%Pva\i : TSR

Application System/400m™ SC21-8226-0

Machine Interface
Functional Reference

Application System/400m SC21-8226-0

Machine Interface
Functional Reference

First Edition (August 1990))
The functions described in this publication apply to the IBM AS/400 machine interface.

Order publications through your IBM representative or the IBM branch serving your locality. Publica-
tions are not stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been
removed, you may address your comments to:

IBM Corporation, Department 245, 3605 North Highway 52 and 37th Street NW, Rochester, MN
55901-9986 USA.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the infor-
mation in any way it believes appropriate without incurring any obligation to you or restricting your use
of it. i
© Copyright International Business Machines Corp., 1990. All rights reserved.

Note to US Government users - Documentation related to Restricted Rights - Use, duplication. or dis-
closure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Special Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this publica-
tion is not intended to state or imply that only IBM’s program or other product
may be used.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (*) in this publication, are trade-
marks of the IBM Corporation in the United States and/or other countries:

Application System/400 AS/400 IBM
400

This publication could contain technical inaccuracies or typographical errors.

The information herein is subject to change.

iv AS/400 M! Functional Reference

Aboutﬂ.is Manual

The information contained in AS/400 Machine Interface Functional Reference has
not been submitted to any formal IBM test and is distributed on an “as is” basis
without any warranty either expressed or implied. This manual is written for
release 3 of AS/400 Vertical Licensed Integrated Code (VLIC) and may not
discuss all the functions available on your AS/400 system.

The AS/400 Machine Interface Functional Reference is a new manual.

The AS/400 Machine Interface Functional Reference defines the AS/400 Machine
Interface to instructions, exceptions, and events.

This manual may refer to products that are announced but are not yet available.

Who Should Use This Manual

This manual is intended for knowledgeable system programmers having sub-
stantial experience on AS/400 computer systems.

What You Should Know

The reader should know one more high level languages, assembly languages of
other computers, and understand instruction set architectures. The reader
would do well to study capability-based computer architectures.

The reader should be familiar with AS/400 objects and their intended use.

How This Manual Is Organized
The AS/400 Machine Interface Functional Reference is organized into three parts:
1. Basic Function Instructions

These instructions provide a basic set of functions commonly needed by
most programs executing on the machine. Because of the basic nature of
these instructions, they tend to experience less change in their operation in
different machine implementations than the extended function instructions.

2. Extended Function Instructions

These instructions provide an extended set of functions which can be used to
control and monitor the operation of the machine. Because of the more com-
plicated nature of these instructions, they are more exposed to changes in
their operation in different machine implementations than the basic function
instructions.

3. Instruction Support Interfaces

This part of the document defines those portions of the Machine Interface
which provide support for functions or data used pervasively on all
instructions. It discusses the exceptions and program objects which can be
operated on by instructions.

© Copyright IBM Corp. 1990 v

Vi AS/400 MI Functional Reference

C

Contents

Basic Function Instructions

Chapter 1. Computation and Branching Instructions 1-1
1.1 Add Logical Character (ADDLC) 1-1
1.2 Add Numeric (ADDN) e 1-4
1.3 And (AND) 1-8
14 Branch (B) 1-11
1.5 Clear Bit in String (CLRBTS) i 1-13
1.6 Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI) 1-15
1.7 Compare Bytes Left-Adjusted with Pad (CMPBLAPB or CMPBLAPI) . 1-18
1.8 Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI} 1-21
1.9 Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI) 1-24
1.10 Compare Numeric Value (CMPNVB or CMPNVI) 1-27
1.11 Compute Array Index (CAl) 1-30
1.12 Compute Math Function Using One Input Value (CMF1) 1-32
1.13 Compute Math Function Using Two Input Values (CMF2) 1-42
1.14 Concatenate (CAT) e 1-47
1.15 Convert BSC to Character (CVTBC) 1-49
1.16 Convert Characterto BSC(CVTCB) 1-53
1.17 Convert Characterto Hex (CVTCH) 1-57
1.18 Convert Character to MRJE (CVTCM) 1-59
1.19 Convert Character to Numeric (CVTCN) 1-65
1.20 Convert Character to SNA (CVTCS) 1-68
1.21 Convert Decimal Form to Floating-Point (CVTDFFP) 1-78
1.22 Convert External Form to Numeric Value (CVTEFN) 1-81
1.23 Convert Floating-Point to Decimal Form (CVTFPDF) 1-84
1.24 Convert Hex to Character (CVTHC) 1-87
1.25 Convert MRJE to Character (CVTMC) 1-89
1.26 Convert Numeric to Character (CVTNC) 1-94
1.27 Convert SNA to Character (CVTSC) 1-97
1.28 Copy Bits Arithmetic (CPYBTA) 1-109
1.29 Copy Bits Logical (CPYBTL) 1-111
1.30 Copy Bits with Left Logical Shift (CPYBTLLS) 1-113
1.31 Copy Bits with Right Arithmetic Shift (CPYBTRAS) 1-115
1.32 Copy Bits with Right Logical Shift (CPYBTRLS) 1-118
1.33 Copy Bytes Left-Adjusted (CPYBLA) 1-121
1.34 Copy Bytes Left-Adjusted with Pad (CPYBLAP) 1-123
1.35 Copy Bytes Overlap Left-Adjusted (CPYBOLA) 1-125
1.36 Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP) 1-127
1.37 Copy Bytes Repeatedly (CPYBREP) 1-129
1.38 Copy Bytes Right-Adjusted (CPYBRA) 1-131
1.39 Copy Bytes Right-Adjusted with Pad (CPYBRAP) 1-133
1.40 Copy Bytes to Bits Arithmetic (CPYBBTA) 1-135
1.41 Copy Bytes to Bits Logical (CPYBBTL) 1-137
1.42 Copy Extended Characters Left-Adjusted With Pad (CPYECLAP) ... 1-139
1.43 Copy Hex Digit Numeric to Numeric (CPYHEXNN) 1-143
1.44 Copy Hex Digit Numeric to Zone (CPYHEXNZ) 1-145
1.45 Copy Hex Digit Zone To Numeric (CPYHEXZN) 1-147
1.46 Copy Hex Digit Zone To Zone (CPYHEXZZ) 1-149

© Copyright IBM Corp. 1990

1.47 Copy Numeric Value (CPYNV) 1-151

1.48 Divide (DIV) e e 1-154
1.49 Divide with Remainder (DIVREM) 1-158
150 Edit (EDIT) 1-162
1.51 Exchange Bytes (EXCHBY) 1-171
152 Exclusive Or (XOR) e 1-173
1.53 Extended Character Scan (ECSCAN) 1-176
1.54 Extract Exponent (EXTREXP) 1-180
1.55 Extract Magnitude (EXTRMAG) 1-183
1.56 Multiply (MULT) e e 1-186
1.57 Negate (NEG) e 1-190
158 Not (NOT) 1-193
1.59 Or(OR) 1-196
1.60 Remainder (REM) e 1-199
161 Scale (SCALE) 1-203
1.62 Scan (SCAN) 1-207
1.63 Scan with Control (SCANWC) 1-210
1.64 Search (SEARCH), 1-219
1.65 Set Bitin String (SETBTS) 1-222
1.66 Set Instruction Pointer (SETIP) 1-224
1.67 Store and Set Computational Attributes (SSCA) 1-226
1.68 Subtract Logical Character (SUBLC) 1-231
1.69 Subtract Numeric (SUBN) 1-234
1.70 Test and Replace Characters (TSTRPLC) 1-238
1.71 Test Bit in String (TSTBTSBor TSTBTSI) 1-240
1.72 Test Bits Under Mask (TSTBUMB or TSTBUMI) 1-243
1.73 Translate (XLATE) e 1-246
1.74 Translate with Table (XLATEWT) 1-249
1.75 Trim Length (TRIML), 1-252
1.76 Verify (VERIFY) e 1-254
Chapter 2. Pointer/Name Resolution Addressing Instructions 2-1
2.1 Compare Pointer for Object Addressability (CMPPTRAB or CMPPTRAI) 2-1
2.2 Compare Pointer Type (CMPPTRTB or CMPPTRTI) 2-4
2.3 Copy Bytes with Pointers (CPYBWP) 2-7
2.4 Resolve Data Pointer (RSLVDP) 2-10
2.5 Resolve System Pointer (RSLVSP) 2-13
Chapter 3. Space Object Addressing Instructions 3-1
3.1 Add Space Pointer (ADDSPP) 3-1
3.2 Compare Pointer for Space Addressability (CMPPSPADB or

CMPPSPADI) e e e e e e e e 3-3
3.3 Compare Space Addressability (CMPSPADB or CMPSPADI) 3-6
3.4 Set Data Pointer (SETDP) e 3-9
3.5 Set Data Pointer Addressability (SETDPADR) 3-11
3.6 Set Data Pointer Attributes (SETDPAT) 3-13
3.7 Set Space Pointer (SETSPP) 3-16
3.8 Set Space Pointer with Displacement (SETSPPD) 3-18
3.9 Set Space Pointer from Pointer (SETSPPFP) 3-20
3.10 Set Space Pointer Offset (SETSPPO) 3-23
3.11 Set System Pointer from Pointer (SETSPFP) 3-25
3.12 Store Space Pointer Offset (STSPPO) 3-27
3.13 Subtract Space Pointer Offset (SUBSPP) 3-29
Chapter 4. Space Management Instructions 4-1

viil AS/400 MI Functional Reference

4.1 Materialize Space Attributes (MATS) 4-2

4.2 Modify Space Attributes (MODS) 4-6
Chapter 5. Program Management Instructions 5-1
5.1 Materialize Program (MATPG) 5-2
Chapter 6. Program Execution Instructions 6-1
6.1 Activate Program (ACTPG) 6-1
6.2 Call External (CALLX) 6-5
6.3 Call Internal (CALLI) 6-11
6.4 Clear Invocation Exit (CLRIEXIT) 6-13
6.5 De-Activate Program (DEACTPG) 6-14
6.6 End (END) 6-16
6.7 Modify Automatic Storage Allocation (MODASA) 6-17
6.8 Return External (RTX) 6-20
6.9 Set Argument List Length (SETALLEN) 6-23
6.10 Set Invocation Exit (SETIEXIT) 6-25
6.11 Store Parameter List Length (STPLLEN) 6-28
6.12 Transfer Control (XCTL) 6-30
Chapter 7. Program Creation Control Instructions 7-1
7.1 No Operation (NOOP) e 7-2
7.2 No Operation and Skip (NOOPS) 7-3
7.3 Override Program Atiributes (OVRPGATR) 7-5
Chapter 8. Independent Index Instructions 8-1
8.1 Find Independent Index Entry (FNDINXEN) 8-2
8.2 Insert Independent Index Entry (INSINXEN) 8-6
8.3 Materialize Independent Index Attributes (MATINXAT) 8-9
8.4 Modify Independent Index (MODINX) 8-13
8.5 Remove Independent Index Entry (RMVINXEN) 8-16
Chapter 9. Queue Management Instructions 9-1
9.1 Dequeue (DEQ, DEQB,orDEQI) 9-2
9.2 Enqueue (ENQ) e 9-8
9.3 Materialize Queue Attributes (MATQAT) 9-11
9.4 Materialize Queue Messages (MATQMSG) 9-15
Chapter 10. Object Lock Management Instructions 10-1
10.1 Lock Object (LOCK) e 10-2
10.2 Lock Space Location (LOCKSL) 10-8
10.3 Materialize Allocated Object Locks (MATAOL) 10-10
10.4 Materialize Data Space Record Locks (MATDRECL) 10-13
10.5 Materialize Object Locks (MATOBJLK) 10-17
10.6 Materialize Process Locks (MATPRLK) 10-21
10.7 Materialize Process Record Locks (MATPRECL) 10-24
10.8 Materialize Selected Locks (MATSELLK) 10-28
10.9 Transfer Object Lock (XFRLOCK) 10-31
10.10 Unlock Object (UNLOCK) 10-35
10.11 Unlock Space Location (UNLOCKSL) 10-39
Chapter 11. Exception Management Instructions 11-1
11.1 Materialize Exception Description (MATEXCPD) 11-1
11.2 Modify Exception Description (MODEXCPD) 11-5
11.3 Retrieve Exception Data (RETEXCPD) 11-8

Contents IX

11.4 Return From Exception (RTNEXCP) 11-12

11.5 Sense Exception Description (SNSEXCPD) 11-16
11.6 Signal Exception (SIGEXCP) 11-20
11.7 Test Exception (TESTEXCP) 11-25

Extended Function Instructions

Chapter 12. Context Management Instructions 121
12.1 Materialize Context (MATCTX) 12-2
Chapter 13. Authorization Management Instructions 1341
13.1 Materialize Authority (MATAU) 13-2
13.2 Materialize Authority List MATAL) 13-7
13.3 Materialize Authorized Objects (MATAUOBJ) 13-12
13.4 Materialize Authorized Users (MATAUU) 13-17
13.5 Materialize User Profile (MATUP) 13-22
13.6 Test Authority (TESTAU) 13-26
13.7 Test Extended Authorities (TESTEAU) 13-31
Chapter 14. Process Management Instructions 14-1
14.1 Materialize Process Attributes (MATPRATR) 14-2
14.2 Wait On Time (WAITTIME) 14-15
Chapter 15. Resource Management Instructions 15-1
15.1 Ensure Object (ENSOBJ) 15-2
15.2 Materialize Access Group Attributes (MATAGAT) 15-4
15.3 Materialize Resource Management Data (MATRMD) 15-8
15.4 Set Access State (SETACST) 15-26
Chapter 16. Dump Space Management Instructions 16-1
16.1 Materialize Dump Space (MATDMPS) 16-2
Chapter 17. Machine Observation Instructions 17-1
17.1 Materialize Instruction Attributes (MATINAT) 17-2
17.2 Materialize Invocation (MATINV) 17-8
17.3 Materialize Invocation Entry (MATINVE) 17-13
17.4 Materialize Invocation Stack (MATINVS) 17-18
17.5 Materialize Pointer (MATPTR) 17-22
17.6 Materialize Pointer Locations (MATPTRL) 17-27
17.7 Materialize System Object (MATSOBJ) 17-30
Chapter 18. Machine Interface Support Functions Instructions 18-1
18.1 Materialize Machine Attributes (MATMATR) 18-2

Instruction support interfaces

Chapter 19. Exception Specifications 19-1
19.1 Machine Interface ExceptionData 19-2
19.2 Exception List 19-3
02 Access GroUp o o e e e e e e e 19-10
04 Access State 19-10
06 Addressing e 19-11
08 Argument/Parameter e 19-14

AS/400 M! Functional Reference

OC Computation 19-15

OE Context Operation, 19-24
10Damage 19-25
16 Exception Management oo oL, 19-28
1fAlLockState 19-29
1E Machine Observation 19-31
20 Machine Support e 19-32
22 Object ACCeSS e 19-34
24 Pointer Specification oL 19-35
26 Process Management L L. 19-36
2A Program Creation 19-37
2C Program Execution 19-41
2E Resource Control Limit 19-43
32 Scalar Specification L 19-44
36 Space Management o 19-45
38 Template Specification, 19-47
BAWait Time-Out 19-49
3C Service e 19-49
Appendix A. Instruction Summary A-1
Number Of Operands A-1
Extender Usage A-1
Resulting Conditions, A-2
Optional Forms e A-2
A.1 Instruction Stream Syntax A-3
Program Object Definitions A-4
System Object Declarations A-5
Resulting Conditions Definitions A-6
instruction Summary (Alphabetical Listing by Mnemonic) A-8
Index e X-1

Contents Xi

xii

AS/400 MI Functional Reference

© Copyright IBM Corp. 1990

Basic Function Instructions

These instructions provide a basic set of functions commonly needed by most
programs executing on the machine. Because of the basic nature of these
instructions, they tend to experience less change in their operation in different
machine implementations than the extended function instructions. Therefore, it
is recommended that, where possible, programs be limited to using just these
basic function instructions to minimize the impacts which can arise in moving to
different machine implementations.

AS/400 MI Functional Reference

Add Logical Character (ADDLC)

(, Chapter 1. Computation and Branching Instructions

This chapter describes all the instructions used for computation and branching.
These instructions are arranged in alphabetic order. For an alphabetic summary
of all the instructions, see Appendix A, “Instruction Summary.”

1.1 Add Logical Character (ADDLC)

Optional Forms

Op Code (Hex) Operand 1 Operand 2 Operand 3
1023 Sum Addend 1 Addend 2

Operand 1: Character variable scalar (fixed-length).
Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Op Code
Mnemonic (Hex) Form Type
ADDLCS 1123 Short
ADDLCI 1823 Indicator
ADDLCIS 1923 Indicator, Short
ADDLCB 1C23 Branch
ADDLCBS 1D23 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The unsigned binary value of the addend 1 operand is added to the
unsigned binary value of the addend 2 operand and the result is placed in the
sum operand.

Operands 1, 2, and 3 must be the same length; otherwise, the Create Program
instruction signals an invalid length exception. The length can be a maximum of
256 bytes.

The addition operation is performed according to the rules of algebra. The result
value is then placed (left-adjusted) in the receiver operand with truncating or
padding taking place or the right. The pad value used in this instruction is a
byte value of hex 00.

© Copyright IBM Corp. 1990 11

Add Logical Character (ADDLC)

Exceptions

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: The logical sum of the character scalar operands is zero
with no carry out of the leftmost bit position, not-zero with no carry, zero with
carry, or not-zero with carry.

Operands
Exception 1 2 3 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment

03 Range

X X X X
X X X X
X X X X

06 Optimized addressability invalid

08 Argument/parameter
01 Parameter reference violation X X X
10 Damage encountered
04 System object damage state X X X X
44 Partial system object damage X X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
22 Object access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program creation
05 Invalid op-code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X

1-2 AS/400 MI Functional Reference

9

Exception

2C

2E

36

08 Invalid operand value range
09 Invalid branch target operand
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Program execution

04 Invalid branch target

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

Add Logical Character (ADDLC)

Operands
1 2 3 Other
X X X
X
X X X
X X X

Chapter 1. Computation and Branching Instructions 1-3

Add Numeric (ADDN)

1.2 Add Numeric (ADDN)

Op Code (Hex) Operand 1 Operand 2 Operand 3
1043 Sum Addend Augend

Operand 1: Numeric variable scalar
Operand 2: Numeric scalar
Operand 3: Numeric scalar

Optional Forms

Op Code
Mnemonic (Hex) Form Type
ADDNS 1143 Short
ADDNR 1243 Round
ADDNSR 1343 Short, Round
ADDNI 1843 Indicator
ADDNIS 1943 Indicator, Short
ADDNIR 1A43 Indicator, Round
ADDNISR 1B43 Indicator, Short, Round
ADDNB 1C43 Branch
ADDNBS 1D43 Branch, Short
ADDNBR 1E43 Branch, Round
ADDNBSR 1F43 Branch, Short, Round

Caution:

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

The short form of the ADD NUMERIC instruction accepts two operands. The first
operand is the Addend and Sum. The Addend is replaced by the Sum after the
instruction completes. The second operand is the Augend.

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

1-4 AS/400 MI Functional Reference

Add Numeric (ADDN)

Description; The Sum is the result of adding the Addend and Augend.

Operands can have floating-point, packed or zoned decimal, signed or unsigned
binary type.

Source operands are the Addend and Augend. The receiver operand is the
Sum.

If operands are not of the same type, addends are converted according to the
following rules:

1. If any one of the operands has floating point type, addends are converted to
floating point type.

2. Otherwise, if any one of the operands has zoned or packed decimal type,
addends are converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Addend and Augend are added according to their type. Floating point operands
are added using floating point addition. Packed decimal addends are added
using packed decimal addition. Unsigned binary addition is used with unsigned
addends. Signed binary addends are added using two’s complement binary
addition.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary additions execute faster than either packed decimal or
floating point additions.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

For a decimal operation, alignment of the assumed decimal point takes place by
padding with O’s on the right end of the addend with lesser precision.

Floating-point addition uses exponent comparison and significand addition.
Alignment of the binary point is performed, if necessary, by shifting the
significand of the value with the smaller exponent to the right. The exponent is
increased by one for each binary digit shifted until the two exponents agree.

The operation uses the lengths and the precision of the source and receiver
operands to calculate accurate results. Operations performed in decimal are
limited to 31 decimal digits in the intermediate result.

The addition operation is performed according to the rules of algebra.

The result of the operation is copied into the sum operand. If this operand is not
the same type as that used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is adjusted to the length
of the sum, aligned at the assumed decimal point of the sum operand, or both
before being copied. If nonzero digits are truncated on the left end of the
resultant value, a size exception is signaled.

When the target of the instruction is signed or unsigned binary size exceptions
can be suppressed.

Chapter 1. Computation and Branching Instructions 1-5

Add Numeric (ADDN)

For the optional round form of the instruction, specification of a floating-point
receiver operand is invalid.

For fixed-point operations, if nonzero digits are truncated off the left end of the J
resultant value, a size exception is signaled.

For floating-point operations involving a fixed-point receiver field, if nonzero
digits would be truncated off the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point sum, if the exponent of the resultant value is either too large
or too small to be represented in the sum field, the floating-point overflow and
floating-point underflow exceptions are signaled, respectively.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con-
tains 15 or fewer significant nonfractional digits.

Resultant Conditions: Positive, negative, or zero - The algebraic value of the J
numeric scalar sum operand is positive, negative, or zero. Unordered - The
value assigned a floating-point sum operand is N1N.

Exceptions
Operands

Exception 1 2 3 Other

06 Addressing
01 Spacing addressing violation X X X \
02 Boundary alignment X X X J
03 Range X X X
06 Optimized addressability invalid X X X

08 Argument/parameter
01 Parameter reference violation X X X

oC Computation
02 Decimal data X X)
03 Decimal point alignment X X
06 Floating-point overflow X
07 Floating-point underflow X
09 Floating-point invalid operand X X X
0A Size X
0C Invalid floating-point conversion X
0D Floating-point inexact result X

10 Damage encountered
04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-dependent exception J
03 Machine storane limit exceeded X

41-6 AS/400 MI Functional Reference

Add Numeric (ADDN)

Operands

Exception 1 2 3 Other
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2C Program execution

04 Invalid branch target X
2E Resource control limit

01 user profile storage limit exceeded X
36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-7

And (AND)

1.3 And (AND)

Optional Forms

Op Code (Hex) Operand 1 Operand 2 Operand 3
1093 Receiver Source 1 Source 2

Operand 1: Character variable scalar or numeric variable scalar.
Operand 2. Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Op Code
Mnemonic (Hex) Form Type
ANDS 1193 Short
ANDI 1893 Indicator
ANDIS 1993 Indicator, Short
ANDB 1C93 Branch
ANDBS 1D93 Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper-
ands immediately follow the last operand listed above. See Chapter 1. “Intro-
duction” for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description; The Boolean AND operation is performed on the string values in
the source operands. The resulting string is placed in the receiver operand.
The operands may be character or numeric scalars. They are both interpreted
as bit strings. Substringing is supported for both character and numeric oper-
ands.

The length of the operation is equal to the length of the longer of the two source
operands. The shorter of the two operands is logically padded on the right with
hex 00 values. This assigns hex 00 values to the results for those bytes that
correspond to the excess bytes of the longer operand.

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1 1

0 1 0

1 0 0

0 0 0

1-8 AS/400 MI Functional Reference

'

Exceptions

And (AND)

The result value is then placed (left-adjusted) in the receiver operand with trun-
cating or padding taking place on the right. The pad value used in this instruc-
tion is a byte value of hex 00.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1, 2, and 3. The effect of specifying
a null substring reference for either or both of the source operands is that the
result is all zero and instruction’s resultant condition is zero. When a null sub-
string reference is specified for the receiver, a result is not set and the
instruction’s resultant condition is Zero regardless of the values of the source
operands.

When the receiver operand is a numeric variable scalar, it is possible that the
result produced will not be a valid value for the numeric type. This can occur
due to padding with hex 00, due to truncation, or due to the resultant bit string
produced by the instruction. The instruction completes normally and signals no
exceptions for these conditions.

Resultant Conditions: Zero - The bit value for the bits of the scalar receiver
operand is either all zero or a null substring reference is specified for the
receiver. Not zero - The bit value for the bits of the scalar receiver operand is
not all zero.

Operands
Exception 1 2 3 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment

03 Range

X X X X
X X X X
X X X X

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation X X X

10 Damage encountered
04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X
03 Function check X

Chapter 1. Computation and Branching Instructions 1-9

And (AND)

Exception

22

24

2A

2C

2E

36

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

05 Invalid op-code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Program execution

04 Invalid branch target

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-10 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

x

Other

Branch (B)

1.4 Branch (B)

‘ Op Code (Hex) Operand 1
1011 Branch Target

Operand 1: Instruction number, relative instruction number, branch point,
instruction pointer, or instruction definition list element.

Description: Control is unconditionally transferred to the instruction indicated in
the branch target operand. The instruction number indicated by the branch
target operand must be within the instruction stream containing the branch
instruction.

The branch target may be an element of an array of instruction pointers or an
element of an instruction definition list. The specific element can be identified by
using a compound subscript operand.

‘ Exceptions
Operand
Exception 1 Other
06 Addressing
01 Spacing addressing violation X
02 Boundary alignment violation X
03 Range X
08 Argument/parameter
L 01 Parameter reference violation X
10 Damage encountered
04 System object damage state X X
44 Partial system object damage X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
‘ 20 Machine support
02 Machine check X
03 Function check X
22 Object access
01 Object not found X
02 Object destroyed X
03 Object suspended X
24 Pointer specification
01 Pointer does not exist X
02 Pointer type invalid X
2A Program creation
L 06 Invalid operand type X

Chapter 1. Computation and Branching Instructions 1-11

Branch (B)

Exception
07 Invalid operand attribute

09 Invalid branch target operand
0C Invalid operand odt reference

0D Reserved bits are not zero

2C Program execution

04 Invalid branch target

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

1-12 AS/400 MI Functional Reference

Operand
1 Other
X
X
X
X X
X
X
X

C

C

Clear Bit in String (SETBTS)

1.5 Clear Bit in String (CLRBTS)

Exceptions

Op Code (Hex) Operand Operand 2
1

102E Receiver Offset

Operand 1. Character Variable Scalar or Numeric Variable Scalar.
Operand 2. Binary Scalar.

Description: Clears the bit of the receiver operand as indicated by the bit offset
operand.

The selected bit from the receiver operand is set to a value of B'0’".

The receiver operand can be character or numeric. The leftmost bytes of the
receiver operand are used in the operation. The receiver operand is interpreted
as a bit string with the bits numbered left to right from 0 to the total number of
bits in the string minus 1.

The receiver cannot be a variable substring.

The offset operand indicates which bit of the receiver operand is to be cleared,
with a offset of zero indicating the leftimost bit of the leftmost byte of the receiver
operand.

If a offset value less than zero or beyond the length of the string is specified a
“scalar value invalid” exception is raised.

Operands
Exception 1 2 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment violation

03 Range

X X X X
xX X X X

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered
04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X
03 Function check X

Chapter 1. Computation and Branching Instructions 1-13

Clear Bit in String (SETBTS)

Exception

22

24

2A

2E

32

36

Object access
02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Scalar specification
01 Scalar type invalid

03 Scalar value invalid

Space management

01 space extension/truncation

1-14 AS/400 MI Functional Reference

Operands
1 2 Other

X X
X X
X X
X X
X X
X X
X X
X X
X X

X X X

X
X X
X

X

C

Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)

1.6 Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)

Op Code (Hex) Extender Operand 1 Operand 2 Operand
3 [4,5]
1CC2 Branch Compare Compare Branch
options operand 1 operand 2 target
18C2 Indicator Indicator
options target

Operand 1. Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.

Operand 3 [4, 5]

e Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

¢ Indicator Form-Numeric variable scalar or character variable scalar.
Extender: Branch or indicator options.

Either the branch or indicator option is required by the instruction. The extender
field is required along with from one to three branch targets (for branch option)
or one to three indicator operands (for indicator option). The branch or indicator
operands are required for operand 3 and optional for operands 4 and 5. See
Chapter 1. “Introduction” for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of two left-
adjusted compare operands. The logical string value of the first compare
operand is compared with the logical string value of the second compare
operand (no padding done). Based on the comparison, the resulting condition is
used with the extender field to:

¢ Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

¢ Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric oper-
ands are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions performed. The length of the operation is equal to the
length of the shorter of the two compare operands. The comparison begins with
the leftmost byte of each of the compare operands and proceeds until all bytes
of the shorter compare operand have been compared or until the first unequal
pair of bytes is encountered.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either or both compare operands is that the
instruction’s resultant condition is equal.

Chapter 1. Computation and Branching Instructions 1-15

Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)

Resultant Conditions: The scalar first compare operand has a higher, lower, or

equal string value than the second compare operand.

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2C

Addressing

01 Spacing addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability invalid

Argument/parameter

01 Parameter reference violation

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

05 Invalid op-code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Program execution

04 Branch target invalid

1-16 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

3

3[4,5] Other

X
X
X
X
X
X X)
X X
X
X
: 9
X
X
X
X
x 9
X
X
X
X
X
X
X
X X

Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)

Operands
Exception 1 2 3 [4,5] Other
2E Resource control limit
01 user profile storage limit exceeded X
36 Space management
01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-17

Compare Bytes Left-Adjusted with Pad (_CMPBLAPB or CMPBLAPI)

1.7 Compare Bytes Left-Adjusted with Pad (CMPBLAPB or
CMPBLAPI)

Op Code (Hex) Extender Operand 1 Operand 2 Operand 3 Operand
4[5, 6]
1CC3 Branch Compare Compare Pad Branch
options operand 1 operand 2 target
18C3 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.
Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

s Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

* [ndicator Form-Numeric variable scalar or character variable scalar.
Extender: Branch or indicator options.

Either the branch or indicator option is required by the instruction. The extender
field is required along with from one to three branch targets (for branch option)
or one to three indicator operands (for indicator option). The branch or indicator
operands are required for operand 4 and optional for operands 5 and 6. See
Chapter 1. “Introduction” for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of two left-
adjusted compare operands (padded if needed). The logical string value of the
first compare operand is compared with the logical string value of the second
compare operand. Based on the comparison, the resulting condition is used
with the extender field to:

¢ Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

¢ Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric oper-
ands are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions being performed.

The length of the operation is equal to the length of the longer of the two
compare operands. The shorter of the two compare operands is logically
padded on the right with the 1-byte value indicated in the pad operand. If the
pad operand is more than 1 byte in length, only its leftmost byte is used. The
comparison begins with the leftmost byte of each of the compare operands and
proceeds until all the bytes of the longer of the two compare operands have

1-18 AS/400 M| Functional Reference

J

C

Exceptions

Compare Bytes Left-Adjusted with Pad (CMPBLAPB or CMPBLAPI)

been compared or until the first unequal pair of bytes is encountered. All excess
bytes in the longer of the two compare operands are compared to the pad value.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a

null substring reference for one of the compare operands is that the other
compare operand is compared with an equal length string of pad character

values. When a null substring reference is specified for both compare operands,
the resultant condition is equal.

Substring operand references that allow for a null substring reference (a length

value of zero) may not be specified for operand 3.

Resultant Conditions: The scalar first compare operand has a higher, lower, or

equal string value than the second compare operand.

Exception

06

08

10

1C

20

22

24

2A

Addressing

01 Spacing addressing violation
02 Boundary alignment

03 Range

06 Optimized addressability
invalid

Argument/parameter

01 Parameter reference vio-
lation

Damage encountered

04 System object damage state

44 Partial system object damage

Machine-dependent exception
03 Machine storage limit
exceeded

Machine support

02 Machine check

03 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

Chapter 1. Computation and Branching Instructions

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X X X

x

4[5, 6]

X X X X

x

Other

1-19

Compare Bytes Left-Adjusted with Pad (CMPBLAPB or CMPBLAPI)

Exception
05 Invalid op-code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0A Invalid operand length

0C Invalid operand odt refer-
ence

0D Reserved bits are not zero

2C Program execution

04 Branch target invalid

2E Resource control limit

01 user profile storage limit
exceeded

36 Space management

01 space extension/truncation

1-20 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X

x

4[5, 6]

x

Other
X

C

Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)

1.8 Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)

Op Code (Hex) Extender Operand 1 Operand 2 Operand
3 [4,5]
1CC6 Branch Compare Compare Branch
options operand 1 operand 2 target
18C6 Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.
Operand 2: Numeric scalar or character scalar.

Operand 3 [4, 5]

e Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

e |ndicator Form-Numeric variable scalar or character variable scalar.
Extender: Branch or indicator options.

Either the branch or the indicator option is required by the instruction. The
extender field is required along with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and optional for operands 4 and 5.
See Chapter 1. “Introduction” for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of two right-
adjusted compare operands. The logical string value of the first compare
operand is compared with the logical string value of the second compare
operand (no padding done). Based on the comparison, the resulting condition is
used with the extender field to:

e Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

* Assign a value to each of the indicator operands (indicator form).

The compare operands can be either string or numeric. Any numeric operands
are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions performed. The length of the operation is equal to the
length of the shorter of the two compare operands. The comparison begins with
the leftmost byte <f each of the compare operands and proceeds until all bytes
of the shorter ccimpare operand have been compared or until the first unequal
pair of bytes is encountered.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either or both compare operands is that the
instruction’s resultant condition is equal.

Chapter 1. Computation and Branching Instructions 1-21

Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)

Resultant Conditions: The scalar first compare operand has a higher, lower, or
equal string value than the second compare operand.

Exceptions
Operands
Exception 1 2 3 [4,5] Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment violation X X X
03 Range X X X
06 Optimized addressability invalid X X X
08 Argument/parameter
01 Parameter reference violation X X X
10 Damage encountered
04 System object damage state X X X X
44 Partial system object damage X X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
22 Object access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program creation
05 Invalid op-code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
0A Invalid operand length X X
0C Invalid operand odt reference X X X
OD Reserved bits are not zero X X X X
2C Program execution
04 Branch target invalid X X

1-22 AS/400 MI Functional Reference

Compare Bytes Right-Adjusted (CMPBRAB or CMPBRAI)

Operands
Exception 1 2 3 [4,5] Other
2E Resource control limit
01 user profile storage limit exceeded X
36 Space management
01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-23

Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI)

1.9 Compare Bytes Right-Adjusted with Pad (CMPBRAPB or

CMPBRAPI)

Op Code
(Hex)

1CC7

18C7

Extender Operand 1 Operand 2 Operand 3 Operand
4 [5,6]
Branch Compare Compare Pad Branch
options operand 1 operand 2 target
Indicator Indicator
options target

Operand 1: Numeric scalar or character scalar.
Operand 2. Numeric scalar or character scalar.
Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

e Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

* |ndicator Form-Numeric variable scalar or character variable scalar.
Extender: Branch or indicator options.

Either the branch or the indicator option is required by the instruction. The
extender field is required along with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator option). The branch or
indicator operands are required for operand 4 and optional for operands 5 and 6.
See Chapter 1. “Introduction” for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction compares the logical string values of the right-
adjusted compare operands (padded if needed). The logical string value of the
first compare operand is compared with the logical string value of the second
compare operand. Based on the comparison, the resulting condition is used
with the extender field to:

* Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

e Assign a value to each of the indicator operands (indicator form).

The compare operands can be either character or numeric. Any numeric oper-
ands are interpreted as logical character strings.

The compare operands are compared byte by byte, from left to right with no
numeric conversions performed.

The length of the operation is equal to the length of the longer of the two
compare operands. The shorter of the two compare operands is logically
padded on the left with the 1-byte value indicated in the pad operand. If the pad
operand is more than 1 byte in length, only its leftmost byte is used. The com-
parison begins with the leftmost byte of the longer of the compare operands.

1-24 AS/400 MI Functional Reference

Exceptions

Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI)

Any excess bytes (on the left) in the longer compare operand are compared with
the pad value. All other bytes are compared with the corresponding bytes in the
other compare operand. The operation proceeds until all bytes in the longer
operand are compared or until the first unequal pair of bytes is encountered.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for one of the compare operands is that the other
compare operand is compared with an equal length string of pad character
values. When a null substring reference is specified for both compare operands,
the instruction’s resultant condition is equal.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

Resultant Conditions: The scalar first compare operand has a higher, lower, or
equal string value than the second compare operand.

Operands
Exception 1 2 3 4 [5, Other
6]

06 Addressing

01 Spacing addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

06 Optimized-addressability invalid X X X X
08 Argument/parameter

01 Parameter reference violation X X X X
10 Damage encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X
1C Machine-dependent exception

03 Machine storage limit exceeded X
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X
24 Pointer specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

Chapter 1. Computation and Branching Instructions 1-25

Compare Bytes Right-Adjusted with Pad (CMPBRAPB or CMPBRAPI)

Operands
Exception 1 2 3 4 [5, Other
6]
2A Program creation
05 Invalid op-code extender field X
06 Invalid operand type X X X X
07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X
09 Invalid branch target operand X
0A Invalid operand length X X
0C Invalid operand odt reference X X X X
0D Reserved bits are not zero X X X X X
2C Program execution
04 Branch target invalid X X
2E Resource control limit
01 user profile storage limit X
exceeded
36 Space management
01 space extension/truncation X

1-26 AS/400 MI Functional Reference

C

Compare Numeric Value (CMPNVB or CMPNVI)

1.10 Compare Numeric Value (CMPNVB or CMPNVI)

Op Code (Hex) Extender Operand 1 Operand 2 Operand
3 [4-6]
1C46 Branch Compare Compare Branch
options operand 1 operand 2 target
1846 Indicator Indicator
options target

Operand 1: Numeric scalar.
Operand 2: Numeric scalar.

Operand 3 [4-6]:

* Branch Form-Instruction number, relative instruction number, branch point,
or instruction pointer.

¢ Indicator Form-Numeric variable scalar or character variable scalar.
Extender: Branch or indicator options.

Either the branch or indicator option is required by the instruction. The extender
field is required along with from one to four branch targets (for branch option) or
one to four indicator operands (for indicator option). The branch or indicator
operands are required for operand 3 and optional for operands 4 and 5. See
Chapter 1. “Introduction” for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: The numeric value of the first compare operand is compared with
the signed or unsigned numeric value of the second compare operand. Based
on the comparison, the resulting condition is used with the extender field to:

* Transfer control conditionally to the instruction indicated in one of the branch
target operands (branch form).

* Assign a value to each of the indicator operands (indicator form).

For a decimal operation, alignment of the assumed decimal point takes place by
padding with 0’s on the right end of the compare operand with lesser precision.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

When both operands are signed numeric or both are unsigned numeric the
length of the operation is equal to the length of the longer of the two compare
operands.

When one operand is signed numeric and the other operand unsigned numeric
the unsigned operand is converted to a signed value with more precision than its
current size. The length of the operation is equal to the length of the longer of
the two compare operands. A negative signed numeric value will always be less
than a positive unsigned value.

Floating-point comparisons use exponent comparison and significand compar-

ison. For a denormalized floating-point number, the comparison is performed as
if the denormalized number had first been normalized.

Chapter 1. Computation and Branching Instructions 1-27

Compare Numeric Value (CMPNVB or CMPNVI)

For floating-point, two values compare unordered when at least one comparand
is NaN. Every NaN compares unordered with everything including another NaN
value.

Floating-point comparisons ignore the sign of zero. Positive zero always com-
pares equal with negative zero.

A floating-point invalid operand exception is signaled when two floating-point
values compare unordered and no branch or indicator option exists for any of
the unordered, negation of unordered equal, or negation of equal resultant con-
ditions.

When a comparison is made between a floating-point compare operand and a
fixed-point decimal compare operand that contains fractional digit positions, a
floating-point inexact result exception may be signaled because of the implicit
conversion from decimal to floating-point.

Resultant Conditions: High, low, or equal-The first compare operand has a
higher, lower, or equal numeric value than the second compare operand.
Unordered-The first compare operand is unordered compared to the second
compare operand.

Exceptions
Operands
Exception 1 2 3 [4-6] Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X
08 Argument/parameter
01 Parameter reference violation X X X
0oC Computation
02 Decimal data X X
03 Decimal point alignment X X
09 Floating-point invalid operand X X
0D Floating-point inexact result X
10 Damage encountered
04 System object damage state X X X X
44 Partial system object damage X X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X

1-28 AS/400 MI Functional Reference

Compare Numeric Value (CMPNVB or CMPNVI)

Operands

Exception 1 2 3 [4-6] Other
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2C Program execution

04 Branch target invalid X
2E Resource control limit

01 user profile storage limit exceeded X
36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-29

Compute Array Index (CAl)

111 Compute Array Iindex (CAl)

Op Code (Hex) Operand 1 Operand 2 Operand 3 Operand 4
1044 Array Subscript Subscript B Dimension
index A

Operand 1. Binary(2) variable scalar.

Operand 2: Binary(2) scalar.

Operand 3: Binary(2) scalar.

Operand 4. Binary(2) constant scalar object or immediate operand.

Description: This instruction provides the ability to reduce multidimensional
array subscript values into a single index value which can then be used in refer-
encing the single-dimensional arrays of the system. This index value is com-
puted by performing the following arithmetic operation on the indicated
operands.

Array Index = Subscript A 4+ ((Subscript B-1) X Dimension)

The numeric value of the subscript B operand is decreased by 1 and multiplied
by the numeric value of the dimension operand. The result of this multiplication
is added to the subscript A operand and the sum is placed in the array index
operand.

All the operands must be binary with any implicit conversions occurring
according to the rules of arithmetic operations. The usual rules of algebra are
observed concerning the subtraction, addition, and multiplication of operands.

This instruction provides for mapping multidimensional arrays to single-
dimensional arrays. The elements of an array with the dimensions (d1, d2, d3,
..., dn) can be defined as a single-dimensional array with d1*d2*d3*...*dn ele-
ments. To reference a specific element of the multidimensional array with sub-
scripts (s1,s2,s3,...sn), it is necessary to convert the multiple subscripts to a
single subscript for use in the single-dimensional AS/400 array. This single sub-
script can be computed using the following:

s1+((s2-1)*d1)+(s3-1)*d1*d2) +...+((sn-1) *d*d2*d3*. . . *dm)

where m = n-1

The CAl instruction is used to form a single index value from two subscript
values. To reduce N subscript values into a single index value, N-1 uses of this
instruction are necessary.

Assume that S1, S2, and S3 are three subscript values and that D1 is the size of
one dimension, D2 is the size of the second dimension, and the D1D2 is the
product of D1 and D2. The following two uses of this instruction reduce the three
subscripts to a single subscript.

CAI INDEX, S1, S2, D1 Calculates sl4(s2-1)*dl
CAI INDEX, INDEX, S3, D1D2 Calculates sl+(s2-1)*d1+(s3-1)*d2*d1

1-30 AS/400 MI Functional Reference

Compute Array Index (CAl)

Exceptions
Operands
Exception 1 2 3 4 Other
06 Addressing
01 Spacing addressing violation X X X X
02 Boundary alignment X X X X
03 Range X X X X
06 Optimized addressability invalid X X X X
08 Argument/parameter
01 Parameter reference violation X X X X
oC Computation
0A size X
10 Damage encountered
04 System object damage state X X X X X
44 Partial system object damage X X X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
22 Object access
01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
24 Pointer specification
01 Pointer does not exist X X X X

02 Pointer type invalid

x
x
x
x

2A Program creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range

0C Invalid operand odt reference

X X X X X
X X X X X
X X X X X
X X X X X

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-31

Compute Math Function Using One Input Value (CMF1)

112 Compute Math Function Using One Input Value (CMF1)

Optional Forms

Op Code (Hex) Operand 1 Operand 2 Operand 3
100B Receiver Controls Source

Operand 1: Numeric variable scalar.
Operand 2. Character(2) scalar.

Operand 3: Numeric scalar.

Op Code
Mnemonic (Hex) Form Type
CMF1I 180B Indicator
CMF1B 1COB Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper-
ands immediately follow the last operand listed above. See Chapter 1. “Intro-
duction” for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description:. The mathematical function, indicated by the controls operand, is
performed on the source operand value and the result is placed in the receiver
operand.

The calculation is always done in floating-point.
The result of the operation is copied into the receiver operand.

The controls operand must be a character scalar that specifies which mathemat-
ical function is to be performed. It must be at least 2 bytes in length and has the
following format:

» Controls operand Char(2)

— Hex 0001 = Sine

— Hex 0002 = Arc sine

— Hex 0003 = Cosine

— Hex 0004 = Arc cosine

— Hex 0005 = Tangent

— Hex 0006 = Arc tangent

— Hex 0007 = Cotangent

— Hex 0010 = Exponential function

— Hex 0011 = Logarithm based e (natural logarithm)
— Hex 0012 = Sine hyperbolic

— Hex 0013 = Cosine hyperbolic

— Hex 0014 = Tangent hyperbolic

— Hex 0015 = Arc tangent hyperbolic
— Hex 0020 = Square root

1-32 AS/400 MI Functional Reference

Compute Math Function Using One Input Value (CMF1)

— All other values are reserved

The controls operand mathematical functions are as follows:

Hex 0001-Sine

The sine of the numeric value of the source operand, whose value is consid-
ered to be in radians, is computed and placed in the receiver operand.

The result is in the range:
-1 < SIN(x) <1
Hex 0002-Arc sine

The arc sine of the numeric value of the source operand is computed and the
result (in radians) is placed in the receiver operand.

The result is in the range:
-pi/2 < ASIN(x) < +pi/2
Hex 0003-Cosine

The cosine of the numeric value of the source operand, whose value is con-
sidered to be in radians, is computed and placed in the receiver operand.

The result is in the range:
-1 < C0S(x) <1
Hex 0004-Arc cosine

The arc cosine of the numeric value of the source operand is computed and
the result (in radians) is placed in the receiver operand.

The result is in the range:
0 < ACOS(x) < pi
Hex 0005-Tangent

The tangent of the source operand, whose value is considered to be in
radians, is computed and the result is placed in the receiver operand.

The result is in the range:
-infinity < TAN(x) < +infinity
Hex 0006-Arc tangent

The arc tangent of the source operand is computed and the result (in
radians) is placed in the receiver operand.

The result is in the range:
-pi/2 < ATAN(x) < pi/2
Hex 0007-Cotangent

The cotangent of the source operand, whose value is considered to be in
radians, is computed and the result is placed in the receiver operand.

The result is in the range:
-infinity < COT(x) < +infinity

Hex 0010-Exponential function

Chapter 1. Computation and Branching Instructions 1-33

Compute Math Function Using One Input Value (CMF1)

The computation e power (source operand) is performed and the result is
placed in the receiver operand.

The result is in the range:
0 < EXP(x) < +infinity

¢ Hex 0011-Logarithm based e (natural logarithm)

The natural logarithm of the source operand is computed and the result is
placed in the receiver operand.

The result is in the range:
-infinity < LN(x) < +infinity

* Hex 0012-Sine hyperbolic

The sine hyperbolic of the numeric value of the source operand is computed
and the result (in radians) is placed in the receiver operand.

The result is in the range:
-infinity < SINH(x) < +infinity

* Hex 0013-Cosine hyperbolic

The cosine hyperbolic of the numeric value of the source operand is com-
puted and the result (in radians) is placed in the receiver operand.

The result is in the range:

+1 < COSH(x) < +infinity

¢ Hex 0014-Tangent hyperbolic

The tangent hyperbolic of the numeric value of the source operand is com-
puted and the result (in radians) is placed in the receiver operand.

The result is in the range:
-1 < TANH(x) < +1

¢ Hex 0015-Arc tangent hyperbolic

The inverse of the tangent hyperbolic of the numeric value of the source
operand is computed and the result (in radians) is placed in the receiver
operand.

The result is in the range:
-infinity < ATANH(x)

< +infinity
¢ Hex 0020-Square root

The square root of the numeric value of the source operand is computed and
placed in the receiver operand.

The result is in the range:

0 < SQRT(x) < +infinity

The following chart shows some special cases for certain arguments (X) of the
different mathematical functions.

41-34 AS/400 MI Functional Reference

Compute Math Function Using One Input Value (CMF1)

X | Masked |Unmasked Maximum | Minimum
Function NaN NaN +infinity | -infinity | +0 -0 Value Value Other
Sine g A(e) A(f) A(f) +0 -0 A1, A(1.1) B(3)
Arc sine g Ae) A(f) A(f) +0 -0 A(6.) A(B,f) -
Cosine g Ae) A(f) A(f) +1 +1 A(1.0) A(1,1) B(3)
Arc cosine |g A(e) A(f) A(f) +pi/2 | +pi/2 [A(B,S) A(6,f) -
Tangent g A(e) A(f) A(f) +0 -0 A(1,f) A1) B(3)
Arc tangent| g A(e) + pi/2 -pi/2 +0 -0 - - -
Cotangent |g A(e) A(f) A(f) +inf -inf A(1,f) A(1,f) B(3)
Exponent |g A(e) +inf +0 +1 +1 C(4,a) D(5,b) -
Logarithm |g A(e) +inf A(f) -inf -inf - - A(2,f)
Sine g A(e) +inf -inf +0 -0 - - -
hyperbolic
Cosine g A(e) +inf +inf +1 +1 - - -
hyperbolic
Tangent g Ae) +1 -1 +0 -0 - - -
hyperbolic
Arc tangent| g A(e) A(f A(f) +0 -0 A(6,f) A(6,f) -
hyperbolic
Square root| g A(e) +inf A(f) +0 -0 - - A(2,f)

Figure 1-1.

Special cases for arguments of CMF1 mathematical functions.

Capital letters in the chart indicate the exceptions, small letters indicate the
returned results, and Arabic numerals indicate the limits of the arguments (X) as
defined in the following lists:

A

B

Floating-point invalid operand (no result stored if unmasked; if masked,
occurrence bit is set)

Floating-point inexact result (result is stored whether or not exception is
masked)

Floating-point overflow (no result is stored if unmasked; if masked, occur-
rence bit is set)

Floating-point underflow (no result is stored if unmasked; occurrence bit is
always set)

Result follows the rules that depend on round mode

Result is +0 or a denormalized value

Result is +infinity

Result is -infinity

Result is the masked form of the input NaN

Result is the system default masked NaN

Result is the input NaN

1-35

Chapter 1. Computation and Branching Instructions

Compute Math Function Using One Input Value (CMF1)

inf = Result is infinity
1 = | pi*2*50 | =Hex 432921FB54442D18
2

Argument is in the range: -inf < x < -0
= | pi*2*"26 | =Hex 41A921FB54442D18
1n(2**1023) Hex 40862E42FEFA39EF
1n(2**-1021.4555) =Hex C086200000000000

4
5
6

Argument is in the range: -1 < x < #1

The following chart provides accuracy data for the mathematical functions that
can be invoked by this instruction.

1-36 AS/400 MI Functional Reference

Compute Math Function Using One Input Value (CMF1)

Sample Selection

Accuracy Data

Relative Error (e)

Absolute Error (E)

Function
Name A Range of x D MAX(e) SD(e) MAX(E) SD(E)
Arc cosine |9 0<=x<=314 (U 8.26 * 10**-14 [2.11 * 10**-15
Arc sine 10| -1.57 <=x <= 157 |U (1.02 * 10**-13| 2.66 " 10**-15
Arc tangent| 1 -pi/2 < x < pi/2 1 3.33 * 10**-16 |9.57 * 10**-17
Arc tangent| 14 3 <=x<=3 u 1.06 * 10**-14 |[1.79 * 10**-15
hyperbolic
Cosine (See Sine below)
Cosine (See Sine Hyperbolic)
hyperbolic below)
Cotangent [11| -10 <=x <= 100 |U |4.83 *10**-16(1.48 * 10**-16
L.000001 <= x <= .001|U |4.36 * 10**-16 | 1.49 * 10**-16
000 <= x <= 400000QU |5.72 * 10**-16| 1.46 * 10**-16
Exponential | 2 -100 <=x <= 300 |U (570 * 10**-14| 1.13 * 10**-14
Natural 3 05 <=x<=15 |U 2.77 * 10**-16 |8.01 * 10**-17
logarithm |4 -100 <=x <=700 |E (217 *10**-16| 7.37 * 10**-17
Sine cosine -0 <=x<=100 |U 2.22 * 10**-16 [1.31 * 10**-16
5].000001 <= x <= .001|U 2.22 * 10**-16 |1.56 * 10**-16
000 < = x < = 400000Q U 2.22 * 10**-16 |1.28 * 10**-16
-0 <=x<=100 |U 3.33 * 10**-16 | 8.39 * 10**-17
6 |.000001 <= x <= .001|U 4.33 * 10**-19 | 1.28 * 10**-19
H000 < = x < = 4000000 U 3.33 * 10**-16 [8.17 * 10**-17
Sine/cosine[12| -100 <=x <= 300 (U |6.31 * 10**-16| 1.97 * 10**-16
hyperbolic
Square root| 7 -100 <=x <= 700 |E |4.13 * 10**-16| 1.27 * 10**-16
Tangent 10 <=x<=100 (U |4.59 " 10**-16| 1.54 * 10**-16
8 |.000001 <= x <= .001|U |4.42 * 10**-16| 1.44 * 10**-16 (3.25 * 10**-19 |8.06 * 10**-20
HO00 < = x < = 400000Q0U [4.77 * 10**-16| 1.43 * 10**-16
Tangent 13| -100 <=x <= 300 |U [8.35"10**-16| 3.87 * 10**-17 [2.22 * 10**-16 |3.17 * 10**-17
hyperbolic
Figure 1-2 (Part 1 of 2). Accuracy data for CMF1 mathematical functions.

Chapter 1. Computation and Branching Instructions

1-37

Compute Math Function Using One Input Value (CMF1)

XN AWN

9.
10.
1.
12.
13.
14.

Algorithm Notes:

f(x) = x, and g(x) = ATAN(TAN(x)).
f(x) = e**x, and g(x) = e**(1n{e**x)).

f(x) = 1n(x), and g(x) =

1n(e**(1n(x))).

flx) = x, and g(x) = 1n(e**x).
Sum of squares algorithm. f(x) = 1, and g(x) = SIN(x))**2 + (COS(x))**2.
Double angle algorithm. f(x) - SIN(2x), and g(x) = 2*(SIN(x)*COS(x)).

f(x) = e(**x, and g(x) =

(SQR(e**x))**2.

f(x) = TAN(x), and g(x) = SIN(x) / COS(x).

f(x) = x, and g(x) = ACOS(COS(x)).

f(x) = x, and g(x) = ASIN(SIN(x)).

f(x) = COT(x), and g(x) = COS(x) / SIN(x).

f(x) = SINH(2x), and g(x) = 2*(SINH(x)*COSH(x)).
f(x) = TANH(x), and g(x) = SINH(x) / COSH(x).
f(x) = x, and g(x) = ATANH(TANH(x)).

Distribution Note: The sample input arguments were tangents of numbers, x, uniformly distributed

between -pi/2 and +pi/2.

Figure

1-2 (Part 2 of 2). Accuracy data for CMF1 mathematical functions.

The vertical columns in the accuracy data chart have the following meanings:

* Function Name: This column identifies the principal mathematical functions
evaluated with entries arranged in alphabetical order by function name.

* Sample Selection: This column identifies the selection of samples taken for a
particular math function through the following subcolumns:

A: identifies the algorithm used against the argument, x, to gather the
accuracy samples. The numbers in this column refer to notes describing
the functions, f(x) and g(x), which were calculated to test for the antic-
ipated relation where f(x) should equal g(x). An accuracy sample then, is
an evaluation of the degree to which this relation held true. The algo-
rithm used to sample the arctangent function, for example, defines g(x) to
first calculate the tangent of x to provide an appropriate distribution of
input arguments for the arctangent function. Since f(x) is defined simply
as the value of x, the relation to be evaluated is then
x=ARCTAN(TAN(x)). This type of algorithm, where a function and its
inverse are used in tandem, is the usual type employed to provide the
appropriate comparison values for the evaluation.

“Range of x”: gives the range of x used to obtain the accuracy samples.
The test values for x are uniformly distributed over this range. It should
be noted that x is not always the direct input argument to the function
being tested; it is sometimes desirable to distribute the input arguments
in a nonuniform fashion to provide a more complete test of the function
(see column D below). For each function, accuracy data is given for one
or more segments within the valid range of x. In each case, the numbers
given are the most meaningful to the function and range under consider-
ation.

D: identifies the distribution of arguments input to the particular function
being sampled. The letter E indicates an exponential distribution. The

1-38 AS/400 MI Functional Reference

Exceptions

Compute Math Function Using One Input Value (CMF1)

letter U indicates a uniform distribution. A number refers to a note pro-
viding detailed information regarding the distribution.

* Accuracy Data: The maximum relative error and standard deviation of the
relative error are generally useful and revealing statistics; however, they are
useless for the range of a function where its value becomes zero. This is
because the slightest error in the argument can cause an unpredictable fluc-
tuation in the magnitude of the answer. When a small argument error would
have this effect, the maximum absolute error and standard deviation of the
absolute error are given for the range.

— Relative Error (e): The maximum relative error and standard deviation
(root mean square) of the relative error are defined:

MAX(e) =

SD(e) =

MAX(ABS((f(x) - g(x)) / f(x)))

where: MAX selects the largest of its arguments and ABS
takes the absolute value of its argument.

SQR((1/N) SUMSQ((f(x) - g(x)) / f(x)))

where: SQR takes the square root of its argument and
SUMSAQ takes the summation of the squares of its argu-
ments over all of the test cases.

— Absolute Error (E). The maximum absolute error produced during the
testing and the standard deviation (root mean square) of the absolute

error are:

MAX(E) =

SD(E) =

MAX(ABS(f(x) - g(x)))
where: the operators are those defined above.
SQR((1/N) SUMSQ(f(x) - g(x)))

where: the operators are those defined above.

Limitations: The following are limits that apply to the functions performed by

this instruction.

The source and receiver operands must both be specified as floating-point with
the same length (4 bytes for short format or 8 bytes for long format).

Null substring references (a length value of zero) cannot be specified for this

instruction.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
receiver operand is positive, negative, or zero. Unordered-The value assigned
to the floating-point result is NaN.

Exception
06 Addressing

01 Spacing addressing violation

02 Boundary alignment violation

03 Range

06 Optimized addressability invalid

Operands
1 2 3 Other

X X X X
X X X X
X X X X

Chapter 1. Computation and Branching Instructions 1-39

Compute Math Function Using One Input Value (CMF1)

Exception
08 Argument/parameter

01 Parameter reference violation

oC Computation
06 Floating-point overflow
07 Floating-point underflow
09 Floating-point invalid operand

0D Floating-point inexact result

10 Damage encountered
04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support
02 Machine check

03 Function check

22 Object access
01 Object not found
02 Object destroyed
03 Object suspended

24 Pointer specification
01 Pointer does not exist

02 Pointer type invalid

2A Program creation
05 Invalid op-code extender field
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
09 Invalid branch target operand
0C Invalid operand odt reference

0D Reserved bits are not zero

2C Program execution

04 Invalid branch target

2E Resource control limit
01 user profile storage limit exceeded

02 Process storage limit exceeded

32 Scalar specification

01 Scalar type invalid

1-40 AS/400 MI Functional Reference

Operands
1 2 3
X X X
X
X

X
X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X

Other

Compute Math Function Using One Input Value (CMF1)

Operands
Exception 1 2 3 Other
03 Scalar value invalid X
36 Space management
01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-41

Compute Math Function Using Two Input Values (CMF2)

1.13 Compute Math Function Using Two Input Values (CMF2)

Op Code Operand Operand Operand Operand
(Hex) 1 2 3 4
100C Receiver Controls Source 1 Source 2

Operand 1. Numeric variable scalar.
Operand 2. Character(2) scalar.
Operand 3: Numeric scalar.
Operand 4: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CMF2i 180C Indicator
CMF2B 1CoC Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The mathematical function, indicated by the controls operand, is
performed on the source operand values and the result is placed in the receiver
operand.

The calculation is always done in floating-point.

The controls operand must be a character scalar that specifies which mathemat-
ical function is to be performed. It must be at least 2 bytes in length and have
the following format:

¢ Controls operand Char(2)
— Hex 0001 = Power (x to the y)
— All other values are reserved

The computation x power y, where x is the first source operand and vy is the
second source operand, is performed and the result is placed in the receiver
operand.

The following chart shows some special cases for certain arguments of the

power function (x**y). Within the chart, the capitalized letters X and Y refer to
the absolute value of the arguments x and y; that is, X = |[x| and Y = |y|.

1-42 AS/400 MI Functional Reference

Compute Math Function Using Two Input Values (CMF2)

y| -inf y<o0, y<o0 y<o0 -1 -1/2 +0 +1/2 +1 y>0 y>0 y>0 +inf | M- UnM-
= y=2n real or = y=2n | real NaN | NaN

X 2n+1 -0 2n+1

+inf +0 +0 +0 +0 +0 +1 +inf | +inf +inf | +inf +inf +inf b A(c)
+1 +1 +1 +1 +1

x> 1 +0 +1 | SQRT(x) | x Xy Xy Xy +inf [b Alc)
XY XY XY X SQRT(x)

x=+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 b A(c)
+1 +1 +1 +1 +1

0<x<1 +inf _ +1 | SQRT(M) [x Xy Xy Xy +0 |b Alc)
XY x*Y XY X SQRT(x)

x=+0 E(f) E(f) E(f) E(f) E(f) | E(f) +1 +0 +0 +0 +0 +0 +0 |[b A(c)

x=-0 E(f) E(g) E(f) E(f) E(g) | E(9) +1 -0 -0 -0 +0 +0 +0 b A(c)
-1 +1 -1

0>x>-1 |A@) Afa) _ Aa) +1 | A@) X Xy X~y | Aa) Aa) |b A(c)
XY XY X

x=-1 A(a) -1 +1 A(a) -1 A(a) +1 A(a) -1 -1 +1 Afa) Afa) | b A(c)
-1 +1 -1

x<-1 A(a) Afa) _ A(a) +1 A(a) X =X*ry Xry Afa) A(a) | b A(c)
XY XY X

x=-inf A(a) -0 +0 Afa) -0 A(a) +1 A(a) -inf -inf +inf A(a) Afa) | b A(c)

Masked b b b b b b b b b b b b d Afe)

NaN

Un-

masked A(c) A(c) A(c) A(c) A(c) | A(c) Afc) | A(c) Afc) | A(c) A(c) A(c) A(c) | Ale) | Ale)

NaN

Figure 1-3. Special cases of the power function (x**y)

Capital letters in the chart indicate the exceptions and small letters indicate the
returned results as defined in the following list:

A
E

o O T o

(¢}

g

Floating-point invalid operand

Divide by zero

Result is the system default masked NaN

Result is the same NaN

Result is the same NaN masked

Result is the larger NaN

Result is the larger NAN masked

Result is +infinity

Result is -infinity

The following chart provides accuracy data for the mathematical function that
can be invoked by this instruction.

Chapter 1. Computation and Branching Instructions

1-43

Compute Math Function Using Two Input Values (CMF2)

Sample Selection Accuracy Data
Function
Name X y MAX(e) SD(e)
Power 1/3 -345 <=y <= 330 |4.99*10**-16 [1.90 * 10**-16
75 11320 <=y <= 1320/2.96 * 10**-16 [2.39 * 10**-16
9 3605 <=y <= 3605|1.23 * 10**-16 | 1.02 * 10**-16
10 -165 <=y <= 165 |7.10 * 10**-16 |3.18 * 10**-16
712 57 <=y <=57 |1.75*10*-15 |7.24* 10**-16
Figure 1-4. Accuracy data for CMF2 mathematical functions.

The vertical columns in the accuracy data chart have the following meanings:
* Function Name: This column identifies the mathematical function.

* Sample Selection: This column identifies the selection of samples taken for
the power function. The algorithm used against the arguments, x and y, to
gather the accuracy samples was a test for the anticipated relation where
f(x) should equal g(x,y):

where:
f (x)=x
g(x,y)= (x**y)**(1/y)

An accuracy sample then, is an evaluation of the degree to which this
relation held true.

The range of argument values for x and y were selected such that x was held
constant at a particular value and y was uniformly varied throughout a range
of values which avoided overflowing or underflowing the result field. The
particular values selected are indicated in the subcolumns entitled x and y.

* Accuracy Data: The maximum relative error and standard deviation (root
mean square) of the relative error are generally useful and revealing statis-
tics. These statistics for the relative error, (e), are provided in the following

subcolumns:
MAX(e) = MAX(ABS((f(x)-g(x))/f(x)))

where: MAX selects the largest of its arguments and ABS takes
the absolute value of its argument.

SQR((1/N) SUMSQ((f(x) - g(x)) / f(x)))

where: SQR takes the square root of its argument and SUMSQ
takes the summation of the squares of its arguments over all of
the test cases.

SD(e) =

Limitations: The following are limits that apply to the functions performed by
this instruction.

The source and receiver operands must both be specified as floating-point with
the same length (4 bytes for short format or 8 bytes for long format).

1-44 AS/400 M| Functional Reference

Compute Math Function Using Two Input Values (CMF2)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
receiver operand is positive, negative, or zero. Unordered-The value assigned
to the floating-point result is NaN.

Exceptions
Operands
Exception 1 2 3 4 Other

06 Addressing
01 space addressing violation
02 boundary alignment violation

03 range

X X X X
X X X X
X X X X
xX X X X

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation X X X X

0oC Computation
06 floating-point overflow X
07 floating-point underflow X
09 floating-point invalid operand X X
0C invalid floating-point conversion X
0D floating-point inexact result X

OE floating-point zero divide X

10 Damage encountered
04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support
02 machine check X

03 function check X

22 Object access
01 object not found X X X X
02 object destroyed X X X X
03 object suspended X X X X

24 Pointer specification
01 pointer does not exist X X X X
02 pointer type invalid X X X X

2A Program creation

05 invalid op code extender field X

Chapter 1. Computation and Branching Instructions 1-45

Compute Math Function Using Two Input Values (CMF2)

Exception

2C

2E

32

36

06 invalid operand type

07 invalid operand attribute

08 invalid operand value range
09 invalid branch target operand
0C invalid operand odt reference

0D reserved bits are not zero

Program execution

04 invalid branch target

Resource control limit
01 user profile storage limit exceeded

02 process storage limit exceeded

Scalar specification
01 scalar type invalid

03 scalar value invalid

Space management

01 space extension/truncation

1-46 AS/400 M! Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X

X X X

xX X

X X X&

xX X

Other

C

C

Concatenate (CAT)

1.14 Concatenate (CAT)

Exceptions

Op Code (Hex) Operand Operand Operand 3
1 2
10F3 Receiver Source Source 2
1

Operand 1. Character variable scalar.
Operand 2: Character scalar.
Operand 3. Character scalar.

Description: The character string value of the second source operand is joined
to the right end of the character string value of the first source operand. The
resulting string value is placed (left-adjusted) in the receiver operand.

The length of the operation is equal to the length of the receiver operand with
the resulting string truncated or is logically padded on the right end accordingly.
The pad value for this instruction is hex 40.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1, 2, and 3. The effect of specifying
a null substring reference for one source operand is that the other source
operand is used as the result of the concatenation. The effect of specifying a
null substring reference for both source operands is that the bytes of the
receiver are each set with a value of hex 40. The effect of specifying a null sub-
string reference for the receiver is that a result is not set regardless of the value
of the source operands.

Operands
Exception 1 2 3 Other

06 Addressing
01 space addressing violation
02 boundary alignment

03 range

X X X X
X X X X
X X X X

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation X

10 Damage encountered
04 system object damage state X X X X
44 partial system object damage X X X X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support
02 machine check X

03 function check X

Chapter 1. Computation and Branching Instructions 1-47

Concatenate (CAT)

Exception

22

24

2A

2E

36

Object access

01 object not found

02 object destroyed
03 object suspended

Pointer specification
01 pointer does not exist

02 pointer type invalid

Program creation

06 invalid operand type

07 invalid operand attribute

08 invalid operand value range
0A invalid operand length

0C invalid operand odt reference

0D reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-48 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X
X X
X X
X X
X X
X X
X X
X X

x

X X X X X X

Other

C

Convert BSC to Character (CVTBC)

1.15 Convert BSC to Character (CVTBC)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2
10AF Receiver Controls Source

Operand 1. Character variable scalar.
Operand 2. Character(3) variable scalar (fixed-length).

Operand 3. Character scalar.

Op Code
Mnemonic (Hex) Form Type
CVTBCI 18AF Indicator
CVTBCB 1CAF Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts a string value from the BSC (binary syn-
chronous communications) compressed format to a character string. The opera-
tion converts the source (operand 3) from the BSC compressed format to
character under control of the controls (operand 2) and places the result into the
receiver (operand 1).

The source and receiver operands must both be character strings.
The controls operand must be a character scalar that specifies additional infor-

mation to be used to control the conversion operation. It must be at least 3
bytes in length and have the following format:

e Controls operand Char(3)
— Source offset Bin(2)
— Record separator Char(1)

The source offset specifies the offset where bytes are to be accessed from the
source operand. If the offset is equal to or greater than the length specified for
the source operand (it identifies a byte beyond the end of the source operand), a
template value invalid exception is signaled. As output from the instruction, the
source offset is set to specify the offset that indicates how much of the source is
processed when the instruction ends.

The record separator, if specified with a value other than hex 01, contains the
value used to separate converted records in the source operand. A value of hex

Chapter 1. Computation and Branching Instructions 1-49

Convert BSC to Character (CVTBC)

01 specifies that record separators do not occur in the converted records in the
source.

Only the first 3 bytes of the controls operand are used. Any excess bytes are J
ignored.

The operation begins by accessing the bytes of the source operand located at
the offset specified in the source offset. This is assumed to be the start of a
record. The bytes of the record in the source operand are converted into the
receiver record according to the following algorithm.

The strings to be built in the receiver are contained in the source as blank com-
pression entries and strings of consecutive nonblank characters.

The format of the blank compression entries occurring in the source are as

follows:
e Blank compression entry Char(2)
— Interchange group separator Char(1) J
— Count of compressed blanks Char(1)

The interchange group separator has a fixed value of hex 1D.

The compressed blanks count provides for describing up to 63 compressed

blanks. The count of the number of blanks (up to 63) to be decompressed is

formed by subtracting hex 40 from the value of the count field. The count field

can vary from a value of hex 41 to hex 7F. If the count field contains a value £
outside of this range, a conversion exception is signaled. J

Strings of blanks described by blank compression entries in the source are
repeated in the receiver the number of times specified by the blank compression

count.

Nonblank strings in the source are copied into the receiver intact with no alter-

ation.
If the receiver record is filled with converted data without encountering the end ’
of the source operand, the instruction ends with a resultant condition of com-

pleted record. This can occur in two ways. If a record separator was not speci-
fied, the instruction ends when enough bytes have been converted from the
source to fill the receiver. If a record separator was specified, the instruction
ends when a source byte is encountered with that value prior to or just after
filling the receiver record. The offset value for the source locates the byte fol-
lowing the last source record (including the record separator) for which conver-
sion was completed. When the record separator value is encountered, any
remaining bytes in the receiver are padded with blanks.

If the end of the source operand is encountered (whether or not in conjunction

with a record separator or the filling of the receiver), the instruction ends with a

resultant condition of source exhausted. The offset value for the source locates

the byte following the last byte of the source operand. The remaining bytes in

the receiver after the converted record are padded with blanks. J

1-50 AS/400 MI Functional Reference

Exceptions

Convert BSC to Character (CVTBC)

If the converted form of a record cannot be completely contained in the receiver,
the instruction ends with a resultant condition of truncated record. The offset
value for the source locates the byte following the last source byte for which
conversion was performed, unless a blank compression entry was being proc-
essed. In this case, the source offset is set to locate the byte after the blank
compression entry. If the source does not contain record separators, this condi-
tion can only occur for the case in which a blank compression entry was being
converted when the receiver record became full.

Any form of overlap between the operands on this instruction yields unpredict-
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Completed record-The receiver record has been com-
pletely filled with converted data from a source record. Source exhausted-All of
the bytes in the source operand have been converted into the receiver operand.
Truncated record-The receiver record cannot contain all of the converted data
from the source record.

Operands
Exception 1 2 3 Other

06 Addressing
01 space addressing violation
02 boundary alignment violation

03 range

X X X X
X X X X

X X X X

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation X X X

0oC Computation

01 conversion X

10 Damage encountered
04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support
02 machine check X

03 function check X

22 Object access

01 object not found X X X

x
x
x

02 object destroyed
03 object suspended X X X

Chapter 1. Computation and Branching Instructions 1-51

Convert BSC to Character (CVTBC)

Exception

24

2A

2C

2E

32

36

38

Pointer specification
01 pointer does not exist

02 pointer type invalid

Program creation

05 invalid op code extender field
06 invalid operand type

07 invalid operand attribute

08 invalid operand value range
09 invalid branch target operand
0A invalid operand length

0C invalid operand odt reference

0D reserved bits are not zero

Program execution

04 invalid branch target

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 scalar type invalid

Space management

01 space extension/truncation

Template specification

01 template value invalid

1-52 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X
X X
X X
X X
X

Other

Convert Character to BSC (CVTCB)

1.16 Convert Character to BSC (CVTCB)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2
108F Receiver Controls Source

Operand 1. Character variable scalar.
Operand 2: Character(3) variable scalar (fixed-length).

Operand 3: Character scalar.

Op Code
Mnemonic (Hex) Form Type
CVTCBI 188F Iindicator
CVTCBB 1C8F Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper-
ations immediately follow the last operand listed above. See Chapter 1. “Intro-
duction” for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts a string value from character to BSC
(binary synchronous communications) compressed format. The operation con-
verts the source (operand 3) from character to the BSC compressed format
under control of the controls (operand 2) and places the result into the receiver
(operand 1).

The source and receiver operands must both be character strings.
The controls operand must be a character scalar that specifies additional infor-

mation to be used to control the conversion operation. It must be at least 3
bytes in length and have the following format:

¢ Controls operand Char(3)
— Receiver offset Bin(2)
— Record separator Char(1)

The receiver offset specifies the offset where bytes are to be placed into the
receiver operand. If the offset is equal to or greater than the length specified for
the receiver operand (it identifies a byte beyond the end of the receiver), a tem-
plate value invalid exception is signaled. As output from the instruction, the
source offset is set to specify the offset that indicates how much of the receiver
has been filled when the instruction ends.

The record separator, if specified with a value other than hex 01, contains the
value used to separate converted records in the receiver operand. A value of

Chapter 1. Computation and Branching Instructions 1-53

Convert Character to BSC (CVTCB)

hex 01 specifies that record separators are not to be placed into the receiver to
separate converted records.

Only the first 3 bytes of the controls operand are used. Any excess bytes are J
ignored.

The source operand is assumed to be one record. The bytes of the record in the
source operand are converted into the receiver operand at the location specified
in the receiver offset according to the following algorithm.

The bytes of the source record are interrogated to identify the strings of consec-
utive blank (hex 40) characters and the strings of consecutive nonblank charac-
ters which occur in the source record. Only three or more blank characters are
treated as a blank string for purposes of conversion into the receiver.

As the blank and nonblank strings are encountered in the source they are pack-
aged into the receiver.

Blank strings are reflected in the receiver as one or more blank compression J
entries. The format of the blank compression entries built into the receiver are
as follows:

* Blank compression entry Char(2)
— Interchange group separator Char(1)
— Count of compressed blanks Char(1)
The interchange group separator has a fixed value of hex 1D.
The compressed blanks count provides for compressing up to 63 blanks. The J
value of the count field is formed by adding hex 40 to the actual number of

blanks (up to 63) to be compressed. The count field can vary from a value of hex
43 to hex 7F.

Nonblank strings are copied into the receiver intact with no alteration or addi-
tional control information.

specified is placed into the receiver and the instruction ends with a resultant
condition of source exhausted. The offset value for the receiver locates the byte
following the converted record in the receiver. The value of the remaining bytes
in the receiver after the converted record is unpredictable.

When the end of the source record is encountered the record separator value if]

If the converted form of a record cannot be completely contained in the receiver
(including the record separator if specified), the instruction ends with a resultant
condition of receiver overrun. The offset value for the receiver remains
unchanged. The remaining bytes in the receiver, starting with the byte located
by the receiver offset, are unpredictable.

Any form of overlap between the operands on this instruction yields unpredict-
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction. ’

41-54 AS/400 M! Functional Reference

Convert Character to BSC (CVTCB)

Resultant Conditions: Source exhausted-All of the bytes in the source operand
have been converted into the receiver operand. Receiver overrun-An overrun
condition in the receiver operand was detected before all of the bytes in the
source operand were processed.

Exceptions
Operands
Exception 1 2 3 Other

06 Addressing
01 space addressing violation
02 boundary alignment violation

03 range

xX X X X
xX X X X

X X X X

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered
04 System object damage state X

44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support
02 machine check X

03 function check X

22 Object access
01 object not found X X X
02 object destroyed X X X
03 object suspended X X X

24 Pointer specification
01 pointer does not exist X X X

02 pointer type invalid X X X

2A Program creation

05 invalid op code extender field X
06 invalid operand type X X X

07 invalid operand attribute X X X

08 invalid operand value range X X X

09 invalid branch target operand X
OA invalid operand length X

0C invalid operand odt reference X X X

0D reserved bits are not zero X X X X

2C Program execution

04 invalid branch target X

Chapter 1. Computation and Branching Instructions 1-55

Convert Character to BSC (CVTCB)

Exception
2E Resource control limit

01 user profile storage limit exczeded

32 Scalar specification

01 scalar type invalid

36 Space management

01 space extension/truncation

38 Template specification

01 template value invalid

41-56 AS/400 MI Functional Reference

Operands

1 2

X X
X

3

Other

C

Convert Character to Hex (CVTCH)

1.17 Convert Character to Hex (CVTCH)

Exceptions

Op Code (Hex) Operand Operand 2
1

1082 Receiver Source

Operand 1: Character variable scalar.
Operand 2. Character variable scalar.

Description: Each character (8-bit value) of the string value in the source
operand is converted to a hex digit (4-bit value) and placed in the receiver
operand. The source operand characters must relate to valid hex digits or a
conversion exception is signaled.

Characters Hex Digits
Hex FO-hex F9 = Hex 0-hex 9
Hex C1-hex C6 = Hex A-hex F

The operation begins with the two operands left-adjusted and proceeds left to
right until all the hex digits of the receiver operand have been filled. If the
source operand is too small, it is logically padded on the right with zero charac-
ters (hex FQ). If the source operand is too large, a length conformance or an
invalid operand length exception is signaled.

Substring operand references that allow for a null substring reference (a length

value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with a value of hex 00. The effect of specifying a null substring reference for
the receiver is that no result is set.

Operands

Exception 1 2 Other
06 Addressing

01 space addressing violation X X

02 boundary alignment X X

03 range X X

06 optimized addressability invalid X X
08 Argument/parameter

01 parameter reference violation X X
0oC Computation

01 conversion X

C8 length conformance X
10 Damage encountered

04 system object damage X X X

44 partial system object damage X X X
1C Machine-dependent exception

Chapter 1. Computation and Branching Instructions 1-57

Convert Character to Hex (CVTCH)

‘ Operands

Exception 1 2 Other

03 machine storage limit exceeded X
20 Machine support

02 machine check X

03 function check X
22 Object access

01 object not found X X

02 object destroyed X X

03 object suspended X X
24 Pointer specification

01 pointer does not exist X X

02 pointer type invalid X X
2A Program creation

06 invalid operand type X X

07 invalid operand attribute X X

08 invalid operand value range X X

0A invalid operand length X

0C invalid operand odt reference X X

0D reserved bits are not zero X X X
2E Resource control limit

01 user profile storage limit exceeded X
36 Space management

01 space extension/truncation X

1-58 AS/400 MI Functional Reference

C

Convert Character to MRJE (CVTCM)

1.18 Convert Character to MRJE (CVTCM)

Optional Forms

Op Code (Hex) Operand 1 Operand 2 Operand 3
108B Receiver Controls Source

Operand 1: Character variable scalar.
Operand 2. Character(13) variable scalar (fixed-length).

Operand 3. Character scalar.

Op Code
Mnemonic (Hex) Form Type
CVTCMI 188B Indicator
CVTCMB 1C8B Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper-
ands immediately follow the last operand listed above. See Chapter 1. “Intro-
duction” for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts a string of characters to MRJE
{(MULTI-LEAVING remote job entry) compressed format. The operation converts
the source (operand 3) from character to the MRJE compressed format under
control of the controls (operand 2) and places the results in the receiver
{operand 1).

The source and receiver operands must both be character strings. The source
operand cannot be specified as either a signed or unsigned immediate value.

The source operand can be described through the controls operand as being
composed of one or more fixed length data fields, which may be separated by
fixed length gaps of characters to be ignored during the conversion operation.
Additionally, the controls operand specifies the amount of data to be processed
from the source to produce a converted record in the receiver. This may be a
different value than the length of the data fields in the source. The following
diagram shows this structure for the source operand.

Chapter 1. Computation and Branching Instructions 1-59

Convert Character to MRJE (CVTCM)

Actual Source Operand Bytes

data field gep data fleld gep data fleld pap J

Data Processad as Source Racords

record rec ord record record rec

ACOK-0

The controls operand must be a character scalar that specifies additional infor-
mation to be used to control the conversion operation. It must be at least 13
bytes in length and have the following format:

e Controls operand Char(13)
— Offset into the receiver operand Bin(2)
— Offset into the source operand Bin(2)
— Algorithm modifier Char(1)
— Source record length Char(1)
— Data field length Bin(2)
— Offset to next gap in source operand Bin(2)
— Gap length Bin(2)
— Record control block (RCB) value Char(1)

As input to the instruction, the source and receiver offset fields specify the
offsets where bytes of the source and receiver operands are to be processed. If
an offset is equal to or greater than the length specified for the operand it corre-
sponds to (it identifies a byte beyond the end of the operand), a template value
invalid exception is signaled. As output from the instruction, the source and
receiver offset fields specify offsets that indicate how much of the operation is
complete when the instruction ends.

The algorithm modifier has the following valid values:
e Hex 00 = Perform full compression.
* Hex 01 = Perform only truncation of trailing blanks.

The source record length value specifies the amount of data from the source to
be processed. If a source record length of O is specified, a template value
invalid exception is signaled.

The data field length value specifies the length of the data fields in the source.
Data fields occurring in the source may be separated by gaps of characters,
which are to be ignored during the conversion operation. Specification of a data
field length of O indicates that the source operand is one data field. In this case,
the gap length and gap offset values have no meaning and are ignored.

The gap offset value specifies the offset to the next gap in the source. This value

is both input to and output from the instruction. This is relative to the current
byte to be processed in the source as located by the source offset value. No

1-60 AS/400 MI Functional Reference

Convert Character to MRJE (CVTCM)

validation is done for this offset. It is assumed to be valid relative to the source
operand. The gap offset value is ignored if the data field length is specified with
a value of 0.

The gap length value specifies the amount of data occurring between data fields
in the source operand which is to be ignored during the conversion operation.
The gap length value is ighored if the data field length is specified with a value
of 0.

The record control block (RCB) field specifies the RCB value that is to precede
the converted form of each record in the receiver. It can have any value.

Only the first 13 bytes of the controls operand are used. Any excess bytes are
ignored.

The operation begins by accessing the bytes of the source operand at the
location specified by the source offset. This is assumed to be the start of a
source record. Only the bytes of the data fields in the source are accessed for
conversion purposes. Gaps between data fields are ignored, causing the access
of data field bytes to occur as if the data fields were contiguous with one
another. Bytes accessed from the source for the source record length are con-
sidered a source record for the conversion operation. They are converted into
the receiver operand at the location specified by the receiver offset according to
the following algorithm.

The RCB value is placed into the first byte of the receiver record.

An SRCB (sub record control byte) value of hex 80 is placed into the second byte
of the receiver record.

If the algorithm modifier specifies full compression (a value of hex 00) then:

The bytes of the source record are interrogated to locate the blank character
strings (2 or more consecutive blanks), identical character strings (3 or more
consecutive identical characters), and nonidentical character strings occurring in
the source. A blank character string occurring at the end of the record is treated
as a special case (see following information on trailing blanks).

If the algorithm modifier specifies blank truncation (a value of hex 01) then:

The bytes of the source record are interrogated to determine if a blank character
string exists at the end of the source record. If one exists, it is treated as a
string of trailing blanks. All characters prior to it in the record are treated as
one string of nonidentical characters.

The strings encountered (blank, identical, or nonidentical) are reflected in the
receiver by building one or more SCBs (string control bytes) in the receiver to

describe them.

The format of the SCBs built into the receiver is:

The bit meanings are:

Chapter 1. Computation and Branching Instructions 1-61

Convert Character to MRJE (CVTCM)

Bit Value Meaning
o 0 End of record; the EOR SCB is hex 00.
1 All other SCBs.
k 0 The string is compressed.
1 The string is not compressed.
1 For k = O:
0 Blanks (hex 40s) have been deleted.
1 Nonblank characters have been deleted. The next character
in the data stream is the specimen character.
For k = 1:
This bit is part of the length field for length of uncompressed
data.
iliji Number of characters that have been deleted if k = 0. The

value can be 2-31.

1jjiii Number of characters to the next SCB (no compression) if k =
1. The value can be 1-63. The uncompressed (nonidentical
bytes) follow the SCB in the data stream.

When the end of a source record is encountered, an EOR (end of record) SCB
{hex 00) is built into the receiver. Trailing blanks in a record including a record
of all blanks are represented in the receiver by an EOR character if either full
compression or trailing blank truncation is specified.

If the end of the source operand is not encountered, the operation then continues
by reapplying the above algorithm to the next record in the source operand.

If the end of the source operand is encountered (whether or not in conjunction
with a record boundary), the instruction ends with a resultant condition of source
exhausted. The offset value for the source locates the byte following the last
source record for which conversion was completed. The gap offset value indi-
cates the offset to the next gap relative to the source offset value set for this
condition. The gap offset value has no meaning and is not set when the data
field length is 0. The offset value for the receiver locates the byte following the
last fully converted record in the receiver. The value of the remaining bytes in
the receiver after the last converted record is unpredictable.

If the converted form of a record cannot be completely contained in the receiver,
the instruction ends with a resultant condition of receiver overrun. The offset
value for the source locates the byte following the last source record for which
conversion was completed. The gap offset value indicates the offset to the next
gap relative to the source offset value set for this condition. The gap offset value
has no meaning and is not set when the data field length is 0. The offset value
for the receiver locates the byte following the last fully converted record in the
receiver. The value of the remaining bytes in the receiver after the last con-
verted record is unpredictable.

Any form of overlap between the operands of this instruction yields unpredict-
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

1-62 AS/400 MI Functional Reference

Exceptions

Convert Character to MRJE (CVTCM)

Resultant Conditions: Source exhausted-All complete records in the source
operand have been converted into the receiver operand. Receiver overrun-An
overrun condition in the receiver operand was detected prior to processing all of
the bytes in the source operand.

If source exhausted and receiver overrun occur at the same time, the source
exhausted conditicn is recognized first. When source exhausted is the resultant
condition, the receiver may also be full. In this case, the offset into the receiver
may contain a value equal to the length specified for the receiver, and this condi-
tion will cause an exception on the next invocation of the instruction. The proc-
essing performed for the source exhausted condition provides for this case when
the instruction is invoked multiple times with the same controls operand tem-
plate. When the receiver overrun condition is the resultant condition, the source
always contains data that can be converted.

Operands
Exception 1 2 3 Other

06 Addressing
01 space addressing violation
02 boundary alignment violation

03 range

X X X X
X X X X
xX X X X

06 optimized addressability invalid

08 Argument/parameter

01 parameter reference violation X X X

10 Damage encountered
04 System object damage state X
44 partial system object damage X

1C Machine-dependent exception

03 machine storage limit exceeded X

20 Machine support
02 machine check X

03 function check X

22 Object access

01 object not found X X X

x
x
x

02 object destroyed
03 object suspended X X X

24 Pointer specification
01 pointer does not exist X X X
02 pointer type invalid X X X

2A Program creation
05 invalid op code extender field X

06 invalid operand type X X X

Chapter 1. Computation and Branching Instructions 1-63

Convert Character to MRJE (CVTCM)

Exception

2C

2E

32

36

38

07 invalid operand attribute

08 invalid operand value range
09 invalid branch target operand
0A invalid operand length

0C invalid operand odt reference

0D reserved bits are not zero

Program execution

04 invalid branch target

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 scalar type invalid

Space management

01 space extension/truncation

Template specification

01 template value invalid

1-64 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X
X X
X X
X X

X X X

xX X

Other

Convert Character to Numeric (CVTCN)

1.19 Convert Character to Numeric (CVTCN)

(Op Code (Hex) Operand 1 Operand 2 Operand 3
1083 Receiver Source Attributes

Operand 1: Numeric variable scalar or data-pointer-defined numeric scalar.
Operand 2: Character scalar or data-pointer-defined character scalar.
Operand 3: Character(7) scalar or data-pointer-defined character scalar.

Description: The character scalar specified by operand 2 is treated as though it
were a numeric scalar with the attributes specified by operand 3. The character
string source operand is converted to the numeric forms of the receiver operand
and moved to the receiver operand. The value of operand 2, when viewed in
this manner, is converted to the type, length, and precision of the numeric

(V receiver, operand 1, following the rules for the Copy Numeric Value instruction.

The length of operand 2 must be large enough to contain the numeric value
described by operand 3. If it is not large enough, a scalar value invalid excep-
tion is signaled. If it is larger than needed, its leftmost bytes are used as the
value, and the rightmost bytes are ignored.

Normal rules of arithmetic conversion apply except for the following. If operand
2 is interpreted as a zoned decimal value, a value of hex 40 in the rightmost byte
referenced in the conversion is treated as a positive sign and a zero digit.

L If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con-
tains 15 or fewer significant nonfractional digits.

The format of the attribute operand specified by operand 3 is as follows:
e Scalar attributes Char(7)
— Scalar type Char(1)

‘ Hex 00 = Signed binary
Hex 01 = Floating-point

Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex OA = Unsigned binary

— Scalar length Bin(2)
If binary:
Length (L) (where L = 2 or 4) Bits 0-15
If floating-point:
Length (L) (where L = 4 or 8) Bits 0-15

If zoned decimal or packed decimal:
Fractional digits (F) Bits 0-7

L] Total digits (T) Bits 8-15
(where 1<T<31and0<F<T)

Chapter 1. Computation and Branching Instructions 1-65

Convert Character to Numeric (CVTCN)

— Reserved (binary 0) Bin(4)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exceptions
Operands
Exception 1 2 3 Other
06 Addressing
01 space addressing violation X X X
02 boundary alignment X X X
03 range X X X
04 external data object not found X X X
06 optimized addressability invalid X X X
08 Argument/parameter
01 parameter reference violation X X X
oC Computation
02 decimal data X X
06 floating-point overflow X
07 floating-point underflow X
09 floating-point invalid operand X
0A size X
0C floating-point conversion X
0D floating-point inexact result X
10 Damage encountered
04 system object damage state X X X X
44 partial system object damage X X X X
1C Machine-dependent exception
03 machine storage limit exceeded X
20 Machine support
02 machine check X
03 function check X
22 Object access
01 object not found X X X
02 object destroyed X X X
03 object suspended X X X
24 Pointer specification
01 pointer does not exist X X X
02 pointer type invalid X X X
2A Program creation
06 invalid operand type X X X

1-66 AS/400 MI Functional Reference

Convert Character to Numeric (CVTCN)

Operands

Exception 1 2 3 Other

07 invalid operand attribute X X X

08 invalid operand value range X X X

0A invalid operand length X X

0C invalid operand odt reference X X X

0D reserved bits are not zero X X X X
2E Resource control limit

01 user profile storage limit exceeded X
32 Scalar specification

01 scalar type invalid X X X

02 scalar attribute invalid X

03 scalar value invalid X
36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-67

Convert Character to SNA (CVTCS)

1.20 Convert Character to SNA (CVTCS)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2
10CB Receiver Controls Source

Operand 1. Character variable scalar.
Operand 2. Character(15) variable scalar (fixed length).

Operand 3. Character scalar.

Op Code
Mnemonic (Hex) Form Type
CVTCSI 18CB Indicator
CVTCSB 1CCB Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper-
ands immediately follow the last operand listed above. See Chapter 1. “Intro-
duction” for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts the source (operand 3) from character to
SNA (systems network architecture) format under control of the controls
(operand 2) and places the result into the receiver (operand 1).

The source and receiver operands must both be character strings. The source
operand may not be specified as an immediate operand.

The source operand can be described by the controls operand as being one or
more fixed-length data fields that may be separated by fixed-length gaps of char-
acters to be ignored during the conversion operation. Additionally, the controls
operand specifies the amount of data to be processed from the source to
produce a converted record in the receiver. This may be a different value than
the length of the data fields in the source. The following diagram shows this
structure for the source operand.

Actual Source Operand Bytes

date fleld gap data fleld gap data fleld gap J

Data Processed as Source Records

record rec ord record record rec

1-68 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

The controls operand must be a character scalar that specifies additional infor-
mation to be used to control the conversion operation. The operand must be at
least 15 bytes in length and has the following format:

¢ Controls operand Char(15)
— Offset into the receiver operand Bin(2)
— Offset into the source operand Bin(2)
— Algorithm modifier Char(1)
— Source record length Char(1)
— Data field length Bin(2)
— Gap offset Bin(2)
— Gap length Bin(2)
— Record separator character Char(1)
— Prime compression character Char(1)
— Unconverted source record bytes Char(1)

When the source and receiver operands are input to the instruction, they specify
the offsets where the bytes of the source and receiver operands are to be proc-
essed. If an offset is equal to or greater than the length specified for the
operand, the offset identifies a byte beyond the end of the operand and a tem-
plate value invalid exception is signaled. When the source and the receiver are
output from the instruction, they specify offsets that indicate how much of the
operation is complete when the instruction ends.

The algorithm modifier specifies the optional functions to be performed. Any
combination of functions can be specified as indicated by the bit meanings in the
following chart. At least one of the functions must be specified. If all of the algo-
rithm modifier bits are zero, a template value invalid exception is signaled. The
algorithm modifier bit meanings are:

Bits Meaning
0 0 = Do not perform compression.
1 = Perform compression.

1-2 00 = Do not use record separators and no blank truncation. Do not
perform data transparency conversion.
01 = Reserved.
10 = Use record separators and perform blank truncation. Do not perform
data transparency conversion.
11 = Use record separators and perform blank truncation. Perform data
transparency conversion.

3 0 = Do not perform record spanning.
1 = Perform record spanning. (allowed only when bit 1 = 1)

4-7 (Reserved)

The source record length value specifies the amount of data from the source to
be processed to produce a converted record in the receiver. Specification of a
source record length of zero results in a template value invalid exception.

The data field length value specifies the length of the data fields in the source.

Data fields occurring in the source may be separated by gaps of characters that
are to be ignored during the conversion operation. Specification of a data field

Chapter 1. Computation and Branching Instructions 1-69

Convert Character to SNA (CVTCS)

length of zero indicates that the source operand is one data field. In this case,
the gap length and gap offset values have no meaning and are ignored.

The gap offset value specifies the offset to the next gap in the source. This value
is both input to and output from the instruction. This is relative to the current
byte to be processed in the source as located by the source offset value. No
validation is done for this offset. It is assumed to be valid relative to the source
operand. The gap offset value is ignored if the data field length is specified with
a value of zero.

The gap length value specifies the amount of data that is to be ignored between
data fields in the source operand during the conversion operation. The gap
length value is ignored if the data field length is zero.

The record separator character value specifies the character that precedes the
converted form of each record in the receiver. It also serves as a delimiter
when the previous record is truncating trailing blanks. The Convert SNA to
Character instruction recognizes any value that is less than hex 40. The record
separator value is ignored if record separators are not used as specified in the
algorithm modifier.

The prime compression character value specifies the character to be used as
the prime compression character when performing compression of the source
data to SNA format. It may have any value. The prime compression character
value is ignored if the compression function is not specified in the algorithm
modifier.

The unconverted source record bytes value specifies the number of bytes
remaining in the current source record that are yet to be converted.

When the record spanning function is specified in the algorithm modifier, the
unconverted source record bytes value is both input to and output from the
instruction. On input, a value of hex 00 means it is the start of a new record and
the initial conversion step is yet to be performed. That is, a record separator
character has not yet been placed in the receiver. On input, a nonzero value
less than or equal to the record length specifies the number of bytes remaining
in the current source record that are yet to be converted into the receiver. This
value is assumed to be the valid count of unconverted source record bytes rela-
tive to the current byte to be processed in the source as located by the source
offset value. As such, it is used to determine the location of the next record
boundary in the source operand. This value must be less than or equal to the
source record length value; otherwise, a template value invalid exception is sig-
naled. On output this field is set with a value as defined above that describes
the number of bytes of the current source record that have not yet been con-
verted.

When the record spanning function is not specified in the algorithm modifier, the
unconverted source record bytes value is ignored.

Only the first 15 bytes of the controls operand are used. Any excess bytes are
ignored.

The description of the conversion process is presented as a series of separately

performed steps that may be selected in allowable combinations to accomplish
the conversion function. It is presented this way to allow for describing these

1-70 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

functions separately. However, in the actual execution of the instruction, these
functions may be performed in conjunction with one another or separately
depending upon which technique is determined to provide the best implementa-
tion.

The operation is performed either on a record-by-record basis, record proc-
essing, or on a nonrecord basis, string processing. This is determined by the
functions selected in the algorithm modifier. Specifying the use record separa-
tors and do blank truncation function indicates record processing is to be per-
formed. If this is not specified, in which case compression must be specified, it
indicates that string processing is to be performed.

The operation begins by accessing the bytes of the source operand at the
location specified by the source offset.

When record processing is specified, the source offset may locate the start of a
full or partial record.

When the record spanning function has not been specified in the algorithm modi-
fier, the source offset is assumed to locate the start of a record.

When the record spanning function has been specified in the algorithm modifier,
the source offset is assumed to locate a point at which processing of a possible
partially converted record is to be resumed. In this case the unconverted source
record bytes value contains the length of the remaining portion of the source
record to be converted. The conversion process in this case is started by com-
pleting the conversion of the current source record before processing the next
full source record.

When string processing is specified, the source offset locates the start of the
source string to be converted.

Only the bytes of the data fields in the source are accessed for conversion pur-
poses. Gaps between data fields are ignored causing the access of data field
bytes to occur as if the data fields were contiguous. A string of bytes accessed
from the source for a length equal to the source record length is considered to
be a record for the conversion operation.

When during the conversion process the end of the source operation is encount-
ered, the instruction ends with a resultant condition of source exhausted.

When record processing is specified in the algorithm modifier, this check is per-
formed at the start of conversion for each record. If the source operand does
not contain a full record, the source exhausted condition is recognized. The
instruction is terminated with status in the controls operand describing the last
completely converted record. For source exhausted, partial conversion of a
source record is not performed.

When string processing is specified in the algorithm modifier, then compression
must be specified and the compression function described below defines the
detection of source exhausted.

If the converted form of the source cannot be completely contained in the

receiver, the instruction ends with a resultant condition of receiver overrun. See
the description of this condition in the conversion process described below to

Chapter 1. Computation and Branching Instructions 1-71

Convert Character to SNA (CVTCS)

determine the status of the controls operand values and the converted bytes in
the receiver for each case.

When string processing is specified, the bytes accessed from the source are
converted on a string basis into the receiver operand at the location specified by
the receiver offset. In this case, the compression function must be specified and
the conversion process proceeds with the compression function defined below.

When record processing is specified, the bytes accessed from the source are
converted one record at a time into the receiver operand at the location speci-
fied by the receiver offset performing the functions specified in the algorithm
modifier in the sequence defined by the following algorithm.

The first function performed is trailing blank truncation.

A truncated record is built by logically appending the record data to the record
separator value specified in the controls operand and removing all blank charac-
ters after the last nonblank character in the record. If a record has no trailing
blanks, then no actual truncation takes place. A null record, a record consisting
entirely of blanks, will be converted as just the record separator character with
no other data following it. The truncated record then consists of the record sep-
arator character followed by the truncated record data, the full record data, or no
data from the record.

If either the data transparency conversion or the compression function is speci-
fied in the algorithm modifier, the conversion process continues for this record
with the next specified function.

If not, the conversion process for this record is completed by placing the trun-
cated record into the receiver. If the truncated record cannot be completely con-
tained in the receiver, the instruction ends with a resultant condition of receiver
overrun. When the record spanning function is specified in the algorithm modi-
fier, as much of the truncated record as will fit is placed into the receiver and the
controls operand is updated to describe how much of the source record was suc-
cessfully converted into the receiver. When the record spanning function is not
specified in the algorithm modifier, the controls operand is updated to describe
only the last fully converted record in the receiver and the value of the remaining
bytes in the receiver is unpredictable.

The second function performed is data transparency conversion.

Data transparency conversion is performed if the function is specified in the
algorithm modifier. This provides for making the data in a record transparent to
the Convert SNA to Character instruction in the area of its scanning for record
separator values. Transparent data is built by preceding the data with 2 bytes of
transparency control information. The first byte has a fixed value of hex 35 and
is referred to as the TRN (transparency) control character. The second byte is a
1-byte hexadecimal count, a value ranging from 1 to 255 decimal, of the number
of bytes of data that follow and is referred to as the TRN count. This contains
the length of the data and does not include the TRN control information length.

Transparency conversion can be specified only in conjunction with record proc-
essing and, as such, is performed on the truncated form of the source record.
The transparent record is built by preceding the data that follows the record sep-
arator in the truncated record with the TRN control information. The TRN count

4-72 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

in this case contains the length of just the truncated data for the record and does
not include the record separator character. For the special case of a null record,
no TRN control information is placed after the record separator character
because there is no record data to be made transparent.

If the compression function is specified in the algorithm modifier, the conversion
process continues for this record with the compression function.

If not, the conversion process for this record is completed by placing the trans-
parent record into the receiver. If the transparent record cannot be completely
contained in the receiver, the instruction ends with a resultant condition of
receiver overrun.

When the record spanning function is specified in the algorithm modifier, as
much of the transparent record as will fit is placed into the receiver and the con-
trols operand is updated to describe how much of the source record was suc-
cessfully converted into the receiver. The TRN count is also adjusted to describe
the length of the data successfully converted into the receiver; thus, the trans-
parent data for the record is not spanned out of the receiver. The remaining
bytes of the transparent record, if any, will be processed as a partial source
record on the next invocation of the instruction and will be preceded by the
appropriate TRN control information. For the special case where only 1to 3
bytes are available at the end of the receiver, (not enough room for the record
separator, the transparency control, and a byte of data) then just the record sep-
arator is placed in the receiver for the record being converted. This can cause
up to 2 bytes of unused space at the end of the receiver. The value of these
unused bytes is unpredictable.

When the record spanning function is not specified in the algorithm modifier, the
controls operand is updated to describe only the last fully converted record in
the receiver and the value of the remaining bytes in the receiver is unpredict-
able.

The third function performed is compression.

Compression is performed if the function is specified in the algorithm modifier.
This provides for reducing the size of strings of duplicate characters in the
source data. The source data to be compressed may have assumed a partially
converted form at this point as a result of processing for functions specified in
the algorithm modifier. Compressed data is built by concatenating one or more
compression strings together to describe the bytes that make up the converted
form of the source data prior to the compression step. The bytes of the con-
verted source data are interrogated to locate the prime compression character
strings (two or more consecutive prime compression characters), duplicate char-
acter strings (three or more duplicate nonprime characters) and nonduplicate
character strings occurring in the source.

The character strings encountered (prime, duplicate and nonduplicate) are
reflected in the compressed data by building one or more compression strings to
describe them. Compression strings are comprised of an SCB (string control
byte) possibly followed by one or more bytes of data related to the character
string to be described.

The format of an SCB and the description of the data that may follow it are:

Chapter 1. Computation and Branching Instructions 1-73

Convert Character to SNA (CVTCS)

* SCB Char(1)
— Control Bits 0-1

00 = n nonduplicate characters are between this SCB and the next one;
where n is the value of the count field (1-63).

01 = Reserved

10 = This SCB represents n deleted prime compression characters;
where n is the value of the count field (2-63). The next byte is the
next SCB.

11 = This SCB represents n deleted duplicate characters; where n is the
value of the count field (3-63). The next byte contains a specimen of
the deleted characters. The byte following the specimen character
contains the next SCB.

— Count Bits 2-7

This contains the number of characters that have been deleted for a
prime or duplicate string, or the number of characters to the next SCB
for a nonduplicate string. A count value of zero cannot be produced.

When record processing is specified, the compression is performed as follows.

The compression function is performed on just the converted form of the current
source record including the record separator character. The converted form of
the source record prior to the compression step may be a truncated record or a
transparent record as described above, depending upon the functions selected in
the algorithm modifier. The record separator and TRN control information is
always converted as a nonduplicate compression entry to provide for length
adjustment of the TRN count, if necessary.

The conversion process for this record is completed by placing the compressed
record into the receiver. If the compressed record cannot be completely con-
tained in the receiver, the instruction ends with a resultant condition of receiver
overrun.

When the record spanning function is specified in the algorithm modifier, as
much of the compressed record as will fit is placed into the receiver and the
controls operand is updated to describe how much of the source record was suc-
cessfully converted into the receiver. The last compression entry placed into the
receiver may be adjusted if necessary to a length that provides for filling out the
receiver. This length adjustment applies only to compression entries for nondu-
plicate strings. Compression entries for duplicate strings are placed in the
receiver only if they fit with no adjustment. For the special case where data
transparency conversion is specified, the transparent data being described is not
spanned out of the receiver. This is provided for by performing length adjust-
ment on the TRN count of a transparent record, which may be included in the
compressed data so that it describes only the source data that was successfully
converted into the receiver. For the special case where only 2 to 5 bytes are
available at the end of the receiver, not enough room for the compression entry
for a nonduplicate string containing the record separator and the TRN control,
and up to a 2-byte compression entry for some of the transparent data, the non-
duplicate compression entry is adjusted to describe only the record separator.
By doing this, no more than 3 bytes of unused space will remain in the receiver.
The value of these unused bytes is unpredictable. Unconverted source record
bytes, if any, will be processed as a partial source record on the next invocation

1-74 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

of the instruction and will be preceded by the appropriate TRN control informa-
tion when performing transparency conversion.

When the record spanning function is not specified in the algorithm modifier, the
controls operand is updated to describe only the last fully converted record in
the receiver. The value of the remaining bytes in the receiver is unpredictable.

When string processing is specified, the compression is performed as follows.

The compression function is performed on the data for the entire source operand
on a compression string basis. In this case, the fields in the controls operand
related to record processing are ignored.

The conversion process for the source operand is completed by placing the com-
pressed data into the receiver.

When the compressed data cannot be completely contained in the receiver, the
instruction ends with a resultant condition of receiver overrun. As much of the
compressed data as will fit is placed into the receiver and the controls operand
is updated to describe how much of the source data was successfully converted
into the receiver. The last compression entry placed into the receiver may be
adjusted if necessary to a length that provides for filling out the receiver. This
length adjustment applies only to compression entries for nonduplicate strings.
Compression entries for duplicate strings are placed in the receiver only if they
fit with no adjustment. By doing this, no more than 1 byte of unused space will
remain in the receiver.

When the compressed data can be completely contained in the receiver, the
instruction ends with a resultant condition of source exhausted. The compressed
data is placed into the receiver and the controls operand is updated to indicate
that all of the source data was successfully converted into the receiver.

At this point, either conversion of a source record has been completed or con-
version has been interrupted due to detection of the source exhausted or
receiver overrun conditions. For record processing, if neither of the above con-
ditions has been detected either during conversion of or at completion of conver-
sion for the current record, the conversion process continues on the next source
record with the blank truncation step described above.

At completion of the instruction, the offset value for the receiver locates the byte
following the last converted byte in the receiver. The value of the remaining
bytes in the receiver after the last converted byte are unpredictable. The offset
value for the source locates the byte following the last source byte for which
conversion was completed. When the record spanning function is specified in
the algorithm modifier, the unconverted source record bytes value specifies the
length of the remaining source record bytes yet to be converted. When the
record spanning function is not specified in the algorithm modifier, the uncon-
verted source record bytes value has no meaning and is not set. The gap offset
value indicates the offset to the next gap relative to the source offset value set
for this condition. The gap offset value has no meaning and is not set when the
data field length is zero.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Chapter 1. Computation and Branching Instructions 1-75

Convert Character to SNA (CVTCS)

Exceptions

Any form of overlap between the operands on this instruction yields unpredict-
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Source exhausted - All bytes in the source operand have
been converted into the receiver operand. Receiver overrun - An overrun condi-
tion in the receiver operand was detected before all of the bytes in the source
operand were processed.

Programming Notes:

If the source operand does not end on a record boundary, in which case
the last record is spanned out of the source, this instruction performs con-
version only up to the start of that partial record. In this case, the user of
the instruction must move this partial record to combine it with the rest of
the record in the source operand to provide for its being processed cor-
rectly upon the next invocation of the instruction. If full records are pro-
vided, the instruction performs its conversions out to the end of the
source operand and no special processing is required.

For the special case of a tie between the source exhausted and receiver
overrun conditions, the source exhausted condition is recognized first.
That is, when source exhausted is the resultant condition, the receiver
may also be full. In this case, the offset into the receiver operand may
contain a value equal to the length specified for the receiver, which would
cause an exception to be detected on the next invocation of the instruc-
tion. The processing performed for the source exhausted condition
should provide for this case if the instruction is to be invoked multiple
times with the same controls operand template. When the receiver
overrun condition is the resultant condition, the source will always contain
data that can be converted.

Operands

Exception 1 2 3 Other
06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment violation X X X

03 Range X X X

06 Optimized addressability invalid X X X
08 Argument/parameter

01 Parameter reference violation X X X
10 Damage encountered

04 System object damage state X

44 Partial system object damage X
1C Machine-dependent exception

03 Machine storage limit exceeded X

4-76 AS/400 MI Functional Reference

Convert Character to SNA (CVTCS)

Operands

Exception 1 2 3 Other
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program creation

05 Invalid op-code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

0A Invalid operand length X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2C Program execution

04 Invalid branch target X
2E Resource control limit

01 user profile storage limit exceeded X
32 Scalar specification

01 Scalar type invalid X X X
36 Space management

01 space extension/truncation X
38 Template specification

01 Template value invalid X

Chapter 1. Computation and Branching Instructions 1-77

Convert Decimal Form to Floating-Point (CVTDFFP)

1.21 Convert Decimal Form to Floating-Point (CVTDFFP)

Op Code (Hex) Operand Operand Operand 3

1 2
107F Receiver Decimal Decimal
expo- significand
nent

Operand 1: Floating-point variable scalar.
Operand 2: Packed scalar or zoned scalar.
Operand 3: Packed scalar or zoned scalar.

Description: This instruction converts the decimal form of a floating-point value
specified by a decimal exponent and a decimal significand to binary floating-
point format, and places the result in the receiver operand. The decimal expo-
nent (operand 2) and decimal significand (operand 3) are considered to specify a
decimal form of a floating-point number. The value of this number is considered
to be as follows:

Value = S * (10**E)
where:

S = The value of the decimal significand operand.
E = The value of the decimal exponent operand.

* Denotes multiplication.

** Denotes exponentiation.

The decimal exponent must be specified as a decimal integer value; no frac-
tional digit positions may be specified in its definition. The decimal exponent is
a signed integer value specifying a power of 10 which gives the floating-point
value its magnitude. A decimal exponent value too large or too small to be
represented in the receiver will result in the detection of the appropriate floating-
point overflow or floating-point underflow exception.

The decimal significand must be specified as a decimal value with a single
integer digit position and optional fractional digit positions. The decimal
significand is a signed decimal value specifying decimal digits which give the
floating-point value its precision. The significant digits of the decimal significand
are considered to start with the leftmost nonzero decimal digit and continue to
the right to the end of the decimal significand value. Significant digits beyond 7
for a short float receiver, and beyond 15 for a long float receiver exceed the pre-
cision provided for in the binary floating-point receiver. These excess digits do
participate in the conversion to provide for uniqueness of the conversion as well
as for proper rounding.

The decimal form floating-point value specified by the decimal exponent and
decimal significand operands is converted to a binary floating-point number and
rounded to the precision of the result field as follows:

Source values which, in magnitude M, are in the range where (10**31-1) * 10**-31

<=M <= (10"*31-1) *10**+ 31 are converted subject to the normal rounding
error defined for the floating-point rounding modes.

1-78 AS/400 MI Functional Reference

Convert Decimal Form to Floating-Point (CVTDFFP)

Source values which, in magnitude M, are in the range where (10**31-1) * 10**-31
> M > (10**31-1) *10**+31 are converted such that the rounding error incurred
on the conversion may exceed that defined above. For round to nearest, this
error will not exceed by more than .47 units in the least significant digit position
of the result in relation to the error that would be incurred for normal rounding.
For the other floating-point rounding modes, this error will not exceed 1.47 units
in the least significant digit position of the result.

The converted and rounded value is then assigned to the floating-point receiver.

Exceptions
Operands
Exception 1 2 3 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment violation

03 Range

X X X X
X X X X
X X X X

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation X X X

0oC Computation
02 Decimal data X X
06 Floating-point overflow X
07 Floating-point underflow X

0D Floating-point inexact result X

10 Damage encountered
04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X
02 Function check X

22 Object access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer specification
01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation

05 Invalid op-code extender field X

Chapter 1. Computation and Branching Instructions 1-79

Convert Decimal Form to Floating-Point (CVTDFFP)

Operands

Exception 1 2 3 Other

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

0A Invalid operand length X X X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2E Resource control limit

01 user profile storage limit exceeded X
32 Scalar specification

01 Scalar type invalid X X X
36 Space management

01 space extension/truncation X

1-80 AS/400 MI Functional Reference

Convert External Form to Numeric Value (CVTEFN)

1.22 Convert External Form to Numeric Value (CVTEFN)

Op Code (Hex) Operand Operand Operand 3
1 2
1087 Receiver Source Mask

Operand 1: Numeric variable scalar or data-pointer-defined numeric scalar.
Operand 2. Character scalar or data-pointer-defined character scalar.
Operand 3: Character(3) scalar, null, or data-pointer-defined character(3) scalar.

Description: This instruction scans a character string for a valid decimal
number in display format, removes the display character, and places the results
in the receiver operand. The operation begins by scanning the character string
value in the source operand to make sure it is a valid decimal number in display
format.

The character string defined by operand 2 consists of the following optional
entries:

e Currency symbol - This value is optional and, if present, must precede any
sign and digit values. The valid symbol is determined by operand 3. The
currency symbol may be preceded in the field by blank (hex 40) characters.

* Sign symbol - This value is optional and, if present, may precede any digit
values (a leading sign) or may follow the digit values (a trailing sign). Valid
signs are positive (hex 4E) and negative (hex 60). The sign symbol, if it is a
leading sign, may be preceded by blank characters. If the sign symbol is a
trailing sign, it must be the rightmost character in the field. Only one sign
symbol is allowed.

¢ Decimal digits - Up to 31 decimal digits may be specified. Valid decimal
digits are in the range of hex FO through hex F9 (0-9). The first decimal digit
may be preceded by blank characters (hex 40), but hex 40 values located to
the right of the leftmost decimal digit are invalid.

The decimal digits may be divided into two parts by the decimal point symbol:
an integer part and a fractional part. Digits to the left of the decimal point are
interpreted as integer values. Digits to the right are interpreted as a fractional
values. If no decimal point symbol is included, the value is interpreted as an
integer value. The valid decimal point symbol is determined by operand 3. If
the decimal point symbol precedes the leftmost decimal digit, the digit value is
interpreted as a fractional value, and the leftmost decimal digit must be adjacent
to the decimal point symbol. If the decimal point follows the rightmost decimal
digit, the digit value is interpreted as an integer value, and the rightmost decimal
digit must be adjacent to the decimal point.

Decimal digits in the integer portion may optionally have comma symbols sepa-
rating groups of three digits. The leftmost group may contain one, two, or three
decimal digits, and each succeeding group must be preceded by the comma
symbol and contain three digits. The comma symbol must be adjacent to a
decimal digit on either side. The valid comma symbol is determined by operand
3.

Chapter 1. Computation and Branching Instructions 1-81

Convert External Form to Numeric Value (CVTEFN)

Decimal digits in the fractional portion may not be separated by commas and
must be adjacent to one another.

Examples of external formats follow. The following symbols are used. J

$ currency symbol

. decimal point

, comma

D digit (hex FO-F9)
blank (hex 40)

4+ positive sign

- negative sign

Format Comments

$+DDDD.DD Currency symbol, leading sign, no comma separators

DD,DDD- Comma symbol, no fraction, trailing sign
-.DDD No integer, leading sign
$DDD,DDD- No fraction, comma symbol, trailing sign J

$ + DD.DD Embedded blanks before digits

Operand 3 must be a 3-byte character scalar. Byte 1 of the string indicates the
byte value that is to be used for the currency symbol. Byte 2 of the string indi-
cates the byte value to be used for the comma symbol. Byte 3 of the string indi-
cates the byte value to be used for the decimal point symbol. If operand 3 is
null, the currency symbol (hex 5B), comma (hex 6B), and decimal point (hex 4B)
are used.

If the syntax rules are violated, a conversion exception is signaled. If not, a J
zoned decimal value is formed from the digits of the display format character

string. This number is placed in the receiver operand following the rules of a

normal arithmetic conversion.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con-
tains 15 or fewer significant nonfractional digits.

Substring operand references that allow for a null substring reference (a length J
value of zero) may not be specified for this instruction.

Exceptions
Operands

Exception 1 2 3 Other
06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

06 Optimized addressability invalid X X X
08 Argument/parameter

01 Parameter reference violation X X X J
oC Computation

1-82 AS/400 MI Functional Reference

Convert External Form to Numeric Value (CVTEFN)

Operands

Exception 1 2 3 Other

01 Conversion X

0A Size X
10 Damage encountered

04 System object damage X X X X

44 Partial system object damage X X X X
1C Machine-dependent exception

03 Machine storage limit exceeded X
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X X
2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

0A Invalid operand length X X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2E Resource control limit

01 user profile storage limit exceeded X
32 Scalar specification

01 Scalar type invalid X X X

02 Scalar attribute invalid X
36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-83

Convert Floating-Point to Decimal Form (CVTFPDF)

1.23 Convert Floating-Point to Decimal Form (CVTFPDF)

Optional Form

Op Code (Hex) Operand Operand Operand 3
1 2

10BF Decimal Decimal Source
expo- significand
nent

Operand 1. Packed variable scalar or zoned variable scalar.
Operand 2. Packed variable scalar or zoned variable scalar.

Operand 3. Floating-point scalar.

Op Code
Mnemonic (Hex) Form Type
CVTFPDFR 12BF Round

Description: This instruction converts a binary floating-point value to a decimal
form of a floating-point value specified by a decimal exponent and a decimal
significand, and places the result in the decimal exponent and decimal
significand operands.

The value of this number is considered to be as follows:
Value = S * (10**E)
where:
S = The value of the decimal significand operand.
E = The value of the decimal exponent operand.
* Denotes multiplication.
** Denotes exponentiation.

The decimal exponent must be specified as a decimal integer value. No frac-
tional digit positions are allowed. It must be specified with at least five digit
positions. The decimal exponent provides for containing a signed integer value
specifying a power of 10 which gives the floating-point value its magnitude.

The decimal significand must be specified as a decimal value with a single
integer digit position and optional fractional digit positions. The decimal
significand provides for containing a sighed decimal value specifying decimal
digit is which give the floating-point value its precision. The decimal significand
is formed as a normalized value, that is, the leftmost digit position is nonzero for
a nonzero source value.

When the source contains a representation of a normalized binary floating-point
number with decimal significand digits beyond the leftmost 7 digits for a short
floating-point source or beyond the leftmost 15 digits for a long floating-point
source, the precision allowed for the binary floating-point source is exceeded.

When the source contains a representation of a denormalized binary floating-
point number, it may provide less precision than the precision of a normalized
binary floating-point number, depending on the particular source value. Decimal

4-84 AS/400 MI Functional Reference

Exceptions

Convert Floating-Point to Decimal Form (CVTFPDF)

significand digits exceeding the precision of the source are set as a result of the
conversion to provide for uniqueness of conversion and are correct, except for
rounding errors. These digits are only as precise as the floating-point calcu-
lations that produced the source value. The floating-point inexact result excep-
tion provides a means of detecting loss of precision in floating-point calculations.

The binary floating-point source is converted to a decimal form floating-point
value and rounded to the precision of the decimal significand operand as
follows:

¢ The decimal significand is formed as a normalized value and the decimal
exponent is set accordingly.

¢ For the nonround form of the instruction, the value to be assigned to the
decimal significand is adjusted to the precision of the decimal significand, if
necessary, according to the current float rounding mode in effect for the
process. For the optional round form of the instruction, the decimal round
algorithm is used for the precision adjustment of the decimal significand.
The decimal round algorithm overrides the current floating-point rounding
mode that is in effect for the process.

e Source values which, in magnitude M, are in the range where (10**31-1) *
10**-31 <= M <= (10**31-1) * 10** + 31 are converted subject to the normal
rounding error defined for the floating-point rounding modes and the optional
round form of the instruction.

e Source values which, in magnitude M, are in the range where (10**31-1) *
10**-31 > M > (10**31-1) * 10**+ 31 are converted such that the rounding
error incurred on the conversion may exceed that defined above. For round
to nearest and the optional round form of the instruction, this error will not
exceed by more than .47 units in the least significant digit position of the
result, the error that would be incurred for a correctly rounded result. For
the other floating-point rounding modes, this error will not exceed 1.47 units
in the least significant digit position of the result.

* |f necessary, the decimal exponent value is adjusted to compensate for
rounding.

* The converted and rounded value is then assigned to the decimal exponent
and decimal significand operands.

A size exception cannot occur on the assignment of the decimal exponent or the
decimal significand values.

Limitations: The following are limits that apply to the functions performed by
this instruction.

The result of the operation is unpredictable for any type of overlap between the
decimal exponent and decimal significand operands.

Operands
Exception 1 2 3 Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment violation X X X
03 Range X X X

Chapter 1. Computation and Branching Instructions 1-85

Convert Floating-Point to Decimal Form (CVTFPDF)

Exception
06 Optimized addressability invalid
08 Argument/parameter

01 Parameter reference violation

0oC Computation
0C Invalid floating-point conversion

0D Floating-point inexact result

10 Damage encountered
04 System object damage state

44 Partial system object damage

1C Machine-dependent exception

03 Machine storage limit exceeded

20 Machine support
02 Machine check

03 Function check

22 Object access
01 Object not found
02 Object destroyed
03 Object suspended

24 Pointer specification
01 Pointer does not exist

02 Pointer type invalid

2A Program creation
05 Invalid op-code extender field
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
0A Invalid operand length
0C Invalid operand odt reference

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

32 Scalar specification

04 Scalar type invalid

36 Space management

01 space extension/truncation

1-86 AS/400 MI Functional Reference

Operands
1 2 3
X X X
X X X
X X

X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X

Other

Convert Hex to Character (CVTHC)

1.24 Convert Hex to Character (CVTHC)

Exceptions

Op Code (Hex) Operand Operand 2
1
1086 Receiver Source

Operand 1. Character variable scalar.
Operand 2: Character variable scalar.

Description: Each hex digit (4-bit value) of the string value in the source
operand is converted to a character (8-bit value) and placed in the receiver
operand.

Hex Digits Characters
Hex 0-9 = Hex FO-F9
Hex A-F = Hex C1-Cb6

The operation begins with the two operands left-adjusted and proceeds left to
right until all the characters of the receiver operand have been filled. If the
source operand contains fewer hex digits than needed to fill the receiver, the
excess characters are assigned a value of hex FO. If the source operand is too
large, a length conformance or an invalid operand length exception is signaled.

Substring operand references that allow for a null substring reference (a length

value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with a value of hex FO. The effect of specifying a null substring reference for
the receiver is that no result is set.

Operands

Exception 1 2 Other
06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X
08 Argument/parameter

01 Parameter reference violation X X
0oC Computation

08 Length conformance X
10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X
iC Machine-dependent exception

03 Machine storage limit exceeded X

Chapter 1. Computation and Branching Instructions 4-87

Convert Hex to Character (CVTHC)

Exception

20

22

24

2A

2E

36

Machine support
02 Machine check

02 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0A Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-88 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

Other

X
X

9

Convert MRJE to Character (CVTMC)

1.25 Convert MRJE to Character (CVTMC)

Op Code (Hex) Operand Operand Operand 3
1 2
10AB Receiver Controls Source

Operand 1. Character variable scalar.
Operand 2. Character(6) variable scalar (fixed-length).
Operand 3. Character scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
CVTMCI 18AB Indicator
CVTMCB 1CAB Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper-
ands immediately follow the last operand listed above. See Chapter 1. “Intro-
duction” for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: This instruction converts a character string from the MRJE
(MULTI-LEAVING remote job entry) compressed format to character format. The
operation converts the source (operand 3) from the MRJE compressed format to
character format under control of the controls (operand 2) and places the results
in the receiver (operand 1).

The source and receiver operands must both be character strings. The source
operand cannot be specified as either a signed or unsigned immediate value.

The controls operand must be a character scalar that specifies additional infor-
mation to be used to control the conversion operation. It must be at least 6
bytes in length and have the following format:

¢ Controls operand Char(6)
— Offset into the receiver operand Bin(2)
— Offset into the source operand Bin(2)
— Algorithm modifier Char(1)
— Receiver record length Char(1)

As input to the instruction, the source and receiver offset fields specify the
offsets where bytes of the source and receiver operands are to be processed. If
an offset is equal to or greater than the length specified for the operand it corre-
sponds to (it identifies a byte beyond the end of the operand), a template value
invalid exception is signaled. As output from the instruction, the source and
receiver offset fields specify offsets that indicate how much of the operation is
complete when the instruction ends.

Chapter 1. Computation and Branching Instructions 1-89

Convert MRJE to Character (CVTMC)

The algorithm modifier has the following valid values:

* Hex 00 = Do not move SRCBs (sub record control bytes) from the source
into the receiver.

* Hex 01 = Move SRCBs from the source into the receiver.

The receiver record length value specifies the record length to be used to
convert source records into the receiver operand. This length applies to only the
string portion of the receiver record and does not include the optional SRCB
field. If a receiver record length of 0 is specified, a template value invalid excep-
tion is signaled.

Only the first 6 bytes of the controls operand are used. Any excess bytes are
ignored.

The operation begins by accessing the bytes of the source operand at the
location specified by the source offset. This is assumed to be the start of a
record. The bytes of the records in the source operand are converted into the
receiver operand at the location specified by the receiver offset according to the
following algorithm.

The first byte of the source record is considered to be an RCB (record control
byte) that is to be ignored during conversion.

The second byte of the source record is considered to be an SRCB. If an algo-
rithm modifier of value hex 00 was specified, the SRCB is ignored. If an algo-
rithm modifier of value hex 01 was specified, the SRCB is copied into the
receiver.

The strings to be built in the receiver record are described in the source after
the SRCB by one or more SCBs (string control bytes).

The format of the SCBs in the source are as follows:

The bit meanings are:

Bit Value Meaning
o 0 End of record;the EOR SCB is
hex 00.
1 All other SCBs.
k 0 The string is compressed.
1 The string is not compressed.
1 For k = O:
0 Blanks (hex 40s) have been
deleted.
1 Nonblank characters have

been deleted. The next char-
acter in the data stream is the
specimen character.

For k = 1:

1-90 AS/400 MI Functional Reference

Convert MRJE to Character (CVTMC)

Bit Value Meaning
This bit is part of the length
field for length of uncom-
pressed data.

1 Number of characters that
have been deleted if k = 0.
The value can be 1-31.

1jiiii Number of characters to the
next SCB (no compression) if
k=1. The value can be 1-63.

The uncompressed (noniden-
tical bytes) follow the SCB in
the data stream.

A length of 0 encountered in an SCB results in the signaling of a conversion
exception.

Strings of blanks or nonblank identical characters described in the source record
are repeated in the receiver the number of times indicated by the SCB count
value.

Strings of nonidentical characters described in the source record are moved into
the receiver for the length indicated by the SCB count value.

When an EOR (end of record) SCB (hex 00) is encountered in the source, the
receiver is padded with blanks out to the end of the current record.

If the converted form of a source record is larger than the receiver record length,
the instruction is terminated by signaling a length conformance exception.

If the end of the source operand is not encountered, the operation then continues
by reapplying the above algorithm to the next record in the source operand.

If the end of the source operand is encountered (whether or not in conjunction
with a record boundary, EOR SCB in the source), the instruction ends with a
resultant condition of source exhausted. The offset value for the receiver locates
the byte following the last fully converted record in the receiver. The offset value
for the source locates the byte following the last source record for which conver-
sion is complete. The value of the remaining bytes in the receiver after the last
converted record are unpredictable.

If the converted form of a record cannot be completely contained in the receiver,
the instruction ends with a resultant condition of receiver overrun. The offset
value for the receiver locates the byte following the last fully converted record in
the receiver. The offset value for the source locates the byte following the last
source record for which conversion is complete. The value of the remaining
bytes in the receiver after the last converted record is unpredictable.

If the source exhausted and the receiver overrun conditions occur at the same
time, the source exhausted condition is recognized first. In this case, the offset
into the receiver operand may contain a value equal to the length specified for
the receiver which causes an exception to be signaled on the next invocation of
the instruction. The processing performed for the source exhausted condition
provides for this case if the instruction is invoked multiple times with the same

Chapter 1. Computation and Branching Instructions 1-91

Convert MRJE to Character (CVTMC)

controls operand template. When the receiver overrun condition is the resultant
condition, the source always contains data that can be converted.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Any form of overlap between the operands on this instruction yields unpredict-
able results in the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Source exhausted - All full records in the source operand
have been converted into the receiver operand. Receiver overrun - An overrun
condition in the receiver operand was detected prior to processing all of the
bytes in the source operand.

Exceptions
Operands
Exception 1 2 3 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment violation

03 Range

X X X X
X X X X
X X X X

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation X X X

0C Computation
01 Conversion X

08 Length conformance X

10 Damage encountered
04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X
03 Function check X

22 Object access
01 Object not found X X X
02 Object destroyed
03 Object suspended X X X

x
x
x

24 Pointer specification

01 Pointer does not exist X X X

1-92 AS/400 M| Functional Reference

Convert MRJE to Character (CVTMC)

Exception

2A

2C

2E

32

36

38

02 Pointer type invalid

Program creation

05 Invalid op-code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
OA Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Program execution

04 Invalid branch target

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 Scalar type invalid

Space management

01 space extension/truncation

Template specification

01 Template value invalid

Operands
1 2
X X
X X
X X
X X
X
X X
X X
X X
X

X

x

Other

Chapter 1. Computation and Branching Instructions 1-93

Convert Numeric to Character (CVTNC)

1.26 Convert Numeric to Character (CVTNC)

Op Code (Hex) Operand Operand Operand 3
1 2
10A3 Receiver Source Attributes

Operand 1: Character variable scalar or data-pointer-defined character scalar.
Operand 2: Numeric scalar or data-pointer-defined numeric scalar.
Operand 3; Character(7) scalar or data-pointer-defined character(7) scalar.

Description: The source numeric value (operand 2) is converted and copied to
the receiver character string (operand 1). The receiver operand is treated as
though it had the attributes supplied by operand 3. Operand 1, when viewed in
this manner, receives the numeric value of operand 2 following the rules of the
Copy Numeric Value instruction.

The format of operand 3 is as follows:
e Scalar attributes Char(7)

— Scalar type Char(1)

Hex 00 = Signed binary
Hex 01 = Floating-point
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex OA = Unsigned binary

— Scalar length Bin(2)
If binary:
Length (L) (where L = 2 or 4) Bits 0-15
If floating-point:
Length (where L = 4 or 8) Bits 0-15
If zoned decimal or packed decimal:
Fractional digits (F) Bits 0-7
Total digits (T) Bits 8-15
(where 1< T<31and O<F<T)
— Reserved (binary 0) Bin(4)

The byte length of operand 1 must be large enough to contain the numeric value
described by operand 3. If it is not large enough, a scalar value invalid excep-
tion is signaled. If it is larger than needed, the numeric value is placed in the
leftmost bytes and the unneeded rightmost bytes are unchanged by the instruc-
tion.

If a decimal to binary conversion causes a size exception to be signaled, the

binary value contains the correct truncated result only if the decimal value con-
tains 15 or fewer significant nonfractional digits.

1-94 AS/400 MI Functional Reference

Convert Numeric to Character (CVTNC)

Substring operand references that allow for a null substring reference (a length

[value of zero) may not be specified for this instruction.
Exceptions
Operands
Exception 1 2 3 Other
06 Addressing

01 Spacing addressing violation
02 Boundary alignment
03 Range

04 External data object not found

X X X X X
X X X X X
X X X X X

06 Optimized addressability invalid

08 Argument/parameter
01 Parameter reference violation X X X
L 0oC Computation
02 Decimal data X
06 Floating-point overflow X
07 Floating-point underflow X
09 Floating-point invalid operand X
OA Size X
0C Invalid floating-point conversion X
L 0D Floating-point inexact result X
10 Damage encountered
04 System object damage state X X X X
44 Partial system object damage X X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
L 02 Machine check X
03 Function check X
22 Object access
01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program creation
L 06 Invalid operand type X X X
07 Invalid operand attribute X X X

Chapter 1. Computation and Branching Instructions 1-95

Convert Numeric to Character (CVTNC)

Exception
08 Invalid operand value range

OA Invalid operand length
0C Invalid operand odt reference

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

32 Scalar specification
01 Scalar type invalid
02 Scalar attribute invalid

03 Scalar value invalid

36 Space management

01 space extension/truncation

1-96 AS/400 MI Functional Reference

Operands
1 2
X X
X

X X
X X
X X

X X X Xw

Other

C

Convert SNA to Character (CVTSC)

1.27 Convert SNA to Character (CVTSC)

Optional Forms

Op Code (Hex) Operand Operand Operand 3
1 2
10DB Receiver Controls Source

Operand 1: Character variable scalar.
Operand 2: Character(14) variable scalar (fixed length).

Operand 3: Character scalar.

Op Code
Mnemonic (Hex) Form Type
CVTSCI 18DB Indicator
CVTSCB 1CDB Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: This instruction converts a string value from SNA (systems network
architecture) format to character. The operation converts the source (operand 3)
from SNA format to character under control of the controls (operand 2) and
places the result into the receiver (operand 1).

The source and receiver operands must both be character strings. The source
operand may not be specified as an immediate operand.

The controls operand must be a character scalar that specifies additional infor-
mation to be used to control the conversion operation. It must be at least 14
bytes in length and have the following format:

e Controls operand base template Char(14)

— Receiver offset Bin(2)

— Source offset Bin(2)

— Algorithm modifier Char(1)
— Receiver record length Char(1)
— Record separator Char(1)
— Prime compression Char(1)
— Unconverted receiver record bytes Char(1)
— Conversion status Char(2)
— Unconverted transparency string bytes Char(1)

Chapter 1. Computation and Branching Instructions 1-97

Convert SNA to Character (CVTSC)

— Offset into template to transiate table Bin(2)
¢ Controls operand optional template extension Char(64)
— Record separator transiate table Char(64)

Upon input to the instruction, the source and receiver offset fields specify the
offsets where bytes of the source and receiver operands are to be processed. |If
an offset is equal to or greater than the length specified for the operand it corre-
sponds to (it identifies a byte beyond the end of the operand), a template value
invalid exception is signaled. As output from the instruction they are set to
specify offsets that indicate how much of the operation is complete when the
instruction ends.

The algorithm modifier specifies the optional functions to be performed. Any
combination of functions not precluded by the bit definitions below is valid
except that at least one of the functions must be specified. All algorithm modi-
fier bits cannot be zero. Specification of an invalid algorithm modifier value
results in a template value invalid exception. The meaning of the bits in the
algorithm modifier is the following:

Bits Meaning
0 0 = Do not perform decompression. Interpret a source character value of
hex 00 as null.
1 = Perform decompression. Interpret a source character value of hex 00 as
a record separator.

1-2 00 = No record separators in source, no blank padding. Do not perform data
transparency conversion.
01 = Reserved.
10 = Record separators in source, perform blank padding. Do not perform
data transparency conversion.
11 = Record separators in source, perform blank padding. Perform data
transparency conversion.

34 00 = Do not put record separators into receiver.
01 = Move record separators from source to receiver (allowed only when bit
1=1)
10 = Translate record separators from source to receiver (allowed only when
bit 1 = 1)
11 = Move record separator from controls to receiver.
5-7 Reserved

The receiver record length value specifies the record length to be used to
convert source records into the receiver operand. This length applies only to the
data portion of the receiver record and does not include the optional record sep-
arator. Specification of a receiver record length of zero results in a template
value invalid exception. The receiver record length value is ignored if no record
separator processing is requested in the algorithm modifier.

The record separator value specifies the character that is to precede the con-
verted form of each record in the receiver. The record separator character spec-
ified in the controls operand is used only for the case where the move record
separator from controls to receiver function is specified in the algorithm modi-
fier, or where a missing record separator in the source is detected.

The prime compression value specifies the character to be used as the prime

compression character when performing decompression of the SNA format
source data to character. It may have any value. The prime compression value

1-98 AS/400 MI Functional Reference

Convert SNA to Character (CVTSC)

is ignored if the decompression function is not specified in the algorithm modi-
fier.

The unconverted receiver record bytes value specifies the number of bytes
remaining in the current receiver record that are yet to be set with converted
bytes from the source.

When record separator processing is specified in the algorithm modifier, this
value is both input to and output from the instruction. On input, a value of hex 00
means it is the start of processing for a new record, and the initial conversion
step is yet to be performed. This indicates that for the case where a function for
putting record separators into the receiver is specified in the algorithm modifier,
a record separator character has yet to be placed in the receiver. On input, a
nonzero value less than or equal to the record length specifies the number of
bytes remaining in the current receiver record that are yet to be set with con-
verted bytes from the source. This value is assumed to be the valid count of
unconverted receiver record bytes relative to the current byte to be processed in
the receiver as located by the receiver offset value. As such, it is used to deter-
mine the location of the next record boundary in the receiver operand. This
value must be less than or equal to the receiver record length value; otherwise,
a template value invalid exception is signaled. On output, this field is set with a
value as defined above which describes the number of bytes of the current
receiver record not yet containing converted data.

When record separator processing is not specified in the algorithm modifier, this
value is ignored.

The conversion status value specifies status information for the operation to be
performed. The meaning of the bits in the conversion status is the following:

Bits Meaning
0 0 = No transparency string active.

1 = Transparency string active. Unconverted transparency string bytes
value contains the remaining string length.

1-15 Reserved

This field is both input to and output from the instruction. It provides for check-
pointing the conversion status over successive executions of the instruction.

If the conversion status indicates transparency string active, but the algorithm
modifier does not specify perform data transparency conversion, a template
value invalid exception is signaled.

The unconverted transparency string bytes value specifies the number of bytes
remaining to be converted for a partially processed transparency string in the
source.

When perform data transparency conversion is specified in the algorithm modi-
fier, the unconverted transparency string bytes value can be both input to and
output from the instruction.

On input, when the no transparency string active status is specified in the con-
version status, this value is ignored.

Chapter 1. Computation and Branching Instructions 1-99

Convert SNA to Character (CVTSC)

On input, when transparency string active status is specified in the conversion
status, this value contains a count for the remaining bytes to be converted for a
transparency string in the source. A value of hex 00 means the count field for a
transparency string is the first byte of data to be processed from the source
operand. A value of hex 01 through hex FF specifies the count of the remaining
bytes to be converted for a transparency string. This value is assumed to be the
valid count of unconverted transparency string bytes relative to the current byte
to be processed in the source as located by the source offset value.

On output, this value is set if necessary along with the transparency string active
status to describe a partially converted transparency string. A value of hex 00
will be set if the count field is the next byte to be processed for a transparency
string. A value of hex 01 through hex FF specifying the number of remaining
bytes to be converted for a transparency string, will be set if the count field has
already been processed.

When do not perform data transparency conversion is specified in the algorithm
modifier, the unconverted transparency string bytes value is ignored.

The offset into template to translate table value specifies the offset from the
beginning of the template to the record separator translate table. This value is
ignored unless the translate record separators from source to receiver function
is specified in the algorithm modifier.

The record separator translate table value specifies the translate table to be
used in translating record separators specified in the source to the record sepa-
rator value to be placed into the receiver. It is assumed to be 64 bytes in length,
providing for translation of record separator values of from hex 00 to hex 3F.
This translate table is used only when the translate record separators from
source to receiver function is specified in the algorithm modifier. See the record
separator conversion function under the conversion process described below for
more detail on the usage of the translate table.

Only the first 14 bytes of the controls operand base template and the optional
64-byte extension area specified for the record separator translate table are
used. Any excess bytes are ignored.

The description of the conversion process is presented as a series of separately
performed steps, which may be selected in allowable combinations to accom-
plish the conversion function. It is presented this way to allow for describing
these functions separately. However, in the actual execution of the instruction,
these functions may be performed in conjunction with one another or separately,
depending upon which technique is determined to provide the best implementa-
tion.

The operation is performed either on a record-by-record basis, record proc-
essing, or on a nonrecord basis, string processing. This is determined by the
functions selected in the algorithm modifier. Specifying the record separators in
source, perform blank padding or move record separator from controls to
receiver indicates record processing is to be performed. If neither of these func-
tions is specified, in which case decompression must be specified, it indicates
that string processing is to be performed.

The operation begins by accessing the hytes of the source operand at the
location specified by the source offset.

1-100 AS/400 MI Functional Reference

Convert SNA to Character (CVTSC)

When record processing is specified, the source offset may locate a point at
which processing of a partially converted record is to be resumed or processing
for a full record is to be started. The unconverted receiver record bytes value
indicates whether conversion processing is to be started with a partial or a full
record. Additionally, the transparency string active indicator in the conversion
status field indicates whether conversion of a transparency string is active for
the case of resumption of processing for a partially converted record. The con-
version process is started by completing the conversion of a partial source
record if necessary before processing the first full source record.

When string processing is specified, the source offset is assumed to locate the
start of a compression entry.

When during the conversion process the end of the receiver operand is encount-
ered, the instruction ends with a resultant condition of receiver overrun.

When record processing is specified in the algorithm modifier, this check is per-
formed at the start of conversion for each record. A source exhausted condition
would be detected before a receiver overrun condition if there is no source data
to convert. If the receiver operand does not have room for a full record, the
receiver overrun condition is recognized. The instruction is terminated with
status in the controls operand describing the last completely converted record.
For receiver overrun, partial conversion of a source record is not performed.

When string processing is specified in the algorithm modifier, then decom-
pression must be specified and the decompression function described below
defines the detection of receiver overrun.

When during the conversion process the end of the source operand is encount-
ered, the instruction ends with a resultant condition of source exhausted. See
the description of this condition in the conversion process described below to
determine the status of the controls operand values and the converted bytes in
the receiver for each case.

When string processing is specified, the bytes accessed from the source are
converted on a string basis into the receiver operand at the location specified by
the receiver offset. In this case, the decompression function must be specified
and the conversion process is accomplished with just the decompression func-
tion defined below.

When record processing is specified the bytes accessed from the source are
converted one record at a time into the receiver operand at the location speci-
fied by the receiver offset performing the functions specified in the algorithm
modifier in the sequence defined by the following algorithm.

Record separator conversion is performed as requested in the algorithm modi-
fier during the initial record separator processing performed as each record is
being converted. This provides for controlling the setting of the record separator
value in the receiver.

When the record separators in source option is specified, the following algorithm
is used to locate them. A record separator is recognized in the source when a
character value less than hex 40 is encountered. When do not perform decom-
pression is specified, a source character value of hex 00 is recognized as a null
value rather than as a record separator. In this case, the processing of the

Chapter 1. Computation and Branching Instructions 1-101

Convert SNA to Character (CVTSC)

current record continues with the next source byte and the receiver is not
updated. When perform data transparency conversion is specified, a character
value of hex 35 is recognized as the start of a transparency string rather than as
a record separator.

If the do not put record separators into the receiver function is specified, the
record separator, if any, from the source record being processed is removed
from the converted form of the source record and will not be placed in the
receiver.

If the move record separators from the source to the receiver function is speci-
fied, the record separator from the source record being processed is left as is in
the converted form of the source record and will be placed in the receiver.

If the translate record separators from the source to the receiver function is
specified, the record separator from the source record being processed is trans-
lated using the specified translate table, replaced with its translated value in the
converted form of the source record and, will be placed in the receiver. The
translation is performed as in the translate instruction with the record separator
value serving as the source byte to be translated. It is used as an index into the
specified translate table to select the byte in the translate table that contains the
value to which the record separator is to be set. If the selected translate table
byte is equal to hex FF, it is recognized as an escape code. The instruction ends
with a resultant condition of escape code encountered, and the controls operand
is set to describe the conversion status as of the processing completed just prior
to the conversion step for the record separator. If the selected translate table
byte is not equal to hex FF, the record separator in the converted form of the
record is set to its value.

If the move record separator from controls to receiver function is specified, the
controls record separator value is used in the converted form of the source
record and will be placed into the receiver.

When the record separators in source do blank padding function is requested, an
assumed record separator will be used if a record separator is missing in the
source data. In this case, the controls record separator character is used as the
record separator to precede the converted record if record separators are to be
placed in the receiver. The conversion process continues, bypassing the record
separator conversion step that would normally be performed. The condition of a
missing record separator is detected when during initial processing for a full
record, the first byte of data is not a record separator character.

Decompression is performed if the function is specified in the algorithm modifier.
This provides for converting strings of duplicate characters in compressed
format in the source back to their full size in the receiver. Decompression of the
source data is accomplished by concatenating together character strings
described by the compression strings occurring in the source. The source offset
value is assumed to locate the start of a compression string. Processing of a
partial decompressed record is performed if necessary.

The character strings to be built into the receiver are described in the source by
one or more compression strings. Compression strings are comprised of an
SCB (string control byte) possibly followed by one or more bytes of data related
to the character string to be built into the receiver.

1-102 AS/400 M| Functional Reference

Convert SNA to Character (CVTSC)

The format of an SCB and the description of the data that may follow it is as
follows:

+ SCB Char(1)
— Control Bits 0-1

00 = n nonduplicate characters are between this SCB and the next one;
where n is the value of the count field (1-63).

01 = Reserved.

10 = This SCB represents n deleted prime compression characters;
where n is the value of the count field (1-63). The next byte is the
next SCB.

11 = This SCB represents n deleted duplicate characters; where n is the
value of the count field (1-63). The next byte contains a specimen of
the deleted characters. The byte following the specimen character
contains the next SCB.

— Count Bits 2-7

This contains the number of characters that have been deleted for a
prime or duplicate string, or the number of characters to the next SCB
for a nonduplicate string. A count value of zero is invalid and results in
the signaling of a conversion exception.

Strings of prime compression characters or duplicate characters described in the
source are repeated in the decompressed character string the number of times
indicated by the SCB count value.

Strings of nonduplicate characters described in the source record are formed
into a decompressed character string for the length indicated by the SCB count
value.

If the end of the source is encountered prior to the end of a compression string,
a conversion exception is signaled.

When record processing is specified, decompression is performed one record at
a time. In this case, a conversion exception is signaled if a compression string
describes a character string that would span a record boundary in the receiver.
If the source contains record separators, the case of a missing record separator
in the source is detected as defined under the initial description of the conver-
sion process. Record separator conversion, as requested in the algorithm modi-
fier, is performed as the initial step in the building of the decompressed record.
A record separator to be placed into the receiver is in addition to the data to be
converted into receiver for the length specified in the receiver record length
field. The decompression of compression strings from the source continues until
a record separator character for the next record is recognized when the source
contains record separators, or until the decompressed data required to fill the
receiver record has been processed or the end of the source is encountered
whether record separators are in the source or not. Transparency strings
encountered in the decompressed character string are not scanned for a record
separator value. If the end of the source is encountered, the data decompressed
to that point appended to the optional record separator for this record forms a
partial decompressed record. Otherwise, the decompressed character strings
appended to the optional record separator for this record form the decom-
pressed record. The conversion process then continues for this record with the
next specified function.

Chapter 1. Computation and Branching Instructions 1-103

Convert SNA to Character (CVTSC)

When string processing is specified, decompression is performed on a com-
pression string basis with no record oriented processing implied. The conver-
sion process for each compression string from the source is completed by
placing the decompressed character string into the receiver. The conversion
process continues decompressing compression strings from the source until the
end of the source or the receiver is encountered. When the end of the source
operand is encountered, the instruction ends with a resultant condition of source
exhausted. When a character string cannot be completely contained in the
receiver, the instruction ends with a resultant condition of receiver overrun. For
either of the above ending conditions, the controls operand is updated to
describe the status of the conversion operation as of the last completely con-
verted compression entry. Partial conversion of a compression entry is not per-
formed.

Data transparency conversion is performed if perform data transparency conver-
sion is specified in the algorithm modifier. This provides for correctly identifying
record separators in the source even if the data for a record contains value that
could be interpreted as record separator values. Processing of active transpar-
ency strings is performed if necessary.

A nontransparent record is built by appending the nontransparent and trans-
parent data converted from the record to the record separator for the record.
The nontransparent record may be produced from either a partial record from
the source or a full record from the source. This is accomplished by first
accessing the record separator for a full record. The case of a missing record
separator in the source is detected as defined under the initial description of the
conversion process. Record separator conversion as requested in the algorithm
modifier is performed if it has not already been performed by a prior step; the
rest of the source record is scanned for values of less than hex 40.

A value greater than or equal to hex 40 is considered nontransparent data and is
concatenated onto the record being built as is.

A value equal to hex 35 identifies the start of a transparency string. A transpar-
ency string is comprised of 2 bytes of transparency control information followed
by the data to be made transparent to scanning for record separators. The first
byte has a fixed value of hex 35 and is referred to as the TRN (transparency)
control character. The second byte is a 1-byte hexadecimal count, a value
remaining from 1 to 255 decimal, of the number of bytes of data that follow and
is referred to as the TRN count. A TRN count of zero is invalid and causes a
conversion exception. This contains the length of the transparent data and does
not include the TRN control information length. The transparent data is concat-
enated to the nontransparent record being built and is not scanned for record
separator characters.

A value equal to hex 00 is recognized as the record separator for the next record
only when perform decompression is specified in the algorithm modifier. In this
case, the nontransparent record is complete. When do not perform decom-
pression is specified in the algorithm modifier, a value equal to hex 00 is ignored
and is not included as part of the nontransparent data built for the current
record.

A value less than hex 40 but not equal to hex 35 is considered to be the record

separator for the next record, and the forming of the nontransparent record is
complete.

1-104 AS/400 M! Functional Reference

Convert SNA to Character (CVTSC)

The building of the nontransparent record is completed when the length of the
data converted into the receiver equals the receiver record length if the record
separator for the next record is not encountered prior to that point.

If the end of the source is encountered prior to completion of building the
nontransparent record, the nontransparent record built up to this point is placed
in the receiver and the instruction ends with a resultant condition of source
exhausted. The controls operand is updated to describe the status for the par-
tially converted record. This includes describing a partially converted transpar-
ency string, if necessary, by setting the active transparency string status and the
unconverted transparency string bytes value.

If the building of the nontransparent record is completed prior to encountering
the end of the source, the conversion process continues with the blank padding
function described below.

Blank padding is performed if the function is specified in the algorithm modifier.
This provides for expanding out to the size specified by the receiver record
length the source records for which trailing blanks have been truncated. The
padded record may be produced from either a partial record from the source or
a full record from the source.

The record separator for this record is accessed. The case of a missing record
separator in the source is detected as defined under the initial description of the
conversion process. Record separator conversion, as requested in the algorithm
modifier, is performed if it has not already been performed by a prior step.

The nontruncated data, if any, for the record is appended to the optional record
separator for the record. The nontruncated data is determined by scanning the
source record for the record separator for the next record. This scan is con-
cluded after processing enough data to completely fill the receiver record or
upon encountering the record separator for the next record. The data processed
prior to concluding the scan is considered the nontruncated data for the record.

The blanks, if any, required to pad the record out to the nontruncated data for
the record, concluding the forming of the padded record.

If the end of the source is encountered during the forming of the padded record,
the data processed up to that point, appended to the optional record separator
for the record, is placed into the receiver and the instruction ends with a
resultant condition of source exhausted. The controls operand is updated to
describe the status of the partially converted record.

If the forming of the padded record is concluded prior to encountering the end of
the source, the conversion of the record is completed by placing the converted
form of the record into the receiver.

At this point, either conversion of a source record has been completed or con-
version has been interrupted due to detection of the source exhausted or
receiver overrun condition. For record processing, if neither of the above condi-
tions has been detected either during conversion of or at completion of conver-
sion for the current record, the conversion process continues on the next source
record with the decompression function described above.

Chapter 1. Computation and Branching Instructions 1-105

Convert SNA to Character (CVTSC)

At completion of the instruction, the offset value for the receiver locates the byte
following the last converted byte in the receiver. The value of the remaining
bytes in the receiver after the last converted byte are unpredictable. The offset J
value for the source locates the byte following the last source byte for which
conversion was completed. When record processing is specified, the uncon-
verted receiver record bytes value specifies the length of the receiver record
bytes not yet containing converted data. When perform data transparency con-
version is specified in the algorithm modifier, the conversion status indicates
whether conversion of a transparency string was active and the unconverted
transparency string bytes value specifies the length of the remaining bytes to be
processed for an active transparency string.

This instruction does not provide support for compression entries in the source

describing data that would span records in the receiver. SNA data from some

systems may violate this restriction and as such be incompatible with the

instruction. A provision can be made to avoid this incompatibility by performing

the conversion of the SNA data through two invocations of this instruction. The

first invocation would specify decompression with no record separator proc- J
essing. The second invocation would specify record separator processing with

no decompression. This technique provides for separating the decompression

step from record separator processing; thus, the incompatibility is avoided.

This instruction can end with the escape code encountered condition. In this

case, it is expected that the user of the instruction will want to do some special

processing for the record separator causing the condition. In order to resume

execution of the instruction, the user will have to set the appropriate value for

the record separator into the receiver and update the controls operand offset
values correctly to provide for restarting processing at the right points in the J
receiver and source operands.

For the special case of a tie between the source exhausted and receiver overrun

conditions, the source exhausted condition is recognized first. That is, when

source exhausted is the resultant condition, the receiver may also be full. In this

case, the offset into the receiver operand may contain a value equal to the

length specified for the receiver, which would cause an exception to be detected

on the next invocation of the instruction. The processing performed for the

source exhausted condition should provide for this case if the instruction is to be J
invoked multiple times with the same controls operand template. When the

receiver overrun condition is the resultant condition, the source will always

contain data that can be converted.

This instruction will, in certain cases, ignore what would normally have been
interpreted as a record separator value of hex 00. This applies (hex 00 is
ignored) for the special case when do not perform decompression and record
separators in source are specified in the algorithm modifier. Note that this does
not apply when perform decompression is specified, or when do not perform
decompression and no record separators in source and move record separator
from controls to receiver are specified in the algorithm modifier.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Any form of overlap between the operands on this instruction yields unpredict- J
able results in the receiver operand.

1-106 AS/400 MI Functional Reference

Convert SNA to Character (CVTSC)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Resultant Conditions: Source exhausted-The end of the source operand is
encountered and no more bytes from the source can be converted. Receiver
overrun-An overrun condition in the receiver operand is detected before all of
the bytes in the source operand have been processed. Escape code
encountered-A record separator character is encountered in the source operand
that is to be treated as an escape code.

Exceptions
Operands
Exception 1 2 3 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment violation

03 Range

X X X X
X X X X
X X X X

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation X X X

ocC Computation

01 Conversion X

10 Damage encountered
04 System object damage state X

44 Partial system object damage X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X
03 Function check X

22 Object access
01 Object not found X X X
02 Object destroyed
03 Object suspended X X X

x
x
x

24 Pointer specification
01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program creation
05 Invalid op-code extender field X

06 Invalid operand type X X X

x
x
x

07 Invalid operand attribute

08 Invalid operand value range X X X

Chapter 1. Computation and Branching Instructions 1-107

Convert SNA to Character (CVTSC)

Operands
Exception 1 2
09 Invalid branch target operand
0A Invalid operand length X
0C Invalid operand odt reference X X
0D Reserved bits are not zero X X
2C Program execution
04 Invalid branch target
2E Resource control limit
01 user profile storage limit exceeded
32 Scalar specification
01 Scalar type invalid X X
36 Space management
01 space extension/truncation
38 Template specification
01 Template value invalid X

1-108 AS/400 M| Functional Reference

Other

Copy Bits Arithmetic (CPYBTA)

1.28 Copy Bits Arithmetic (CPYBTA)

Exceptions

Op Code (Hex) Operand Operand Operand Operand 4
1 2 3
102C Receiver Source Offset Length

Operand 1: Character Variable Scalar or Numeric Variable Scalar.

Operand 2. Character Variable Scalar or Numeric Variable Scalar.

Operand 3: Signed or Unsigned Binary Immediate.

Operand 4. Signed or Unsigned Binary Immediate.

Description: Copies the signed bit string source operand starting at the speci-
fied offset for a specified length right adjusted to the receiver and pads on the

left with the sign of the bit string source.

The selected bits from the source operand are treated as an signed bit string
and copied to the receiver value.

The source operand can be character or numeric. The leftmost bytes of the
source operand are used in the operation. The source operand is interpreted as
a bit string with the bits numbered left to right from O to the total number of bits
in the string minus 1.

The offset operand indicates which bit of the source operand is to be copied,
with a offset of zero indicating the leftmost bit of the leftmost byte of the source
operand.

The length operand indicates the number of bits that are to be copied.

If the sum of the offset plus the length exceed the length of the source an
“invalid operand length” exception will be raised.

Limitations: Neither the receiver nor the source operand can be a variable
length substring.

The length of the receiver cannot exceed four bytes.
The offset must have a non-negative value.

The length operand must be an immediate value between 1 and 32.

Operands
Exception 1 2 3 4 Other
06 Addressing
01 Spacing addressing violation X X
02 Boundary alignment violation X X
03 Range X X
06 Optimized addressability invalid X X

Chapter 1. Computation and Branching Instructions 1-109

Copy Bits Arithmetic (CPYBTA)

Operands

Exception 1 2

08

10

1C

20

22

24

2A

2E

36

Argument/parameter

01 Parameter reference violation X X

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access
02 Object destroyed X X
03 Object suspended X X

Pointer specification

01 Pointer does not exist X X

X
x

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand odt reference

X X X X X X
X X X X X X

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-110 AS/400 M! Functional Reference

x

x

Other

Copy Bits Logical (CPYBTL)

1.29 Copy Bits Logical (CPYBTL)

Exceptions

Op Code (Hex) Operand Operand Operand Operand 4
1 2 3
101C Receiver Source Offset Length

Operand 1. Character Variable Scalar or Numeric Variable Scalar.
Operand 2: Character Variable Scalar or Numeric Variable Scalar.
Operand 3. Signed or Unsigned Binary Immediate.
Operand 4. Signed or Unsigned Binary Immediate.

Description: Copies the unsigned bit string source operand starting at the spec-
ified offset for a specified length to the receiver.

If the receiver is shorter than the length, the left most bits are removed to make
the source bit string conform to the length of the receiver. No exceptions are
generated when truncation occurs.

The selected bits from the source operand are treated as an unsigned bit string
and copied right adjusted to the receiver and padded on the left with binary
zeros.

The source operand can be character or numeric. The leftmost bytes of the
source operand are used in the operation. The source operand is interpreted as
a bit string with the bits numbered left to right from 0 to the total number of bits
in the string minus 1.

The offset operand indicates which bit of the source operand is to be copied,
with a offset of zero indicating the leftmost bit of the leftmost byte of the source
operand.

The length operand indicates the number of bits that are to be copied.

If the sum of the offset plus the length exceed the length of the source an
“invalid operand length” exception will be raised.

Limitations: Neither the receiver nor the source operand can be a variable
length substring.

The length of the receiver cannot exceed four bytes.
The offset must have a non-negative value.

The length operand must be an immediate value between 1 and 32.

Operands
Exception 1 2 3 4 Other
06 Addressing
01 Spacing addressing violation X X

Chapter 1. Computation and Branching Instructions 1-111

Copy Bits Logical (CPYBTL)

Exception

08

10

1C

20

22

24

2A

2E

36

02 Boundary alignment violation
03 Range
06 Optimized addressability invalid

Argument/parameter

01 Parameter reference violation

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access
02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-112 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

4

Other

Copy Bits with Left Logical Shift (CPYBTLLS)

1.30 Copy Bits with Left Logical Shift (CPYBTLLS)

‘ Op Code (Hex) Operand Operand Operand 3
1 2
102F Receiver Source Shift
control

Operand 1. Character variable scalar or numeric variable scalar.
Operand 2. Character scalar or numeric scalar.
Operand 3: Character(2) scalar or unsigned binary(2) scalar.

Description: This instruction copies the bit string value of the source operand to
the bit string defined by the receiver operand with a left logical shift of the
source bit string value under control of the shift control operand.

<' The operation results in copying the shifted bit string value of the source to the
bit string of the receiver while padding the receiver with bit values of 0 and trun-
cating bit values of the source as is appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value.
This is true whether the values truncated are O or 1.

The operation is performed such that the bit string of the source is considered to
be extended on the left and right by an unlimited number of bit string positions of
value 0. Additionally, a receiver bit string view (window) with the attributes of

L the receiver is considered to overlay this conceptual bit string value of the
source starting at the leftmost bit position of the original source value. A left
logical shift of the conceptual bit string value of the source is then performed
relative to the receiver bit string view according to the shift criteria specified in
the shift control operand. After the shift, the bit string value then contained
within the receiver bit string view is copied to the receiver.

The source and the receiver can be either character or numeric. Any numeric
operands are interpreted as logical character strings. Due to the operation
being treated as a character string operation, the source operand may not be

L specified as a signed immediate operand. Additionally, for a source operand
specified as an unsigned immediate value, only a 1-byte immediate value may
be specified.

The shift control operand may be specified as an immediate operand, as a

character(2) scalar, or as an unsigned binary(2) scalar. It provides an unsigned
binary value indicating the number of bit positions for which the left logical shift
of the source bit string value is to be performed. A zero value specifies no shift.

Operands 1 and 2 may be specified as variable length substring compound oper-
ands.

Operand 3 may not be specified as a variable length substring compound
operand.

(Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instructicn.

Chapter 1. Computation and Branching Instructions 1-113

Copy Bits with Left Logical Shift (CPYBTLLS)

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2E

32

36

Addressing

01 Spacing addressing violation
02 Boundary alignment violation
03 Range

06 Optimized addressability invalid

Argument/parameter

01 Parameter reference violation

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access
02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalir

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 Scalar type invalid

Space management

01 space extension/truncation

1-114 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X X X

x

X X X X X X

Other

Copy Bits with Right Arithmetic Shift (CPYBTRAS)

1.31 Copy Bits with Right Arithmetic Shift (CPYBTRAS)

‘ Op Code (Hex) Operand Operand Operand 3
1 2
101B Receiver Source Shift
Control

Operand 1. Character variable or numeric variable scalar.
Operand 2: Character scalar or numeric scalar.
Operand 3: Character(2) scalar or unsigned binary(2) scalar.

Description: The instruction copies the bit string value of the source operand to
the bit string defined by the receiver operand with a right arithmetic shift of the
source bit string value under control of the shift control operand.

' The operation results in copying the shifted bit string value of the source to the
L bit string of the receiver while padding the receiver with bit values of 0 or 1
depending on the high order bit value of the source, and truncating bit values of
the source as is appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value.
This is true whether the values truncated are 0 or 1.

The operation is performed such that the bit string of the source is considered a
signed numeric binary value, with the value of the sign bit of the source concep-
L tually extended on the left an unlimited number of bit string positions. A right
arithmetic shift of the conceptual bit string value of the source is then performed
according to the shift criteria specified in the shift control operand. No indication
is given of truncation of bit values from the shifted conceptual source value.
This is true whether the values truncated are 0 or 1. After the shift, the concep-
tual bit string value is then copied to the receiver, right aligned.

Viewing the bit string value of the source and the bit string value copied to the
receiver as signed numeric, the sign of the value copied to the receiver will be
(the same as the sign of the source.

A right shift of one bit position is equivalent to dividing the signed numeric bit
string value of the source by 2 with rounding downward, and assigning a signed
numeric bit string equivalent to that result to the receiver. For example, if the
signed numeric view of the source bit string is +9, shifting one bit position right
yields +4. However if the signed numeric view of the source bit string is -9,
shifting one bit position right yields -5.

If all the significant bits of the conceptual source bit string are shifted out of the
field, the resulting conceptual bit string value will be all zero bits for positive
numbers, and all one bits for negative numbers.

The source and the receiver can be either character or numeric. Any numeric
operands are interpreted as logical character strings. Due to the operation
being treated as a character string operation, the source operand may not be

(’ specified as a signed immediate operand. Additionally, for a source operand
specified as an unsigned immediate value, only a 1-byte immediate value may
be specified.

Chapter 1. Computation and Branching Instructions 1-115

Copy Bits with Right Arithmetic Shift (CPYBTRAS)

The shift control operand may be specified as an immediate operand, as a
character(2) scalar, or as a unsigned binary(2) scalar. It provides an unsigned
binary value indicating the number of bit positions for which the right logical shift
of the source bit string value is to be performed. A zero value specifies no shift.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Operands 1 and 2 may be specified as variable length substring compound oper-
ands.

Operand 3 may not be specified as a variable length substring compound
operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Exceptions
Operands
Exception 1 2 3 Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment violation X X X
03 Range X X X
06 Optimized addressability invalid X X X
08 Argument/parameter
01 Parameter reference violation X X X
10 Damage encountered
04 System object damage state X
44 Partial system object damage X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
22 Object access
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X
2A Program creation
06 Invalid operand type X X X
07 Invalid operand attribute X X X

1-116 AS/400 MI Functional Reference

Copy Bits with Right Arithmetic Shift (CPYBTRAS)

Operands

Exception 1 2 3 Other

08 Invalid operand value range X X X

0A Invalid operand length X X X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2E Resource control limit

01 user profile storage limit exceeded X
32 Scalar specification

01 Scalar type invalid X X X
36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-117

Copy Bits with Right Logical Shift (CPYBTRLS)

1.32 Copy Bits with Right Logical Shift (CPYBTRLS)

Op Code (Hex) Operand Operand Operand 3
1 2
103F Receiver Source Shift
control

Operand 1: Character variable scalar or numeric variable scalar.
Operand 2. Character scalar or numeric scalar.
Operand 3: Character(2) scalar or unsigned binary(2) scalar.

Description: This instruction copies the bit string value of the source operand to
the bit string defined by the receiver operand with a right logical shift of the
source bit string value under control of the shift control operand.

The operation results in copying the shifted bit string value of the source to the
bit string of the receiver while padding the receiver with bit values of 0 and trun-
cating bit values of the source as is appropriate for the specific operation.

No indication is given of truncation of bit values from the shifted source value.
This is true whether the values truncated are 0 or 1.

The operation is performed such that the bit string of the source is considered to
be extended on the left and right by an unlimited number of bit string positions of
value 0. Additionally, a receiver bit string view (window) with the attributes of
the receiver is considered to overlay this conceptual bit string value of the
source starting at the leftmost bit position of the original source value. A right
logical shift of the conceptual bit string value of the source is then performed
relative to the receiver bit string view according to the shift criteria specified in
the shift control operand. After the shift, the bit string value then contained
within the receiver bit string view is copied to the receiver.

The source and the receiver can be either character or numeric. Any numeric
operands are interpreted as logical character strings. Due to the operation
being treated as a character string operation, the source operand may not be
specified as a signed immediate operand. Additionally, for a source operand
specified as an unsigned immediate value, only a 1-byte immediate value may
be specified.

The shift control operand may be specified as an immediate operand, as a
character(2) scalar, or as a unsigned binary(2) scalar. It provides an unsigned
binary value indicating the number of bit positions for which the right logical shift
of the source bit string value is to be performed. A zero value specifies no shift.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Operands 1 and 2 may be specified as variable length substring compound oper-
ands.

Operand 3 may not be specified as a variable length substring compound
operand.

1-118 AS/400 MI Functional Reference

Copy Bits with Right Logical Shift (CPYBTRLS)

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

L Exceptions

Operands
Exception 1 2 3 Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment violation X X X
03 Range X X X
06 Optimized addressability invalid X X X
08 Argument/parameter
01 Parameter reference violation X X X
10 Damage encountered
‘ 04 System object damage state X
44 Partial system object damage X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
L 22 Object access
02 Object destroyed X X X
03 Object suspended X X X
24 Pointer specification
01 Pointer does not exist X X X
02 Pointer type invalid X X X

‘ 2A Program creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

0A Invalid operand length X X X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2E Resource control limit

01 user profile storage limit exceeded X
32 Scalar specification

01 Scalar type invalid X X X

(36 Space management

Chapter 1. Computation and Branching Instructions 1-119

Copy Bits with Right Logical Shift (CPYBTRLS)

Operands
Exception 1 2 3 Other
01 space extension/truncation X

1-120 AS/400 MI Functional Reference

Copy Bytes Left-Adjusted (CPYBLA)

1.33 Copy Bytes Left-Adjusted (CPYBLA)

Exceptions

Op Code (Hex) Operand Operand 2
1

10B2 Receiver Source

Operand 1. Character variable scalar, numeric variable scalar, data-pointer-
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character
scalar, or data-pointer-defined numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (no padding done). The operands
can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The length of the operation is equal to the length of the shorter of the two oper-
ands. The copying begins with the two operands left-adjusted and proceeds until
the shorter operand has been copied.

Substring operand references that allow for a null substring reference {(a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

If either operand is a character variable scalar, it may have a length as great as
16776191 bytes.

Operands
Exception 1 2 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment
03 Range

04 External data object not found

X X X X X
xX X X X X

06 Optimized addressability invalid

08 Argument/parameter
01 Parameter reference violation X X
10 Damage encountered
04 System object damage state X X X
44 Partial system object damage X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X

Chapter 1. Computation and Branching Instructions 1-121

Copy Bytes Left-Adjusted (CPYBLA)

Exception

22

24

2A

2E

32

36

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 Scalar type invalid

Space management

01 space extension/truncation

1-122 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

Other

Copy Bytes Left-Adjusted with Pad (CPYBLAP)

1.34 Copy Bytes Left-Adjusted with Pad (CPYBLAP)

(', Op Code (Hex) Operand Operand Operand 3
1 2
10B3 Receiver Source Pad

Operand 1: Character variable scalar or numeric variable scalar, data-pointer-
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2. Character scalar, numeric scalar, data-pointer-defined character
scalar, or data-pointer-defined numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (padded if needed).

(The operands can be either character or numeric. Any numeric operands are
interpreted as logical character strings.

The length of the operation is equal to the length of the receiver operand. If the
source operand is shorter than the receiver operand, the source operand is
copied to the leftmost bytes of the receiver operand, and each excess byte of the
receiver operand is assigned the single byte value in the pad operand. If the
pad operand is more than 1 byte in length, only its leftmost byte is used. If the
source operand is longer than the receiver operand, the leftmost bytes of the

L source operand {(equal in length to the receiver operand) are copied to the
receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with the single byte value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is set.

: Substring operand references that allow for a null substring reference (a length
‘ value of zero) may not be specified for operand 3.

If either of the first two operands is a character variable scalar, it may have a
length as great as 16776191.

Exceptions
Operands
Exception 1 2 3 Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
04 External data object not found X X
L 06 Optimized addressability invalid X X X

08 Argument/parameter

Chapter 1. Computation and Branching Instructions 1-123

Copy Bytes Left-Adjusted with Pad (CPYBLAP)

Exception

10

1C

20

22

24

2A

2E

32

36

01 Parameter reference violation

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 Scalar type invalid

Space management

01 space extension/truncation

1-124 AS/400 M| Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X W

Other

C

Copy Bytes Overlap Left-Adjusted (CPYBOLA)

1.35 Copy Bytes Overlap Left-Adjusted (CPYBOLA)

Exceptions

Op Code (Hex) Operand Operand 2
1
10BA Receiver Source

Operand 1: Character variable scalar or numeric variable scalar.
Operand 2. Character variable scalar or numeric variable scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (no padding done). The operands
can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The length of the operation is equal to the length of the shorter of the two oper-
ands. The copying begins with the two operands left-adjusted and proceeds until
the shorter operand has been copied. The excess bytes in the longer operand
are not included in the operation.

Predictable results occur even if two operands overlap because the source
operand is, in effect, first copied to an intermediate result.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

Operands
Exception 1 2 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment

03 Range

X X X X
xX X X X

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation X X

10 Damage encountered
04 System object damage state X X X
44 Partial system object damage X X X

iC Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X
03 Function check X

22 Object access
01 Object not found X X

Chapter 1. Computation and Branching Instructions 1-125

Copy Bytes Overlap Left-Adjusted (CPYBOLA)

Operands
Exception 1 2 Other
02 Object destroyed X X
03 Object suspended X X
24 Pointer specification
01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

X X X X X X
X X X X X X

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

1-126 AS/400 MI Functional Reference

Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)

(, 1.36 Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)

Op Code (Hex) Operand Operand Operand 3
1 2
10BB Receiver Source Pad

Operand 1. Character variable scalar or numeric variable scalar.
Operand 2. Character variable scalar or numeric variable scalar.
Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand.

The operands can be either character or numeric. Any numeric operands are
(interpreted as logical character strings.

The length of the operation is equal to the length of the receiver operand. If the
source operand is shorter than the receiver operand, the source operand is
copied to the leftmost bytes of the receiver operand and each excess byte of the
receiver operand is assigned the single byte value in the pad operand. If the
pad operand is more than 1 byte in length, only its leftmost byte is used. If the
source operand is longer than the receiver operand, the leftmost bytes of the
source operand (equal in length to the receiver operand) are copied to the
receiver operand.

L Predictable results occur even if two operands overlap because the source
operand is, in effect, first copied to an intermediate result.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with the single byte value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is set.

(Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.
Exceptions
Operands
Exception 1 2 3 Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X
08 Argument/parameter
(01 Parameter reference violation X X X
10 Damage encountered

Chapter 1. Computation and Branching Instructions 1-127

Copy Bytes Overlap Left-Adjusted with Pad (CPYBOLAP)

Exception

1C

20

22

24

2A

2E

36

04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-128 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

x

Other

C

Copy Bytes Repeatedly (CPYBREP)

1.37 Copy Bytes Repeatedly (CPYBREP)

Exceptions

Op Code (Hex) Operand Operand 2
1
10BE Receiver Source

Operand 1. Numeric variable scalar or character variable scalar (fixed-length).
Operand 2. Numeric scalar or character scalar (fixed length).

Description: The logical string value of the source operand is repeatedly copied
to the receiver operand until the receiver is filled. The operands can be either
character or numeric. Any numeric operands are interpreted as logical char-
acter strings.

The operation begins with the two operands left-adjusted and continues until the
receiver operand is completely filled. If the source operand is shorter than the
receiver, it is repeatedly copied from left to right (all or in part) until the receiver
operand is completely filled. If the source operand is longer than the receive
operand, the leftmost bytes of the source operand (equal in length to the
receiver operand) are copied to the receiver operand.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

If either operand is a character variable scalar, it may have a length as great as
16776191.

Operands

Exception 1 2 Other
06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X
08 Argument/parameter

01 Parameter reference violation X X
10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-dependent exception

03 Machine storage limit exceeded X
20 Machine support

02 Machine check X

03 Function check X

Chapter 1. Computation and Branching Instructions 1-129

Copy Bytes Repeatedly (CPYBREP)

Exception
22 Object access

01 Object not found
02 Object destroyed
03 Object suspended

24 Pointer specification
01 Pointer does not exist

02 Pointer type invalid

2A Program creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
0A Invalid operand length
0C Invalid operand odt reference

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded

36 Space management

01 space extension/truncation

1-130 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

Other

C

Copy Bytes Right-Adjusted (CPYBRA)

1.38 Copy Bytes Right-Adjusted (CPYBRA)

Exceptions

Op Code (Hex) Operand Operand 2
1

10B6 Receiver Source

Operand 1. Character variable scalar, numeric variable scalar, data-pointer-
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character
scalar, or data-pointer-defined numeric scalar.

Description: The logical string value of the source operand is copied to the
logical string value of the receiver operand (no padding done). The operands
can be either character or numeric. Any numeric operands are interpreted as
logical character strings.

The length of the operation is equal to the length of the shorter of the two oper-
ands. The rightmost bytes (equal to the length of the shorter of the two oper-
ands) of the source operand are copied to the rightmost bytes of the receiver
operand. The excess bytes in the longer operand are not included in the opera-
tion.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for either operand is that no result is set.

Operands
Exception 1 2 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment
03 Range

04 External data object not found

X X X X X
X X X X X

06 Optimized addressability invalid

08 Argument/parameter
01 Parameter reference violation X X
10 Damage encountered
04 System object damage state X X X
44 Partial system object damage X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
22 Object access

Chapter 1. Computation and Branching Instructions 1-131

Copy Bytes Right-Adjusted (CPYBRA)

Operands
Exception 1 2 Other
01 Object not found

X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer specification

x
b

01 Pointer does not exist

x
x

02 Pointer type invalid

2A Program creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

X X X X X X
X X X X X X

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded X

32 Scalar specification

01 Scalar type invalid X X

36 Space management

01 space extension/truncation X

1-132 AS/400 MI Functional Reference

Copy Bytes Right-Adjusted with Pad (CPYBRAP)

1.39 Copy Bytes Right-Adjusted with Pad (CPYBRAP)

L Op Code (Hex) Operand Operand Operand 3
1 2
10B7 Receiver Source Pad

Operand 1. Character variable scalar, numeric variable scalar, data-pointer-
defined character scalar, or data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar, data-pointer-defined character
scalar, or data-pointer-defined numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source operand is copied to the

logical string value of the receiver operand (padded if needed). The operands

can be either character or numeric. Any numeric operands are interpreted as
L logical character strings.

The length of the operation is equal to the length of the receiver operand. If the
source operand is shorter than the receiver operand, the source operand is
copied to the rightmost bytes of receiver operand, and each excess byte is
assigned the single byte value in the pad operand. If the pad operand is more
than 1 byte in length, only its leftmost byte is used. If the source operand is
longer than the receiver operand, the rightmost bytes of the source operand
(equal in length to the receiver operand) are copied to the receiver operand.

L Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1 and 2. The effect of specifying a
null substring reference for the source is that the bytes of the receiver are each
set with the single byte value of the pad operand. The effect of specifying a null
substring reference for the receiver is that no result is set.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

L Exceptions

Operands
Exception 1 2 3 Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
04 External data object not found X X
06 Optimized addressability invalid X X X
08 Argument/parameter
01 Parameter reference violation X X X
10 Damage encountered
L 04 System object damage state X X X X
44 Partial system object damage X X X X

Chapter 1. Computation and Branching Instructions 1-133

Copy Bytes Right-Adjusted with Pad (CPYBRAP)

Exception

1C

20

22

24

2A

2E

32

36

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access

01 Object not found
02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 Scalar type invalid

Space management

01 space extension/truncation

1-134 AS/400 M| Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

3

x

X X X X X X

Other

Copy Bytes to Bits Arithmetic (CPYBBTA)

Op Code (Hex) Operand 1 Operand 2 Operand 3 Operand 4
104C Receiver Offset Length Source

(, 1.40 Copy Bytes to Bits Arithmetic (CPYBBTA)

Operand 1. Character variable scalar or numeric variable scalar.
Operand 2. Signed binary immediate or unsigned binary immediate.
Operand 3: Signed binary immediate or unsigned binary immediate.
Operand 4. Character variable scalar or numeric variable scalar.

Description: This instruction copies a byte string from the source operand to a
bit string in the receiver operand.

The source operand is interpreted as a signed binary value and may be sign
extended or truncated on the left to fit into the bit string in the receiver operand.
No indication is given when truncation occurs.

The location of the bit string in the receiver operand is specified by the offset
operand. The value of the offset operand specifies the bit offset from the start of
the receiver operand to the start of the bit string. Thus, an offset operand value
of 0 specifies that the bit string starts at the leftmost bit position of the receiver

operand.

‘ The length of the bit string in the receiver operand is specified by the length
operand. The value of the length operand specifies the length of the bit string in
bits.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Null operands may not be specified. Variable length substring operands may not
be specified. Substring operand references that allow for a null substring refer-

(ence (a length value of zero) may not be specified.

If the source operand and the bit string in the receiver operand overlap, the
results are unpredictable.

A source operand longer than 4 bytes may not be specified.

If the offset operand is signed binary immediate, a negative value may not be
specified.

A length operand with a value less than 1 or greater than 32 may not be speci-
fied.

The bit string specified by the offset operand and the length operand may not
extend outside the receiver operand.

Chapter 1. Computation and Branching Instructions 1-135

Copy Bytes to Bits Arithmetic (CPYBBTA)

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2E

36

Addressing

01 Spacing addressing violation
02 Boundary alignment violation
03 Range

06 Optimized addressability invalid

Argument/parameter

01 Parameter reference violation

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access
02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-136 AS/400 MI Functional Reference

Operands
1 2
X

X

X

X

X

X

X

X

X

X X
X X
X X
X

X

X X

X X X X

x

X X X X X X

Other

Copy Bytes to Bits Logical (CPYBBTL)

Op Code (Hex) Operand 1 Operand 2 Operand 3 Operand 4
103C Receiver Offset Length Source

L 1.41 Copy Bytes to Bits Logical (CPYBBTL)

Operand 1. Character variable scalar or numeric variable scalar.
Operand 2: Signed binary immediate or unsigned binary immediate.
Operand 3. Signed binary immediate or unsigned binary immediate.
Operand 4. Character variable scalar or numeric variable scalar.

Description: This instruction copies a byte string from the source operand to a
bit string in the receiver operand.

The source operand is interpreted as an unsigned binary value and may be
padded on the left with 0’s or truncated on the left to fit into the bit string in the
receiver operand. No indication is given when truncation occurs.

The location of the bit string in the receiver operand is specified by the offset
operand. The value of the offset operand specifies the bit offset from the start of
the receiver operand to the start of the bit string. Thus, an offset operand value
of O specifies that the bit string starts at the leftmost bit position of the receiver

operand.

‘ The length of the bit string in the receiver operand is specified by the length
operand. The value of the length operand specifies the length of the bit string in
bits.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Null operands may not be specified. Variable length substring operands may not
be specified. Substring operand references that allow for a null substring refer-
(ence (a length value of zero) may not be specified.

If the source operand and the bit string in the receiver operand overlap, the
results are unpredictable.

A source operand longer than 4 bytes may not be specified.

If the offset operand is signed binary immediate, a negative value may not be
specified.

A length operand with a value less than 1 or greater than 32 may not be speci-
fied.

The bit string specified by the offset operand and the length operand may not
extend outside the receiver operand.

Chapter 1. Computation and Branching Instructions 1-137

Copy Bytes to Bits Logical (CPYBBTL)

Exceptions

Exception

06

08

10

1C

20

22

24

2A

2E

36

Addressing

01 Spacing addressing violation

02 Boundary alignment violation
03 Range

06 Optimized addressability invalid

Argument/parameter

01 Parameter reference violation

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access
02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-138 AS/400 MI Functional Reference

Operands
1 2
X

X

X

X

X

X

X

X

X

X X
X X
X X
X

X

X X

x

X X X X

x

X X X X X X

Other

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

1.42 Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

Op Code (Hex) Operand Operand Operand 3
1 2
1053 Receiver Source Pad

Operand 1: Data-pointer-defined character scalar.
Operand 2: Data-pointer-defined character scalar.
Operand 3: Character(3) scalar or null.

Description: The extended character string value of the source operand is
copied to the receiver operand.

The operation is performed at the length of the receiver operand. If the source
operand is shorter than the receiver, the source operand is copied to the left-
most bytes of the receiver and the excess bytes of the receiver are assigned the
appropriate value from the pad operand.

The pad operand, operand 3, is three bytes in length and has the following

format:
* Pad operand Char(3)
— Single byte pad value Char(1)
— Double byte pad value Char(2)

If the pad operand is more than three bytes in length, only its leftmost three
bytes are used. Specifying a null pad operand results in default pad values of
X’40’, for single byte, and X’4040’, for double byte, being used. The single byte
pad value and the first byte of the double byte pad value cannot be either a shift
out control character (SO =‘0E’X) value or a shift in control character (Sl ="0F’X)
value. Specification of such an invalid value results in the signaling of the scalar
value invalid exception.

Operands 1 and 2 must be specified as Data Pointers which define either a
simple (single byte) character data field or one of the extended (double byte)
character data fields.

Support for usage of a Data Pointer defining an extended character scalar value
is limited to this instruction. Usage of such a data pointer defined value on any

other instruction is not supported and results in the signaling of the scalar type

invalid exception.

For more information on support for extended character data fields, refer to the
Set Data Pointer Attributes, Materialize Pointer, and Create Cursor instructions.

Four data types are supported for data pointer definition of extended (double
byte) character fields, OPEN, EITHER, ONLYNS and ONLYS. Except for ONLYNS,
the double byte character data must be surrounded by a shift out control char-
acter (SO ='0E’X) and a shift in control character (S| ="0F’X).

* The ONLYNS field only contains double byte data with no SO, S| delimiters
surrounding it.

Chapter 1. Computation and Branching Instructions 1-139

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

e The ONLYS field can only contain double byte character data within a SO..SI|
pair.

* The EITHER field can consist of double byte character or single byte char- J
acter data but only one type at a time. If double byte character data is
present it must be surrounded by an SO .. Si pair.

e The OPEN field can consist of a mixture of double byte character and single
byte character data. If double byte character data is present it must be sur-
rounded by an SO .. SI pair.

Specifying an extended character value which violates the above restrictions
results in the signaling of the invalid extended character data exception.

The valid copy operations which can be specified on this instruction are the fol-
lowing:

Op 1

Onlyns Onlys Open Either)

0 Onlyns yes yes yes yes

) Onlys yes yes yes yes

Open no no yes no

2 Either no no vyes ves

Figure 1-5. Valid copy operations for CPYECLAP

Specifying a copy operation other than the valid operations defined above results
in the signaling of the invalid extended character operation exception.

When the copy operation is for a source of type ONLYNS (no SO/SI delimiters)

being copied to a receiver which is not ONLYNS, SO and Sl delimiters are

implicitly added around the source value as part of the copy operation.

When the source value is longer than can be contained in the receiver, trun-
cation is necessary and the following truncation rules apply:

1. Truncation is on the right (like simple character copy operations).)

2. When the string to be truncated is a single byte character string, or an
extended character string when the receiver is ONLYNS, bytes beyond those
that fit into the receiver are truncated with no further processing needed.

3. When the string to be truncated is an extended character string and the
receiver is not ONLYNS, the bytes that fall at the end of the receiver are
truncated as follows:

a. When the last byte that would fit in the receiver is the first byte of an
extended character, that byte is truncated and replaced with an Sl char-
acter.

b. When the last byte that would fit in the receiver is the second byte of an
extended character, both bytes of that extended character are truncated
and replaced with a S| character followed by a single byte pad value.
This type of truncation can only occur when converting to an OPEN field. J

When the source value is shorter than that which can be contained in the
receiver, padding is necessary. One of three types of padding is performed:

1-140 AS/400 MI Functional Reference

Exceptions

1.

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

Double byte (DB) - the source value is padded on the right with double byte
pad values out to the length of the receiver.

Double byte concatenated with a Sl value (DB||SI) - the source double byte
value is padded on the right with double byte pad values out to the second to
last byte of the receiver and an Sl delimiter is placed in the last byte of the
receiver.

. Single byte (SB) - the source value is padded on the right with single byte

pad values out to the length of the receiver.

The type of padding performed is determined by the type of operands involved in
the operation:

1.
2.
3.

If the receiver is ONLYNS, DB padding is performed.
If the receiver is ONLYS, DB||S| padding will be performed.

If the receiver is EITHER and the source contained a double byte value,
DB||SI padding is performed.

If the receiver is EITHER and the source contained a single byte value, SB
padding is performed.

If the receiver is OPEN, SB padding is performed.

The above padding rules cover all the operand combinations which are allowed
on the instruction. A complete understanding of the operand combinations
allowed (prior diagram), and the values which can be contained in the different
operand types is necessary to appreciate that these rules do cover all the valid
combinations.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for operand 3.

Operands

Exception 1 2 3 Other
06 Addressing

01 Spacing addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

04 External data object not found X X

06 Optimized addressability invalid X X X
08 Argument/parameter

01 Parameter reference violation X X X
0oC Computation

12 Invalid extended character data X

13 Invalid extended character operation X
10 Damage encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

Chapter 1. Computation and Branching Instructions 1-141

Copy Extended Characters Left-Adjusted With Pad (CPYECLAP)

Exception

1C

20

22

24

2A

2E

32

36

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Scalar specification
01 Scalar type invalid

01 Scalar value invalid

Space management

01 space extension/truncation

1-142 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

3

x

Other

C

C

Copy Hex Digit Numeric to Numeric (CPYHEXNN)

1.43 Copy Hex Digit Numeric to Numeric (CPYHEXNN)

Exceptions

Op Code (Hex) Operand Operand 2
1

1092 Receiver Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).
Operand 2. Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4 bits) of the leftmost byte
referred to by the source operand is copied to the numeric hex digit value (right-
most 4 bits) of the leftmost byte referred to by the receiver operand. The oper-
ands can be either character strings or numeric. Any numeric operands are
interpreted as logical character strings.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands

Exception 1 2 Other
06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X
08 Argument/parameter

01 Parameter reference violation X X
10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-dependent exception

03 Machine storage limit exceeded X
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X
24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

Chapter 1. Computation and Branching Instructions 1-143

Copy Hex Digit Numeric to Numeric (CPYHEXNN)

Operands
Exception 1 2 Other
2A Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

X X X X X X
X X X X X X

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-144 AS/400 MI Functional Reference

C

C

Copy Hex Digit Numeric to Zone (CPYHEXNZ)

1.44 Copy Hex Digit Numeric to Zone (CPYHEXNZ)

Exceptions

Op Code (Hex) Operand Operand 2
1
1096 Receiver Source

Operand 1. Numeric variable scalar or character variable scalar (fixed-length).
Operand 2. Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4 bits) of the leftmost byte
referred to by the source operand is copied to the numeric hex digit value (right-
most 4 bits) of the leftmost byte referred to by the receiver operand. The oper-
ands can be either character strings or numeric. Any numeric operands are
interpreted as logical character strings.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands

Exception 1 2 Other
06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X
08 Argument/parameter

01 Parameter reference violation X X
10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-dependent exception

03 Machine storage limit exceeded X
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X
24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

Chapter 1. Computation and Branching Instructions 1-145

Copy Hex Digit Numeric to Zone (CPYHEXNZ)

Exception

2A

2E

36

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
OA Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-146 AS/400 M| Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X

<

Copy Hex Digit Zone To Numeric (CPYHEXZN)

1.45 Copy Hex Digit Zone To Numeric (CPYHEXZN)

‘ Op Code (Hex) Operand Operand 2
1
109A Receiver Source

Operand 1. Numeric variable scalar or character variable scalar (fixed-length).
Operand 2. Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of the leftmost byte
referred to by the source operand is copied to the numeric hex digit value (right-

most 4 bits) of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric. Any numeric oper-
ands are interpreted as logical character strings.

‘ Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.
Exceptions
Operands
Exception 1 2 Other
06 Addressing
01 Spacing addressing violation X X
02 Boundary alignment X X
(03 Range X X
06 Optimized addressability invalid X X
08 Argument/parameter
01 Parameter reference violation X X
10 Damage encountered
04 System object damage state X X X
‘ 44 Partial system object damage X X X
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
22 Object access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X
24 Pointer specification
(01 Pointer does not exist X X
N2 Pointer type invalid X X

Chapter 1. Computation and Branching Instructions 1-147

Copy Hex Digit Zone To Numeric (CPYHEXZN)

Operands
Exception 1 2 Other

2A Program creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

X X X X X X
X X X X X X

0D Reserved bits are not zero X
2E Resource control limit

01 user profile storage limit exceeded X
36 Space management

01 space extension/truncation X

1-148 AS/400 MI Functional Reference

C

C

Copy Hex Digit Zone To Zone (CPYHEXZZ)

1.46 Copy Hex Digit Zone To Zone (CPYHEXZZ)

Exceptions

Op Code (Hex) Operand Operand 2

109E

1
Receiver Source

Operand 1: Numeric variable scalar or character variable scalar (fixed-length).

Operand 2. Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of the lefimost byte

referred to by the source operand is copied to the zone hex digit value (leftmost

4 bits) of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric. Any numeric oper-

ands are interpreted as logical character strings.

Substring operand references that allow for a null substring reference (a length

value of zero) may not be specified for this instruction.

Exception

06

08

10

1C

20

22

24

Addressing

01 Spacing addressing violation

02 Boundary alignment

03 Range

06 Optimized addressability invalid

Argument/parameter

01 Parameter reference violation

Damage encountered
04 System object damage state

44 Partial system object damage

Machine-dependent exception

03 Machine storage limit exceeded

Machine support
02 Machine check

03 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Chapter 1. Computation and Branching Instructions

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

Other

1-149

Copy Hex Digit Zone To Zone (CPYHEXZZ)

Exception

2A

2E

36

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

1-150 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X

J

Copy Numeric Value (CPYNV)

1.47 Copy Numeric Value (CPYNV)

Optional Forms

Op Code (Hex) Operand Operand 2
1
1042 Receiver Source

Operand 1: Numeric variable scalar or data-pointer-defined numeric scalar.

Operand 2: Numeric scalar or data pointer-defined-numeric scalar.

Op Code
Mnemonic (Hex) Form Type
CPYNVR 1242 Round
CPYNVI 1842 Indicator
CPYNVIR 1A42 Indicator, Round
CPYNVB 1C42 Branch
CPYNVBR 1E42 Branch, Round

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The numeric value of the source operand is copied to the numeric
receiver operand.

Both operands must be numeric. If necessary, the source operand is converted
to the same type as the receiver operand before being copied to the receiver
operand. The source value is adjusted to the length of the receiver operand,
aligned at the assumed decimal point of the receiver operand, or both before
being copied to it. If significant digits are truncated on the left end of the source
value, a size exception is signaled. When the receiver is binary this size excep-
tion may be suppressed by using the suppress binary size exception program
attribute on the CRTPG instruction.

If a decimal to binary conversion causes a size exception to be signaled or if the
size exception is suppressed the binary value contains the correct truncated

result only if the decimal value contains 15 or fewer significant nonfractional
digits.

Conversions between floating-point integers and integer formats (binary or
decimal with no fractional digits) is exact, except when an exception is signaled.

An invalid floating-point conversion exception is signaled when an attempt is
made to convert from floating-point to binary or decimal and the result would
represent infinity or NaN, or nonzero digits would be truncated from the left end
of the resultant value.

Chapter 1. Computation and Branching Instructions 1-151

Copy Numeric Value (CPYNV)

For the optional round form of the instruction, a floating-point receiver operand is
invalid.

For a fixed-point operation, if significant digits are truncated from the left end of
the source value, a size exception is signaled. When the receiver is binary this
size exception may be suppressed by using the suppress binary size exception
program attribute on the CRTPG instruction.

For a floating-point receiver, if the exponent of the resultant value is too large or
too small to be represented in the receiver field, the floating-point overflow and
floating-point underflow exceptions are signaled, respectively.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
numeric scalar receiver operand is either positive, negative, or zero.
Unordered-The value assigned a floating-point receiver operand is NaN.

Exceptions
Operands
Exception 1 2 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment
03 Range

04 External data object not found

X X X X X
X X X X X

06 Optimized addressability invalid

08 Argument/parameter

x
x

01 Parameter reference violation

0oC Computation
02 Decimal data X
06 Floating-point overflow
07 Floating-point underlow
09 Floating-point invalid operand
0OA Size

0C Invalid floatin-point conversion

X X X X X X
x

0A Floating-point inexact result

10 Damage encountered

x
x
x

04 System object damage state

44 Partial system object damage X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X
03 Function check X

22 Object access

1-152 AS/400 MI Functional Reference

Exception

24

2A

2C

2E

32

36

01 Object not found
02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0C Invalid operand odt reference

0D Reserved bits are not zero

Program execution

04 Invalid branch target

Resource control limit

01 user profile storage limit exceeded

Scalar specification

01 Scalar type invalid

Space management

01 space extension/truncation

Copy Numeric Value (CPYNV)

Operands
1 2 Other
X X
X X X
X X X
X X X
X X X
X
X X
X X
X X
X
X X X
X X X
X
X
X X
X

Chapter 1. Computation and Branching Instructions 1-183

Divide (DIV)

1.48 Divide (DIV)

Op Code (Hex) Operand 1 Operand 2 Operand 3
104F Quotient Dividend Divisor

Operand 1: Numeric variable scalar.
Operand 2: Numeric scalar.
Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (Hex) Form Type
DIVS 114F Short
DIVR 124F Round
DIVSR 134F Short, Round
DIVI 184F Indicator
DIVIS 194F Indicator, Short
DIVIR 1A4F Indicator, Round
DIVISR 1B4F Indicator, Short, Round
DIVB 1C4F Branch
DIVBS 1D4F Branch, Short
DIVBR 1E4F Branch, Round
DIVBSR 1F4F Branch, Short, Round

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to four branch targets (for branch options) or
one to four indicator operands (for indicator options). The branch or indicator
operands will immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Quotient is the result of dividing the Dividend by the Divisor.

Operands can have floating-point, packed or zoned decimal, signed or unsigned
binary type.

Source operands are the Dividend and Divisor. The receiver operand is the
Quotient.

If operands are not of the same type, source operands are converted according
to the following rules:

1. If any one of the operands has floating point type, source operands are con-
verted to floating point type.

1-154 AS/400 M| Functional Reference

Divide (DIV)

2. Otherwise, if any one of the operands has zoned or packed decimal type,
source operands are converted to packed decimal.

3. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Floating point operands
are divided using floating point division. Packed decimal operands are divided
using packed decimal division. Unsigned binary division is used with unsigned
source operands. Signed binary operands are divided using two’s complement
binary division.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary division execute faster than either packed decimal or
floating point division.

Decimal operands used in floating-point operations cannot contain more than 15
total digit positions.

If the divisor has a numeric value of zero, a zero divide or floating-point zero
divide exception is signaled respectively for fixed-point versus floating-point

operations. If the dividend has a value of zero, the result of the division is a
zero quotient value.

If the divisor has a numeric value of 0, a zero divide exception is signaled. If the
dividend has a value of 0, the result of the division is a zero value quotient.

For a decimal operation, the precision of the result of the divide operation is
determined by the number of fractional digit positions specified for the quotient.
In other words, the divide operation will be performed so as to calculate a
resultant quotient of the same precision as that specified for the quotient
operand. If necessary, internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure the correct precision for
the resultant quotient value. These internal alignments are not subject to
detection of the decimal point alignment exception. An internal quotient value
will be calculated for any combination of decimal attributes which may be speci-
fied for the instruction’s operands. However, the assignment of the result to the
quotient operand is subject to detection of the size exception thereby limiting the
assignment to, at most, the rightmost 31 digits of the calculated result.

Floating-point division uses exponent subtraction and significand division.

If the dividend operand is shorter than the divisor operand, it is logically
adjusted to the length of the divisor operand.

For fixed-point computations and for the significand division of a floating-point
computation, the division operation is performed according to the rules of
algebra. Unsigned binary is treated as a positive number for the algebra.

For a floating-point computation, the operation is performed as if to infinite preci-
sion.

The result of the operation is copied into the quotient operand. If this operand is

not the same type as that used in performing the operation, the resultant value
is converted to its type. If necessary, the resultant value is adjusted to the

Chapter 1. Computation and Branching Instructions 1-155

Divide (DIV)

length of the quotient operand, aligned at the assumed decimal point of the quo-
tient operand, or both before being copied to it.

If significant digits are truncated on the left end of the resultant value, a size
exception is signaled.

If a decimal to binary conversion causes a size exception to be signaled, the
binary value contains the correct truncated result only if the decimal value con-
tains 15 or fewer significant nonfractional digits.

For the optional round form of the instruction, specification of a floating-point
receiver operand is invalid.

For fixed-point operations in programs that request to be notified of size
exceptions, if nonzero digits are truncated from the left end of the resultant
value, a size exception is signaled.

For floating-point operations that involve a fixed-point receiver field, if nonzero
digits would be truncated from the left end of the resultant value, an invalid
floating-point conversion exception is signaled.

For a floating-point quotient operand, if the exponent of the resultant value is
either too large or too small to be represented in the quotient field, the floating-
point overflow and floating-point underflow exceptions are signaled, respectively.

Resultant Conditions: Positive, negative, or zero-The algebraic value of the
numeric scalar quotient is positive, negative, or zero. Unordered-The value
assigned a floating-point quotient operand is NaN.

Exceptions
Operands
Exception 1 2 3 Other
06 Addressing
01 Spacing addressing violation X X X
02 Boundary alignment X X X
03 Range X X X
06 Optimized addressability invalid X X X
08 Argument/parameter
01 Parameter reference violation X X X
oCc Computation
02 Decimal data X X
06 Floating-point overflow X
07 Floating-point underiow X
09 Floating-point invalid operand - X X X
OA Size X
0B Zero divide X
0C Invalid floatin-point conversion X
0D Floating-point inexact result X

1-156 AS/400 MI Functional Reference

Divide (DIV)

Operands

Exception 1 2 3 Other

OE Floating-point divide by zero X
10 Damage encountered

04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine-dependent exception

03 Machine storage limit exceeded X
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

0C Invalid operand odt reference X X X

0D Reserved bits are not zero X X X X
2C Program execution

04 Invalid branch target X
2E Resource control limit

01 user profile storage limit exceeded X
36 Space management

01 space extension/truncation X

Chapter 1. Computation and Branching Instructions 1-157

Divide with Remainder (DIVREM)

1.49 Divide with Remainder (DIVREM)

Optional Forms

Op Code (Hex) Operand 1 Operand 2 Operand 3 Operand 4
1074 Quotient Dividend Divisor Remainder

Operand 1. Numeric variable scalar.
Operand 2: Numeric scalar.
Operand 3: Numeric scalar.

Operand 4. Numeric variable scalar.

{The optional forms apply to the quotient only.)

Op Code
Mnemonic (Hex) Form Type
DIVREMS 1174 Short
DIVREMR 1274 Round
DIVREMSR 1374 Short, Round
DIVREMI 1874 Indicator
DIVREMIS 1974 Indicator, Short
DIVREMIR 1A74 Indicator, Round
DIVREMISR 1B74 Indicator, Short, Round
DIVREMB 1C74 Branch
DIVREMBS 1D74 Branch, Short
DIVREMBR 1E74 Branch, Round
DIVREMBSR 1F74 Branch, Short, Round

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one to three branch targets (for branch options) or
one to three indicator operands (for indicator options). The branch or indicator
operands immediately follow the last operand listed above. See Chapter 1.
“Introduction” for the encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Quotient is the result of dividing the Dividend by the Divisor.
The Remainder is the Dividend minus the product of the Divisor and Quotient.

Operands can have packed or zoned decimal, signed or unsigned binary type.

Source operands are the Dividend and Divisor. The receiver operands are the
Quotient and Remainder.

If operands are not of the same type, source operands are converted according
to the following rules:

1-158 AS/400 MI Functional Reference

Divide with Remainder (DIVREM)

1. If any one of the operands has zoned or packed decimal type, source oper-
ands are converted to packed decimal.

2. Otherwise, the binary operands are converted to a like type. Note: unsigned
binary(2) scalars are logically treated as signed binary(4) scalars.

Source operands are divided according to their type. Packed decimal operands
are divided using packed decimal division. Unsigned binary division is used with
unsigned source operands. Signed binary operands are divided using two’s
complement binary division.

Better performance can be obtained if all operands have the same type. Signed
and unsigned binary division execute faster than packed decimal division.

Floating-point is not supported for this instruction.

If the divisor operand has a numeric value of 0, a zero divide exception is sig-
naled. If the dividend operand has a value of 0, the result of the division is a
zero value quotient and remainder.

For a decimal operation, the precision of the result of the divide operation is
determined by the number of fractional digit positions specified for the quotient.
In other words, the divide operation will be performed so as to calculate a
resultant quotient of the same precision as that specified for the quotient
operand. If necessary, internal alignment of the assumed decimal point for the
dividend and divisor operands is performed to ensure the correct precision for
the resultant quotient value. These internal alignments are not subject to
detection of the decimal point alignment exception. An internal quotient value
will be calculated for any combination of decimal attributes which may be speci-
fied for the instruction’s operands. However, the assignment of the result to the
quotient operand is subject to detection of the size exception thereby limiting the
assignment to, at most, the rightmost 31 digits of the calculated result.

If the dividend operand is shorter than the divisor operand, it is logically
adjusted to the length of the divisor operand.

The division operation is performed according to the rules of algebra. Unsigned
binary is treated as a positive number for the algebra. The quotient result of the
operation is copied into the quotient operand. If this operand is not the same
type as that used in performing the operation, the resultant value is converted to
its type. If necessary, the resultant value is adjusted to the length of the quotient
operand, aligned at the assumed decimal point of the quotient operand, or both
before being copied to it. If significant digits are truncated on the left end of the
resultant value, a size exception is signaled.

After the quotient numeric value has been determined, the numeric value of the
remainder operand is calculated as follows:

Remainder = Dividend - (Quotient*Divisor)

If the optional round form of this instruction is being used, the rounding applies
to the quotient but not the remainder. The quotient value used to calculate the
remainder is the resultant value of the division. The resultant value of the calcu-
lation is copied into the remainder operand. The sign of the remainder is the
same as that of the dividend operand unless the remainder has a value of 0, in
which case its sign is positive. If the remainder operand is not the same type as

Chapter 1. Computation and Branching Instructions 1-159

Divide with Remainder (DIVREM)

that used in performing the operation, the resultant value is converted to its type.

If necessary, the resultant value is adjusted to the length of the remainder

operand, aligned at the assumed decimal point of the remainder operand, or J
both before being copied to it. If significant digits are truncated off the left end of

the resultant value, a size exception is signaled.

If a decimal to binary conversion causes a size exception to be signaled (in pro-
grams that request size exceptions to be signalled), the binary value contains
the correct truncated result only if the decimal value contains 15 or fewer signif-
icant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric scalar quotient is pos-
itive, negative, or 0.

Exceptions
Operands
Exception 1 2 3 4 Other

06 Addressing ’

01 Spacing addressing violation X X X X
02 Boundary alignment X X X X
03 Range X X X X
06 Optimized addressability invalid X X X X
08 Argument/parameter
01 Parameter reference violation X X X X
oC Computation J
02 Decimal data X X
0A Size X X
0B Zero divide X
10 Damage encountered
04 System object damage state X X X X X
44 Partial system object damage X X X X X ’
1C Machine-dependent exception
03 Machine storage limit exceeded X
20 Machine support
02 Machine check X
03 Function check X
22 Object access
01 Object not found X X X X
02 Object destroyed X X X X
03 Object suspended X X X X
24 Pointer specification
01 Pointer does not exist X X X X)
02 Pointer type invalid X X X X

1-160 AS/400 MI Functional Reference

Exception

2A

2C

2E

36

Program creation

05 Invalid op code extender field
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
09 Invalid branch target operand
0C Invalid operand odt reference

0D Reserved bits are not zero

Program execution

04 Invalid branch target

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

Chapter 1. Computation and Branching Instructions

Divide with Remainder (DIVREM)

Operands

1 2 3 4 Other
X

X X X X

X X X X

X X X X
X

1-161

Edit (EDIT)

1.50 Edit (EDIT)

Op Code (Hex) Operand Operand Operand

1 2 3
10E3 Receiver Source Edit
Mask

Operand 1. Character variable scalar or data-pointer-defined character scalar.
Operand 2. Numeric scalar or data-pointer-defined numeric scalar.
Operand 3: Character variable scalar or data-pointer-defined character scalar.

Description: The value of a numeric scalar is transformed from its internal form
to character form suitable for display at a source/sink device. The following
general editing functions can be performed during transforming of the source
operand to the receiver operand:

¢ Unconditional insertion of a source value digit with a zone as a function of
the source value’s algebraic sign

¢ Unconditional insertion of a mask operand character string

e Conditional insertion of one of two possible mask operand character strings
as a function of the source value’s algebraic sign

¢ Conditional insertion of a source value digit or a mask operand replacement
character as a function of source value leading zero suppression

¢ Conditional insertion of either a mask operand character string or a series of
replacement characters as a function of source value leading zero sup-
pression

¢ Conditional floating insertion of one of two possible mask operand character
strings as a function of both the algebraic sign of the source value and
leading zero suppression

The operation is performed by transforming the source (operand 2) under control
of the edit mask (operand 3) and placing the result in the receiver (operand 1).

The mask operand (operand 3) is limited to no more than 256 bytes.

Mask Syntax: The source field is converted to packed decimal format. The edit
mask contains both control character and data character strings. Both the edit
mask and the source fields are processed left to right, and the edited result is
placed in the result field from left to right. If the number of digits in the source
field is even, the four high-order bits of the source field are ignored and not
checked for validity. All other source digits as well as the sign are checked for
validity, and a decimal data exception is signaled when one is invalid. Overlap-
ping of any of these fields gives unpredictable results.

Nine fixed value control characters can be in the edit mask, hex AA through hex
AD and hex AF through hex B3. Four of these control characters specify strings
of characters to be inserted into the result field under certain conditions; and the
other five indicate that a digit from the source field should be checked and the
appropriate action taken.

1-162 AS/400 MI Functional Reference

Edit (EDIT)

One variable value control character can be in the edit mask. This control char-
acter indicates the end of a string of characters. The value of the end-of-string
character can vary with each execution of the instruction and is determined by
the value of the first character in the edit mask. If the first character of the edit
mask is a value less than hex 40, then that value is used as the end-of-string
character. If the first character of the edit mask is a value equal to or greater
than hex 40, then hex AE is used as the end-of-string character.

A significance indicator is set to the off state at the start of the execution of this
instruction. It remains in this state until a nonzero source digit is encountered in
the source field or until one of the four unconditional digits (hex AA through hex
AD) or an unconditional string (hex B3) is encountered in the edit mask.

When significance is detected, the selected floating string is overlaid into the
result field immediately before (to the left of) the first significant result character.

When the significance indicator is set to the on state, the first significant result
character has been reached. The state of the significance indicator determines
whether the fill character or a digit from the source field is to be inserted into the
result field for conditional digits and characters in conditional strings specified in
the edit mask field. The fill character is a hex 40 until it is replaced by the first
character following the floating string specification control character (hex B1).

When the significance indicator is in the off state:

* A conditional digit control character in the edit mask causes the fill character
to be moved to the result field.

* A character in a conditional string in the edit mask causes the fill character
to be moved to the result field.

When the significance indicator is in the on state:

* A conditional digit control character in the edit mask causes a source digit to
be moved to the result field.

* A character in a conditional string in the edit mask is moved to the result
field.

The following control characters are found in the edit mask field.

End-of-String Character: One of these control characters (a value less than hex
40 or hex AE) indicates the end of a character string and must be present even if
the string is null.

Static Field Character:

Hex AF This control character indicates the start of a static field. A static field
is used to indicate that one of two mask character strings immediately
following this character is to be inserted into the result field, depending
upon the algebraic sign of the source field. If the sign is positive, the
first string is to be inserted into the result field; if the sign is negative,
the second string is to be inserted.

Static field format:

Hex AF positive string. . .less than hex 40 or hex AE negative string. .
.hex AE

Chapter 1. Computation and Branching Instructions 1-163

Edit (EDIT)

Floating String Specification Field Character:

Hex B1 This control character indicates the start of a floating string specifica-
tion field. The first character of the field is used as the fill character;
following the fill character are two strings delimited by the end-of-string
control character. If the algebraic sign of the source field is positive,
the first string is to be overlaid into the result field; if the sign is nega-
tive, the second string is to be overlaid.

The string selected to be overlaid into the result field, called a floating
string, appears immediately to the left of the first significant result char-
acter. If significance is never set, neither string is placed in the result
field.

Conditional source digit positions (hex B2 control characters) must be
provided in the edit mask immediately following the hex B1 field to
accommodate the longer of the two floating strings; otherwise, a length
conformance exception is signaled. For each of these B2 strings, the fill
character is inserted into the result field, and source digits are not con-
sumed. This ensures that the floating string never overlays bytes pre-
ceding the receiver operand.

Floating string specification field format:

Hex B1 fill character positive string. . . end-of-string character nega-
tive
string. . .end-of-string character

Hex B2. ..

Conditional String Character:

Hex BO This control character indicates the start of a conditional string, which
consists of any characters delimited by the end-of-string control char-
acter. Depending on the state of the significance indicator, this string
or fill characters replacing it is inserted into the result field. If the sig-
nificance indicator is off, a fill character for every character in the con-
ditional string is placed in the result field. If the indicator is on, the
characters in the conditional string are placed in the result field.

Conditional string format:

Hex BO conditional string. . .end-of-string character

Unconditional String Character:

Hex B3 This control character turns on the significance indicator and indicates
the start of an unconditional string that consists of any characters
delimited by the end-of-string control character. This string is uncondi-
tionally inserted into the result field regardless of the state of the signif-
icance indicator. If the indicator is off when a B3 control character is
encountered, the appropriate floating string is overlaid into the result
field before (to the left of) the B3 unconditional string (or to the left of
where the unconditional string would have been if it were not null).

Unconditional string format:

Hex B3 unconditional string. . .end-of-string character

Control Characters That Correspond to Digits in the Source Field:

4-164 AS/400 M| Functional Reference

Hex B2

Edit (EDIT)

This control character specifies that either the corresponding source
field digit or the floating string (hex B1) fill character is inserted into the
result field, depending on the state of the significance indicator. If the
significance indicator is off, the fill character is placed in the result field;
if the indicator is on, the source digit is placed. When a source digit is
moved to the result field, the zone supplied is hex F. When significance
(that is, a nonzero source digit) is detected, the floating string is over-
laid to the left of the first significant character.

Control characters hex AA, hex AB, hex AC, and hex AD turn on the significance
indicator. If the indicator is off when one of these control characters is encount-
ered, the appropriate floating string is overlaid into the result field before (to the
left of) the result digit.

Hex AA

Hex AB

Hex AC

Hex AD

This control character specifies that the corresponding source field digit
is unconditionally placed in the 4 low-order bits of the result field with
the zone set to a hex F.

This control character specifies that the corresponding source field digit
is unconditionally placed in the resulit field. If the sign of the source
field is positive, the zoned portion of the digit is set to hex F (the pre-
ferred positive sign); if the sign is negative, the zone portion is set to
hex D (the preferred negative sign).

This control character specifies that the corresponding source field digit
is unconditionally placed in the result field. If the algebraic sign of the
source field is positive, the zone portion of the result is set to hex F (the
preferred positive sign); otherwise, the source sign field is moved to the
result zone field.

This control character specifies that the corresponding source field digit
is unconditionally placed in the result field. If the algebraic sign of the
source field is negative, the zone is set to hex D (the preferred negative
sign); otherwise, the source field sign is moved to the zone position of
the result byte.

The following table provides an overview of the results obtained with the valid
edit conditions and sequences.

Table 1-1 (Page 1 of 3). Valid Edit Conditions and Results

Mask
Character

AF

Previous
Significance
Indicator

Off/On

Off/On

Off

Off

On

Resulting
Source Source Result Significance
Digit Sign Character(s) Indicator
Any Positive Positive string No Change
inserted
Any Negative Negative string No Change
inserted
0-9 Positive Positive floating On
string overlaid; hex
F, source digit
0-9 Negative Negative floating On
string overlaid; hex
F, source digit
0-9 Any Hex F, source digit On

Chapter 1. Computation and Branching Instructions 1-165

Edit (EDIT)

Table 1-1 (Page 2 of 3). Valid Edit Conditions and Results

Mask
Character

AB

AC

AD

BO

B1 (including
necessary B2s)

B2 (not for a B1
field)

Previous
Significance
Indicator

Off

Off

On

On

Off

Off

On

On

Off

Off

On

On

Off

On

Off

Off

Off

Off

Source
Digit

0-9

0-9
0-9

0-8
0-8

0-9
0-8

Any

Any

Any

1-166 AS/400 MI Functional Reference

Source
Sign

Positive

Negative

Positive

Negative

Positive

Negative

Positive

Negative

Positive

Negative

Positive

Negative

Any

Any

Any

Any

Positive

Negative

Result
Character(s)

Positive floating
string overlaid; hex
F, source digit

Negative floating
string overlaid; hex
D, source digit

Hex F, source digit

Hex D, source digit

Positive floating
string overlaid; hex
F, source digit

Negative floating
string overlaid;
source sign and digit

Hex F, source digit

Source sign and digit

Positive floating
string overlaid;
source sign and digit

Negative floating
string overlaid; hex
D, source digit

Source sign and digit

Hex D, source digit

Insert fill character
for each BO string
character

Insert BO character
string

Insert the fill char-
acter for each B2
character that corre-
sponds to a char-
acter in the longer of
the two floating
strings

Insert fill character

Overlay positive
floating string and
insert hex F, source
digit

Overlay negative
floating string and
insert hex F, source
digit

Resuiting
Significance
Indicator

On

On

On

On

On

On

On

On

On

On

On

Off

On

No Change

Off

On

On

Edit (EDIT)

Table 1-1 (Page 3 of 3). Valid Edit Conditions and Results

Previous Resulting
Mask Significance Source Source Result Significance
Character Indicator Digit Sign Character(s) Indicator
On 0-9 Any Hex F, source digit
B3 Off Any Positive Overlay positive On

floating string and
insert B3 character
string

Off Any Negative Overlay negative On
floating string and
insert B3 character
string

On Any Any Insert B3 character On
string

Note:

1. Any character is a valid fill character, including the end-of-string character.

2. Hex AF, hex B1, hex B0, and hex B3 strings must be terminated by the end-of-string character even if they are
null strings.

3. If a hex B1 field has not been encountered (specified) when the significance indicator is turned on, the floating
string is considered to be a null string and is therefore not used to overlay into the result field.

4. If the positive and negative strings of a static field are of unequal length, additional static fields are necessary
to ensure that the sum of the lengths of the positive strings equal the sum of the lengths of the negative
strings; otherwise, a length conformance exception is signaled because the receiver length does not corre-
spond to the length implied by the edit mask and source field sign.

The following figure indicates the valid ordering of control characters in an edit
mask field.

Chapter 1. Computation and Branching Instructions 1-167

Edit (EDIT)

AA, AB, AC, AD

Control Character Y

. AF BO B1 B2 B3

00|22 |2 |0
o

AF cjo|jojoj|o

BO

Y
(o]
O
N
(o]
-

Control
Character X

B1 |1 o113 |11

B2 (1 (0[O0 f[2 (0|1

B83|o|jo|j2(|2]|2|0

AACOT-0

Explanation:

Condition Definition
Both X and Y can appear in the edit mask field in either order.
Y cannot precede X.

0

1

2 X cannot precede Y.

3 Both control characters (two B1’s) cannot appear in an edit mask field.

Violation of any of the above rules will result in an edit mask syntax exception.

Figure 1-6. Edit Mask Field Control Characters

The following steps are performed when the editing is done:
¢ Convert Source Value to Packed Decimal

— The numeric value in the source operand is converted to a packed
decimal intermediate value before the editing is done. If the source
operand is binary, then the attributes of the intermediate packed field
before the edit are calculated as follows:

Binary(2) = packed (5,0) or
Binary(4) = packed (10,0)

* Edit

— The editing of the source digits and mask insertion characters into the
receiver operand is done from left to right.

* Insert Floating String into Receiver Field
— If a floating string is to be inserted into the receiver field, this is done
after the other editing.
Edit Digit Count Exception: An edit digit count exception is signaled when:

* The end of the source field is reached and there are more control characters
that correspond to digits in the edit mask field.

1-168 AS/400 MI Functional Reference

Exceptions

Edit (EDIT)

e The end of the edit mask field is reached and there are more digit positions
in the source field.

Edit Mask Syntax Exception: An edit mask syntax exception is signaled when an
invalid edit mask control character is encountered or when a sequence rule is
violated.

Length Conformance Exception: A length conformance exception is signaled
when:

e The end of the edit mask field is reached and there are more character posi-
tions in the result field.

* The end of the result field is reached and more positions remain in the edit
mask field.

e The number of B2s following a B1 field cannot accommodate the longer of
the two floating strings.

Limitations: The following are limits that apply to the functions performed by
this instruction.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands
Exception 1 2 3 Other

06 Addressing
01 Spacing addressing violation
02 Boundary alignment
03 Range

04 External data object not found

X X X X X
X X X X X
X X X X X

06 Optimized addressability invalid

08 Argument/parameter

01 Parameter reference violation X X X

0oC Computation
02 Decimal data X
04 Edit digit count X
05 Edit mask syntax X

08 Length conformance X

10 Damage encountered
04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-dependent exception

03 Machine storage limit exceeded X

20 Machine support
02 Machine check X

Chapter 1. Computation and Branching Instructions 1-169

Edit (EDIT)

Exception

22

24

2A

2E

32

36

03 Function check

Object access

01 Object not found

02 Object destroyed
03 Object suspended

Pointer specification
01 Pointer does not exist

02 Pointer type invalid

Program creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

0D Reserved bits are not zero

Resource control limit

01 user profile storage limit exceeded

Scalar specification
01 Scalar type invalid

02 Scalar attributes invalid

Space management

01 space extension/truncation

1-170 AS/400 MI Functional Reference

Operands
1 2
X X
X X
X X
X X
X X
X X
X X
X X
X

X X
X X
X X

x x

X X X X X X

Other

Exchange Bytes (EXCHBY)

1.51 Exchange Bytes (EXCHBY)

Exceptions

Op Code (Hex) Operand Operand

1 2
10CE Source Source
1 2

Operand 1: Character variable scalar (fixed-length) or numeric variable scalar.
Operand 2. Character variable scalar (fixed-length) or numeric variable scalar.

Description: The logical character string values of the two source operands are
exchanged. The value of the second source operand is placed in the first source
operand and the value of the first source operand is placed in the second
operand.

The operands can be either character or numeric. Any numeric operands are
interpreted as logical character strings. Both operands must have the same
length.

Substring operand references that allow for a null substring reference (a length
value of zero) may not be specified for this instruction.

Operands

Exception 1 2 Other
06 Addressing

01 Spacing addressing violation X X

02 Boundary alignment X X

03 Range X X

06 Optimized addressability invalid X X
08 Argument/parameter

01 Parameter reference violation X X
10 Damage encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-dependent exception

03 Machine storage limit exceeded X
20 Machine support

02 Machine check X

03 Function check X
22 Object access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

Chapter 1. Computation and Branching Instructions 1-171

Exchange Bytes (EXCHBY)

Operands
Exception 1 2 Other
24 Pointer specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
0A Invalid operand length

0C Invalid operand odt reference

X X X X X X
X X X X X X

0D Reserved bits are not zero

2E Resource control limit

01 user profile storage limit exceeded X

36 Space management

01 space extension/truncation X

1-172 AS/400 MI Functional Reference

Exclusive Or (XOR)

1.52 Exclusive Or (XOR)

C

Optional Forms

Op Code (Hex) Operand 1 Operand 2 Operand 3
109B Receiver Source 1 Source 2

Operand 1. Character variable scalar or numeric variable scalar.
Operand 2. Character scalar or numeric scalar.

Operand 3: Character scalar or numeric scalar.

Op Code
Mnemonic (Hex) Form Type
XORS 119B Short
XORI 189B Indicator
XORIS 199B Indicator, Short
XORB 1CSB Branch
XORBS 1DSB Branch, Short

If the short instruction option is indicated in the op code, operand 1 is used as
the first and second operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand (second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op code, the extender field
must be present along with one or two branch targets (for branch options) or one
or two indicator operands (for indicator options). The branch or indicator oper-
ands immediately follow the last operand listed above. See Chapter 1. “Intro-
duction” for the encoding of the extender field and the allowed syntax of the
branch and indicator operands.

Description: The Boolean EXCLUSIVE OR operation is performed on the string
values in the source operands. The resulting string is placed in the receiver
operand.

The operands may be character or numeric scalars. They are both interpreted
as bit strings. Substringing is supported for both character and numeric oper-
ands.

The length of the operation is equal to the length of the longer of the two source
operands. The shorter of the two operands is padded on the right. The opera-
tion begins with the two source operands left-adjusted and continues bit by bit
until they are completed.

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1 0

0 0 0

Chapter 1. Computation and Branching Instructions 1-173

Exclusive Or (XOR)

Source 1 Source 2 Result
Bit Bit Bit

1 0 1

0 1 1

The result value is then placed (left-adjusted) in the receiver operand with trun-
cating or padding taking place on the right.

The pad value used in this instruction is a hex 00.

Substring operand references that allow for a null substring reference (a length
value of zero) may be specified for operands 1, 2, and 3. The effect of specifying
a null substring reference for one source operand is that the other source
operand is EXCLUSIVE ORed with an equal length string of all hex 00s. When a
null substring reference is specified for both source operands, the result is all
zero and the instruction’s resultant condition is zero. When a null substring ref-
erence is specified for the receiver, a result is not set and the instruction’s
resultant condition is zero regardless of the values of the source operands.

If operands overlap but do not share all of the same bytes, results of operations
performed on these operands are not predictable. If overlapped operands share
all of the same bytes, the results are predictable when direct addressing is used.
If indirect addressing is used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the results are not always
predictable.

When the receiver operand is a numeric variable scalar, it is possible that the
result produced will not be a valid value for the numeric type. This can occur
due to padding with hex 00, due to truncation, or due to the resultant bit string
produced by the instruction. The instruction completes normally and signals no
exceptions for these conditions.

Resultant Conditions: Zero-The bit value for the bits of the scalar receiver
operand is either all zero or a null substring reference is specified for the
receiver. Not zero-The bit value for the bits of the scalar receiver operand is not

all zero.
Exceptions
Operands
Exception 1 2 3 Other
06 Addressing
01 space addressing violation X X X
02 boundary alignment X X X
03 range X X X
06 optimized addressability invalid X X X
08 Argument/parameter
01 parameter reference violation X X X
10 Damage encountered
04 system object damage state X X X X
44 partial system object damage X X X X

1-174 AS/400 MI Functional Reference

Exception

1C

20

22

24

2A

2C

2E

36

Machine-dependent exception

03 machine storage limit exceeded

Machine support
02 machine check

03 function check

Object access

01 object not found
02 object destroyed
03 object suspended

Pointer specification
01 pointer does not exist

02 pointer type invalid

Program creation

05 invalid op code extender field
06 invalid operand type

07 invalid operand attribute

08 invalid operand value range
09 invalid branch target operand
0A invalid operand length

0C invalid operand odt reference

0D reserved bits are not zero

Program execution

04 invalid branch target

Resource control limit

01 user profile storage limit exceeded

Space management

01 space extension/truncation

Exclusive Or (XOR)

Operands

1 2 3 Other
X
X
X

X X X

X X X

X X X

X X X

X X X
X

X X X

X X X

X X X
X

X X X

X X X

X X X X
X
X
X

Chapter 1. Computation and Branching Instructions 1-175

Extended Character Scan (ECSCAN)

1.53 Extended Character Scan (ECSCAN)

Optional Forms

Op Code (Hex) Operand 1 Operand 2 Operand 3 Operand 4
10D4 Receiver Base Compare Mode
operand operand

Operand 1: Binary variable scalar or binary array.
Operand 2. Character variable scalar.
Operand 3: Character scalar.

Operand 4. Character(1) scalar.

Op Code
Mnemonic (Hex) Form Type
ESCANI 18D4 Indicator
ESCANB 1CD4 Branch

Extender: Branch or indicator options.

Either the branch option or indicator option is required by the instruction. The
extender field is required along with from one to three branch targets (for branch
option) or one to three indicator operands (for indicator option). The branch or
indicator operands are required for operand 3 and optional for operands 4 and 5.
See Chapter 1. “Introduction” for the bit encoding of the extender field and the
allowed syntax of the branch and indicator operands.

Description: This instruction scans the string value of the base operand for
occurrences of the string value of the compare operand and indicates the rela-
tive locations of these occurrences in the receiver operand. The character string
value of the base operand is scanned for occurrences of the character string
value of the compare operand under control of the mode operand and mode
control characters embedded in the base string.

The base and compare operands must both be character strings. The length of
the compare operand must not be greater than that of the base string. The base
and compare operand are interpreted as containing a mixture of 1-byte (simple)
and 2-byte (extended) character codes. The mode, simple or extended, with
which the string is to be interpreted, is controlled initially by the mode operand
and thereafter by mode control characters embedded in the strings. The mode
control characters are as follows:

* Hex OE = Shift out of simple character mode to extended mode.

* Hex OF = Shift into simple character mode from extended mode. This is
recognized only if it occurs in the first byte position of an extended
character code.

The format of the mode operand is as follows:
¢ Mode operand Char(1)

— Operand 2 initial mode indicator Bit 0

1-176 AS/400 MI Functional Reference

Extended Character Scan (ECSCAN)

Operand starts in simple character mode.
1 = Operand starts in extended character mode.

— Operand 3 initial mode indicator Bit 1

0 = Operand starts in simple character mode.
1 = Operand starts in extended character mode.

— Reserved (binary 0) Bits 2-7

The operation begins at the left end of the base string and continues character
by character, left to right. When the base string is interpreted in simple char-
acter mode, the operation moves through the base string 1 byte at a time. When
the base string is interpreted in extended character mode, the operation moves
through the base string 2 bytes at a time.

The compare operand value is the entire byte string specified for the compare
operand. The mode operand determines the initial mode of the compare
operand. The first character of the compare operand value is assumed to be a
valid character for the initial mode of the compare operand and not a mode
control character. Mode control characters in the compare operand value partic-
ipate in comparisons performed during the scan function except that a mode
control character as the first character of the compare operand causes unpre-
dictable results.

The base string is scanned until the mode of the characters being processed is
the same as the initial mode of the compare operand value. The operation con-
tinues comparing the characters of the base string with those of the compare
operand value. The starting character of the characters being compared in the
base string is always a valid character for the initial mode of the compare
operand value. A mode control character encountered in the base string that
changed the base string mode to match the initial mode of the compare operand
value does not participate in the comparison. The length of the comparison is
equal to the length of the compare operand value and the comparison is per-
formed the same as performed by the Compare Bytes Left Adjusted instruction.

If a set of bytes that matches the compare operand value is found, the binary
value for the relative location of the leftmost base string character of the set of
bytes is placed in the receiver operand.

If the receiver operand is a scalar, only the first occurrence of the compare
operand is noted. If the receiver operand is an array, as many occurrences as
there are elements in the array are noted.

If a mode change is encountered in the base string, the base string is again
scanned until the mode of the characters being processed is the same as the
initial mode of the compare operand value, and then the comparisons are
resumed.

The operation continues until no more occurrences of the compare operand
value can be noted in the receiver operand or until the number of bytes
rem