

f
~

--------- -------- - ---- -- ----------_.- AS/40QTM SC09-1156-00

Languages:
PL/I
User's Guide and Reference

First Edition (June 1988)

This edition applies to the IBM AS/400™ PL/I (licensed program 5728-PLl), and to any subsequent releases
and modifications until otherwise indicated in new editions. Changes are periodically made to the informa­
tion herein; any such changes will be reported in subsequent revisions.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any func­
tionally equivalent program may be used instead.

This publication contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to:

IBM Canada Ltd.
Information Development
Department 849
1150 Eglinton Avenue East
North York, Ontario, Canada M3C IH7

mM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

AS/400 is a trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1988.
IBM is a registered trademark of International Business Machines Corporation, Armonk, NY.

,

HOW THIS MANUAL IS ORGANIZED

About This Manual

This IBM AS/400 Languages: PL/I User's Guide and Reference manual provides
you with the infonnation you need to write, compile, run, test, and maintain PL/I

programs on the AS/4001 System.

Note: This manual describes PL/I as it is used on the AS/400 System. In certain
cases, however, it may be useful to also know the System/38 method. These
methods are summarized or otherwise described in Appendix F, "Converting from
System/38 to the AS/400 System." To fmd out how to use PL/I in the System/38
Environment, you should refer to IBM System/38 PL/I Reference Manual and Pro­
grammer's Guide, SC09-J05J.

Who Should Use This Manual
This manual is meant for programmers who have some knowledge of and experi­
ence in programming with PL/I.

How This Manual is Organized
This manual is divided into two parts. Part 1 is the user's guide to PL/I and Part 2
contains reference infonnation.

• Part 1 is intended to give you the basic infonnation you need to write PL/I pro­
grams. Here you will fmd an introduction to the language and a description of
how to actually create, compile, run, test, and debug your PL/I program.

• Part 2 is a catalogue of reference infonnation that you can refer to while using
PL/I. Part 2 contains material on program elements, organization and use of
data types, data management, and AS/400 meso You will also fmd material on
compiler directives, PL/I statements, references, expressions, and a detailed
description of PL/I procedures, subroutines, functions, and pseudovariables.

Following Part 2 is a series of appendixes containing infonnation that might be
useful to PL/I users. These include:

• Appendix A, "Compiler Service Infonnation"
• Appendix B, "The AS/400 PL/I Language Summary and Character Set"
• Appendix C, "Valid Combinations of Options for Input/Output Statements"
• Appendix D, "Conditions and Condition Codes"
• Appendix E, "EBCDIC CODES"
• Appendix F, "Converting from System/38 to the AS/400 System"
• Appendix G, "Glossary of Acronyms."

1 AS/400 is a trademark of International Business Machines Corporation

About This Manual iii

What You Should Know

This manual also contains a glossary of the AS/400 System and PL/I tenns used in
this manual that might not be familiar to you, and an alphabetically organized index
at the back.

What You Should Know
Before you use this manual, you should be familiar with the infonnation contained
in the following IBM AS/400 publications:

• CL Programmer's Guide, which contains the basic concepts of the control
program functions.

• You should be familiar with your display station (also known as a work
station), and its controls. There are also some elements of its display and
certain keys on the keyboard that are standard regardless of which software
system is currently running at the display station, or which hardware system the
display station is hooked up to. Some of these keys are:

Cursor movement keys
Command keys
Field exit keys
Insert and delete keys
The Error Reset key.

This infonnation is contained in System Operations: Display Station User's
Guide, SC21-9744.

• You should know how to operate your display station when it is hooked up to
the IBM AS/400 System and running the AS/400 System software. This means
knowing about the IBM Operating System/400 (OS/400) and the Control Lan­
guage (CL) to do such things as:

Sign on and sign off the display station
Interact with displays
Use Help
Enter control commands and procedure commands
Call utilities
Respond to messages.

To fmd out more about this operating system and its control language, refer to:

Programming: Control Language Reference, SBOF-0481
Programming: Control Language Programmers Guide, SC21-8077
Programming: Command Reference Summary, SC21-8076
Programming: System Reference Summary, SC21-8104
Programming: Data Management Guide, SC21-9658

• You should know how to call and use certain utilities available on the AS/400
System:

The Screen Design Aid (SDA) utility used to design and code displays. This
infonnation is contained in Application Development Tools: Screen Design
Aid Users Guide and Reference, SC09-1171.
The Source Entry Utility (SHU), which is a full-screen editor you can use to .~
enter and update your source and procedure members. This infonnation is ...,

iv PL/I User's Guide and Reference

If You Need More Information

contained in Application Development Tools: Source Entry Utility User's
Guide and Reference, SC09-1172.

• You should know how to interpret displayed and printed messages. This infor­
mation is contained in Chapter 3, "Testing and Debugging PL/I Programs" on
page 3-1

• You should be familiar with the PL/I program cycle, how indicators affect the
program cycle, and how to code entries on the PL/I specification sheets.

If You Need More Information
You might need to refer to other AS/400 System manuals for specific information
about a particular topic. They are listed below:

• Information Directory, GC21-9678, which contains a brief description of each
manual in the AS/400 library and information on how to order additional publi­
cations.

• Licensed Programs Installation Guide, SC21-9765, which describes how to
install PL/I on your system.

• System Operations: Operator's Guide, SC21-8082, which describes how to
operate the AS/400 System.

• Programming: Data Description Specifications Reference, SC21-9620, which
describes data description specifications that are used for describing meso

• Communications: Distributed Data Management User's Guide, SC21-9600,
which contains information about remote communication for the PL/I pro­
grammer.

• Programming: Data Base Guide, SC21-9659, which contains a detailed dis­
cussion of the AS/400 data base structure. This manual also describes how to
use Data Description Specifications (DDS) keywords.

• Communications: Programmer's Guide, SC21-9590, which provides information
an application programmer needs to write applications that use the AS/400
System communications and the Intersystem Communications Function me.

• Programming: Graphical Data Display Manager Programming Reference,
SC33-0537, and Programming: Graphical Data Display Manager Programming
Guide, SC33-0536, which provide guidance on the Graphical Data Display
Manager (GDDM) for programmers who need to write graphics applications.

• System/38 Environment Programmer's Guide and Reference, SC21-9755, which
describes migrating from System/38 and converting to the AS/400 System.

• Programming: Structured Query Language/400 Reference, SC21-9608, which
provides detailed information on using Structured Query Language (SQL) state­
ments.

• For limitations that may apply to your program but which do not come from
PL/I, see the Programming: Control Language Programmer's Guide, SC21-80n.

About This Manual V

How to Read the Syntax Diagrams
1broughout this manual, syntax is described using the structure outlined below.

• Read the syntax diagrams from left to right, top to bottom, following the path
of the line.

The - symbol indicates the beginning of a statement.

The - symbol indicates that the statement syntax is continued on the next
line.

The - symbol indicates that a statement is continued from the previous line.

The -... symbol indicates the end of a statement.

Diagrams of syntactical units, other than complete statements, start with the
- symbol and end with the - symbol.

• Required items appear on the main path.

-statement---requi red itemr----------I--..

• Optional items appear below the main path. Items will appear in a vertical
stack if more than one option is available.

-statement--,----------.-------~· ..
t=:0ptional choice1~

optional choice2

One item of a vertical stack appearing on the main line indicates that at least
one option is mandatory.

-statement---r==reqUired choice1=:]
required choice2

....

J

• An arrow returning to the left above the main line indicates a single item that J
can be repeated, or an additional option selected from a vertical stack.

The repeat arrow will also indicate any punctuation, such as a comma, that is
required between selections.

~
-statement~repeatable ite

coptional choicel
optional choice2

• Enter words in UPPERCASE characters as shown, unless an abbreviation is
indicated. Words in lowercase characters represent variable values, and are
described following the syntax diagram.

• All round brackets, arithmetic and logical operators, and punctuation must be
entered where shown.

vi PL/I User's Guide and Reference

L

• The underscore on any item denotes a default attribute.

Note: For ease of readability, syntax in some areas of the manual will deviate from
the above description, as follows:

• Square brackets indicate optional items.

• Vertical bars indicate a choice of items.

• Braces indicate mandatory syntactic expressions.

The following example shows the syntax for the OPEN statement.

o fJ II II II
--OPEN-FILE(f;le_constant)-~---r--"--------"""""

~TITLE(eXpress;on)~
m

-INPUT-

-OUTPUT-

-UPDATE-

~~ -""[-L-I N-E-S-IZ-E-(-eX-p-r-es-s-;-on-)-J~---r[-P-AG-E-S-IZ-E-(-ex-p-r-es-s-; -on-)-J-'--;-

m m
The following is the interpretation for the above sample syntax:

o The start of the syntax diagram.

fJ The keyword OPEN must be entered.

II The keyword FILE(fil e_constant) must be entered.

II Brackets indicate mandatory part of syntax.

II The syntax is continued at II.
m Various options available with the OPEN statement.

II The syntax is continued from II.
m The end of the syntax diagram.

About This Manual vii

Language Extensions
Language extensions are indicated by enclosing the descriptions of the extension in
special frames:

Full Language Extension

These brackets indicate language extensions that are part of the complete PL/I

(ANSI PL/I X3.53-1976).

'--________ End of Full Language Extension ________J

IBM Extension

These brackets indicate language extensions that occur in more than one PL/I com­
piler, and that are not part of either the complete PL/I (ANSI PL/I X3.53-1976) or
the general-purpose subset (ANSI PLjI X3.74-1981).

L....-__________ End of IBM Extension __________J

Industry Standards
The AS/400 PL/I Licensed Program is designed according to the specifications of the ..)
following industry standards as understood and interpreted by IBM as of January
1981: American National Standards (ANS) PL/I, X3.53-1976, which is technically
identical to International Organization for Standardization (ISO) 6160-1979, and
European Computer Manufacturers Association (ECMA) (1976)

The AS/400 PL/I, which is described in this publication, is based on the American
National Standards Programming Language PL/I General-Purpose Subset,
X3.74-1981, with the following differences:

• Restrictions and omissions from the above subset.

• Extensions based on features of the American National Standard Programming
Language PL/I, X3.53-1976.

• Extensions based on common features added by IBM.

• Extensions based on PL/I features added by IBM.

For a complete description of the source of each feature of the language, refer to
Appendix B, "The AS/400 PL/I Language Summary and Character Set."

The AS/400 PUI Licensed Program
The AS/400 PL/I consists of the following:

• A PL/I compiler

• An interface to Source Entry Utility (SEU) for checking PL/I syntax.

viii PL/I User's Guide and Reference

J

What Your AS/400 System Needs to Run PL/I
The AS/400 PL/I Licensed Program (5728-PLl) is run by the IBM Operating
System/400 (OS/400) Licensed Program (5728-SS1) on any size AS/400 System that
has at least one 1920-character 5250 (or functionally compatible) work station.

The AS/400 PL/I is installed in a separate user library, called QPLI. See the
Licensed Programs Installation Guide, SC21-9765 for information on installing PL/I.

About This Manual ix

J

X PL/I User's Guide and Reference

Contents

Part 1. User's Guide

Chapter 1. An Introduction to PL/I and the AS/400 System 1-1
The AS/400 Operating System and Control Language 1-1
Accessing PL/I on the AS/400 System 1-1

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-1
Creating and Editing the Source Program 2-1

Using SEU to Create and Edit a Source Program 2·2
Using SEU to Browse a Compiler Listing 2·4
Entering SQL Statements into a PL/I Program 2·5

Compiling Your Source Program Using the CRTPLIPGM Command 2·5
Completing the First CRTPLIPGM Screen 2·6
Completing the Second CRTPLIPGM Screen 2·9
Completing the Third CRTPLIPGM Screen 2·12
The .DIAGNOSE Option of the GENOPT Parameter 2-16

U sing Compiler Directives . 2-16
Using the %INCLUDE Directive 2-16
Using the %PAGE Directive 2-18
Using the %PROCESS Directive 2-18
Using the %SKIP Directive 2·19

Compiler Output 2-19
Running the Program 2-22

Interrupting or Ending the Running of a Compiled Program 2-22
Abnonnal Program Ending 2-22

Interlanguage Calls 2-23
Calling a Non-PL/I Program 2-23
Calling a PL/I Program from a Non-PL/I Program 2-24

Chapter 3. Testing and Debugging PL/I Programs 3·1
Using, Displaying, and Printing Messages 3-1

Using Messages 3·1
Displaying and Printing Messages 3-3

Using a Test Library 3-3
Using Breakpoints 3-5

Example of Using Breakpoints 3-5
Considerations for Using Breakpoints 3-6

Using a Trace 3-7
Example of Using a Trace 3· 7
Considerations When Using a Trace .. 3-8

Using Debug 3-10
PL/I Storage 3-10
Calling Levels . 3-10
Scoping of Names 3·11
Fully Qualified Names 3·11
PL/I Pointers 3·12

Contents xi

Part 2. Reference

Floating Point Variables 3-12
Changing Varying Length Strings 3-12
Specifying Variables by ODV Number 3-13
Displaying Level Numbers 3-13
References to Static Variables 3-13
Determination of Active Blocks in a Program 3-13

Using PLIDUMP 3-14
Example of Using PLIDUMP 3-15

Error Dump Option Screen 3-16
Using PLIIOFDB and PLIOPNFDB 3-17
Using ON Conditions 3-17

Chapter 4. Program Elements and Organization
Characters That are Used in PL/I

PL/I Program Structure
Statements and Directives
Elements of a PL/I Statement

Program Organization .
Programs
Blocks
Internal and External Procedures
Begin-Blocks

Names
Explicit Declaration of a Name
Contextual Declaration of a Name
Multiple Declarations of Names
Scopes of Names

Chapter 5. PL/I Data Organization and Use
DATA ORGANIZATION

Using Arrays and the Dimension Attribute
Using Structures and Level Numbers
Arrays of Structures
Performance Considerations with Large Aggregates

Data Alignment and the Alignment Attributes
Data Mapping .

Scalar Data Mapping
Array Mapping
Structure Mapping

STORAGE CONTROL
Using the STATIC Attribute
Using the INITIAL Attribute
Using the AUTOMATIC Attribute
Using the BASED Attribute
Based Variable Reference and Pointer Qualification
ALLOCA TE Statement for Based Variables
FREE Statement for Based Variables

Data Assignment
String Data Assignment

4-1
4-1
4-1
4-1
4-2
4-6
4-6
4-6
4-9

4-11
4-12
4-13
4-13
4-14
4-14

5-1
5-1
5-1
5-3
5-5
5-7
5-7
5-9

5-10
5-11
5-12
5-15
5-16
5-17
5-18
5-19
5-20
5-22
5-23
5-24
5-25

xii PLjI User's Guide and Reference

L Arithmetic Data Assignment .
Data Conversion

Built-In Conversion Functions
Calculating String Length and Precision
Conversion Rules
Truncation of Floating-Point Data
Examples of Data Conversion

Chapter 6. AS/400 PL/I File and Record Management
File Management

File Independence
Device Independence
System Override Considerations
Security

Types of Files ..
Data Base Files
File Locking
Record Locking
DEVICE Files .
DISPLAY Files
Other Types of Device Files

Using Record Formats
Externally Described Record Formats
Program-Described Files

Chapter 7. File Declaration and Input/Output
The ENVIRONMENT Attribute

File Organization Options
File Locking Options
Key Options

CTLASA Option
BUFSIZE (integer_constant) Option
DESCRIBED Option
Commitment Control Option
Blocking Option
NOINDARA Option

Opening and Closing Files
Scoping of Open Files (File Sharing)
Considerations for Opening a Print Stream File
Considerations for Opening a Non-Print Stream File
Considerations for Opening SYSPRINT
Considerations for File Closing after an Error

The OPTIONS Option of Record Data Transmission Statements
RECORD Parameter ..
KEYSEARCH Parameter
POSITION Parameter
NBRKEYFLDS Parameter
INDICATORS Parameter
MODIFIED Parameter ..

5-26
5-27
5-28
5-29
5-29
5-34
5-34

6-1
6-1
6-1
6-1
6-2
6-3
6-4
6-4
6-6
6-7
6-8
6-8
6-9

6-11
6-11
6-12

7-1
7-1
7-2
7-3
7-3
7-4
7-5
7-6
7-6
7-7
7-8

7-11
7-11
7-12
7-12
7-12
7-13
7-13
7-15
7-17
7-17
7-18
7-19
7-20

Chapter 8. Using AS/400 Files 8-1

Contents xiii

Using Data Base Files
Externally Described Data Base Files
Program-Described Data Base Files
Data Description Specifications

Using Display Files
Externally Described Display Files
Example of Using a Display File
Example of Using a Subftle for Displaying Data
Example of Using Indicators '"

Using Device Files
Externally Described Device Files
Program-Described Device Files .
Example of Using a Printer File .

Using STREAM Files
Example of Using a Stream File .

Commitment Control
Using the COMMITTABLE Option
Using the PLICOMMIT Built-In Subroutine
Using the PLIROLLBACK Built-In Subroutine
Using PLICOMMIT and PLIROLLBACK
Examples Using Commitment Control

Using the %INCLUDE Directive for External File Descriptions
Using the %INCLUDE Directive with Externally Described Files .
Using the %INCLUDE Directive with Program-Described Files
Using the %INCLUDE Directive with Display Files
DDS to PL/I Mapping
DDS Features You Can Use in Your PL/I Program
Sample Program Showing Use of DDS Features

Chapter 9. References and Expressions
Operational Expressions

Arithmetic Operations
Bit Operations
Comparison Operations
Concatenation Operations
Combinations of Operations

Chapter 10. Condition Handling Statements
Specifiable Conditions in ON and SIGNAL Statements
Unspecifiable Conditions
Established Action
Implicit Action

ON Statement
Running an On-Unit
Scope of the Established Action
Scope of Values of Condition Handling Built-In Functions

SIGNAL Statement
Example of Use of Conditions

Chapter 11. Input and Output Statements
Input and Output

xiv PL/I User's Guide and Reference

8-1
8-2
8-2
8-2

8-22
8-23
8-23
8-29
8-43
8-49
8-50
8-50
8-50
8-55
8-56
8-58
8-59
8-59
8-60
8-61
8-64
8-73
8-75
8-76
8-76
8-77
8-78
8-79

9-1
9-4
9-5
9-9

9-10
9-14
9-14

10-1
10-1
10-2
10-2
10-2
10-2
10-3
10-4
10-4
10-4
10-5

11-1
11-1

Files .. 11-2
AS/400 Files 11-2

Use of the File Attributes 11-3
File NatIle 11-3
Type Of Data Transmission 11-3
Direction of Data Transmission 11-3

Opening and Closing Files 11-4
OPEN Statement 11-4
CLOSE Statement 11-8

Record Data Transmission 11-8
Use of File Description Attributes 11-9

Data Transmission Statements 11-10
Options of Record Data Transmission Statements 11-16

StreatIl Data Transmission 11-22
File Description Attributes 11-23
Data Transmission Statements 11-23
Options of StreatIl Data Transmission Statements 11-26

Data Specifications 11-27
Data Lists .. 11-27
Format Lists
Format Items
Transmission of Array Elements and Structure Fields

Print Files
SYSIN File
SYSPRINT File

Chapter 12. Declaring Names and Attributes of Variables
The DECLARE Statement

Factoring of Attributes
Classification of Attributes

Required Attributes
Implied Attributes
File Attributes

Data Types
Problem Data Attributes

Coded Arithmetic Data Attributes
String Data Attributes
PICTURE Data Attribute
Digit and Decimal Point Characters
Zero Suppression Characters
Insertion Characters
Sign and Currency Characters
Credit and Debit Characters
Digit and Signed Character "

ProgratIl Control Data Attributes
POINTER Attribute
LABEL Attribute
ENTR Y Attribute

BUILTIN Attribute
VARIABLE Attribute
Aggregate Data Declarations

11-28
11-31
11-41
11-42
11-44
11-44

12-1
12-1
12-2
12-2
12-5
12-5
12-6
12-8
12-9

12-10
12-15
12-19
12-22
12-23
12-23
12-24
12-26
12-26
12-30
12-30
12-31
12-32
12-36
12-37
12-38

Contents XV

Arrays and the Dimension Attribute
Structures and Level Numbers

Alignment Attributes
Scope Attributes
Storage Attributes

AUTOMATIC Attribute
BASED Attribute
STATIC Attribute
INITIAL Attribute

Chapter 13. General PL/I Statements
Assignment Statement

Examples of Assignment Statements
BY NAME ASSIGNMENT

DO Statement
Examples of DO Statements

END Statement .
GO TO Statement
IF Statement

Examples of IF Statements
ITERATE Statement

Example of the ITERATE Statement
LEAVE Statement

Examples of LEAVE Statements
Null Statement

Examples of Null Statements
SELECT, WHEN, and OTHERWISE Statements

Examples of Select-Groups .
STOP Statement

Chapter 14. Procedures, Subroutines, and Functions
Denning a Procedure

PROCEDURE Statement
RETURN Statement

Calling a Procedure ..
Function Reference
CALL Statement
Association of Arguments and Parameters
Recursive Procedures

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables
Declaring a Built-In Function or Built-In Subroutine

Built-In Functions
Classification of Built-In Functions

Built-In Subroutines
Pseudo variables
Aggregate Arguments ..
Empty Argument Lists

Descriptions of Built-In Functions, Subroutines and Pseudovariables
ABS(x)
ACOS(x)

xvi PLjI User's Guide and Reference

12-38
12-39
12-40
12-40
12-41
12-41
12-42
12-42
12-42

13-1
13-1
13-2
13-3
13-5
13-8

13-10
13-11
13-13
13-14
13-14
13-15
13-15
13-16
13-17
13-17
13-18
13-19
13-20

14-1
14-1
14-2
14-4
14-4
14-4
14-7
14-9

14-11

15-1
15-1
15-1
15-2
15-4
15-5
15-5
15-5
15-5
15-5
15-6

ADDR(x) 15-6
ASIN(x) 15-6
ATAN(x[,y]) 15-7
ATAND(x[,y]) 15-7
ATANH(x) 15-7
BINARY(x[,p[,O]]) 15-8
BIT(x[,y]) 15-8
CHARACTER(x[,y]) 15-8
COPY(x,y) 15-8
COS(x) 15-9
COSD(x) 15-9
COSH(x) 15-9
DATE[O] 15-9
DECIMAL(x[,p[,q]]) 15-9
DIMENSION(x,y) 15-10
DIVIDE(x,y,p[,q]) 15-10
EXP(x) 15-11
FIXED(x,p[,q]) 15-11
FLOAT(x,p) 15-11
HBOUND(x,y) 15-11
INDEX(x,y) 15-12
LBOUND(x,y) 15-12
LENGTH(x) 15-12
LINENO(x) 15-12
LOG(x) 15-12
LOG2(x) IS-13
LOG10(x) 15-13
MAX(xl,x2) IS-13
MIN(xl,x2) lS-13
MOD(x,y) IS-14
NULL[O] IS-14
ONCODE[O] 15-14
ONFILE[OJ IS-IS
ONKEYIOJ IS-IS
PLICOMMIT Built-In Subroutine IS-IS
PLIDUMP Built-In Subroutine IS-16
PLIIOFDB Built-In Subroutine IS-16
PLIOPNFDB Built-In Subroutine lS-17
PLIRCVMSG Built-In Subroutine 15-18
PLIRETC Built-In Subroutine IS-18
PLIRETV[()] .. IS-19
PLIROLLBACK Built-In Subroutine IS-20
PLISHUTDN[O] 15-20
ROUND(x,y) 15-20
SAMEKEY(x) 15-21
SIGN(x) 15-21
SIN(x) 15-22
SIND(x) 15-22
SINH(x) 15-22
SQRT(x) 15-22
STORAGE(x) 15-22

Contents xvii

SUBSTR(x,y[,z])
SUBSTR(x,y[,z]) Pseudovariable
TAN(x)
TAND(x)
TANH(x)
TIME[OI
TRANSLA TE(x,y[,z])
TRUNC(x)
UNSPEC(x)
UNSPEC(x) Pseudovariable
VERIFY(x,y)

15-23
15-23
15-24
15-24
15-24
15-24
15·24
15-25
15·25
15-25
15-26

Appendix A. Compiler Service Information A-I
Compiler Overview A-I

Compiler Organization A-3
Compiler Phases A-3
Intermediate Text A-5
Compiler Segments A-5
Formatters and Intermediate Text A-9
Error Message Organization A-9

Compiler Debugging Options A-lO
Examples of Using Compiler Debugging Options A-I0
Using the SERVICE Parameter A·I5

Quantitative Limits of Compiler A-19

Appendix B. The AS/400 PL/I Language Summary and Character Set
The PL/I Character Set

Extralingual Characters

Appendix C. Valid Combinations of Options for Input/Output Statements ..
Data Base Files with CONSECUTIVE organization
Data Base Files with INDEXED organization
Display Files with INTERACTIVE organization
Subflles with INTERACTIVE organization
Display Files with CONSECUTIVE organization
Inline Files with CONSECUTIVE organization
Printer Files with CONSECUTIVE organization
Tape and Diskette Files with CONSECUTIVE organization
Communications and BSC Files with INTERACTIVE and

B-1
B-14
B-15

C-I
C-2
C-3
C-4
C-5
C-6
C-7
C-7
C-8
C-9

Appendix D. Conditions and Condition Codes D-I
Conditions D-I
Condition Codes D-6

Appendix E. EBCDIC CODES E-l

Appendix F. Converting from System/38 to the AS/400 System F-1
Your Choice of Two Environments: AS/400 System or the System/38

Environment F-I

J

Compiling in the System/38 Environment F -1., <,
Writing Programs in the System/38 Environment F-2,

xviii PL/I User's Guide and Reference

Writing Programs in the System/38 Environment F-2
Using the %INCLUDE Directive F-2
Using the %INCLUDE Directive for External File Descriptions F-2
Syntax of TITLE Parameter of the OPEN Statement F-3

Appendix G. Glossary of Abbreviations G-l

Glossary of Terms GLOSS-I

Index .. X-I

Contents xix

XX PL/I User's Guide and Reference

Part 1. User's Guide

Part 1 is a user's guide. It contains the basic information you need to program in
AS/400 PLII. This information is organized sequentially to allow you to read
through it and develop an understanding of PLII programming: how to create,
compile, run, test, and debug your program.

The user's guide is organized into:

• Chapter 1, "An Introduction to PL/I and the AS/400 System"

• Chapter 2, "Creating, Compiling, and Running Your PL/I Program"

• Chapter 3, "Testing and Debugging PL/I Programs."

Part 1. User's Guide

PL/I User's Guide and Reference

L

ACCESSING PLfI on the ASf400 System

Chapter 1. An Introduction to PL/I and the AS/400 System

This chapter is a brief introduction to using AS/400 PL/I. The topics include:

• The AS/400 Operating System and Control Language
• Accessing PL/I from OS/400

The AS/400 Operating System and Control Language

The AS/400 Operating System

The operating system that controls all your interactions with the AS/400 System is
called Operating System/400 (OS/400). From your display work station, OS/400
allows you to:

• Sign on and sign off the AS/400 System
• Interact with the displays
• Use Help
• Enter control commands and procedures
• Respond to messages
• Manage ftles
• Call up other utilities and run other programs.

The AS/400 Control Language

You interact with the AS/400 System by entering or selecting Control Language
(CL) commands.

The AS/400 CL commands you will be using most often with PL/I are:

• STRSEU to call up the Source Entry Utility (SEU), a full-screen editor that can be
used to enter PL/I program code

• CRTPLIPGM to compile PL/I source programs
• CALL program-name to run a PL/I program
• CALL QCL to access the System/38 Environment
• RETURN to exit from System/38 Environment.

The Control Language and all its commands are described in detail in the Program­
ming: Control Language Reference.

Accessing PUI on the AS/400 System
When you start working on the AS/400 System, you will see the following screen.

Chapter 1. An Introduction to PLjI and the ASj400 System 1-1

ACCESSING PL/I on the AS/400 System

Sign On

User ID • • • • •
Password . • • •
Program/procedure
Menu •
Current library.

____ error message line-----

System ••
Subsystem •
Display

xxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

~ COPYRIGHT IBM CORP. 198B

Figure 1-1. The AS/400 System Sign-on Screen

The following screen appears, when you enter your ID and password, and you can
begin working on the AS/400 System.

MAIN AS/400 Hain Menu
System: xxxxxxxx

Select one of the following:

1. User tasks
2. Office tasks
3. General system tasks
4. Files, libraries, and folders
5. Prograrrming
6. Communications
7. Define or change the system
8. Problem handling
9. Display a menu

90. Sign off

Selection or command

===>---
F3=Exit F4=Prompt F9=Retrieve Fl2= Pre v i ous F13=User Support
F23=Set initial menu

~ COPYRIGHT IBM CORP. 1988

Figure 1-2. AS/400 Main Menu Screen

To begin working in PL/I, enter or select the appropriate CL command.

1-2 PL/I User's Guide and Reference

CREATING AND EDITING PROGRAMS

Chapter 2. Creating, Compiling, and Running Your PL/I
Program

To run a program, you must enter and store it on the AS/400 System as a source
me, and then compile it. You can connect programs written in different languages,
including PL/I, and run the PL/I program as part of a system of programs. The
chapter describes:

• Creating and editing the source program
• Compiling your source program using the CR TPLIPGM command
• U sing compiler directives
• Running the program
• Compiler output
• Interlanguage calls.

Creating and Editing the Source Program
You can enter your source program onto the system interactively, by using the
Source Entry Utility (SEU). Enter the CL command STRSEU (Start SEU) to call SEU.

For a description of how to use the STRSEU command, refer to the SEU Users
Guide and Reference.

You can enter your source program onto the system in batch mode (for example,
from diskettes) by using the OS/400 copy or spooling functions. For more informa­
tion on how to use the copy and spooling functions for batch entry, refer to the
Programming: Data Management Guide.

The flrst procedure in creating your program is to name the me that will store the
source program. The AS/400 me naming convention that you use to do this is
library-name/file-name.

Note: A PL/I program that is entered in the System/38 Environment should also be
compiled and run in the System/38 Environment. The program can access
any me unless the me name contains characters other than A-Z, 0-9, #, @,
and _. Because this restriction does not apply to AS/400 me names, you
may not be able to use a AS/400 me from the System/38 Environment.

On the AS/400 System, you can use upper or lowercase characters in a me
name or a member name. However, all lowercase characters are converted to
uppercase in the Systemj38 Environment.

Chapter 2. Creating, Compiling, and Running Your PLjI Program 2-1

CREATING AND EDITING PROGRAMS

Using SEU to Create and Edit a Source Program
SEU provides you with a screen that you can use to enter your source program, and
a PL/i syntax checker that checks each line for errors as you enter it. There are also
three screens that you can use for various functions on a me you are editing. The
screens are:

• The Edit Services Screen shown in Figure 2-1 on page 2-3

• The Find/Change Services Screen shown in Figure 2-2 on page 2-3

• The Browse/Copy Services Screen shown in Figure 2-3 on page 2-4.

The PL/I Syntax Checker

The following commands allow you to use the PL/I syntax checker.

• The CL command STRSEU TYPE(PLI) accesses SEU with the PL/I syntax checker
in effect. You can also select the TYPE(PLI) parameter from the SEU edit ser­
vices screen (see Figure 2-1 on page 2-3).

• The CL command STRSEU TYPE(TEXT) accesses SEU as an editor only; no syntax
checker is in effect.

• The CL command STRSEU TYPE(PLI38) calls up the System/38 PL/I syntax
checker. The syntax rules for System/38 PL/I apply.

If you use the PL/I syntax checker while entering your source program, pressing
Enter at any time automatically processes the syntax checker on any line that has
been changed and on any new lines that have been added to the screen. Any state­
ment that contains a syntax error is then shown in reverse image, and an error
message appears on the screen telling you what is wrong with the statement. When
you correct the error and press Enter, the error message is taken off the screen and
the normal image of the statement is restored.

The syntax checker only checks individual statements, independently of preceding
statements. Therefore no errors based on relationships with other statements are
detected. For instance, if you declare W AGETOT at the beginning of your
program and misspell the variable name in a later statement

WAGETOTAL = CURMONTHTOTAL + YTDTOTAL;

no error is detected. Similarly, if you make an error in nesting loops and code too
many END statements, the syntax checker cannot detect the error. This type of
error is found when you compile the source program.

2-2 PL/I User's Guide and Reference

L

CREATING AND EDITING PROGRAMS

Type choices, press Enter.
Amount to roll ••••

Uppercase input only • • •
Tabs on ••••••••
Increment of insert record • •
Source type • • • • • •
Syntax checking:

When added/modified ••
From sequence number •
To sequence number •
Left margi n • • •
Right margin •••

Set records to date
Screen size

Edit Services

1

V
N
a.a1
PLI

v

2
72

/ /
1

1-Ha If page
2=Full page
V-Yes, N .. No
V-Yes, N-No
0.01 to 999.99

V-Yes, N-No
aeaa.aa to 9999.99
aaaa.ae to 9999.99
1 to SO
1 to sa
VV/HH/DD or VVHHDD
1-Z7x13Z, 2-Z4xSa

F3-Exit FS-Refresh
F14-Find/Change Services

HZ-Previous
F1S-Browse/Copy Services

Figure 2-1. SEU Edit Services Screen

Type choices, press Enter.
Find •••
Change ••

Find/Change Services

From co hllln number 1
To column number • • S9
Allow data shift • V
Occurrences to process 1

Records to search •

Kind of match •

Search for date •
Compare •••

1

2

SS/11/19

1 to sa
1 to sa
V-Yes, N-No
1"Next, Z-All
3·Previous
1-AII, 2·Excluded
3·Non-excluded
1"Same case
2-lgnore case
VV/HH/DD or VVHHDD
1-Less than
2-Equa I to
3-Greater than

F3-Exit FS-Refresh F12-Previous F13-Edit Services
F1S-Browse/Copy Services F16-Find F17-Change

Figure 2-2. SEU Find/Change Services Screen

Chapter 2. Creating, Compiling, and Running Your PLjI Program 2-3

CREATING AND EDITING PROGRAMS

Browse/Copy Services
Type choices, press Enter.

Selection. • ••••••

Copy all records
Browse/copy member

Library • • • • •
File •••••

Browse/copy spool file
Job • • • • •

User • • • • • •
Job number •• •

Spool number •••
Display output queue

Library ••••••

N
ALC002
DBUB
QPLISRC
QSYSPRT
E24
BRODEUR
*LAST
*LAST
QPRINT
*LIBL

laMember
2-Spoo1 file
3=Output queue
Y-Yes, N-No
Name, F4 for list
Name, *CURLIB, *LIBL
Name
Name
Name
Name
Number, *LAST
Number, *LAST, *ONLY
Name, "ALL
Name, *CURLIB, *LIBL

F3-Exit FSaRefresh
FI3 a Edit Services

F12-Previ ous
F14=Find/Change Services

Figure 2-3. SEU Browse/Copy Services Screen

The PL/I syntax checker sets the margins for your source entry to column 2 and
column 72. You can see the margin settings by looking at the lower right-hand
comer of your fIle's services screen. For normal PL/I programming this is the
standard and desirable setting, but at times you may need to change the setting. For
instance, the %PROCESS directive must begin in column 1. %PROCESS is not
valid if it begins in any other column. In this case, you should alter the left margin
to column 1 so that you can enter the %PROCESS directive correctly. You use
the Edit Services screen and change the column number for the left margin from 002
to 001. If you change the margin to 001, you must make sure that the standard PL/I

statements in your program do not begin in the nrst column of the screen.

SEU automatically runs the PL/I syntax checker whenever there are lines that are
changed or added on the screen. The new source program is then passed to the
syntax checker one statement at a time. Because PL/I source data can be entered in
free format and its statements can span more than one line, SEU uses the semicolon
to determine the statement boundaries.

Note: The scanning of the semicolon in the backward direction to fmd the start of a
statement may occasionally produce unwanted results when the semicolon is
imbedded inside a comment or a string literal, or when the %INCLUDE directive is
used in the middle of a statement.

Using SEU to Browse a Compiler Listing
You may use the SEU split-edit display to browse through a compiler listing that is
on an output queue. For more information on browsing through a compiler listing,
see the SEU User's Guide and Reference.

2-4 PLjl User's Guide and Reference

COMPILING SOURCE PROGRAMS

Entering SQL Statements into a PL/I Program
The Structured Query Language (SQL) is a high level data base storage and retrieval
language that uses structured techniques. You can place SQL statements into a PL/I
program at any point using the SEU to enter the statements.

To enter SQL statement(s) into a PL/I program, you would enter:

EXEC SQL sql-statement;

Each SQL statement should end with a semicolon and must be on a separate line.
The Programming: Structured Query Language/400 Reference describes SQL in
detail.

Note: SQL statements are recognized and syntax checked by the editor only; not the
compiler. They are not processed.

If your program contains SQL statements, you must call the SQL preprocessor before
using CRTPLIPGM to compile the source program. Refer to Programming:
Structured Query Language/400 Reference for a description of how this is done.
This is not necessary if the source program has no SQL statements.

Compiling Your Source Program Using the CRTPLIPGM Command
To compile a PL/I source program use the CL command CRTPLIPGM (Create PL/I

Program). The compiler checks the syntax of each line of the PL/I source program,
and checks relationships among the lines. By selecting options with the
CRTPLIPGM command, you can request a program object, a compiler listing, or
any of the other options provided. You may use the command directly from
OS/400, in a CL program, or in interactive or batch mode.

You can use compiler directives in your PL/I source program to direct some of the
operations of the PL/I compiler. Compiler directives allow you to:

• Copy external text into the program

• Copy data description specifications for externally described mes into the
program

• Control batch compilation

• Control the format of the program listing.

For more information, see "Using Compiler Directives" on page 2-16.

When compiling takes place, an attribute character string is produced that specifies
the environment that the program was compiled in. The character string is PLI for
the AS/400 System and PLI38 for the System/38 Environment. Other differences in
compiling in the System/38 Environment are described in "Compiling in the
System/38 Environment" on page F-l.

If the compilation is successful, a message identified by code PLC0005 is sent and
the return code is set to zero. If the compilation is not successful, a message identi­
fied by code PLC9001 is sent and the return code is set to 2. The CL command

Chapter 2. Creating. Compiling. and Running Your PL/I Program 2-5

COMPILING SOURCE PROGRAMS

MONMSG (Monitor Message) can be used in a CL program to monitor for these ..j
messages.

All object names specified on the CR TPLIPGM command must be composed of
alphanumeric characters, the first of which must be alphabetic. The length of the
names cannot exceed ten characters. See Programming: Control Language Refer­
ence for a detailed description of OS/400 object naming rules and for a complete
description of CL command syntax.

Completing the First CRTPLlPGM Screen

CRTPLIPGM
Type choices, press Enter.
Program ••

Library ••
Source file •••••••

Library ••••••••
Source member • • • • • •
Generation severity level
Text 'description' ••••

Create PL/I Program

*PROC
*CURLIB

QPLISRC
*UBL

*PGH
1S
*SRCHBRTXT

Name, *PROC
Name, *CURLIB
Name
Name, *LIBL, *CURLIB
Name, *PGH
B-29

F3=Exit F4-List FS=Refresh FIB=Additional parameters F11=Keywords
Fl2'Previous F13=Prompter help

Figure 2-4. The First CRTPLlPGM Screen

Each parameter on the screen displays a default value. Move the cursor past items
where you want the default value to apply. Type over any items where you want to
set a different value or option. If you are not sure about the setting of a particular
parameter, type a question mark (?) as the first character in that field and press
Enter to receive more detailed information. The? must be followed by a blank.

You must enter values for the library and program name by which the compiled
program is known, and the name of the source ftle that contains the program
source.

All other parameters have default values, which you can change if necessary. Press
FlO to display additional parameters (see Figure 2-5 on page 2-9). Press F3 to exit
without processing the command.

The descriptions of the parameters and options follows (the defaults are underlined
and are explained first).

PGM
Specifies the library and program name by which the compiled PL/I program

is known. If no library is specified, the created program is stored in the
current library. The program must not already exist in the library .

• PROC
The program name is the name of the ftrst external procedure in the

compilation. If there is more than one program in the compilation, each
subsequent program name is the name of the frrst external procedure fol­
lowing each %PROCESS directive.

2-6 PL/I User's Guide and Reference

..j

COMPILING SOURCE PROGRAMS

program-name
The name by which the program will be known. This name must

match the name of the ftrst external procedure in the compilation.

Note: If the name you enter does not match the name of the ftrst
external procedure in the compilation, there will be an unrecoverable
error, and the program will not be compiled.

If there is more than one program in the compilation, each subsequent
program name is the name of the ftrst external procedure following each
%PROCESS directive.

*CURLIB
The current library will be used. If you have not specified a current

library, QGPL will be used.

1 i brary-name

SRCFILE

Enter the name of the library where the compiled program will be
stored.

Specifies the name of the source me that contains the PLII source program to
be compiled.

QPLISRC
The default source me, QPLISRC, contains the PLII source me to be com­

piled.

source-file-name
Enter the name of the source me that contains the PL/I source program

to be compiled.

Note: The recommended record length of the PL/I source me is 92. If
the record length is greater than 92, only the ftrst 92 bytes of each record
is used. The record length must not be less than the value of the right
margin plus 12.

The system searches the library list to fmd the library where the source
me is located.

*CURLIB
The current library will be used. If you have not specified a current

library, QGPL will be used.

1 i brary-name
Enter the name of the library where the source me is stored.

SRCMBR
Specifies the name of the member of the source me that contains the PL/I

source program to be compiled. This parameter can only be specified if the
source me in the SRCFILE parameter is a data base me.

Chapter 2. Creating. Compiling. and Running Your PL/I Program 2-7

COMPILING SOURCE PROGRAMS

Use the name specified by the PGM parameter as the source ftle member
name. The source program will have the same name as the object
program. If no program name is specified by the PGM parameter the
system uses the ftrst member created in or added to the source ftle as the
source ftle member name.

source-file-member-name
Enter the name of the member that contains the PL/I source program.

GENLVL
Specifies whether an object program is generated depending on the severity of

the errors encountered. A severity level value corresponding to the severity
level of the messages produced during compilation can be specified with this
parameter. If errors occur in a program with a severity equal to or greater
than the value specified in this parameter, the compilation is ended. For .~
example, if you do not want a program generated if you have messages with a ..."
severity level of 20 or greater, specify 20 in this parameter.

15
If a severity level value greater than 15 is specified, the program may

contain errors that will cause unpredictable results when the compiled
program is run.

severity-level
Enter a two-digit number, 01 through 29.

Note: The severity level value of PL/I messages does not exceed 29.

TEXT
Lets the user enter text that briefly describes the program and its function.

The text appears whenever the program runs .

• SRCMBRTXT
The text of the source member is used.

No text appears.

Idescriptionl
Enter the text that briefly describes the program and its function. The

text can be a maximum of 50 characters in length and must be enclosed
in apostrophes. The apostrophes are not part of the 50-character string.

If these parameter values are sufficient, press F 16 to process the command. Other­
wise, press FlO to display additional parameters.

2-8 PL/I User's Guide and Reference

COMPILING SOURCE PROGRAMS

Completing the Second CRTPLlPGM Screen

CRTPLIPGH Create PL/I Program
Type choices, press Enter.
Program ••

Library ••
Source file •••••••

Library •••••••.

"PROC
"CURLIB

QPLISRC
*L1BL

Source member • • • • • • *PGH
Generation severity level 15
Text 'descri pt i on' • • • • "SRCHBRTXT

Additional Parameters
Compiler options ••••••••

+ for more values
Generation options •••.•••

+ for more values

Name, "PROC
Name, "CURLIB
Name
Name, *L1BL, *CURLIB
Name, *PGH
0-29

Hore •••
F3=Exit F4=List F5=Refresh Fl1=Keywords F12=Previous F13=Prompter help

Figure 2-5. The Second CRTPLIPGM Screen

The additional parameters and their descriptions are listed below. Default values are
underlined.

OPTION
Specifies the options to use when the PL/I source program is compiled. Any

or all of the options can be specified in any order. Separate the options with a
blank space.

*SOURCE
Produce a source listing, consisting of PL/I program input and all

compile-time errors.

*NOSOURCE
A source listing is not produced. If *NOSOURCE is specified the system

defaults to *NOXREF.

The acceptable abbreviation for *SOURCE is *SRC, and for *NOSOURCE is
*NOSRC.

Produce a cross-reference listing between the items declared in your
program and the numbers of the statements in your program that refer
to these items. If you specify both *ATR and *XREF, the attribute table
and cross-reference listing are combined.

*NOXREF
Do not produce a cross-reference listing.

Produce a cross-reference listing of only referenced names. Unrefer­
enced names are omitted.

Chapter 2. Creating, Compiling, and Running Your PLjl Program 2-9

COMPILING SOURCE PROGRAMS

Create a program object that can be run after the program is compiled.

Do not create a program object.

*NOOPTIONS
Do not list options in effect for this compilation.

*OPTIONS
List options in effect for this compilation.

The acceptable abbreviations for *NOOPTIONS is *NOOPT, and for *OPTIONS
is *OPT.

*NOAGGREGATE
Do not generate an aggregate table.

*AGGREGATE
Generate an aggregate table. The aggregate table gives the lengths of all

arrays and major structures in the source program.

The acceptable abbreviations for *NOAGGREGATE is *NOAGR, and for
*AGGREGATE is *AGR.

*NOATTRIBUTES
Do not generate a table of the attributes of the identifiers in the source.

*ATTRIBUTES
Generate a table of the attributes. If you specify both *ATTRIBUTES and

*XREF, the attribute table and cross-reference listing are combined. If
you specify both *ATTRIBUTES and *SREF, the attribute table and cross­
reference listing for referenced names are combined.

The acceptable abbreviations for *ATTRIBUTES is *ATR, and for
*NOATTRIBUTES is *NOATR.

*NOSECLVL
Do not list second-level message text for this compilation.

*SECLVL
List second-level message text for this compilation.

GENOPT
Specifies the options used to create the program object: the printing of the

IRP (intermediate representation of a program), a cross-reference listing of
objects defrned in the IRP, and the program template. GENOPT reserves a
program patch area, and specifies optimization of a program for more efficient
running. These results may be useful if a problem occurs when trying to run
the compiled program. Any or all of the options can be specified in any'
order. Separate the values with a delimiter. ..,.,

2-10 PL/I User's Guide and Reference

COMPILING SOURCE PROGRAMS

*NOLIST

*LIST

Do not list the intennediate representation of the program (IRP), associ­
ated hexadecimal code, and error messages. If you specify *XREF, *DUMP,
or *ATR, a listing will be generated, even if you specify *NOLIST.

List the intennediate representation of the program.

*NOXREF

*XREF

Do not produce a cross-reference listing of all objects defmed in the
IRP.

Produce, a cross-reference listing of all objects defmed in the IRP. If
you specify *XREF, a listing will be generated, even if you specify
*NOLlST.

*NOPATCH
Do not reserve space in the compiled program for a program patch

area. The program patch area can be used for debugging.

*PATCH
Reserve space in the compiled program for a program patch area.

*NODUMP

*DUMP

Do not list the progranl template.

List the program template. If you specify *DUMP, a listing will be gener­
ated, even if you specify *NOLIST.

*NOATTRIBUTES
Do not list the attributes for the IRP source.

*ATTRIBUTES
List the attributes for the IRP source. If you specify *ATTRIBUTES, a

listing will be generated, even if you specify *NOLIST.

The acceptable abbreviations for *NOATTRIBUTES is *NOATR, and for
*ATTRIBUTES is *ATR.

*NODIAGNOSE
Do not process program-checking functions at run time. For more

infonnation on the functions provided by the *DIAGNOSE option, see
"The .DIAGNOSE Option of the GENOPT Parameter" on page 2-16.

Chapter 2. Creating, Compiling. and Running Your PLfI Program 2-11

COMPILING SOURCE PROGRAMS

*DIAGNOSE
Process program-checking functions at run time.

*NOOPTIMIZE
Do not process program optimization.

*OPTIMIZE
Process program optimization. With *OPTIMIZE the compiler generates

a program for more efficient processing and that will possibly require less
storage. However, specifying *OPTIMIZE can substantially increase the
time required to create the program. Existing object programs may be
optimized using the CL command CHGPGM.

If these parameter values are sufficient, press F 16 to process the command. Other­
wise, roll the screen to display additional parameters.

Completing the Third CRTPLlPGM Screen

CRTPLIPGH Create PL/I Program
Type choices, press Enter.
Source margins

Include file.
library ••

Print file ••
Library ••

Flagging severity
Replace existing program.
User profile .••.•••
Authority ••••••••
Compiler problem determination

"SRCFILE

"SRCFILE

QSYSPRT
"LIBL

o
"YES
"USER
"CHANGE
"NO

1-80
1-80
Name
Name, "LIBL,
Name
Name, "LIBL,
0-49
"YES, "NO
"USER, "OWNER

"CURLIB

*CURLIB

Name, "CHANGE, "ALL, "USE •••
"NO, "YES

Bottom
F3=Exit F4=List F5~Refresh F11-Keywords F12=Previous F13=Prompter help

Figure 2-6. The Third CRTPLIPGM Screen

The additional parameters and their descriptions are listed below. Default values are
underlined.

MARGINS
Specifies the part of the compiler input record that contains source text.

*SRCFILE
Use the margin values of the me member you specify in the SRCMBR

parameter. If the me is of type PLI, the margin values are the values
specified on the SEU services display. If the me is of a different type, the
margin values are the default values of 2 and 72.

left, right
Enter the values for the left and right margins. The margins must not

be less than I or more than 80, and the left margin must be smaller than
the right margin.

2-12 PL/I User's Guide and Reference

J

J

INC FILE

COMPILING SOURCE PROGRAMS

Note: MARGINS does not apply to the %PROCESS directive, which
must have a percent sign (%) in column 1.

Specifies the qualified name of the source me that contains member(s)
included in the program with the %INCLUDE directive(s).

*SRCFILE
The qualified source me you specify in the SRCFILE parameter con­

tains the source me member(s) specified on any %INCLUDE
directive(s) in the program that either specify SYSLIB or do not specify
a me name.

source-file-name

*LIBL

Enter the name of the source me that contains the source me
member(s) specified on any %INCLUDE directive(s) in the program
that either specify SYSLIB or do not specify a me name. The record
length of the source me you specify here must be no less than the record
length of the source me you specify for the SRCFILE parameter.

The system searches the library list to fmd the library.

*CURLIB
The current library will be used. If you have not specified a current

library, QGPL will be used.

1 i brary-name
Enter the name of the library where the source me is located.

PRTFILE
Specifies the name of the me where the compiler listing is placed and the

library where the me is located. If you specify a me whose record length is
less than 132, information will be lost.

QSYSPRT
If a me name is not specified, the compiler listing is placed in the

IBM-supplied me, QSYSPRT. If the me is spooled, the me goes to the
QPRINT queue. The me QSYSPRT has a record length of 132.

pri nt-fil e-name
Enter the name of the me where the compiler listing is directed.

The system searches the library list to fmd the library.

*CURLIB
The name of the current library. If you have not specified a current

library, QGPL will be used.

1 i brary-name
Enter the name of the library where the me is located.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-13

COMPILING SOURCE PROGRAMS

FLAG
Specifies the minimum severity level of messages to be listed.

8
All messages are listed.

severity-level

REPLACE

Enter a number that specifies the minimum severity level of the mes­
sages that are listed. Messages that have severity levels of the specified
level or higher are listed.

Specifies if a new program object will be created when there is an existing
program object of the same name in the same library.

*YES

J

A new program object willbe created and any existing program object
of the same name in the specified library will be moved to library \.
QRPLOBJ. .J

A new program object will not be created if a program object of the
same name already exists in the specified library.

USRPRF

AUT

Specifies the user profile the compiled PL/I program runs under. This profile
controls which objects can be used by the program (including what authority
the program has for each object).

*USER
The program runs under the user proftle of the program's user.

The program runs under the user proftles of both the program's owner
and user. The collective sets of object authority in both user proftles are
used to fmd and access objects while the program is running. Any
objects that are created while the program is running are owned by the
progranl's user.

Note: The USRPRF parameter reflects the security requirements of your
installation. The security facilities available on the AS/400 System are
described in detail in Programming: Control Language Programmer's
Guide and the Programming: Control Language Reference.

Specifies what authority for the program and its description is being granted
to the public. The authority can be altered for all or for specified users after
program creation with the CL commands GRTOBJAUT (Grant Object Authority)
and RVKOBJAUT (Revoke Object Authority). For further information on these
commands and for an expanded description of the AUT parameter, see the Pro­
gramming: Control Language Reference.

*CHANGE
The public has operational rights only for the compiled program. Any

user can run the program and debug it but cannot change it.

2-14 PL/I User's Guide and Reference

COMPILING SOURCE PROGRAMS

The public can run the program, but cannot debug or change it.

The public has complete authority for the program.

*EXCLUDE
The public cannot use the program.

authorization-list

SERVICE

Name of an authorization list to which the program is added. For a
description of the authorization list and how to create it see the Pro­
gramming: Control Language Reference.

Note: Use the AUT parameter to reflect the security requirements of your
installation. The security facilities available on the AS/400 System are
described in detail in Programming: Control Language Programmer's
Guide and the Programming: Control Language Reference.

Specifies the use of the compiler problem determination facilities. For a
description of how to use these facilities, refer to Appendix A, "Compiler
Service Information."

Deactivate the compiler problem determination facilities while com­
piling.

Activate the compiler problem determination facilities while compiling.

Examples

The following command compiles a program named PA YROL.

CRTPLIPGM PAYROL TEXT ('Payroll Program')

The source program is in the default source me QPLISRC, in a member named
PAYROL. A compiler listing is generated. The program is run under the ·USER
user prome, and can be run by any system user.

The following command creates a PL/I program named PARTS.

CRTPLIPGM PGM(PARTS) +
SRCFILE (MYLIB/PARTDATA) +
OPTION (*XREF *OPT) AUT (*EXCLUDE) +
TEXT ('This program displays all parts data')

The program object is stored in the library pointed to by ·CURLIB. The source
program is in the PARTS member of the source me PAR TDA T A in the library
MYLIB. A compiler listing, cross-reference listing, and compiler-option list is gen­
erated. This program, which cannot be used by the public, can be run by the owner
or another user that the owner has explicitly authorized by name with the CL
command GRTOBJAUT (Grant Object Authority).

Chapter 2. Creating, Compiling. and Running Your PL/I Program 2-15

USING COMPILER DIRECTIVES

The *DIAGNOSE Option of the GENOPT Parameter
The +DIAGNOSE option provides the following program-checking functions at run
time:

• Checking of substring range for non-adjustable strings is done automatically.
Because of the many ways a string can be referenced, not all substring range
violations will be detected. When a string range exception is raised by the
machine, PL/I raises the ERROR condition.

• The attributes of EXTERNAL variables are matched to their external
descriptions. If the attributes do not match, a diagnostic message is issued.

• All PL/I runtime informational messages which normally go to the program log
are also written to the PL/I fIle SYSPRINT. Therefore, both user-written debug
information and compiler-generated information will be intermixed in the order
in which they occur.

• If you specify *DIAGNOSE, OS/400, MCH, and PL/I messages will remain on the
program message queue.

• The STRINGSIZE condition informational message is sent when the
STRINGSIZE condition is raised.

Using Compiler Directives
Compiler directives are statements that direct the operation of the compiler. They
always begin with the percent symbol (%). They are:

%INCLUDE
%PAGE
%PROCESS (+PROCESS)
%SKIP.

The %PAGE and %SKIP directives are listing control directives.

The %PROCESS statement is used for multiple compilation.

The %INCLUDE statement has two different uses:

• Copying external text into the source program.

• Copying Data Description Specifications (DDS) for externally described mes into
the source program.

Using the % INCLUDE Directive
The %INCLUDE directive can be used to copy external text into the source
program and copy DDS for externally described mes into the source program.

Including External Text

The %INCLUDE directive, when used with the following syntax, includes external

J

J

~~~~~~ J 
2-16 PLjI User's Guide and Reference 



USING COMPILER DIRECTIVES 

~ I 
-%INCLUDEEember _name'----r--'--j--..c 

(member_name)------­

SYSLIB(member name)-

fi le_name (member_name)--

member_name 
An identifier of up to ten characters. The name must be unique within one ftle. 

• The member_name specifies the name of the ftle member included into the 
source program. 

• If the member_name appears in more than one ftle in your library list, and you 
do not specify the ftle_name or SYSLIB, the member used is from the first ftle 
with a member of that name found on the library list. 

• You can specify up to twenty member_names in any %INCLUDE statement. 

SYSLIB 
This name is included for compatibility. If you enter SYSLIB instead of a 
ftle_name, the name used is the one specified on the INCFILE parameter of the 
Create PL/I Program (CRTPLIPGM) command. Refer to "Compiling Your 
Source Program Using the CRTPLIPGM Command" on page 2-5 for a 
description of the parameters of the CRTPLIPGM command. 

file_name 
An identifier of up to ten characters. The ftle is located by using the +LIBL 
search list in effect at compile time. The ftle name can begin with and contain 
numeric characters and periods. The valid characters are: A-Z, 0-9, #, $,@, _. 
You cannot name your fIle SYSLIB. 

SYSLIB and parentheses on either side of a member name are supported for com­
patibility with other implementations of PL/I. 

Included text can contain %INCLUDE directives, nested to a maximum depth of 
641eve1s. 

The included text can be parts of statements. This provides an efficient way of cre­
ating identical declarations for different structure variables. For example: 

DECLARE 1 A, 
%INCLUDE X; 
DECLARE 1 Y, 
%INCLUDE X; 

where X contains: 

2 B BINARY, 
2 C FIXED; 

results in: 

Chapter 2. Creating, Compiling, and Running Your PLjI Program 2-17 



USING COMPILER DIRECTIVES 

DECLARE 1 A, 
2 B BINARY, 
2 C FIXED; 

DECLARE 1 Y, 
2 B BINARY, 
2 C FIXED; 

You can include text that consists of a constant, an identifier, a delimiter, or one 
external procedure. You cannot include any of the following: 

• Parts of constants 
• Parts of identifiers 
• Parts of delimiters 
• More than one external procedure 
• The %PROCESS directive. 

IBM Extension -------------, 

Including DDS 

For a discussion of how to use the %INCLUDE directive to copy DDS, see "Using 
the %INCLUDE Directive for External File Descriptions" on page 8-73. 

'--_________ End of IBM Extension _________ ----' 

IBM Extension -------------, 

Using the % PAGE Directive 
The %PAGE directive controls the source program listing when the program is 
compiled. The text following a %PAGE directive is printed in the source program 
listing starting on the first line of the next page. The %PAGE directive does not 
appear in the source program compile listing. 

i-%PAGE;--
The %PAGE directive must be the only text on a line. No label prefix or comment 
may be specified on this line. 

~ _________ End of IBM Extension _________ ---1 

Using the % PROCESS Directive 
The %PROCESS directive supports hatched compilation. The syntax is: 

2-18 PL/I User's Guide and Reference 



L 

COMPILER OUTPUT 

The % or • must be coded in column 1. PROCESS must be coded in columns 2 
through 8. The text and semicolon must be coded in columns 9 through 72 in the 
ftrst line and, if necessary, in columns 1 through 72 in subsequent lines. Text 
appearing after the semicolon on the same line is ignored. 

The • is provided for compatibility with other compilers. The text or any options 
specifted with this directive are ignored. You cannot copy the %PROCESS direc­
tive into your program with the %INCLUDE directive. If the %PROCESS direc­
tive precedes the ftrst program in the source ftle, it must be the ftrst record in the 
ftle. 

IBM Extension 

Using the %SKIP Directive 
The %SKIP directive controls the source program listing when the program is com­
piled. The specifted number of lines following a %SKIP directive in the program 
listing are left blank. The %SKIP directive does not appear in the source program 
listing. 

I 
~"KIP'-'L------J-'--j--+<l 

. (number_of_lines) 

number_of-'ines 
An integer constant in the range I through 99. It speciftes the number of lines 
left blank. If you omit this, 1 is assumed. 

The %SKIP directive must be the only text on a line. No label preftx or comment 
may be specifted on this line. 

If number_oClines is greater than the number of lines remaining on the page, the 
rest of the page is skipped and printing continues at the top of the new page. In 
this case, the %SKIP directive is equivalent to a %PAGE directive. 

'--__________ End of IBM Extension __________ -' 

Compiler Output 
In this example, the CR TPLIPGM command was entered as follows: 

CRTPLIPGM QTEMPjLP1413 PLISTjPLISRC + 
OPTION(*XREF *OPT *AGR *ATR) + 
GENOPT(*LIST *XREF *PATCH *DUMP *ATR *DIAGNOSE) 

The program source listing can be seen in Figure 8-3 on page 8-5. 

The components of the listing that are produced by the various options of the 
GENOPT parameter document the translation of the program into machine lan-

Chapter 2. Creating. Compiling, and Running Your PLjI Program 2-19 



COMPILER OUTPUT 

5728PL1 Re1 MeB 889715 

5728PL1 Re1 Maa 888715 

STMT.SUBS Identifiers 

4 D BITJLAGS 
2 INJILE 

2.1 fl INDJILE 

3.3 INDEX_BAL 11 
3.1 INDEX_KEY 
3.2 IIIDEX_NAt~E 

3 INDEX_RECORD 

3.7 I NPUT_BAL 
3.5 INPUT_KEY 
3.6 INPUT_NAME 
3.4 INPUT_RECORD 

LP1413 
4.1 MORE_RECORDS 

4.2 NO 

4.3 YES 

guage. They are discussed at "Examples of Using Compiler Debugging Options" on 
page A-lO. 

PL/I Compilation Options 
PL/I Compiler Options in Effect 

AGGREGATE 
NOATTRIBUTES 
NOSECLVL 

fLAG( 8) 
GENERATE 
GENLVL(15) 
MARGINS(2,72) 
OPTIONS 
SOURCE 
XREf 

PLITST/LP1413 
D 

PL/I Generation Options in Effect fl 
NOATTRI BUTES 
NODIAGNOSE 
NODUMP 

LIST 
NOPATCH 

XREF 
NOOPTIMIZE 

11/39/88 15:51:24 Page 2 

A listing of the options (specified explicitly or by default) which were in effect when 
the program was compiled is produced when you specify the *OPT option in the 
OPTION parameter of the CL command CRTPLIPGM. 

o 
D 

The options which were in effect for the compilation process. 

Options specifying the debugging aids the compiler can generate. Many of 
them are discussed at "Examples of U sing Compiler Debugging Options" on 
page A-lO. 

Attribute/Cross Reference Table 
LP1413: PROCEDURE; 

PUTST /LP1413 12/19/88 11:47:31 Page 4 

Attributes and References 

STATIC /* STRUCTURE */ 
EI fiLE RECORD INPUT SEQUENTIAL CONSECUTIVE BUfSIZE(38) 

5.7.9.13.15 
fiLE RECORD OUTPUT SEQUENTIAL INDEXED KEYLENGTH(10) KEYDISP(B) 
8.12.16 
/* In: INDEX RECORD */ AUTOMATIC UNALIGNED PICTURE fIXED(8,2) 
/* In: INDEX-RECORD */ AUTOMATIC UNALIGNED CHARACTER(19) 
/* In: INDEX=RECORD */ AUTOMATIC UNALIGNED CHARACTER(2B) 
AUTOMATIC /* STRUCTURE */ 
11,12 
/* In: INPUT RECORD */ AUTOMATIC UNALIGNED PICTURE fIXEO(8.2) 
/* In: INPUT-RECORD */ AUTOMATIC UNALIGNED CHARACTER(18) 
/* In: INPUT)ECORD */ AUTOMATIC UNALIGtlED CHARACTER(29) 
AUTOMATIC /* STRUCTURE */ 
9,11,13 
EXTERNAL ENTRY 
/* In: BIT_fLAGS */ STATIC ALIGNED BIT(1) 
6,18 
5 
/* In: BIT_fLAGS */ STATIC ALIGNED BIT(l) INITIAL 
5 
/* In: BIT_fLAGS */ STATIC ALIGNED BIT(l) INITIAL 
6 

PUBOB16B 

To produce a cross-reference listing of all of the variables in your program, specify 
the *XREF option in the OPTION parameter of the CL CRTPLIPGM command. 

2-20 PL/I User's Guide and Reference 



L 

L 

COMPILER OUTPUT 

D Statement numbers for the declarations of each of the variables. 

fJ When a data item is declared as part of a multiple declaration, both the state­
ment and sub statement where the item is declared are specified. 

I] The identifiers used in the program (including names of procedures, mes, and 
structures). 

I] Attributes of each of the items and the numbers of the statements in which 
each item is referenced. Since the CRTPLIPGM command specifies *ATR as an 
option of the OPTION parameter, the attributes of each item declared in the 
program are also listed. If you specify both *XREF and *ATR, the compiler 
produces a combined cross-reference and attribute table; but you can specify 
one or the other and obtain a list of statements declaring and referencing the 
variables, or a list of the attributes of each item declared. 

The aggregate length table is produced when you specify the *AGR option in the 
OPT! ON parameter of the CRTPLI PGM command. 

D 
fJ 

I] 

D 
iii 
iii 

D 
m 
III 

The statement in which the aggregate was declared. 

When an aggregate is declared as part of a multiple declaration, both the 
statement and sub statement for the declaration are specified. 

The names of the aggregates and their components. 

The level number of each identifier. 

For arrays, the number of dimensions in the array is listed. 

The offset of each element from the ftrst byte of storage occupied by the 
aggregate. 

The length of each element, and each aggregate's total length. 

The length of each aggregate. 

The total number of bytes occupied by the aggregates. 

Chapter 2. Creating, Compiling, and Running Your PLfI Program 2-21 



RUNNING THE PROGRAM 

Running the Program 
The most common ways to run a PL/I program are: 

• Using the CL command CALL as part of a batch job, entered interactively by 
the work station user, or included in a CL program. 

• Using the PL/I statement CALL in a PL/I program (see "CALL Statement" on 
page 14-7). 

• Using the other AS/400 language call statements 

• Using a menu, from which the user can choose an option that calls the 
program. 

• Creating your own command (see the CL Programmer's Guide for information 
on creating your own command.) 

For more information on how to call a compiled program, see the CL Program­
mers Guide. 

Interrupting or Ending the Running of a Compiled Program 
You can interrupt or end the running of a compiled PL/I program as follows. 

If you are running the program from a batch job, you should issue the CL command 
ENDBCHJOB (End Batch Job). For information on the ENDBCHJOB 
command, see the Programming: Control Language Reference. 

If you are running the program interactively, press the Sys Req key to interrupt. 
Then press Enter to get the System Request Menu. You then have a choice of 
various options from the System Request Menu. For example, if you want to end 
processing of the program, enter option 2. If you want to resume the processing of 
the program, either press the F3 key, or press Enter with the options field left blank. 

Abnormal Program Ending 
If the processing of a PL/I run unit ends abnormally, escape message PLI9001 or 
PLI9002 or PLI9003 is sent to the program that called the first procedure in the run 
unit. This results in a function check if the escape message is not monitored. In a 
CL program, you can monitor these messages with the CL command MONMSG 
(Monitor Message). See the Programming: Control Language Reference for more 
information. 

A program that causes an error that cannot be handled through the normal flow of 
control will set the return code to 4. If the program processes a SIGNAL statement 
for the ERROR condition, the return code is set to 3. The processing of a STOP 
statement or a call to PLIDUMP with the stop option (S) will set the return code 
to 2. For information on return codes, see the entries in the Programming: Control 
Language Reference on the CL commands RTVJOBA (Retrieve Job Attributes) and 
WRKJOB (Work With Job). 

2-22 PLjl User's Guide and Reference 

J 



INTERLANGUAGE CALLS 

Interlanguage Calls 
The AS/400 System allows you to call programs written in different languages. The 
techniques used for transferring between programs and passing parameters are 
similar to those used for communicating between different programs written in PLfI. 
There are two cases to consider: 

• When your PLfl program calls a program written in another language 
• When a program written in another language calls your PLfl program. 

Calling a Non-PUI Program 
In a calling PLfl program, you must code an ENTRY declaration for the program you 
will link to. For example: 

DECLARE COBOLPGM ENTRY 
(CHARACTER (8), 
FIXED DECIMAL (4,1), 
FIXED DECIMAL (3)), 

OPTIONS (ASSEMBLER); 

The OPTIONS (ASSEMBLER) attribute tells the compiler that the interface with 
the called program will be at the machine interface level: that is, that PLfl will pass 
parameters directly to the program instead of using PLfI control blocks. 

Arrays are not supported as parameters between PLfl and BASIC, because PLfl does 
not build the array descriptors which BASIC requires for arrays. 

Mter the ENTRY attribute, you should list t' J attributes (not the variable names) 
of the parameters passed to the called program. 

When you call a non-pLf! program, you list the variables that you are using as 
parameters. These variables must be declared with exactly the same attributes as 
those you have listed in the ENTRY declaration. For the ENTRY declaration 
given above, you may declare the parameter variables as follows: 

DECLARE ITEM1 CHARACTER (8), 
ITEM2 FIXED DECIMAL (4,1), 
RESULT FIXED DECIMAL (3); 

You would then initialize the variables for which you wish to pass a value to the 
program you are calling: 

GET FILE (SYSIN) EDIT (ITEM1,ITEM2)(A(8),F(4,1)); 

The actual CALL statement has the same format as for the calling of a PLfI 
procedure: 

CALL COBOLPGM (ITEM1,ITEM2,RE5ULT); 

Control is passed to COBOLPGM, which could use ITEMI and ITEM2 as input 
data and place a value in RESULT that will be returned to the calling PLfI program. 
When the called program fmishes running, control is returned to the statement fol­
lowing the call statement. 

Chapter 2. Creating, Compiling. and Running Your PLfI Program 2-23 



INTERLANGUAGE CALLS 

If a non-PL/I program ends abnormally, the ERROR condition is raised in the 
calling program. You can use an on-unit to take appropriate action. 

Calling a PL/I Program from a Non-PL/I Program 

Data type 

Packed 
Decimal 

PLjI 

In a PL/I program called by a program that is coded in another language, you must 
list the parameters in the PROCEDURE statement at the start of the program: 

SUBPGM: PROCEDURE (INTEGER1,INTEGER2,CHAR1); 

The parameter variables must be declared inside the PL/I program: 

DECLARE INTEGERl FIXED BINARY (15), 
INTEGER2 FIXED DECIMAL (7), 
CHARl CHARACTER (8); 

The attributes of the parameter variables declared in the PL/I program must exactly 
match the attributes in the calling program. You cannot use asterisks or variables to 
indicate the length of a character or bit scalar data item, or the bounds of an array, 
as m: 

DECLARE CHARITEM 
ARRAY1(INDEXl) 
BITARRAY (*) 

CHARACTER (*), 
FIXED DECIMAL (7), 
BIT (*) ALIGNED; 

The necessary PL/I control blocks which furnish these values when the program is 
called are available only when the calling program is written in PL/I. 

When a floating-point value is passed to a PL/I program from eL, the variable that . . .•.. ~ 
the data is placed in must have the UNALIGNED attribute in the PL/I program. ..", 

The following tables show you how to code matching data types in PL/I and the 
other languages available on the AS/400 System. 

RPG 

FIXED DECIMAL (p,q) Columns Code 

Where: 
6 I 

p = total number of digits 43 P 
and l::;p::;l5. 44-47 a, where b-a+ 1 = 

q = number of digits to the (p+l)/2 and l::;p::;15 
right of the decimal point 48-51 b 
and 1::;q::;15. 52 q, where q is the 

p = greater than or equal to q number of decimal 
digits 

53-58 name of the packed 
field 

Figure 2-7 (Part 1 of 3). Matching PLjI Attributes in RPG 

2-24 PLjI User's Guide and Reference 



INTERLANGUAGE CALLS 

Data type PL/I RPG 

Zoned PICTURE 'pi Columns Code 
Decimal 

Where: 6 I 
p is the number of 9s 43 blank 

44-47 a, where a is the 
- or - starting position of 

PICTURE 'pVq' the field 
48-51 b, where b is the end 

Where: position of the field 

p is the number of 9s to the 52 q, where q is the 

left of the V and 1 :s:;p:s:; 15 number of decimal 

V is the implied decimal point digits and O:s:;q:s:;9 

q is the number of 9s to the 53-58 name of the zoned 

right of the V and 1:s:;q:s:;15 subfie1d 

p is greater than or equal to q 

Fixed FIXED BINARY (p) Columns Code 
Binary 

Where: 
6 I 

P = total number of binary 43 B 
digits and 1:s:;p:s:;31 44-47 a, where a is the 

starting position of 
the field 

48-51 b, where b is the end 
position of the field 

52 q, where q is the 
number of decimal 
digits and O:S:;q:s:;9 

53-58 name of the binary 
subfield 

Float FLOAT DECIMAL (p) Not supported. 
Decimal 

Where: 

p = total number of digits 
and 1:s:;p:s:;16 

Float FLOAT BINARY (p) Not supported. 
Binary 

Where: 

p = total number of digits 
and 1:S:;p:s:;53 

Figure 2-7 (Part 2 of 3). Matching PL/I Attributes in RPG 

Chapter 2. Creating. Compiling, and Running Your PL/I Program 2-25 



INTERLANGUAGE CALLS 

Data type PL/I RPG 

Bit BIT (w) The use of bit strings is not sup-

Where: 
ported. A bit string can be passed 
as a character string in which the 

w = total number of bits and length of the character string in 
1~w~32 767 bytes is equal to (w + 7)/8. The 

receiving program must derme the 
bits in the bytes being passed. 

Character CHARACTER (w) Columns Code 

Where: 28-32 PARM 
w = total number of charac- 49-51 w, where 1~w~999 

ters and l~w~32 767 

Varying CHARACTER (w) Not supported. 
Length VARYING 
Character 

Where: 

w = total number of charac-
ters and 1~w~32 765 

Figure 2-7 (Part 3 of 3). Matching PL/I Attributes in RPG 

Data type COBOL BASIC CL 

Packed PIC S9(p)V9(q) DECLARE PROGRAM TYPE( .DEC) LEN(p q) 
Decimal USAGE COMP-3 ... PDp.q 

Where: 
Where: Where: 

p= 15 
1~p~15 1~p~15 q=5 
1~q~15 1~q~15 

- or- - or-

PIC S9(p) USAGE DECLARE PROGRAM 
COMP-3 ... PDp 

Where: Where: 

1~p~15 1:::;;p:::;;15 
q=O q=O 

Figure 2-8 (Part 1 of 3). Matching PL/I Attributes in COBOL, BASIC, and CL 

2-26 PL/I User's Guide and Reference 



INTERLANGUAGE CALLS 

Data type COBOL BASIC CL 

Zoned PIC S9(p)V9(q) DECLARE PROGRAM Not supported. 
Decimal USAGE DISPLAY ... ZDp.q 

Where: Where: 

p= 15 Isps15 
Isqs15 Isqs15 

- or- - or-

PIC S9(p) DECLARE PROGRAM 
USAGE DISPLAY ... ZDp 

Where: Where: 

Isps15 Isps15 
q=O 

Fixed PIC S9(4) USAGE INTEGER Not supported. 
Binary COMP-4 

Where: 
Where: 

Isps15 
Isps15 

- or-
- or -

DECLARE PROGRAM 
PIC S9(9) USAGE ... B 2 

COMP-4 
Where: 

Where: 
lsps15 

Isps15 

Float Not supported. DECIMAL A floating-point literal 
Decimal 

Where: 
with double precision 

Isps6 
Where: 

- or-
lsps6 

DECLARE PROGRAM 
... S 

Where: 

lsps7 

Figure 2-8 (Part 2 of 3). Matching PL/I Attributes in COBOL, BASIC, and CL 

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-27 



INTERLANGUAGE CALLS 

Data type COBOL BASIC CL 

Float Not supported. DECIMAL A floating-point literal 
Binary 

"Where: with double precision 

p>24 
Where: 

- or-
l~p~24 

DECLARE PROGRAM 
... S 

Where: 

l~p~24 

Bit The use of bit The use of bit strings is The use of bit strings is 
strings is not sup- not supported. A bit not supported. A bit 
ported. A bit string string can be passed as a string can be passed as a J 
can be passed as a character string in which character string in which 
character string in the length of the char- the length of the char-
which the length of acter string in bytes is acter string in bytes is 
the character string equal to (w + 7)/8. The equal to (w + 7)/8. The 
in bytes is equal to receiving program must receiving program must 
(w + 7)/8. The derIDe the bits in the derIDe the bits in the 
receiving program bytes being passed. bytes being passed. 
must derIDe the bits 
in the bytes being 
passed. 

Character PICTURE X(w) DECLARE PROGRAM TYPE( .CHAR) 

Where: 
... Cw LEN(w) 

l~w~32 767 
Where: Where: 

l~w~255 1~w~2 000 

Varying 01 name-I. DECLARE PROGRAM Not supported. 
Length 02 name-2 PIC ... V 
Character S9999 COMP-4. 

Where: 
02 name-3 PIC 

J 
X(w) OCCURS l~w~255 

DEPENDING 
ON name-2. 

Where: 

1~w~9 999 

Figure 2-8 (Part 3 of 3). Matching PL/I Attributes in COBOL, BASIC, and CL 

2-28 PL/I User's Guide and Reference 



L 

MESSAGES 

Chapter 3. Testing and Debugging PL/I Programs 

Both OS/400 and PL/I offer features that you can use to test and debug your PL/I 
programs. 

OS/400 provides: 

• Test library 
• Breakpoints 
• Traces 
• A debug feature. 

PL/I provides: 

• PLIDUMP 
• An error dump option screen 
• PLIIOFDB 
• PLIOPNFDB 
• ON conditions. 

Note: Some of these PL/I features may use OS/400 functions to provide input. 

The OS/400 features let you test programs while protecting your production ftles, 
and let you observe and debug operations as a program runs. No special source 
code is required to use the OS/400 features. 

The PL/I features can be used independently of the OS/400 functions or in combina­
tion with them to: 

• Debug a program 

• Produce a formatted dump of the contents of fields, data structures, arrays, and 
tables. 

Source code in the form of compiler directives is required to use the PL/I debugging 
features and formatted dump. 

Using, Displaying, and Printing Messages 

Using Messages 
This manual refers to messages you receive from the compiler. These messages are 
displayed on your screen or printed on your compiler listing. There are no message 
manuals for this product. 

Chapter 3. Testing and Debugging PL/I Programs 3-1 



MESSAGES 

Each compiler message contains a minimum of three parts as illustrated in the fol­
lowing screen example: 

B 
II 

MSGID: PLC21BB Severity: 20 
Message •••• : An unexpected continuation was found. An 

end of statement is assumed before 'PUT SKIP EDIT ( A'. 
Cause. • • • •. This text cannot be interpreted as a 

continuation of the statement. A delimiter, such as an 
operator in the expression or a semicolon may be missing. 
The compiler ignores the text up to the next semicolon. 

Recovery ••• : Check for a missing delimiter. 

III A number indicating the severity of the error. 

Severity Meaning 

00 An informational message displayed during entering, compiling, and 
running: This level is used to convey information to the user. No error 
has been detected and no corrective action is necessary. 

10 A warning message displayed during entering, compiling and running: 
This level indicates that an error was detected but is not severe enough 
to interfere with the running of the program. The results of the opera­
tion are assumed successful. 

20 An error message displayed during compiling: This level indicates that 
an error was made, but the compiler is taking a recovery that might yield 
the desired code. The program may not work as the author intended. 

30 A severe error message displayed during compiling: This level indicates 
that an error too severe for automatic recovery was detected. Compila­
tion is completed, but running the program cannot be attempted. 

40 An abnormal end of program or function message displayed during 
running: This level indicates an error that forces cancellation of proc­
essing. The operation may have ended because it was unable to handle 
valid data, or possibly because the user cancelled it. 

50 An abnormal end of job message displayed during running: This level 
indicates an error that forces cancellation of job. The job may have 
ended because a function failed to perform as required, or possibly 
because the user cancelled it. 

99 A user action taken during running: This level indicates that some 
manual action is required of the operator, such as entering a reply, 
changing diskettes, or changing printer forms. 

m The text you see onJine or on a listing. This text is a brief, generally one sen­
tence, description of the problem. 

II The text you see online when you press F4 from the screen with the frrst-level 
text. This text will be printed on your listing if you specify *SECLVL in your 
compile-time options. The IBM-supplied default for this option is *NOSECLVL. This 

3-2 PL/I User's Guide and Reference 

J 



USING TEST LIBRARIES 

text contains an expanded description of the message (Cause) and a section detailing 
the correct user response (Recovery). 

Displaying and Printing Messages 
To display or print a particular message or messages, use the DSPMSGF or 
DSPMSGD commands. These commands are described in the Programming: 
Control Language Reference. 

Note: If you have any comments or suggestions concerning the messages, please use 
the Reader Comment Form included with this manual and send them to us. 

Using a Test Library 

Job 

Program 1 

· 
· Program 5 

· · Program 10 

Programs that run in a normal operating environment can read, update, and write 
records in both test and production libraries. Programs that run in a testing envi­
ronment can also read, update, and write records in both test and production 
libraries. However, to prevent data base flles in production libraries from being 
accidentally changed, you can use UPDPROD (*NO) in the CL command STRDBG 
(Start Debug) or in the CL command CHGDBG (Change Debug). See the Pro­
gramming: Control Language Programmer's Guide and the Programming: Control 
Language Reference for more information. 

On the AS/400 System, you can copy production flles into a test library or you can 
create special flles for testing in the test library. A production flle and its test copy 
can have the same name if they are in different libraries. You can then use the same 
flle name in the program for either testing or normal processing. 

Normal Operating Environment 

Production Li brary 

Production Files -

Debug Environment 

T es t Li brary 

Test Files 4--(coPY)-

Figure 3-1. Using a Test Library 

For testing, you must put the test library name ahead of the production library 
name in the library list for the job that contains the program tested. For normal 

Chapter 3. Testing and Debugging PL/I Programs 3-3 



USING TEST LIBRARIES 

Debugging 

Program 

processing, the test library should not be named in the library list for the job, as 
shown in the following diagram. 

,-

Li brary Li st 

TESTLIB 
PRODLIBl 
PRODLIB2 
QTEMP 

~ 

Normal Operating Environment 

Library List -
PRODLIBl El 

Program PRODLIB2 
QTEMP 

-

Figure 3-2. Using a Library List 

No special statements for testing are necessary within the program being tested. The 
program can be run normally without any changes. All debug functions are given in J' 
the job that contains the program instead of in the program. However, you can 
include statements such as CALL PLIDUMP in your program if you need them. 

3-4 PLjI User's Guide and Reference 



Job 

Debug Functions 

Programs 

USING BREAKPOINTS 

•• -----These functions are given 
through CL commands. 

Figure 3-3. Using Debug Functions 

Debug functions apply only to the job in which they are given. A program can be 
used at the same time in two jobs: one job that is in a testing environment, and 
another job that is in a normal operating environment. 

Using Breakpoints 
A breakpoint is a point in your program where you want the program to stop 
running and wait. You can use any of the following as a breakpoint: 

• A statement number from the compiled program source listing. 
• A machine interface (MI) instruction number from an IRP program listing. 

You cannot use SEU2 source sequence numbers or labels and procedure names 
from the program. 

When a breakpoint statement is about to be processed in an interactive job, the 
system displays the breakpoint at which the program is stopped. The values of the 
program variables you have asked for on the ADDBKP command, if any, are dis­
played. After this information is displayed, press FlO to get the command entry 
screen, from which you can enter CL commands to ask for other functions (such as 
displaying or changing a variable value, adding a breakpoint, or adding a trace), or 
press Enter to continue processing, or press F3 to cancel the program or function 
being processed. 

For a batch job, a breakpoint program can be called when a breakpoint is reached 
in the program being tested. The breakpoint information is passed to the break­
point program. For a description of the actual parameters passed, see the 
description of the BKPPGM parameter of the CL command ADDBKP in the Pro­
gramming: Control Language Reference. 

Example of Using Breakpoints 
The following CL program calls the program shown in Figure 8-5 on page 8-10, 
adds breakpoints, and displays the values on the screen. 

Chapter 3. Testing and Debugging PL/I Programs 3-5 



USING BREAKPOINTS 

5728PWl R91Ma9 888715 SEU SOURCE LISTING 11/38/88 89:51:86 
SOURCE FILE • • • • • •• PLITST /CL 
MEMBER • • • • • • • •• BREAKPT 
SEQNBR" ... + ... 1 ... + ... 2 ... + ... 3 ... + ... 4 ... + ... 5 ... + ... 6 ... + ... 7 ... + ... 8 ... + ... 9 ... + ... 8 

18a PGM 
298 ENTOBG PGM{LP1414) UPDPROD{"YES) 
389 AOOBKP STMT(18) 
488 AOOBKP STMT(28) PGMVAR{{J NPUT KEY» 
5ea CALL PGM{LP1414) -
6aa Et/DOBG 
7ea ENOPGM 

Figure 3-4 (Part 1 of 2). CL Program and Display for Breakpoints 

Program • • • • • 
Invocation level 
Start position 
Format • 
Length • 
Variable 

Type • 
Length 

Display Program Variables 
•• LP1414 

• •• 1 
•. 1 

. . . . . . 
*CHAR 
*DCL 
02 INPUT KEY 
CHARACTER 
20 

* ... + •••• 1 .... + .••• 2 .... + •••• 3 .... + .••• 4 .... + •••. 5 
11111 

Press Enter to continue. 
F3=Exit Fl2=Previous 

Figure 3-4 (Part 2 of 2). CL Program and Display for Breakpoints 

Considerations for Using Breakpoints 
You should be aware of the following before you use breakpoints: 

PAGE 1 

86/18/83 
al/89/85 
a3/91/84 
93/81/84 
83/91/84 

96/19/83 

• If a breakpoint is bypassed by a PL/I statement, such as GOTO, that breakpoint 
is ignored. 

• When a breakpoint is added for a statement, the program stops just before the 
statement is processed. 

• Breakpoint functions are specified through CL commands. 

These functions include adding breakpoints to programs, displaying breakpoint 
information, removing breakpoints from programs, and continuing to run a 
program after a breakpoint display is shown. See the Programming: Control 
Language Reference for information on these commands, and the Programming: 
Control Language Programmers Guide for more information about breakpoints. 

3-6 PL/I User's Guide and Reference 



Using a Trace 

USING TRACES 

A trace is a record of some or all of the statements in a compiled program that were 
processed and the values of any variables that were specified on the CL command 
ADDTRC. A trace is different than a breakpoint in that you are not given control 
during the trace. 

The system records the traced statements that were processed. You must ask for a 
display of the traced information using the CL command DSPTRCDT A. The 
display shows the sequence in which the statements were processed and the values 
of variables you specified. 

You enter the statements that the system should trace. You can also specify that 
variables be recorded or displayed before each traced statement is processed, or only 
when the value of some traced variable changes from the last time a traced state­
ment was processed. 

You can request a trace of one statement in a program, a group of statements in a 
program, or all the statements in a program. 

Example of Using a Trace 
The following CL program adds a trace requests, calls the program shown in 
Figure 8-5 on page 8-10, and displays the trace data. 

5728PW1 RB1Ma8 888715 SEU SOURCE LISTING 11/30/88 09:54:53 
SOURCE FILE • • • • • •• PLITST /CL 
MEI4BER • • • • • • • •• TRACE 
SEQNBR* ••• + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8 ••• + ••• 9 ••• + ••• a 

100 PGM 
200 EIHDBG PGM(LP1414) UPDPROD(*YES) 
300 ADDTRC STMT( (19 23» PGI4VAR((INPUT KEY» OUTVAR(*CHG) 
400 CALL PGM(LP1414) -
500 DSPTRCDTA CLEAR(*YES) 
600 ENDDBG 
700 EflOPGM 

Figure 3-5 (Part 1 of 2). CL Program for Requesting a Trace and Displaying Trace Dala 

PAGE 

66/18/83 
61/09/85 
03/01/84 
03/01/84 
01/09/85 

06/10/83 

Chapter 3. Testing and Debugging PLjI Programs 3-7 



USING TRACES 

1/07/88 18:49:50 TRACE DATA DISPLAY 
Stmt/Inst: 19 Pgm: LP1414 Invlvl: 1 1 

Start pos: 1 Len: *DCL Format: *CHAR 
Variable: 02 INPUT KEY 

Type: CHARACTER Length: 10 
* ... + .... 1 .... + .••. 2 .... + .••• 3 .... + .... 4 .... + .... 5 

111111 
Stmt/Inst: 23 Pgm: LP1414 Inv lvl: 1 2 
Stmt/Inst: 20 Pgm: LP1414 Inv 1 vl : 1 3 
Stmt/Inst: 20 Pgm: LP1414 Inv lvl: 1 4 
Stmt/Inst: 22 Pgm: LP1414 Inv lvl: 1 5 
Stmt/Inst: 23 Pgm: LP1414 Inv lvl: 1 6 

Start pos: 1 Len: *DCL Format: *CHAR 
*Variable: 02 INPUT KEY 

Type: CHARACTER Length: 10 
* ... + •••. 1. ... + •••• 2 •••• + •••• 3 ••.. + •••• 4 .... + •••• 5 

122222111111 
Stmt/Inst: 20 Pgm: LP1414 Inv lvl: 1 7 
Stmt/Inst: 21 pgm: LP1414 Inv lvl: 1 8 
Stmt/Inst: 22 pgm: LP1414 I nv 1 v 1 : 1 9 
Stmt/Inst: 23 Pgm: LP1414 Inv lvl: 1 10 

Start pos: 1 Len: *DCL Format: *CHAR 
*Variable: 02 INPUT KEY 

Figure 3-5 (Part 2 of 2). CL Program for Requesting a Trace and Displaying Trace Data 

Considerations When Using a Trace 
You should be aware of the following before you use traces with PL/I programs: 

• If a group of PL/I statements is bypassed, they are not included in the trace. 
The case is similar with breakpoints (see "Considerations for Using 
Breakpoints" on page 3-6). 

• Trace functions are given by CL commands in the job that contains the traced 
program. 

These functions include adding trace requests to a program, removing trace 
requests from a program, removing data collected from previous traces, dis­
playing trace information, and displaying the traces that have been entered for a 
program. 

• In addition to statement numbers, names of routines generated by PL/I can 
appear on the trace output STMT field. 

The compiler reorganizes the source statements in your program by denesting the 
blocks (including procedures). The effect of denesting is illustrated below: 

3·8 PL/I User's Guide and Reference 

J 

J 



L 

USING TRACES 

Program Source 

PL/I PL/I 
Statement Source 
Number Statement 

1 OUTER: PROCEDURE; 

20 INNER: PROCEDURE; 

50 ITEM1 = ITEM1 + 1; 

60 END INNER; 

70 ITEM2 = ITEM2 + 1; 
100 END OUTER; 

Sequence of MI Instructions Generated in the Source Listing 
When This Source is Compiled 

PL/I PL/I 
Statement Source 
Number Statement 

1 OUTER: PROCEDURE; 

70 ITEM2 = ITEM2 + 1; 

100 END OUTER: 

20 INNER: PROCEDURE; 

50 ITEM! = ITEM1 + 1; 

60 END INNER; 

This denesting of blocks has the following consequences: 

• You should not specify a trace range where the starting and ending statements 
are contained in different blocks, because the range may not be valid or may 
trace a set of statements different from the one you intended. For example, the 
following CL command would not be valid for the example above: 

ADDTRC STMT((50 70» 

because statement 50 corresponds to a higher M I instruction number than state­
ment 70 in the MI program. 

• If you specify a range of statements that includes a nested block, no trace will be 
processed on the statements contained by the inner block. For instance, 

ADDTRC STMT«l 100» 

Chapter 3. Testing and Debugging PL/I Programs 3-9 



USING DEBUG 

Using Debug 

PL/I Storage 

Calling Levels 

does not trace any of the statements in INNER. because the MI instructions for 
INNER are all beyond the Mi instruction for statement 100 in the Mi program: 

You can always specify 

ADDTRC STMT(*ALL) 

to trace all statements processed in the entire program. 

See the Programming: Control Language Programmer's Guide for more information 
about traces. 

OS/400 Debug is used in a test environment that you can enter using CL commands 
like STRDBG (Start Debug) or CHGDBG (Change Debug). This environment 
allows you to use the debugging features and run the program without affecting the 
normal program environment. The following items should be taken into account 
when using debug: 

• Calling Levels 
• Scoping of names 
• Fully qualified names 
• PL/i pointers 
• Floating point variables 
• Changing varying length strings 
• Specifying variables by ODV number 
• Displaying level numbers 
• References to static variables 
• Determination of active blocks in a program. 

PL/i variables use storage areas allocated and maintained by PL/I. The system 
Program Static Storage Area (PSSA) or the Program Automatic Storage Area (P ASA) 

are not used for any PL/i variables. 

When you use a recursive program or procedure, you should be aware of two calling 
levels: the program calling level and the procedure calling level. 

When a program or external procedure is called recursively, the program calling level 
is incremented. You can specify the program calling level on the OS/400 debug 
commands through the INVLVL parameter. 

When an internal procedure is called recursively, the procedure calling level is incre­
mented. You cannot specify the procedure calling level on the OS/400 debug com­
mands. Only the last (most recent) procedure calling level is available for 
debugging. 

3-10 PL/I User's Guide and Reference 



USING DEBUG 

Scoping of Names 
In PL/I, the scope of a name is determined by the block(s) in which it is declared. A 
block is defmed by a PROCEDURE or BEGIN statement. If a name is declared in 
more than one block in a program, PL/I scoping rules determine which declaration is 
used when you refer to the name. For more information on scoping, see "Names" 
on page 4-12. 

OS/400 debug operates outside of the PL/I program and cannot use PL/I scoping 
rules to determine which declaration you are referring to. When a name is unique 
only because of PL/I scoping rules, debug will not be able to determine which decla­
ration should be used (a message is issued saying the name is ambiguous). 

To specify a unique reference to a name declared in more than one block, use the 
block number on the compiled program source listing. The block number is the 
highest level qualifier for a name in a PL/I program. That qualifier represents the 
block that the variable is declared in. When you specify the block number that the 
variable is declared in, OS/400 debug can determine which declaration of a name 
should be used. 

The qualifier is of the form +BLKn, where n is a one to three digit block number. 

For example, if variable K is defmed in blocks 2 and 5 in your program, and you 
wish to display the value of K in block 5, specify a PGMVAR parameter of 
*BLK5. K. If block 5 is not currently active, the value of K in block 5 cannot be 
displayed: instead, a message is displayed that indicates that the variable is not cur­
rently active. Note that the value of K in block 5 is displayed even if block 2 is also 
active. 

Fully Qualified Names 
The test environment recognizes a concept of a fully qualified name similar to the 
PL/I concept. However, because every PL/I variable has a block number as the 
highest level qualifier, you must specify the block number qualifier (+BLKn) as a 
part of the fully qualified name, whenever it is necessary to specify the fully qualified 
name. For example, consider the following declarations: 

DECLARE 1 SAMPLESTRUCTURE, 
5 ITEM1 

DECLARE ITEM1 
FIXED BINARY (15); 
CHARACTER (10); 

A request to display or change ITEM! is ambiguous to the OS/400 debug facility. 
Assuming the variables are both in block 7, you must specify 

*BLK7.SAMPLESTRUCTURE.ITEMl 

or 

SAMPLESTRUCTURE.ITEM1 

to process the variable ITEM! that is an element of SAMPLESTRUCTURE, and 

*BLK7. ITEM 1 

to process the scalar character variable ITEM 1. 

Chapter 3. Testing and Debugging PL/I Programs 3-11 



USING DEBUG 

PL/I Pointers 
Names that are declared with the POINTER attribute in the PL/I source program 
are called High Level Language (HLL) pointers in the test environment. These 
pointers are maintained at the machine level as space pointers. You can. only 
change them in the test environment using the CL command CHGHLLPTR 
(Change High Level Language Pointer) or CHGPTR (Change Pointer) to contain a 
space pointer value or a null pointer. 

The CHGHLLPTR command allows you to change the value of a HLL pointer. 
This pointer can be a pointer variable or a basing-pointer name. The value of the 
pointer copied can be a pointer variable or a program variable address referred to by 
the variable name. The reference pointer or program variable can have another HLL 

pointer(s) specified as its basing pointer(s). 

The following CL statements illustrate the use of the command: 

CHGHLLPTR PTR('PTRl') REFPTR('PTR2') 

CHGHLLPTR PTR('PTR3(4)') ADR('VARl(VAR2,5), 'PTR4(3)') 

For more information on the CL command CHGHLLPTR, see the Programming: 
Control Language Reference. 

Floating Point Variables 
In the test environment, floating point variables are displayed with the precision in ... ".~ 
which they are stored internally, and not as they are declared in your PL/I program. ...., 
Short floating point variables are displayed with a precision of BINARY 
FLOAT(24) or DECIMAL FLOAT (7), which requires four bytes of storage. 
Long floating-point variables are displayed with a precision of BINARY 
FLOAT(53) or DECIMAL FLOAT (16), which requires eight bytes of storage. 
OS/400 debug does not use the value of the precision declared in the program before 
displaying or changing the value. 

Changing Varying Length Strings 
When you use the CL command CHGPGMVAR to change a varying length char- ~ 
acter string, the bytes changed must either start within the current length of the 
string or start at the next byte after the end of the string as defmed by the current 
length. If the current length is negative, the length is treated as though it were O. 
The length of the string is always adjusted to match the last byte changed by the 
command. If updating the variable exceeds the maximum length, an error message 
is issued and the variable is not changed. 

A varying-length s.ring can be truncated without changing the value in the part of 
the string that remains after truncation. To do this, specify a null string for the new 
value. For example: 

CHGPGMVAR PGMVAR(VARYINGCHARSTRING) VALUE(I I) START(11) 

truncates the current length of VARYING CHAR STRING to ten characters. The 
byte count at the start of the string is updated to a value of ten. 

3-12 PL/I User's Guide and Reference 



USING DEBUG 

Specifying Variables by ODV Number 
You can display and change program data using oov (Object Deflnition Table 
Directory Vector) numbers. These numbers are found on the program IRP listing, 
which is obtained by specifying GENOPT (.LIST) on the CRTPLIPGM 
command. A cross-reference of oov numbers can be obtained by specifying 
GENOPT(.XREF) on the CRTPLIPGM command. For more information on 
the format of oov numbers, refer to the Programming: Control Language Program­
mer's Guide. 

If oov numbers are used to specify the names of variables, OS/400 debug only uses 
the information that is dermed for the variable at the machine instruction (MI) inter­
face. The value and attributes of the variable presented to you may be very different 
from what would be presented if the HLL variable name was specilled. 

Displaying Level Numbers 
Any PL/I variable declared with a structure level number is shown on the OS/400 
debug display with the level number immediately preceding the variable name. The 
level numbers displayed by OS/400 debug start at I for each structure and increment 
by I for each new level in the structure. The following example shows the level 
numbers for a structure in a PL/I program, and the corresponding level numbers that 
would be displayed by OS/400 debug. 

PL/I 
Level 
Number 

01 PARTS, 
05 ITEM, 

10 OLD FIXED DECIMAL (5,0), 
10 NEW FIXED DECIMAL (9,0), 

05 DESCRIPT CHAR(10); 

References to Static Variables 

OS/400 
Level 
Number 

01 
02 
03 
03 
02 

A variable declared in your PL/I program with the STATIC attribute can only be 
referenced by OS/400 debug when the program and block in which it is declared are 
currently active. 

Determination of Active Blocks in a Program 
A variable can only be displayed or changed by OS/400 debug if the block that 
dermed the variable is active. This is true regardless of the storage class of the vari­
able. You can detennine if a block is active at any point while debugging by dis­
playing any variable that is declared in the block, or by displaying the special 
variable +BLKn where n is the block number that you want to check. If you 
receive a message that the variable is not active, the block is not currently active. 

Chapter 3. Testing and Debugging PL/I Programs 3-13 



USING PLIDUMP 

Using PLIDUMP 
The PLIDUMP built-in subroutine produces a symbolic dump of the variables of 
the currently running program. The output of PLIDUMP appears on the system 
dump file QPPGMDMP. 

The program variables that are dumped depend on the options you specify when 
you call PLIDUMP. The dump also contains: 

• A list of any ONCODE, ONFILE, or ONKEY data which is relevant 
• The date and time of the dump 
• The statement number from which the dump was called. 

-CALL-PLIDUHP-P ---r------------------r-i--

L(. opti ons_11 st .--.[ _______ -._')J 
,user ldentlflc4tlon.-J 

optionsJist 
A contiguous string of characters consisting of one or more of the following 
dump options. 

T NT F NF V NV H NH S C 

The dump options are described as follows. The default dump options are 
underlined. 

I Displays a trace of the currently active blocks in the run unit, containing 
the name of the blocks (if applicable), statement numbers of calling state­
ments, and error information for on-units. 

NT No trace information is displayed . 

.E Displays the symbolic attributes and record contents of the buffers of all 
open files. 

NF No file information is displayed. 

V Generates a dump of all AUTOMATIC and STATIC variables (with a 
non-zero length) for the current calling of the external procedure with 
their identifiers. Recursive procedures and ON units are dumped for 
only the most recent call. 

NV No variables are dumped. 

H Produces a hexadecimal dump of the PL/I data spaces of the environment 
in which the program is running. This option is provided to assist in 
servicing the program. 

NH No hexadecimal dump is produced. 

~ Continues running the program after the dump. 

S Ends the program after the dump. When you select this option, an 
"Operator Requested Error Dump" will not be produced (see "Error 
Dump Option Screen" on page 3-16 for more information). 

3-14 PL/I User's Guide and Reference 

J 

J 



L 

L 

USING PLIDUMP 

Options are read from left to right. Invalid options are ignored, and if contra­
dictory options are coded, the rightmost options are used. 

user Jdentification 
A character string variable or constant chosen by the PL/I programmer. It can 
be of any length, but a maximum of 36 characters is printed at the head of the 
formatted dump. The rest is truncated. If the character string is omitted, no 
identification is printed. 

When you are debugging, you may call PLIOUMP from an on-unit, however, it 
may be called from anywhere else in your program. 

You can specify the C (continuation) option of PLIOUMP to get a series of dumps 
of storage while the program is running. 

If you call PLIOUMP several times in a program, use a different user identification 
to identify each dump. 

PLIDUMP can also be called whenever the program encounters a system error that 
is not handled by OS/400 or by your program (see the following section). 

Example of Using PLIDUMP 
The program used for the dump in Figure 3-6 is the same as that shown in 
Figure 8-5 on page 8-10, except that the following statement has been added to the 
program between statements 23 and 24: 

CALL PLIDUMP; 

This procedure produces the default dump as shown in Figure 3-6. 

To produce the maximum amount of information, including a variable dump and 
hexadecimal dump, use the following statement: 

CALL PLIDUMP('TFVHC','FULL PLjI PROGRAM DUMP'); 

18:62:28 61/67/88 PUOUMP CALLED FROM STATEMENT sea2S PROGRAM LP1427. 

CURRENT OPTI ONS I N EFFECT (TFNVNHC) 

TRACE 
FILE 
NOVARIABLES 
tlOHEXADEClMAL 
CONTINUE 

Figure 3-6 (Part 1 of 3). PLjI program calling PLIDUMP 

Chapter 3. Testing and Debugging PLjI Programs 3-15 



ERROR DUMP OPTION SCREEN 

TRACE OF CURRENT OSA STACK 

OSA BLOCK IlUt4BER 
BLOCK NAME 
FRO~I STATEMENT 
PROGRAM NAME 

Elm OF OSA TRACE 

- 8009l 
- LPl427 
- .,EXT 
- LP1427 

Figure 3-6 (Part 2 of 3). PL/I program calling PLIDUMP 

SYMBOLIC DUMP OF FILE SYSPRINT 

STATUS - OPEN 
ACTUAL FILE NAME - QPRINT 
SEPARATE INDICATORS - NO 
LAST OPERATION - PUT 

COMPLETED FILE ATTRIBUTES 
STREAM 
PRINT 
OUTPUT 
EXTERNAL 

ENVIRONMENTAL ATTRIBUTES 
CONSECUTIVE 

OUTPUT BUFFER 
800a06 48F8F8F8 F8F8F2F2 
S8B928 48494840 48484848 
009846- 48494648 48484848 
86a6G9 SAME AS ABOVE 
099888 48494948 

F2F2F248 48484848 0209E8E3 06054889 
40494840 48464840 F24BF4Ftl 48404848 
48464948 48484848 46494048 4fJ484949 

Figure 3-6 (Part 3 of 3). PL/I program calling PLIDUMP 

Error Dump Option Screen 

C9404849 49484840 ., 8888822222 KYRTON II 
., 

40484840 49464648 * 2.48 * 
46484948 48464948 * * 

* * 

When your program encounters a system error thatis not handled by OS/400 or by 
PL/I, the following display appears on your work station screen: 

3-16 PL/I User's Guide and Reference 



USING ON CONDITIONS 

I/G7/88 19:21:28 PROGRAM MESSAGES 
Job JI9.QSECOFR.G00929 started 01/07/88 19:20:31 in subsystem QGPL/QINTER 
UNOEFINEDFILE condition raised at statement 16 in LP1414 for file MST FILE. 
ERROR condition raised as a default action at statement 16 in LP1414.-0NCODE 
No error on-unit existed in LP1414. Select dump option. (C D F) 

7: ______________________________________________ ___ 

Figure 3-7. Error Dump Option Screen 

To request a dump on the display, enter a D or F; the default is D. The output is on 
the system-wide dump ftle QPPGMDMP. The response D produces the same dump 
data as the PLIDUMP options T (trace), F (flle information), and V (variables). 
The response F provides the same information as response D, and also produces a 
hexadecimal dump of the PL/I data spaces in which the program is running. The 
dump is the same as that produced by option H of PLIDUMP. 

To cancel a dump, enter response C. 

Using PLIIOFDB and PLlOPNFDB 
You can obtain the contents of the system-dermed input/output feedback area and 
the system-dermed open feedback area by using the PLIIOFDB and PLIOPNFDB 
built-in subroutines. For a description of these subroutines, and a discussion of 
how to use them, see "PLIIOFDB Built-In Subroutine" on page 15-16 and 
"PLIOPNFDB Built-In Subroutine" on page 15-17. 

Using ON Conditions 
You can write your programs using specifiable ON conditions to monitor for prob­
lems you may encounter. ON conditions and condition codes are described in 
Appendix D, "Conditions and Condition Codes," and their use is discussed in 
Chapter 10, "Condition Handling Statements." 

The figure below illustrates how you can use ON conditions in your program to 
alert you of problems. 

Chapter 3. Testing and Debugging PL/IPrograms 3-17 



USING ON CONDITIONS 

S728PWl RalMOO 880715 
SOURCE FILE •••••• 
MEMBER •••••••• 

SEU SOURCE LISTING 
PLI TST /PLI SRC 
ONCONDSEG 

11/30/87 10:24:49 

/' 

SEQNBR* ••• + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 •.• + ••• 6 ••• + ••• 7 •.• + ••• 8 ••• + ••• 9 ••• + ••• 8 
100 'ON ERROR' CONDITION 
200 --------------------
300 DECLARE ON CODE BUILTIN; 
400 
500 
699 
700 ON ERROR 
8eo BEGIN; 

011 ERROR SYSTEM; gee 
1008 
1100 
1200 
1300 
1408 
150e 

PUT FILE (SYSPRINT) SKIP(2) EDIT( ,** ERROR DETECTED **' )(X(16) ,A); 
PUT FILE (SYSPRINT) SKIP EDIT('THE CONDITION CODE WAS' ,ONCODE) 

(X(13).A, F(4»; 
END; /* BEGIN */ 

160e 
l7eo 

1880 ------------------------------------------------------------------------
1980 
2000 'ON ENDFILE' COlmlTION 

2100 ----------------------
22eo DECLARE 
2300 1 BITJLAGS STATIC, 
2400 2 MORE_RECORDS 
2500 2 NO 
260& 2 YES 
2700 
2808 
2900 
3000 ON ENDFILE (IN_FILE) 
3100 MORE_RECORDS • NO; 
3200 
33e9 
34&9 
3500 MORE RECORDS • YES; 

BIT(1) ALIGNED, 
BIT(l) ALIGNED INIT('O'B), 
BIT(l) ALIGNED INIT('l'B); 

36eo READ-FILE (INJILE) INTO (INPUT_RECORD); 
3700 
38ee 
3999 
48ee 

418& ------------------------------------------------------------------------
4200 
4300 'ON ENDPAGE' CONDITION 

4400 ----------------------
4580 DECLARE PAGE_NUMBER BINARY FIXED(2); 
46eo 
470e 
488& 
490e PAGE_NUMBER· 1; 
5aoe 
5100 
520e 
5300 ON ENDPAGE (SYSPRINT) 

Figure 3-8 (Part 1 of 3). Examples of ON conditions 

3-18 PL/I User's Guide and Reference 

PAGE 

J 



L 

5728PW1 R81M88 888715 
SOURCE FILE •••••• 
MEMBER ••• • • • • • 

SEU SOURCE LISTING 
PLITST/PLISRC 
ONCONDSEG 

USING ON CONDITIONS 

11/39/87 18:24:49 PAGE 2 

SEQNBR* ... + ... 1 ... + ... 2 ... + ... 3 ... + ... 4 ... + ... 5 ... + ... 6 ... + ... 7 ... + ... 8 ... + ... 9 ... + ... 8 
5489 BEGIN: 
5598 PUT FILE (SYSPRINT) PAGE EDIT('PAGE ',PAGE NUMBER)(X(81),A,F(2»; 
56GS PUT FILE (SYSPRINT) SKIP(2) EDIT('UPDATE REPORT')(X(38),A): 
57S0 PUT FILE (SYSPRINT) SKIP(2) EDIT('KEY ID','NAHE','CUR BALANCE', 
58SS 'UPDATE AMOUNT',' HEW BALANCE' )(A,X(9) ,A,X(21) ,A,X(6) ,A,X(4) ,A); 
5988 PAGE NUMBER • PAGE NUMBER + 1: 
6888 END: /* BEGIN * / -
6198 
6268 
630S 
64a8 

6588 ------------------------------------------------------------------------
6688 
6789 'ON KEY' CONDITION 
6809 ------------------
69S9 DECLARE ON CODE BUILTIN: 
7898 
7188 
1288 
7399 
7409 
7599 
7688 
7788 
7888 
7909 
8699 
8188 
8288 
8388 

ON KEY (MST_FILE) 
BEGIN: 

ON ERROR SYSTEM: 
PUT FILE (SYSPRINT) SKIP(2) EDIT( '** ERROR DETECTED **' )(X(18) ,A): 
PUT FILE (SYSPRINT) SKIP EDIT('INVALID OPERATION INVOLVING KEY OF', 

, MST FILE. CONDITION CODE WAS ',ONCODE)(X{13),A,A,F(4»: 
END: /* BEG! N * / 

840& ------------------------------------------------------------------------
85S8 
8699 'ON TRANSMIT' CONDITION 

8799 -----------------------
8888 DECLARE OMCODE BUILTIN: 
8999 
9889 
9199 
9288 
9388 
9488 
9599 
969S 
9799 
9889 

ON TRANSMIT (MST J I LE) 
BEGIN: 

ON ERROR SYSTEM: 
PUT FILE (SYSPRINT) SKIP(2) EDIT( '** UNEXPECTED ERROR ON I/O " 

OPERATION OF MST FILE' )(X(1S) ,A,A): 
PUT FILE (SYSPRINT) SKIP EDIT('THE FILE STATUS WAS' ,ONCODE) 

(X(13),A,F(4»: 
9998 END: /* BEGIN */ 

18888 
19159 
16290 
19399 

19468 ------------------------------------------------------------------------
18588 
18688 'ON UNDEFINEDFILE' CONDITION (ALSO 'ON UNDF') 

Figure 3-8 (Part 2 of 3). Examples of ON conditions 

Chapter 3. Testing and Debugging PL/I Programs 3-19 



USING ON CONDITIONS 

5728PW1 R81M00 886715 
SOURCE FILE • • • • • • 
MHtBER •••••••• 

SEU SOURCE LISTING 
PLI TST /PLI SRC 
ONCONDSEG 

11/38/87 18:24:49 

SEQNBR* ••• + ••• 1 ••• + ••• 2 ••• + ••• 3 ••• + ••• 4 ••• + ••• 5 ••• + ••• 6 ••• + ••• 7 ••• + ••• 8 ••• + ••• 9 ••• + ••• e 
19700 ----------------------------
108sa DECLARE ONCODE BUILTIN; 
109S0 
11S0e 
1110e 
11209 ON UNDEFINEDFILE (IN_FILE) 
11300 BEGIN; 
11400 ON ERROR SYSTEM; 
11S0e PUT FILE (SVSPRINT) SKIP(2) EDIT ( '** UNEXPECTED ERROR, UNDEFINED', 
11600 'FILE CONDITION RAISED ON OPENING OF IN FILE' )(X(le),A,A); 
117S0 PUT FILE (SVSPRINT) SKIP EDIT('THE CONDITION CODE WAS ',ONCODE) 
11806 (X(13),A,F(4»; 
11909 END; /* BEGIN */ 
1200e 
12109 
12208 
12300 

12460 ------------------------------------------------------------------------

Figure 3-8 (Part 3 of 3). Examples of ON conditions 

3-20 PL/I User's Guide and Reference 

PAGE 3 



Part 2. Reference 

The user's guide provides you with information on entering AS/400 PL/I programs, 
compiling and running these programs and fmding errors in them. The reference 
information in Part 2 is provided if you need specific detailed information on PL/I 

compiler directives, references, expressions, statements, procedures, functions, sub­
routines, and pseudovariables. 

The reference information is arranged as follows: 

• Chapter 4, "Program Elements and Organization" 

• Chapter 5, "PL/I Data Organization and Use" 

• Chapter 6, "AS/400 PL/I File and Record Management" 

• Chapter 7, "File Declaration and Input/Output" 

• Chapter 8, "Using AS/400 Files" 

• Chapter 9, "References and Expressions" 

• Chapter 10, "Condition Handling Statements" 

• Chapter 11, "Input and Output Statements" 

• Chapter 12, "Declaring Names and Attributes of Variables" 

• Chapter 13, "General PL/I Statements" 

• Chapter 14, "Procedures, Subroutines, and Functions" 

• Chapter 15, "Built-In Functions, Subroutines, and Pseudovariab1es." 

Part 2. Reference 



PL/I User's Guide and Reference 



PL/I PROGRAM STRUCTURE 

Chapter 4. Program Elements and Organization 

This chapter gives infonnation on: 

• PL/I statements and how to combine them into larger units: 

Compound statements, 
Do-groups 
Blocks. 

• The different types of blocks and how to combine them into a PL/I program. 

• Names and how to declare and use them. 

Characters That are Used in PL/I 
ASj400 PL/I uses the standard PL/I character set. A complete listing of the character 
set can be found in "EBCDIC Codes" on page B-IS. Note that in ASj400 PL/I, 

you can use lowercase characters when creating a source program. The lowercase 
character is equivalent to its corresponding uppercase character except when used in 
comments and character literals. 

PUI Program Structure 
A PL/I program is constructed from basic program elements called statements and 
directives. There can be up to 9999 statements in a program and up to 9999 sub­
statements in a statement. There are two types of statements: simple and com­
pound. Statements make up larger program elements called do-groups and blocks. 

Statements and Directives 
PL/I statements and directives are groupings of identifiers, constants, and delimiters. 
The syntax is: 

L J L simple statement 

label: compoun:_statementJ 
'------,directive------' 

Statement Labels 

A label is an identifier that names a statement so that it can be referred to at some 
other point in the program. Statement labels are either label constants or entry con­
stants (see "LABEL Attribute" on page 12-31 and "ENTRY Attribute" on 
page 12-32). 

The descriptions of individual statements do not generally include the label. You 
can use a label for any statement unless it is explicitly stated that you cannot use 
one. 

Chapter 4. Program Elements and Organization 4-1 



PL/I PROGRAM STRUCTURE 

It is a good idea to use labels following the IF, THEN, ELSE, WHEN, and OTH­
ERWISE keywords to make the program easy to read. The following example 
shows the format you should use: 

IF REMAINING ITEMS = e 
THEN 

CASEl: SIGNAL FINISH; 
ELSE 

CASE2: CALL NEXT ITEM 

Note: You cannot use a label with a compiler directive. 

Simple Statements 

There are three types of simple statements: keyword, assignment, and nu)). Each 
type ends with a semicolon. 

A keyword statement begins with a keyword that indicates the function of the state­
ment. For example: 

READ FILE (INFILE) INTO (CURRENT_RECORD); 

The assignment statement contains the assignment symbol ( =). The statement 
does not begin with a keyword. For example: 

A = B + C; 

The null statement consists of a semicolon and may contain a label. For example: 

LABEL: ; 

Directives 

A directive consists of a % sign (or, optionally, an ... for the %PROCESS directive) 
followed by an instruction to the compiler. Each directive ends with a semicolon. 
Labels are not allowed on directives. Directives are discussed in "Using Compiler 
Directives" on page 2-16. 

Elements of a PL/I Statement 
A PLjI statement consists of constants, identifiers, and delimiters. 

Constants 

A constant is a data item whose value cannot change. You refer to an arithmetic 
constant by directly representing the value of the constant, for example, 3.14. 

4-2 PLjI User's Guide and Reference 



PL/I PROGRAM STRUCTURE 

Identifiers 

An identifier consists of one or more alphabetic characters, and may contain digits, 
break characters _ and the $, #, and @ characters. An identifier must start with an 
alphabetic character and must not exceed 31 characters. The break character 
improves readability, as in GROSS_PAY. 

If you use an identifier as a AS/400 program or file name, it must not exceed ten 
characters. 

An identifier can be a user-deHned name or a PL/I keyword, depending on how it is 
used. 

User-Defined Names: A user-defined name, commonly called a name, is an identi­
Her given to a variable or to a named constant. Any identifier can be used as a 
name. 

At any point in a program, a name can have only one meaning. For example, you 
cannot use the same name for both a built-in function and a variable in the same 
block. 

Examples of names are: 

A 
FILE2 
LOOP 3 
PAY RATE 
#32 

Additional requirements for names are discussed later in this chapter. 

PL/I Keywords: A keyword is an identifier that has a specific meaning when used in 
the predefmed context. A keyword can specify an action to be taken or the attri­
butes of data. Some examples are the keywords READ, ENDFILE, and 
DECIMAL. Some keywords can be abbreviated; the abbreviation is shown in the 
description of the individual keywords. 

Delimiters 

Delimiters are used to separate identifiers and constants. Delimiters, other than 
operators, are shown in Figure 4-1; operators are shown in Figure 4-2. 

Name Delimiter Use 

operators See Figure 4-2 on page 4-4 

blank Separates elements of a statement 

Figure 4-1 (Part 1 of 2). Delimiters 

Chapter 4. Program Elements and Organization 4-3 



PL/I PROGRAM STRUCTURE 

Name Delimiter Use 

comment / *[text] ... / Documents the program 

comma , Separates elements of a list 

period Connects elements of a qualified name 

semicolon , Ends a statement 

assignment = Indicates assignment of a value. You can also 
symbol use the character = as a comparison operator 

colon : Connects a label prefix to a statement; 
delimits bounds in a dimension attribute 

parentheses () Encloses a list, expression, or iteration factor; 
encloses information associated with various 
keywords J 

pointer -> Denotes a pointer qualifier 

directive %INCLUDE Directs the compiler 
%PAGE 
%PROCESS 
.PROCESS 
%SKIP 

Figure 4-1 (Part 2 of 2). Delimiters J 
Name Operator Use 

Arithmetic + Addition or prefix plus 
- Subtraction or prefix minus 

• Multiplication 
/ Division 

•• Exponentiation 

Comparison > Greater than 
-,> Not greater than 
>= Greater than or equal to 
= Equal to 
-,= Not equal to 
<= Less than or equal to 
< Less than 
-,< Not less than 

Bit -, Not 
& And 
I Or 

Figure 4-2 (Part 1 of 2). Operators 

4-4 PLfI User's Guide and Reference 



L 

PL/I PROGRAM STRUCTURE 

Name Operator Use 

String II Concatenation 

Figure 4-2 (Part 2 of 2). Operators 

The characters that can be used as delimiters can also be used in other contexts. 
For example, the period is a delimiter when used in structure quaIification, such as 
A.B, but it is not considered a delimiter when used in a decimal constant, such as 
3.14. 

Blanks: You can surround each delimiter with blanks. One or more blanks must 
separate identifiers and constants that are not separated by another delimiter. In 
general, any number of blanks can appear wherever one blank is allowed. 

Blanks cannot occur within identifiers, arithmetic and bit constants, or composite 
symbols. They are valid as data characters in character constants. 

Other cases that require or permit blanks (for example, in GO TO or GOTO) are 
noted in the text where the feature of the language is discussed. 

Some examples are: 

TABLE(10) is equivalent to TABLE ( 10 

FIRST ,SECOND is equivalent to FIRST, SECOND 

ABuBC is equivalent to AB ** BC 

ABuBC is not equivalent to AB * * BC 

Comments: You can use comments wherever blanks are allowed as delimiters in a 
program. A comment is treated as a blank and can therefore be used in place of a 
required separating blank. Comments do not affect the running of a program. 

I-I' [ ] '/~ 
text 

The composite symbol / + indicates the beginning of a comment and the composite 
symbol +/ indicates its end. The text can contain any of the language or extralingual 
characters, except the +/ composite symbol, which would end it. 

An example of a comment in an assignment statement is: 

A = 1; /* INITIALIZE */ 

The following example assigns a character constant to A; it does not contain a 
comment: 

A='/* THIS IS A CONSTANT, 
NOT A COMMENT */1; 

Chapter 4. Program Elements and Organization 4-5 



PROGRAM ORGANIZATION 

Program Organization 

Programs 

Blocks 

This section discusses how a PL/I program is organized and how control flows 
between blocks. 

A PL/I program is a collection of one or more procedures, called external 
procedures, each of which can contain internal procedures or begin-blocks or both. 

Activating a Program 

A PL/I program becomes active when a calling program calls the initial procedure. 
This calling program may be a AS/400 Control Language (eL) program, or it could 
be a program written in another high level language. The initial procedure must be ~ 
one of the external procedures of the program. In the following example: ...", 

CONTRL: PROCEDURE OPTIONS (MAIN); 
DECLARE (PROC1,PROC2,PROC3) ENTRY EXTERNAL; 
CALL PROC1; 
CALL PROC2; 
CALL PROC3; 
END CONTRL; 

the initial procedure is CONTRL; it calls external procedures PROCl, PROC2, and 
PROC3. 

For more information about starting a PL/I program, see "Running the Program" 
on page 2-22. 

Ending a Program 

A program ends when the initial procedure ends. If a program ends normally or 
abnormally, control returns to the calling program. 

A block is the smallest delimited sequence of statements to which scoping and 
storage allocation rules apply. 

There are two kinds of blocks: procedures and begin-blocks. The maximum 
number of blocks in any external procedure is equal to 255 minus the number of 
on-units in the procedure. 

You can limit the scope of a name to a particular block (internal) or it can be 
known in all the blocks in a program (external). Storage may be allocated for a 
name only while a block is active (automatic) or while the program is running 
(static). You can derme these attributes by explicit or implicit declarations within a 
block. (See "Names" on page 4-12 for more information about the scope of names 
and "STORAGE CONTROL" on page 5-15 for more information about the allo­
cation of storage.) 

4-6 PL/I User's Guide and Reference 



PROGRAM ORGANIZATION 

You may fmd it easier to write and test a program by dividing it into blocks, partic­
ularly when a number of programmers are writing parts of the same program. 

Some storage and some extra run time is used each time a block is activated. 
However, a program using multiple small blocks requires less storage to run, 
because storage for automatic variables is allocated on entry to the block, and is 
released on exit from the block. 

Activating a Block 

When an external procedure is called for the ftrst time, storage is allocated for the 
static variables of all the blocks contained by the external procedure. 

When an internal procedure or begin-block is activated: 

• Array dimensions and string lengths of adjustable automatic variables which are 
not known at compile time are evaluated. The dimensions and lengths are 
those of the parameters passed to the procedure when it is called. 

• Storage is allocated for automatic variables. 

Begin-blocks and procedures are activated in different ways: 

• Procedures other than the initial procedure are activated only when they are 
called by a procedure reference (see "Activating a Procedure" on page 4-10). 

• Begin-blocks are activated through sequential flow (see "Activating a Begin­
Block" on page 4-11) or by an on-unit. 

Ending a Block 

A procedure or begin-block can end in a number of ways, depending on the type of 
block. (See "Ending a Procedure" on page 4-11 and "Ending a Begin-Block" on 
page 4-12 for more information.) 

When a block ends: 

• The on-unit environment that existed before the block was activated is reestab­
lished. 

• Storage for all automatic variables allocated in the block is released. 

• Static storage is released, and open mes are closed if the block is the initial pro­
cedure of the program. 

For more information on closing mes, refer to "CLOSE Statement" on 
page 11-8. 

Storage allocated for an automatic variable cannot be referred to after the block con­
taining the declaration of the variable has ended. If such a reference is attempted 
(by means of a pointer variable to which the address of the automatic variable has 
been assigned, for example), the results are undefmed. Similarly, the value of a label 
or internal entry constant cannot be referred to after the block containing its declara­
tion has ended. If such a reference is attempted (by means of a label or entry vari-

Chapter 4. Program Elements and Organization 4-7 



PROGRAM ORGANIZATION 

able to which the value has been assigned, for example), the results are undefined. j 
Consider the following program: 

MAINPROC: PROCEDURE OPTIONS (MAIN); 
DECLARE (ITEM1,ITEM2) FIXED DECIMAL (3); 
ITEMl = 5; 
ITEM2 = 8; 

BLOCK1: BEGIN; 
DECLARE BLOCKITEM 

FIXED DECIMAL (3,0) AUTOMATIC; 
BLOCKITEM = ITEM1; 

STMT1: ITEMl = 0; 
END BLOCK1; 

INVALID1: ITEM2 = BLOCKITEM; 
INVALID2: GO TO STMT1; 

END MAINPROC; 

When this program is compiled, the variable BLOCKITEM within the statement 
labelled INVALIDI will be identified as being in error. The compiler will not rec­
ognize the variable name BLOCKITEM, because BLOCKITEM is declared in 
BLOCKl, and its scope does not include statement INVALIDl. Similarly, the 
label STMTI in statement INVALID2 will be identified as being in error. 

If a GO TO statement transfers control out of a block, several blocks may be ended. 
If the label specified in the GO TO statement is contained in a block that did not 
directly activate the block being ended, all currently activated blocks in the acti­
vation sequence are ended. This is shown in the following example: 

A: PROCEDURE; 
statement-al 
statement-a2 
B: BEGIN; 

statement-bl 
statement-b2 
CALL C; 
statement-b3 
END B; 

statement-a3 
statement-a4 
c: PROCEDUREj 

statement-cl 
statement-c2 
statement-c3 
D: BEGIN; 

statement-dl 
statement-d2 
GO TO LAB; 
statement-d3 
END Dj 

statement-c4 
END C; 

statement-aS 
LAB: statement-a6 

statement-a7 
END A; 

4-8 PL/I User's Guide and Reference 

J 



PROGRAM ORGANIZATION 

In this example, procedure A activates begin-block B, which activates procedure C, 
which activates begin-block D. In D, the statement GO TO LAB transfers control 
to statement-a6 in A. Because this statement is not contained in D, C, or B, all 
three blocks are ended; A remains active. Therefore, the transfer of control out of D 
ends intervening blocks B and C as well as block D. 

Internal and External Procedures 
A procedure is a sequence of statements that may be called for processing at one or 
more points in one or more programs within a run unit. The ftrst statement is a 
PROCEDURE statement and the last is a corresponding END statement. (See 
"PROCEDURE Statement" on page 14-2 and "END Statement" on page 13-10.) 

A procedure can be a subroutine or a function (see "Deftning a Procedure" on 
page 14-1). 

Any block can contain one or more blocks nested within it; that is, procedures and 
begin-blocks can contain other procedures and begin-blocks, which can contain 
others, and so on. A block must completely encompass any block contained within 
it. 

A procedure can be external or internal. An internal procedure is contained in 
another block. An external procedure is not contained in another block. 

Begin-blocks are always internal: they are always contained in another block. In the 
following example, 

Chapter 4. Program Elements and Organization 4-9 



PROGRAM ORGANIZATION 

A: PROCEDURE; 

B: BEGIN; 

END B; 

C: PROCEDURE; 

D: BEGIN; 

E: PROCEDURE; 

END E; 

END D; 
END C; 

END A; 

procedure A is an external procedure because it is not contained in any other block. 
Block B is a begin-block that is contained in A; it contains no other blocks. Block 
C is an internal procedure; it contains begin-block D, which in tum contains 
internal procedure E. There are three levels of nesting relative to A: B and C are at 
a depth of one, D is at a depth of two, and E is at a depth of three. 

The maximum depth of block nesting is 50. 

Activating a Procedure 

Normal sequential program processing ignores a procedure. Control passes directly 
from the statement immediately before the procedure's beginning to the statement 
immediately following the procedure's end. 

A procedure is activated or called by an entry reference: 

• Following the keyword CALL in a CALL statement (see "CALL Statement" 
on page 14-7). 

• In a function reference (see "Function Reference" on page 14-4). 

The point at which the entry reference appears is called the point of calling, and the 
block in which it appears is called the calling block. A calling block remains active 
when control is transferred to the called block. 

4-10 PL/I User's Guide and Reference 

J 



Begin-Blocks 

PROGRAM ORGANIZATION 

When a procedure is called, processing begins with the fIrst statement that can be 
processed. Processing is synchronous; that is, the calling procedure stops running 
until control is returned to it. 

Communication between two procedures is by means of variables ("arguments") 
passed from the calling procedure to the called procedure, by variables returned 
from the called procedure, and by names known within both procedures. Therefore, 
a procedure can operate upon different data when it is called at different times. 

Ending a Procedure 

A procedure ends when: 

• A RETURN statement is processed within the procedure. Control then returns 
to the calling point in the calling procedure. If the calling point is a CALL 
statement, processing in the calling procedure resumes with the statement fol­
lowing the CALL. If the point of calling is a function reference, processing 
resumes with the statement containing the reference. 

• The END statement of the procedure is reached. This is equivalent to a 
RETURN statement. 

• A GO TO statement is processed and control is transferred out of the proce­
dure. (The GO TO statement is discussed under "GO TO Statement" on 
page 13-11.) 

• A STOP statement is processed. This also ends the run unit. 

• A condition is raised and the implicit action ends the procedure. This also ends 
the run unit. 

A begin-block is a sequence of statements delimited by a BEGIN statement and a 
corresponding END statement. 

A label is optional for a begin-block. 

Activating a Begin-Block 

Begin-blocks are activated through nonnal flow or by error-handling on-conditions. 
In general, they can appear wherever a single statement can appear. 

When a begin-block is activated, the encompassing block or blocks remain active. 

Control can be transferred to a labeled BEGIN statement by means of a GO TO 
statement. 

Chapter 4. Program Elements and Organization 4-11 



NAMES 

Names 

Ending a Begin-Block 

A begin-block ends when: 

• Control reaches the END statement for the block. Control is then transferred 
to the statement following the END statement. (See "Running an On-Unit" on 
page 10-3 for a discussion of nonnal return from an on-unit.) 

• A STOP statement is processed. 1bis also ends the run-unit. 

• A condition is raised and the implicit action ends the run-unit. 

• A GO TO statement is processed and control is transferred to a point outside of 
the block. 

• A RETURN statement is processed and control is transferred out of both the 
begin-block and its containing procedure. 

You refer to each variable, and each ftle, label, and entry constant in a PL/I program 
by a name. 

Each name and its attributes must be made known in the block in which it is used 
by either an explicit or a contextual declaration. 

J 

A name need not have the same meaning throughout a program. A name declared J 
within a block has a meaning only within that block. Outside the block, it is 
unknown unless the same name is also declared in the outer block. The name in 
the outer block refers to a different data item. You can specify local defmitions and 
write a block (a procedure or a begin-block) without knowing all the names being 
used in other blocks. 

The part of the program to which a name applies is called the scope of that name. 
Each declaration of a name establishes a scope for it. 

To understand the rules for the scope of a name, you need to know the meaning of 
the tenns "contained in" and "internal to." 

Everything in a block, from the PROCEDURE or BEGIN statement through to 
the corresponding END statement, is contained in that block. However, the label of 
the BEGIN or PROCEDURE statement that heads the block is not contained in 
that block. Nested blocks are contained in the block in which they appear. 

Elements contained in a block, but not contained in any block nested within it, are 
internal to that block. Consider the following example: 

PROC1: PROCEDURE; 
STMTl: INTEGERl ; SQRT(INTEGER2); 
PROC2: PROCEDURE; 

STMT2: INTEGER3 = INTEGER1; 
END PROC2; 

END PROCl; 

4-12 PL/I User's Guide and Reference 



NAMES 

STMTI and STMT2 are both contained in PROCI. STMT2 is also contained in 
PROC2. STMTI is internal to PROCI. STMT2 is internal to PROC2. 

The entry name of an internal procedure or the label of a BEGIN statement is 
internal to the containing block. The entry name of an external procedure is not 
internal to the external procedure. 

Explicit Declaration of a Name 
A name is explicitly declared if it appears: 

• In a DECLARE statement. The DECLARE statement explicitly declares attri­
butes of names. 

• In a parameter list. The appearance of the name in a parameter list constitutes 
an explicit declaration of the name as a parameter of the containing procedure. 
The attributes for this parameter must be in a DECLARE statement internal to 
the same procedure. 

• As the label prefix of a PROCEDURE statement. A labeled PROCEDURE 
statement constitutes a declaration, within the containing block, of the proce­
dure name as an entry constant. 

• As the label prefix of a statement other than a PROCEDURE statement. The 
label prefix constitutes an explicit declaration of a label constant within the con­
taining block. 

Note: An explicit declaration overrides a contextual declaration. 

The scope of an explicit declaration of a name is the block it is internal to. This 
includes all contained blocks. This does not include blocks that have another 
explicit declaration of the same name internal to them. 

The syntax and use of the DECLARE statement is described in 
Chapter 12, "Declaring Names and Attributes of Variables." 

Contextual Declaration of a Name 
Only built-in function and built-in subroutine names can be declared contextually. 
To contextually declare a name as a built-in function name, it must appear as a ref­
erence and be followed by a parenthesized argument list. To contextually declare a 
name as a built-in subroutine name, it must appear as a reference in a subroutine 
call. 

Contextual declaration of a built-in function or built-in subroutine name has the 
same effect as if the name was declared in the external procedure, even when the 
statement that causes the contextual declaration is internal to another block that is 
contained in the external procedure. Consequently, the scope of the contextual dec­
laration is the entire external procedure, except for any blocks in which the name is 
explicitly declared. 

Chapter 4. Program Elements and Organization 4-13 



NAMES 

Multiple Declarations of Names 

Scopes of Names 

Multiple declarations are not valid. They occur when two or more declarations of 
the same name are internal to the same block. Multiple declarations are valid when 
at least one of the names is declared within a structure in such a way that structure 
qualification can be used to make references unique. 

Figure 4-3 is a sample procedure that illustrates the scopes of data declarations. 
The brackets to the left indicate the block structure; the brackets to the right show 
the scope of each declaration of a name. The scopes of the two declarations of Q 
are shown as Q and Q'. 

p Q Q' S R X SIN 
A: PROCEDURE; ] DECLARE (P, Q) FLOAT; 

B: PROCEDURE; 
DECLARE Q FIXED, 

(R,X) FLOAT; 
R = Q; 
X=SIN(R); 
END B; 

1 
[ C: PROCEDURE; 

1 
DECLARE S FIXED; 
END C; 

END A; 

Figure 4-3. Scopes of Data Declarations 

P is declared in block A and known throughout A. 

Q is declared in block A and in block B. The scope of the fIrst declaration of Q is 
all of A except B; the scope of the second declaration of Q (Q') is block B only. 

J 

SIN is referred to in block B. This results in a contextual declaration in the external ...,) 
procedure A. This declaration therefore applies to all of procedure A, including its 
contained procedures B and C. 

S is explicitly declared in procedure C and is known only within C. R and X are 
declared in block B and are known only within block B. 

Figure 4-4 on page 4-15 illustrates the scopes of entry constant and statement label 
declarations. The example shows two external procedures. 

4-14 PLjI User's Guide and Reference 



A: PROCEDURE; 
DECLARE E ENTRY; 
Ll: P = Q; 
B: PROCEDURE; 

L2: CALL C; 

[ 
C: PROCEDURE; 

Ll: X = Y; 
CALL E; 

END C; 
GO TO Ll; 

END B; 
[ 0: PROCEDURE; 

END D; 
CALL B; 
END A; 

[ 
%PROCESS; 
E: PROCEDURE; 

END E; 

Ll 

NAMES 

Ll' L2 A B c o E 

1 

] 
Figure 4-4. Scopes of Entry and Label Declarations 

E is explicitly declared in A as an external entry constant. The explicit declaration 
of E in block A applies throughout block A; its explicit declaration as the entry con­
stant of block E applies throughout block E. The scope of the name E is all of 
block A and all of block E. The scope of the name A is all of the block A only, 
and not block E. 

The label L1 appears on statements internal to A and to C. Two separate declara­
tions are therefore established; the Hrst applies to all of block A except block C, and 
the second applies to block C only. Therefore, when the GO TO statement in 
block B is processed, control is transferred to L1 in block A, and block B is ended. 

B and D are explicitly declared in block A and can be referred to from anywhere 
within A. Because they are internal, however, they cannot be referred to in block E. 

C is explicitly declared in B and can be referred to from within B, but not from 
outside B. 

L2 is declared in B and can be referred to in block B, including C, which is con­
tained in B, but not from outside B. 

If a PL/I keyword and its abbreviation are both declared as user-defIned names in a 
program, the scopes of the two declarations may be different. For example: 

Chapter 4. Program Elements and Organization 4-15 



NAMES 

A: PROCEDURE; 
DECLARE DEC FIXED DECIMAL (6), 

DECIMAL FILE; 
B: BEGIN; 

DECLARE DEC BUILTIN, 
(Y,Z) FIXED DECIMAL (6); 

Y=DEC(Z,6); 
END B; 

CLOSE FILE (DECIMAL); 
END A; 

DEC is known as a fixed-point decimal data item in block A, and as a built-in func­
tion in block B, where it is declared again. DECIMAL is known as a file 
throughout blocks A and B. 

Using the Scope Attributes 

You can use the INTERNAL and EXTERNAL attributes to specify the scope of a 
name. 

For a description of the syntax of the scope attributes, INTERNAL and 
EXTERNAL, see "Scope Attributes" on page 12-40. For a description of how PL/I 

handles INTERNAL and EXTERNAL files, see "Scoping of Open Files (File 
Sharing)" on page 7-11. 

INTERNAL specifies that the name is known only in the declaring block. The 
scope of the name is the same as the scope of its declaration. Any other explicit 
declaration of that name refers to a new object with a different, non-overlapping 
scope. 

J 

J 

A name with the EXTERNAL attribute can be declared in more than one external 
procedure. It is linked across external procedures. No external name can be 
declared more than once in the same external procedure. The scope of the name 
includes the scopes of all the declarations of that name (with the EXTERNAL attri-
bute) within the run unit. J 
External names cannot exceed ten characters in length. 

Different declarations of the same name with the EXTERNAL attribute must have 
identical attributes after any defaults have been applied. 

When you declare a major structure name as EXTERNAL in more than one 
external procedure, the attributes of the structure members must be the same, 
although the corresponding member names need not be identical. For example: 

4-16 PL/I User's Guide and Reference 

J 



L 

PROCA: PROCEDURE; 
DECLARE 1 A EXTERNAL, 

2 B FIXED, 
2 C FLOAT; 

END PROCA; 

PROCB: PROCEDURE; 
DECLARE 1 A EXTERNAL, 

2 B FIXED, 
2 D FLOAT; 

END PROCB; 

NAMES 

In this example, if AB is changed in PROCA, it is also changed in PROCB, and if 
it is changed in PROCB, it is also changed in PROCA If AC is changed in 
PROCA, AD is changed in PROCB, and if AD is changed in PROCB, AC is 
changed in PROCA. 

The attribute listing, which is available as optional output from the compiler, helps 
to check the use and attributes of names. The following program example illustrates 
the use and attributes of names, and the rules for scopes of names: 

A: PROCEDURE; 
DECLARE S CHARACTER (21), 

M FIXED DECIMAL (7), 
N BINARY (15); 

DECLARE SYSIN FILE INPUT; 
DECLARE SET ENTRY(FIXED DECIMAL(l)); 
CALL SET (3); 

E: GET FILE(SYSIN) EDIT (S,M,N) 
(A(21),F(7),F(3)); 

B: BEGIN; 
DECLARE X(M,N) FIXED DECIMAL (7), 

Y(M) FIXED DECIMAL (7); 
GET FILE(SYSIN) EDIT (X,Y) 

(F (7) , F (7) ) ; 
CALL C(X, Y) ; 
C: PROCEDURE (P,Q); 

DECLARE (I,J) 

S = 0; 

OUT 
SUM 

DO I = 1 TO M; 
SUM = 0; 
DO J = 1 TO N; 

FIXED BINARY (15) 
INTERNAL, 
FIXED DECIMAL (7), 
FIXED DECIMAL (7), 
FIXED BINARY (15) 
EXTERNAL, 
ENTRY(LABEL), 
FIXED DECIMAL (9); 

Chapter 4. Program Elements and Organization 4-17 



NAMES 

SUM = SUM + P(I,J); 
END; 
IF SUM = Q(I) THEN 

GO TO B; 
S = S + 1; 
IF S = 3 THEN 

CALL OUT (E); 
CALL D(I); 

B: END; 
END C; 

D: PROCEDURE (N); 
DECLARE N FIXED BINARY (15); 
DECLARE SYSPRINT FILE OUTPUT; 
PUT FILE(SYSPRINT) EDIT 

(IERROR IN ROWI , 
N, ITABLE NAME I, S) 
(A(12) ,F(4) ,X(I), 
A(ll) ,A(21)); 

END D; 
END B; 

GO TO E; 
END A; 

%PROCESS; 
OUT: PROCEDURE 

DECLARE R 
(R) ; 

LABEL, 

M = M+l; 
S = e; 

(M, L) 

S 

FIXED DECIMAL (7) 
STATIC INTERNAL 
INITIAL (e), 
FIXED BINARY (15) 
EXTERNAL; 

IF M<L THEN STOP; 
ELSE GO TO R; 

END OUT; 
%PROCESS; 

SET: PROCEDURE(Z); 
DECLARE Z FIXED DECIMAL(I), 

L=Z; 
RETURN; 
END SET; 

L FIXED DECIMAL(I) STATIC 

A is an external name. The scope of A is all of block A, plus any other blocks 
where A is declared as external. 

S is declared in block A and block C, as well as in block OUT. The declarations of 
S in block C and in block OUT declare S as external. They specify identical attri­
butes for S, and declare the same external variable. The declaration of S in block A 
introduces a different, internal variable. 

Within external procedure A, the character variable declaration of S applies to all of 
block A except block C. The fixed binary declaration of S applies only within block 

4-18 PL/I User's Guide and Reference 



L 

NAMES 

C. Although D is called from within block C, the reference to S in the PUT state­
ment in D is to the character variable S and not to the S declared in block C. 

N is a parameter in block D, but is also declared in block A. These two declara­
tions on the name N refer to different objects, although, in this case, the objects 
have the same attributes, which are BINARY FIXED(lS) and INTERNAL. 

X and Y are known throughout B and could be referred to in block C or D within 
B, but not in that part of A outside B. 

P and Q are parameters and therefore require explicit declaration. Although the 
arguments X and Y are declared as arrays and are known in block C, it is still neces­
sary to declare P and Q in a DECLARE statement to establish that they, too, are 
arrays. (Asterisks indicate that the bounds of the parameters are taken from the 
corresponding arguments.) 

I and J are known only in block C. M is known throughout block A, including all 
its contained blocks. 

The second external procedure in the example has the entry name OUT, and the 
third external procedure has the name SET. The entry constants SET and OUT get 
the attributes ENTRY and EXTERNAL and are known throughout their external 
procedures. Because these external procedures are referenced in the external proce­
dure A, they must be declared with an appropriate ENTRY attribute in procedure 
A. 

The label prefix B appears twice in the program. It is first declared explicitly by its 
appearance as the label of a begin-block A. It is declared again as a label within 
block C by its appearance as a prefix to an END statement. The GO TO B state­
ment within block C, therefore, refers to the label 011 the END statement within 
block C. Outside block C, any reference to B would be to the label of the begin­
block. 

C and D can be called from any point within B, but not from that part of A outside 
B or from another external procedure like OUT or SET. Similarly, because E is 
known throughout the external procedure A, a transfer can be made to E from any 
point within A. The label B within block C, however can only be referred to from 
within C. 

Control can be transferred out of a block and back to a block that was activated, by 
means of a GO TO statement. In the external procedure 0 UT, the label E from 
block A is passed as an argument to the label parameter R. The statement GO TO 
R causes control to pass to the label E, although E is declared within A and is not 
within OUT. 

The variables M and L are declared as STATIC within the procedure OUT; their 
values are preserved between calls to OUT. 

Chapter 4. Program Elements and Organization 4-19 



NAMES 

4-20 PL/I User's Guide and Reference 



L 

DATA ORGANIZATION 

Chapter 5. PL/I Data Organization and Use 

This chapter contains information on how data is stored and manipulated. Data 
items come in two forms: scalars, or aggregates. You can use alignment and 
mapping attributes as well as the DECLARE statement to control how this data is 
stored. There are three data types: arithmetic, character, and bit. You can assign 
data items to one of these types and convert between types using built-in conversion 
functions. 

DATA ORGANIZATION 
Data items can be single data items, called scalars, or they can be grouped together 
to form data aggregates, in which they can be referred to either individually or col­
lectively. Data aggregates can be arrays or structures. A variable that represents a 
single data item is a scalar variable. A variable that represents an aggregate of data 
items is either an array variable or a structure variable. 

Any type of problem data variable or program control variable can be grouped into 
arrays or structures. 

Using Arrays and the Dimension Attribute 
An array is a collection, into one or more dimensions, of one or more array­
elements with identical attributes. An array-element can be a scalar variable or a 
structure. Only the array itself is given a name. An individual item of an array is 
referred to by the array name and a subscript giving the item's position inside the 
array. 

An array is declared with the dimension attribute, which defmes the subscript 
format. For a description of the syntax of the dimension attribute, see "Arrays and 
the Dimension Attribute" on page 12-38. 

Examples of Array Declarations 

DECLARE LIST(8) FIXED DECIMAL (3); 

In the example above, LIST is declared a one-dimensional array of eight elements, 
each of which is a fixed-point decimal element of three digits. The single dimension 
of LIST has bounds of I and 8; its extent is 8. 

DECLARE TABLE1(4,2) FIXED DECIMAL (3); 

TABLE I is declared a two-dimensional array, also of eight fixed-point decimal ele­
ments. The two dimensions of TABLE I have bounds of I and 4, and 1 and 2; the 
extents are 4 and 2. 

DECLARE TABLE2(10,1:8) FIXED DECIMAL (6,2); 

TABLE2 is declared a two-dimensional array of eighty fixed-point decimal elements, 
each with six digits, of which two are to the right of the decimal point. The two 

Chapter 5. PL/I Data Organization and Use 5-1 



DATA ORGANIZATION 

dimensions of TABLE2 have bounds of 1 and 10, and 1 and 8; the extents are 10 
and 8. 

In AS/400 PL/I, the only lower bound you can specify is 1. 

DECLARE INDEXI FIXED BINARY (15) STATIC INITIAL (8); 
DECLARE LIST(l:INDEXl) FIXED DECIMAL (4); 

The bounds of LIST are 1 and INDEX 1, with INDEXI initialized as 8. 

The following example shows a factored array declaration: 

DECLARE (A,B,C,D)(10) BINARY FIXED; 

The variables A, B, C, and D are to represent one-dimensional arrays, each con­
sisting of ten fixed-point binary items with a default length of 15. 

Subscripts 

The dimensions of an array determine the way the elements of the array are referred 
to. For example, the array LIST, which is declared above as a one-dimensional 
array, can be considered as a linear sequence of eight elements. If the contents of 
the elements of the array are 

20 5 10 30 630 150 310 70 

in that order, they can be referred to as follows: 

Reference Element 

LIST (1) 20 
LIST (2) 5 
LIST(3) 10 
LIST(4) 30 
LIST (5) 630 
LIST (6) 150 
LIST(7) 310 
LIST(8) 70 

Each of the numbers following LIST is a subscript. A subscript identifies a partic­
ular element of the array. A reference to a subscripted name, such as LIST(4), 
refers to a single item. In the example, LIST( 4) has a value of 30. The entire array 
can be referred to by the name of the array, with no following subscript. For 
example, all of the elements of LIST could be set to zero by the statement 
LIST = O. 

The same data could be organized in the two-dimensional array TABLEl declared 
above. TABLEI could then be considered as a matrix offour rows (m) and two 
columns (n), as follows: 

5-2 PL/I User's Guide and Reference 

J 



DATA ORGANIZATION 

n 1 2 
m 

1 20 5 

2 10 30 

3 630 150 

4 310 70 

TABLEI is referred to by a subscripted name with two parenthesized subscripts, 
separated by a comma. For example, TABLEI (2,1) specifies the fIrst item in the 
second row, which is 10. 

The use here of a matrix to illustrate TABLEI bears no relationship to the way in 
which the items are actually organized in storage. Elements of an array are stored in 
row major order with the right-most subscript varying most rapidly. For example, 
the array TABLE I is stored in the order TABLEI(I,I), TABLE1(1,2), 
TABLEl(2,1), TABLEI(2,2) and so on. 

A subscripted reference to an array must contain as many subscripts as there are 
dimensions in the array. (See "Arrays of Structures" on page 5-5 for arrays with 
inherited dimensions.) 

The examples in this chapter have arrays of arithmetic data. Variables of any data 
type except FILE can be collected into an array. String arrays (character or bit) are 
valid, as are arrays of label, entry, or pointer data. 

Expressions as Subscripts 

Any integer expression can be used as a subscript. The expression is converted to 
fixed-point binary with a precision of 31. Therefore, TABLE(I,J+K) could refer to 
the different elements of TABLE by varying the values of the integers I, J, and K. 

Using Structures and Level Numbers 
A structure is a collection of data items that need not have identical attributes. 

Like an array, the entire structure is given a name, which can be used to refer to the 
entire aggregate of data. But, unlike an array, each fIeld of a structure also has a 
name. 

A structure has different levels. At the frrst level is the major structure; at lower 
levels are the minor structures; and at the lowest are the fields of the structure. A 
structure field can be a scalar variable or an array. 

The members at the next lower level of a structure or substructure are the immediate 
components of the structure or substructure. 

Chapter 5. PLjI Data Organization and Use 5-3 



DATA ORGANIZATION 

You specify the organization of a structure in a DECLARE statement by placing .j 
level numbers before the names, as described in "Structures and Level Numbers" on 
page 12-39. The major structure name must be declared with the level number 1, 
and minor structures and field names with level numbers greater than I; level 
numbers must be integer constants. 

For example, the items of a payroll could be declared as follows: 

DECLARE 1 PAYROLL, 
2 EMPLOYEE NO FIXED DECIMAL (7), 
2 NAME, 

3 LAST 
3 FIRST 

2 HOURS, 
3 REGULAR 
3 OVERTIME 

2 RATE, 
3 REGULAR 
3 OVERTIME 

CHARACTER (15), 
CHARACTER (15), 

FIXED DECIMAL (5,2), 
FIXED DECIMAL (5,2), 

FIXED DECIMAL (5,2), 
FIXED DECIMAL (5,2); 

In this example, PAYROLL is a major structure with the immediate components 
EMPLOYEE_NO, NAME, HOURS, and RATE. EMPLOYEE_NO is a field; 
NAME, HOURS, and RATE are minor structures, each containing two fields. 
You can refer to the entire structure by the name PAYROLL, to portions of the 
structure by the minor structure names, or to a field by the name of the field. 

J 

The level numbers you choose for successively deeper levels need not be the imme- J 
diately succeeding integers. A minor structure at level n contains all the names with 
level numbers greater than n that lie between that minor structure name and the 
next name with a level number less than or equal to n. 

PA YROLL could have been declared as follows: 

DECLARE 1 PAYROLL, 
4 EMPLOYEE NO FIXED DECIMAL (7), 
3 NAME, 

5 LAST 
5 FIRST 

2 HOURS, 
6 REGULAR 
5 OVERTIME 

2 RATE, 
45 REGULAR 
30 OVERTIME 

CHARACTER (15), 
CHARACTER (15), 

FIXED DECIMAL (5,2), 
FIXED DECIMAL (5,2), 

FIXED DECIMAL (5,2), 
FIXED DECIMAL (5,2); 

This declaration would result in exactly the same structuring as that of the previous 
declaration. 

Therefore, there is a difference between logical level and level number. The item 
with the greatest level number is not necessarily the item with the deepest logical 
level. But if the structure declaration is written with consistent level numbers and 
suitable indentation, the logical levels are immediately apparent. 

5-4 PL/I User's Guide and Reference 



L 

L 

DATA ORGANIZATION 

You can, in any case, detennine the logical level of each item in the structure by 
applying the following rule to each item in tum, starting at the beginning of the 
structure declaration: the logical level of a given item is always one unit deeper than 
that of its immediate containing structure. For example, in the fIrst declaration of 
PAYROLL, the logical levels and level numbers are the same. In the second decla­
ration, the level numbers are different, but the logical levels are the same as in the 
fIrst declaration. 

The description of a major structure is ended by the declaration of another item 
with the level number 1, by the declaration of another item with no level number, 
or by the end of the DECLARE statement or descriptor list. 

The maximum depth of logical levels is 15, and the highest valid level number is 
255. The maximum length of a structure is 32 767 bytes. 

Structure-Qualification 

A minor structure can be referred to by the minor structure name alone and a struc­
ture fIeld by the fIeld name alone if there is no ambiguity. In the PAYROLL 
example, a reference to either REGULAR or OVERTIME would be ambiguous 
without structure-qualification to make the reference unique. 

A qualified reference is a fIeld name or a minor structure name that is qualified with 
one or more names at a higher level, connected by periods. Blanks may appear on 
either side of the period. 

Structure-qualification is in the order of levels; that is, the name at the highest level 
must appear frrst, with the name at the deepest level appearing last. 

Names within a structure need not be unique within the block in which they are 
declared. Also, one or more qualifying names can be omitted, provided that the 
name or names used identify a single fIeld or minor structure. The qualified refer­
ences PAYROLL.LAST and NAME.LAST, for example, are both equivalent to 
the name PAYROLL.NAME.LAST. 

Arrays of Structures 
A structure name, either major or minor, can be given a dimension attribute in a 
DECLARE statement to declare an array of structures. An array of structures is an 
array whose elements are structures that have identical names, levels, and element 
attributes. 

For example, if you were to use a structure, WEATHER, to process meteorological 
infonnation for each month of a year, you might declare it as: 

Chapter 5. PL/I Data Organization and Use 5-5 



DATA ORGANIZATION 

DECLARE 1 WEATHER(12), 
5 TEMPERATURE, 

10 HIGH 
10 LOW 

5 WIND_VELOCITY, 
10 HIGH 
10 LOW 

5 PRECIPITATION, 
10 TOTAL 
10 AVERAGE 

DECIMAL FIXED (5,1), 
DECIMAL FIXED (3,1), 

DECIMAL FIXED (3), 
DECIMAL FIXED (3), 

DECIMAL FIXED (3,1), 
DECIMAL FIXED (3,1); 

You could then refer to all the weather data for July by specifying WEATHER(7) 
and to the particular aspects of the July weather by TEMPERA TURE(7) and 
WIND_VELOCITY(7). The specifications PRECIPITATION.TOTAL(7) and 
TOTAL(7) would both refer to the total precipitation during the month of July. 

TEMPERATURE.HIGH(3), which would refer to the high temperature in March, 
is a subscripted qualified reference. 

The need for subscripted qualified references becomes more apparent when an array 
of structures contains an array of minor structures. For example, consider the fol­
lowing array of structures: 

DECLARE 1 A (6,6), 
5 B (5), 

10 C FIXED, 
10 D FIXED, 

E FIXED; 

Both A and B are arrays of structures. To reference a data item, it may be neces­
sary to use as many as three names and three subscripts. 

You must include the subscripts to the right of the name or qualified list of names. 
For example, AB.C(I,I,2) is valid, whereas A(I,I).B(2).C is not. AB.C(1,1,2) ref­
erences a particular C that is in an element of B in a structure in A 

Any item declared within an array of structures inherits dimensions declared in the 
containing structure. For example, in the above declaration for the array of struc­
tures A, B is a three-dimensional array of structures, because it inherits the two 
dimensions declared for A If B is unique and requires no qualification, any refer­
ence to a particular element of B would require three subscripts: two to identify the 
specific structure in A and one to identify the specific element of B within that 
structure in A 

A reference to an array with inherited dimensions must be subscripted, and the 
number of subscripts must equal the number of inherited dimensions or the total 
number of dimensions of the array. Therefore, with the declaration above, A, 
A(I,2), B(I,2), B(I,2,3) and C(1,2,3) are valid references, but B, C, and C(1,2) are 
not. 

5-6 PL/I User's Guide and Reference 

J 



DATA ALIGNMENT 

Performance Considerations with Large Aggregates 
Programs which process large STATIC or AUTOMATIC aggregates (those 
approaching or exceeding 32767 bytes in size) may take a long time to run. The 
reason for this is that the machine brings into main memory all static and automatic 
work areas before running the program. If the work areas become too large, the 
excessive paging results in system overhead which can significantly increase the time 
required to run the program. 

You can,reduce this paging activity by declaring large aggregates as BASED vari­
ables and using the ALLOCATE statement (see "ALLOCATE Statement for Based 
Variables" on page 5-22) before referencing the variables. Allocated storage for 
BASED variables is paged into main memory on a demand "paging" basis: only the 
pages that the program references are paged in. 

Data Alignment and the Alignment Attributes 
Data is stored in units of eight bits, or a multiple of eight bits. Each eight-bit unit 
of information is called a byte. 

Bytes may be grouped together in units of information as a halfword (two bytes), a 
word (four bytes; also called a fullword), a doubleword (eight bytes), or a 
quadword (16 bytes), starting at an integral boundary for that unit. An integral 
boundary for a unit is at a multiple of that unit: a byte boundary can be at any byte, 
a half word boundary at a multiple of two bytes, a word boundary at a multiple of 
four bytes, a doubleword at a multiple of eight bytes, and a quadword at a multiple 
of 16 bytes. 

Byte locations in storage are consecutively numbered, starting with zero. Each 
number is considered the address of the corresponding byte. A group of bytes in 
storage is addressed by the leftmost byte of the group. 

A field aligned on a halfword or word boundary can be accessed faster than a field 
of the same length that is not aligned on an integral boundary. For some oper­
ations, the data used must be aligned on its integral boundary. 

Data items can be aligned on their integral boundaries to give the fastest possible 
processing. But this is not always desirable, as there may be unused bytes between 
successive data items, which increases the use of storage. This is particularly impor­
tant when the data items are members of aggregates that are used to create a fUe, 
because the unused bytes will increase the amount of external storage required. 
Consequently, although the UNALIGNED attribute may increase run time, it can 
reduce storage requirements. 

By means of the ALIGNED and UNALIGNED attributes, you can choose to align 
data on the appropriate integral boundary. 

ALIGNED specifies that the data item is aligned on the storage boundary corre­
sponding to its data type requirement. For example, BIN (15) data is aligned on a 
halfword boundary and BIN (31) data on a fullword boundary. See "Data 
Mapping" on page 5-9 for a deftnition of these requirements. 

Chapter 5. PLjI Data Organization and Use 5-7 



DATA ALIGNMENT 

UNALIGNED specifies that the data need not be aligned. The compiler may gen- ...) 
erate code that moves the data to an appropriate integral boundary before an opera-
tion is processed, if the operation requires data alignment. 

Bit data must be declared as ALIGNED. Aligned bit strings start at a byte 
boundary. Consider the following example: 

DECLARE BITSTRINGl 
BITSTRING2 

BIT (3) ALIGNED, 
BIT (5) ALIGNED; 

BITSTRINGI starts on a byte boundary. BITSTRING2 starts on the next byte 
boundary. The five bits intervening between BITSTRING I and BITSTRING2 are 
not addressable by the program. 

The default for character data and picture data is UNALIGNED. For all other data 
types, the default is ALIGNED. If you specify UNALIGNED with character data, 
the compiler will issue an error message. If you specify ALIGNED with non­
varying character data, the specification of ALIGNED will be ignored, and the com­
piler will issue an error message. 

You can specify alignment attributes for scalars and arrays only. 

ALIGNED can be specified for character varying data and must be specified for bit 
data. 

UNALIGNED can be specified for fixed-point binary, floating-point binary, and 
floating-point decimal data. 

The following example illustrates explicit and default alignment. 

5-8 PL/I User's Guide and Reference 



L 

Data Mapping 

DECLARE 1 SAMPLESTRUCTURE, 
5 BIT1 BIT (3) ALIGNED, 

/* ALIGNED EXPLICITLY */ 

5 MINORSTRUCTURE1, 
1e BIT2 BIT (5) ALIGNED, 

/* ALIGNED EXPLICITLY */ 

1e MINORSTRUCTURE2, 
15 BINFLT1 FLOAT UNALIGNED, 

/* UNALIGNED EXPLICITLY */ 

15 DECFIXED FIXED DECIMAL, 
/* ALIGNED BY DEFAULT */ 

15 CHAR1 CHARACTER (1), 
/* UNALIGNED BY DEFAULT */ 

15 CHAR2 CHARACTER(2) 
VARYING ALIGNED, 

/* ALIGNED EXPLICITLY */ 

1e BINFIXED1 FIXED, 
/* ALIGNED BY DEFAULT */ 

5 PIC1 PICTURE '99.V9 1 ; 

/* UNALIGNED BY DEFAULT */ 

DATA MAPPING 

This section describes the mapping of data onto storage. In general, you need not 
know the precise rules for data mapping; the compiler can print an aggregate length 
table of all the arrays and major structures in the source program. (You can print 
this table using the .AGGREGATE option of the OPTION parameter for the CL 
command CRTPLIPGM. See Chapter 2, "Creating, Compiling, and Running 
Your PL/I Program" for more information.) However, you may want to know the 
rules for data mapping in the following cases: 

• To determine record lengths and alignments when you use record data trans­
InlSSlOn. 

• To determine the correspondence of pointers and based variables. 

• When using the UNSPEC built-in function or pseudovariable. 

A unit of data is mapped onto storage by determining the alignment (a), displace­
ment (d), and length (I) of the unit, where: 

a is the alignment boundary: 

a = 1 for byte alignment 
a = 2 for halfword alignment 
a = 4 for word alignment 
a = 8 for doubleword alignment. 

Chapter 5. PL/I Data Organization and Use 5-9 



DATA MAPPING 

a = 16 for quadword alignment. 

d is the displacement, in bytes, of the start of the unit from the alignment 
boundary. 

is the length, in bytes, of the unit. 

Scalar Data Mapping 

Variable 
Type 

BIT (n) 

CHARACTER 
(n) 

PICTURE 

DECIMAL 
FIXED 
(p,q) 

CHARACTER (n) 
VARYING 

The scalar data mapping algorithm derives immediately from Figure 5-1. The 
values of "a" and "1" are determined from the appropriate variable type in the 
figure. The value of "d" is always o. 

Examples: 

DECLARE A BINARY FIXED (15) ALIGNED 
where: a=2, d=0, 1=2 

DECLARE B BINARY FIXED (12) ALIGNED 
where: a=2, d=0, 1=2 

DECLARE C BINARY FIXED (31) UNALIGNED 
where: a=l, d=0, 1=4 

DECLARE A BIT (2) ALIGNED 
where: a=l, d=0, 1=1 

Stored Length ALIGNED 
internally (in bytes) boundary 
as 

One byte for 
each group 
of 8 bits cei1(n/8) Byte 
(or part 
thereof) 

One byte per n Not 
character applicable 

One byte for Number of 
each PICTURE PICTURE Not 
character characters applicable 
(except V) (other than V) 

Packed 
decimal 
format (1/2 cei1«p+ 1 )/2) Byte 
byte per 
digit, plus 
1/2 byte for 
sign) 

One byte per n+2 Halfword 
character 

UNALIGNED 
boundary 

Not 
applicable 

Byte 

Byte 

Not 
applicable 

Byte 1 

Figure 5-1 (Part 1 of 2). Storage and Alignment Requirements of Scalar Data 

5-10 PLjI User's Guide and Reference 

J 



DATA MAPPING 

Variable Stored Length ALIGNED UNALIGNED 
Type internally (in bytes) boundary boundary 

as 

BINARY Halfword 
FIXED (P) binary integer 2 Halfword l Byte 
1 ::;; p ::;; 15 

BINARY Fullword 
FIXED (P) binary integer 4 Word l Byte 
16 ::;; p ::;; 31 

BINARY Short 
FLOAT (p) floating- 4 Wordl Byte 
1 ::;; p ::;; 24 point 

DECIMAL Short 
FLOAT (P) floating- 4 Word l Byte 
1 ::;; p ::;; 7 point 

POINTER - 16 Quadword Not appli-
cable 

ENTRY - 16 Halfword Not appli-
cable 

LABEL - 16 Halfword Not appli-
cable 

Doubleword 
BINARY Long within struc-
FLOAT (P) floating- 8 tures; other- Byte 
25 ::s;; p ::;; 53 point wise word l 

Doubleword 
DECIMAL Long within struc-
FLOAT (p) floating- 8 tures; other- Byte 
8 ::s;; p ::;; 16 point wise word l 

Figure 5-1 (Part 2 of 2). Storage and Alignment Requirements of Scalar Data 

Array Mapping 

Footnotes 

1 This is the default alignment boundary. 

Note: For a table of ceil values, see Figure 9-4 on page 9-9. 

The alignment (a'), displacement (d'), and length (1') of an array element can be 
calculated using the rules given in the preceding section for an array of scalars, or in 
the following section for an array of structures. In the following equations, N is the 
number of array elements. 

Chapter 5. PLjI Data Organization and Use 5-11 



DATA MAPPING 

The padding required between an array element ending at d I +11 and the next 
element starting at d I is 

pad = mOd(-l I,a l ) 

where mod gives the smallest non-negative remainder after division. 

No padding is needed after the last element. The total length of the array is there­
fore 

1 = N* 11 + (N-1) * pad 

The alignment boundary and displacement of the array are those of the element: 

For example: 

DECLARE 1 A (2,5), 
5 B BINARY (15), 
5 C BINARY (31); 

A is an array of structures. According to the rules for mapping a structure, which 
are given in the next section, each element of A has a length of 6 bytes and starts at 
a displacement of 2 bytes from a word boundary: 

a l - 4, d' = 2, 11 = 6 

The number of array elements (N) is ten. The padding between successive elements 
is: 

pad = mOd(-6,4) = 2 

The array is therefore mapped as: 

a = 4 
d = 2 
1 = 10*6 + 9*2 = 78 

Structure Mapping 
The rules for structure mapping are: 

1. Map the first immediate component, resulting in a, d, and 1. 

2. Given that the structure consisting of the first k immediate components has 
been mapped into a, d, and 1 (initially k = 1, and a, d, and 1 are the values 
obtained from step 1), map the immediate component k+l, to obtain ai, d l 

and 11. Combine the two units therefore obtained according to the rules given 
below, to obtain a, d, and 1 for the structure consisting ofthe first k+l compo­
nents. 

3. Repeat step 2 with increasing values of k until the whole structure has been 
mapped. 

This process is recursive if any of the components of the structure you are mapping 
is a structure. 

5-12 PLfI User's Guide and Reference 



DATA MAPPING 

Rules for Combining Two Units 

To combine a unit mapped as ai, dl, and 11 and a unit mapped as a2, d2, and 12 
into a new unit, which is mapped as a, d, and 1, proceed as follows: 

1. Some padding may be required after the fIrst unit, which ends at dl+l1, to align 
the second unit at d2: 

pad = mOd(d2-(d1+11), min(a1,a2)) 

(This is calculated rela:tive to min(al,a2), which is the weaker ofthe two align­
ment boundaries. The proper boundary is taken into account in the calculation 
of a and d below.) Again, mod gives the smallest non-negative remainder after 
division. The offset of the second unit from the start of the new unit will be 

11 + pad 

2. The length of the new unit will be 

1 = 11 + pad + 12 

3. Compare the alignment boundaries of the two units. If a2 > al (that is, if the 
alignment of the second unit is stronger than that of the ftrst), the alignment 
boundary of the new unit is that of the second, and the displacement of the new 
unit must be calculated from that boundary: 

a = a2 
d = mod(d2-(11+pad), a2) 

If a2 :!: ai, the alignment boundary and displacement of the new unit are those 
of the ftrst unit: 

a = a1 
d = d1 

Example of Structure Mapping 

This example shows the application of the structure mapping rules for a structure 
declared as follows: 

DECLARE 1 A, 
5 B, 

10 C CHARACTER (2), 
10 D FLOAT DECIMAL (8), 
10 E BIT (2) ALIGNED, 
10 F CHARACTER (4), 

5 G, 
10 H BINARY (4), 
10 I PICTURE 'V99 1 , 

10 J CHARACTER (1), 
10 K FLOAT DECIMAL (1); 

Figure 5-2 and Figure 5-3 on page 5-14 show the steps involved in mapping the 
minor structures B and G, respectively. Figure 5-4 on page 5-15 shows how the 
results of mapping the two substructures B and G are combined to map the major 
structure A. The storage layout of structure A is shown in Figure 5-5 on 
page 5-15. 

Chapter 5. PL/I Data Organization and Use 5-13 



DATA MAPPING 

Name a d I pad offset 

C 1 0 2 
D 8 0 8 0 2 

C,D 8 6 10 
E 1 0 1 0 10 

C,D,E 8 6 11 
F 1 0 4 0 11 

B 8 6 15 

Figure 5-2. Mapping Minor Structure B 

As an example of applying the rules for combining two units, consider the step of 
combining units C and D in Figure 5-2. C and D have been mapped as 

al = 1, dl = 0, 11 = 2 

and 

a2 = 8, d2 = 0, 12 = 8 

respectively (these values are obtained from Figure 5-1 on page 5-10). No padding 
is required: 

pad = mOd(d2-(dl+11),a1) = mOd(0-2,1) = e 
D has the stronger boundary (a2 = 8), so 

a = a2 = 8 

and 

d = mOd(d2-(11+pad),a2) = mOd(0-2,8) = 6 

and 

1 = 11 + pad + 12 = 2 + 0 + 8 = 10 

The unit obtained, which consists of fields C and D, will be used as the first unit in 
the next step. 

Name a d I pad offset 

H 2 0 2 
I 1 0 2 0 2 

H,I 2 0 4 
J 1 0 1 0 4 

H,I,J 2 0 5 
K 4 0 4 I 6 

G 4 2 10 

Figure 5-3. Mapping Minor Structure G 

J 

As a second example, consider the step of combining the unit consisting of the fields ...) 
H, I, and J with unit K, as shown in Figure 5-3, where 

5-14 PL/I User's Guide and Reference 



STORAGE CONTROL 

a1 = 2, d1 = 0, 11 = 5 

and 

a2 = 4, d2 = 0, 12 = 4 

The padding between the two units is 

pad = mod(d2-(d1-t-11),a1) = mod(0-S,2) = 1 

Again, the second unit has the stronger boundary (a2 = 4), so 

a = a2 = 4 

and 

d = mod (d2-(1l+pad) ,a2) = IIIOd(0-6,4) = 2 

and 

1 = 11 + pad -t- 12 = S + 1 + 4 = 10 

The resulting unit, G, is used as the second unit in Figure 5-4. 

Name a d I pad offset 

B 8 6 15 
G 4 2 10 1 16 

A 8 6 26 

Figure 5-4. Mapping Major Structure A 

Figure 5-5 shows the resulting storage layout of structure A. 

Name Alignment Padding Offset 
of Requirement Length after from A 

Item Item (in bytes) 

C byte 2 bytes 0 
D doubleword 8 bytes 2 
E byte 2 bits 6 bits 10 
F byte 4 bytes 1 byte 11 
H half word 2 bytes 16 
I byte 2 bytes 18 
J byte 1 byte I byte 20 
K word 4 bytes 22 

Figure 5-5. Storage Layout of Structure A 

STORAGE CONTROL 
The following describes how to control the allocation of storage. 

Displacement 
from 

Doubleword 

6 
0 
0 
1 
6 
0 
2 
4 

Variables of both problem data and program control data require storage. The attri­
butes specified for a variable defme the amount of storage required and how it is 
interpreted. For example: 

Chapter 5. PLjI Data Organization and Use 5-15 



STORAGE CONTROL 

DECLARE INTEGER1 FIXED BINARY (31) AUTOMATIC; 

A reference to INTEGER I is a reference to a fullword that contains a value to be 
interpreted as a fixed-point binary integer (see "Data Mapping" on page 5-9). 

Storage allocation is the association of an area of storage with a variable, so that the 
data item to be represented by the variable can be recorded internally. When 
storage has been associated with a variable, the variable is said to be allocated. 

The declaration of a variable includes a storage class attribute either by explicit spec­
ification or by default. 

The way storage is allocated for a variable, and the degree of control you can exer­
cise over storage, are determined by the storage class of that variable. There are 
three storage classes: static, automatic, and based. Each is specified by its corre­
sponding storage class attribute. 

You can specify the storage class for level-one variables only. Elements of arrays 
and members of structures inherit the storage class of the array or structure. 

You cannot specify a storage class for a parameter or a named constant. 

The default storage class attribute is AUTOMATIC for internal variables and 
STATIC for external variables. 

Automatic and based variables can have internal scope only. Static variables can ...) 
have either internal or external scope. 

Using the STATIC Attribute 
The allocation of storage for a static variable depends on the scope of the variable: 

• If the variable has the INTERNAL attribute, storage is allocated on the frrst 
entry to the external procedure that contains the declaration. 

• If the variable has the EXTERNAL attribute, storage is allocated on the frrst 
entry to the frrst external procedure that contains the declaration. 

Storage for a static variable remains allocated until the run unit ends. 

When storage is allocated, it is not initialized with zeros or blanks; the program 
must explicitly assign any initial values either by assignment statements or by use of 
the INITIAL attribute. 

Variables declared with the STATIC attribute follow normal scope rules for the 
validity of references to them. For example: 

5-16 PLjI User's Guide and Reference 

J 



MAINPROC: PROCEDURE OPTIONS (MAIN); 

SUBPROC: PROCEDURE; 
DECLARE INTEGERl FIXED STATIC INTERNAL; 

END SUBPROCj 
END MAINPROCj 

STORAGE CONTROL 

In this example, although the variable INTEGER 1 is allocated throughout the 
program, it can be referenced by the name INTEGERI only within SUBPROC or 
any block contained in SUBPROC. 

L Using the INITIAL Attribute 
The INITIAL attribute can only be used with the STATIC attribute. It specifies 
values assigned to a scalar or array variable when storage is allocated to it. 

For a description of the syntax of the INITIAL attribute, see "INITIAL Attribute" 
on page 12-42. 

You can specify the INITIAL attribute for arrays that do not have inherited dimen­
sions, as well as for scalar variables. In a structure declaration, you can specify the 
INITIAL attribute only for field names. 

You can specify only one initial value for a scalar variable, but more than one for 
an array variable. A structure variable requires separate initialization of each of its 
field names, if they are scalar or array variables. 

The initial values specified for an array are assigned to successive elements of the 
array in row-major order, with the fmal subscript varying most rapidly. 

If you specify fewer initial values than there are array elements, the remainder of the 
array is not initialized. 

In the INITIAL attribute, you can specify only character, bit, or arithmetic con­
stants (such as I ABC I, 'lOll B, or 3) or the NULL built-in function (to initialize a 
static pointer variable). 

For an array, the iteration factor specifies the number of times the item is to be 
repeated in the initialization of elements of the array. 

If the attributes of any item in the INITIAL attribute differ from the attributes of 
the variable being initialized, conversion is processed. 

The INITIAL attribute for a static external variable is ignored in all but the external 
procedure that allocated storage for the variable. 

Chapter 5. PL/I Data Organization and Use 5-17 



STORAGE CONTROL 

Consider the following examples: 

DECLARE NAME CHARACTER (10) STATIC 
INITIAL ('JOHN DOE'); 

DECLARE PI FIXED DECIMAL (5,4) STATIC 
INITIAL (3.1416); 

When storage is allocated for NAME, it is initialized with the character string 'JOHN 
DOE' (padded on the right, with blanks, to 10 characters). When PI is allocated, it is 
initialized to the value 3.1416. The value can be retained throughout the program 
or changed while running. 

Other examples are: 

DECLARE SWITCH BIT (1) STATIC 
INITIAL (ll'B); 

DECLARE MAXVALUE FIXED DECIMAL (2) 
STATIC INITIAL (99), 

MINVALUE FIXED DECIMAL (2) 
STATIC INITIAL (-99); 

Consider the following example: 

DECLARE A(15) CHARACTER(13) STATIC INITIAL 
( I JOHN DOE I , 

'RICHARD ROW', 
'MARY SMITH'), 

B(10,10) DECIMAL FIXED(5) STATIC 
INITIAL((25)0,(25)1,(50)0); 

In this example, only the fIrst, second, and third elements of array A are initialized; 
the rest of the array is uninitialized. The array B is fully initialized, with the fIrst 25 
elements initialized to 0, the next 25 to 1, and the last 50 to O. 

Using the AUTOMATIC Attribute J 
Storage for an automatic variable is allocated on entry to the block in which it has .. 
been declared and is released when the block ends. Therefore, it can be reallocated 
many times during the running of a program. For a description of the syntax of the 
AUTOMATIC attribute, see "AUTOMATIC Attribute" on page 12-41. 

You control the allocation of storage for an automatic variable by means of the 
block structure of your program. For example: 

5-18 PL/I User's Guide and Reference 



PROC1: PROCEDURE; 

CALL PROC2; 
PROC2: PROCEDURE; 

STORAGE CONTROL 

DECLARE (INTEGERl,INTEGER2) FIXED AUTOMATIC; 

END PROC2; 

CALL PROC2j 

END PROCl; 

In this example, each time PROC2 is called, the variables INTEGER I and 
INTEGER2 are allocated storage, and when PROC2 ends the storage is released. 
Consequently, the values they contained are lost. The storage that has been released 
is available for reallocation to other variables. 

You can specify an array bound or string length for an automatic variable as an 
integer constant or as an unsubscripted reference to an automatic, static, or param­
eter integer variable. In the latter case, the amount of storage allocated is deter­
mined while the program is running. For example: 

A: PROCEDUREj 
DECLARE N FIXED BINARYj 
GETEDIT(N) (F(5)); 

B: PROCEDUREj 
DECLARE STR CHARACTER(N); 

END Bj 
END Aj 

In this example, the character string STR will have a length defmed by the value of 
the variable N that existed when procedure B was called. 

A string length or array bound for an automatic variable must not be specified by 
means of another automatic variable declared in the same block. 

Using the BASED Attribute 
Based variables provide attributes for data accessed by a pointer value, such as data 
located in a buffer. 

You declare a based variable with the BASED attribute. For a description of the 
syntax of the BASED attribute, see "BASED Attribute" on page 12-42. 

Chapter 5. PLjI Data Organization and Use 5-19 



STORAGE CONTROL 

A based variable is always used together with a pointer value, which is taken from 
either the pointer-qualifier or the declaration of the based variable. This is described 
under "Based Variable Reference and Pointer Qualification" on page 5-20. 

An example of a declaration of a based variable is: 

DECLARE PLAYERS(30) CHARACTER (20) BASED (POINTER1); 

In this example, PLA YERS is a I-dimensional array of character data, with 30 ele­
ments. It's purpose is to redefme the characteristics of storage occupied by data 
assigned to another character variable, which might be declared as: 

DECLARE TEAMS(2,15) CHARACTER (20); 

After processing the assignment POINTER! = ADDR(TEAMS), the reference 
PLAYERS or POINTERI- > PLAYERS refers to the same location in storage as 
the reference TEAMS, and PLAYERS(20) or POINTERI- > PLAYERS(20) is 
equivalent to TEAMS(2,5). 

Based Variable Reference and Pointer Qualification 
The name of a based variable, by itself, refers only to a collection of attributes. If it 
is to refer to a variable in storage, it must be associated with a pointer value, either 
explicitly or implicitly. 

The syntax of a based variable reference is 

HU...---r[--------J--r-based_variab leJeference"-" 

pointer_expression -> 

pointer_expression 
Is an expression of type pointer. 

based_variable_reference 
Is a reference to a based variable. 

The pointer expression followed by the arrow is a pointer qualifier. If it is present, 
the variable reference is a pointer-qualified reference, and the association of the 
based variable with a pointer expression is called pointer qualification. 

If no pointer qualifier is present, the based variable must have been declared with a 
pointer variable in the BASED attribute. The pointer variable is then implied as a 
pointer qualifier. 

For example: 

DECLARE INTEGERl 
INTEGER2 
POINTERl 
POINTER2 

BINARY(l5) BASED, 
BINARY(15) BASED (POINTER2), 
POINTER, 
POINTER; 

POINTERl->INTEGERl = INTEGER2; 

5-20 PL/I User's Guide and Reference 



STORAGE CONTROL 

The reference to INTEGERI is explicitly qualified by POINTERl. The reference 
to INTEGER2 is implicitly qualified by POINTER2. 

When a reference to a based variable is evaluated, the explicit or implicit pointer 
qualifier is evaluated ftrst, which gives a pointer value. This value must not be the 
null pointer and must not identify a location that has been released. The location of 
data in storage is identifted by that pointer value, and the attributes of the data by 
those of the based variable. 

Therefore, in the example above, POINTERI- > INTEGER I refers to the data 
accessed by POINTER I and described by the attributes of INTEGER I, and 
INTEGER2 refers to the data accessed by POINTER2 and described by the attri­
butes of INTEGER2. 

Multiple Pointer Qualification 

In a pointer-qualifted reference, the pointer qualifier can be a variable reference, and 
can again be pointer-qualifted. This leads to multiple pointer qualiftcation. For 
example: 

DECLARE P POINTER, 
Q POINTER BASED (P), 
R BINARY(lS) BASED, 
QA POINTER, 
RA BINARY(lS); 

P = ADDR(QA); /* P points to QA */ 
P->Q = ADDR(RA); /* QA points to RA */ 
P->Q->R = 17; /* RA = 17 */ 

In this example, P - > Q - > R is a reference to the based variable R with a pointer 
qualifier P - > Q, which is a reference to the based pointer variable Q with a pointer 
qualifier P. After the assignment to P, the references P - > Q and Q are equivalent 
to QA. After the assignment to Q, the references P - > Q - > R and Q - > R are 
equivalent to RA. By using implicit qualiftcation, the assignments could be written 
as follows: 

P = ADDR(QA); 
Q = ADDR(RA); 
Q->R = 17; 

Pointer qualifIers can be SUbscripted and can be references to functions that return 
pointers. For example, given the declarations 

DECLARE P(10) POINTER, 
Q ENTRY(CHARACTER(*») RETURNS (POINTER) BASED, 
R BINARY (15) BASED; 

a valid reference (with suitable declarations for A and I) is 

P(I)->Q(A)->R 

P(I) points to an entry value that accepts a character value as its argument and 
returns a pointer value. This entry is called with argument A. The returned pointer 
is used to access R. If Q is declared with no arguments: 

DECLARE Q ENTRY() RETURNS(POINTER) BASED; 

Chapter 5. PLjI Data Organization and Use 5-21 



STORAGE CONTROL 

the reference must have an empty argument list: 

P->Q() ->R 

because Q refers to the entry value and not to the pointer returned by calling QO. 

Relationship of Pointers and Based Variables 

The data type of a based variable and the variable pointed to must match. This is 
true for scalars, and the elements of arrays and structures. According to the data 
mapping algorithm given under "Data Mapping" on page 5-9, this will be the case 
if: 

• Both variables are scalar with identical data and alignment attributes, or the one 
is a character variable and the other a picture variable of equal length. 

• Both variables are arrays with matching element descriptions. The number of 
dimensions or elements need not be the same, but the element or elements actu­
ally referred to must be contained in both descriptions. 

• Both variables are structures whose attributes are identical up to the part 
referred to, including any minor structure containing the part. 

In the examples of arrays given under "Using the BASED Attribute" on page 5-19, 
PLA YERS is used as a based variable and TEAMS as the variable pointed to. 

In the following example: 

DECLARE INTEGER1 FLOAT, 
CHARSCALAR CHARACTER (15), 
CHARARRAY(15) CHARACTER (1) BASED (P); 

a valid reference is: 

ADDR(CHARSCALAR)->CHARARRAY 

An example of structures is given in "Based Variables and Input/Output" on 
page 5-23. 

ALLOCATE Statement for Based Variables 
The ALLOCATE statement allocates storage for based variables and sets a pointer 
variable that can be used to identify the location, independent of procedure block 
boundaries. 

The syntax of the ALLOCATE statement for based variables is: 

~ALLOCATE---based_variable--SET(pointer_variable);~ 

Abbreviation: ALLOe for ALLOCATE 

5-22 PLfI User's Guide and Reference 

J 



L 

STORAGE CONTROL 

based_variable 
Can be any data type. It may be an element variable, an array, or a major 
structure. When it is a major structure, only the major structure name is speci­
fied. 

SET(pointer _variable) 
Specifies a pointer variable that is set to the location of the storage allocated. 

The allocation is in storage associated with the run unit that processes the ALLO­
CA TE statement and persists until the run unit ends or until a corresponding FREE 
statement is processed. 

The amount of storage allocated for a based variable depends on its attributes, and 
on its dimensions, length, or size specifications. These attributes are determined 
from the declaration of the based variable. Based variables are always allocated in 
multiples of 16 bytes. 

FREE Statement for Based Variables 
The FREE statement frees the storage allocated for based variables. The syntax of 
the FREE statement for based variables is: 

-FREE-,------------,-based_vari ab 1 e j~ 

~pointer_varlable --> ~ 

pointer_variable - > 
The storage for a based variable is freed by specifying a pointer variable in the 
statement. If the based variable is not explicitly pointer-qualified, the pointer 
declared with the based variable is used to identify the storage freed. If no 
pointer has been declared, the statement is in error. 

based_variable 
Must be an unsubscripted, level-l based variable. 

The amount of storage freed depends upon the attributes of the based variable, 
including bounds and/or lengths at the time the storage is freed, if applicable. When 
you free storage, you must be sure that the pointer you are using has the same value 
as the pointer you used to allocate storage, and that the based variable has the same 
attributes as the based variable you used when the storage was allocated. 

An error is raised for a FREE statement where the pointer variable addresses an 
automatic or static variable. 

Based Variables and Input/Output 

The following program segment shows how to use pointer variables and based 
structures to process different types of records in a ftle: 

Chapter 5. PL/I Data Organization and Use 5-23 



DATA ASSIGNMENT 

DECLARE TRANSFILE FILE RECORD INPUT, 
INRECORD CHARACTER (18), 
POINTERI POINTER; 

DECLARE 1 DISPATCH BASED (POINTER1), 
5 RECORD_CODE CHARACTER (1), 
5 PART_NO CHARACTER (7), 
5 QUANTITY CHARACTER (4), 
5 DEPT CHARACTER (2), 
5 PROJECT CHARACTER (4); 

DECLARE 1 RECEIPT BASED (POINTER1), 
5 RECORD_CODE CHARACTER (1), 
5 PART_NO CHARACTER (7), 
5 QUANTITY CHARACTER (4), 
5 SUPPLIER CHARACTER (6); 

DECLARE 1 DISPATCH MSTRECORD, 
5 PART_NO CHARACTER (7), 
5 QUANTITY CHARACTER (4), 
5 DEPT CHARACTER (2), 
5 PROJECT CHARACTER (4); 

DECLARE 1 RECEIPT_MSTRECORD, 
5 PART_NO CHARACTER (7), 
5 QUANTITY CHARACTER (4), 
5 SUPPLIER CHARACTER (6); 

POINTER1 = ADDR(INRECORD); 
READ FILE (TRANSFILE) INTO (INRECORD); 
IF DISPATCH. RECORD_CODE = '0' 

THEN 
DISPATCH MSTRECORD 

= DISPATCH, BY NAME; 
ELSE IF RECEIPT.RECORD CODE = 'C' 

THEN 
RECEIPT MSTRECORD 

= RECEIPT, BY NAME; 
ELSE; 

In this example, the record descriptions DISPATCH and RECEIPT are both asso­
ciated with POINTER!, which holds the address of INRECORD. Once a record 
has been read into INRECORD, RECORD_CODE is tested to determine if a DIS­
PATCH or RECEIPT record has been read. The appropriate fields are then 
assigned to DISPATCH_MSTRECORD or RECElPT_MSTRECORD. If the 
record code for INRECORD is not valid, no action is processed. 

Data Assignment 
Conversions between any types of problem data are valid in assignments. 

Assignments are: 

• An assignment in an assignment statement 

• The initialization of a variable in a declaration 

5-24 PLjI User's Guide and Reference 

J 



DATA ASSIGNMENT 

• An assignment to the control variable of a do-group 

• An assignment in a stream input or output operation 

• An assignment to a dummy argument when passing the dummy argument to a 
procedure or built-in subroutine 

• Returning a value from a function. 

Conversions may also be processed in comparisons, so that the items being com­
pared have the same format. 

Before a value is assigned, it is converted to the type of the target. The precision or 
length of the target may differ from that of the converted source. The effect of dif­
fering lengths or precisions is explained in the following sections. 

String Data Assignment 
The source string is assigned to the target string. If the source string is longer than 
the target, excess characters or bits on the right are truncated. If the source string is 
shorter than the target, the value being assigned is padded on the right. Character 
values are padded with blanks, bit values with zeros. 

Examples are: 

DECLARE ACHAR CHARACTER(10); 
ACHAR = 'TRANSFORMATIONS'; 

'TRANSFORMATIONS' has 15 characters. Therefore, five characters will be 
truncated from the right-hand end of the string when it is assigned to ACHAR. 
This is equivalent to 

ACHAR = 'TRANSFORMA'; 

The following statements assign equivalent values to ACHAR: 

ACHAR = 'PHYSICS'; 
ACHAR = 'PHYSICS '. , 

The first assignment pads the character value on the right with three blank charac­
ters. 

The following statements assign equivalent values to ABIT: 

DECLARE ABIT BIT(10) ALIGNED; 
ABIT = '110011'B; 
ABIT = '1100110000'B; 

The first assignment pads the bit value on the right with four zeros. 

The following statements assign different values to ACHAR: 

ACHAR = '110011'B; 
ACHAR = '1100110000'B; 

Each assignment converts the bit constant to a character value. The first pads the 
value on the right with four blank characters and is equivalent to: 

Chapter 5. PL/I Data Organization and Use 5-25 



DATA ASSIGNMENT 

ACHAR = 11H)011 , . , 
The second is equivalent to: 

ACHAR = 11100110000'; 

The source string must not identify a string that starts to the left of and overlaps the 
target string. 

For example, the assignment: 

SUBSTR(ACHAR,3,5) = SUBSTR(ACHAR,1,5); 

is not valid, because the string identified by the SUBSTR built-in function starts to 
the left of the target string and overlaps it. 

J 

Arithmetic Data Assignment J 
A fixed-point target whose number of integer digits is smaller than that of the source 
may be too small to hold the source value, in which case the result is undefmed. 
For example: 

DECLARE AFID FIXED DECIMAL (1) STATIC INITIAL (5), 
BFID FIXED DECIMAL (3,2), 
CFID FIXED DECIMAL (2,1); 

BFID = (AFID * 5) I CFlD; 

In this example, the intermediate result of AFID+5 is 25. The result of dividing 25 J 
by the value of CFID fits the precision of the target BFID if the value of CFID is 
greater than 2.5, but loses significant digits if CFID is 2.5 or less. In both cases, the 
result may lose fractional digits. 

A fixed-point decimal target whose scale factor is smaller than that of the source 
loses digits on the right, starting with the least significant digit. For example: 

DECLARE AFID FIXED DECIMAL (5,3) STATIC 
INITIAL (12.987), 

BFID FIXED DECIMAL (5,1); 
BFID = AFID; 

In this example, the value of AFID is assigned to the target BFID. Because the 
scale factor of BFID is smaller than that of AFID, the fractional part of the value is 
truncated (it loses the two least significant digits), giving 12.9. To round a value, 
rather than let it be truncated, use the ROUND built-in function. 

If the number of integer digits of the source value is less than that of the target, the 
source value is padded with zeros on the left. Similarly, if the fractional part of the 
source value is smaller than that of the target, the source value is padded with zeros 
on the right. For example: 

DECLARE AFID FIXED DECIMAL (3,1) STATIC 
INITIAL (12.3), 

BFID FIXED DECIMAL (5,2); 
BFID = AFID; 

5-26 PL/I User's Guide and Reference 



DATA CONVERSION 

In this example, the value of AFID is assigned to BFID and padded on the right to 
the precision declared for BFID. The value of BFID is then represented as 012.30. 

If a source value is assigned to a floating-point target that has a smaller precision, 
the value of the target may be less accurate than the original source value. For 
example: 

DECLARE AFID FIXED DECIMAL (5) STATIC 
INITIAL (13579), 

BFLOD FLOAT DECIMAL (3); 
BFLOD = AFID; 

In this example, the value of AFID is converted to floating-point decimal with the 
maximum precision associated with short floating-point, and is assigned to BFLOD. 
However, the value of BFLOD is treated as having precision (3) whenever it 
requires conversion to a non-arithmetic data type. In that case, its value is repres­
ented as 1.36 + 10++4. 

When you assign a scalar variable to a structure, the scalar is assigned to each field 
in the structure. Conversions are processed when necessary. Consider the following 
example: 

DECLARE CHAR1 CHARACTER (1) STATIC INITIAL ('0'); 
DECLARE 1 SAMPLESTRUCTURE, 

5 CHARFIELD CHARACTER (6), 
5 BINFIELD BINARY FIXED (15), 
5 BITFIELD BIT (10) ALIGNED, 
5 PICFIELD PICTURE '9'; 

The assignment statement 

SAMPLESTRUCTURE = CHAR1; 

would assign CHARI to CHARFIELD, with five blank characters of padding to 
the right. It would place the binary value zero in BINFIELD, the bit value zero in 
BITFIELD, and the EBCDIC character value '0' in PICFIELD. 

Data Conversion 
Data conversion may occur between any types of problem data, but may not occur 
between different types of program control data. 

Problem data may be converted in the following circumstances: 

• In an assignment (see "Data Assignment" on page 5-24 for the various types of 
assignment). 

• When passing an argument to a built-in function. 

• When using a conversion built-in function. 

• When evaluating an operational expression. 

Before a data item can be converted, all the data attributes of the target must be 
determined, including the length of a string target and the precision of an arithmetic 
target. 

Chapter 5. PLjl Data Organization and Use 5-27 



DATA CONVERSION 

Built-In Conversion Functions 
You can convert problem data from one type to another by means of one of the 
built-in conversion functions: 

BINARY 
BIT 
CHARACTER 

DECIMAL 
FIXED 
FLOAT 

These are described in Chapter 15, "Built-In Functions, Subroutines, and 
Pseudovariables ... 

Each function returns a value with the attribute specified by the function name. 

Before you use data as operands, you may have to convert them explicitly to the 
type required by the operator (see "Operational Expressions" on page 9-4). For 

e~: J 
DECLARE ACHAR CHARACTER (8) 

STATIC INITIAL('01111110 1), 

ABIT BIT(8) STATIC ALIGNED 
INITIAL('10000001 I B), 

BBIT BIT(16) ALIGNED; 
BBIT = BIT(ACHAR) II ABIT; 

In this example, the two strings concatenated, ACHAR and ABIT, are a character 
string and a bit string. One operand must therefore be converted to the data type of \ 
the other. In this example, the BIT built-in function converts the character operand .."" 
to a bit operand. 

Similarly, for most arithmetic operators, if one operand is fixed-point decimal with a 
nonzero scale factor and the other is fixed-point binary, you must convert the binary 
operand to a decimal operand(see "Results of Arithmetic Operations" on 
page 9-5). For example: 

DECLARE AFID FIXED DECIMAL(7,2), 
BFID FIXED DECIMAL(8,2), 
CFIB FIXED BINARY(lS); 

BFID = AFIO + DECIMAL(CFIB); 

In this example, AFID and CFIB are incompatible because AFID has a nonzero 
scale factor. CFIB must therefore be converted to decimal, which is done here by 
means of the DECIMAL built-in function. 

Forcing a conversion may save processing time. When the types of arithmetic oper­
ands give a result with a base or scale different from those of the target, you can 
avoid the final conversion by converting one operand. For example: 

DECLARE AFID FIXED DECIMAL(S), 
BFID FIXED DECIMAL(6), 
CFIB FIXED BINARY(lS); 

BFID • AFID + DECIMAL(CFIB)j 

In this example, the operands are compatible, as AFID has a scale factor of zero. 
Without the forced conversion of CFIB to decimal, AFID would be converted to 

5-28 PL/I User's Guide and Reference 



DATA CONVERSION 

binary, and the result of the operation would be converted to decimal. By con­
verting CFIB to decimal, one conversion is avoided. 

The conversions done by the conversion built-in functions can also be done by 
assigrunent to a variable that has the required attributes. ¥ou may, however, find 
the built-in functions more convenient than creating a variable just for a conversion. 

Calculating String Length and Precision 

Conversion Rules 

In the following cases, the target's length or precision is calculated first: 

• When converting an operand before processing an arithmetic or comparison 
operation. 

• When converting arguments of certain built-in functions before calling them. 

• When converting a data item from arithmetic to string. For example, conver­
sion from fixed-point decimal to bit involves an initial conversion to flxed.point 
binary. 

• When converting an arithmetic or bit argument to character, before passing it to 
a parameter declared as CHARACTER(.), or when converting an arithmetic or 
character argument to bit, before passing it to a parameter declared as BIT(.). 

This section gives the rules for conversion and explains when and how the precision 
of a target is calculated. The rules are given according to the data attributes of the 
target and source. 

Target: Arithmetic 

SOURCE: 

Arithmetic 
Conversion is necessary only when the source and target differ in base or scale. 

The target's precision is calculated when any of the cases given under "Calcu­
lating String Length and Precision" applies. The equations used in these con­
versions are given in Figure 12·4 on page 12-27. 

BINARY FIXED DECIMAL FIXED BINARY FLOAT DECIMAL FLOAT 
source or PICTURE source source 

source 

BINARY P2 = mine ceil 
FIXED (PI .3.32) + 1,31) (see note 3) (see note 3) 
target ~= 0 (see note 2) 

Figure 5-6 (Part 1 of 2). Equations for Calculating Converted Precision 

Chapter 5. PL/I Data Organization and Use 5-29 



DATA CONVERSION 

BINARY FIXED DECIMAL FIXED BINARY FLOAT DECIMAL FLOAT 
source or PICTURE source source 

source 

DECIMAL P2=ceil 
FIXED (pd3.32)+ 1 (see note 4) (see note 3) (see note 3) 
target q2=O 

BINARY P2 = min( ceil 
FLOAT P2=PI P2 = ceil(PI +3.32) (PI +3.32),53) 
target 

DECIMAL P2= P2=PI P2= 
FLOAT ceil(PI/3.32) ceil(pJl3.32) 
target 

Figure 5-6 (Part 2 of 2). Equations for Calculating Converted Precision 

Note: 

1. PI is the number of digits of the source, P2 is the number of digits of the 
target, and q2 is the target's scale factor. 

2. min(x,y) is the smaller of x and y. 

3. For a table of ceil values, see Figure 9-4 on page 9-8. 

4. The scale factor of the source must be zero. If the number of digits of the ... \ .•. 
source is greater than 9, and the number of binary digits needed is greater """ 
than the maximum, 31, the result may be undefmed. 

5. If this conversion occurs, the target precision is always known. 

6. If the source is picture, P2 = PI and q2 = q\. 

Conversion to a pictured target occurs only when data is assigned; in such cases, 
the target's precision is always known. 

The equations in Figure 12-4 may also help you decide what precisions to give 
to variables. For example, the precision of a fixed-point decimal or pictured J 
target in an assignment statement should be large enough to hold the maximum 
value of the source: 

• For fixed-point binary (PI), the equation in Figure 5-6 on page 5-29 

P2 = ceil (PI/3.32)+1 

gives the minimum number of decimal digits needed to represent PI binary 
digits. If you want a target scale factor of q2' derive the number of digits, 
P2' from the formula 

P2 ~ ceil (PI/3.32)+1+q2 

• For fixed-point decimal (Pl,ql)' derive the precision and scale factor (P2,q2) 
from the formulas 

P2 ~ PI-QI+Q2 

Q2 ~ Ql 

• For floating-point binary (PI), derive the precision (P2) from the formula 

5-30 PL/I User's Guide and Reference 



DATA CONVERSION 

P2 ~ ceil (PI/3.32) 

• For floating-point decimal (PI), derive the precision (P2) from the formula 

P2 ~ PI 

• For a floating-point source, the exponent must be small enough for the 
source value to fit the target. 

The accuracy of a value may be affected when converting between binary and 
decimal representations. These conversions use the factor 3.32 when calculating 
the target precision. 

CHARACTER 
Conversion from character to arithmetic is valid only in an assignment or when 
using the BINARY, DECIMAL, FIXED, or FLOAT built-in functions. 

The source character value must represent an optionally signed arithmetic con­
stant. It may be surrounded by blanks, but no blanks may appear between the 
sign and the constant. A null string or a string of blanks is permitted and is 
interpreted as a value of zero. 

If the source string does not satisfy these conditions, the conversion condition is 
raised. 

The numeric value represented by the optionally signed constant is converted to 
the attributes of the target, using the attributes of the constant as source attri­
butes. 

BIT 
Conversion from bit to arithmetic is valid only in an assignment or when using 
the BINARY, DECIMAL, FIXED, or FLOAT built-in functions. 

The source bit value is interpreted as an unsigned binary integer and is con­
verted to the attributes of the target, using FIXED BINARY as the source attri­
butes. A null bit value is interpreted as a value of zero. 

Target: Character 

Conversion to character is valid only in an assignment or when using the CHAR­
AcTER built-in function. 

SOURCE: 

Coded Arithmetic 
The number of digits of an arithmetic value that is converted to a character 
value must be greater than or equal to the scale factor. 

The coded arithmetic value is represented as a decimal constant, preceded by a 
minus sign if it is negative, as described below. The constant is converted to an 
intermediate character result whose length is derived from the attributes of the 
source. The intermediate result is assigned to the target according to the rules 
for string assignment. 

FIXED BINARY (PI) 
The binary precision (PI) is first converted to the equivalent decimal precision 
(P2,Q), where 

Chapter 5. PLjl Data Organization and Use 5-31 

• 



DATA CONVERSION 

P2=ceil(PI/3.32)+1 

Thereafter, the rules are the same as for FIXED DECIMAL to CHARACTER. 

FIXED DECIMAL (PI,ql) 
Conversion is done in the following way: 

1. The constant is right adjusted in a field whose width is PI + I (The three 
added bytes allow for a minus sign, a decimal point, and a leading zero 
before the point.) 

2. Leading zeros to the left of the decimal point are replaced by blanks, except 
for the rightmost zero if it immediately precedes the decimal point. 

3. A minus sign precedes the first digit of a negative value. A positive value is 
unsigned. 

J 

4. If ql > 0, a decimal point appears and the constant has ql fractional digitsj if .\ 
ql = 0, no decimal point appears. ."" 

The following examples show the intermediate strings generated from fixed­
point decimal values. The letter b indicates a blank character. 

Precision Value String 

(5,0) 2947 Ibbbb2947I 
(4,1) -121.7 Ib-121.7' 
(4,4) -0.2 1-0.2000 1 

FLOAT BINARY (PI) 
The floating-point binary precision (PI) is first converted to the equivalent 
floating-point decimal precision (P2)' where P2 = cei1(PI/3.32). Thereafter, the 
rules are the same as for FLOAT DECIMAL to CHARACTER. 

FLOAT DECIMAL (PI) 
A floating-point decimal source is converted as if it were transmitted by an 
E-format item of the form: 

E(w,d) 

where: 

w 
is the length of the intermediate string, PI + 7. 

d 
is the number offractional digits, PI-I. 

The following examples show the intermediate strings generated from floating­
point decimal values: 

5-32 PL/I User's Guide and Reference 

J 



DATA CONVERSION 

Precision Value String 

(5) 1735 + 10 .. 5 'b1.7350E+ 08b' 
(5) -.001663 '-1.6630E-03b I 
(3) 1 'bl.OOE+ OOb' 
(1) 0 'bO.E+OOb' 
(3) 25 + 10 .. -101 I b2.50E-l 00 I 

PICTURE 
The character value of the pictured field is assigned to the target string according 
to the rules for string assignment. 

BIT 
10' B becomes the character 0 and I I' B becomes the character 1. The null bit 
string becomes the null character string. The obtained character value is 
assigned to the target string according to the rules for string assignment. 

Target: Bit 

Conversion to bit is valid only in an assignment or when using the BIT built-in 
function. 

SOURCE: 

Arithmetic 
If necessary, the arithmetic value is converted to binary fixed-point, and both 
the sign and any fractional part are ignored. The resulting binary integer is 
treated as a bit value. It is assigned to the target according to the rules for string 
assignment. 

FIXED BINARY (PI) 
The result is a bit string of length PI' If PI is zero, the result is the null bit 
string. 

The following examples show the intermediate strings generated from fixed­
point binary values: 

Precision Value String 

(1) 1 'l'B 
(3) -3 'Oll'B 

FIXED DECIMAL (Pllql) and PICTURE 
The fixed-point decimal value of a pictured field is used; its precision is taken 
from the corresponding picture specification. 

The length of the intermediate bit value is given by 

min(ceil((PI-QJ)*3.32),31) 

Only the number of integer digits of the source is used in this conversion; any 
fractional digits are ignored. The number of integer digits is Pl-ql' (PJ = ql 
results in a null bit string.) 

Chapter S. PL/I Data Organization and Use 5-33 



DATA CONVERSION 

The following examples show the intennediate strings generated from fixed- J 
point decimal values: 

Precision Value String 

(1) 2 '0010' B 
(2,1) 2.2 'OOlO'B 

Fractional digits are lost. 

FLOAT BINARY (PI) 
The length of the intennediate bit value is given by 

min(31,PI) 

FLOAT DECIMAL (PI) 
The length of the intennediate bit value is given by 

min(ceil (PI*3.32) ,31) 

CHARACTER 
Character 0 becomes '0' B and character 1 becomes '1' B. Any character other 
than 0 or 1 raises the conversion condition. The null character string becomes 
the null bit string. The generated bit value, which has the same length as the 
source character value, is assigned to the target according to the rules for string 
assignment. 

Truncation of Floating-Point Data 
If a PL/I statement involves conversion of a floating-point data item in which the 
digits in the original copy of the data item will not all fit into the converted copy, 
then the rightmost excess digits are truncated. Such truncation can occur when con­
verting floating-point data items from long fonn to short fonn, or from floating­
point to fixed-point or picture data. 

In some kinds of conversions, such as from floating-point to character, an intenne­
diate conversion from floating-point to fixed-point is done, followed by a final con­
version from fixed-point to character. Truncation can occur during the intennediate 
converSIon. 

Examples of Data Conversion 
The following example shows the values obtained when assigning decimal integer 
and bit constants to bit variables. 

DECLARE ABIT BIT (1) ALIGNED, 
BBIT BIT (5) ALIGNED; 

ABIT=l; /*ABIT HAS VALUE '0 I B*/ 
BBIT=l; /*BBIT HAS VALUE 100010 I B*/ 
BBIT=11'B; /*BBIT HAS VALUE 110000 I B*/ 

The assignment to ABIT results in the following sequence of actions: 

J 

J 

1. The decimal constant 1 has the attributes FIXED DECIMAL (1,0) and is con-
verted to a fixed-point binary value of precision (4), following the rules for con- J 

5-34 PL/I User's Guide and Reference 



DATA CONVERSION 

version from fixed-point decimal to fixed-point binary. The value is now 1, 
represented as a 4-digit binary number. 

2. This value is converted to a bit value of length 4 and becomes 100011 B. 

3. The bit value is assigned to ABIT. Because the length of ABIT is 1 and the 
length of the bit value assigned is 4, the value is truncated on the right. ABIT 
has a final value of 10 1 B. 

In the first assignment to BBIT, the sequence of actions is similar to that described 
for ABIT, except that the value is extended at the right with a zero, because the 
length of BBIT is one greater than that of the value to be assigned. 

The following example shows the values obtained when assigning character and 
integer constants to character variables: 

DECLARE ACHAR CHARACTER (4), 
BCHAR CHARACTER (7); 

ACHAR='0 1 ; I*ACHAR HAS VALUE '0 1*1 
ACHAR=0; I*ACHAR HAS VALUE' 0'*1 
BCHAR=1234567; I*BCHAR HAS VALUE I 1234'*1 

In the first assignment, the character constant '0' is assigned to ACHAR and 
padded on the right with blanks. 

In the second assignment, the integer constant ° has the attributes FIXED 
DECIMAL(l,O). It is converted to a character value, which introduces three blanks 
on the left, and assigned to ACHAR. 

In the third assignment, the integer constant is converted to the character value 
1234567. This value is truncated on the right and assigned to BCHAR. 

Chapter 5. PLjI Data Organization and Use 5-35 



DATA CONVERSION 

J 

J 

J 

J 
5-36 PL/I User's Guide and Reference 



FILE MANAGEMENT 

Chapter 6. AS/400 PL/I File and Record Management 

This chapter gives an overview of the concepts involved in using AS/400 files. 
Topics include: 

• File management 
• Types of files 
• Using record formats. 

Detailed information about PL/I input/output is given in Chapter 8, "Using AS/400 
Files." This includes specific information about commitment control and the 
%INCLUDE directive. Complete information on AS/400 files can be found in the 
Programming: Data Management Guide. 

File Management 
Files and their use are controlled by OS/400. This section describes file independ­
ence, device independence, system override considerations, security, and authority. 

File Independence 
The key element for all input/output operations on the AS/400 System is the file. 
All files used on the system are dermed to OS/400. OS/400 maintains a description 
of each file that is accessed by a program when the file is used. 

The files are online and serve as the connecting link between a program and the 
data. The actual device association is made when the file is processed. In some 
instances, this type of input/output control allows the user to change the attributes 
of the file used in a program without changing the program. 

PL/I files and AS/400 files are associated either by default, by the use of the TITLE 
option of the OPEN statement, or by the use of a CL override command, such as 
OVRTPEF or OVRPRTF. For further information on the CL override commands, 
see the Programming: Control Language Reference. 

There are a few cases of file dependence. For example, the INTERACTIVE option 
of the ENVIRONMENT attribute usually implies a display file, and the INDEXED 
option implies a keyed data base file. 

Device Independence 
PL/I is, to a large extent, device independent. For example, if you specify the CON­
SECUTIVE option of the ENVIRONMENT attribute, and do not use the 
OPTIONS option of the input/output statements, you can associate your PL/I file 
with any AS/400 device. 

Chapter 6. AS/400 PL/I File and Record Management 6-1 



FILE MANAGEMENT 

Spooling 

The AS/400 System provides for the use of input and output spooling functions. 
Each AS/400 printer and diskette description contains a spool attribute that deter­
mines if spooling is used for the flle at run time. The PL/I program is not aware that 
spooling is being used. The actual physical device from which a flle is read or to 
which a flle is written is determined by the spool reader or the spool writer. See the 
Programming: Data Management Guide for more information on spooling. 

Output Spooling 

Output spooling is valid for batch and interactive jobs. 

File override commands can be used at run time to override the spooling options 
that are specified in the flle description, such as the number of copies printed. In " 
addition, AS/400 spooling support allows you to redirect a flle after the program has .."" 
run. For example, you can direct the printer output to a different device, such as 
diskette. 

Input Spooling 

Input spooling is valid only for inline data flles in batch jobs. If the input data read 
by PL/I comes from a spooled flle, PL/I is not aware of which device the data was 
spooled in from. See the Programming: Data Management Guide for more infor- .\ 
mation on inline flles. .." 

System Override Considerations 
CL system override commands, such as OVRTPEF or OVRPRTF, may be used for 
several reasons: 

• To change or add flle attributes. 
• To redirect a PL/I flle to a different AS/400 ftle at run time. 

The name you specify on the FILE option of the override command is used toJ 
match the flle name in either the flle declaration or the TITLE option of the OPEN 
statement. For a discussion of how to use system override commands, refer to the 
Programming: Data Management Guide. 

If you issue the CL command OVRDBF (Override Data Base File) for a PL/I flle 
specifying a value for the MBR parameter, any member name you specify using 
TITLE in the OPEN statement for the flle is ignored. Similarly, a CL override 
command for a PL/I ftle may override some of the ENVIRONMENT attribute 
options specified for the flle. An example of an option that may be overridden that 
is also directly specifiable within the PL/I program is +EXCL or +EXCLRD lock 
state on data base flies. 

Before a flle can be accessed, you may need to specify additional flle attributes on 
either an override command or a create or change system object command. 

6-2 PL/I User's Guide and Reference 



Security 

FILE MANAGEMENT 

Overrides may be used to direct PL/I input and output to a different me than the 
program intended. For example, a PL/I me with the attributes of SEQUENTIAL, 
INPUT, and CONSECUTIVE could be used with a data base me, a tape me, a 
diskette me, or an inline me. 

When me redirection is used, you must ensure that the program is not attempting 
any I/O statement options that are not defined for the me type. For example, if the 
program is using POSITION(PREVIOUS) on a READ statement to a data base 
me, the me in the program cannot be directed to a diskette me. 

In general, input/output statement options not allowed for the me type will result in 
the ERROR condition being raised. The exceptions to these are the RECORD and 
INDICATORS options which are ignored by me types that do not support these 
options. For example, the RECORD option is ignored by diskette mes, and the 
INDICATORS option is ignored by physical and logical data base meso 

Authority and ownership apply to a data base me on a me level. That is, if a user 
prome has a certain authority to a data base me, then that user may do the author­
ized functions on any and all members of the me. 

Ownership 

Ownership of a me and authorization to it interact in the following ways: 

• An owner of a me always gets all rights to the me. 

• An owner's rights can be revoked; but even when the owner has no explicit 
rights to the me, the owner may process GRTOBJAUT and RVKOBJAUT 
commands on it. 

• Changing the owner does not revoke the old owner's rights to the me. 

Authority 

There are three Object Rights for a me: "'OBJOPR, "'OBJEXIST, and "'OBJMGT. 
The four Data Rights for a me are: "'READ, "'ADD, "'UPD, and "'DLT. 
"'CHANGE authority for a logical me is defined as "'OBJOPR and for a physical me 
it is "'OBJOPR plus all of the data rights. 

The following rules for data rights allow the user to protect a data base: 

• Data rights apply only to a physical me. An attempt to grant data rights to a 
logical me is ignored . 

• A me cannot be opened without *OBJOPR right to the target me (either phys­
ical or logical). After the me is open, an I/O operation will not work without 
the corresponding data right on the physical me that contains the data. 

• The AUT parameter allows you to specify what authority the public has for the 
program. You can use AUT to specify a number of different types of pro­
tection. 

Chapter 6. AS/400 PL/I File and Record Management 6-3 



TYPES OF FILES 

Types of Files 

Data Base Files 

The following AS/400 mes are supported by AS/400 PL/I: 

• Data Base Files 
• Display Files 
• Diskette Files 
• Tape Files 
• Printer Files 
• Data File Management (DDM) Files. 

The following AS/400 mes are supported by System/38 Environment only: 

• Communications Files 
• Bse Files 
• Inline Files. 

The following sections introduce each type. For more information, see the 
Programming: Data Management Guide. 

A data base me is a collection of records. The sequence of these records and the 
fields contained in a record are a part of the system me definition. The fact that the 
field definition is part of the me definition is one of the features of the AS/400 archi­
tecture. A physical me stores records in the same format and/or sequence in which 
you can access them. A logical me allows you to specify a description of how the 
records in a physical me may be accessed. 

Physical Files 

A physical me contains fixed-length records with one record format. The records 
are physically stored in arrival sequence. You may access these records in either a 
specified keyed sequence or arrival sequence. 

Logical Files 

A logical me does not contain records, but contains a set of instructions that the 
system uses to access a physical me. A logical me allows you to define different 
views of the fields in the records in a physical fUe, and to defme different sequences 
for accessing these records. 

File Organization 

The AS/400 data base me organization is based on arrival sequence or keyed 
sequence access paths. 

Access Paths 

The access path determines the order in which the data records are returned to the 
program when a me is accessed. 

6-4 PL/I User's Guide and Reference 

J 

J 

J 



TYPES OF FILES 

Arrival Sequence Access Path: An arrival sequence access path is based on the 
order in which the records are stored in the fIle. For retrieval or updating, records 
can be accessed in one of the following ways: 

• Sequentially, where each record is taken from the next sequential position in the 
fIle. 

• Directly by relative record number, where the record is identified by its position 
from the beginning of the fIle. 

An arrival sequence access path is valid only for the following: 

• A member of a physical fIle, where no key fields are specified. 

• A logical fIle in which each member of the logical me is based on only one 
member of only one physical fIle, where no key fields are specified. 

Keyed Sequence Access Path: For a keyed sequence access path, the sequence of 
the records in a fIle is based on the contents of the key fields as defmed in the DDS 

(Data Description Specifications). This type of access path is updated whenever 
records are added, deleted, or changed. 

For retrieval or updating, records can be accessed in one of the following ways: 

• Sequentially, where each record is taken from the next sequential position in the 
fIle. 

• Directly by relative record number, where the record is identified by its position 
from the beginning of the fIle. 

• Directly by means of the key fields as defmed in the DDS. 

The keyed sequence access path is valid for any physical or logical data base me 
type. The sequencing of records in the me is defmed in the DDS for the fIle when 
the me is created and is maintained automatically. 

Record Formats 

A record fonnat defmition is a list of names and attributes of fields in the order in 
which they should appear in a record. This defmition is made through DDS, and 
includes the field name, the data type (binary, packed decimal, floating-point, zoned 
decimal, or character), and the length of the field. Files use record fonnats in the 
following ways: 

• A physical me has one record fonnat. This record format determines the actual 
storage attributes and order of the fields for the records in the fIle. 

• A logical fIle associates record formats with based-on physical fIle(s) and 
member(s). A logical record format defmes a logical view of records in the 
physical fIle. The fields in a physical record format map to the fields in the 
logical record fonnat. 

Chapter 6. AS/400 PL/I File and Record Management 6-5 



TYPES OF FILES 

File Locking 

Members 

In the discussion so far, a data base ftle has been considered a means of accessing a 
collection of records. It is more accurate to say that a collection of records is 
accessed with a member of the ftle. 

The ability to have many members within a ftle allows you to describe data charac­
teristics once at the ftle level, then operationally separate collections of records 
created, each having these same characteristics. Therefore: 

• A ftle may be defmed to allow any number of members. 

• Members can be added to and deleted from a ftle. 

• Each physical member consists of a separate stored collection of records with an 
independent arrival sequence. 

• Each keyed member consists of a separate access path over the data in physical 
ftle members. Therefore maintenance is done on a member basis. 

If a ftle is defmed with a maximum of one member, the fact that the ftle actually has 
a member makes no difference to the user. This is the case because the ftrst 
member of a ftle is the default member used in operations when no member name is 
specilied. 

J 

If a ftle is overridden with the CL command OVRDBF specifying MBR(+ALL), all 
the members in the ftle are processed, one at a time, in the order they were ori- J' 
ginally created. After the last member is processed, an ENDFILE condition is 
raised. If you specify the POSITION parameter of the READ statement with 
NXTUNQ, PRVUNQ, NXTEQL, PRVEQL, FIRST, or LAST, the search for the 
record will be made only within the member currently being accessed. 

File locking is used to control the access to physical fIle members. If more than one 
job is running at the same time, and all are accessing the same physical ftle'i 
members, some degree of ftle locking may be necessary in order to synchronize the ,."" 
use of the data. 

There are ftve different lock states that may be applied to the records in a physical 
ftle member. When a particular lock is specilied, all of the data records in each 
physical me member associated with the member being opened are locked in the 
specilled state. For logical ftle members, this means that all of the data records in 
all of the base physical ftle members are locked in the specilled state. The ftle lock 
states are: 

• Exclusive (+EXCL) 
• Exclusive Allow Read (+EXCLRD) 
• Shared for Update ("'SHRUPD) 
• Shared No Update (+SHRNUP) 
• Shared for Read (+SHRRD). 

For a defmition of these lock states, refer to the Programming: Data Management J 
Guide. 

6-6 PLjI User's Guide and Reference 



L Record Locking 

TYPES OF FILES 

You may specify or imply all but the +SHRNUP lock state from within a PL/i 

program. +EXCL or +EXCLRD may be specified as options on the ENVIRON­
MENT attribute. +SHRUPD is the default for a flie with the UPDATE or 
OUTPUT attribute specified, and no lock state specified in the ENVIRONMENT 
attribute. +SHRRD is the default for a flie with the INPUT attribute specified, and 
no lock state specified on the ENVIRONMENT attribute. 

Notes: 

1. File locks are not checked from within one running job. File locks only prevent 
access from other concurrently running jobs. This means that from within one 
running job, a flie with +EXCLRD may be opened more than once. 

2. The CL command OVRDBF (Override Data Base File) may override the lock 
state specified or implied by the PL/I program. 

Record locking is used to control the updating of records within data base flies. A 
record lock is similar to an "'EXCLRD lock on a flie. The user holding the record 
lock has exclusive update rights to the record, but other users may read the record. 
(Reading a locked record under commitment control may not be allowed. See 
"Using the PLICOMMIT Built-In Subroutine" on page 8-59.) 

Locks apply only to records in physical flies. A record in a logical me is always 
mapped to a particular record in a physical flie. Locks are maintained on a physical 
record by each logical or physical ftle. If a record is accessed by two different flies, 
the second flie to access the record will fmd the record already locked. Because only 
physical records are locked, there may be many records in different logical flies that 
all map to the same physical record. You must be aware of which physical flies are 
used by the various logical flies and ensure that all flies are used in a consistent 
manner. 

When a READ statement is processed for a flie with the UPDATE attribute, the 
record just read will be locked. If the record is already locked to another concur­
rently running job, the READ statement will wait until either the record lock is 
released or a record lock wait timeout occurs. If a record lock wait timeout occurs, 
the TRANSMIT condition is raised. The record lock wait time defaults to 60 
seconds but may be set by the user through the create flie or override commands. 

A record lock is normally released whenever another READ, REWRITE, or 
DELETE statement is directed to a different record in the same open PL{I flie. If 
another READ statement is processed to the same record in the same open PL{I flie, 
the record lock is not released. If a REWRITE or DELETE is directed to a record 
just read for UPDATE in the same open PL/I fUe, the record lock is released after 
the REWRITE or DELETE statement is processed. 

The record lock held after a READ statement will be released if a subsequent 
READ statement ends with a KEY condition. You may use this fact to release a 
record lock by forcing a KEY condition to occur. If a record is locked to a flie and 
you do not release the lock through the use of a subsequent READ, REWRITE, or 
DELETE statement, the record will remain locked to the flie until either you issue a 
CLOSE statement, or the flie is closed by PL/I at the end of the main procedure. 

Chapter 6. ASj400 PLjI File and Record Management 6-7 



TYPES OF FILES 

DEVICE Files 

DISPLAY Files 

A REWRITE or DELETE statement with the KEY option attempts to obtain a 
record lock prior to the REWRITE or DELETE operation. This means that a 
REWRITE or DELETE statement may wait if the record is already locked. If the 
record lock timeout occurs, the REWRITE or DELETE statement will end with 
TRANSMIT condition. 

Note that unlike fIle locks, record locks are checked within the same running job. 
This means that it is possible to receive a record locked condition on a record that is 
locked within the same job. This can occur if the same physical fIle record is 
accessed for UPDATE through different PL/I fIles. If this occurs, the READ state­
ment ends immediately with TRANSMIT condition. The record wait time is not 
used in this case. 

If commitment control is active for a me, the releasing of record locks is delayed 
until a call to PLICOMMIT or PLIROLLBACK is processed. For the rules on '~ 
record locks under commitment control, see "Record Locks" on page 8-62. "'fIlII 

A device me is a description of how input data is presented to a program from a 
device, or how output data is presented to the device from a program. It is not 
necessary to have a separate device me for each device; you can use only a single 
device me for several different devices of the same class by using an override 
command. Any number of device mes can be associated with one device, but only 
one device description can exist for each device. For more information on device 
descriptions, see the Programming: Data Management Guide. 

The types of device mes supported by PL/I are: 

• Display Device Files 
• Diskette Files 
• Tape Files 
• Printer Files 
• DDM Files. 

The types of device mes supported by PL/I in System/38 Environment only are: 

• Communications Files 
• BSC Files. 

Display device mes are used to format the display. They describe input and output 
fields, constants, the use of command function and command attention keys, and 
the handling of errors. Display mes can be program-described mes or externally 
described meso 

~ 

6-8 PL/I User's Guide and Reference 



L 

TYPES OF FILES 

Subfiles 

A subflle is a group of identically formatted records that is read from or written to a 
display device flle. Subflles can be specified in the DDS for a display device flle to 
allow the user to handle multiple records of the same type on the display. For 
example, a program reads records from a data base flle and creates a subflle of 
output records. When the entire subflle has been written, the program sends the 
entire subftle to the display device in one write operation. The user can change data 
or enter additional data in the subflle. The program then reads the entire subflle 
from the display device into the program and processes each record in the subflle 
individually. 

Descriptions of records included in a subflle are specified in the DDS for the flle. 
The number of records that can be contained in a subflle must also be specified in 
the DDS. One flle can contain more than one subflle, and up to twelve subflles can 
be active and displayed concurrently. 

The DDS for a subflle consists of two record formats: a subflle record format and a 
subflle control record format. The subflle record format contains the field 
descriptions of all the records in the subfUe. Specification of the subflle control 
record format on the READ or WRITE statement causes the physical read, write, 
or setup operations of a subflle to take place. 

For a description of how the records in a subflle can be displayed and for a 
description of the keywords that can be specified for a subflle, see the Programming: 
Data Description Specifications Reference. 

Some typical uses of subflles include: 

• Display only. The user reviews the display. 

• Display with selection. The user requests more information about one of the 
items on the display. 

• Modification. The user modifies one or more of the records. 

• Input only, with no validity checking. A subflle is used for a data entry func­
tion, and the records are not checked. 

• Input only, with validity checking. A subfUe is used for a data entry function, 
but the records are checked. 

• Combination of tasks. A subflle can be used as a display with modification. 

Other Types of Device Files 
Other types of device fUes include: 

• DDM fUes 
• Communications fUes 
• Bse fUes 
• Inline fUes. 

Chapter 6. AS/400 PL/I File and Record Management 6-9 



TYPES OF FILES 

DDM Files 

Distributed Data Management (DDM) allows you to access data ftles that reside on 
personal computers or on remote IBM System/370, System/36, System/38, and 
AS/400 Systems. The PL/I compiler supports DDM ftles. You can retrieve, add, 
update or delete data records in a flle that resides on another system. In addition, a 
remote system can access your AS/400 data base for record retrieval. 

To use DDM ftles with PL/I programs, some important considerations are: 

• When a DDM flle is accessed as the source ftle for a PL/I program, the margins 
used in the compilation of the PL/I source are the default values of 2 and 72. 
No other margin values can be specified. 

For more information about accessing remote ftles, refer to the Communications: 
Distributed Data Management User's Guide. 

Communications and BSC Files 

A communications me is a device me used to support Synchronous Data Link 
Control (SDLC) protocols. A BSC me is a device flle used to support Binary Syn­
chronous Communications, a form of communications line control that uses trans­
mission control characters to control the transfer of data over a communication line. 

Inline Files 

An inline data flie is a data me that is included as part of a batch job when the job 
is read by a reader or by the CL commands SBMDBJOB and SBMDKTJOB. For 
further information on these commands, see the Programming: Control Language 
Reference. An inline data me is delimited within the job by ai/DATA command at 
the beginning of the me and by an end-of-data delimiter (a user-defmed character 
string or the default of 1/) at the end of the me. 

The record length for inline flies is 80 bytes for a data flie and 92 bytes for a source .' 
me. ..." 

An inline data flie can be either named or unnamed. For an unnamed inline data 
me, either Q INLINE is specified as the me name in the I IDA T A command or no 
name is specified. For a named inline data file, a file name is specified. 

A named inline data me has the following characteristics: 

• It has a unique name within a job; no other inline file can have the same name. 
• It can be used more than once in a job. 
• Each time it is opened, it is positioned to the fIrst record. 

6-10 PL/I User's Guide and Reference 



USING RECORD FORMATS 

Using Record Formats 
A me record format must be defmed to the system before you can use it in your 
programs. This can be done in two ways - externally described and program­
described. Data base, display, communications, BSC, and printer mes may be either 
externally described or program-described. Diskette, inline, and tape mes can only 
be program-described. 

Note that actual me processing within the PL/I program is the same if the me is 
externally described or program-described. 

Externally Described Record Formats 
An externally described me is described at the field level to OS/400 through DDS. 

The description includes information about the type of ftle, such as data base or a 
device, and a description of each field and its attributes. 

By using the %INCLUDE directive, you can bring the external descriptions of a 
record's fields and attributes into your program and, therefore, you will not have to 
defme them in your program. (See "Using the %INCLUDE Directive for External 
File Descriptions" on page 8-73.) 

Externally described ftles offer the following advantages: 

• Less coding in PL/i programs. If the same ftle ic; used by many programs, the 
fields can be defmed once to OS/400 and used by all the programs. This elimi­
nates the need to code record descriptions for PL/I programs that use externally 
described meso 

• Less maintenance activity when the me's record format is changed. You can 
often update programs by changing the me's record format and then recompiling 
the programs that use the mes without changing any coding in the program. 

• Improved documentation because programs using the same ftles use consistent 
record format and field names. 

Defining Record Formats with DDS 

Externally described data mes are described using DDS (Data Description Specifica­
tions). Using DDS, you provide descriptions of your mes (including attributes of 
each field as well as record and me level information) used when the ftles are 
created. The Data Description Specifications form provides a common format for 
describing data externally. 

There are two methods of providing information with the DDS form. You specify 
information that is frequently required by using the fixed columns provided on the 
form. You specify information that is less frequently needed by using the appro­
priate keywords and parameters. For example, the keyword DESCEND changes 
the sequencing of records from ascending (the normal sequence used by the system) 
to descending for a particular key field. 

Chapter 6. ASj400 PLjI File and Record Management 6-11 



USING RECORD FORMATS 

Level Checking 

When a PL/i program uses an externally described me, the AS/400 System provides 
a level check function. This function ensures that at run time the fonnat has not 
changed since compilation time. 

If you specify the DESCRIBED option of the ENVIRONMENT attribute when 
you use the %INCLUDE directive to copy a record description of an externally 
described me into your program, level checking will occur for the copied record 
fonnats. 

The level check function can be requested on the CL create, change, and override me 
commands. The default on the create me command is to request level checking. If 
level checking was requested, level checking occurs on a record fonnat basis when 

J 

the me is opened. If a level check error occurs, an UNDEFINEDFILE condition) 
occurs at OPEN time. ,.." 

If an existing fonnat is used in a new me, any existing PL/i programs that use the 
fonnat can still be used with the new me (assuming that no other conflicts such as a 
change of keys exist) without recompilation. 

For more infonnation on how to specify level checking, see the Programming: 
Control Language Reference. 

Program-Described Files 
A program-described me is described within the PL/I program with DECLARE 
statements. The description of the me to OS/400 includes infonnation about the 
type of me and the length of the records in the me. 

6-12 PLjI User's Guide and Reference 



THE ENVIRONMENT A'ITRIBUTE 

Chapter 7. File Declaration and Input/Output 

This chapter provides infonnation about features of PL/I that are specific to AS/400 
input/output. These features are discussed with reference to the ENVIRONMENT 
me declaration attribute, opening and closing mes, and the OPTIONS option for 
input/output statements. 

The following shows the syntax for the DECLARE statement, and how the ENVI­
RONMENT attribute fits into the overall me declaration. Refer to Chapter 12, 
"Declaring Names and Attributes of Varlables" for more detailed infonnation on the 
DECLARE statement. 

-DEClARE--l .. ---r--'-l-;m,~""Ib"jl~ 
L'm,J + JJ 

(-name ) 

Abbreviation: DCl for DECLARE. 

The ENVIRONMENT Attribute 
The ENVIRONMENT me declaration attribute allows you to specify information 
about implementation-defmed features such as: 

• File organization 
• File characteristics 
• File locking 
• Commitment control 
• Level Checking. 

Options specified on the ENVIRONMENT attribute do not influence any default 
fue attributes. 

The following examples show several different reasons for using ENVIRONMENT 
options: 

• An option may be required for successful data transmission. 

For example, you must specify the INTERACTIVE option before you can 
open a display me. 

• An option may be used to supply infonnation. 

For example, you can use the BUFSIZE option to specify the record length of 
a me and override the system description of the me. 

Chapter 7. File Declaration and Input/Output 7-1 



THE ENVIRONMENT ATTRIBUTE 

• An option may be used to check appropriate association of program and system J 
functions. 

For example, when you specify the DESCRIBED option, the system processes 
level checking functions. See the Programming: Data Management Guide for a 
discussion of level checking. 

The syntax of the ENVIRONMENT attribute is: 

-ENVIRONMENT-(--r-----.,--+ 

r--CONSECUTIVE--

I---INDEXED-

'---- INTERACTlVE-

E::::J 

~KEyDISP(integer_constant)--KEyLENGTH(integer_constant)~ 

~CTLASA~ ~BUFSIZE(integer_constant)~ ~DESCRIBE~ 

The options are discussed in the following sections. 

File Organization Options 

J 

The me organization options are CONSECUTIVE, INDEXED, and INTERAC- .~ 
TIVE. CONSECUTIVE is the default. ..., 

CONSECUTIVE 
This indicates that records in the me are stored in a consecutive manner. A 
TAPE me for example, has CONSECUTIVE me organization. CONSEC­
UTIVE is supported for all me types to increase device independence and allow 
for me redirection. 

If you specify CONSECUTIVE for a logical me member that is based on more 
than one physical me member, the UNDEFINEDFILE condition is raised 
when the me is opened. 

INDEXED 
This indicates that the keyed access path for a physical or logical data base me is 
used. 

You must explicitly code INDEXED to use a keyed sequence access path. If ... ~ 
you do not code INDEXED, the default of CONSECUTIVE applies, the keyed ....", 

7-2 PLjI User's Guide and Reference 



THE ENVIRONMENT A TIRIBUTE 

sequence access path is ignored, and the arrival sequence access path is used 
instead. 

INTERACTIVE 
This indicates that an interactive device is used. An interactive device is defmed 
as either a display device or a remote program that is accessed through either a 
communications or BSC me. If you specify INTERACTIVE, you can use both 
READ and WRITE statements on a SEQUENTIAL UPDATE me. 

File Locking Options 

Key Options 

The me locking options, EXCL and EXCLRD, control the lock type applied to a 
data base me. 

EXCL 
Specifies that programs in concurrently running jobs cannot access the me. 

EXCLRD 
Specifies that programs in concurrently running jobs cannot update the me, but 
may read from the me. 

These specifications apply to physical and logical data base mes, not to display or 
device meso 

When you specify a me locking option, the me member is locked at the time the me 
is opened. The lock is only visible to other concurrently running jobs. When you 
specify a me locking option for a logical me, one or more members of one or more 
physical mes are locked. 

If you do not specify one of these options, there will be a default lock on the me, 
depending on if the INPUT, OUTPUT, or UPDATE attribute is specified. If you 
specify the INPUT attribute, the default lock is shared read (+SHRRD); if you 
specify the OUTPUT or UPDATE attribute, the default lock is shared update 
(+SHRUPD). See "File Locking" on page 6-6, and the Programming: Data Man­
agement Guide for more information on me locking. 

The key options, KEYDISP and KEYLENGTH, move the KEYFROM variable 
on a WRITE statement or the KEY expression on a REWRITE statement into the 
record to ensure that the imbedded key and the associated key are of the same value 
when a WRITE or REWRITE statement is processed. 

For INDEXED organization with program-described mes, you must specify 
KEYDISP and KEYLENGTH. Also, if you specify INDEXED, but do not 
specify DESCRIBED, you must specify KEYDISP and KEYLENGTH. 

KEYDISP and KEYLENGTH imply INDEXED. 

KEYFROM(expression) can be used on a WRITE statement only if KEYDISP 
and KEYLENGTH are specified. 

Chapter 7. File Declaration and Input/Output 7-3 



THE ENVIRONMENT A TIRIBUTE 

CTLASA Option 

If KEYDISP and KEYLENGTH are specified, the KEYFROM variable will be J 
moved into the RECORD prior to the WRITE. Also, the KEY expression is 
moved into the record prior to the REWRITE. 

KEYDISP (integer_constant) 
Describes where the key field is located in the record. If you specify KEYDISP, 
do not specify DESCRIBED, CONSECUTIVE, or INTERACTIVE. 

Use this option only for data base mes in which all key fields are contiguous 
and each record format has the same key field definitions. KEYLENGTH must 
be specified when KEYDISP is specified. 

The integer_constant is the displacement of the key in the record. For example, 
KEYDISP(O) is the first byte of the record. KEYDISP(I) is the second byte. 

KEYLENGm (integer_constant) 
Describes the key length for the data base me. KEYLENGTH must be speci­
fied with KEYDISP. See KEYDISP above for details. KEYLENGTH must 
match the maximum key length for the data base me. 

The CTLASA option specifies that the first byte of each record is expected to be a 
print control character (i.e. ANSI forms control character). 

If you want to use this option, you must declare it explicitly. You are responsible 
for ensuring that the first byte of each record contains a valid print control char-
acter. The printer me that you direct the output to must have CTLCHARC*FCFC)\ 
specified on the CL commands CRTPRTF or OVRPRTF in order to produce ...", 
printer spacing corresponding to the print control characters in the printer me. No 
compiler support is provided other than activating First Character Forms Control 
(FCFC) support at me open time. 

The valid print control characters are shown in the following table. 

Code Action 

(blank) Space 1 line before printing 

0 Space 2 lines before printing 

- Space 3 lines before printing 

+ Suppress space before printing 

1 Skip to channel 1 

2 Skip to channel 2 

3 Skip to channel 3 

4 Skip to channel 4 

5 Skip to channel 5 

Figure 7-1 (Part 1 of 2). American National Standard Print Control Characters 
(CfLASA) 

J 

7-4 PL/I User's Guide and Reference 



THE ENVIRONMENT AITRIBUTE 

Code Action 

6 Skip to channel 6 

7 ! Skip to channel 7 

8 Skip to channel 8 

9 Skip to channel 9 

A Skip to channel 10 

B Skip to channel 11 

C Skip to channel 12 

Figure 7-1 (Part 2 of 2). American National Standard Print Control Characters 
(CfLASA) 

You can also use the CL command OVRPRTF (Override Printer File) to set 
channel and line numbers (refer to the Programming: Control Language Reference 
for details). 

Do not specify CTLASA for an externally described printer fIle. Use indicators 
instead of print control characters to provide spacing and other printer controls (see 
"Indicators" on page 8-76). 

BUFSIZE (integer_constant) Option 
The B UFSIZE option specifies a value that the program uses as the maximum 
record length for the fIle. The value specified is the input and output buffer length 
that is allocated for the fIle when it is opened. 

You must code BUFSIZE when creating a new fIle on a diskette device: BUFSIZE 
specifies the record length on the diskette. 

You can use the BUFSIZE option in the following ways: 

• To override the actual fIle record length without changing the fIle specification. 
• To specify the storage size in the system buffer. 
• To specify the record length when creating diskette fIles. 

If you do not specify BUFSIZE, the length of the input/output buffers is based on 
the maximum record length defmed for the file. 

The INTO option of the READ statement controls the amount of data read into 
the input buffer, up to a maximum you can specify on the BUFSIZE option. 

The FROM option of a WRITE or REWRITE statement controls the amount of 
data written or rewritten from the output buffer, up to a maximum you can specify 
on the BUFSIZE option. 

When a READ statement with the SET option is processed, any buffer storage 
beyond the BUFSIZE value is undefmed. 

Chapter 7. File Declaration and Input/Output 7-5 



THE ENVIRONMENT ATTRIBUTE 

Note: If you specify the SET option of a READ statement, the program 
description of the record must match the actual records in the ftle, or unpredictable 
results may occur. There is a possibility of addressing beyond the end of the system 
input buffer, or if blocking is in effect, to address a portion of the next record in the 
buffer. To avoid this, specify the BUFSIZE option with a length equal to the 
longest record used for the ftle. This allows the redirection of the ftle to a ftle with a 
smaller record length at run time. 

For tape mes, BUFSIZE corresponds to the RCDLEN parameter on the CL 
command CRTTAPF (Create Tape File) or OVRTAPF (Override Tape File). 
Refer to the Programming: Control Language Reference for a discussion of the 
restrictions of the RCDLEN parameter with tape ftles. 

DESCRIBED Option 
The DESCRIBED option indicates that external record format definitions from the 
ASj400 ftle object are being used within the program. 

The default is not to use DESCRIBED. 

When you specify DESCRIBED, the following functions occur: 

• Level checking is processed at time of ftle opening for all record formats associ­
ated with this ftle that have been declared using the %INCLUDE directive. 

• Compile-time diagnostics are processed to ensure that the PL/I ftle attributes and 
system me attributes match. The valid combinations are shown in Figure 7-2 \ 
on page 7-9. ""'" 

For mes with indexed organization, you must ensure that the key is the same as the 
key in the replaced record. If DESCRIBED is specifted and the values of the key 
fields in the record are not equal to the KEY expression, the results are unpredict­
able. 

For DESCRIBED data base mes, KEYFROM("') must be coded on the WRITE 
statement when KEYFROM is used. 

Note: You can prevent level checking by specifying LVLCHK("'NO) on one of the 
appropriate Create xxx File (CRTxxxF) or Override xxx File (OVRxxxF) com­
mands. For more information on level checking, refer to the descriptions of the 
above commands in the Programming: Control Language Reference. 

Commitment Control Option 
The COMMITTABLE option indicates that a logical or physical data base fIle is 
placed under commitment control. Commitment control allows the user to ensure 
that multiple changes to data base fIles are all either made permanent or cancelled as 
a single operation when a commitment boundary is reached. 

The default is not to use COMMITTABLE. 

Use the COMMITTABLE option with the PLICOMMIT and PLIROLLBACK 
built-in subroutines (see "Using the PLICOMMIT Built-In Subroutine" on 

7-6 PL/I User's Guide and Reference 



Blacking Option 

THE ENVIRONMENT A TIRIBUTE 

page 8-59 and "Using the PLIROLLBACK Built-In Subroutine" on page 8-60) or 
their equivalents in other high level languages, or the CL commands STRCMTCTL 
(Start Commitment Control) and ENDCMTCTL (End Commitment Control). 
(See the Programming: Control Language Reference.) 

The UNDEFINED FILE condition is raised if COMMITTABLE is specified and 
the me is not a data base me. 

The BLOCK option specifies blocking for data base meso 

If you specify BLOCK, you must not specify the OPTIONS option of the READ 
or WRITE statement. 

BLOCK can be specified to improve performance when the me is primarily accessed 
by READ statements without the KEY option, or WRITE statements without the 
KEYFROM option. 

When you specify BLOCK for an INPUT me, the complete block is transferred 
from the me to the input buffer. Records are read from the input buffer to the PL/I 

program, one at a time, until the buffer is empty. 

When you specify BLOCK for an OUTPUT me, records are written from the 
program to the output buffer, one at a time, until the block is full. Then the com­
plete block is transferred to the me. 

The number of records in the block is optimized by the system and varies with each 
me type. Refer to the Programming: Data Management Guide for a description of 
the blocking support provided for each AS/400 me type. 

If your application requires an immediate view of the me after each input or output 
transaction, do not specify blocking. If blocking is in effect for an INPUT me, new 
records are only available after a complete block is read into the program. If 
blocking is in effect for an OUTPUT me, new records are only available after a 
complete block is written to the data base. Therefore, duplicate key conditions may 
not be detected until blocks are transferred, or until mes are closed. Programs 
sharing mes will have to wait for newly added records until a block is written. 

Even if you specify blocking, it is ignored under the following conditions: 

• If you specify the me attributes DIRECT with INPUT or UPDATE. 

• If you specify the ENVIRONMENT options INTERACTIVE or 
COMMITTABLE. 

• If you specify an AS/400 me type that does not support blocking. Only data 
base, tape, and diskette mes support blocking. 

If you specify the BLOCK option for a data base me, and the option is ignored by 
OS/400, you will receive a diagnostic message when the me is opened. To fmd out 
when blocking is ignored for data base mes, refer to the Programming: Control Lan­
guage Programmer's Guide. 

Chapter 7. File Declaration and Input/Output 7-7 



THE ENVIRONMENT ATTRIBUTE 

NOINDARA Option 
The NOINDARA option specifies that you are using indicators without the 
INDARA keyword specified in the DDS for the ftle. 

If you specify NOINDARA, do not specify the INDICATORS option on record 
I/O statements. 

You must specify NOINDARA if you do not specify the DESCRIBED option of 
the ENVIRONMENT attribute and you do not specify INDARA in the DDS. 

NOINDARA indicates that the external description of the ftle does not contain the 
DDS keyword INDARA. If NOINDARA is specified, both program-described ftles 
and externally described ftles are assumed to have indicators located in the record 
buffer, and not in a separate area. If NOINDARA is not specified, it will be 
assumed that the INDARA keyword has been specified in the DDS for the ftle. See 
"Using Indicators in the Record Area" on page 8-49. 

If you specify DESCRIBED, PL/i will extract the ftle deftnition at compile time and 
use the information in the ftle to determine if INDARA is specified. 

Figure 7-2 summarizes the valid combinations of ftle attributes and ENVIRON­
MENT options you can specify for the different types of AS/400 ftles. The ftgure 
notes explain how to use the ftgure. 

7-8 PLjI User's Guide and Reference 

J 



~ 
'0 

£i 
-.J 

'"!1 
;: 
0 
(I) 

~ 
I» ..., 
S» 
C'. 
0 
::l 
I» 
l:l 
0-

.g 
C 
~ 
0 c 
-0 c ... 
-...l • \C 

r r r r r 
!l 

()Q 
c ..., 
~ 

-.J 

~ 

~ 
0: 
n 
0 
:3 a-
S· 
I» 
C'. 
0 
::l 
en 
0 ...., 
!l 
;' 

:> ... g: 
c ;-
en 
I» 
::l 
0-

m 
l:l 
;S • ..., 
g 
:3 
~ 
::l ... 
0 
'0 
C'. 
0 
::l 
en 

I*Fi1e Type*1 

I 
I 

I *P1'"\YBi

l
cal*1 I*Lo~gical*1 1*D1S

I
PlaY*:*eommunicatiOns and BSC.;*prjnter*1 I*Inl

l
ine*1 I*Car

I 
d*1 I*Tap

l 
e*1 1*D1

I
Bkette*1 B 

I I*Fi1 e Attributles*~ 
I 1 I I I' 1 r-I-_ 

STREAM RECORD RECORD RECORD STREAM RECORD STREAM RECORD RECORD STREAM RECORD STREAM B 

IN~ IN~UT I I IN~UT I I I~T I I T I IJpUT I~P~ I~T I I~UT I IJpUT 

--OUT't I,OU7Pj :DATE I 0jUT j"'TE I °TUT j"'TE °fTPUTOjPUT T"JUT OUTrUTr::~iJrUT 
PRIN~ PRINT! I I PRINT~_ I 

SEQUE~TIAL DIRfCT SEQ~ENTIAL SEQUE, NTI AL SEQUEl NTIAL ~ ISEQUENTIAL 

KE('ED KlJED KfYED I 
I*Environment Options*1 I 

I 
CONS~CUTIVE~2INDEXED 

KEYDISP 

KEYiENGTH 
. DESCRIBED 

-, 
EXCL EXCLRD 

I I 

COMM~~~E 3 - I 
I BL?CK4 

BUFLzE 

CONSECUTIVE , 
INTERACTIVE 

BUFSIZE 

CONSECUTIVE 

I 
DESCRIBED 

I 

. NOINDARA 

CTLASA!5 

BUFSIZE 

CONSECUTIVE CONSECUTIVE 
I , 

BLOCK 

I 
BUFSIZE BUFSIZEe 

~ 
rr:I 
rr:I 

~ -::lei 
o 
Z 
~ 
t!j 

~ 

~ -= ~ 
t!j 



THE ENVIRONMENT ATTRIBUTE 

Key: 

RECORD 

STREAM 

/.. ../ 

Footnotes: 

must be declared explicitly or 
implicitly 
default attribute or option 

default path 

comment 

1 STREAM and PRINT are not valid with an externally described print ftle. 
2If you specify CONSECUTIVE for a logical ftle member that is based on more 
than one physical ftle member, the UNDEFINEDFILE condition is raised 
when the ftle is opened. 
3File must have the EXTERNAL attribute. 
4BLOCK is ignored if you specify DIRECT INPUT or UPDATE. 
5CTLASA is not valid with an externally described print ftle. 
6Requircd for a diskette ftle with RECORD OUTPUT. 
7For physical and tape files, the forms control character is inserted in the fIrst 
byte of each record by the PRINT attribute. 
BDiskette files with STREAM OUTPUT are not allowed because diskette ftles 

J 

do not have a default record length and it is not possible to specify a record J 
length for diskette files (the ENVIRONMENT attribute can not be used with 
the STREAM attribute). 

Additional Note: 

For a list of implied attributes and options, see "Implied Attributes" on 
page 12-5. 

How To Usc The Table 

Any line through the attributes and options in this table contains a complete set of 
the file description attributes for a name. By proceeding through the table, from top 
to bottom, you can select a valid combination of attributes and options for any line. 

• Attributes and options shown in boldface must be declared explicitly (in a 
DECLARE statement) or implicitly (through the use of another attribute, 
option or statement). The flrst attribute or option in boldface on any line is 
required if you want any attributes or options on that line. 

• Default attributes and options are underlined. They are selected for you, on the 
default path, unless you specify any alternative attributes or options (shown as 
branches from the default path). 

• All other attributes and options are optional. You must specify them if you 
want the declared name to have that particular attribute or option. 

• Exceptions to these points are discussed in the footnotes. 

7 -10 PL/I User's Guide and Reference 

J 



OPENING AND CLOSING FILES 

Opening and Closing Files 
Before a ftle can be used for input or output, it must be opened. Opening a ftle 
involves locating the AS/400 ftle object through the library search list, the library 
name specified in the TITLE parameter of the OPEN statement or library specified 
on a corresponding override CL command. If the attempted C0nnection is unsuc­
cessful, the UNDEFINEDFILE condition is raised. 

Scoping of Open Files (File Sharing) 
Files within PLjI programs may have either an EXTERNAL or INTERNAL attri­
bute. If you do not specify the scope, the default is EXTERNAL. When you 
declare a ftle with the EXTERNAL attribute, the ftle name is known to all PLjI pro­
cedures in the run unit. A ftle with the INTERNAL attribute can only be refer­
enced in the block in which it is declared and in any blocks contained in the 
declaring block. 

This section describes how the PL/I attribute of an EXTERNAL or INTERNAL 
ftle interacts with the system in determining how and when a ftle is opened. The 
sharing described here is only from the perspective of sharing from within one run 
unit. The section concludes with some special considerations for opening stream 
ftles and closing ftles after an error. 

The fIrst time a ftle is opened in a run unit, a new open data path (ODP) with a new 
invocation number is created for the ftle. Refer to the Programming: Data M an­
agement Guide for a description of the ODP. 

Note: If you use the CL command RCLRSC (Reclaim Resource), you should be 
aware that this ftle belongs to the fIrst PLjI procedure in the run unit, regardless of 
where it actually is located. Refer to the Programming: Control Language Refer­
ence for a description of the RCLRSC command. 

Once a ftle is opened, additional OPEN statements for the ftle are ignored. The ftle 
retains the attributes with which it was fIrst opened; no checking is processed to 
ensure that the attributes specified on the initial open are consistent with those spec­
ified on the OPEN statement that is ignored. 

Once a ftle is opened, it remains open until one of the following occurs: 

• You issue a CLOSE statement for the ftle. 
• The run unit ends, and closes all the open ftles. 

A ftle declared with the EXTERNAL attribute can be shared by programs in dif­
ferent run units if you specify SHARE( >I< YES) when you create the ftle. The ftle will 
remain open until the last program closes the ftle. If a ftle is closed following a run 
time error (see "Considerations for File Closing after an Error" on page 7-13), the 
actual closing of the ftle will not occur until all other concurrently running jobs 
using the ftle also issue close commands. 

A ftle declared with the INTERNAL attribute cannot be shared, therefore you 
should specify SHARE( .NO) when you create the ftle. Even if you attempt to 

Chapter 7. File Declaration and Input/Output 7 -11 



OPENING AND CLOSING FILES 

open an INTERNAL me with SHARE( ... YES), the me is opened with 
SHARE( ... NO). 

Note: If you attempt to open an INTERNAL me that has specified 
SHARE( ... YES), and that is already open within the job, the UNDEFINEDFILE 
condition is raised. 

All INTERNAL PL/I fIles have their own separate connections to data management. 
Therefore, each INTERNAL fIle maintains its own fIle position, control informa­
tion, and record buffers. All EXTERNAL fIles have one connection to data man­
agement. Therefore, all external fIles share the same control information, fIle 
position, and record buffers. 

The set of records manipulated by either an INTERNAL or EXTERNAL me is 
established at the time the data management connection is made. This connection 
is made the ftrst time the fIle is opened within the run unit. These rules are the 
same if the fIle is INTERNAL or EXTERNAL and only depend on what system 
fIle is connected to the INTERNAL or EXTERNAL PL/I fIle. The rules are: 

• If the system fIle is a data base fIle or a named inline data fIle, all connections 
access the same set of records. 

• If the system fIle is a spooled output fIle, each connection generates a unique set 
of spooled output. 

• If the system fIle is a non-spooled device fIle, only one connection is allowed to 
the device at a time. In this case the records on the device are accessed directly. 

• If the system fIle is the unnamed inline fIle QINLINE, each connection accesses 
the next set of unnamed inline data records. 

Considerations for Opening a Print Stream File 
When a print fIle is opened, the current position is at column 1 of line 1 of the ftrst 
page. If your ftrst PUT statement speciftes that a certain number of lines are 
skipped, the skip will be based on this position. For instance, SKIP (3) indicates 
that printing begins on the fourth line, because it is the third line following the ftrst 
line on the page. 

Considerations for Opening a Non-Print Stream File 
When a non-print stream fIle is opened, the current position is before the ftrst record 
(the current position is at the end of an imaginary record immediately preceding the 
record accessed in the first GET or PUT statement). Therefore, if the first GET or 
PUT specifies, by means of a statement option or format item, that n lines are to be 
skipped before the ftrst record is accessed, the current position will be at the start of 
record n. 

Considerations for Opening SYSPRINT 

J 

When an action occurs that sends diagnostic output to SYSPRINT (for example, 
when you specify the GENOPT option .DIAGNOSE on the CL command 
CRTPLIPGM (Create PL/I Program», this implicitly opens the fIle SYSPRINT 
with the attributes EXTERNAL, OUTPUT, STREAM, and PRINT. If you " 
attempt to open SYSPRINT after this implicit opening, the attributes and options ,..., 

7-12 PL/I User's Guide and Reference 



DATA TRANSMISSION OPTIONS 

you specify will be ignored, and any resulting incompatibilities will cause errors. 
This may be avoided if you declare SYSPRINT open with the INTERNAL scope 
attribute. 

Considerations for File Closing after an Error 
When a close operation involving certain device fIles (for example, BSC, Communi­
cations and Tape) occurs due to a run time error such as an operation with invalid 
data or a device error, PL/I must inform the system of the error condition so the 
system can correctly close the fIle. See the Communications: Programmers Guide 
for details on closing fIles during error conditions. 

PL/I will close a fIle with an error indication whenever a run unit ends and any of 
the following conditions are true: 

• The job return code is greater than one. 
• Control reaches the end of an ERROR on-unit. 
• An ERROR condition is raised and no ERROR on unit exists. 
• A STOP statement is processed. 

If you do not use a CLOSE statement to close a fIle, it is closed at the end of the 
run unit. For a complete description of implicit fIle closing refer to the section: 
"Scoping of Open Files (File Sharing)" on page 7-11. 

If a CLOSE statement is processed within an ERROR on unit, the error close 
system interface is used. At compile time, if a called subroutine is within the scope 
of the ON unit block, and a called subroutine closes the fIle, an error close will 
occur. However, calls to subroutines outside the scope of the ON unit begin block 
will not close the fIle in error. 

The OPTIONS Option of Record Data Transmission Statements 
The OPTIONS option enhances the function of the record input/output statements 
READ, WRITE, REWRITE, and DELETE, to allow access to specific AS/400 
data management functions. The syntax of the OPTIONS option is: 

Chapter 7. File Declaration and Input/Output 7 -13 



DATA TRANSMISSION OPTIONS 

-0 PTiONS-r-----------,---.... 

~RECORO(Character_expreSSiOn)~ 

• LKEYSEARCH( EQUAL 

AFTER 

BEFORE 

EQLAFT 

EQLBFR 

NEXT J 
PREVIOUS 

NXTUN 

PRVUN 

NXTEQL 

PRVEQL 

FIRST 

LAST 

~ ~NBRKEYFLOS(integer_constant)~ ~INDICATORS(Varlable)~ ~ 

Abbreviations: EQL for EQUAL 
AFT for AFTER 
BFR for BEFORE 
NXT for NEXT 
PRV for PREVIOUS 

• 

OPTIONS is nDt allDwed if BLOCK is specified as an ENVIRONMENT DptiDn 
fDr the me. 

J 

The parameters Dfthe OPTIONS DptiDn may be specified in any Drder... '\ ...•. 
Figure 11-1 Dn page 11-17 ShDWS valid cDmbinatiDns Df DptiDn parameters and me .."", 
DrganizatiDns. CDmplete rules are shown in Appendix C, "Valid CombinatiDns Df 
OptiDns fDr Input/Output Statements." The fDllDwing sectiDns describe the parame-
ters Dfthe OPTIONS DptiDn. 

The OPTIONS parameters are discussed in the fDllowing order: 

• RECORD 
• KEYSEARCH 
• POSITION 
• NBRKEYFLDS 
• INDICATORS 
• MODIFIED. 

7-14 PL/I User's Guide and Reference 



DATA TRANSMISSION OPTIONS 

RECORD Parameter 
RECORD may be specified for a physical, logical, display, printer, BSC, or commu­
nications ftle that contains DDS record formats. It must be specified for a printer ftle 
with the ENVIRONMENT option DESCRIBED. It may be specified for any ftle 
organization for which the OPTIONS option is valid. 

The RECO RD parameter identifies a specific record format defmed within a ftle 
object. The value of the character_expression is the name of the record format. 
You may use uppercase or lowercase letters, but the expression is converted to 
uppercase by the compiler. If the record format does not exist in the ftle to which 
the input/output statement is directed, the TRANSMIT condition is raised. 

READ Using the RECORD Parameter 

Every record in a me has a record format assigned to it. A me can have one or 
several record formats. When used with the READ statement, the RECORD 
parameter specifies the record format of the record which will be read in. 

When used with a READ statement to a logical data base ftle that contains more 
than one record format, the RECO RD option alters the search for the next record 
on the ftle access path. The next record read in will have the specified format, and 
any intervening records with different formats will be bypassed. 

This is shown in Figure 7-3 for a SEQUENTIAL READ from a logical data base 
me with multiple record formats. 

Logical File Records 

RECORDA I .... ------- Current 
file 

IIII RECORDC IIIII I position 

RECORDA I 

II RECORDB III I .. ---- File Position 
after processing 

RECORDD I READ statement 

II RECORDB III I 

Figure 7-3. Example of RECORD Parameter 

The logical ftle shown above contains four record formats, and the current file posi­
tion is at RECORDA. If you process the statement: 

READ 1.1.1. OPTIONS (RECORD(RECORDB)); 

Chapter 7. File Declaration and Input/Output 7-15 



DATA TRANSMISSION OPTIONS 

the record returned is the ftrst record after the current rue position that matches J 
format B. If there are no records after the current rue position that match format B, 
the ENDFILE condition is raised. 

For physical and logical data base rues, when the RECORD parameter is specified 
together with the KEY option or the KEYSEARCH, POSITION, or 
NBRKEYFLDS parameters, the following occurs. For the KEY option and the 
KEYSEARCH and NBRKEYFLDS parameters, the keyed access path is searched 
for a record that satisftes the key value optionally modified by the KEYSEARCH 
and NBRKEYFLDS rules. If a record is found, the RECORD value is compared 
for a matching record format name. If the record found does not match the 
RECORD value, additional access path entries are examined until a matching 
RECORD is found or a KEY condition is raised. 

If you do not specify the RECORD parameter in a READ statement, a system­
defmed default is applied. The default values are given in the Programming: 
Control Language ProgrammeY s Guide: they depend on the rue type you are using. 
Also, the system will return the record format name of the last record read into the 
1/0 feedback area. See "PLIIOFDB Built-In Subroutine" on page 15-16 for more 
details on how to access this information. 

WRITE Using the RECORD Parameter 

When used with the WRITE statement, the RECORD parameter specifies which 
format in the object me is used to create the new record in the ftle. You are respon­
sible for ensuring that the data in the FROM option variable matches the record 
format description, because no check is made at run time. 

RECORD is required for a WRITE to a multiple format logical rue unless a format 
selection program is defmed. (See the FMTSLR parameter on the CL command 
CRTLF (Create Logical File) in the Programming: Control Language Reference.) 

When used with the WRITE statement to a display, printer, Bse, or communi-
cations me, the record format name supplied in the RECORD parameter determines \ 
the valid indicators supplied in the INDICATORS parameter. See "INDICATORS ...,J 
Parameter" on page 7-19. 

REWRITE Using the RECORD Parameter 

The use of RECORD with REWRITE is similar to its use with WRITE. You 
must specify RECORD if you are using a subftle. WRITE is optional with data 
base rues, but it can provide useful documentation if you include it in your code. If 
you use a key, RECORD qualiftes the search so that only records of the specifted 
format are examined. If you do not use a key, the format specified must match that 
of the last record read. As with WRITE, you must ensure that the data being 
rewritten matches the record format specifted, because no check is made at run time. 

7-16 PL/I User's Guide and Reference 



DATA TRANSMISSION OPTIONS 

DELETE Using the RECORD Parameter 

The use of RECORD with DELETE is the same as for REWRITE, except that 
RECORD cannot be specified when you are deleting a subftle record. 

KEYSEARCH Parameter 
The KEYSEARCH parameter of the READ statement applies only to ftles with 
INDEXED organization and SEQUENTIAL KEYED or DIRECT access. It 
enhances the key searching by allowing key comparisons other than key equal. The 
comparisons (except for EQUAL) are for key values either preceding or following 
the key value supplied. For example, if the keyed access path is descending, an 
option of AFTER will locate a key value that is lower in value than the key value 
supplied. 

The KEYSEARCH parameter can be used with the NBRKEYFLDS and 
RECORD parameters. If the NBRKEYFLDS parameter is used, searching is 
restricted to the key values within the NBRKEYFLDS constant specified. If the 
RECORD parameter is used, the searching is restricted to the record fonnat speci. 
fied. 

If KEYSEARCH is not specified, EQUAL is the default. 

The KEYSEARCH values are: 

Value 

EQUAL 

AFTER 

BEFORE 

EQLAFf 

EQLBFR 

POSITION Parameter 

Description 

Locate the first key (searching forwards) that is equal to the key 
value supplied in the KEY(expression). 

Locate the first key (searching forwards) that is after the key value 
supplied in the KEY (expression). 

Locate the first key (searching backwards) that is before the key 
value supplied in the KEY(expression). 

Locate the first key (searching forwards) that is equal to the key 
value supplied in the KEY(expression). If no equal key exists, then 
locate the first key after the key value supplied in the 
KEY( expression). 

Locate the first key (searching forwards) that is equal to the key 
value supplied in the KEY(expression). If no equal key exists, then 
locate the first key (searching backwards) that is before the key 
value supplied in the KEY(expression). 

The POSITION parameter of the READ statement cannot be used with INTER· 
ACTIVE organization or DIRECT access. Values NXTUNQ, PRVUNQ, 
NXTEQL, and PRVEQL can be used only with INDEXED organization. POSI· 
TION cannot be specified if KEY is specified. If RECORD is used with the POSI· 
TION parameter, only records with matching record fonnats are searched. 

Chapter 7. File Declaration and Input/Output 7-17 



DATA TRANSMISSION OPTIONS 

For information on using the POSITION parameter to read a file for which you 
have issued a CL override command, OVRDBF specifying MBR( tALL), see 
"Members" on page 6-6. 

The POSITION values are: 

VaJue Description 

NEXT Locate the next record in the access path. NEXT is the default if 
POSITION is not specified. 

PREVIOUS Read the previous record in the access path relative to the current 
file position. 

NXTUNQ Locate the next record in the access path that contains a different 
key value than the key value of the current file position. A current 
flie position is required. If NBRKEYFLDS is specified, only key 
values within the number of fields specified are used to locate the 
next different key value. 

PRVUNQ Locate the nearest previous record in the access path that contains a 
different key value from the key value of the current fue position. If 
NBRKEYFLDS is specified, only key values within the number of 
fields specified are used to locate the previous different key value. 

NXTEQL 

PRVEQL 

FIRST 

LAST 

NBRKEYFLDS Parameter 

Locate the next record in the access path provided the key value of 
the next record is equal to the key value of the current file position. 
If the next record does not contain an equal key value, the KEY 
condition is raised. The test for an equal key value is made only 
within the NBRKEYFLDS specified or defaulted. 

Locate the previous record in the access path provided the key value 
of the previous record is equal to the key value of the current flie 
position. If the previous record does not contain an equal key value, 
the KEY condition is raised. The test for an equal key value is 
made only within the NBRKEYFLDS specified or defaulted. 

Locate the first non-deleted record in the access path. 

Locate the last non-deleted record in the access path. 

The NBRKEYFLDS parameter of the READ statement may be used with 
INDEXED me organization. It specifies the number of key fields that are contained 
in the KEY expression. 

If you do not specify the NBRKEYFLDS option, the length of the evaluated 
expression in the KEY expression is passed to the system. If the length is in 
between key fields, the system uses this length to process a generic key search. 
Refer to the Programming: Control Language Programmers Guide for more infor­
mation. 

7-18 PL/I User's Guide and Reference 

J 



DATA TRANSMISSION OPTIONS 

INDICATORS Parameter 
The INDICATORS parameter of the READ, WRITE, and REWRITE statements 
may be used with INTERACTIVE organization, or with the READ or WRITE 
statement with CONSECUTIVE organization and SEQUENTIAL access. The me 
must contain external record defmitions and must have the DDS INDARA keyword 
specified in order to use INDICATORS. Use of the DDS INDARA keyword is 
recommended for PL/I programs. 

INDICATORS are used to communicate additional input/output information for 
display, printer, Bse, and communications meso The variable specified is used in a 
WRITE or REWRITE statement to set option indicators and to set response indi­
cators after a READ statement. For more information on how to use indicators, 
refer to "Indicators" on page 8-76. 

The variable specified with INDICATORS should contain one byte for each indi­
cator defmed for the record format. Each indicator number (from 1 to 99) corre­
sponds to one byte in the variable. For example, indicator 1 is the fIrst byte in the 
variable, indicator 5 is the fIfth byte in the variable, and so on. The variable sup­
plied with INDICATORS should be as long as the highest indicator dermed for the 
record format. You can use the %INCLUDE directive to obtain a declaration of 
valid INDICATORS for each record format (see "Using the %INCLUDE Directive 
for External File Descriptions" on page 8-73). 

On a WRITE or REWRITE statement using INDICATORS, the indicators defmed 
for the record format must be set to either an on response of IF 11 X or an off 
response of I FO I X. Indicators not defmed for the record format are not examined. 
On a READ statement, the indicators defmed for the record format returned to the 
program will be set to either an on-response of IF 11 X or an off-response of I FO I X. 
Indicators not defmed for the record format are not modified. 

If the DDS keyword INDARA is not used in the external description of the me, but 
indicators are defmed for the record, do not use the INDICATORS option to 
specify the presence of indicators. Furthermore, if the ENVIRONMENT option 
DESCRIBED is not specified, you must specify the ENVIRONMENT option 
NOINDARA. 

If the DDS keyword INDARA is used in the external description of the file, and if 
the ENVIRONMENT option DESCRIBED is not specified, PL/I defaults to 
assuming the DDS keyword INDARA has been specified. For a WRITE or 
REWRITE, the indicators are in the output buffer. You must include the indica­
tors in the record variable as part of the FROM option. 

For a READ, the indicators are in the input buffer, and the INTO variable contains 
the indicators. If you use the SET option, the pointer-variable is set to the address 
of the fIrst indicator in the input buffer. The indicators defmed for the record 
format appear in the buffer in front of the data record. For examples showing the 
use of indicators, see "Example of Using Indicators" on page 8-43. 

Chapter 7. File Declaration and Input/Output 7 -19 



DATA TRANSMISSION OPTIONS 

MODIFIED Parameter 
The MODIFIED parameter of the READ statement may be used with INTERAC­
TIVE organization and SEQUENTIAL KEYED access. This parameter applies to 
subflle processing. If MODIFIED is specified, the record read is the next subflle 
record that has been modified. 

'·20 PL/I User's Guide and Reference 



USING DATA BASE FILES 

Chapter 8. Using AS/400 Files 

After you have created the fIle and an external source fIle description (see the 
Programming: Control Language Reference, Programming: Data Management 
Guide, and the Programming: Data Description Specifications Reference), you must 
do the following in your program to use an AS/400 PL/I fIle: 

1. Define the fIle in a DECLARE FILE statement. 

2. Optionally include the record definitions with the %INCLUDE directive. 

3. Open the fIle, either implicitly or explicitly. 

4. Process the input and output. 

S. Close the fIle, either implicitly or explicitly. 

If you wish, you can then go through steps 3, 4, and 5 again. 

Much of the information needed to carry out these operations is contained in 
Chapter 11, "Input and Output Statements," in Chapter 6, "AS/400 PL/I File and 
Record Management" and Chapter 7, "File Declaration and Input/Output." This 
chapter is concerned mainly with the relationship among all of this material. 

This chapter is arranged in a series of examples illustrating the different types of data 
base fIles, and how they are updated, described, read, and so on. This chapter also 
contains information on commitment control and the %INCLUDE directive. 

Using Data Base Files 
A large amount of the input and output processed on the AS/400 System involves 
data base fIles. One of the unique aspects of data base fIles is discussed in 
Chapter 6, "AS/400 PL/I File and Record Management." The ENVIRONMENT 
options CONSECUTIVE and INDEXED, and the fIle attributes SEQUENTIAL, 
DIRECT, and KEYED, deal with access paths. 

The ENVIRONMENT option CONSECUTIVE speciftes that the fIle is to be 
processed using the arrival sequence access path. If you specify SEQUENTIAL 
access, you can only process the fIle sequentially: no relative record number keys 
can be specifted. If you specify DIRECT access, you can obtain the record with the 
relative record number specifted in the KEY or KEYFROM option ofthe 
input/output statement. If you specify SEQUENTIAL KEYED access, you can 
process the ftle either sequentially or by relative record numbers. 

INDEXED specifies that the fIle is processed using the keyed sequence access path. 
If you specify SEQUENTIAL access, you can only process the fIle sequentially 
using the keyed sequence access path: you cannot specify a key. If you specify 
DIRECT access, you obtain a record with the key specifted in the KEY or 
KEYFROM option of the input/output statement. If you specify SEQUENTIAL 
KEYED access, you can process the fIle either sequentially or by key. 

Chapter 8. Using AS/400 Files 8-1 



USING DATA BASE FILES 

With INDEXED organization, you also use the ENVIRONMENT attribute 
options KEYDISP and KEYLENGTH to process the key. The various 
input/output statement options you specify with each combination of me orgaruza­
tion and access are shown in Appendix C, "Valid Combinations of Options for 
Input/Output Statements." 

Also in the ENVIRONMENT option list, you have the option of specifying that 
you wish to use commitment control. You do this by declaring the 
COMMITTABLE option. Commitment control is described in "Commitment 
Control" on page 8-58. 

Other ENVIRONMENT options which can be specified with data base fUes are 
BLOCK, BUFSIZE, EXCL, and EXCLRD. These options are described in 
Chapter 7, "File Declaration and Input/Output." 

Externally Described Data Base Files 
When using an externally described data base fUe with INDEXED organization, you 
have the option to specify the DESCRIBED option of the ENVIRONMENT attri­
bute. This is discussed in Chapter 7, "File Declaration and Input/Output." Level 
checking is described in Chapter 6, "AS/400 PL/I File and Record Management." 

For logical data base fUes, it is possible to map one record format to more than one 
base physical file member with the DTAMBRS parameter on the CL commands 
CRTLF and ADDLFM. A WRITE statement to a format of this type will fail. 

Program-Described Data Base Files 
In a program-described data base fUe, the record format or formats are described in 
the program. Even if there is a record format description in the DDS, it is ignored. 
When you describe a fUe in your program, you cannot use the %INCLUDE direc­
tive or the DESCRIBED attribute. There is no level checking when your program 
accesses the fUe, so you will not be prote(;ted against any changes in the record 
format made since you wrote your program. If you are using INDEXED fUes, you 
must specify KEYDISP and KEYLENGTH in your fUe declaration. 

Data Description Specifications 
For a full discussion of DDS coding and use, see the Programming: Data 
Description Specifications Reference. Examples are given here of a physical fUe DDS 
and a logical fUe DDS. The physical file, CUSMSTP, is used in the example in 
Figure 8-9 on page 8-23. 

8-2 PL/I User's Guide and Reference 

J 



USING DATA BASE FILES 

Example 1 - Describing a Physical File 

IBM lnt.rnqtionol Bu,lness tJoehines 
AS/400 DATA DESCRIPTION SPECIFICATIONS G 1(1 , -989 '-0 ONI05O­

"""'«lin U.'S.A • 
• NIIfIIIIer.,r ..... per ,ad....,,~.liqhtly. 

~~" I:"~ I I I I I I I I , .... " ..... 

I 
'i 
~ 

Condrt...,... i! ~ 
<: 

~ ~ -'-- i ~ 
~ Condltio"~ ~ ~ * Ii 

J 
.. .- ..... .. ~ r"""M - j g ~ ... - i !~d i I = hi ~d "~ ... = •• 

~ I! :2 ! 1 ~~ -: U~ 
, t .t 40 J • , , , '10 •• u • S 1_ 1 ."'11'!2Ut421!'127. lIS" 3t.n J4 ., ... 4' U ... U4~.~_~n~~ •• ~ ••• ~~U~ •• Q. __ "~n~n~".~ 

P SI Al USMST USTC E~ ~o\lii TE~ FI~ 
USMST TEXTC'CUSTOMER MASTER RECORD') 

CUST ~ TEXTC'CUSTOMER NUMBER) 
NAME 2~ TEXTC'CUSTOMER NAME') 

DDR 20 TEXT! 'CUSTOMER ADDRESS') 
CITY 20 'TEXTC'CUSTOMER CITY') 
STATE 2 TEXTC'STATE') 
ZIP 5S C TEXTC'ZIP CODE" 

RH 00 6 TEXTi CUSTOMER NU~BER SEARCH CODE') 
USTYP 1S TEXTC'CUSTOMER TYPE 1-COV 2-SCH + 

3-aus 4-PVT 5-0T') 
RBAl 8S lEXTC'ACCTS REC BALANCE') 

ORDBAl 8S TEXT( 'A/R AMT IN ORDER FILE') 
LSTAMT 8,S TEXTl'LAST AMT PAID I N AIR') 
LSTDAT tiS TEXTC'lAST DATE PAID IN A/R' l 
CRDLMT SiS TEXTC'CUSTOMER CREDIT LIMIT" 
SlSYR 10S EXTC'CUSTOMER SALES THIS YEAR') 
SLSLYR 10'S EXTC'CUSTOMER SA ES LAST YEA1t'~ 
CUST I 

Figure 8-1. Physical Data Base File DDS 

Olapter 8. Using AS/400 Files 8-3 



USING DATA BASE FILES 

Example 2 - Describing a Logical File 

IBM InMrnotionGI Bvtl".e:s MochlMS 
AS/400 DATA DESCRIPTION SPECIFICATIONS 

r::~. I::~ I I I I I I I I 1-' ..... 

...... - ~ 

~ 
.... , ... 

I-- ., ... 
i! eoMfUo",,*,- & ~ 
s 1 ~ 1 "- ..... .. =- !l I " t J i 

g ;;: 

11 t ~ d & 
p~ .. d i i i~ j n I u,. ... 

.1i! ~ 

r ......... 

Gk2t~98IiII'-o UM/05O­
Prll'Ited In U.5.A. 

eN"",_ 4' _,,"III per pad,.".., .liQktIJ. 

, 1 , •• , 1 •• " I • I U " .,. 7 ."""Z_UftZ1. ." .II<ZJ". " ... ...... • _~.~.~.~M •• ~M"_.'HU~ •• V •• ~"nN."Wn •• 
l I l SMSTl C USTOME ~ ST R EVED BV NAME 

USUST PFIlECCUSMSTP) 
UST 
AME 

.DDR 
lTV 
TATE 
IP 
RBAl 
RDLMT 
AME 

Figure 8-2. Logical Data Base File DDS 

8-4 PLjI User's Guide and Reference 

J 



USING DATA BASE FILES 

Example 3 - Writing Sequentially to a File with a Keyed Sequence Access Path 

S728PL1 Re1 Hee 88e1e1 PL/I Source Listing 
LP1413: PROCEDURE; 

PLITST /LP1413 11/3e/88 15:51:24 Page 3 

Include SEQNBR STHT.SUBS BLK BN DO 
lee 1 
26e 
3ee 
499 2 
Se8 
688 
798 2.1 
888 
988 

1988 
1189 3 
1289 
1388 3.1 
1499 3.2 
1599 3.3 
1609 3.4 
17ee 3.5 
1869 3.6 
1ge9 3.7 
2eee 
210e 
220e 4 
23e9 
2488 4.1 
2588 4.2 
2698 4.3 
2788 
2888 5 
2989 
3899 
3108 
3288 6 
3388 
3499 7 
3See 
36ee 8 
37ee 
38ee 
3gee 9 
4eee 
41ee Ie 
42ee 11 
436e 12 
4488 13 
4588 14 
4688 
4789 15 
4880 
4988 16 
5880 
Sltl9 
52eo 17 

1 
1 1 
1 1 
1 1 
1 1 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

1 1 
1 1 
1 1 
1 1 
1 1 

1 
1 

1 1 

1 1 
1 1 
1 1 
1 1 

1 

1 1 
111 
111 
111 
111 

1 
1 
1 
1 

1 1 

PUBee16e 
*< •• + •••• 1. .•• + •••• 2 •••• + •••• 3 ...• + •••• 4 •••• + •••• 5 •••• + •••• 5 •••• + •••• 7.> •. + •••• 8 Date 

LP1413: PROCEDURE; PUBee16e 830817 
PUBee17e 

/* FILE DECLARATIONS */ PUB9tl18tl 
DECLARE D m m m PUBe9199 

IN FILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV(CONSECUTIVE PUB98288 839939 
- ~ BUFSIZE(38). 831114 

IND FILE FILE RECORD INTERNAL SEQUENTIAL OUTPUT ENV(INDEXED PUB88218 
- m m KEYDISP(e) KEYLEN6TH(18»; 831114 

om PUB88220 
/* RECORD DECLARATIONS */ PUB89238 
DECLARE PUB88248 

1 INDEX_RECORD, PUB88258 831114 
2 INDEX_KEY CHAR(le), PUBe827e 
2 INDEX_NAME CHAR(28), PUB08289 
2 INDEX_BAL PICTURE '999999V9R', PUB982ge 831e83 

1 INPUT_RECORD, PUBe03ee 
2 INPUT_KEY CHAR(1e), PUBee31e 
2 INPUT_NAME CHAR(28), PUBee326 
2 INPUT_SAL PICTURE '999999V9R'; PUBee33e 831ge3 

/* PROGRAM FLAGS */ 
DECLARE 

1 BIT_FLAGS STATIC, 
2 HORE_RECORDS 
2 NO 
2 YES 

ON ENDFILE(IN_FILE) 
HORE_RECORDS • NO; 

/* MAIN PROGRAM */ 
HORE_RECORDS • YES; 

OPEN 

BIT(l) ALIGNED, 
BIT (1) ALIGNED INIT('8'B), 
BIT(I) ALIGNED INIT('I'B); 

FILE (IN_FILE) TITLE('INFILE'); /* INPUT */ 
OPEN 

FILE (INDJILE) TITLE('MSTFlLE'); /* OUTPUT */ 

READ FILE (IN_FILE) INTO (INPUT_RECORD); 

DO WHILE (MORE_RECORDS); 
INDEX RECORD. INPUT RECORD; 
WRITE-FILE (IND_FILE) FROM (INDEX_RECORD); on 
READ FILE (IN FILE) INTO (INPUT RECORD); 

END; /* DO WHILE */ -

CLOSE 
FILE (INJILE); 

CLOSE 
FILE (INDJILE); 

END LP1413; 

PUSOe349 
PUSOe359 
PUSe036e 
PUSee37e 
PUBge38e 
PUBee3ge 
PUB88489 
PUBee418 
PUB88428 
PUBe8438 
PUBe844e 
PUBee45e 
PUBee46e 
PUB09478 
PUB0048e 
PUB084ge 838919 
PUSgeSOe 
PUS09S1e 83e929 
PUSOOS2e 
Pusee53e 
Pusee54e 
puseosse 
Pusee56e 831114 
PUSeeSge 93993e 
PU08e6ge 
PUB0951e 
PUOee62e 
PU098638 
PU099648 
PU0886S8 
PU08866e 
PUS8867e 
PUBOe68e 838817 

Figure 8-3. Program Writing to a File with a Keyed Sequence Access Path 

D RECORD data transmission is used with IN FILE. 

D The SEQUENTIAL access method is used with IN_FILE. Sequential reads 
and writes can be processed on any data base me if it has an arrival sequence 
access path or a keyed sequence access path. 

IJ IN_FILE is used for INPUT only: no output is directed to it. 

Chapter 8. Using AS/400 Files 8-5 



USING DATA BASE FILES 

II CONSECUTIVE specifies that IN_FILE is processed using the arrival 
sequence access path. 

iii BUFSIZE(38) indicates that the maximum record length is 38 characters. 
When the fIle is opened, this is the amount of storage the program allocates 
in the buffer for a record. If your data is blocked, your program will run 
faster if you specify BLOCK instead of BUFSIZE; this is explained in note 5 
of Figure 8-4 on page 8-7. 

m RECORD data transmission is used with IND _FILE. 

D The SEQUENTIAL access method is used with IND _FILE. 

mIND_FILE is used for OUTPUT only: it provides no data to the program. 

m INDEXED specifies that IND_FILE has a keyed sequence access path. 

m KEYLENGTH(lO) indicates that the key field is ten characters in length and 
KEYDISP(O) indicates that there are zero characters to the start of the key 
field from the beginning of the record. Therefore, the key is the first field in 
the record. KEYDISP and KEYLENGTH must be specified here, because 
the DESCRIBED option is not specified and the compiler is not drawing 
information on the key field from the external record format defmition. 

m Because IND_FILE is being accessed sequentially, KEY is not specified with 
the WRITE statement, even though the fIle has a keyed sequence access 
path. 

8-6 PL/I User's Guide and Reference 

J 

J 

J 



USING DATA BASE FILES 

Example 4 - Updating a File with an Arrival Sequence Access Path 

5728PL1 ReI M00 88e715 PL/I Source Listing 
LP1412: PROCEDURE; 

PLITST /LP1412 11/39/88 14:16:40 Page 2 

Include 
PUBe016e 

SEQNBR STMT.SUBS BLK 8N DO *< .. + .... 1. ... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> .. + .... 8 Date 
lee 1 LP1412: PROCEDURE; PUB00160 830817 
200 
300 
400 
soa 
6ee 
70e 
8ee 
900 

10eO 
1100 
120e 
1300 
1409 
1500 
16ge 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 
2600 
2700 
2800 
2ge9 
300e 
3100 
3299 
3309 
3400 
3500 
3600 
3700 
3800 
3900 
4000 

2 

2.1 

2.2 

3 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

4 

4.1 
4.2 
4.3 
4.4 

5 

6 

8 

4100 9 
4200 
4300 Ie 
4400 
4566 
4600 11 
4760 12 
48ge 
4960 13 
51l1l0 14 
5100 
5290 15 
5300 

1 1 
1 1 
1 1 
1 1 
1 
1 

1 1 
1 1 
1 1 
1 1 
1 
1 
1 
1 
1 

1 
1 

1 1 
1 1 
1 1 
1 1 

1 1 
1 1 

1 
1 
1 1 
1 1 

/* FILE DECLARATIONS */ 
DECLARE D m m m 

IN FILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV(CONSECUTIVE 
- BLOCK) ,m 

MST_FILE FILE RECORD INTERNAL SEQUENTIAL ENV(CONSECUTIVE! 
m ~ BLOCK) ,m 

SYSPRINT FILE STREAM OUTPUT PRINT; m m m 
/* RECORD DECLARATIONS */ 
DECLARE 

1 INPUT_EMPLOYEE, 
2 IN_EMP_NUMBER 
2 IN _ EI1P _NAME 
2 IN_EMP_CODE 
2 IN_EMP_SALARY 
MASTER_EMPLOYEE, 
2 MST_EMP_NLlMBER 
2 MST_EMP _NA~lE 
2 MST_EMP_CODE 
2 MST_EMP_SALARY 

/* PROGRAM FLAGS */ 
DECLARE 

1 BITJLAGS STATIC, 
2 MORE_RECORDS_INPUT 
2 MORE_RECORDS_MASTER 
2 NO 
2 YES 

ON ENDFILE (INJILE) 
MORE RECORDS INPUT • NO: 

ON ENDFILE (~lSTJILE) 
MORE_RECORDS_MASTER = NO; 

/* MAIN PROGRAM */ 
MORE_RECORDS_INPUT = YES: 
MORE_RECORDS_MASTER = YES: 

OPEN IE 

PICTURE '999999', 
CHAR(28), 
PICTURE '9', 
PICTURE '999999V99', 

PICTURE '999999', 
CHAR(28) , 
PICTURE '9', 
PICTURE '999999V99'; 

BIT 0) 
BITO) 
BIT (1) 
BIT (1) 

ALIGNED. 
ALIGNED. 
ALIGNED INIT('O'B). 
ALIGNED INIT('l'B): 

FILE (IN_FILE) TITLE('UPDATES'): /* INPUT */ 
OPEN 

FILE (MST FILE) UPDATE TITLE('MSTFILE'): Dm - m 
READ FILE (IN FILE) INTO (INPUT EMPLOYEE); 
READ FILE (MST FILE) INTO (t1ASTER EMPLOYEE); m - -
00 WHILE (MORE_RECORDS_INPUT & MORE_RECORDS_MASTER): 

IF MST EMP NUMBER < IN EMP NUHBER THEN 
READ FILE-(MSTJILE) INTO - (MASTER_EI1PLOYEE); 

ELSE 
IF MST_EMP _NUMBER = IN_EMP _NU~lBER THEN 

PUB00170 
PUB00189 
PUB001ge 
PUSeB2Ba 83e913 

831114 
PUB6B210 831114 

831114 
830687 

PUS0022B 
PUBOe230 
PUS0024e 
PUB002S0 
PUB00268 
PUB00270 
PUB00280 
PUB06299 
PUB90306 
PUBe0310 
PUB00320 
PUB00336 
PUB00348 
PUB60356 
PUB00366 
PUB00379 
PUB00389 
PUB69390 
PUB00400 
PUB0841B 
PUSge420 
PUBe0436 
PUB00756 
PUB6876e 
PUB90770 
PUBG0780 
PUB00790 
PUB00800 
PUB00810 
PUB00820 
PUB00830 
PUB00850 
PUB00860 839919 
PUB00876 
PUB60880 
PUS09890 
PUB80910 
PUS0092B 
PUaB0938 
PUSB0940 
PUB9B950 
PU800980 839919 
PUSB1000 
PUB01B1e 

Figure 8-4 (Part 1 of 2). Program Updating a File with an Arrival Sequence Access Path 

Chapter 8. Using ASj400 Files 8-7 



USING DATA BASE FILES 

5728PL1 R81 Me9 889715 PL/I Source Listing PLlTST /LP1412 11/39/88 14: 16:49 Page 3 
LP1412: PROCEDURE; PUB99169 

Include SEQNBR STMT.SUBS BLK BN DO "< •• + •••• 1 .... + •••• 2 •••• + •••• 3 •••• + .... 4 .... + •••• 5 .... + .... 6 •••• + •••• 7.> •• + .... 8 Date 
5488 
5598 16 
5698 17 
5788 18 
5899 19 
5999 29 
6999 
6188 21 
6299 
6399 
6499 
6598 22 
6698 23 
6788 24 
6888 
6900 
7898 25 
7189 
7289 
7389 26 
7489 
7588 27 
7680 
77eO 
7880 28 
7988 29 
8008 38 
81G9 31 
8268 32 
8399 
848G 33 
8599 
8688 34 
8788 
8880 
8908 35 

Figure 8-4" (Part 2 of 2). 

1 1 1 DO; PUB91929 
1 1 2 1& REWRITE FILE (MSTJILE) FROM (INPUT_EMPLOYEE); PUB91848 
1 1 2 READ FILE (INJILE) INTO (INPUT_EMPLOYEE); PUB91969 
1 1 2 READ FILE (MST_FILE) INTO (MASTER_EMPLOYEE); PUB81979 
1 1 2 END; /" DO */ PUB81989 
1 1 1 ELSE PUB9199a 
1 1 1 DO; PUB81199 
1 1 2 m PUT FlLE(SYSPRINT) SKIP EDIT ('ERROR--> I NPUT RECORD " PUB81U9 
1 1 2 IN_EMP _NUMBER, PUB81128 
1 1 2 ' CANNOT BE FOUND IN THE MASTER FILE.') PUBGll38 
1 1 2 (A(23),X(2),F(6),X(2),A(36»: PUB91149 
1 1 2 READ FILE (IN_FILE) INTO (INPUT_EMPLOYEE): PUB81168 
1 1 2 END: /* DO */ PUBIlll79 
1 1 1 END: /* DO WHILE */ PUBell89 

PUB8ll99 
/* APPEND ANY NEW RECORDS TO END OF MASTER FILE */ PUB81298 

1 1 IF MORE_RECORDS_INPUT THEN PUB81219 
1 1 DO; PUB8122a 

/* CLOSE THE UPDATED HASTER FILE tit REOPEN AS AN OUTPUT FILE */ PUB81239 
1 1 1 CLOSE PUBG1259 
1 1 1 FILE (MSTJILE); PUB81268 
1 1 1 OPEII PUB81288 
1 1 1 FILE (HSTJILE) OUTPUT TITLE('MSTFlLE'): PUB812ge 

PUB81300 
1 1 1 DO WHILE(MORE_RECORDS_INPUT); PUBG1310 
1 1 2 WRITE FILE (MST_FILE) FROM (INPUT_EMPLOYEE); PUB01336 
1 1 2 READ FILE (INJILE) INTO (INPUT_EMPLOYEE); PUB8135e 
1 1 2 END: /* DO WHILE */ PUB01360 
1 1 1 END; /* DO */ PUB81378 

PU891380 
1 1 CLOSE PU88140a 
1 1 FILE (INJILE): PUB91419 
1 1 CLOSE PUB01429 
1 1 FILE (MSTJILE): PUB81439 

PUB81446 
1 1 END LP1412; PUB8145a 838817 

Program Updating a File with an Arrival Sequence Access Path 

o 
fJ 
II 
II 

RECORD data transmission is used with IN_FILE. 

The SEQUENTIAL access method is used with IN_FILE. 

IN_FILE is used for INPUT only: no output is directed to it. 

CONSECUTIVE specifies that IN_FILE is processed using the arrival 
sequence access path. 

II BLOCK specifies that instead of a single record, an entire block of data is 
read into or out of the buffer. Individual records are moved between the 
buffer and the program when required. This reduces the number of 
input/output operations needed, and therefore the program will run faster. 

II RECORD data transmission is used with MST FILE. 

D The SEQUENTIAL access method is used with MST_FILE. 

III CONSECUTIVE specifies that MST_FILE is processed using the arrival 
sequence access path. 

BLOCK specifies that each input/output operation moves a block of data to 
or from the buffer instead of a single record. 

8-8 PL/I User's Guide and Reference 

J 

J 

J 



USING DATA BASE FILES 

1m STREAM data transmission is used with SYSPRINT. Stream mes can only 
be accessed sequentially. 

m SYSPRINT receives OUTPUT only. It provides no data to the program. 

m The PRINT attribute indicates that the flfSt character in the record is an 
ASA printer control character. 

II IN_FILE is opened with the TITLE option specifying 'UPDATES'. 
Because the library and member names are allowed to default, the first 
member of flle UPDATES in the library list is opened. 

m MST_FILE is opened with the TITLE option specifying 'MSTFILE'. 
Because the library and member names are allowed to default, the first 
member of flle MSTFILE in the library list is opened. 

II The UPDATE attribute is specilled for MST_FILE. There is no similar 
option specilled for IN_FILE, because INPUT has already been specilled as 
its data transmission mode in the flle declaration. You can specify the data 
transmission mode for a fIle either in the fIle declaration or in the OPEN 
statement. If you specify the data transmission mode in both places, you 
must be sure that the mode specilled is the same in both places. If you 
specify the mode in the OPEN statement only, you can close the fIle and 
then reopen it specifying a different data transmission mode. 

m You must process a READ on a non-keyed sequential UPDATE flle before 
processing a REWRITE. 

m The REWRITE updates the record that was read at 1m. 
m SYSPRINT is implicitly opened by the PUT statement, because no OPEN 

statement is coded for it. Any fIle not already opened explicitly is implicitly 
opened by the first data transmission statement which accesses it. It is a 
good practice, however, to explicitly open all your fIles. 

Chapter &. Using ASj400 Files 8-9 



USING DATA BASE FILES 

Example 5- Updating a File with a Keyed Access Path 

5728PL1 Re1 Moe 889715 PL/l Source Listing 
LP1414: PROCEDURE; 

PLITST/LP1414 11/39/88 14:18:11 Page 2 

Include SEQNBR STMT. SUBS BLK BN DO 
10e 1 
2ge 
300 
4e8 
see 
6ee 
700 
800 
900 

1000 
1190 
1200 
1309 
l400 
1590 
1699 
1709 
1899 
1909 
296a 
21a6 
22e8 
2396 
240e 
2S69 
2666 
27e8 
2809 
29ao 
3900 
3100 
3206 
3300 
3406 
3S99 
3600 
3799 
3890 
3960 
4090 
4108 
4290 
43eo 
4409 
4506 
46ge 
4799 
4869 
4999 
se6e 
5109 
S200 
5300 

2 

2.1 

2.2 

3 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
3.18 
3.11 

4 

4.1 
4.2 
4.3 

5.1 

6 

8 

9 
19 

11 
12 

13 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

1 
1 1 
1 1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 1 
1 1 
1 1 
1 1 
1 1 

1 
1 

1 1 

1 
1 

1 
1 1 
3 2 
3 2 
3 2 
3 2 
3 2 
3 2 
3 2 
3 2 

1 

PUBOS160 
*< •• + •••• 1. ... + •••• 2 •••• + .... 3 .... + .... 4 .... + •••• 5 •••• + •••• 6 .... + •••• 7.> •• + .... 8 Date 
LP1414: PROCEDURE; PUBee169 830817 

/* FILE DECLARATIONS */ 
DECLARE D m E m 

IN FILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV(CONSECUTIVE 
- m BUFSJZE(38}) '& 

MST_FILE FILE RECORD INTERNAL DIRECT UPDATE ENV(lNDEXEom 
m a KEYDISP(9) KEYLENGTH(16», 

SYSPRINT FILE STREAM OUTPUT PRINT; IE m IE IE 
/* RECORD DECLARATIONS */ 
DECLARE 

1 MASTER_RECORD STATIC, 
2 MASTER_KEY, 

3 MASTER_GEN_FLD 
3 MASTER_DET_FLD 

2 MASTER_NAME 
2 MASTER_BAL 
INPUT_RECORD, 
2 INPUT_KEY, 

3 I NPUT_GEN_FLD 
3 I NPUT_DETJLD 

2 INPUT_NAME 
2 INPUT_AMT 

/* PROGRAM FLAGS * / 
DECLARE 

1 BIT_FLAGS STATIC, 
2 MORE_RECORDS 
2 110 
2 YES 

/* PROGRAM VARIABLES */ 
DECLARE 

OLD _ MASTER_BAL 
PAGE_NUMBER 

ON ENDFILE(IN_FILE) 
MORE_RECORDS a NO; 

ON ENDPAGE (SYSPR I NT) 
BEGIN; 

CHAR(5) , 
CHAR(5), 
CHAR(26) , 
PICTURE '999999V9R', 

CHAR(S) , 
CHAR(S), 
CHAR(20) , 
PICTURE 'S99999V99'; 

BIT(l) ALIGNED, 
BIT(l) ALIGNED INIT('6'8), 
BIT(l) ALIGNED INIT('l'B); 

PI CTURE 'S99999V99', 
BINARY FIXED(2); 

II PUT FILE (SYSPRINT) PAGE EDIT(' PAGE ' ,PAGE_NUMBER) 
(X(8!) ,A(6) ,F(2»; 

PUT FILE (SYSPRINT) SKIP(3} EDIl('UPDATE REPORT')(X(38),A(13»; 
PUT FILE (SYSPRINT) SKIP(2) EDIT('KEY ID','NAME','CUR BALANCE', 

'UPDATE AMOUNT', 'NEW BALANCE')(A(6).X(9),A(4).X(21).A(ll). 
X(6) ,A(13) ,X(4) ,A(ll»; 

PAGE NUMBER 2 PAGE NUMBER" 1; 
END; 1* BEGIN *1 -

/* MAIN PROGRAM */ 
PAGE_NUMBER = 1; 

PUB00179 
PUB09189 
PUBa6199 
PUBS020e 83893e 

831114 
PUB00210 8313919 

831114 
83e607 

PUBa0228 
PUBe0230 
PUB60240 
PUB602S0 
PUB00270 
PUBe9289 
PUB90290 
PUBa0390 
PUB90310 831ge3 
PUBea328 
PUB90330 
PUB60349 
PUB603S0 
PUB09369 
PUB66376 831e03 
PUB00380 
PUB60396 
PUB00400 
PUB60416 
PUB00420 
PUBe0430 
PUB00448 
PUB06450 
PUB00469 
PUB60476 
PUBS6486 831903 
PUB60496 
PUBOOSOO 
PUBOOS19 
PUB6SS20 
PUBSOS36 
PUB66S48 
PUB06S50 
PUB60S60 
PUB60S76 
PUBe8S86 
PUB69S98 
PUB006a6 838930 
PUB60616 
PUBfl6620 
PUBa6636 
PUB6a648 
PUB6S6s0 
PUBB0666 

Figure 8-5 (Part 1 of 2). Program Updating a File with a Keyed Sequence Access Path 

8-10 PL/I User's Guide and Reference 

J 

J 

J 



USING DATA BASE FILES 

5728PLl R01 MOO 888715 PL/I Source Listing 
LP1414: PROCEDURE: 

PUTST /LP1414 11/30/88 14:18:11 Page 3 

Include SEQNBR STMT.SUBS BLK 8N DO 
5400 14 1 1 
5500 
5609 15 1 
5700 1 
5800 16 1 
590a 1 
6aea 
610e 17 1 1 
6200 18 1 1 
6380 
6480 
6500 
6600 
6790 
680e 
6900 
7000 
lloe 
72ge 
7390 
7400 
750e 
7600 
77ee 
78ge 
7990 
8000 
8100 
8200 
8300 
8400 
8S0e 
8600 
8700 
88eo 
8900 
900e 
9100 
9200 
930e 
9400 
9500 
9600 
9700 
9800 
9900 

10090 
101Ge 
10200 
10300 
10400 
105e8 
106eo 
1e700 
108eo 
1e99S 
11eoe 
11100 

19 
29 

21 

22 
23 

24 

25 

26 
27 
28 

29 
3e 
31 
32 
33 

34 
35 

36 

37 
38 

39 
40 
41 

42 

43 
44 
45 

46 
47 
48 
49 

56 

1 1 
111 
111 
111 
111 
111 
111 

1 1 
1 1 
1 1 
1 1 

1 1 
4 2 
4 2 
4 2 
4 2 
4 2 
4 2 
4 2 
4 2 

1 1 
S 2 
5 2 
S 2 
5 2 
5 2 
5 2 

1 1 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 
6 2 

1 1 

PUBe0169 
*< •• + •••• 1 •••• + •••• 2 •.•• + •••• 3 ••.• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •. + •••• 8 Date 

MORE RECORDS ~ YES: PUBe0670 
- PUBOEl68e 

OPEN !D PUBOEl690 
FILE (IN FILE) TITLE('UPDATES'): /* INPUT */ PUB00700 830929 

OPEN In - PUSeellO 
FILE (MST_FILE) TITLE('MSTFILE'): /* UPDATE */ PUB00720 839919 

SIGNAL ENOPAGE (SYSPRINT): 
READ FILE (IN_FILE) INTO (INPUT_RECORD): 

DO WHILE(MORE_RECORDS): 
IF INPUT_OET_FLD a ' , THEN 

CALL IN ITSEQ: 
ELSE 

CALL OYNA~lI C: 
READ FILE (IN FILE) INTO (INPUT_RECORD): 

END: /* DO WHILE */ 

CLOSE 
FILE (INJILE): 

CLOSE 
FILE (MSTJILE): 

INITSEQ: PROCEDURE: 
MASTER GEN FLO a INPUT GEN FLO: 
READ FILE (MST FILE) INTO (MASTER RECORD) KEY (MASTER KEY) 

OPTIONS(KEYSEARCH(EQLAFT) NBRKEYFLDS(I»: -
DO WHILE(INPUT_GEN_FLO = MASTER_GEN_FLO): 

CALL SEQPROC; 
END: /* 00 WIIlLE */ 
RETURN: 

END INITSEQ: 

SEQPROC: PROCEDURE: 
PUT FILE (SYSPRINT) SKIP EDIT(MASTER KEY,MASTER NAME, 

MASTER BAL) (A (5) ,A (5) ,X(5) ,A(29) ,X (6) ,F (19 ~ 2»: 
READ FILE (MST FILE) INTO (MASTER RECORD) KEY (MASTER KEY) 

OPTIOUS(KEYSEARCH(AFTER»: - -
RETURN; 

END SEQPROC: 

PUB00730 
PUBOEl740 
PUB00750 
PUB00760 
PUB00770 
PUB0078El 
PUB00790 
PUB00800 
PUBe08Hl 
PUB0082El 
PUB0083e 
PUB00849 
PUae085e 
PUB00869 
PUB00870 
PUB00880 
PUB00890 
PUBOEl90El 
PUB009l0 
PUBElEl929 839936 
PUB00939 83e93e 
PUB09949 
PUB0095e 
PUB00960 
PUBS9979 
PUS9698S 
PUB00996 
PUBOlee9 
PUB91949 831903 
PUSS1959 831003 
PUB91919 831093 
PUBel02e 831903 
PUB91969 
PUB9l97S 
PUS91089 

DYNAMIC: PROCEDURE: PUB91099 
MASTER KEY = INPUT KEY: PUB91166 
READ FILE (MST FILE) INTO (MASTER RECORD) KEY (MASTER KEY) PUB9ll19 831003 

OPTIONS(KEYSEARCH(EQUAL»: - - 831063 
IF INPUT_GEN_FLD = MASTER_GEN_FLD THEN PUS61129 

DO: PUB01l39 
OLD_MASTER_BAL a MASTER_BAL: PUB01149 
MASTER BAL = MASTER BAL + INPUT AMT: PUBOllSO 
PUT FILE (SYSPRINT)-SKIP EDIT(MASTER KEY,MASTER NAME, PUB01l69 

OLD MASTER BAL,INPUT AMT,MASTER BAL)(A(S),A(5),X(5),A(2e), PUB9l170 831993 
X(6},F(19,2),X(6),F(lO,2),X(8),F(16,2»: PUS91180 831093 

REWRITE FILE (MST FILE) FROM (MASTER RECORD) KEY (MASTER KEY); PUBOll90 
END: /* 00 */ - - - PUBe1200 

RETURN: PUSe12l0 
END DYNA~lI C: PUS91229 

END LP14l4: 
PUSe1236 
PUB01246 836817 

Figure 8·5 (Part 2 of 2). Program Updating a File with a Keyed Sequence Access Path 

D RECORD data transmission is used with IN FILE. 

D The SEQUENTIAL access method is used with IN_FILE. 

D IN_FILE is used for INPUT only: no output is directed to it. 

Chapter 8. Using AS/400 Files 8-11 



USING DATA BASE FILES 

II CONSECUTIVE specifies that IN_FILE is processed using the arrival 
sequence access path. 

liJ BUFSIZE(38) indicates that the maximum record length is 38 characters. 
When the flle is opened this is the amount of storage the program allocates in 
the buffer for a record. If your data is blocked, the program will run faster if 
you specify BLOCK instead of BUFSIZE; this is explained in note 5 of 
Figure 8-4 on page 8-7. 

m RECORD data transmission is used with MST FILE. 

D The DIRECT access method is used with MST FILE. MST FILE is 
accessed non-sequentially. The target record is located by a key. 

B MST _FILE has the UPDATE attribute, because the program will receive 
data from it and also direct data to it. 

m INDEXED specifies that MST _FILE is processed using the keyed sequence 
access path. 

II!J KEYLENGTH(lO) indicates that the key field is ten characters in length and 
KEYDISP(O) indicates that there are no characters between the start of the 
key field and the beginning of the record. Therefore, the key is the first field 
in the record. KEYDISP and KEYLENGTH must be specified here, 
because the DESCRIBED option is not specified and the compiler is not 
drawing information on the key field from the external record format defi-
nition. 

m STREAM data transmission is used with SYSPRINT. SYSPRINT is 
accessed sequentially, but this is not coded as an attribute because stream 
data transmission can only use sequential access. 

lEI SYSPRINT is used for OUTPUT only. It provides no input to the 
program. 

m The PRINT attribute specifies that the first character in every record is an 
ASA printer control character. 

OJ SYSPRINT is not explicitly opened by an OPEN statement; it is therefore 
implicitly opened the first time the PUT statement is processed. Any ftle 
which has not been explicitly opened is implicitly opened by the first data 
transmission statement which accesses it. It is a good practice, however, to 
explicitly open all your fues. 

SYSPRINT is the default me in STREAM OUTPUT meso The PUT state­
ment will therefore compile and process correctly if FILE (SYSPRINT) is 
omitted. 

OJ IN_FILE is opened with the TITLE option specifying 'UPDATES'; 
because the library and member names are allowed to default, the first 
member of me UPDATES in the library list is opened. 

Em MST _FILE is opened with the TITLE option specifying 'MSTFILE'; 
because the library and member names are allowed to default, the first 
member of ftle MSTFILE in the library list is opened. 

8-12 PL/I User's Guide and Reference 

J 

J 



USING DATA BASE FILES 

II The READ statement uses MASTER_KEY to fmd a record in MST _FILE 
and read it into MASTER_RECORD. The KEYSEARCH option specifies 
EQLAFT. If a record with a precisely equal key is not found, the record 
with the next highest key is read into MASTER_RECORD. The 
NBRKEYFLDS option is specified and given a parameter value of 1, indi­
cating that only one key is used in the search for the record. 

II The next record is read in from MASTER_FILE, using MASTER_KEY. 
KEYSEARCH(AFTER) specifies that the record with the next highest key 
after the current record is read in. 

lID The record read in from MST_FILE is rewritten, using MASTER_KEY. 

Chapter 8. Using AS/400 Files 8-13 



USING DATA BASE FILES 

Example 6 - Writing to an Arrival Sequence File by Relative Record Number 

5728PLI RBI Mae 886715 

Inc! ude SEQHBR STMT.SUBS BLK BN 00 
16e 1 
200 
300 
406 2 1 
509 1 
606 1 
70S 2.1 1 1 
806 
900 

1000 
1106 
1200 
1300 
1400 
1500 
1660 
1700 
1806 
1900 

3 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 

2000 3.9 
2100 3.19 
2200 
2300 
2400 4 
2566 
2600 4.1 
2700 4.2 
2800 4.3 
2900 
3000 
3100 
3200 
3300 

5 

3400 6 
3500 
3600 
3700 
3806 
3900 
4000 

7 
8 

410S 9 
4200 
4300 10 
4400 
4500 
4606 11 
4700 
4800 12 
4900 13 
5660 14 
5100 
5206 15 
5306 

1 
1 
1 
1 
1 
1 

1 1 
1 1 

1 1 
1 1 

1 
1 1 

1 1 

1 1 
111 
111 

1 1 

PL/I Source Listing 
LP1415: PROCEDURE; 

PLITST /LP1415 11/39/87 14:18:54 Page 2 
PUB9B169 

*< •• + •••• 1. ••. + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
LP1415: PROCEDURE; PUB08160 839817 

PUB00178 
/* FILE DECLARATIONS */ PUB09186 
DECLARE D B m m PUBSS196 

INJILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV(CONSECUTIVE PUB00286 8318S4 
BUFSIZE(23» ,S 8316S4 

REL_FILE FILE RECORD INTERNAL DIRECT OUTPUT ENV(CONSECUTIVE); PUSSS216 
m ~ m m PUB00220 

/* RECORD DECLARATIONS */ PUSSe23S 
DECLARE PUBe0249 

1 RELATIVE RECORD 01, PUB00256 
2 RELATIVE_RECORD(5), PUS88260 

3 REL_YEAR PICTURE '99', PUBS0279831114 
3 REL_WEEK PICTURE '99', PUB06288831114 
3 REL_UNI T_SALES PICTURE 'S999999', PUB86290 
3 REL_DOLLAR_SALES 

INPUT_RECORD, 
PICTURE 'S999999999V99'. PUB06380 

2 INPUT_YEAR 
2 INPUT_WEEK 
2 INPUT_UNIT_SALES 
2 INPUT_DOLLAR_SALES 

/* PROGRAM FLAGS */ 
DECLARE 

1 BIT_FLAGS STATIC, 
2 MORE_RECORDS 
2 NO 
2 YES 

/* PROGRAM VARIABLES */ 
DECLARE 

REL_INDEX 

ON ENOFILE(INJILE) 
MORE_RECORDS • NO; 

/* MAIN PROGRAM */ 
MORE_RECORDS = YES; 
REL_INDEX = 1; 

am !Ill 

PICTURE '99', 
PICTURE '99', 
PICTURE 'S999999', 
PICTURE 'S999999999V99'; 

BIT(I) ALIGNED, 
BIT (1) ALIGNED INIT('9'B), 
SlT(l) ALIGNED INIT('l'B); 

BINARY FIXED(2); 

FILE (IN FILE) TITLE('INFILE'); /* INPUT */ 
OPEN m -

FILE (RELJILE) TITLE('MSTFILE'); /* OUTPUT */ 

READ FILE (IN_FILE) INTO (INPUT_RECORD); 

DO WHILE (MORE RECORDS); 
RELATIVE_RECORD(REL_INDEX) • INPUT_RECORD; 
IF REL_INDEX ~. 5 THEN 

REL_INDEX • REL_INDEX + 1; 
ELSE 

DO; 

PUSB0319 
PUB00326 831114 
PUS0S336 831114 
PUB09340 
PUBB0359 
PUB00360 
PUB6S376 
PUB06389 
PUB06396 
PUB00409 
PUB06416 
PUB06429 
PUB00436 
PUB06446 
PUB06456 
PUBfJ9469 
PUB0647B 
PUBe6489 
PUBe0490 
PUBe0560 
PUB00510 
PUBeS529 
PUB0053B 
PUB08S40 
PUB06SS0 
PUBa056G 838919 
PUBOe57e 
PUBOOS86 831003 
PUB00590 
PUB00690 
PUS60616 
PUBS6626 
PUB60630 
PUB00646 
PUB096S6 
PUB00666 
PUBfJ067e 

Figure 8-6 (Part 1 of 2). Program Writing to an Arrival Sequence File by RRN 

8-14 PLfI User's Guide and Reference 

J 

J 

J 



USING DATA BASE FILES 

5728Pll R81 M88 888715 Pl/I Source Listing 
lP1415: PROCEDURE; 

PUTST /LP1415 11/30/88 14:18:54 Page 3 

Include SEQNBR STMT. SUBS BlK BN DO 
5400 16 1 1 2 
5500 17 1 1 2 
56eO 1 1 2 
570e 18 1 1 2 
saoa 19 1 1 
5900 2e 1 1 
6gee 
6190 21 1 1 
62e9 1 1 
630e 22 1 1 
64eo 1 1 
6seo 
6609 23 1 1 

PUBOe160 
"< •• + .... 1 .... + .... 2 •••• + .... 3 .... + •••• 4 .... + •••• 5 •••• + .... 6 •••• + .... 7.> .• + •••• 8 Date 

REL INDEX c 1; PUS006S0 
D9 WRITE FILE (REL_FILE) FROM (RELATIVE_RECORD_Ol) PUSGG690 

KEY FROM {INPUT WEEK}: PUB66700 
END: 1* DO "I - PUS0a710 

READ FILE (IN FILE) INTO {INPUT RECORD}: PUS00720 
END: 1* DO WHILE */ - PUBS8730 

CLOSE 
FILE {IN_FiLE}: 

CLOSE 
FILE {RElJILE}: 

END LP1415: 

PUB0074e 
PUB00750 
PUS60766 
PUSee770 
PUS00786 
PUB00790 
PUB66Seo 838817 

Figure 8-6 (Part 2 of 2). Program Writing to an Arrival Sequence File by RRN 

D RECORD data transmission is used with IN FILE. 

D The SEQUENTIAL access method is used with IN_FILE. 

II IN_FILE is used for INPUT only; no output is directed to it. 

I] The CONSECUTIVE option specifies that the fUe is processed using the 
arrival sequence access path. Because CONSECUTIVE is the default, it 
could have been omitted. 

iii BUFSIZE(23) indicates that the maximum record length is 23 characters. 
When the fUe is opened, this is the amount of storage the program allocates 
in the buffer for a record. If your data is blocked, your program will run 
faster if you specify BLOCK instead of BUFSIZE; this is explained in 
Figure 8-4 on page 8-7. 

II RECORD data transmission is used with REL FILE. 

D The DIRECT attribute indicates that REL FILE is accessed non­
sequentially. 

iii REL_FILE is used for OUTPUT only. It does not provide data for the 
program. 

The CONSECUTIVE option specifies that REL_FILE has an arrival 
sequence access path. Because CONSECUTIVE is the default, the ENVI­
RONMENT attribute can be omitted. 

The combination of the DIRECT attribute and the CONSECUTIVE option 
of the ENVIRONMENT attribute indicates that the fUe is accessed non­
sequentially, without using a key field in the record. The record is found by 
using the relative record number, which indicates how far the record is from 
the start of the me. 

This program does not create an RRN-type me. The me must be created 
flIst, by creating a data base file with an arrival sequence access path and 
placing empty records in the me. The number of empty records placed in the 
me must be greater than or equal to the highest RRN which will later be 
used to access the me. 

Chapter 8. Using AS/400 Files 8·15 



USING DATA BASE FILES 

1m IN_FILE is opened with the TITLE option specifying I INFILE I. Because 
the library and member names are allowed to default, the first member of me 
IN_FILE in the library list is opened. 

m REL_FILE is opened with the TITLE option specifying 'MSTFILE'. 
Because the library and member names are allowed to default, the first 
member of me MSTFILE in the library list is opened. 

m RELATIVE_RECORD_Ol is written to REL_FILE using INPUT_WEEK 
as the relative record number. Because RELATIVE_RECORD_Ol is an 
array which is filled by five readings of INPUT_RECORD, the assumption is 
made that INPUT_WEEK in every fifth INPUT_RECORD is the same as 
in the four preceding records, but that each of these five records has a dif­
ferent INPUT_YEAR. 

8-16 PL/I User's Guide and Reference 

J 



USING DATA BASE FILES 

Example 7 - Updating an Arrival Sequence File by Relative Record Number 

5728PL1 Re1 Mee 886715 

Include SE QN BR STMI. SUBS BLK BN DO 
leO 1 
2e9 
3eO 
409 2 
soe 
609 
700 
800 
90a 

160S 
11ee 
12eo 
1300 
140a 
1500 
160a 
1760 
180e 
190e 
2660 
2100 
2206 
2309 
2400 
2560 
2600 
2700 
2806 
29GG 
30GO 
3100 
32GO 
3300 
3400 
3506 
3660 
3700 
3800 
3900 
466e 
4106 
4260 
4300 
4400 
4500 

2.1 

3 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
3.10 

4 

4.1 
4.2 

5 

5.1 
5.2 
5.3 

6 

7 

8 
9 

4600 1e 
4706 
4800 11 
490e 
sooe 
5100 12 
52ee 13 
S3GO 

1 
1 
1 
1 
1 
1 

1 
1 
1 

1 
1 
1 
1 
1 

1 1 

1 
1 1 
1 1 
1 1 

1 
1 1 

1 
1 

PL/I Source Listing 
LP1416: PROCEDURE; 

PLITST /LP1416 11/39/88 14: 2e: 10 Page 2 
PUB06166 

*< •• + •••• 1. .•. + •••• 2 .... + •••• 3 •••• + •••• 4 ••.• + •••• 5 •••. + •••• 6 •..• + •••• 7.> •• + •••• 8 Date 
LP1416: PROCEDURE; PUB06166 830817 

PUB6017e 
/* FILE DECLARATIONS */ 
DECLARE D B E 

PUBe0186 
PUB601ge 

IN_FILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV{CONSECUTIVE PUB0020e 8316e4 
BUFSIZE(23»,~ 831064 

REL FILE FILE RECORD INTERNAL DIRECT UPDATE ENV{CONSECUTIVE); PUBSe216 
- m m ~ ~ PUB0022e 

/* RECORD DECLARATIONS */ PUB6023e 
DECLARE PUB0024e 

1 RELATIVE_RECORD_61, PUB002Se 
2 PREVIOUS_WORK_YEARS CHAR(92), PUB0026e 831004 
2 LATEST_WORK_YEAR CHAR(23), PUB0027e 831604 
INPUT_RECORD, PUB6628e 
2 INPUT_YEAR PICTURE '99', PUB002ge 831114 
2 ItIPUT_WEEK PICTURE '99', PUBe6306 831114 
2 INPUT_UNIT_SALES PICTURE 'S999999', PUBe6316 
2 INPUT_DOLLAR_SALES PICTURE 'S999999999V99', PUB00326 
WORK_RECORD, PUB06336 
2 OLDEST_WEEK CHAR(23), PUB00346 831604 
2 CURREtlT_WORK_YEARS CHAR(92); PUB003S6 831004 

PUB00360 
/* PROGRAM VARIABLES */ 
DECLARE 

INPUT_RECORD_B 
P1 
ADDR 

/* PROGRAM FLAGS */ 
DECLARE 

1 BIT_FLAGS STATIC, 
2 MORE_RECORDS 
2 110 
2 YES 

ON ENDFILE(IN_FILE) 
MORE_RECORDS· NO; 

ON ENDFILE(RELJILE) 
MORE_RECORDS • NO; 

/* MAIN PROGRAM */ 
MORE RECORDS • YES; 
P1 .-AODR(INPUT_RECORO); 

m OPEN 

CHAR(23) BASED (P1), 
POINTER, 
SUILTlN; 

BIT(1) ALIGNED, 
BIT(1) ALIGNED INIT('6'B), 
BIT(l) ALIGNED INIT('I'B); 

FILE (IN_FILE) TITLE('UPDATES'); /* INPUT */ m OPEN 
FILE (REL_FILE) TITLE('MSTFILE'); /* UPDATE */ 

m READ FILE (IN FILE) INTO (INPUT RECORD); 
READ FILE (REl_FILE) INTO (WORK_RECORD) KEY (INPUT_WEEK); 

PUB00370 
PUB00388 
PUB90399 8319134 
PUS90406 
PUB00416 
PUB9042a 
PUBtla430 
PUSa6449 
PUB664Sa 
PUS00469 
PUBOe476 
PUB004Sa 
PUB06496 
PUB9aS60 
PUSeeS10 
PUB06S26 
PUBaeS3a 
PUB00S40 
PUB60SS9 
PUBOeS69 
PUBOaS70 
PUBSaSSa 
PUB6059S 
PUB6S66e 
PUse9610 831904 
PUS60626 
PUS9a630 831004 
PUB00649 
PUB006S9 
PUS6066a 
PUB09670 

Figure 8-7 (Part 1 of 2). Program Updating an Arrival Sequence File by RRN 

Chapter 8. Using AS/400 Files 8-17 



USING DATA BASE FILES 

5728PLl Ral Ma9 889715 PL/I Source Li s t j ng 
LP1416: PROCEDURE; 

PL ITST /LP1416 11/36/88 14:29:16 Page 3 
PUBge169 

Include SEQNBR STMT.SUBS BLK BN DO *< •• + •••• 1. ... + •••• 2 •••• + .... 3 •••• + .... 4 .... + •••• 5 •••• + .... 6 .... + •••• 7.> .. + .... 8 Date 
5400 14 1 1 
5560 15 1 1 
5666 16 1 1 
5766 17 1 1 
5806 18 1 1 
5969 19 1 1 
6eoe 2e 1 1 
6169 
6266 21 1 1 
6366 1 1 
6469 22 1 1 
6599 1 1 
6606 
6700 23 1 1 

1 
1 
1 
1 
1 
1 

DO WHILE (MORE_RECORDS): PUB6e686 
PREVIOUS_WORK_YEARS • CURRENT_WORK_VEARS: PUB60699 
LATEST WORK YEAR = INPUT RECORD B: PUB00709 

IE REWRITE FILE (RELJILE) FROM (RELATlVE_RECORD_91) KEY (INPUT_WEEK) :PUB6U719 
READ FILE (IN FILE) INTO (INPUT RECORD): PUBBBn9 
READ FILE (REL FILE) INTO (WORK RECORD) KEY (INPUT WEEK): PUB66739 

END: /* DO WHILE-*/ - - PUB00746 

CLOSE 
FILE (IN_FILE): 

CLOSE 
FILE (RELJIlE): 

END LP1416; 

PUBa6756 
PUBge768 
PUBOOnO 
PUB90789 
PUB06799 
PUB0686e 
PUB6981fl 830817 

Figure 8-7 (Part 2 of 2). Program Updating an Arrival Sequence File by RRN 

o RECORD data transmission is used with IN FILE. 

D The SEQUENTIAL access method is used with IN_FILE. IN FILE is used 
for INPUT only; no data is directed to it. 

Il The CONSECUTIVE option specifies that the fIle is processed using the 
arrival sequence access path. Because CONSECUTIVE is the default, it 
could have been omitted. 

BUFSIZE(23) indicates that the maximum record length is 23 characters. 
When the fIle is opened, this is the amount of storage the program allocates 
in the buffer for a record. If your data is blocked, your program will run 
faster if you specify BLOCK instead of BUFSIZE. This is explained at 
Figure 8-4 on page 8-7. 

II RECORD data transmission is used with REL FILE. 

m REL_FILE is declared with the DIRECT attribute, because it will be 
accessed non-sequentially. 

D REL _FILE is declared with the UPDATE attribute, because records in the 
fIle are being read, altered, and then rewritten. In Figure 8-6 on page 8-14, 
the fIle was declared with the OUTPUT attribute because it was being loaded 
with initial data. 

I!) 1be CONSECUTIVE option indicates that REL_FILE is processed using 
the arrival sequence access path. Although REL_FILE does not have a 
keyed sequence access path, it can be accessed sequentially by the relative 
record number. 

1m IN_FILE is opened, with the TITLE option specifying 'UPDATES'. Since 
the library and member names are allowed to default, the frrst member of fIle 
UPDATES in the library list is opened. 

1m REL_FILE is opened, with the TITLE option specifying 'MSTFILE' 
Because the library and member names are allowed to default, the frrst 
member of fIle MSTFILE in the library list is opened. 

8·18 PLjI User's Guide and Reference 

J 



USING DATA BASE FILES 

m A record is read in from IN_FILE. A key INPUT_WEEK is obtained from 
this record and is used as the relative record number to obtain the corre­
sponding record from REL_FILE. 

m After the record from REL _FILE has been altered to incorporate the new 
infonnation for IN_FILE, it is rewritten using the same key with which it 
was read. The record's position in REL_FILE will stay the same. 

Chapter 8. Using AS/400 Files 8-19 



USING DATA BASE FILES 

Example 8 - Reading from an Arrival Sequence File by Relative Record Number 

5728PLl R81 Me9 888715 

Include SEQNBR STMT.SUBS BLK BN DO 
109 1 
2ee 
300 
460 2 1 
506 1 
6ee 1 
70a 2.1 1 
80a 2.2 1 
90G 

1S6e 
1199 3 1 
120G 1 1 
1300 3.1 1 1 
1460 3.2 1 1 
15G9 3.3 1 1 
1600 3.4 1 1 
1700 3.5 1 1 
1808 3.6 1 1 
1900 3.7 1 1 
2GGO 3.8 1 1 
2WO 
22se 
230a 4 1 1 
2400 1 1 
25ae 4.1 1 1 
2600 4.2 1 1 
2700 4.3 1 1 
280S 
2960 
3000 5 1 
3100 1 
320e 5.1 1 
3300 
3400 6 1 
35S6 1 
3699 
3700 1 1 
3800 1 1 
3900 8 3 2 
4000 9 3 2 
4100 10 3 2 
42a9 
4309 
4460 11 1 
4509 
4666 12 1 
4700 1 
4800 13 1 
49a9 1 
seee 
5160 14 1 1 
S299 
530G lS 

PL/I Source Li stl n9 
LP1417: PROCEDURE; 

PLITST /LP1417 11/39/89 14:21:28 Page 2 
PUBS8169 

*< •• + •••• 1. ••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
LP1417: PROCEDURE; PUB80160 839817 

/* FILE DECLARATIONS */ 
DECLARE D m m m 

IN FILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV(CONSECUTIVE 
- m & m BUFSIZE(4».S 

REL FILE FILE RECORD INTERNAL DIRECT INPUT ENV(CONSECUTIVE). 
SYSPRINT FILE STREAM OUTPUT PRINT; m 

IE m IE 
/* RECORD DECLARATIONS */ 
DECLARE 

1 RELATIVE RECORD al. 
2 RELATIVE_RECORD(S). 

3 REL_YEAR 
3 REL_WEEK 
3REL_UNIT_SALES 
3 REL_DOLLAR_SALES 

1 INPUT_RECORD. 
2 INPUT_WEEK 
2 END_WEEK 

/* PROGRAM FLAGS * / 
DECLARE 

1 BIT_FLAGS STATIC. 
2 MORE_RECORDS 
2 NO 
2 YES 

/* PROGRAM VARIABLES */ 
DECLARE 

SElUNCR 
REL_IfIDEX 

ON ENDFlLE{INJILE) 
MORE_RECORDS • NO; 

ON KEY(RELJILE) 
BEGIN; 

ON ERROR SYSTEM; 
REL WEEK(l) • 53; 

END; 1''' BEGIN */ 

/* MAIN PROGRAM */ 
MORE_RECORDS • YES; 

IE om 

PICTURE '99'. 
PICTURE '99'. 
PICTURE 'S999999'. 
PICTURE 'S999999999V99'. 

PICTURE '99'. 
PICTURE '99'; 

BIT(l) ALIGNED. 
BIT(l) ALIGNED INIT('O'B). 
BIT(l) ALIGNED INIT('l'B); 

BINARY FIXED(2). 
BINARY FIXED(2); 

FILE (INJILE) TITLE('RETRIEVE'); 
IE] OPEN 

/* INPUT */ 

FILE (RELJILE) TITLE('MSTFlLE'); /* INPUT */ 

READ FILE (IN_FILE) INTO (INPUT_RECORD); 

DO WHILE (MORE_RECORDS); 

PUBge178 
PUBOS189 
PUBS9190 
PUB89299 831984 

831094 
PUBe0219 831S94 

839697 
PUB09228 
PUB06239 
PUBS924e 
PUBe62se 
PUBa9269 
PUBaOZ7S 831114 
PUB9S289 831114 
PUBa9299 
PUB993ge 
PUB09310 
PUB00328 831114 
PUB00330 831114 
PUB00349 
PUB903S9 
PUB00369 
PUna0370 
PUBa0380 
PUB00390 
PUBa0409 
PUn0041a 
PUBOa429 
PUB06430 
PUBOG449 
PUB004S9 
PUse0460 
PUB0047e 
PUBa0489 
PUBOa49a 
puseosoo 
PUBaeS19 
PUBe6S29 
PUB06S36 831114 
PUBOa540 
PUBOeS59 
PUBOeS60 
PUBOOS70 
PUS66586 
PUSG6S90 
PUB666aO 831904 
PUB00610 
PUB99626 831994 
PUBS6639 
PUB0064a 
PUBOS6Sa 
PUSa6666 

Figure 8-8 (Part 1 of 2). Program Reading from an Arrival Sequence File by RRN 

8-20 PLjI User's Guide and Reference 

J 



L 

USING DATA BASE FILES 

5728PLI Rei M99 880715 PL/I Source Listing PLITST ILP1417 11/30/88 14:21:28 Page 3 
LP1417: PROCEDURE: PUB90169 

Include SEQNSR STMT.SUBS BLK 8N DO "'< •• + •••• 1. ... + .... 2 •••• + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 .... + •••• 7.> •• + •••• 8 Date 
S4ee 16 
S5eO 
S6ee 17 
S700 
S80e 18 
S909 19 
6000 
6199 20 
620e 
6388 21 
MOO 
65ge 
6699 22 
6708 23 
688e 24 
6ge9 
79S(j 25 
71G9 26 
72e9 27 
7399 
7499 28 
7569 29 
7600 30 
ne9 31 
7808 
790(j 32 
80eO 33 
8190 34 
8209 35 
831:19 
8400 36 
8500 37 
8699 38 
8706 
8800 39 
8900 40 
geeo 
910e 
n00 
9308 41 
9400 
95ao 42 

Figure 8-8 (Part 2 of 2). 

1 1 1 IF END_WEEK· e9 THEN PUB99670 831114 
1 1 1 CALL RANDOM: PUBee680 
1 1 1 ELSE PUS80690 
1 1 1 CALL SEQUENT: PUB0070(j 
1 1 1 READ FILE (IN_FILE) INTO (INPUT_RECORD): PUSee71e 
1 1 1 END: I'" DO WHILE "'I PUBOO729 

PUBOe739 
1 CLOSE PUB00740 
1 FILE (INJILE): PUB097S8 
1 CLOSE PUB9a768 
1 FILE (RELJILE): PUB(j9770 

PUBI:I8789 
1 1 RANDOM: PROCEDURE: PUB09798 
4 2 IE READ FILE (REL_FILE) INTO (RELATIVE_RECORD_el) KEY (INPUT_WEEK): PUB00800 
4 2 IF REL_WEEK(I) ~. 53 THEN PUBEl0819 831114 
4 2 DO REL_INDEX • 1 TO 5: PUB08829 
4 2 CALL PRT _ SMY: PUB90830 
4 2 END: 1* DO LOOP *1 PUBG084G 
4 2 END RANDOM: PUBge859 

PUBG0869 
1 1 SEQUENT: PROCEDURE: PUB0087(j 
5 2 SEQ_I NCR - I: PUB00880 
5 2 IE READ FILE (REL_FILE) INTO (RELATIVE_RECORD_al) KEY (INPUT_WEEK): PUSOe8ge 
5 2 IF REL_WEEK(I) ~. 53 THEN PUBOa980 831114 
5 2 DO WHILE(REL_WEEK(I) <- END_WEEK): PUB08910 
5 2 1 DO REL_INDEX • 1 TO 5: PUB00920 
5 2 2 CALL PRT_SMY: PUB0893e 
5 2 2 END; I'" DO LOOP "'I PUBI:I0948 
5 2 1 !B READ FILE (REL_FILE) INTO (RELATIVE_RECORD_I:II) PUBOe9S9 
5 2 1 KEY (INPUT_WEEK + SEQ_IHCR); PUB00960 831114 
5 2 1 SEQ_ItlCR • SEQ_I NCR + 1: PUSOO970 
5 2 1 END; 1* DO WHILE *1 PUB90988 
5 2 END SEQUENT: PUBI:I9990 

PUB91000 
1 1 PRT SMY: PROCEDURE: PUB01010 
6 2 l! PUT FILE (SYSPRINT) SKIP(2) EDIT(REL_YEAR(REl_INDEX), PUB0102e 
6 2 REL_WEEK(REL_IHDEX),REL_UNIT_SALES(REL_INDEX), PUB61930 
6 2 REL_DOLLAR_SALES(REL_INDEX»(A(2),X(5),A(2),X(5), PUS61840 831864 
6 2 F(8) ,X(S). F(14, 2) ; PUS016S6 831G64 
6 2 END PRT_SMV; PUSfJ196e 

PUB81f170 
1 END LP1417: PUB01080 830817 

Program Reading from an Arrival Sequence File by RRN 

D RECORD data transmission is used with IN FILE. 

II The SEQUENTIAL access method is used with IN_FILE. 

I) IN_FILE is used for INPUT only; no data is directed to it. 

I) The CONSECUTIVE option specifies that the ftle is processed using the 
arrival sequence access path. Because CONSECUTIVE is the default, it 
could have been omitted. 

II BUFSIZE(4) indicates that the maximum record length is four characters. 
When the ftle is opened, this is the amount of storage the program allocates 
in the buffer for a record. If your data is blocked, the program will run faster 
if you specify BLOCK instead of BUFSIZE; this is explained at note 5 of 
Figure 8-4 on page 8-7. 

m RECORD data transmission is used with REL FILE. 

Chapter 8. Using ASj400 Files 8-21 



USING DISPLAY FILES 

fJ REL_FILE is declared with the DIRECT attribute because it is accessed J 
non-sequentially. 

III REL_FILE is used for INPUT only; no data is directed to it. 

m The CONSECUTIVE option specifies that REL_FILE has an arrival 
sequence access path. Because CONSECUTIVE is the default, the ENVI­
RONMENT attribute can be omitted. 

II!] STREAM data transmission is used with SYSPRINT. Stream files can only 
be accessed sequentially. 

m The file receives OUTPUT only. It does not supply data to the program. 

m The PRINT attribute indicates that the first character in the record is an 
ASA printer control character. 

ED IN_FILE is opened, with the TITLE option specifying 'RETRIEVE'. 
Because the library and member names are allowed to default, the first 
member of file RETRIEVE in the library list is opened. 

OJ REL _FILE is opened, with the TITLE option specifying 'MSTFILE'. 
Because the library and member names are allowed to default, the Hrst 
member of file MSTFILE in the library list is opened. 

ED If the input data calls for the retrieval and printing of only one relative 
record, the READ is done using INPUT_WEEK as the relative record 
number. 

1m If the input data calls for the retrieval and printing of several relative records, 
the Hrst relative record is retrieved using INPUT_WEEK as relative record 
number. 

m For later READ statements an expression (INPUT_WEEK + SEQ_ INCR) 
is used to specify each successive relative record number, until the last record 
asked for has been retrievcd. 

1m SYSPRINT is implicitly opened by the Hrst processing of the PUT state-
ment. Any file not already opened is implicitly opened by the Hrst data .. ~ 
transmission statement which accesses it. It is, however, a good practice to .., 
explicitly open all your files. 

Using Display Files 
When using a display file, there are two file organizations you can specify by using 
the ENVIRONMENT options CONSECUTIVE and INTERACTIVE. There are 
also two file access methods you can specify by using the DECLARE statement 
attributes SEQUENTIAL and SEQUENTIAL KEYED. The input/output state­
ment options allowed with each combination of these are shown in 
Appendix C, "Valid Combinations of Options for Input/Output Statements." The 
combination of INTERACTIVE SEQUENTIAL KEYED is mainly used for sub­
ftles. Subftles are described in Programming: Data Management Guide. 

Other ENVIRONMENT options you specify can affect the input/output statement ..;a 
options you are able to use. If you specify NOINDARA, you cannot specify the .." 

8-22 PL/I User's Guide and Reference 



USING DISPLAY FILES 

OPTIONS parameter INDICATORS, and if you specify BUFSIZE, the SET 
option of the input/output statements is affected. ENVIRONMENT parameters 
and the OPTIONS option are discussed in Chapter 7, "File Declaration and 
Input/Output," while other input/output statement options are discussed in "Record 
Data Transmission" on page 11-8. 

Externally Described Display Files 
Just as with externally described data base ftles, you can specify the ENVIRON­
MENT option DESCRIBED with externally described display meso A description 
of this option is in Chapter 7, "File Declaration and Input/Output," while level 
checking is discussed in Chapter 6, "AS/400 PL/I File and Record Management." 

Example of Using a Display File 

- h-r---i 

U OER 

The following program uses a display device me to process customer inquiries. 

AS/400 DATA DESCRIPTION SPECIFICATIONS 

I :,.< I I I I I I H 

STER I~CUI Y FI E -- eus INC 

CK2.'~9891-0 UM/050-
Prlntfldln U.'5.A • 

• NUnlber of s"'-1:'!!I ~ ~od "11:11 'fQfl.I"hl1y. 

~ __ ~H-++-H~++ ____ +-~+-__ ~-+r-4--¥-I~N,D~A~R~A~ ______________________ -1 
PRINT 
REF(CUSMSTP) 

A01!01 'END OF PROGRAM') 
~--~H-++-H~~~~IU=SP=M~T~~+----H-+r-~~T~E~X·~T7(~'C~U=StOM~O=;M7.P~T~,7)~--------~ 

1 3'CUSTOMER MASTER INQUIRY' 
~ !'CUSTOMER NUMBER' 

CUST I J 20 
99 ERRMSG('CUSTOMER NUMBER NOT FOUND: 

PRESS RESET THEN ENTER VALID NUMBE 
R' 99) 

5 J'USE F1 TO END PROGRAM USE ENTER + 
KEY TO RETURN TO PROMPT SCREEN' 

r---P.rl1-+r-H~~"US=F~L·D~S~++--~+-+r~--~T~E~XT~('~ER-rI~IAY') 
OVERLAY 

B J'NAME' 

Figure 8-9 (Part 1 of 5). Display File DDS and Customer Inquiry Program 

Chapter 8. Using AS/400 Files 8-23 



USING DISPLAY FILES 

AS/400 DATA DESCRIPTION SPECIFICATIONS 

III II III 

- € ........ 

j 
AME 

9 'ADDRESS' , 
Hi 'CITY' 

lTV , , , 
, 'STATE' 

STATE " " 11 21'ZIP CODE' 
IP '1 .1' 

12 'AIR BALANCE' 
ARBAl 12 1 EDTCDEeJ) 

Figure 8-9 (Part 2 of 5). Display File DDS and Customer Inquiry Program 

8-24 PL/I User's Guide and Reference 

aftt ·tIIIIt .. UMI05O­'''fhd IfI U.S.A. 
.NIIIIItNr.of .......... Jot! "'-' .'iQhUy. .. 

J 

J 

J 



5728PLI RBI Hee 889715 

Include SEQNBR STHT. SUBS BLK BN DO 

CUSPHT 
CUSPIIT 
CUSPMT 
CUSPHT 
CUSPHT 
CUSPMT 
CUSPHT 
CUSPMT 
CUSPMT 
cuspm 
CUSPMT 
CUSPMT 

CUSPMT 
CUSPMT 
CUSPHT 
CUSPHT 
CUSPMT 
CUSPMT 
CUSPMT 
CUSPMT 
CUSPMT 
CUSPHT 

CUSFLDS 
CUSFLDS 
CUSFLDS 
ClISFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 
CUSFLDS 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

10e 
2eO 
3ee 
499 
SOB 
60e 
7ee 
80e 
geO 

Ieee 
110e 
lee 
26e 
3ge 
40e 
see 
60e 
70B 
8ee 
gee 

1gee 
119B 
12ee 
12ee 
130a 
10e 
2ee 
30e 
4ee 
see 
6ee 
7ee 
8ee 
gee 

1eoe 
14eo 
lSge 
lee 
2ee 
3ee 
40fi) 
sea 
6ee 
7ee 
8ea 
gee 

100e 
llOe 
12eo 
130e 
WIG 
lS0e 
16ea 

1 

2 1 
1 

2.1 1 

3 1 
1 

3.1 1 
3.2 1 

3.3 1 1 
3.4 1 1 
3.5 1 1 

3.6 1 

3.7 1 
3.8 1 1 
3.9 1 1 
3.1a 1 1 
3.11 1 1 
3.12 1 1 
3.13 1 1 

PL/I Source LIsting 
LP1428: PROCEDURE; 

LP1429/LP1428 

USING DISPLAY FILES 

11/36/87 15:35:35 Page 2 
DISe916e 

*< •• + •••• 1. ••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •. + •.•• 8 Date 
LP142e: PROCEDURE; DISee169 836817 

DISe017e 
1* FILE DECLARATIONS *1 DISee189 
DECLARE D m m ~ DIS99198 

CUSHINQ FILE RECORD SEQUENTIAL UPDATE ENV(INTERACTlVE), DISOe2e6 849391 
CUSMSTP FILE RECORD DIRECT INPUT ENV{INDEXED DESCRIBED); DIS0e216 83e919 

m m a ~ m Dm6na 
1* RECORD DECLARATIONS *1 DIS99230 
DECLARE D1S00249 

1 CUSTOMER PROMPT, DIS96259 
%ItICLUDE - CUSMINQ(CUSPMT, INPUT .. COMMA); 01 S092G9 831906 

1* ----------------------------------------------------------------- *1 
1* DEVICE FILE: CUSMINQ.LPI429 *1 
1* FILE CREATION DATE: 87/11/39 *1 
1* RECORD FORMAT: CUSPMT *1 
1* RECORD FORMAT SEQUENCE ID: 12E4847185567 *1 
1* ----------------------------------------------------------------- * 1 
1* INDICATORS FOR FORMAT CUSPMT *1 
1* INDICATOR 93 End of Program *1 
1* INDICATOR 99 Customer number not found: press Reset, then 
whr ~ 
1* -------Customer Prompt------------------------------------------- *1 

15 CUST CHAR(5), 1* CUSTOMER NUMBER *1 
1 CUSTOMER INDICATORS, DISOe250 831006 

%INCLUDE - CUSMINQ(CUSPMT, INDICATORS, ,COt1MA); 01 S88260 831866 
1* ----------------------------------------------------------------- *1 
1* DEVICE FILE: CUSMINQ.LP1420 *1 
1* FILE CREATION DATE: 87/11/36 *1 
1* RECORD FORMAT: CUSPMT *1 
1* RECORD FORMAT SEQUENCE 10: 12E4847185567 *1 
1* -------Customer Prompt------------------------------------------- *1 

15 IN01 PIC '9', 1* End of Program *1 
15 IN62_IN98 CHAR(97), 1* UNDEFINED INDICATOR(S) *1 
15 IN99 PIC '9', 1* Customer number not found: 

press Reset, then enter *1 
CUSTOMER_FIELDS, DISee279 
%IHCLUDE CUStmQ(CUSFLDS,OUTPUT, ,COMMA); DISe0288 831966 

1* ----------------------------------------------------------------- *1 
1* DEVICE FILE: CUSMINQ.LP142e *1 
1* FILE CREATION DATE: 87/11/3e *1 
1* RECORD FORt-1AT: CUSFLDS *1 
/* RECORD FORMAT SEQUENCE ID: IBBCFB695044B *1 
1* ----------------------------------------------------------------- *1 
1* INDICATORS FOR FORMAT CUSFLDS *1 
1* INDICATOR 03 End of Program *1 
1* -------Customer Dlsplay------------------------------------------ *1 

15 NA~1E CHAR(25), 1* CUSTOMER NAME *1 
15 ADDR CHAR(26), /* CUSTOMER ADDRESS *1 
15 CITY CHAR(2e), 1* CUSTOMER CITY *1 
15 STATE CHAR(2), 1* STATE *1 
15 ZIP PIC' 9999R', 1* ZIP CODE *1 
15 ARBAL PIC '999999V9R', 1* ACCTS REC BALANCE *1 
CUSTOMER_MASTER_RECORD, DIse92ge 

Figure 8-9 (Part 3 of 5). Display File DDS and Customer Inquiry Program 

Chapter 8. Using AS/400 Files 8-25 



USING DISPLAY FILES 

5728PL1 R01 MSO 889715 PL/I Source Listing LP1429/LP1429 11/39/88 15:35:35 Page 3 
J 

LP1428: PROCEDURE; DISee160 
Include SEQtlBR STMT. SUBS 8LK 8N DO *< .• + •••• 1. ••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 

176a %INCLUDE CUSMSTP(CUSMST,RECORD); DISee380 
CUSMST + 100 /* ------------------------------------------------------------- ---- * / 
CUSMST + 260 /* PHYSICAL FILE: CUSMSTP.LP1429 */ 
CUSMST + 308 /* FILE CREATION DATE: 87/11/38 */ 
CUSMST + 4S0 /* RECORD FORMAT: CUSMST */ 
CUSt~ST + 500 /* RECORD FORMAT SEQUENCE ID: 4AA7C99E9881E */ 
CUSt~ST + 6ee /* -------CUSTOMER MASTER RECORD------------------------------------ */ 
CUSMST + 70a 3.14 1 1 15 CUST CHAR(5) , /* CUSTOMER NUMBER */ 
CUSt~ST + 8ee 1* DDS - KEY FI ELD */ 
CUSMST + 90e 3.15 1 1 IS NAME CHAR(2S) , /* CUSTOMER NAME */ 
CUSI4ST + lOSO 3.16 1 1 15 ADDR CHAR(28) , 1* CUSTOMER ADDRESS */ 
CUSMST + l1S0 3.17 1 1 IS CITY CHAR(2S) , /* CUSTOl4ER CITY *1 
CUSI1ST + 12S0 3.18 1 1 15 STATE CHAR(2) , 1* STATE */ 
CUSMST + 1306 3.19 1 1 15 ZIP PIC '9999R', /* ZIP CODE *1 
CUSMST + 146S 3.28 1 1 15 SRHCOD CHAR(6) • 1* CUSTOMER HLtlBER SEARCH CODE * / 
CUSt·1ST + 1500 3.21 1 1 15 CUSTYP PIC 'R', 1* CUSTOMER TYPE 1 eGOV 2-SCH 
CUSI~ST + 1600 3eBUS 4c PVT 5-0T */ 
CUSI1ST + 17Sa 3.22 15 ARBAL PIC' 999999V9R', 1* ACCTS REC BALANCE */ 
CUSMST + 180e 3.23 15 ORDBAL PIC '999999V9R', /* A/R AMT IN ORDER FILE */ 
CUSflST + 19S8 3.24 15 LSTAMT PIC '999999V9R', 1* LAST AMT PAID IN AIR */ 
CUSMST + 20eo 3.25 15 LSTOAT PIC' 99999R', /* LAST DATE PAID IN A/R */ 
CUSMST + 2100 3.26 15 CRDLMT PIC '999999V9R'. /* CUSTOMER CREDIT LIMIT */ 
CUSMST + 2208 3.27 15 SLSYR PI C '99999999V9R', 
CUSMST + 2300 /* CUSTOMER SALES THIS YEAR *1 
CUSt~ST + 2400 3.28 1 15 SLSLYR PIC '99999999V9R'; 
CUSMST + 2506 1* CUSTOMER SALES LAST YEAR */ 

18S6 DISOe318 
1960 1* INDICATOR FLAGS *1 DISS0328 
20eO 4 DECLARE DIS60338 
21S0 1 INDICATORJLAGS STATIC, DIS60346 
22e8 4.1 2 OFF PICTURE '9' INIT(e) , DISa8358 831886 J 23S6 4.2 2 ON PICTURE '9' INIT(l) ; DIS09366 831666 
24eO DISe037e 
2500 /* BUILT-IN FUNCTIONS */ DIS00386 
2690 5 DECLARE DISa6399 
27S0 ONCODE BUILTIN; DISS040a 
280e DISe9419 
291:18 6 1 1 ON KEY (CUSMSTP) DIS86428 
3868 1 1 BEGIN: DISe8439 
3109 7 2 2 ON ERROR SYSTEM; DIS90448 
3208 8 2 2 IF ONCODE - 51 THEN DISe645e 
33G8 2 2 IN99 - ON; DIS9046a 
34GO 9 2 2 END; /* BEGIN */ DIS88470 
3560 DISe0489 
36S6 1* MAl N PROGRAM */ DISa0496 
37GS 16 OPEN IE DISeaSee 
38Se FILE (CUSMINQ): /* UPDATE */ DISee516 839919 
3ge0 11 OPEN m DISe652e 
4008 FILE (CUSMSTP); /* INPUT */ DISaS53e 836919 
4168 DISa8546 
420a 12 1 IN83 - OFF; DISaeS59 
4368 13 1 1 IN99 • OFF; DIS0e566 
448e 14 1 1 DO WHILE(INe3 - OFF); DIsaeS79 

Figure 8-9 (Part 4 of 5). Display File DDS and Customer Inquiry Program 

8-26 PLjI User's Guide and Reference 



USING DISPLAY FILES 

5728PLI R9I M96 889715 PL/I Source Listing LP1420/LP1429 11/36/88 15: 35: 35 Page 4 
LP142a: PROCEDURE: DISa0168 

Include SEQNBR STMT.SUBS BLK BN DO *< •• + •••• 1. ••. + .••• 2 •••• + •••• 3 •••• + •.•• 4 •••• + •••• 5 .••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
4566 DIS66586 
46ea 1* DISPLAY THE SCREEN *1 0lS09596 
4768 15 m WRITE FILE (CUSMINQ) FROM (CUSTOMER_PROMPT) DISe0689 
4806 OPTIONS (RECORD('CUSPMT') INDICATORS(CUSTOMER INDICATORS»; DIse0610 831906 
4900 EEl -!!l DISa662e 
5668 1* READ AND PROCESS SCREEll * / DIS66636 
5108 16 1 1 IN99 = OFF; 01S6e640 
5260 17 1 1 IE READ FILE (CUSMINQ) INTO (CUSTOMER_PROMPT) DIS60650 
53eO 1 1 OPTIONS (RECORD(' CUSP~1T') HIDICATORS(CUSTOMER INDICATORS»; DISefJ660 831906 
5469 18 1 1 In IF lIIe! = OFF THEN m 1& DIS6e679 
5566 1 1 DO; 0lsea689 
56ee 19 1 2 READ FILE (CUSMSTP) INTO (CUSTOMER_MASTER_RECORO) DI S66690 831986 
576e 1 2 KEY(CUSTOMER_PROMPT.CUST); 831666 
5866 29 1 2 IE IF ItI99 • OFF THEN 0lS6e7e6 
5900 1 1 2 DO; DIS66719 
666a 21 1 1 3 CUSTOMER_FIELDS = CUSTOMER_HASTER_RECORD, BY NAME: DIS6e726 
616e 22 1 1 3 WRITE FILE (CUSMINQ) FRO~1 (CUSTOMERJIELDS) DIse6736 
62ee 1 1 3 OPTIONS(RECORD('CUSFLDS'»; 0lsefl746 
6306 23 1 1 3 Bll READ FILE (CUSMINQ) INTO (CUSTot~ERJIELDS) DIS66759 
646e 1 1 3 OPTIONS(RECORO('CUSFLOS') 0lSfl0768 831606 
6560 1 1 3 INOICATORS(CUSTO~lER_INOI CATORS»; 8318e6 
6660 24 1 1 3 END; 1* 00 *1 DIS60770 
6760 25 1 1 2 END; 1* 00 *1 0lS68789 
6809 26 1 1 1 END; 1* 00 WHILE *1 0lS06799 
6906 DIS60800 
76e6 27 1 CLOSE DIS66816 
7106 1 FILE (CUSMINQ); DIS66826 
7260 28 1 CLOSE DIS00839 
7300 1 1 FILE (CUSMSTP); DIS6fJ840 
7400 DIS90858 
7569 29 END LP1420: DIS06860 836817 

Figure 8-9 (Part 5 of 5). Display File DDS and Customer Inquiry Program 

CUSTOMER MASTER INQUIRY 

CUSTOMER NUMBER 12345 

USE F3 TO END PROGRAM, USE ENTER KEY TO RETURN TO PROMPT SCREEN 

NAME EVANS, T.J. 
ADDRESS 85 NOWHERE RD. 
CITY SCARBERIA 
STATE ON ZIP CODE 76889 
AIR BALANCE 111,111.11 

Figure 8-10. Display Produced Using Display File DDS and Customer Inquiry Program 

D RECORD data transmission is used with CUSMINQ. 

Chapter 8. Using ASj400 Files 8-27 



USING DISPLAY FILES 

D The SEQUENTIAL access method is used with CUSMINQ. The records .J 
are read in using the arrival sequence access path. 

IJ The data transmission mode is specified as UPDATE, since CUSMINQ is 
used for both input and output. 

II The ENVIRONMENT attribute is specified with the INTERACTIVE 
option. Both READ and WRITE statements are allowed, in this case to 
provide prompt screens and read input which is entered on the work station 
screen. 

IJ RECORD data transmission is used with CUSMSTP. The DDS for 
CUSMSTP will be found at Figure 8-1 on page 8-3. 

m CUSMSTP is declared with the DIRECT attribute, because it is accessed 
non-sequentially. 

B CUSMSTP is used for INPUT only: no output is directed to it by the 
program. 

S INDEXED specifies that the rue is processed using the keyed sequence access 
path. 

Ii) DESCRIBED indicates that external record fonnat defmitions are used in the 
program. 

1m CUSMINQ is opened. The UPDATE option is omitted, because it is speci­
fied as an attribute in the rue declaration. 

m CUSMSTP is opened. The INPUT option is omitted, because it is specified 
as an attribute in the rue declaration. 

m The prompt screen is displayed by writing to CUSMINQ, the rue associated 
with the display device. 

m The record fonnat named CUSPMT is used. 

lEI The indicators in CUSTOMER_INDICATORS, a structure declared using 
the %INCLUDE statement, are passed to the display device. 

III The infonnation entered on the work station screen is read into 
CUSTOMER PROMPT. 

1m The record fonnat named CUSPMT is used. 

m The indicators are returned from the display device to the structure 
CUSTOMER INDICATORS. 

1m If INOt has a value of zero, that is, if the user has not requested that the 
program end, CUSTOMER_MASTER_RECORD is read in from rue 
CUSMSTP using the key the user has provided 
(CUSTOMER_PROMPT.CUST). 

OJ If IN99 has a value of zero, that is, if the user has specified a valid key, then 
the necessary fields from CUSTOMER_MASTER_RECORD are placed in 
CUSTOMER_FIELDS, which is then written to the display device using 
record fonnat CUSFLDS. If IN99 has a value of one, control is passed to 
the top of the loop (statement 15) and the prompt screen displays the error 

8-28 PL/I User's Guide and Reference 

.J 

.J 



USING DISPLAY FILES 

message specified on the DDS reporting that the customer number has not 
been found, and requesting a valid number for input. 

1m CUSTOMER_FIELDS is read back in from CUSMINQ, and the indicators 
are returned from the display device to the structure 
CUSTOMER_INDICATORS. If the user requests that the program end, 
the next test of the value of INO! halts running. 

Example of Using a Subfile for Displaying Data 

IBM InMrrMItionCll eu.ines, t.tochtnH 
AS/400 DATA DESCRIPTION SPECIFICATIONS GIC2' __ '..o UNJD50. 

Ptiftl:«I In U.S.A. 

'~""""" .... JIIIId""""",I11.br. 

=- 1F"'::"'----tI--t-11 Il---t-I ++1 1-+-11 I 1_"'100 " 

- '''''''''' .. 
'l.a"1 •• ~'1 'V •• ~7 .V.UMR~P. n~.~ n ."~U~d.~ ••• "ft~~~.p.~.~au~ •• u •• *"nn~"~" ••• 

:X I s· NG R IER V-'-'I'FF'W'-+_t-_____________ --1 

.NDARA 
PRINT 

SLB1 SFL 
TEM 5S CI TEXT ' TEM NUMBER' 

QTYORD :5 CI 1 C .TEXT(' QUANT ITY ORDERED' 
EDTCDEeJ) 

LJESCRI ;!II l' 1 -EX ' TEM DESCRlp eN , 
PRICE 6 2 1C 4ETEXT('SELLING PRICE') 

EDTCDE(J) 
:J6ED CDE(J) 

TEXT('EXTENSION AMOUNT OF OTVORD • 
PRICE' 

SUBCT 1 SFLCTLCSUBl ) 
8 SFLCLR 

57 SFLDSP 
SFLDSPCTL 

Figure 8-11 (Part 1 of 15). Program and Supporting DDS for Using Subflles 

Chapter 8. Using AS/400 Files 8-29 



USING DISPLAY FILES 

IBM Int.,rn<ltiQn<l1 Business M<xhiMS 
AS/400 DATA DESCRIPTION SPECIFICATIONS GI(2'..-I-o INIO!O­

'rI"'«tlftu.'S.~ 
......... of s"""_ ,., ,.. rffOl '«If! s'iQldt,. 

I I I 1/ I I I I """",t'" .. 

C'.GndiI1OO1"9 

,,,,.,, ... 
,--

Condit;"n tbN 

-- u,~th F'vrdbN 

Nu",bet' 

! U ~ 
g I • j ~ I I u~ ... 

~ ~ ~ i ! i i 
1 '!.! .. ,. , ,,1It I , ,u .. 31111 II! .""'!:I!U14'-I1'JU. .n n..c~, " ." ..uu .~u •• _~ft~"M.~M".fl~U" •• ~.w~"n~Mn~".w 

FLSIZ(57) 
SFLPAG C 1 4) 

7 FLEND 
OVERLAY 

OCK 
145 
47 OLLUP (97 'CONTINUE DISPLAY' 

A01 (99 'END OF PROGRAU') 
ETOFFC57 'DISPLAY SUBFILE' 
ETOFFC58 'OFF-DISPLAY SUBCTL ON-CL+ 
AR SUBFILE' 

1 2'EXISTING ORDER INCUIRY' 
I 3 2'ORDER' 

ORDER 5 0 :'I 8 EXT 'ORDER NUMBER" 
61 RRMSGC'ORDER NUMBER NOT FOUND' 61) 
47 ERRMSGC'NO LINES FOR THIS ORDER' 47) 

A 62 RRMSGC'NO CUSTOMER RECORD FOUND FO+ 
IA THIS ORDER' 82) 
IA 4- 2'DATE' 
~ 

Figure 8-11 (Part 2 of 15). Program and Supporting DDS for Using Subfiles 

AS/400 DATA DESCRIPTION SPECIFICATIONS CX1' .... '''OUWIC.6O· 
,rlnI:.,l" U.'S.A. 

_Nuntbllrof .... t:. pel' pod""'l vor,.I'qtU,.. 

\I " I I II 
.. 

.- ...... 
g h j " t J 

.~ 

~ '. I ~ f ~ 11 s 
, " 1C) 1 , II U .. ~ II! ''''112'IJ'!4n1'J~. "".!t .uJl4 " UftUUA 4E.X 'UATE. OftUE.ft WAS E.NIE.RE.U 

EDTCDECY) 
I) CUS. 

CUST ~ 
AME 25 

~ __ -tr~r-~-Tr-++~~.~+-+-++ __ ,n~-++-;5~~STEXT('CUSTOME~R~N~UnM~B~ErRr-'~)-----------1 
1 TEXT( ·ClJSiID.AER NAME" 

DDR 20 4 1 TEXTt'C~STOMER ADORESS') 
Y 20 I) 1E.X C 'CUSTOME.R C Ty') 

STATE 2 e 1STEXT('STATE') 
P ::0 Ii ,) ,E.X LIt" CUDI:. 

1 44'TOTAL' 
RDAMT 8 1 51TEXTC'TOTAL DOLLAR AMOUNT OF THE + 

ORDER 
EDTCOEeJ I) 

44'STATUS' 
STSORD 12 51 

...... ·OPEN· 
TSOPN 12 51 

44'CUSTOMER ORDER' 
CUSORD 15 ~ 59TEXT C 'CUSTOMER PURCHASE ORDER + 

NUMBER') 

Figure 8-11 (Part 3 of 15). Program and Supporting DDS for Using Subfiles 

8-30 PLfI User's Guide and Reference 

J 



Dlncfitiol"liflll 

-
Co~lJ.a .. ~~ 

--........ 
! • I g I g I 
~ ! :: l ~ I ~ 

1 !. oJ -. , • .. ~ , , .. . ... 

USING DISPLAY FILES 

AS/400 DATA DESCRIPTION SPECIFICATIONS G~:l:1-9891-O UMI05O. 
f'rl,,'edln U.'5.A • 

• Nul'llber-of IlMeI!ll per pod rN31--, ItliQfttly. 

'i 

~ 
~ 

S ""","" 

~ 
~ - "",,'h • tV!'ll:bOnll 

g 
" 

j I ! 3] 
~n 

L''''' Po, 

IJ 'W1'11'Ut.t!lI'lW. .".!Z.DJ" ~ " 
..., .,., M a.u.ft_~'"~MU"$M"N'l'lU~U_~~ft~"n"nn~rr~w 

5 4 SHIP VIA' 
HPVIA 1 5 4 TEXT('SHIPPING INSTRUCTIONS') 

6' 44i'PRINTED DATE' 
RTDAT 8 C 6 511TEXT('DATE ORDER WAS PRINTED') 

EDTCDE(Y 
7 29,' INVOICE' 

INVNUM 5 0 7 38JEXTC'INVOICE NUMBER') 
7 64 'MTH' 

CTMTH 2:5 7 68 TEXT('ACCOUNTING MONTH OF SALE ) 
7 72 'YEAR' 

CTYR 215 C 7 77 TEXT('ACCOUNT YEAR OF SALE' ) 
B 2'ITEM' 
8 9,'QTY' 
8 14 ' ITEM DESCRIPTION' 
8, 48 'PRICE' 
81 59 'EXTENSION' 

Figure 8-11 (Part 4 of 15). Program and Supporting DDS for Using Subfiles 

IBM Int<ern-otioMl Busine~s MlXhinoes 
AS/400 DATA DESCRIPTION SPECIFICATIONS GXll-9891-O UNI'05O­

Prl!'l'ifd'" U.'5.A • 
• Number 4' !!"--III per pod ""'1 WJrl.r~hlly. 

I 1111 " I 
i 

Condil.,..,i"'i! 
§ 
~ 

~ too,.""'" 
r-- § 

~ 

~ 
~ 

Col\dlu.,"~ ~ $ 
~ 

1 '- ....... • FvncWl'OI - @ • Number" 

j ~d !~glg!!1 J UN "", 
~i!IIlll sH 

1 'I ..... 7 •• to 1 , ... .. a I. lI'1II'11utJ'NU"'lfa l1li" J':I.J.)J • .l!I " .. ., 42U.&ol d~v.~_~n~MU.~N.R'ln~"~_~ •• N"~nM"~n~~ 

•• p S I ;A ORDHD po ORDE H DE FI LE 
ORDHDR TEXTC'ORDER HEADER RECORD') 
CUST TEXT( 'CUSTOMER NUMBER' ) 
ORDER ~ (l TEXT( 'ORDER NUMBER') 
ORDDA 6: TEXT 'DATE ORDER WAS ENTERED' 
CUSORD Hi TEXTC'CUSTOMER PURCHASE ORDER + 

NUMBER') 
SHPVI 1 TEXT('SHIPPING INSTRUCTIONS') 
ORDST 1 TEXT< 'ORDER STATUS ,-PCS 2-CNT + 

J-CHK 4-RDY 5-PRT 6-PCK' ) 
OPRNA~ 1 TEXU'OPERATOR NAME WHO ENTERED + 

THE ORDER') 
ORDAM TEXT( , TOT A L DOLLAR AMOUNT OF + 

THE ORDER') 
CUSTYP 1 C TEXT'CUSTOMER TYPE ,-GOV 2-SCH + 

J-BUS 4-PVT 5-0TH') 
INVNU 5 TEXTC'INVO CE NUMBER'I 
PRTDA 6; TEXTC'DATE ORDER WAS PRINTED') 
OPNST 1 TEXT< 'ORDER OPEN STATUS 1-0PEN + 

2-CLOSE J- ANCEL' 

Figure 8-11 (Part 5 of 15). Program and Supporting DDS for Using Subfiles 

Chapter 8. Using ASj400 Files 8-31 



USING DISPLAY FILES 

I!:~ In"fno\ionQI Bua-in.se MoehiM. 
AS/400 DATA DESCRIPTION SPECIFICATIONS CU1·9I!NI..oWJD50. 

Prfl'lt«t 1ft U.'S.A. 
·~"''''''',.,jIIOd''''''YM1·lithU,.. 

:= ... I::k I I I I I I I I .. 

~ 
c.:-mlonl", '! i 'l: 

~ .-... 
f-- ~ ~ 

i Condli1on ..,.... ~ 

~ i ~ 

! 
'IS "- '- :;, , .......... - j @ ., ..-

! ~ j.1 1" ~ ~ '" t '" LI UM ... Hi ~ i i i i i~ : Hi 
, 'I: ••• , ., • 'I. t "V .. "' • ., tI • ""'SIr-P"" • ." ...... ~., .. , u" u.~.~.~ftaM».".~ •• tftU~ •• ".wN""nM"." •• 

Dl .1 N C TEX'C TDTAL :NE TEMS IN IRDER 
CTUTH 2 0 TEXT('ACCOUNTING MONTH OF SALE') 

ACTYR 2' c TEXT( ACCOUNT I..NG YEAR IF SA' E'! 
STATE 21 TEXT( 'STATE') 

MPAID 8, TEXT( 'TOTAL DOLLAR AMOUNT PAID') 
ORDER 

Figure 8-11 (Part 6 of 15). Program and Supporting DDS for Using Subfiles 

IIKlnt-erMtiono, Busin_.t UoehiM. 
AS/400 DATA DESCRIPTION SPECIFICATIONS aIC2' __ t..o UNJ05O<o 

Mflltd 1ft U.S.A. .N"",,-'" ."""t. per fOCI,.., vor, .,.11". 

~ 

"'"""- '! ~ 
~ S .-... 

- i ~ 
i CoI'IdII!.,.NDIN 

~ ~ I t: "- '- ~ ......... - - I t ~ J 
@ ., ........ 1 

~i i 11 ll" 'IS I ~ i.' u ... ... 
~ Uli Ii! ~ nl 

1 'I , ••• ., 'I 'I" 1 , tv .. .. , . W"'DUU'UWIJ' •• • ., a»'. ., . .. ",U" ..Q.8_~n~" ••••••• 'ftU~ ••••• ""n"N"." •• 
P S CA RDC OR IER DE L F LE 

RDOlL TEXTC'ORDER DETAIL RECORD') 
CUST HE K [Un 

OLHDGC 'CUSTOMER' 'NUMBER') 
RDER 5 0 OLHDCC'ORDER' 'NUMBER" 

LINNUU 3 0 OLHDCC'LINE' 'NUMBER' 
EXT('L1NE NUUBER OF LINE IN ORDER' ) 

ITEM 5 HECICCMIO) 
o HDCC'ITE:U' . NuMIIER' , 

TYORD 3 0 OLHDG C 'QUANT lTY' 'ORDERED') 
EX ·C'QUANTITY ORDERED' 

ESCRP 30 OLHDCC'ITEM DESCRIPTION', 
PRICE 6 2 CUP(GT 0) 

OLHDC C 'PR CE') 
EXT('SELLING PRICE') 
DTCDECJ) 

XTENS 8 2 o HDG('EXTENSION" 
EXTC'EXTENSIQN AMOUNT OF QTYORD • 

PRICE', 

Figure 8-11 (Part 7 of 15). Program and Supporting DDS for Using Subfiles 

8-32 PL/I User's Guide and Reference 

J 



.!B-'4 J"t",rnotlQnoI8ueiness ~oc:hine. 

Q,nc;M ....... l! 

~ r- ~ .. 
~ Colldl'lIoni'bRI 

e 
! i 

! 
'3 

~ j ~!!. ezd j j d =) ~ln I 1 ~It: 

AS/400 DATA DESCRIPTION SPECIFICATIONS 

:':',!,... f--'-I ::~--+I--+-II Ir--t-I -+-+1 l--+-ll 1 1--"'''' 
, 
~ 
~ 
~ 

~ 
..... 100 

~ 

~ ~ 
01 ~ 0: - .... Ih ~ ~ ~ 

hi 
'i! 

:. li,. ... 
~n ~ 

f'Mld.,.,. 

USING DISPLAY FILES 

CX1t-Wt·O UI,I/tl6O • 
Prillt.a 1ft U.'i.A. 

_,..".Iter 4f _IWetIr per IIOd mtl, YQ? .Iiph,. 

1 Z , .... 7 ., 9'" , 1'\1' ..... 7 " ,,,,fD"t4t.'NW. I'tM.1.l,Jll ".~ . .. " .... ~.U.ft.~mMUM.m."~.lnU~ •• U.W."~~H".".~ 

WHSLDC CHECI«(MFJ 
COLHDGC'BIN' 'NO' ) 

PRDDAT 6 0 TEXT('DATA ORDER WAS ENTERED' ) 
CUSTYP , 0 RANGEC' 5) 

COLHDGC'CUST' 'TYPE' , 
TEXT 'CUSTOMER TYPE ,-GOV 2-SCH + 
3-BUS .... -PVT 5-0TH') 

STATE CHECI«(MF) 
CDLHDGJ 'STATE') 

~CTMTH COLHDG ( 'ACCT' 'MTH' ) 
TEXT{'ACCOUNTING MONTH OF SALE't 

IACTYR 0 COLHOGC'ACCT' 'YEAR') 
TEXTC'ACCOUNTING YEAR OF SALE') 

RDER 
LINNU~ 

'A 
IA 
IA 

.IA 

Figure 8-11 (Part 8 of 15). Program and Supporting DDS for Using Subtiles 

Chapter 8. Using AS/400 Files 8-33 



USING DISPLAY FILES 

5728PL1 ReI Mee 888715 

Inc1 ude SEQNBR STMT.SUBS BLK 8N 00 

SUB1 
SUB1 
SUB1 
SUB 1 
SUB1 
SUB 1 
SUB1 
SUB1 
SUBl 
SUB1 
SUB1 
SUB1 

SUBCTLl 
SUBCTLl 
SUBCTLl 
SUBCTL1 
SUBCTLl 
SUBCTLl 
SUBCTLl 
SUBCTLl 
SUBCTLl 
SUBCTLl 
SUBCTL1 
SUBCTL1 
SUBCTL1 
SUBCTLl 
SUBCTL1 
SUBCTLl 
SUBCTLl 

SUBCTLl 
SUBCTLl 
SUBCTLl 
SUBCTLl 
SUBCTL1 
SUBCTLl 
SUBCTLl 

16a 1 
2ea 
3GG 
4eo 
see 
6e6 
768 
8ee 
98e 

1eea 
1100 
12aa 
1306 

+ 100 
+ 2ee 
+ 30e 
+ 406 
+ 50a 
+ 60a 
+ 7ae 
+ 8ee 
+ 9ae 
+ Ieee 
+ 11ee 
+ 1286 

2 

2.1 
2.2 
2.3 

3 

3.1 
3.2 
3.3 
3.4 
3.5 

148e 3.6 
15ee 

+ 10e 
+ 2aa 
+ 3ae 
+ 40e 
+ 50a 
+ 60e 
+ 700 
+ 8ee 
+ 908 
+ 1800 
+ nse 
+ 12ee 
+ 130e 
+ 14ee 
+ 150e 
+ 166e 
+ 1700 

1Me 
17ee 

+ lee 
+ 2ee 
+ 3ae 
+ 40a 
+ see 
+ see 
+ 706 

3.7 
3.8 

1 
1 1 
1 1 
1 1 
1 1 

1 
1 

1 
1 
1 
1 
1 

1 1 
1 1 

PL/I Source Listing 
LP1422: PROCEDURE: 

LP1422/LP1422 11/36/88 15:39:54 Page 
PRlee168 

*< •• + •••• 1. •.. + •••• 2 •••• + •••• 3 •••• + •••• 4 .••• + •••• 5 •••• + •••• 6 •••. + •••• 7.> •• + •••• 8 Date 

2 

LP1422: PROCEDURE: PRI8e16e 830817 
PRJee17e 

1* FILE DECLARATIONS *1 
DECLARE D m m m 

PRIOtHB0 
PRlae190 

ORD220D FILE RECORD SEQUENTIAL KEYED UPDATE ENV(INTERACTIVE), 
ORDHDRP FILE RECORD DIRECT INPUT EtlV(iNDEXED DESCRIBED), 
ORDDTLP FILE RECORD DIRECT INPUT ENV(INDEXED DESCRIBED), 
CUSMSTP FILE RECORD DIRECT INPUT ENV(INDEXED DESCRIBED); 

PRlee2ee 8366e9 
PRlee21e 836919 

830919 
830919 

PRlee22e m m m a 
1* RECORD DECLARATIONS *1 
DECLARE 

PRJee23e 
PRle0246 

1 SUB 1 RECORD, PRI00256 
m %INCLUDE ORD226D(SUB1,OUTPUT"COMMA); PRI6626e 830919 

1* ----------------------------------------------------------------- *1 
1* DEVICE FILE: ORD220D.LP1422 *1 
1* FILE CREATION DATE: 87/11/36 *1 
/* RECORD FORMAT: SUB1 'O/ 
/'O RECORD FORMAT SEQUENCE 10: 14DC3D225CC47 'O/ 
1* ----------------------------------------------------------------- * / 

15 ITEM PIC '9999R', /'O Itell Number *1 
15 QTYORD PIC '99R', 1* Quanti ty Ordered *1 
15 DESCRP CHAR(3G), /'O Item Description *1 
15 PRICE PIC '9999V9R', 1* Selling Price *1 
15 EXTENS PIC '999999V9R', /* Extension Amount of QTYORD * 

PRICE *1 
SUBCTL1_RECORD_INPUT, PRI0627e 830609 

m %INCLUDE ORD226D(SUBCTL1,INPUT"COMMA): PRI6a289836919 
1* ----------------------------------------------------------------- *1 
/'O DEVICE FILE: ORD220D.LP1422 */ 
1* FILE CREATION DATE: 87/11/36 'O/ 
/'O RECORD FORMAT: SUBCTL1 'O/ 
/'O RECORD FORMAT SEQUENCE 10: lAC3AF315286B *1 /'O _________________________________________________________________ */ 

1* INDICATORS FOR FORHAT SUBCTL1 *1 
1* INDICATOR 45 *1 
1* INDICATOR 47 No lines for this order */ 
1* INDICATOR 57 Display Subfile */ 
/'O ItWICATOR 58 Off=Display Subctl On=Clear Subfile *1 
1* !llDICATOR 61 Order number not found *1 
/'O INDICATOR 62 No customer record found for this order 'O/ 
/'O INDICATOR 97 Continue Display *1 
/'O INDICATOR 99 End of Program 'O/ 
/'O ------ - ------- -------____ - ---------- ---------------- -----_ ------- *1 

15 ORDER PI C '9999R', 1* Order Number * 1 
1 SUBCTL1 RECORD OUTPUT, 83e669 

Dm %INCLUDE ORD220D(SUBCTLl,OUTPUT, ,COMMA): 830919 
/'O ----------------------------------------------------------------- *1 
/'O DEVICE FILE: ORD226D.LP1422 *1 
/'O FILE CREATION DATE: 87/11/39 'O/ 
1* RECORD FORMAT: SUBCTLl *1 
/'O RECORD FORMAT SEQUENCE 10: 1AC3AF315286B *1 
/* ------ ----- --------------- --------------------------------------- * / 
/'O INDICATORS FOR FORMAT SUBCTL1 *1 

Figure 8·11 (Part 9 of IS). Program and Supporting DDS for Using Subfiles 

8-34 PL/I User's Guide and Reference 

J 

J 

J 



USING DISPLAY FILES 

L 5728Pl1 Re1 Meo 888715 Pl/I Source listing lP1422/lP1422 11/39/88 15:39:54 Page 3 
lP1422: PROCEDURE: PRI09169 

Include SEQNBR STMT.SUBS BlK BN DO *< •• + •••• 1. .•• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 •••• + .... 7.> .. + .... 8 Date 
SUBCTLl + 8ea 1* INDICATOR 45 *1 
SU8CTLl + gee 1* INDICATOR 47 No lines for this order *1 
SUBCTLl + 1ge5 1* INDICATOR 57 Display Subfile *1 
SUBCTl1 + 1160 1* INDICATOR 58 Off-Display Subctl On=Clear Subfile *1 
SUBCTl1 + 1260 1* INDICATOR 61 Order number not found *1 
SUBCTLl + 1366 1* INDICATOR 62 No customer record found for this order *1 
SUBCTLl + 1406 I" INDICATOR 97 Continue Display "I 
SUBCTLl + 1566 1* INDICATOR 99 End of Program *1 
SUBCTLl + 1609 1* .---------------------------------------------------------------- * I 
SUBCTll + 1706 3.9 1 15 ORDER PIC '9999R'. 1* Order Number *1 
SUBCTLl + 1869 3.1S 1 15 ORDDAT PIC '99999R', 1* Date Order was Entered *1 
SUBCTLl + 1960 3.11 1 15 CUST CHAR(5) , 1* Customer Number *1 
SUBCTLl + 2606 3.12 1 15 NAt4E CHAR(25) , 1* Customer Name *1 
SUBCTLl + 2199 3.13 1 1 15 ADDR CHAR(29) , 1* Customer Address *1 
SUBCTLl + 2200 3.14 1 1 15 CITY CHAR(29) , 1* Customer City *1 
SUBCTLl + 2399 3.15 1 15 STATE CHAR(2), 1* State *1 
SUBCTll + 2499 3.16 1 15 ZIP PIC '9999R', 1* Zip Code *1 
SUBCTLl + 2509 3.17 1 15 ORDAMT PIC '999999V9R', 1* Total Dollar Amount of the 
SUBCTll + 260e Order *1 
SUBCTLl + 2760 3.18 1 1 15 STSORD CIIAR(12). 
SUDCTll + 2860 3.19 1 1 15 STSOPN CHAR(12). 
SUBCTll + 2960 3.29 1 1 15 CUSORD CHAR(15) , 1* Customer Purchase Order Number 
SUBCTl1 + 3000 *1 
SlIBCTLl + 3190 3.21 1 1 15 SHPVIA CHAR(15) , 1* Shipping Instructi ons *1 
SUBCTLl + 3200 3.22 1 1 15 PRTDAT PIC '99999R' , 1* Date Order was Printed *1 
SUBCTLl + 3300 3.23 1 1 15 INVULIM PIC '9999R' , 1* Invoice Number *1 
SUBCTll + 3406 3.24 1 1 15 ACTMTH PIC '9R' • 1* Accounting Month of Sale *1 
SU8CTl1 + 3500 3.25 1 1 15 ACTYR PIC '9R'. 1* Accounting Year of Sale *1 

1800 3.26 1 1 SUBCTll_1 1m I CATORS, 831097 
1906 m % INCLUDE ORD220D (SUBCTl1. I NDI CATORS. ,COM\~A) : 831007 

L SUBCTl1 + 100 1* ----------------------------------------------------------------- *1 
SUBCTLl + 2e9 1* DEVICE FilE: ORD220D.lP1422 *1 
SUBCTLl + 30a 1* FilE CREATION OATE: 87/11/39 *1 
SUBCTll + 499 1* RECORD FORMAT: SUBCTll *1 
SUBCTll + 50e 1* RECORD FORMAT SEQlIENCE 10: lAC3AF315286B *1 
SlIBCTLl + 609 1* ----------------------------------------------------------------- *1 
SUBCTLl + 766 3.27 1 15 IN01_IN44 CHAR(44) , 1* UNDEFINED INDICATOR(S) "'I 
SUBCTLl + 860 3.28 1 1 15 IN45 PIC '9', 
SUBCTll + 900 3.29 1 1 15 IN46_IN46 CHAR{(1) • 1* UNDEFINED INDICATOR(S) *1 
SUBCTll + 1060 3.31l 1 1 15 IN47 PIC '9', 1* tlo 1 i nes for thi s order *1 
SlIBCTll + 1l01l 3.31 1 1 15 IN48_IN56 CHAR(a9) , 1* UNDEFINED INDICATOR(S) *1 
SUBCTLl + 1290 3.32 1 1 15 IN57 PIC '9', 1* Display Subfile *1 
SUBCTLl + 13aO 3.33 1 15 IN58 PIC '9', I'" Off=Display Subctl OnaClear 
SUBeTll + 1400 Subfile *1 
SUBCTLl + 15BS 3.34 1 1 15 IN59_IN60 CHAR(02), 1* UNDEFINED INDICATOR(S) *1 
SUBCTLl + 1698 3.35 1 1 15 IN61 PIC '9', 1* Order number not found *1 
SUBCTl1 + l70S 3.36 1 1 15 IN62 PIC '9', 1* No customer record found for 
SUBCTl1 + 181l1l this order *1 
SUBCTLl + 1980 3.37 1 1 15 IN63_IN96 CHAR(34) , 1* UNDEFINED INDICATOR(S) *1 
SUBCTLl + 201le 3.38 1 1 15 11197 PIC '9', 1* Continue Dis\llay *1 
SUBCTLl + 211la 3.39 1 1 15 IN98_IN98 CHAR(Sl), 1* UNDEFINED INDICATOR(S) *1 
SUBCTLl + 2290 3.40 1 1 15 IN99 PIC '9', 1* El1d of Program *1 

20ea 3.41 1 1 ORDER_HEADER, PRle0290 

Figure 8-11 (Part 10 of 15). Program and Supporting DDS for Using Subfiles 

Chapter 8. Using ASj400 Files 8-35 



USING DISPLAY FILES 

5728PLl RB1 Ma9 88a715 Pl/I Source listing lP1422/lP1422 11/39/88 15: 39: 54 Page 4 J 
lP1422: PROCEDURE; PRIae168 

Include SEQNBR STMT.SUBS BlK BN DO *< .• + ••.• 1. •.. + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
2189 %INClUDE OROHDRP(OROHOR,RECORo"COMMA}; PRI883ee 838919 

ORDHoR + lea 1* ----------------------------------------------------------------- *1 
ORDHDR + 2ee 1* PHYSICAL FILE: ORoHoRP.lP1422 *1 
ORDHDR + 3ae 1* FILE CREATION DATE: 87/11/39 *1 
ORDHDR + 46a 1* RECORD FORt4AT: ORoHoR *1 
ORDHDR + sea 1* RECORD FORMAT SEQUENCE ID: 4F2FCl4033lEB *1 
ORDHDR + 66a 1* -------Order Header Record--------------------------------------- *1 
ORDHDR + leO 3.42 1 15 CUST CHAR(S} , 1* Customer Number *1 
ORDHDR + 80e 3.43 1 15 ORDER PIC '9999R', 1* Order Number *1 
ORDHDR + gee 1* ODS - KEY FIELD *1 
ORDHDR + H10e 3.44 1 15 ORoDAT PIC '99999R', 1* Date Order was Entered *1 
ORDHDR + 110a 3.45 1 15 CUSORD CHAR(15}, 1* Customer Purchase Order Number 
ORDHDR + 120e *1 
ORDHDR + 130e 3.46 1 15 SHPVIA CHAR(15} , 1* Shipping Instructions *1 
ORDHDR + 1400 3.47 1 15 ORDSTS PIC 'R', 1* Order Status l=PCS 2=CNT 3·CHK 
ORDHDR + 1508 4=RDY 5=PRT 6=PCK *1 
ORDHDR + 169a 3.48 15 OPRNAM CHAR(10}, 1* Opera tor Name who entered the 
ORDHDR + 170a order *1 
ORDHDR + 18Be 3.49 1 15 ORDAMT PIC '999999V9R', 1* Total Dollar Amount of the 
ORDHDR + 19BO Order *1 
ORDfIOR + 2008 3.50 1 15 CUSTYP PIC tR ' , 1* Customer Type 1-GOV 2·SeH 
ORDHDR + 2l0a 3=BUS 4=PVT 5=OTH *1 
ORCHDR + 22ee 3.51 1 15 INVNUM PIC '9999R' , 1* Invoice Number *1 
ORDHDR + 2300 3.52 1 15 PRTOAT PIC '99999R', 1* Date Order was Printed *1 
ORDHDR + 240e 3.53 1 15 OPtlSTS PIC 'R', 1* Order Open Status 1=OPEN 
ORDHDR + 256e 2=CLOSE 3=CANCEL *1 
ORDHDR + 2600 3.54 1 15 TOTLIN PIC '99R' , 1* Total line Items in Order *1 
ORDHDR + 2700 3.55 1 1 15 ACTMTH PIC '9R', 1* Accounting Month of Sale *1 
ORDHDR + 28e8 3.56 1 1 15 ACTYR PIC '9R'. 1* Accounting Year of Sale *1 
ORDHDR + 290e 3.57 1 1 15 STATE CHAR (2) , 1* State *1 
ORDHDR + 3eSe 3.58 1 1 15 AMPAID PI C '999999V9R', 1* Total Dollar Amount Paid *1 

J 226e 3.59 1 1 1 ORDER_DETAIL, PRI80318 
2300 %1 NClUDE ORDDTlP(ORDDTl, RECORD .. COMMA} ; PR I e932e 839919 

ORDDTl + 189 1* ----------------------------------------------------------------- *1 
ORDDTl + 2eO 1* PHYSICAL FILE: ORDDTlP.LP1422 *1 
ORDDTl + 30e 1* FILE CREATION DATE: 87/11/39 *1 
ORDolL + 490 1* RECORD FORMAT: ORDDTl *1 
ORDDTl + see 1* RECORD FORMAT SEQUENCE ID: 3CAOF801BF74E *1 
ORDDTl + 60e 1* -------Order Detai I Record--------------------------------------- *1 
ORDDTl + 7ae 3.60 1 15 CUST CHAR(S) , 1* Customer Humber *1 
ORDDTl + 8ee 3.61 1 15 ORDER PIC '9999R', /* Order Number *1 
ORDDTl + 9ge 1* DOS - KEY FIELD *1 
ORDDTl + 1800 3.62 15 LINNUM PIC '99R' , 1* Line Number of line in order*1 
ORDDTl + 1190 1* DDS - KEY FI ElD *1 
ORDDTl + 12ea 3.63 1 15 ITEM PIC '9999R' , 1* Item Number *1 
ORDDTl + 13eO 3.64 1 15 QTYORD PIC '99R', 1* Quanti ty Ordered */ 
ORDDTl + 1490 3.65 1 15 DESCRP CHAR(3e) , 1* Item Description *1 
ORDDlL + 1500 3.66 1 15 PRICE PIC '9999V9R', 1* Sell ing Price *1 
ORDDTl + 1698 3.67 1 15 EXTENS PIC '999999V9R', 1* Extension Amount of QTYORD * 
ORDDTl + 1796 PRICE *1 
ORDDTl + l8eO 3.68 1 1 15 WHSlOC CHAR(3) , 1* Bin No. *1 
ORODTl + 1900 3.69 1 1 15 ORoDAr PIC '99999R', /* Date Order was Entered *1 
ORDDTl + 2090 3.76 1 1 15 CUSTVP PIC 'R', 1* Customer Type l=GOV 2=SCH 

Figure 8-11 (Part 11 of 15). Program and Supporting DDS for Using Subftles 

8-36 PL/I User's Guide and Reference 



USING DISPLAY FILES 

5728Pll R91 M99 889715 PL/I Source Listing LP1422/LP1422 11/38/88 15:39:54 Page 5 
LP1422: PROCEDURE: PRI88169 

Include SEQNBR STMT. SUBS BLK BN DO *< •• + •••• 1. ••. + •••• 2 .... + •••• 3 .... + .... 4 .... + .... 5 •••• + .... 6 •••• + .... 7.> .. + .... 8 Date 
ORDDTL + 21aa 3-BUS 4-PYT 5-0TH */ 
ORDDTL + 2288 3.71 1 1 15 STATE CHAR(2), /* State */ 
ORDDTL + 2388 3.72 1 1 15 ACTMTH PIC '9R', /* Accounting Month of Sale */ 
ORDDTL + 24a9 3.73 1 1 15 ACTYR PIC '9R', /* Accounting Year of Sale */ 

249a 3.74 1 1 CUSTOI~ER _MASTER, 
2588 %INCLUDE CUSMSTP(CUSMST,RECORD); 839683 

CUSMST + le8 /* ----------------------------------------------------------------- */ 
CUSMST + 209 /* PHYSICAL FILE: CUSMSTP.LP1422 */ 
CUSMST + 3e9 /* FILE CREATION DATE: 87/11/39 */ 
CUSMST + 4ge /* RECORD FORMAT: CUSMST */ 
CUSMST + 599 /* RECORD FORMAT SEQUENCE ID: 4AA7C99E9BB1E */ 
CUSMST + 689 /* -------CUSTOHER MASTER RECORD------------------------------------ */ 
CUSHST + 7ee 3.75 15 CUST CHAR(5) , /* CUSTOMER NUMBER */ 
CUSMST + saa /* DDS - KEY FIELD */ 
CUSMST + 999 3.76 1 15 NAME CHAR(25), /* CUSTOMER NAME */ 
CUSMST + 1899 3.77 1 1 15 ADDR CHAR(29), /* CUSTOMER ADDRESS */ 
CUSI~ST + uea 3.78 1 1 15 CITY CHAR(2e), /* CUSTO~IER CITY */ 

L CUSMST + 1269 3.79 1 1 15 STATE CHAR(2) , /* STATE */ 
CUSMST + 1399 3.S9 1 1 15 ZIP PIC '9999R', /* ZIP CODE */ 
CUSMST + 1499 3.81 1 1 15 SRHCOD CHAR(6) , /* CUSTOMER NUMBER SEARCH CODE */ 
CUSMST + lsea 3.82 1 1 15 CUSTYP PIC 'R', /* CUSTOMER TYPE 1-GOV 2-SCH 
CUSMST + 1669 3-BUS 4~PVT 5-0T */ 
CUSMST + 1799 3.83 1 1 15 ARBAL PIC '999999Y9R', /* ACCTS REC BALANCE */ 
CUSMST + 1899 3.84 1 1 15 ORDBAL PIC '999999Y9R', /* A/R AMT IN ORDER FILE */ 
CUSI4ST + 1999 3.85 1 1 15 LSTAMT PIC '999999Y9R', /* LAST AHT PAID IN A/R */ 
CUSMST + 2aea 3.86 1 1 15 LSTDAT PIC '99999R', /* LAST DATE PAID IN A/R */ 
CUSHST + 2199 3.S7 1 1 15 CRDLMT PIC '999999Y9R', /* CUSTOMER CREDIT LIMIT */ 
CUSHST + 2299 3.88 1 1 15 SLSYR PIC '99999999V9R', 
CUSMST + 2399 /* CUSTOMER SALES THIS YEAR */ 
CUSMST + 24a9 3.89 1 15 SLSLYR PIC '99999999Y9R'; 
CUSMST + 25ea /* CUSTOMER SALES LAST YEAR */ 

2698 83a683 
2799 /* KEY STRUCTURE */ 839693 
2S98 4 1 1 DECLARE 839683 
2ge9 1 1 1 DETAIL_KEY, 839602 
3e99 4.1 1 1 2 D_ORDER PI CTURE '9999R', 831911 
3198 4.2 1 1 2 D_L1NNUM PICTURE '99R'; 831811 
3209 PRI99339 
33e9 /* INOICATOR FLAGS */ PRI89349 
3499 5 1 1 DECLARE PRI98358 
3599 1 1 1 INDICATOR_FLAGS STATIC, PRI99368 
3698 5.1 1 1 2 OFF PICTURE '9' INIT(9), PRI98378 831a87 
3799 5.2 1 1 2 ON PICTURE '9' INIT(l) : PRI99389 831887 
3898 PRI993ge 
3999 /* BUILT-IN FUNCTIONS */ PR198478 839682 
4998 6 1 DECLARE PRle8488 
41ge 1 1 ONCODE BUILTIN, PRI99499 831811 
4288 6.1 1 1 DECIMAL BUlL TIN; 831911 
4309 839692 
4499 /* PROGRAM VARIABLES */ PRI99588 
45e8 7 1 1 DECLARE PRle9599 
46e8 1 1 OPNSTAT(3) STATIC CHAR(12) INIT('l-0PEN', PRJ ge698 839669 
4799 1 1 '2-CLOSEO' , 839689 

Figure 8·11 (Part 12 of 15). Program and Supporting DDS for Using Subfiles 

Chapter 8. Using AS/400 Files 8-37 



USING DISPLAY FILES 

5728PLl ROI Mee 889715 PL/I Source Listing LP1422/LP1422 11/39188 15:39:54 Page 6 
LP1422: PROCEDURE: PRIS9160 

Include SEQNBR STMT.SUBS BLK BN DO "'< .. + .... 1. ... + •••• 2 .... + •••• 3 •••• + •••• 4 •••• + •••• 5 .... + •••• 6 •••• + •••• 7.> •• + .... 8 Date 
4808 1 1 '3-CANCELLED'} , 83a6a9 
4906 7.1 1 1 ORDSTAT(9) STATIC CHAR(12} INIT('l-IN PROCESS', 83a669 
5aoo 1 1 '2-COHTI HUED' , 83a609 
5160 1 1 '3-CREDIT CHK', 830669 
5200 1 1 '4-READY PRT', 836669 
5360 1 1 ' 5-PRitITED' , 836609 
548e 1 1 '6-PICKEO', 830669 
5500 1 1 '7-INVOICED' , 836609 
5600 1 1 '8- I NVALI D' , 836669 
5700 1 '9-CANCELLEO') , 830609 
5808 7.2 1 READ_CHK CHAR(5} : 83a602 
5960 830602 
60eO 8 1 m ON KEY(ORDHDRP) 830662 
6lee 1 1 BEGIN: 830G02 
620e 9 2 2 ON ERROR SYSTEM: 830682 
6306 18 2 2 IF ONCODE z 51 THEN 830662 
6460 2 2 !Il DO: 830Ge2 
6566 11 2 2 1 IN61 • Oil: 830602 
66e8 12 2 2 1 GOTO OSP: 830G02 
6700 13 2 2 1 END: 1* DO *1 830602 
688e 14 2 2 END: I'" BEGIN "'I 83aGe2 
690e 83aG92 
7eee 15 1 1 ON KEY(ORDDTLP) 83a682 
71a9 1 1 BEGIN: 830602 
7266 16 3 2 ON ERROR SYSTEI~: 83a602 
730a 17 3 2 IF ON CODE K 51 THEN 830602 
7400 3 2 IF READ_CHK a 'READl' THEN 836602 
7566 3 2 DO: 836662 
7606 18 3 2 1 IN47 • ON: 839602 
776e 19 3 2 1 GOTO DSP: 836662 
7800 2e 3 2 1 END: I'" DO *1 830602 J 799a 21 3 2 ELSE 83a662 
8a00 3 2 GOTO SUB: 836602 
8100 22 3 2 END: /* BEGIN */ 830662 
8200 830662 
8300 830602 
8400 23 ON KEY (CUSMSTP) 830602 
8S0e SEGIN; 830662 
8600 24 4 2 ON ERROR SYSTEM; 830602 
8700 25 4 2 IF ON CODE = 51 THEN 830602 
8800 4 2 DO: 830602 
8900 26 4 2 1 IN62 = ON; 830682 
900a 27 4 2 1 GOTO DSP; 830602 
9160 28 4 2 1 END; /* DO */ 830602 
9200 29 4 2 END: /* BEGIN "'I 830602 
93eO PRI06618 
94aO 39 1 1 ON ENDFILE(ORD2200) PRI00620 830602 
9500 1 1 GOTO SUB: PRI60639 830602 
9680 830619 
9700 31 1 ON ENDFILE(ORDDTLP) 830619 
9800 1 1 GOTO SUB: 839619 
9900 PRI90646 

1000e /* MAl N PROGRAM "'/ PRIoe659 

Figure 8-11 (Part 13 of 15). Program and Supporting DDS for Using Subfiles 

J 
8·38 PL/I User's Guide and Reference 



USING DISPLAY FILES 

5728PLl Re1 Me8 888715 PL/I Source Listing LP1422/LP1422 11/36187 15:39:54 Page 7 
LP1422: PROCEDURE; PRI9916e 

Include SEQNBR STHT .SUBS BLK BN DO "< •• + •••• 1 .... + .... 2 .... + •••• 3 •••• + .... 4 •••• + .... 5 .... + •••• 6 .... + •••• 7.> •• + •••• 8 Date 
19189 32 1 1 SUBCTL1_INOICATORS • OFF; I" SET ALL INDICATORS OFF *1 886415 
18299 888415 
18399 33 1 1 SUBCTLl_RECORD_OUTPUT.ORDDAT • 8; 888415 
18488 34 1 1 SUBCTL1_RECORD_OUTPUT.OROAMT • 8; 880415 
1858e 35 1 1 SUBCTLl_RECORO_OUTPUT .PRTDAT .. 8; 888415 
19699 35 1 1 SUBCTL1_RECORD_OUTPUT.ZIP .. 8; 889415 
19799 37 1 1 SUBCTLl_RECORD_OllTPUT.INVNUM • 9; 880415 
18888 38 1 1 SUBCTL1_RECORD_OUTPUT.ACTMTH .. 9; 889415 
1ege9 39 1 1 SUBCTLl_RECORD_OUTPUT.ACTYR • 8: 888415 
11gee 888415 
11189 49 1 IE! OPEN PRHI8599 889415 
11208 1 FILE (OR022eD); 1* UPDATE *1 PRI88708 888415 
1138e 41 1 IE! OPEN PRIe871e 888415 
114e9 1 FILE (ORDHDRP); 1* INPUT *1 PRI88729 888415 
115ge 42 1 IE! OPEN 880415 
11699 FILE (ORODTLP); I" INPUT *1 88(l415 

L 
11789 43 IE! OPEN 880415 
11808 1 FILE (CUSMSTP); I" INPUT *1 880415 
11988 PRI89758 889415 
12900 44 1 !Ill DSP: DO WHILE(IN99 .. OFF); PRI98766 880415 
12180 PRI99n8 888415 
12289 45 1 1 m WRITE FILE (ORD220D) FROM (SUBCTL1_RECORD_OUTPUT) PRI88789 888415 
12399 1 1 OPTIONS(RECORO('SUBCTL1') INDICATORS(SUBCTL1_INDICATORS»;PRI69798 888415 
12488 45 1 1 1 IN58 .. OFF; 888415 
12588 47 1 1 1 iii READ FILE (ORD228D) INTO (SUBCTL1_RECORO_INPUT) PRJe9808 880415 
12600 1 1 1 OPTIONS(RECORD('SUBCTL1') INDICATORS(SUBCTLI_INDICATDRS»; PRISB810 888415 
12780 48 1 1 1 m READ FILE (ORDHDRP) INTO (ORDER_HEADER) PRI88829 888415 
12899 1 1 1 KEY(SUBCTLl_RECORD_INPUT.ORDER) OPTIONS(KEYSEARCH(EQUAL»; 888415 
1290e 49 1 1 1 ; SUBCTLl_RECORD_OUTPUT • ORDER_HEADER, BY NAME; 880415 
13088 59 1 1 1 D_ORDER· SUBCTL1_RECORD_OUTPUT.ORDER; PRI90838 888415 
1310e 51 1 1 1 D_L1NNUM .. 1; PRI e8840 889415 
13280 52 1 1 1 READ_CHK" 'READ1'; PRI0085e 880415 
13388 53 1 1 1 EI!l READ FILE (ORDDTLP) INTO (ORDER_DETAIL) KEY (DETAIL_KEY) PRI08868 888415 
13409 1 1 1 OPTIONS(KEYSEARCH(EQUAL) NBRKEYFLDS(2»; 880415 
13560 54 1 1 1 e! READ FILE (CUSMSTP) INTO (CUSTOMER_MASTER) PRla0878 880415 
13600 1 1 1 KEY(OROER_DETAIL.CUST} OPTIONS(KEYSEARCH(EQUAL)}; 880415 
13709 55 1 1 1 m SUBCTLl_RECORD_OUTPUT " CUSTOMER_MASTER, BY t1At4E; 880415 
13880 PRI80888 888415 
13980 1* FILL THE SCREEN *1 PRI88899 888415 
14000 56 1 1 1 I DO WHILE(D_LINNUM < TOTLIN); PRI80919 888415 
14100 57 1 1 2 SU81_RECORD " ORDER_DETAIL, BY NAME; 880415 
14200 58 1 1 2 fIl WRITE FILE (ORD228D) FROM (SUB I_RECORD) PRI00946 880415 
14388 1 1 2 KEYFROM(O_LINNUM) OPTIONS(RECORD('SUB1'»; PRla8950 880415 
14480 59 1 1 2 D_LINNUM = D_LINNUM + 1; 880415 
14560 69 1 1 2 READ_CHK " 'READ2': 880415 
14680 61 1 1 2 READ FILE (ORDDTLP) INTO (ORDER_DETAIL) KEY(DETAIL_KEY) 880415 
147e8 1 1 2 OPTIONS(KEYSEARCH(EQUAL»; 888415 
14800 62 1 1 2 END; 1* DO WHILE *1 880415 
14909 888415 
15609 63 SUB1_RECORD " ORDER_DETAIL, BY NAME; 880415 
151a9 64 !l WRITE FILE (ORD220D) FROM (SUBl_RECORD) PRI08949 880415 
15208 KEYFROM (D_L1 NNUM) OPT! ONS(RECORD(' SUB l' » ; PRIS8950 880415 
1538B 65 SUB: IN57 = ON; 880415 
15489 66 STSOPN " OPNSTAT(DECIMAL(OPNSTS}); 880415 
15500 57 STSORD • ORDSTAT(DECIMAL(ORDSTS»; 880415 
15608 68 EE WRITE FILE (ORD220D) FROM (SUBCTL1_RECORD_OUTPUT) 886415 
15786 OPTIONS(RECORD('SUBCTLl') INDICATORS(SUBCTLl_INDICATORS}); 889415 

Figure 8·11 (Part 14 of 15). Program and Supporting DDS for Using Sub files 

Chapter 8. Using AS/400 Files 8-39 



USING DISPLAY FILES 

5728PLI R91 M99 888715 PL/I Source Listing LP1422/LP1422 11/38/88 15:39:54 Page 8 
LP1422: PROCEDURE; PRI88168 

Include SEQNBR STMJ.SUBS BLK BN DO "< •• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
15898 69 1 1 
15999 78 1 1 
16899 71 1 1 
16199 
16289 72 1 1 
16398 1 1 
16488 73 1 1 
16588 1 1 
16698 74 1 1 
16788 1 1 
16898 75 1 1 
16998 1 1 
17e98 
17189 76 1 1 

1 
1 
1 

IN57 • OFF; 
IN58 • ON; 

END; /" DO WHILE ,,/ 

CLOSE 
FILE (ORD229D); 

CLOSE 
FI LE (ORDHDRP); 

CLOSE 
FILE (ORDDTLP); 

CLOSE 
FILE (CUSMSTP): 

END LP1422; 

889415 
888415 

PRI98978 889415 
889415 

PRI89988 889415 
PRI89998 889415 
PRI91999 888415 
PRI81fl18 889415 

889415 
889415 
889415 
889415 

PRI81829 889415 
PRI91938 888415 

Figure 8-11 (Part 15 of 15). Program and Supporting DDS for Using Subtiles 

EXISTING ORDER INQUIRY 

ORDER 12345 EVANS, NICK 
DATE 88/06/14 123 LARKSONG AVE. 
CUST , 11111 NORTH YORK 

ITEM 

11114 
22228 
33332 

ON 98238 
INVOICE 

QTY ITEM DESCRIPTION 

45 BITS AND BYTES 
10 ODDS AND ENDS 
6 LOTS OF STUFF 

TOTAL $22,606.00 
STATUS 4-READY PRT 
OPEN 2-CLOSED 
CUSTOMER ORDER A375836743 
SHIP VIA RUSH 
PRINTED DATE 88/06/17 

(;)1481 HTH 06 YEAR 88 
PRICE EXTENSION 

50e.oe 
1e.oe 
LeO 

30.0e 
1.0e 
.69 

Figure 8-12. Display Produced Using Supporting DDS for Subfdes 

D RECORD data transmission is used with ORD220D, ORDHDRP, 
ORDDTLP, and CUSMSTP. 

B ORD220D is declared as SEQUENTIAL KEYED, so that its records can be 
processed either sequentially or randomly by key. One of its fields, 
SUBCTL_RECORD_INPUT.ORDER, is used as a key when other files are 
accessed. 

II The UPDATE attribute and the INTERACTIVE option of the ENVIRON­
MENT attribute are specified for ORD220D. Both READ and WRITE 
statements are allowed, in this case to provide prompt screens and read input 
which is entered on the work station screen. 

8-40 PL/I User's Guide and Reference 

J 

J 



USING DISPLAY FILES 

II ORDHDRP, ORDDTLP, and CUSMSTP are declared with the DIRECT 
attribute, because they are accessed non-sequentially. 

iii ORDHDRP, ORDDTLP, and CUSMSTP are used for INPUT only; no 
output is directed to the ftles by the program. 

m ORDHDRP, ORDDTLP, and CUSMSTP are INDEXED; the ftles are 
processed using the keyed sequence access path. 

fJ DESCRIBED indicates that external record format defInitions are used in the 
program. 

m 
m 
m 

m 

m 

Em 

m 

SUBl RECORD consists of all the OUTPUT fIelds in record format SUBI 
of ftle ORD220D. 

SUBCTLl RECORD INPUT consists of all the INPUT fIelds in record - -
format SUBCTLl of ftle ORD220D. 

SUBCTLl RECORD OUTPUT consists of all the OUTPUT fIelds in - -
record format SUBCTLl offtle ORD220D. 

SUBCTLl INDICATORS consists of all the INDICATORS in record 
format SUBCTLl offtle ORD220D. 

This on-unit runs when a KEY condition is raised for ftle ORDHDRP. 

This do-group runs if the KEY condition is raised with code 51, that is, if no 
record in ORDHDRP has the key that is specifIed in a data transmission 
statement accessing the me. 

The ftles are opened. The data transmission modes were specilied as attri­
butes in the me declaration; they could also have been specilied here as 
options of the OPEN statement, but instead have been incorporated as com­
ments. 

Running of the do-loop continues while indicator 99 is set to OFF. When 
the user presses FI, indicator 99 is set to ON, running of the do-loop ends, 
the mes are closed, and program running ends. 

The prompt screen record is written to the display me. Record format 
SUBCTLl is used. SUBCTLl_INDICATORS, a structure defmed earlier 
using a %INCLUDE directive, is passed to the display device. 

The input supplied by the user is read into SUBCTLl_RECORD_INPUT 
using record format SUBCTLl, and the device returns its indicators to 
SUBCTLl INDICATORS. 

The key supplied by the user, fIeld ORDER of structure 
SUBCTLl_RECORD_INPUT, is used to find and read a record from me 
ORDHDRP into ORDER_HEADER. The OPTIONS option of the 
READ statement specifies that the target key must be equal to the specilied 
key. 

The appropriate fields of ORDER_HEADER are then placed in 
SUBCTLl_RECORD_OUTPUT using a BY NAME assignment statement. 

Chapter 8. Using ASj400 Files 8-41 



USING DISPLAY FILES 

m DETAIL_KEY is a structure consisting of the fields D_ORDER and 
D _ LINNUM. The key supplied by the user, field ORDER of structure 
SUBCTLl_RECORD_OUTPUT, is assigned to D_ORDER. D_LINNUM 
is assigned an initial value of 1. 

m DETAIL_KEY is used to fmd and read into ORDER_DETAIL the first 
record in ORDDTLP with the order number specified by the user. 

Ell The customer number from the order detail record just read in is used as the 
key to read into CUSTOMER_MASTER the record from CUSMSTP con­
taining information on the customer that placed the order. 

m The fields from CUSTOMER_MASTER that will be displayed on the work 
station screen are assigned to SUBCTLl_RECORD_OUTPUT. 

m The program enters a loop which reads in data using the key supplied by the 
user. A comparison with TOTLIN ensures that the loop ends when all -~ 

records for that particular order have been read in from ftle ORDDTLP. ..." 

ED An order line is written to the subftle, 

m The new subftle is written to the device ftle ORD220D, and the order display 
appears on the work station screen. 

8-42 PL/I User's Guide and Reference 

J 

J 



L 

L 

USING DISPLAY FILES 

Example of Using Indicators 
Using Externally Defined Indicators in a Separate Area: The following program 
uses indicators in a separate area. They are included in the program with the 
%INCLUDE directive. 

IBM Int.,rn<ltlonol Business UoeniMs 
AS/400 DATA DESCRIPTION SPECIFICATIONS ClCl1...geg1-Q Ut4~. 

Prlnttd \n U.5."' • 
• Nu ..... oltf.hHlB _ltadfflOl vor,.!~tI)'. 

::~tio" I::~ I I I I I I I I 
Cc!ndilioni,.. 

'-"'" -
~ i Cott:Rllon~ 

I - .... " ~ r",nelo", ........,. " N"" ... ~ h-iz~.i 
J 2·~ :. u". .... 

Bi1i!jj n ~ 
, 'I ~ 4 I • t • , 10 , . ~ .. 4" . .. 111J'U'!4,!'7"va ". n .n,u,,4 ... " ." .",w M.~.n_~~U~N.~~~M~ft~~ •• ~.~nn~nun~".n 

PI 'L ~E DDS FPR liND I C II; :5 

INDARA 
A PRINT 

FORMAT' F03(99" END OF PROGRAM' ) 
F05(S1 'DAILY REPORT J 
F09(o2 'MONTHLY REPoR ' ) 

III 'I}E:PAJifME:N NUMSE:R: 
EPTNO S I 10 32 

1 20 25 'PRODUCE MONTHLY REPORTS' 
DSPATR BL 

• 2.oCi 01 'FS · DAILY REPORT' 
2'" 26 'F9 · MONTHLY REPORT' 
2'" S 'F3 · END' 

Figure 8-13 (Part 1 of 3). Program Using Indicators in a Separate Area 

Chapter 8. Using AS/400 Files 8·43 



USING DISPLAY FILES 

5728PLl RBI MeG 888715 PL/I Source Listing LP1423/LP1423 11/38/88 15:38:81 Page 2 J 
LP1423: PROCEDURE; SEP88l69 

Include SEQNBR STMT. SUBS BlK BN DO *< .. + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
lee 1 lP1423: PROCEDURE; SEPa816B 838817 
2e0 SEP69176 
36e /* FilE DECLARATIONS */ SEPee18e 
4ee 2 1 1 DECLARE D m m m SEPoa19a 
see 1 1 DISPFILE FILE RECORD SEQUENTIAL UPDATE ENV(INTERACTIVE); SEP0020a 839687 
6ee SEPee21G 
700 /* RECORD DECLARATIONS */ SEP6e226 
8ee 3 1 DECLARE SEPee239 
ge8 1 1 o I SPLAY_RECORD. SEP6e240 

190e %INCLUOE DISPFILE(FORMAT1.INPUT •• COMMA); SEP6S258 831e12 
FORMAn + lee /* ---------------------------------------------------------- ------- * / 
FORMATl + 2ee /* DEVICE FILE: DISPFILE.LP1423 */ 
FOR~lAn + 3ee /f< FILE CREATION DATE: 87/11/30 */ 
FORMAn + 46e /* RECORD FORMAT: FORMAn "/ 
FO~lAn + 5GO /* RECORD FORMAT SEQUENCE 10: 1122F3EAAD919 */ 
FORHATl + 600 /* ---- --- --------- ----------- -------------------------------------- ,,/ 
FORMATl + 70a /* INDICATORS FOR FO~lAT FORMAn */ 
FORHAn + see /* INDICATOR 01 */ 
FORMAn + 90e /* INDICATOR 51 DAILY REPORT */ 
FORMAn + leoe /* INDICATOR 52 MONTHLY REPORT */ 
FORt1ATl + 1160 /f< INDICATOR 99 END OF PROGRAM */ 
FORHAn + 1206 /* - -- ----------------- ---- -------- ---------- ---------------- ------- * / 
FORMAn + 136e 3.1 1 15 DEPTNO CHAR(5) • 

110e 3.2 1 1 ItlDICATOR_RECORD. SEPse26e 
126a m %INCLUDE DISPFILE(FORMAT1.INDICATORS); SEP8a27e 830697 

FORMAn + lEl0 /* ---- ------ ------------------ ------------------- ------ ------------ * / 
FORMATl + 206 /* DEVICE FILE: DISPFILE.LP1423 */ 
FORMATl + 3e6 /* FILE CREATION DATE: S7/11/3O */ 
FORr1ATl + 408 /* RECORD FORMAT: FORMAT1 */ 
FORMAn + S6e /* RECORD FORt1AT SEQUENCE 10: 1122F3EAAD919 */ 
FORtMTl + Gee /* ----------------------------------------------------------------- */ J FORMAn + 7eo 3.3 15 IN(H PIC '9'. 
FORMAn + soa 3.4 15 IN62_INSEl CHAR(49) • /* urmEFINED INDlCATOR(S) */ 
FORHATl + 90e 3.5 15 IrlS1 PIC '9'. /* DAILY REPORT */ 
FORMATl + 1e08 3.6 15 INS2 PIC '9'. /* HONTHLY REPORT */ 
FORMATl + n6e 3.7 15 I"53_IN98 CHAR(46) • /* urlDEFINED IrIOICATOR(S) */ 
fORMATl + 1200 3.8 15 IN99 PIC '9'; /* END OF PROGRAM */ 

1306 836607 
1406 /* SAMPLE SUBROUTINE DECLARATIONS */ 836667 
1506 4 1 1 DECLARE 8366137 
16ao 1 1 DAILY EXTERNAL ENTRY (CHAR(S». 839667 
l7ae 4.1 1 1 MOIITHLY EXTERNAL ENTRY (CHAR(S»; 839667 
18se SEP00289 
19Ba /* INDICATOR FLAGS */ SEPae296 
2eao 5 DECLARE SEP963ee J 2l6e 1 1 1 INDICATORJLAGS STATIC. SEPse316 
226B 5.1 1 2 OFF PICTURE '9' INIT(a). SEP66326 831612 
2366 5.2 1 2 ON PICTURE '9' INIT(l); SEP0033B 831612 
246e SEP90349 
2596 /* BUILT-IN FUNCTIONS */ SEPOO3S0 
2660 6 1 DECLARE SEPsa366 
270e 1 SUBSTR BUILTIN. 831913 
28Ba 6.1 1 DATE BUILTIN; SEPee379 

Figure 8-13 (Part 2 of 3). Program Using Indicators in a Separate Area 

J 
8-44 PL/I User's Guide and Reference 



USING DISPLAY FILES 

5728PLl ROl MOO 880715 PL/I Source Li sti ng LPl423/LPl423 11/30/88 15:39:91 Page 3 
LPl423: PROCEDURE: SEPse160 

Include SEQNBR STHT. SUBS BlK BN DO *< •• + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 •••• + .... 7.> .. + •••• 8 Date 
2900 SEPee380 
30S0 1* PROGRAM VARIABLES *1 SEP0039S 
3100 7 1 1 DECLARE SEPe040e 
3290 1 1 TODAYS_DATE CHAR(6) , 831913 
33e9 7.1 1 1 1 CURRENT_DATE, SEPe641e 
3499 7.2 1 1 2 CURR_YEAR CHAR(2) , SEPee42e 
35ee 7.3 1 1 2 CURR_MOHTH CHAR(2) , SEP0643e 
36ee 7.4 1 1 2 CURR_DAY CHAR(2) : SEP09440 
3700 SEP9e4S9 
3890 1* MAIN PROGRAM *1 SEP60466 
3gee 8 1 1 TODAYS_DATE = DATE: SEPe05eO 831e13 
4e99 9 1 1 CURR YEAR ,. SUBSTR(TODAYS_DATE,l,2): 831913 
4190 19 1 1 CURR:MONTH. SUBSTR(TODAYS_DATE,3,2): 831e13 
420a 11 1 CURR_DAY ~ SliBSTR(TODAYS_DATE,5,2); 831613 
4300 12 1 IN99 ~ OFF: SEPee519 
4499 830697 
4599 13 1 1 m OPEN 839697 
4600 1 1 FILE (DISPFILE): I" UPDATE" I 836919 
479S 839697 
4869 14 6 DO WHILE(IN99 • OfF): SEP99S26 
4969 SEP00S3e 
5eaO 1* DISPLAY THE SCREEN *1 SEPae549 
51B8 15 1 1 IN81 ~ OFF: SEP90SS9 
S20e 16 1 1 IF CURR_DAY = 'e1' THEN SEP90S60 
5300 1 1 IN91 .. ON; SEP00S7e 
S4BB 17 1 1 m WRITE FILE (DISPFILE) FROM (DISPLAY_RECORD) SEP66S86 83B6e7 
5509 1 1 OPTIONS (RECORD(' FORMAll') I NDICATORS(INDICATOR_RECORD»: SEP9059S 831(:)12 
S66e SEP09696 
S7e9 1* READ AND PROCESS SCREEN *1 SEP99616 
5809 18 1 INDICATOR_RECORD" OFF; SEPee62e 831912 
Sge9 19 1 1 m READ FILE (DISPFILE) INTO (DISPLAY_RECORD) SEPe9636 83e697 
6909 1 1 OPTIONS (RECORD(' FORHATl') INDICATORS (INDICATOR_RECORD»: SEP0064e 
6190 2B 1 1 1 IE IF INS1 • ON THEN SEPB06Se 
620e 1 1 1 CALL DAllY(OEPTNO); 1* EXTERNAL PROCEDURE *1 SEP0066e 83e919 
630e 21 1 1 1 IIil ELSE SEPe967a 
6409 1 1 1 IF IN52 .. ON THEN SEPBfl680 
65ge 1 1 1 CALL HONTHLY(DEPTNO): 1* EXTERtlAL PROCEDURE *1 SEP00690 839919 
66eo 22 1 1 1 END; 1* DO WHILE *1 SEP00700 
6799 SEPe071e 
68ee 23 1 CLOSE SEP6a72e 
690e 1 FILE (DISPFIlE); SEPa673e 83e667 
7eeS SEPOO740 
7lee 24 1 1 END LP1423; SEP667S0 839817 

Figure 8-13 (Part 3 of 3). Program Using Indicators in a Separate Area 

Chapter 8. Using AS/400 Files 8-45 



USING DISPLAY FILES 

DEPARTMENT NUMBER: 12345 

F5 • DAILY REPORT F9 = MONTHLY REPORT Fl = END 

Figure 8-14. Display for Program Using Indicators in a Separate Area 

D 
f) 

II 

RECORD data transmission is used with DISPFILE. 

The SEQUENTIAL access method is used with DISPFILE. 

The data transmission mode is specified as UPDATE, because the me is used 
for both input and output. 

m The ENVIRONMENT attribute is specified with the INTERACTIVE 
option: both READ and WRITE statements are processed. 

II The %INCLUDE statement generates declarations for the INDICATORS 
specified in record format FORMAT! offlle DISPFILE. 

m DISPFILE is opened. The data transmission mode UPDATE is specified in 
the record declaration. It could also be specified here as an option of the 
OPEN statement. 

D The program continues running as long as IN99 has a value of OFF, that is, 
until the user ends program running. 

III The prompt screen is displayed by writing DISPLAY_RECORD to 
DISPFILE. Record format FORMAT! is used and the indicators passed to 
the display device are those declared in INDICATOR_RECORD. 

II The information provided by the user is read into DISPLAY_RECORD 
from me DISPFILE using record format FORMATl, and the values of the 
indicators in INDICATOR_RECORD are returned by the device. 

1m Depending on the values of IN5l and IN52, an appropriate external proce­
dure is called. 

8-46 PLfI User's Guide and Reference 

J 

J 



L 

USING DISPLAY FILES 

Program Using Program-Defined Indicators in a Separate Area: The following 
program deftnes the same DDS as the above example using a separate indicator area. 
The indicators in this example are program-described. 

S728PL1 R91 M88 889715 PL/I Source Listing PLITST ILP1424 11/30/88 14:48:47 Page 2 
lP1424: PROCEDURE; PGMaa160 

Include SEQNBR STMT.SUBS BLK BN DO *< •• + •••• 1. ... + •••• 2 •••. + •••• 3 ••.. + •••• 4 •..• + •••• 5 •.•• + •••• 6 •••• + •••• 7.> •• + •••• 8 Da te 
188 1 LP1424: PROCEDURE; PGfte0169 830817 
28a PGM00170 
3e0 1* FILE DECLARATIONS *1 PGt100180 
400 2 DECLARE D 8 m ~ PGf100190 
sea DISPFILE FILE RECORD SEQUENTIAL UPDATE ENV(INTERACTIVE); PGHe0200 839607 
6eo PGM00219 
700 1* RECORD DECLARATIONS *1 PGflO0220 
8eo 3 DECLARE PGMOO230 
geo 1 DISPLAY_RECORD, PGMOO240 

10eo %INCLUDE DISPFI LE(FORMATl, INPUT" COMt4A); PGM0025e 831612 
FORMATl + lao 1* ----------------------- ------------------------------------------ * 1 
FORMATl + 200 1* DEVICE FILE: DISPFILE.DBLIB *1 
FORMATl + 390 1* FILE CREATION DATE: 87/11/05 *1 
FORt·IATl + 400 1* RECORD FORMAT: FORI1ATl *1 
FORMATl + 50e 1* RECORD FORflAT SEQUENCE ID: Il22F3EAAD919 *1 
FORt1ATl + 60Q 1* ------------------------ ----------------------------------------- *1 
FORHATl + 700 1* INDICATORS FOR FORMAT FORMAT1 *1 
FORl1ATl + 8ea 1* ItlDICATOR al *1 
FORMATl + geo 1* INDICATOR 51 DA I L Y REPORT *1 
FORHATl + 1e00 1* INDICATOR 52 MONTHLY REPORT *1 
FORMATl + Il8e /* INDICATOR 99 EIID OF PROGRAM */ 
FORt1ATl + 128a /* -------- -- ------ ------- --- ------ ------------------------ -- ------- * / 
FORt1ATl + 130e 3.1 1 15 DEPTNO CHAR(5), 

11ee 3.2 1 m 1 INDICATOR_RECORD, PGMe0260 
120a 3.3 1 15 IND_NEW_MONTH PICTURE '9', r IN01 NEW MONTH */ PGMa0270 
1300 3.4 1 1 15 IN02_IN50 CHAR(49) , 1* UNDEF INDICATORS */ P6fl00280 
140e 3.5 1 1 15 IND_DAILY PICTURE '9', 1* IN51 DAILY REPRT */ PGM00290 
1588 3.6 1 1 15 I ND_fl0NTHLY PICTURE '9', 1* Itl52 MONTHL V RPRT* / PGMOe300 
1686 3.7 1 1 15 IN53_IN98 CHAR(46). /* UNDEF INDICATORS */ PGt,100310 
1700 3.8 1 1 15 IND_EOJ PICTURE '9'; 1* IN99 END OF JOB */ PGM00320 
1800 838607 
1900 /* SAMPLE SUBROUTINE DECLARATIONS */ 830607 
2600 4 1 1 DECLARE 830607 
2160 1 1 DAILV EXTERNAL ENTRV (CHAR(S», 830607 
228e 4.1 1 1 MONTHLV EXTERNAL ENTRY (CHAR(S»; 830607 
2300 PGM00330 
2400 /* INDICATOR FLAGS */ PGM00340 
250& 5 1 1 DECLARE PGM00350 
2600 1 1 1 INDICATORJLAGS STATIC, PGM00360 
2700 5.1 1 1 2 OFF PICTURE '9' INIT(0). PGt~00370 831012 
2800 5.2 1 1 2 ON PICTURE '9' INIT(l): PGt,m0380 8311:)12 
2900 PGt400390 
3600 /* BUILT-IN FUNCTIONS */ PGN00400 
3100 6 1 1 DECLARE PGH00410 
3200 1 1 SUBSTR BUILTIN, 831013 
3300 6.1 1 1 DATE BUILTIN; PGI,100420 831013 
3400 PGI,lS0430 
3588 /* PROGRAM VARIABLES */ PGM00440 
3600 7 1 DECLARE PGt,100450 
3700 1 1 TODAVS_DATE CHAR(6), 831013 
3800 7.1 1 1 1 CURREtn _ DATE. PGt100460 
3900 7.2 1 1 2 CURR_VEAR CHAR(2), PGM00470 
4008 7.3 1 1 2 CURR_MONTH CHAR(2). PGM00480 

Figure 8-15 (Part 1 of 2). Program Using Program-Defined Indicators in a Separate Area 

Chapter 8. Using AS/400 Files 8-47 



USING DISPLAY FILES 

5728PLl ROl M08 888715 PL/I Source Listing PLITST /LP1424 11/30/88 14:48:47 Page 3 
LP1424: PROCEDURE: P6MOO168 

Include SEQNBR STMT. SUBS BLK 8N 00 "< •• + .... 1. ... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> .. + .... 8 Date 
4180 7.4 
428a 
4300 
4400 8 
4S0e 
4600 
4780 9 
4800 10 
4908 11 
5ee8 12 
5108 13 
5298 14 
530a 
540a 
ssao 15 
56aO 16 
5700 
5898 17 
5900 
6eeO 
61ge 
62ge 10 
6369 
6499 19 
65ee 
6690 29 
67ea 
6800 
6960 21 
7099 
7l0e 22 
noe 
7390 
7480 23 

Figure 8-15 (Part 2 of 2). 

1 1 2 CURR_DAY CHAR(2): PGM88498 
P6M80S88 

/" MAIN PROGRAM "/ PGM88S18 
1 m OPEN PGt180528 
1 FILE (DISPFlLE); /" UPDATE ,,/ PGM00530 830919 

PGM90S49 
1 1 TODAYS_DATE • DATE: PGM88S58 831813 
1 1 CURR YEAR • SUBSTR(TODAYS_DATE,l,2): 831813 
1 1 CURR)ONTH " SUBSTR (TODAYS _DATE, 3,2) : 831813 
1 CURR_DAY • SUBSTR(TODAYS_DATE,5, 2): 831813 
1 IND_EOJ " OFF: PGMeOS69 
1 6 00 WHILE(IND_EOJ ., OFF): PGM90579 839698 

PGM98588 
/* DISPLAY THE SCREEN */ PGMOOSge 

1 1 1 INDICATOR_RECORD· OFF: PGM9968e 
1 1 1 IF CURR_DAY • '81' THEN PGMa8618 
1 1 1 IND_HEW_MONTH ., ON: PGMea629 
1 1 1 m WRITE FILE (DISPFILE) FROM (DISPLAY_RECORD) PGM99639 838607 
1 1 1 OPTIONS (RECORD(' FORMATl') INDICATORS(INDICATOR_RECORD»: PGMa0649 831913 

PGM00650 
/* READ AND PROCESS SCREEN */ PGMe0669 

1 1 m READ FILE (DISPFILE) INTO (DISPLAY_RECORD) PGt180678 838687 
1 1 OPTIONS (RECORD('FORMAT1') INDlCATORS(INDICATOR_RECORD»: PGMOe68e 831813 
1 1 m IF IND DAILY., Otl THEN PGMSe698 
1 1 CALL - DAILY(DEPTNO): PG~18a7a8 

1 1 m ELSE PGM68718 
1 1 IF INO MONTHLY" ON THEN PGMeen8 
1 1 CALL MONTHLY (DEPTNO): PGt·18e738 
1 1 END; /* DO WHILE */ PGt100749 

PGMOe759 
CLOSE PGHOS768 

FILE (DISPFlLE); PGMOa778 839687 
PGMSS789 

1 1 END LP1424: PGMSa799 839817 

Program Using Program-Defined Indicators in a Separate Area 

D RECORD data transmission is used with DISPFILE. 

D The SEQUENTIAL access method is used with DISPFILE. 

II The data transmission mode is specified as UPDATE, because the me is used 
for both input and output. 

II The ENVIRONMENT attribute is specified with the INTERACTIVE 
option: both READ and WRITE statements are processed. 

iii The %INCLUDE statement is not used to generate declarations for the indi­
cators. Instead, the indicators are program-defmed. This has the advantage 
that you can give the indicators meaningful variable names. It has the disad­
vantage that you must ensure that you have coded the indicators correctly. 
The %INCLUDE statement generates declarations for the INPUT fields 
specified in record format FORMATI of me DISPFILE. 

I'm DISPFILE is opened. The data transmission mode UPDATE is specified in 
the record declaration. It could also be specified here as an option of the 
OPEN statement. 

The program continues running as long as IND_EOJ has a value of OFF, 
that is, until the user ends program running. 

8-48 PLjI User's Guide and Reference 



USING DEVICE FILES 

m The prompt screen is displayed by writing DISPLAY_RECORD to 
DISPFILE. Record format FORMATI is used and the indicators passed to 
the display device are those declared in INDICATOR_RECORD. 

II The information provided by the user is read into DISPLAY_RECORD 
from ftle DISPFILE using record format FORMATl, and the values of the 
indicators in INDICATOR_RECORD are returned by the device. 

Em Depending on the values ofIND_DAILY and IND_MONTHLY an appro­
priate external procedure is called. 

Using Indicators in the Record Area: You can also use indicators that are 
included in your record area. To do this, you must specify NOINDARA as an 
option in the ENVIRONMENT attribute of the ftle declaration. You can even use 
%INCLUDE to include the indicators, but they will not be in a separate area. This 
method of using indicators is not recommended. It is available in AS/400 PL/I to 
ensure compatibility if you are translating a program written in another AS/400 lan­
guage. 

When using indicators in the record buffer you must take into consideration the fact 
that the indicators may not be in ascending sequential order. The indicators are 
located in the buffer in the order in which they are declared in the DDS source for 
the me. For example, if indicator 97 is the fIrst indicator declared in the DDS for the 
ftle, it will also be the fIrst in order in the buffer. 

If you are using externally described record defInitions, the %INCLUDE directive 
will list the indicators according to their order in the input/output buffers. If the 
record defInitions are program-described, you must ensure that the order in which 
you list the indicators is the same as the order they have in the buffer. If you fail to 
do this, there may be a mismatch between the indicators set on in the program and 
the indicators set on in the me description. 

Using Device Files 
Although the different types of device files (Communications, Bse, Printer, Inline, 
Tape, and Diskette) have some differences between them, there are also some simi­
larities. Most importantly, they all support the combination of CONSECUTIVE 
organization and SEQ UENTIAL access. This is to increase device independence 
and allow for ftle redirection. With Communications and Bse ftles, INTERAC­
TIVE organization is also allowed. The input/output statements allowed with each 
ftle type are shown in Appendix C, "Valid Combinations of Options for 
Input/Output Statements." 

Other ENVIRONMENT options which can be specifIed for device mes are 
BUFSIZE, which can be specifIed for any type of me; BLOCK, which is valid for 
Tape and Diskette flies only; and NOINDARA, which can be specifIed for Com­
munications, Bse, and Printer files. All of these are discussed in Chapter 7, "File 
Declaration and Input/Output." 

For TAPE mes with variable length records or undefIned records, the length of the 
variable on the WRITE statement determines the length of the tape record. 

Chapter 8. Using ASj400 Files 8-49 



USING DEVICE FILES 

Externally Described Device Files J 
Communications, Bse, display and printer mes are the only device mes that can be 
externally described. For these mes, you can specify the DESCRIBED option, as 
discussed in Chapter 7, "File Declaration and Input/Output." 

Program-Described Device Files 
All types of device mes can be program-described. If a printer me is program­
described, then you have the option of using the CTLASA option, described in 
Chapter 7, "File Declaration and Input/Output." 

Example of Using a Printer File 
The following program and supporting DDS uses a printer me to create a report. 

IBM Intosrn(ltionQl Business MOGhlnu 
AS/400 DATA DESCRIPTION SPECIFICATIONS OX21-989 1·0 U~/C60 .. 

P'r'lnt.:tl1'1 IJ.$.~ . 
• N\l!"lber of .~I:II per ,ad""" 'I'J~l.liqhlly. 

I:~k I I I I I I I 1 10-"''''' 

o-:Jjliorling 

....,.Ion 
'----

~ £;Oneil""" ~latrot 
~ - !L ~ 

"- ",""Ih "undID,... 
Hurttbet' 

t % t J 
.5 

u~ ... Hi ~ I j i n 
12 .. 4" 1 •• ~ ." . ",,, " 9.'UUU2_1:11'1%13 ., n.J'l.1)J· ., ." '21.1 .... Q4u.~~~n~~.M~~~_.'~U«U_U_~~1'nuu~~n~~ 

• H I L ILE DDS 1"0 PER N L IL IN PRINTER FILE EXA~PLE 

'. PERSRE 
EMPLND e TEXTC'EMPLOYEE NUMBER') 
NAME 2 TEXTC'EMPLOYEE NAME') 
ADDRES S1 3f TEXTC'HOME ADDRESS') 
~DDRES S2 35 TEXT('SPOUSE WORK ADDRESS') 
BIRTHD ATE 6 TEXT( 'DATE OF BIRTH') 
MARSTAT 1 TEXT~'MARITAL STATUS'-r 
SPOUSE N~ ,ME 28 TEXTC'NAME OF SPOUSE') 
NUMCHI LC 25 TEXTe'NUMBER OF CHILDREN') 
EMPLNC 

Figure &-16 (Part 1 of 6). Program Using Printer File and Supporting DDS 

8-50 PLjI User's Guide and Reference 

J 



t :r. ~ • , • 1 • ,,,, , . ~ 4.,1" 7 

• RI~T E~ F 
• 

~ 

• 
• LI E 1 

USING DEVICE FILES 

AS/400 DATA DESCRIPTION SPECIFICATIONS GlI11·'9I!91·0 OM/Cl5O. 
Prlnttclm U.5.;' • 

• Nunoboe<'.,t _'--til per pod "",, __ ,.tqhUy. 

III II III 

-
I! t "11 17 'JJ '1.11 %'IV" 

I LE DDSF OR PERSC NE FI LE 
INDARA REF(PERSFILE) 

HEADING SKIPS(1) sPACEAeJ) 
I 1f' PERSONNEL Ll STl NO' 

UNDERLINE 
3 '- ORDERED BY' 

RDERTrf E J 
8 DATE EDTCDE(Y) 
II TIM~ 

1 H 'PAGE:' 
.,PAGNBR EDTCDE(3) 

DETAIL SPACEAeJ) 

l' NAME: ' 
NAME llUNDERLlNE 

55' EMPLOYEE NUMBER:' CH + 
EMPLN ~--~~-11-++-++T~~~-r-rr---~-11-~~7~~~~~~~~.------------C~H~+---1 87'DATE OF BIRTH:' CH + 

IRTHD· E o SPACEA 1 CH + 

Figure 8-16 (Part 2 of 6). Program Using Printer File and Supporting DDS 

o-:fitJOninq 

r---

~ CandiDa" "*-' 

J ....-....... 
!h i % ~ z l 
! 1 ~ :t iii j 

, 'I .. "" , , 7 ... '" I 'lJ'I.J . .. ,. 
Ll 

1 
D1 ,. LI 

AS/400 DATA DESCRIPTION SPECIFICATIONS (j1(l1-91!191-0 UM/CI5O_ 
Prll'll.n hI u.s."". 

_Nurtlberof IlheelJr 1M!' (tCId "'41 ~ry .1i~htly. 

I 1/ " I I I I '-~'~_Ion _-,--I-_J 
~ 

~ 
" g ....",Ion 

~ 
iii 
~ - ....... ~ FVn::li<:J", 

g ~ 

~ I iU j tiM "" 
I! ''II1.'12'N1:.1!''!'I21 • JIII\,ft.a3.J. ." ... ., .... ~~~ ••• ~aNMMMMN~".,Q~U •• U.~~"nnUn~".~ 

l' ADDRESS' , 
ADORES S1 11 

55 'MARITAL STATUS:' 
MARSTAIT 7:1 

8 'SPOUSE"S NAME' 
SPOUSE NA ~E' 10 

DDRES llSPACEB(1) 
1):;J'CHLDRe:N: ' 

UMCHIL 72EDTCDE--'-U 

-

Figure 8·16 (Part 3 of 6). Program Using Printer File and Supporting DDS 

Chapter 8. Using AS/400 Files 8-51 



USING DEVICE FILES 

5728PL1 R61 Mee 888715 

Include 

PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 
PERSREC 

HEADING 
HEADING 
IIEADItIG 
HEADING 
HEADING 
HEADING 
HEADING 

DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 
DETAIL 

SEQNBR STMT.SUBS BLK BN DO 
109 1 
2ee 
3ee 
4e9 2 1 
sae 1 
606 2.1 1 
76e 
806 
g8e 

10ee 
llee 

+ 10e 
+ 2ee 
+ 3ee 
+ 4ee 
+ see 
+ 60a 
+ 76e 
+ 800 
+ 960 
+ 1000 
+ llee 
+ 1206 
+ 131)e 
+ 1408 
+ 1568 

126e 
130a 

+ 16e 
+ 206 
+ 360 
+ 400 
+ 580 
+ 60e 
+ 7eo 

140e 
1560 

+ 100 
+ 288 
+ 3ae 
+ 40e 
+ see 
+ 608 
+ 780 
+ 80e 
+ gae 
+ loDe 
+ 11ee 
+ 12ea 
+ 1300 
+ 1406 
+ 1500 
+ 161)0 

3 

3.1 

3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

3.18 
3.11 

3.12 
3.13 
3.14 
3.15 
3.16 
3.17 
3.18 

1 
1 1 

1 

1 1 
1 1 
1 
1 
1 

1 
1 

1 
1 1 

1 1 
1 
1 
1 
1 
1 
1 

PL/I Source Listing 
LP1421: PROCEDURE; 

QTEMP/LP1421 11/39/88 15:37:16 Page 2 
PRI8S168 

*< •• + •••• 1. ••• + •••• 2 .... + •••• 3 .... + .... 4 .... + .... 5 .... + .... 6 .... + .... 7.> .. + .... 8 Date 
LP1421: PROCEDURE; PRISS160 838817 

PRISa17S 
1* FILE DECLARATIONS *1 PRISB188 
DECLARE D m s m I PRI99198 

PERSFILE FILE RECORD SEQUENTIAL INPUT ENV(INDEXED DESCRIBED). PRI8920B 839919 
PERSREPT FILE RECORD SEQUENTIAL OUTPUT ENV(COHSECUTIVE DESCRIBED); PRI6821S 8483e1 

m a m m PRI9S228 
1* RECORD DECLARATIONS *1 PRIee238 
DECLARE PRI98249 

1 PERSFILE_RECORD, PRI6625B 
%INCLUDE PERSFILE(PERSREC,RECORD,.COMMA); PRI8926B 83B919 

1* ----------------------------------------------------------------- */ 
/* PHYSICAL FILE: PERSFlLLQTEMP */ 
/* FILE CREATION DATE: 87/11/38 */ 
/* RECORD FORMAT: PERSREC */ 
/* RECORD FORMAT SEQUENCE 10: S8986345FB578 */ 
/* ---- -- ------- -------------- ----- -------- -- -- ----- -------------- -- *1 

15 EMPLNO PIC '99999R', /* EMPLOYEE NUMBER */ 
/* ODS - KEY FIELD *1 

15 NAME CHAR(28), 1* EMPLOYEE NAME */ 
15 ADDRESSl CHAR(35) , 1* HOME ADDRESS *1 
15 ADDRESS2 CHAR(35), 1* SPOUSE WORK ADDRESS *1 
15 BIRTHDATE CHAR(6), 1* DATE OF BIRTH *1 
15 MARSTAT CHAR(1), 1* MARITAL STATUS *1 
15 SPOUSENAME CHAR(28), 1* NAME OF SPOUSE *1 
15 NUMCHILO PIC '9R', /* NUMBER OF CHILDREN *1 
HEADING_OUTPUT. PRI80278 
%INClUDE PERSREPT(HEADING,OUTPUT .. COMMA): PRI0028S 831096 

1* ----------------------------------------------------------------- *1 
1* DEVICE FILE: PERSREPT.QTEMP *1 
1* FILE CREATION DATE: 87/11/38 *1 
1* RECORD FORt4AT: HEADING *1 
1* RECORD FORt-1AT SEQUENCE W: 1459B069F8728 *1 
1* ----------------- ------------------------------------------------ *1 

15 ORDERTYPE CHAR(33) , 
1 DETAIL OUTPUT, PRI08298 

%INCLUDE PERSREPT(DETAIL,OUTPUT,.COMMA); PRI9830a 831996 

1* ----------------------------------------------------------------- *1 
1* DEVICE FILE: PERSREPT.QTEMP *1 
1* FILE CREATION DATE: 87/11/30 *1 
1* RECORD FORMAT: DETAIL *1 
1* RECORD FORNAT SEQUENCE ID: 1EC226084A4DB *1 
1* ----------------------------------------------------------------- *1 
1* ItIOICATORS FOR FORMAT DETAIL *1 
1* ItIOICATOR 91 */ 
/* ------- ------------- ------------- ------ -------------------------- *1 

15 NMIE CHAR(28), 1* EMPLOYEE NANE *1 
15 EMPLNO PIC '99999R', 1* EMPLOYEE NUMBER *1 
15 BIRTHDATE CHAR(6). /* DATE OF BIRTH *1 
15 ADDRESS1 CHAR(35), 1* HOME ADDRESS *1 
15 MARSTAT CHAR(l), /* flARITAL STATUS *1 
15 SPOUSENA~lE CHAR(28). /* NAME OF SPOUSE * / 
15 ADDRESS2 CHAR(35), 1* SPOUSE WORK ADORESS *1 

Figure 8-16 (Part 4 of 6). Program Using Printer File and Supporting DDS 

8-52 PL/I User's Guide and Reference 



USING DEVICE FILES 

S728PL1 R91 Mge 889715 PL/I Source Listing QTEMP/LP1421 11/39188 15:37:16 Page 3 
LP1421: PROCEDURE; PRI6e16e 

Include SEQNBR STMT.SUBS BLK BN DO *< .. + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + •••• 5 .... + .... 6 .... + .... 7.> .. + •••• 8 Date 
DETAIL + 1799 3.19 1 1 15 NUMCHILD PIC '9R'. 1* NUMBER OF CHILDREN *1 

1698 3.28 1 1 1 PERSREPT_INDICATORS. PRI99318 
1788 %INCLUDE PERSREPT(DETAIL.INDICATORS); PRI6e329 

DETAIL + 16e 1* ----------------------------------------------------------------- "I 
DETAIL + 2ee 1* DEVICE FILE: PERSREPT.QTEMP *1 
DETAIL + 388 1* FILE CREATION DATE: 87/11/39 *1 
DETAIL + 499 1* RECORD FORMAT: DETAIL *1 
DET!lIL + see 1* RECORD FORMAT SEQUENCE 10: lEC226084A4DB "I 
DETAIL + 6ee 1* ----------------------------------------------------------------- "I 
DETAIL + 798 3.21 15 IN91 PIC '9'. 
DETAIL + 889 3.22 15 IN92_IN99 CHAR(98) ; 1* UNDEFINED INDICATOR(S) *1 

1809 PRI99339 
1960 I" INDICATOR FLAGS "I PRI96346 
2699 4 1 1 DECLARE PRIee3S8 
21e8 1 1 1 INDICATOR]LAGS STATIC. PRIa9369 
2299 4.1 1 1 2 OFF PICTURE '9' INIT(a) • PRI96370 831996 
2369 4.2 1 1 2 ON PICTURE '9' INIT(l) ; PRIeB38B 831896 
24613 PRIge399 
2599 I" PROGRAM FLAGS *1 PRI99499 
2699 5 1 1 DECLARE PRI6e419 
2769 1 1 1 BIT_FLAGS STATIC. PRIa9426 
2809 5.1 1 1 2 MORE_RECORDS BIT(l) ALIGNED. PRI60436 
2ge9 5.2 1 1 2 NO BIT(l) ALIGNED INIT('8'B). PRI69449 
3688 5.3 1 1 2 YES BIT(l) ALIGNED INIT('l'B); PRIa94S9 
316e PRla6466 
3266 1* STATIC VARIABLES "I PRI00476 
3388 6 1 1 DECLARE PRle0489 
3498 1 1 1 STATIC_VARIABLES STATIC. PRIge499 
356e 6.1 1 1 2 HEADJMT CHAR(l9) IN IT(' HEAD I HG'). PRIe650B 
3668 6.2 1 1 2 HEAD_ORDER CHAR(lS) INIT('EMPLOYEE NUMBER'). PRI60S29 
3788 6.3 1 1 2 DETAILJMT CHAR(10) INIT('DETAIL'). PRI08S3e 
3898 6.4 1 1 2 DETAIL_LI NES BINARY FIXED(S) INIT(S) • PRI a9S48 831996 
3999 6.5 1 1 2 MARRIED CHAR(l) INIT('M'). PRIgeSS9 
4969 6.6 1 1 2 PAGE_SIZE BINARY FIXED(7) INIT(S9) ; PRI e6S69 831986 
416e PRI96S79 
4269 I" PROGRAM VARIABLES *1 PRHl9S89 
4389 7 1 DECLARE PRI98S99 
449B 1 LINE_COUNT BINARY FIXED(S); PRI90600 831997 
4569 PRI66619 
46e8 8 ON ENDFILE(PERSFILE) PRI66628 
4789 MORE_RECORDS· NO; PRl96639 
4800 PRl90649 
4906 1* MAIN PROGRAM *1 PRle96S9 
SElge 9 MORE_RECORDS • YES; PRIOe669 
5199 PRIElEl68E1 
5266 19 lID OPEN PRIEl6699 
536B FILE (PERSFlLE); 1* INPUT *1 PRIElS7ElEl 839919 
S4E1e 11 lID OPEN PRIS6719 
5599 FILE (PERSREPT); 1* OUTPUT "'I PRI ElEI72E1 839919 
5698 PRI6E1739 
5706 12 READ FILE (PERSFILE) INTO (PERSFILE_RECORD); PRIEl9740 831867 
58E19 PRIee75E1 
5999 13 DO WHILE(MORE_RECORDS); PRI08769 

Figure 8-16 (Part 5 of 6). Program Using Printer File and Supporting DDS 

Chapter 8. Using ASj400 Files 8-53 



USING DEVICE FILES 

5728Pl1 ReI MOO 880715 Pl/I Source listing QTEMP/lP1421 11/30/88 15:37: 16 Page 4 
lP1421: PROCEDURE: PRHl9166 

Include SEQNBR STMT.SUBS 8lK 8N DO *< •• + •••• 1. ... + .... 2 .... + .... 3 .... + .... 4 •••• + .... 5 •••• + .... 6 .... + .... 7.> •• + •••• 8 Date 
6000 
6100 14 
620e 15 
6300 
6460 
6500 16 
6606 17 
67aO 18 
6800 
6900 19 
70aO 
7100 
7200 20 
73aO 
7400 21 
7500 22 
7600 23 
7700 
7800 24 
7906 
8000 25 
8100 
8200 26 
8300 
8400 27 
8560 
8600 
8700 28 

Figure 8-16 (Part 6 of 6). 

1 1 ORDERTYPE = HEAD ORDER: 
IE WRITE FILE (PERSREPT) FROM (HEADING_OUTPUT) 

opn ONS(RECORD(' HEADI NG'»: 

1 1 DO liNE_COUNT = 1 TO PAGE_SIZE: 
2 DETAIL_OUTPUT = PERSFILE_RECORD. 8Y NAME; 
2 IF PERSFlLE_RECORD.MARSTAT a MARRIED THEN 

1 2 INOI = ON; 
1 2 ELSE 

1 1 2 IN01 • OFF: 

1 1 2 IE WRITE FILE (PERSREPT) FROM (DETAIL_OUTPUT) 
2 OPTIONS(RECORD('DETAIL') INDICATORS(PERSREPT INDICATORS»: 
2 lINE_COUNT = LINE_COUNT + DETAIL_LINES: lDm 
2 READ FILE (PERSFILE) INTO (PERSFILE_RECORD): 
2 IF ~MORE_RECORDS THEN 
2 LINE_COUNT' PAGE_SIZE + I: 
2 HID; /* DO */ 

1 1 1 END; /* DO WHILE */ 

CLOSE 
FILE (PERSFILE); 

CLOSE 
FILE (PERSREPT): 

1 1 END LP1421; 

Program Using Printer File and Supporting DDS 

o RECORD data transmission is used with PERSFILE. 

fJ The SEQUENTIAL access method is used with PERSFILE. 

II PERSFILE is used for INPUT only; no data is directed to it. 

PRlaOn6 
PRIOOS90 839919 
PRIOOS10 830919 
PRI00828 8310e7 
PRI098S6 

831967 
PRla0869 830919 
PRI60879 839919 
PRIOOS80 830919 
PRla0890 839919 
PRI00900 830919 
PRIe09Hl 
PRJa0920 830919 
PRI00930 831007 
PRI00949 830919 
PRI009S9 831007 

831007 
830919 
830919 
839919 

PRlo0966 
PRI00970 
PRI00986 
PRI00990 
PRI01006 
PRIOI01(j 
PRI01020 
PRJ 61030 830817 

m INDEXED specifies that PERSFILE is processed using the keyed sequence 
access path. 

L1 DESCRIBED specifies that the %INCLUDE directive is used to bring 
external record format deflnitions from PERSFILE into the program. The 
DESCRIBED option ensures that at the time of program compilation the 
PL/i flle attributes match the system flle attributes, and that level checking is 
processed when the flle is opened during program running. 

III RECORD data transmission is used with PERSREPT. 

D The SEQUENTIAL access method is used with PERSREPT. 

m PERSREPT is used for OUTPUT only. It does not provide data to the 
program. 

II The CONSECUTIVE option specifies that the flle is processed using the 
arrival sequence access path. Because CONSECUTIVE is the default, the 
CONSECUTIVE option could have been omitted. 

m PERSFILE and PERSREPT are opened. Their data transmission modes 

~ 

(INPUT and OUTPUT) are omitted here, because they are included as attri-.:\ 
butes in the flle declaration. ..., 

8-54 PL/I User's Guide and Reference 



USING STREAM FILES 

m The ftrst line printed on each page is the heading. The ftrst WRITE state­
ment writes record HEADING_OUTPUT to file PERSREPT using record 
format HEADING. 

m Record DETAIL_OUTPUT is written to PERSREPT using record format 
DETAIL. 

m The indicators in PERSREPT_INDICATORS are passed to the printer. 

Using STREAM Files 
Stream files are a type of program-described file. They can be connected only to 
files that do not have record definitions. They are file-independent because they can 
only be used for arrival sequence access. 

Chapter 8. Using ASj400 Files 8-55 



USING STREAM FILES 

Example of Using a Stream File 

5728PL1 R01 Maa 8Sa715 

Include SEQNBR STMI. SUBS BLK BN DO 
lOa 1 
20a 
30a 
40e 2 
500 
60e 2.1 
700 
soe 
900 3 

1000 
1100 3.1 1 1 
120a 3.2 1 1 
1300 3.3 1 1 
1400 3.4 1 1 
1S0a 
160a 
170e 4 1 1 
18ee 1 1 
190a 4.1 1 1 
2eoe 4.2 1 1 
2100 4.3 1 1 
2200 
230e 
240e 5 1 
2500 1 
2600 5.1 1 
2700 5.2 1 
2800 5.3 1 
2900 
300e 6 1 
310e 1 
noo 
330a 7 1 
346a 1 1 
3560 8 3 2 
3600 3 2 
3780 9 3 2 
3800 3 2 
3908 10 3 2 
40eo 3 2 
4100 3 2 
4200 3 2 
430e 11 3 2 
4400 12 3 2 
4506 
4600 
4700 13 1 
4800 14 1 
4960 
seao 15 1 
Sloe 1 
S2ae 
5300 16 1 

PL/I Source Li sting PLITST /LP1418 11/38/88 14:21: 11 Page 2 
LP1418: PROCEDURE; STR88160 

*< .• + •••• 1. ... + •••• 2 .... + .... 3 .... + .... 4 •••• + .... 5 •••• + •••• 6 .... + •••• 7.> .. + .... 8 Date 
LP1418: PROCEDURE; STR09169 839817 

/* FILE DECLARATIONS */ 
DECLARE D m 

EMP_FILE FILE STREAM INPUT, 
SYSPRINT FILE STREAM OUTPUT PRINT; 

m ~ m 
/* VARIABLE DECLARATIONS */ 
DECLARE 

EMP -'lUMBER 
EMP _NAME 
EMP_RATE 
EMP_HOliRS 
HIP_DEDUCTIONS 

/* PROGRAM FLAGS */ 
DECLARE 

1 BIT_FLAGS STATIC, 
2 MORE_RECORDS 
2 NO 
2 YES 

/* PROGRAM VARIABLES */ 
DECLARE 

GROSS]AV 
NET_PAY 
OVERTIME 
PAGE_NUMBER 

ON ENDFILE(EMP_FILE) 
MORE_RECORDS· NO; 

CHAR(6), 
CHAR(29), 
DECIMAL FIXED(S,21. 
DECIMAL FIXED(4,ll. 
DECIMAL FIXED(6,2); 

BIT(l) ALIGNED, 
BIT(l) ALIGNED INIT('O'B), 
BIT(I) ALIGNED INIT('l'B); 

DECIMAL FIXED(7 ,2), 
DECIMAL FIXED(7,2), 
DECIMAL FIXED(4,1), 
BINARY FlXED(2); 

STR0017a 
STR99189 
STR0919a 
STR08200 
STR89218 
STRe022a 
STR00230 
STR08240 
STR002S0 831884 
STROa268 
STRae270 831084 
STROe28a 831884 
STRoa290 831004 
STROa300 
STR80319 
STR0032a 
STR00330 
STR0834a 
STR003S0 
STR00360 
STR00370 
STROa38a 
STR09390 
STR08400 
STR90410 
STR08429 831094 
STRa0439 
STR80449 
STR004S0 
STR0046a 
STR88470 

ON ENDPAGE (SYSPRINT) STR00480 
BEGIN; STR00490 

PUT FILE (SYSPRINT) PAGE EDIT('PAGE ',PAGE NUMBER) STR00500 
(X(8!) ,A(6) ,F(2»; STROm8 

PUT FILE (SVSPRINT) SKIP(3) EDIT ( 'EMPLOYEE PAYROLL') STRaOS2a 
(X(38) ,A(16»; STR09S3a 

PUT FILE (SVSPRINT) SKIP(2) EDIT('EMPLYI' ,'EMPLOYEE NAME' ,'RATE' ,STR80S48 
'REG HRS',' OVERH1E', 'GROSS PAY',' DEDUCTIONS' ,'NET PAY') STR99SS8 
(A(6),X(6),A(13),X(S),A(4),X(2),A(7),X(2),A(7),X(2),A(9), STR00560 
X(2),A(10),X(2),A(7»; STRaeS70 

PAGE NUMBER • PAGE NUMBER + 1; STR8tlS88 
END; /* BEGIN */ - STROeS90 

/* MAIN PROGRAM */ 
PAGE_NUMBER· 1; 
MORE_RECORDS • YES; 

~ OPEN 
FILE (EMP FILE) TITLE('EMPFILE'); /* INPUT */ 

- m 
SIGNAL ENDPAGE (SYSPRINT); 

STR0860e 
STR8a619 
STR0962a 
STRflfl638 
STRfl0649 
STRS06S0 
STR09660 839919 
STRge678 
STR09680 

Figure 8-17 (Part 1 of 2). Program Using Stream I/O 

8-56 PLjI User's Guide and Reference 



L 

USING STREAM FILES 

5728PLl R91 M99 889715 PL/I Source Listing PUTST /LP1418 11/39/88 14:21:11 Page 3 
LP1418: PROCEDURE; STR9S166 

Include SEQNBR STMT.SUBS 8LK 8N DO *< •• + •••• 1. ••• + •••• 2 .... + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 .... + •••• 7.> •• + •••• S Date 
5468 17 
55e8 
568& 
578e 18 
5808 19 
5909 2e 
66ee 21 
61ge 22 
6209 
638e 23 
6469 24 
65ee 25 
6660 26 
6799 27 
6899 28 
6909 29 
7806 
7lee 
7296 
7368 38 
7489 
7509 31 
7699 
7798 32 
7889 
790a 33 
8aaa 
816B 
828e 34 

Figure 8-17 (Part 2 of 2). 

1 1 GET FILE (EMP JILE) EDIT(EMP _NU~1BER,EMP _NAME,EMP _RATE,EMP _HOURS, • STR0B696 
1 1 EMP_DEDUCTIONS)(A(6),A(20),F(5,2),F(4,l),F(6,2»; STR0B7Sa 83le84 

STROO716 
1 1 00 WHILE(MORE_RECOROS); STR00726 
1 1 1 GROSS]AY = 8.f); STR00730 
1 1 1 NET_PAY K B.e; STROa746 
1 1 1 OVERTIME" 6.e; STR60756 
1 1 1 IF Er·1P _HOURS> 49.B THEN STR60766 
1 1 1 DO; STR00776 
1 1 2 OVERTII~E a EMP_HOURS - 46.e; STROS788 
1 1 2 EMP_HOURS • 46.6; STROe79B 
1 1 2 GROSS_PAY .. OVERTIt~E * (1.5 * EMP_RATE); STROS800 
1 1 2 END; STR6081S 
1 1 1 GROSS_PAY· GROSS_PAY + (EMP_HOURS * EMP_RATE); STROe826 
1 1 NET_PAY c GROSS_PAY - EMP_DEOUCTIONS; STR00836 
1 1 m PUT FILE (SYSPRINT) SKIP EOIT(El.JP_NUM8ER,EMP_NAME,EMP_RATE, STR0S849 
1 1 1 EMP _HOURS ,OVERTIME ,GROSS_PAY ,EMP _OEDUCTlONS,tlET _PAY) (A(6) ,X(2) ,STR6SSS6 
1 1 1 A(26) ,F(6,2) ,X(2) ,F(5,l) ,X(4) ,F(S,1) ,X(4) ,F(8,2) ,X(6), STROa868 831894 
1 1 1 F(6, 2) ,X(2), F(8,2»; STR08876 831004 
1 1 1 GET FILE (EMP JILE) SKIP EOIT(EMP _NUr4BER, EMP _NAME, EMP _RATE, STR06886 

1 1 EMP_HOURS,EMP_OEOUCTIONS)(A(6),A(20),F(S,2),F(4,1),F(6,2»; STR6SS9S 831664 
1 1 EtlD; /* 00 WHILE */ STRe6900 

STR8891B 
1 1 CLOSE STR0092a 
1 1 FILE (EMPJILE); STROS930 
1 1 CLOSE STR66948 
1 1 FILE (SYSPRINT); STR069S6 

STR06968 
1 END LP141S; STR60970 838817 

Program Using Stream I/O 

II STREAM data transmission is used with EMP FILE. 

D EMP _FILE is used for INPUT only. No data is directed to it by the 
program. STREAM INPUT can be omitted for EMP _FILE, because these 
are the default attributes for ftle declarations. 

11 
D 

STREAM data transmission is used with SYSPRINT. 

SYSPRINT is used for OUTPUT only. It does not provide data to the 
program. 

1:1 The PRINT attribute specifies that the flrst character in each record is an 
ASA carriage control character. 

II SYSPRINT is implicitly opened by the flrst processing of the PUT state­
ment. Any ftle that is not explicitly opened is implicitly opened by the flrst 
data transmission statement that accesses it. It is, however, a good practice 
to explicitly open all your ftles. 

o EMP _FILE is explicitly opened. In the ftle declaration, INPUT has already 
been specified as an attribute of EMP _FILE. With both stream and record 
ftles, the data transmission mode can be specified in the ftle declaration, or in 
the OPEN statement, or in both places. If you specify the data transmission 
mode in both places, you must be sure that you specify the same mode both 
times. 

Chapter 8. Using AS/400 Files 8-57 



COMMITMENT CONTROL 

iii The TITLE option is specified, with the parameter I EMPFILE I. Because J 
the library and member names are allowed to default, the fIrst member of me 
EMPFILE in the library list is opened. 

m A list of variables is written to SYSPRINT. The SKIP option is specified, 
but no parameter is supplied. The compiler supplies a default value of I, so 
one line is skipped before the line is printed. 

Commitment Control 
Commitment control allows you to ensure that when a commitment boundary is 
reached, multiple changes to data base mes are either made permanent or canceled, 
as a single operation. 

PLII support for commitment control consists of the following: 

• COMMITTABLE option on the ENVIRONMENT me declaration attribute to 
indicate that a me should be placed under commitment control. 

• PLICOMMIT built-in procedure to complete changes to the data base. 

• PLIROLLBACK built-in procedure to cancel changes to the data base. 

The AS/400 System support for commitment control consists of the following: 

• The CL command STRCMTCL (Start Commitment Control) to start commit­
ment control. It indicates that commitment control can be used, and establishes 
the record locking at either the high level (.ALL) or the low level (.CHG) . 

• ALL record locking is useful primarily to protect concurrent jobs from 
uncommitted changes . 

• CHG record locking is useful primarily to simplify recovery. 

• The CL command ENDCMTCTL (End Commitment Control) ends commit­
ment control. This command cancels any changes to the data base mes that are 
under commitment control. 

For more information on commitment control, see the Programming: Control Lan­
guage Programmers Guide. For more information on the STRCMTCTL and 
ENDCMTCTL commands, refer to the Programming: Control Language 
Reference. 

PLICOMMIT and PLIROLLBACK are used to maintain a collection of one or 
more data base mes in a consistent state. Changes made to data base mes under 
commitment control are only completed when a PLICOMMIT is processed. Use 
the PLICOMMIT built-in subroutine to complete or commit all changes made 
through the WRITE, REWRITE, and DELETE statements, and the 
PLIROLLBACK built-in subroutine to remove or roll back any changes made by 
WRITE, REWRITE, and DELETE statements since the last PLICOMMIT or 
PLIROLLBACK. If a problem occurs during processing, the changes made since 
the last PLICOMMIT call can be removed by processing PLIROLLBACK. 

8-58 PLjI User's Guide and Reference 



COMMITMENT CONTROL 

If the commitment control environment is abnormally ended (either by a system or 
job failure), the system will ensure that any uncommitted changes are removed from 
the data base (an implicit rollback operation is processed). 

The commit and rollback operations may also be processed by statements in other 
high-level languages. Commit or rollback operations processed by any program of 
the job written in any language apply to all committable mes that your PL/I program 
is using. This feature allows the user to keep data base mes at consistent transaction 
boundaries. 

Using the COMMITTABLE Option 
The format for the commitment control option is: 

I -ENVIRONMENT(COMMITTABLE)--

The COMMITTABLE option and the INTERACTIVE me declaration attribute 
are mutually exclusive. 

A me with the COMMITTABLE option specified is placed in the commitment 
control environment when the me is opened. The me is then implicitly acted upon 
by the built-in subroutines PLICOMMIT and PLIROLLBACK. 

If the me cannot be placed under commitment control, a message is sent to the job 
log and the UNDEFINEDFILE condition (93) is raised. The UNDEFINEDFILE 
condition is also raised. if the me is not a data base me. 

If you want one or more different PL/I programs and two different run units, or a 
run unit and a non-PL/I program to open a me in the commitment control environ­
ment, each run unit or non-PL/I program that will open the me must specify the 
COMMITTABLE option. 

Using the PLICOMMIT Built-In Subroutine 
The PLICOMMIT built-in subroutine processes commitment control functions. 

-CALL -PLICOftMIT-,----------,--j-­

~(Character_expreSSiOn)~ 

character_expression 
A character expression that can be converted to a non-varying character vari­
able. A character string of zero length is equivalent to not specifying the argu­
ment. 

PLICOMMIT processes the commitment control function by establishing a new 
commitment boundary for the job. 

• For mes in a commitment control environment, all changes made to these ftles 
since the previous commitment boundary are made permanent. Changes are 

Chapter 8. Using AS/400 Files 8-59 



COMMITMENT CONTROL 

made to all ftles under commitment control in the job, not just to those ftles in 
the program that calls PLICOMMIT. 

• For ftles in a commitment control environment, all record locks held by the job 
since the last commitment boundary are released and the records are made avail­
able to other jobs. 

• PLICOMMIT only affects ftles under commitment control. If PLICOMMIT is 
called and there are no ftles under commitment control, no functions are proc­
essed, and there is no error indication. 

• A ftle under commitment control may be closed or opened without affecting the 
status of any records that are pending a commit. The ftle does not have to be 
open in order to commit records for that ftle. For example, if since the last 
commitment boundary, records are updated in an open ftle and the ftle is then 
closed, a call to PLICOMMIT makes the updated records permanent and the 
ftle remains closed. 

• The end of a procedure or a run unit has no effect on the commitment control 
environment. Even though ftles are closed, all uncommitted changes remain 
pending. 

• The end of the job causes an automatic rollback of uncommitted records for all 
ftles under commitment control. Any uncommitted changes to the data base 
are cancelled. 

• The character_expression provides up to 2000 bytes of string data to be used as 
a description (commit id) for the commitment boundary. If the character­
expression is not specified (or is length zero) no commitment boundary 
description is used. For further information, see the description of the 
NFYOBJ (Notify Object) parameter of the CL command STRCMTCTL in the 
Programming: Control Language Reference. 

PLICOMMIT does not do any of the following: 

• Change the position of a ftle. 
• Raise the ERROR condition. 
• Modify the 1-0 feedback area for a ftle. 
• Change the open or close state of a ftle. 

Using the PLIROLLBACK Built-In Subroutine 
PLIROLLBACK processes the rollback function by reestablishing a previous com­
mitment boundary. 

~CALL--PLIROLLBACK--;---" 

• PLIROLLBACK removes all changes that have been made to the ftles since the 
previous commitment boundary. This applies to all the ftles in a commitment 
control environment in the job, and not just those ftles in the program that 
called PLIROLLBACK. 

J 

• For ftles in a commitment control environment, all record locks held by the job " 
are released, and the records are made available to other jobs. .J 

8-60 PL/I User's Guide and Reference 



COMMITMENT CONTROL 

• The position of each me under commitment control is set to the previous com­
mitment boundary. If the me was open at the previous commitment boundary 
and has since been closed, the position of the me is undefmed. 

• PLIROLLBACK only affects mes under commitment control. A call to 
PLIROLLBACK is ignored if there are no mes under commitment control. 

• A me under commitment control may be closed and opened without affecting 
the status of any records that are pending a rollback. The me does not have to 
be open in order to rollback records for that me. If, since the last commitment 
boundary, records are updated and the me is then closed, this procedure 
removes the updated records and the me remains closed. 

• The end of a procedure or a run unit has no effect on the commitment control 
environment. Even though mes are closed, any uncommitted changes remain 
pending. 

• The end of the job causes an automatic rollback of uncommitted records for all 
mes under commitment control. Any uncommitted changes to the data base 
are cancelled. 

PLIROLLBACK does not do any of the following: 

• Raise the ERROR condition. 
• Modify the 1-0 feedback area for a me. 
• Change the open or closed state of any me. 

~ Using PLiCOMMIT and PLiROLLBACK 
You must call the PLICOMMIT and PLIROLLBACK procedures at the appro­
priate times in your PL/I program. 

Not all of the mes that your program uses must be under commitment control. For 
example, a work me may not need the protection offered by commitment control. 

Performance Considerations 

Performance may be adversely affected by using commitment control. 

• Programs using commitment control may have longer run times. 

• Other jobs attempting to access mes under cOlnmitment control may experience 
delays. 

You can avoid problems if you write programs so that a given me is always run 
under commitment control or else is never run under commitment control. It is 
more difficult to design a program so that it could run one time with commitment 
control and another time without it. This is the case because the me and record 
lock recovery logic in a program depends upon if the me is under commitment 
control or not. 

Programs using commitment control can be run in multiple jobs concurrently. The 
system keeps track of the uncommitted data in each job. 

Chapter 8. Using AS/400 Files 8-61 



COMMITMENT CONTROL 

Commitment control is not the only way to provide fIles with recovery capability. J 
For information on other methods see Programming: Control Language Program-
mer's Guide. 

Record Locks 

Record locks are specified on the LCKL VL parameter of the CL command 
STRCMTCTL: 

• "'CHG specifies that only the records that you change in the fIles under commit­
ment control are locked until they are committed or rolled back, or until the 
routing step ends. 

• ... ALL specifies that any records that are accessed in any mes in a commitment 
control environment are locked until they are committed or rolled back, or until 
the routing step ends. 

For further information on record locks, see the Programming: Control Language 
Programmer's Guide. 

Use record locks to prevent changes to data in one job from interfering with data in 
another job. Because records changed under commitment control are not intended 
for use by other jobs until a PLICOMMIT or PLIROLLBACK is done, all records 
changed by a REWRITE, DELETE, or WRITE statement since the previous com­
mitment boundary are locked. 

If, in one or more jobs, you use both committed and uncommitted data at the same 
time, you may fmd problems if either of the following conditions occurs: 

• Records in a physical me are accessed with commitment control and without 
commitment control at the same time. (For example, if there are two different 
logical mes based on the same physical me.) This is a problem if the two flIes 
which access the records are in the same job or in different jobs. 

• You specify low level record locking ( ... CHG) on the CL command 
STRCMTCTL for a me with INPUT attribute. 

When either of these conditions exist, records can be accessed in a data base me 
(even though no rollback or commit has been done yet) that have the following 
characteristics: 

• Records which have been updated by a REWRITE will contain the updated 
values. 

• Records which have been added by a WRITE will be present. 

• Records which have been deleted by a DELETE will not be present. 

Note: If an attempt is made to add a record through another access path with 
the same key as the deleted record, a KEY condition (duplicate key) will exist if 
duplicates are not allowed. 

You may avoid accessing uncommitted records from another job by placing the me 
under commitment control with a locking level of ... ALL. Then, all READ state- J> 
ments on INPUT mes attempt to obtain a lock on the record prior to reading the 

8-62 PL/I User's Guide and Reference 



L 

STATEMENT 

DELETE 

READ 

READ 

REWRITE 

WRITE 

COMMITMENT CONTROL 

record. Because uncommitted records are locked to the job that changed them until 
the PLICOMMIT or PLIROLLBACK is processed, the job requesting the record 
will wait until either the record is committed or rolled back, or the wait time ends 
(WAITRCD). 

The following tables show the relationship between the types of locks obtained, lock 
checking, and the record locking specified by the CL command STRCMTCTL. 

OPEN OPTION LOCK LEVEL CHECK DURATION OF RECORD LOCK Record 
OR FILE LOCK Lock Next I/O Next Locked 
ATTRIBUTES STATE Maintained Operation PLiCOMMIT After 

BEFORE 

l ~ 
or Statement 

(1 ) PLiROLLBACK Processed 

t 
l*ALL Yes a I • Yes UPDATE BGNCMTCTL *CHG Yes I a I • Yes 

Not Committed Yes 0 I 
No I 

,~ Yes a I I Yes UPDATE BGNCMTCTL *CHG Yes a I (2) • Yes 
Yes 

I 
Yes Not Committed a I I 

BGNCMTCTL~ Yes a I • Yes INPUT 
No a I No I 

Not Committed No a 1 No 

~ 
Yes a I • Yes UPDATE BGNCMTCTL 'CHG Yes a , • Yes 

Not Committed Yes a I No 

BGNCMTCTL~ No I 
No UPDATE a I • 

'CHG No a I • Yes or 
OUTPUT Not Committed No 0 I No 

I 

Notes: 

1. For DELETE or REWRITE, the lock state is checked before for a KEYED ftle 
only, not for a SEQUENTIAL ftle. 

2. If the next operation is a SEQUENTIAL DELETE or REWRITE, the lock 
state is maintained until the next PLICOMMIT or PLIROLLBACK. 

Chapter 8. Using AS/400 Files 8-63 



COMMITMENT CONTROL 

Error Conditions 

The following run time conditions may arise due to problems in a commitment 
control environment: 

Condition Statement 
Involved 

ERROR DELETE 
ERROR REWRITE 
TRANSMIT READ 
UNDEFINEDFILE OPEN 

Figure 8-18. Run-time Conditions 

For more information on the meaning of these conditions, see the discussion of the ....J 
appropriate condition in "Conditions" on page 0-1. 

Recovery After a Failure 

For a system failure, the ftles under commitment control are automatically rolled 
back to the last commitment boundary when the system is restarted. 

For a job failure (either because of a user or system error), the ftles under commit­
ment control are rolled back to the last commitment boundary as part of job end. 

Examples Using Commitment Control 
You may call a PLjI program in the commitment control environment with the fol­
lowing CL statements: 

STRCMTCTL LCKLVL(*ALL) 
CALL PGM(LP1425) 
ENDCMTCTL 

The following example is a program updating a keyed ftle (see Figure 8-5 on 
page 8-10) that has been adapted for commitment control. 

8-64 PL/I User's Guide and Reference 

J 



COMMITMENT CONTROL 

L 5728PLl R61 M66 886715 PL/I Source L1 sting PLI TST /LP1425 11/36/88 14:49:46 Page 2 
LP1425: PROCEDURE; COM66166 

Incl ude SEQNBR STMT. SUBS BLK 8N DO *< •• + •••• 1. •.. + •••• 2 •••• + .... 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
160 1 D LP1425: PROCEDURE; COM66166 836817 
200 COM00176 
30e /* FILE DECLARATIONS */ COr·166186 
406 2 1 1 DECLARE COM66196 
566 1 1 INJILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV(CONSECUTIVE COM66266 831613 
660 1 1 BUFSIZE(38» ,m 831613 
766 2.1 1 1 MSTJILE FILE RECORD INTERNAL DIRECT UPDATE ENV(INDEXEO COH~lITTABLECOMe6216 836919 
866 1 KEYDISP(6) KEYLENGTH(16»,COM60226 831114 
906 2.2 1 SYSPRINT FILE STREAM OUTPUT PRINT; 836667 

1666 COM00236 
1166 /* RECORD DECLARATIONS */ COM60246 
1206 3 1 1 DECLARE COM06256 
1366 1 1 1 MASTER_RECORD, COM66266 831114 
1466 3.1 1 1 2 MASTER_KEY, COM66286 
1560 3.2 1 3 MASTER_GENJLD CHAR(5) , COM60290 
1606 3.3 1 3 ~lASTER_DET_FLO CHAR(5) , COM06366 
1706 3.4 1 2 MASTER _ NAHE CHAR(20) , COM66310 
1866 3.5 1 2 MASTER_BAL PICTURE '999999V9R', COM06326 831613 
1906 3.6 1 INPUT_RECORD, COM60336 
2606 3.7 1 2 INPUT_KEY, COM66346 
2100 3.8 1 1 3 INPUT_GENJLD CHAR(5), COM66356 
2206 3.9 1 1 3 I NPUT_DET_FLO CHAR(5) , C0I1G6360 
2306 3.16 1 2 INPUT_NAME CHAR(26), COM66376 
2466 3.11 1 2 I NPUT_AMT PICTURE 'S99999V99'; COM66386 831613 
2566 CO~166390 

26G6 /* PROGRAM FLAGS */ COM66406 
2706 4 1 1 DECLARE CO~166416 

2860 1 1 1 BITJLAGS STATIC, COM66426 
2900 4.1 1 1 2 ~lORE_RECOROS BIT(l) ALIGNED, Cor166436 
3006 4.2 1 1 2 NO BIT (1) ALIGNEO INIT('6'B), COM06446 

L 
3100 4.3 1 1 2 YES BIT (1) ALIGNED INIT('l'B): COM00456 
3200 COM00466 
3306 /* PROGRAM VARIABLES */ COM60470 
3400 5 OECLARE C0I106486 
3500 m PLICOMMIT BUILTIN, COM60496 836615 
3606 5.1 PLIROLLBACK BUILTIN, COM60566 836615 
3760 5.2 OLD_MASTER_BAL PICTURE 'S99999V99', COM66516 
3806 5.3 PAGE_NUMBER BIliARY FIXEO(2): CO~106526 

3960 COM06536 
46G6 6 1 ON ENDFlLE{INJILE) COM66546 
4166 1 1 MORE_RECORDS· NO: COM66556 
4200 COM06566 
4366 7 1 1 ON ENDPAGE (SYSPRINT) COM66576 
446& 1 1 BEGIN; COM06586 
4566 8 3 2 PUT FILE (SYSPRI NT) PAGE ED IT ( , PAGE ' ,PAGE_NUMBER) COM86596 
4660 3 2 (X(81),A(6),F(2»; COM66660 
4786 9 3 2 PUT FILE (SYSPRINT) SKIP(3) EDIT(' UPOATE REPORT' )(X(38) ,A(13»: COM06616 
4800 10 3 2 PUT FILE (SYSPRINT) SKIP(2) EDIT('KEY IO','NAME','CUR BALANCE', COM80626 
4900 3 2 'UPDATE AMOUNT','NEW BALANCE')(A(6),X(9),A(4),X(21),A(11), COM80636 
5666 3 2 X(6) ,A(13) ,X(4) ,A(l1»; COM60646 
5166 11 3 2 PAGE_NUMBER = PAGE_NUMBER + 1; COM6S656 
520e 12 3 2 END: /'" BEGIN "'/ COM66666 
5360 C0I166676 

Figure 8-19 (Part 1 of 3). PL/I Program Using Commitment Control 

Chapter 8. Using AS/400 Files 8-65 



COMMITMENT CONTROL 

5728PL1 R91 M66 889715 PL/I Source Listing PLI TST ILP142S 11/39/88 14 :49:49 Page 3 J 
LP1425: PROCEDURE; COMee166 

Include SEQNBR STMT.SUBS BLK BN DO *< •• + •••• 1. .•• + •••• 2 •••• + .... 3 ••.• + •••• 4 •••• + •.•• 5 .... + •••• 6 •••. + •••• 7.> •• + •••• 8 Date 
5466 1* MAIN PROGRAM *1 COM66686 
5500 13 1 1 PAGE_NUMBER· 1; COM996ge 
5660 14 1 1 MORE_RECORDS • YES; COt~66760 

5709 COH00710 
5809 15 1 1 OPEN COM00726 
5906 1 1 FILE (INJILE) TITLE(' UPDATES'); 1* INPUT *1 COM00736 831613 
6666 16 1 1 OPEN COM66746 
6169 1 1 FILE (MST_FILE) TITLE('MSTFILE'); 1* UPDATE *1 COM06756 830919 
626a COt~60766 

6300 17 1 1 SIGNAL ENDPAGE (SYSPRI NT) ; COt-W6776 
6400 18 1 1 READ FILE (IN_FILE) INTO (INPUT_RECORD); C0I400786 
6569 COM06796 
6698 19 1 1 DO WHILE(MORE_RECORDS); CO~106866 

6769 26 1 1 1 IF INPUT_DET_FLD • ' , THEN COM6681S 
6800 1 1 CALL IIHTSEQ; COI-l00826 
6906 21 1 1 ELSE Cor-l00836 
7666 1 1 CALL DYNAMIC; COI-W0M6 

j 7169 22 1 1 READ FILE (INJILE) INTO (INPUT_RECORD); COM69856 
n69 23 1 1 END; 1* DO WHILE *1 COt~69866 

73ee COM66876 
7460 24 1 CLOSE COM00836 
7500 1 1 FILE (INJILE); Cor'W08ge 
7696 25 1 1 CLOSE COM00960 
7700 1 1 FILE (MSTJILE); COM08910 
7866 COM06920 
7900 26 INITSEQ: PROCEDURE; Cot-16093e 
8600 27 4 2 MASTER_GEN_FLD D INPUT_GEN_FLO; COM00940 
8160 28 4 2 READ FILE (MST_FILE) INTO (MASTER_RECORD) KEY (MASTER_KEY) COM06956 831913 
8200 4 2 OPTIONS(KEYSEARCH(EQLAFT} NBRKEYFLDS(l}); CO~160960 831013 
8308 29 4 2 00 WHILE(INPUT_GEN_FLD 2 MASTER_GEN_FLO}; COM90976 
84eO 30 4 2 CALL SEQPROC; COM66986 J 8500 31 4 2 1 END; 1* 00 WHILE *1 COM60999 
8600 32 4 2 RETURN; COM01606 
870e 33 4 2 END INITSEQ; COM01016 
8869 COl-161620 
896e 34 1 1 SEQPROC: PROCEDURE; COM61636 
96eS 35 5 2 PUT FILE (SYSPRINT) SKIP EOIT(MASTER_KEY,MASTER_NAME, COM01676 831613 
9160 5 2 MASTER_BAL) (A(5),A(S),X(5),A(20},X(6),F(16,2»; COM01086 831013 
920e 36 5 2 READ FILE (MST_FILE) INTO (MASTER_RECORD) KEY (MASTER_KEY) COt10164e 831613 
9306 5 2 OPTIONS(KEYSEARCH(AFTER» ; COM616S6 831013 
9466 37 5 2 RETURN; COM01696 
9500 38 5 2 END SEQPROC; COMtl11tlO 
9600 Cot-l0111a 
970e 39 1 1 DYNAMIC: PROCEDURE; COM01126 

J 9866 48 6 2 r1ASTER_KEY = ltlPUT_KEY; CO~10113E1 

9986 41 6 2 READ FILE (MST_FILE) INTO (MASTER_RECORD) KEY (MASTER_KEY) COM81146 831613 
18699 6 2 opn ONS(KEYSEARCH(EQUAL)}; 831613 
1016e 42 6 2 IF INPUT_GEN_FLO • MASTER_GEN_FLO THEN COM811S0 
16206 6 2 DO; COM61168 
18300 43 6 2 1 OLD_MASTER_BAL D MASTER_BAL; COf16117a 
164e6 44 6 2 1 MASTER_SAL = MASTER_SAL + INPUT_AMT; COM61186 
16596 45 6 2 1 PUT FILE (SYSPRINT) SKIP EDIT (MASTER_KEY ,MASTER_NAME, COMfH190 
16600 6 2 1 OLD_MASTER_BAL,INPUT_AMT,MASTER_BAL)(A(S),A(S),X(5),A(28), COMa1260 831813 

Figure 8-19 (Part 2 of 3). PL/I Program Using Commitment Control 

J 
8-66 PL/I User's Guide and Reference 



COMMITMENT CONTROL 

5728PL1 R01 MOO 880715 PL/I Source Listing PLITST /LP1425 11/38/88 14:49:48 Page 4 

Include 

Figure 

LP1425: PROCEDURE; COHOO16B 
SEQNBR STMT.SUBS BLK BN DO *< •• + •••• 1 •... + •••• 2 .... + .... 3 •..• + •••• 4 .... + .... 5 ••.• + •••• 6 .... + .... 7.> •• + •••• 8 Date 
19780 6 2 1 X(6).F(lB.2).X(6).F(10.2).X(8).F(10,2»; CDM01218 831813 
18800 46 6 2 1 REWRITE FILE (MST_FILE) FROM (MASTER_RECORD) KEY(MASTER_KEY): COM01228 
10900 COMO 1238 
11000 47 6 2 1 m IF MASTER_BAL >a O.B THEN COM01240 
11100 6 2 1 DO; Cot~01258 

11200 48 6 2 2 m CALL PLICO~lMIT: COM01268 838615 
11360 49 6 2 2 PUT FILE (SYSPRINT) EDIT('* TRANSACTION COMMITTED *') COM01279 831813 
11400 6 2 2 (X(1) .A(26»: COfl01280 831913 
11500 58 6 2 2 END: /* 00 */ COM91299 
11600 51 6 2 1 ELSE COf181308 
11700 6 2 1 DO: COM01318 
11800 52 6 2 2 m CALL PLIROLLBACK: COI~e1320 836615 
11980 53 6 2 2 PUT FILE (SYSPRINT) EOIT('* TRANSACTION ROLLEOBACK *') COM01330 831013 
12eoo 6 2 2 (X(l) ,A(26»: CO~18134a 831613 
12100 54 6 2 2 END: /* DO */ COf161350 
12200 COMO 1360 
123eO 55 6 2 1 END; /* DO */ Cot~01370 

12400 56 6 2 RETURN: COM01380 
12588 57 6 2 END DYNAMIC: CDM8139B 
12600 COM01400 
12700 58 1 1 END LP1425: COM01410 830817 

8-19 (Part 3 of 3). PL/I Program Using Commitment Control 

D See Figure 8-5 on page 8-10 for an explanation of this same program 
without commitment control. 

fJ Code the COMMITTABLE option in the ENVIRONMENT attribute. 

II Declare the built-in subroutines PLICOMMIT and PLIROLLBACK. 

II Check for successful transactions. 

m Commit the transaction, 

1m Or roll back the transaction. 

The following example uses a display me and indicators to check for a successful 
transaction in a program to update a me. 

Chapter 8. Using AS/400 Files 8-67 



COMMITMENT CONTROL 

AS/400 DATA DESCRIPTION SPECIFICATIONS G)l21·"t..oUU~ 
Mftted1ft u.'J,A.. 

'HunIIaer 4' ........... pod "",,_,.liqMI,. 

'­N_ 

I I I I I I I I 1-"""" .. 

Dl L IV' I LE - PROMP SCRj::E'N OR COIolMITJ,oIENT CONTROL 
AMOUNT 

INDATA 
PRINT 

~---tr~~~~~~tr-C~C~T~P~~~-++----++-++--+-~TEXTC'CUSTOMER ACCOUNT PROMPT' 
A01( 15 'END OF PROGRAM') 

PUTRETAIN OVERLAY , 'ACCOUNT MASTER UPDATE' 
'FROM ACCOUNT NUMBER' 

ACCTfR OM 5 01 23,'CHECK UAE) 
99 ERRMSGC'INVALID FROM ACCOUNT + 

NUMaER' 99) 
U ERRMSGC'INSUFFICIENT FUNDS IN FROM 

\ACCOUNT' 98 
<I 'TO ACCOUNT NUMBER' 

IACCTTO 5 01 <I 23CHECK(ME) 
7 ERRMSGC'INVALIO TO ACCOUNT + 

NUMaER' 97) 
!i 'AMOUNT TRANSFERRED' 

Figure 8-20 (Part 1 of 6). Program Using PLICOMMIT and PLIROLLBACK 

AS/400 DATA DESCRIPTION SPECIFICATIONS CX'21-98t1..o UN/OSO. 
Prtm«:flf'lU,S.A. 

*NUl'flboe<-4f 1'-111 pI!Ir ,.xI...,,_,.liq"Uy. 

I 1\ I I III 
C:onc:flttoniNl 

"""'''''' -
" i Cortdl'UGn ,...... ~ 
~ 

i ..... .... Ih 
.. 

r..-:lIont 
'- ~ g ~ ........ ! ~ ~ 

~. l! ;: i z i 1 j .ti ·t u~ .. , 
!in d i ~ ~ ~ ~ 

• 0 

1 ! , .... 7 ..... .., , 't U ... " ~ '1II11221JI''U?lJ1. ".n.,1.lJl4 " :ot .. ., '2 u ... d~U.~_~ft»~M~~N~N.!':~M ••• 7.ft~"nnun~".~ 

TRANSAM- 1 J 2. 
ERRMSG C ' I NVALI D TRANSACTIDN AMOUNT 
INPUTTED' 94) 

II H'MAKE SURE THAT YOU INSERT A + 
DECIMAL POINT' 

11 2Jl 'EVEN IF THERE ARE NO CENTS + 
INVOLVED. , 

1 1 1 '~O NOT PLACE ANY TYPE OF SYMBOL + 
IN FRONT OF OR BEHIND' 

12 20 'THE NUMBER (LG. S PLUS SIGN + 
MINUS SIGN ETC.) . 

• ERRFMT 
8 J~ _!i'INVALID FILE STATUS' 

95 fj'INVALlD KEY ON REWRITE' 

Figure 8-20 (Part 2 of 6). Program Using PLICOMMIT and PLIROLLBACK 

8-68 PL/I User's Guide and Reference 

J 



COMMITMENT CONTROL 

S728Pll .1 Mee 88ens PL/I Source Listing LP1426/LP1426 11/3e/88 15:41:96 Page 2 
LP1426: PROCEDURE: CCT8816e 

Include SEQNBR STMT. SUBS BLK BM DO *< •• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
1ge 1 LP1426: PROCEDURE: CCT88168 838817 
299 CCT99178 
398 /* FILE DECLARATIONS */ CCT98189 
499 2 1 1 DECLARE D CCT99199 
599 1 1 ACT_FILE FILE RECORD INTERNAL DIRECT UPDATE EMV(INDEXEO COMHITTABLECCT99298 839919 
6e9 1 1 KEYDISP(9) KEYLENGTH(S».CCT99219 838919 
7ee 2.1 1 1 ACCTFMTS FILE RECORD INTERNAL SEQUENTIAL UPDATE ENV(INTERACTIVE); CCT9922e 830687 
8e9 CCT99239 

. ge9 /* RECORD DECLARATIONS *1 CCT88248 
1999 3 1 1 DECLARE CCT992S9 
1198 1 1 FROM_ACCOUNT_RECORD. CCT88260 
lite 3.1 1 1 2 ACCT_KEY PICTURE '9999R'. CCT89278 831813 
1388 3.2 1 1 2 NAME CHAR(28). CCT99288 
1406 3.3 1 1 2 ADDR CHAR(29) • CCT88298 
1S8e 3.4 1 1 2 CITY CHAR(20). CCT003e9 
1600 3.5 1 1 2 STATE CHAR(2) • CCT0631e 
17ee 3.6 1 1 2 ZIP PICTURE '99999R'. CCT88328 831813 
18ee 3.7 1 1 2 BALANCE PICTURE '99999999V9R'. CCT99338 831813 
1999 3.8 1 1 TO_ACCOUNT_RECORD. CCT99349 
2899 3.9 1 1 2 ACCT KEY PICTURE ' 9999R' • CCT99359 8311113 
2189 3.18 1 1 2 NAME- CHAR(28). CCT99369 
2299 3.11 1 1 2 AOOR CHAR(29). CCT89379 
23e8 3.12 1 1 2 CITY CHAR(29). CCT90389 
24e9 3.13 1 1 2 STATE CHAR(2) • CCT993ge 
2S99 3.14 1 1 2 ZIP PICTURE '99999R'. CCT9948a 831913 
2699 3.15 1 1 2 BALANCE PICTURE '99999999V9R': CCT9941a 831813 
2799 831913 
2899 4 1 1 DECLARE 831913 
2988 1 1 1 DISPLAY_RECORD. CCT99428 
3889 %INCLUOE ACCTFMTS(ACCTPMT. INPUT •• COMMA) : CCT99438 831813 

~ 
ACCTPHT + 199 /* ----------------------------------------------------------------- */ 
ACCTPHT + 209 /* DEVICE FILE: ACCTFMTS.LPI426 */ 
ACCTPHT + 369 /* FILE CREATION DATE: 87/11/38 *1 
ACCTPMT + 408 /* RECORD FORMAT: ACCTPHT */ 
ACCTPHT + see /* RECORD FORMAT SEQUENCE 10: I1FB703S3213F *1 
ACCTPMT + 699 /* ----------------------------------------------------------------- *1 
ACCTPMT + 789 /* INDICATORS FOR FORMAT ACCTPHT */ 
ACCTPHT + 8ge /* INDICATOR 15 END OF PROGRAM */ 
ACCTPMT + 989 /* INDICATOR 94 INVALID TRANSACTION AMOUNT INPUTTED */ 
ACCTPtH + 1888 /* INDICATOR 97 INVALID TO ACCOUNT NUMBER */ 
ACCTPMT + 11a8 /* INDICATOR 98 INSUFFICIENT FUNDS IN FROM ACCOUNT *1 
ACCTPMT + 126e /* INDICATOR 99 INVALID FROM ACCOUNT NUMBER */ 
ACCTPHT + 13ea /* ----ow-CUSTOMER ACCOUNT PROMPT----------------------------------- *1 
ACCTPHT + 14a9 4.1 1 1 15 ACCTFROM PIC '9999R'. 
ACCTPtH + lsee 4.2 1 1 15 Accno PIC '9999R'. 
ACCTPHT + 1689 4.3 1 1 15 TRANSAMT PIC '99999999V9R'. 

3188 4.4 1 1 DISPLAY_INDICATORS. CCT99448 
3298 % INCLUDE ACCTFMTS(ACCTPHT. I NDI CA TORS •• COMMA) ; CCT99459 838919 

ACCTPMT + 199 /* ----------------------------------------------------------------- */ 
ACCTPMT + 20e 1* DEVICE FILE: ACCTFMTS.LP1426 */ 
ACCTPHT + 38e 1* FILE CREATION DATE: 87/11/36 */ 
ACCTPHT + 4ge /* RECORD FORMAT: ACCTPMT *1 
ACCTPHT + see /* RECORD FORMAT SEQUENCE ID: 11FB7D3S3213F */ 

Figure 8-20 (Part 3 of 6). Program Using PLICOMMIT and PLIROLLBACK 

Chapter 8. Using AS/400 Files 8·69 



COMMITMENT CONTROL 

5728PL1 R01 Mae 880715 

Include 
ACCTPtH 
ACCTP~1T 

ACCTPIH 
ACCTPm 
ACCTPt1T 
ACCTPMT 
ACCTPMT 
ACCTPMT 
ACCTPt4T 
ACCTPMT 
ACCTPMT 

ERRFMT 
ERRFMT 
ERRFMT 
ERRFt4T 
ERRFMT 
ERRFtH 
ERRFMT 
ERRFMT 
ERRFMT 
ERRFI1T 
ERRFMT 

ERRFlH 
ERRFIH 
ERRFI1T 
ERRFMT 
ERRFMT 
ERRFMT 
ERRFMT 
ERRFMT 
ERRFMT 
ERRFMT 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

SEQNBR STMT.SUBS BLK BN 00 
600 
7ee 
see 
ge0 

10ee 
11e0 
120e 
13ae 
14ee 
1500 
1600 
330e 
34ee 

1e0 
200 
300 
4ea 
5e0 
600 
700 
see 
90e 

1000 
11e0 
35e0 
3600 
lee 
200 
360 
4ee 
500 
6e0 
760 
800 
900 

1e00 
3700 
3800 
3900 
4000 
410e 
4200 
4300 
440e 
4500 
4600 
47e0 
480e 
490e 
5000 
510e 
520a 
530e 

4.5 
4.6 
4.7 
4.8 

4.9 
4.10 
4.11 

4.12 
4.13 

4.14 
4.15 

4.16 

1 
1 

4.17 1 
4.18 1 1 
4.19 1 1 

5 

5.1 
5.2 

6 

6.1 
6.2 

7 

1 
1 

1 
1 1 

PL/I Source Listing 
LP1426: PROCEDURE; 

LP1426/LP1426 11/36/88 15:41:06 Page 3 
CCT08168 

*< •• + •••• 1. .•• + •••• 2 ..•• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••. 6 ••.• + •••• 7.> •• + •••• 8 Date 

6 

/* -------CUSTOMER ACCOUNT PROMPT ----------------------------------- * / 
15 IN01 IN14 CHAR(14), /* UNDEFINED INDICATOR(S) */ 
151N1S- PIC '9', /* END OF PROGRAM */ 
151N16_IN93 CHAR(78), /* UNDEFINED INDICATOR(S) */ 
15 IN94 PIC '9', /* INVALID TRANSACTION At40UNT 

15 IN95_IN96 CHAR(02), 
15 IN97 PIC 'g', 
151N98 PIC'9', 

INPUTTED 
/* UNDEFINED INDICATOR(S) 
/* INVALID TO ACCOUNT NUMBER 
/* INSUFFICIENT FUNDS IN FROM 

*/ 
*/ 
*/ 

ACCOUNT */ 
15 11199 PIC' 9', /* INVALID FROM ACCOUNT NUMBER */ 
ERROR_FORMAT, ' CCT88460 
%INCLUDE ACCTFMTS(ERRFMT ,OUTPUT , ,COMMA); CCT08470831e13 

/* --- -- --------- ---- ------- --- --------- ------ --- ---- ---- -- --------- * / 
/* DEVICE FILE: ACCTFMTS.LP1426 */ 
/* FILE CREATION DATE: 87/11/38 */ 
/* RECORD FORMAT: ERRFMT */ 
/* RECORD FORt1AT SEQUENCE ID: 0061A19C6D524 */ 
/* ----------------------------------------------------------------- */ 
/* INDICATORS FOR FORMAT ERRFMT */ 
/* INDICATOR 95 */ 
/* INDICATOR 96 */ 
/* -- ------ ---- ------ --------- -- ------------------------------ -- -- -- * / 

15 DUMMYDCL CHAR(e), /* NO FIELDS OF NEEDED TYPE */ 
1 ERROR FORMAT INDICATORS, CCT00480 

%INCLUDE ACcTFfnS(ERRFMT ,INDICATORS); CCT004ge 830667 
/* -------- -- ---------- -- --------------------- ----------- -------- -- - * / 
/* DEVICE FILE: ACCTFMTS.LP1426 */ 
/* FILE CREATION DATE: 87/11/30 */ 
/* RECORD FORMAT: ERRFMT */ 
/* RECORD FORMAT SEQUENCE 10: 0061A19C6D524 */ 
/* ----------------------------------------------------------------- */ 

15 1t10UN94 CHAR(94), /* UNDEFINED INDICATOR(S) */ 
151N95 PIC '9', 
15 IN96 PIC '9', 
15 IN97_IN99 CHAR(03); /* UNDEFINED INDICATOR(S) */ 

CCT00509 
/* INDICATOR FLAGS */ 
DECLARE 

ItlDlCATORJLAGS STATIC, 
2 OFF 
2 ON 

/* BUI LT - I N FUIICn OtIS */ 
DECLARE 

ONCODE 
PLICOflMIT 
PLI ROLLBACK 

/* PROGRAM VARIABLES */ 
DECLARE 

OPERATION 

PICTURE 
PICTURE 

BUILTIN, 
BUILTIN, 
BUILTlII; 

CHAR(9); 

'9' lNIT(0) , 
'9' III IT (1) ; 

CCT00S10 
CCT96520 
CCT00S36 
CCT60546 831613 
CCT60550 831013 
CCT00560 
CCT6a576 
CCT00S80 
CCT6e596 
CCT66600 830919 
CCT60610 830919 
CCT00629 
CCT00639 
CCT0aM0 
CCT00650 
CCT0a660 

Figure 8-20 (Part 4 of 6). Program Using PLICOMMIT and PLIROLLBACK 

8-70 PL/I User's Guide and Reference 

J 



COMMITMENT CONTROL 

5728PLl RBI MOB 880715 PL/I Source Listing LP1426/LP1426 11/39/88 15:41:66 Page 4 
LP1426: PROCEDURE; CCTfle160 

Include SEQNBR STMI. SUBS BLK BN DO w< •• + •••• 1 ••.. + •••• 2 •••. + •••• 3 •••• + •••• 4 •••• + •••• 5 •••. + •••• 6 •••. + •••• 7.> •• + .••• 8 Date 
5400 8 1 1 ON KEY (ACT_FILE) CCT00679 
5509 1 1 BEGIN; CCTe0689 
5609 9 2 2 ON ERROR SYSTEM; CCT0069B 
57aO 10 2 2 IF ON CODE ~= 51 THEN CCT09760 
5800 2 2 IN96 z ON; CCT00719 
5900 11 2 2 ELSE CCT00720 
6099 2 2 IF OPERATION. 'REWRITE' THEN CCT00730 
61ee 2 2 IN95 • ON; CCT00740 
6200 12 2 2 ELSE CCT00750 
6300 2 2 IF OPERATION a 'READ-FROf1' THEN CCT00760 
6400 2 2 DO; CCT00770 
6500 13 2 2 1 IN99 = ON; CCT00780 
6600 14 2 2 1 GO TO LAB1; CCT00790 
6700 15 2 2 1 END; 1* DO *1 CCT00800 
6800 16 2 2 ELSE CCT00810 
6900 2 2 IF OPERATION. 'READ-TO' THEN CCT99820 
7000 2 2 DO: CCT00830 

L 7100 17 2 2 1 IN97 = ON: CCT00840 
7200 18 2 2 1 GO TO LAB2; CCT90850 
73e9 19 2 2 1 END: 1* DO wI CCT00860 
7406 29 2 2 WRITE FILE (ACCTFMTS) FROM (ERROR_FORMAT) CCT00870 830607 
7500 2 2 OPTIOIIS(RECORD(' ERRFMT'} INDICATORS(ERRORJORMAT_INDICATORS}}: CCT00880 
7600 21 2 2 CLOSE CCT00890 
7760 2 2 FILE (ACTJILE): CCT00900 
7806 22 2 2 CLOSE CCT00910 
7900 2 2 FILE (ACCTFMTS); CCT00920 830607 
8000 23 2 2 STOP: CCT00930 
8100 24 2 2 END: 1* BEGIN *1 CCT00940 
8200 CCT00950 
8300 1* MAIN PROGRAM wI CCT00960 
8400 25 1 OPEN CCT00970 
8509 1 FILE (ACT_FILE) TITLE('ACTFILE'}; /* UPDATE */ CCT00980 830919 
86ee 26 1 OPEN CCT00990 
8700 1 FI LE (ACCTFMTS): 1* UPDATE */ CCT01000 830919 
8800 CCT01010 
8900 27 DISPLAY_INDICATORS = OFF; 1* IN15,IN94,IN97,IN98,IN99 *1 CCT01020 831102 
9006 28 ERROR_FORMAT_INDICATORS z OFF; 1* IN95,IN96 *1 CCT01630 
9l0e CCT91040 
9200 1* DISPLAY THE SCREEN *1 CCT01050 
9300 29 CALL DISPLAY; CCT01060 
9400 CCTa1070 
9500 39 1 1 DO WHILE(IN15 = OFF}; CCT01080 
9600 1* CHECK FOR INVALID TRANSACTION AMOUNT *1 831102 
9700 31 1 1 IF TRANSAMT < B.B THEN 831102 
9809 1 1 DO: 831102 
9900 32 1 2 IN94 • ON; 831102 

10000 33 1 2 GOTO LAB3; 831102 
10100 34 1 2 EtlD; 831102 
10200 1* VERIFY FROM-ACCOUNT *1 CCT01999 
10390 35 FROM_ACCOUNT_RECORD.ACCT_KEY • ACCTFROM; CCT01100 
10409 36 OPERATI ON = 'READ-FROM'; CCT01110 
10500 37 READ FILE (ACT_FILE) IIITO (FROf1_ACCOUNT_RECORD) CCT01120 
10600 KEY(FROM_ACCOUtlT_RECORD.ACCT_KEY}; CCT01130 

Figure 8-20 (Part 5 of 6). Program Using PLICOMMIT and PLIROLLBACK 

Chapter 8. Using ASj400 Files 8-71 



COMMITMENT CONTROL 

5728PL1 R91 M99 889715 PL/I Source Listing LP1426/LP1426 11/39/88 15:41:96 Page 5 
LP1426: PROCEDURE; CCHIS169 

Include SEQNBR STMT.SUBS BLK BM DO *< •. + .... 1 .... + .... 2 .... + .... 3 .... + •••• 4 •••• + .... 5 .... + .... 11 .... + .... 7.> .. + •••• 8 Date 
19799 CCT91149 
18888 38 1 LAB1: IF IN99 • OFF THEN CCT81159 
lS99S 1 DO, CCTS1160 
11999 /* VERIFY TO-ACCOUNT */ CCT6117G 
11190 39 1 2 TO_ACCOUNT_RECORD.ACCT_KEY • ACCTTO; CCTEIll8G 
11299 49 1 2 OPERATION· 'READ-TO': CCT91190 
1131'19 41 1 2 READ FILE (ACT_FILE) INTO (TO_ACCOUNT_RECORD) CCT91208 
11499 1 2 KEY(TO_ACCOUNT_RECORD.ACCT_KEY), CCT91216 
11590 CCT81229 
11699 42 1 1 2 LA82: IF IN97 • ON THEN CCT91238 
11799 1 1 2 m CALL PLIROLLBACK; CCT91248 839919 
11899 43 1 1 2 ELSE CCT91259 
11989 1 1 2 DO, CCT91269 
12899 /* UPDATE THE ACCOUNT */ CCT81279 
12109 44 1 1 3 FROM_ACCOUNT_RECORD.BALANCE • CCT91280 
12209 1 1 3 FROM_ACCOUNT_RECORD.BALANCE - TRANSAMT, CCT81299 
12309 45 1 1 3 TO_ACCOUNT_RECORD.BALANCE • CCT91399 
124G9 1 1 3 TO_ACCOUNT_RECORD.BALANCE + TRANSAMT: CCHll316 
1251'10 46 1 1 3 OPERATION· 'REWRITE': CCT01329 
12699 47 1 1 3 REWRITE FILE (ACTJlLE) FROM (FROM_ACCOUNT_RECORD) CCHI1339 
1271'19 1 1 3 KEY(FROM_ACCOUKT_RECORD.ACCT_KEY): CCT01348 
12890 48 1 1 3 REWRITE FILE (ACT]ILE) FROM (TO_ACCOUNT_RECORD) CCT91359 
12988 1 1 3 KEY(TO_ACCOUNT_RECORD.ACCT_KEY), CCT91369 
13999 49 1 1 3 m IF FROM_ACCOUNT_RECORD.8ALANCE < 9.9 THEN CCT81379 
13198 1 1 3 DO; 831192 
13299 59 1 1 4 m CALL PLIROLLBACK: CCT91389 839919 
13390 51 1 1 4 IK98 • ON: 831192 
13490 52 1 1 4 END, 831192 
13509 53 1 1 3 ELSE CCT01398 
13600 1 1 3 m CALL PLICOMMIT, CCT91499 839919 
13788 54 1 1 3 END: /* DO */ CCT91419 J 13899 55 1 1 2 END: /* 00 */ CCT91429 
13988 56 1 1 1 LAB3: 831192 
14981'1 1 1 CALL DISPLAY: CCT01430 831182 
141a9 57 1 1 END: /* 00 WHILE */ CCT91449 
14290 CCT91459 
14389 58 1 1 CLOSE CCT81469 
14408 1 1 FILE (ACT]ILE); CCT01470 
14599 59 1 1 CLOSE CCT81489 
14699 1 1 FILE (ACCTFMTS); CCT81498 839697 
14798 CCT91590 
14899 69 1 DISPLAY: PROCEDURE; CCT91518 
14999 /* DISPLAY THE SCREEN AND READ */ CCT01528 
15089 61 3 2 WRITE FILE (ACCTFMTS) FROM (DISPLAY_RECORD) CCT91539 839607 

J 15186 3 2 OPTIONS(RECORD('ACCTPMT') INDICATORS(DISPLAY_INDICATORS»; CCT81548 
15289 62 3 2 DISPLAY_INDICATORS. OFF; /* IN15.IN94.IN97.IN98.IN99 */ CCT1:I155!l 831192 
15369 63 3 2 READ FILE (ACCTFMTS) INTO (DISPLAY_RECORD) CCTa1569 836697 
15460 3 2 OPTlONS(RECORD(' ACCTPI4T') INDICATORS(DISPLAY_INDICATORS», CCT81578 
155138 64 3 2 END DISPLAY; CCT9158a 
15609 CCT81591:1 
15709 115 1 END LP1426; CCT81668 836817 

Figure 8·20 (Part 6 of 6). Program Using PLICOMMIT and PLIROLLBACK 

8-72 PL/I User's Guide and Reference 



L 

L 

ACCOUNT MASTER UPDATE 

FROM ACCOUNT NUMBER 11111 
TO ACCOUNT NUMBER 12345 
AMOUNT TRANSFERRED 5. __ _ 

USING THE %INCLUDE DIRECTIVE 

MAKE SURE THAT YOU INSERT A DECIMAL POINT 
EVEN IF THERE ARE NO CENTS INVOLVED. 

DO NOT PLACE ANY TYPE OF SYHBOL IN FRONT OF OR BEHIND 
THE NUMBER (E.G. $, PLUS SIGN, MINUS SIGN, ETC.). 

Figure 8-21. Display for Program Using PLICOMMIT and PLIROLLBACK 

o 
fJ 
II 
II 
1:1 

Code the COMMITTABLE option in the ENVIRONMENT attribute. 

Declare the built-in subroutines PLICOMMIT and PLIROLLBACK. 

Check for successful transactions and: 

Either roll back the transaction, 

Or commit the transaction. 

Using the %lNCLUDE Directive for External File Descriptions 
The %INCLUDE directive can be used to copy external text into the source 
program, and to copy data description specifications (~os) for externally described 
mes into the source program. 

The %INCLUDE directive has a different format for each of the following 
functions: 

• Copying source text into a source program. 

The syntax diagram and description of this function can be found in "Using the 
%INCLUDE Directive" on page 2-16. 

• Copying record formats from ASj400 mes into PL/I programs. 

This function of the %INCLUDE directive is discussed below. 

The syntax of the %INCLUDE directive used for copying record formats from 
ASj400 mes into PL/I programs is shown below: 

Chapter 8. Using ASj400 Files 8-73 



USING THE %INCLUDE DIRECTIVE 

L'l= )-j----------prefix_name-------

,COl1111a 

prefix_name-,col1111a 

file_name 
An identifier of up to 10 characters. The fUe is located by using the +LIBL 
search list in effect at compile time. The fUe name can begin with and contain 
numeric characters and periods and can use all the characters allowed in a 
System/38 name. You cannot name your flle SYSLIB. 

format_name 
Name of the record format included. The name must follow the rules for 
naming AS/400 objects. 

element_type 
Specifies the fields and indicators that are included. The possible types are: 

INPUT Generates the record definition that matches the input buffer 
for data base or device fUes. Includes fields that have a usage 
of INPUT or BOTH in DDS. For subflles, output fields are 
also included. The response indicators are also included 
when the DDS keyword INDARA is not specified in the 
external fUe description. 

OUTPUT Generates the record defmition that matches the output 
buffer for data base fUes only. Includes fields that have a 
usage of OUTPUT or BOTH in DDS. The option indicators 
are also included when the DDS keyword INDARA is not 
specified in the external fUe description. 

KEY Includes fields that are specified as keys in DDS. 

INDICATORS Defines a 99-byte area for indicators. 

RECORD 

8-74 PL/I User's Guide and Reference 

When you specify INDICATORS, you must also specify the 
following: 

• The DDS keyword INDARA in the external description 
of the fUe. 

• The INDICATORS parameter on the OPTIONS option 
of any record I/O statements for the fUe. 

Generates the record defmition that matches both the input 
and the output buffers that are used by physical and logical 
fUes. Includes fields that have a usage of BOTH in DDS. 
INPUT fields in logical fUes are also included. It includes 
any indicators that are used as option indicators and also as 
response indicators if INDARA is not specified in the 
external fUe description. 



L 

USING THE %INCLUDE DIRECTIVE 

prefix_name 
A character string by which all generated names are prefixed. The prefix is 
limited to 30 characters or less. The resulting names must be valid and the 
length must be 31 characters or less. 

COMMA 
Specifies that the last data element of the record or key structure is followed by 
a comma. If CO MMA is not specified, the last data element is followed by a 
semicolon. The COMMA option may be used to position the data elements 
generated by the %INCLUDE directive within a structure without ending the 
structure. 

Using the % INCLUDE Directive with Externally Described Files 
When you explicitly declare a me in your program with the DESCRIBED option of 
the ENVIRONMENT attribute, the following checks are processed for each record 
format copied into the program from the me with a %INCLUDE directive: 

• Level checking, at open time, for each record format. For more information on 
level checking, see the Programming: Control Language Programmer's Guide. 
To prevent level checking, you may specify no level checking when you create 
the me, or you may override the default level checking after the me is created 
(see the CL command CRTxxxF (Create xxx File) and OVRxxxF (Override xxx 
File) in the Programming: Control Language Reference). 

• The compatibility of the program description of the me (ENVIRONMENT 
options) and the external description of the me (DDS) (see Figure 7-2 on 
page 7-9). 

If the externally defined me 

• Has no fields defmed for it, or 

• The element type is INPUT and there exists no fields in the record format with 
usuage INPUT or BOTH, or 

• The element type is OUTPUT, the me is not a data base me and there exists no 
fields in the record format with usage OUTPUT or BOTH, or 

• The element type is INDICATORS but no separate indicators exist 

then the compiler will generate the following declaration: 

15 DUMMYDCL CHAR(0); 

and will produce a comment in the listing and issue a severity 10 warning message. 
See Figure 8-23 on page 8-79. 

For example, a DUMMYDCL statement is generated by a subfJle control record 
format (which has no record fields and exists to defme indicators and communicate 
with the system). 

Even if no fields are included and a DUMMYDCL is generated, the compiler proc­
esses level checking and compatibility checking. 

If you specify DESCRIBED but do not use the %INCLUDE directive in your 
program, no level checking is processed. This is not the normal case but is accept-

Chapter 8. Using AS/400 Files 8-75 



USING THE %INCLUDE DIRECTIVE 

able because the DESCRIBED attribute may be used to obtain functions other than J 
level checking. 

Using the %INCLUDE Directive with Program-Described Files 
If DESCRIBED is not specified, the %INCLUDE can be used to generate record 
format defInitions, but no level checking occurs when the fIle is opened. 

Using the %INCLUDE Directive with Display Files 
Input and Output 

The INPUT and OUTPUT options are provided for display fIles. The INPUT 
option generates fIelds that have a DDS fIeld usage of INPUT or BOTH, giving a 
record defInition that matches the input buffer. The OUTPUT option generates 
fIelds that have a DDS fIeld usage of OUTPUT or BOTH, giving a record defmition 
that matches the output buffer. 

If you are using a single record format for both input and output, you should use 
the %INCLUDE directive twice, specifying element-type INPUT one time and 
element-type OUTPUT the other time. To avoid duplicating the defmition of the 
record format, you may do one of the following: 

• Use a unique prefix 
• Include each use of INPUT and OUTPUT in a unique structure. 

For example: 

DECLARE 
1 DISPLAY_SCREEN, 

5 INPUTJIELDS, 
%INCLUDE FLDREFFILE(INFIELDS,INPUT"COMMA); 

5 OUTPUTJIELDS, 
%INCLUDE FLDREFFILE(OUTFIELDS,OUTPUT); 

If you specify the PLII type INPUT, either INPUT or BOTH fields should exist in 
the DDS description of the record format. If you specify the PL/I type OUTPUT, 
either OUTPUT or BOTH fIelds should exist in the DDS description of the record 
format. In either case, if no such fields exists in the record format, the compiler will 
generate a DUMMYDCL. 

Indicators 

You can defme the indicators for a record format as part of a separate area, inde­
pendent of the record format, or you can defme them as fields in the record format. 
For a discussion of these methods for using indicators, see the sections below, and 
refer to "INDICATORS Parameter" on page 7-19. 

Indicators in a Separate Area: If you are using indicators in a separate area, make 
sure that you have done all of the following: 

• Specify INDICATORS type on the %INCLUDE directive. 

• Specify the DDS keyword INDARA on the external description of the fIle. 

8-76 PL/I User's Guide and Reference 



USING THE IYoINCLUDE DIRECTIVE 

• Specify INDICATORS on the OPTIONS option of any input/output statement 
that accesses the record fonnat. 

Indicators defined for a record format, both at the me level and at the record level, 
are returned as comments in the header description for each O/OINCLUDE directive 
when INPUT, OUTPUT, RECORD, or KEY is specified, if indicators are in a 
separate indicator area. 

Indicators as fields In the record format: Indicators in the buffer are declared as 
fields in the record when INPUT, OUTPUT, or RECORD is specified. 

When the indicators are defined in the record buffer, names are generated in the 
fonn of INnn where nn is the number of the indicator for each indicator that is 
used. 

DDS to PL/I Mapping 
The following table shows how each DDS data type is defmed in a PL/I program: 

DDS Length Decimal Generated Supported 
Data Position PL/I by 
Type Declaration PL/I 

indi- 1 0 PICTURE '9' Yes 
cator 

A 1 - 32 766 none CHARACTER (n) Yes 
where n = 1 to 32 766 

B 1 - 4 0 BINARY FIXED (15) UNALIGNED Yes 

B 5-9 0 BINARY FIXED (31) UNALIGNED Yes 

B 1 - 4 1 - 4 CHARACTER (2) No 

B 5-9 1 - 9 CHARACTER (4) No 

P 1 - 15 0- 15 DECIMAL FIXED (p,q) Yes 
where: 

p = 1 to 15 
q = 0 to 15 

P 16- 31 0-31 CHARACTER (n) No 
where n = length/2 + 1 

S 1 - 15 0- 15 PICTURE '9 ... 9V9 ... 9R' Yes 

S 16- 31 0-31 CHARACTER (n) No 
where n = 16 to 31 

F 1 - 7 0-7 DECIMAL FLOAT (7) UNALIGNED Yes 

Figure 8-22 (Part 1 of 2). How DDS Data Types Are Defined in a PLjI Program 

Chapter 8. Using ASj400 Files 8-77 



USING THE O/OINCLUDE DIRECTIVE 

DDS Length Decimal Generated Supported 
Data Position PL/I by 
Type Declaration PL/I 

F 8 - 15 0- 15 DECIMAL FLOAT (16) UNALIGNED Yes 
where n = 1 to 15 

Figure 8-22 (Part 2 of 2). How DDS Data Types Are Defined in a PL/I Program 

DDS Features You Can Use in Your PLII Program 
ALIAS keyword 

If you use the keyword ALIAS in your DDS, the name you specify as the ALIAS 

J 

parameter is the name that the compiler generates in your program. The field name' 
specified in the DDS is ignored. By using the ALIAS-name, you can make full use ,..., 
of PL/I'S 3 I-character name length limit, with resulting improvements in program 
readability. You are not limited to a la-character field-name. For an example of 
the use of the ALIAS keyword, see Figure 8-23 on page 8-79. 

Indicators 

The element type INDICATORS in the %INCLUDE directive generates a 99 byte 
structure for indicators. Each indicator defmed in DDS generates a field declaration 
in the form INnn, where nn is the DDS indicator number. All other bytes in the 
structure, for which indicators have not been defmed, generate field declarations in 
the form INnn _ INmm, where nn is the first undefmed byte, mm is the last unde­
fmed byte, and the bytes are contiguous. For example, if one indicator, 51, was 
defmed, then the indicator structure would be: 

INOI IN50 
INSI 
IN 52 IN99 

Defmed indicators will generate a PICTURE 19 1 and undefmed indicators will gen­
erate CHAR(n), where n represents the number of consecutive indicators not 
defmed. 

For indicators in the buffer, only the indicators that are used are declared. They are 
declared as PICTURE 19 1 and are generated when the element-type INPUT, 
OUTPUT, or RECORD is specified. 

Key definitions 

The element-type KEY in the %INCLUDE directive declares all the fields that are 
specified in the DDS as keys; their attributes are given in comments. For example, 
/+ ASCENDING +/ is generated if the key field is ascending. Similarly, when you 
specify INPUT, OUTPUT, or RECORD in the %INCLUDE directive, a field­
level comment indicates that the generated element is a key field in the DDS. 

8-78 PLfI User's Guide and Reference 



USING THE %INCLUDE DIRECTIVE 

Prefixes 

If you code a prefix-name in your %INCLUDE directive, the prefix you specify will 
be attached to the field name supplied by the file. For example, if you code 

%INCLUDE STOCKFILE(COUNT,RECORD,CURRENT_) 

and in the DDS the first field in the record is named 

BANDSAWS 

the generated name is 

15 CURRENT BAND SAWS 

By using prefixes, you can generate meaningful names for different uses of the same 
record format inside a single program. For an example of the use of a prefix, see 
Figure 8-23. 

TEXT keyword 

The DDS keyword TEXT at the field level generates a comment line for the field 
declarations. Similarly, the keyword TEXT at the format level generates a comment 
line preceding the declarations taken from the DDS. 

Sample Program Showing Use of DDS Features 

!!1M int.ernqtlonol 6us'lness MochiMS 

Oond'lflOl'li~ ~ 
~ 

- ~ .. 
~ Concll't~"NDrIII 

~ 
~ ¥ 

oil 
; ! ......... . . 

NVllIbtr ~ ,3 ~ 
~~&l~l£t,,! 
~i!~~iljiE 

AS/400 DATA DESCRIPTION SPECIFICATIONS 

I Grnph'e 

Ko, I I I I I I I I 

....... 

'- ,""," 

-~ 
~.£ 

n u~ .... 
r ... nel.o .... 

CXll~g891-{l U"'/(6<). 
Pri .. 1\'1rj In U.O;:;."' • 

• Number ..,f 1Iheets per pod rTI<J}' YO'1.1-..,htly. 

, t .I .... 7 • " ,., " .. u •• "' 1 I!' "'IIl'l' nuu'll~v. lIOt'I.!'J:,s).". , .. , ." ,~u .... d.u~""~n~~~.PM~~"'l~~U_~.~~"n~~n~"~~ R CUSTFMT 
~ CUSTNAM 2 TEXT( 'CUSTOMER NAME') 

CUSTADD 1 25 ALIAS(CUSTOMER HDME ADDRESS) --TEXT( 'CUSTOMER HOME ADDRESS') 
CUSTA D 2 25 ALIAS CUSTOMER BlJSINESS ADDRESS) 

TEXT ( 'CUSTOMER BUSINESS ADDRESS') 
CUSTNC 10 TEXT('CUSTOMER NUMBER' ) 

!A K CUSTNC UNSIGNED 

I I 

Figure 8-23 (Part 1 of 3). %INCLUDE Examples 

Chapter 8. Using ASj400 Files 8-79 



USING THE %INCLUDE DIRECTIVE 

572SPL1 R01 M99 889715 PL/I Source Listing 
LP1430: 

QTEMP/LP1439 11/39/88 15:31:28 Page 2 

Include SEQNBR STMT.SUBS BLK BN DO 
lee 1 

*< •• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 .... + •••• 5 .... + .... II •••• + .... 7.> •• + .... 8 Date 

CUSTFHT 
CUSTFHT 
CUSTnlT 
CUSTFI4T 
CUSTFHT 
CUSTFMT 
CUSTFMT 
CUSTFHT 
CUSTfl.IT 
CUSTHIT 
CUSTFMT 
CUSTFMT 
CUSTFMT 
CUSTFHT 

CUSTFMT 
CUSTFMT 
CUSTFMT 
CUSTFMT 
CUSTFHT 
CUSTFMT 
CUSTFHT 
CUSTFMT 
CUSTHH 
CUSTFMT 

SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 
SFLREC 

SFLCTL 
SFLCTL 
SFLCTL 

2eG 
309 2 1 1 
409 1 1 
sae 

+ 10e 
+ na m 
+ 3ae 
+ 499 
+ S6a 
+ 60G 
+ 760 
+ ssa 
+ 996 
+ 106a 
+ 1109 
+ 12GO 
+ 1369 
+ 14S9 

m 600 
706 
8se 

+ 166 
+ 2Ge 
+ 3GG 
+ 4se 
+ SS9 
+ 60S 
+ 7e6 
+ 8e9 
+ geG 
+ 10Ge 

ge9 
16ge 
11es 

+ 1S9 
+ 20e 
+ 30e 
+ 4es 
+ se6 
+ 66a 
+ 7S9 
+ 8e6 
+ ge8 
+ 1e00 
+ 1109 

2.1 
2.2 

2.3 

1 1 
1 1 

2.4 1 

3 1 1 
1 1 

3.1 1 1 

4 1 1 
5 1 

+ 1266 5.1 
+ 1308 5.2 

120fl 6 
1309 

+ 1se 
+ 260 
+ 3eo 

LP1439: 849319 
PROC; I 

DCL 
1 A, m 

% INCLUDE CUSTFl LE (CUSTFHT ,RECORD, PLANT ): 
/* -------------------------------------------:--------------------- */ 
/* PHYSICAL FILE: CUSTFILE.QTEHP */ 
/* FILE CREATION DATE: 87/11/39 */ 
/* RECORD FORMAT: CUSTFMT * / 
/* RECORD FORMAT SEQUENCE 10: 371ESOA681EA7 */ 

1* ----------------------------------------------------------------- */ m 15 PLANT_CUSTNAME CHAR{2S), /* CUSTOMER NAME B */ 
m 15 PLAtH CUSTOMER HOME ADDRESS CHAR(2S). 

- - - /* CUSTOMER HOME ADDRESS m */ 
15 PLANT CUSTOMER BUSINESS ADDRESS CHAR(25), 

- - - /* CUSTOMER BUSINESS ADDRESS *1 
15 PLANT_CUSTNO PIC '999999999R': 

/* CUSTOMER NUMBER * / 
/* D()S - KEY FIELD lID *1 

DCL 
1 B, 

% INCLUDE CUSTF I LE (CUSTFMT ,KEY) :IJ] 
/* ----------------------------------------------------------------- */ 
/* PHYSICAL FILE: CUSTFILE.QTEMP */ 
/* FILE CREATION DATE: 87/11/30 */ 
/* RECORD FORMAT: CUSTFMT *1 
/* RECORD FORMAT SEQUENCE 10: 371E09A681EA7 */ 
1* ----------------------------------------------------------------- * / 

15 CUSTNO PIC '999999999R': 

DCL FILEl615 
DCL 1 RFMT1, 

1* CUSTOMER NUMBER 
/* DOS - ASCENDING 

/* 'UNSIGNED' KEY FIELD 
FILE RECORD UPDATE SEQL KEYED ENV(INTERACTIVE): 

%INCLUDE FILE1615 (SFLREC,RECORD): 

*/ 
*/ 
*/ 

/* ----------------------------------------------------------------- */ 
/* DEVICE FILE: FILEI915.QTEMP *1 
1* FILE CREATION DATE: 87/11/39 */ 
/* RECOR() FORt4AT: SFLREC * / 
/* RECORD FORMAT SEQUENCE 10: 08C196874B716 */ 
1* ----------------------------------------------------------------- */ 
/* INDICATORS FOR FORMAT SFLREC */ 
/* INDICATOR a1 CHANGE INDICATOR *1 
1* IIIDICATOR 92 CHANGE INDICATOR */ 
/* INDICATOR 63 */ 

/* ----------------------------------------------------------------- */ 
15 NUMBER1 PIC '99R', 
15 ALPHA1 CHAR(18): 

()CL 1 RFHT9, 
%INCLUDE FILEl61S (SFLCTL,RECORO); III 

/* ----------------------------------------------------------------- */ 
/* DEVICE FILE: FILElfl15.QTEMP *1 
/* FILE CREATION DATE: 87/11/38 *1 

LP188S69 
LP199S98 

Figure 8-23 (Part 2 of 3). %INCLUDE Examples 

8-80 PLjI User's Guide and Reference 

J 



~ 

USING THE %INCLUDE DIRECTIVE 

5728PLl ReI Mo9 889715 PL/I Source L1 5 ti ng QTEMP/LP1430 11/38/88 15:31:28 Page 3 
LP1430: 

Include SEQNBR STMT.SUBS BLK BN DO *< .. + •••• 1 .... + •••• 2 .••• + .... 3 ••.• + .... 4 .... + •••• 5 .... + •••• 6 .••• + .... 7 .~ •• + •••• 8 Date 
SFLCTL + 400 
SFLCTL + see 
SFLCTL + 60e 
SFLCTl + 7eO 
SFlCTl + 8GO 
SFLCTl + 906 
SFlCTL + 100e 
SFlCTL + nee 6.1 

1408 7 
1500 

SFlREC + 1GO 
SFLREC + ZOO 
SFLREC + 30e 
SFLREC + 4ee 
SFlREC + 590 
SFlREC + 60e 
SFlREC + 700 7.1 
SFLREC + 800 7.2 
SFLREC + 98e 7.3 
SFLREC + 1099 7.4 

IMe 8 
1700 

SFLCTl + 100 
SFLCTl + 2ee 
SFlCTl + 398 
SFLCTL + 4ge 
SFlCTl + 500 
SFLCTl + 600 
SFLCTl + 70e 8.1 
SFlCTL + 8eO 8.2 
SFLCTl + 909 8.3 
SFlCTl + 100e 8.4 

1800 9 
1900 9.1 
21)6a Ie 
2100 11 
2299 12 
2390 13 
2400 14 
2500 15 
2600 16 
2700 17 
2800 18 
290e 19 
3000 20 
3100 21 
3206 22 
330e 23 
340e 
3500 
3600 24 
3799 
3800 25 

Figure 8-23 (Part 3 of 3). 

/* RECORD FORMAT: SFLCTL */ 
/* RECORD FORMAT SEQUENCE 10: 0239713C3E414 */ 
/* ----------------------------------------------------------------- */ 
/* INDICATORS FOR FORMAT SFlCTL */ 
/* INDICATOR 64 */ 
/* INDICATOR es */ 
/* ---- ------------------ -------------- ------------------------- ---- * / 

1 1 III 15 DUMMYDCL CHAR(6); /* NO FIELDS OF NEEDED TYPE */ 
1 1 DCL 1 INDAREA, lP100730 

%INClUDE FilEl615{SFLREC, INDICATORS) ; IE 
/* ------------- -- ------------- ---------------- ---------- -- - - -- ----- * / 
/* DEVICE FILE: FIlE1015.QTEMP */ 
/* FILE CREATION DATE: 87/11/30 */ 
/* RECORD FORMAT: SFlREC */ 
/* RECORD FORMAT SEQUENCE ID: 08C100874B716 */ 
/* - - -- -------- ------- ------- -- - --- ----- ----------------- ----- ------ * / 

1 In 15 IN01 PIC' 9', /* CHANGE INDICATOR */ 
1 15 INe2 PIC '9', /* CHANGE INDICATOR */ 
1 15 IN03 PIC '9', 
1 In 15 IN04_IN99 CHAR(96); /* UNDEFINED INDICATOR{S) */ 
1 DCl 1 INDAREA2, lPlee730 

%INClUDE FILE1015{SFlCTl,INDICATORS); 
/* --------- --- - ---- - - ------- --- ----------- - --- ---------- ----------- * / 
/* DEVICE FilE: FIlEI615.QTEMP */ 
/* FilE CREATION DATE: 87/11/38 */ 
/* RECORD FORMAT: SFlCTl */ 
/* RECORD FORMAT SEQUENCE 10: 0230713C3E414 */ 
/* ----------------------------------------------------------------- */ 

1 1 15 IN01_1t103 CHAR{(3). /* UNDEFINED INDICATOR(S) */ 
1 1 15 I N04 PIC '9', 
1 1 15 1Il0S PIC '9', 
1 1 15 IN06 IN99 CHAR(94); /* UNDEFINED INDICATOR{S) */ 
1 1 DCl INDICATORS(99) CHAR{l) BASED{PTR), 

1 PTR POINTER; 
1 DCl I BIN FIXED(15); 
1 PTR = ADDR(IHDAREA); 
1 DO leI TO 99; 

1 1 INOICATORS{I) = '0'; 
1 1 1 END; 

1 PTR = ADDR{INDAREA2); 
1 DO I-I TO 99; 
1 1 INDICATORS{I) • '9'; 
1 1 END; 

1 1 OPEN FILE (FIlE101S); lP1008S0 
1 1 DO leI TO 5; 
1 1 NUMBER1 = I; 
1 1 1 ALPHA 1 • 'XX'; 
1 1 WRITE FIlE{FIlEI(15)FROM{RFMTl) KEYFROM(I) 
1 1 OPTIONS{RECORD (' SFlREC') 
1 1 1 INDICATORS(INDAREA) ); 

IF IN03 ~ 1 TllEN 
IN63='B'; 

ELSE 

%INCLUDE Examples 

D The source sequence field is set to 100 and is incremented by 100 with each 
line that follows. 

II The original line sequence numbers are resumed at the end of the generated 
statements. 

D The date field is left blank on generated statements. The actual 
%INCLUDE directive has a value put in the date field if it has been altered 
in SEU since the source was first entered. 

Chapter 8. Using ASj400 Files 8-81 



USING THE %INCLUDE DIRECTIVE 

II The prefix PLANT_ is specified as an option of the %INCLUDE directive. J 
II Each occurrence of a %INCLUDE directive generates line comments that 

identify the rue name, format name, record format sequence identifier, and 
rue creation date. 

m The field name on the DDS is CUSTNAME. Because the prefix PLANT_ 
was specified as an option of the %INCLUDE directive, the generated name 
is PLANT _ CUSTNAME. The default level number for each generated field 
is 15. 

D The TEXT keyword was specified on the DDS with the parameter CUS­
TOMER NAME. The parameter is therefore printed as a comment after the 
declaration. 

The field name on the DDS is CUSTADDRl. Because the keyword ALIAS 
was specified in the DDS with the parameter 
CUSTOMER_HOME_ADDRESS, the ALIAS parameter is used as the var­
iable name and the prefix PLANT._ is attached to it to generate the variable 
name PLANT CUSTOMER HOME ADDRESS. - --

II The keyword TEXT is also specified in the DDS with the parameter CUS­
TOMER HOME ADDRESS. The TEXT parameter is listed as a comment 
in the generated statement. 

1m A comment is generated indicating that CUSTNO is defmed on the DDS as a 
key. 

m KEY is specified as the element-type included from record format 
CUSTFMT. 

m A comment is generated indicating that CUSTNO is specified on the DDS as 
a key that is unsigned and in ascending sequence. 

ED RECORD is specified as the element-type included from record format 
SFLCTL. Therefore, fields in the record that specify BOTH on the DDS are 
included in the generated statement. If INDARA is not specified on the 
DDS, indicators for which BOTH is specified on the DDS are also included in 
the generated statement. 

m Record format SFLCTL has no fields for which BOTH is specified on the 
DDS. The generated structure therefore contains no data elements. The com­
piler generates a character string DUMMYDCL with a length of zero. 

m INDICATORS is specified as the element-type included from record format 
SFLREC. 

Em Indicators 1 to 3 are specified on the DDS, and are therefore declared in the 
generated text with PIC 19 1 as their attribute. Indicators 4-99 are not speci­
fied on the DDS, and are therefore not declared in the generated text. Instead, 
a variable IN04_ IN99 is declared in the generated text, and is given the attri­
bute CHARACTER and a length of 96 bytes. 

8-82 PL/I User's Guide and Reference 

J 



Chapter 9. References and Expressions 

This chapter contains infonnation on references and expressions, and their use in 
PL/I. 

An expression is a representation of a value. It can consist of constants, variables, 
and function references, along with operators or parentheses, or both. 

The syntax of expressions and references is shown in Figure 9-1 on page 9-2. 

A reference can be a scalar reference, which refers to a scalar data item, an array 
reference, which refers to an array, or a structure reference, which refers to a struc­
ture. An expression that represents a scalar value is a scalar expression. The only 
non-scalar expressions are array references and structure references. 

The syntax of many PL/I statements allows expressions. In this manual the tenn 
"expression" refers to a scalar expression except where stated to the contrary. 

The examples that follow illustrate the syntax of expressions and references. They 
use the following declarations: 

DECLARE BINFIXEDARRAY(10,10) BINARY FIXED (31), 
1 STRUCTUREl, 

5 DECFIXEDI DECIMAL FIXED (4,2), 
5 DECFIXED2 DECIMAL FIXED (4,2), 

1 STRUCTURE2(2), 
5 DECFIXEDI DECIMAL FIXED (4,2), 
5 DECFIXED2 DECIMAL FIXED (4,2), 

BINFIXEDI BINARY FIXED (15), 
BINFIXED2 BINARY FIXED (15), 
POINTERI POINTER, 
ENTRYVAR ENTRY VARIABLE, 
ENTRYCON ENTRY; 

Here are some examples of expressions: 

BINFIXEDI 
A unary expression that is an elementary expression that is a reference that is a 
basic reference that is a name. 

BINFIXEDI **BINFIXED2 
An expression that contains a unary expression followed by an infix operator 
followed by a second unary expression. 

Because the expression contains an infix operator (the exponentiation operator 
**), it is an operational expression. The unary expressions are operands. Oper­
ators are discussed under "Delimiters" on page 4-3. Operational expressions are 
discussed under "Operational Expressions" on page 9-4. 

Chapter 9. References and Expressions 9-1 



expression is: 

unary-expression(inflX-operator1 unary-expression) •.. 

where unary-expression is: 

Notes: 

(prefIX-operator •.• )elementary-expression 

where elementary-expression is: 

(expression) I constantlreference 

where reference3 is: 

(pointer-qualijierJbasic-reference 
(subscript -list)U( argument-lis t)(O)) 

where pointer-qualijier4 is: 

reference - > 

where subscript-listS is: 

expression(,expression) •.. 

where argument-list6 is: 

(expression(,expressionl···1 

where basic-reference7 is: 

(name .I ... name 

J 

1 Any of the operators shown in Figure 4-2 on page 4-4, except for the -, oper- J 
ator, can be used as an infIX-operator, but -, <, -, =, and -, > are valid infix-
operators. 
2 Any of the operators +, -, -, can be used as a prefIX-operator. 
3The optional empty argument list is discussed under "CALL Statement" on 
page 14-7. 
4 pointer-qualijier is discussed under "Based Variable Reference and Pointer 
Qualification" on page 5-20. 
5 subscripts are discussed under "Subscripts" on page 5-2. 
6arguments are discussed in Chapter 14, "Procedures, Subroutines, and 
Functions." 
7Structure qualification (" .") is discussed under "Structure-Qualification" on 
page 5-5. 

Figure 9-1. Syntax of Expressions and References 

9-2 PL/I User's Guide and Reference 



-BINFIXED2 
A unary expression that is a prefix operator followed immediately by a basic 
reference. 

Because it contains the minus prefix operator, -, it is an operational expression; 
BINFIXED2 is the operand. The prefix operator specifies that the negative 
value of BINFIXED2 is used. 

BINFIXEDARRAY 
A basic reference. 

Because BINFIXEDARRAY refers to an array, it is an array reference. Arrays 
are discussed under "Using Arrays and the Dimension Attribute" on page 5-1. 

BINFIXEDARRA Y(2,4) 
A reference that is a basic reference followed by a subscript list. 

BINFIXEDARRA Y(2,4) is a sUbscripted reference. 

2 
A unary expression, an elementary expression, and a constant. 

BINFIXEDARRAY(2,4) + BINFIXEDI 
An operational expression (see "Operational Expressions" on page 9-4). 

(BINFIXEDARRAY(2,4) + BINFIXEDI) * 2 
An operational expression (see "Operational Expressions"). 

The sequence of operations is discussed under "Priority of Operators" on 
page 9-15. 

POINTERl - > BINFIXEDARRAY(2,4) 
A pointer qualifier (POINTER 1 - », followed by a basic reference, followed 
by a subscript list. 

It is a pointer-qualified and subscripted reference. Pointer-qualifiers are dis­
cussed under "Based Variable Reference and Pointer Qualification" on 
page 5-20. 

STRUCTUREl.DECFIXEDl 
A basic reference which consists of a name, followed by a period, followed by a 
name. 

STRUCTUREl.DECFIXEDI is a fully-qualified structure reference. Struc­
tures are discussed under "Using Structures and Level Numbers" on page 5-3. 

STRUCTURE2.DECFIXEDl( 1) 
A basic reference followed by a subscript list. 

STRUCTURE2.DECFIXEDl(l) is a fully-qualified and subscripted reference 
to a field of the frrst array element of STRUCTURE2. STRUCTURE2 is an 
array of structures. Arrays of structures are discussed Wlder "Arrays of 
Structures" on page 5-5. 

STRUCTURE1.DECFIXED 1 - STRUCTURE2.DECFIXEDl( I) 
An operational expression (see "Operational Expressions" on page 9-4). 

STRUCTURE1.DECFIXEDI/4 
An operational expression. 

. Chapter 9. References and Expressions 9-3 



OPERATIONAL EXPRESSIONS 

BINFIXEDARRA Y(2,4) * STRUCTURE2.DECFIXED2(2) 
An operational expression. 

ENTRYV AR = ENTRYCON 
An operational expression. 

The remainder of this chapter discusses expressions that consist of operators and 
operands; such expressions are also called operational expressions. 

Operational Expressions 
An operational expression is an expression that consists of one or more operations. 
An operation can be either a prefix operation, which consists of a prefix operator 
followed by an operand, or an infix operation, which consists of an infix operator 
between two operands. 

An operational expression can always be considered as a single operation. For 
example, the expression 

A + B * C 

is an infix operation whose operator is +, whose first operand is A, and whose 
second operand is B * C. 

The operands and operator of an infix operation, or the operand and operator of a 
prefix operation, determine the attributes of the result of the operation. In this way, 
the attributes of the result of the entire operational expression can be determined. 

The operands of an operation must be scalar expressions. The operation itself is 
also a scalar expression. 

The operand(s) of an operation must be of the type required by the operator. For 
example, an arithmetic operator requires arithmetic operands. Therefore, before you 
use data as operands, you may have to convert them explicitly to the appropriate 
type, either by assigning them to a variable declared with the required attributes or, 
preferably, by means of the appropriate built-in function. 

If the types of the operands are correct, some implicit conversion may still be neces­
sary. For example, the operands of most arithmetic operators are converted to their 
common base and scale before the operation is processed. The types of the oper­
ands required by each operator and the conversions that will be processed implicitly 
are described below for each class of operations. 

The rest of this chapter describes the four classes of operations: arithmetic, bit, com­
parison, and concatenation. 

9-4 PLfI User's Guide and Reference 

J 

J 



OPERATIONAL EXPRESSIONS 

Arithmetic Operations 
The operands of an arithmetic operation must be arithmetic. 

You specify an arithmetic operation by one of the following operators: 

+ * / ** 

The + (plus) and - (minus) operators can be either prefix or infix operators, whereas 
the * (multiplication), I (division), and ** (exponentiation) operators are infix oper­
ators only. 

Data Conversion in Arithmetic Operations 

The two operands of an arithmetic operation may have different data attributes. 
They are converted as described below. 

Picture data operands are considered fixed-point decimal operands with a precision 
(p,q), which is derived from the picture specification. They are treated as fixed­
point decimal operands. The result of an arithmetic operation is always in coded 
arithmetic form. 

Data conversion in arithmetic operations depends on if the operation is 
exponentiation: 

• Operations other than exponentiation. The operands are converted, as neces­
sary, to the base and scale of the result, which is the common base and scale of 
the operands, as follows: 

If the bases of the two operands differ, the base of the result is binary. 

If the scales of the two operands differ, the scale of the result is floating­
point. 

• Exponentiation. Three cases govern the data attributes of the result. The base, 
scale, and precision of the result depend on the significand and on the exponent, 
as shown in Figure 9-3 on page 9-8. 

Results of Arithmetic Operations 

After any necessary conversion of the operands, the arithmetic operation is proc­
essed. 

The result of an operation must be floating-point, fixed-point binary with a zero 
scale factor, or fixed-point decimal with a non-negative scale factor. Therefore: 

• If one operand of the divide operator is fixed-point binary, the other must not 
be fixed-point. 

• If one operand of any infix operator, except exponentiation (++), or of the 
MAX, MIN, MOD, or DIVIDE built-in functions is fixed-point binary, the 
other operand must not be fixed-point decimal or picture with a nonzero scale 
factor. 

Chapter 9. References and Expressions 9-5 



OPERATIONAL EXPRESSIONS 

The precision of the result is detennined from its base and scale, from the precision J 
of the operands after any necessary conversion, and from the operation. 

Figure 9-2 on page 9-7 describes the result of the two steps involved in evaluating 
an operation: converting the operands to the base and scale of the result, and calcu­
lating the precision of the result. Figure 9-3 on page 9-S shows the attributes of the 
result for the special cases of exponentiation noted in the right-hand column of 
Figure 9-2. 

For the following example, refer to Figure 9-2. If the fl!st operand is fixed-point 
binary with precision (5) and the second operand is fixed-point-decimal with preci­
sion (4), the result of multiplication is fixed-point binary with precision (21), which 
is calculated from the following: 

P = 1 + PI + 1 + ceil (P2 *3.32) 

where: 

P is the number-of-digits of the result 

PI is the number-of-digits of the fl!st operand 

P2 is the number-of-digits of the second operand. 

Now refer to Figure 9-2 on page 9-7 and Figure 9-3 on page 9-S. If the same 
operands are used in an exponentiation, the result is floating-point binary with pre­
cision (5) from the first operand. In this example, case C applies. 

With the DIVIDE built-in function, you can override the implementation precision 
rules for division. 

In Figure 9-2, PI and ql' and P2 and ~ are the converted precisions of the oper­
ands, which have the base and scale of the reslllt. ("ceil" means round the argument 
up to the next integer.) Figure 9-4 on page 9~S is a table of ceil(n.3.32) and 
ceil(n/3.32) values. l 

The result of fixed-point division has the maximum implementation-defmed number 
of digits, often with a large scale factor that may deny sufficient place for the integer 
part and therefore result in the overflow or truncation of the value. For example, 
the expression: 

25+1/3 

is evaluated as follows: 

1. The division operation 1/3 is processed fl!st. (The sequence of operations is 
discussed under "Priority of Operators" on page 9-15.) This gives the interme­
diate result 0.33333333333333, which has the precision (15,14). Constants have 
the precision with which they are written. 

1 The number 3.32 is the approximate number of binary digits per decimal digit. 

9-6 PL/I User's Guide and Reference 

J 

J 

J 



First Op .... nd 

FIXED DECIMAL (p"q,) 
0. 

PICTURE' 

FIXED BINARy (p, I 

FLOAT DECIMAL (p, ) 

FLOAT BINARY (p,) 

OPERATIONAL EXPRESSIONS 

2. The integer 25, which has the precision (2,0), is added to the intermediate result, 
resulting in a precision of (15,14). The fixedoverflow condition is raised, and 
the result is undefmed. 

The following expression avoids truncation: 

25+01/3 

This expression is evaluated as follows: 

1. The division operation is processed, giving the intennediate result 
00.3333333333333, which has the precision (15,13). 

2. The integer 25 and the intennediate result are added, giving 25.3333333333333. 

You could alternatively use the DIVIDE built-in function: 

2S+DIVIDE(1,3,15,13) 

See "DIVIDE(x,y,p[,q])" on page 15-10. 

Attributes of the Result Attributes of the Addition or Subtraction Multiplication 
Second Operand for Addit;on, Subtraction, Intermediate Result Precision3 Precision3 

Multiplication, or Division for ExponentiatIon 

FIXED DECIMAllpz. qz) FLOAT DECIMAL (pi un6ess p"l +max (p, -q, . Pz -qz,+q p-mm{15,Pl tp:!+ 1) .. FIXED DECIMAL (p,q) special case A or C appliesz q=max Iq"qz) q~ql t q2 

PICTURE' . p=max (p, ,Ql I [q~pl 

FLOAT BINARY (p) unless 
FIXED BINARY (pz)· . FIXED BINARY (p) special case C applies 2 p= 1 + rna)!; (ceil (p, - 3.32) + l,P2 I p"'ced (p, -3.321+P2+2 

p=mu (ceil (p, -3.32\.P2) 

FLOAT DECIMAL (P2 I FLOAT DECIMAL (p) FLOAT DECIMAL (p) p=max (P"P2) 
p=ntax (p, ,P2) 

FLOAT BINARY {P21 FLOAT BINARY (pI FlOAT BINARY (pI p=ma)!; {ceil (p, -3.32),P2) 
p"mu {ceil (p, -3.32),P2) 

FIXED DECIMAL (P2,Q2) FLOAT BINARY (pI unless 
0. FIXED BINARY (pI special c.se A or C applies2 p"max (p, ,cell (P2 - 3.321+ 11 + 1 P=P, +ceil (P2 - 3.32)+2 
PICTURE' p=max {ceil (p, -3.321..,,) 

FLOAT BINARY (pI unleu 
FIXED BINARY (P2 1 5 FIXED BINARY (pI special case C applies2 p= 1 + rna)!; (p"P2' P"'P, "P2+' 

p= rna)!; (p, ,P2) 

FLOAT OECIMAL (P2 I FLOAT BINARY {pI FLOAT BINARY (pi p=max (p, ,ceil (P2 -3.3211 
p-m'x (p, .ceil (P2 -3.32)) 

FLOAT BINARY (P2l FLOAT BINARY {pI FLOAT BINARY (pI p=ma)!; (p"P2' 
p=ma)!; (P"P2) 

FIXED DECIMAL (P2 ,Q2) FLOAT DECIMAL (pi unlen 
0. FLOAT DECIMAL (pI special case C applies2 p=max (p, ,P2) 
PICTURE' p""max (p, ,p,l 

FLOAT BINARY (p) unless 
FIXED BINARY (1'2) FLOAT BINARY (pI s~lal case C applies2 p= rna)!; {ceil (p, - 3.32) ,p, I 

p=ma)!; {ceil (p,-3.32),p,) 

FLOAT DECIMAL (P2) FLOAT DECIMAL (p) FLOAT DECIMAL (pI p-max (p"P21 
p"'"max (p, ,p,) 

FLOAT BINARY (p,) FlOAT BINARY (p) FLOAT BINARY (p) p=ma)!; (ceil (p,-3.32),p,) 
p=ma)!; (ceil (p, -3.32) .P2) 

FIXED OECIMAL (p, ,Q2 J FLOAT BINARY (pI unless 
0' FLOAT BINARY (pI special case C applier;2 p=max (p"ceil (Pl-3.32l) 
PICTURE' p=max (p"ceil (p2-3.321) 

FLOAT BINARY (pI unless 
FIXED BINARY (P2) FLOAT BINARY (p) special case C apphes2 p= max (p,.I'2) 

p=max (p, ,p,1 

FLOAT DECIMAL (P2 I FLOAT BINARY (pI FLOAT BINARY {pi p-max (PT,ceil (p2-3.3211 
p"'max (p, ,ceil (P2 - 3.321 ) 

FLOAT BINARY (P2) FLOAT BINARY (p) FlOAT BINARY (p) p-max (P,.P2) 
p=max (p, ,P2) 

Figure 9-2. Results of Arithmetic Operations 

Divtsion 
Precision) 

p"15 
q=15-((p,-q, j+qzl 

Chapter 9. References and Expressions 9-7 



OPERATIONAL EXPRESSIONS 

1 Picture data is fixed-point decimal. Its precision is derived 
from the PICTURE specification . 

.zSpecial cases of exponentiation are described in Figure 9-3. 
3The calculations of precisions must not exceed the 
implementation maximums: 

FIXED DECIMAL = 15 
FIXED BINARY = 31 
FLOAT DECIMAL = 16 
FLOAT BINARY = 53 

4Except in exponentiation, the scale factor must be zero. 
sThe result of division is an integer: fractional digits are lost. 
6The result of division must have a non-negative scale-factor. 

ceil(x) means the smallest integer greater than or equal to x. 
max(x,y) means the greater of x and y. 
min(x,y) means the smaller of x and y. 

Case 1 First Operand Second Operand Attributes of Result 

A FIXED DECIMAL Integer Constant FIXED DECIMAL (p, q) 
(pi, ql) with value n>a [provided pS15] 

p=(pl + 1) *exp - 1 
q=ql * n 

B FIXED BINARY Integer Constant FIXED BINARY (p) 
with value n>a [provided pS31] 

p=(pl + 1) * exp - 1 

C FLOAT (pl) FIXED (p2, a) FLOAT (p) with base 
FIXED DECIMAL or PICTURE of first operand 
(pl, ql) if without 
neither case fractional part 
A or case B p=max (pi, p2) 

1 If first operand = a and second operand> a, the result is 0; 
if first operand = 0 and second operand s 0, the ERROR condition 
is rai sed; 
if first operand < 0 and second operand is not an integer, the 
ERROR condition ;s raised. 

Figure 9-3. Special Cases for Exponentiation 

9-8 PL/I User's Guide and Reference 

J 

J 

J 

J 



L 

Bit Operations 

OPERATIONAL EXPRESSIONS 

n ceil(n *3.32) n ceil(n/3.32) 

1 4 1-3 1 
2 7 4-6 2 
3 10 7-9 3 
4 14 10-13 4 
5 17 14-16 5 
6 20 17-19 6 
7 24 20-23 7 
8 27 24-26 8 
9 30 27-29 9 

10 34 30-33 10 
11 37 34-36 11 
12 40 37-39 12 
13 44 40-43 13 
14 47 44-46 14 
15 50 47-49 15 
16 54 50-53 16 

Figure 9-4. Table of Ceil Values 

The operands of a bit operation must be bit strings. If the operands of an infix 
operation differ in length, the shorter operand is padded on the right with zeros. 

You specify a bit operation by one of the following operators: 

& 

You can use the -. operator ("not") only as a prefix operator, the & ("and") and I 
("or") operators only as infix operators. 

The result of a bit operation is a bit value equal in length to the longer operand. 

Bit operations are processed bit-by-bit, the operators having the same function as in 
boolean algebra. The results are as follows: 

-. 

& 

The bits are reversed: I 11 B becomes 10 I B and 10 I B becomes I 11 B. 

If both corresponding bits are I 11 B, the result is I 11 B; otherwise, the 
result is 10 I B. 

If both corresponding bits are 10 I B, the result is 10 I B; otherwise, the 
result is 111 B. 

Chapter 9. References and Expressions 9-9 



OPERATIONAL EXPRESSIONS 

The following table shows the result for each bit position for each of the operators: J 
A B ..,A ..,B A&B AlB 
1 1 0 0 1 1 

1 0 0 1 0 1 

0 1 1 0 0 1 

0 0 1 1 0 0 

The following examples use the following operand values: 

Operand Value 

ABIT 'OlO111'B 
BBIT ' 111111' B 
CBIT '110'B 

The following operators produce the following results: 

Operation 

....,ABIT 

....,CBIT 
CBIT & BBIT 
ABIT I BBIT 
CBIT I BBIT 
ABIT I (...., CBIT) 
...., «...., CBIT) 1(...., BBIT)) 

Results 

'101000'B 
'OOI'B 
'110000'B 
'111111'B 
'111111'B 
'1'B. 
'110111'B 

Due to the padding required for CBIT, the operations CBIT & BBIT and 
...., «...., CBIT) 1(...., BBIT)) are not equivalent. 

Comparison Operations 
Both operands of a comparison operator must be arithmetic, or both must be char­
acter, or both must be bit, or they must both be of the same program control data 
type. Comparisons of entry, ftle, pointer, or label data can use only the = or...., = 
operators. 

You specify a comparison operation by one of the following operators: 

Operator Meaning 

< less than 
...., < not less than 
< = less than or equal to 
= equal to 
...., = not equal to 
> = greater than or equal to 
> greater than 
...., > not greater than 

9-10 PL/I User's Guide and Reference 



L 

OPERATIONAL EXPRESSIONS 

Comparisons of problem data can be: 

• Arithmetic, which involves the comparison of signed numeric values. If the 
operands differ in base or scale, they are converted to their common base and 
scale, as described under "Data Conversion in Arithmetic Operations" on 
page 9-S. Picture data operands are considered fixed-point decimal. 

If one operand is fixed-point binary, the other operand must not be fixed-point 
decimal or pictured with a nonzero scale-factor. 

• Character, which involves left-to-right, character-by-character comparison 
according to the collating sequence. Where the lengths of the operands differ, 
the shorter is padded on the right with blanks. 

• Bit, which involves left-to-right, bit-by-bit comparison of binary digits. The 
shorter is padded on the right with zeros. 

Comparisons of program control data are equal when: 

• File operands represent the same me constant. 

• Label operands refer to the same statement in the same block activation. 

• Pointer operands have the same value. 

• Entry operands refer to the same entry name and, for internal entry constants, 
their values refer to the same block activation. 

The result of a comparison operation is a bit value of length 1; the value is '1' B if 
the relationship is true, or '0' B if the relationship is false. 

An example of a comparison operation in an IF statement is: 

IF A = B 
THEN action-if-true 
ELSE action-if-false 

The evaluation of the expression A = B yields either 'I'B (true) or 'O'B (false); 
the action-if-true or action-if-false will be taken accordingly. 

In the assignment statement 

X = A < B; 

the value '1' B would be assigned to X if A were less than B; otherwise, the value 
'0' B would be assigned. 

In the following example, the value of CBIT is '110 Ill' B and FFID is S: 

SUBSTR(CBIT,l,l) I (FFID=5) 

The result of FFID= Sis 'I'B, as is the result of SUBSTR(CBIT,I,I). The result 
of the "or" operation is therefore 'I' B. If this expression appears in an IF state­
ment, the length of the first operand must be 1. 

Chapter 9. References and Expressions 9-11 



OPERATIONAL EXPRESSIONS 

Table for Comparison Operations 

Figure 9-5 on page 9-13 shows the attributes to which the two operands of a com­
parison operation are converted before they are compared. These conversions are 
derived from the rules given on the preceding pages. (Ceil values are given in 
Figure 9-4 on page 9-9.) 

Find the row in Figure 9-5 that corresponds to the two operands in the expression 
evaluated. The ftrst column refers to the ftrst operand and the second to the second 
operand. The third and fourth columns give the attributes of the intermediate 
targets of the ftrst and second operands, respectively, after any necessary conversion. 

For example: 

DECLARE ITEM PICTURE 19999g l , 

STANDARD FIXED BINARY(lS); 
IF ITEM-.=STANDARD THEN DO; 

In Figure 9-5, the entries in the third and fourth columns that correspond to a ftrst 
operand with the PICTURE attribute and a second operand with the attributes 
FIXED BINARY are FIXED BINARY (1 + ceil(PI '" 3.32)). This indicates that 
ITEM is converted to coded arithmetic form with the ftrst set of attributes and that 
STANDARD is not converted. The precision (PI) is derived from the picture spec­
iftcation and (P2) from FIXED BINARY (15) respectively. 

J 

The tables indicate that ITEM will be converted to FIXED BINARY (18) and then J ..... . 
compared algebraically with STANDARD, whose attributes remain FIXED 
BINARY (15). 

9-12 PL/I User's Guide and Reference 



OPERATIONAL EXPRESSIONS 

First Operand Second Operand Attributes after Conversion 

First Operand Second Operand 

FIXED FIXED DECIMAL FIXED DECIMAL FIXED DECIMAL 
DECIMAL (p2, q,)12 (pl, ql) (p2, q2) 

(pl, ql) or PICTURE 2 

PICTURE 1 FIXED BINARY (p2) FIXED BINARY FIXED BINARY (p2) 

FLOAT DECIMAL (p2) FLOAT DECIMAL (pl) FLOAT DECIMAL (pz) 

FLOAT BINARY (p,) FLOAT BINARY (pl) FLOAT BINARY (pz) 
(1 +ceil (pl *3.32» 

FIXED FIXED DECIMAL FIXED BINARY (pl) FIXED BINARY 
BINARY (pl) (p2, q,) (1 +ce i 1 (pz *3.32» 

PICTURE 2 FIXED BINARY (pz) 

FIXED BINARY (p,) 

FLOAT DECIMAL (p2) FLOAT BINARY FLOAT BINARY 
(ceil (p2 *3.32» 

FLOAT BINARY (p,) 

FLOAT BINARY (p2) 

FLOAT FIXED DECIMAL FLOAT DECIMAL (pl) FLOAT DECIMAL (pz) 
DECIMAL (p1) (p2, II') 

PICTURE 1 

FIXED BINARY (p2) FLOAT BINARY FLOAT BINARY (p2) 

FLOAT DECIMAL (p2) FLOAT DECIMAL (pl ) FLOAT DECIMAL (pz) 

FLOAT BINARY (pa) FLOAT BINARY FLOAT BINARY (p2) 
ceil (pl *3.32» 

FLOAT FIXED DECIMAL FLOAT BINARY (pl) FLOAT BINARY 
BINARY (pl) (p2, qa) (ceil (pa *3.32» 

PICTURE 2 FLOAT BINARY (pa) 

FIXED BINARY (pz) FLOAT BINARY 
(ceil (p2 *3.32» 

FLOAT DECIMAL (p2) 

FLOAT BINARY (pa) FLOAT BINARY (pa) 

CHARACTER CHARACTER (n2) CHARACTER CHARACTER 
(n1) (max(nl, n2» (max (nl, n2» 

BIT (nl) BIT (n2) BIT (max (nl, n2» BIT (max (nl, n,» 

1 If you specify a scale factor, it must be equal to zero. 
2 Picture data is fixed point decimal. Its precision is derived from 

the PICTURE specification. 

ceil (x) is the smallest integer that is greater than or equal to x. 
max (x,y) is the greater of x and y. 

Figure 9-5. Results of Comparison Operations 

Chapter 9. References and Expressions 9-13 



OPERATIONAL EXPRESSIONS 

Concatenation Operations 
Concatenation can be processed only upon strings. Both strings must be character 
or both must be bit. 

You specify a concatenation operation by the concatenation operator 

II 
It signifies that the operands are to be joined in such a way that the last character or 
bit of the operand to the left immediately precedes the frrst character or bit of the 
operand to the right with no intervening bits or characters. 

The result of concatenating two character strings is a character string, and the result 
of concatenating two bit strings is a bit string; the length of the resulting string is the 
sum of the lengths of the two operands. 

For example, concatenation operations using the following operands and values: 

Operand 

ABIT 
BBIT 
CCHAR 
DCHAR 

Value 

101011l ' B 
'lOl'B 
I XY,Z I 
'AA/BB' 

produce the following results: 

Operation Results 

ABITIIBBIT 
ABITIIABITIIBBIT 
CCHARIIDCHAR 
DCHARII CCHAR 

'010111101 ' B 
1010111010111101 'B 
'XY,ZAA/BB' 
'AA/BBXY,Z' 

J 

Combinations of Operations'\ 
You can combine different operations within the same expression, provided you .." 
observe the rules for the data types of the operands for each operator. The result of 
each embedded operation is used as an operand of a further operation. For 
example: 

DECLARE RESULT BIT (3) ALIGNED, 
AFID FIXED DECIMAL (1) STATIC INITIAL (2), 
BFIB FIXED BINARY (3) STATIC INITIAL (6), 
CFLOD FLOAT DECIMAL (2) STATIC INITIAL (32000), 
OBIT BIT (4) ALIGNED STATIC INITIAL ('1101 I B); 

AFID = 2; 
BFIB = 6; 
CFLOD = 32000; 
OBIT = '1101'B; 
RESULT = AFIO + BFIB < CFLOD & OBIT; 

The operands are converted, as required, before each operation is processed in the 
following order: 

9-14 PL/I User's Guide and Reference 



OPERATIONAL EXPRESSIONS 

1. The decimal value of AFID is converted to a binary value of 2. 

2. The value of BFIB is added to the converted value of AFID and stored in a 
half word binary fixed intennediate result, which therefore has a value of 8. 

3. CFLOD and the fixed-point binary result of AFID + BFIB are converted to 
floating-point binary, and the intennediate results are compared. 

4. The result of the comparison, a bit value of length 1 with a value of I 11 is 
extended with zeros to the length of the bit variable DBIT, and the "and" oper­
ation is processed. 

5. The result of the "and" operation is a bit value of length 4 with a value of 
'IOOO'B. It is assigned to RESULT without conversion, but with truncation 
on the right; the fmal value is therefore 'lOO'B. 

Although in this example the expression is evaluated operation-by-operation, from 
left to right, the order of evaluation is in fact detennined by the priority of the oper­
ators. 

Priority of Operators 

The order in which operations in an expression are processed is based on the pri­
ority of the operators involved: the operation with the operator of the highest pri­
ority is processed first, that with the operator of the lowest priority last. The 
priority of the operators in the evaluation of expressions is shown in Figure 9-6. 

Priority Operator Type of Operation 

...... arithmetic 

I prefix + prefix - arithmetic 

-, bit 

2 ... / arithmetic 

3 infix + infix - arithmetic 

4 II concatenation 

5 < -,< <= = -,= comparison 
>= > -,> 

6 & bit 

7 I bit 

Figure 9-6. Priority of Operators 

The operators are listed in order of priority, 1 being the highest priority and 7 the 
lowest. Operators in the same group have the same priority. For example, the 
exponentiation operator ** has the same priority as the prefix +, prefix -, and -, 
operators. 

Chapter 9. References and Expressions 9-15 



OPERATIONAL EXPRESSIONS 

If two or more operators of priority 1 appear in an expression, their order of evalu­
ation is from right to left; that is, the rightmost exponentiation or prefix operator is 
applied frrst, the next rightmost next, and so on. 

For all other operators, if two or more operators of the same priority appear in an 
expression, their order of evaluation is from left to right. 

For example: 

DECLARE RESULT FIXED DECIMAL (7,1), 
AFID FIXED DECIMAL (1), 
BFIB FIXED BINARY (3), 
CFLOD FLOAT DECIMAL (2), 
DPIC PICTURE '999V9 1 ; 

RESULT = AFID * BFIB * CFLOD + DPIC; 

The operations in this expression are processed from left to right, because multipli­
cation has a higher priority than addition, and the order of evaluation of the two 
multiplications is from left to right. 

The order of evaluation (and, consequently, the result) of an expression can be 
changed by parentheses. Expressions enclosed in parentheses are evaluated first, 
starting with the innermost parenthesized expression, before they are considered in 
relation to surrounding operators. 

The expression above is evaluated as if its operations were parenthesized as follows: 

((AFID * BFIB) * CFLOD) + DPIC 

The following expression 

AFID * (BFIB * (CFLOD + DPIC)) 

is evaluated as follows. The value of DPIC would be converted to floating-point 
decimal and added to the value of CFLOD, yielding a floating-point decimal result 
(result_I). The value of BFIB and result_l would then be converted to floating­
point binary and multiplied, yielding a floating-point binary result (result_2). The 
value of AFID would then be converted to floating-point binary and multiplied by 
result_2, yielding a floating-point binary result. 

For parenthesized expressions within expressions, PL/I specifies only that the paren­
thesized expressions will be evaluated before any unparenthesized expression. It 
does not specify the order in which the parenthesized expressions will be evaluated. 
For example: 

(AFID 1- BFIB) * (CFLOD - DPIC) 

In this case, the parenthesized addition and subtraction will be done before the 
unparenthesized multiplication. PL/I does not specify if (AFID 1- BFIB) or 
(CFLOD - DPIC) will be evaluated first. 

9-16 PL/I User's Guide and Reference 



L 

Chapter 10. Condition Handling Statements 

While a program is running, certain exceptional situations, called conditions, may be 
detected. When a condition is detected, it is said to be raised. These conditions 
may be errors, such as overflow, or they may be expected situations, such as the end 
of an input me. 

When a condition is raised, the action established for it is run. For each condition 
listed under "Specifiable Conditions in ON and SIGNAL Statements," you can 
either use the ON statement to establish the action taken or rely on the implicit 
action defined for it. 

For each condition, there are condition codes that correspond to the different situ­
ations in which the condition can be raised. You can obtain the condition code and 
other information associated with a raised condition by using the condition-handling 
built-in functions in an on-unit. 

In certain cases, conditions may be detected while compiling your program. These 
are diagnosed and are not raised when the program is run. 

The following sections summarize the conditions for which ON and SIGNAL state­
ments can be written, as well as other conditions that may be raised. Each condi­
tion is discussed, together with its implicit action and condition codes, in 
Appendix 0, "Conditions and Condition Codes." 

Specifiable Conditions in ON and SIGNAL Statements 
Two groups of conditions can be specified in an ON or SIGNAL statement: the 
ERROR condition and the input/output conditions. 

-----,--ERROR ~ .. 

-----ENDFILE-----r-(file_constant)~ 
,.-ENDPAGE-----

r-----KEY-

f--TRANSMIT-----

'-UNDEFINEDFILE-

Abbreviation: UNDF for UNDEFINEDFILE 

The ERROR condition is raised when anyone of several errors is detected. It is 
also raised as the implicit action for a number of other conditions, such as the con­
version condition. You can fmd out which condition was raised, by using the 
ONCODE built-in function in an on-unit. (On-units are discussed under "ON 
Statement" on page 10-2.) 

Chapter 10. Condition Handling Statements 10-1 



ON STATEMENT 

Input/output conditions always relate to a particular me. For example, there is an 
ENDFILE condition for each me used in the program. 

Unspecifiable Conditions 
Conditions that will be detected, but for which you cannot write ON or SIGNAL 
statements, are: 

conversion 
fixedo verflow 
overflow 
record(me-constant) 
storage 
stringsize 
underflow 
zero divide 

When one of these conditions is detected, the implicit action (see below) is taken. 

Established Action 

Implicit Action 

ON Statement 

The established action for a condition is the action taken if the condition is raised. 
This is either the implicit action or the action specified in an ON statement for the 
condition. 

Each condition has an implicit action, which is established when the program is acti­
vated and remains established unless overridden by processing an ON statement for 
the same condition (see "Scope of the Established Action" on page 10-4). 

The implicit action for most conditions is to issue a message and raise the ERROR 
condition. The implicit action for each condition is given in Appendix D, "Condi­
tions and Condition Codes." 

The ON statement explicitly establishes the action taken when a condition is raised. 
The action established by the 0 N statement overrides or suspends any currently 
established action unless overridden by a further ON statement for the same condi­
tion, or until the block it was processed in ends (see "Scope of the Established 
Action" on page 10-4). The ON statement can also be used to reestablish the 
implicit action. 

-ON-cend; t; en---rSYSTEHI-J.--,-L--J----r-;--

~en_unjt SNAP 

condition 
Any of the conditions given under "Specifiable Conditions in ON and SIGNAL 
Statements" on page 10-1. 

10-2 PL/I User's Guide and Reference 



L 

ON STATEMENT 

IBM Extension 

SNAP 
Transmits diagnostic data to the AS/400 dump file QPPGMDMP. The data 
includes: 

• The current statement number. 
• A list of currently active blocks and on-units, listed in order of calling. 

SYSTEM 
Specifies that the implicit action is established for the condition. 

'-_________ End of IBM Extension _________ --' 

on_unit 
Specifies the action established for the condition. It can be either an unlabeled 
statement (including a null statement), or an unlabeled begin-block. If it is an 
unlabeled statement, the following statements are not allowed: BEGIN, 
DECLARE, DO, END, IF, ITERATE, LEAVE, PROCEDURE, RETURN, 
or SELECT. If it is a begin-block, a RETURN statement can appear only in a 
procedure nested within the block. 

Because the on-unit itself requires a semicolon, no semicolon is shown for the 
on-unit in the syntax. 

Up to 49 on-units can be concurrently active in any block. An external proce­
dure can contain up to 254 on-units. 

An on-unit is treated as a procedure without parameters that is internal to the block 
in which it appears. Therefore, any names referenced in an on-unit are those known 
in the block in which the ON statement was processed, rather than in the block in 
which the condition was raised. 

Running an On-Unit 
An on-unit runs when the specified condition is raised, not when the ON statement 
is processed. 

An on-unit ends normally by returning control to the block from which the on-unit 
was entered. Control will return to the statement immediately after the statement 
that raised the condition if the on-unit ends normally. 

Running an on-unit may be ended abnormally by a GO TO statement that transfers 
control out of the on-unit, which allows program processing to continue, or by a 
STOP statement, which ends the run unit. 

The point to which control normally returns depends on the condition. Control 
may return to the point immediately following the point at which the condition was 
raised or to the statement following the one in which the condition was raised. 

The effect of a null statement on-unit is to process normal return from the on-unit. 

If an ERROR on-unit ends normally, the program will end abnormally. 

Chapter 10. Condition Handling Statements 10-3 



SIGNAL STATEMENT 

For more information about on-units and condition handling, see 
Appendix D, "Conditions and Condition Codes." 

Scope of the Established Action 
The established action remains in effect throughout the block in which the ON 
statement was processed and throughout all dynamically descendant blocks, unless it 
is overridden by an a N statement for the same condition or until the block in 
which the a N statement was processed ends. 

When another ON statement for the same condition is processed, the established 
action is affected as follows: 

• If the block that contains the new a N statement is a dynamic descendant of the 
block that contains the earlier a N statement, the action established by the 
earlier ON statement is suspended. 

When control returns to the block that contains the earlier ON statement, all 
actions that were current immediately before its suspension are reestablished. 
Therefore, no subroutine can change the established action for its calling block. 

• If both ON statements are processed in the same block activation, the earlier 
ON statement is overridden. The earlier action can be reestablished only by 
processing an appropriate a N statement. 

Scope of Values of Condition Handling Built-In Functions 
The value of a condition handling built-in function is set when an on-unit for the 
corresponding condition is entered. This is described separately for each of the con­
dition handling built-in functions (see Chapter 15, "Built-In Functions, Subrou­
tines, and Pseudovariables"). The value remains in effect throughout the processing 
of that on-unit and its dynamic descendants, unless it is temporarily overridden 
when a second on-unit for a condition specific to the function is entered. If the 
second on-unit ends, the values that were in effect before it was entered are rein­
stated. 

SIGNAL Statement 
The SIGNAL statement raises a specified condition. It simulates the occurrence of 
the condition and forces the processing of the established action. 

I-SIGNAL-condition;--... 

condition 
Any of the conditions given under "Specifiable Conditions in ON and SIGNAL 
Statements" on page 1 0-1. 

1 0-4 PLjI User's Guide and Reference 

J 



SIGNAL STATEMENT 

Example of Use of Conditions 
The subroutine shown in the example below illustrates the use of the ON statement 
and the SIGNAL statement. It reads records from a ftle SEQ FILE. Each record 
consists of two values that are used to process the second ftle INFILE. 

5728PL1 RB1 M8e 888715 PL/I Source Listing 
LP1431: PROCEDURE; 

PLITST ILP1431 11/38/87 14:51:69 Page 2 

Include 
PUS0916e 

SEQNBR STMT.SUBS BLK BN DO *< •• + •••• 1. .•• + •••• 2 .... + •••• 3 •••• + .... 4 .... + .... 5 •••• + .... 6 .... + .... 7.> •• + •••• 8 Date 
1eB 1 LP1431: PROCEDURE; PUBOB169 8501e9 
209 
300 
400 
50S 
600 
700 
800 
9Se 

1000 
1100 
1200 
1300 
1400 
1509 
1600 
1700 
18BO 
1900 
2000 
2160 
220& 
2309 
2400 
2500 
2600 
2700 
2800 
2900 
3000 
3100 
3200 
3300 
3400 
3500 
3600 
3700 
3800 
3900 
400e 
4100 
42S0 
4390 
4400 
4500 
4600 
470S 
48S0 
4900 
5000 
SlOB 
52eS 
5300 

2 

2.1 
2.2 
2.3 

3 

3.1 
3.2 

4 

4.1 
4.2 

5 

5.1 
5.2 
5.3 
5.4 

6 

6.1 

8 
9 

19 

11 

12 
13 
14 
15 

16 
17 

1 
1 1 
1 1 
1 1 

1 
1 
1 1 

1 
1 

1 1 
1 1 
1 1 

1 
1 1 

118 
3 2 
3 2 
3 2 
3 2 1 
3 2 
3 2 
321 
3 2 
3 2 
3 2 
3 2 
3 2 

1* FILE DECLARATIONS *1 
DECLARE 

INFILE FILE RECORD INTERNAL SEQUENTIAL KEYED INPUT 
ENV(COtISECUTlVE) , 

SEQFILE FILE RECORD INTERNAL SEQUENTIAL INPUT ENV(CONSECUTIVE), 
SYSPRIIH FILE STREAI~ OUTPUT PRI NT, 
CALC_PROC EXTERNAL ENTRY; 

1* RECORD DECLARATIONS *1 
DECLARE 

1 RELATIVE_RECORD, 
2 REL_WEEK 
2 REL_UNIT_SALES 

DECLARE 
1 INPUT_RECORD. 

2 START_WEEK 
2 NUMB_WEEKS 

1* PROGRAM FLAGS "I 
DECLARE 

1 BIT_FLAGS STATIC. 
2 t10RE_RECORDS 
2 ERR_KEY 
2 NO 
2 YES 

I" PROGRAM VARIABLES *1 
DECLARE 

PICTURE '99', 
PICTURE 'S999999'; 

BINARY FIXED(15), 
BINARY FIXED(15); 

BITO) ALIGNED. 
BIT(l) ALIGNED. 
BIT(l) ALIGNED INIT('O'B). 
BIT(l) ALIGNED INIT('l'B); 

orlCODE 
BINARY FIXED(15), 
BUILTIN; 

/* MAIN PROGRAM *1 
ON ENDFILE(SEQFILE) 

MORE_RECORDS = NO; 

I" ESTABLISH ACTION FOR ERROR IN DIST *1 
ON ERROR BEGItI; 

ON ERROR SYSTEM; 
IF ERR_KEY = YES THEN 

00; 
PUT FILE(SYSPRINT) SKIP EDIT(' INVALID START WEEK:' ,START_WEEK) 

(A, F(3»; 
GOTO END_PROC1; 
END; 

ELSE 00; 
PUT FILE(SYSPRINT) SKIP 

EDIT('ERROR IN PROCESSING PROCEDURE: DIST')(A); 
GOTO END]ROCl; 

END; 

PUSS017S 
PUB00180 
PUBOe190 
PUB00206 841113 

841113 
841113 
841114 
841114 

PUB6a220 
PUB00238 
PUB00240 
PUB60260 841167 
PUB0028e 841107 
PUB00290 841113 

PUBOe340 
PUSOe350 
PUB66366 
PUB00370 
PUB00380 

841107 
841167 
841107 
841167 
841107 

841113 
PUB00390 
PUB00400 
PUB00410 
PUB00420 
PUB08430 
PUB00446 841108 

841108 
841113 

PUB00460 
PUB00560 841113 
PUB00470 841113 
PUB00480 
PUB005S6 

841113 
841167 
841107 
841113 
841113 
841113 
841113 
841113 
841113 
841113 
841113 
841113 
841113 
841113 

Figure 10-1 (Part 1 of 2). Use of the ON and SIGNAL Statements 

Chapter 10. Condition Handling Statements 10-5 



SIGNAL STATEMENT 

5728PLl R91 M98 889715 PL/I Source Listing PLiTST /LP1431 11/39/88 14:51:99 Page 3 
LP1431: PROCEDURE: PUBee168 

Include SEQNBR STMT • SUBS BLK BN DO *< •• + •••• 1. ••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7.> •• + •••• 8 Date 
5499 18 
5598 
56e9 
5799 19 
5899 2S 
5999 
69ge 21 
61e9 
6299 22 
6399 
6489 
6599 23 
6688 
670fl 24 
689fl 25 
69se 
70eB 26 
7199 27 
72ge 28 
7399 29 
7499 3E1 
7509 31 
7609 
7709 
7800 32 
79ge 
8909 
8Hl9 33 
8290 34 
8399 35 
8409 
85ae 36 
8699 37 
87e9 
8889 
8ge9 38 
9998 39 
n09 49 
9209 
9398 41 
94ge 
950fl 
96fl8 42 
978e 43 
9808 
9909 

1a80e 44 
10109 
1820e 45 
1930e 46 
194eO 47 
1a5Se 48 
Hl6ee 
IS7e9 49 
168ee 
169ElEl 58 
11069 
111B6 
11269 51 
11399 
11490 
11500 52 

Figure 10-1 (Part 2 of 2). 

3 2 END: /* BEGIN */ 841113 
841197 
841197 

1 1 E MORE_RECORDS • YES: PUBeS578 
1 1 ERR_KEY • NO: 841113 

PUB98SS9 
1 1 OPEN PUB9859a 841197 
1 1 FILE (SE()FILE): /* INPUT */ PUB0869B 841113 
1 1 OPEN 841197 
1 1 FILE (INFILE): '" INPUT '" PU890698 841113 

841113 
1 1 READ FILE (SEQFILE) INTO (INPUT_RECORD); PUBa9719 841113 

PUB89658 
1 1 m DO WHILE(MORE RECORDS): 841197 
1 1 1 IF START_WEEK <1 I START_WEEK >52 THEN 841113 
1 1 1 DO: 841113 
1 1 2 m ERR_KEY - YES: 841113 
1 1 2 SIGNAL ERROR: 841113 
1 1 2 END: 841113 
1 1 1 CALL RANDOM: PUBe8689 841197 
1 1 1 READ FILE (SE()FILE) INTO (INPUT_RECORD): PUBS8719 841113 
1 1 1 END: '* DO WHILE "/ PUBB9729 

PUBS973S 
PUBS078S 

RANDOM: PROCEDURE: PUBe8799 
841197 

/" ESTABLI SH ACT! ON FOR ERROR I N RANDOM '" 841113 
4 2 m ON ERROR BEGIN: 841197 
5 3 Otl ERROR SYSTEM; 841197 
5 3 PUT FILE(SYSPRINT) SKIP 841197 
5 3 EDIT{'ERROR IN PROCESSING PROCEDURE: RANDOM')(A); 841197 
5 3 GOTO END_PROC1; 841197 
5 3 END; '" BEGIN '" 841107 

841197 
/* ESTABLISH ACTION FOR KEY IN RANDOM ,,' 841113 

4 2 & ON KEY(INFILE) BEGIN; PUBge5e9 841113 
6 3 ON ERROR SYSTEM: PUBa9519 841197 
6 3 ~ IF ON CODE • 51 THEN PUB8e529 841H17 
6 3 DO; PUBae539 841197 
6 3 PUT FILE(SYSPRINT) SKIP 841187 
6 3 EDIT(' SPECIFIED KEY NOT FOUND IN FILE INFILE, KEY-' ,KEY_DATA) 841113 
6 3 (A,A) : 841113 
6 3 EUO; 841167 
6 3 m ELSE 841197 
6 3 PUT FILE(SYSPRINT) SKIP 841187 
6 3 EDIT('ERROR ON KEY SPECIFIED, KEY-' ,KEY_DATA)(A,A); 841187 
6 3 END; '" BEGIN '" PUBS0549 841107 

8411e7 
4 2 IE 00 KEY_DATA· START_WEEK TO (START_WEEK + NUMB_WEEKS-1) BY I: 841113 
4 2 READ FILE (INFILE) INTO (RELATIVE_RECORD) KEY (KEY_DATA); PUB998eO 841113 
4 2 m CALL CALC]ROC; 841113 
4 2 END; '* DO LOOP .. , PUBe9848 841197 

841167 
4 2 END RANDOM; PUB998S9 

PUB98869 
1 END]ROC1: 841187 
1 CLOSE PUS6e749 841187 
1 FILE (SEQFILE); PUBOB7S8 841113 

1 1 CLOSE PUBfl9760 841197 
1 1 FILE (I NFl LE) ; PUS96778 841113 

PUS81079 
1 END LP1431; PUBe1889 859199 

Use of the ON and SIGNAL Statements 

D The ON ENDFILE(SEQFILE) statement establishes the action taken when 
the end of the input me SEQFILE is reached. The flag MORE_RECORDS 
is set to NO so that processing of the me will end. Control is then trans-

10-6 PL/I User's Guide and Reference 

J 

J 

J 



L 

SIGNAL STATEMENT 

ferred to the statement immediately following the READ that raised the 
ENDFILE. 

The ON ERROR statement establishes the action taken when an error is 
raised during processing of the DIST procedure. If the flag ERR_KEY is 
equal to YES, which means that the error is raised by the SIGNAL state­
ment, the appropriate error message will be produced. Control then passes 
to the END _PROCllabel. Any error raised within the on-unit is dealt with 
by the implicit action, due to the ON ERROR SYSTEM statement. 

IJ Processing begins by setting the initial state of the flags and opening the ftles. 

II A loop is entered to input all the records in me SEQFILE until the 
ENDFILE condition is raised. The ENDFILE condition causes control to 
pass to the ON ENDFILE(SEQFILE) statement, and the on-unit is proc­
essed. The flag MORE_RECORDS is set on in the on-unit. Then the 
END statement on statement 31 is carried out. In the next iteration of the 
loop, the WHILE option will fail, and the loop is exited. 

m The input field ST ART_WEEK is checked for valid values. If the value is 
out of range then the SIGNAL ERROR statement will raise the ERROR 
condition and the ON ERROR statement at 0 is processed. The flag 
ERR_KEY is set before the signal is issued to indicate that the error has 
been raised by a SIGNAL statement. 

m This ON ERROR statement establishes the action taken when an error is 
raised during processing of procedure RANDOM. After the on-unit is proc­
essed, control is transferred to the END_PROCllabel to end the DIST pro­
cedure. This error action is only active for the RANDOM procedure. When 
control returns to the DIST procedure, the ERROR on-unit established for 
DIST is reinstated. 

fJ The ON KEY(INFILE) statement establishes the action to be taken when a 
KEY condition is raised in the RANDO:v1 procedure. The ON KEY condi­
tion is only active for the RANDOM procedure. Control is transferred from 
this on-unit to the statement immediately following the statement that raised 
the KEY condition. 

III The ONCODE is used to determine the KEY condition raised. If the KEY 
error is "key not found," then an error message is issued. 

m If the raised condition is any KEY condition other than 51, a general key 
error message is produced. 

1m Control is transferred here when a valid record is read from me SEQ FILE. 
The ftle INFILE will be read and processed according to the input fields 
START WEEK and NUMB WEEKS. - -

m Call an external subroutine to do further processing. 

Chapter 10. Condition Handling Statements 10-7 



SIGNAL STATEMENT 

J 

10-8 PL/I User's Guide and Reference 



L 

L 

INPUT AND OUTPUT 

Chapter 11. Input and Output statements 

This chapter is divided into three sections. The ftrst discusses general input and 
output statements. The next two sections describe record data transmission, and 
stream data transmission, by describing the different ways that input and output 
statements can be used to move different forms of data. 

Input and Output 
Data is transmitted between storage locations, between external storage mediums, 
between work stations, and between applications by means of input and output 
statements. A collection of data external to a program is called a file. Transmission 
of data from a ftle to a program is called input. Transmission of data from a 
program to a ftle is called output. ("File" can also mean your work station, another 
program, or a communication line.) 

Input and output statements allow a source program to deal with the logical organ­
ization of data in a ftle, rather than with its physical characteristics. To do this, PL/I 

uses models of AS/400 ftles. You can write a program without speciftc knowledge 
of the input/output devices that will be used when the program runs. A PLjI ftle can 
also be connected to different AS/400 ftles at various times during the running of a 
program. 

There are input and output statements for two types of data transmission: record 
and stream. 

In record data transmission, the ftle is considered a collection of discrete records. 
On input, the data is transmitted exactly as it is specifted in the record format of the 
AS/400 ftle. On output, the data is transmitted exactly as it is specifted in the record 
format specifted in the program. 

Record data transmission can be used for processing ftles that are written in any 
representation, such as binary, decimal, or character. 

In stream data transmission, the organization of the data into records is ignored, and 
the data is treated as though it were a continuous stream of individual data values in 
character form. On input, if necessary, the data is converted from character form in 
the ftle to conform with the attributes of the data list item in the program. On 
output, the data is converted from the attributes of the data list item in the program 
to character form in the ftle. 

Record data transmission is more versatile than stream data transmission because 
record transmitted data can be processed in more ways, and record data trans­
missions can be made to and from more types of AS/400 ftles. Any type of data 
can be transmitted using record data transmission because no conversion occurs. 
However, you must be aware of the structure of the data. 

Stream data transmission is more versatile in its formatting of data, but requires 
more run time. 

Chapter 11. Input and Output Statements 11-1 



FILES 

Files 

AS/400 Files 

The data transmission statements include the following input and output statements: J 
• GET 
• PUT 
• READ 
• WRITE 
• REWRITE 
• DELETE. 

The OPEN and CLOSE statements are not used for data transmission. 

This chapter discusses those aspects of input and output that are common to record 
and stream data transmission, including mes and their attributes, and the relation­
ship of fIles to ASj400 meso For further information on ASj400 mes, see 
Chapter 6, "ASj400 PLjI File and Record Management" and Chapter 8, "Using 
ASj400 Files." 

A me, as described in an ASj400 PL/I source program, is a model of an ASj400 me. 
It has significance only within the source program, and does not exist as a physical 
entity external to the program. However, the program description of the me deter­
mines how input and output statements access and process the associated AS/400 
meso 

You can code the me record descriptions and other me information about the 
ASj400 me directly into your program (program-described), or you can allow the 
system to include this me information in your source program (externally described). 
For a description of how to include me information from externally described mes 
into your source program, refer to "Using the %INCLUDE Directive for External 
File Descriptions" on page 8-73. 

The following AS/400 me types are supported by AS/400 PL/I: 

• Display file 
• Physical data base file 
• Logical data base me 
• Printer me 
• Tape fIle 
• Diskette me 
• Inline me 
• Data me management (OOM) me. 

The following AS/400 file types are supported by the System/38 Environment only: 

• Communications file 
• BSC me. 

J 

11-2 PL/I User's Guide and Reference 



USE OF THE FILE A TIRIBUTES 

Use of the File Attributes 

File Name 

You specify information about a me in a DECLARE statement. A description of 
the syntax rules of this statement is given in "The DECLARE Statement" on 
page 12-1. The following sections describe the attributes which are common to 
both record and stream meso These attributes deal with naming mes, and with the 
types and directions of data transmission used with meso 

A name that represents a me is a file constant. Each me must be associated with a 
me constant. To declare a me constant in a DECLARE statement, you specify the 
FILE attribute. If the me constant is used as the name of an AS/400 me, it must 
not be more than ten characters long. 

Type Of Data Transmission 
You use the RECORD and STREAM attributes in the DECLARE statement to 
specify the type of data transmission used for the me. 

RECORD indicates that the me consists of discrete records, each of which consists 
of one or more data items in any form. Each record is transmitted as an entity to or 
from a variable. STREAM indicates that the data of the me is considered a contin­
uous stream of data items in character form, assigned from the stream to variables 
or from expressions into the stream. 

The statements with which a me with the RECORD attribute can be used are the 
input/output statements OPEN, CLOSE, READ, WRITE, REWRITE, and 
DELETE, and the ON and SIGNAL statements. 

The statements with which a me with the STREAM attribute can be used are the 
input/output statements OPEN, CLOSE, GET, and PUT, and the ON and 
SIGNAL statements. 

Direction of Data Transmission 
You use the INPUT, OUTPUT, and UPDATE attributes to determine the direc­
tion of data transmission permitted for a me. 

INPUT specifies that data is transmitted from a me to the program. It is valid with 
any me type except a printer me. 

OUTPUT specifies that data is transmitted from the program to create a new me or 
to extend an existing me. It is valid with any me type except an inline me. 
OUTPUT and STREAM are not valid with diskette meso 

UPDATE can only be used with RECORD. It specifies that the data can be trans­
mitted in either direction. It also allows the insertion of records into an existing me 
and the altering of other records already in that me. UPDATE is valid only with 
physical and logical data base fIles, display, communications, and BSC meso 

Chapter 11. Input and Output Statements 11-3 



OPENING AND CLOSING FILES 

Opening and Closing Files 

OPEN Statement 

Before a me can be used for input or output, it must be opened. Opening a me 
involves associating it with an AS/400 me. (If the attempted association is unsuc­
cessful, the UNDEFINEDFILE condition is raised.) When processing is com­
pleted, you may close the me. Closing a me involves disassociating the AS/400 me. 

PLfI provides two statements, OPEN and CLOSE, to do these functions. Use of 
these statements, however, is optional. 

When a me is opened for SEQUENTIAL INPUT or SEQUENTIAL UPDATE, 
the current position is the position at the start of the me. 

The OPEN statement associates a PLfI me with an AS/400 ftIe. For more informa­
tion on opening mes, see "Opening and Closing Files" on page 7-11. The options 
of the OPEN statement are fIrst evaluated, and the specmcation of attributes for the 
me is completed, as necessary. If the association can be made, the me is then asso­
ciated with the AS/400 me. 

-OPErt--FILE (fi 1 e_constant)------r----,--,---------,­

I-INPUT- LTITLE(expreSSiOn)J 

I-OUTPUT-

~UPDATE-

~~-'~-------~-r-r~--------~,-;~ 

LINESIZE(expression) PAGESIZE(expression) 

FILE(fiIe_constant) 

J 

Specmes the name of the PLfI me that is opened. If the me is already open, the,~ 
evaluated options are not used, and the me is unaffected. .." 

INPUT,OUTPUT,UPDATE 
Specmes attributes that augment the attributes specmed in the me declaration, 
with which they must not conflict. 

TITLE( expression) 
The expression must be a character expression. 

The expression specifIes the name of the AS/400 me that is opened. It can be a 
maximum of 33 characters in length. If you code less than 33 characters, it is 
padded on the right with blanks. If you code more than 33 characters, it is 
truncated on the right. 

You can use upper and lowercase characters, but the expression is converted to 
uppercase by the compiler. 

An EXTENDED name is delimited by quotes("), which are considered part of 
the name. The characters can be any of the standard character set except a 

11-4 PL/I User's Guide and Reference 



L 

OPENING AND CLOSING FILES 

blank, an asterisk, a single quote or double quotes. The characters within the 
quotes will not be monocased. 

AS/400 PL/I will only support the EXTENDED name in literals, therefore the 
only place where they can be used is in the TITLE option of the OPEN state­
ment. 

Note: AAA is three characters and "aaa" is five characters. This means that 
delimited names can be a maximum of eight characters. 

where 'expression' is: 

-'---r[-----j--r-<fil e_name---r[-----j--r-'-
1 ibrary_name/ (member name) 

title_variable 
Can be any valid program variable whose value is a valid AS/400 
expression. For example: 

ACCOUNTS RECEIVABLE 
- = 'ACCTLIB/ACCOUNTS(ACCOUNTl)'; 

OPEN FILE (ACCTS) UPDATE 
TITLE (ACCOUNTS_RECEIVABLE); 

expression 
Must consist of valid AS/400 file, library and member names. 

If library-name is omitted, *LIBL is assumed. 

If member-name is omitted, the first member in the file is used. 

In the following example: 

OPEN FILE (ACCTS) UPDATE 
TITLE ('ACCTLIB/ACCOUNTS(ACCOUNTl) '); 

ACCOUNTS is the AS/400 file name, ACCTLIB is the AS/400 library 
name, and ACCOUNTl is the AS/400 member name. 

If you do not specify the library name, your statement would look like this: 

OPEN FILE (ACCTS) UPDATE 
TITLE ('ACCOUNTS(ACCOUNT1) '); 

LINESIZE( expression) 
An integer expression that specifies the length, in characters, of a line during 
subsequent operations on the file. New lines can be started by means of the 
control fonnat items or by means of options in a PUT statement. If any 
attempt is made to position a file past the end of a line, a new line is started, 
and the file is positioned to the start of this new line. 

The implementation-defmed values are 

Maximum line size 
Minimum line size 

32 765 
1 

Chapter 11. Input and Output Statements 11-5 



OPENING AND CLOSING FILES 

The default line size is the record length specified in the AS/400 file. 

The LINESIZE option can be specified only for a file that has the STREAM 
and OUTPUT attributes. 

P AGESIZE( expression) 
The expression must be an integer expression. It specifies the number of lines 
on each page. The first attempt to exceed this limit raises the ENDPAGE con­
dition. 

The implementation-defmed values are: 

Maximum page size 
Minimum page size 
Default page size 

32 757 
1 

50 

The PAGESIZE option can be specified only for a file that has the STREAM, 
OUTPUT, and PRINT attributes. 

Attribute Merging 

To open a fIle, PL/I uses information about the fIle from the following sources: 

• The attributes specified in a DECLARE statement. 

• The attributes specified in the OPEN statement (INPUT, OUTPUT, or 
UPDATE). 

• The options of the ENVIRONMENT attribute. 

When a fIle is opened, the system gets a complete specification of the fIle by the 
following procedure: 

1. The information from the above sources is collected. 

2. The implied attributes are added. (A list of implied attributes is given in 
"Implied Attributes" on page 12-5.) 

3. The default attributes are applied. 

If there is any conflict between attributes from any source after the application of 
default attributes, the UNDEFINEDFILE condition is raised. 

Implicit Opening 

A fIle is implicitly opened when one of the data transmission statements listed below 
is processed for a fIle for which an OPEN statement has not already been processed. 

Statement 

GET 
PUT 
READ 
WRITE 
REWRITE 
DELETE 

11-6 PLfI User's Guide and Reference 

Implied Attributes 

STREAM INPUT 
STREAM OUTPUT 
RECORD INPUT 
RECORD OUTPUT 
RECORD UPDATE 
RECORD UPDATE 

J 



OPENING AND CLOSING FILES 

An implicit opening caused by one of the above statements is equivalent to pre­
ceding the statement with an OPEN statement that specifies the implied attributes. 

Examples of File Opening 

The following example illustrates attribute merging for an explicit opening: 

DECLARE LISTING FILE PRINT; 
OPEN FILE(LISTING); 

Because there are no attributes on the OPEN statement, the attribute after merging 
is PRINT. Mter applying the implicit attributes, the attributes are STREAM, 
OUTPUT, and PRINT. Mter applying the default attributes, the completed attri­
bute set is STREAM, OUTPUT, PRINT, and EXTERNAL. 

The following example illustrates implicit opening: 

DECLARE MASTER FILE KEYED INTERNAL; 
READ FILE (MASTER) INTO 

(MASTER_RECORD) KEYTO(MASTERKEY); 

The attributes after merging (due to the implicit opening caused by processing the 
READ statement) are KEYED, RECORD, INPUT, and INTERNAL. (No addi­
tional attributes are implied.) 

The completed attribute set after default application is KEYED, RECORD, 
INPUT, SEQUENTIAL, ENVIRONMENT(CONSECUTIVE), and INTERNAL. 

The following are examples of declarations of file constants, including the ENVI­
RONMENT attribute: 

DECLARE FILE#3 FILE INPUT DIRECT 
ENVIRONMENT(BUFSIZE(80) 
CONSECUTIVE) ; 

OPEN FILE(FILE#3); 

This declaration specifies three file attributes: INPUT, DIRECT, and ENVIRON­
MENT. DIRECT implies RECORD and KEYED. The scope is external, by 
default. The ENVIRONMENT attribute specifies that the fue is of consecutive 
organization and contains records 80 bytes long. The KEY option must be speci­
fied in each READ statement that refers to this file. 

DECLARE INVNTRY FILE UPDATE 
ENVIRONMENT (KEYDISP(10) KEYLENGTH(5) 
INDEXED) ; 

OPEN FILE(INVNTRY); 

This declaration specifies two file attributes: UPDATE and ENVIRONMENT. 
The implied attribute is RECORD. SEQUENTIAL and EXTERNAL are the 
default attributes. INVNTR Y is a KEYED file with a KEYDISP of 10 and a 
KEYLENGTH of 5. Although the file actually contains a key within each record, 
the KEYTO option cannot be specified in a READ statement, because the KEYED 
attribute was not specified in the DECLARE statement. 

Chapter 11. Input and Output Statements 11-7 



RECORD DATA TRANSMISSION 

CLOSE Statement 

In the above declaration, all necessary attributes are either stated or implied in the J" 
DECLARE statement. None of the attributes can be changed in an OPEN state-
ment. This declaration might have been written as follows: 

DECLARE INVNTRY FILE 
ENVIRONMENT(KEYDISP(10) KEYLENGTH(5) 
INDEXED) ; 

With such a declaration, INVNTR Y can be opened for input, output, or update. It 
could, for example, be opened by means of any of the following statements: 

OPEN FILE (INVNTRY) INPUTj 
OPEN FILE (INVNTRY) OUTPUT; 
OPEN FILE (INVNTRY) UPDATE; 
OPEN FILE (INVNTRY)j j*INPUT BY DEFAULT*j 

By means of this technique, a me can be opened fIrst as an input me and then 
closed and later opened as an output me. 

The CLOSE statement disassociates the specilled me from the AS/400 me with 
which it was associated by the explicit or implicit me opening. 

I -CLOSE-FILE(fil e_constant);----... 

FILE(fiIc_constant) 
Specilles the name of the PL/I me that is to be disassociated from an AS/400 me. 

The CLOSE statement also disassociates from the me all attributes established for it 
by the implicit or explicit opening process. Although new attributes can be specilled 
for the me constant in a subsequent OPEN statement, all attributes specilled for it 
in a DECLARE statement remain in effect. 

Closing a me that is not open has no effect apart from increasing the run time of the 
program. 

A closed me can be opened again either explicitly or implicitly. 

If a me is not closed by a CLOSE statement, it is closed at the completion of the 
run unit. For a complete description of me opening and closing, see "Opening and 
Closing Files" on page 7-11. 

Record Data Transmission 
This section describes the me description attributes and input and output statements 
used in record data transmission. The ENVIRONMENT attribute and details of 
record data transmission input/output statements for each type of me are described 
in "The ENVIRONMENT Attribute" on page 7-1. The %INCLUDE directive 
and details of record data transmission input/output statements for externally 
described mes are descri.bed in "Using the %INCLUDE Directive for External File 
Descriptions" on page 8-73. 

11-8 PL/I User's Guide and Reference 



L 

FILE DESCRIPTION ATTRIBUTES 

In record data transmission, data in a flle is considered a collection of records. The 
READ statement either transmits a single record to a program variable, or sets a 
pointer to the record in a buffer. The WRITE or REWRITE statement transmits a 
single record from a program variable to the flle. The DELETE statement removes 
a single record from a flle. 

Although data can be transmitted to and from a flle in blocks, the statements used 
in record data transmission are concerned only with records. The records are 
blocked and deblocked automatically. For more information on blocking and 
deblocking, refer to the description of the BLOCK option of the ENVIRONMENT 
attribute in "Blocking Option" on page 7-7. 

Use of File Description Attributes 
You use the flle description attribute RECORD to indicate record data trans­
mission. You can also use the flle description attributes INPUT, OUTPUT, 
UPDATE, SEQUENTIAL, DIRECT, KEYED, and ENVIRONMENT to give 
the system additional information about the flle. The syntax rules for all of these 
attributes are given in "File Attributes" on page 12-6. 

AS/400 File Organization 

You specify flle organization by means of the ENVIRONMENT options CON­
SECUTIVE, INDEXED, and INTERACTIVE. The organization of a flle deter­
mines how data is recorded in a ftIe and how the data is subsequently retrieved for 
transmission to the program. 

File organization for each of the types of AS/400 flles is discussed in "File Organiza­
tion Options" on page 7-2. 

Other characteristics of AS/400 flles can also be specified in the ENVIRONMENT 
attribute. This attribute is discussed in "The ENVIRONMENT Attribute" on 
page 7-1. 

File Access 

The types of flle access are: 

• SEQUENTIAL 
• SEQUENTIAL KEYED 
• DIRECT. 

You use the SEQUENTIAL, KEYED, and DIRECT attributes to specify these. 
(The DIRECT attribute implies the KEYED attribute, so when the ftle access is 
given as DIRECT, KEYED is understood.) Syntax of these attributes is described 
in "File Attributes" on page 12-6. They describe how AS/400 ftles are accessed. 

You specify the KEYED attribute when you use one of the key options (KEY, 
KEYFROM, and KEYTO) of the data transmission statements. For data base flles 

Chapter 11. Input and Output Statements 11-9 



". 

DATA TRANSMISSION STATEMENTS 

with arrival sequence access, or for submes, the key in the KEY, KEYFROM, or 
KEYTO options is a relative record number. 

With SEQUENTIAL access, the key options are not valid; with SEQUENTIAL 
KEYED access, they are optional; with DIRECT access, KEY or KEYFROM is 
required. 

With physical or logical data base mes, SEQUENTIAL specifies that records with 
CONSECUTIVE me organization are accessed using the arrival sequence access 
path, and that records with INDEXED me organization are accessed using the 
keyed sequence access path. A me with SEQUENTIAL KEYED access can also be 
used for direct access or for a mixture of direct and sequential access. Existing 
records of a me in a sequential update me can be modified or deleted. 

Any type of me may have SEQUENTIAL access. Physical and logical data base 
flies, or display flies in which subflie processing is used with specific relative record 
numbers, may have SEQUENTIAL KEYED access. Only physical and logical data 
base flies may have DIRECT access. 

Direction of Data Transmission 

The attributes INPUT, OUTPUT, and UPDATE are all valid with record data 
transmission. 

INPUT allows the use of the READ statement only. OUTPUT allows the use of 
the WRITE statement only. UPDATE allows the use of the READ statement with 
any organization or access, and of the WRITE statement with INTERACTIVE 
organization or DIRECT access. For the use of the REWRITE and DELETE 
statements, see "REWRITE Statement" on page 11-15 and "DELETE Statement" 
on page 11-16. UPDATE is valid only with physical and logical data base ftles, 
display, communications, and BSC flies. 

Variables can be transmitted by record data transmission statements. Although 
program control data can be transmitted, it may no longer be valid after it is read. 

Data Transmission Statements 
The statements that transmit records to or from flies are READ, WRITE, and 
REWRITE. The DELETE statement deletes a record from an update ftle. The 
attributes of the flie detennine which statements can be used. 

When an input or output statement is processed, the flie options are evaluated. If 
the flie is not already open, it is opened implicitly. The validity of the statement is 
checked against the complete set of attributes. If the statement is valid, then the 
input or output is processed. 

The following sections describe the data transmission statements used for record 
input/output. The statements are discussed ftrst, followed by the statement options 
and a discussion of the statements and flie attributes that apply to each option. 

11-10 PL/I User's Guide and Reference 



DATA TRANSMISSION STATEMENTS 

The me organization and me access that you specify in the DECLARE statement 
sometimes impose restrictions on the data transmission statements. These 
restrictions are described in the appropriate sections below. 

Each data transmission statement contains an OPTIONS option which allows you 
to access AS/400 system functions. For a discussion of this option and its parame­
ters, see "The OPTIONS Option of Record Data Transmission Statements" on 
page 7-13. 

READ Statement 

The READ statement can be used with any RECORD INPUT or UPDATE me. 
It transmits a record from the me to the program by means of one of the following 
options: 

• INTO, which transfers the record to a variable (move mode). 
• SET, which sets a pointer to the record in the buffer (locate mode). 

READ a record from a file 

~READ--FILE(ffle_constant)~NTO(Variable) ~ 

(SET pointer_variable) 

.. 

r-KEY(expression)-------------1 

~KEYTO(character_variable)-

FILE(file_constant) 
Specifies the name of the PL/I me to which data is to be transmitted. The PL/I 

me name is associated with an ASj400 me name through the TITLE option of 
the OPEN statement. 

INTO (variable) 
Specifies a variable into which the record is read. Variable is a connected aggre­
gate or scalar variable. 

SET (pointer_variable) 
Specifies a pointer-variable that is set to point to the location in the buffer that 
contains the record number. Pointer_variable is a simple non-based variable 
with the pointer attribute. 

KEY (expression) 
Identifies a particular record. KEY can be CHARACTER VARYING. KEY 
is not valid with SEQUENTIAL access. 

KEYTO (character_variable) 
Specifies the variable to which the key of a record will be assigned. KEYTO 
may be used instead of KEY with SEQUENTIAL KEYED. KEYTO can be 
CHARACTER VARYING. 

Chapter 11. Input and Output Statements 11-11 



DATA TRANSMISSION STATEMENTS 

Options J 
Are different for the three different types of READ statements. The Options for 
each type of READ statement are described below. 

Read from a CONSECUTIVE File 

~QPTIONS(--RECORD(Character_expreSSiOn)--PQSITION(ENEXT~)--. 

PREVIOUS 

FIRST 

LAST 

~INDICATORS(variable)--)--;~ 

Abbreviations: NXT for NEXT 
PRV for PREVIOUS 

See "The OPTIONS Option of Record Data Transmission Statements" on 
page 7-13 for a description of the syntax of the Options option. Note also that: 

• KEY must be a structure reference or scalar expression. 

• RECORD, KEY and KEYTO can be CHARACTER VARYING. 

• KEY is not valid with SEQUENTIAL access, optional with SEQUENTIAL 
KEYED access, and required with DIRECT access. KEYTO may be used 
instead of KEY with SEQUENTIAL KEYED. 

• KEY is mutually exclusive with POSITION. 

• POSITION is not valid with DIRECT access. 

• INDICATORS is valid only with SEQUENTIAL or SEQUENTIAL KEYED 
access. 

• If POSITION is not specified, the default is POSITION(NEXT). 

11-12 PLjI User's Guide and Reference 

J 

J 

J 



DATA TRANSMISSION STATEMENTS 

Read from an INDEXED File 

~OPTIONS(--RECORO(character_expression)--KEYSEARCH( EQUAL 

AFTER 

BEFORE 

EQLAFT 

EQLBFR 

~POSITION( NEXT )--NBRKEVFLDS(integer_constant)--)--j~ 

PREVIOUS 

NXTUNQ 

PRVUNQ 

NXTEQL 

PRVEQj' 

FIRST 

LAST 

Abbreviations: NXT for NEXT 
PRV for PREVIOUS 

See "The OPTIONS Option of Record Data Transmission Statements" on 
page 7-13 for a description of the syntax of the Options option. Note also that: 

• KEY must be a structure reference or scalar expression. 

• RECORD, KEY and KEYTO can be CHARACTER V AR YING. 

• KEY is mutually exclusive with POSITION. 

• KEY is not valid with SEQUENTIAL access, optional with SEQUENTIAL 
KEYED access, and required with DIRECT access. KEYTO may be used 
instead of KEY with SEQUENTIAL KEYED. 

• KEYSEARCH is not valid with SEQUENTIAL access. 

• KEYSEARCH is not allowed if KEY is not specified. 

• POSITION is not valid with DIRECT access. 

• If POSITION is not specified, the default is POSITION(NEXT). 

• NBRKEYFLDS is not allowed if POSITION(NEXT I PREVIOUS I FIRST I 
LAST) is specified. 

Chapter 11. Input and Output Statements 11-13 



DATA TRANSMISSION STATEMENTS 

Read from an INTERACTIVE File 

~OPTIONS---(--RECORD(character_expressfon)--' 

~INDICATORS(variable)--MODIFIED--)--;~ 

See "The OPTIONS Option of Record Data Transmission Statements" on 
page 7-13 for a description of the syntax of the Options option. Note also that: 

• KEY must be a structure reference or scalar expression. 

• RECORD, KEY and KEYTO can be CHARACTER VARYING. 

• KEY is mutually exclusive with MODIFIED. 

• KEY is not valid with SEQUENTIAL access and optional with SEQUEN­
TIAL KEYED access. KEYTO may be used instead of KEY with SEQUEN­
TIAL KEYED. 

• INDICATORS must be CHARACTER without the VARYING attribute. 

• MODIFIED is not valid with SEQUENTIAL access. 

WRITE Statement 

The WRITE statement can be used with any OUTPUT or INTERACTIVE 
UPDATE or DIRECT UPDATE me. It transmits a record from the program and 
adds it to the me. 

~WRITE--FILE(file_constant)--FROM(variable)----' 

~ [OPTIONS (RECORD(character _express fon)-INDICATORS (variab 1 e) )J ;---+<1 

Additional Syntax: 

• FROM must be a connected aggregate or scalar variable. 

• KEYFROM must be a scalar expression. 

• KEYFROM and RECORD can be CHARACTER VARYING. 

• KEYFROM is not valid with SEQUENTIAL access, optional with 
SEQUENTIA KEYED access and required with DIRECT access. 

Note: KEYFROM is required with INTERACTNE organization and 
SEQUENTIAL KEYED access. 

11-14 PLjI User's Guide and Reference 

J 

J 

J 



DATA TRANSMISSION STATEMENTS 

• INDICATORS, when used with CONSECUTIVE organization, is optional 
with SEQUENTIAL access and not valid with SEQUENTIAL KEYED or 
DIRECT access. 

• INDICATORS is not valid with INDEXED organization. 

• INDICATORS must be CHARACTER without the VARYING attribute. 

For printer mes that contain more than one record format, you must specify the 
RECORD option. Similarly, you must specify the RECORD option for a WRITE 
to a multiple format logical me. The only exception is when a format selection 
program is defmed. For information on format selection programs, see the 
description of the FMTSLR parameter on the CL command CRTLF in the 
Programming: Control Language Reference. 

For logical data base mes, it is possible to map one record format to multiple base 
physical me members with the DTAMBRS parameter on the CL commands 
CRTLF and ADDLFM. 

REWRITE Statement 

The REWRITE statement replaces a record in an update me. It is only allowed for 
physical and logical data base mes and display meso It carmot be used for a display 
me with INTERACTIVE organization and SEQUENTIAL access. 

-REWRITE-FI LE (fi I e_constant)-FROH(variab I e)----rL-----]-.-.~ 

KEY(expression) 

. .~ 

LOPTIONS(RECORD(character_expression)-INDICATORs(varlable))] , 

Additional Syntax: 

• FROM must be a connected aggregate or scalar variable. 

• KEY must be a structure reference or scalar expression. 

• KEY and RECORD can be CHARACTER V AR YING. 

• KEY is not valid with SEQUENTIAL access, optional with SEQUENTIAL 
KEYED access, and required with DIRECT access. 

• INDICATORS must be CHARACTER without the VARYING attribute. 

• INDICATORS is not valid with CONSECUTIVE organization. 

For non-keyed sequential update mes, the REWRITE statement must be preceded 
by a READ statement, with no intervening input or output statements for the same 
me. It specifies that the last record read from the me is rewritten. Consequently, a 
record must be read before it can be rewritten. For direct update mes and keyed 
sequential update mes, any record can be rewritten regardless of whether it has frrst 
been read. 

Chapter 11. Input and Output Statements 11-15 



OPTIONS OF DATA TRANSMISSION STATEMENTS 

The ftrst statement that accesses the fLle cannot be a REWRITE statement without 
the KEY option. No subsequent REWRITE or DELETE statement without a 
KEY is allowed until another READ statement is processed. 

If duplicate keys exist and the key expression locates a duplicate key, the ftrst dupli­
cate in the access path identiftes the record rewritten. 

DELETE Statement 

The DELETE statement deletes a record from an update fLle. It is only allowed for 
physical and logical data base fLIes. 

-DELETE-FILE(file_Constant)---r~------~-r-­

KEY(expression) 

~OPTIONS(RECORD(Character_expreSSiOn))~ ;~ 

Additional Syntax: 

• KEY must be a structure reference or scalar expression. 

• KEY and RECORD can be CHARACTER VARYING. 

• KEY is not valid with SEQUENTIAL access, optional with SEQUENTIAL 
KEYED access, and required with DIRECT access. 

If you omit the KEY option for a sequential update fLle, the record deleted is the 
last record read. No subsequent DELETE or REWRITE statement without a 
KEY is allowed until another READ statement is processed. 

If duplicate keys exist and the key expression locates a duplicate key, the ftrst dupli­
cate in the access path identiftes the record deleted. 

If the ftrst statement that accesses the fLle is a DELETE statement, it must specify 
the KEY option. 

Options of Record Data Transmission Statements 
This section describes the options of record data transmission statements. The 
options can appear in any order in the statements. Figure 11-1 shows valid combi­
nations of statement options and fLle organizations. For the complete rules on using 
these statements, refer to Appendix C, "Valid Combinations of Options for 
Input/Output Statements" on page C-l. 

11-16 PL/I User's Guide and Reference 



OPTIONS OF DATA TRANSMISSION STATEMENTS 

Statement CONSECUTIVE INDEXED INTERACTIVE 
Options Organization Organization Organization (l) 

READ 
FILE R R R 
INTOISET R R R 
KEY (2) (2) (2) 
KEYfO (3) (3) (3) 
OPTIONS 0 0 0 

RECORD 0 0 0 
KEYSEARCH - 0(4) -
POSITION 0(5) 0(5) -
NBRKEYFLDS - 0 -
INDICATORS 0(5) - 0 
MODIFIED - - 0(4) 

WRITE 
FILE R R R 
FROM R R R 
KEYFROM (2) (2) (2) 
OPTIONS 0 0 0 

RECORD 0 0 0 
INDICATORS - (6) - 0 

REWRITE (4) 
FILE R R R 
FROM R R R 
KEY (2) (2) 0 
OPTIONS 0 0 0 

RECORD 0 0 0 
INDICATORS - - 0 

DELETE 
FILE R R -
KEY (2) (2) -
OPTIONS 0 0 -

RECORD 0 0 -

Figure 11-1. Valid Combinations of Record Statement Options 

Key: 
R Required 
o Optional 
- Error or ignored 

Notes: 
(1) DIRECT access is invalid with INTERACTIVE 

organization. 
(2) Invalid with SEQUENTIAL access, optional with 

SEQUENTIAL KEYED access, and required with DIRECT 
access. 

(3) KEYfO may be used instead of KEY with SEQUENTIAL 
KEYED access. 

Chapter 11. Input and Output Statements 11-17 



OPTIONS OF DATA TRANSMISSION STATEMENTS 

(4) Invalid with SEQUENTIAL access. 
(S) Invalid with DIRECT access. 
(6) Optional with SEQUENTIAL access. 

The options are discussed in the following order: 

FILE 
INTO 
FROM 
SET 
KEY 
KEYFROM 
KEYTO 
OPTIONS 

FILE (file_constant) Option 

The FILE option must appear in every record data transmission statement. It spec­
ifies the ftle to or from which data is transmitted. 

If the ftle specified is not open, it is opened implicitly. 

INTO (variable) Option 

The INTO option of the READ statement specifies a variable into which the record .\ 
is read. Either the INTO or the SET option must be used with every READ state- ..., 
ment. 

The INTO variable can be a VARYING length string. 

If the INTO variable is a structure element, it must be connected. 

If the INTO variable is shorter than the record length, the record is truncated on the 
right, and the RECORD condition is raised. 

If the INTO variable is equal to the record length, the record is copied to the vari­
able, and no condition is raised. If the INTO variable is CHARACTER 
V AR YIN G, the string length is set so that it can be referenced by the LENGTH 
function. 

If the INTO variable is larger than the record length, the record is copied to the 
variable. If the INTO variable is fixed-length, the RECORD condition is raised. 

If the INTO variable is CHARACTER VARYING, the string length is set so that 
it can be referenced by the LENGTH function; no condition is raised. If the 
CHARACTER VARYING record read in is shorter than the INTO variable, the 
bytes of the INTO variable not used for the record retain their previous contents; 
they are not filled with blanks. If the CHARACTER VARYING record read in is 
longer than the INTO variable, the record is truncated on the right, and the 
RECORD condition is raised. The byte count at the beginning of the record is 
changed so that it holds the number of bytes actually read in. 

11-18 PLjI User's Guide and Reference 



OPTIONS OF DATA TRANSMISSION STATEMENTS 

The following example specifies that the next sequential record is read into the vari­
able RECORD1: 

READ FILE (DETAIL) INTO (RECORD1); 

FROM (variable) Option 

The FROM option must be used in WRITE and REWRITE statements. It speci­
fies the variable from which the record is written. 

If the FROM variable is a structure element, it must be connected. 

If the FROM variable is shorter than the record length, it is padded on the right 
with blanks. If the FROM variable is longer than the record length, it is truncated 
on the right. 

In the following example, the WRITE and REWRITE statements specify that the 
value of the variable DETAILRECORD is written into the ftle MASTER. The 
WRITE statement specifies a record added to a SEQUENTIAL OUTPUT ftle. 

WRITE FILE(MASTER) FROM(DETAILRECORD); 

The REWRITE statement specifies that DETAILRECORD is to replace the last 
record read from a sequential update ftle. 

READ FILE(MASTER) INTO(DETAILRECORD); 
/* PROCESSING. NO I/O TO FILE MASTER */ 
REWRITE FILE(MASTER) FROM(DETAILRECORD); 

SET (pointer_variable) Option 

The SET option of the READ statement specifies a pointer variable that is set to 
point to the location in the buffer that contains the required record. Either the 
INTO or the SET option must be used with every READ statement. 

You can use the SET option to avoid raising the RECORD condition. You can 
also use the SET option to improve program performance: the program will run 
faster if it does not move the record from the buffer to your own data area. 

A READ statement transfers a block of data from the data set to a buffer, if neces­
sary, and then sets a pointer variable named in the SET option to point to the 
location in the buffer of the next record. The data in the record can then be proc­
essed by means of a reference to the based variable associated with the pointer vari­
able. 

Alignment errors can occur if the mapping of the based variable does not exactly 
match the mapping of the input record in the buffer. For example, if the input 
record contains an unaligned BINARY FIXED (31) field, the based variable must 
be declared with the UNALIGNED attribute. Otherwise, an error would occur, 
since the default for BINARY FIXED variables is ALIGNED. 

If you specify the SET option, the record condition will not be raised. 

Chapter 11. Input and Output Statements 11-19 



OPTIONS OF DATA TRANSMISSION STATEMENTS 

The record is available only until the processing of the next input/output operation 
or CLOSE statement that refers to the same me. 

The following example specifies that the value of the pointer variable P is set to the 
location of the next sequential record in the buffer: 

READ FILE(X} SET(P}; 

The pointer is invalidated by the next operation on this me. 

If indicators are defIned within the record buffer, the pointer is set to the start of the 
indicators, which are located at the start of the record buffer. 

KEY (expression) Option 

J 

The KEY option of the READ, REWRITE, and DELETE statements identifies a J 
particular record. 

The KEY option is required for DIRECT mes, and optional for SEQUENTIAL 
KEYED ftles. 

The KEY expression can be a scalar expression or a structure reference. 

If a scalar expression is used in the KEY option, it is evaluated and, if necessary, 
converted to a binary fixed-point value with a precision of 31 for a CONSEC­
UTIVE or INTERACTIVE me, or to a character value for an INDEXED me. 
This key determines which record will be processed. If the specified key is not valid, 
the KEY condition is raised. 

For an INDEXED me, the data type of the key should match the data type of the 
key field(s) dermed for the record format. If you are using numeric data base keys, 
the key you reference must be an element of a structure. Otherwise, the key is con­
verted to character format. 

The number of key fields included in the key is determined by the NBRKEYFLDS J 
option (see "NBRKEYFLDS Parameter" on page 7-18). If NBRKEYFLDS is not .. 
specified, the length of the expression (or its current length, if it is CHARACTER 
VAR YING) is passed to the system. Refer to the Programming: Control Language 
Reference for information on the generic key search that will be processed if the key 
length that is passed is between key field lengths. 

If there is a duplicate key, the key that is found depends on the KEYSEARCH 
value. If the value is BFR or EQLBFR, the last duplicate key value is located. For 
all other values of KEYSEARCH, the first duplicate key value is located. 

The following example specifies that the record identified by the value in the vari­
able STKEY is read into the variable ITEM: 

READ FILE(STOCK) INTO(ITEM) KEY(STKEY); 

11-20 PLjI User's Guide and Reference 



OPTIONS OF DATA TRANSMISSION STATEMENTS 

KEYFROM (expression I *) Option 

The KEYFROM option of the WRITE statement specifies a key that identifies the 
location in the me to which the record is transmitted by the WRITE statement. 

KEYFROM is required for mes with DIRECT access and optional for mes with 
SEQUENTIAL KEYED access. (An exception: KEYFROM is required with 
INTERACTIVE SEQUENTIAL KEYED.) 

KEYFROM( expression) 
The expression in the KEYFROM option is evaluated and, if necessary, con­
verted to a binary fixed-point value with a precision of 31 for CONSECUTIVE 
or INTERACTIVE organization or to a character value for INDEXED organ­
ization. This value is used as the key of the record when it is subsequently 
written. If the specified key is not valid, the KEY condition is raised. 

KEYFROM(expression) may only be used for INDEXED mes if the ENVI­
RONMENT options KEYDISP and KEYLENGTH are specified. 

KEYFROM(*) 
When KEYFROM(+) is specified, the + indicates that the key is imbedded in 
the associated record, that a keyed operation is being processed and that the key 
is not moved into the record by PL/I. Since the AS/400 data base supports non­
contiguous keys (which may be of any data type), KEYDISP and 
KEYLENGTH are not applicable because they imply that the key is contig­
uous. 

If you specify the ENVIRONMENT option DESCRIBED for an INDEXED 
me, you must specify KEYFROM(+). 

The KEYFROM(+) option is not allowed for CONSECUTIVE or INTERAC­
TIVE meso 

Any KEYFROM value except + for an INDEXED me will be used to update the 
key field in the record. The embedded key is overwritten. 

The following example specifies that the stored value of LOANREC is written as a 
record in the me LOANS, and that the value of LOANNO is used as the key with 
which it can subsequently be retrieved: 

WRITE FILE(LOANS) FROM (LOANREC) KEYFROM(LOANNO); 

KEYTO (character_variable) Option 

The KEYTO option of the READ statement specifies the variable to which the key 
of a record will be assigned. 

KEYTO may be specified instead of the KEY option for a me with SEQUENTIAL 
KEYED access. 

If the KEYTO value is a character scalar, and the me is CONSECUTIVE or 
INTERACTIVE, the relative record number, which is returned by the system in 
fixed binary format, is converted to character format. If the KEYTO value is a 
character scalar and the me is INDEXED, no conversion is attempted. The key 

Chapter 11. Input and Output Statements 11-21 



STREAM DATA TRANSMISSION 

data returned by the system is moved into the character variable as if the key were 
character. 

For physical or logical data base files for which CONSECUTIVE organization is 
specified, the relative record number is returned. For subflles the relative record 
number within the subflle is returned. For physical or logical data base files for 
which INDEXED organization is specified, the key value of the record just read is 
returned. 

The following example specifies that the next record in the file DETAIL is read into 
the variable INVTR Y and that the key of the record is made available in the vari­
able KEYFLD: 

READ FILE(DETAIL) INTO(INVTRY) KEYTO(KEYFLD); 

OPTIONS Option 

The OPTIONS option of the READ, WRITE, REWRITE, and DELETE state­
ments is implementation-defmed, and is discussed in "The OPTIONS Option of 
Record Data Transmission Statements" on page 7-13. 

Stream Data Transmission 
There are three types of stream data transmission: stream data transmission, keyed 
data transmission, and record data transmission. Stream data transmission is the 
slowest form of transmission, and keyed data transmission is the fastest. 

This section describes the input and output statements used in stream data trans­
mission. Those features that apply to stream and record data transmission, 
including files, file attributes, and opening and closing files, are described in 
Chapter 11, "Input and Output Statements." 

Stream input/output is permitted with physical data base, logical data base, diskette 
(input only), tape, printer, and inline files. It is not permitted with display, Bse, or 
communications files. 

In stream data transmission, a me is treated as a continuous stream of data values in 
character form, without any delimiters between values. A file created or accessed by 
stream data transmission is, however, considered to consist of a series of lines of 
data and has a line size associated with it. A line is generally equivalent to a record 
in the me, though the line size and record size are not necessarily the same. Stream 
data transmission can move only problem data, not program control data. 

Only edit-directed stream data transmission is allowed. Edit-directed data trans­
mission transmits the values of data items and requires that you specify the format 
of the values in the stream. The values are recorded externally as a string of charac­
ters. 

On input, the value of each data item is converted, when necessary, to the attributes 
of the variable it is being assigned to. On output, the value of each data item is 
converted to the character representation specified by the associated format item and 

11-22 PLjI User's Guide and Reference 



DATA TRANSMISSION STATEMENTS 

placed in the stream in a field whose width may also be specified by the format 
item. 

File Description Attributes 
You use the me attribute STREAM to indicate stream data transmission. The me 
description attributes INPUT, OUTPUT, and PRINT can also be used. Informa­
tion on the syntax of these attributes is in "File Attributes" on page 12-6. 

Direction of Data Transmission 

The INPUT and OUTPUT attributes are valid with stream data transmission. 
INPUT allows use of the GET statement. OUTPUT allows use of the PUT state­
ment. 

Declaring Print Files 

You declare a print me by specifying the PRINT attribute. This indicates that you 
intend to print the me; that is, the data associated with the me will appear on 
printed pages, although it may first be written on some other device. 

The first data byte of each record of a print ftle is reserved for a carriage control 
character. When you specify PRINT, the system provides first character forms 
control (FCFC) support. For a description of FCFC, see the Programming: Data 
Management Guide. 

You can use the LINE option or PAGE option of the PUT statement only if you 
specify PRINT. 

Data Transmission Statements 
The same conversion restrictions apply for the GET and PUT statements as are 
described in "Assignment Statement" on page 13-1. 

The variables to which data items are assigned, and the expressions from which they 
are transmitted, are generally specified in the data list of a data_specification in each 
GET or PUT statement, which also contains a format list. Each data list item in 
the data list is associated with a data format list item in the format list. A format 
list item specifies the format of the data item on the external medium. The state­
ments can also include options that specify the position of the data items in the 
stream relative to the preceding data items. 

Only stream ftles can be processed with the GET and PUT statements. 

The following sections describe the GET and PUT statcrnents, first discussing each 
statement and then the statement options and the ftle attributes to which they apply. 

Chapter 11. Input and Output Statements 11-23 



DATA TRANSMISSION STATEMENTS 

GET Statement 

The GET statement is a stream input data transmission statement that assigns data 
from a file to one or more variables. 

rll,(",_""t"t)~.t'_'P"I(".t'" 

SKIP'----,.------.-------' 

SKI P-,-------.-' 

(expression) 

data_sped fi cat i on,--.---------.----------1 

SKIP--.--------.---' 

'-----SKIP---r------.--------------' 

(expression) 

You can omit the data specification only if you include the SKIP option. 

11-24 PL/I User's Guide and Reference 

J 



DATA TRANSMISSION STATEMENTS 

PUT Statement 

The PUT statement is a stream output data transmission statement that transmits 
data to a me. 

~PUT FILE(file_constant) data_specification-,----------r--,--,~;-+4 

PAGE:-.,--------,--j 

LINE(express ion) 

SKIP-,..-------,-! 

(expression) 

LINE (express ion) 

'-----...-PAGE--r-------r-r-----' 

LINE (express ion) 

SKI P-..-----.------I 

(expression) 

'---------LINE (expressi on)----------' 

data_specification-..---------r---------l 

PAGE.-..---------------------.---l 

LINE (express Ion) 

SKIP 

~(eXpreSSIOn)~ I 
LINE(eXpreSSiOn)~ 

'----.,--PAGE--,--------r---,.--------------' 

LINE (express ion) 

SKI p-,..----------r---i 

(expression) 

'-----------;LINE ( expres s I on) --------' 

You can omit the data specification only if you include one of the control options 
(PAGE, SKIP, or LINE). 

Chapter 11. Input and Output Statements 11-25 



OPTIONS OF STREAM DATA TRANSMISSION STATEMENTS 

Options of Stream Data Transmission Statements J 
The options you can specify on stream data transmission statements are given in the 
following sections. 

FILE (file_constant) Option 

The FILE option specifies the fIle to or from which data is transmitted. It must be 
a stream fIle. 

file_constant 
The name of the ftle to or from which data is transmitted. 

If you omit the FILE option from a GET statement, the ftle SYSIN is the default. 
If you omit it from a PUT statement, the ftle SYSPRINT is the default. 

If you do not explicitly open the ftle, it is implicitly opened for stream data trans­
mission when the fIrst GET or PUT statement is processed for the fIle. 

SKIP (expression) Option 

The SKIP option specifies a new current line or record within the file. 

expression 
An integer expression that specmes the number of the line or record, relative to 
the current line or record, skipped to. The expression must be less than or J 
equal to 32 767 for input and output files, greater than zero for input fIles and 
non-print output files, and greater than or equal to zero for print fIles. If you 
omit the expression, the default is 1. 

The SKIP option takes effect before the transmission of values defmed by the data 
specmcation (if present). For example, the following statement writes the values of 
variables X, Y, and Z to the output file SYSPRINT starting on the third line after 
the current line: 

PUT EDIT(X,y,Z) (F(3),A(2),F(4)) SKIP(3); 

The effect of the SKIP option is the same as for the SKIP format item (see "SKIP 
Format Item" on page 11-39). 

PAGE Option 

You can specify the PAGE option only for print files. It defmes a new current page 
within the fIle. 

The page remains current until a PUT statement with the PAGE option is proc­
essed, until a PAGE format item is encountered, or until the implicit action for the 
END PAGE condition is processed. A new page is then defmed, the page number is 
increased by one, and the line count is set to 1. 

The PAGE option takes effect before the transmission of any values defmed by the. II ;' 
data specification (if present). If PAGE and LINE appear in the same PUT state- ...", 
ment, the PAGE option is applied fIrst. 

11-26 PL/I User's Guide and Reference 



DATA SPECIFICATIONS 

LINE (expression) Option 

You can specify the LINE option only for print meso It defmes a new current line 
for the file. 

expression 
An integer expression that specifies the number of the new current line on the 
current page. The expression must be less than or equal to 32767. If the 
expression is less than or equal to zero, LINE(I) is assumed. 

The LINE option takes effect before the transmission of any values defmed by the 
data specification (if present). If both the PAGE option and the LINE option 
appear in the same statement, the PAGE option is applied first. For example: 

PUT FILE(LIST) EDIT(P,Q,R) 
(F(3),A(2),F(4)) LINE(34) PAGE; 

prints the values of the variables P, Q, and R on a new page, starting at line 34. 

The effect of the LINE option is the same as for the LINE format item (see "LINE 
Format Item" on page 11-39). 

Data Specifications 

Data Lists 

Data specifications in GET and PUT statements identify the data to be transmitted 
and its format in the data stream. 

The syntax of a data list is shown below: 

where 'iterative_specification' is: 

~(data_list--Do--reference • specification)----' 

data_list_item 
The data type of a data_listjtem must be arithmetic or string. 

A data_listJtem may be a scalar variable (on input and output), a scalar 
expression (on output), or an array or structure variable. If you specify an 
aggregate in a data list, each element of the array or field of the structure is 
treated as a separate data_list_item, and is paired with a data format item. 

Chapter 11. Input and Output Statements 11·27 



DATA SPECIFICATIONS 

iterative_specification J 
The meaning of the specification and of the expressions in the specification are 

Format Lists 

the same as those in a DO statement (described under "DO Statement" on 
page 13-5). 

Each iterative_specification must be enclosed in parentheses. If a data specifica­
tion contains only an iterative_specification, two sets of outer parentheses are 
required, since the data list is enclosed in parentheses and the iterative_ specifi­
cation must have a separate set. 

When iterative_specifications are nested, the rightmost DO is at the outer level 
of nesting. For example: 

GET EDIT (((ARRAYl(I,J) 
DO I = 1 TO 2) 
DO J = 3 TO 4)) (F(3)); 

In this example, there are three sets of parentheses, as well as the set that 
delimits the sUbscripts. The outermost set encloses the data list; the next is 
required by the outer iterative_specification; the third is required by the inner 
iterative-specification. This statement is equivalent to the following nested 
do-groups: 

DO J = 3 TO 4; 
DO I = 1 TO 2; 

GET EDIT (ARRAYl (I,J)) (F(3)); 
END; 

END; 

Values are assigned to the elements of ARRA Y 1 in the following order: 

ARRAYl(1,3), ARRAYl(2,3), ARRAYl(1,4), ARRAYl(2,4) 

When the specification is completed, processing continues with the next 
data_listjtem. 

The maximum level of nesting of iterative_specifications within a data list is 49. 

Format lists in GET and PUT statements identify the format of the data on the 
external medium. 

r---iteration_factor--fonnat_item---

L--iteration_factor--(format_listj--

iteration_factor 
An integer constant that specifies the number of times the associated format­
item or format_list is repeated. A blank must separate the constant and the fol­
lowing format_item. 

11-28 PLjI User's Guide and Reference 

J 

J 

J 



DATA SPECIFICATIONS 

The associated formatJtem or format-list is that item or list of items imme­
diately to the right of the iteration-factor. 

format item 
Sp;cifies either a data format item or a control format item. The format items 
and their syntax are shown below. Format items are discussed in "Format 
Items" on page 11-31. 

Format Items and their Syntax 

Data Format Items 

character 

bit 

floating-point 

fixed-point 

Control Format Items 

column-position 

line-position 

pagmg 

line skipping 

spacing 

AI(field_width}p 

B(114J1(field_width}P 

E(field _ widthllractionaC digits» 

F(field _ widthl/ractionaC digitsJ) 

COLUMN( character .J)osition) 

LINE( line_number) 

PAGE 

SKIP(relative _line») 

X(field_width) 

Note: lfield_width must be specified in a GET statement but is optional in a PUT 
statement. 

The first data format item is associated with the first data list item, the second data 
format item with the second data list item, and so on. If there are fewer data format 
items than data list items, the format list is reused. If there are more format items 
than data list items, the excess format items are ignored. 

A data format item describes the eJl.iemal format of a single data item. 

A control format item specifies the layout of data values within a flle. 

If one or more control format items are encountered before a data format item, the 
corresponding control actions are processed first, and then the data list item is trans­
mitted according to the data format item. 

In the input stream, all blanks and apostrophes are treated as characters. It is not 
necessary to enclose strings in apostrophes. Apostrophes should not be doubled, 
nor should the letter B be used to identify bit values. If characters in the stream 
cannot be interpreted in the manner specified, the conversion condition is raised. 

Example of an input specification: 

GET EDIT (NAME, DATA, SALARY) 
(A(10), X(2), A(6), F(6,2)); 

Chapter 11. Input and Output Statements 11-29 



DATA SPECIFICATIONS 

This example specifies the following: 

The first ten characters in the stream are considered character data, and are 
assigned to NAME. 
Skip the next two characters. 
The next six characters are considered character data, and are assigned to 
DATA. 
The next six characters are considered an optionally signed decimal fixed-point 
constant and are assigned to SALARY. 

In the output stream, blanks are not automatically inserted to separate data values. 

String data is left-adjusted within the field width specified; arithmetic data is right­
adjusted. Because of the rules for conversion of arithmetic data to character type, 
which can insert up to three leading blanks (in addition to any blanks that replace 
leading zeros), at least one blank will precede an arithmetic item in the converted 
field. However, leading blanks do not appear in the stream unless the specified field 
width allows for them. 

Example of an output specification: 

PUT EDIT('INVENTORy='IIINUM,INVCODE) 
(A,F(5)); 

This example specifies that the character constant 'INVENTORY= , is to be con-
catenated with the character value of INUM and placed in the stream in a field '\ 
whose width is the length of the resultant string. Then the value of INVCODE is .-.J 
to be converted to character to represent an optionally signed integer constant 
placed in the stream right-adjusted in a five-character field (leading characters may 
be blanks). 

Truncation, due to an inadequate field-width specification, is on the left for arith­
metic items and on the right for string items. For example: 

DECLARE INUM 
INVCODE 

CHARACTER(5), 
FIXED DECIMAL (5); 

PUT EDIT ('INVENTORY='I IINUM,INVCODE) 
(A(13) ,F(5)) 

This example is similar to the preceding example, except that the length of the char­
acter constant I INVENTORY = , and the length of INUM together exceed the 
length specified in the format list item A(13). When INUM is concatenated with 
'INVENTOR Y = " its last two characters will be lost. 

The PAGE and LINE format items can be used only with print fUes and, conse­
quently, can only appear in PUT statements. The SKIP, COLUMN, and X-format 
items can be used with both input and output fUes. 

The PAGE, LINE, and SKIP format items have the same effect as the corre­
sponding options of the PUT statement (and of the GET statement, in the case of 
SKIP), except that the format items take effect when they are encountered in the 
format list, whereas the options take effect before any data is transmitted. 

11-30 PL/I User's Guide and Reference 



Format Items 

DATA SPECIFICATIONS 

The transmission is complete when the last data list item has been processed using 
its corresponding format item. 

Format items are specified in a format list in the data specification of a GET or 
PUT statement. (See "GET Statement" on page 11-24, "PUT Statement" on 
page 11-25, and "Format Lists" on page 11-28.) 

The two types of format items are data format items, which describe the external 
representation of data items, and control format items, which specify the formatting 
of data items. 

Control format items take effect before values dermed in the data specification are 
transmitted. 

The format items are described in the following sections in alphabetical order. 

A-Format Item 

The character format item describes the external representation of a string of charac­
ters. You can use it for all problem data types. 

For input: 

For output: 

field_width 
An integer constant up to 32767 that specifies the number of character posi­
tions in the data stream that contain, or will contain, the character value. 

On input, the specified number of characters is obtained from the data stream and 
assigned to the data item with any necessary conversion, truncation, or padding. 
The field_width is always required on input; if it is zero, a null value is obtained. 
Apostrophes in the stream are treated as characters. 

On output, the data list item is converted, if necessary, to a character value and is 
truncated or extended with blanks on the right to the specified field_width before 
being placed into the data stream. If the field_width is zero, no characters are 
placed into the data stream. Enclosing apostrophes are not inserted and contained 
apostrophes are not doubled. If you do not specify the field_width, the default is 
equal to the character length of the data list item (after conversion, if necessary, 
according to the rules given in "Data Conversion" on page 5-27). 

For example: 

Chapter 11. Input and Output Statements 11-31 



DATA SPECIFICATIONS 

GET FILE(INFILE) EDIT(ITEM)(A(2G))j 

This statement assigns to ITEM the next 20 characters in the me, called INFILE. 
The value is converted from its character representation specified by the format item 
A(20) to the representation specified by the attributes declared for ITEM. 

You can also use the A-format item for input of numeric data containing such char­
acters as currency symbols. For example: 

DECLARE CHARVARIABLE CHARACTER (5), 
PICVARIABLE PICTURE '$$$$$' 

BASED (POINTER1), 
POINTER1 POINTERj 

POINTER1 = ADDR(CHARVARIABLE)j 
GET EDIT (CHARVARIABLE)(A(5)); 

The GET statement causes the next five characters to be assigned to the 
CHARV ARIABLE. The associated arithmetic value can then be accessed by 
means of PICV ARIABLE. 

You can also use the A-format item for simple output of any problem data type, in 
which case the character representations of the data items are written. For example: 

DECLARE BINVARIABLE 
DECVARIABLE 
PICVARIABLE 

BINARY FIXED (15), 
DECIMAL FLOAT (10), 
PICTURE '999.99 ' ; 

PUT SKIP EDIT 
(BINVARIABLE,DECVARIABLE,PICVARIABLE) (A,X(5)); 

The PUT statement writes the character representations of BINV ARIABLE, 
DECVARIABLE, and PICVARIABLE, separating them by five blanks. 

B-, B1-, and B4-Format Items 

The bit format item describes a character representation of a bit value. You specify 
a bit format item as B, Bi, or B4, depending on how the bit value is represented. 

For input: 

For output: 

11-32 PL/I User's Guide and Reference 

J 

J 



L 

L 

DATA SPECIFICATIONS 

B,Bl 
Specify that the value of the data item is represented by the characters 0 and 1. 

B4 
Specifies that the value of the data item is represented in hexadecimal format. 

field_width 
An integer constant up to 32 767 that specifies the number of character posi­
tions in the data stream that contain, or will contain, the representation of the 
bit value. 

On input, the character representation of the bit value can occur anywhere within 
the specified field. Blanks, which can appear before and after the bit value in the 
field, are ignored. Any necessary conversion occurs when the bit value is assigned to 
the data_list )tem. 

The field_width is always required on input; if it is zero, a null value is obtained. 
Any characters other than those valid for the specified representation (0 or 1 for B 
or B1 items, or the hexadecimal digits 0 to F for B4 items) raise the conversion 
condition. For example: 

DECLARE BITSTRING BIT (16) ALIGNED; 
GET EDIT (BITSTRING) (84(4)); 

If the input stream contains the characters C 1 C2, the value of BITSTRIN G after 
the GET statement is processed is the binary equivalent of hexadecimal ClC2, that 
is, I 1100000111000010 lB. 

If you use the B4 format item to read data into a character variable, the bit data 
item is converted to character. For example: 

DECLARE CHARSTRING CHARACTER(2); 
GET EDIT (CHARSTRING) (B4(4)); 

If the input stream contains the characters CIC2, the value of CHARSTRING after 
processing the GET statement is I 111: the first and second bits of the character 
string ClC2, each of which has a value of one, are each converted to character 111, 
and the remaining fourteen bits are ignored because CHARSTRING can only 
contain two characters. 

On output, any necessary conversion to bit is processed. 

B4 items are assigned to the output field in multiples of four bits. If the converted 
value of the source is not a multiple of four, it is padded on the right with zeros up 
to the next mUltiple of four. For example: 

DECLARE MASK BIT (25) ALIGNED; 
PUT FILE (MASKFILE) EDIT (MASK)(B4); 

This PUT statement writes the value of MASK to the me MASKFILE as a string 
of seven hexadecimal characters, by padding MASK with three bits set to zero, 
producing a string of 28 bits (the next multiple of four). 

The character representation of the bit value is left-adjusted in the specified field, 
and any necessary truncation or extension with blanks occurs on the right. Neither 

Chapter 11. Input and Output Statements 11-33 



DATA SPECIFICATIONS 

apostrophes nor the identifying letter B (or B 1 or B4) are inserted. If the 
field_width is zero, no characters are placed into the data stream. If you do not 
specify the field_width, the default is equal to the length of the data-list-item (after 
conversion, if necessary, according to the rules given in "Data Conversion" on 
page 5-27). For example: 

DECLARE MASK BIT (25) ALIGNED; 
PUT FILE (MASKFILE) EDIT (MASK)(B); 

This PUT statement writes the value of MASK to the file called MASKFILE as a 
string of 25 characters consisting of zeros and ones. 

COLUMN Format Item 

The COLUMN format item positions the file to a specified character..J>osition 
within the current or following line. It can be used with input and output files. 

~COLUMN(character_position)~ 

Abbreviation: COL for COLUMN 

ch aracter _position 
An integer constant up to 32 767. 

The file is positioned to the specified character..J>osition in the current line, provided J 
it has not already passed this position. 

If the me is already positioned after the specified character..J>osition, the current line 
is completed and a new line is started; the format item is then applied to this new 
line. 

On input, intervening character positions are ignored. On output, they are filled 
with blanks. 

If the specified character..J>osition is zero or lies beyond the rightmost 
character..J>osition of the current line, the default character..J>osition of I is used. 

The rightmost character..J>osition is determined as follows: 

• For output fIles, it is equal to the line size. 
• For input fIles, it is equal to the length of the current logical record. 

E-Format Item 

The floating-point format item describes a character representation of a floating­
point or fixed-point decimal data item. 

11-34 PLjl User's Guide and Reference 



L 

DATA SPECIFICATIONS 

-E-(field_width L J )---
,fractional_digits 

where: 

16 ~ fractional_digits ~ a 

and 

field_width 
An integer constant up to 32767. It specifies the total number of characters in 
the field. 

fractional_digits 
An integer constant that specifies the number of digits that follow the decimal 
point. If you omit fractional_digits, it defaults to zero for input. For output, its 
value is derived from the type of data list item, as follows: 

Data List Item Type Fractional Digits 

Bit string min(lS,cei1(pl/3.32)-I) 

Character string 14 

Binary fixed cei1(p2/3.32)-1 

Binary float cei1(p3/3.32)-1 

Decimal fixed p4-1 

Decimal float pS-l 

Picture p4-1 

Notes 

1. min(x,y) is the smaller of x and y. 

2. cei1(x) is the smallest integer larger than or equal to x. 

3. pI is the length of the bit string. 

4. p2 is the number of binary digits that appear in the value of the data list item. 

S. p3 is the number of binary digits that are declared or computed to be in the 
data list item. 

6. p4 is the number of decimal digits that appear in the value of the data list item. 

7. pS is the number of decimal digits that are declared or computed to be in the 
data list item. 

On input, the data value in the data stream is the character representation of an 
optionally signed decimal floating-point or fixed-point constant located anywhere 
within the specified field. It must conform to the following syntax: 

Chapter 11. Input and Output Statements 11-35 



DATA SPECIFICATIONS 

[+I-]significand+ 
[{EIE+IE-I+I-}integer] 

where significand is a decimal fixed-point constant. 

Blanks are ignored. They can appear before and after the data value in the field. 

The value of field_width includes leading and trailing blanks, the exponent position, 
the positions for the optional plus or minus signs, the position for the optional letter 
E, and the position for the optional decimal point in the significand. 

If no decimal point appears in the significand of the data value, fractional_digits 
specifies the number of character positions in the significand to the right of the 
assumed decimal point. If a decimal point does appear, it overrides the specification 
of fractional_digits. 

On output, the data list item is converted to floating-point and rounded if necessary....) 

The character string in the output stream has one of the following syntaxes: 

• For fractional_digits = 0 H 
digit E 

{+ I-} 
exponent 

The field_width must be ~ 6 for positive values, or ~ 7 for negative values. 

The value zero appears without a sign. 

• For fractional_digits > 0 [-] 

digit.frac_digits E 

{+ I-} 
exponent 

where frac _digits is a string of digits of length fractional_digits. 

The field_width must be ~ 7 + fractional_digits for positive values, or ~ 8 + 
fractional_digits for negative values. 

The leading digit in the significand is zero only if the value is zero. 

The exponent field is three characters long, and can appear in either of two fonns, 
depending on the magnitude of the exponent value. The fonn nnb applies when the 
exponent value is in the range 0 to 99; two digits are followed by one blank. The 
fonn nnn applies when the exponent value exceeds 99. You should remember when 
defming output format that if your exponent is 99 or less, your E-fonnat item will 
include a blank character following the exponent. Some examples of exponents are 
OOb, 99b, 100, and 123. 

The conversion from internal decimal fixed-point to character is processed according 
to the normal rules for conversion. Extra characters may appear as blanks preceding 
the number in the converted string. And, since leading zeros are converted to ..j 

11-36 PLjI User's Guide and Reference 



DATA SPECIFICATIONS 

blanks (except for a zero immediately to the left of the decimal point), additional 
blanks may precede the number. A minus sign will replace one leading blank. 

Truncation of data values may occur during conversion (see "Truncation of 
Floating-Point Data" on page 5-34). 

It is an error if the field_width is such that the sign or any significant digit is trun­
cated. 

For example: 

GET FILE(AUDIT) EDIT(COST) (E(10,6)); 

This statement obtains the next ten characters from the ftle called AUDIT and inter­
prets them as a floating-point or fixed-point decimal number. A decimal point is 
assumed before the rightmost six digits of the significand, but an actual decimal 
point within the data overrides this assumption. lne value of the number is con­
verted to the attributes of COST and assigned to this variable. 

F-Format Item 

The fixed-point fonnat item describes the character representation of a decimal 
fixed-point arithmetic data item. 

-F-(fi eld_wi dth--,-L-------J,--l-.... 

,fractional_digits 

where: 

127 ~ fractional_digits ~ e 

and 

field_width ~ fractional_digits 

field_width 
An integer constant up to 32 767. It specifies the total number of characters in 
the field. 

fractionat digits 
An integer constant that specifies the number of digits that follow the decimal 
point. If you omit fractional_digits, it defaults to zero. 

On input, the data value in the data stream is the character representation of an 
optionally signed fixed-point decimal constant located anywhere within the specified 
field. Blanks before and after the data value in the field are ignored. If the entire 
field is blank, it is interpreted as zero. 

The value of field_width includes leading and trailing blanks, the position for the 
optional plus or minus sign, and the position for the optional decimal point. 

Chapter 11. Input and Output Statements 11-37 



DATA SPECIFICATIONS 

If no decimal point appears in the data value, fractional_digits specifies the number J 
of digits in the data item to the right of the assumed decimal point. If a decimal 
point does appear, it overrides the specification offractional_digits. 

On output, the data list item is converted, if necessary, to fixed-point decimal, 
according to the conversion rules given in "Data Conversion" on page 5-27. 

The data value in the stream is the character representation of a fixed-point decimal 
number, right-adjusted in the specified field. 

The field_width must be large enough to hold the character representation of the 
value. The following conditions apply to the field_width: 

• For fractional_digits = 0 

field_width 2 I 

for positive values, or 

field_width 2 2 

for negative values. 

• For fractional_digits > 0 

field_width 2 fractional_digits + 2 

for positive values, or 

field_width 2 fractional_digits + 3 

for negative values. 

This allows for a decimal point and at least one digit to the left of the decimal 
point. 

Iffractional_digits is zero, only the integer portion of the number is written; no 
decimal point appears. 

If fractional_digits is greater than zero, both the integer and fractional portions of 
the number are written, and a decimal point is inserted before the rightmost digit 
position specified by fractional_digits. Trailing zeros are supplied when the scale 
factor is less than the number of fractional digits of the data item after any necessary 
conversion. If the absolute value of the item is less than I, a zero precedes the 
decimal point. Leading zeros are suppressed in all digit positions (except the first) 
to the left of the decimal point. 

Truncation of data values may occur during conversion (see "Truncation of 
Floating-Point Data" on page 5-34). 

The conversion from internal decimal fixed-point to character is done according to 
the nonnal rules for conversion. Extra characters may appear as blanks preceding 
the number in the converted string. And, since leading zeros are converted to 
blanks (except for a zero immediately to the left of the decimal point), additional 
blanks may precede the number. A minus sign will replace one leading blank. 

For example: 

11-38 PL/I User's Guide and Reference 



L 

DECLARE TOTAL FIXED DECIMAL (4,2); 
PUT EDIT (TOTAL)(F(6,Z)); 

DATA SPECIFICATIONS 

The PUT statement specifies that the value of TOTAL is to be converted to the 
character representation of a decimal fixed-point number and written into the output 
fUe SYSPRINT. A decimal point is to be inserted before the last two digits, and the 
number will be right-adjusted in a field of six characters. Leading zeros will be 
changed to blanks (except for a zero immediately to the left of the decimal point), 
and, if necessary, a minus sign will be placed to the left of the fust digit. 

LINE Format Item 

The LINE format item specifies the particular line on the current page of a print fUe 
to which the next data list item is transmitted. 

line_number 
An integer constant up to 32767. 

Blank lines are inserted, if necessary, to do the positioning. 

The ENDPAGE condition is raised if the specified line_number is: 

• Less than the current line_number 
• Equal to the current line_number and the current line contains data 
• Greater than the limit set by the PAGESIZE option. 

PAGE Format Item 

The PAGE format item specifies to start a new page. It can be used only with print 
fUes. 

Starting a new page positions the fUe to line 1. 

SKIP Format Item 

The SKIP format item specifies a new line for a print fUe, or a new record for a 
non-print fUe. 

-SKIP ~. 

~(relative line)~ 

Chapter 11. Input and Output Statements 11-39 



DATA SPECIFICATIONS 

relative_line J 
An integer constant up to 32 767. It specifies the number of the line (relative to 
the current line) to skip to. Relative_line must be greater than zero for input 
fUes and non-print output fUes, and greater than or equal to zero for print fUes. 
For a print fUe, SKIP(O) means that characters are written on the current line, 
overwriting characters already written. If you omit relative_line, the default is 1. 

The fUe is positioned at the start of the specified line relative to the current line, 
unless the ENDPAGE condition is raised. For print fUes, the ENDPAGE condi­
tion is raised if the position of the specified relative line is beyond the limit set by 
the PAGESIZE option of the OPEN statement (or by default). 

If the SKIP format item is the fIrst format item processed after a fUe has been 
opened, the fUe is positioned to the fIrst column of the specifted line relative to the 
fIrst line. For example, SKIP (0) would position the fUe at the fIrst line; SKIP (1) 
would position the ftle at the second line, and so on. J 
X-Format Item 

The spacing format item controls the spacing of data values in the data stream. 

field_width 
An integer constant up to 32 767. It specifies the number of characters in the 
data stream between the current position in the stream and the start of the next 
data field your program will process. 

On input, the specifted number of characters are bypassed in the data stream and 
not transmitted to the program. For example: 

GET EDIT(NUMBER,REBATE) (A(5),X(5),A(5)); 

This statement treats the next 15 characters from the input fUe, SYSIN, as follows: 
the first fIve characters are assigned to NUMBER, the next five characters are 
bypassed, and the remaining fIve characters are assigned to REBATE. 

On output, the specifted number of blank characters are inserted into the stream. 
For example: 

PUT FILE(OUT) EOIT(PART,CQUNT) 
(A(4),X(2),F(5)); 

This statement places, in the fUe named OUT, four characters that represent the 
value of PART, then two blank characters, and fInally five characters that represent 
the decimal fixed-point value of COUNT. 

11-40 PL/I User's Guide and Reference 



DATA SPECIFICATIONS 

Transmission of Array Elements and Structure Fields 
If a data_listjtem is a multi-dimensional array, the array elements are transmitted in 
row-major order; that is, with the rightmost subscript of the array varying most fre­
quently. Consider the following example: 

DECLARE SAMPLEARRAY (2,2,2) FIXED BINARY (15); 

The elements of the array are transmitted in the following order: 

(1,1,1) 
(1,1,2) 
(1,2,1) 
(1,2,2) 
(2,1,1) 
(2,1,2) 
(2,2,1) 
(2,2,2) 

If a data_listjtem is a structure, the structure fields are transmitted in the order 
specified in the structure declaration. 

For example: 

DECLARE 1 ARAY (10), 
2 BFID FIXED DECIMAL(3), 
2 CFID FIXED DECIMAL(3); 

PUT FILE(XFIL) EDIT(ARAY) (F(3)); 

produces output ordered as follows: 

ARAY.BFID(I) ARAY.CFID(I) 
ARAY.BFID(2) ARAY.CFID(2) 
ARAY.BFID(3) ARAY.CFID(3) 

However, if the declaration is: 

DECLARE 1 ARAY, 
2 BFID(10) FIXED DECIMAL(3), 
2 CFID(10) FIXED DECIMAL(3); 

PUT FILE(XFIL) EDIT(ARAY) (F(3)); 

the result is ordered as follows: 

ARAY.BFID(l) ARAY.BFID(2) ••• ARAY.BFID(10) 
ARAY.CFID(l) ARAY.CFID(2) ..• ARAY.CFID(16) 

If, within a data list, a variable is assigned a value, this new value is used if the vari­
able appears in a later reference in the data list. For example: 

Chapter 11. Input and Output Statements 11-41 



PRINT FILES 

Print Files 

GET EDIT (N,(X(I) DO 1=1 TO N))(F(3)); 

When this statement is processed, values are transmitted and assigned as follows: 

1. A new value is assigned to N. 

2. Elements are assigned to the array X as specified in the iterative specification in 
the order X(I),X(2), .. .x(N), with the new value of N being used to specify the 
number of items assigned. 

The following examples show the use ofthe COLUMN, LINE, PAGE, and SKIP 
format items in combination with one another: 

PUT EDIT ('QUARTERLY STATEMENT') 
(PAGE, LINE(2), A(19)); 

PUT EDIT (ACCT#, BOUGHT, SOLD, 
PAYMENT, BALANCE) J 

(SKIP(3), A(6), COLUMN(14), ... 
F(7,2), COLUMN(30), F(7,2), 
COLUMN(4S), F(7,2), 
COLUMN(60), F(7,2)); 

The ftrst PUT statement specifies that the heading QUARTERLY STATEMENT 
is to be written on line two of a new page in the output file SYSPRINT. The 
second statement specmes that two lines are skipped (that is, "skip to the third fol­
lowing line") and the value of ACCT# is to be written, beginning at the ftrst char-
acter of the fnth line; the value of BOUGHT is to begin at character position 14; ), 
the value of SOLD is to begin at character position 30; the value of PAYMENT is ..." 
to begin at character position 45; and the value of BALANCE is to begin at char-
acter position 60. 

You can control the layout of a print file by means of the options and format items 
listed in Figure 11-2. 

Statement Option Format Effect 
Item 

OPEN LINES IZE( expression) - Establishes line width 

PAGES IZE( expression) - Establishes page depth 

Figure 11-2 (Part 1 of 2). Options and Format Items for Print Files 

11-42 PL/I User's Guide and Reference 



PRINT FILES 

Statement Option Format Effect 
Item 

PUT PAGE PAGE Skip to new page 

LINE( expression) LINE(n) Skip to specified line 

S KIP[ (expression)] SKIP[(n)] Skip specified 
number of lines 

- COLUMN(n) Skip to specified 
COL(n) character position 

in line 

- X(n) Skip the specified 
number of characters 

Figure 11-2 (Part 2 of 2). Options and Format Items for Print Files 

Note: n is an integer constant. 

LINESIZE and PAGESIZE establish the dimensions of the printed area of the 
page, excluding footings. For example: 

DECLARE REPORT FILE STREAM PRINT, 
N FIXED DECIMAL(3) 
STATIC INITIAL(0); 

OPEN FILE(REPORT) PAGESIZE(55) 
LINESIZE(1l0) ; 

ON ENDPAGE(REPORT) 
BEGIN; 
PUT FILE(REPORT) SKIP(2) EDIT 

(FOOTING) (A(B)); 
N = N + 1; 
PUT FILE(REPORT) PAGE EDIT 

(IPAGEI ,N) (A,X(I) ,F(3)); 
PUT FILE(REPORT) SKIP (3); 
END; 

The OPEN statement opens the file REPORT as a print file. The specification 
PAGESIZE(55) indicates that each page should contain a maximum of 55 lines, 
excluding the footing. After 55 lines have been written (or skipped), the next line 
written or skipped will raise the ENDPAGE condition and process the begin-block. 
Because the ENDPAGE condition is raised only once for each page, printing con­
tinues beyond the specified PAGESIZE. 

LINESIZE(IIO) indicates that each line on the page can contain a maximum of 110 
characters. If you attempt to write a line greater than 110 characters, the excess 
characters are placed on the next line. 

The first PUT statement in the begin-block specifies line skipping so that the value 
of FOOTING, presumably a character value, is to be printed on line 58 (when 
ENDPAGE is raised, the current line is always PAGESIZE+ 1). The page number, 

Chapter 11. Input and Output Statements 11-43 



PRINT FILES 

SYSIN File 

SYSPRINT File 

N, is incremented, the ftle is positioned to the next page, and the character constant 
I PAGEl is printed together with the new page number. The [mal PUT statement 
specifies line skipping so that the ftle is positioned to line 4. Control returns from 
the on-unit to the PUT statement that raised the ENDPAGE condition. Any SKIP 
or LINE option specified in that statement, however, has no further effect. 

The ftle SYSIN, if not explicitly declared or opened, has the default attributes FILE, 
STREAM, INPUT, and EXTERNAL, and is associated with the ASj400 ftle 
named QINLINE in the ASj400 library named QGPL. 

If ftle SYSIN is explicitly declared with the EXTERNAL attribute, it is associated 
with the ASj400 ftle named QINLINE in the ASj400 library named QGPL. Ifftle 
SYSIN is explicitly declared with the INTERNAL attribute, it is associated with a 
ASj400 ftle named SYSIN, which you must create. J 
You must use SYSIN in a way that is compatible with its use by the compiler. See 
"Considerations for Opening a Print Stream File" on page 7-12. 

The ftle SYSPRINT is given the attribute PRINT when it is opened, provided that 
it has the STREAM, OUTPUT, and EXTERNAL attributes. SYSPRINT uses the 
program name for computer output modules. 

A new page is started automatically when the ftle is opened. If the fIrst PUT state­
ment that refers to the ftle has the PAGE option, or if the fIrst PUT statement 
includes a format list with PAGE as the fIrst item, a blank page will appear. 

If SYSPRINT is not explicitly declared or opened, it has the default attributes 
PRINT, FILE, STREAM, OUTPUT, and EXTERNAL, and is associated with the 
ASj400 ftle named QPRINT in the ASj400 library named QGPL. 

If ftle SYSPRINT is explicitly declared with the INTERNAL attribute, it is associ-\ 
ated with an ASj400 ftle named SYSPRINT, which you must create. ..", 

11-44 PL/I User's Guide and Reference 



THE DECLARE STATEMENT 

Chapter 12. Declaring Names and Attributes of Variables 

This chapter describes the DECLARE statement and its attributes. 

The DECLARE Statement 
You use the DECLARE statement to explicitly declare the names and attributes of 
variables. You can declare many variables with a single DECLARE statement. 

You can use the DECLARE statement as part of the documentation of your 
program by specifying all the attributes of a name, even when attributes may be 
added by default, or by implicit or contextual declaration. You can factor attributes, 
as described under "Factoring of Attributes" on page 12-2. 

-DEclARE-l--,'--J..-----rl-~m, elI' I 'tt'fb"t.Jl;~ 
-level • 

(-namJ-) 

Abbreviation: DCl for DECLARE. 

level 
An integer constant in the range 1 through 255. It specifies the level number of 
a structure or of a field contained in a structure (see "Structures and Level 
Numbers" on page 12-39). 

name 
The name or names being declared. If you want to declare more than one 
name, see "Factoring of Attributes" on page 12-2. 

attribute 
All attributes you want to specify for a name must appear in a single 
DECLARE statement. There can be up to 9999 attributes in a declare state­
ment. You need not declare any default attributes or implied attributes (see 
"Classification of Attributes" on page 12-2). You can provide the attributes of 
a variable or a named constant by explicit declaration, by default, or, in the case 
of built-in function names and built-in subroutines, by context (see "Names" on 
page 4-12). 

A DECLARE statement cannot have a label. 

Chapter 12. Declaring Names and Attributes of Variables 12-1 



CLASSIFICATION OF ATTRIBUTES 

Factoring of Attributes 
You can factor attributes common to several names to avoid repeated specification 
of the same attribute. ' 

To factor attributes, enclose the names of the variables, separated by commas, in 
parentheses, and follow the parenthesized list by the set of attributes that apply to 
all of the names. Only identifiers are valid in the parenthesized list. 

Factoring cannot be nested; that is, you can only specify one level of parentheses. 

Examples of factoring are: 

DECLARE (A,B,C,D) BINARY FIXED (31); 

DECLARE 1 A, 2(B,C,D) (3,2) BINARY FIXED (15); 

Classification of Attributes 
The attributes are classified by the type of data they represent. 

The two types of data in a PL/I program are: 

• Problem data, which represents values processed by the program. It consists of 
coded arithmetic, bit, character, and picture data (see "Problem Data 
Attributes" on page 12-9). 

• Program control data, which is used to control the processing of the program. 
It consists of pointer, label, entry, and ftle data (see "Program Control Data 
Attributes" on page 12-30). 

Figure 12-1 on page 12-3 shows you how to specify attributes for all the types of 
data. 

The rest of this chapter presents the classification, syntax diagrams, and descriptions 
of the attributes. 

12-2 PLjI User's Guide and Reference 

J 

J 



j 
~ -t-.J 
o 
t'1I 
Co 
III 
::1. 

Jg 
Z 
III 
3 
iJl 

~ 
Co 
;.. 
S-. g 
~ 
o ..., 
[ 
III 

i -N 
I 

W 

r r r r r 
"r1 <§ . 
... 
t'1I -N . -:. 
a: 
g 
g. 
s· 
III 
C'. 
o 
::l 
'" o ..., 
;.. 
S-. 
0" 
c: 
S 
'" 

--I 
I*Prablem Data./ I*Program CoitrOI Data*1 I*Bui I t-iln Data*1 

I*Coded Ari thmetic 
Variable./ 

I 
(dimension) 

I.Base.I' 
.-- I 
~ DECimal 

I I 
I.Scale.I' 

I 
FIXED 

I 
(precision) 

I 

I*Scale*/' 
I 

,- I 
FIXED FLOAT 

1- I 
(precision) 

I 
(precision) 

I 
I*AI igrunent*1 I*AI ignment*1 I*AI ignmen1*1 

i I I i ! 

ALIGNED UNALIGNED 2 ALIGNED ALIGNED UNALIGNED 2 r= I --~ 

I 

I 1-- -I 
I_String Variabl e*1 '_Picture./ I.Pointer./ 

I I 

(dimension) (dimension) (dimension) 

I 
I 

I I I 
BIT CHARACTER PICTURE POINTER 

I I 
VARYING I 

I*AI ignment*1 

I 
UNALIGNED 

I*AI igrunent*1 

I 

I*AI igrunent*1 

I I --- 1 
ALIGNED' ALIGNED' UNALIGNED 

I*AI igrunent*1 

I 
ALIGNED 

I I I 

I*Label 
Variable./ I*Entry*1 

(dimension) (dimension) 5 

I I 
LABEL ENTRY 

, I 
RETURNS 

'*AI ignment*1 I 

I 
OPTIONS 

ALIGNED 

I*AlignmenUI 

I 
ALIGNED -I-

I 

I*File*1 
I 

FILE 

BUILTIN 

I 
RECORD I I ST~AM 

INPUT I ~ 
: T51~n'€I T OUTPUT 

I 

SEQUE I PRINT 

iT! AL DIRECT 

KEYED I " 
~~D 
ENVI RONMENT • 

VARIABLE VARIABLE VARIABLE VARIABLE 
~ARF VARlABLE 

--r= =r-
I 

I_Scope.' 
• I 

I I 
INTERNAL EXTERNAL 
----,--- I 

l*Storage*' I.Storage./ 

I I I I I 
AUTOMATIC BASED STATIC 

I 

INITIAL 

STATIC 

INITIAL 

~ -r- --r-
I_Scope. l 

I_Scope.; 

I 
I 

EXTERNAL 

'.Scope_; 

I 
I l I 1 

INTERNAL EXTERNAL INTERNAL EXTERNAL 
--,-- I 

l*Storage*1 I.Storage./ 

I I I I 
AUTOMATIC BASED STATIC STATIC 

(") 
~ 

~ 
rJl -"'!j -(") 
~ -o 
'2: 
o 
"'!j 

~ -1:0 

a 



CLASSIFICATION OF ATTRIBUTES 

Key 

RECORD 

STREAM 

/* */ 

Footnotes: 

must be declared implicitly 

default attribute 

default path 

comment 

1 Only one base or one scale attribute must be specified. The default value then 
applies for the other. 

2UNALIGNED cannot be specified with DECIMAL FIXED. 

3 ALIGNED must be specified with BIT. 

4ALIGNED can only be specified if VARYING is also specified. 

5you cannot specify the dimension attribute for an entry constant. 

6For more information on the ENVIRONMENT attribute, see "The ENVI­
RONMENT Attribute" on page 7-1. 

Additional Notes: 

1. Attributes may be specified in any order, except for the following restrictions: 

• The dimension attribute must immediately follow the name or name-list. 

• The precision attribute must immediately follow the base or scale attribute. 

2. The following restrictions apply to structures: 

• For a major structure name, you can specify any of the scope and storage 
attributes, except for INITIAL. 

• For a minor structure name, you cannot specify any attributes. 

• For a field name, you can specify only the data and alignment attributes, 
and the INITIAL attribute. 

3. The default precisions for coded arithmetic data are shown in "Precision 
Attribute" on page 12-10. The default string length for string data is 1. 

4. The implied attributes are listed under "Implied Attributes" on page 12-5. 

5. Label constants and internal entry constants cannot be declared with a 
DECLARE statement. 

6. For structures, INTERNAL and EXTERNAL should be declared in levell 
declarations only. An error message is sent if a member of a structure has a 
scope specified that is different from the scope specified in the level 1 declara­
tion. 

How To Use The Table 

J 

Any line through the attributes in this table contains a complete set of the attributes 'I. 
for a name. By proceeding through the table, from top to bottom, you may select a ..", 
valid combination of attributes for any line. 

12-4 PLjI User's Guide and Reference 



CLASSIFICATION OF ATTRIBUTES 

• Attributes shown in boldface must be declared explicitly (in a DECLARE state­
ment) or implicitly (through the use of another attribute, option or statement). 
The flrst attribute in boldface on any line is required if you want any attributes 
on that line. 

• Default attributes are underlined. They are selected for you, on the default 
path, unless you specify any alternative attributes (shown as branches from the 
default path). 

• All other attributes are optional. You must specify them if you want the 
declared name to have that particular attribute. 

• Exceptions to these points are discussed in the footnotes and additional notes. 

Required Attributes 

Implied Attributes 

Except for major or minor structure names, you must declare at least one of the 
following attributes for each name in a DECLARE statement: BINARY, 
DECIMAL, FIXED, FLOAT, BIT, CHARACTER, PICTURE, POINTER, 
LABEL, ENTRY, FILE, or BUILTIN. 

When you declare some attributes, you may imply others. You do not have to 
declare these attributes, but, just as with default attributes, you can declare them if 
you wish. 

The attributes you specify and the attributes they imply are: 

Explicitly Implied 
Declared 

UPDATE RECORD 

SEQUENTIAL RECORD 

KEYED RECORD 

DIRECT RECORD, KEYED 

PRINT EXTERNAL, OUTPUT, 
STREAM 

ENVIRONMENT ENVIRONMENT 
(KEYDISP (INDEXED) 
KEYLENGTH) 

For the me attributes that are implied by implicit opening of a me, see "Implicit 
Opening" on page 11-6. 

Chapter 12. Declaring Names and Attributes of Variables 12-5 



CLASSIFICATION OF ATTRIBUTES 

File Attributes 
A name that represents a ftle must have the FILE attribute. Such a name is a file 
constant. The characteristics of each ftle are described with keywords called file 
description attributes. 

The ftle description attributes are either alternative attributes or additive attributes. 

An alternative attribute is chosen from a group of attributes. If no explicit or 
implied attribute is given for one of the alternatives in a group, and if one of the 
alternatives is required, the default attribute is used. 

PL/I provides the following three groups of alternative ftle description attributes (the 
default attributes are underlined): 

RECORD I STREAM 
INPUT I OUTPUT I UPDATE 
SEQUENllALIDlRECT 

An additive attribute must be stated explicitly or may be implied by another explic­
itly stated attribute. 

The additive attributes are: 

KEYED 
PRINT 
ENVIRONMENT (option-'ist) 

For a list of which ftle description attributes imply others, see "Implied Attributes" 
on page 12-5. 

Some ftle description attributes can be specified in an OPEN statement or implied 
by an implicit opening (see "Implicit Opening" on page 11-6). 

You can also specify scope and storage attributes (excluding INITIAL), but the 
default scope value is EXTERNAL. You cannot specify VARIABLE or include a 
ftle constant in an aggregate (see Figure 12-1 on page 12-3). 

The syntax of the FILE attribute and the ftle description attributes is: 

12-6 PL/I User's Guide and Reference 

J 



CLASSIFICATION OF ATTRIBUTES 

-FIlE-,-------.---,------,-.,------,---,-----r-

INPUT SEQUENTIAL 

OUTPUT DIRECT 

UPDATE 

OUTPUT 

'----'ENVIRONMENT(option_' ist)------' 

Abbreviations: SEQl for SEQUENTIAL 
ENV for ENVIRONMENT 

FILE Attribute 
The FILE attribute indicates that the associated name is a me constant. 

Each me name must be explicitly declared with the FILE attribute. 

RECORD and STREAM Attributes 
The RECORD and STREAM attributes specify the type of data transmission 
used for the me. 

The UPDATE, SEQUENTIAL, DIRECT, KEYED, and ENVIRONMENT 
attributes can only be used with the RECORD attribute. 

The PRINT attribute can only be used with the STREAM attribute. 

INPUT, OUTPUT, and UPDATE Attributes 
The INPUT, OUTPUT, and UPDATE attributes determine the direction of 
data transmission permitted for a me. UPDATE must not be used with 
STREAM. 

SEQUENTIAL and DIRECT Attributes 
The SEQUENTIAL and DIRECT attributes describe how the records in the 
me are accessed. 

The SEQUENTIAL and DIRECT attributes apply only to a me with the 
RECORD attribute. 

KEYED Attribute 
The KEYED attribute indicates that records in the me can be accessed by 
means of one of the key options (KEY, KEYTO, or KEYFROM) of data 
transmission statements or of the DELETE statement. 

The KEYED attribute applies only to a me with the RECORD attribute. 

PRINT Attribute 
The PRINT attribute indicates that the me is intended for printing; that is, the 
data associated with the me is to appear on printed pages, although it may first 
be written on some other device. 

Chapter 12. Declaring Names and Attributes ofYariables 12-7 



DATA TYPES 

Data Types 

The PRINT attribute applies only to ftles with the STREAM and OUTPUT 
attributes. 

ENVIRONMENT Attribute 
The options list of the ENVIRONMENT attribute is implementation-defmed. 
It specifies ftle characteristics that are not part of the PL/I language. 

-ENVIRONMENT-(---r-------.-~ 

r--CONSECUTIVE--

r--INDEXED--

~INTERACTIVE--

E:::~ 
~KEyDISp(integer_constant)--KEyLENGTH(integer_constant)~ 

~CTLASA~ ~BUFSIZE(integer_constant)~ ~DESCRIBEo:-J 

~COMMITTABLE~ ~BLOCK~ ~NOINDARA~ )-­

Abbreviation: ENV for ENVIRONMENT 

Options in the option-list are separated by blanks or commas. The options are 
described in "The ENVIRONMENT Attribute" on page 7-1 and summarized 
in Figure 7-2 on page 7-9. 

ENVIRONMENT(CONSECUTIVE) is the default value if you do not specify \ .. 
the ENVIRONMENT attribute. ..", 

Do not specify the ENVIRONMENT attribute and the STREAM attribute for 
the same ftle. 

For a discussion of using ftle data and the ftle description attributes for record 
input/output, see "Use of File Description Attributes" on page 11-9. For a dis­
cussion of using ftle data and the ftle description attributes for stream 
input/output, see "File Description Attributes" on page 11-23. 

The types of data in a PL/I program are: 

• Problem data, which represents values processed by the program. It consists of 
coded arithmetic, string, and picture data (see "Problem Data Attributes" on 
page 12-9). 

12-8 PLjI User's Guide and Reference 



PROBLEM DATA ATTRIBUTES 

• Program control data, which is used to control the processing of the program. 
It consists of pointer, label, entry, and flle data (see "Program Control Data 
Attributes" on page 12-30). 

For example, the statement: 

AREA = RADIUS**2 * 3.1416; 

contains problem data variables and constants. AREA and RADIUS are variables, 
and the numbers 2 and 3.1416 are constants. 

If you want to use the number 3.1416 in more than one place in a program, it may 
be more convenient to represent it as a variable to which you assign the value 
3.1416. Therefore, the above statement could be written as; 

PI = 3.1416; 
AREA = RADIUS**2 * PIj 

In the last statement, only the number 2 is a constant. 

The following program segment contains a program control data constant or named 
constant called LOOP; 

SAMPLE: PROCEDURE OPTIONS (MAIN); 
DECLARE (ITEM1,ITEM2) FIXED DECIMAL (2); 
DECLARE ITEM3 FIXED DECIMAL (3); 
DECLARE EOF BIT (1) ALIGNED 

INITIAL ('0'B) STATIC; 
ON ENDFILE (SYSIN) EOF = 11'B; 

GET EDIT (ITEMl,ITEM2) (COL(1),F(2),F(2)); 
LOOP: DO WHILE (EOF = '0 ' ); 

ITEM3 = ITEM1 + ITEM2; 
PUT EDIT (ITEM3) (COLUMN(10),F(3)); 
GET EDIT (ITEMl, ITEM2) (COLUMN(l) ,F(2) ,F(2)); 

END LOOP; 
END SAMPLE; 

The name LOOP is declared as a label constant by its appearance as a label prefix. 
The value of the constant identifies the labeled statement, within a particular acti­
vation of the block containing this statement. 

Problem Data Attributes 
Problem data consists of coded arithmetic, string, and picture data. 

VARIABLE can be specified for all problem data. It is the default value. 
INTERNAL is the default scope value. 

Pro blem data can always be grouped into aggregates by specifying a dimension or 
by using structures. 

Chapter 12. Declaring Names and Attributes of Variables 12-9 



PROBLEM DATA ATTRIBUTES 

Coded Arithmetic Data Attributes 
The types of coded arithmetic data attributes are base, scale, and precision. 

Each coded arithmetic variable must be declared with at least a base or a scale attri­
bute. You may also specify precision, UNALIGNED (except with DECIMAL 
FIXED), VARIABLE, scope and storage attributes, but default values apply if you 
do not specify any of these. Default values are shown in Figure 12-1 on page 12-3. 
You can always group coded arithmetic variables into aggregates. 

Base Attributes 

The base of an arithmetic data item is either binary or decimal. 

--rBINARY~ 

LDECIMAL~ 
Abbreviations: BIN for BINARY 

DEC for DECIMAL 

Scale Attributes 

The scale of an arithmetic data item is either fixed-point or floating-point. 

1"'-F1X~" LFLOAT~ 

Precision Attribute 

The precision of a fixed-point data item is the number of digits the data item can 
have. The precision of a floating-point data item is the minimum number of signif­
icant digits (excluding the exponent). For decimal fixed-point data, the precision 
attribute may include the scale factor (the assumed position of the decimal point, 
relative to the rightmost digit of the number). 

The syntax for fixed-point precision is: 

The syntax for floating-point precision is: 

12-10 PL/tUser's Guide and Reference 

J 



PROBLEM DATA ATTRIBUTES 

number _ ot digits 
An integer constant that specifies the number of digits (both integers and frac­
tional digits) maintained for data items assigned to the variable. For BINARY 
variables, it specifies the number of bits. For DECIMAL variables, it specifies 
the number of decimal digits. 

scaleJactor 
An integer constant that specifies the number of fractional digits for fixed-point 
data. 

For decimal fixed-point data, the scale factor must be in the range 0 through 15. 
The scale factor must not exceed the number of digits. If you specify a scale 
factor for binary fixed-point data, it must be O. 

The precision attribute must immediately follow the base or scale attribute. 

The maximum number of digits allowed and the default precisions for each data 
type are shown in the table below. 

Data Maximum Default 
type digits precision 

DECIMAL 15 (5,0) 
FIXED 

BINARY 31 (15) 
FIXED 

DECIMAL 16 (7) 
FLOAT 

BINARY 53 (24) 
FLOAT 

The maximum length restrictions hold for declared precisions and for the precision 
of a constant. 

The precision attribute is often represented as (P) or (p,q), where p represents the 
number of digits, q represents the scale factor, and p is greater than or equal to q. 

Decimal Fixed-Point Data 

A decimal fixed-point value is a rational number, regarded as a sequence of decimal 
digits with an assumed position of the decimal point. 

A decimal fixed-point constant consists of one or more decimal digits with an 
optional decimal point. If you omit the decimal point, it is assumed to be imme­
diately to the right of the rightmost digit. The precision of a decimal fixed-point 
constant is (p,q), where p is the total number of digits in the constant and q is the 
number of digits to the right of the decimal point; q = 0 if there is no decimal 
point. q must be less than or equal to p. 

Examples of decimal fixed-point constants and their precisions are: 

Chapter 12. Declaring Names and Attributes ofYariables 12-11 



PROBLEM DATA AITRIBUTES 

Constant Precision 

3.1416 (5,4) 
455.3 (4,1) 
732 (3,0) 
003 (3,0) 
5280 (4,0) 
.0012 (4,4) 

You declare a decimal fixed-point variable with the DECIMAL, FIXED, and preci­
sion attributes. A variable declared as DECIMAL FIXED (p,q) can hold values 
represented by p decimal digits, q of which are to the right of the assumed decimal 
point. For example: 

DECLARE VARIABLEl FIXED DECIMAL (5,4); 

DECLARE VARIABLE2 FIXED DECIMAL (3,0); 

These DECLARE statements specify that VARIABLEI and VARIABLE2 are 
decimal fixed-point variables with values in the range -9.9999 through + 9.9999, and 
-999 through + 999 respectively. A value assigned to VARIABLEI or 
VARIABLE2 is converted to decimal fixed-point and aligned on the decimal point. 

If the value 1.22229 is assigned to VARIABLEI and VARIABLE2, the resulting 
value of VARIABLE 1 is 1.2222 and the resulting value of V ARIABLE2 is 001. If 
the value assigned is 123.999, the resulting value of VARIABLE 1 is undefmed 
because it is too large; the FIXEDOVERFLOW condition will also be raised. The 
resulting value of VARIABLE2 is 123. 

Decimal fixed-point data is represented in storage as packed decimal. Packed 
decimal data is stored two digits to the byte. The rightmost byte holds only one 
digit; its rightmost four bits hold the sign indication. Consequently, a decimal fixed­
point data item with an even number of digits contains zeros in the leftmost four 
bits of the leftmost byte. 

Binary Fixed-Point Data 

A binary fixed-point value is an integer, regarded as a sequence of binary digits. 
(Binary fixed-point data always has a scale factor of zero.) 

There are no binary fixed-point constants. 

You declare a binary fixed-point variable with the BINARY, FIXED, and precision 
attributes. A variable declared as BINARY FIXED (p) can hold integers repres­
ented by p binary digits. For example: 

DECLARE FACTOR BINARY FIXED (20); 

In this example, FACTOR is to represent binary fixed point data items with a preci­
sion of 20 binary digits. 

12-12 PL/I User's Guide and Reference 

J 

J 



L 

~. 

PROBLEM DATA ATIRIBUTES 

A binary fixed-point data item requires either a half word or word of storage. A 
half word contains 15 binary digits plus a sign bit, and a word (sometimes called a 
fullword) contains 31 binary digits plus a sign bit. Any binary fixed-point data item 
with a precision of 15 or less is stored as a halfword. Any binary fixed-point data 
item with a precision greater than 15, up to the maximum precision of 31, is stored 
as a fullword. The maximum value of a binary fixed-point data item is 2IS -1 (or 
32767) for the half word form, and 231 -1 (or 214483647) for the fullword form. 
Negative values are stored in "two's complement notation." The declared number of 
digits begins from the low-order positions. 

Decimal Floating-Point Data 

A decimal floating-point data item is an approximation of a real number, and con­
sists of a sign, a significand, and an exponent. Its value is the signed product of (a) 
its significand, and (b) 10 raised to the power of its exponent. 

A decimal floating-point constant consists of a decimal fixed-point constant (that 
corresponds to the significand), followed by the letter E, followed by an optionally 
signed decimal integer constant (that corresponds to the exponent). The precision 
of a decimal floating-point constant is taken to be the number of digits in the 
significand. Examples of decimal floating-point constants and their precisions are: 

Constant 

l5E-23 
l5E23 
4E-3 
0.4E-2 
1.96E+07 
438EO 
3141593E-6 
.003141593E3 

Precision 

(2) 
(2) 
(1) 
(2) 
(3) 
(3) 
(7) 
(9) 

The last two examples represent the same value. 

You declare a decimal floating-point variable with the DECIMAL, FLOAT, and 
precision attributes. A variable declared as DECIMAL FLOAT (p) can represent 
real numbers with a precision of p significant decimal digits. For example: 

DECLARE LIGHTYEARS DECIMAL FLOAT (5); 

In this example, LIGHTYEARS is to represent decimal floating-point data items 
with a precision of 5 significant decimal digits. 

The maximum precision allowed for decimal floating-point variables is 16; the 
default precision is 7. 

If you declare a floating-point variable with a precision less than or equal to 7, the 
value is represented internally in short format. If greater than 7 and less than or 
equal to 16, the value is represented internally in long format. Short and long 
floating point formats are described below. 

Chapter 12. Declaring Names and Attributes of Variables 12-13 



PROBLEM DATA ATTRIBUTES 

Binary Floating-Point Data 

A binary floating-point data item is an approximation of a real number, and consists 
of a sign, a significand, and an exponent. Its value is the signed product of (a) its 
significand, and (b) 2 raised to the power of its exponent. 

There are no binary floating-point constants. 

You declare a binary floating-point variable with the BINARY, FLOAT, and preci­
sion attributes. A variable declared as BINARY FLOAT (P) can represent real 
numbers with a precision of p significant binary digits. In the following example, 

DECLARE TRIALNO FLOAT (16); 

TRIALNO represents a binary floating-point data item with a precision of 16 binary 
digits in the significand. 

Note: BINARY is the default attribute, if you do not specify a base attribute. 

The maximum precision allowed for binary floating-point data items is 53; the 
default precision is 24. 

If you declare a floating-point variable with a precision less than or equal to 24, the 
value is represented internally in short format; if the precision is greater than 24 and 
less than or equal to 53, the value is represented internally in long format. Short 
and long floating-point formats are described below. 

Internal Representation of Floating-Point Data 

A floating-point number is represented in the AS/400 storage as a bit string con­
sisting of three parts. The left part represents the sign of the number, the middle 
part represents the exponent of the number, and the right part represents the 
significand of the number. Its value relative to a binary base can be expressed in the 
form: 

(sign) (significand)*(2)**(exponent) 

where ... and ... '" denote the multiplication operator and the exponentiation operator 
respectively. 

The representation of a floating-point number can be in either of two formats. The 
short format stores in four bytes any number whose magnitude is within the range 
of (2++-126) to «2-2"""-23)+2"""127), or approximately 10"""-38 to 10"""38. The long 
format stores in eight bytes any number whose magnitude is within the range of 
(2"""-1022) to «2-2"""-52)+2++1023), or approximately 10"""-308 to 10"""308. The 
signed zero number can also be stored using both formats. 

The sign of the number is represented by a single bit. A zero indicates a positive 
sign, and a one indicates a negative sign. 

The exponent of the number is represented by eight bits if short format or eleven 
bits if long format. This set of bits is treated as a binary integer. The exponent l. 
value is adjusted prior to being stored by adding 127 if short format or 1023 if long . .., 

12-14 PL/I User's Guide and Reference 



PROBLEM DATA ATTRIBUTES 

format. This means that the sign of the exponent does not have to be stored. This 
means that the exponent value is in the range 1 to 254 if short format, or 1 to 2046 
if long format and it can be treated as unsigned. A stored exponent value of 0 
serves to identify the signed zero value. A stored exponent value of 255 for short 
format or 2047 for long format, together with certain significand values, serves to 
identify two symbolic number values, signed infinity and "not a number (NaN)." 

The significand of the number is represented by 23 bits if short format or 52 bits if 
long format. This set of bits is treated as a binary integer. In the case of the signed 
zero value, the significand is zero. 

The supported ranges of floating-point numbers are applicable when a floating-point 
number is stored in normalized form. A floating-point number is always stored in 
normalized form when an operation that produces a floating-point result is success­
fully processed. A floating-point result is normalized just prior to being stored. 
Normalization involves shifting the significand to the left while decrementing the 
exponent until the leading significand bit becomes one; this leading one bit is then 
dropped before storing the significand, since its presence is implied. 

After a floating-point number has been normalized, the exponent value is checked 
to determine if it is outside the range allowed in the format of the result field: if it is 
below the minimum limit, a floating-point underflow condition is raised; if it is 
above the maximum limit, a floating-point overflow condition is raised. 

String Data Attributes 
String data attributes refer to either character data or bit data. A string is a contig­
uous sequence of characters or bits that is treated as a single data item. 

You must specify BIT or CHARACTER. You can use the VARYING attribute to 
indicate varying-length character strings. You cannot specify V AR YING for bit 
strings. You may also specify alignment (with the restrictions shown in Figure 12-1 
on page 12-3), VARIABLE, scope and storage attributes. Default values for these 
are shown in Figure 12-1 on page 12-3. String data can be grouped into aggregates. 

The syntax of the string data attributes is: 

~CHARACTER 
L Bn L(length)J ;ARYIN~ 

L(length) 
where 'length' is: 

_---.----*-----,--J> 

~constant~ 
scalar_variable 

Abbreviations: CHAR for CHARACTER 
VAR for VARYING 

Chapter 12. Declaring Names and Attributes of Variables 12-15 



PROBLEM DATA ATTRIBUTES 

BIT and CHARACTER Attributes 

The BIT attribute declares a variable that can hold bit values of a given length. The 
CHARACTER attribute declares a variable that can hold character values of a 
given length. 

length 
Specifies the length of a string. The default length is 1. The maximum length 
of a bit or nonvarying character variable is 32 767; the maximum length of a 
VARYING character variable is 32 765. The minimum length of a bit or char­
acter variable is zero. Specify the length of a bit variable by number of bits, and 
the length of a character variable by number of characters. 

Specify the length attribute as follows: 

• If the variable is static, based, or a member of a structure, the length must 
be an integer constant. 

• If the variable is automatic, the length must be an integer constant or a 
non-based scalar variable. If the variable is automatic, you must ensure that 
storage is currently allocated to it at the time you declare the bit or char­
acter string using the variable to specify the length of the string. 

• If the variable is a parameter in an internal procedure, or a parameter 
descriptor in an ENTRY declaration, the length must be an integer constant 
or an asterisk. The asterisk indicates that the parameter will have the length J. 
of the corresponding argument passed by the calling procedure. 

All bit variables must have the ALIGNED attribute. If you do not specify 
ALIGNED, the compiler assumes ALIGNED and generates a warning message. 

Bit Data 

A bit value is a sequence of binary digits stored in consecutive bits. The storage for 
a declared bit variable, including each element of a bit array, always starts at a byte 
boundary. ~ 
A bit constant is either a series of binary digits enclosed in apostrophes and followed 
immediately by B or B I, or a series of hexadecimal digits enclosed in apostrophes 
and followed immediately by B4. The value of a B or B I constant is the string 
consisting of the binary digits between the enclosing apostrophes. The value of a 
B4 constant is the string obtained by converting each hexadecimal digit to a 4-digit 
binary number as shown in the table below. A bit constant has the attribute 
BIT(n), where n is the length of the bit value represented by the constant. 

t 2-16 PLjI User's Guide and Reference 



PROBLEM DATA ATTRIBUTES 

Hexadecimal Binary 
Digit Digits 
(B4) (B or Bl) 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 
A 1010 
B 1011 
C 1100 
D 1101 
E 1110 
F 1111 

Figure 12-2. Hexadecimal Digits, and the Binary Equivalents 

The maximum length of a bit constant (including apostrophes and the B, Bl, or B4 
characters) is 512 characters. 

A null bit constant is two consecutive apostrophes, followed immediately by B, B1, 
or B4. Its value is the null bit string. 

Examples of bit constants and the lengths of the represented bit values are: 

Constant 

'l'B 
'11111010110001'B 
I'B 
110100011 I B 
'10100011 I B1 
'A3'B4 

Length 

(1) 
(14) 
(0) 
(8) 
(8) 
(8) 

In the last three examples, the values are the same. 

You declare a bit variable with the BIT attribute and a length specification. For 
example: 

DECLARE SYMPTOMS BIT (64) ALIGNED; 

In this statement, SYMPTOMS represents bit values 64 bits long. 

You must declare all bit variables with the ALIGNED attribute. If you do not 
specify ALIGNED, the compiler issues a warning message and assumes ALIGNED. 

Chapter 12. Declaring Names and Attributes of Variables 12-17 



PROBLEM DATA AITRIBUTES 

Character Data 

A character value is a sequence of characters. It can include any language character 
and extralingual character. Any blank included in a character value is included in 
the count of the length of the value. A character value is stored in consecutive 
bytes, each character occupying I byte. 

A character constant is a sequence of characters enclosed in apostrophes. The value 
of a character constant is the string of characters between the enclosing apostrophes, 
except that if you want to represent an apostrophe within the string, you must write 
it in the constant as two consecutive apostrophes with no intervening blanks. A 
character constant has the attribute CHARACTER(n), where n is the length of the 
character value represented by the constant. 

The maximum length of a character constant, including the enclosing apostrophes, " 
and counting each apostrophe as a separate character, is 512. ..", 

Examples of character constants and the lengths of their values are: 

Constant 

'LOGARITHM TABLE' 
'PAGE 5' 
'SHAKESPEARE"S ""HAMLET"'" 
'SHAKESPEARE' 'S "HAMLET'" 
'AC438-19' 
" 

Length 

(15) 
(6) 
(24) 
(22) 
(8) 
(0) 

The last example is the null character constant, which is written as two consecutive 
apostrophes and represents the null character string. 

You declare a character variable with the CHARACTER attribute and a length 
specification. For example: 

DECLARE USER CHARACTER (15); 

In tIllS statement, USER represents character values 15 characters long. 

VARYING Attribute 

The V AR YIN G attribute specifies that the variable is to represent varying-length 
strings. When you specify VARYING, the length of the CHARACTER attribute 
specifies the maximum length. 

The length at any time is the length of the current value. The storage allocated for 
varying-length strings is 2 bytes longer than the declared maximum length. The left­
most 2 bytes hold the character string's current length in bytes. 

The following DECLARE statement specifies that the name USER is to represent 
varying-length character data items with a maximum length of 15: 

DECLARE USER CHARACTER (15) VARYING; 

12-18 PL/I User's Guide and Reference 



PROBLEM DATA ATTRIBUTES 

The length for USER at any time is the length of the data item assigned to it at that 
time. You can determine the length at any given time with the LENGTH built-in 
function. 

PICTURE Data Attribute 
Data declared with the PICTURE attribute is known as picture data. A picture 
data item has a numeric value, which is represented as a character value by means of 
the editing characters in the picture specification. 

Only data that is, or can be converted to, an arithmetic value can be assigned to a 
picture variable. 

"--PICTURE---'picture_specification'~ 

Abbreviation: PIC for PICTURE 

picture_specification 
A sequence of picture characters. It specifies the character form and arithmetic 
characteristics of the value of the picture variable. 

There must be at least one blank between the keyword PICTURE and the first 
apostrophe. 

The syntax of the picture specification is as follows: 

Chapter 12. Declaring Names and Attributes of Variables 12-19 



PROBLEM DATA ATTRIBUTES 

zero-suppression [V zero-suppression] jl CR ] 

[zero-suppression] [9 .. .][v 9 .. .] LDB 
zero-suppression [V zero-suppression] 

[zero-suppression] [9 .. .] [V 9 .. .] 

[9 ... J [V 9 ... J [R J 

j. L:J 

drifting-sign 1 [V sign .. .J I 
• [$J [9 ... J[V9 ... ] 

drifting-currency [9 ... ] [V 9 ... ] [~: ] 
drifting-currency [9 ... ] [V 9 ... ] • [sign] 

where "zero suppression" is z ... I !If .•. 
"sign" is + I - I 8 

"drifting-currency" is 

and "drifting-sign" is 

$ $ ... 

++···1--···188 ... 

Figure 12-3. Picture Specification Syntax 

The following should be noted: 

• Only one type of sign character may be used. 

• Only one type of zero suppression character may be used. 

• The picture specification must contain at least one digit position. 

• Insertion characters (, . / B), which are not shown in the syntax, can appear 
anywhere in a picture specification except within the character pairs CR (credit) 
or DB (debit). 

Picture specifications may contain both uppercase and lowercase characters. The 
maximum length of a picture specification is 255 characters, which includes up to 15 
digit positions, plus an optional V picture character. 

Picture data items having only the characters 9, V, and R in the picture specification 
are represented in storage as zoned decimal numbers. Zoned decimal data is stored 
with the rightmost four bits of each byte holding a decimal digit in binary form. If 

J 

the character R is the rightmost character in the picture specification, the leftmost .~ 
four bits of the rightmost byte hold the sign indication. Arithmetical operations ..., 
using picture data items of this type process more quickly than arithmetical oper-

12-20 PL/I User's Guide and Reference 



PROBLEM DATA ATTRIBUTES 

ations using picture data items which include edit characters in the picture specifica­
tion, because less conversion is required before the operation can be processed. 

Like a coded arithmetic data item, a picture data item has a base, a scale, and a 
precision. The base of a picture data item is decimal, and its scale is fixed-point. 
The precision is derived from the picture specification. It is (p,q), where p, the 
number of digits, is the number of digit positions (conditional or unconditional) in 
the picture specification, and q, the scale factor, is the number of digit positions to 
the right of the V picture character; q = a if the V picture character is omitted. 

The picture specification in the PICTURE attribute describes: 

• The range of numeric values, expressed by the digit positions of the picture 
specification, the assumed decimal point, and possibly a sign. 

• The representation as a character value, expressed by all the picture characters 
except the V, which specifies the assumed location of a decimal point. The 
character value is obtained by representing, or editing, the numeric value by 
means of the picture specification: the decimal digits in the character value are 
taken from the numeric value, and the editing characters are inserted as pre­
scribed by the picture specification. 

For example: 

DECLARE PRICEl PICTURE '999V99 1 , 

PRICE2 PICTURE '$999V.99 1 ; 

PRICEl can represent numeric values in the range of 000.00 through 999.99; it 
cannot represent negative values. Any value assigned to PRICE! is maintained as a 
zoned decimal value of 5 decimal digits, with an assumed decimal point preceding 
the rightmost two digits. A value assigned to PRICE! is aligned on the assumed 
decimal point in the same way that decimal point alignment is maintained for fixed­
point decimal data. 

PRICE2 can represent the same range of numeric values. In the picture specifica­
tion for PRICE2, the currency symbol ($) and the decimal point (.) are editing char­
acters. They are stored as characters in the data item. They are not, however, a 
part of its numeric value. 

Picture data is stored in its character form. The use of its numeric value involves a 
conversion to decimal fixed-point. Depending on the context of a picture data item, 
its character value or its numeric value is used. 

The character value is used when: 

• The picture variable appears in an assignment to a character variable. 

• A reference is made to a character variable that is based on a pointer to the 
picture variable. 

• The value of a picture variable is transmitted by means of edit-directed output 
with the A format item or by record data transmission. 

The numeric value is used when: 

Chapter 12. Declaring Names and Attributes of Variables 12-21 



PROBLEM DATA AITRIBUTES 

• Arithmetic operations are processed on the picture variable. 
• The picture variable is assigned to an arithmetic variable. 
• The picture variable is used with the B, BI, B4, E, or F fonnat items. 

A value that is assigned to a picture variable will, if necessary, be truncated or 
extended with zeros or other characters (as prescribed by the picture specification) at 
the affected end. If significant digits or a negative sign are truncated, the result is 
undefined. 

For example: 

DECLARE PICPRICE PICTURE 1$99V.99 1., 
CHARPRICE CHARACTER (6), 
DECPRICE FIXED DECIMAL (6,2); 

PICPRICE = 12.28; 
CHARPRICE = 1$12.28 1 ; 

In this example, after processing the second assignment statement, the character 
values of PICPRICE and CHARPRICE are identical. They would be printed in 
exactly the same way if they were printed in stream output by means of the A 
fonnat item. PICPRICE and CHARPRICE produce different results, however, if 
they are used in an arithmetic context. Consider the following assignment 
statements: 

DEC PRICE = PICPRICE; 

The value of DEC PRICE is now 0012.28. The numeric value only is assigned: the 
currency symbol and decimal point are ignored, because they are editing symbols 
and not part of the arithmetic value. 

CHARPRICE = PICPRICEj 

The value of CHARPRICE is now 1 $12.28 1 • Because the assignment is to a char­
acter variable, the editing characters are part of the the value assigned. 

DECPRICE = CHARPRICEj 

This assignment statement would cause an error. The value of CHARPRICE is not 
a valid arithmetic constant, because it includes a currency symbol. 

PICPRICE = CHARPRICEj 

This assignment statement would also cause an error. CHARPRICE includes a 
currency symbol, which makes it an invalid arithmetic constant. 

Digit and Decimal Point Characters 
The picture character 9 specifies a digit position; the picture character V specifies the 
assumed decimal point. 

9 Specifies that the associated position in the data item is to contain a digit. 

A string of 9s (picture characters) specifies that the item is to be represented 
by a character value of the same length as the string of 9s, each character of 
which is a digit (0 through 9). The numeric value is the value of the digits as 
an unsigned decimal number. For example: 

DECLARE NUMBER PICTURE 1999 1; 
NUMBER = 123; 

12-22 PLjI User's Guide and Reference 

J 



PROBLEM DATA ATTRIBUTES 

In this example, the precision derived from the picture specification is (3,0). 
The character value of NUMBER is '123', and its numeric value is 123. 

V Specifies that a decimal point is assumed at this position in the associated 
data item. But it does not specify to insert an actual decimal point. The 
integer and fractional parts of the assigned value are aligned on the V char­
acter; therefore, an assigned value may be truncated or extended with zero 
digits at either end. If no V character appears in the picture specification, a V 
is assumed at its right-hand end. This will truncate the assigned value to an 
integer. For example: 

DECLARE VALUE PICTURE '99V999', 
CVALUE CHARACTER(5}; 

VALUE = 12.345; 
CVALUE = VALUE; 

In this example, the derived precision of VALUE is (5,3), its character value 
is 1 123451, and its numeric value is 12.345. On assignment to CVALUE, the 
character value is assigned. The resulting value of CV ALUE is 1 123451. 

The statements 

VALUE = 1.2; 
CVALUE = VALUE; 

result in the character value of VALUE being '01200' and its numeric value 
being 1.2. The resulting value of CVALUE is 1012001. To assign -0.1 or 
123.4 to VALUE would, however, give an undefmed result. 

Figure 12-4 on page 12·27 gives examples of digit and decimal point picture specifi­
cations. 

Zero Suppression Characters 
The zero suppression picture characters specify conditional digit positions in the 
character value and replaces leading zeros with asterisks or blanks. 

z 
* 

Replaces a leading zero in the associated data position with a blank character. 

Is used in the same way as the picture character Z, except that leading zeros 
are replaced by asterisks. 

Figure 12-5 on page 12-27 gives examples of the use of zero suppression characters. 

Insertion Characters 
The insertion picture characters (, . / B) inserts the specified character (comma, 
period, slash, or blank) into the associated character value position of the picture 
data, if there is no zero suppression. They do not indicate digit positions, but are 
inserted between digits. Insertion characters are applicable only to the character 
value. They specify nothing about the numeric value of the data item. 

If zero suppression occurs, the character is inserted only in the following cases: 

• When an unsuppressed digit appears to the left of the insertion character 

Chapter 12. Declaring Names and Attributes of Variables 12-23 



PROBLEM DATA ATTRIBUTES 

• When a V appears immediately to the left of the insertion character and the 
fractional part contains a significant digit. 

• When the insertion character is at the start of the picture specification or is pre­
ceded only by characters that do not specify digit positions. 

In all other cases where zero suppression occurs, an insertion character is treated as 
though it were a zero suppression character. 

The following example shows decimal conventions that are used in various 
countries: 

DECLARE A PICTURE IZ,ZZZ,ZZZV.99 ' , 
B PICTURE 1*.***.***V,99 ' , 
C PICTURE I*B***B***V,99 ' ; 

The derived precision of the picture variables A, B, and Cis (9,2). 

If A, B, and C are assigned the integer constant 1234, the character value of A, B, 
and C, respectively, will be 

1,234.00 ' 
1 **** 1. 234, 00 ' 
'****1 234,00 ' 

Their numeric value is 1234. 

The following example shows that the decimal point is aligned on the character V 
and not on the period insertion character: 

DECLARE RATE PICTURE 19V99.99 ' ; 
RATE = 7.62; 

The derived precision of RATE is (5,4), its character value is '762.00', and its 
numeric value is 7.62. 

Figure 12-6 on page 12-28 gives examples of the use of insertion characters. 

Sign and Currency Characters 
The sign and currency picture characters are $, S, +, and -. A fuller description of 
these characters is given below. 

You can use these picture characters as either static or drifting characters. 

The static use specifies that a sign, a currency symbol, or a blank appears in the 
associated position. A static character is specified by its single occurrence in the 
picture specification. 

The drifting use specifies to suppress leading zeroes. A drifting character is specified 
by multiple use of that character in a picture specification. The position associated 
with the leftmost drifting character can contain only the drifting character or blank, 
never a digit. Therefore, if the drifting string contains the drifting character n times, 
the string is associated with n-l conditional digit positions. Mter a data assigrunent 
to a picture variable, the rightmost suppressed position associated with the picture 

12-24 PLjI User's Guide and Reference 

J 



PROBLEM DATA ATTRIBUTES 

character will contain a sign, a blank, or a currency symbol (except that where all 
digit positions are occupied by drifting characters and the value of the data item is 
zero, the drifting character is not inserted). For example: 

DECLARE A PICTURE '555V.9'; 
A = -2.0; 

In this example, the derived precision of A is (3,1), its character value is 1 -2.0 ' , and 
its numeric value is -2.0. 

Any insertion character within or immediately following the string is considered part 
of the drifting string. A Vends the drifting string, except when the numeric value of 
the data item is zero; in that case, the character value will be all blanks (except for 
any insertion characters to the left of the drifting string). 

In the data item, the character value position associated with an insertion character 
in a string of drifting characters contains one of the following: 

• The insertion character, if there is a significant digit to the left 

• The drifting character, if the next position to the right contains the leftmost sig­
nificant digit of the value 

• Blank, if the leftmost significant digit of the value is more than one position to 
the right. 

The sign and currency characters are as follows: 

$ Specifies the currency symbol. For example: 

DECLARE PRICE PICTURE 1$99V.99 ' j 

PRICE=12.45j 

The derived precision of PRICE is (4,2), its character value is 1 $12.45 ' , and 
its numeric value is 12.45. 

S Specifies the plus sign character ( + ) if the numeric value is greater than or 
equal to zero; otherwise it specifies the minus sign character (-). For 
example: 

DECLARE ROOT PICTURE 15999 ' j 

50 is held as 1 + 050' , zero as 1 + 000 I , and -50 as 1 -050 I • 

+ Specifies the plus sign character ( + ) if the numeric value is greater than or 
equal to zero; otherwise it specifies a blank. 

Specifies the minus sign character (-) if the numeric value is less than zero; 
otherwise it specifies a blank. 

If, in an assignment to a picture variable, the fractional digits are truncated so that 
the resulting numeric value is zero, the sign inserted in the data item corresponds to 
the value of the data item prior to its truncation. Therefore, the sign in the picture 
data may depend on how the value was calculated. 

Figure 12-7 on page 12-29 gives examples of the use of drifting picture characters. 

Chapter 12. Declaring Names and Attributes of Variables 12-25 



PROBLEM DATA ATTRIBUTES 

Credit and Debit Characters 
The character pairs CR (credit) and DB (debit) specify the signs of picture data. 

CR Specifies that the associated positions will contain the letters CR if the 
numeric value is less than zero; otherwise, the positions will contain two 
blanks. 

DB Is used in the same way as CR, except that the letters DB appear in the asso­
ciated positions. 

Figure 12-8 on page 12-30 gives examples of the CR and DB picture characters. 

Digit and Signed Character 
The digit and signed character R specifies that the associated position will contain 
an EBCDIC character or a digit, depending on the sign of the data item. 

• If the arithmetic value of the data item is less than zero, the associated position 
contains an EBCDIC character. This EBCDIC character represents the negative 
value of the corresponding digit shown in the table below. 

• If the arithmetic value of the data item is greater than or equal to zero, the asso­
ciated position contains a digit. 

The associated characters and digits are shown in the following table: 

EBCDIC Digit 
character 

} 0 

J 1 

K 2 

L 3 

M 4 

N 5 

0 6 

P 7 

Q 8 

R 9 

For example: 

DECLARE INTEGER PICTURE '99R'; 
READ FILE (INFILE) INTO (INTEGER); 

will set INTEGER to 321 if 1321 I is found in the next record and will set 
INTEGER to -321 if 1321 1 is found. 

12-26 PL/I User's Guide and Reference 

J 



PROBLEM DATA ATTRIBUTES 

Source Picture Derived Character Numeric 
Data Specification Precision Value Value 

12345 99999 (5,0) 12345 12345 

123 99999 (5,0) 00123 123 

123.45 999V99 (5,2) 12345 123.45 

123.45 99999 (5,0) 00123 123 

Figure 12-4. Digit and Decimal Point Examples 

Source Picture Derived Character Numeric 
Data Specification Precision Value Value 

12345 ZZZ99 (5,0) 12345 12345 

100 ZZZ99 (5,0) bb100 100 

100 ZZZZZ (5,0) bb100 100 

0 ZZZZZ (5,0) bbbbb 0 

123.45 ZZZ99 (5,0) bb123 123 

1.23 ZZZV99 (5,2) bb123 1.23 

0.08 ZZZVZZ (5,2) bbb08 0.08 

0 ZZZVZZ (5,2) bbbbb 0 

100 ••••• (5,0) **100 100 

0 ••••• (5,0) ••••• 0 

0.01 **·V** (5,2) ·**01 0.01 

95 $**9.99 (5,0) $**0.95 95 

12350 $**9.99 (5,0) $123.50 12350 

Figure 12·5. Examples of Zero Suppression 

Note: In this figure, the letter b indicates a blank character. 

Chapter 12. Declaring Names and Attributes of Variables 12-27 



PROBLEM DATA ATTRIBUTES 

Source Picture Derived Character Numeric 
Data Specification Precision Value Value 

1234 9,999 (4,0) 1,234 1234 

1234.56 9,999V.99 (6,2) 1,234.56 1234.56 

12.34 ZZ.VZZ (4,2) 12.34 12.34 

0.03 ZZ.VZZ (4,2) bbb03 0.03 

0.03 ZZV.ZZ (4,2) bb.03 0.03 

12.34 ZZV.ZZ (4,2) 12.34 12.34 

0 ZZV.ZZ (4,2) bbbbb 0 

1234567.89 9,999, 999V. 99 (9,2) 1,234,567.89 1234567.89 

12345.67 ++,999V.99 (7,2) 12,345.67 12345.67 

123.45 ++,999V.99 (7,2) +++123.45 123.45 

1234567.89 9.999.999V,99 (9,2) 1.234.567,89 1234567.89 

123456 99/99/99 (6,0) 12/34/56 123456 J 
123456 99.9/99.9 (6,0) 12.3/45.6 123456 

1234 ZZ/ZZ/ZZ (6,0) bbb12/34 1234 

12 ZZ/ZZ/ZZ (6,0) bbbbbb12 12 

0 ZZ/ZZ/ZZ (6,0) bbbbbbbb 0 

0 ++/++/++ (6,0) ++++++++ 0 

0 ++B++B++ (6,0) ++++++++ 0 

123456 99B99B99 (6,0) 12b34b56 123456 

123 9BB9BB9 (3,0) Ibb2bb3 123 

12 9BB/9BB (2,0) Ibb/2bb 12 

Figure 12-6. Examples of Insertion Characters 

Note: In this figure, the letter b indicates a blank character. 

12-28 PL/I User's Guide and Reference 



PROBLEM DATA ATTRIBUTES 

Source Picture Derived Character Numeric 
Data Specification Precision Value Value 

123.45 $999V.99 (5,2) $123.45 123.45 

12 99$ (2,0) 12$ 12 

1.23 $ZZZV.99 (5,2) $bb1.23 1.23 

0 $ZZZV.ZZ (5,2) bbbbbbb 0 

0 $$$.$$ (4,0) bbbbbb 0 

123.45 $$$9V.99 (5,2) $123.45 123.45 

1.23 $$$9V.99 (5,2) bb$1.23 1.23 

12 $$$,999 (5,0) bbb$012 12 

1234 $$$,999 (5,0) b$I,234 1234 

2.45 SZZZV.99 (5,2) +bb2.45 2.45 

214 SS,SS9 (4,0) bb+214 214 

-4 SS,SS9 (4,0) bbbb-4 -4 

-123.45 -999V.99 (5,2) -123.45 -123.45 

123.45 999V.99S (5,2) 123.45+ 123.45 

1.23 ++B+9V.99 (5,2) bbb+1.23 1.23 

1.23 ---9V.99 (5,2) bbb1.23 1.23 

-1.23 SSS9V.99 (5,2) bb-l.23 -1.23 

Figure 12-7. Examples of Signs and Currency Symbols 

Note: In this figure, the letter b indicates a blank character. 

Chapter 12. Declaring Names and Attributes of Variables 12-29 



PROGRAM CONTROL DATA ATTRIBUTES 

Source Picture Derived Character Numeric 
Data Specification Precision Value Value 

-123 $Z.99CR (3,0) $1.23CR -123 

12.34 $ZZV.99CR (4,2) $12.34bb 12.34 

-12.34 $ZZV.99DB (4,2) $12.34DB -12.34 

12.34 $ZZV.99DB (4,2) $12.34bb 12.34 

Figure 12-8. Examples of CR and DB Picture Characters 

Note: In this figure, the letter b indicates a blank character. 

Program Control Data Attributes 
Program control data attributes refer to pointer, label, entry. and ftle data. Scope 
and storage attributes can be specified for program control data. 

POINTER Attribute 

~POINTER~ 

Abbreviation: PTR for POINTER 

A pointer value identifies the location of data in storage. You declare a pointer vari­
able with the POINTER attribute. You can also specify VARIABLE, scope or 
storage attributes, with the default values shown in Figure 12-1 on page 12-3. 
Pointer variables can be grouped into aggregates. 

A pointer value may be obtained by one of the following means: 

• The ADDR or NULL built-in function. 
• A READ statement with the SET option. 
• The ALLOCATE statement. 

A pointer value can also be obtained by means of a parameter from some built-in 
subroutines. 

Pointer values can be assigned, compared (= or -, = ), passed as arguments, or 
returned by a function. They cannot be converted or specified in operations. 

If you use a pointer as the target of an assignment statement, the source must be 
either another valid pointer, or the ADDR or NULL built-in function. 

You can use a pointer, together with a based variable, to access the location in 
storage identified by the pointer value (see "Based Variable Reference and Pointer 
Qualification" on page 5-20). 

12-30 PLj) User's Guide and Reference 



LABEL Attribute 

PROGRAM CONTROL DATA ATTRIBUTES 

Pointer Built-In Functions 

The ADDR built-in function, when applied to a variable, returns a pointer value 
that identifies the location of the variable in storage. 

The NULL built-in function returns a null pointer value, which does not identify 
the location of any variable. You use this value when a pointer variable should not 
identify a location in storage. A pointer variable acquires the null pointer value by 
assignment of the value of the NULL built-in function. 

A label identifies a statement in the running program. There are two kinds of labels: 
label constants and label variables. 

A label constant is a name written as the label prefix of any statement other than 
PROCEDURE. During processing, program control can be transferred to the state­
ment by referring to its label prefix. 

A name is explicitly declared as a label constant by its appearance as a label. 

In the example: 

ABCDE: MILES = SPEED * HOURS; 

ABCDE is a label constant. The statement can be processed either by normal 
sequential processing of instructions or by transferring control to it from some other 
point in the program by means of a GO TO statement. 

You declare a label variable by specifying the LABEL attribute. 

i-LABEL---
When you use the LABEL attribute, you can also specify VARIABLE, scope, and 
storage attributes (although INITIAL is not valid). Defaults are shown in 
Figure 12-1 on page 12-3. Label values can also be grouped into aggregates. You 
set a label variable by assignment. 

You can use a label variable with the GO TO statement. Control is transferred to 
the statement identified by the value of the label variable. For example: 

DECLARE LABELl LABEL VARIABLE; 
STMTl: ITEMl = ITEM2; 

STMT2: ITEMl = ITEM3; 

LABEll = STMT1; 
GO TO LABEll; 

Chapter 12. Declaring Names and Attributes of Variables 12-31 



PROGRAM CONTROL DATA ATTRIBUTES 

STMT 1 and STMT2 are label constants, and LABEll is a label variable. Mer J 
STMTI has been assigned to LABEll, the statement GO TO LABEll transfers 

ENTRY Attribute 

control to the statement labeled STMT 1. Elsewhere, the program could contain a 
statement LABEll = STMT2. Any reference to LABEll would then be the 
same as a reference to STMT2. This value of LABEll is retained until another 
value is assigned; but it becomes invalid if the block containing the statement 
labeled STMT2 becomes inactive. 

You use the ENTRY attribute to declare an entry variable or an external entry con­
stant and to describe the attributes of any parameters the associated entry value may 
have. 

An entry data item represents a procedure. You refer to an entry data item by 
means of an entry reference. 

An entry reference is an entry constant, an entry variable reference, or a function 
reference that returns an entry value. 

An entry constant is the label prefix to a PROCEDURE statement. If the proce­
dure is external, you must declare the entry constant with the ENTRY attribute. If 
the procedure is a function, you must declare the entry constant with the 
RETURNS attribute. 

An entry variable is a variable to which an entry value can be assigned. It is 
declared with the ENTRY and VARIABLE attributes and, for a function, with the 
RETURNS attribute as well. You cannot declare an internal entry constant in a 
DECLARE statement. You can also specify scope and storage attributes (except 
INITIAL). Defaults for these are shown in Figure 12·1 on page 12-3. Entry vari­
ables can be grouped into aggregates. 

When an entry constant which is an entry point of an internal procedure is assigned 
to an entry variable, the assigned value remains valid only for as long as the block 
that the entry constant was internal to remains active. 

The syntax of the ENTRY attribute is as follows: 

12-32 PLjl User's Guide and Reference 

J 



L 

L 

L 

PROGRAM CONTROL DATA ATTRIBUTES 

-ENTRY----r-------------,--, ..... 

~(parameter_descriPtor_list)~ 
where 'parameter_descriptor_1ist' is: 

~,------------'-------------,I 

----.-nonstructure_parameter_descr;ptor--,--i---

~-----*------~ 

'nonstructure_parameter_descriptor' is: 

~~ ----*--attribute-L 

'structure_parameter_descriptor' is: 

~~ ----*--1 eve 1----r--' ___ --,----LI_~~ 
[attribute] 

and 'level' is: 

~~ ----integer_constant---

parameter_descriptor _list 
A list of parameter_descriptors, each of which gives a set of attributes for the 
parameter it corresponds to positionally in the procedure. 
Parameter_descriptors are separated by commas. 

The number of parameter_descriptors in the ENTRY attribute and the attri­
butes specified for each parameter must match the parameters as declared in the 
procedure represented by the entry name. An ENTRY attribute without a 
parameter_descriptor_list describes a procedure with no parameters. 

nonstructure _parameter_descriptor 
For a nonstructureyarameter_descriptor, you must specify at least one data 
attribute other than FILE. This corresponds to the rules for giving attributes to 
a parameter in a DECLARE statement (see "Parameter Attributes" on 
page 14-3). The attributes are separated by blanks. If you specify the ENTRY 
attribute as a parameter_descriptor, it must not have a parameter_descriptor or a 
RETURNS attribute. 

structure_parameter _descriptor 
Each level number, together with any attributes specified for it, is separated 
from the next by a comma. You can specify the same attributes for a field 
name as you can for a nonstructureyarameter_descriptor. 

The level numbers need not be the same as those of their corresponding param­
eters, but they must be in the same order with identical structuring. 

Chapter 12. Declaring Names and Attributes of Variables 12-33 



PROGRAM CONTROL DATA ATTRIBUTES 

* 

IBM Extension 

This parameter_descriptor is valid only when the entry variable or entry con­
stant represents a non-PL/I routine, that is, one for which you have coded 
OPTIONS (ASSEMBLER). It specifies that no check is made against this 
parameter of the associated non-PL/I routine. 

'-___________ End of IBM Extension _________ ---' 

The rules for specifying string lengths or array bounds in a parameter_descriptor are 
the same as for parameter lengths and bounds in a DECLARE statement. 

For arrays, the parameter_descriptor must include the array dimensions in paren-\ 
theses as the ftrst attribute. For example, if the PL/I program PROCI had parame- ....I 
ters coded as follows: 

PROC1: PROCEDURE (EMPLOYEE,COMMISSIONS,NAME); 
DECLARE EMPLOYEE FIXED DECIMAL (5), 

COMMISSIONS(20) FIXED DECIMAL (7), 
NAME CHARACTER (*); 

the ENTRY declaration would be as follows: 

DECLARE PROC1 ENTRY (FIXED DECIMAL (5), 
(20) FIXED DECIMAL (7), 
CHARACTER (*)); 

The following example illustrates the use of structure"'parameter_descriptors in an 
external procedure: 

TEST: PROCEDURE 
(AFID,BFIB,CSTRUC,DSTRUC,ECHAR,P); 
DECLARE AFID FIXED DECIMAL(5), 

BFIB FLOAT BINARY (15), 

END TEST; 

1 CSTRUC, 
5 QCHAR CHARACTER (3), 
5 RSTRUC, 

10 SFID FIXED DECIMAL (5), 
1 DSTRUC, 

5 XCHAR CHARACTER (3), 
5 YSTRUC, 

10 ZFID FIXED DECIMAL (5), 
ECHAR(*) CHARACTER (10), 
P POINTER; 

To call this procedure, these structure..,parameter_descriptors could be declared as 
follows: 

12-34 PL/I User's Guide and Reference 



PROGRAM CONTROL DATA ATTRIBUTES 

DECLARE TEST ENTRY 
(DECIMAL FIXED (S), 
BINARY FLOAT (IS), 
1, 

1, 

S CHARACTER (3), 
S, 

10 DECIMAL FIXED (S), 

S CHARACTER (3), 
S, 

10 FIXED DECIMAL (S), 
(*) CHARACTER (10), 
POINTER); 

The use of the parameter_descriptor • is illustrated in the following example: 

DECLARE TRANSFER ENTRY 
(CHARACTER(10),*,*,FIXED DECIMAL(S)) 
OPTIONS(ASSEMBLER); 

The declaration indicates four parameters of a non-PLfI routine, with attributes spec­
ified for the first and fourth parameter. 

No parameter_descriptorJist can be defIDed for an ENTRY attribute specified in a 
parameter_descriptor_list for an ENTRY variable. For example, the following dec­
laration is not valid: 

DECLARE SUBPROC ENTRY (FIXED BINARY (IS), 
FLOAT DECIMAL (7), 
ENTRY (CHARACTER (10)) ); 

The parameter_descriptor_list for the ENTRY attribute would have to be specified 
in SUBPROC: 

SUBPROC: PROCEDURE (BINARYITEM, DECIMALITEM,ENTRYITEM); 

DECLARE ENTRYITEM ENTRY (CHARACTER(10)); 

RETURNS Attribute 

You specify the RETURNS attribute in a DECLARE statement for an entry vari­
able or external entry name that represents a function. It specifies the attributes of 
the returned value. 

attribute 
The valid attributes are the same as those for the RETURNS option (see 
"PROCEDURE Statement" on page 14-2). 

Chapter 12. Declaring Names and Attributes of Variables 12-35 



BUILTIN ATTRIBUTE 

The attributes specified in the RETURNS attribute for an entry variable or an 
external entry constant must agree with those specified in the RETURNS option of 
the corresponding PROCEDURE statement. 

OPTIONS(ASSEMBLER) Attribute 

The OPTIONS(ASSEMBLER) attribute allows you to communicate with a 
non-PL/I program. 

~OPTIONS(ASSEMBLER)~ 

Abbreviation: ASM for ASSEMBLER 

ASSEMBLER 

BUILTIN Attribute 

Specifies that the designated entry point is a program written in an AS/400 lan­
guage other than PL/I. PL/I will pass arguments directly to the program, rather 
than through PL/I control blocks. Entries with the ASSEMBLER option are 
subject to the following rules: 

• They cannot be used as a function reference. 

• Any number of arguments can be passed in the CALL statement calling the 
entry, from zero up to the number specified by the entry declaration, but 
intervening arguments cannot be omitted. 

The BUILTIN attribute specifies that the declared name denotes a built-in function, 
a pseudovariable, or a built-in subroutine. 

I ~BUILTI~ 

You only need to use the BUILTIN attribute when you are using the name of a 
built-in function or subroutine (see Chapter 15, "Built-In Functions, Subroutines, 
and Pseudovariables") as a user-defmed name in a different block. 

When you use a built-in name as a user-defmed name, you declare it again with the 
BUILTIN attribute in any other block to associate it again with the built-in func­
tion or built-in subroutine. Consider the following examples: 

12-36 PLfI User's Guide and Reference 



Example 1: 

A: PROCEDURE; 
DECLARE (SQRT(20),P) FLOAT BINARY (20); 

X = SQRT(P); 

B: BEGIN; 
DECLARE SQRT BUILTIN; 
Z = SQRT(P); 

END B; 

END A; 

Example 1: 

A: PROCEDURE; 
DECLARE P FIXED DECIMAL (7,2); 
SQRT: PROC(PARAM) RETURNS (FIXED(7,2)); 

DECLARE PARAM FIXED (13); 

END SQRT; 

X = SQRT(Y); 

B: BEGIN; 
DECLARE SQRT BUILTIN; 
Z = SQRT(P); 

END B; 

END A; 

VARIABLE A TIRIBUTE 

In A of both examples, SQ R T is a user-defmed name. In the assignment to the 
variable X, SQRT is a reference to the user-defmed name SQRT. In B of both 
examples, SQRT is declared with the BUILTIN attribute. Any reference in B to 
SQRT is recognized as a reference to the built-in function and not to the user­
defmed name SQRT declared in A. For infonnation on using built-in functions, 
subroutines, and pseudovariables, see Chapter 15, "Built-In Functions, Subrou­
tines, and Pseudovariables." 

VARIABLE Attribute 
You can use the VARIABLE attribute to declare a variable of any type except 
FILE. 

I -VARIABLE-----

VARIABLE is implied for parameters, structures, and structure members, by any 
scope, storage class, or alignment attribute, and by some of the data type attributes 
(the default rules are given in "Names" on page 4-12). Constant is implied for label 
prefixes, and by ENTRY, unless VARIABLE is implied by other attributes. You 

Chapter 12. Declaring Names and Attributes of Variables 12-37 



AGGREGATE DATA DECLARATIONS 

must use the VARIABLE attribute to declare an entry variable if VARIABLE is 
not implied by any other attribute. 

Aggregate Data Declarations 
All data types, except ftle or entry constants, can be grouped into aggregates. The 
types of aggregates are arrays and structures. Single data items, called scalars, can be 
grouped into arrays or structures. Single variables, called scalar variables, can be 
grouped into array variables or structure variables. 

An array is a collection, into one or more dimensions, of one or more array­
elements with identical attributes. An array-element can be a scalar variable or a 
structure. Only the array itself is given a name. An individual item of an array is 
referred to by giving its subscript. 

An array is declared with the dimension attribute. 

A structure is a collection of data items that need not have identical attributes. Like 
an array, the entire structure is given a name, which can be used to refer to the 
entire aggregate of data. But, unlike an array, each field of a structure also has a 
name. 

You use level numbers to specify the organization of a structure in a DECLARE 
statement. 

Arrays and the Dimension Attribute 
The dimension attribute specifies the number of dimensions of an array and indi­
cates the bounds of each dimension. It must immediately follow the array name or 
factored list of array names. 

r-'~ -(--bounds )-----+<1 

where 'bounds' are: 

---'I----,L-----J--.---luPPer _bound--r-" 

1 ower _bound:, __ -------' 

and where 'lower_bound' is 1 and 'upper_bound' is: 

bounds 
The upper_bound or upper and lower_bounds. The number of bounds specifi­
cations indicates the number of dimensions in the array. For a parameter, you 

12-38 PL/I User's Guide and Reference 

J 



AGGREGATE DATA DECLARATIONS 

can specify an asterisk to indicate that the lower and upper_bound are taken 
from the associated argument in the calling procedure. 

lower_bound 
The beginning of the dimension. If you specify the lower_bound, it must be an 
optionally signed integer constant whose value is I. If you omit the 
lower_bound, 1 is assumed by default. 

upper_bound 
The end ofthe dimension. The upper_bound must be less than or equal to 
32 767. You can specify the upper_bound as follows: 

• If the variable is static, based, a member of a structure, or a parameter, the 
upper_bound must be an optionally signed integer constant. 

• If the variable is automatic, the upper_bound must be an optionally signed 
integer constant or an unsubscripted non-based integer variable reference. 

• The value of the upper_bound must be greater than or equal to 1. 

The extent of a dimension is the number of integers between the lower and 
upper_bounds, including the bounds. 

The maximum number of dimensions is 15. The total length of an array must not 
exceed 4194304 bytes (4 megabytes). 

For a discussion and examples of how to use the dimension attribute to declare 
arrays, see "Using Arrays and the Dimension Attribute" on page 5-1. 

Structures and Level Numbers 
You can specify the organization of a structure in a DECLARE statement by pre­
ceding the names with level numbers. The major structure name must be declared 
with the level number 1, and minor structures and field names with level numbers 
greater than 1. Level numbers must be integer constants. 

The level numbers you choose for successively deeper levels need not be the imme­
diately succeeding integers. A minor structure at level n contains all the names with 
level numbers greater than n that lie between that minor structure name and the 
next name with a level number less than or equal to n. 

The description of a major structure is ended by the declaration of another item 
with the level number 1, by the declaration of another item with no level number, 
or by the end of the DECLARE statement or descriptor list. 

The maximum depth of logical levels is 15, and the highest valid level number is 
255. The maximum length of a structure is 32 767 bytes. 

For a discussion of how to use level numbers to describe structures, see "Using 
Arrays and the Dimension Attribute" on page 5-1. 

A structure name, either major or minor, can be given a dimension attribute in a 
DECLARE statement to declare an array of structures. An array of structures is an 
array whose elements are structures that have identical names, levels, and element 

Chapter 12. Declaring Names and Attributes of Variables 12-39 



SCOPE A TfRIBUTES 

attributes. For a discussion of how to use arrays of structures, see "Arrays of 
Structures" on page 5-5. 

Alignment Attributes 
By means of the ALIGNED and UNALIGNED attributes, you can choose to align 
data on the appropriate boundary. You can specify alignment attributes for scalars 
and arrays only. 

--r-ALIGNE~ 

LUNALI GNEo---J 

Abbreviation: UNAL for UNALIGNED 

ALIGNED 
Specifies that the data item is aligned on the storage boundary corresponding to 
its data type requirement. For example, BIN (15) data is aligned on a half word 
boundary and BIN (31) data on a fullword boundary. See "Data Mapping" on 
page 5-9 for a deftnition of these requirements. 

Full Language Extension 

UNALIGNED 
Specifies that the data need not be aligned. Although the UNALIGNED attri­
bute can reduce storage requirements, it may increase run time. 

L..-________ End of Full Language Extension ________ ....1 

Bit data must be declared as ALIGNED. 

J 

The default for character data and picture data is UNALIGNED. UNALIGNED } 
can also be specified for ftxed-point binary, floating-point binary, and floating-point ..." 
decimal data. 

For all other data types, the default is ALIGNED. ALIGNED can also be specifted 
for character varying data. 

For a discussion of how to use the alignment attributes, see "Data Alignment and 
the Alignment Attributes" on page 5-7. 

Scope Attributes 
You can use the INTERNAL and EXTERNAL attributes to specify the scope of a 
name. 

12-40 PLjI User's Guide and Reference 



---r-INTERNALr 

LEXTERNAL 

Abbreviation: INT for INTERNAL 
EXT for EXTERNAL 

INTERNAL 

STORAGE ATTRIBUTES 

The default for variables with any storage class and for members of structures. 
Entry names of internal procedures are always internal. 

EXTERNAL 
The default for me and entry constants. Entry names of external procedures are 
always external. 

For structures, INTERNAL and EXTERNAL should be specified in level 1 decla­
rations only. An error message is sent if a member of a structure has a scope speci­
fied that is different from the scope specified in the level 1 declaration. 

Storage Attributes 
The declaration of a variable includes a storage class attribute either by explicit spec­
ification or by default. 

The way storage is allocated for a variable, and the degree of control you can exer­
cise over storage, are determined by the storage class of that variable. There are 
three storage classes: static, automatic, and based. Each is specified by its corre­
sponding storage class attribute. 

You can specify the storage class for level-one variables only. Elements of arrays 
and members of structures inherit the storage class of the array or structure. 

You cannot specify a storage class for a parameter or a named constant. 

The default is AUTOMATIC for internal variables and STATIC for external vari­
ables. 

Automatic and based variables can have internal scope only. Static variables can 
have either internal or external scope. 

AUTOMATIC Attribute 
You declare an automatic variable with the AUTOMATIC attribute. 

~AUTOHATIC~ 

Abbreviation: AUTO for AUTOMATIC 

Automatic variables can have internal scope only. 

Chapter 12. Declaring Names and Attributes of Variables 12-41 



STORAGE AITRIBUTES 

BASED Attribute 

STATIC Attribute 

INITIAL Attribute 

AUTOMATIC is the default for internal variables. 

For a discussion ofthe use of the AUTOMATIC attribute, see "Using the AUTO­
MATIC Attribute" on page 5-18. 

You declare a based variable with the BASED attribute. 

pointer-variable 
A simple non-based variable with the POINTER attribute. 

Based variables can have internal scope only. 

For a discussion of the use of the BASED attribute, see "Using the BASED 
Attribute" on page 5-19. 

You declare a static variable with the STATIC attribute. 

i-STATIC--
Any expressions that specify lengths or bounds for a static variable must be integer 
constants. 

Static variables can have either internal or external scope. 

STATIC is the default for external variables. 

For a discussion of the STATIC attribute, see "Using the STATIC Attribute" on 
page 5-16. 

The INITIAL attribute, used with the STATIC attribute, specifies values assigned 
to a scalar or array variable when storage is allocated to it. 

12-42 PLjI User's Guide and Reference 

J 



STORAGE ATTRIBUTES 

r'l -INITIAL-(-Ite )~ 

where 'item' is: 

~ I (iteration_factor)--(initial_element)~ 

L J initial element 

(iteration_factor) 

and where 'initial_element' is: 

f----o-----r-ari thmet i c_constant-

-+-

---

Abbreviation: INIT for INITIAL 

iteration_factor 
An integer constant in the range I through 32 767. 

simple _string_constant 
Must be in parentheses when preceded by an iteration factor. 

Any variable declared with the INITIAL attribute may only be of type arithmetic, 
string, PICTURE, or POINTER. 

You can specify the INITIAL attribute for arrays that do not have inherited dimen­
sions, as well as for scalar variables. In a structure declaration, you can specify the 
INITIAL attribute only for field names. 

You can specify only one initial value for a scalar variable, but more than one for 
an array variable. A structure variable requires separate initialization of each of its 
field names if they are scalar or array variables. 

For a discussion of the use of the INITIAL attribute, see "Using the INITIAL 
Attribute" on page 5-17. 

Chapter 12. Declaring Names and Attributes of Variables 12-43 



STORAGE ATTRIBUTES 

J 

J 

12-44 PL/I User's Guide and Reference 



Chapter 13. General PL/I Statements 

This chapter describes the statements listed below: 

Assignment 
DO 
END 
GO TO 
IF 
ITERATE 
LEAVE 
Null 
OTHERWISE 
SELECT 
STOP 
WHEN 

Assignment Statement 

ASSIGNMENT 

The assignment statement evaluates an expression and assigns its result to a target 
variable, which can be a scalar, array, or structure variable or a pseudovariable. 

You can assign problem data of any type to a problem data variable or 
pseudo variable. All valid conversions are described in "Data Conversion" on 
page 5-27. 

You can assign program control data only to a program control variable of the same 
data type. 

--reference· express;on----rL----J---r-;-­

,BY NAME 

A reference is described in Figure 9-1 on page 9-2. 

A scalar assignment is processed as follows: 

1. Subscripts and pointer qualifications on the left-hand side are evaluated. 

2. The expression on the right-hand side is evaluated. 

3. The value of the expression is converted, if necessary, to the attributes of the 
variable on the left-hand side according to the rules for data conversion. The 
converted value is then assigned to the variable on the left-hand side (see "Data 
Assignment" on page 5-24). 

An aggregate assignment is processed if the left-hand side is an array or structure 
variable. Only the following cases are valid: 

Chapter 13. General PL/I Statements 13-1 



ASSIGNMENT 

• The left-hand side is an array that is not an array of structures and the right­
hand side is a scalar expression. 

The right-hand side value will be assigned to each array element. 

• The right-hand side is an aggregate variable whose size, shape, and component 
data types are identical to those of the left-hand side variable. 

All scalar data of the right-hand side variable will be assigned to the corre­
sponding elements or fields of the left-hand side variable. Because the compo­
nent data types are identical, no data conversions will occur. 

• The left-hand side is a structure and the right-hand side is a scalar variable. 

The scalar variable is assigned to each member of the structure, with conver­
sions processed where necessary. If an array is a structure member, the scalar 
variable is assigned to each element of the array. 

Examples of Assignment Statements 
The examples in this section use the following declarations: 

DECLARE INDEXI BINARY; 
DECLARE (ARRAYl,ARRAY2)(10) BINARY, 

ARRAY3(2,3,4) BINARY; 
DECLARE 1 STRUCTUREl(5), 

5 BINFIXEDI 
5 BINFLOATl 

1 STRUCTURE2(5), 
5 BINFIXEDI 
5 BINFLOAT2 

BINARY, 
FLOAT, 

BINARY, 
FLOAT; 

An example of a scalar assignment is: 

ARRAY3(INDEXl,1,2) = ARRAY2(INDEXl) + INDEXl; 

The right-hand side is an operational expression, and the left-hand side is a scalar 
variable. 

The following are examples of aggregate assignments: 

An example of a scalar to array assignment is: 

ARRAY3 = 0; 

An example of a structure to structure assignment is: 

STRUCTUREl(INDEXl) = STRUCTURE2(INDEXl+l); 

An example of an array to array assignment is: 

ARRAYl = ARRAY2; 

An example of an array of structures to array of structures assignment is: 

STRUCTUREl = STRUCTURE2; 

13-2 PLjI User's Guide and Reference 

J 

J 



ASSIGNMENT 

L BY NAME ASSIGNMENT 
In a BY NAME assignment, each target must be a structure or an array of struc­
tures. A member of a target structure derives its value from those structure 
members in the expression that have the same name. Only those members of a 
target for which a member with the same name exists in the other target are affected. 
For example: 

DECLARE 1 ORDERLIST, 
5 ITEMNAME 
5 ITEMNUMBER 
5 SUPPLIER 
5 PRICE 

1 INVENTORY, 

CHARACTER (30), 
CHARACTER (5), 
CHARACTER (15), 
FIXED DECIMAL (5,2), 

5 ITEMNAME CHARACTER (30), 
5 ITEMNUMBER CHARACTER (5), 
5 QUANTITY FIXED DECIMAL (4), 
5 LOCATION CHARACTER (15); 

ORDERLIST = INVENTORY, BY NAME; 

The only two members the two structures have in common are ITEMNAME and 
ITEM NUMBER. Therefore, the effect of the BY NAME assignment is: 

ORDERLIST,ITEMNAME = INVENTORY,ITEMNAME; 
ORDERLIST,ITEMNUMBER = INVENTORY,ITEMNUMBER; 

Just as in an ordinary assignment, the expression on the right is fully evaluated 
before any part of it is assigned. 

For a BY NAME assignment involving scalars or arrays, the scalar or array enters 
into all of the implied assignments. For a BY NAME assignment involving nested 
structures, the name selection rules are applied recursively. 

The rules for BY NAME assignment can be stated more precisely. A BY NAME 
assignment is carried out in four steps: 

1. A by-name-parts-list is generated. The by-name-parts-list enumerates those 
structure elements that participate in the assignment. 

2. The by-name-parts-list is used to select from and reorder the members of both 
structures involved in the assignment. 

3. The expression is evaluated, using just those parts selected. Those parts whose 
names correspond are combined. 

4. The value of the expression is transferred to the target, with named parts of the 
value going to the corresponding named parts of the target. 

The by-name-parts-list is generated by frrst considering both variables that appear in 
the assignment. For each variable that is a structure or an array of structures, list 
the fully-qualified names of the structure members at every level, omitting the vari­
able name from each fully-qualified name. (Scalars or arrays of scalars do not 
count.) The by-name-parts-list consists of just those names that are common to 
both of the lists from the individual variables. 

Chapter 13. General PL/I Statements 13·3 



ASSIGNMENT 

The assignment is interpreted by deleting all members of structures that do not 
appear in the by-name-parts-list, and reordering the reduced structures so that their 
members appear in order of the by-name-parts-list. The assignment is then carried 
out using these new structures. 

For example: 

DECLARE 1 CURRENTPRICE, 
5 REGION1 
5 REGION2 

1 NEWPRICE, 
5 REGION2 
5 REGION1 

CURRENT PRICE = NEWPRICE; 

FIXED DECIMAL (5,2), 
FIXED DECIMAL (5,2), 

PICTURE '999V99 1 , 

PICTURE '999V99 1 ; 

In the assignment statement, NEWPRICE.REGION2 is assigned to 
CURRENTPRICE.REGIONI and NEWPRICE.REGIONI is assigned to 
CURRENTPRICE.REGION2. If the assignment statement had been 

CURRENTPRICE = NEWPRICE, BY NAME; 

NEWPRICE.REGIONI would have been assigned to 
CURRENTPRICE.REGIONI and NEWPRICE.REGION2 would have been 
assigned to CURRENTPRICE.REGION2. 

The following example illustrates structure assignment using the BY NAME option: 

DECLARE 1 BRANDl, 
5 PRODUCTl, 

10 RED FIXED DECIMAL (5), 
10 ORANGE FIXED DECIMAL (5), 

5 PRODUCT2, 
10 YELLo\<J 
10 BLUE 
10 GREEN 

DECLARE 1 BRAND2, 
5 PRODUCT1, 

10 BLUE 
10 GREEN 
10 RED 

5 PRODUCT2, 
10 BROWN 
10 YELLOW 

FIXED DECIMAL (5), 
FIXED DECIMAL (5), 
FIXED DECIMAL (5); 

FIXED DECIMAL (5), 
FIXED DECIMAL (5), 
FIXED DECIMAL (5), 

FIXED DECIMAL (5), 
FIXED DECIMAL (5); 

The lists used to compose the by-name-parts-list are: 

13-4 PLfI User's Guide and Reference 

J 

J 



DO Statement 

BRANDI: 
PRODUCTl: 

PRODUCTl. RED 
PRODUCT 1. ORANGE 

PRODUCT2: 
PRODUCT2.YELLOW 
PRODUCT2.BLUE 
PRODUCT2.GREEN 

BRAND2: 
PRODUCTl: 

PRODUCTl.BLUE 
PRODUCTl.GREEN 
PRODUCTl. RED 

PRODUCT2: 
PRODUCT2.BROWN 
PRODUCT2.YELLOW 

If we code the assignment statement 

BRANDI = BRAND2, BY NAME; 

the by-name-parts-list for the assignment is 

PRODUCTl: 
PRODUCT 1. RED 

PRODUCT2: 
PRODUCT2.YELLOW 

The assignment statement would therefore be the same as the following: 

BRANDI.PRODUCTI.RED = BRAND2.PRODUCTI.RED; 
BRAND1.PRODUCT2.YELLOW = BRAND2.PRODUCT2.YELLOW; 

If we code the assignment statement 

BRANDI.PRODUCTI = BRAND2.PRODUCTI, BY NAME; 

the by-names-parts-list for the assignment is 

RED 

DO 

The DO statement and its corresponding END statement delimit a group of state­
ments collectively called a do-group. You can specify non-iterative or iterative proc­
essing of the group. 

When the do-group ends normally, control passes to the next statement that can be 
processed, unless controlleaves the do-group by a transfer of control, such as a GO 
TO, RETURN, or LEAVE statement. 

Chapter 13. General PL/I Statements 13-5 



DO 

_01WHILE(eXpreSSi on_l)---r--------,--,--j--+<4 

UNTIL(expression_2) 

UNTI L (express f on_2)---r--------r--' 

WHILE(expressfon_l) 

-OD---reference • expressfon_3----. 

To--express f on_ 4·---.-------.---l 

BY--expressfon_5 

BY--express f on_5~---r-------r-i 

To--expresslon_4 

'-----IREPEAT--expression_6------' 

~--.------------------r-j~ 

WHILE(expressfon_l)--,---------.---l 

UNTIL(expressfon_2) 

UNTIL (express f on_2)---.--------,---J 

WHILE(expression_l) 

The type 1 DO statement specifies that the do-group, also called a simple do-group, 
is treated as a single statement. The do-group is processed once. It can be used, for 
example, to specify the THEN- or ELSE-unit of an IF statement. Types 2 and 3 
provide for the iterative processing of the do-group. 

WHILE( expression_I) 
Evaluates to BIT(I). You can either use a bit variable that you have explicitly 
declared, or you can specify a condition, in which case you are implicitly 
declaring a bit variable which the program sets to I 11 B or 10 I B depending on 
whether the condition is true or false. Each time, before the do-group is proc­
essed, expression_l is evaluated. If the value is IIIB, the do-group is processed. 
If the value is 10 1 B, processing of the do-group ends. 

UNTIL( expression_2) 
Must evaluate to BIT(I). You can either use a bit variable that you have 
explicitly declared, or you can specify a condition, in which case you are implic­
itly declaring a bit variable which the program sets to I 11 B or 10 I B depending 
on whether the condition is true or false. Each time, after the do-group is proc­
essed, expression_2 is evaluated. If the value is 10 1 B, the do-group is processed. 
If the value is I 11 B, processing of the do-group ends. 

reference 
The control variable. It must be a scalar variable of arithmetic or pointer type. 

Expressions in the reference to the control variable, such as subscripts and 

13-6 PL/I User's Guide and Reference 



L 

DO 

pointer qualifiers, are evaluated once, outside the do-group. Therefore, the 
location in storage of the control variable is established; it remains unchanged 
while the group is being processed. 

If a reference is made to a control variable after the last iteration is completed, 
the value of the variable will be the value that exceeded the limit set in the DO 
statement. 

expressioo_3 
Specifies the initial value of the control variable. It must be of arithmetic, 
pointer or string type. 

If the TO, BY or REPEAT options are omitted, the do-group is processed once 
with the control variable having the value of expression_3, or not at all if the 
WHILE option is specified and the value of expression_l is '0 I B. 

TO expression _ 4 
Specifies the ending value of the control variable. Expression _ 4 must be an 
arithmetic expression. 

Processing of the do-group ends as soon as the value of the control variable is 
outside the range defmed by the TO or REPEAT options. If the TO option is 
omitted, and the BY option is specified, processing is repeated until it is ended 
by a WHILE or UNTIL option, or until control is transferred out of the do­
group. 

BYexprcssion_5 
Specifies the increment added to the control variable after the do-group is proc­
essed. Expression_5 must be an arithmetic expression. 

If the BY option is omitted, and the TO option is specified, expression_5 
defaults to 1. If BY 0 is specified, processing is repeated until it is ended by a 
WHILE or UNTIL option, or until control is transferred out of the do-group. 

REPEAT expression_6 
Each time the do-group is processed, expression_ 6 is evaluated and assigned to 
the control variable. Processing is repeated until it is ended by the WHILE or 
UNTIL option, or until control is transferred out of the do-group. 
Expression_6 must be of arithmetic, string, or pointer type. 

The TO and BY options allow you to vary the control variable in fixed positive or 
negative increments. In contrast, the REPEAT option, an alternative to the TO 
and BY options, allows you to vary non-arithmetic control variables, such as 
pointers. 

The effect of processing a do-group can be summarized as follows: 

1. If a control variable is specified, the initial value is assigned to it and then any 
BY or TO options are evaluated. This yields the BY and TO values. 

2. If the TO option is specified, the value of the control variable is tested against 
the TO value. The control variable is outside the range and the do-group is 
ended if: 

• The BY value is positive and the control variable is greater than the TO 
value. 

Chapter 13. General PL/I Statements 13-7 



DO 

• The BY value is negative and the control variable is less than the TO value. J 
3. If the WHILE option is specified, expression_l is evaluated. If the value is 

10 I B, the do-group is ended. 

4. The statements in the do-group are processed. 

5. If the UNTIL option is specified, expression_2 is evaluated. If the value is 
I 11 B, the do-group is ended. 

6. If there is a control variable: 

• If the TO or BY option is specified, the BY value is added to the control 
variable. 

• If the REPEAT option is specified, expression_6 is evaluated and assigned 
to the control variable. 

• If the TO, BY, and REPEAT options are omitted, the do-group is ended. 

7. The cycle is repeated from point 2 if the do-group has not been previously 
ended. 

Control can transfer into a type 1 do-group. It can transfer into a type 2 or type 3 
do-group if the GOTO ends a procedure or an on-unit that was called from within 
the do-group. 

The maximum depth of do-group nesting is 49. 

Examples of DO Statements 
The DO statement can specify a group of statements processed in the THEN clause 
or the ELSE clause of an IF statement, or in the WHEN statement or the OTHER­
WISE statement in a select-group. For example: 

IF ITEMI = ITEM2 
THEN DO; 

END; 
ELSE DO INDEXl=l TO 2; 

END; 

A repetitive do-group might take the form: 

DO INDEXI = 1 TO 10; 

END; 

In this example, the do-group is processed ten times, while the value of the control 
variable INDEXl ranges from 1 through 10. J 

13-8 PL/I User's Guide and Reference 



DO 

The following example specifies that the do-group is processed five times, with the 
value of INDEX 1 equal to 2, 4, 6, 8, and 10: 

DO INDEXI = 2 TO Ie BY 2; 

If negative increments of the control variable are required, the BY option must be 
used. For example: 

DO INDEXI = Ie TO 1 BY -1; 

In the following example, the do-group is processed with INDEXI equal to 1, 2,4, 
8, 16, and so on: 

DO INDEXI = 1 REPEAT 2*INDEXl; 

END; 

The WHILE and UNTIL options make successive processings of the do-group 
dependent upon a specified condition. For example: 

DO WHILE (ITEMI = ITEM2); 

END; 

DO UNTIL (ITEMI = ITEM2); 

END; 

A crucial difference between DO WHILE and DO UNTIL is that DO WHILE 
checks at the beginning of each loop if the specified condition is true, but DO 
UNTIL makes this check at the end of the loop. The result is that in the absence 
of other options, a do-group headed by a DO UNTIL statement is processed at 
least once, but a do-group headed by a DO WHILE statement may not be proc­
essed at all. That is, the statements DO WHILE (A = B) and DO UNTIL 
(A -, = B) are not equivalent. 

Consider the following examples: 

DO WHILE (ITEMI = ITEM2) UNTIL (ITEM3 = Ie); 

If ITEM 1 is not equal to ITEM2 the first time the DO statement is processed, the 
do-group is not processed at all. If, however, ITEMl is equal to ITEM2, the do­
group is processed. If ITEM3 is equal to 10 after the do-group is processed, no 
further processing occurs. Process can occur again provided that ITEM3 is not 
equal to 10, and that ITEM 1 is equal to ITEM2. 

DO INDEX1 = 1 TO Ie UNTIL (ITEMI = 1); 

The do-group is processed at least once, with INDEXl equal to 1. If ITEMl is 
equal to 1 after the do-group is processed, no further processing occurs. Otherwise, 
the default increment (BY 1) is added to INDEXl, and the new value of INDEX 1 

Chapter 13. General PL/I Statements 13-9 



END 

END Statement 

is compared with 10. If INDEXI is greater than 10, no further processing occurs. J 
Otherwise, a new the do-group is processed again. 

DO INDEX1 = 1 REPEAT (2 * INDEX1) UNTIL (INDEX1 = 256); 

The fIrst time the do-group is processed INDEX 1 is equal to 1. Mter this, and each 
time the do-group is processed, the UNTIL expression is tested. If INDEX1 is 
equal to 256, no further processing occurs. Otherwise, the REPEAT expression is 
evaluated and assigned to INDEX1, and the do-loop is processed again. 

DECLARE POINTER1 POINTER, 
FIRST ADDRESS POINTER, 
1 DATA_ITEM, 

5 INTEGER 
5 NEXT ADDRESS 

FIXED DECIMAL (7), 
POINTER; 

DO POINTER1 = FIRST ADDRESS 
REPEAT POINTER1 -> DATA ITEM 
WHILE (POINTER1 ~= NULL()); 

POINTER1 = NEXT_ADDRESS; 
END; 

This example shows a DO statement used to step along a chained list, where each 

J 

data item processed includes as one of its fIelds the address of the next item. The . '~. 
value FIRST_ADDRESS is assigned to POINTERl for the fIrst time the do-group ...., 
is processed. Inside the loop, the address for the next item is assigned to 
POINTER1; and before each subsequent time the loop is processed, DATAITEM 
is defIned as being based on POINTERl's current value. The last item in the 
chained list contains a null address, because there is no following item; therefore the 
value of POINTER 1 is tested before the fIrst and each time the do-group is proc-
essed; if it is NULL, no further processing occurs. 

DO INDEX1 = 1 TO 1e; 
ARRAY1(INDEX1) = INDEX1; 

END; J 
This example shows how the control variable of a DO statement can be used as a 
SUbscript in statements within the do-group, so that each time processing occurs 
successive elements of a table or array are dealt with. This loop sets the fIrst ten 
elements of ARRAY I to 1,2, ... ,10 respectively. 

The END statement and the corresponding PROCEDURE, BEGIN, DO or 
SELECT statement delimit blocks and do-groups. 

-ENDe--r-L--J..,-;---+<I 
name 

13-10 PLjl User's Guide and Reference 



GO TO 

name 
An identifier that designates a statement label or entry constant. 

Each END statement must pair with a PROCEDURE, BEGIN, DO or SELECT 
statement. Pairing is processed outwards from the innermost procedure, begin­
block, or do-group. For example: 

PROC1: PROCEDURE; 

BEGIN1: BEGIN; 

001: DO; 

END; 

END; 

END; 

In this example, the innermost END statement is paired with the DO statement; the 
next END statement, working outwards, is paired with the BEGIN statement; then 
the next END statement is paired with the PROCEDURE statement. 

If END is followed by a name, the name must match that of the PROCEDURE, 
BEGIN, DO, or SELECT statement with which it is paired. For example, the 
END statement that is paired with BEGINI: BEGIN could be written as 

END BEGIN1; 

A program ends normally when control reaches the END statement of the fIrst pro­
cedure called in the program. The program would also end normally if control 
reached a RETURN statement in the flfst procedure; but RETURN is not usually 
coded in a program's flfst procedure. 

Processing of a procedure or begin-block ends normally when control reaches the 
END statement for the block. 

Processing of a do-group ends when control reaches the END statement of the 
group for the fmal time, in accordance with the conditions specified in the DO state­
ment. 

Processing of a function ends abnormally if control reaches the END statement; a 
RETURN statement must be specified. (See "RETURN Statement" on page 14-4 
for more information.) 

GO TO Statement 
The GO TO statement transfers control to the statement identifIed by the label­
reference. 

Chapter 13. General PLjl Statements 13-11 



GO TO 

labelJeference 
Specifies a label constant, a label variable, or function reference that returns a 
label value. Because a label variable or function reference can have different 
values at time the GO TO statement is processed, control may not always pass 
to the same statement. 

When a GO TO statement transfers control out of a function, the evaluation of the 
expression that contained the corresponding function reference is discontinued. 

Transferring control out of a block using a GO TO statement can sometimes result '\ 
in the ending of several procedures and/or begin-blocks. Specifically, if the transfer ..." 
point specified by the GO TO statement is contained in a block that did not directly 
activate the block being ended, all intervening blocks in the activation sequence are 
ended (see "Ending a Procedure" on page 4-11 for details). For example: 

PROCl: PROCEDURE; 

BEGINl: BEGIN; 

CALL PROC2; 

END BEGINl; 

PROC2: PROCEDURE; 

BEGIN2: BEGIN; 

GO TO OUTSIDE; 

END BEGIN2; 

END PROC2; 

OUTSIDE: ITEM = 0; 

END PROCl; 

In the above example, PROCI activates BEGIN1, which activates PROC2, which 
activates BEGIN2. In BEGIN2, the statement GO TO OUTSIDE transfers control 
to the statement in PROCl that is labeled OUTSIDE. Because this statement is 
not contained in BEGIN2, PROC2, or BEGINl, all three blocks are ended; ' .. ~ .. 
PROCl remains active. Therefore, the transfer of control out of BEGIN2 results in .." 

13-12 PL/I User's Guide and Reference 



L 

IF Statement 

IF 

the ending of intervening blocks BEGIN I and PROC2 as well as the ending of 
block BEGIN2. 

A GO TO statement cannot transfer control to an inactive block. It cannot transfer 
control from outside a do-group to a statement inside a type 2 or type 3 do-group, 
unless the GO TO ends a procedure or on-unit called from within the do-group. 
For defInitions of type 2 and type 3 do-groups, see "DO Statement" on page 13-S. 

If you use a label variable or a function reference in a GO TO statement, its value 
must be a valid label, and the block containing the assigned label constant must be 
active. 

The GO TO statement specifies an unconditional transfer of control. If the destina­
tion of the GO TO is specified by a label variable or a function reference, you can 
use it as a switch. 

Use of the GO TO statement leads to difficulty in debugging and maintaining pro­
grams because the permanent transfers of control it creates within the program are 
hard to trace. Whenever possible, you should use do-groups and procedures instead 
of GO TO statements. 

The IF statement tests the value of an expression and controls the flow of proc­
essing according to the result of that test. 

-IF-expression-THEN-unit_l---rL------rI---J~ .... 4 

ELSE-unit_2--' 

expression 

unit 

Evaluates to BIT(l). If the expression is a condition such as INTEGERl = 0, 
the program evaluates the expression and sets the bit to 1 if the expression is 
true, and to 0 if the expression is false. Alternatively, the expression can be a 
BIT( 1) variable which the program has set to 1 or O. For instance, you can 
derme EOI' as a BIT(l) variable with an initial value of 0, and set it to I when 
end of me is detected and handled by an ENDFILE on-unit. 

Each unit is either a single statement (except BEGIN, DECLARE, DO, END, 
PROCEDURE, SELECT, or a directive), a do-group, or a begin block. Each 
unit can contain statements that transfer control (such as GO TO), so that the 
normal sequence of the IF statement can be overridden. 

The IF statement is a compound statement. The semicolon ending the last unit 
also ends the IF statement. 

If the expression evaluates to 111 B, unit_I is processed and unit_2 is ignored. If the 
expression evaluates to 10 I B, unit _1 is ignored and unit _ 2 is processed, if present. 

Chapter 13. General PL/I Statements 13-13 



ITERATE 

You can nest IF statements by specifying either or both units as IF statements. 
Because each ELSE unit is associated with the innermost unmatched IF in the same 
block or do-group, you may need to specify an ELSE with a null statement to 
achieve a desired sequence of control. 

The maximum depth of IF statement nesting is 49. 

Examples of IF Statements 
IF ITEMl > ITEM2 

THEN LARGERNO = ITEM1; 
ELSE LARGERNO = ITEM2; 

In this example, if the value of ITEM I is greater than the value of ITEM2, the 
value of ITEMl is assigned to LARGERNO, and the ELSE unit is not processed. 
If the value of ITEM 1 is less than or equal to the value of ITEM2, the THEN unit 
is not processed, and the value of ITEM2 is assigned to LARGERNO. 

You do not always have to specify an ELSE unit. When in the event that the IF 
condition is false you simply want to pass control to the statement following the IF 
statement, you can omit the ELSE unit. For example: 

IF (ITEMl = ITEM2) & (ITEM3 = ITEM4) 
THEN CALL PROC1; 

NEXT: ITEM3 = ITEMl + ITEM2; 

If the expression is true, the CALL statement of the THEN unit calls PROCl for \ 
processing. If the expression is false, the THEN unit is not processed and control .""" 
passes directly to the statement labeled NEXT. 

IBM Extension ------------, 

ITERATE Statement 
The ITERATE statement is valid only within an iterative do-group. The 
ITERATE statement transfers control to the END statement that delimits the itera­
tive do-group. 

I 
~IT""'TE-r-L-----J-'---;----

. label_constant 

label_constant 
Must be a label of a containing do-group. If label_constant is omitted, control 
is transferred to the END statement of the do-group immediately containing the 
ITERATE statement. 

13-14 PL/I User's Guide and Reference 



Example of the ITERATE Statement 
QCOUNT: PROCEDURE OPTIONS (MAIN); 

DECLARE SUBJECTSTRING CHARACTER (80), 
STRINGLENGTH FIXED BINARY (15), 
INDEXI FIXED BINARY (15), 
INDEX2 FIXED BINARY (15); 

GET EDIT (SUBJECTSTRING) (A(88)); 
STRINGLENGTH = 80; 

/* Remove all Q1s from SUBJECTSTRING */ 

MAINLOOP: DO INDEXI = 1 

LEAVE Statement 

REPEAT (INDEXI + 1) 
UNTIL (INDEXI = STRINGLENGTH); 

IF SUBSTR (SUBJECTSTRING,INDEXl,l) ~ IQI 
THEN ITERATE MAINLOOP; 

/* Replace Q with following character; shift */ 
/* remaining characters left accordingly */ 

DO INDEX2 = INDEXI TO (STRINGLENGTH - 1); 
SUBSTR (SUBJECTSTRING,INDEX2,1) 

= SUBSTR (SUBJECTSTRING,INDEX2+1,1); 
END; 

/* String has lost one character */ 

STRINGLENGTH = STRINGLENGTH - 1; 

/* Check character replacing deleted Q */ 

INDEXI = INDEXI - 1; 
END MAINLOOP; 

END QCOUNT; 

LEAVE 

The LEAVE statement transfers control from within a do-group to the statement 
following the END statement that delimits the group and ends the do-group. 
LEA VE is valid only within a do-group. 

I 
~'EAVE-'L-----J--'-;-

. label_constant 

label_constant 
Must be a label of a containing do-group. The do-group that is left is the do­
group that has the specified label. If labeCconstant is omitted, the do-group 
that is left is the group that contains the LEAVE statement. 

Chapter 13. General PLjI Statements 13-15 



LEAVE 

The LEA VE statement and the referenced or implied DO statement must not be in 
different blocks. 

Examples of LEAVE Statements 
In the following example, the LEAVE statement transfers control to "next state­
ment"; 

DO . . . ; 

LEAVE; 

END; 
next statement; 

In the following example, the statement LEAVE GROUPl transfers control to 
"statement after GROUP!"; 

GROUP1: DO INDEX1 = 1 TO 10; 
DO INDEX2 = 1 TO 5; 

IF SAMPLEARRAY(INDEXl,INDEX2) = 0 
THEN LEAVE GROUPl; 

ELSE 
SAMPLEARRAY(INDEX1,INDEX2) = 5; 

END; 
statement within GROUP1; 

END GROUPl; 
statement after GROUP1; 

In the following example, LEAVE MAINLOOP causes processing of MAINLOOP 
to end once the letter Q has been found in SUBJECTSTRING; 

13-16 PLfI User's Guide and Reference 



L 

Null Statement 

DECLARE SUBJECTSTRING 
INDEXI 
QSTRINGTOTAL 
QPRESENT 

CHARACTER (80), 
FIXED BINARY (15), 
FIXED BINARY (15), 
FIXED BINARY (15) 
STATIC INITIAL (0); 

GET EDIT (SUBJECTSTRING) (A(80)); 

/* Determine if Q is present in string */ 

MAINLOOP: DO INDEXI = 1 TO 80; 
IF SUBSTR (SUBJECTSTRING,INDEXl,l) = IQI 

THEN DO; 
QPRESENT = 1; 
LEAVE MAINLOOP; 

END; 
END MAINLOOPj 

/* Accumulation of total number */ 
/* of strings containing Q */ 

EXIT: QSTRINGTOTAL = QSTRINGTOTAL + QPRESENT; 

Null 

In this example, if no Qs are present in SUBJECTSTRING, MAINLOOP is proc­
essed 80 times, and QPRESENT is left with a value of zero, so that 
QSTRINGTOTAL remains unchanged after QPRESENT is added. If a Q is 
present in the string, QPRESENT is set to 1, and the LEAVE statement is proc­
essed, so that MAINLOOP ends and control is transferred to EXIT. 

'-_________ End of IBM Extension _________ ---' 

The null statement causes no action and does not affect sequential processing. 

If a statement is preceded by a labeled null statement, a GOTO to that label is effec­
tively a transfer of control to the following statement, even if that statement cannot 
itself be labeled. 

Examples of Null Statements 
The null statement can specify that no action is taken when a condition is raised. 
For example: 

ON ENDPAGE(SAMPLEFILE); 

In this example, no action is taken when the ENDPAGE condition is raised for me 
SAMPLEFILE. 

Chapter 13. General PLjI Statements 13-17 



SELECT, WHEN, OTHERWISE 

A null statement can specify that no action is taken in the THEN unit of an IF 
statement. For example: 

IF ITEMI = ITEM2 
THEN; 
ELSE ITEMI = 15; 

NEXT: ITEM2 = 25; 

In this example, if ITEM 1 is equal to ITEM2, control passes to NEXT. If ITEM I 
is not equal to ITEM2, the ELSE unit is processed before control passes to NEXT. 

A null statement can similarly specify that no action is to be taken in the ELSE unit 
of an IF statement. For example: 

IF ITEMI = ITEM2 
THEN ITEMI = 15; 
ELSE; 

NEXT: ITEM2 = 25; 

In this example, if ITEM 1 is equal to ITEM2, the value 15 is assigned to ITEMl. 
If, however, ITEM! is not equal to ITEM2, control passes directly to NEXT. 

IBM Extension 

SELECT, WHEN, and OTHERWISE Statements 
A select-group provides a multi-way conditional branch. A select-group contains a 
SELECT statement, optionally one or more WHEN statements, optionally an 
OTHERWISE statement, and an END statement. The syntax of the select-group is 
shown below: 

U L I SELECT L J j-
name:~ (expression_I) 

END L j--

LOTHERWISE--unit~name~ 

Abbreviation: OTHER for OTHERWISE 

13-18 PL/I User's Guide and Reference 

J 



L 

SELECT, WHEN, OTHERWISE 

name: SELECT (expression_I); 
With its corresponding END statement, SELECT delimits a group of state­
ments, collectively called a select-group. The optional expression_l in the 
SELECT statement is evaluated and its value is saved. 

WHEN (expression_2) unit 
Specifies an expression or expressions that are evaluated and compared one by 
one with the saved value of expression_I. If an expression is found equal, the 
evaluation of the expressions in the WHEN statements is ended, and the unit of 
the associated WHEN statement is processed. If no such expression is found in 
the WHEN statements, the next statement is processed. 

If expression_l is omitted, each expression_2 must evaluate to a bit string. If 
the result is I 11 B, the unit of the associated WHEN statement is processed. If 
the result is 'O'B, the next WHEN statement is evaluated. If all WHEN state­
ments evaluate to 10 I B, the unit of the OTHER WISE statement is processed. 

The WHEN statement must not have a label prefix. 

OTHERWISE unit 

unit 

Specifies the unit is processed when every test of the preceding WHEN state­
ments fails. 

If the OTHERWISE statement is omitted and processing of the select-group 
does not result in the selection of a unit, the ERROR condition is raised. 

The OTHERWISE statement must not have a label prefix. 

Each unit is either a single statement (except BEGIN, DECLARE, DO, END, 
PROCEDURE, SELECT, or a directive), a do-group, or a begin-block. Each 
unit can contain statements that transfer control (such as GO TO); hence, the 
normal sequence of the SELECT statement can be overridden. 

Each unit may be labeled. 

END name; 
Must be specified. It ends the select-group (see "END Statement" on 
page 13-10). 

After processing of a unit of a WHEN or OTHERWISE statement, control passes 
to the statement following the select-group, unless the normal flow of control is 
altered within the unit. 

The maximum permissible depth of nesting of select-groups is 49. 

Examples of Select-Groups 
In the following example, E, EI, etc., are expressions. When control reaches the 
SELECT statement, the expression E is evaluated and its value is saved. The 
expressions in the WHEN statements are then evaluated in tum (in the order in 
which they appear), and each value is compared with the value of E. If a value is 
found that is equal to the value of E, the action following the corresponding WHEN 
statement is processed; no further WHEN statement expressions are evaluated. If 
none of the expressions in the WHEN statements is equal to the expression in the 

Chapter 13. General PLfI Statements 13-19 



STOP 

SELECT statement, the action specified by the OTHER WISE statement is proc­
essed. 

SELECT (E); 

END; 

WHEN (E1,E2,E3) action-1; 
WHEN (E4,E5) action-2; 
OTHERWISE action-n; 

NL: next statement; 

An example of expression_l being omitted is: 

SELECT; 
WHEN (ITEM1>ITEM2) CALL BIGGER; 
WHEN (A=B) CALL SAME; 
OTHERWISE CALL SMALLER; 

END; 

If a select-group contains no WHEN statements, the action in the OTHERWISE 
statement is processed unconditionally. If the OTHERWISE statement is omitted, 
and processing of the select-group does not result in the selection of a WHEN state­
ment, the ERROR condition is raised. 

'---__________ End of IBM Extension __________ -' 

STOP Statement 
The STOP statement abnormally ends the run unit. 

I -STOPj----

When you process the STOP statement, any mes in the run unit that are open are 
closed with an error indication. 

13-20 PL/I User's Guide and Reference 



DEFINING A PROCEDURE 

Chapter 14. Procedures, Subroutines, and Functions 

You may write your own subroutines and functions (user-defmed), or use those pro­
vided by the PL/I compiler (built-in). 

This chapter describes user-defmed subroutines and user-defmed functions, and how 
to defme, declare, and call them. When not stated to the contrary, references to 
"subroutine" and "function" in this chapter are to user-defmed procedures. For 
details about built-in functions and subroutines, see Chapter 15, "Built-In Func­
tions, Subroutines, and Pseudovariables." 

Subroutines and functions can: 

• Be called from different points in a program as well as in different programs to 
process the same frequently used process. 

• Process data passed to them on different calls. 

• In the case of subroutines, return control to a point immediately following the 
point of calling or transfer control to another part of the program. 

• In the case of functions, return control and a value to the point of calling or 
transfer control to another part of the program. 

Subroutines and functions can use data known in the calling block and made avail­
able by: 

• Arguments and parameters. References to data in the calling block are passed 
in an argument list to parameters in the called procedure. 

• Names whose scope of declaration includes both the calling block and the called 
procedure (see "Scopes of Names" on page 4-14). 

Defining a Procedure 
You defme a procedure by writing a PROCEDURE statement as the fIrst of a 
sequence of statements and an END statement as the last. (See "Internal and 
External Procedures" on page 4-9 for a discussion of procedures, and "END 
Statement" on page 13·10 for a discussion of the END statement.) 

Functions 

A function is a procedure that has a RETURNS option in the PROCEDURE 
statement. A function is called by a function reference. It ends normally by proc­
essing a RETURN(expression) statement and returning a scalar value to the point 
of calling. 

Chapter 14. Procedures, Subroutines, and Functions 14-1 



DEFINING A PROCEDURE 

Subroutines 

A subroutine is a procedure that has no RETURNS option in the PROCEDURE 
statement. A subroutine is called by a subroutine CALL. It ends normally by 
processing either a RETURN statement that has no expression or an END state­
ment. 

PROCEDURE Statement 
The PROCEDURE statement specifies: 

• Any parameters the procedure may have. 
• For an external procedure, any options the procedure may have. 
• For a function, the attributes of the returned value. 

-entry-constant:-PROCEDURE-r-l-------J..,.---

(1::2) 
~-LOP-TIONS(t-HA-I:rN~)J '----l -~ -----.-J ; ...... 

REENTRANT RETURNS(---attribute~) 
RECURSIVE 

Abbreviation: PROC for PROCEDURE 

entry_constant 
A name that is the entry name of the procedure. Every procedure must have an 
entry name. The maximum length of an external entry name is 10 characters. 

parameter .l 
A name that is used to refer to an argument passed to this procedure. It is ...., 
explicitly declared as a parameter by its appearance in a parameter list. See 
"Parameter Attributes" on page 14-3 for how to declare attributes for parame-
ters. 

The maximum number of parameters any procedure can have is 32, except for 
function procedures, which can have a maximum of 31. 

IBM Extension 

A parameter list can be specified for the external procedure. See "Calling a 
PL/I Program from a Non-PL/I Program" on page 2-24. 

~ __________ End of IBM Extension __________ ...J 

14-2 PL/I User's Guide and Reference 



DEFINING A PROCEDURE 

OPTIONS 
OPTIONS is valid only for an external procedure. If you specify OPTIONS, 
you must include at least one option. 

The options are separated by blanks or commas. 

The options are syntax checked but otherwise ignored. They are provided for 
easy transfer of procedures to other compilers that require them. Although they 
are not required for AS/400 PL/I, you may include them so that your programs 
can be used with other compilers. 

MAIN 
The MAIN option, if specified, is syntax checked but otherwise ignored. 
The usual first statement of a PL/I program is 

Label: PROCEDURE OPTIONS (MAIN); 

REENTRANT 
The REENTRANT option, if specified, is syntax checked but otherwise 
ignored. All AS/400 PLjI procedures are reentrant. 

RECURSIVE 
The RECURSIVE option, if specified, is syntax checked but otherwise 
ignored. All ASj400 PL/I procedures are recursive. For more information 
on using recursive procedures, refer to "Recursive Procedures" on 
page 14-11. 

RETURNS(attribute) 
The value of the expression in a RETURN statement is converted to the attri­
butes specified in the RETURNS option before being returned. 

The attributes can specify any scalar data type except FILE. String lengths 
must be specified by integer constants. If you specify the E NTR Y attribute, it 
must not have parameter descriptors or a RETURNS attribute. 

Parameter Attributes 

You supply the attributes of a parameter in a DECLARE statement internal to the 
procedure. 

For a parameter or component of a parameter structure that is scalar or an array of 
scalars, you must specify at least one of the following attributes, unless you use ... to 
pass the parameter to a non-PL/I routine: 

FIXED 
FLOAT 
BINARY 
DECIMAL 
PICTURE 

CHARACTER 
BIT 
POINTER 
LABEL 
ENTRY 

You cannot specify storage class or scope attributes for a parameter. 

Chapter 14. Procedures, Subroutines, and Functions 14-3 



CALLING A PROCEDURE 

Parameter Lengths and Bounds 

Lengths of strings and bounds of arrays must be integer constants, or they must be 
specified by means of the asterisk notation (see "BIT and CHARACTER 
Attributes" on page 12-16 and "Arrays and the Dimension Attribute" on 
page 12-38). 

If you specify the string length or an array extent of a parameter by means of an 
asterisk, the length or bounds will be taken from the associated argument. This is 
useful if argument lengths or bounds differ for different calls or if their values are 
known only during processing. 

RETURN Statement 
The RETURN statement ends the procedure that contains it and returns control to 
the calling procedure. In the case of a function, it also returns a value. 

I 
~"Tu"r-rL----J--'-j--'" 

. (expression) 

expression 
A scalar expression of any data type except FILE. 

A RETURN statement without an expression ends a subroutine. Control returns 
to the next statement following the point of calling. 

A RETURN statement with an expression ends the processing of a function. The 
expression must have a type that can be converted to the attributes specified in the 
RETURNS option of the procedure statement; that is, the attributes in the 
RETURNS option and the attributes of the expression must both specify a problem 
data type or they must both specify the same program control data type. 

The expression is evaluated and converted to the attributes of the RETURNS 
option. The resulting value is returned to the point of calling. 

Calling a Procedure 
A function is called by a function reference; a subroutine is called by a subroutine 
call. Both subroutines and functions may be nested up to 50 levels deep. (See 
"Function Reference" below and "CALL Statement" on page 14-7.) 

Function Reference 
A function reference is an entry constant or an entry variable reference followed by a 
possibly empty argument list. The entry constant or entry variable must represent a 
function. 

14-4 PL/I User's Guide and Reference 



CALLING A PROCEDURE 

where argument_list is: 

You can write a function reference wherever an expression is allowed as well as in a 
subroutine call if the function returns an entry value. 

To call a function that has no arguments, specify the function name with an empty 
argument list. Like a subroutine, a function can operate upon the arguments passed 
to it and upon other known data. 

When a function ends normally, by means of a RETURN(expression) statement, 
the value determined by the function is converted, if necessary, to the attributes of 
the RETURNS option of the PROCEDURE statement. The value is then 
returned, with control, to the point of calling. Evaluation of the expression then 
continues. 

The returned value can be any type of scalar data item except a me. 

The examples that follow show entry constants and entry variables used in function 
references. In these examples, the function references call functions that are internal 
to the initial procedure. 

The following example shows an entry constant used in a function reference: 

SKYE: PROCEDURE; 
DECLARE (A,B,C,D) FIXED BINARY (15); 

A = FUN(C,D)*B; 
FUN: PROCEDURE(Q,R) 

RETURNS (FIXED BINARY (15)); 
DECLARE (Q,R) FIXED BINARY (15); 
RETURN (3.1416*Q*R); 

END FUN; 
END SKYE; 

In this example, the function reference FUN(C,D) calls the function FUN, with two 
arguments. Argument C is associated with parameter Q, and argument D with 
parameter R. FUN returns the value of 3.1416"'Q"'R to the function reference. The 
returned value is then multiplied by the value of B, and the result is assigned to A. 

The following example shows an entry variable used in a function reference: 

Chapter 14. Procedures, Subroutines, and Functions 14-5 



CALLING A PROCEDURE 

EIGG: PROCEDURE; 
DECLARE (A,B,C,D,E) 

FUN 
FIXED BINARY (15), 
ENTRY (FIXED BINARY (15)) 

VARIABLE 
RETURNS(FIXED BINARY (15)); 

IF A>B THEN FUN = FUN_I; 
ELSE FUN = FUN_2; 

C = D*FUN(E); 
FUN_1: PROCEDURE (Q) 

RETURNS (FIXED BINARY (15)); 
DECLARE Q FIXED BINARY (15); 
RETURN (3.1416*Q**2); 

END FUN_1; 
FUN 2: PROCEDURE(Q) 

RETURNS(FIXED BINARY (15)); 
DECLARE Q FIXED BINARY (15); 
RETURN (Q**2); 

END FUN_2; 
END EIGG; 

In this example, the entry constant FUN_lor FUN _ 2 is assigned to the entry vari­
able FUN, after the comparison of A and B. The function reference FUN(E) calls 
the appropriate function it has a single argument. Argument E is associated with 
parameter Q. The called function returns a value to the function reference. The 
returned value is then multiplied by the value of D and the result is assigned to C. 

The following example shows a pointer-qualified and subscripted entry variable ref­
erence used in a function reference: 

CARA: PROCEDURE; 
DECLARE 1 A(10) BASED, 

5 B FLOAT BINARY (5), 
5 C ENTRY(FIXED DECIMAL (6)) 

RETURNS (FIXED BINARY (15)), 
5 D FIXED DECIMAL (6); 

DECLARE P POINTER; 
DECLARE I FIXED BINARY (15); 

P->C(3) = FUN; 
I = P->C(3}(13); 
FUN: PROCEDURE (Q) RETURNS (FIXED BINARY(15)); 

DECLARE Q FIXED DECIMAL (6), 
RI FIXED BINARY(lS); 

RETURN (RI); 
END FUN; 

END CARA; 

In this example, the entry constant FUN is assigned to element C(3) of the array of 
structures A. The function reference C(3)(13) calls function FUN; it has a single 
argument. The argument, 13, is associated with parameter Q. FUN returns a 
binary fixed-point value, which is then assigned to variable I. 

14-6 PL/I User's Guide and Reference 



CALL Statement 

CALLING A PROCEDURE 

You use the CALL statement to call a subroutine, if it is user-defmed or built-in. 

entry Jeference 
An entry constant, an entry variable reference, or a function reference that 
returns an entry value. In each case, the value of the entry reference must repre­
sent a subroutine. 

builUn_name 
The name of a built-in subroutine (see "Built-In Subroutines" on page 15-4). 

argument 
A scalar expression or an array or structure reference, which is evaluated in the 
procedure in which the call is processed. There can be no more than 32 argu­
ments in the argument list. For a function call, there is a maximum of 31 argu­
ments, because the RETURNS value is implicitly the first argument. 

If the entry reference is a function reference, it must return a subroutine that does 
not itself have parameters. This is illustrated in the third example below (procedure 
IONA). 

A subroutine call is an entry reference followed by an optional and possibly empty 
argument list that appears in a CALL statement. The entry reference must repre­
sent a subroutine. 

Whenever a subroutine is called, any arguments of the calling statement are associ­
ated with the parameters of the procedure (see "Association of Arguments and 
Parameters" on page 14-9). Control is then passed to that procedure. The subrou­
tine is therefore activated and processing begins. 

The examples that follow show entry constants, entry variables, and function refer­
ences used in subroutine calls, as well as how a subroutine interacts with the proce­
dure that calls it. In these examples, subroutines are called that are internal to the 
initial procedure. 

The following example shows an entry constant used in a subroutine call: 

Chapter 14. Procedures, Subroutines. and Functions 14-7 



CALLING A PROCEDURE 

GIGHA: PROCEDURE; 
DECLARE (A,B) FIXED BINARY (15); 

CALL SUB (A); 
B=B+l; 

SUB: PROCEDURE(C); 
DECLARE C FIXED BINARY (15); 

IF C < 12 THEN RETURN; 

END SUB; 
END GIGHA; 

In this example, the subroutine call CALL SUB(A) calls the internal subroutine 
SUB. The argument A in the subroutine call is associated with parameter C ofthe 
procedure SUB. Each reference to C in SUB is treated as a reference to A. 

When SUB ends, control passes to the first processable statement following the sub­
routine call; that is, to the statement B = B + 1. 

The following example shows an entry variable, which references a subroutine, used 
in a subroutine call: 

ISLAY: PROCEDURE; 
DECLARE SUB ENTRY (FIXED BINARY (15)) 

VARIABLE, 
A FIXED BINARY (15); 

IF A>ll THEN SUB=SUBl; 
ELSE SUB=SUB2; 

CALL SUB (A); 

SUBl: PROCEDURE (B); 
DECLARE B FIXED BINARY (15); 

IF B = 12 THEN RETURN; 

END SUBl; 
SUB2: PROCEDURE (C); 

DECLARE C FIXED BINARY (15); 

IF C > 7 THEN RETURN; 

END SUB2; 
END ISLAY; 

In this example, the internal entry constant SUB 1 or SUB2 is assigned to the entry 
variable SUB. The subroutine call CALL SUB(A) calls the internal subroutine 
SUB 1 or SUB2 as appropriate. The argument A in the subroutine call is associated 
with parameter B in SUBl or parameter C in SUB2. Each reference to B in SUBl 
or to C in SUB2 is treated as a reference to A. 

When the called subroutine ends, control passes to the ftrst statement that can be 
processed following the subroutine call; that is, to the statement END ISLA Y. 

14-8 PLfI User's Guide and Reference 



CALLING A PROCEDURE 

The following example shows an entry value that is returned by a function and 
called inunediately in a subroutine call: 

IONA: PROCEDURE; 

CALL FUN(13) 0; 
FUN: PROCEDURE(A) RETURNS (ENTRY); 

DECLARE A FIXED DECIMAL (6,2); 

IF A>9 THEN RETURN (SUB!); 
ELSE RETURN (SUB2); 

END FUN; 
SUB1: PROCEDURE; 

END SUBl; 
SUB2: PROCEDURE; 

END SUB2; 
STMTl: A = 5; 
END IONA; 

In this example, the function reference FUN(13) calls the internal function FUN. 
The argument 13 in the function reference is associated with parameter A of the 
function FUN. A dummy argument is created because the argument is a constant. 

When FUN ends, control is returned to the subroutine call together with an entry 
value (SUBI in this example), which is then called as a subroutine without parame­
ters. 

When the subroutine call CALL FUN(13)O ends, control passes to the ftrst 
processable statement following the subroutine call (STMTI in this example). 

Association of Arguments and Parameters 
When a function or subroutine is called, parameters in the parameter list corre­
spond, from left to right, to arguments in the associated argument list. The number 
of arguments and parameters must be the same for a PL/I procedure. 

IBM Extension 

For an external procedure declared with the ASSEMBLER option, or for a built-in 
subroutine, any number of arguments, from zero through to the number of parame­
ters, can be passed in the call that calls the routine, but intervening arguments 
cannot be omitted. Note that the ASSEMBLER option means any module that 
can be processed. For example, if routine SUB3 has three parameters, the following 
may be valid: 

CALL SUB3(AFID,BFIB); 

However, the following is not valid: 

CALL SUB3(AFIB"BFLOD); 

'--__________ End of IBM Extension __________ -' 

Chapter 14. Procedures, Subroutines, and Functions 14-9 



CALLING A PROCEDURE 

There is no restriction on the data type of problem data arguments that can be 
passed to problem data parameters. The data type of program control data argu­
ments must be the same as the program control data parameters to which they are 
passed. 

An argument can be associated with a parameter in any of the following ways: 

• By passing a reference to the argument, rather than its value. This is done when 
the argument is a variable whose attributes match those of the corresponding 
parameter, as described below. Any change to the value of the parameter will 
affect the value or the original argument. 

An easy way to force the creation of a dummy argument is to enclose the refer­
ence in parentheses, thereby turning it into an expression. 

• By creating a dummy argument to which the value of the argument is assigned 

J 

and passing the dummy argument. This is done in the remaining cases; that is, J' 
when the argument is: 

a constant 
an expression with operators or parentheses 
a function-reference 
a variable whose attributes do not match those of the parameter. 

The argument is converted, if necessary, to the attributes of the parameter 
before being assigned to the dummy argument. The dummy argument and the 
parameter initially have the same value as the original argument, but any change 
made to the value of the parameter affects only the value of the dummy argu­
ment. The value of the original argument is unchanged. A reference to the 
parameter is a reference to its dummy argument. 

The parameter attributes used for dummy argument creation and conversion are: 

• Those declared for the corresponding parameter, in the case of an internal pro­
cedure 

• Those specified in the corresponding parameter descriptor of the ENTRY attri­
bute, in the case of an external procedure or entry variable. 

The argument and the parameter are considered to match if they have the same data 
and alignment attributes. If a parameter string length or array bound is specified by 
an integer constant, the corresponding length or bound of the argument must be an 
integer constant with the same value. If a parameter string length or array extent is 
specified by an asterisk, the corresponding length or bounds of the argument may 
have any value. 

If a parameter is a scalar, the argument must be scalar. 

If a parameter is an aggregate, the argument must be an aggregate with identical size 
and shape and identical component data types. If an array bound of the parameter 
is specified by an integer constant, the corresponding array bound of the argument 
must be specified by an integer constant with the same value. Therefore, a dummy 
argument will never be created for an aggregate. 

14-10 PL/I User's Guide and Reference 



CALLING A PROCEDURE 

The rules that govern the creation of a dummy argument for a non-PL/I routine are 
the same as those for a PL/I procedure, except that no dummy argument is created 
for a non-PL/I routine in the following cases: 

• When a variable is passed to a parameter that is described by an asterisk. 
• When the argument is a me constant. 

For more information about passing arguments to non-PL/I routines, see 
"OPTIONS(ASSEMBLER) Attribute" on page 12-36. 

Recursive Procedures 
An active procedure that can be called from within itself or from within another 
active procedure is said to be a recursive procedure; such a call is termed recursion. 

A procedure that is called recursively should have the RECURSIVE option speci­
fied in its PROCEDURE statement for compatibility with other implementations of 
PL/I. 

The environment (that is, values of automatic variables, etc.) of every call of a recur­
sive procedure is "pushed down" at a recursive call, and "popped up" at the end of 
that call. A label constant in the current block is always a reference to the current 
calling of the block that contains the label. 

If a label constant is assigned to a label variable in a particular calling, a GO TO 
statement naming that variable in another call would restore the environment that 
existed when the assignment was processed. 

The environment of a procedure called from within a recursive procedure by means 
of an entry variable is the one that was current when the entry constant was 
assigned to the variable. Consider the following example: 

1=1; 
CALL A; /*FIRST CALLING OF A*/ 

A: PROCEDURE OPTIONS(RECURSIVE); 
DECLARE EV ENTRY VARIABLE STATIC; 
IF 1=1 THEN 

DO; 
1=2; 
EV=B; 
CALL A; /*2ND CALLING OF A*/ 

END; 
ELSE CALL EV; /*CALLS B WITH 

ENVIRONMENT OF FIRST 
CALLING OF A*/ 

B: PROCEDURE; 
GO TO OUT; 
END B; 

OUT: END A; 

The GO TO statement in the procedure B will transfer control to the END A state­
ment in the frrst calling of A, and will therefore end B and both calls of A. 

Chapter 14. Procedures, Subroutines, and Functions 14-11 



CALLING A PROCEDURE 

Effect of Recursion on Automatic Variables 

The values of variables allocated in one activation of a recursive procedure must be 
protected from change by other activations. A stack operates on a last-in ftrst-out 
basis. The most recent generation of an automatic variable is the only one that can 
be referenced. Static variables are not affected by recursion. Therefore they are 
useful for communication across recursive calls. This also applies to based variables 
and to automatic variables that are declared in a procedure that contains a recursive 
procedure. For example: 

A: PROCEDUREj 
DECLARE X ••• , 

B: PROCEDURE OPTIONS(RECURSIVE); 
DECLARE Z ••• , 

Y STATICj 
CAll Bj 

END Bj 
END Aj 

A single generation of the variable X exists throughout calls of procedure B. The 
variable Z will have a different generation for each call of procedure B. The variable 
Y can be referred to only in procedure B and will not be reallocated at each call. 

14-12 PLfI User's Guide and Reference 



BUILT-IN FUNCTIONS 

Chapter 15. Built-In Functions, Subroutines, and 
Pseudovariables 

The built-in functions, subroutines and pseudovariables are described in alphabetical 
order later in this chapter. In general, each description has the following: 

• The syntax of the reference 

• A description of the value returned by the built-in function or the target identi­
fied by the pseudo variable 

• Details of the arguments 

• Any other qualifications on the use of the function, subroutine or 
pseudovariable. 

The arguments may be expressions. The arguments are evaluated, checked for 
correct attributes, and converted if necessary to a form suitable for the built-in func­
tion, subroutine, or pseudovariable according to the rules for data conversion. 

Arguments must be scalar, except for those that indicate that they accept aggregates 
or structures (see "Aggregate Arguments" on page 15-5). 

Declaring a Built-In Function or Built-In Subroutine 
A built-in function or built-in subroutine can be declared explicitly or contextually. 
They are explicitly declared in a DECLARE statement by the BUILTIN attribute. 
A built-in function is contextually declared by a built-in function reference that con­
tains an argument list; a built-in subroutine is contextually declared by a built-in 
subroutine call with an optional argument list. 

Some built-in functions have two names: a full name and an abbreviated name. 
Each has a separate declaration (explicit or contextual) and name scope, like any 
two other names. Although both refer to the same built-in function, you can use 
both names in built-in function references in the same block. 

Built-In Functions 
A built-in function is a predefmed function that is called by a built-in function refer­
ence. A built-in function reference is a built-in function name with an optional, 
possibly empty, argument list. It represents the value returned by the built-in func­
tion. 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-1 



BUILT-IN FUNCTIONS 

If the built-in function has arguments associated with it, you must specify an argu- J 
ment list that has the number of arguments required by the built-in function. If the 
built-in function has no arguments, you may specify the empty argument list or 
omit the argument list. 

Built-in functions include the commonly used arithmetic functions and other neces­
sary or useful functions related to language facilities, such as functions for manipu­
lating strings or converting data. 

t 

Classification of Built-In Functions 
The built-in functions are classified as follows: 

Computational built-in functions 
String handling 
Arithmetic 
Mathematical 
Array handling 

Condition handling 
Storage control 
Input/output 
Miscellaneous 

String Handling Built-In Functions 

The string handling built-in functions simplify the processing of bit and character 
values. They are: 

BIT 
CHARACTER 
COPY 
INDEX 
LENGTH 

SUBSTR 
TRANSLATE 
UNSPEC 
VERIFY 

Arithmetic Built-In Functions 

The arithmetic built-in functions control the conversion of base, scale, and preci­
sion, and determine the properties of arithmetic values. The arithmetic built-in 
functions are: 

ABS MAX 
BINARY MIN 
DECIMAL MOD 
DIVIDE ROUND 
FIXED SIGN 
FLOAT TRUNC 

Some of these functions derive the data type of their results from one or more argu­
ments. When the base or scale of the arguments differ, they are converted to their 
common base and scale. If the scales differ, fixed-point is converted to floating­
point. If the bases differ, decimal is converted to binary. 

15-2 PL/I User's Guide and Reference 



BUILT-IN FUNCTIONS 

Except where otherwise stated, picture arguments are converted to fixed-point 
decimal. 

To determine the target precision of an argument that is to be converted to an arith­
metic type, refer to Figure 12-4 on page 12-27. If the argument is: 

• Bit, use FIXED BINARY(31) as the source. 
• Character, use FIXED DECIMAL(15,O) as the source. 

For functions that give a bfnary fixed result or a floating-point result, the precision 
specilled does not cause rounding or truncation of the result. It does, however, 
determine the storage requirements of the result (see Figure 5-1 on page 5-10). 

Mathematical Built-In Functions 

The mathematical built-in functions provide mathematical operations. They are: 

ACOS 
ASIN 
ATAN 
ATAND 
ATANH 
COS 
COSD 
COSH 
EXP 
LOG 

LOG2 
LOG10 
SIN 
SIND 
SINH 
SQRT 
TAN 
TAND 
TANH 

These functions operate on floating-point values to produce a floating-point result. 
Any arithmetic argument that is not floating-point is converted (see "Data 
Conversion" on page 5-27). 

The range of values for each argument of the mathematical built-in functions can be 
found listed with the function. 

Array Handling Built-In Functions 

The array handling built-in functions operate on array arguments and return a scalar 
value. The array may have inherited dimensions. The array handling built-in func­
tions are: 

DIMENSION 
HBOUND 

LBOUND 

Condition Handling Built-In Functions 

The condition handling built-in functions allow you to investigate the cause of a 
raised condition. Use of a condition handling built-in function is in context when 
within an on-unit or dynamic descendant of an on-unit whose activation sets the 
value of the function. This is described for each condition handling built-in func­
tion below. See also "Scope of Values of Condition Handling Built-In Functions" 
on page 10-4. The condition handling built-in functions are: 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-3 



BUILT-IN SUBROUTINES 

ONCODE 
ONFILE 

ONKEY 

Storage Control Built-In Functions 

The storage control built-in functions allow you to identify the location of a vari­
able, or create a null pointer value, or calculate the amount of storage (in bytes) 
allocated to a variable. The storage control built-in functions are: 

ADDR STORAGE 
NULL 

Input/Output Built-In Functions 

The input/output built-in functions allow you to detennine the current state of a 
me. They are: 

LINENO 
SAMEKEY 

Miscellaneous Built-In Functions 

The built-in functions that do not fit into any of the foregoing classes are: 

DATE 
PLIRETV 

Built-In Subroutines 

PLISHUTDN 
TIME 

A built-in subroutine is a predefined routine that provides access to facilities of the 
operating system. It is called by a CALL statement (see "CALL Statement" on 
page 14-7). 

You can explicitly declare a built-in name to have the BUILTIN attribute (see 
"BUILTIN Attribute" on page 12-36). 

The built-in subroutines, and their uses, are: 

r----------- IBM Extension -----------, 

PLIDUMP 

PLIRETC 

Gives a symbolic dump of the variables of the currently running 
PL/I program. 

Allows a program to receive a PL/I program return code. 

'---_________ End of IBM Extension _________ ---' 

PLICOMMIT 

15-4 PL/I User's Guide and Reference 

Establishes a commitment boundary and processes commitment 
control functions. 

J 



Pseudovariables 

PLIIOFDB Copies information from the system-deftned I/O feedback area. 

PLIOPNFDB Copies the system defmed open feedback area. 

PLIRCVMSG Returns information about the original message that caused the 
calling of an on-unit. 

PLIROLLBACK Reestablishes a previous commitment boundary and processes 
commitment control functions. 

You can explicitly declare a built-in name to have the BUILTIN attribute (see 
"BUILTIN Attribute" on page 12-36). 

Pseudovariables represent targets for assignments. A pseudo variable can appear 
only on the left of the assignment symbol in an assignment statement. 

The pseudo variables are SUBSTR and UNSPEC. 

Pseudovariables cannot be nested. For example, the following statement is not 
valid: 

UNSPEC(SUBSTR(A,2,1)) = '04'B4; 

Aggregate Arguments 
The built-in functions that can accept aggregate arguments are ADDR and 
STORAGE, and if the aggregate is an array, DIMENSION, HBOUND, and 
LBOUND. 

Empty Argument Lists 
Some built-in functions do not require arguments. You must declare these either 
explicitly with the BUILTIN attribute or contextually by including an empty argu­
ment list in the built-in function reference, as in ONKEYO. The name cannot oth­
erwise be recognized as a built-in function name. 

You specify an empty argument list by following the function name with an open 
parenthesis followed immediately by a close parenthesis. 

Descriptions of Built-In Functions, Subroutines and Pseudovariables 

ABS(x) 

Unless otherwise noted, the following items are built-in functions. Options enclosed 
within square brackets are optional. 

ABS returns the absolute value of x. 

x 
An arithmetic or picture expression. 

The value returned by ABS is the absolute value of x. The result has the base, 
scale, and precision of x. 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-5 



ACOS(x) 

ADDR(x) 

ASIN(x) 

ACOS returns a floating-point value that represents the arc cosine, in radians, of x. 

x 
An arithmetic or picture expression, where ABS(x) S 1. 

The result is in the range: 

o S ACOS(x) =::;; pi 

and has the base and precision of x. 

AD D R returns a pointer value that identifies the location of the variable x in 
storage. 

x 
A reference to a variable of any data type, data organization, alignment, and 
storage class. In a reference to an array with inherited dimensions, subscripts 
for the inherited dimensions must be specified. 

H x is a reference to: 

• An aggregate, the returned value identifies the ftrst structure fteld or array 
element. 

J 

• A component of an aggregate, the returned value takes into account subscripting. ., ...•. 
and structure qualification. ..." 

• A based level-l variable, the result is the value of the pointer that explicitly 
qualifies x (if it appears) or that is associated with x in its declaration. 

• A parameter for which a dummy argument has been created, the returned value 
identifies the dummy argument. 

• A varying-length character string, the returned value points to the half word 
preftx at the beginning of the string. 

ASIN returns a floating-point value that represents the arc sine, in radians, of x. 

x 
An arithmetic or picture expression, where ABS(x) S 1. 

The result is in the range: 

-pi/2 =::;; ASIN(x) =::;; pi/2 

and has the base and precision of x. 

J 

15-6 PLjI User's Guide and Reference 



AT AN (x[,y]) 

ATAND(x[,y]) 

ATANH(x) 

AT AN returns a floating-point value that represents the arc tangent, in radians, of X 

or of the ratio x/y. 

x,y 
Arithmetic or picture expressions. 

If you omit y, the result has the base and precision of x and is in the range: 

-pi/2 < ATAN(x) < pi/2 

If you specify x and y, they must not both be zero. The result for all other values 
of x and y has the common base of the arguments. x and y are converted to the 
base and scale of the result. The result precision is the larger of those of the con­
verted arguments. The value is given by: 

ATAN(x,y) for y>0 
pij2 for y=0 and x>0 
-pi/2 for y=0 and x<0 
pi+ATAN(x,y) for y<0 and x~0 

-pi+ATAN(x,y) for y<0 and x<0 

Therefore ATAN(x,y) returns the value, in the range 

-pi < ATAN(x,y) =:;; pi 

of the point with rectangular coordinates y and x. 

AT AND returns a floating-point value that represents the arc tangent, in degrees, of 
x or of the ratio x/y. 

x,y 
Arithmetic or picture expressions. 

If you specify x alone, the result has the base and precision of x and is in the range: 

-90 < ATAND(x) < 90 

If you specify x and y, the value of the result is given by: 

(lB0/pi) * ATAN(x,y) 

See "AT AN(x[,y])" for the requirements of the arguments and the attributes ofthe 
result. 

AT ANH returns a floating-point value that has the base and precision of x, and 
represents the hyperbolic arc tangent of x, in radians. 

x 
An arithmetic or picture expression. 

The result has a value given by: 

LOG((1+x)j(1-x))j2 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-7 



BINARY(x[,p[,O]]) 

BIT(x[,y]) 

Abbreviation: BIN 

BINARY converts x to a binary value with a precision specified by p. 

x 

p 

An arithmetic or string expression. 

An integer constant that specifies the number of digits of the result. It must not 
exceed the implementation limit (31 for fixed-point or 53 for floating-point). 

You must specify p if x is fixed-point decimal or pictured with a nonzero scale 
factor. 

If you omit p, the precision ofthe result is the converted precision of x (see 
Figure 12-4 on page 12-27). 

If x is arithmetic, the scale of the result is that of x. If x is a string, the scale of the 
result is fixed-point binary. 

BIT converts x to a bit string with a length specified by y. 

x 

y 

An arithmetic or string expression. When a character string expression is usea, 
it must contain only ones and zeros. 

An integer expression with a non-negative value. If you omit y, BIT determines 
the length according to the rules for type conversion (see "Data Conversion" on 
page 5-27). If y = 0, the result is a null bit string. 

CHARACTER(x[,y]) 

COPY(x,y) 

Abbreviation: CHAR 

CHARACTER converts x to a character string with a length specified by y. 

x 

y 

An arithmetic or string expression. 

An integer expression with a non-negative value. If you omit y, CHARACTER 
determines the length according to the rules for type conversion (see "Data 
Conversion" on page 5-27). If Y = 0, the result is a null character string. 

COpy returns a string consisting of y concatenated copies of the string x. 

x 
A string expression. 

15-8 PL/I User's Guide and Reference 

J 



L 

COS(x) 

COSD(x) 

COSH(x) 

DATE[O] 

y 
An integer expression with a non-negative value that specifies the number of 
repetitions. 

If y is zero, the result is a null string. 

COS returns a floating-point value that has the base and precision of x and repres­
ents the cosine of x, in radians. 

x 
An arithmetic or picture expression whose value is in radians. 

COSD returns a floating-point value that has the base and precision of x and repres­
ents the cosine of x, in degrees. 

x 
An arithmetic or picture expression whose value is in degrees. 

COSH returns a floating-point value that has the base and precision of x, and 
represents the hyperbolic cosine of x, in radians. 

x 
An arithmetic or picture expression. 

The result is in the range: 

+ 1 s COSH(x) S + infInity 

DATE returns a character string of length 6, in the fonn yymmdd, where: 

yy the last two digits of the current year 
mm the current month 
dd the current day 

DECIMAL(x[,p[,q]]) 
Abbreviation: DEC 

DECIMAL converts x to a decimal value with a precision specified by p and q. 

x 

p 

An arithmetic or string expression. 

An integer constant that specifies the number of digits of the result. It must not 
exceed the implementation limit (15 for fixed-point or 16 for floating-point). 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-9 



DIMENSION(x,y) 

DIVIDE(x,y,p[,q]) 

q 
An integer constant that specifies the scale factor of the result. For a fixed-point 
result, if you specify p and omit q, a scale factor of zero is assumed. For a 
floating-point result, q must be omitted. 

If you omit both p and q, the precision of the result is the converted precision of x 
(see Figure 12-4 on page 12-26). 

If x is arithmetic, the result has the scale of x. If x is a string, the scale of the result 
is decimal fixed-point. 

Abbreviation: DIM 

DIMENSION returns a fixed-point binary value of precision (15,0) that specifies the 
extent of dimension y of array x. 

x 
An array reference. The array can have inherited dimensions. 

y 
An integer constant that specifies a particular dimension of x. 

x must not have fewer than y dimensions. y must be greater than or equal to 1. 

As the lower bound of an array dimension is always 1, the extent of the dimension 
is the same as its upper bound. Therefore DIM(x,y) is equal to HBOUND(x,y). 

DIVIDE returns the result of x divided by y. The precision of the result is specified 
by p and q. 

x 

y 

p 

q 

An arithmetic or picture expression that represents the dividend. 

An arithmetic or picture expression that represents the divisor. If y = 0, the 
zero divide condition is raised. 

An integer constant that specifies the number of digits to be maintained 
throughout the operation. It must not exceed the maximum number of digits 
allowed for the base and scale of the result. 

An integer constant that specifies the scale factor of the result, which must be 
fixed-point decimal. If you omit q, the DIVIDE built-in function assumes a 
scale factor of zero. q must be zero, if specified, for a fixed-point binary result 
or omitted for a floating-point result. 

If either x or y is fixed-point binary, the other expression must not be fixed-point 
decimal with a nonzero scale factor. 

15-10 PL/I User's Guide and Reference 



EXP(x) 

FIXED(x,p[,q]) 

FLOAT(x,p) 

HBOUND(x,Y) 

The base and scale of the result are the common base and scale of x and y. 

EXP returns a floating-point value that represents the base e of the naturalloga­
rithm system raised to the power of x. 

x 
An arithmetic or picture expression that is the power to which the base is raised. 

The result has the base and precision of x. 

FIXED converts x to a fixed-point value with a precision specified by p and q. 

x 

p 

q 

An arithmetic or string expression. 

An integer constant that specifies the number of digits of the result. It must not 
exceed the implementation limit (15 for decimal or 31 for binary). 

An integer constant that specifies the scale factor of the result. If you omit q, 
the FIXED built-in function assumes a scale factor of zero. 

For a binary result, q must be zero, if specified. 

If x is a string, the base of the result is binary for a bit string and decimal for a 
character string. Otherwise, the result has the base of x. 

FLOAT converts x to a floating-point value with a precision specified by p. 

x 

p 

An arithmetic or string expression. 

An integer constant that specifies the number of digits of the result. It must not 
exceed the implementation limit (16 for decimal or 53 for binary). 

If x is a string, the base of the result is binary for a bit string and decimal for a 
character string. Otherwise the result has the base of x. 

HBOUND returns a fixed-point binary value of precision (15) that specifies the 
upper bound of dimension y of array x. 

x 
An array reference. The array can have inherited dimensions. 

y 
An integer constant that specifies a particular dimension of x. 

x must not have fewer than y dimensions. y must be greater than or equal to 1. 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-11 



INDEX(x,Y) 

LBOUND(x,Y) 

LENGTH(x) 

LlNENO(x) 

LOG(x) 

INDEX returns a binary fixed-point value of precision (15), which indicates the 
starting position within string x of a substring identical to string y. 

x 
A string expression that specifies the string searched. 

y 
A string expression that specifies the string searched for. 

If y does not occur in x, or if either x or y has zero length, INDEX returns the 
value zero. 

If y occurs more than once in x, INDEX returns the starting position of the left­
most occurrence. 

Both arguments must be bit strings or both must be character strings. 

LBOUND returns a fixed-point binary value of precision (15) that specifies the 
lower bound of dimension y of the array x. This value is always 1. 

x 
An array reference. The array can have inherited dimensions. 

y 
An integer constant that specifies a particular dimension of x. 

x must not have fewer than y dimensions. y must be greater than or equal to 1. 

LENGTH returns a fixed-point binary value of precision (15) that specifies the 
length of string x. 

x 
A bit expression or a character expression. 

LINENO returns a fixed-point binary value with precision (15) that specifies the 
current line number of me x. 

x 
A me constant. The ftle must be open and have the PRINT attribute. 

LOG returns a floating-point value that has the base and precision of x and repres­
ents the natural logarithm (that is, the logarithm to the base e) of x. 

x 
An arithmetic or picture expression greater than zero. 

15-12 PLjI User's Guide and Reference 

J 

J 



LOG2(x) 

LOG10(x) 

MAX(x1,x2) 

MIN(x1,x2) 

LOG2 returns a floating-point value that has the base and precision of x and repres­
ents the binary logarithm (that is, the logarithm to the base 2) of x. 

x 
An arithmetic or picture expression greater than zero. 

LOG 1 0 returns a floating-point value that has the base and precision of x and 
represents the common logarithm (that is, the logarithm to the base 10) of x. 

x 
An arithmetic or picture expression greater than zero. 

MAX returns the greater of xl and x2 

xl,x2 
Arithmetic or picture expressions. 

If either xl or x2 is fixed-point binary, and the other is fixed-point decimal or 
picture, the other must have a scale factor of zero. 

The result has the common base and scale of xl and x2. The arguments are con­
verted to the base and scale of the result. 

If the converted arguments are fixed-point with precisions: 

(pl,ql), (p2,q2) 

the precision of the result is given by: 

p = MIN(n,MAX(pl-ql,p2-q2) + MAX(ql,q2)) 
q = MAX(ql,q2) 

where n is the maximum number of digits allowed (decimal 15, binary 31). For 
binary, ql = q2 = O. 

If the converted arguments are floating-point with precisions: 

pl,p2 

the precision of the result is given by: 

p = MAX(pl,p2) 

MIN returns the smaller of xl and x2. 

xl,x2 
Arithmetic or picture expressions. 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-13 



MOD(x,y) 

NULL[O] 

ONCODE[O] 

If either xl or x2 is fixed-point binary, and the other is fixed-point decimal or 
picture, the other must have a scale factor of zero. 

The result has the common base and scale of xl and x2. The arguments are con­
verted to the base and scale of the result. 

The precision of the result is the same as for the MAX built-in function. 

MOD returns the remainder obtained by dividing x by y, with the sign of y. If 
y= 0, MOD returns x. 

X,Y 
Arithmetic or picture expressions. 

If either xl or x2 is fixed-point binary, and the other is fixed-point decimal or 
picture, the other must have a scale factor of zero. 

For y-, = 0, the result of MOD is x-y+floor(x/y), where floor(x/y) is the largest 
integer less than or equal to x/y. 

The result has the common base and scale of x and y. The arguments are converted 
to the base and scale of the result. 

J 

If the result is floating-point, the result precision is the greater of those of x and Y'} 
If the result is fixed-point, the result precision is given by: ,.." 

p = MIN(n,p2-q2+MAX(ql,q2)) 
q = MAX(ql,q2) 

where (pl,ql) is the precision of x and (p2,q2) that of y after any necessary conver­
sion, and n is the maximum number of digits allowed (15 for decimal or 31 for 
binary). For binary, q1 = q2 = 0. 

NULL returns the null pointer value. 

The null pointer value cannot identify any variable. 

ONCODE returns a fixed-point binary value of precision (15), which is the current 
condition code. 

Whenever an on-unit for a condition is entered, the condition code is set to a value 
that describes the situation that raised the condition. If ONCODE is used out of 
context, it returns zero. 

Conditions and condition codes are described in Appendix D, "Conditions and 
Condition Codes." Condition handling is described in Chapter 10, "Condition 
Handling Statements." 

15-14 PLjI User's Guide and Reference 



L 

ONFILE[O] 

ONKEY[()] 

ONFILE returns a character string, which is the name of the fIle for which an 
input/output or conversion condition has been raised. 

The value of ONFILE is set when an on-unit is entered for any of the following 
conditions: 

• An input/output condition 
• The conversion condition raised during an input/output operation 
• The ERROR condition raised as the implicit action for such a condition. 

If ONFILE is used out of context, it returns the null character value. 

ONKEY returns a character value, which is the key of the record for which an 
input/output condition has been raised. The value of ONKEY is set whenever an 
on-unit is entered for an input/output condition (except ENDFlLE) caused by an 
input/output statement that contained the KEY or KEYFROM(expression), or for 
the ERROR condition raised as implicit action for such a condition. If the KEY or 
KEYFROM(expression) is not specified, or if KEYFROM(+) is specified, ONKEY 
returns a null character value. The variable returned may contain numeric and char­
acter fields. For CONSECUTIVE fIles, the BIN(31) value is converted to a char­
acter value and returned. For fIles which contain multiple key fields, each field is 
concatenated with the next field. Numeric fields appear in internal form unaligned. 

The result is determined according to the following rules: 

• The result is the key of the record that was processed by the input/output state­
ment that caused the error. 

• For the READ statement, the value in the KEY option is returned. If the value 
for NBRKEYFLDS in the OPTIONS option is less than the maximum for the 
record, the full KEY value may not be returned. 

• For the WRITE statement, the value in the KEYFROM option is returned. 

• For the REWRITE or DELETE statement with the KEY option specified, the 
value in the KEY option is returned. 

Note: If the duplicate key condition is raised by the REWRITE statement, the 
key value in the key option, and the key value imbedded in the record may not 
be the same, therefore the ONKEY built-in function may not return the value 
of the duplicate key. 

If ONKEY is used out of context, it returns the null character value. 

PLICOMMIT Built-In Subroutine 
The PLICOMMIT built-in subroutine processes commitment control functions. 

-CALL-PLICOMMIT-,----------,---·~ 

L(Character expressionlJ ' 

Chapter 1 S. Built-In Functions, Subroutines, and Pseudovariables 15-15 



character_expression 
A character expression that can be converted to a non-varying character vari­
able. A character string of zero length is equivalent to not specifying the argu­
ment. 

For more information about how to use PLICOMMIT, see "Commitment 
Control" on page 8-58. 

IBM Extension 

PLiDUMP Built-In Subroutine 
The PLIDUMP built-in subroutine produces a symbolic dump of the variables of 
the currently running PL/I program. 

-CALL-PLIDUMP--r-----------------.---j-­

L(OoPtions listo--r[--------]--r-)J 

,user_identification 

The program variables that are dumped depend on the options you specify when 
you call PLIDUMP. The dump also contains: 

• A list of any ONCODE, ONFILE, or ONKEY data which is relevant 
• The date and time of the dump 
• The statement number from which the dump was called. 

You can also request this dump whenever the program encounters a system error 
that is not handled by OS/400 or by the program. 

For a complete description of how to use PLIDUMP, see "Using PLIDUMP" on 
page 3-14. 

L-__________ End of IBM Extension __________ --' 

PLIIOFDB Built-In Subroutine 
The PLIIOFDB built-in subroutine copies the system defmed I/O feedback area. 

-CALL-PLIIOFDB(file_constant,reference)-j---'~ 

file_constant 
The declaration ftle name. 

reference 
Either a non-varying scalar or a connected structure reference that will contain 

J 

the feedback data. If a structure reference is used, all binary fields in the struc- . .'. 
ture should be declared UNALIGNED. If the length of the reference supplied .." 

15-16 PL/I User's Guide and Reference 



is less than the feedback data available, the data is truncated. If the length is 
greater than the feedback data available, the remaining portion of the reference 
is not modified. 

The system defmed I/O feedback area contains information about the last I/O oper­
ation processed, including: 

• The last record format read 
• The major and minor return codes from communications and display processing 
• The last data base record key read. 

The system defmed I/O feedback area consists of a common area and a device­
specific area. 

The structure of these areas is shown in the Programming: Control Language Pro­
grammer's Guide. 

PLlOPNFDB Built~ln Subroutine 
The PLIOPNFDB built-in subroutine copies the system defmed open feedback 
area . 

• ~CALL--PLIOPNFDB(file_constant,reference)--;~ 

file_constant 
The declaration me name. 

reference 
Either a non-varying scalar or a connected structure reference that will contain 
the feedback data. If a structure reference is used, all binary fields in the struc­
ture should be declared UNALIGNED. If the length of the reference supplied 
is less than the feedback data available, the data is truncated. If the length is 
greater than the feedback data available, the remaining portion of the reference 
is not modified. 

The first time a ftle is opened, system feedback information about the ftle is copied 
into the open feedback area. The content of the open feedback area does not 
change as long as the me status does not change. 

The open feedback area contains information such as: 

• The name of the library, ftle, and member opened 
• The type of me opened 
• For data base files: 

Duplicate keys allowed 
- Duplicate key order 
- Commitment control information. 

lbe structure of the system defmed open feedback area is shown in the Program­
ming: Control Language Programmer's Guide. 

Chapter IS. Built-In Functions, Subroutines, and Pseudovariables 15~17 



PLIRCVMSG Built-In Subroutine 
PLIRCVMSG returns the message identifier, message data record and message refer­
ence key for the last escape or notify message that resulted in the calling of an 
on-unit. PLIRCVMSG is intended for use in an on-unit to determine the source of 
the error. This may be useful because multiple system messages may map to one 
PL/I condition code. 

~CALL--PLIRCVMSG(message_id,message_data,message_reference_key)--;~ 

messageJd 
A character variable that will contain the system message identifier of the last 
escape or notify message. This should be seven characters long. 

message_data 
A character variable that will contain the message data record. The message 
data record contains the substitution values (in a single character string) that 
were used in the text of the received message. This data varies with each 
message. If the length of the variable supplied is less than the message data 
available, the data will be truncated. If the length is greater than the message 
data available, the remaining portion of the variable will not be modified. 

messageJeference_key 
A character variable that will contain the message reference key that identifies 
the message. This should be four characters long. 

PLIRCV:Y1SG will return the OS/400 escape or notify message that called the 
on-unit. STATUS messages cannot be received from a program message queue. If 
a STATUS message is the cause of the on-unit call, PLIRCVMSG will set the 
message identifier field to blanks. If the PL/I compiler is originating the condition 
the message returned will be a PLO defmed message. 

If the original message was CPF9999, PLIRCVMSG will return the message identi­
fier, message data record, and message reference key of the escape message that 
caused CPF9999. 

If PLIRCVMSG is not used within an on-unit, it will return blanks in the variables. 
If PLIRCVMSG is called multiple times within an on-unit, it will return the same 
values as the previous use. 

IBM Extension 

PLIRETC Built-In Subroutine 
PLIRETC passes a return code from a called PLO program to the program that 
called the PL/I program. The return code is passed in the return code field in the 
Work Control Block (WCB). This allows the passing of the return code either for 
examination by a program (BASIC, CL, PL/I, RPG) in a subsequent job step or it may 
be used to indicate conditions that were encountered while running. .j 

15-18 PL/I User's Guide and Reference 



L 

PLlRETV[()] 

~CALL--PLIRETC(expression)--i~ 

expression 
An expression which is converted to FIXED BINARY (15,0). 

The return code generated by a PL/I program consists of a BIN(15) field and is 
passed to PL/I program management (PL/I) with a call to PLIRETC. At the begin­
ning of a run-unit the return code field in the weB is set to zero. Thereafter PL/I 

will only store a value in the weB when a run-unit ends abnormally, or when the 
program stores a specified return code by calling PLIRETC. 

If PL/I ends abnormally the return code indicates the way in which the program 
ended, unless an error is detected which prevents the PL/I program management rou­
tines from operating correctly. Therefore if PL/I ends normally any value set using 
PLIRETC or which was set by a called lower level procedure will remain in the 
return code in the weB. 

When a PL/I program calls PLIRETC, the argument (return code value) can be 
either a constant or a variable with the attributes FIXED BINARY (15,0). 

The following table shows the values and meanings of the return codes generated by 
the PL/I program management routines. Any values greater than 0, other than those 
in the following list was set either by PLIRETC or by a called procedure. 

Return 
Code 

o 
2 

3 

Meaning 

Normal ending. 

STOP statement, or a call to PLIDUMP with the S option. 

ERROR condition raised and run-unit ended with return from ERROR 
on-unit or no active ERROR on-unit was found. 

4 PL/I program management routines detected an error which did not 
allow the ERROR on-unit to be called. 

'--__________ End of IBM Extension __________ -' 

PLIRETV returns a fixed-point binary value of precision (15,0) that is the PL/I 

return code. 

The value of the return code is one of the following: 

• The last value specified by a CALL PLIRETC statement. 
• The value returned by an external procedure. 
• Zero. 

An empty argument list may be used to declare the function as BUILTIN. 

Chapter 15. Built·In Functions, Subroutines, and Pseudovariables 15-19 



PLiROLLBACK Built-In Subroutine 

PLISHUTDN[O] 

ROUND(x,Y) 

The PLIROLLBACK built-in subroutine processes the rollback function by rees­
tablishing a previous commitment boundary. 

I-CALL -PLIROLLBACK-j-----

For more information on PLIROLLBACK, see "Commitment Control" on 
page 8-58. 

PLISHUTDN returns a BIN(15) FIXED variable which indicates the system status 
request to end the program. 

A value of 127 indicates that a controlled cancel is pending. A value of 0 indicates 
that no cancel is pending. 

An empty argument list may be used to declare the function as BUILTIN. 

If the CL command ENDJOB is issued with *CNTRLD specified as the OPTION 
parameter, the job does not end until the length of time specified in the DELAY 
parameter has passed. 

The value of x is rounded at the digit position specified by y. 

x 

y 

A fixed-point decimal or picture expression with a nonzero scale factor. 

A non-negative integer constant that specifies the digit position at which the 
value is rounded; that is, at digit y to the right of the decimal point. 

The precision of the fixed-point result is given by: 

p = MAX(1,MIN(p-q+l+y,15)) 
q = y 

where (p,q) is the precision of x. 

The result has the base and scale of x. 

15-20 PL/I User's Guide and Reference 



SAMEKEY(x) 

SIGN(x) 

IBM Extension 

The SAMEKEY built-in function is included for compatibility with other imple­
mentations of PL/I. AS/400 allows you to fmd a common fIle key by specifying 
POSITION (NXTEQL) on the OPTIONS option of an input/output statement 
(see "POSITION Parameter" on page 7-17). 

SAMEKEY returns a bit value of length 1 that indicates if a record that has been 
accessed is followed by another with the same key. 

x 
A fIle constant. The fIle must have the RECORD attribute. 

Upon successful completion of an input/output operation on fIle x or inunediately 
before raising the ERROR condition, the value accessed by SAMEKEY is set to 
, I' B if the record processed is followed by another record with the same key. Oth­
erwise, the value is set to '0' B. 

The value accessed by SAME KEY is also set to '0' B if: 

• The fIle does not have the attributes INDEXED, RECORD, and INPUT or 
UPDATE. 

• An input/output operation that raised a condition other than ERROR also 
changed or lost fIle positioning. 

• The fIle is not open. 

• A current fIle position does not exist. 

• A current fIle position is the last record in the fIle in the direction of data 
transfer. 

Note: a return value of ' I' B only guarantees that the next record has the same key 
at the time the value was returned. It does not guarantee that the key will be the 
same when you access it, or that you will be able to access the record even if the 
key is the same. 

'---__________ End of IBM Extension __________ ~ 

SIGN returns a fixed-point binary value of precision (15) that indicates if x is posi­
tive, zero, or negative. 

x 
An arithmetic or picture expression. 

The returned value is given by: 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-21 



SIN(x) 

SIND(x) 

SINH(x) 

SQRT(x) 

STORAGE(x) 

Value ofx Value Returned 

x > 0 
x = 0 
x < 0 

+1 
o 

-1 

SIN returns a floating-point value that has the base and precision of x and 
represents the sine of x, in radians. 

x 
An arithmetic or character expression with a value measured in radians. 

SIND returns a floating-point value that has the base and precision of x and 
represents the sine of x in degrees. 

x 
An arithmetic or character expression with a value measured in degrees. 

SINH returns a floating-point value that has the base and precision of x, and 
represents the hyperbolic sine of x, in radians. 

x 
An arithmetic or character expression with a value measured in radians. 

SQRT returns a floating-point value that has the base and precision of x and 
represents the positive square root of x. 

x 
An arithmetic or character expression. The value of x must not be less than 
zero. 

IBM Extension 

Abbreviation: STG 

STORAGE returns a fixed-point binary value of precision (31,0) giving the 
implementation-defined storage, in bytes, allocated to a variable x. 

x 
A connected variable of any data type, data organization, alignment, and storage 
class. 

15-22 PL/I User's Guide and Reference 



SUBSTR(x,Y[,Z]) 

If x is a varying-length string, the value returned by STORAGE(x) is the sum of the 
length-prefix of the string and the number of bytes in the maximum length of the 
string. If x is an aggregate containing varying-length strings, the value returned by 
STORAGE(x) is the sum of the length prefixes of the strings and the number of 
bytes in the maximum lengths of the strings. 

'--__________ End of IBM Extension __________ -' 

The SUBSTR built-in function returns the substring, specified by y and z, of string 
x. 

x 

y 

z 

A bit or character expression. 

An integer expression that indicates the starting position of the substring in x. 

An integer expression that specifies the length (number of bits or characters) of 
the substring in x. If z is a negative constant then a compile time error will 
occur. If z is the zero constant or is a variable and is assigned a negative value, 
then a null string is returned. If z is omitted, the substring extends to the end of 
x. 

Assuming that x, y, and z represent their corresponding values, the following 
relationship is true: 

1 ~ y ~ length(x) + 1 

o ~ z ~ length(x)-y + 1 

Therefore, the starting position y may be one position after the end of the string if 
the length of the substring is zero. 

SUBSTR(x,y[,Z]) Pseudovariable 
The SUBSTR pseudo variable identifies the substring, specified by y and z, of the 
string variable x. You can use the SUBSTR pseudo variable as the target in an 
assignment statement to assign a string value to the substring. 

x 

y 

z 

A reference to a string variable. 

An integer expression that indicates the starting position of the substring in x. 

An integer expression that specifies the length of the substring in x. If x is a 
negative constant then a compile time error will occur. If z is the zero constant 
or is a variable and is assigned a negative value, then a null string is returned. If 
z is omitted, the substring extends to the end of x. 

The same relationships must hold for the arguments as are given for the S UBSTR 
built-in function. 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-23 



TAN(x) 

TAND(x) 

TANH(x) 

TIME[O] 

TAN returns a floating-point value that has the base and precision of x and 
represents the tangent of x, in radians. 

x 
An arithmetic or picture expression whose value is in radians. 

T AND returns a floating-point value that has the base and precision of x and 
represents the tangent of x, in degrees. 

x 
An arithmetic or picture expression whose value is in degrees. 

TANH returns a floating-point value that has the base and precision of x, and 
represents the hyperbolic tangent of x, in radians. 

x 
An arithmetic or picture expression whose value is in radians. 

The range of the result is: 

-1::::;; TANH(x) ::::;; + I 

TIME returns a fixed-length character string of length 9, hhnunssttt, where: 

hh the current hour 
mm the current minute 
ss the current second 
ttt the current millisecond 

TRANSLATE(x,y[,Z]) 
TRANSLATE returns a character string of the same length as x; the characters are 
translated according to the correspondence described by y and z. 

x 

y 

z 

A character expression that specifies the string translated. 

A character expression that specifies the characters into which to translate. 

A character expression that specifies the characters from which to translate. If z 
is omitted, a string of 256 characters is assumed. The string contains the 
EBCDIC characters in ascending collating sequence (hexadecimal 00 through 
FF). 

J 

y is padded with blanks or truncated on the right to match the length of z. ..) 

15-24 PL/I User's Guide and Reference 



L 

TRUNC(x) 

UNSPEC(x) 

TRANSLATE translates each character of x as follows: 

A character that occurs in z is translated into the character that occurs at the corre­
sponding position in y. Any character that does not occur in z is left unchanged. 
(If a character occurs in z more than once, the leftmost occurrence is considered.) 

For example: 

DECLARE (W, X) CHAR (3); 
X='ABC I; 
W = TRANSLATE (X, 'TAR', 'DAB'); 

In the above example, W is equal to I ARC I • 

TRUNC returns an integer that is the truncated value of x. If x is greater than or 
equal to zero, the result is the largest integer less than or equal to x. If x is negative, 
the result is the smallest integer greater than or equal to x. 

x 
An arithmetic or picture expression. 

The base, scale, and precision of the result match those of x, except when x is fixed­
point decimal with precision (p,q). The precision of the result is given by: 

p = MIN(15,MAX(p-q+l,1)) 
q = 0 

The UNSPEC built-in function returns a bit value that is the internal coded form of 
the value represented by x. 

x 
A reference to a scalar variable. 

The length of the returned bit value depends on the data type of x. If x is of type 
BIT(n), the length of the returned value is n. For any other data type, the length of 
the returned value is 8+n bits, where n is the length of x in bytes, as defmed in 
Figure 5-1 on page 5-10. 

UNSPEC(x) Pseudovariable 
The UNSPEC pseudo variable identifies a target that is variable x considered as a bit 
variable. 

x 
A reference to a scalar variable. 

The length of the bit variable is the same as for the UNSPEC built-in function. If 
UNSPEC(x) is used as the target in an assignment statement, the source value is 
converted to a bit value. The bit value is considered the internal representation of 
the value of x. It is assigned directly to x, without conversio~, and is padded or 
truncated to the length of UNSPEC(x) according to the rules for bit assignment. 

Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-25 



VERIFY(x,Y) 
VERIFY returns a fixed-point binary value of precision (15) that indicates the posi­
tion in x of the leftmost character that is not in y. If all the characters in x appear 
in y, VERIFY returns a value of zero. If x is the null string, VERIFY returns a 
value of zero. If x is not the null string and y is the null string, VERIFY returns a 
value of 1. 

x 
A character expression that specifies the string scanned. 

y 
A character expression that specifies the characters searched for. 

15-26 PL/I User's Guide and Reference 

J 



L 

COMPILER OVERVIEW 

Appendix A. Compiler Service Information 

This appendix is provided for PL/I service personnel to use when investigating PL/I 

compiler problems and provides the following information: 

• Compiler overview 
• Compiler debugging options 
• IRP layout 
• Quantitative limits of the compiler. 

PL/I programmers can also use this information to investigate PL/I compiler prob­
lems on their own before, or instead of, calling for service. 

Compiler Overview 
This section provides the following compiler information: 

• How the compiler works 
• Compiler description 
• Description of major compiler data area 
• Organization of compiler error messages. 

This section provides an internal view of the compiler. If you need an external view 
to investigate a PL/I problem, see Chapter 2, "Creating, Compiling, and Running 
Your PL/I Program," which describes entering a PL/I program into the system, 
compiling your program and using the listings that the compiler produces. 

Figure A-Ion page A-2 summarizes how a PL/I source program is compiled into a 
program object. 

Appendix A. Compiler Service Information A-I 



COMPILER OVERVIEW 

PL/I Source 
Statements 

Various 
Forms of 
Intermediate 
Text 

IRP 

Program 
Template 

Program 
Object 

1. The PL/I compiler converts the source 
statements into various forms of 
intermediate text. 

2. The compiler converts the various forms of 
intermediate text into IRP (intermediate 
representation of the program). 

3. The PRM (program resolution monitor) 
converts the IRP program object code, 
called a program template. 

4. The program template is converted 
(translated) into a program that can 
be run, called a program object. 

Figure A-I. Overview of the Compilation of a PL/I Program. 

The various forms of intermediate text are representations of PL/I source statements 
that are created by the compiler and exist only during compilation. 

You can use the SERVICE parameter of the CRTPLIPGM command to list the 
van.ous forms of intermediate text. See "Compiler Debugging Options" on 
page A-lO for explanations of this parameter and examples of intermediate text. 

A-2 PL/I User's Guide and Reference 



L 

COMPILER OVERVIEW 

When you compile the program, you can use the "'LIST value for the GENOPT 
parameter on the CRTPLIPGM command to list the Intermediate Representation 
of the Program (IRP). See "Compiler Debugging Options" on page A·lO for an 
explanation of this parameter and examples of an IRP listing. 

When you compile the program, you can use the "'DUMP value for the GENOPT 
parameter on the CRTPLIPGM command to list the program template. 
See "Compiler Debugging Options" on page A·l 0 for an explanation of this 
parameter and an example of a program template listing. 

Compiler Organization 

Compiler Phases 

The compiler consists of a number of modules, phases, and segments. Their 
relationships are shown in Figure A·2. 

QPCPLIC 
(Command Interface Module) 

QPCRT001 
(Root Module) 

Compiler Phases 
(QPCZZ001 through QPCTM001) 

and segments 
(1 through 19) 

This module is called when 
the CL command CRTPLIPGM is 
processed. 

This module calls the 
compiler phases. 

See Figure A-3 on page A-4 
for a description of the 
compiler phases, and 
Figure A-4 on page A-6 for a 
description of the relationship 
between phases and segments. 

Figure A-2. Overview of the PLjI Compiler 

The phases process the source statements and break them down into various forms 
of intermediate text. The various forms of intermediate text are stored in segments. 

The compiler phases are described in Figure A·3 in the order that they are called 
sequentially under the control of the root module. Each name consists of the fol­
lowing parts: 

1. The prefix Q PC 
2. Two characters that identify the phase 
3. The suffix 001 

Appendix A. Compiler Service Information A-3 



COMPILER OVERVIEW 

Phase Phase Description J 
QPCZZOOI The service phase. Allows compiler debugging to be done. 

This phase is called only if SERVICE (tYES) is specified on 
the CRTPLIPGM command. 

QPCLPOOI The low level parse phase. Parses program source statements 
into tokenized text. 

QPCHPOOI The high level parse phase. Parses tokenized text into Polish 
text. 

QPCSVOOI The sort symbol vector phase. Sorts parsed symbols by name, 
block number, and statement number. 

QPCDBOOI The dictionary build, name resolution, and cross-reference 
phase. Builds the dictionary, processes name resolution, and 
prepares the cross-reference list. J 

QPCDXOOI The ftrst de-nesting phase. Processes Polish text, and com-
pletes the dictionary build. 

QPCDYOOI The second de-nesting phase. Tests both Polish text and cross 
references, and produces a cross-reference listing. 

QPCEAOOI The expression analysis phase. Analyzes expressions for 
validity. 

QPCGCOOI The global check phase. Verifies that expressions and refer-
ences are contextually correct. 

QPCAGOOI The aggregate processing phase. Maps aggregates and adjust-
able strings, and prints the aggregate table. 

QPCADOOI The addressing expansion phase. Processes addressing expan-
sion functions. 

QPCDIOOI The DO and IF statement processing phase. Replaces DO, IF 
and END statements of do-groups by n-address text. 

QPCSTOOI The stream I/O processing phase. Processes GET and PUT 
statements. 

QPCRCOOI The record I/O processing phase. Processes me control blocks 
and me constants. 

QPCFLOOI The flow of control processing phase. Generates prolog code 
for procedures, blocks, and ON statements. 

QPCTROOI The text transformation phase. Generates FIT (Final Interme-
diate Text). 

QPCSKOOI The skeleton identillcation phase. Translates FIT into BFIT 
(Extended Final Intermediate Text). 

Figure A-3 (Part 1 of 2). Compiler Phase Descriptions 

A-4 PL/I User's Guide and Reference 



Intermediate Text 

COMPILER OVERVIEW 

Phase Phase Description 

QPCSAOOI The storage allocation phase. Determines the layout of run-
time storage and produces IRP text for declarations. 

QPCDCOOI The defme constant section phase. Converts constants to 
internal format and produces IRP text for constant declarations. 

QPCCGOOI The code generation phase. Produces IRP text for processable 
statements. 

QPCFAOOI The fmal assembly phase. Calls the PRM (program resolution 
monitor) and produces the program object. 

QPCTMOOI The end phase. Provides the diagnostic output (messages) and 
ends the program compilation. 

Figure A-3 (Part 2 of 2). Compiler Phase Descriptions 

The compiler phases break down the source statements into various forms of inter­
mediate text. Some types of intermediate text are: 

Polish text 
N -Address text 
Constant strings 
Symbol vectors 

The text is stored in segments (see "Compiler Segments" below) by the phases. It 
may be formatted and listed by using the SERVICE parameter of the 
CRTPLIPGM command (see "Compiler Debugging Options" on page A-to) and 
the IBM-supplied formatters (see "Formatters and Intermediate Text" on 
page A-9). 

Compiler Segments 
The various forms of intermediate text are stored in segments. There are 19 seg­
ments which are implemented as MI (machine interface) space objects. Each 
segment may have different contents at different times in the compilation. The 
relationship between phases and the contents of segments is shown in Figure A-4 
on page A-6. The figure appears in two parts. It breaks at the DI phase: for 
clarity, this phase is repeated where the second part begins. 

Appendix A. Compiler Service Information A-5 



COMPILER OVERVIEW 

LP HP SV DB A~ DY EA GC A~ A~ A~ A A A 
1 -> >- >-> -> -> >-> >-> > 

C C I 0 I EI 
2 >- -> >-< >-< 

G G G G G GI I 
3 >-> -> >- -> >-> >-> > 

I H H H HI 
4 >- -> -> -> 

I I 
5 >-

I J J 
6 >- -> 

K K 
7 >-> >-> 

M N N N 
8 >-> >-> >-> >-> > 

0 0 0 0 0 0 
9 >- -> >-> >-> >-> >-> 

I P pi I pi I p p 
10 >- -> >-> >- >-> 

Q Q Q Q 
11 >- -> >-

S S 
12 >- -> 

T 
13 >-< 

U 
14 >-> 

W wi 
15 >- -> 

I Y yl 
16 >- -> 

Z I z z z z z z z z z J 17 >- >- >- >- >- >- >- >- >- >- > 

All All All All All All All All All All All 
18 >-< >-< >-< >-< >-< >-< >-< >-< >-< >-< >-< 

19 U U U U U U U U U U U 
Figure A-4 (Part 1 of 3). Relationships between Phases and Segments 

A-6 PL/I User's Guide and Reference 



COMPILER OVERVIEW 

A 
ST RC FL 

AR AA 
SA DC CG FA TM 

A A A A A A 
1 > >--> -> -> -> >--> >--> -> -> 

I EI F F 
2 >-< >-- -> 

I I G G G G G G G G G 
3 > >-- >-- >--> >--> >--> >--> >--> -> -> 

H HI HI HI 
4 -> -> -> -> 

I I 
5 -> 

6 

l. 
L 

7 >-< 

N N N N N NI N N 
8 >--> ee> >--> > ee> >--> > ee> >-- -> 

01 I 01 1 01 I 01 I 01 I 0 01 
9 >--> > ee> >--> > ee> >--> > ee ee> 

I pi 
10 >--> 

Q Q R R R 
11 -> >--> >-- -> 

12 

13 
V V V 

14 >-- -> 

X 
15 >--> 

16 
Z Z Z Z Z Z Z Z Z Z 

17 >-- >-- >-- >-- >-- >-- >- >- >- >--> 

All All All All All All All All All All IAI 
18 >-< >-< >-< >-< >-< >-< >-< >-< >-< >-< >-< 

19 U U U U U U L~~U U 
Figure A-4 (Part 2 of 3). Relationships between Phases and Segments 

Appendix A. Compiler Service Information A-7 



COMPILER OVERVIEW 

Description of Symbols 

B previous phase produces 
>-- or changes B 

B 
-> following phase uses B 

as input 
B 

>ee> alternate path 
B 

>--< internal workspace 

Figure A-4 (Part 3 of 3). Relationships between Phases and Segments 

Key Segment Name 

A 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
Al 
A2 

Dictionary 
Cross reference 
EA stack 
DI stack 
DC associated space 
Constant string 
Name string 
Back translate 
Do nesting list 
Symbol vector 
Dictionary for temporaries 
Tokenized text 
Primary text 
Primary text 
Secondary text 
Secondary text 
Block nearness array 
Pre-dictionary elements 
LP member stack space 
Parameter vector 
Where used 
Qualification list 
Branch point list 
Reorder vector 
Error messages 
Work space 
IRP 

A-8 PL/I User's Guide and Reference 

J 

J 

J 



COMPILER OVERVIEW 

Formatters and Intermediate Text 
Fonnatters fonnat and list the various fonns of intennediate text so it can be used 
for debugging. Fonnatters are named like phases, except that the three digit number 
prefix may be anyone from 001 through 019. The fonnatters and their descriptions 
are shown in Figure A-5. 

Formatter Formatter Description 

QPCPF008 Fonnats and lists Polish-l text, N-Address-l text, FIT (final 
intennediate text), and EPIT (extended final intennediate text). 

QPCPF009 Fonnats and lists Polish-2 text and N-Address-2 text. 

QPCDF003 The dictionary fonnatter. Fonnats and lists infonnation 
about each identifier in the program. 

QPCTFOOI The tokenized text fonnatter. Fonnats and lists a condensed 
representation of the source program consisting of fixed-length 
tokens. 

QPCCFOOI The constant string fonnatter. Fonnats and lists all the 
literals (arithmetic and string constants). 

Figure A-5. Compiler Segment Formatters 

Error Message Organization 
Error message numbers indicate the compiler phase from which they are called. 
Figure A-6 lists the range of the message numbers that are called from each phase. 

Phase Message Range 

QPCRTOOI 0-299 

QPCLPOOI 1500-1799 

QPCHPOOI 1800-2399 

QPCSVOOI 2400-2699 

QPCDBOOI 2700-2999 

QPCDXOOI 3000-3299 

QPCDYOOI 3300-3599 

QPCEAOOI 3600-3899 

QPCGCOOI 3900·4199 

QPCAGOOI 4200·4499 

QPCADOOI 4500-4799 

Figure A-6 (Part 1 of 2). Error Messages Called by Compiler Phase 

Appendix A. Compiler Service Information A-9 



COMPILER DEBUGGING OPTIONS 

Phase Message Range J 
QPCDIOOI 4800-5099 

QPCSTOOI 5100-5399 

QPCRCOOI 5400-5699 

QPCFLOOI 7500-7799 

QPCTROOI 5700-5999 

QPCSKOOI 7800-8099 

QPCSAOOI 6000-6299 

QPCDCOOI 8100-8399 

QPCCGOOI 6300-6599 

QPCFAOOI 6900-7199 

QPCTMOOI 900-1199 

Figure A-6 (Part 2 of 2). Error Messages Called by Compiler Phase 

Compiler Debugging Options 
The GENOPT and SERVICE parameters of the CL command CRTPLIPGM can\. 
be used to help debug PLjI problems. For information on the other parameters, see ,..." 
"Compiling Your Source Program Using the CRTPLIPGM Command" on 
page 2-5. For examples of debugging information that can be requested by these 
parameters, see "Examples of Using Compiler Debugging Options" below. 

Examples of Using Compiler Debugging Options 
Figure A-7 on page A-II shows examples of debugging information that can be 
requested on the CL command CRTPLIPGM using the GENOPT keyword. The 
compiler listing in Figure A-7 on page A-ll was printed using a CRTPLIPGM 

command that specified debugging parameters as follows: 

CRTPLIPGM QTEMP/LP1413 PLITST/PLISRC + 
OPTION(*XREF *OPT *AGR *ATR) + 
GENOPT(*LIST *XREF *PATCH *DUMP *ATR *DIAGNOSE) 

The program compiled can be seen at Figure 8-3 on page 8-5. The parameters 
specified for the keyword OPTION are discussed at "Compiler Output" on 
page 2-19. 

A~10 PL/I User's Guide and Reference 



COMPILER DEBUGGING OPTIONS 

5728SS1 Ral Ma9 88e7lS GENERATED OUTPUT 91/25/88 13:18:52 PAGE 3 

D e m m 
SEQ INST OFFSET GENERATED CODE * ... 1 ••• ••• 2 ••• ..• 3 ••• ••• 4 •.. •.. 5 ••• ••• 6 .•• ••• 7 ••• ••• 8 BREAK 

aeoe1 
eae02 
eesa3 
900a4 
eeaes 
eeee6 
eeee7 
eee08 
eeee9 
eeBle 
eaell 
eae12 
eee13 
a0014 
eaelS 
eee16 
ee017 
eee18 
ee019 
eeaZ8 
eeeZl 
eee22 
eeaZ3 
eeeZ4 
eee2S 
eee26 
aeaZ7 
aa028 
aee29 
ee(;l39 
eee3l 
ee932 
0ee33 
eae34 
eea3S 

00e36 
00037 
80038 

80039 
0ee40 
eaa4l 
00942 
00043 
ea044 
00045 
00046 
00047 

TITLE "IBM AS/4ee Pl/I 
EtlTRY " (*7S00eae) EXT 

m DCl SPCPTR *76pelea PARH 
DCl SPCPTR *76pa200 PARM 
DCl SPCPTR *76P0300 PARM 
DCl SPCPTR "76P040e PAR~l 

DCl SPCPTR *76P05ee PARM 
DCl SPCPTR *76pe6ee PARM 
DCl SPCPTR *76pe7ee PARM 
DCl SPCPTR *76pe8ee PARM 
DCl SPCPTR *76pegee PARM 
DCl SPCPTR *76peAea PARH 
DCl SPCPTR *76peB0e PARM 
DCl SPCPTR *76P0C00 PARM 
DCl SPCPTR *76peDee PARM 
DCl SPCPTR *76P0Eoe PARM 
DCl SPCPTR *76peFee PARM 
OCL SPCPTR *76Pleee PARM 
DCL SPCPTR *76Pllee PA~1 
DCL SPCPTR "76P12e0 PARfl 
OCL SPCPTR "76P1300 PARM 
DCL SPCPTR *76P14ea PARM 
DCL SPCPTR *76Plsee PARM 
DCL SPCPTR *76P16ee PARH 
OCL SPCPTR *76P1700 PARM 
OCL SPCPTR *76P1800 PARM 
DCL SPCPTR *76P1900 PARM 
DCL SPCPTR *76PlA00 PARM 
DCl SPCPTR *76PIBee PARM 
DCL SPCPTR *76PIC0a PARM 
OCl SPCPTR *76Pl000 PARH 
DCL SPCPTR *76PIEaa PARH 
OCL SPCPTR *76PIF00 PARt·l 
OCL SPCPTR *76P20ae PARM 

S728Pll RalM00 IRP lISTING FOR lP1413 • 

OCL OL *75000aa (*76pa10a.*76P0zee.*76pe3e0.*76P04ae.*76Posoe.*76pe6ee 
.*76pe7ee.*76P080e.*76P0900.*76peAee.*76P0Bae.*76pecee.*76peDee. 
*76POEe0.*76POFe0.*76PleeO.*76PlleO.*76Plzee.*76P130a.*76P14ee. 
*76P15ee.*76P16ae.*76P17eO.*76P180e.*76P1gee.*76PlA00.*76PIBea. 
*76PIC00.*76Pl000.*76PlE00.*76PlF00.*76P2000) PARM EXT MIN(e) 
/* OISPLAY ARRAY (FOR ACTIVE BLOCKS) */ 

OCl 00 *OSPAREA CHAR(3Z) BDRY(16) AUTO 
DCl SPCPTR *OISPlAY(2) POS(l) OEF(*DSPAREA) 
/* QPGAOE -- ARRAY DESCRIPTOR */ 

OCL t1SPPTR *ADE@ 
OCL 00 *ADE BAS(*AOE@) CHAR(204) INT 
OCl DD *ADEHOR OEF(*AOE) CHAR(14) 
OCL DO *ADEDAOE OEF(*AOE) POS(lS) CflAR(190) 
DCl 00 *AOECHDR OEF(*ADEDAOE) CHAR(18) 
DCl 00 *ADECO OEF(*AOECHOR) BIU(2) 
DCL 00 *AOETl OEF(*AOECHDR) POS(3) BIN(4) 
OCL 00 *AOERVO OEF(*AOECHDR) POS(7) BIN(4) 

m 

Figure A-7. Examples of Compiler Debugging Information 

The "'LIST value for the GENOPT parameter causes printing of IRP and machine 
instructions when compilation ends. The headings in this IRP listing indicate the 
following information: 

o SEQ: A sequential numbering of the IRP statements. Error messages such as 
IRP syntax errors issued by the program resolution monitor use this number 
to refer to the IRP statements in error. 

Appendix A. Compiler Service Information A-II 



COMPILER DEBUGGING OPTIONS 

II INST: A sequential numbering of the machine instructions generated from J 
the IRP statements. Not all IRP statements generate machine instructions. 
The instruction number can be used as a breakpoint for OS/400 debugging 
functions. See "Using Debug" on page 3-10, or the Programming: Control 
Language Programmer's Guide for infonnation about breakpoints. 

IJ OFFSET: Displacement of the machine instruction into the instruction 
portion of the program template. 

II GENERATED CODE: Machine instructions that have been generated from 
IRP statements. 

II GENERATED OUTPUT: IRP statements. 

m BREAK: Breakpoints in the IRP that can be used for stopping points in 
OS/400 debugging functions. If the breakpoint is a number, it indicates the 
PL/I source statement that the IRP statement was generated from. 

A-12 PL/I User's Guide and Reference 



COMPILER DEBUGGING OPTIONS 

5728551 R91 Mee 889715 

ODT ODT NAME 
D m 
99E3 .AU90081 248* 
90E9 .AUge082 254* 
oeE7 • BAOOOOl 252* 
OOED • BAOeee2 258* 

GENERATED OUTPUT 

SEQ CROSS REFERENCE (* INDICATES WHERE OEFFINEO) 
m 

e9E2 .BlK'091 247* 248 249 25e 251 252 438 439 449 441 442 446 450 451 452 453 695 829 912 
OOE8 .BlK'002 253* 254 255 256 257 258 455 456 696 1125 1141 
OOCF .DBGPTR1 223* 
eeDe .DBGPTR2 224* 
00E5 • ExoeeOl 25e* 
00EB • Exooe92 256* 
OGE6 .PA0eGG1 251* 
e0EC • PAee002 257* 
9186 .STATIC' 424* 425 426 427 431 432 433 534 535 565 566 
eeE4 • STeeeel 249* 
eeEA • STeoee2 255* 
OlgA .019ge0C 445* 
e19E .e1e091e 449* 
0198 • e2609eA 443* 
9199 .0200aeB 444* 
019C .0200geE 447* 
0190 .02eoaeF 448* 
9199 .0300a12 434* 844 896 897 1137 
0191 .0300a13 435* 824 1136 1137 
el92 .0300014 436* 825 843 844 
G19B .9990000 446* 447 448 449 865 876 888 
e197 .0900009 442* 443 444 445 875 88e 
e18F • e999011 433* 434 435 436 
0180 .4709006 431* 826 827 832 849 864 866 867 887 889 890 899 
018E .4700008 432* 828 829 858 879 881 882 964 
9193 .7D00a04 438* 837 
SlA3 .7000915 455* 
9187 .7E60000 425* 823 
91F9 *ADDEXTC 601 624* 
e026 *ADE 41* 42 43 
ee25 *ADE@ 40* 41 
002E *ADEBDE 49* 50 51 52 
0020 *ADEBDS 48* 49 
0e2A *ADECD 45* 
0929 *ADECHDR 44* 45 46 47 
0028 *ADEDADE 43* 44 48 
0927 *ADEHDR 42* 
e02F *ADELB 50* 
e931 *ADHIULT 52* 
092C *ADERVO 47* 
e628 *ADETl 46* 
0030 *ADEUB 51* 
6100 *ALCSTAT 538 561* 
6lDE *AlSNOEX 568 576* 
BlOC *ALSNSI 560* 562 574 
91F5 *AXCEND 649 653* 
91F3 *AXCNPEC 646 650* 
01EB *AXCHSI 619* 625 654 
91F4 *AXCNTEC 644 653* 
01EE *AXCPNAM 622* 659 
01F2 *AXCPSET 627 636 638* 
91H *AXCSAME 628 637* 

91/25/88 13:18:52 PA6E 

The ·XREF value for the GENOPT parameter causes printing of the cross­
reference listing. The headings in this listing include: 

3 

D ODT: The variable number assigned by the PRM to each variable of the IRP. 

iii ODT NAME: The name of the variable in IRP. 

Appendix A. Compiler Service Information A-13 



COMPILER DEBUGGING OPTIONS 

SEQ CROSS REFERENCE (. INDICATES WHERE DEFINED): The 
lines in the IRP listing where the variable is referenced. The • indicates where 
the declaration for the variable is found. 

5728SS1 R01 M00 880715 GENERATED OUTPUT m m 
OFFSET MI TEMPLATE DISPLAY 

00000009 
06600026 
06000040 
00000060 
00600080 
000000A6 
OOOOOOCO 
000000E6 
00000160 
00600126 
00000140 
00000160 
00000180 
066001A6 
000001CO 
000001EO 
00000200 
00000220 
00000240 
00000260 
00000280 
000002Ae 
000002C0 
000662EO 
0000G300 
00000320 
06000340 
06000360 
00000380 
000003AO 
660003CO 
000003EO 
00000400 
00000420 
00000440 
00000460 
00000480 
000004A0 
006004CO 
000004EO 
00000500 
00000520 
00000540 
00000566 
00000580 
000005AO 
OOOOS5ce 
000005EO 
00000600 
00000620 
00000640 
00000660 
00000680 
000006A0 
000006CO 
000006EO 

0006350C 00000000 02010307 F1F4F1F3 40404049 40404049 49404049 40404049 
40404640 40404040 80006000 00006000 0000015F 0001000e 90000000 00000009 
00000000 00660000 00542A2F 5E000400 00000008 00000000 00000000 00000009 
668040FC 00000000 00000000 82120270 00000100 0000107C 00001A40 00000009 
00000168 00003424 00000000 00000073 000026BO 00000000 80000212 00000006 
00000000 00000000 00000000 00000008 00000090 00000000 00000900 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 80000000 00080008 
00000000 00000000 00000000 00000000 00000000 80000008 00000000 00800000 
00000F7C 229301CO OOOOOOCC 3C46COOO 00812000 01BB1042 00812001 302200CO 
01BC1011 40E00081 22930202 000000CC 22A10000 213201CC 00CC10BE 00232000 
054701C5 00002001 013201CB 01C60083 01BF01BE 20001CC2 C00001C1 B1CE01CF 
00830068 01C22010 1CE24000 007F0000 01CF1C02 C000007F 01CB01CF 0132007F 
00001011 01022283 01C30000 00000083 006881C2 20100132 808E01CB 054701C5 
00002000 1042008A 01C91042 008B01C8 025201C4 0000107B 01CA0100 01012083 
00660074 20001197 00952040 002201A5 01CB0083 01A901A5 01A81CE2 40000088 
00000103 00830186 00802000 00830098 01862000 10B2009B 20801011 01CC2293 
01000000 00CC3011 01CC2132 010400CC 114300A6 200Fl193 00A70109 1C459000 
00A600A8 01DB1043 010500A6 3FFF1193 0106010A 11470105 20A00032 010700A4 
00620107 01051042 00A80105 30110104 2132010C 00CC0082 005001BA 008300A4 
00602000 00830186 006C00A6 00830098 01862000 114300A6 005F1C46 900000A6 
00A8010E 02930108 000000CC 30BE0099 200010B2 909A0061 10B20090 00620293 
01E20000 00CC3011 010C2132 010F00CC 0082009F 01880082 00A20189 008300AA 
00500065 104201E0 20013C46 100001EO 006001EA 008300C5 00772900 008300B8 
00C500C8 104201E1 20013CC2 400000BF 00AC01E7 1C464000 01E100CA 01E51C46 
A00001E1 00C801E6 008300BB 00BB00C4 114301E1 20011011 01E43C46 400000C7 
BFFF01E6 008300C5 007000C7 008300BB 00C500C8 104201E1 20011011 01E42293 
01F00000 00CC2083 00A30070 00B010B2 00A02080 101101E9 208300A3 007000BO 
10B200A0 20001CC2 C00000C2 00B801E8 1CC2C000 00BF0061 01E80083 00500070 
00B00083 00530098 20002083 00AA00AA 00BA0083 009F009F 20010083 00A200A2 
20101143 01E02001 101101E3 3011010F 213201EB 00CC0083 00A40071 20001C46 
400000C8 200001F2 1C462000 00C800CA 01F11042 00C700A6 009200C5 00A61143 
00A62200 02930108 000000CC 304200C7 BFFF0083 00BBOOC5 00CB1042 00C82009 
101101F2 208300BB 00BBOOC4 30B200BE 00AB1042 00B000A6 114300BO 00C01143 
00A600C1 114300A6 00C00293 01080000 00CC3CC2 C00000C2 00B801F4 00830050 
007000BO 1CC2C000 00BF0061 01F30132 005201C8 00830053 00982000 101101F5 
30B301EE 00BF2040 01640052 01ECOOOO 00000132 00530000 314300C8 20011011 
01EB2132 01F600CC 008300A4 006F2000 114300A6 200F1193 00A701F9 104201F7 
00A61143 00A60034 1C469000 00A600A8 01FA0293 01080000 00CC2083 0038006E 
01F700A2 003A0076 10B2003C 00350132 004100CO 01320044 01CB0022 00450098 
01320046 00000132 00474024 00900132 00480000 10620049 00361042 004A0099 
1062004B 003710B2 004COOA6 106E0040 20000622 00760038 01324024 00900076 
11930095 20BF1011 01F62132 01F600CC 1042003B 00832083 0038006E 00380083 
4024004A 00382000 1C461000 803B2000 01F00132 00E24024 20010132 00E84024 
20020083 00380076 20001011 01FB2132 01FEOOCC 00830038 00762600 00920076 
003A0132 4024004A 00470132 00C00841 008300A4 006F2000 00A200A6 00381811 
01FE2132 020000CC 1CE6C000 00760075 02041C46 40000097 20000203 10420085 
02010283 46670201 060000DA 213201C2 00880132 01C16089 1197808D 20803011 
02002883 00380876 20000083 0205006E 003A1CE6 C0000205 00750208 00824085 
20018206 10420086 00D60283 40670006 000000DA 30220041 82091011 40E1064A 
3C2A4000 003F2080 02070293 92020000 08CC22A1 20012083 00380076 20001C2A 
2000003E 2040020B 10220041 020A3011 40E1004A 30B2020C 00841042 00860200 
02834067 02000000 000A1062 0084020C 054701C5 00002003 01320216 01C703E1 
020E3042 00860200 02834067 02000000 000A30B2 010F06F6 1842010E 204B0293 
021E0006 01053011 00CC30B2 010FOOFF 1042010E 204A0293 021E0000 01053811 
00CC30B2 010F00F7 1042010E 204B0293 021E0000 01053011 00CC30B2 010FOOFA 
1042010E 204B0293 021E0000 01053011 80CC3042 010E2048 0293021E 00000105 

91/25/88 13: 18: 52 PAGE 

The *DUMP value for the GENOPT parameter causes printing of the program tem­
plate. This template shows: 

A-14 PL/I User's Guide and Reference 

3 



L 

COMPILER DEBUGGING OPTIONS 

Ilil OFFSET: The displacement from the beginning of the program template of 
this line of data. The offset is displayed in hexadecimal notation. 

m MI TEMPLATE DISPLAY: The data contained in the program template 
at the offset specified. The data is displayed in hexadecimal notation. 

Using the SERVICE Parameter 
You can specify SERVICE(+YES) on the CRTPLIPGM command to access facili­
ties to debug the PL/I compiler in batch or interactive mode. 

You can debug in batch mode by creating a source me member to contain the 
debugging commands you want to use. You must name this source me member 
QPLIDBGINP, and place it in the same library as the program source me. 

You can debug interactively in any of the following ways: 

• Debug in batch mode by entering debugging commands in source me member 
QPLIDBGINP 

• Debug interactively by entering debugging commands from your work station 

• Use a combination of the above two me~hods 

SERVICE Debugging Commands 

The commands that you can use to debug the compiler are shown in the following 
table, and described in the text below. 

You can specify these commands either from your terminal, from source me 
member QPLIDBGINP, or from either place, as shown below: 

Command Use from Use from 
QPLIDBGINP Work Station 

+ Yes No 

INSERT or INS Yes Yes 

TERMINATE or Yes Yes 
TER 

DEBUG or DEB Yes Yes 

NODEBUG or Yes Yes 
NOD 

EXECUTE or Yes Yes 
EXE 

NOEXECUTE or Yes Yes 
NOE 

Figure A-8 (Part 1 of 2). Commands to use with the SERVICE parameter 

Appendix A. Compiler Service Information A -15 



COMPILER DEBUGGING OPTIONS 

Command Use from Use from 
QPLIDBGINP Work Station 

CONSOLE or Yes No 
CON 

SEGMENT or No Yes 
SEG 

? No Yes 

Figure A-8 (Part 2 of 2). Commands to use with the SERVICE parameter 

The command syntax and descriptions follow: 

* 
Use in file QPLIDBGINP to indicate that text following the asterisk is treated 
as comments. 

"--INSERT formatte~:~Phase 

t::j 

..... 

The formatter will follow or precede the phase. 

Formatters and phases must be abbreviated to three characters as follows: 

1. Drop the ftrst three characters of the phase name (QPC). 

2. Retain the fourth and ftfth characters of the phase name. 

3. Drop the ftrst two digits (00) of the three digit number. 

4. Retain the last digit. 

For example, the formatter QPCPF008 must be abbreviated as PF8, and the 
phase Q PCLPOO 1 must be abbreviated as LP 1. 

The following table lists the places where you can use a formatter, and the type 
of intermediate text that is formatted and listed. 

Note: ZZI is a phase, but it also acts as a formatter. 

A-16 PL/I User's Guide and Reference 



COMPILER DEBUGGING OPTIONS 

Formatter BEFORE Phase Type 
or of 
AFfER Text 

ZZI BEFORE any 
AFTER 

PF8 AFTER HPI Polish-I 
AFTER DBI Polish-I 
AFTER DXI Polish-I 
AFTER DYI Polish-l 
AFTER EAI N -Address-I 
AFTER Gel N -Address-l 
AFTER AGI N -Address-l 
AFTER ADI N -Address-l 
AFTER DII N-Address-l 
AFTER STI N-Address-l 
AFTER ReI N -Address-I 
AFTER FLl N-Address-l 
AFTER TRI FIT 
AFTER SKI EFIT 
AFTER SAl EFIT 

PF9 AFTER HPI Polish-2 
AFTER DBI Polish-2 
AFTER DXI Polish-2 
AFTER Gel N -Address-2 
AFTER AGI N-Address-2 
AFTER ADI N -Address-2 
AFTER ReI N -Address-2 

Figure A-9 (Part 1 of 2). Using the INSERT Command 

Appendix A. Compiler Service Information A -17 



COMPILER DEBUGGING OPTIONS 

Formatter BEFORE Phase Type 
or of 
AFTER Text 

DF3 AFTER OBI Dictionary 
AFTER DXl Dictionary 
AFTER DYI Dictionary 
AFTER EAl Dictionary 
AFTER GCl Dictionary 
AFTER AGI Dictionary 
AFTER ADI Dictionary 
AFTER DIl Dictionary 
AFTER STI Dictionary 
AFTER RCI Dictionary 
AFTER FLl Dictionary 
AFTER TRI Dictionary 
AFTER SKI Dictionary 
AFTER SAl Dictionary 
AFTER DCl Dictionary 
AFTER CGl Dictionary 
AFTER FAI Dictionary 
AFTER TMI Dictionary 

TFI AFTER LPI Tokernzed Text 

Fl AFTER LPI Constant string 
AFTER DXl Constant string 
AFTER AGI Constant string 
AFTER ADI Constant string 
AFTER DIl Constant string 
AFTER FLl Constant string 
AFTER TRI Constant string 
AFTER SKI Constant string 
AFTER SAl Constant string 
AFTER DCl Constant string 

Figure A-9 (Part 2 of 2). Using the INSERT Command 

The [lIst time you call ZZl, (by specifying SERVICE (+YES) on the 
CRTPLIPGM command), source ftle member QPLIDBGINP is processed, if it 
exists. !fyou call ZZI again, (either from QPLIDBGINP or interactively from 
your work station), you may only process commands from your work station. 
Therefore, if you call ZZI from QPLIDBGINP, processing is temporarily 
halted to enable you to enter any debugging commands from your work station. 

-INSERT formatterEF:~R phase 

BEFORE 

B 

A-I8 PLfI User's Guide and Reference 

... 



QUANTITATIVE LIMITS OF COMPILER 

processes the normal ending of compilation following or preceding the specified 
phase. Phase TM 1 is called. 

DEBUG phase 
This puts you in debug mode (the equivalent of issuing the STRDBG CL 

command), with a breakpoint at the beginning of the program. For information 
about using debug mode, refer to Programming: Control Language Program­
mer's Guide. 

NODEBUG phase 
If you have previously specified DEBUG for a phase, you can now specify that 
you do not want to enter debug mode for that phase. 

NOEXECUfE phase 
The phase specified will not be processed. 

EXECUTE phase 
If you have previously specified NOEXECUTE for a phase, you can now 
specify that the phase be processed. 

CONSOLE 
Specifies, from source me member QPLIDBGINP, that commands may be 
entered from the work station. 

SEGMENT segment-identifier 

? 

produces a dump of the named segment-identifier. Segment-identifier is a 
number from 1 through 19. 

In interactive mode, a help text screen shows the syntax and definitions of the 
above commands. 

Quantitative Limits of Compiler 
The following table gives information about the maxima, minima, and defaults of 
the AS/400 PL/I compiler. 

General 

Collating sequence 
Digits in exponent of floating-point variable 
Length of string returned by TIME 

Maxima 

%INCLUDE - number of members 
%SKIP - number of lines 
A,B,Bl,B4,X,COL 
Arguments for MAX/MIN built-in functions 
Arguments in a CALL statement 
Arguments in a function reference 
BINARY FIXED precision 

EBCDIC 
3 
9 

20 
99 
32767 
2 
32 
31 
31 

Appendix A. Compiler Service Information A-19 



QUANTITATIVE LIMITS OF COMPILER 

Maxima 

Blocks in an external procedure 
DECIMAL FIXED precision 
Depths of nesting 

%INCLUDE source me 
Attribute factorization 
Comments 
Combined nesting depth (see glossary) 
DO in GET and PUT statements 
Do-groups 
Functions 
IF ... THEN ... ELSE statements 
INITIAL attribute iterations 
Procedures and begin-blocks 
SELECT statements 
Structures 

Dimensions of an array 
Exponent in BINAR Y FLOAT variables 

Short form 
Long form 

Exponent in DECIMAL FLOAT variables 
Short form 
Long form 

Extent of an array 
INITIAL attribute iteration factor 
Keylength (composite key) 
Labels per single statement 
Length of array 
Length of B IT string 
Length of CHARACTER VARYING data item 
Length of fully qualified name 

(excluding periods) 
Length of title 
Length of programmer-defmed name 
Length of programmer-defmed AS/400 name 
Length of statement 
Level number in structure 
LINE expression 
Linesize - record format F 
Names defmed by programmer 

if all names are 31 characters long 
if all names are 10 characters long 

On-units in a block 
Page size 
Parameters in a procedure 
PICTURE format specification - length 
PICTURE - number of digits in specification 
Record size - record format F 

A-20 PL/I User's Guide and Reference 

255 
15 

64 
1 
1 
200 
49 
49 
50 
49 
1 
50 
49 
15 
15 

127 
1023 

38 approximately 
308 approximately 
32767 
32767 
120 
1 
4194303 bytes 
32767 bits 
32765 characters 
15 structures (levels) • 31 characters 

33 characters 
31 characters 
10 characters 
32 767 characters 
255 
32767 
32765 

1760 
4080 
50 
32767 
32 
255 characters 
15 
32767 characters 

J 



L 

Maxima 

Significand of BINAR Y FLOAT variable 
Short form 
Long form 

Significand of DECIMAL FLOAT variable 
Short form 
Long form 

SKIP expression 
Source records 
Statements in a program 
Substatements in a statement 

Minima 

Array extent 
KEYDISP integer constant 
Length of bit or character string 
Linesize - record format F 
PAGESIZE expression 
Relative record number 
Scale factor for FIXED variables 
SKIP expression 
%SKIP - number of lines 

Defaults 

%SKIP - number of lines 
BIT string length 
CHARACTER string length 
FIXED BINARY precision and scale 
FIXED DECIMAL precision and scale 
FLOAT DECIMAL precision 
FLOAT BINARY precision 
LINE 
PAGESIZE 
PRINT me format 
SKIP expression 

QUANTITATIVE LIMITS OF COMPILER 

24 binary digits 
53 binary digits 

7 decimal digits 
16 decimal digits 
32767 
99999 
9999 
9999 

1 
o 
o 
1 
1 
1 
o 
1 
I 

1 
1 
1 
31,0 
5,0 
7 
24 
1 
60 
F 
I 

Appendix A. Compiler Service Information A-21 



QUANTITATIVE LIMITS OF COMPILER 

J 

A-22 PLjI User's Guide and Reference 



Appendix B. The AS/400 PL/I Language Summary and 
Character Set 

The AS/400 PL/I compiler was designed to conform to the General-Purpose Subset 
(Subset G) of PL/I as defmed by the American National Standards Institute (ANSI). 

The following table compares the language features of AS/400 PL/I to the ANSI 

Subset G standard. The table shows only how AS/400 PL/I deviates from Subset G. 

Following the table is a listing of the PL/I character set. 

For details about specific language features, refer to the appropriate section in this 
manual. 

Key: 

The AS/400 implementation is the same as defmed by ANSI Subset 
G. 

A The AS/400 implementation offers additional function above ANSI 

Subset G. 

R The AS/400 implementation has restrictions below what is defmed 
by ANSI Subset G. 

N The AS/400 implementation does not support this ANSI Subset G 
language feature. 

I This language feature is implementation defined (in conformance 
with ANSI Subset G). 

blank This language feature is not in Subset G. 

S For features where A or blank appear under the Subset G column, 
indicates the source that the AS/400 PL/I feature was modelled after: 

• the feature is part of the full ANSI PL/I language, but is not in 
Subset G. 

• the feature is a language extension that also exists in other IBM 
PL/I compilers. 

• the feature is a language extension that exists only in the 
AS/400 PL/I compiler. 

Appendix B. The ASj400 PLjI Language Summary and Character Set B-1 



Statements 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

ALLOCATE = 
Assignment A 

BY NAME S 
scalar to 

connected structure S 

BEGIN = 
CALL A 

shortened argument list S 

CLOSE = 
DECLARE R 

(see Attributes) 
factored attributes R 
nested factoring N 

declaration of SYSIN S 
and SYSPRINT assumed 

DELETE A 
KEY A S 
OPTIONS S 

DO = 

DO iterate A 
control variable A S 
BY A S 
TO A S 
UNTIL S 

END = 
FORMAT N 

FREE = 
GET R 

FILE A S 
LIST N 
STRING N 
format items R 

B2/B3 N 
P 'picture' N 

GOTO or GO TO = 

IF A 
THEN/ELSE unit labeled S 

B-2 PL/I User's Guide and Reference 



LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

ITERATE S 

LEAVE S 

null = 
ON A 

SNAP S 
SYSTEM S 

OPEN R 
DIRECT N 
ENVIRONMENT N 
KEYED N 
PRINT N 
RECORD N 
SEQUENTIAL N 
STREAM N 
TAB N 
TITLE R 
other than character string N 

PROCEDURE = 
PUT R 

FILE A S 
LIST N 
STRING N 
format items R 

B2/B3 N 
P I picture I N 
TAB(n) N 

READ A 

I 

KEY A S 
KEYTO A S 
OPTIONS S 

RETURN R 
descriptor R 

FILE N 

REVERT N 

REWRITE A 
KEY A S 
OPTIONS S 

SELECT S 

Appendix B. The ASj400 PLjI Language Summary and Character Set B-3 



LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

SIGNAL = 
STOP = 
WRITE A 

KEYFROM A S 
OPTIONS S 

Directives 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

%INCLUDE A s 

% PAGE S 

%PROCESS S 

%SKIP S 

Label Prefixes 

LANGUAGE Subset Full IBM AS/4OO 
FEATURE G ANSI Extension Extension 

FORMAT N 

PROCEDURE = 

THEN/ELSE unit S 

WHEN/OTHERWISE unit S 

other statements = 

single label only = 

subscripted label prefixes N 

B-4 PL/I User's Guide and Reference 



Conditions 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

on units R 
FIXEDOVERFLOW N , 

OVERFLOW N 
TRANSMIT S 
UNDERFLOW N 
ZERODIVIDE N 

default enablement A 
RECORD S 
STORAGE S 

Appendix B. The ASj400 PLjI Language Summary and Character Set B-5 



Built-in Functions 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

ABS = 

ACOS = 

ADDR = 

ASIN = 

ATAN (xl,y]) = 

ATAND (x[,y)) = 

ATANH = 

BINARY = J 
BIT (vl,I]) = 

BOOL N 

CEIL N 

CHARACTER (vl,l)) = 

COLLATE N 

COPY = 

COs = 

COSD = 

COSH = 

DATE = 

DECIMAL = 

DIMENSION = 

DIVIDE = 

EXP = 

FIXED = 

FLOAT = 

FLOOR N 

HBOUND = 

INDEX = 

LBOUND = 

LENGTH = 

B-6 PLjI User's Guide and Reference 



LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

LINENO = 

LOG = 

LOG2 = 

LOG 10 = 

MAX (x,y) = 

MIN (x,y) = 

MOD = 

NULL = 

ONCODE = 

ONFILE = 

ONKEY = 

PAGENO N 

PLIRETV S 

PLISHUTDN S 

ROUND = 

SAMEKEY S 

SIGN = 

SIN = 

SIND = 

SINH = 

SQRT = 

STORAGE S 

STRING N 

SUBSTR (s,i[,j]) = 

TAN = 

TAND = 

TANH = 
TIME = 
TRANSLATE (s,r[,t)) = 

Appendix B. The ASj400 PLjI Language Summary and Character Set B-7 



LANGUAGE Subset Full IBM AS/400 J 
}<'EATURE G ANSI Extension Extension 

TRUNC = 
UNSPEC = 

VALID N 

VERIFY = 

Built-in Subroutines 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

PLICOMMIT S J 
PLIDUMP S 

PLIIOFDB S 

PLIOPNFDB S 

PLIRCVMSG S 

PLIRETC S 

PLIROLLBACK S 

Pseudovariables 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

PAGENO N 

STRING N 

SUBSTR (s,i[,j)) = 

UNSPEC = 

B-8 PL/I User's Guide and Reference 



Attributes 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

ALIGNED R 
BIT R 
ALIGNED attribute optional N 

AUTOMATIC R 
length/dimension R 

reference R 
subscripted N 
pointer qualified N 

expreSSlOn N 

BASED R 
length/dimension R 

reference N 
expression N 

BINARY = 
BIT = 
BUILTIN = 
CHARACTER = 
constant R 

bit R 
B2/B3 N 

FORMAT N 
LABEL R 
constant dimension array N 

DECIMAL = 
DEFINED N 

dimension R 
lower/upper bound: R 

reference R 
subscripted N 
pointer qualified N 

expression N 
lower bound not = 1 N 

DIRECT = 

L 
Appendix B. The ASj400 PLjI Language Summary and Character Set B-9 



LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

ENTRY A 
descriptor A 
asterisk S 
shortened argument list S 

ENVIRONMENT I 

EXTERNAL R 
identifier declared more 
than once in external procedure N 

FILE R 
variable/parameter N 

FIXED = 
FLOAT = 
INITIAL R 

reference R 
(only NULL built-in) 

iteration factor R 
with inherited dimensions N 

INPUT = 
INTERNAL = J 
KEYED = 
LABEL = 
length R 

reference R 
subscripted N 
pointer qualified N 

expression N 

member R 
length/dimension R 

reference N 
expression N 

non-varying = 
OPTIONS I 

OUTPUT = 

parameter = 

PICTURE A 
R character S 

B-IO PL/I User's Guide and Reference 



L LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

POINTER = 
precision = 
PRINT = 
real = 
RECORD = 
RETURNS R 

descriptor R 
FILE N 

SEQUENTIAL = 
STATIC = 
STREAM = 
structure = 
UNALIGNED A 

allowed for fixed binary 
and binary/decimal float S 

UPDATE = 
VARIABLE = 

VARYING = 

L 
Appendix B. The AS/400 PL/I Language Summary and Character Set B-ll 



References 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

unsubscripted = 
subscripted R 

interleaved subscripts N 

pointer qualified = 

Character Set 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

letters A - Z = 

letters a - z S 

letters $, #, @ S 

digits 0 - 9 = 

+ - ... / = 
, 

blank = . , -
;:> < =&I-,()% = 

extralingual characters I 

B~ 12 PL/I User's Guide and Reference 



Abbreviations 

LANGUAGE Subset Full IBM AS/400 
FEATURE G ANSI Extension Extension 

AFT < AFTER> S 

ALLOC < ALLOCATE > = 

AUTO < AUTOMATIC > = 

BFR < BEFORE> S 

BIN < BINARY> = 

CHAR < CHARACTER> = 

COL < COLUMN > = 

DCL < DECLARE> = 
DEC < DECIMAL > = 
DIM < only fonn allowed> = 

ENV < ENVIRONMENT > = 

EQL < EQUAL> S 

EXT < EXTERNAL> = 
FOFL < FIXEDOVERFLOW > N 

INIT < INITIAL > = 

INT < INTERNAL > = 

NXT < NEXT> S 

OFL < OVERFLOW > N 

OTHER < OTHERWISE > S 

PIC < PICTURE > = 

PROC < PROCEDURE > = 
PRY < PREVIOUS > S 

PTR < POINTER> = 

SEQL < SEQUENTIAL> = 

STG < STORAGE> S 

UFL < UNDERFLOW > N 

UNAL < UNALIGNED > = 
UNDF < UNDEFINEDFILE > = 
VAR < VARIABLE> = 
ZDIV < ZERO DIVIDE > N 

Appendix B. The ASj400 PL/I Language Summary and Character Set B-13 



PL/I CHARACTER SET 

The PUI Character Set 
The language characters are alphabetic characters, digits, and special characters. 

There are 29 alphabetic characters: 

Character 

A-Z 

$ 
# 
@ 

Meaning 

English alphabet 

IBM Extension 

currency symbol 
number sign 
commercial "at" sign 

L..-_________ End of IBM Extension _________ -...J 

There are ten digits: 0 through 9. 

There are 20 special characters: 

Character Name 

blank 
equal sign or assignment symbol 

+ plus 
minus 

* asterisk or multiplication 
I slash or division 
( left parenthesis 
) right parenthesis 

comma 
point or period 
apostrophe 

% percent 
semicolon 
colon 

..., not 
& and 
I or 
> greater than 
< less than 

break character 

You can combine certain special characters to create the following ten composite 
symbols: 

B-14 PLfI User's Guide and Reference 

J 

.j 



PL/I CHARACTER SET 

Symbol Name 

<= less than or equal to 

II concatenation 
++ exponentiation 
...,< not less than 
...,> not greater than 
...,= not equal to 
>= greater than or equal to 
,+ begin comment 
+, end comment 
-> points to 

EBCDIC Codes 

The language characters, with their EBCDIC codes represented in hexadecimal nota­
tion can be found in Appendix E, "EBCDIC CODES." 

The EBCDIC codes may be represented by different characters on different terminals 
or printers. 

Lowercase Characters 

You can use lowercase characters when writing a source program. In a comment or 
a character literal, the lowercase character maintains its identity as lowercase. In 
other uses (such as keywords or names), the lowercase character is equivalent to its 
corresponding uppercase character. 

Extralingual Characters 
Character constants and comments can contain any of the 256 EBCDIC codes. Any 
character that is not a language character is an extralingual character. 

Appendix B. The AS/400 PL/I Language Summary and Character Set B-15 



PL/I CHARACTER SET 

B-16 PL/I User's Guide and Reference 



Appendix C. Valid Combinations of Options for Input/Output 
Statements 

The tables in this appendix show the combinations of options you can use in input 
and output statements. The following abbreviations are used in the table headings: 

I Input 
o Output 
U Update 

In the body of the tables, the following set of symbols is used: 

R Required 
o Optional 

Not valid 

Footnotes for all the tables are at the end of the appendix. 

The following should be noted: 

• Options that are not valid either produce an error or are ignored. 

• You cannot specify the OPTIONS option in your input/output statements if 
you specify the ENVIRONMENT option BLOCK in your me declaration. 

• If a statement is not listed for a particular me type, it cannot be used for that me 
type. 

• Some input/output options that are listed as being invalid for certain me types 
will not produce error messages at compile time, but when running is attempted 
the statement will fail. The reason for this is that at compile time it is not 
known what AS/400 me type the me declared will be attached to. 

AppendiY C. Valid Combinations of Options for Input/Output Statements C-l 



Data Base Files with CONSECUTIVE organization 

FILE ACCESS 

SEQUENTIAL SEQUENTIAL DIRECT 
KEYED 

I 0 U I 0 U I 0 U 

READ 
FILE R - R R - R R - R 
INTO I SET R - R R - R R - R 
KEY - - - 0 2 - 0 2 R - R 
KEYTO - - - 0 2 - 02 - - -
OPTIONS 0 - 0 0 - 0 0 - 0 
RECORDlS 0 - 0 0 - 0 0 - 0 
KEYSEARCH - - - - - - - - - J 
POSITION 0 12 - 0 12 0 512 - 05 12 - - -
NBRKEYFLDS - - - - - - - - -
INDICATORS - - - - - - - - -
MODIFIED - - - - - - - - -

WRITE 
FILE - R - - R - - R R 
FROM - R - - R - - R R 
KEYFROM - - - - 0 6 - - R6 R6 
OPTIONS - 0 - - 0 - - 0 0 
RECORDIS - 0 - - 0 - - 0 0 

J 
INDICATORS - - - - - - - - -

REWRITE 
FILE - - R - - R - - R 
FROM - - R - - R - - R 
KEY - - - - - 0 - - R 
OPTIONS - - 0 - - 0 - - 0 
RECORDlS - - 0 - - 0 - - 0 
INDICATORS - - - - - - - - - J 

DELETE 
FILE - - R - - R - - R 
KEY - - - - - 0 - - R 
OPTIONS - - 0 - - 0 - - 0 
RECORDlS - - 0 - - 0 - - 0 

C-2 PL/I User's Guide and Reference 



Data Base Files with INDEXED organization 

FILE ACCESS 

SEQUENTIAL SEQUENTIAL DIRECT 
KEYED 

I 0 U I 0 U I 0 U 

READ 
FILE R - R R - R R - R 
INTO I SET R - R R - R R - R 
KEY - - - 0 2 - 0 2 R - R 
KEYTO - - - 0 2 - 0 2 - - -
OPTIONS 0 - 0 0 - 0 0 - 0 
RECORD 0 - 0 0 - 0 0 - 0 
KEYSEARCH - - - 0 4 - 0 4 0 - 0 
POSITION 0 - 0 05 - 05 - - -
NBRKEYFLDS 0 14 - 0 14 0 14 - 0 14 0 - 0 
INDICATORS - - - - - - - - -
MODIFIED - - - - - - - - -

WRITE 
FILE - R - - R - - R R 
FROM - R - - R - - R R 
KEYFROM - - - - 0 7 - - R7 R7 
OPTIONS - 0 - - 0 - - 0 0 
RECORD - 0 - - 0 - - 0 0 
INDICATORS - - - - - - - - -

REWRITE 
FILE - - R - - R - - R 
FROM - - R - - R - - R 
KEY - - - - - 0 - - R 
OPTIONS - - 0 - - 0 - - 0 
RECORD - - 0 - - 0 - - 0 
INDICATORS - - - - - - - - -

DELETE 
FILE - - R - - R - - R 
KEY - - - - - 0 - - R 
OPTIONS - - 0 - - 0 - - 0 
RECORD - - 0 - - 0 - - 0 

Appendix C. Valid Combinations of Options for Input/Output Statements C-3 



Display Files with INTERACTIVE organization 

SEQUENTIAL 
ACCESS 

I 0 U 

READ 
FILE R - R 
INTO I SET R - R 
KEY · - . 
KEYTO - - -
OPTIONS 0 · 0 
RECORD 011 · 011 
KEYSEARCH - · -
POSITION - · -
NBRKEYFLDS · - -
INDICATORS 01 · 01 
MODIFIED - - -

WRITE 
FILE · R R 
FROM · R R 
KEYFROM · · . 
OPTIONS · 0 0 
RECORD · 011 011 
INDICATORS · 01 01 

C-4 PL/I User's Guide and Reference 



Subfiles with INTERACTIVE organization 

SEQUENTIAL 
KEYED ACCESS 

I 0 U 

READ 
FILE - - . R 
INTO I SET - - R 
KEY - - 0 2 

KEYTO - - 0 2 

OPTIONS - - 0 
RECORD - - 011 
KEYSEARCH - - -
POSITION - - -
NBRKEYFLDS - - -
INDICATORS - - 0 1 

MODIFIED - - 010 

WRITE 
FILE - R R 
FROM - R R 
KEYFROM - 069 069 
OPTIONS - 0 0 
RECORD - 011 0 11 

INDICATORS - 01 0 1 

REWRITE 
FILE - - R 
FROM - - R 
KEYFROM - - 0 
OPTIONS - - 0 
RECORD - - 011 
INDICATORS - - 0 1 

Appendix C. Valid Combinations of Options for Input/Output Statements C-5 



Display Files with CONSECUTIVE organization 

READ 
FILE 
INTO I SET 
KEY 
KEYTO 
OPTIONS 
RECORD 
KEYSEARCH 
POSITION 
NBRKEYFLDS 
INDICATORS 
MODIFIED 

WRITE 
FILE 
FROM 
KEYFROM 
OPTIONS 
RECORD 
INDICATORS 

FILE ACCESS 

SEQUENTIAL SEQUENTIAL 
KEYED 

I 0 U I 0 U 

8 - 8 8 8 

R - R R - R 
- - - - - -
- - - - - -
0 - 0 0 - 0 
011 - 0 11 0 11 - 011 
- - - - - -
0 3 - 0 3 0 35 - 0 35 

- - - - - -
01 13 - - 0 113 - -
- - - - - -

- R - - R -
- R - - R -
- - - - - -
- 0 - - 0 -
- 0 11 - - 0 11 -
- 01 - - - -

Note: Use CONSECUTIVE organization only for simple input and output. If the 
user is entering input and you are supplying prompt screens, or if you are providing 
output but allowing the user to direct program processing, for example by entering 
record keys, you must use INTERACTIVE organization. 

C-6 PL/I User's Guide and Reference 



Inllne Files with CONSECUTIVE organization 

SEQUENTIAL 
ACCESS 

I 0 U 

READ 
FILE R - -
INTO I SET R - -
KEY - - -
KEYTO - - -
OPTIONS 0 - -
RECORD - - -
KEYSEARCH - - -
POSITION 0 3 - -
NBRKEYFLDS - - -
INDICATORS - - -
MODIFIED - - -

Printer Files with CONSECUTIVE organization 

SEQUENTIAL 
ACCESS 

I 0 U 

WRITE 
FILE - R -
FROM - R -
KEYFROM - - -
OPTIONS - 0 -
RECORD - 0 11 -
INDICATORS - 0 1 -

L 
Appendix C. Valid Combinations of Options for Input/Output Statements C-7 



Tape and Diskette Files with CONSECUTIVE organization 

SEQUENTIAL 
ACCESS 

I 0 U 

READ 
FILE R - -
INTO I SET R - -
KEY - - -
KEYTO - - -
OPTIONS 0 - -
RECORD - - -
KEYSEARCH - - -
POSITION 0 3 - -
NBRKEYFLDS - - -
INDICATORS - - -
MODIFIED - - -

WRITE 
FILE - R -
FROM - R -
KEYFROM - - -
OPTIONS - 0 -
RECORD - - -
INDICATORS - - -

e-8 PLjI User's Guide and Reference 



Communications and BSC Files with INTERACTIVE and CONSECUTIVE 
Organization 

SEQUENTIAL ACCESS 

CONSECUTIVE INTERACTIVE 

I 0 U I 0 U 

READ 
FILE R - R R - R 
INTO I SET R - R R - R 
KEY - - - - - -
KEYTO - - - - - -
OPTIONS 0 - 0 0 - 0 
RECORD 0 - 0 0 - 0 
KEYSEARCH - - - - - -
POSITION 0 3 - 0 3 - - -
NBRKEYFLDS - - - - - -
INDICATORS 0 1 - 0 1 0 1 - 0 1 
MODIFIED - - - - - -

WRITE 
FILE - R - - R R 
FROM - R - - R R 
KEYFROM - - - - - -
OPTIONS - 0 - - 0 0 
RECORD - 0 - - 0 0 
INDICATORS - 0 1 - - 0 1 01 

Appendix C. Valid Combinations of Options for Input/Output Statements C-9 



Footnotes: 

1. The me must contain external record deftnitions and must have the DDS 

INDARA keyword specilled. The ENVIRONMENT option NOINDARA 
must not be specilled. 

2. The KEY and KEYTO options are mutually exclusive. 

3. Only POSITION option NEXT allowed. 

4. KEYSEARCH is not allowed if KEY is not specilled. 

5. POSITION may not be specifted with KEY. 

6. The KEYFROM(·) option is not allowed. 

7. KEYFROM(expression) may only be used if the ENVIRONMENT options 
KEYDISP and KEYLENGTH are specifted. If the ENVIRONMENT option 
DESCRIBED is specifted, you must specify KEYFROM(·). 

8. Must have the DDS INZRCD keyword specifted. 

9. KEYFROM may not be specilled when writing to a subme control record 
format. 

10. MODIFIED may not be specilled with KEY. 

11. The RECORD option must be used with mes that contain external record deft­
nitions. 

12. POSITION options NXTUNQ, PRVUNQ, NXTEQL, and PRVEQL are not 
allowed. 

13. INDICATORS may not be specifted with POSITION. 

14. NBRKEYFLDS is not allowed if POSITION 
(NEXTIPREVIOUSIFIRSTILAST) is specifted. 

15. The tile must contain external record deftnitions (DDS described). 

C-IO PL/I User's Guide and Reference 



L 

CONDITIONS 

Appendix D. Conditions and Condition Codes 

Conditions 
This section presents conditions in alphabetical order. In general, the following 
information is given for each condition: 

• Description: A discussion of the condition, including the circumstances under 
which the condition may be raised. 

• Implicit action: The action taken when a condition is raised and no on-unit is 
currently established for that condition. In most cases, a message is issued. 

• Normal return: The point to which control returns if the on-unit ends normally; 
that is, when it is not left by a GO TO statement or ended by a STOP state­
ment. If a condition other than ERROR has been raised by the SIGNAL 
statement, the normal return is always to the statement immediately following 
SIGNAL. 

The condition codes that correspond to the different situations in which a condition 
is raised are the values returned by the ONCODE built-in function. The condition 
codes for each condition, their meanings, and any OS/400 or PL/l messages associated 
with the condition follow this list. 

If a message is issued for a condition, it will be directed to the program message 
queue of the run-unit's initial PL/I procedure. In addition to the message text, the 
message will contain the condition code, the program statement number, and the 
name of the external procedure containing the statement that raised the condition. 
In certain cases, the message will also contain the name of the me that caused the 
condition, the value of the key, or other information pertinent to the condition 
raised. 

The following conditions, shown in uppercase, may be specified in an ON or 
SIGNAL statement: 

ENDFILE 
ENDPAGE 
ERROR 

KEY 
TRANSMIT 
UNDEFINEDFILE 

The following conditions, shown in lowercase, cannot be specified in an ON or 
SIGNAL statement: 

Appendix D. Conditions and Condition Codes D-l 



CONDITIONS 

Conversion 
Fixedoverflow 
Overflow 
Record 

Storage 
Stringsize 
Underflow 
Zero divide 

All the conditions are described in the following sections in alphabetical order. 

Conversion Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Description: The conversion condition is raised when an invalid conversion is 
attempted. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: The ERROR on-unit must not return nonnally. 

ENDFILE Condition 

Description: The ENDFILE condition is raised during a GET or READ operation 
by an attempt to read past the end of a file. 

In record data transmission, ENDFILE is raised whenever the end of a file is found 
while processing a READ statement. J 
In stream data transmission, ENDFILE is raised while processing a GET statement 
if the end of a file is found before any items in the GET statement's data list have 
been transmitted, between transmission of two of the data items, or within a SKIP 
option. If the end of a file is found within a data item, or while an X-fonnat item is 
being executed, the ERROR condition is raised. 

If the file is not closed after ENDFILE has been raised, any subsequent GET state­
ment, or READ statement in the same direction for that file will again raise the 
ENDFILE condition. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: Processing continues with the statement immediately following the 
GET or READ statement that raised the ENDFILE condition. 

ENDPAGE Condition 

Description: The ENDPAGE condition is raised for stream mes when the last line 
has been printed on a page or if a LINE option or fonnat item specifies a line 
number lower than the current line number. For record mes, a TRANSMIT condi­
tion is raised. You can specify the number of lines for a page in the PAGESIZE 
option in an OPEN statement. If you do not specify PAGESIZE, a default limit of 
60 is applied. The attempt to exceed the limit may be made during data trans- \ 
mission (including associated format items) or by the LINE or SKIP option. """ 

D-2 PLjI User's Guide and Reference 



CONDITIONS 

ENDPAGE is raised only once for each page unless it is raised by the SIGNAL 
statement. 

When ENDPAGE is raised, the current line number is 1 greater than the page size; 
it is therefore possible to continue writing on the same page. The on-unit may start 
a new page by processing a PAGE option or a PAGE format item, which sets the 
current line to 1. 

If the on-unit does not start a new page, the current line number may increase indef­
initely. Any subsequent LINE option or LINE format item starts a new page and 
sets the current line number to 1 without raising ENDPAGE, unless the current line 
number is equal to the specified line number and the me is positioned on column 1 
of the line. In this case, the LINE specification is ignored, ENDPAGE is not 
raised, and no new page is started. 

If ENDPAGE is raised during data transmission, the remaining data is written on 
the current line on return from the on-unit; the line number may have been changed 
by the on-unit. 

IfENDPAGE results from a LINE or SKIP option or format item, then, on return 
from the on-unit, the action specified by LINE or SKIP is ignored. 

Implicit Action: A new page is started and processing of the PUT statement con­
tinues. 

Normal Return: Processing of the PUT statement continues. 

ERROR Condition 

Description: The ERROR condition is raised by: 

• The implicit action for a condition for which that action is to issue an error 
message and raise the ERROR condition, such as the implicit action for the 
UNDEFINEDFILE condition. 

• An error for which there is no other condition. This error may be a hardware 
detected error, such as an address exception, or a software detected error, such 
as processing an input/output statement for a me while another input/output 
statement is processing for the same me. 

Implicit Action: The program ends abnormally. If the ERROR condition was 
raised because of an error for which no other condition exists (second case above), a 
message is issued before ending. 

Normal Return: The program ends abnormally. 

Fixedoverflow Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Appendix D. Conditions and Condition Codes D-3 



CONDITIONS 

Description: The fixedoverflow condition is raised when the number of digits of the 
intermediate result of a fixed-point arithmetic operation exceeds the maximum 
number of digits allowed by the implementation. The maximum for intermediate 
results is at least 15 for decimal fixed-point values and at least 31 for binary fixed­
point values. 

The flXedoverflow condition is also raised when high-order significant digits are lost 
in an attempted assignment to a variable or in an input/output operation. This loss 
may result from a conversion involving different data types, different bases, different 
scales, or different precisions. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: The ERROR on-unit must not return normally. 

KEY Condition 

Description: The KEY condition can be raised only during operations on keyed 
records. For the possible causes of the KEY condition, see Figure 0-1 on 
page D-6. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: Control passes to the statement immediately following the state­
ment that caused KEY to be raised. 

Overflow Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Description: The overflow condition is raised when the magnitude of a floating­
point number exceeds the permitted maximum. No value is stored in the target. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: The ERROR on-unit must not return normally. 

Record Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Description: The record input/output condition can be raised only during a 
READ, WRITE, or REWRITE operation. For the possible causes of the condi­
tion, see Figure 0-1 on page D-6. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: The ERROR on-unit must not return normally. 

D-4 PL/I User's Guide and Reference 



L 

CONDITIONS 

Storage Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Description: The storage condition is raised when an ALLOCATE statement is 
processed without enough storage available for the request. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal return: The ERROR on-unit must not return nonnally. 

Stringsize Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Description: The stringsize condition is raised when a string is assigned to a shorter 
target. If the condition is detected by a PL/I run-time routine and you specified 
GENOPT(tDIAGNOSE) in the CRTPLIPGM command when you compiled the 
program, an infonnational message is issued. 

Implicit Action: The string is truncated to the right and processing continues. 

Full Language Extension 

TRANSMIT Condition 

Description: The TRANSMIT input/output condition can be raised during any 
input or output operation in which the record is not transmitted. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: Processing continues with the statement immediately following the 
input or output statement that raised the condition. 

'---________ End of Full Language Extension ________ ....J 

UNDEFINEDFILE Condition 

Description: The UNDEFINEDFILE condition is raised by an unsuccessful 
attempt to open a me. 

If UNDEFINEDFILE is raised by an implicit opening in an input/output state­
ment, then, upon normal return from the on-unit, processing continues with the rest 
of the input/output statement, provided that the me has been opened in the on-unit. 
If the me has not been opened, the ERROR condition is raised. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Appendix D. Conditions and Condition Codes D-5 



CONDITION CODES 

Normal Return: Upon the normal completion of the on-unit, control passes to the \ 
statement immediately following the statement that raised the condition. (See """" 
"Description" for the action in the case of an implicit opening.) 

Underflow Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Description: The underflow condition is raised when the magnitude of a nonzero 
floating-point number is smaller than the permitted minimum. (UNDERFLOW is 
not raised when equal numbers are subtracted.) 

Implicit Action: A message is issued and processing continues with a value of zero. 

Zerodivide Condition 

This condition cannot be written in an ON or SIGNAL statement. 

Description: The zero divide condition is raised when an attempt is made to divide 
by zero. 

Implicit Action: A message is issued and the ERROR condition is raised. 

Normal Return: The ERROR on-unit must not return normally. 

Condition Codes 
The following table is a listing of the conditions that can be raised during the 
processing of a program. Each entry contains the condition code, an explanation of 
the error which raised the condition, the condition's origin, and the PL/I message 
issued. Conditions that can be specified are shown in uppercase; those that cannot 
be specified are shown in lowercase. 

D-6 PLfI User's Guide and Reference 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

Conversion 
604 Error while processing an PL/I PLI0504 

F-format item for a GET 
statement: an exponent was 
found in the character 
value. 

612 Error while converting from PL/I PLI0512 
character to arithmetic. 

615 Error while converting from PL/I PLI0515 
character to bit. 

629 Error while converting from PL/I PLI0529 
picture to coded arithmetic: the 
character value of the picture 
does not correspond to its 
specification. 

ENDFILE 
70 A SIGNAL ENDFILE statement was PLI3200 

processed. 

71 
An end of ftle was detected. 

CPF5001, PLI3201 
CPF5025 

ENDPAGE 
90 A SIGNAL ENDPAGE statement PLI3300 

was processed. 

91 
An end of page was detected. 

PL/I PLI3301 

Appendix D. Conditions and Condition Codes D-7 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

ERROR 
9 A SIGNAL ERROR statement was PLI0200 

processed. 

1004 Attempt to use SKIP PL/I PLI1704 
< 0 for a print fIle or 
~ 0 for non-print fIle. 

1007 A REWRITE or a DELETE statement CPF5011, PLI1707 
was not preceded by a READ CPF5l47 
statement on a sequential fIle. 

Attempt to process a DELETE 
for a sequentially accessed 
fIle under commitment control 
after a commit or rollback 
is done. (A commit or a 
rollback releases all record 
locks.) This is caused by a 
logic error in the user 
program. The record is not 
deleted. 

Attempt to process a REWRITE 
for a sequentially accessed 
fIle under commitment control 
after a commit or rollback is 
done. (A commitor a rollback 
releases all record locks.) 
This is caused by a logic 
error in the user program. 
The record is not deleted. 

1009 An input/output statement PL/I PLI1709 
specifies an operation or an 
option that conflicts with 
the fIle. 

1010 A REWRITE or DELETE was PL/I PLI1710 
attempted using an invalid 
record format. 

D-8 PLjI User's Guide and Reference 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

ERROR 
1011 Data management has detected an CPF4500, PLII711 

input/output error. CPF4600, 
Use PLIRCVMSG for more CPF5100, 
information unless the CPF5200, 
originating message was CPF5300, 
a STATUS type message. CPF5500, 

CPF5600 

1016 After the UNDEFINEDFILE PL/I PLI1716 
condition was raised as a result 
of an unsuccessful attempt to 
implicitly open a me, the me 
was found unopened on 
normal return from the on-unit. 

1018 End of me was found PL/I PLI1718 
while processing a data item 
or X-format item. 

1201 Argument passed to built-in MCH5003 PLI1801 
function is invalid (for 
example, out of range). 

3809 The ·DIAGNOSE option was MCH0603 PLI0909 
selected when the program was 
compiled. Therefore MI string 
constrainment was specified 
when the program was created. 
A violation has occurred and 
MCH0603 exception was signalled. 

4051 Attempt to free a variable PL/I PLI2151 
that has no valid allocation. 

Appendix D. Conditions and Condition Codes D-9 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

ERROR 
4059 When an ALLOCATE or FREE PL/I PLI2l59 

statement was being processed, 
an element of the free area 
chain was found that did not 
contain valid infonnation. 

5000 The number of arguments passed MCH0801 PLI2200 
to a procedure did not match 
the number of parameters 
expected. 

8090 A floating-point operation MCH1209 PLI1900 
had invalid operands. 

8095 Address exception. MCH3601 PLI1905 

8096 Alignment error. MCH0602 PLI1906 

9000 Function check or other serious CPF9999 PLI2000 
error during processing. or any of 

several 
MCH 
messages 

9002 Attempt to process a GO TO PL/I PLI2002 
statement which references an 
invalid statement label. 

D-IO PLjI User's Guide and Reference 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

Fixedoverflow 
310 The fixedoverflow condition is MCHI21O, PLI0600 

raised when the number of digits PL/I 
of the intermediate result of a 
fixed-point arithmetic operation 
exceeds the maximum number of 
digits allowed by the 
implementation. The maximum for 
intermediate results is at least 
15 for decimal fixed-point 
values and at least 31 for 
binary fixed-point values. 

The fixedoverflow condition is 
also raised when high-order 
significant digits are lost in 
an I/O operation. This loss may 
result from a conversion 
involving different data types, 
different bases, different 
scales, or different precisions. 

Appendix D. Conditions and Condition Codes D-ll 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

KEY 
50 A SIGNAL KEY statement was PLI3400 

processed. 

51 The specified key cannot be CPF5006, PLl340l 
found. CPF5020 

52 When duplicate keys are not CPF5008, PLI3402 
allowed, an attempt was made to CPF5026 
add a keyed record that has the 
same key as a record already in 
the flle. J 
A WRITE was done to an existing PL/I 
relative record number. 

53 When duplicate keys are not CPF5034 PLI3403 
allowed, an attempt was made to 
add a keyed record that has the 
same key as a record already in 
another flle over which there is 
a common unique keyed index. 

A WRITE or REWRITE was done PL/I 
to an existing relative record number. 

54 A key conversion was attempted on PL/I PLl3404 
a CONSECUTIVE or INTERACTIVE 
flle. The key is less than 
or equal to O. 

55 Key specification is null PL/I PLl3405 
string. 

59 An invalid key was detected by CPF5090 PLI3409 
OS/400. The error is described by 
PLIRCVMSG. 

62 READ statement with the NXTEQL CPF5006 PLI3412 
or PRVEQL POSITION option was 
used and there was no next or 
previous equal key in the access 
path. 

D-12 PL/I User's Guide and Reference 



CONDITION CODES 

L Condition and PL/I 
codes Meaning Origin Message 

Overflow 
300 A floating-point number is greater than MCH1206 PLI0700 

the maximum size permitted. 

Record 
21 The record variable is smaller than the PLjI PLI3601 

record size; in a READ INTO state-
ment the rest of the record is lost. 

22 
The record variable is larger than the 
record size; in a READ INTO state- PLjI 

PLI3602 
ment the rest of the variable is unde-
fmed. 

The length of the record variable in a 
23 WRITE or REWRITE statement is PLjI 

zero or the variable is too short to PLI3603 
contain the embedded key. No trans-
mission occurs. This condition is 
raised only for data base fIles or device 
fues that do not contain DDS. 

Storage 
8085 An ALLOCATE statement requested MCH2804, PLI0485 

more storage than is available to the MCH5401 
program. 

Stringsize 
none The stringsize condition is raised when PLjI PLIIOOO 

a string is assigned to a shorter target. 

Appendix D. Conditions and Condition Codes D-13 



CONDITION CODES 

Condition and PLfI 
codes Meaning Origin Message 

TRANSMIT 
40 A SIGNAL TRANSMIT statement PLI3700 

was processed. 

43 File input/output error. Use CPF4700, PLI3703 
PLIRCVMSG for more information, CPF4800, 
unless the originating message CPFSOOO 
was a STATUS type message. 

44 Printer overflow line detected. CPFS004 PLI3704 

47 Record locked. Use PLIRCVMSG CPFS027, PLI3707 
for more information, unless the CPFS032 
originating message was a STATUS 
type message. 

The requested record is 
currently locked. 

Note: Attempt to process a read 
for a record in a me which is 
opened for UPDATE. The record 
is locked, and remains locked 
until the next me operation is 
processed. The program should 
ensure that any such locks held 
by the program are released. 

48 Data conversion through CPF5029, PLI3708 
input/output with a logical CPFS03S 
me. 

49 File size limit exceeded. CPFS018, PLI3709 
CPF5043 

D-14 PLjI User's Guide and Reference 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

UNDEFINED FILE 
80 A SIGNAL UNDEFINEDFILE PLI3800 

statement was processed. 

81 The attributes in a DECLARE PLjI PLI3801 
statement conflict with those of 
an explicit or implicit OPEN. 

82 The fIle attributes conflict PLjI PLI3802 
with the physical characteristics 
of the ASj400 fIle, such as a 
conflict between the fIle 
organization and the device type. 

84 File or member not found. CPF4101, PLI3804 
CPF4102 

86 The value of the LINESIZE option PLjI PLI3806 
on the OPEN statement is too 
large for the logical record 
length of the device. 

89 Authorization failure. CPF4104, PLI3809 
CPF4236 

93 An error was detected by os /400 CPF4100, PLI3813 
while opening a ftle. Use CPF4200, 
PLIRCVMSG to obtain more CPF4300 
information, unless the 
originating message was a ST A TUS 
type message. 

A fIle under commitment control 
has been opened, but either the 
STRCMTCTL command has not 
been issued or this fIle is not 
journaled to the same fIle as 
the other fIles under commitment 
control. The ftle is not 
opened. 

Appendix D. Conditions and Condition Codes D-15 



CONDITION CODES 

Condition and PL/I 
codes Meaning Origin Message 

UNDEFINEDFILE 
(cont) 

96 Invalid TITLE option. PL/I PLI3816 
CPF4128 

97 Unable to allocate objects for PLI3817 
flle. 

PL/I 
98 Attributes of the currently PLI3818 

open flle do not match the 
attributes specified in the 
OPEN statement. 

Underflow 
none A floating-point number is smaller MCH1207 PLI1200 

than the minimum size permitted. 

Zero divide 
320 A divide operation was attempted MCH1211, PLI1300 

using zero as the divisor. MCH1214 

D-16 PLfI User's Guide and Reference 



Appendix E. EBCDIC CODES 

The EBCDIC codes may be represented by different characters on different terminals 
or printers. 

Character EBCDIC Code Character EBCDIC Code 

blank 40 s A2 
4B t A3 

< 4C u A4 
( 40 v A5 
+ 4E w A6 
I 4F x A7 
& 50 y A8 
$ 5B z A9 
+ 5C A Cl 
) 50 B C2 

5E C C3 
-, 5F 0 C4 

60 E C5 
/ 61 F C6 
, 6B G C7 
% 6C H C8 

60 I C9 -
> 6E J 01 

7A K D2 

# 7B L 03 
@ 7C M 04 

70 N 05 
= 7E a 06 
a 81 p 07 
b 82 Q 08 
c 83 R 09 
d 84 S E2 
e 85 T E3 
f 86 U E4 
g 87 V E5 
h 88 W E6 

89 X E7 
1 91 Y E8 
k 92 Z E9 
1 93 0 FO 
m 94 1 Fl 
n 95 2 F2 
0 96 3 F3 
P 97 4 F4 
q 98 5 F5 
r 99 6 F6 

7 F7 

Appendix E. EBCDIC CODES E-l 



Character 

8 
9 

EBCDIC Code 

F8 
F9 

E-2 PL/I User's Guide and Reference 



TWO ENVIRONMENTS 

Appendix F. Converting from System/3S to the AS/400 System 

Your Choice of Two Environments: AS/400 System or the System/3S 
Environment 

The AS/400 System offers many enhancements over System/38. However, because 
a great many PL/I programs have been written for the System/38 computer, and 
because many programmers are already familiar with the System/38, the AS/400 
System also supports these programs. 

The CL command CALL QCL changes the AS/400 System screen display to appear 
to the user as a System/38. This is known as the System/38 Environment. When 
you are in this environment, you can enter and compile PL/I programs, and do any­
thing else, as if you were using a System/38 machine. To exit from the System/38 
Environment, you would enter RETURN. To use the System/38 Environment, you 
must have the flles QCL and QCMD in your library list. 

Compiling in the System/38 Environment 
You use the CL command CRTPLIPGM to compile PL/I source programs in the 
System/38 Environment just as in the AS/400 System environment. CRTPLIPGM is 
used in a similar manner in the two environments with a few exceptions. They are 
as follows: 

For the PGM parameter the following option applies: 

*CURLIB: If a library name is not specified, the program is stored in ·CURLIB. The 
program must not already exist in the library 

For the SRCFILE parameter the following option applies: 

*LIBL: The library list is used to fmd the source flle. 

For the INCFILE parameter the following options applies: 

*LIBL: The library list is used to fmd the source me. 

For the PRTFILE parameter the following option applies: 

*LIBL:: The library list is used to find the print flle. 

The PUBAUT parameter is used instead of the AUT parameter. 

For the PUBAUT parameter the following options apply: 

*NORMAL: The program is treated as ·CHANGE in the AS/400 System environment. 

*ALL: The public has complete authority for the program. 

Appendix F. Converting from Systemj38 to the ASj400 System F -1 



lWO ENVIRONMEN'IS 

*NONE: The program is treated as +EXCLUDE in the AS/400 System environment. 

Examples 

The following command compiles a program named PAYROLL. 

CRTPLIPGM PAYROLL TEXT('Payroll Program l) 

The source program is in the default source file QPLISRC, in a member named 
PAYROLL. A compiler listing is generated. The program runs under the user's 
user profile, and can be run by any system user. 

The following command creates a PL/I program named PARTS. 

CRTPLIPGM PGM(PARTS) + 
SRCFILE(PARTDATA.MYLIB) + 
OPTION(*XREF *OPT) PUBAUT(*NONE) + 
TEXT('This program displays all parts datal) 

The program object is stored in the library QGPL. The source program is in the 
PARTS member of the source file PARTDATA in the library MYLIB. A com­
piler listing, cross-reference listing, and compiler-option list is generated. This 
program, which cannot be used by the public, can be run by the owner or another 
user that the owner has explicitly authorized by name in the CL command 
GRTOBJAUT (Grant Object Authority). 

Writing Programs in the System/3S Environment 
The following %INCLUDE directive and the TITLE parameter of the OPEN state­
ment show the difference in the filename when using PL/I in the System/38 environ­
ment. 

Using the % INCLUDe Directive 
file-name 

An identifier of up to ten characters. The me is located by using the +LIBL 
search list in effect at compile time. The ftle name cannot begin with a numeric 
and cannot contain periods; the possible characters are A-Z, 0-9, #, @, _. You 
cannot name your ftle SYSLIB. 

member-name 
An identifier of up to ten characters. The name must be unique within one ftle. 
The name cannot contain a period or start with a numeric character. 

Using the % INCLUDE Directive for External File Descriptions 
file-name 

An identifier of up to 10 characters. The ftle is located by using the +LIBL 
search list in effect at compile time. The me name cannot begin with a numeric 
and cannot contains periods; the possible characters are A-Z, 0-9, #, @, _. You 
cannot name your ftle SYSLIB. 

F-2 PLjI User's Guide and Reference 

J 

J 



L 

Syntax of TITLE Parameter of the OPEN Statement 

--TITLE-(Ltle_var~ab~)-'" 

eXpreSS10n 

where 'expression' is: 

TWO ENVIRONMENTS 

_'-fil e name'--,,--------,--,...---------.-,­

~. library_name~ ~(member_name)~ 
title-variable 

May be any valid program variable whose value is a valid System/38 expression. 
For example: 

ACCOUNTS RECEIVABLE 
= 'ACCOUNTS.ACCTLIB(ACCOUNT1)'i 

OPEN FILE (ACCTS) UPDATE 
TITLE (ACCOUNTS_RECEIVABLE); 

expression 
Must consist of valid System/38 file, library and member name. 

If library-name is omitted, +LIBL is assumed. 

If member-name is omitted, the fIrst member in the file is used. 

Appendix F. Converting from System/38 to the AS/400 System F-3 



lWO ENVIRONMENTS 

J 

J 

J 

F -4 PL/I User's Guide and Reference 



Appendix G. Glossary of Abbreviations 

Abbreviation Stands For Definition 

ANSI American An organization sponsored by the Com-
National Stand- puter and Business Equipment Man-
ards Institute ufacturers Association for establishing 

voluntary industry standards. 

ASCII American The standard code used for information 
National interchange between data processing 
Standard Code systems, data communications systems, 
for Information and associated equipment. The code 

uses a coded character set consisting of 
7 -bit coded characters (8 bits including 
parity check). The set consists of control 
characters and graphic characters. 

BSC Binary Synchro- A form of telecommunication line 
nous Communi- control that uses a standard set of trans-
cation mission control characters and control 

character sequences, for binary synchro-
nous transmission of binary-coded data 
between stations. 

CL Control Lan- The set of all commands with which a 
guage user requests functions. 

OS/400 Operating The system support licensed program 
System/400 for the AS/400 System. It provides 

many functions that are fully integrated 
in the system such as work manage-
ment, data base data management, job 
control, message handling, security, pro-
gramming aids, and service. 

DDM Distributed Data A program product that allows an appli-
Management cation program or user on a source 

system to access data ftles on remote 
systems connected by a communications 
network that also uses DDM. 

DDS Data Description A description of the user's data base or 
Specifications device mes that is entered into the 

system using a fixed-form syntax. The 
description is then used to create meso 

Appendix G. Glossary of Abbreviations G-l 



Abbreviation Stands For Definition 

EBCDIC Extended A coded character set consisting of 8-bit 
Binary-Code coded characters. 
Decimal Inter-
change Code 

F Function Key A keyboard key that is used to request a 
specific system function. 

FCFC First Character A method for controlling the format of 
Forms Control printed output. The ftrst character of 

each record determines the format. 

HLL High-Level Lan- A programming language that relieves 
guage the programmer from the rigors of 

machine level or assembler level pro-
gramming; for example, RPG III, CL, 

BASIC, and COBOL. 

K. Kilobyte The primary unit of measure for storage 
capacity; 1 K = 1024 bytes. 

NaN Not-A-Number In binary floating-point concepts, a 
value, not interpreted as mathematical 
value, which contains a mask state and 
a sequence of binary digits. 

PL/I Programming A programming language designed for 
Language One numeric scientifIc computations, busi-

ness data processing, systems program-
ming and other applications. 

QGPL General-Purpose The library provided by the Control 
Library Program Facility to contain user-

oriented, IBM-provided objects and user-
created objects not explicitly placed in a 
different library when they are created. 

SDLC Synchronous A discipline conforming to subsets of 
Data Link the Advanced Data Communication 
Control Control Procedures (ADDCCP) of the 

American National Standards (ANS) 
and High-level Data Link Control 
(HDLC) of the International Organiza-
tion for Standardization, for managing 
synchronous, code-transparent, serial-
by-bit information transfer over a link 
connection. Transmission exchanges 
may be duplex or half-duplex over 
switched or non-switched links. The 
configuration of the link connection 
may be point-to-point, multipoint or 
loop. 

G-2 PL/I User's Guide and Reference 



Abbreviation Stands For Definition 

SEU Source Entry The part of the Utilities Program 
Utility Product used by the operator to enter 

and update source and procedure 
members. 

SQL Structured Query A relational data base management 
Language system which allows data access in both 

interactive and noninteractive systems. 

Appendix G. Glossary of Acronyms G-3 



G-4 PL/I User's Guide and Reference 



Glossary of Terms 

additive attribute. A file description attribute that must 
be stated explicitly or implied by another explicitly stated 
attribute. Contrast with alternative attribute. 

allocated variable. A variable to which storage has been 
assigned. 

alternative attribute. A file description attribute that is 
chosen from a group of attributes. Contrast with addi­
tive attribute. 

arithmetic comparison. A comparison of signed numeric 
values. See also bit comparison. character comparison. 

array. A collection of one or more elements with iden­
tical attributes, grouped into one or more dimensions. 

array of structures. An array whose elements are struc­
tures that have identical names, levels, and element attri­
butes. 

array variable. A variable that represents an aggregate 
of data items that must have identical attributes. Con­
trast with structure variable. 

assignment statement. A statement that gives a value to 
a variable. It always contains the assignment symbol 
(= ). 

based variable. A variable that provides attributes for 
data (such as data located in a buffer) for which the 
storage address is provided by a pointer. It does not 
identify a fixed location in storage. 

begin-block. A block that is activated by error-handling 
on-conditions or through the normal flow of control. 

binary fixed-point value. An integer consisting of binary 
digits and having an optional binary point. Contrast 
with decimal fixed-point value. 

binary floating-point value. An approximation of a real 
number in the form of a significand, which can be con­
sidered as a binary fraction, and an exponent, which can 
be considered as an integer exponent to the base of 2. 
Contrast with decimal floating-point value. 

bit comparison. A left-to-right, bit-by-bit comparison of 
binary digits. See also arithmetic comparison. character 
comparison. 

bit constant. Either a series of binary digits enclosed in 
apostrophes and followed immediately by B or Bl, or a 

series of hexadecimal digits enclosed in apostrophes and 
followed immediately by B4. Contrast with character 
constant. 

bit value. A sequence of binary digits stored in consec­
utive bits. 

block. A sequence of statements. processed as a unit, 
that specifies the scope of names and the allocation of 
storage for names declared within it. Contrast with do 
group. 

break character. The underscore symbol (_). It can be 
used to improve the readability of identifiers. For 
instance, a variable could be called 
OLD_INVENTORY_TOTAL instead of 
OLDINVENTORYTOTAL. 

built-in function. A predefined function, such as a com­
monly used arithmetic function or a function necessary 
to language facilities (for example, a function for manip­
ulating strings or converting data). It is called by a 
built-in function reference. 

built-in function reference. A built-in function name, 
having an optional and possibly empty argument list, 
that represents the value returned by the built-in func­
tion. 

character comparison. A left-to-right, character-by­
character comparison according to the collating 
sequence. See also arithmetic comparison. bit compar­
ison. 

character constant. A sequence of characters enclosed 
in apostrophes; for example, I CONSTANT I. 

coded arithmetic data. Data items that represent 
numeric values and are characterized by their base 
(decimal or binary), scale (fixed-point or floating-point), 
and precision (the number of digits each can have). 

combined nesting depth. The sum of all 
PROCEDURE/BEGIN/ON, DO, SELECT, and 
IF ... THEN ... ELSE nestings in the program. 

comparison operator. An operator that can be used in 
an arithmetic, string, or logical relation to indicate the 
comparison to be done between the terms in the 
relation. The comparison operators are = (equal to), 
> (greater than), < (less than), > = (greater than or 
equal to), < = (less than or cqual to), .., = (not equal 
to), .., > (not greatcr than), .., < (not less than). 

Glossary of Terms GLOSS-l 



composite symbol. A symbol that consists of more than 
one special character; for example, < =, '" "', -> , and 1"'. 

condition. An exceptional situation, either an error 
(such as an overflow), or an expected situation (such as 
the end of an input file). When a condition is raised 
(detected), the action established for it is processed. See 
also established action and implicit action. 

connected aggregate. An array or structure that has no 
inherited dimensions. 

control variable. A variable that is used to control the 
running of a program, as in a DO statement. 

DDM file. A ASj400 file that is associated with a 
remote file that is accessed using DDM. The DDM file 
provides the information needed for a local (source) 
system to locate a remote (target) system and to access 
the file at the target system where the requested data is 
stored. 

data aggregate. A group of data items that can be 
referred to either individually or collectively. There are 
two types of aggregates: arrays and structures. 

data list. In PLjI stream data transmission, a list of the 
data items used in GET EDIT and PUT EDIT state­
ments. Contrast with format list. 

decimal fixed-point constant. A constant consisting of 
one or more decimal digits with an optional decimal 
point. 

decimal fixed-point value. A rational number consisting 
of a sequence of decimal digits with an assumed position 
of the decimal point. Contrast with binary fixed-point 
value. 

decimal floating-point constant. A value made up of a 
significand that consists of a decimal fixed-point con­
stant, and an exponent that consists of the letter E fol­
lowed by an optionally signed integer constant not 
exceeding three digits. 

decimal floating-point value. An approximation of a real 
number, in the form of a significand, which can be con­
sidered as a decimal fraction, and an exponent, which 
can be considered as an integer exponent to the base of 
10. Contrast with binary floating-point value. 

default. Is used to describe a value, attribute, or option 
that is assumed when none has been specified. 

dimension attribute. An attribute that specifies the 
number of dimensions of an array and indicates the 
bounds of each dimension. 

GLOSS-2 PLfI User's Guide and Reference 

directive. A statement that directs the operation of the 
compiler. 

do group. A sequence of statements, processed as a unit, 
that may be a non-iterative do group (processed once or 
possibly not at all) or an iterative do group (processed 
several times, once, or not at all). Contrast with block. 

entry constant. The label prefix of a PROCEDURE 
statement. 

entry data item. A data item that represents an entry 
point to a procedure. 

entry reference. An entry constant, an entry variable 
reference, or a function reference that returns an entry 
value. 

entry variable. A variable to which an entry value can 
be assigned. 

established action. The action taken when a condition is 
raised. See also implicit action and ON-statement 
action. 

explicit declaration. A DECLARE statement that speci­
fies the attributes of a name. A procedure's name is 
declared by the PROCEDURE statement: the 
statement's label is declared as the name of the proce­
dure. Contrast with implicit declaration. 

expression. A representation of a value; it can consist of 
constants, variables, and function references, along with 
operators or parentheses or both. 

extent. The number of integers between and including 
the lower and upper bounds of an array. 

extralingual character. Any EBCDIC code that is not 
an alphabetic character, a special character, or a digit. 

file constant. A name declared for a file and for which 
a complete set of file description attributes exists during 
the time that the file is open, and with which each file 
must be associated. 

file description attribute. A keyword that describes the 
characteristics of a file. See also alternative attribute 
and additive attribute. 

format list. In PLfI stream data transmission, a list 
specifying the format of the data item on the external 
medium. Contrast with data list. 

function. A procedure that has a RETURNS option in 
the PROCEDURE statement. A function ends by proc­
essing a RETURNS (expression) statement and 
returning a scalar value to the point of calling. Contrast 
with subroutine. 

J 



function reference. An entry constant or an entry vari­
able, either of which must represent a function, followed 
by a possibly empty argument list. Contrast with sub­
routine reference. 

identifier. A single alphabetic character or a string of 
alphabetic characters, digits, and break characters that 
starts with an alphabetic character. 

implicit. Is used to describe the action taken in the 
absence of an explicit statement. 

implicit action. The action established for a condition 
when the program is activated and that remains estab­
lished unless overridden by the processing of an ON 
statement for the same condition. Contrast with 
ON-statement action. 

inherited dimensions. For a structure field, those dimen­
sions that are inherited from the containing structures. 
If the structure field is a scalar variable, the dimensions 
consist entirely of its inherited dimensions. If the struc­
ture field is an array, its dimensions consist of its inher­
ited dimensions plus its explicitly declared dimensions. 
A structure field with one or more inherited dimensions 
is referred to as an unconnected aggregate. Contrast 
with connected aggregate. 

initial procedure. An external procedure, called by a 
calling program, that activates a PLfI program. 

instruction pointer. A pointer that provides address­
ability for an MI instruction in a program. 

integral boundary. The multiple of any 8-bit unit of 
information on which data can be aligned. 

internal procedure. A procedure that is contained in 
another block. Contrast with external procedure. 

keyword. An identifier that when used in a defined 
context takes on a specific meaning, such as an action 
taken or the attributes of data. 

keyword statement. A simple statement that begins with 
a keyword indicating the function of the statement. 

label. An identifier that names a statement so that it can 
be referred to at some other point in the program. 
Sometimes called a label prefix. 

label constant. A name written as the label prefix of any 
statement other than PROCEDURE. Contrast with 
label variable. 

label prefix. See label. 

label value. An attribute that identifies a statement in 
the running program. 

label variable. An identifier that contains the label of a 
statement so that the label can be referred to at some 
other point in the program. Contrast with label con­
stant. 

language character. Anyone of the alphabetic charac­
ters, the digits 0 through 9, and twenty special charac­
ters. 

level-number. A number that precedes a name in a 
DECLARE statement and specifies the organization of 
the structure in that statement. 

name. Any identifier that the user assigns to a variable 
or to a constant. Sometimes called a user-defined name. 

null statement. A statement that contains only the semi­
colon symbol (;). 

null string. A character or bit string with a length of 
zero. 

ON-statement action. The action explicitly established 
for a condition when the condition is raised. The 
ON-statement action overrides or suspends any previ­
ously established action unless it is overridden by a 
further ON-statement for the same condition or until the 
block it was processed in ends. Contrast with implicit 
action. 

operational expression. An expression that consists of 
one or more operations. 

picture data. Arithmetic data represented in character 
form. 

picture specification. A data item that has a numeric 
value but that can also be represented as a character 
value according to the editing characters specified in the 
item's declaration. 

pointer. A type of variable that identifies a location in 
storage. 

pointer value. A value that identifies the location of data 
in storage. 

precision. The number of digits contained in a fixed­
point data item, or the minimum number of significant 
digits (excluding the exponent) maintained for a floating­
point data item. 

problem data. Coded arithmetic, bit, character, and 
picture data which represents values processed by the 
program. Contrast with program control data. 

procedure. A block that can be activated from various 
points within a program by use of a CALL statement 

Glossary of Terms G LOSS-3 



and can process data passed to it from the block in 
which it was called. See also external procedure and 
internal procedure. 

procedure calling level. The calling level that is incre­
mented when an internal procedure is called recursively. 
The procedure calling level cannot be specified on 
ASj400 debug commands, and only the last (most 
recent) procedure calling level is available for debugging. 
Contrast with program calling level. 

program control data. Pointer, label, entry, and file data 
that is used to control the processing of a PLjI program. 
Contrast with problem data. 

program calling level. The calling level incremented 
when a program or external procedure is called 
recursively. The program calling level can be specified 
on ASj400 debug commands through the INVL VL 
parameter. Contrast with procedure calling level. 

record data transmission. The transmission of data in 
the form of separate records. Contrast with stream data 
transmission. 

recursive procedure. An active procedure that can be 
called from within itself or from within another active 
procedure. 

run unit. A set of PLjI programs, each of which is 
called by some other PLjI program within the set, 
except for the initially called program, which is called 
from outside the set. A PLjI run unit is suspended 
when a program in the run unit calls a non-PLjI 
program, and is resumed when the called program 
returns control to the PLjI program that called it. A 
PLjI run unit is ended when the initially called PLjI 
program returns control to the non-PLjI program that 
originally called the initial program and so started the 
run unit. 

scalar. A type of program object that contains either 
string or numeric data. It provides the byte string it is 
mapped to with representation and operational charac­
teristics. Contrast with pointer. 

G LOSS-4 PLjI User's Guide and Reference 

scalar variable. A variable that represents a single data 
item. 

scope. The part of the program in which a data item 
can be referenced. 

statement. A grouping of identifiers, constants, and 
delimiters that makes up do groups and blocks. The 
end of a statement is indicated by a semicolon (;). See 
also keyword statement, assignment statement, and null 
statement. 

stream data transmission. The transmission of data in 
which the organization of the data into records is 
ignored and the data is treated as though it were a con­
tinuous stream of individual data values in character 
form. Contrast with record data transmission. 

string. (I) A series of things, such as characters, in a 
line. (2) In PLjI, a contiguous sequence of characters or 
bits that is treated as a single data item. (3) A group of 
auxiliary storage devices connected to a system. The 
order and location in which each device is connected to 
the system determines the physical address of the device. 

structure. A collection of data items that need not have 
identical attributes. Contrast with array. 

structure variable. A variable that represents an aggre­
gate of data items that might not have identical attri­
butes. Contrast with array variable and scalar variable. 

subroutine. A procedure that has no RETURNS option 
in the PROCEDURE statement. Contrast with function. 

subroutine call. An entry reference that must represent a 
subroutine, followed by an optional and possibly empty 
argument list that appears in a CALL statement. Con­
trast with function reference. 

undefined. Is used to indicate something that is not 
defined by the language and that may change without 
notice. Thus, programs that seem to work correctly 
when referencing undefined results do so by chance and 
are in error. 

J 



Index 

A 
A-format item 11-31, 11-32 
abbreviations 

AFT for AFTER (value) 7-17 
ALLOC for ALLOCATE (statement) 5-22 
ASM for ASSEMBLER (option) 12-36 
AUTO for AUTOMATIC (attribute) 12-41 
BFR for BEFORE (value) 7-17 
BIN for BINARY (attribute) 12-10 
BIN for BINARY (built-in function) 15-8 
CHAR for CHARACTER (attribute) 12-16 
CHAR for CHARACTER (built-in 

function) 15-8 
COL for COLUMN (format item) 11-34 
DCL for DECLARE (statement) 7-1, 12-1 
DEC for DECIMAL (attribute) 12-10 
DEC for DECIMAL (built-in function) 15-9 
DIM for DIMENSION (built-in 
function) 15-10 

ENV for ENVIRONMENT (attribute) 7-1, 
12-8 

EQL for EQUAL (value) 7-17 
EXT for EXTERNAL (attribute) 4-16 
FOFL for fixedoverflow (condition) D-3, D-lO 
INIT for INITIAL (attribute) 12-42 
INT for INTERNAL (attribute) 4-16 
NXT for NEXT (value) 7-18 
OFL for overflow (condition) D-4, D-12 
OTHER for OTHERWISE (statement) 13-18 
PIC for PICTURE (attribute) 12-19 
PROC for PROCEDURE (statement) 14-2 
PRY for PREVIOUS (value) 7-18 
PTR for POINTER (attribute) 12-30 
SEQL for SEQUENTIAL (attribute) 12-7 
STG for STORAGE (built-in function) 15-22 
UFL for underflow (condition) D-6, D-16 
UNAL for UNALIGNED (attribute) 5-7, 

12-40 
UNDF for UNDEFINEDFILE 

(condition) 10-1 
VAR for VARIABLE (attribute) 12-37 
ZDIV for zero divide (condition) D-6, D-16 

abnormal program ending 2-22 
ABS built-in function 15-5 
access 

direct 12-7, 11-9 
sequential 12-7, 11-9 

access paths of AS/400 data base files 6-4 
arrival sequence 6-5 

examples 8-7, 8-14-8-22 
keyed sequence 6-5 

examples 8-5,8-10 
obligatory coding of INDEXED option 7-2 

accessing PL/I on the AS/400 System. 1-1 
ACOS built-in function 15-6 
additive attributes 12-6, 12-8 

ENVIRONMENT 12-8 
KEYED 12-7 
PRINT 12-7 

AD DR built-in function 12-31, 15-6 
ADDR 15-6 

AFT value 
See AFTER value 

AFTER value 7-17 
See also KEYSEARCH parameter of the 

OPTIONS option 
aggregate arguments 15-5 
ALIAS keyword of DDS: effect on declarations 

generated by %INCLUDE 8-78 
ALIGNED attribute 12-40, 5-7 
alignment 5-9 

attributes 
ALIGNED 5-7, 12-40 
defaults 5-8, 12-40 
UNALIGNED 5-8, 12-40 

boundary 
of data 5-7 

ALLOC (ALLOCATE) statement 5-22 
ALLOCATE statement (abbr: ALLOC) 5-22 
allocation of storage 

automatic 5-16 
static 5-18 

alphabetic characters B-14 
alternative attributes 11-9, 12-6 

defaults 12-6 
DIRECT 11-9 

Index X-I 



alternative attributes (continued) 
INPUT 11-10, 11-23 
OUTPUT 11-10, 11-23 
RECORD 11-3 
SEQUENTIAL 11-9 
STREAM 11-3 
UPDATE 11-10, 11-23 

ANSI standard, deviations B-1, B-13 
apostrophe (I) B-14 
argument 9-1, 14-1 

and parameter, association of 14-9 
dummy 14-10 
in CALL statement 14-7 

arithmetic 9-5, 5-26, 9-5 
built-in functions 15-2, 15-3 

ABS 15-5 
BINARY 15-8 
conversion of picture arguments 15-3 
converted precision 15-3 
DECIMAL 15-9 
DIVIDE 15-10 
FIXED 15-11 
FLOAT 15-11 
MAX 15-13 
MIN 15-13 
MOD 15-14 
ROUND 15-20 
SIGN 15-21 
TRUNC 15-25 

comparison 9-10,9-13 
data assignment 5-27 

padding 5-26 
precision and accuracy 5-27 
undefmed result, fixed-point 5-26 

operations 9-5, 9-9 
results 9-5 

operators 4-4 
overflow 9-6 
target 5-29 

array 12-38 
assignment 13-1 
bounds 12-38, 12-39 
bounds for automatic variables 5-19 
element 5-1 
extent 12-39 
INITIAL attribute 12-43 
of structures 5-5, 5-6 
reference 9-1 

X-2 PL/I User's Guide and Reference 

array (continued) 
subscripted reference 5-3 
subscripts 5-2 
variable 5-1 

array handling built-in functions 15-3 
arguments 15-3 
DIMENSION 15-10 
HBOUND 15-11 
LBOUND 15-12 
result 15-3 

array mapping 5-11,5-12 
arrays 5-1,5-3, 12-38 
arrays of structures 5-5, 5-6 

declaration 5-5 
inheritance of dimensions 5-6 
subscripted qualified array reference 5-6 

arrival sequence access path of AS/400 data base 
rues 6-5 

program examples 8-7,8-14-8-22 
ASA forms control characters 7-4 
ASIN built-in function 15-6 
ASM option 

See ASSEMBLER option 
ASSEMBLER option 12-36 
assignment 13-1, 5-24, 5-27 

aggregate 13-1 
arithmetic data 5-26 
by initialization of variables 5-24 
BY NAME 13-3 
by passing a dummy argument 14-10 
by returning a value 5-24 
in input/output operations 5-24 
problem data 13-1 
program control data 13-1 
scalar 13-1 
statement 4-2, 13-2 

examples 13-2 
string data 5-25 
structure 13-1 
symbol (=) 4-4, 9-10 
to control variable 13-7 
to UNSPEC pseudovariab1e 15-25 

association of arguments and parameters 14-9, 
14-11 

ATAN built-in function 15-7 
AT AND built-in function 15-7 

J 



A TANH built-in function 15-7 
attributes 12-1, 12-8 

additive 12-6 
ALIGNED 5-7, 12-40 
alternative 12-6 

defaults 12-6 
AUTOMATIC 5-18 
BASED 5-19, 12-42 
BINARY 12-10 
BIT 12-16 
BUILTIN 12-36 
CHARACTER 12-16 
DECIMAL 12-10 
description 12-1 
DIRECT 11-9 
ENVIRONMENT 7-1, 7-10 
EXTERNAL 4-16,7-11, 12-40 
FILE 12-7 
FIXED 12-10 
FLOAT 12-10 
INITIAL 5-17 
INPUT 11-10, 11-23 
INTERNAL 4-16,7-11, 12-40 
KEYED 12-7 
LABEL 12-31 
of returned value 14-4 
OPTIONS 12-36 
OUTPUT 11-10, 11-23 
parameter 14-3 
POINTER 12-30 
precision 12-10 
PRINT 12-7 
RECORD 11-3 
required in declarations 4-13 
RETURNS 12-35 
SEQUENTIAL 11-9 
STATIC 12-42 
STREAM 11-3 
UNALIGNED 5-8, 12-40 
UPDATE 11-10, 11-23 
VARIABLE 12-37, 12-38 
VARYING 12-18 

authority, me 6-3 
AUTO attribute 

See AUTOMATIC attribute 
automatic 5-18 

array specification 5-19 
storage allocation 5-18 

automatic (continued) 
storage and attribute 5-19 
storage class 5-16 
variable 5-18 

AUTOMATIC attribute 5-18 

B 
B insertion character 12-23 
B or B 1 bit constant identifier 12-16 
B-fonnat item 11-32 
B-, B1-, and B4- fonnat items 11-32,11-34 
base 12-10 

attributes 
BINARY 12-10 
DECIMAL 12-10 
default 12-10 

coded arithmetic data 12-10 
based 5-20, 5-23 

storage and attribute 5-19 
ADDR built-in function 12-31 
NULL built-in function 12-31 

storage class 5-16 
variable 

reference 5-20 
variable reference and pointer 

qualification 5-20, 5-21 
variables and input/output 5-24 

BASED attribute 5-19, 12-42 
basic program structure 4-1 
basic reference 9-1 
BEFORE value 7-17 

See also KEYSEARCH parameter of the 
OPTIONS option 

BEGIN statement 4-11 
pairing with END statement 13-10 

begin-block activation 4-11 
begin-block ending 4-12 
begin-blocks 4-11,4-6,4-11-4-12 

as on-units 10-3 
BFR value 

See BEFORE value 
BIN attribute 

See BINARY attribute 
BINARY and DECIMAL attributes 12-10 
BINARY attribute 12-10 
BINARY built-in function 15-8 

Index X-3 



binary fixed-point data 12-12-12-13 
binary fixed-point value 12-12 
binary floating-point data 12-14 
binary floating-point value 12-14 
binary synchronous communications flles 6-10 
bit 9-9, 12-16 

B or B1 12-16 
B4 12-16 
comparison 9-11 
constant 12-16 
conversion 

to arithmetic 5-31 
to character 5-33 

data 12-16, 12-17 
maximum length 12-17 
operations 9-10 
operators 9-9, 4-4 
target 5-33 
value 12-16 

null 12-17 
BIT and CHARACTER attributes 12-16 
BIT attribute 12-16 
BIT built-in function 15-8 
bit data 12-16 

alignment 5-8, 12-40 
defaults 5-8, 12-40 

bit format items 
B 

See B-format item 
B1 

See B1-format item 
B4 

See B4-format item 
blanks 4-5 
block activation 4-7 
block ending 4-7,4-9 
BLOCK option of the ENVIRONMENT 
attribute 7-7 

blocks 4-6-4-12 
activation 4-7 
begin 4-6 
ending 4-7 
external 4-6 
internal 4-6 
nested 4-12 
procedure 4-6 

X-4 PLjI User's Guide and Reference 

boundary 
alignment 5-9 
byte 5-7 
doub1eword 5-7 
half word 5-7 
integral 5-7 
quadword 5-7 
word 5-7 

bounds of an array 12-38 
breakpoints 3-5 

example 3-5 
browsing compiler listings 2-4 
BSC flles 

See binary synchronous communications flles 
BUFSIZE option of the ENVIRONMENT attri­

bute 7-5 
buffer length default 7-5 

built-in function reference 15-1 
built-in functions 15-1 

ABS 15-5 
ACOS 15-6 
ADDR 15-6 
aggregate arguments 15-5 
arithmetic 15-2 
array handling 15-3 
ASIN 15-6 
ATAN 15-7 
ATAND 15-7 
ATANH 15-7 
BINARY 15-8 
BIT 15-8 
calling 15-1 
CHARACTER 15-8 
classification 15-2 
computational 15-2 
condition handling 15-3 
conversion 5-28 
conversion of arguments 15-2 
COpy 15-8 
COS 15-9 
COSD 15-9 
COSH 15-9 
DATE 15-9 
DECIMAL 15-9 
declaration 15-1 
DIMENSION 15-10 
DIVIDE 15-10 
empty argument lists 15-5 

J 

J 



L built-in functions (continued) 
EXP IS-11 
FIXED IS-II 
FLOAT IS-11 
HBOUND IS-11 
INDEX IS-12 
input/output IS-4 
LBOUND 15-12 
LENGTH IS-12 
LINENO IS-12 
LOG IS-12 
LOGI0 IS-13 
LOG2 IS-13 
mathematical 15-3 
MAX IS-13 
MIN IS-13 
miscellaneous IS-4 
MOD IS-14 
NULL 15-14 
ONCODE 15-14 
ONFILE IS-IS 
ONKEY IS-15 
PLIRETV IS-19 
PLISHUTDN IS-20 
reference 15-1 
ROUND IS-20 
SAMEKEY 15-21 
SIGN IS-21 
SIN 15-22 
SIND IS-22 
SINH IS-22 
SQRT 15-22 
storage control 15-4 
string handling IS-2 
SUBSTR IS-23 
TAN 15-24 
TAND IS-24 
TANH IS-24 
TIME IS-24 
TRANSLATE IS-24 
TRUNC IS-25 
UNSPEC 15-25 
used in conversion 5-28 
VERIFY IS-26 

built-in functions and pseudovariables 15-1, 15-26 
built-in names 15-5 

built-in subroutines IS-4, 15-S 
PLICOMMIT 8-S9, IS-4 
PLIDUMP 3-14, 15-4 
PLIIOFDB 3-17, 15-5 
PLIOPNFDB 3-17, IS-5 
PLIRCVMSG 15-S 
PLIRETC 15-4 
PLIROLLBACK 8-60, IS-5 

BUILTIN attribute 12-36-12-37 
BY NAME assignment 13-3, 13-5 

by-name-parts-list 13-3 
rules for assignment 13-3 

BY option 13-7 
byte boundary 5-7 
B I-fonnat item 11·32 
B4 bit constant identifier 12-16 
B4-fonnat item 11-32 

C 
calculating string length and precision 5-29 
CALL statement 14-7, 14-9 
calling a block 4-10 
calling a non-PL/I program 2-23 
calling a PL/I program from a non-PL/I 

program 2-24 
calling a procedure 14-4, 14-11 
calling levels 3-10 
ceil values 

table of 9-9 
CHAR attribute 

See CHARACTER attribute 
character 12-18 

comparison 9-11 
constant 

maximum length 12-18 
conversion 

to arithmetic 5-31 
to bit 5-34 

data 12-18 
target 5-31 
value 

null 12-18 
of picture data 12-19 

variable declaration 12-18 
CHARACTER attribute 12-16 
CHARACTER built-in function 15-8 

Index X-5 



character format item 
See A-format item 

characters B-14 
and EBCDIC codes B-15 
extralingual B-15 
language 

alphabetic B-14 
digits B-14 
special B-14 

CLcommands 
ADDLFM 8-2 
ADDTRC 3-7 
BONCMTCTL 7-7, 8-58, 8-62 
CALL 2-22 
CHODBO 3-3 
CHOHLLPTR 3-12 
CRTLF 8-2 
CRTPLIPGM 2-5,7-12 
CRTTAPF 7-6 
CRTxxxF 7-6 
DSPTRCDTA 3-7 
ENDCMTCTL 7-7,8-58 
ENTDBG 3-3 
ORTOBJAUT 2-15 
MONMSG 2-22 
OVRDBF 6-2, 6-7, 7-6 
OVRTAPF 7-6 
RCLRSC 7-11 
RTVJOBA 2-22 
RVKOBJAUT 6-3 
SBMJOB 6-10 
WRKJOB 2-22 

classification of built-in functions 15-2, 15-4 
CLOSE statement 7-11, 11-8 

following run time error 7-13 
closing an unopen file 11-8 
coded arithmetic data 

base 12-10 
binary fixed-point 12-12 
binary floating-point 12-14 
conversion to bit 5-33 
conversion to character 5-31 
decimal fixed-point 12-11 
decimal floating-point 12·13 
precision 12-10 
scale 12-10 

X-6 PL/I User's Guide and Reference 

COL format item 
See COLUMN format item 

colon (:) 4-5 
COLUMN format item 11-34 
combination of operations 9·14, 9-16 
COMMA in %INCLUDE directive 8-75 
comma (,) 4·5 
comments 4-5 
commercial "at" sign (@) B-14 
commitment control 8· 58 

performance considerations 8-61 
PLICOMMIT 8-59 
PLIROLLBACK 8·60 
program examples 8-64-8·73 
specified by ENVIRONMENT attribute 7·6 
using record locks 8·62 

COMMITTABLE option of the ENVIRON· 
MENT attribute 7·6,8-59 

communication with non-PL/I programs 2-23 
communications files 6-10 
comparison 9-10 

operations 9·13 
problem data 9·11 
program control data 9-11 
tables 9·12 

operators 9-10 
compiler directives 

See also directives 
entering 2-4 
in source programs 2-5 
using 2-16 
·PROCESS 2·16 
%INCLUDE 2-16 
%PAGE 2·18 
%PROCESS 2·16,2·18 
%SKIP 2·19 

compiler output 2-19 
compiler segments A-5 
compiler service A-I 
compiling source programs 2·5 

CRTPLIPGM command 2-5 
composite symbols B·15 
computational built-in functions 15-2 
concatenating copies of a string 

See COPY built·in function 
concatenation 9-14 

operations 9-14 
operator (II) 9-14 



condition codes D-l 
conversion condition D-7 
ENDFILE condition D-7 
ENDPAGE condition D-7 
fixedoverflow condition D-11 
KEY condition D-12 
overflow condition D-13 
record condition D-13 
UNDEFINEDFILE condition D-1S 
underflow condition D-16 
zerodivide condition D-16 

condition handling 10-1, 15-3 
built-in functions 15-4 

ONCODE 15-14 
ONFILE 15-15 
ONKEY 15-15 
scope of result 15-3 
scope of values 10-4 

conditional picture characters 12-23 
conditions D-l, 10-2, D-1-D-6, D-16 

action when raised 10-1 
conversion D-2 
ENDFILE D-2 
ENDPAGE D-7, D-2 
ERROR D-7, D-3 
established action 10-2 
fixedoverflow D-3, D-10 
groups of 10-1 
in 0 N statement 10-2 
in SIGNAL statement 10-4 
investigating cause of 15-3 
KEY D-11, D-4 
list of D-6, D-16 
overflow D-4, D-12 
record D-4, D-13 
storage D-S, D-13 
stringsize D-S, D-13 
TRANSMIT D-S, D-13 
UNDEFINEDFILE D-14, D-S 
underflow D-6, D-16 
unspecifiable 10-2 
zerodivide D-6, D-16 

conditions in ON and SIGNAL statements 10-1, 
10-2 
ENDFILE D-2, 10-1 
ENDPAGE D-7, D-2, 10-1 
ERROR D-7, D-3, 10-1 
KEY D-11, D-4, 10-1 

conditions in ON and SIGNAL statements (con­
tinued) 

UNDEFINEDFILE D-14, D-5, 10-1 
CONSECUTIVE option of the ENVIRONMENT 

attribute 7-2 
constants 4-2 

bit 12-16 
character 12-18 
decimal fixed-point 12-11 
decimal floating-point 12-13 
entry 12-32 
fJle 11-3 
label 12-31 
named 12-9 

contained in 4-12 
contextual declaration 4-13 

built-in functions or built-in subroutines 4-13, 
15-1 

overriding 4-13 
scope 4-13 

contextual declaration of built-in functions or 
built-in subroutines 15-1 

control characters 7-4 
control format items 11-31, 11-29 

COLUMN format item 11-34 
LINE format item 11-39 
PAGE format item 11-39 
processing 11-29 
SKIP format item 11-39 
X-format item 11-40 

control language (CL) 1-1 
converSlOn 

to arithmetic 5-29 
to bit 5-33 
to character 5-31 

conversion built-in functions 5-28, 5-29 
conversion condition D-2 
conversion of problem data 

See data conversion 
conversion rules 5-29, 5-34 
converted precision 15-3 
COPY built-in function 15-8 
copying a string 

See COpy built-in function 
COS built-in function 15-9 
COSD built-in function 15-9 

Index X-7 



COSH built-in function 15-9 
CR picture character 12-26 
Create PL/I Program command 

See CRTPLIPGM command 
creating null pointer value 15-4 
creating programs 2-1 

See also compiling source programs 
credit and debit characters 12-26, 12-30 

CR (credit) picture character pair 12-26 
DB (debit) picture character pair 12-26 

CRTPLIPGM command 2-5 
compiler output 2-5 
examples 2-15 
ftrst CR TPLIPGM command screen 2-6 
options and parameters 2-15 
second CR TPLIPGM command screen 2-9 
third CRTPLIPGM command screen 2-12 
+DIAGNOSE option of the GENOPT param-
eter 2-16 

CTLASA option of the ENVIRONMENT attri­
bute 7-4 

currency symbol ($) B-14 

o 
data 

alignment 5-7 
conversion 5-24,5-27,9-4,9-5,9-11 
format items 11-31, 11-29 
lists 11-23 
mapping 5-9 
organization 5-1 
speciftcations 11-23 
transmission statements 11-2, 11-10, 11-23 
transmitted 11-10 

data aggregate 5-1, 12-38 
arguments 15-5 
arrays 5-1, 12-38 
assignment 13-1 
structures 5-3 

data alignment 5-7 
bit 5-8, 12-40 
byte 5-7 
half word 5-7 
quadword 5-7 
word 5-7 

data attributes 
ALIGNED 5-7, 12-40 
BINARY 12-10 

X-8 PL/I User's Guide and Reference 

data attributes (continued) 
BIT 12-16 
BUILTIN 12-36 
CHARACTER 12-16 
DECIMAL 12-10 
dimension 12-38 
FILE 12-7 
FIXED 12-10 
FLOAT 12-10 
label 12-31 
POINTER 12-30 
precision 12-10 
structure 5-3 
UNALIGNED 5-8, 12-40 
VARIABLE 12-37, 12-38 
VARYING 12-18 

data attributes of target 5-27 
data base IDes 6-4, 6-8, 8-1 

access paths 6-4 
externally described 8-2 
logical IDes 6-4 
members of 6-6 
physical IDes 6-4 
program examples 8-2-8-22 
program-described 8-2 
record formats 6-5 
use of 8-1 

data conversion 5-27, 5-24, 5-27-5-35, 9-5 
accuracy of values 5-31 
built-in functions 

BINARY 15-8,5-28 
BIT 15-8,5-28 
CHARACTER 15-8, 5-28 
DECIMAL 15-9, 5-28 
FIXED 15-11, 5-28 
FLOAT 15-11,5-28 

by assignment 5-29 
examples 5-34 
in arithmetic operations 

exponentiation 9-5 
non-exponentiation 9-5 

in comparison operations 9-11 
in operational expressions 9-4 
on assignment 

precision 5-26 
string length 5-25 

operands 5-28 
problem data 5-27 

J 



data conversion (continued) 
program control data 5-27 
rules 5-29 
to aritlunetic 

from aritlunetic 5-29 
from bit 5-31 
from character 5-31 

to bit 
from aritlunetic 5-33 
from character 5-34 
from fixed-point binary 5-33 
from fixed-point decimal 5-33 
from floating-point binary 5-34 
from floating-point decimal 5-34 
from picture 5-33 

to character 
from bit 5-33 
from coded arithmetic 5-31 
from fixed-point binary 5-31 
from fixed-point decimal 5-32 
from floating-point binary 5-32 
from floating-point decimal 5-32 
from picture 5-33 

data conversion and assignment 5-24, 5-27 
data conversion in aritlunetic operations 9-5 
data description specifications 

examples 
DDS for subfIles 8-29 
display fIle DDS 8-23 
logical fIle DDS 8-4 
physical fIle DDS 8-3 
printer fIle DDS 8-50 
%INCLUDE examples 8-79 

mapping DDS data types to a PL/I 
program 8-77 

record format definition 6-5 
use of 8-2, 8-23, 8-29, 8-50 
used with externally described data fIles 6-11 

data format items 11-31, 11-29, 11-34, 11-37 
A-format item 11-31 
association with data item 11-29 
B-format item 11-32 
Bl-format item 11-32 
B4-format item 11-32 
E-format item 

data lists 11-27, 11-23, 11-27-11-28 
array data transmission 11-41 
assignment 11-41 

data lists (continued) 
data list item 11-27 
iterative specification 11-28 
structure data transmission 11-41 

data management 
record formats 6-11 

externally described 6-11 
program-described 6-12 

system considerations 
device independence 6-1 
fIle independence 6-1 
security 6-3 
system override considerations 6-2 

types of fIles 6-4-6-10 
data base fIles 6-4, 8-1 
device fIles 6-8, 8-49 

data mapping 5-9, 5-15 
DDS to PL/I 8-77 

data organization 5-1, 5-6 
data set organization 11-9 
data sets 11-1, 11-2-11-9 

recording data in 11-9 
data specifications 11-23 
data transmission 

input 11-1 
output 11-1 
record 11-1 
statements 11-2, 11-10, 11-23 
stream 11-1 

data transmission statements 11-1, 11-10, 11-23 
DELETE 11-16 
GET 11-24 
PUT 11-25 
READ 11-11 
record 11-1 
REWRITE 11-15 
stream 11-23 
WRITE 11-14 

data transmitted 11-10 
DATE built-in function 15-9 
DB picture character 12-26 
DCL statement 

See DECLARE statement 
DDM files 6-10 
DDS 

See data description specifications 

Index X-9 



DDS to PL/I mapping 8-77 
debug 

active blocks in a program 3-13 
calling levels 3-10 
changing varying length strings 3-12 
displaying level numbers 3-13 
floating-point variables 3-12 
fully qualified names 3-11 
PLIDUMP 3-14 
PL/I pointers 3-12 
PL/I storage 3-10 
references to static variables 3-13 
scoping of names 3-11 
specifying variables by ODV number 3-13 
using 3-10 

debugging aids 3-1 
CPF test and debug features 

breakpoints 3-5 
test libraries 3-3 
traces 3-7 

PL/I debugging features 
ON conditions 3-17 
PLIDUMP 3-14, 15-16 
PLIIOFDB 3-17, 15-16 
PLIOPNFDB 3-17, 15-17 

DEC attribute 
See DECIMAL attribute 

DECIMAL attribute 12-10 
DECIMAL built-in function 15-9 
decimal fixed-point constant 12-11 

precision 12-11 
decimal fixed-point data 12-11, 12-12 
decimal fixed-point value 12-11 
decimal floating-point constant 12-13 

precision 12-13 
decimal floating-point data 12-13 
decimal floating-point value 12-13 
declaration 

CAUTION for multiple declarations 4-14 
contextual 4-13 
explicit 4-13 

DECLARE statement 7-1, 12-1 
declaring 12-31 

arrays 12-38 
arrays of structures 5-5 
BASED variables 5-19, 12-42 
binary fixed-point variables 12-12 
binary floating-point variables 12-14 

X-tO PLjl User's Guide and Reference 

declaring (continued) 
bit variables 12-17 
built-in functions or built-in subroutines 15-1 
character variables 12-18 
decimal fixed-point variables 12-12 
decimal floating-point variables 12-13 
entry constant 12-32 
entry variables 12-32 
me constants 12-7 
label constants 12-31 
label variables 12-31 
parameters 14-2 
pointer variables 12-30 
structures 5-4, 12-38-12-39 

declaring a built-in function or built-in 
subroutine 15-1 

defaults 12-41 
A-format item output field-width 11-31 
alternative attributes 12-6 
bit variable length 12-16 
buffer length 7-5 
B, Bl, and B4 format items output 
field-width 11-33 

character variable length 12-16 
do-group expression_3 13-7 
E-format item fractional-digits 11-35 
F-format item 11-37 
for SKIP option 11-26 
line size 11-5 
lower bound 12-39 
page size 11-6 
precision 12-11 
scope 14-3 
SKIP format item relative-line 11-40 
%SKIP statement number-of-lines 2-19 

defining a procedure 14-1, 14-4 
DELETE statement 11-16 

OPTIONS option 7-13 
with RECORD parameter 7-17 

delimiters 4-3, 4-5 
assignment symbol (=) 4-5 
blank 4-5 
colon (:) 4-5 
comma (,) 4-5 
comment 4-5 
operators 4-4 
parentheses 0 4-5 
percent statements 4-5 



delimiters (continued) 
period (.) 4·5 
pointer (. > ) 4·5 
semicolon (;) 4·5 

DESCRIBED option of the ENVIRONMENT 
attribute 7·6 

descriptions of built·in functions and 
pseudovariables 15·5, 15·26 

device mes 6·8, 6·10, 8·49 
BSC mes 6·10 
communications mes 6·10 
DDM mes 6·10 
display files 6·8, 8·22 
externally described 8·50 
inline mes 6·10 
program example 8·50 
program·described 8· 50 
use of 8·49 

device independence 6·1 
spooling 6·2 

digit and decimal point characters 12·22, 12·23 
alignment of value 12·23 

digits B·14 
DIM built-in function 

See DIMENSION built·in function 
dimension attribute 12·2, 12·38 
DIMENSION built-in function 15-10 
DIRECT attribute 11·9, 12·7 
directives 2·16,2·22,4·1-4-2 

deftnition 4-1 
%INCLUDE 8-73, 8·82 
%PAGE 2-18 
%PROCESS 2·18 
%SKIP 2·19 

diskette device mes 
obligatory use of BUFSIZE option 7-5 

display mes 6-8, 6-9, 8·22 
externally described 8·23 
program. examples 8·23-8·49 
subfiles 6·9 
use of 8·22 

displaying and printing messages 3·3 
DIVIDE built-in function 15·10 
DO statement 13·5, 13·10 

examples 13·8--13·10 
pairing with END statement 13·5, 13-10 

do·group 13-5 
effect of processing 13· 7 
ending 13·5, 13·11 
iterative 13·5 
maximum nesting 13·8 
noniterative 13· 5 
simple 13·6 
TO and BY versus REPEAT 13·7 
transferring into 13·8 

doubleword boundary 5· 7 
drifting characters 12·24 
dummy argument 14·10 
DUMMYDCL null character string generated by 

%INCLUDE directive 8·75 
dynamic storage allocation 5·16 

E 
E-format item 11·34, 11·37 
EBCDIC codes B·15, E·l 
edit-directed data transmission 

See stream data transmission 
editing source programs 

description 2·1 
entering SQ L statements 2-5 
PL/I syntax checker 2-2 
using SEU 2-2 

editing the source program. 2·1 
effect of recursion on automatic variables 14-12 
elementary expression 9-1· 
elements of a PL/I statement 4·2,4·5 

delimiters 4-3 
identifIers 4-3 

ELSE unit 13·13 
empty argument lists 15· 5 
END statement 13-10, 13-11 

block ending 13-11 
do·group ending 13-11 
in a function 13·11 
pairing with BEGIN, DO, and PROCEDURE 

statements 13-11 
program ending 13-11 

EN~FILE condition D·2, D· 7 
ending 

a program 4·6 
begin·blocks 4·12 
blocks 4-7 
procedures 4-11 
program processing 2·22 

Index X·ll 



ENDPAGE condition D-2, D-3, D-7 
entering source programs 2-1 
entering SQL statements 2-5 
entry 12-32 

argument 14-7 
built-in name 14-7 
constant 14-2 
data 12-36 
reference 12-32, 14-7 
variable 12-32 

entry data 12-32 
ENV attribute 

See ENVIRONMENT attribute 
ENVIRONMENT attribute 7-1,7-10, 12-8 

BLOCK option 7-7 
BUFSIZE option 7-5 
COMMITTABLE option 7-6,8-59 
CTLASA option 7-4 
DESCRIBED option 7-6 
ftle locking options 

EXCL 7-3 
EXCLRD 7-3 

ftle organization options 
CONSECUTIVE 7-2 
INDEXED 7-2 
INTERACTIVE 7-3 

key options 
KEYDISP 7-4 
KEYLENGTH 7-4 

NOINDARA option 7-8 
EQL value 

See EQUAL value 
EQUAL value 7-17 

See also KEYSEARCH parameter of the 
OPTIONS option 

ERROR condition D-3, D-7-D-1O 
fmding the cause 10-1 
raised by DELETE or REWRITE 8-64 
raised by I/O statement options 6-3 

error dump 3-16 
error finding in programs 3-1 
established action 10-2, 10-4 

implicit 10-2 
ON statement 10-2 
scope of 10-4 

EXCL option of the ENVIRONMENT 
attribute 7-3 

X-12 PL/I User's Guide and Reference 

EXCLRD option of the ENVIRONMENT attri­
bute 7-3 

EXP built-in function 15-11 
explicit declaration 4-13 

of a parameter 4-13 
scope of 4-13 

explicit declaration of built-in functions or built-in 
subroutines 15-1 

exponentiation 9-5 
expression 9-1 

operational 9-4 
scalar 9-1 

expressions as subscripts 5-3 
EXT attribute 

See EXTERNAL attribute 
extent 12-39 
extents for automatic variables 5-19 
EXTERNAL attribute 4-16, 7-11, 12-40 

defaults 12-41 
scope of name 4-16 

external name 11-4, 12-41 
maximum length 12-41 

external procedure 4-9, 4-6 
external text 

inclusion of 2-16 
externally described ftles 

data base ftles 8-2 
device ftles 8-50 
display ftles 8-23 
use of %INCLUDE directive 8-75 

externally described record formats 6- J.l 
defming with DDS 6-11 
level checking 6-12 
use of %INCLUDE directive 8-75 

extralingual characters B-15 

F 
F-format item 11-37, 11-39 
factoring 

attributes 12-2 
nesting 12-2 
structure level numbers 12-2 

factoring of attributes 4-13, 12-2 
field name 5-3 
ftle 11-4 

additive attributes 12-6 
alternative attributes 12-6 
characteristics, specified by ENVIRONMENT 

attribute 7-4 



me (continued) 
closing 11-8,7-11 
constant 11-3 
declaration 

ENVIRONMENT attribute 7-1 
EXTERNAL attribute 7-11 
INTERNAL attribute 7-11 

default construction for OPEN statement 11-5 
description with DDS 8-2, 8-23, 8-29, 8-50 
determining current state of 15-4 
independence 6-1 
locking 6-6, 7-3 
management 8-1--8-58 
opening 7-11 

examples 11-7 
implicit 11-6 
implied attributes 11-6 
sources of information 11-6 

organization, specified by ENVIRONMENT 
attribute 7-2 

redirection 6-3 
scope 7-11, 12-7 
security 6-3 

authority 6-3 
ownership 6-3 

sharing 7-11 
spooling 6-2 
types 6-4 

See also me types supported by AS/400 PL/I 
FILE attribute 12-7 
me locking options of the ENVIRONMENT attri­

bute 7-3 
EXCL 7-3 
EXCLRD 7-3 

FILE option 
for record data transmission 11-18 
for stream data transmission 11-26 
in CLOSE statement 11-8 
in GET statement 11-26 
in OPEN statement 11-26 
in PUT statement 11-26 

me types supported by AS/400 PL/I 6-4 
data base ftles 6-4, 8-1 

logical ftles 6-4 
members 6-6 
physical ftles 6-4 

device ftles 6-8, 8-49 
BSC mes 6-10 
communications ftles 6-10 

fue types supported by AS/400 PL/I (continued) 
device ftles (continued) 

DDM mes 6-10 
inline ftles 6-10 
subftles 6-8, 8-22 

FIXED and FLOAT attributes 12-10 
FIXED attribute 12-10 
FIXED built-in function 15-11 
fixed overflow condition D-3, D-4, D-lO--D-11 
fixed-point binary to bit conversion 5-33 
fixed-point binary to character conversion 5-31 
fixed-point decimal to bit conversion 5-33 
fixed-point decimal to character conversion 5-32 
fixed-point format item 

See F-format item 
FLOAT attribute 12-10 
FLOAT built-in function 15-11 
floating-point binary to bit conversion 5-34 
floating-point binary to character conversion 5-32 
floating-point decimal to bit conversion 5-34 
floating-point decimal to character 

conversion 5-32 
floating-point format item 

See E-format item 
floating-point variables in test environment 3-12 
FOFL condition 

See fixed overflow condition 
format items 

control 
COLUMN 11-34 
LINE 11-39 
PAGE 11-39 
SKIP 11-39 
X 11-40 

data 
A 11-31 
B 11-32 
Bl 11-32 
B4 11-32 
E 11-34 
F 11-37 

format lists 11-23 
format items 11-29 
iteration factor 11-28 

FREE statement 5-23 
FROM option 11-19 

Index X-13 



fully qualified names 3-11 
function reference 14-4, 14-6 
functions 14-1 

G 

arithmetic built-in 15-2 
array handling built-in 15-3 
attributes of returned value 14-4 
built-in 15-1 
calling 14-1 
condition handling built-in 15-3 
conversion of value 14-3 
data processed 14-1 
definition 14-1 
input/output built-in 15-4 
mathematical built-in 15-3 
miscellaneous built-in 15-4 
return from 14-1 
RETURN statement in 14-4 
storage control built-in 15-4 

general statements 13-1, 13-20 
GET statement 11-24 
GO TO statement 13-11, 13-13 
GOTO statement 

See GO TO statement 
group 

See do-group 

H 
half word boundary 5-7 
HBO UNO built-in function 15-11 
how to read syntax diagrams vi 

I 
IBM extensions to AS/400 PL/I B-1, B-13 
identifiers 4-3 

maximum length 4-3 
identifying location of variable 15-4 
IF statement 13-13, 13-14 

comparison operation 9-10 
examples 13-14 

implicit action for condition 10-2, D-l 
conversion condition 0-2 
ENOFILE condition D-2 
ENOPAGE condition 0-3 
ERROR condition 0-3 
fixedoverflow condition 0-4 

X·14 PL/I User's Guide and Reference 

implicit action for condition (continued) 
KEY condition D-4 
overflow condition 0-4, 0-12 
record condition 0-4 
storage condition 0-5,0-13 
stringsize condition 0-5 
TRANSMIT condition D-5 
UNOEFINEOFILE condition 0-5,0-16 
underflow condition 0-6, D-16 
zerodivide condition D-6, D-16 

implicit opening 11-6, 11-7 
implied attributes 11-6 

including text in source program 
See O/OINCLUOE directive 

independence 
device 6-1 
me 6-1 

INDEX built-in function 15-12 
INDEXED option of the ENVIRONMENT attri­

bute 7-2 
indicators 

examples 8-43-8-49 
use with O/OINCLUDE directive 8-76 

INDICATORS element type in O/OINCLUDE 
directive 8-74 

INDICATORS parameter of the OPTIONS 
option 7-19 

with READ 7-19 
with REWRITE 7-19 
with WRITE 7-19 

industry standards viii 
infix operation 9-4 
inflX operator 9-1 
inherited dimensions 

See arrays of structures 
initial 

See initial procedure 
INIT attribute 

See INITIAL attribute 
INITIAL attribute 5-17, 5-18, 12-42 

and static external variables 5-17 
INITIAL attribute and inherited dimensions 5-17 
initial procedure 4-6, 14-7 
initial value 5-17, 12-43 
initialization 5-17, 12-43 

array variable 5-17, 12-43 
scalar variable 5-17, 12-43 



inline data files 6-10 
inline ftles 6-10, 7-12 
input 11-1 
input and output 11-1, 11-8 

statements 11-1 
input and output statements 

See data transmission statements 
INPUT attribute 11-10, 11-23, 12-7 
INPUT element type in %INCLUDE 
directive 8-74 

INPUT option in OPEN statement 11-4 
input/output built-in functions 15-4 

LINENO 15-12 
SAMEKEY 15-21 

INPUT, OUTPUT, and UPDATE 
attributes 11-10,11-23, 12-7 

default 12-7 
insertion characters 12-23, 12-24 

and drifting string 12-25 
B 12-23 

12-23 
/ 12-23 
, 12-23 

INT attribute 
See INTERNAL attribute 

integral boundary 5-7 
INTERACTIVE option of the ENVIRONMENT 
attribute 7-3 

interlanguage calls 2·23 
calling a PLjI program from a non-PLjI 

program 2-24 
matching PLjI attributes in 

BASIC 2-27 
CL 2-27 
COBOL 2-27 
RPG 2-24 

non-PL/I program 2-23 
INTERNAL and EXTERNAL attributes 4-16, 

12-40 
internal and external procedures 4-9,4-10 
INTERNAL attribute 4-16, 7-11, 12-40 

defaults 12-41 
scope of name 4-16 

internal procedure 4-9, 4-6 
internal to 4-12 
interrupting program processing 2-22 

INTO option 11-12, 11-18-11-19 
ITERATE statement 13-14, 13-15 

examples 13-15 
iteration-factor 

in fonnat list 11-28 
in INITIAL attribute 12-43 

iterative do-group 13-5 

K 
KEY condition D-4, D-I1-D-12 

raised by duplicate key 8-62 
KEY element type in %INCLUDE directive 8-74 
KEY option 11-12, 11-20 
key options of the ENVIRONMENT 

attribute 7-3 
KEYDISP 7-4 
KEYLENGTH 7-4 

KEYDISP option of the ENVIRONMENT attri­
bute 7-4 

KEYED attribute 12-7 
keyed sequence access path of ASj400 data base 

ftles 6-5 
obligatory coding of INDEXED option 7-2 
program examples 8-5, 8-10 

KEYFROM option 11-12,11-21 
RESTRICTIONS 7-3, 7-6 

KEYLENGTH option of the ENVIRONMENT 
attribute 7-4 

KEYSEARCH parameter of the OPTIONS 
option 7-17 

values 
AFTER 7-17 
BEFORE 7-17 
EQLAFT 7-17 
EQLBFR 7-17 
EQUAL 7-17 

with READ 7-17 
KEYTO option 11-12, 11-21-11-22 
keyword 4-3 
keyword statement 4-2 
keywords 

See under individual keywords 

Index X-15 



L 
label 4-1, 12-31 

constant 
declaration 12-31 

prefix 4-2 
defmition 4-1 
for DECLARE statement 12-1 

reference in GO TO statements 13-12 
statement 

See label prefix 
variable 12-31 

declaration 12-31 
LABEL attribute 12-31 
label data and attribute 12-31, 12-32 
language characters 4-1, B-15 

alphabetic characters B-14 
composite symbols B-14 
digits B-14 
special characters B -14 

LBOUND built-in function 15-12 
LEAVE statement 13-15, 13-16-13-17 

examples 13-17 
LENGTH built-in function 15-12 
level checking 

of externally defmed ftles 6-12 
preventing with CL commands 7-6 
specified by ENVIRONMENT attribute 7-6 

level number, structure 5-4 
factoring 12-2 
range 12-1 

level, structure 12-1 
LINE format item 11-39 
line length specification 

See LINESIZE option 
LINE option 11-27 
LINENO built-in function 15-12 
lines on page, specifying number of 

See PAGESIZE option in OPEN statement 
LINESIZE option 11-5 
listing control directives 2-16 

%PAGE 2-18 
%SKIP 2-19 

locate mode 11-11 
locking 

ftles 6-6, 7-3 
records 6-7 

X-16 PLjI User's Guide and Reference 

LOG built-in function 15-12 
logical ftles 6-4 

DDS example 8-4 
logical level, structure 5-4 
LOGlO built-in function 15-13 
LOG2 built-in function 15-13 
lower-bound of array 12-38 

M 
MAIN option 14-3 
major structure name 5-3 
mapping 5-12 

array data 5-11 
DDS to PL/I 8-77 
scalar data 5-10 
structure data 

example 5-13 
rules 5-12 

mathematical built-in functions 15-3 
ACOS 15-6 
ASIN 15-6 
ATAN 15-7 
ATAND 15-7 
ATANH 15-7 
conversion of arguments 15-3 
COS 15-9 
COSD 15-9 
COSH 15-9 
EXP 15-11 
LOG 15-12 
LOGIO 15-13 
LOG2 15-13 
scale of arguments 15-3 
scale of result 15-3 
SIN 15-22 
SIND 15-22 
SINH 15-22 
SQRT 15-22 
TAN 15-24 
TAND 15-24 
TANH 15-24 

MAX built-in function 15-13 
maximum 

See also range 
array dimensions 12-39 
array length 12-39 
array upper-bound 12-39 
bit constant length 12-17 

J 



maximum (continued) 
bit variable length 12-16 
block nesting 4-10 
blocks in external procedure 4-6 
character constant length 12-18 
character variable length 12-16 
digits in exponent 11-37, 12-13 
do-group nesting 13-8 
external entry name length 14-2 
external name length 12-41 
fractional digits in E-format item 11-34 
fractional digits in F-format item 11-37 
IF statement nesting 13-14 
iterative specifications in data list 11-28 
label prefix 4-1 
level number in DECLARE statement 12-1 
line number in LINE format item 11-39 
line size 11-5 
maximum depth 13-14 
member names in %INCLUDE 

statement 2-17 
name length 4-3 
on-units concurrently active 10-3 
on-units in external procedure 10-3 
page size 11-6 
parameters in procedure 14-2 
picture specification 

digit positions 12-20 
length 12-20 

precision 12-11 
binary fIXed-point 12-11 
binary floating-point 12-14 
decimal fixed-point 12-11 
decimal floating-point 12-11 

relative-line number in SKIP format item or 
option 11-40 

statement label prefix 4-1 
structure length 5-5, 12-39 
structure level number in DECLARE 

statement 5-5, 12-39 
structure nesting 5-5, 12-39 
%INCLUDE statement nesting 2-17 
%SKIP statement number-of-lines 2-19 

members of data base mes 6-6 
messages 

displaying 3-3 
printing 3-3 
using 3-1 

MIN built-in function 15-13 
minimum 

See also range 
bit variable length 12-16 
character variable length 12-16 
line size 11-5 
page size 11-6 
relative-line number in SKIP format item or 

option 11-40 
%SKIP statement number-of-lines 2-19 

minor structure name 5-3 
miscellaneous built-in functions 15-4 

DATE 15-9 
PLIRETV 15-19 
TIME 15-24 

MOD built-in function 15-14 
MODIFIED parameter of the OPTIONS 
option 7-20 

with READ 7-20 
move mode 11-11 
multiple declarations 4-14 
multiple pointer qualification 5-21, 5-22 

N 
name 4-3,4-12,9-1, 12-1 

factoring 12-2 
in an END statement 13-11 
scope 4-12 

name-list 12-1 
named constant 12-9 
NBRKEYFLDS parameter of the OPTIONS 
option 7-18 

with READ 7-18 
nested blocks 4-12 
new line, starting with OPEN statement 

See LINESIZE option 
NEXT value 7 -18 

See also POSITION parameter of the 
OPTIONS option 

NOINDARA option of the ENVIRONMENT 
attribute 7-8 

non-PL/I routines 12-36 
noniterative do-group 13-5 
nonstructure parameter descriptor 12-33 
normal return from condition D-1 

conversion condition 0-2 
ENDFILE condition 0-2 
ENDPAGE condition D-3 

Index X-17 



normal return from condition (continued) 
ERROR condition 0-3, 0-7 
f1xedoverflow condition 0-4 
KEY condition D-4 
overflow condition D-4, 0-12 
record condition 0-4 
TRANSMIT condition o-s 
UNDEFINEDFILE condition D-6 
zero divide condition D-6, D-16 

null bit constant 12-17 
NULL built-in function IS-14, 12-31 

NULL IS-14 
null character constant 12-18 
null statement 4-2, 13-17-13-18 

examples 13-18 
number of digits 

picture specillcation 12-21 
precision attribute 12-11 

number sign (#) B-14 
numeric value of picture data 12-19 
NXTvalue 

o 

See POSITION parameter of the OPTIONS 
option 

ODV numbers 3-13 
OFL condition 

See overflow condition 
ON conditions 3-17 

See also conditions 
examples 3-18 

ON statement 10-2 
conditions in 10-1 
example IO-S 
precedence over implicit action 10-2 
scope 10-2 
second for same condition 10-4 

on-unit 
ending 10-3 
null 10-3 
running 10-3 
scope of names 10-3 
unlabeled begin-block 10-3 
unlabeled simple statement 10-3 

ONCODE built-in function 15-14 
ONCODE values 

See condition codes 

X-1S PL/I User's Guide and Reference 

ONFILE built-in function IS-IS 
ONKEY built-in function 15-15 
OPEN statement 7-11, 11-4-11-8 

processing 11-4 
opening a SYSPRINT me 7-12 
opening and closing mes 11-4, 11-8 

CLOSE statement 11-8 
implicit opening 11-6 
OPEN statement 11-4 

opening stream mes 7-12 
operating system 1-1 
operational expressions 9-4, 9-16 
operations 9-4, 9-10 

arithmetic 9-S 
bit 9-9 
combination of 9-14 
comparison 

problem data 9-11 
program control data 9-11 

concatenation 9-14 
conversion of S-28 
infix 9-4 
prefix 9-4 
priority of 9-1S 

operators 4-4, 9-S 
arithmetic 4-4 
bit 4-4,9-9 
comparison 4-4, 9-10 
concatenation 9-14 
infix 9-S, 9-9 
prefix 9-5, 9-9 
priority of 9-15 
string 4-4 

options 
ASSEMBLER 12-36 
BY 13-7 
FILE in CLOSE statement 11-8 
FILE in DELETE, READ, REWRITE, or 
WRITE statement 11-18 

FILE in GET or PUT statement 11-26 
FILE in OPEN statement 11-4 
FROM 11-19 
INPUT 11-4 
INTO 11-18 
KEY 11-20 
KEYFROM 11-21 
KEYTO 11-21 
LINE 11-27 

J 



options (continued) 
LINESIZE 11-5 
MAIN 14-3 
OPTIONS 7-13, 14-3 
OUTPUT 11-4 
PAGE 11-26 
PAGESIZE 11-6 
RECURSIVE 14-3 
REENTRANT 14-3 
REPEAT 13-7 
RETURNS 14-3 
SET 11-19 
SKIP 11-26 
TITLE 11-4 
TO 13·7 
UNTIL 13-6 
UPDATE 11-4 
WHILE 13-6 

OPTIONS attribute 12-36 
options of record data transmission 

statements 11-14, 11-15, 11-16-11-22 
FILE 11-18 
FROM 11-19 
INTO 11-18 
KEY 11-20 
KEYFROM 11-21 
KEYTO 11-21 
OPTIONS option 7-13 

with INDICATORS parameter 7-19 
with RECORD parameter 7-16 

SET 11-19 
OPTIONS option 7-13, 11-12, 14-3 

INDICATORS parameter 7-19 
KEYSEARCH parameter 7-17 
MODIFIED parameter 7-20 
NBRKEYFLDS parameter 7-18 
POSITION parameter 6-6,7-17 
RECORD parameter 7-15 

organization of a data set 11-9 
OTHER (OTHERWISE) statement 13-18 
OTHERWISE Statement (abbr: OTHER) 13·18 
output 11-1 
OUTPUT attribute 11-10, 11-23, 12-7 
OUTPUT element type in %INCLUDE 
directive 8-74 

OUTPUT option in OPEN statement 11-4 

overflow condition 0·4, 0·12-0·13 
override of member definition for a me 6-2 
override of PL/I me declarations 6·2 
ownership, me 6-3 

p 
page eject on source program listing 

See %PAGE statement 
PAGE format item 11-39 
PAGE option 11-26 
PAGESIZE option in OPEN statement 11-6 
pairing 

BEGIN and END statement 13-10 
DO and END statement 13·10 
PROCEDURE and END statement 13-10 

parameter 14-2, 12-33, 14-3 
and argument, association of 14-9 
attribute specification 14-3 
attributes 14-3 
declaration 14-2 
default scope 14-3 
descriptor 

list 12-33 
nonstructure 12-33 
structure 12-33 

lengths and bounds 14-4 
maximum in a procedure 14-2 

parameter descriptor list 12-33 
parameters 14-1 
parentheses () 4-5 
percent statements 4-5 
performance considerations 

commitment control 8-61 
period (.) 4-5 
physical mes 6-4 

DDS example 8·3 
PIC attribute 

See picture 
picture 

character 
- 12-25 
after value truncation to zero 12-25 
and zero suppression 12-23 
B 12-23 
conditional 12-23 
CR 12-26 
credit and debit 12-26 
DB 12-26 

Index X·19 



picture (continued) 
character (continued) 

decimal point 12-22 
digit 12-22 
drifting 12-24 
drifting currency 12-24 
drifting sign 12-24 
insertion 12-23 
S 12-25 
sign and currency characters 12-24 
static 12-24 
V 12-22, 12-23 
Z 12-23 
zero suppression 12-23 
9 12-22 

12-23 
+ 12-25 
$ 12-25 
+ 12-23 
/ 12-23 

12-23 
converSIon 

to bit 5-33 
to character 5-33 
to decimal fixed-point 12-21 

specmcation 12·19, 12-21 
picture data 12·19-12·22 

assignment 12-22 
base 12-21 
character value 12-19 
conversion to decimal fixed-point 12-21 
numeric value 12-19 
precision 12-21 
scale 12-21 

picture specmcation 12-19, 12-21, 12-30 
derived precision 12-21 
maximum length 12-20 
range of numeric values 12-21 
representation as a character value 12-21 

PLICOMMIT built-in subroutine 15-4 
use of 8-59 
with record locking 6-8 

PLIDUMP built-in subroutine 3-14, 15-4 
example 3-15 

PLIIOFDB built-in subroutine 3-17, 15-5 
PLIOPNFDB built-in subroutine 3-17, 15-5 

X-20 PLjI User's Guide and Reference 

PLIRCVMSG built-in subroutine 15-5 
PLIRETC built-in subroutine 15-4 
PLIRETV built-in function 15-19 
PLIROLLBACK built-in subroutine 15-5 

use of 8-60 
with record locking 6-8 

PLISHUTDN built·in function 15-20 
PLISHUTDN 15·20 

PL/I keywords 4-3 
See also under individual keywords 

PL/I source program 
description 2-1 
entering SQL statements 2·5 
PL/I syntax checker 2-2 
using SEU 2-2 

PL/I syntax checker 2-2 
point of calling a block 4-10 
POINTER attribute 12-30 
pointer built-in functions 12-31 

AD DR 12-31 
NULL 12-31 

pointer data and attribute 12-30 
pointer (- > ) 4-5, 12-30 

expression 5·20 
qualillcation 5-20 
qualilled reference 5-20 
qualiller 5-20,9-1 
value 

creation 12-30 
variable 12-42 

pointers 3-12 
POSITION parameter of the OPTIONS 

option 7-17 
values 

FIRST 7-18 
LAST 7-18 
NEXT 7-18 
NXTEQL 7-18 
NXTUNQ 7-18 
PREVIOUS 7-18 
PRVEQL 7-18 
PRVUNQ 7-18 

with READ 6-6, 7-17 
precision 12-10 

attribute 12-10 
calculation 5-29 
coded arithmetic 12-10 
conversion 5-30 



precision (continued) 
default 12-11 

precision attribute 12-10, 12-11 
prefix operation 9-4 
prefix operator 9-1 
PREVIOUS value 7-18 

See also POSITION parameter of the 
OPTIONS option 

PRINT attribute 12-7, 11-44, 12-7 
printer ftle examples 

printer ftle DDS 8-50 
using a printer file 8-50 

printing messages 3-3 
priority of operators 9-15, 9-16 

changed by parentheses 9-16 
problem data 9-4, 9-11, 12-9 

arithmetic 9-11 
bit 12-16 
character 12-18 
conversion 5-27 
operations 

arithmetic 9-5 
bit 9-9 
comparison 9-11 
concatenation 9-14 

problem data conversion 
See data conversion 

PROC statement 
See PROCEDURE statement 

procedure 4-9, 4-10 
activation 4-11 
ending 4-11 
external 4-6 
internal 4-6 

PROCEDURE statement 14-2 
pairing with END statement 13-10 

procedures 4-9-4-11 
function 14-1 
initial 

See initial procedure 
subroutine 14-2 

Process multiple compilation (see %PROCESS 
directive) 2-16 

processing an on-unit 10-3, 10-4 
processing mode 

locate 11-11 
move 11-11 

processing multiple compilations 
See %PROCESS directive 

program 4-6 
activation 4-6 
debugging 3-1 
elements 4-1 
ending 4-6, 13-11 
organization 4-12 
structure 4-1 

program control data 9-11, 12-2 
comparison operations 9-10 
conversion 5-27 
label 12-31 
pointer 12-30 

program elements 4-1 
program ending 13-11 
program ending, abnormal 2-22 
program examples 

CL program for breakpoints 3-5 
CL program for trace 3-7 
customer inquiry program 8-23 
reading from an arrival sequence ftle by 

RRN 8-20 
updating a ftle with a keyed access path 8-10 
updating a ftle with arrival sequence access 

path 8-7 
updating an arrival sequence file by RRN 8-17 
using a printer file 8-50 
using commitment control 8-65 
using externally defmed indicators 8-43 
using PLICOMMIT and 

PLIROLLBACK 8-68 
using PLIDUMP 3-15 
using program-defmed indicators 8-47 
using stream I/O 8-56 
using submes 8-29 
using %INCLUDE 8-79 
writing to a me with keyed sequence access 

path 8-5 
writing to an arrival sequence me by 

RRN 8-14 
program object 

abnormal ending 2-22 
ending 2-22 
interrupting 2-22 
running 2-22 

Index X-21 



program· described data base files 8·2 
program· described device files 8·50 
program· described record fonnats 6·12 

useof %INCLUDE directive 8·76 
programs 4·6 
PRV value 

See PREVIOUS value 
pseudovariables 15· 5 

SUBSTR 15·23 
UNSPEC 15·25 

PTR attribute 
See POINTER attribute 

PUT statement 11·25 
PUT statement control options 11·26 

FILE 11·26 
LINE 11·27 
PAGE 11·26 
SKIP 11·26 

Q 
qualified reference 5·5 
quantitative restrictions 

See default, maximum, and minimum 
quotation mark 

See apostrophe ( .) 

R 
range 

binary floating·point values 12·14 
bit values 12·16 
character values 12·16 
decimal floating·point values 12·13 
picture specification numeric values 12·21 

READ option 11·12 
READ statement 11·11, 11·12 

OPTIONS option 
with INDICATORS parameter 7·19 
with KEYSEARCH parameter 7·17 
with MODIFIED parameter 7·20 
with NBRKEYFLDS parameter 7·18 
with POSITION parameter 6-6,7·17 
with RECORD parameter 7·15 

READ 7·13, 11·11 
recognition of names 4·12 
RECORD and STREAM attributes 11·3, 12·7 

default 12· 7 

X-22 PL/I User's Guide and Reference 

RECORD attribute 11·3. 12·7 
record condition D·4, D·13 
record data transmission 11·1, 11·3, 11·8-11·22 

OPTIONS option 7-13 
record blocking 11·9 
statements 

DELETE 7-13, 11-16 
processing 11-10 
REWRITE 7-13, 11·15 
WRITE 7-13, 11·14 

RECORD element type in %INCLUDE 
directive 8-74 

record formats 6-S, 6-11 
externally described 6-11 

defining with DDS 6-11 
level checking 6-12 

program-described 6-12 
record locking 6-7, 8-62 
RECORD parameter of the OPTIONS 

option 7·15 
with DELETE 7-17 
with READ 7-15 
with REWRITE 7-16 
with WRITE 7-16 

RECURSIVE option 14-3, 14-11 
recursive procedures 14·11 
redeclaring a built·in name 12·36 
redirection of files 6·3 
REENTRANT option 14·3 
reference 9·1 

array 9·1 
in DO statements 13·6 
qualified 5·5 
scalar 9·1 
structure 9·1 
subscripted qualified 5·6 

references and expressions 9·1, 9·16 
relationship of pointers and based variables 5·22 
relative record number 

program examples 8·14-8·22 
reopening a closed file 11·8 
REPEAT option 13-7 
repeating a string 

See COpy built-in function 
resource independence 11·2 
results of arithmetic operations 9·5, 9·9 



return code D-l 
RETURN statement 14-4 

for functions 14-4 
for subroutines 14-4 

RETURNS attribute 12-35-12-36 
RETURNS option 14-3 

conversion of value 14-3 
REWRITE statement 11-15, 11-16 

OPTIONS option 7-13 
with INDICATORS parameter 7-19 
with RECORD parameter 7-16 

ROUND built-in function 15-20 
RRN 

See relative record number 
runnrngprograms 

s 

CL command CALL 2-22 
communication with non-PL/I programs 2-23 
ending processing 2-22 
interrupting processing 2-22 
PL/I statement CALL 2-22 

S picture character 12-25 
SAMEKEY built-in function 15-21 
scalar 9-4 

assignment 13-1 
data item 5-1 
expression 9-1 
reference 9-1 
value 9-4 
variable 5-1 

scalar data mapping 5-10, 5-11 
scale 12-10 

attributes 
default 12-10 
FIXED 12-10 
FLOAT 12-10 

coded arithmetic data 12-10 
scale factor, precision attribute 12-11 
scope 

attributes 
defaults 12-40, 12-41 
external 4-16, 7-11, 12-40 
internal 4-16, 7-11, 12-40 

of automatic variable 5-16, 12-41 
of based variable 5-16, 12-41 
of condition handling built-in function 

values 10-4 

scope (continued) 
of contextual declaration 4-13 
of established action 10-4 
of explicit declaration 4-13 
of external procedure name 12-41 
of me constant 12-7 
of internal procedure name 12-41 
of names 3-11 
of open mes 7 -11 
of static variable 5-16, 12-41 
of values of condition handling built-in 

functions 10-4 
scoping of open mes 7 -11 
security 6-3 

me authority 6-3 
me ownership 6-3 

SELECT statement 13-18 
select-groups 13-18 
semicolon (;) 4-5 
SEQL attribute 

See SEQUENTIAL attribute 
SEQUENTIAL and DIRECT attributes 11-9, 

11-10, 12-7 
default 11-10 

SEQUENTIAL attribute 11-9, 12-7 
direct access 11-10 
sequential access 11-10 

SET option 11-12,11-19-11-20 
use with BUFSIZE option of the ENVIRON­

MENT attribute 7-6 
SEU 

See source entry utility 
sign and currency characters 12-24, 12-25 

- picture character 12-24 
drifting string 

and insertion characters 12-25 
zero suppreSSIOn 12-25 

S picture character 12-24 
+ picture character 12-24 
$ picture character 12-24 

SIGN built-in function 15-21 
S I G N AL statement 10-4 

conditions in 10-1 
example 10-5 

simple do-group 13-6 
simple statements 4-2,4-2 

Index X·23 



simple string constant 12-43 
SIN built-in function 15-22 
SIND built-in function 15-22 
SINH built-in function 15-22 
SKIP format item 11-39, 11-40 
skip lines on source program listing 

See %SKIP statement 
SKIP option 11-26 
skip to new page 11-26 
slash (/) B-14 
source entry utility 2-1 

entering source programs 2-1 
PL/I syntax checker 2-2 

source program 
description 2-1 
entering SQL statements 2-5 
PL/I syntax checker 2-2 
using SEU 2-2 

spacing format item 11-40 
special characters B-14 
spooling 6-2 

input 6-2 
output 6-2 

SQL statements in a PL/I program 2-5 
SQRT built-in function 15-22 
statement label 

See label prefix 
statements 4-1, 11-10, 14-7 

ALLOCATE 5-22 
assignment 4-2, 13-1. 
BEGIN 4-11 
CALL 14-7 
CLOSE 11-8 
compound 4-1, 13-13 

IF 13-13 
data transmission 11-2 
DECLARE 7-1, 12-1 
defmition 4-1 
DELETE 11-16 
DO 13-5 
elements of 4-2 
END 13-10 
FREE 5-23 
GET 11-24 
GO TO 13-11 
IF 13-13 
input and output 11-1 
ITERATE 13-14 

X-24 PLjI User's Guide and Reference 

statements (continued) 
labels 4-1 
LEAVE 13-15 
nesting 13-14 
null 4-2, 13-17 
ON 10-2 
OPEN 11-4 
OTHERWISE 13-18 
PROCEDURE 14-2 
PUT 11-25 
READ 11-11 
RETURN 14-4 
REWRITE 11-15 
SELECT 13-18 
SIGNAL 10-4 
simple 4-2 
STOP 13-20 
syntax of 4-1 
types of 4-1 
WHEN 13-18 
WRITE 11-14 
%INCLUDE 2-16 
%PAGE 2-18 
%SKIP 2-19 

static 5-16 
storage 

allocation 5-16 
initialization 5-17 

variables 
STATIC attribute 5-16 
static characters 12-24 
static storage and attribute 5-16, 5-17 
STG (STORAGE) built-in function 15-22 
storage 5-15,5-16,5-24 

allocation 
dynamic 5-16 
for automatic variables 5-18 
for based variables 5-19 
for static variables 5-16 
static 5-16 

class 
automatic 5-16 
based 5-16 
default 5-16, 12-41 
static 5-16 

control 
automatic storage 5-18 
based storage 5-19 
built-in functions 15-4 



L 

L 

L 

storage (continued) 
control (continued) 

static storage 5-16 
requirements 

binary fixed-point value 12-13 
character value 12-18 
decimal floating-point value 12-13 
label value 12-32 

STORAGE built-in function (abbr: STG) 15-22 
storage condition D-5, D-13 
STREAM attribute 11-3, 12-7 
stream data transmission 11-1, 11-3, 11-22-11-44 

apostrophes, treatment of 11-29 
blanks 

insertion of 11-30 
treatment of 11-29 

opening stream fIles 7-12 
PRINT attribute 12-8 
program example 8-56 
statements 11-23 

GET 11-23, 11-24 
PUT 11-23, 11-25 

SYSIN fIle 11-44 
SYSPRINT fIle 7-12, 11-44 
truncation 11-30 

stream fIles 7 -12 
opening 7-12 
program example 8-56 
use of 8-55 

string 
data assignment 5-25 

string data 
padding 5-25 
truncation 5-25 

string handling built-in functions 15-2 
BIT 15-8 
CHARACTER 15-8 
COpy 15-8 
INDEX 15-12 
LENGTH 15-12 
SUBSTR 15-23 
TRANSLATE 15-24 
UNSPEC 15-25 
VERIFY 15-26 

string length 
calculation 5-29 
for automatic variables 5-19 

string operator 4-4 
string variable length 12-16 
stringsize condition D-5, D-13 
structure 

arrays of 5-5 
assignment 13-1 
component, immediate 5-3 
declaration 5-4, 12-39 
field 5-3 
level number 5-4, 12-39 
logical level 5-3 
major 5-3 
mapping 5-12, 5-15 

combining two units 5-13 
example 5-13-5-15 

maximum level number in DECLARE state-
ment 5-5, 12-39 

minor 5-3 
parameter descriptor 12-33 
qualification 5-5 
reference 9-1 
variable 5- 1 

structure level 
logical 5-4 
number 5-4 

structures 5-3, 5-5 
subfIles of display fIles 6-9 

example 8-29 
subroutine call 14-7 
subroutines 14-2 

arguments 14-1 
calling 14-1 
data processed 14-1 
parameters 14-1 
return from 14-1 
RETURN statement in 14-4 

subroutines and functions 14-1, 15-5 
subscript list 9-1 
subscripted qualified reference 5-6 
subscripts 5-2, 5-3 
SUBSTR built-in function 15-23 
SUBSTR pseudo variable 15-23 
syntax checker, PL/I 2-2 
syntax diagrams 

how to read vi 
SYSINflle 11-44 

Index X-25 



SYSPRINT me 7-12, 11-44 
SYSTEM option in ON statement 10-3 
system override of member defInition for a me 6-2 
system override of PL/I me declarations 6-2 
system-dependent features of PL/I 7-1, 7-20 

T 
TAN built-in function 15-24 
T AND built-in function 15-24 
TANH built-in function 15-24 
target 5-29,5-31,5-33 

data attributes 5-27 
length calculation 5-29 
precision calculation 5-29 

target variable 13-1 
test libraries 3-3 
THEN unit 13-13 
TIME built-in function 15-24 
TO option 13-7 
traces 3-7 

example 3-7 
TRANSLATE built-in function 15-24 
TRANSMIT condition D-5, D-13-D-14 

raised by READ 8-64 

U 

raised by READ, WRITE or REWRITE on 
locked record 6-8 

UNDEFINEDFILE condition D-5, D-14-D-16 
raised by COMMITTABLE option 7-7 
raised by level checking 6-12 
raised by OPEN 7-12 
raised by unsuccessful OPEN or CLOSE 7-11 
UNDEFINEDFILE 8-59 

unspecillable conditions 10-2 
conversion 10-2, D-2 
fixedoverflow 10-2, D-3, D-10 
overflow 10-2, D-4, D-12 
record 10-2, D-4, D-l3 
storage D-5, D-13 
stringsize 10-2, D-5, D-13 
underflow 10-2, D-6, D-16 
zerodivide 10-2, D-6, D-16 

UNTIL option 13-6 
UPDATE attribute 11-10, 11-23, 12-7 

X-26 PLjI User's Guide and Reference 

using messages 3-1 
using, displaying, and printing messages 3-1 

v 
V picture character 12-22 
variables 5-1, 12-38 

automatic 5-18 
based 5-19 
binary fixed-point 12-12 
binary floating-point 12-14 
decimal fixed-point 12-12 
decimal floating-point 12-13 
entry 12-32 
label 12-31 
pointer 12-30 
scalar 5-1 
static 5-16 

W 
WHEN statement 13-18 
WHILE option 13-6 

y 
- arithmetic operator 9-5, 4-4 
- > (pointer) 4-5 

z 
Z picture character 12-23 

Numerics 
9 picture character 12-22 

Special Characters 
. (period) 4-5 
. insertion character 12-23 
< comparison operator 9-10, 4-4 
< = comparison operator 9-lD, 4-4 
+ arithmetic operator 9-5,4-4 
+ picture character 12-25 
I bit operator 9-9 
II concatenation operator 9-14 
II string operator 4-4 
& bit operator 4-4 
$ currency symbol B-14 

J 



$ picture character 12-24, 12-25 
• arithmetic operator 9-5, 4-4 
• in parameter descriptor list 12-34 
• picture character 12-23 
·PROCESS directive 2-16 
•• arithmetic operator 9-5, 4-4 
./ (end comment) 4-5 
..., bit operator 4-4 
/ arithmetic operator 9-5, 4-4 
/ insertion character 12-23 
/. (begin comment) 4-5 
, insertion character 12-23 
,(comma) 4-5 
%INCLUDE directive 2-16,2-18 

program examples 8-79 
using for external me descriptions 8-73-8-82 

%PAGE statement 2-18 
%PROCESS directive 2-16, 2-18 
%SKIP statement 2-19,2-22 
> comparison operator 9-10,4-4 
> = comparison operator 9-10, 4-4 
: (colon) 4-5 
# number sign B-14 
@ commercial "at" sign B-14 
= assignment symbol 4-5 
= comparison operator 9-10,4-4 

Index X-27 



X-28 PL/I User's Guide and Reference 



IBM AS/400 Languages: SC09-1156-00 
PL/I 
User's Guide and Reference 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any requests 
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so 
on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter with the understanding that IBM may 
use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you. 

o If your comment does not need a reply (for example, pointing out a typing error), check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

o If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

Please contact your nearest IBM branch office to request additional publi­
cations. 

Name 

Company or 
Organization 

Address 



SC09-1156-00 

Reader's Comment Form 

Fold and tape Pl .... Do Not St. pl. Fold and tapa 

-----------------------------------------------------------------------------------------------------------.---------------~ 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Development Laboratory 
Information Development, Department 245 
Rochester, Minnesota 55901 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
I 
I 
I ---------------------------------------------------------------------------------------------------------------------------, 

Fold and tape Pl .... Do Not Stapl. Fold and tape 

-~------- --~---~-- -. ---- -- --------------, -
International Business Machines Corporation 

J 



IBM AS/400 Languages: SC09-1156-00 
PL/I 
User's Guide and Reference 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any requests 
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so 
on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter with the understanding that IBM may 
use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you. 

o If your comment does not need a reply (for example, pointing out a typing error), check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

o If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

Please contact your nearest IBM branch office to request additional publi­
cations. 

Name 

Company or 
Organization 

Address 



SC09-1156-00 

Reader's Comment Form 

Fold and tape Please Do Not Staple Fold and tape 
____________________________________________________________________________________________________________ ----------------1 

I 
I 

NO POSTAGE j J 
NECESSARY 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Development Laboratory 
I nformation Development, Department 245 
Rochester, Minnesota 55901 

IF MAILED 
IN THE 

UNITED STATES 

---------------------------------------------------------------------------------------------------------------------------, 
Fold and tape Please Do Not Staple Fold and tape 

--....- ------ - - -------. ---- - - --------_.-.....-, -
® 

International Business Machines Corporation 

J 



L 

IBM AS/400 Languages: SC09-1156-00 
PL/I 
User's Guide and Reference 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any requests 
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so 
on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter with the understanding that IBM may 
use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you. 

o If your comment does not need a reply (for example, pointing out a typing error), check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

o If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

Please contact your nearest IBM branch office to request additional publi­
cations. 

Name 

Company or 
Organization 

Address 



SC09-1156-00 

Reader's Comment Form 

Fold and tape Please Do Not Staple Fold and tape 

------------------------------------------------------------------------------------------------------------ ---------------~ 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Development Laboratory 
Information Development, Department 245 
Rochester, Minnesota 55901 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

---------------------------------------------------------------------------------------------------------------------------, 
Fold and tape Please Do Not Staple Fold and tape 

--...- ------ -------- -.. ---- - - --------------_ .. -
® 

International Business Machines Corporation 

J 



IBM AS/400 Languages: SC09·1156·00 
PL/I 
User's Guide and Reference 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any requests 
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so 
on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter with the understanding that IBM may 
use or distribute whatever information you supply in any way it believes appropriate without 
Incurring any obligation to you. 

o If your comment does not need a reply (for example, pointing out a typing error), check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

l., 0 If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s): 

Please contact your nearest IBM branch office to request additional publi­
cations. 

Name 

Company or 
Organization 

Address 



SC09-1156-00 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Development Laboratory 
Information Development, Department 245 
Rochester, Minnesota 55901 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

n 
~ 
g 

" 0 
0: 
~ 
0 
::l 
on 
r s· 
m 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ---------------------------------------------------------------------------------------------------------------------------, 

Fold and tape Please Do Not Staple 

--....- ------ ----- ~--- -.. ---- - - --------
-~-,,-

® 
International Business Machines Corporation 

Fold and tape 
I 
I 
I 
I 
I 
I 
I 

J 








