaled.

Options Description

rrrr r1 rr aaaa aaaa List names of objects active to an lOP.

Where 'aaaa aaaa' specifies the Logical Bus Address
associated with the lOP.

xxxx xOrr rrrr rxxx RCR data

The following sub options may be specified in conjunction with the
selection of RCR data. The 'R' values below indicates the value of 0,
requesting RCR data, has been specified for bit 6.

Sub Option Description

Oxxx xRrr rrrr rrrr All Buses

1xxx xRrr rrrr rnnn Specific Bus

Where 'nnn' = a binary value from 0 to 7 speci­
fying the bus number being selected.

xOrr rRrr rrrr rxxx All lOPs

x1ws cRrr rrrr rxxx By lOP Type (1 or more of the following must be
set)

w = 1 specifies Workstation lOP type

s = 1 specifies Storage lOP type

c= 1 specifies Communications lOP type

Operand 1 - specifies a space pointer to the area where the materialization
is to be placed. The format of the materialization is as follows:

• Materialization size specification

Number of bytes provided for materialization

Number of bytes available for materialization

• Attribute specification
(as defined by the attribute selection)

Char(8)

Bin(4)

Bin(4)

Char(*)

The first 4 bytes of the materialization (operand 1) identify the total number
of bytes that can be used by the instruction. This value is supplied as input
to the instruction and is not modified by the instruction. A value of less than
8 causes the materialization length exception to be signaled.

Chapter 18. Machine Interface Support Functions Instructions 18-3

Materialize Machine Attributes (MATMATR)

The second 4 bytes of the materialization identify the total number of bytes
available to be materialized. The instruction materializes as many bytes as \
can be contained in the area specified as the receiver. If the byte are identi- """"
fied by the receiver is greater than that required to contain the information
requested for materialization, then the a excess bytes are unchanged.
No exceptions (other than the materialization length exception) are signaled
in the event that the receiver contains insufficient area for the
materialization.

The machine attributes selected by operand 2 are materialized according to
the following selection values:

Selection Attribute
Value Description

Hex 0000 RCR information
(only allowed in attribute selection template)

The format of the data materialized is dependent on the
materialization option(s) selected in the attribute selection tem­
plate.

When the list names of objects active to an lOP option is selected,
the following format is used:

• Number of active object names returned

• Total number of active object names
of the specify lOP

• List of all the active object names

Bin(4)

Bin(4)

Char(10*Y)

When the RCR data option is selected, the following format will be
used:

• Number of entries returned by selection
criteria

Bin(4)

• Total number of entries in RCR by selection Bin(4)
criteria

• RCR data char(*)

The RCR is materialized as a contiguous character string of
binary data.

The following figure represents the base structure of the
materialization of the attribute specification data.

18-4 AS/400 MI Functional Reference

Header

Materialize Machine Attributes (MATMATR)

I of entries returned for selection criteria

I total entries for selected criteria

I
!

lOP Header I LID I Physical Location I CID status

I
!

lOP entry Report status Table (contains resource type)

Multiple lOP Specific InforMation

lOP Entries lOP VPD

Multiple

Entries

Multiple

Entries

NUMber of Attached Resources

I
!

(one of the following types)
lOA Entry Cntl Entry Device Entry

RST RST RST

lOA Spec Cnt! Spec Dev Spec

I of Ports • of Devices Dev VPD

lOA VPD Cnt!r VPD

I I
! !

Port Entry Device Entry

RST RST

Port Spec Dev Spec

Port VPD Dev VPD

Figure 18-1. Materialization Format

The header portion contains the number of entries for the
selection criteria and total entries for the selection criteria. If
these two fields are not equal, then there was not enough space
provided for a complete materialization.

Following the header will be the start of lOP specific data as well
as the offset to the next lOP entry. There can be a total 96 lOP
entries.

• Structure of lOP Entry

The following list describes in a general form the structure of
each lOP entry that will be materialized. The lOP entry is
common for all lower levels whether they be for communi­
cations, storage or workstation device entries. If the lOP is
describing communications or storage, the next lower level
items will be for either a communications lOA or a storage
controller. If the lOP is describing workstations, the next lower
levels will be defining device entries.

lOP entry data
offset to next lOP entry
offset to next lower level entry
number of next lower level entries

Chapter 18. Machine Interface Support Functions Instructions 18-5

Materialize Machine Attributes (MATMATR)

The data following an lOP entry is dependent on the type of lOP
materialized. It will be an lOA, controller or device for lOP types
communications, storage or workstation respectively.

• Structure of lOA/Controller entry

The following list describes in a general form the structure of
each Communications lOA or storage device controller entry.

IDA entry data
offset to next lOA entry
offset to port/Device entry
number of ports/devices

If the following entry is lOA or controller, a port or device entry will
follow.

• Structure of Port/Storage Device Entry

The following list describes in a general form the structure of
each Communications Port or storage device entry. ...,J

Port/Device entry data
offset to next port/Device entry

If the lOP type is workstation, a device entry will follow. The work­
station lOP entry contains data used to identify the device entries.

• Structure of Device Entry

The following list describes in a general form the structure of
each device associated with a workstation lOP. Note the this
structure is NOT preceeded by an lOA or Controller structure.

Device entry data
offset to next device entry

General RCR Structure

The following sections describe the structure of each of the
various RCR structures. Note that each of these sections contain
the data structure below and will be called out as 'STRUCTURE
COMMON DATA'.

• RCR level id

• Unit Address (always 'FFFF'X for lOP's)

• Reserved

• Resource ID

• Resource Type

• RCTT level

• Model

• Base LID

• Reserved

• Serial Number

• Status Bytes

• Reserved

18-6 AS/400 MI Functional Reference

Char(16)

Char(2)

Char(2)

Char(4)

Char(4)

Char(1)

Char(3)

Char(4)

Char(4)

Char(4)

Char(2)

Char(2)

Materialize Machine Attributes (MATMATR)

• Part Number

• Manufacturing info

• Manufacturing Plant number

• Reserved

lOP Entry

• Base Load ID

• Direct Select Address

lOP Bus Number
lOP Card Number
lOP Board Number

• Logical Bus Address

Bus Number
Bus Address

• RAS Connection ID

• Status

1xxx xxxx Operational
Oxxx xxxx Not operational
x1xx xxxx Contains Load Source DASD

Char(12)

Char(2)

Char(2)

Char(32)

Char(4)

Char(2)

Char(1)
Bit(4)
Bit(4)

Char(1)

Bit(3)
Bit(5)

Char(4)

Char(1)

xOxx xxxx Does not contain Load Source DASD

• lOP Resource Type

• Reserved

• Offset to next lOP

• Offset to next lower level

• Structure Common Data

• Reserved

• Object name for workstation CD

• Number of resources attached to lOP

• Reserved

• lOP entry change flag

• lOP sub-type

• Reserved

• lOP VPD

lOA/Controller Entry

• Offset to next lOA/Controller entry

• Offset to port/device entry

• Structure Common Data

• lOA direct select address

lOP Bus Number
lOP Card Number

Char(4)

Char(8)

Bin(2)

Bin(2)

Char(48)

Char(6)

Char(10)

Bin(2)

Char(8)

Char(1)

Char(1)

Char(8)

Char(600)

Bin(2)

Bin(2)

Char(48)

Char(2)

Char(1)
Bit(4)

Chapter 18. Machine Interface Support Functions Instructions 18-7

Materialize Machine Attributes (MATMATR)

Hex 0004

18-8 AS/400 MI Functional Reference

lOP Board Number Bit(4)

• Number of attached Ports/Devices Bin(2)

• Reserved Char(8)

• Second level entry change flag Char(1)

• Level type Char(2)

• Reserved Char(14)

• Status Char(2)

Operational Status Char(1)
Reserved Char(1)

• lOP VPD Char(600)

Port Facility Entry

• Offset to next Port entry Bin(2)

• Reserved Bin(2)

• Structure Common Data Char(48)

• Reserved Char(6)

• Object name for NO Char(10)

• Protocol name Char(1)

• Reserved Char(7)

• Cable attached off lOA Char(2)

• Port entry change flag Char(1)

• Reserved Char(11)

• Port VPD Char(600)

Device Entry

• Offset to next Device entry Bin(2)

• Reserved Bin(2)

• Structure Common Data Char(48)

• Reserved Char(6)

• Object name for the LUD Char(10)

• lOP type Char(1)

• Device entry change flag Char(1)

• Reserved Char(12)

• Device VPD Char(600)

Machine serial identification
(can only be materialized)
(only allowed in attribute selection value)

The machine serial identification that is materialized is an 8-byte
character field that contains the unique machine identifier.

.)

L

Materialize Machine Attributes (MATMATR)

Hex 0100 Time-of-day clock
(can be materialized and modified)
(only allowed in attribute selection value)

The time-of-day clock provides a consistent measure of elapsed
time. The maximum elapsed time the clock can indicate is
approximately 143 years.

The time-of-day clock is a 64-bit unsigned binary counter with the
following format:

0 41 42 reserved 63

The bit positions of the clock are numbered from 0 to 63.

The clock is incremented by adding a 1 in bit position 41 every
1024 microseconds. Bit positions 42 through 63 are used by the
machine and have no special meaning to the user. Note that
these bits (42-63) may contain either binary 1's or binary O's.

Unpredictable results occur if the time of day is materialized
before it is set.

The maximum unsigned binary value that the time of day clock
can be modified to contain is hex DFFFFFFFFFFFFFFF.

Hex 0104 Primary Initial process definition template
(can be materialized and modified)
(only allowed in attribute selection value)

The primary initial process definition template is used by the
machine to perform an initial process load.

No check is made and no exception is signaled if the values in the
template are invalid; however, the next initial process load will not
be successful.

Hex 0108 Machine initialization status record
(only allowed in attribute selection value)

The entire template can be materialized but only specific fields in
the template are modifiable.

The MISR (machine initialization status record) is used to report
the status of the machine. The status is collected at IMPL (initial
microprogram load) or IMPLA (initial microprogram load abbrevi­
ated).

The materialize format of the MISR is as follows:

• MISR status

Restart IMPL

Char(8)

Bit 0

o = IMPL was not initiated by the Terminate instruction
1 = IMPL was initiated by the Terminate instruction

Manual power on Bit 1

o = Power on not due to Manual power on
1 = Manual power on occurred

Timed power on Bit 2

o = Power on not due to Timed power on

Chapter 18. Machine Interface Support Functions Instructions 18-9

Materialize Machine Attributes (MATMATR)

18-10 AS/400 MI Functional Reference

1 = Timed power on occurred

Remote power on Bit 3

o = Power on not due to Remote power on
1 = Remote power on occurred

Auto-power restart power on Bit 4

o = Power on not due to Auto-power restart power on
1 = Auto-power restart power on occurred

Uninterrupted power supply Bit 5
(UPS) battery low

o = UPS battery not low
1 = UPS battery low

Uninterrupted power supply Bit 6
(UPS) bypass active

o = UPS bypass not active
1 = UPS bypass active

Utility power failed, running on Bit 7
UPS

o = Running on utility power
1 = Running on UPS

Uninterrupted power supply Bit 8
installed

o = UPS not installed
1 = UPS installed, ready for use

Operation Panel battery failed Bit 9

o = Operation Panel battery good
1 = Operation Panel battery failed

Operation Panel self test failed Bit 10

o = Operation Panel self test successful
1 = Operation Panel self test failed

Console Status

o = Console is operative
1 = Console is inoperative

Console State

o = Console is not ready
1 = Console is ready

Reserved

Reserved

Primary console status

o = Not using Primary console
1 = Using Primary console

Reserved

ASCII console status

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Bit 16

Bit 17

L

Materialize Machine Attributes (MATMATR)

o = Not using ASCII console
1 = Using ASCII console

Termination status Bit 18

o = Normal (TERMMPR)
1 = Abnormal

Duplicate user profile
(AIPL only)

Bit 19

o = Not duplicate, new user profile created
1 = Duplicate found and used by AIPL

Damaged user profile
(AIPL only)

Bit 20

o = Not damaged, user profile used
1 = Damaged user profile, profile deleted and recreated

Damaged machine context Bit 21

o = Not damaged
1 = Machine context damaged

Object recovery list status

o = Complete
1 = Incomplete

Recovery phase completion

o = Complete
1 = Incomplete

Bit 22

Bit 23

Most recent machine terminatiorBit 24

o = Objects ensured
1 = Object(s) not ensured at most recent machine termi­

nation

Last MISR reset Bit 25

o = Object(s) ensured on every machine termination
1 = Object(s) not ensured on every machine termination

since last MISR reset

Reserved

IPL Mode

Bit 26-27

Bit 28-29
(can be materialized and modified)

00 = DST and BOSS in unattended mode
10 = DST and BOSS is attended mode

Service Processor power on Bit 30

o = Not first service processor power on
1 = First service processor power on

MISR damage Bit 31

o = MISR not damaged
1 = MISR damaged, information reset to default values

Auto keylock position Bit 32

Chapter 18. Machine Interface Support Functions Instructions 18-11

Materialize Machine Attributes (MATMATR)

18-12 AS/400 MI Functional Reference

o = Keylock not in auto position
1 = Keylock in auto position

Normal keylock position Bit 33

o = Keylock not in normal position
1 = Keylock in normal position

Manual keylock position Bit 34

o = Keylock not in manual position
1 = Keylock in manual position

Secure keylock position Bit 35

o = Keylock not in secure position
1 = Keylock in secure position

Tower two presence on 9404
system unit

o = Tower two not present
1 = Tower two present

Battery status for tower one
on 9404 system unit

o = Battery good for tower one
1 = Battery low for tower one

Battery status for tower
two on 9404

o = Battery good for tower two
1 = Battery low for tower two

Bit 36

Bit 37

Bit 38

Termination due to utility power Bit 39
failure and user specified delay
time exceeded

o = Delay time not exceeded
1 = Utility failure and delay time exceeded

Termination due to utility power Bit 40
failure and battery low

o = Battery not low
1 = Utility failure and battery low

Termination due to forced Bit 41
microcode completion

o = Not forced microcode completion
1 = Termination due to forced microcode completion

Auto power restart disabled
due to utility failure

Bit 42

o = Auto power restart not disabled
1 = Auto power restart disabled

Reset utility power bits
(valid only on modify)

Bit 43

o = Do not reset utility power bits
1 = Reset utility power bits

L

Materialize Machine Attributes (MATMATR)

Spread the Operating System Bit 44
(can be materialized and modified)

o = Do not spread the Operating System
1 = Spread the Operating System

Install from Disk/Tape Bit 45
(can be materialized and modified)

o = Install from tape
1 = Install from disk

Use Primary/Alternate PDT Bit 46
(can be materialized and modified)

o = Use Primary Process Definition Template
1 = Use Alternate Process Definition Template

Time/Date source Bit 47

o = Time/Date is accurate
1 = Time/Date default value used

• Install Type Bi n(2)

o = Normal I PL
1 = Manual Install
2 = Automated Install

• Number of damaged main Bin(2)
storage units

• National language index Bin(2)
(Can be materialized and modified)

• Number of entries in object Bin(4) recovery list

• Tape sequence number for an AIPL Bin(4)

• Tape volume number for an AIPL Bin(4)

• Address of object recovery list Space pointer

• Process control space created
as the result of IPL or AIPL

System pointer

• Process static storage area space System pointer

• Process automatic storage System pointer area space

• Console Information list Char(400)
(Can be materialized and modified)
(Array of five entries each 80 bytes in size)
(1st = Primary, 2-5 = Reserved)

Console entry
Display LUD
Display CD
Controller model
Controller type
Controller serial number
Controller object data

Direct select address
lOP bus number
lOP card,

Char(80)
System pointer
System pointer
Char(4)
Char(4)
Char(4)
Char(12)
Char(2)
Bit(8)
Bit(8) board structure

Chapter 18. Machine Interface Support Functions Instructions 18-13

Materialize Machine Attributes (MATMATR)

lOP card Bit(4) number
lOP board Bit(4) number

Logical bus address Char(1)
lOP unit address Char(2)
Resource Identifier Char(4)
Reserved Char(3)

Work station object data Char(12)
Direct select address Char(2)

lOP bus number Bit(S)

lOP card Bit(S)
board structure

lOP card Bit(4)
number
lOP board Bit(4)
number

Logical bus address Char(1)
Device unit address Char(2)

Port Char(1)
Switch Setting Char(1)

Reserved Char(7)
Device type Char(4)
Device model Char(4)
Information valid in entry Bit(1)
Reserved Bit(7)
Console keyboard type Char(1)
Console extended Char(1) keyboard type

Reserved Char(1)

• Load/Dump Tape device Char(96)
information list
(Can be materialized and modified)
(Array of two entries each 4S bytes in size)

(1st=LUD information, 2nd=CD information)

Load/Dump tape device entry Char(4S)
Reserved Char(16)
LUD/CD information Char(12) J

Direct select address Char(2)
lOP bus number Bit(S)

lOP card Bit(8)
board structure

lOP card Bit(4)
number
lOP board Bit(4)
number

Logical bus address Char(1)
Device unit address Char(2)
Information valid in Bit(1)
entry
Reserved Bit(7)
Reserved Char(6)

Device type Char(4)
,,

' \
~

Device model Char(4)

18-14 AS/400 MI Functional Reference

L

Materialize Machine Attributes (MATMATR)

Reserved

• Recovery object list
recovery object list pOinter)

Recovery entry
number of entries)

Object pointer
Object type
Object status

Char(12)

Char(*) (located by

Char(32) (repeated for

System pointer
Char(1)
Char(1S)

Restart IMPL indicates that a Terminate Machine Processing
instruction was issued with the restart option set to yes. The
machine performed an IMPL without powering down the machine.

Manual power on indicates the power switch on the operation
panel was pressed to power the system on.

Timed power on indicates the system was powered on using the
system value specified by the customer. This option will only be
honored when the Timed power on function is enabled.

Remote power on indicates the system was power on by a phone
call placed by the customer. This option will only be honored
when the Remote power on function is enabled.

Auto-power restart indicates the system was automatically
powered on after a utility failure occurred and power was restored.
This option will only be honored when the Auto-power restart func­
tion is enabled.

UPS battery low indicates that a UPS battery is installed on the
system and the battery is low.

UPS bypass active indicates that the UPS has been bypassed. If a
utility power failure occurs. the UPS will not supply power.

UPS power failed indicates that a utility failure has occurred and
the system is currently running on battery power.

UPS installed indicates that a Uninterrupted Power Supply is
installed on the system and is available for use should the power
fail.

Operation Panel battery failure indicates the battery in the opera­
tion panel has failed and the system will not be able to determine
the correct time and date upon the next IMPL. An approximate
time and date will be given to the customer for verification.

Operation Panel self test failed indicates the Operation Panel is
possibly bad and some function concerning the operation panel
may not work correctly.

Console status indicates whether the selected console is func­
tioning normally or is inoperative.

Console state indicates whether the selected console is ready to
be used.

Primary console status is set when the customer selected primary
console is being used as the system console.

Chapter 18. Machine Interface Support Functions Instructions 18-15

Materialize Machine Attributes (MATMATR)

ASCII console status is set when a ASCII console is being used as
the system console.

Termination status indicates how the previous IMPL was termi­
nated. If normal, the Terminate Machine Processing instruction
successfully terminated the previous IMPL. If abnormal, the Ter­
minate Machine Processing instruction did not successfully termi­
nate the previous IMPL. This also implies that some cleanup of
permanent objects may be required by the user.

The duplicate user profile is valid only for AIPL and indicates if a
user profile that is the same as the AIPL user profile to be created
already exists in the machine context. The machine in this
instance does not create the user profile for AIPL but rather uses
the one located with the same name.

Damaged AIPL user profile indicates if the currently existing user
profile was detected as damaged and a new user profile was
created as specified in the AIPL user profile creation template.

Damaged machine context indicates if damage was detected in the
machine context when an attempt was made to locate the dupli­
cate user profile or to insert addressability to a newly created user
profile. In either case, all current addressability is removed from
the machine context, the new AIPL user profile is created, its
addressability is inserted into the machine context, and the AIPL
continues. Objects whose addressability was removed may have
it reinserted using the Reclaim instruction for all objects or the
Modify Addressability instruction for a specific object.

The object recovery list status entry indicates that the status is
complete unless one of the following conditions is true:

• The recovery list was lost.

• More objects were to be placed in the list but there was insuf­
ficient space.

The recovery phase completion entry indicates that the status is
complete unless one of the following conditions occurs:

• An object to be recovered and/or inserted into the object
recovery list no longer exists.

• The objects to be recovered could not be determined due to
loss of internal machine indicators that specified which objects
were in use at machine termination.

The most recent machine termination entry is set to 0 unless all
objects were not ensured at the most recent machine termination.

The last MISR reset entry is set to 0 if all objects were ensured at
every machine termination since the MISR was last reset (to 0)
using the Modify Machine Attributes instruction.

IPL mode indicates which mode DST and BOSS will be IPL'ed.
Either both will be attended or both will be unattended.

Service Processor power on indicates if this is the first time the
service processor card has been powered on.

18-16 AS/400 MI Functional Reference

L

L

Materialize Machine Attributes (MATMATR)

MISR Damage indicates if the microcode detected that the MISR
was damaged and it's contents has to be reset to the default
system values.

Auto keylock position indicates if the keylock was is the auto posi­
tion on the operation panel on the most recent IMPL.

Normal keylock position indicates if the keylock was is the normal
position on the operation panel on the most recent IMPL.

Manual keylock position indicates if the keylock was is the manual
position on the operation panel on the most recent IMPL.

Secure keylock position indicates if the keylock was is the secure
position on the operation panel on the most recent IMPL.

Tower two present on 9404 system unit indicates if the system has
second tower when the system is a 9404 system unit.

Battery status for tower one on 9404 system unit indicates if a UPS
battery is installed on the first tower of a 9404 system unit, the
battery is low.

Battery status for tower two on 9404 system unit indicates if a UPS
battery is installed on the second tower of a 9404 system unit, the
battery is low.

Termination due to utility power failure and user specified delay
time exceeded indicates the last termination of the system was
due to a utility power failure and the system value specified by the
delay time had elapsed so the system was terminated.

Termination due to utility power failure and battery low indicates
the last termination of the system was due to a utility power failure
and while running on battery power the voltage dropped below a
level to continue to power the system so the system was termi­
nated.

Termination due to forced microcode completion indicates that the
system when down by the user selecting power down from DST or
the delayed power off switch was pressed on the operation panel.

Auto power restart disabled due to a utility failure indicates the
microcode disabled the auto power restart option when a condition
was detected that would prevent the auto power restart to function
properly.

Reset utility power bits indicates that the power bits should be
reset. This bit is only looked at when modifying the MISR.

Spread/No Spread indicates to spread the operating system on the
next install instead of overlaying the existing objects. This bit is
set to spread after a new dasd has been added.

Install from Disk/Tape indicates when performing an install to use
the initial OS/400 install program off of disk or to load the initial
OS/400 install program off of tape.

Primary/Alternate Process Definition Template indicates on IPL to
initiate the initial OS/400 process using the Primary or the Alter­
nate Process Definition Template.

Chapter 18. Machine Interface Support Functions Instructions 18-17

Materialize Machine Attributes (MATMATR)

Time/Date source informs OS/400 if VUC was able to determine
the correct time/date or if it was forced to use the default
time/date. "j
Install type is set indicate whether an IPL or install was performed
and if an install was performed, what type of install occurred.

The number of damaged main storage transfer blocks entry indi­
cates the number of main storage transfer blocks that were
detected as damaged by the machine during IMPL.

National language index is the value used to index to the the
National language array kept by the system.

The number of entries in the object recovery list entry indicates
how many objects are listed in the space located by the address of
object recovery list entry.

The tape sequence number is set by the microcode to allow BOSS
to perform their install.

The tape volume number is set by the microcode to allow BOSS to
perform their install.

The address of object recovery list entry contains a space pointer
to the list of the potentially damaged objects that were identified
during machine initialization. The machine maintains this list of
objects until a Modify Machine Attribute instruction for the MISR is
executed. The number of such objects is indicated by the number
of entries in the object recovery list entry.

The process control space created results from IPL or AIPL and is
identified by a system pointer returned in this field.

Process static storage space system pointer addresses the space
object that contains the PSSA created and initialized at IPL time.
The space containing the PSSA is a temporary space and is not
addressed by a context. This field contains binary O's if the
machine to programming transition is done via an IPL.

Process automatic storage area system pointer addresses the
space object that contains the PASA created and initialized at IPL
time. The space containing the PAS A is a temporary space and is
not addressed by any context. This field contains binary O's if the
machine to programming transition is done via an IPL.

The console information list contains information for each console
device as obtained from the Resource Configuration Record or set
by the customer.

The Load/Dump tape device information is information needed to
build a LUD and CD for the device used to install BOSS.

The recovery object list identifies objects that required some
activity performed on the object(s) during IPL. The list is located
by the recovery object list pointer.

Each entry in the list has the following general format:

• Object

• Object type

18-18 AS/400 MI Functional Reference

System pointer

Char(1)

L

Materialize Machine Attributes (MATMATR)

• Object status

General status

Damaged

a = Object not damaged
1 = Object damaged

Reserved

Suspended

a = Object not suspended
1 = Object suspended

Char(15)

Char(2)

Bit a

Bit 1

Bit 2

Partially damaged Bit 3

a = Object not partially damaged
1 = Object partially damaged

Journal synchronization Bit 4

a = Synchronization complete or not necessary
1 = Synchronization failure

Reserved

IPL detected damage

Bits 5-6

Bit 7

a = Any indicated damage was not detected by direc­
tory recovery

1 = Indicated damage was detected by directory
recovery

Reserved

Object specific status

Bits 8-15

Char(13)

(The format for the IPL recovery status for this portion of
the object recovery list entries is different for each object
type. A description of each follows by object type.)

Commit block status

Decommit

Char(2)

Bit a
a = The journal has successfully been read backwards

until either a start commit or a decommit entry was
found. An attempt has been made to decommit all
the data base changes but the attempt may not
have been successful if the data space is damaged
or if the function check flag is on.

= The journal has not successfully been read back­
wards to a start commit or decommit entry and all
the changes have not been decommitted.

Journal read errors Bit 1

a = No journal read errors
1 = Journal read errors occurred during decommit

Journal write errors Bit 2

a = No journal write errors
1 = Journal write errors occurred during decommit

Chapter 18. Machine Interface Support Functions Instructions 18-19

Materialize Machine Attributes (MATMATR)

Partial damage to data space

o = No partial damage encountered .••
1 = Partial damage encountered on 1 or more data ""'"

spaces

Damage to data space Bit 4

o = No damage encountered

1 = Damage encountered on 1 or more data spaces

Function check Bit 5

0= No function check encountered
1 = Function check encountered

Reserved Bit 6

Data space during IMPL Bit 7

0= Data space is synchronized with the journal
1 = Data space is not synchronized with the journal. . ..",

All changes may not be decommitted. ..,.,

Decommit reason code Bits 8-10

000 = Decommit not performed
001 = Decommit at IPL
010 = Process termination
100 = Decommit instruction (all other values reserved)

Reserved

Reserved (binary 0)

Start commit journal

Sequence number

Bits 11-15

Char(7)

Bin(4)

• Data space

18-20 AS/400 MI Functional Reference

Status

Indexes detached from
data space

Char(13)

Bit 0

o = Indexes remain attached
1 = All indexes detached from this data space

Reserved (binary 0)

Reserved (binary 0)

Ordinal entry number of
last entry

• Data space index

Status

Invalidated

o = Not invalidated
1 = Invalidated

Recovered by journal

Bits 1-15

Char(7)

Bin(4)

Char(13)

Bit a

Bit 1

Materialize Machine Attributes (MATMATR)

o = Not recovered
1 = Recovered

Reserved (binary 0)

Reserved (binary 0)

• Journal port

Status

Synchronization status

Bits 2-15

Char(11)

Char(13)

Bit 0

o = All objects synchronized
1 = Not all objects synchronized

Reserved

Reserved

Number of journal spaces
attached

• Journal space

Status

Journal space usable

o = Journal space is usable

Bits 1-7

Char(10)

Bin(2)

Char(13)

Bit 0

1 = Journal space is not usable

Threshold reached Bit 1

0= Threshold has not been reached
1 = Threshold has been reached

Reserved Bits 2-7

Reserved Char(4)

First journal sequence number Bin(4)

Last journal sequence number Bin(4)

Reserved (binary 0) Char(13)

All objects-Any damage detected during IPL is reported in the
general status information. If this damage is detected as a result
of special processing performed during directory rebuild, it is indi­
cated in the IPL detected damage bit. A journal synchronization
failure indicates the designated object was not made current with
respect to the journal. Subsequent attempts to apply journal
changes from the journal to this object will not be allowed.

Commit block-All commit blocks that were attached to an active
process during the previous IPL are interrogated at the following
IPL. The system attempts to decommit any uncommitted changes
referenced through these commit blocks. The results of this
attempted decommit is reported in the status field. The system
also returns the journal entry sequence number of the start
commit journal entry (hex 0500) last created for this commit block
if there were any uncommitted changes. If the number is not
returned, a value of binary zero is returned.

Chapter 18. Machine Interface Support Functions Instructions 18-21

Materialize Machine Attributes (MATMATR)

Data space-If object damage was detected during IPL, the object is
marked as damaged, damage is indicated in the object status
field, and an event is signaled. In this case, the highest ordinal
entry number is O. In certain situations, the data space indexes
over the data space become detached and therefore must be
recreated. If the object is not damaged, the data space is usable
and the highest ordinal entry number is set. The ordinal entry
number of last entry indicates the last entry in the data space.
Updates are not guaranteed. Updates may be out of sequence or
partially applied and must be verified by the user for correctness.

Data space index-If object damage was detected during IPL, the
object is marked as damaged, damage is indicated in the object
status field, and an event is signaled. If the object was invalidated
because changes were made in a data space addressed by the
data space index, the data space index is included in the list and
marked as invalidated. The associated data space is also
included elsewhere in the object recovery list. Only damaged or
invalidated data space indexes are included in the list.

Journal port-Each journal port in the system is interrogated at IPL.
The status field contains the result of this checking and also the
result of the attempt to synchronize the objects (if necessary)
being journaled through the indicated journal port. The system
also returns the number of journal spaces attached to the journal
port after IPL is complete.

Journal space-Each journal space that was attached to a journal
port or used by the system to synchronize an object which was
being journaled at the time of the previous machine termination is
interrogated during IPL. The status field reports the results of this
interrogation and synchronization use. Journal spaces are only
referenced by the object recovery list if this IPL was preceded by
an abnormal failure or some unexpected condition was discovered
during the IPL. The first journal sequence number on the journal
space is returned. The last usable entry on the journal space is
also identified. If the journal space is damaged, these fields will
contain zeroes.

Hex 0118 Uninterruptible power supply delay time and calculated delay time.
(only allowed in attribute selection value)

The UPS delay time can be materialized and modified. The UPS
calculated delay time can only be materialized. Note: The UPS
delay time is meaningful only if a UPS is installed.

The delay time interval is the amount of time the system waits for
the return of utility power. If a utility power failure occurs, the
system will continue operating on the UPS supplied power. If
utility power does not return within the user specified delay time,
the system will perform a quick power down. The delay time
interval is set by the customer. The calculated delay time is deter­
mined by the amount of main storage and DASD that exists on the
system. Both values are in seconds.

The format of the template for the uninterruptible power supply \
delay time (including the 8-byte prefix) is as follows:",

• Number of bytes available Bin(4)

18-22 AS/400 MI Functional Reference

L

L

Materialize Machine Attributes (MATMATR)

• Number of bytes provided

• UPS Delay time

• Calculated UPS Delay time

Hex 012C Vital Product Data
(can only be materialized)

Bin(4)

Bin(4)

Bin(4)

(only allowed in attribute selection value)

The VPD (vital product data) is a template that contains informa­
tion for memory card VPD, Customer Card Identification Number
(CCIN) values for the memory card, non-memory card VPD,
Central Electronics Complex (CEC) VPD and the minimum memory
fields.

The materialize format of the VPD is as follows:

• IMPI VPD Char(4S6)

Main Store Memory VPD Char(64)
(An array of eight entries each 8 bytes
in size with an entry existing for each
main store card on the system up to a
maximum of eight cards.)

Main Store card entry
Main Store VPD Status

Card not usable
Card has failed
Reserved

Reserved

Char(8)
Bit(8)
Bit(1)
Bit(1)
Bit(6)
Char(7)

CCIN size list Char(8)
(An array of eight entries each 1 byte
in size that contains the number of CCIN
numbers associated with each memory card)

CCIN value list Char(2S6)
(An eight by eight matrix with each
element 4 bytes in size containing a CCIN
number associated with a memory card)

Non-Memory VPD Char(128)
(An array of four entries each 32 bytes in size)

Non-memory card entry
Load Identifier
CCIN number
Model Number
Part Number
Serial Number
Plant of manufacture

• CEC VPD

Reserved

Service processor
part number
Service processor
unique identification

Char(32)
Char(4)
Char(4)
Char(4)
Char(12)
Char(4)
Char(4)

Char(70)

Char(8)

Char(8)

Char(4)

Chapter 18. Machine Interface Support Functions Instructions 18-23

Materialize Machine Attributes (MATMATR)

Service processor load
identification

Char(4)

Reserved Char(4)
System plant of manufacture Char(4)
System serial number Char(4)
Reserved Char(13)
System type Char(4)
System model number Char(4)
Processor plant of manufacture Char(4)
Processor serial number Char(4)
Reserved Char(5)

• Minimum Memory Fields

Minimum memory required
Minimum memory available

Char(4)

Bin(2)
Bin(2)

Main store memory VPD is an array that contains eight entries.
The first entry in the array corresponds to the memory card in the,\
first physical card slot, the second entry corresponds to the ..",
memory card in the second physical card slot etc. for a maximum
of eight memory cards. The main store card VPD status should be
interpreted by taking Card not useable together with Card has
failed. The two bits together should be interpreted as follows:

• Card not useable = 0 and Card failed = 0

Use the main store entry, no failures detected

• Card not useable = 0 and Card failed = 1

Use the main store entry but the card contains bad frames

• Card not useable = 1 and Card failed = 0

Do not use the main store entry, card does not exist

• Card not useable = 1 and Card failed = 1

Do not use the main store entry, card exists but is bad

CCIN size list is an array with the first entry corresponding to the
first main store memory VPD entry. The value in this entry deter- .\
mines the number of CCIN values that exist for the first main store ..",
card. This value determines the number of entries in the CCIN
value list matrix that exist for the first card. The rest of the entries
in the CCIN size list correspond just like the first entry did.

CCIN value list is a matrix that holds the CCIN values for each
main store card. The first subscript determines which main store
card the information corresponds to and the second subscript
determines which CCIN number we are dealing with for that card.
We can have up to eight memory cards with up to eight CCIN
values for each memory card. Note that the CCIN size list deter­
mines how many CCIN values exist for each card.

Non-memory VPD is an array with four entries. The first entry in
the array contains the information for the processor card, the
second entry contains the information for the SP/SBA card, the
third entry contains the information for additional BCU cards and
the fourth entry is reserved.

18-24 AS/400 Ml Functional Reference

Materialize Machine Attributes (MATMATR)

Minimum memory fields contain the amount of memory required
for the system to run at optimum performance and the amount of
memory that is actually available on the system. These values are
in megabytes of main storage.

Hex 0130 Network Attributes
(can be materialized and modified)
(only allowed in attribute selection value)

The Network Attributes is a template that contains information con­
cerning APPN network attributes.

The materialize format of the Network attributes is as follows:

• Network Data Char(190)

System name Char(8)
System name length Bin(2)
New System name Char(8)
New System name length Bin(2)
Local system network Char(8)
identification
Local system network Bin(2)
identification length
Reserved Char(10)
Local system control point Char(8)
name
Local system control point Bin(2)
name length
Reserved Char(10)
Default local location Char(8)
name
Default local location Bin(2)
name length
Default mode name Char(8)
Default mode name length Bin(2)
Maximum number of Bin(2)
intermediate sessions
Maximum number of Bin(2)
conversations per APPN LUD
Local system node type Bit(8)
Reserved Bit(8)
Route addition resistance Bin(2)
List of network server Char(40)
network ID's
(An array of five entries each 8 bytes in size)
List of network server Char(10)
network 10 lengths
(An array of five entries each 2 bytes in size)
List of network server Char(40)
control point names
(An array of five entries each 8 bytes in size)
List of network server Char(10)
control point name lengths
(An array of five entries each 2 bytes in size)
Alert Flags Char(1)

Alert priority focal point Bit(1)

Chapter 18. Machine Interface Support Functions Instructions 18-25

Materialize Machine Attributes (MATMATR)

18-26 AS/400 MI Functional Reference

Alert default focal point
Reserved

Network Attribute Flags
(Materializable only)

Network attributes
initialized
Pending system name
made
current system name
Reserved

Bit(1)
Bit(6)
Char(1)

Bit(1)

Bit(1)

Bit(6)

The machine system name is defaulted to the system serial
number with a'S' in the first position. Thereafter, it may be
modified to any value of 1 through 8 characters with the first
character alphabetic.

The machine system name length is kept to determine how
long the system name is. The default value for the length is
eight.

The new system name is a tentative new value chosen for the
machine system name. This value will become the machine
system name at the next IPL. The initial value is null and the
syntax rules are the same as those for the machine system
name.

The new system name length is kept to determine how long
the new system name is. The default value for the length is
zero.

The local system network identification default is 'APPN' and J
the default local system network identification length is four. .

The local system control point name default is the system
serial number with a character'S' in the first position and the
default control point name length is eight.

The local location name default is the system serial number
with a character'S' in the first position and the default local
location name length is eight.

The mode name default is all blanks and the default mode
length is eight.

The maximum number of intermediate sessions default is 200

The maximum number of conversations per APPN LUO is 64

The local system node type default is '01' hex

The route addition resistance default is 128

All entries of the network server network 10's are defaulted to
blanks with all entries of the network server network 10's
lengths defaulting to zero.

All entries of the network server control point names are
defaulted to blanks with all entries of the network server
control point name lengths defaulting to zero.

L

L

Materialize Machine Attributes (MATMATR)

Hex 0134 Date Format
(can be materialized and modified).
(only allowed in attribute selection value)

The date format is the format is which the date will be presented
to the customer. The possible values are YMD, MDY, DMY, JUL
where Y = Year, M = Month, D = Day and JUL = Julian.

The format of the template for date format is as follows:

• Number of bytes available

• Number of bytes provided

• Date Format

Hex 0138 Leap Year Adjustment
(can be materialized and modified).

Bin(4)

Bin(4)

Char(3)

(only allowed in attribute selection value)

The leap year adjustment is added to the leap year calculations to
determine the year in which the leap should occur. The valid
values are 0, 1, 2, 3.

The format of the template for leap year adjustment is as follows:

• Number of bytes available

• Number of bytes provided

• Leap year adjustment

Hex 013C Timed Power On
(can be materialized and modified).

Bin(4)

Bin(4)

Bin(2)

(only allowed in attribute selection value)

The timed power on is the time and date at which the system
should automatically power on if it is not already powered on.

The format of the template for timed power on is as follows:

• Number of bytes available

• Number of bytes provided

• Minute

• Hour

• Day

• Month

• Year

Hex 0140 Timed Power On Enable/Disable
(can be materialized and modified).

Bin(4)

Bin(4)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

(only allowed in attribute selection value)

The timed power on enable/disable allows the timed power on
function to be queried to determined if the function is enabled or
disabled.

The format of the template for timed power on enable/disable is as
follows:

• Number of bytes available Bin(4)

Chapter 18. Machine Interface Support Functions Instructions 18-27

Materialize Machine Attributes (MATMATR)

• Number of bytes provided

• Enable/Disable

Bin(4)

Bin(2)

HEX 8000-indicates timed power on is enabled

HEX DODO-indicates timed power on is disabled

Hex 0144 Remote Power On Enable/Disable
(can be materialized and modified).
(only allowed in attribute selection value)

The remote power on enable/disable allows the remote power on
function to be queried to determined if the function is enabled or
disabled.

The format of the template for remote power on enable/disable is
as follows:

• Number of bytes available

• Number of bytes provided

• Enable/Disable

Bin(4)

Bin(4)

Bin(2)

HEX 8000-indicates remote power on is enabled

HEX DODO-indicates remote power on is disabled

Hex 0148 Auto power restart Enable/Disable
(can be materialized and modified).
(only allowed in attribute selection value)

The auto power restart enable/disable allows the auto power .
restart function to be queried to determined if the function is .J
enabled or disabled.

The format of the template for auto power restart enable/disable is
as follows:

• Number of bytes available

• Number of bytes provided

• Enable/Disable

Bin(4)

Bin(4)

Bin(2)

HEX 8000-indicates auto power restart is enabled

HEX DODO-indicates auto power restart is disabled

Hex 014C Date separator
(can be materialized and modified).
(only allowed in attribute selection value)

The date separator is used when the date is presented to the cus­
tomer. The valid values are a slash(/), dash(-), period(.) and a
comma(,).

The format of the template for the date separator is as follows:

• Number of bytes available

• Number of bytes provided

• Date Separator

18-28 AS/400 MI Functional Reference

Bin(4)

Bin(4)

Char(1)

L

Materialize Machine Attributes (MATMATR)

Hex 0164 Uninterruptible power supply type
(can be materialized and modified).
(only allowed in attribute selection value)

Note: The UPS type is meaningful only if a UPS is installed.

The uninterruptible power supply type option allows BOSS to tell
the microcode how much of the system is powered by a UPS (ie,
what type of UPS is installed). A full UPS will power all racks in
the system. A mini UPS will power the racks containing the CEC
and the load source.

The format of the template for UPS Type is as follows (including
the usual 8-byte prefix):

• Number of bytes available

• Number of bytes provided

• UPS Type

Bin(4)

Bin(4)

Bin(2)

HEX OOOO-indicates a full UPS is installed (all racks have a UPS
installed)

HEX 8000-indicates a mini UPS is installed (only the minimum
number of racks are powered)

Hex 0168 Panel Status Request
(can be materialized and modified).
(only allowed in attribute selection value)

The Panel Status Request option allows BOSS to determine what
current status of the operations panel.

The entire template can be materialized but only specific fields in
the template are modifiable.

The format of the template for Panel Status Request is as follows
(including the usual 8-byte prefix):

• Number of bytes available

• Number of bytes provided

Bin(4)

Bin(4)

• Current IPL Type Char(1)
(Can be materialized and modified)

• Panel Status

Uninterrupted power supply
installed

a = UPS not installed

Char(2)

Bit 0

1 = UPS installed, ready for use

Utility power failed,
running on UPS

o = Running on utility power
1 = Running on UPS

Bit 1

Uninterrupted power supply Bit 2
(UPS) bypass active

a = UPS bypass not active
1 = UPS bypass active

Chapter 18. Machine Interface Support Functions Instructions 18-29

Materialize Machine Attributes (MATMATR)

Uninterrupted power supply
(UPS) battery low

o = UPS battery not low
1 = UPS battery low

Auto keylock position

Bit 3

Bit 4

o = Keylock not in auto position
1 = Keylock in auto position

Normal keylock position Bit 5

o = Keylock not in normal position
1 = Keylock in normal position

Manual keylock position Bit 6

o = Keylock not in manual position
1 = Keylock in manual position

Secure keylock position Bit 7

o = Keylock not in secure position
1 = Keylock in secure position

Reserved

• Reserved

• Most recent IPL Type

Char(1)

Char(5)

Char(1)

The Current IPL Type is the state of the IPL type at the operations
panel. Possible values are A, B, C, D.

UPS installed indicates that a Uninterrupted Power Supply is
installed on the system and is available for use should the power
fail.

UPS power failed indicates that a utility failure has occurred and
the system is currently running on battery power.

UPS bypass active indicates that the UPS has been bypassed. If a
utility power failure occurs. the UPS will not supply power.

UPS battery low indicates that a UPS battery is installed on the . ,
system and the battery is low. .."

Auto keylock position indicates that the keylock is currently in the
auto position on the operation panel.

Normal keylock position indicates that the keylock is currently in
the normal position on the operation panel.

Manual key lock position indicates that the keylock is currently in
the manual position on the operation panel.

Secure keylock position indicates that the keylock is currently in
the secure position on the operation panel.

The Most Recent IPL Type is the type of IPL that was performed on
the most recent IPL. Possible values are A. B. C. D.

18-30 ASJ400 MJ Functional Reference

Materialize Machine Attributes (MATMATR)

Hex 016C Extended machine initialization status record
(only allowed in attribute selection value)

The entire template can be materialized but only specific fields are
modifiable.

The XMISR (extended machine initialization status record) is used
to report the status of the machine.

The materialize format of the XMISR is as follows:

• Number of bytes available

• Number of bytes provided

• Save storage status

Checksumming status

Bin(4)

Bin(4)

Char(4)

Bit(O)

o = Checksumming was not stopped
1 = Checksumming was stopped

Completion status Bit(1)

o = Save storage did not complete ok
1 = Save storage completed ok

System restored status Bit(2)

o = Save storage did not restore the system
1 = Save storage restored the system

Save storage attempted Bit(3)

o = Save storage not attempted
1 = Save storage was attempted

Unreadable sectors Bit(4)

o = Unreadable sectors were not found
1 = Unreadable sectors were found during save operation

Check for active files on Bit(5)
save storage media

a = Do not check for active files on save storage media
1 = Check for active files on save storage media

Reserved

Reserved

Reserved

• Save storage information

Tape device information
Number of tape device
entries

Tape device address

Bit(6)

Bit(7)

Char(3)

Char(118)

Char(18)
Bin(16)

Char(16)

(Array of four entries, each 4 bytes in size)

Tape device lOP
address

Tape device

Char(2)

Char(2)

Chapter 18. Machine Interface Support Functions Instructions 18-31

Materialize Machine Attributes (MATMATR)

Exceptions

device address

Tape volume names
structure

Number of tape
volume entries

Char(62)

Bin(16)

Tape volume names Char(60)
(Array of ten entries, each 6 bytes in size)

Tape expiration date Char(6)
Bad sector count Char(4)
Date from save tape Char(6)
Time last successful Char(8)
save started
Reserved

• Install tape Volume ID

• IPL sequence number ID

Char(14)

Char(6)

Bin(4)

Hex 0170 Alternate initial process definition template
(can be materialized and modified)
(only allowed in attribute selection value)

The alternate initial process definition template is used by the
machine when performing an automated install.

No check is made and no exception is signaled if the values in the
template are invalid; however, the next automated install will not
be successful.

Limitations:

Data-pointer-defined scalars are not allowed as a primary operand for this
instruction. An invalid operand type exception is signaled if this occurs.

Substring operand references that allow for a null substring reference (a
length value of zero) may not be specified for this instruction.

Exception

06 Addressing

01 space addressing violation

02 boundary alignment

03 range

06 optimized addressability invalid

10 Damage encountered

04 system object damage state

44 partial system object damage

1 C Machine-dependent exception

03 machine storage limit exceeded

OA service processor unable to process request

Operands
1 2 ~her

x
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

18-32 AS/400 MJ Functional Reference

J

J

Materialize Machine Attributes (MATMATR)

Operands
Exception 1 2 Other
20 Machine support

02 machine check X

03 function check X

22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X

24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X

2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

OA invalid operand length X

OC invalid operand odt reference X X

00 reserved bits are not zero X X X

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 scalar type invalid X X

02 scalar attributes invalid X

03 scalar value invalid X

36 Space management

01 space extension/truncation X

38 Template specification

03 materialization length exception X

Chapter 18. Machine Interface Support Functions Instructions 18-33

ASI400 MI Functional Reference

Exception Specifications

Chapter 19. Exception Specifications

© Copyright IBM Corp. 1990

This chapter describes the exceptions which can be signaled by the
machine. Exception generation is the only facility for synchronously commu­
nicating error conditions that are a direct result of AS/400 instruction proc­
essing. Machine exceptions identify error conditions that require processing
before the next sequential AS/400 instruction is executed. Instructions that
cause a particular exception may not function identically before execution is
stopped; however, each instruction produces consistent results. These
results ensure machine integrity and reliability. The results are inherent in a
particular exception definition or in the detailed instruction definition.

The user can monitor any number of exceptions. There are three basic tech­
niques for the user to handle an exception. One technique is to provide
detailed handling specified by a program defined exception description
object. The second technique is to provide a default exception handler for
the process. This exception handler is invoked whenever an invocation fails
to handle an exception. The third technique is to accept the machine default
of process termination by not providing an appropriate exception handling
mechanism. for a general description of exception management.

19-1

Exception Specifications

19.1 Machine Interface Exception Data
Exception data is communicated across the machine interface through a
Retrieve Exception Data instruction. Certain information is available for all
exceptions when an appropriate exception description has been defined by
the user. That information includes the following:

• Exception identification-This is a 2-byte hexadecimal field formed by con­
catenating to the high-order 1-byte exception group number a low-order
1-byte exception subtype number. The format of the exception identifica­
tion is as follows:

1 2 3 4

Group
Number

I
Subtype
Number

• Compare value length

• Compare value (machines signaled have a compare value of hex
00000000 with a length of 4)

• Exception-specific data

• Signaling program invocation address

• Signaled program invocation address

• Signaling program instruction address

• Signaled program instruction address

• Machine-dependent data identifying the component that generated the
exception

The exception-specific data provides additional pointers and data that may
be required for an individual exception.

19-2 AS/400 MI Functional Reference

L

Exception Specifications

19.2 Exception List
The following is a list of all exceptions in alphabetic and numeric order by
group. The subtypes within each group are in numeric order.

02

04

06

08

OA

OC

Access Group

01 Object ineligible for access group

Access State

01 Access state specification invalid

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

05 Invalid space reference

06 Optimized addressability invalid

Argument/Parameter

01 Parameter reference violation

02 Argument list length violation

03 Argument list length modification violation

Authorization

01 Unauthorized for operation

02 Privileged instruction

03 Attempt to grant/retract authority state to an object that is not
authorized

04 Special authorization required

05 Create/modify user profile beyond level of authorization

06 Grant/retract authority invalid.

Computation

01 Conversion

02 Decimal data

03 Decimal point alignment

04 Edit digit count

05 Edit mask syntax

06 Floating-point overflow

07 Floating-point underflow

08 Length conformance

09 Floating-point invalid operand

Chapter 19. Exception Specifications 19-3

Exception Specifications

OE

10

OA Size

OB Zero divide

OC Invalid floating-point conversion

00 Floating-point inexact result

OE Floating-point zero divide

OF Master key not defined

10 Weak key not valid

11 Key parity invalid

12 Invalid extended character data

13 Invalid extended character operation

Context Operation

01 Duplicate object identification

02 Object ineligible for context

Damage Encountered

02 Machine context damage state

04 System object damage state

05 Authority verification terminated due to damaged object

44 Partial system object damage state

12 Data Base Management

01 Conversion mapping error

02 Key mapping error

03 Cursor not set

04 Data space entry limit exceeded

05 Data space entry already locked

06 Data space entry not found

07 Data space index invalid

08 Incomplete key description

09 Duplicate key value in existing data space entry

OA End of path

OB Duplicate key value detected while building unique data space
index

OD No entries locked

OF Duplicate key value in uncommitted data space entry

13 Invalid mapping template

14 Invalid selection template

15 Data space not addressed by index

19-4 AS/400 MI Functional Reference

j

L

16 Data space not addressed by cursor

17 Key changed since set cursor

18 Invalid key value modification

19 Invalid rule option

1A Data space entry size exceeded

1 B Logical space entry size limit exceeded

1C Key size limit exceeded

1D Logical key size limit exceeded

Exception Specifications

21 Unable to maintain a unique key data space index

25 Invalid data base operation

26 Data space index with invalid floating-point field build termination

27 Data space index key with invalid floating-point field

30 Specified data space entry rejected

32 Join value changed

33 Data space index with non-user exit selection routine build termi­
nation

34 Non-user exit selection routine failure

36 No mapping code specified

37 Operation not valid with join cursor

38 Derived field operation error

39 Derived field operation error during build index

40 Invalid entry definition table

16 Exception Management

01 Exception description status invalid

02 Exception state of process invalid

03 Invalid invocation address

18 Independent Index

01 Duplicate key argument in index

1A Lock State

01 Invalid lock state

02 Lock request not grantable

03 Invalid unlock request

04 Invalid object lock transfer request

05 Invalid space location unlock

1C Machine-Dependent Exception

01 Machine-dependent request invalid

Chapter 19. Exception Specifications 19-5

Exception Specifications

02 Program limitation exceeded

03 Machine storage limit exceeded

04 Object storage limit exceeded

06 Lock limit exceeded

07 Modify main storage pool controls invalid

08 Requested function not valid

09 Auxiliary storage pool number invalid

1E Machine Observation

01 Program not observable

20 Machine Support

01 Diagnose

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

04 Object not eligible for operation

05 Object not available to process

06 Object not eligible for destruction

07 Authority verification terminated due to destroyed object

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

04 Pointer not resolved

26 Process Management

02 Queue full

28 Process State

01 Process ineligible for operation

02 Process control space not associated with a process

OA Process attribute modification invalid

2A Program Creation

01 Program header invalid

02 ODr syntax error

03 ODr relational error

19-6 AS/400 MI Functional Reference

2C

2E

30

Exception Specifications

04 Operation code invalid

05 Invalid op code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OA Invalid operand length

OB Invalid number of operands

OC Invalid operand ODT reference

OD Reserved bits are not zero

Program Execution

01 Return instruction invalid

02 Return point invalid

03 Stack control invalid

04 Branch target invalid

05 Activation in use by invocation

06 Instruction cancellation

07 Instruction termination

Resource Control Limit

01 User profile storage limit exceeded

Journal

01 Apply journal changes failure

02 Entry not journaled

03 Maximum objects through a journal port limit exceeded

04 Invalid journal space

05 Maximum journal spaces attached

06 Journal space not at a recoverable boundary

07 Journal ID not unique

08 Object already being journaled

09 Transaction limit list exceeded

OA Data space index currently journaled

OB Data space index currently in force mode

OC Underlying data space not journaled to same journal

32 Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

Chapter 19. Exception Specifications 19-7

Exception Specifications

03 Scalar value invalid

34 Source/Sink Management

01 Source/sink configuration invalid

02 Source/sink physical address invalid

03 Source/sink object state invalid

04 Source/sink resource not available

36 Space Management

01 Space extension/truncation

02 Invalid space modification

38 Template Specification

01 Template value invalid

02 Template size invalid J 03 Materialization length exception

3A Wait Time-Out

01 Dequeue

02 Lock

03 Wait on event

04 Space location lock wait

J 3C Service

01 Invalid service session state

02 Unable to start service session

3E Commitment Control

01 Invalid commit block status change

03 Commit block is attached to process

04 Commit block controls uncommitted changes J
06 Commitment control resource limit exceeded

08 Object under commitment control being incorrectly journaled

10 Operation not valid under commitment control

11 Process has attached commit block

12 Objects under commitment control

13 Commit block not journaled

14 Errors during decommit

15 Object ineligible for commitment control

16 Object ineligible for removal from commitment control

40 Dump Space Management J
01 Dump data size limit exceeded"

iN AS/400 MJ Functional Reference

L

02 Invalid dump data insertion

03 Invalid dump space modification

04 Invalid dump data retrieval

Exception Specifications

Chapter 19. Exception Specifications 19-9

Hex 04, Access State Exceptions

02 Access Group

04 Access State

0201 Object Ineligible for Access Group

An attempt was made to insert an object into an access group. The
operation could not be performed for one of the following reasons:

• The object is temporary, or the object is permanent and the
access group is temporary.

• The object is restricted by the machine from membership in an
access group.

Information Passed:

• Access group

• Object to be inserted
(binary 0 for objects not yet created)

Instructions Causing Exception:

System pointer

System pointer

• Any create instruction that specifies an access group in the create
template

• Signal Exception

04()1 Access State Specification Invalid

An access state not supported by the machine was specified for an
object.

Information Passed

• The invalid access state

Instructions Causing Exception:

• Set Access State

• Signal Exception

Char(1)

19-10 AS/400 MI Functional Reference

06 Addressing

L

Hex 06, Addressing Exceptions

0601 Space Addressing Violation

An attempt has been made to operate outside the current extent of the
space contained in a system object.

Information Passed:

• Object referenced System pointer

• Space offset reference attempted Bin(4)
This value may be zero when not available.

Instructions Causing Exception:

• Any instruction using a pointer or scalar as an operand

• Any instruction using a scalar as an index, a length suboperand,
or a space pointer as a base suboperand

• Signal Exception

0602 Boundary Alignment

A program object has been referenced, and it does not have the
proper alignment relative to the beginning of a space. Pointers must
always be 16-byte aligned. Program objects that are not pointers must
have at least the alignment specified by the ODT entry.

Information Passed:

• Addressability to pointer or template Space pointer

Instructions Causing Exception:

• Any instruction having a pointer operand or a template operand
that requires a specific boundary alignment

0603 Range

A subscript value in a compound operand array reference is outside
the range defined for the array. A subscript value of less than 1 or
greater than the number of elements defined by the array causes this
exception.

A reference to a string has a position and/or length that exceeds the
bounds of the string. A compound operand that defines a character
string that does not completely fall within the bounds of the base char­
acter string was referenced. A substring with position (P) e1 and
length (L) e1 does not meet the following constraint (n is the length of
the base string):

P+L-1~n

Instructions Causing Exception:

• All instructions that use scalar or pointer operands

• Signal Exception

0604 External Data Object Not Found

An unsuccessful attempt was made to resolve a data pointer. The
external data object specified by the initial value of the data pointer
was not found in the process activations. If a program name was
specified in the symbolic address, then only that program's activation

Chapter 19. Exception Specifications 19-11

Hex 06, Addressing Exceptions

is considered for resolution. If no program was specified, then all of
the programs with activations in the process are considered for data. . .".:
pointer resolution. ...",

Information Passed:

• External data object name

Instructions Causing Exception:

Char(32)

• Any instruction that references an external data object through a
data pointer.

• Any instruction where a data pointer is used as the scalar value
for an index of a length suboperand. This includes scalar and
pointer operands that may be subscripted.

• Signal Exception

• Compare Pointer Addressability

• Compare Pointer for Space Addressability

• Convert Character to Numeric

• Convert External Form to Numeric

• Convert Numeric to Character

• Copy Bytes Left Adjusted

• Copy Bytes Left Adjusted With Pad

• Copy Bytes Right Adjusted

• Copy Bytes Right Adjusted With Pad

• Copy Numeric Value

• Edit

• Materialize Pointer

• Resolve Data Pointer

• Set Data Pointer Addressability

• Set Data Pointer Attributes

• Set Space Pointer From Pointer

• Set System Pointer From Pointer

0605 Invalid Space Reference

An attempt was made to address a space contained in an object that
has no space.

Instruction Causing Exception:

• Set Space Pointer from Pointer

0606 Optimized Addressability Invalid

An instruction attempted to use the internally optimized value of a
space pointer that was invalid due to the failure of a prior instruction. ::.l' ..

in trying to access the pointer's value. ..",

19-12 AS/400 MI Functional Reference

Hex 06, Addressing Exceptions

The machine may optimize the retrieval of a pointer's value by using
the value retrieved on one instruction for use by multiple instructions
that have need to reference the pointer's value. This avoids the over­
head of continually retrieving the pointer's value from storage for
every instruction that would have need to use it. If, in attempting to
retrieve the pointer's value, an exception is detected, the machine
marks the internally optimized value as invalid. This is done to
provide for detecting the invalid addressability upon subsequent exe­
cution of instructions that depend on the internally optimized value.
These instructions have no provision for retrieving the pointer's value
from storage. These instructions will not redetect the original excep­
tion, but instead detect the optimized addressability invalid exception
for this condition. This condition can occur when an exception is
detected during an attempt to retrieve a pointer's value and the excep­
tion is ignored which causes execution of the program to continue
without successfully retrieving the pointer's value.

This exception may not be detected on certain cases of internal
machine optimizations that may be performed on references to space
pointer machine objects. A reference to the space data addressed by
the pointer is necessary to ensure consistent detection of this excep­
tion. Although the exception may not be detected for initial oper­
ations, it will be detected on any subsequent operation that references
the space data addressed by the space pointer machine objects.

The optimization of retrieving a pointer's value can be prevented by
specifying the abnormal attribute for the pointer.

This exception may not be detected on the operations listed below
under certain cases of internal machine optimizations which may be
performed on references to space pointer machine objects. The oper­
ations listed below refer to the value of a space pointer machine
object, but do not have need to reference the space data the pointer
addresses. A reference to the space data addressed by the pointer is
necessary to insure consistent detection of this exception. Although
the exception may not be detected for these operations, it will be
detected upon any subsequent operation which references the space
data addressed by the space pointer machine object.

The following instructions may not detect this exception upon refer­
ences to a space pointer machine object.

• Add Space Pointer
• Compare Pointer for Space Addressability
• Compare Space Addressability
• Set Space Pointer
• Set Space Pointer with Displacement
• Ser Space Pointer from Pointer
• Subtract Space Pointer Offset

See the particular instruction description for more detail. Instructions
Causing Exception:

• Any instruction using a pointer or scalar as an operand

- Signal Exception

Chapter 19. Exception Specifications 19-13

Hex OC, Computation Exceptions

O's on the right. Nonzero digits would have to be truncated on the left
to fit the aligned value into a 31-digit decimal field.

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

• Subtract Numeric

• Signal Exception

OC04 Edit Digit Count

The number of digit position characters in the mask operand of an Edit
instruction is not equal to the number of digits in the source operand
value.

Instructions Causing Exception:

• Edit

• Signal Exception

OC05 Edit Mask Syntax

The characters of the mask operand do not follow the valid syntax
rules for an Edit instruction.

Instructions Causing Exception:

• Edit

• Signal Exception

OC06 Floating-Point Overflow

The result of a floating-point operation is finite and not an invalid
value, but its exponent is too large for the target floating-poil,t format.
The signed exponent has exceeded 127 in short format or 1023 in long
format.

Information Passed:

• Floating-point value attributes

Normal bias

Modified bias

Rounded to short floating-point
precision

NaN

Reserved (binary 0)

• Reserved (binary 0)

• Overflowed floating-point value

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-7

Char(7)

Floating-(8) point

Char(16)

• Compute Math Function Using One Input Value

19-16 AS/400 MI Functional Reference

Hex OC, Computation Exceptions

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Numeric to Character

• Convert Decimal Form to Floating-Point

• Copy Numeric Value

• Divide

• Extract Magnitude

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OC07 Floating-Point Underflow

The result of a floating-point operation is not zero but has too small an
exponent for the destination's format without being denormalized. The
signed exponent is less than -126 in short format or less than -1022 in
long format.

Information Passed:

• Floating-point value attributes

Normal bias

Modified bias

Char(1)

Bit 0

Bit 1

Rounded to short floating-point Bit 2
precision

NaN

Reserved (binary 0)

• Reserved (binary 0)

• Underflowed floating-point value

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

Bit 3

Bits 4-7

Char(7)

Floating-(8) point

Char(16)

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Numeric to Character

• Convert Decimal Form to Floatin9-"Point

• Copy Numeric Value

• Divide

• Extract Magnitude

Chapter 19. Exception Specifications 19-17

Hex ~C, Computation Exceptions

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OCOB Length Conformance

The operand lengths or resultant value length or both do not conform
to the rules of the instruction:

CVTHC

CVTCH

CVTMC

EDIT

SCAN

SEARCH

XLATE

Twice the length of the source operand must be less than
or equal to the length of the receiver operand.

The length of the operand must be less than or equal to
twice the length of the receiver operand.

The length of a record in the receiver was not enough to
contain the converted form of a record from the source.

The length of the resultant edited value must be equal to
the length of the receiver operand.

The length of the compare operand must not be greater
than the length of the base string.

The length of the find operand plus the value of the
location operand must be less than or equal to the length
of an element of the array operand.

The source and receiver operands must be the same
length.

Instructions Causing Exception:

• Convert Character to Hex

• Convert Hex to Character

• Convert MRJE to Character

• Edit

• Extended Character Scan

• Scan

• Search

• Signal Exception

• Translate

OC09 Floating-Point Invalid Operand

A floating-point invalid operand condition is caused by one of the fol­
lowing conditions:

• A source operand is an unmasked NaN.

• Addition of infinities of different signs and subtraction of infinities
of the same sign.

• Multiplication of zero times infinity.

19-18 AS/400 M I Functional Reference

Hex DC, Computation Exceptions

• Division of zero by zero or infinity by infinity.

• Computing the sine, cosine, or tangent function for infinity.

• Computing the arc tangent, exponential, logarithm, square root, or
power function for infinity when in projective infinity mode.

• Floating-point values compared unordered and no branch or indi­
cator options are specified for the unordered, negation of unor­
dered, equal, or negation of equal conditions on compare numeric
value.

• An unordered resultant condition occurred on a computational
instruction because the result was NaN, and branch or indicator
conditions are specified but unordered, negation of unordered,
zero, or negation of zero conditions are not specified.

Information Passed:

• Exception type Char(1)

Hex 00 = Invalid arithmetic operation or operand is unmasked
NaN.

Hex 01 = Invalid branch or indicator conditions.

Hex 02 through hex FF are reserved.

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

Char(31)

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Floating-Point to Decimal Form

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Extract Magnitude

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OCOA Size

An operand was too small to contain a result. This condition is
detected only when a fixed-point result is too large to be assigned to a
fixed-point receiver. The receiver operand is set with the result of the
operation truncated to the receiver size.

Chapter 19. Exception Specifications 19-19

Hex OC, Computation Exceptions

Instructions Causing Exception:

• Add Numeric

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert External Form

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Divide With Remainder

• Extract Magnitude

• Multiply

• Negate

• Remainder

• Scale

• Subtract Numeric

• Sum

• Signal Exception

• Trim Length

OCOB Zero Divide

An attempt was made to divide by 0 on a fixed-point divide operation.

Instructions Causing Exception:

• Divide

• Divide With Remainder

• Remainder

• Signal Exception

OCOC Invalid Floating-Point Conversion

This exception is detected on a conversion from binary floating-point
to other than a binary floating-point format because overflow, infinity,
or NaN is detected before conversion is complete.

Information Passed:

• Floating-point value attributes

Normal bias

Modified bias

Reserved (binary 0)

NaN

Infinity

19-20 AS/400 M I Functional Reference

Char(1)

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Hex DC, Computation Exceptions

- Reserved (binary 0)

• Reserved (binary 0)

• Invalid floating-point varue

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

Bits 5-7

Char(7)

Floating-point (8)

Char(16)

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Floating-Point to Decimal Form

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Multiply

• Negate

• Scale

• Subtract Numeric

• Signal Exception

OCOD Floating-Point Inexact Result

This exception is signaled when the rounded result of an operation is
not exact because of one of the following conditions:

• The rounded result of an operation is not exact because a value is
modified (rounded) to fit in a receiver operand and nonzero frac­
tion digits are lost.

• The occurrence of a floating-point overflow condition when that
condition is masked and the result is no longer exact because it is
set to infinity.

Information Passed:

• Reserved (binary 0)

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

Char(32)

• Compute Math Function Using One Input Value

• Compute Math Function Using Two Input Values

• Convert Character to Numeric

• Convert Decimal Form to Floating-Point

• Convert Floating-Point to Decimal Form

• Copy Numeric Value

Chapter 19. Exception Specifications 19-21

Hex DE, Context Operation Exceptions

OE Context Operation
DEDf Duplicate Object Identification

An attempt was made to place addressability in a context to an object
having the same name, type, and subtype as an existing entry in the
context.

Information Passed:

• System pointer to the existing object

• Object identification

Object type

Object subtype

Object name

Instructions Causing Exception:

• All create instructions

• Modify Addressability

• Rename Object

• Signal Exception

DED2 Object Ineligible For Context

Char(32)

Char(1)

Char(1)

Char(30)

An attempt was made to delete addressability to an object of a type
that may be addressed only by the machine context, or an attempt
was made to place addressability to an object in a temporary or per­
manent context that may be addressed only by the machine context.

Information Passed:

• System pointer to object

• Object identification

Object type

Object subtype code

Object name

Instructions Causing Exception:

• Modify Addressability

• Signal Exception

19-24 AS/400 MI Functional Reference

Char(32)

Char(1)

Char(1)

Char(30)

10 Damage

L

Hex 10, Damage Exceptions

1002 Machine Context Damage State

The machine context cannot be referenced because it is in the
damaged state. The machine context rebuild option of the Reclaim
instruction can be used to correct the problem or an IPL can correct
the problem.

Information Passed:

• Reserved (binary 0)

• VLOG dump ID

• Error class

Char(16)

Char(8)

Bin(2)

• The error class codes for the type of damage detected are as
follows:

Hex 0000 = Previously marked damaged
Hex 0001 = Detected abnormal condition
Hex 0002 = Locally invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device failure Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is
the unit number of the failing device or 0 for a main storage
failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Materialize Context

• Resolve System Pointer

Char(100)

• Any instruction that resolves a system object that is located by the
machine context

• Signal Exception

1004 System Object Damage State

A system object cannot be accessed because it is in the damaged
state.

Information Passed:

• System pointer to the damaged object System pointer

• VLOG dump ID

• Error class

Char(8)

Bin(2)

• The error class codes for the type of damage detected are as
follows:

Hex 0000 = Previously marked damaged
Hex 0001 = Detected abnormal condition
Hex 0002 = Locally invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

Chapter 19. Exception Specifications 19-25

Hex 10, Damage Exceptions

This field is defined for error classes hex 0002 and hex 0003. It is
the unit number of the failing device or 0 for a main storage
failure.

• Reserved (binary 0)

Instructions Causing Exception:

Char(100)

• Any instruction that references a system object

• Signal Exception

1005 Authority verification terminated due to damaged object

Authority verification processing terminated due to a damaged user
profile or authorization list found during the check of authority for a
permanent system object.

Information Passed

• System Pointer to the object for
which authority was being checked

• Reason Code

o = Damaged User Profile
1 = Damaged Authorization List

(all other values reserved)

• Reserved

Sys Ptr

Bin(2)

Char(14)

• System Pointer to the damaged User Sys Ptr
Profile or Authorization List

Instructions Causing Exception

• Any instruction with operands or operand lists that refer to a per­
manent system object

• Signal Exception

1044 Partial System Object Damage

Partial damage to a system object has been detected.

Information Passed:

• System pointer to the damaged object System pointer

• VLOG dump ID

• Error Class

Char(8)

Bin(2)

• The error class codes for the type of damage detected are as
follows:

Hex 0000 = Previously marked damaged
Hex 0001 = Detected abnormal condition
Hex 0002 = Locally invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is
the unit number of the failing device or 0 for a main storage
failure.

19-26 AS/400 MI Functional Reference

J

J

• Reserved (binary 0)

Instructions Causing Exception:

Hex 10, Damage Exceptions

Char(100)

• Any instruction that refe-rences a system object

• Signal Exception

Chapter 19. Exception Specifications 19-27

Hex 16, Exception Management Exceptions

16 Exception Management
1601 Exception Description Status Invalid

The tested exception description was not in the deferred state.

Instructions Causing Exception:

• Test Exception

• Signal Exception

1602 Exception State of Process Invalid

An attempt was made to retrieve exception data or resignal an excep­
tion when the process is not in an exception handling state; that is, the
process is not in an external program, internal entry pOint, or branch
point exception handler. The re-signal option is valid only for an
external exception handler.

Instructions Causing Exception:

• Signal Exception

• Retrieve Exception Data

1603 Invalid Invocation Address

The invocation address specified in the space pointer on a Return
From Exception instruction or Signal Exception instruction did not rep­
resent an existing program invocation.

Information Passed:

• Space pointer

Instructions Causing Exception:

• Return From Exception

• Sense Exception Description

• Signal Exception

19-28 AS/400 MI Functional Reference

J

J

1 A Lock State

Hex 1A, Lock State Exceptions

1 A01 Invalid Lock State

The lock enforcement rule or rules were violated when an attempt was
made to access an object.

Information Passed:

• System pointer to the object

Instructions Causing Exception:

• All instructions that enforce the lock rules

• Signal Exception

1A02 Lock Request Not Grantable

The lock request cannot be granted immediately and neither the syn­
chronous nor asynchronous wait option was specified.

Information Passed:

• Pointer to lock request template

• Failing request number
(relative entry position)

Instructions Causing Exception:

• Lock Object

• Signal Exception

1 A03 Invalid Unlock Request

Space pointer

Bin(2)

An attempt was made to unlock a lock state not held by the current
requesting process.

Information Passed:

• Pointer to unlock request template

• Number of requests not unlocked

• Request number (relative entry
position for each lock not unlocked)

Instructions Causing Exception:

• Unlock Object

• Signal Exception

1 A04 Invalid Object Lock Transfer Request

Space pointer

Bin(2)

Bin(2)

An attempt was made to transfer locks that were not held by the trans­
ferring process, or the transfer lock request was not granted because
the lock granting rules would have been violated.

Information Passed:

• Pointer to lock transfer request templateSpace pointer

• Number of requests not transferred Bin(2)

• Request number (relative entry Bin(2)
position for each lock not transferred)

Chapter 19. Exception Specifications 19-29

Hex 20, Machine Support Exceptions

20 Machine Support
2001 Diagnose

An error or discrepancy was found when a Diagnose instruction was
processed.

Information Passed:

• Space element to the subelement in the operand 2 object that was
being processed

• Data Bin(4)

Subidentifier unique to the Bin(2)
requested function

Indicator of the pointer in Bin(2)
operand 2 that was being processed

Instructions Causing Exception:

• Diagnose

• Signal Exception

2002 Machine Check

A machine malfunction affecting system-wide operation has been
detected during execution of an instruction in this process.

Information Passed:

• Timestamp that gives the Char(8)
current value of the machine time-of-day clock.

• Error code indicating nature of machine Char(2)
check. (This value is machine-dependent and is
only defined in the machine service documentation.)

• Reserved (binary 0)

• VLOG dump 10

• Error class

Char(6)

Char(8)

Bin(2)

The error class codes for the type of damage detected are as
follows:

Hex 0000 = Unspecified abnormal condition
Hex 0002 = Logically invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is
the OU number of the failing device or 0 for a main storage failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Any instruction

• Signal Exception

Char(100)

19-32 AS/400 MI Functional Reference

Hex 20, Machine Support Exceptions

2003 Function Check

The executing instruction has failed unexpectedly during execution
within the process.

Information Passed:

• Timestamp giving the current value
of the machine time-of-day clock.

• Error code indicating the
nature of the function check.
(This value is machine-dependent.)

• Reserved (binary 0)

• VLOG dump ID

• Error class

Char(8)

Char(2)

Char(6)

Char(8)

Bin(2)

The error class codes for the type of damage detected are as
follows:

Hex 0000 = Unspecified abnormal condition
Hex 0002 = Logically invalid device sector
Hex 0003 = Device failure

• Auxiliary storage device indicator Bin(2)

This field is defined for error classes hex 0002 and hex 0003. It is
the OU number of the failing device or 0 for a main storage failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Any instruction

• Signal Exception

Char(100)

Chapter 19. Exception Specifications 19-33

Hex 22, Object Access Exceptions

22 Object Access
2201 Object Not Found

An attempt to resolve addressability into a system pointer was not
successful for one of the following reasons:

• The named object was not located in the context specified in the
symbolic address or in any context referenced in the name resol­
ution list.

• An object with a corresponding name was found but the user
profile(s) governing execution of the instruction did not have the
authority required for resolution.

Information Passed:

• Object identification

Object type

Object subtype

Object name

• Required authorization

Instructions Causing Exception:

Char(32)

Char(1)

Char(1)

Char(30)

Char(2)

• Any instruction that references an object through a system pointer

• Signal Exception

2202 Object Destroyed

An attempt was made to reference an object that no longer exists.

This exception may not be signaled for operations which refer to the
value of a space pointer machine object, but which do not attempt to
reference the space data the pointer addresses. The following
instructions may not signal this exception upon references to a space
pointer machine object.

• Add Space Pointer

• Compare Pointer for Space Addressibility

• Compare Space Addressibilty

• Set Space Pointer

• Set Space Pointer wtih Displacement

• Set Space Pointer from Pointer

• Subtract Space Pointer Offset

See the particular instruction description for more detail. Instructions
Causing Exception:

• Any instruction that references an object through a system pointer,
a space pointer, or a data pointer

• Any instruction that references a scalar or a pointer operand when
the object and the space containing the scalar or pointer have
been destroyed

• Signal Exception

19-34 AS/400 MJ Functional Reference

Hex 24, Pointer Specification Exceptions

24 Pointer Specification
2401 Pointer Does Not Exist

A pointer reference was made to a storage location in a space that
does not contain a pointer data object, or a reference was made to a
space pointer machine object that was not set to address a space.

This exception may not be signaled for operations which refer to the
value of a space pointer machine object, but which do not attempt to
reference the space data the pointer addresses. The following
instructions may not signal this exception upon references to a space
pointer machine object.

• Add Space Pointer

• Compare Pointer for Space Addressability

• Compare Space Addressability

• Set Space Pointer

• Set Space Pointer With Displacement

• Set Space Pointer from Pointer

• Subtract Space Pointer Offset

See the particular instruction description for more detail.

Instructions Causing Exception:

• Any instruction that has pointer operands

• Any instruction that references a base operand (scalar or pointer)
when the base pointer is not a space painter

• Any instruction that allows a scalar defined by a data pointer to be
an operand

• Any instruction that requires a pointer as part of the input template

• Signal Exception

2402 Pointer Type Invalid

An instruction has referenced a pointer object that contains an incor­
rect pointer type for the operation requested.

Instructions Causing Exception:

• Any instruction that has pointer operands

• Any instruction that contains a base operand (scalar or pointer)
when the base pointer is not a space pointer

• Any instruction that allows a scalar defined by a data pointer to be
an operand

• Any instruction that requires a pointer as part of the input template

• Signal Exception

2403 Pointer Addressing Invalid Object

An instruction has referenced a system painter that addresses an
incorrect type of system object for this operation.

Chapter 19. Exception Specifications 19-35

Hex 26, Process Management Exceptions

Information Passed:

• The invalid system pointer

Instructions Causing Exception:

• Any instruction that references a system pointer, either as an
operand or within a template operand, and that requires a specific
object type as a part of its operation

• Signal Exception

2404 Pointer Not Resolved

26 Process Management

The operation did not find a resolved system pointer. For example,
NRL (name resolution list) entries must be resolved system pointers
that address contents.

Information Passed:

• The invalid pointer

Instructions Causing Exception:

• Resolve System Pointer

• Any instruction that causes a system pointer to be implicitly
resolved when the NRL is used in the resolution. All entries in the
NRL must be resolved.

• Resolved Data Pointer

• Any instruction that causes a data pointer to be implicitly resolved.
all activation entries in the process must contain a resolved
pointer to the associated program.

• Signal Exception

2602 Queue Full

An attempt was made to enqueue a message to a queue that is full
and is not extendable.

Information Passed:

• System pOinter to the queue for which the enqueue was attempted

Instructions Causing Exception:

• Enqueue

• Request I/O

• Signal Exception

19-36 AS/400 MI Functional Reference

("

Hex 2A, Program Creation Exceptions

2A Program Creation
2A01 Program Header Invalid

The data in the program header was invalid.

Instructions Causing Exception:

• Signal Exception

2A02 ODT Syntax Error

The syntax (bit setting) of an OOT (object definition table) entry was
invalid.

Information Passed:

• OOT entry number

Instructions Causing Exception:

• Signal Exception

Char(2)

2A03 ODT Relational Error

2A04

2A05

2A06

An OOT (object definition table) entry reference to another OOT entry
was invalid.

Information Passed:

• OOT entry number Char(2)

Instructions Causing Exception:

• Signal Exception

Operation Code Invalid

One of the following conditions occurred.

• The operation code did not exist.

• The optional form was not allowed.

Information Passed:

• Instruction number of the Ubin(2)
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

Invalid Op Code Extender Field

The branch/indicator options were invalid.

Information Passed:

• Instruction number of the Ubin(2)
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

Invalid Operand Type

One of the following conditions was detected:

Chapter 19. Exception Specifications 19-37

Hex 2A, Program Creation Exceptions

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2AOC Invalid Operand ODr Reference

Ubin(2)

The OOT reference was not within the range of the OOV.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

2AOD Reserved Bits Are Not Zero

Ubin(2)

The reserved bits in an opcode or operand are nonzero.

Information Passed:

• Instruction number of the
instruction being analyzed

Instructions Causing Exception:

• Signal Exception

19-40 AS/400 MI Functional Reference

Ubin(2)

Hex 2C, Program Execution Exceptions

2C Program Execution
2C01 Return Instruction Invalid

Improper usage of the Return, Transfer Control, or Return From Excep­
tion instruction occurred for one of the following reasons:

• A Return From Exception instruction was executed in an invocation
that was not defined as an exception handler.

• A Return External or Transfer Control instruction was issued from
a first-invocation-Ievel exception handler.

• A Transfer Control instruction was issued from a first-invocation­
level event handler.

Instructions Causing Exception:

• Return External

• Return From Exception

• Transfer Control

• Signal Exception

2C02 Return Point Invalid

An attempt was made to use a Return External instruction with a
return point that was invalid for one of the following reasons:

• The return point value was outside the range of the return list
specified on the preceding Call External instruction.

• A nonzero return point was supplied, but no return list was sup­
plied on the preceding Call External instruction.

• A nonzero return point was supplied when a Return External
instruction was issued in the first invocation in the process.

• A nonzero return point was supplied when the Return External
instruction was issued by an invocation acting as an event
handler.

Instructions Causing Exception:

• Return External

• Signal Exception

2C03 Stack Control Invalid

Information Passed:

• Cause indicator Bin(2)

Hex 0003 = The chain being modified bit in the PSSA base entry
was on when it was necessary for the machine to use
the chain of PSSA activations or it was necessary for
the machine to modify the chain of PSSA activations.

Instructions Causing Exception:

• Activate Program

• Call External

• De-activate Program

Chapter 19. Exception Specifications 19-41

Hex 2C, Program Execution Exceptions

• Modify Automatic Storage Allocation

• Resolve Data Pointer

• Transfer Control

• Signal Exception

2C04 Branch Target Invalid

An attempt was made to branch to an instruction defined through an
instruction pointer, but the instruction pointer was set by a program
other than the one that issued the branch.

Information Passed:

• Instruction pointer causing the exception

Instructions Causing Exception:

• All instructions that have a branch form

• Signal Exception

2C05 Activation in Use by Invocation

An attempt was made to de-activate a program that has an existing
invocation which is not the invocation issuing the instruction.

Information Passed:

• Program System pointer

Instructions Causing Exception:

• De-activate Program

• Signal Exception

19-42 AS/400 MI Functional Reference

Hex 2E, Resource Control Limit Exceptions

2E Resource Control Limit
2EOI User Profile Storage Limit Exceeded

The user profile specified insufficient auxiliary storage to create or
extend a permanent object.

Information Passed:

• System pointer to the user profile

Instructions Causing Exception:

• All create instructions creating a permanent object

• All instructions extending a permanent object

Any instruction which references bytes of data within a space
object can cause an automatic extension of the space if the space
has the attribute of being automatically extendible. Therefore, this
exception may be signaled for any instruction which has an
operand which references bytes of data in a space.

• Signal Exception

Chapter 19. Exception Specifications 19-43

Hex 32, Scalar Specification Exceptions

32 Scalar Specification
3201 Scalar Type Invalid

A scalar operand did not have the following data types required by the
instruction:

• Character

• Packed decimal

• Zoned decimal

• Binary

• Floating-point

Instructions Causing Exception:

• Any instruction using a late bound (data pOinter) scalar operand

• Signal Exception

3202 Scalar Attributes Invalid

A scalar operand did not have the following attributes required by the
instruction:

• Length

• Precision

• Boundary

Instructions Causing Exception:

• Any instruction using a late-bound (data pointer) scalar operand

• Any instruction that verifies the length of a character scalar in a
space object operand

• Signal Exception

3203 Scalar Value Invalid

A scalar operand does not contain a correct value as required by the
instruction.

Information Passed:

• Length of data passed Bin(2)

• Bit offset to invalid field (relative to 0) Bin(2)

• Operand number Bin(2)

• Invalid data Char(*)

Instructions Causing Exception:

• Any instruction using a scalar operand

• Signal Exception

19-44 AS/400 MI Functional Reference

Hex 36, Space Management Exceptions

36 Space Management
3601 Space Extension/Truncation

A Modify Space Attributes instruction made one of the following invalid
attempts to modify the size of the space:

• Truncate the space to a negative size.

• Extend or truncate a fixed size space.

• Extend a space beyond the space allowed in the referenced object.

• An operation which required an automatic extension of a space
occurred when the extended space would not fit in the access
group which contained it.

For information on the maximum size space allowed for a particular
object, refer to the Limitations topic within the definition of the create
instruction for that type of object.

Information Passed

• System pointer to the space

Instructions Causing Exception

• Activate Program

• Call External

• Modify Automatic Storage Allocation

• Modify Space Attributes

• Signal Exception

• Transfer Control

• Any instruction that invokes an external exception handler or an
external event handler or an invocation exit

• Any instruction which has an operand which references bytes of
data in a space.

Any instruction which references bytes of data within a space
object can cause an automatic extension of the space if the space
has the attribute of being automatically extendible.

3602 Invalid Space Modification

A Modify Space Attributes instruction made an attempt to modify the
attributes of a space but the requested modification is invalid.

Information Passed:

• System pointer to the object

• Error code Char(2)

Error codes and their meanings are as follows:

Code Meaning

0001 An attempt was made to modify the performance class
attribute of the system object containing the space and
the space was not a fixed length of size zero.

Chapter 19. Exception Specifications 19-45

Hex 38, Template Specification Exceptions

• Signal Exception

3803 Materialization Length Exception

Less than 8 bytes was specified to be available in the receiver
operand of a materialize instruction.

Instructions Causing Exception:

• Any materialize instruction

• Any retrieve instruction

• Signal Exception

19-48 AS/400 MI Functional Reference

3A Wait Time-Out

L

3C Service

Hex 3C, Service Exceptions

3A01 Dequeue

A specified time period elapsed, and a Dequeue instruction was not
satisfied.

Information Passed:

• The queue waited for

• Time-out value

Instructions Causing Exception:

• Dequeue

• Signal Exception

3A02 Lock

System pointer

Char (8)

A specified time period elapsed, and a Lock Object instruction was not
satisfied.

Information Passed:

• System pointer to the object waited for

• Time-out value Char(8)

Instructions Causing Exception:

• Lock Object

• Signal Exception

3A04 Space Location Lock Wait

A specified time period has elapsed and a Lock Space Location
instruction has not been satisfied.

Information Passed:

• Space location Space pointer

• Time-out value Char(8)

Instructions Causing Exception:

• Lock Space Location

• Signal Exception

3C01 Invalid Service Session State

The process is not in the proper service session for the request
service command because of one of the following conditions:

• No service session exits for the process, and the command is
other than start service session.

• The process is in service session, and the command is to start
service session.

• The process is in service session, but a previous stop service
session command was issued.

Chapter 19. Exception Specifications 19-49

Hex 3C, Service Exceptions

Instructions Causing Exception:

• Signal Exception

3C02 Unable to Start Service Session -

The machine was unable to start a valid service session.

Instructions Causing Exception:

• Signal Exception

19-50 AS/400 MI Functional Reference

J

J

Hex 3C, Service Exceptions

L

Chapter 19. Exception Specifications 19-51

Hex 3e, Service Exceptions

J

19-52 AS/400 MI Functional Reference

Instruction Summary

Appendix A. Instruction Summary

This appendix provides an abbreviated format of all the instructions. The
instructions are listed alphabetically by instruction mnemonic.

The summary list includes the following items for each instruction.

• Operation Description-The name of the instruction.

• Mnemonic-The mnemonic assigned to the instruction.

• Operation Code-The operation code assigned to the instruction.

• Number of Operands-The number of operands (excluding the extender) in the
instruction.

• Extender-A description of the use of the extender field.

• Operand Syntax-The objects allowed as operands in the instruction.

• Resulting Conditions-The conditions that can be set at the end of the
standard operation in order to perform a conditional branch or set a condi­
tional indicator.

• Optional Forms-A notation for the optional forms that are allowed for the
computational instructions.

Note: This summary list can also be used as an index to identify the page
where a complete description of each instruction can be found in this
manual. The page number is the last item included with each instruction
in this summary.

The following paragraphs further describe the summary list format of the last five
items in the previous list.

Number Of Operands

Extender Usage

Certain computational instructions allow a variable number of operands and are
identified in the summary list by the following form:

number + B

The number defines the number of fixed operands. The B indicates the exist­
ence of variable operands (branch targets or indicator operands). A pair of
braces around the letter indicates that the variable operands are optional.

Instructions that use an extender field have a brief description of the use of the
extender. Hyphens indicate that the extender is not used. Brackets indicate that
the extender is optional. The abbreviation BRIIND is used to mean branch or
indicator options. The extender field defines the use of the branch or indicator
operands with respect to the resulting conditions of the instruction.

~ Copyright IBM Corp. 1990 A-1

Instruction Summary

Resulting Conditions

Optional Forms

Resulting conditions are the status result of the operation that is used for deter­
mining a branch target, if any.

The following conditions are indicated in the instruction summary.

P, N, Z

Z, NZ

H, L, E

E, NE

P, Z

H, L, E, U

Z, 0, M

[N]Z[N]C

S,NS

DE, I

DQ,NDQ

Positive, negative, zero

Zero, not zero

High, low, equal

Equal, not equal

Positive, zero

High, low, equal, unequal

Zero, ones, mixed

Zero and no carry, not zero and no carry, zero and carry, not
zero and carry

Signaled, not signaled

Exception deferred, exception ignored

Dequeued, notdequeued

All instructions are classified as computational or noncomputational format. The
format determines how the operation code is interpreted and whether optional .\
forms of the instruction are allowed. (See "Instruction Format" in Chapter 1. ..,.,
"Introduction").

Certain computational instructions allow optional forms. The following optional
forms can be specified:

• B (Branch Form)-The resulting conditions of the operation are compared with
the branch options specified in the extender field. If one of the options is
satisfied, a branch is executed to the branch target corresponding to the
branch option.

• I (Indicator Form)-The resulting conditions of the operation are compared
with the indicator options specified in the extender field. If one of the options
is satisfied, the indicator corresponding to that option is assigned a value of
hex F1. The other indicators referred to by the operation are assigned a
value of hex FO.

• S (Short Form)-The operand that acts as a receiver in the instruction can
also be one of the source operands.

• R (Round Form)-If the result of the operation is to be truncated before being
placed in the receiver, rounding is performed.

A-2 AS/400 MI Functional Reference

L

Instruction Summary

A.1 Instruction Stream Syntax
In this instruction summary, the following metalanguage is used to describe the
machine interface instruction set operand syntax.

Metasymbol Meaning

{} Choose from a series of alternatives

[] Enclose an optional entry or entries

OR - used to separate alternatives

.N.

DESC-{}

Notes:

Repeat previous entry, up to N times

Is defined as - define a metavariable Metavariable :: =
Metadefinition

Description of a metavariable in English

1. Some of the computational op codes require an extender field while on other
op codes an extender field is optional. Some computational op codes may
be optionally short, or round.

Appendix A. Instruction Summary A-3

Instruction Summary

Program Object Definitions
ARG-LiST :: = DESC-{operand list which defines an argument list}

B-ARRAY :: = DESC-{array of binary variables} B-PT :: = DESC-{branch
point} BIN :: = DESC-{binary} BIN[N] :: = DESC-{binary object
with precision N} BT :: = DESC-{instruction number I relative instruction

number I instruction pointer I branch pointer I IDL
element I null}

C-ARRAY :: = DESC-{array of character string variables} CHAR :: =
DESC-{character string which is either variable or constant}
CHAR[N] :: = DESC-{string at least N bytes long} CHARV :: =
DESC-{char variable} CHARC :: = DESC-{char constant}

D-PTR :: = DESC-{data pointer}

EXCP-DESC :: = DESC-{exception description}

F-BT :: = DESC-{instruction number I relative instruction number I
branch point} F-P :: = DESC-{floating-point value}

IDL :: = DESC-{instruction definition list} IT :: = DESC-{charl numeric
variable used as an indicator target} I-ENT PT :: = DESC-{internal entry
point} I-PTR :: = DESC-{instruction pointer}

NULL :: = DESC-{indicates a null operand [X'OOOO']} NUMERIC
:: = DESC-{binary I zoned I packed I numeric scalar} N-ARRAY :: =
DESC-{array of numeric variable}

OP-LiST :: = DESC-{operand list}

PROCESS :: = DESC-{character string that names a process} PTR :: =
DESC-{a 16-byte, 16-byte-boundary-aligned pointer element} P-ARRAY :: =
DESC-{an array of 16 bytes,

16-byte-boundary-aligned pOinter(s)}

SPDO :: = DESC-{space pointer data object} S-PTR :: = DESC-{system
pointer} SPP :: = DESC-{space pointer} SPP-ARRAY :: = DESC-{an array of
space pointer variables}

Notes:

1. NUMERIC, CHAR, BIN, and UBIN may be followed by the special characters
S, C, V. CHAR, BIN, and UBIN may also be followed by the special character
I. These characters further qualify the object as being scalar, constant, vari­
able or immediate, respectively.

2. All array objects are variable.

A-4 ASI40Q MJ Functional Reference

L

L

Instruction Summary

System Object Declarations
ACTV ENTRY:: = DESC-{SPP that addresses an activation}
AG :: = DESC-{S-PTR that addresses an access group}
AL :: = DESC-{S-PTR that addresses an authorization list}

CD :: = DESC-{S-PTR that addresses a controller description} CSD :: =
DESC-{S-PTR that addresses a class of service description} CONTEXT :: =
DESC-{S-PTR that addresses a context} CURSOR :: = DESC-{S-PTR that
addresses a cursor}

DATA SPACE ::= DESC-{S-PTR that addresses a data space} OCT ::=
DESC-{S-PTR that addresses a dictionary} OS-INDEX :: = {S-PTR that
addresses a data space index}

INDEX :: = DESC-{S-PTR that addresses an index}

LUD :: = DESC-{S-PTR that addresses a logical unit description}

MD :: = DESC-{S-PTR that addresses a mode description}

NO :: = DESC-{S-PTR that addresses a network description}

PCS :: = DESC-{S-PTR to process control space} PROGRAM :: =
DESC-{S-PTR that addresses a program}

SPACE :: = DESC-{a system pointer pointing to a space object}

QUEUE :: = DESC-{S-PTR that addresses a queue}

USER PROFILE :: = DESC-{S-PTR that addresses a user profile}

Appendix A. Instruction Summary A-5

Instructlon Summary

Resulting Conditions Definitions
zc :: = DESC-{zero with carry}

[N]ZC :: = DESC-{[not] zero with carry}

Z[N]C :: = DESC-{zero with [no] carry}

[N]Z[N]C :: = DESC-{[not] zero with [no] carry}

CR :: = DESC-{completed record}

DE :: = DESC-{deferred}

DEN :: = DESC-{denormalized}

DQ :: = DESC-{dequeued}

NDQ :: = DESC-{not dequeued}

ECE :: = DESC-{escape code encountered}

E :: = DESC-{equal}

H :: = DESC-{high}

I :: = DESC-{ignored}

IN :: = DESC-{infinity}

L :: = DESC-{Iow}

M :: = DESC-{mixed}

N :: = DESC-{negative}

NaN :: = DESC-{symbolic not-a-number}

NE :: = DESC-{not equal}

NRN :: = DESC-{normalized real number}

NS :: = DESC-{not signaled}

NZ :: = DESC-{not zero}

o :: = DESC-{ones}

P :: = DESC-{positive}

RO :: = DESC-{receiver overrun}

S :: = DESC-{signaled}

SE :: = DESC-{source eXhausted}

A-6 AS/400 MJ Functional Reference

TR :: = DESC-{truncated record}

U :: = DESC-{unequal}

UN :: = DESC-{unordered}

Z :: = DESC-{zero}

Instruction Summary

Appendix A. Instruction Summary A-7

Instruction Summary

Instruction Summary (Alphabetical Listing by Mnemonic)

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions
Activate ACTPG 0212 2 {ACTV 6·1
Program ENTRY I

PROGRAM},PROGRAM

Add Logical ADDLC 1023 3+[B] CHARV, [N]Z[N]C [B II, S] 1·1
Character CHARS.2.,

[BT.4. I IT.4.]

Add Numeric ADDN 1043 3+[B] NUMERICV, P, N,Z [B II, S, 1-4
NUMERICS.2., R]
[BT.3. I IT.3.]

Add Space ADDSPP 0083 3 SPP.2., BINS 3-1
Pointer

And AND 1093 3+[B] CHARV, Z, NZ [B II, S] 1-8

J CHARS.2.,
[BT.3. I IT.3.]

Branch B 1011 BT 1-11

Compute Array CAl 1044 4 BINV, BINS.3. 1-30
Index

Call Internal CALLI 0293 3 I-ENT PT, 6-11
{ARG LIST I
NULL}, I-PTR

Call External CALLX 0283 3 PROGRAM I 6-5

J SPP, {ARG
LIST I NULL},
{IDL I NULL}

Concatenate CAT 10F3 3 CHARV, 1-47
CHARS.2.

Clear Bit in CLRBTS 102E 2 {CHARV I 1-13
String NUMERICV},

BINS

Clear Invocation CLRIEXIT 0250 0 6-13
Exit J Compute Math CMF1 100B 3+[B] NUMERICV, P, N, Z, [B II] 1-32
Function Using CHARS[2], UN
One Input Value NUMERICS,

[BT.4. I IT.4.]

Compute Math CMF2 100C 4+[B] NUMERICV, P, N, Z, [B II] 1-42
Function Using CHARS[2], UN
Two Input NUMERICS,
Values NUMERICS,

[BT.4. I IT.4.]

Compare Bytes CMPBLA 10C2 2+B {CHARS I H, L, E {B II} 1·15
Left-Adjusted NUMERICS}.2.,

{BT.3. I IT.3.}

Compare Bytes CMPBLAP 10C3 3+B {CHARS I H, L, E {B II} 1-18
Left·Adjusted NUMERICS}.3.,
With Pad {BT.3. I IT.3.} J

A-8 AS/400 MI Functional Reference

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi- Forms Page

L Operands tions
Compare Bytes CMPBRA 10C6 2+B {CHARS I H, L, E {B II} 1-21
Right-Adjusted NUMERICS}.2.,

{BT.3. I IT.3.}

Compare Bytes CMPBRAP 10C7 3+B {CHARS I H, L, E {B II} 1-24
Right-Adjusted NUMERICS}.3.,
With Pad {BT.3. I IT.3.}

Compare CMPNV 1046 2+B NUMERICS.2., H, L, E {B II} 1-27
Numeric Value {BT.3. I IT.3.}

Compare CMPPSPAD 10E6 2+B {SPP I H, L, E, U {B II} 3-3
Pointer for D-PTR},
Space Address- {NUMERICV I
ability CHARV I C-

N-ARRAY I
SPP I D-PTR}

L
Compare CMPPTRA 10D2 2+B {D-PTR I SPP E, NE [B II] 2-1
Pointer for I S-PTR I
Object Address- I-PTR}.2.
ability

Compare CMPPTRT 10E2 2+B {D-PTR I SPP E, NE {B II} 2-4
Pointer Type I S-PTR I

I-PTR},
{CHARS[1]NULL}

Compare Space CMPSPAD 10F2 2+B {CHARV I H, L, E, U {B II} 3-6
Addressability C-ARRAY I

NUMERICV I
N-ARRAY I
PTR I
P-ARRAY.2.

Copy Bytes to CPYBBTA 104C 4 {NUMERICV I 1-135
Bits Arithmetic CHARV},

BINI.2.,
{NUMERICV I
CHARV}

Copy Bytes to CPYBBTL 103C 4 {NUMERICV I 1-137
Bits Logical CHARV},

BINI.2.,
{NUMERICV I
CHARV}

Copy Bytes CPYBLA 10B2 2 {NUMERICV I 1-121
Left-Adjusted CHARV},

{NUMERICS I
CHARS}

Copy Bytes CPYBLAP 10B3 3 {NUMERICV I 1-123
Left-Adjusted CHARV},
With Pad {NUMERICS I

CHARS}.2.

Copy Bytes CPYBOLA 10BA 2 {NUMERICV I 1-125
Overlap Left- CHARV}.2.
Adjusted

Copy Bytes CPYBOLAP 10BB 3 {NUMERICV I 1-127
Overlap Left- CHARV}.2.,
Adjusted With {NUMERICS I
Pad CHARS}

Appendix A. Instruction Summary A-9

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions j Copy Bytes CPYBRA 10B6 2 {NUMERICV I 1·131
Right-Adjusted CHARV},

{NUMERICS I
CHARS}

Copy Bytes CPYBRAP 10B7 3 {NUMERICV I 1-133
Right·Adjusted CHARV},
With Pad {NUMERICS I

CHARS}.2.

Copy Bytes CPYBREP 10BE 2 {NUMERICV I 1·129
Repeatedly CHARV},

{NUMERICS I
CHARS}

Copy Bits Arith· CPYBTA 102C 4 {NUMERICV I 1·109
metic CHARV}.2.,

BINI.2.

Copy Bits CPYBTL 101C 4 {NUMERICV I 1·111 J Logical CHARV}.2.,
BINI.2.

Copy Bits With CPYBTLLS 102F 3 {CHARV I 1·113
Left Logical NUMERICV},
Shift {CHARS I

NUMERICS},
CHARS[2]

Copy Bits With CPYBTRAS 101B 3 {CHARV I 1·115
Right Arithmetic NUMERICV},

J Shift {CHARS I
NUMERICS},
CHARS[2]

Copy Bits With CPYBTRLS 103F 3 {CHARV I 1·118
Right Logical NUMERICV},
Shift {CHARS I

NUMERICS},
CHARS[2]

Copy Bytes With CPYBWP 0132 2 {CHARV I 2-7
Pointers PTR},

J {CHARV I
PTR I NULL}

Copy Extended CPYECLAP 1053 3 D·PTR 1·139
Characters Left· CHARS,D·PTR
Adjusted With CHARS,CHAR
Pad

Copy Hex Digit CPYHEXNN 1092 2 {NUMERICV I 1·143
Numeric to CHARV},
Numeric {NUMERICS I

CHARS}

Copy Hex Digit CPYHEXNZ 1096 2 {NUMERICV I 1-145
Numeric to CHARV},
Zone {NUMERICS I

CHARS}

Copy Hex Digit CPYHEXZN 109A 2 {NUMERICV I 1-147
Zone to CHARV}, J Numeric {NUMERICS I

CHARS}

A-10 AS/400 MI Functional Reference

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi- Forms Page

Operands tions
Copy Hex Digit CPYHEXZZ 109E 2 {NUMERICV I 1-149
Zone to Zone CHARV},

{NUMERICS I
CHARS}

Copy Numeric CPYNV 1042 2+ [B] NUMERICV, P, N, Z [B II, R] 1-151
Value NUMERICS,

[BT.3. I IT.3.]

Convert BSC to CVTBC lOAF 3 CHARV, CR, SE, [B II] 1-49
Character CHARV[3], TR

CHARS

Convert Char- CVTCB 108F 3 CHARV, SE, RO [B II] 1-53
acter to BSC CHARV[3],

CHARS

Convert Char- CVTCH 1082 2 CHARV, 1-57
acter to Hex CHARS

Convert Char- CVTCM 108B 3 CHARV, SE, RO [B I I] 1-59
acter to M RJE CHARV[13],

CHARS

Convert Char- CVTCN 1083 3 NUMERICV, 1-65
acter to CHARS,
Numeric CHARS[7]

Convert Char- CVTCS 10CB 3 CHARV, SE, RO [8 II] 1-68
acter to SNA CHARV[15],

CHARS

Convert CVTDFFP 107F 3 F-PS, 1-78
Decimal Form NUMERICS,
to Floating-Point NUMERICS

Convert CVTEFN 1087 3 NUMERICV, 1-81
External Form CHARS,
to Numeric {CHARS[3] I
Value NULL}

Convert CVTFPDF 10BF 3 NUMERICV, Round 1-84
Floating-Point to NUMERICV,
Decimal Form F-PS

Convert Hex to CVTHC 1086 2 CHARV, 1-87
Character CHARS

Convert MRJE CVTMC 10AB 3 CHARV, SE, RO [B II] 1-89
to Character CHARV[6],

CHARS

Convert CVTNC 10A3 3 CHARV, 1-94
Numeric to NUMERICS,
Character CHARS[7]

Convert SNA to CVTSC 10DB 3 CHARV, SE, RO, [B II] 1-97
Character CHARV[14], ECE

CHARS

De-activate DEACTPG 0225 PROGRAM I 6-14
Program NULL

Dequeue DEQ 1033 3+[B] CHARV, SPP, DQ, NDQ [B II] 9-2
QUEUE,
[BT.2. I IT.2.]

Appendix A. Instruction Summary A-11

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions ~ Divide DIV 104F 3+ [B] NUMERICV, P, N, Z [B II, S, 1·154
NUMERICS.2., R]
[BT.3. I 1T.3.]

Divide With DIVREM 1074 4+[B] NUMERICV, P, N, Z [B II, S, 1·158
Remainders NUMERICS.2., R]

NUMERICV

Extended Char- ECSCAN 10D4 4 B-ARRAY, P, Z, ECE [B II] 1-176
acter Scan CHARS,

CHARS,
CHARS[1]

Edit EDIT 10E3 3 CHARV, 1-162
NUMERICS,
CHARS

End END 0260 0 6-16

Enqueue ENQ 036B 3 QUEUE, 9-8 J CHARS, SPP

Ensure Object ENSOBJ 0381 S-PTR 15-2

Exchange Bytes EXCHBY 10CE 2 {CHARV I 1-171
NUMERICV}.2.

Extract Expo- EXTREXP 1072 2 BINV, F-PS NRN, [B II] 1-180
nent DEN, IN,

NaN

Extract Magni- EXTRMAG 1052 2+ [B] NUMERICV, P, Z [B II, S] 1-183
tude NUMERICS,

[BT.3. I IT.3.]

Find Inde- FNDINXEN 0494 4 SPP, INDEX, 8-2
pendent Index SPP.2.
Entry

Insert Inde- INSINXEN 04A3 3 INDEX, SPP.2. 8-6
pendent Index
Entry

Lock Object LOCK 03F5 SPP 10-2

Lock Space LOCKSL 03F6 2 SPP, 10-8 J Location CHARS[1]

Materialize MATAGAT 03A2 2 SPP, AG 15-4
Access Group
Attributes

Materialize MATAL 01B3 3 SPP, AL, SPP 13-7
Authority List

Materialize Allo- MATAOL 03FA 2 SPP, {S-PTR I 10-10
cated Object SPDO}
Locks

Materialize MATAU 0153 3 SPP, S-PTR, 13-2
Authority {USER

PROFILE I .)
NULL}

Materialize MATAUOBJ 013B 3 SPP, USER 13·12
Authorized PROFILE,
Objects CHARS[1]

A-12 ASI400 MI Functional Reference

Instruction Summary

Operation Op Number Operand Resulting Optional

L
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions
Materialize MATAUU 0143 3 SPP. S·PTR. 13·17
Authorized CHARS[1]
Users

Materialize MATCTX 0133 3 SPP. 12·2
Context {CONTEXT I

NULL}.
CHARS

Materialize MATDMPS 04DA 2 SPP, S·PTR 16·2
Dump Space

Materialize MATDRECL 032E 2 SPP, SPP 10-13
Data Space
Record Locks

Materialize MATEXCPD 0307 3 SPP, 11-1
Exception EXCP-DESC,
Description CHARS[1]

Materialize MATI NAT 0526 2 SPP. CHARS 17-2
Instruction Attri-
butes

Materialize MATINV 0516 2 SPP.2. 17-8
Invocation

Materialize MATINVE 0547 3 CHARV. 17-13
I nvocation Entry {CHARV.1. I

NULL}.
CHARS.1. I
NULL}

Materialize MATINVS 0546 2 SPP, {S-PTR I 17-18
Invocation NULL}
Stack

Materialize MATMATR 0636 2 SPP. 18-2
Machine Attri- CHARS[2] I
butes SPP

Materialize MATOBJLK 033A 2 SPP. S-PTR 10-17
Object Locks

Materialize MATPG 0232 2 SPP. 5-2
Program PROGRAM

Materialize MATPRATR 0333 3 SPP. {PCS I 14-2
Process Attri- NULL}.
butes CHARS[1]

Materialize MATPRECL 031E 2 SPP. SPP 10-24
Process Record
Locks

Materialize MATPRLK 0312 2 SPP. {PCS I 10-21
Process Locks NULL}

Materialize MATPTR 0512 2 SPP. {S-PTR I 17-22
Pointer D-PTR I SPP I

I-PTR}

Materialize MATPTRL 0513 3 SPP.2 .• BINS 17-27
Pointer
Locations

Appendix A. Instruction Summary A-13

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi- Forms Page

Operands tions
Materialize MATQAT 0336 2 SPP, QUEUE 9-11
Queue Attri-
butes

Materialize MATQMSG 033B 3 SPP, S-PTR, 9-15
Queue Mes- CHARS[16]
sages

Materialize MATRMD 0352 2 SPP, 15-8
Resource Man- CHARS[8]
agement Data

Materialize MATS 0036 2 SPP, S-PTR 4-2
Space Attri-
butes

Materialize MATSELLK 033E 2 SPP, {S-PTR I 10-28
Selected Locks SPP}

Materialize MATSOBJ 053E 2 SPP, S-PTR 17-30 J System Object

Materialize MATUP 013E 2 SPP, USER 13-22
User Profile PROFILE

Modify Auto- MODASA 02F2 2 {SPP I 6-17
matic Storage NULL}, BINS
Allocation

Modify Excep- MODEXCPD 03EF 3 EXCP-DESC, 11-5
tion Description SPP,

CHARS[4]

Modify Inde- MODINX 0452 2 S-PTR, 8-13
pendent Index CHARS[4]

Modify Space MODS 0062 2 S-PTR, BINS 4-6
Attributes

Multiply MULT 104B 3+ [B] NUMERICV, P, N, Z [B II, S, 1-186
NUMERICS.2., R]
[BT.3. I IT.3.]

Negate NEG 1056 2+ [B] NUMERICV, P, N,Z [B II, S] 1-190
NUMERICS,
[BT.3. I IT.3.]

No Operation NOOP 0000 0 7-2

No Operation NOOPS 0001 UBINI 7-3
and Skip

Not NOT 108A 2+[B] CHARV, Z, NZ [B II, S] 1-193
CHARS,
[BT.3. I IT.3.]

Or OR 1097 3+ [B] CHARV, Z, NZ [B II, S] 1-196
CHARS.2.,
[BT.3. I 1T.3.]

Override OVRPGATR 0006 2 UBINI.2. 7-5
Program Attri-
butes

Remainder REM 1073 3+ [B] NUMERICV, P, N, Z [B I I, S] 1-199
NUMERICS.2., J [BT.3. I 1T.3.]

A-14 AS/400 MI Functional Reference

Instruction Summary

Operation Op Number Operand Resulting Optional

L
Description Mnemonic Code of Syntax Condi· Forms Page

Operands tions
Retrieve Excep· RETEXCPD 03E2 2 SPP. 11-8
tion Data CHARS[1]

Remove Inde- RMVINXEN 0484 4 {SPP I 8-16
pendent Index NULL}.
Entry INDEX. SPP.2.

Resolve Data RSLVDP 0163 3 D-PTR. 2-10
Pointer {CHARS[32]

I NULL}.
{S-PTR I
NULL}

Resolve System RSLVSP 0164 4 S-PTR. 2-13
Pointer {CHARS[34]

I NULL}.
{S-PTR I
NULL}.
{CHARS[2" I
NULL}

Return From RTNEXCP 03E1 SPP 11-12
Exception

Return External RTX 02A1 {BINS I 6-20
NULL}

Scale SCALE 1063 3+[B] NUMERICV. p. N. Z [B I I. S] 1-203
NUMERICS.
BINS. [BT.3. I

L IT.3.]

Scan SCAN 10D3 3+ [B] {BINV I P, Z [B II] 1-207
B-ARRAY}.
CHARS.2 .•
[BT.3. I IT.3.]

Scan With SCANWC 10E4 4+[B] SPP, 1-210
Control CHARV[8].

CHARS[4].
[BTA. I ITA.]

L
Search SEARCH 1084 4+ [B] {BINV I p. Z [B II] 1-219

B-ARRAY},
{N·ARRAY I
C-ARRAY},
{CHARV I
NUMERICV}.
BINS

Set Access SETACST 0341 SPP 15-26
State

Set Argument SETALLEN 0242 2 ARG-LlST, 6-23
List Length BINS

Set Bit in String SETBTS 101E 2 {CHARV I 1-222
NUMERICV}.
BINS

Set Data Pointer SETDP 0096 2 D-PTR 3-9
{NUMERICV I

L N-ARRAY I
CHARV I
C-A R RAY}

Appendix A. Instruction Summary A-15

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi- Forms Page

Operands tions j Set Data Pointer SETDPADR 0046 2 D-PTR 3-11
Add ressabi Ii ty {NUMERICV I

N-ARRAY I
CHARV I
C-ARRAY}

Set Data Pointer SETDPAT 004A 2 D-PTR, 3-13
Attributes CHARS[7]

Set Invocation SETIEXIT 0252 2 S-PTR, ARG 6-25
Exit LIST NULL

Set Instruction SETIP 1022 2 I-PTR, F-BT 1-224
Pointer

Set System SETSPFP 0032 2 S-PTR, 3-25
Pointer From {D-PTR I SPP
Pointer I S-PTR I

I-PTR} J Set Space SETSPP 0082 2 SPP, {CHARV 3-16
Pointer I C-ARRAY I

NUMERICV I
N-ARRAY I
PTR I
P-ARRAY}

Set Space SETSPPD 0093 3 SPP, {CHARV 3-18
Pointer with Dis- I C-ARRAY I
placement NUMERICV I

N-ARRAY I J PTR I
P-ARRAY}

Set Space SETSPPFP 0022 2 SPP, {S-PTR I 3-20
Pointer From D-PTR I SPP}
Pointer

Set Space SETSPPO 0092 2 SPP, BINS 3-23
Pointer Offset

Signal Exception SIGEXCP 10CA 2+ [B] SPP.2., [BT.2. I, DE [B II] 11-20
I 1T.2.]

J Sense Exception SNSEXCPD 03E3 3 SPP.3. 11-16
Description

Store and Set SSCA 107B 3 CHARV[5], 1-226
Computational {CHARS[5] I
Attributes NULL},

{CHARS[5] I
NULL}

Store Par am- STPLLEN 0241 BINV 6-28
eter List Length

Store Space STSPPO 00A2 2 BINV, SPP 3-27
Pointer Offset

Subtract Logical SUBLC 1027 3+ [B] CHARV, [N]Z[N]C [B II, S] 1-231
Character CHARS.2.,

. [BT.3. I IT.3.]

Subtract SUBN 1047 3+[B] NUMERICV, P, N,Z [B II, S, 1-234
Numeric NUMERICS.2., R]

[BT.3. I IT.3.]

A-16 AS/400 MI Functional Reference

Instruction Summary

Operation Op Number Operand Resulting Optional

L
Description Mnemonic Code of Syntax Condi- Forms Page

Operands tions
Subtract Space SUBSPP 0087 3 SPP.2., BINS 3-29
Pointer Offset

Test Authority TESTAU 10F7 3 {CHARV[2] I 13-26
NULL},
{S-PTR I
SPOOl,
CHARS[2]

Test Extended TESTEAU 10FB 3 {CHARV[8] I 13-31
Authorities NULL},

CHARS[8],
{BINS[2] I
NULL}

Test Exception TESTEXCP 104A 2+[B] SPP, S,NS [B II] 11-25
EXCP-OESC,
[BT.2. I IT.2.]

Trim Length TRIML 10A7 3 NUMERICV, 1-252
CHARS,
CHARS[1]

Test Bit in TSTBTS 100E 2+B {CHARS I Z,O {B II} 1-240
String NUMERICS},

BINS, {BT.2. I
IT.2.}

Test Bits Under TSTBUM 102A 2+B {CHARS I Z,O,M {B II} 1-243
Mask NUMERICS}.2.,

{BT.3. I IT.3.}

Test and TSTRPLC 10A2 2 CHARV, 1-238
Replace Char- CHARS
acters

Unlock Object UNLOCK 03F1 SPP 10-35

Unlock Space UNLOCKSL 03F2 2 SPP, 10-39
Location CHARS[1]

Verify VERIFY 1007 3+[B] {BINV I P,Z [B II] 1-254
B-ARRAY},

L CHARS.2.
[BT.3. I IT.3.]

Wait On Time WAITTIME 0349 CHARS.16. 14-15

Transfer Control XCTL 0282 2 PROGRAM I 6-30
SPP, {ARG
LIST I NULL}

Transfer Object XFRLOCK 0382 2 PCS,SPP 10-31
Lock

Translate XLATE 1094 4 CHARV, 1-246
CHARS,
{CHARS I
NULL},
CHARS

Translate With XLATEWT 109F 3 CHARV, 1-249
Table CHARS,

CHARS

Appendix A. Instruction Summary A-17

Instruction Summary

Operation Op Number Operand Resulting Optional
Description Mnemonic Code of Syntax Condi- Forms Page

J Operands tions
Exclusive Or XOR 109B 3+[B] CHARV, Z, NZ [B II, S] 1-173

CHARS.2.,
[8T.3. I IT.3.]

J

J

A-18 AS/400 MI Functional Reference

Index

A
authorization management instructions 13-1

C
computation and branching instructions 1-1
context management instructions 12-1

D
dump space management instructions 16-1

E
exceptions 11-1

management instructions 11-1
specifications 19-1

IMPL (initial microprogram load) 18-9
IMPLA (initial microprogram load abbreviated) 18-9
independent index instructions 8-1
initial microprogram load abbreviated (IMPLA) 18-9
initial microprogram load (IMPL) 18-9
instruction summary A-1
IPL (initial program load) 18-16

L
LEAR (lock exclusive allow read) 10-3
LENR (lock exclusive no read) 10-3
lock exclusive allow read (LEAR) 10-3
lock exclusive no read (LENR) 10-3
lock management instructions 10-1
lock shared read only (LSRO) 10-3
lock shared read (LSRD) 10-3
LSRD (lock shared read) 10-3
LSRO (lock shared read only) 10-3
LSUP (lock shared update) 10-3

M
machine initialization status record (MISR) 18-9,

18-16
machine interface support functions instructions 18-1
machine observation instructions 17-1
MISR (machine initialization status record) 18-9,

18-16

o
object
object mapping table 5-3

© Copyright IBM Corp. 1990

object mapping template (OMT) 5-3
OMT (object mapping template) 5-3

P
PASA (process automatic storage area) 6-6
pointer/name resolution addressing instructions 2-1
process automatic storage area (PASA) 6-6
process management instructions 14-1
process static storage area (PSSA) 6-1
program

execution instructions 6-1
management instructions 5-1

program creation control instructions 7-1
PSSA (process static storage area) 6-1

Q
queue management instructions 9-1

R
resource management instructions 14-17

S
space management instructions 4-1
space object addressing instructions 3-1

V
Vital Product Data (VPD) 18-23
VPD (vital product data) 18-23

X-1

J

L

Reader's Comments

Application Systeml400™
Machine Interface
Functional Reference

Publication No. SC21-8226-0

Use this form to tell us what you think about this manual. If you have found errors in
it, or if you want to express your opinion about it (such as organization, subject
matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or dis­
tribute your comments in any way it believes appropriate without incurring any obli­
gation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Reader's Comments
SC21-8226-0

Fold and Tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
3605 North Hwy 52
ROCHESTER MN 55901-9986

--------- -------- - ---- - - ----------_.-
®

Fold and Tape

,

1.1.1111.1.1.11111111111111.1 .. 1.1111 .. 11111111111.1 '

Cut or Fold
Along Line

J
--------._-----.--------._-----------._--.------.---------------------------.---.-------------------------------------.- .------------~

Fold and Tape Please do not staple Fold and Tape

SC21-8226-0

,

J
i Cut or Fold

I Aloo. Uoo

