AS/400™ $C09-1156-00

L Languages:
PL/I
User’s Guide and Reference

AS/400m

Languages:
PL/I
User’s Guide and Reference

SC09-1156-00

First Edition (June 1988)

This edition applies to the IBM AS/400™ PL/I (licensed program 5728-PL1), and to any subsequent releases
and modifications until otherwise indicated in new editions. Changes are periodically made to the informa-
tion herein; any such changes will be reported in subsequent revisions.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM’s licensed program may be used. Any func-
tionally equivalent program may be used instead.

This publication contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to:

IBM Canada Ltd.

Information Development

Department 849

1150 Eglinton Avenue East

North York, Ontario, Canada M3C 1H7

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

AS/400 is a trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1988.
IBM is a registered trademark of International Business Machines Corporation, Armonk, NY.

9

HOW THIS MANUAL IS ORGANIZED

About This Manual

This IBM AS/400 Languages: PL|I User’s Guide and Reference manual provides
you with the information you need to write, compile, run, test, and maintain PL/I
programs on the AS/400! System.

Note: This manual describes PL/I as it is used on the AS/400 System. In certain
cases, however, it may be useful to also know the System/38 method. These
methods are summarized or otherwise described in Appendix F, “Converting from
System/38 to the AS/400 System.” To find out how to use PL/I in the System/38
Environment, you should refer to IBM System/38 PL|I Reference Manual and Pro-
grammer’s Guide, SC09-1051.

t Who Should Use This Manual

This manual is meant for programmers who have some knowledge of and experi-
ence in programming with PL/I.

How This Manual is Organized

This manual is divided into two parts. Part 1 is the user’s guide to PL/1 and Part 2
" contains reference information.

e Part 1 is intended to give you the basic information you need to write PL/I pro-
grams. Here you will find an introduction to the language and a description of
how to actually create, compile, run, test, and debug your PL/I program.

* Part 2 is a catalogue of reference information that you can refer to while using
PL/I. Part 2 contains material on program elements, organization and use of
data types, data management, and AS/400 files. You will also find material on

* compiler directives, PL/I statements, references, expressions, and a detailed
L description of PL/1 procedures, subroutines, functions, and pseudovariables.
Following Part 2 is a series of appendixes containing information that might be
A useful to PL/1 users. These include:
’ * Appendix A, “Compiler Service Information”
e Appendix B, “The AS/400 PL/I Language Summary and Character Set”
* Appendix C, “Valid Combinations of Options for Input/Output Statements”
* Appendix D, “Conditions and Condition Codes”
¢ Appendix E, “EBCDIC CODES”
e Appendix F, “Converting from System/38 to the AS/400 System”
¢ Appendix G, “Glossary of Acronyms.”

1 AS/400 is a trademark of International Business Machines Corporation

About This Manual iii

What You Should Know

This manual also contains a glossary of the AS/400 System and PL/I terms used in
this manual that might not be familiar to you, and an alphabetically organized index
at the back.

What You Should Know

Before you use this manual, you should be familiar with the information contained
in the following IBM AS/400 publications:

» CL Programmer’s Guide, which contains the basic concepts of the control
program functions.

* You should be familiar with your display station (also known as a work
station), and its controls. There are also some elements of its display and
certain keys on the keyboard that are standard regardless of which software
system is currently running at the display station, or which hardware system the
display station is hooked up to. Some of these keys are:

— Cursor movement keys
— Command keys

— Field exit keys

— Insert and delete keys
— The Error Reset key.

This information is contained in Systermn Operations: Display Station User's
Guide, SC2]-9744.

* You should know how to operate your display station when it is hooked up to
the IBM AS/400 System and running the AS/400 System software. This means
knowing about the IBM Operating System/400 (OS/400) and the Control Lan-
guage (CL) to do such things as:

— Sign on and sign off the display station

— Interact with displays

— Use Help

— Enter control commands and procedure commands
— Call utilities

— Respond to messages.

To find out more about this operating system and its control language, refer to:

— Programming: Control Language Reference, SBOF-0481

— Programming: Control Language Programmer’s Guide, SC21-8077
— Programming: Command Reference Summary, SC21-8076

— Programming: System Reference Summary, SC2/-8104

— Programming: Data Management Guide, SC21-9658

¢ You should know how to call and use certain utilities available on the AS/400
System:

— The Screen Design Aid (sDA) utility used to design and code displays. This
information is contained in Application Development Tools: Screen Design
Aid User's Guide and Reference, SC09-1171.

— The Source Entry Utility (SEU), which is a full-screen editor you can use to
enter and update your source and procedure members. This information is

iV PL/I User’s Guide and Reference

If You Need More Information

contained in Application Development Tools: Source Entry Utility User’s
Guide and Reference, SC09-1172.

You should know how to interpret displayed and printed messages. This infor-
mation is contained in Chapter 3, “Testing and Debugging PL/I Programs” on
page 3-1

You should be familiar with the PL/1 program cycle, how indicators affect the
program cycle, and how to code entries on the PL/I specification sheets.

If You Need More Information

You might need to refer to other AS/400 System manuals for specific information
about a particular topic. They are listed below:

Information Directory, GC21-9678, which contains a brief description of each
manual in the AS/400 library and information on how to order additional publi-
cations.

Licensed Programs Installation Guide, SC21-9765, which describes how to
install PL/1 on your system.

System Operations: Operator's Guide, SC21-8082, which describes how to
operate the AS/400 System.

Programming: Data Description Specifications Reference, SC2/-9620, which
describes data description specifications that are used for describing files.

Communications: Distributed Data Management User’s Guide, SC2[-9600,
which contains information about remote communication for the pPL/1 pro-
grammer.

Programming: Data Base Guide, SC21-9659, which contains a detailed dis-
cussion of the AS/400 data base structure. This manual also describes how to
use Data Description Specifications (DDs) keywords.

Communications: Programmer’s Guide, SC2/-9590, which provides information
an application programmer needs to write applications that use the AS/400
System communications and the Intersystem Communications Function file.

Programming: Graphical Data Display Manager Programming Reference,
SC33-0537, and Programming: Graphical Data Display Manager Programming
Guide, SC33-0536, which provide guidance on the Graphical Data Display
Manager (GDDM) for programmers who need to write graphics applications.

System|38 Environment Programmer’s Guide and Reference, SC2[-9755, which
describes migrating from System/38 and converting to the AS/400 System.

Programming: Structured Query Language{400 Reference, SC2/-9608, which
provides detailed information on using Structured Query Language (SQL.) state-
ments.

For limitations that may apply to your program but which do not come from
PL/1, see the Programming: Control Language Programmer’'s Guide, SC21-8077.

About This Manual V

How to Read the Syntax Diagrams
Throughout this manual, syntax is described using the structure outlined below.

* Read the syntax diagrams from left to right, top to bottom, following the path
of the line.

The »— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.

The — symbol indicates the end of a statement.

Diagrams of syntactical units, other than complete statements, start with the
»— symbol and end with the — symbol.

« Required items appear on the main path.

A
A

»»—statement required item

» Optional items appear below the main path. Items will appear in a vertical
stack if more than one option is available.

»»——statement +>
}:optiona] choicel:]
optional choice2

One item of a vertical stack appearing on the main line indicates that at least
one option is mandatory.

»——-statement—-[requi red choicel >
required choiceZ-—J

* An arrow returning to the left above the main line indicates a single item that
can be repeated, or an additional option selected from a vertical stack.

The repeat arrow will also indicate any punctuation, such as a comma, that is
required between selections.

’

»»——statement———repeatable item >
—optional choicel—
——optional choice2—

* Enter words in UPPERCASE characters as shown, unless an abbreviation is
indicated. Words in lowercase characters represent variable values, and are
described following the syntax diagram.

¢ All round brackets, arithmetic and logical operators, and punctuation must be
entered where shown.

Vi PL/I User’s Guide and Reference

» The underscore on any item denotes a default attribute.

Note: For ease of readability, syntax in some areas of the manual will deviate from
the above description, as follows:

» Square brackets indicate optional items.
 Vertical bars indicate a choice of items.

* Braces indicate mandatory syntactic expressions.

The following example shows the syntax for the OPEN statement.

4
»—OPEN—FILE(file_constant) L —l >
INPUT TITLE(expression)
QUTPUT:
UPDATE
8
L JL 1
EINESIZE(expression) PéGESIZE(expression)

The following is the interpretation for the above sample syntax:
The start of the syntax diagram.
The keyword OPEN must be entered.
The keyword FILE(file_constant) must be entered.
B Brackets indicate mandatory part of syntax.
The syntax is continued at [fJ .
[Various options available with the OPEN statement.
The syntax is continued from FJ.
E] The end of the syntax diagram.

About This Manual Vii

9

Language Extensions

Language extensions are indicated by enclosing the descriptions of the extension in
special frames:

| Full Language Extension |

These brackets indicate language extensions that are part of the complete pL/1
(ANSI PL/I X3.53-1976).

| End of Full Language Extension |

| IBM Extension I

These brackets indicate language extensions that occur in more than one PL/I com- J
piler, and that are not part of either the complete PLj1 (ANSI PL/I X3.53-1976) or
the general-purpose subset (ANSI PL/I X3.74-1981).

| End of IBM Extension l

Industry Standards

The AS/400 pL/1 Licensed Program is designed according to the specifications of the J
following industry standards as understood and interpreted by 1BM as of January

1981: American National Standards (ANS) pL/1, X3.53-1976, which is technically

identical to International Organization for Standardization (ISO) 6160-1979, and

European Computer Manufacturers Association (ECMA) (1976)

The AS/400 pLj1, which is described in this publication, is based on the American
National Standards Programming Language PL/1 General-Purpose Subset,
X3.74-1981, with the following differences:

» Restrictions and omissions from the above subset. '

¢ Extensions based on features of the American National Standard Programming
Language PL/1, X3.53-1976.

* Extensions based on common features added by 1BM.

» Extensions based on PL/1 features added by 1BM.

For a complete description of the source of each feature of the language, refer to
Appendix B, “The AS/400 PL/I Language Summary and Character Set.”

The AS/400 PL/I Licensed Program
The AS/400 pL/1 consists of the following:

* A PL/I compiler ’

« An interface to Source Entry Utility (sEU) for checking PL/1 syntax.

vili PL/I User’s Guide and Reference

L What Your AS/400 System Needs to Run PL/I

The AS/400 pLj1 Licensed Program (5728-PL1) is run by the IBM Operating
System/400 (OS/400) Licensed Program (5728-SS1) on any size AS/400 System that
has at least one 1920-character 5250 (or functionally compatible) work station.

The AS/400 PL/I is installed in a separate user library, called QPLI. See the
Licensed Programs Installation Guide, SC21-9765 for information on installing PL/I.

About This Manual 1X

X PL/I User's Guide and Reference

C

Contents

Part 1. User’s Guide

Chapter 1. An Introduction to PL/I and the AS/400 System 1-1
The AS/400 Operating System and Control Language 1-1
Accessing PL/I on the AS/400 System 1-1
Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-1
Creating and Editing the Source Program 2-1
Using SEU to Create and Edit a Source Program 2-2
Using SEU to Browse a Compiler Listing 2-4
Entering SQL Statements into a PL/I Program 2-5
Compiling Your Source Program Using the CRTPLIPGM Command 2-§
Completing the First CRTPLIPGM Screen 2-6
Completing the Second CRTPLIPGM Screen 2-9
Completing the Third CRTPLIPGM Screen 2-12
The +DIAGNOSE Option of the GENOPT Parameter 2-16
Using Compiler Directives 2-16
Using the %INCLUDE Directive 2-16
Using the %PAGE Directive 2-18
Using the %PROCESS Directive 2-18
Using the %SKIP Directive 2-19
Compiler Output e 2-19
Running the Program 2-22
Interrupting or Ending the Running of a Compiled Program 2-22
Abnormal Program Ending 2-22
Interlanguage Calls 2-23
Calling a Non-PL/I Program 2-23
Calling a PL/I Program from a Non-PL/I Program 2-24
Chapter 3. Testing and Debugging PL/I Programs 3-1
Using, Displaying, and Printing Messages 3-1
Using MeSSages v« o i it e e e e e e 3-1
Displaying and Printing Messages 33
Usinga Test Library 33
Using Breakpoints e 3-5
Example of Using Breakpoints 3-5
Considerations for Using Breakpoints 3-6
UsingaTrace i it 3-7
Example of Usinga Trace 3.7
Considerations When Usinga Trace 3-8
Using Debug e 3-10
PL/IStorage e 3-10
Calling Levels e 3-10
Scopingof Names 3-11
Fully Qualified Names 3-11
PL/I Pointers e e e e 3-12

Contents X1

Floating Point Variables 3-12

Changing Varying Length Strings 3-12
Specifying Variables by ODV Number 3-13
Displaying Level Numbers 3-13
References to Static Variables 3-13
Determination of Active Blocksina Program 3-13
Using PLIDUMP 3-14
Example of Using PLIDUMP 3-15
Error Dump Option Sereen 3-16
Using PLIIOFDB and PLIOPNFDB 3-17
Using ON Conditionst 3-17
Part 2. Reference
Chapter 4. Program Elements and Organization 4-1
Characters That are Usedin PL/I 4-1
PL/I Program Structure 4-1
Statements and Directives 4-1
Elements of a PL/I Statement 4-2
Program Organization 4-6
Programs e e 4-6
Blocks e e 4-6
Internal and External Procedures 4-9
Begin-Blocks e 4-11
Nameso e e 4-12
Explicit Declarationof a Name 4-13
Contextual Declarationof a Name 4-13
Multiple Declarations of Names 4-14
Scopesof Names 4-14
Chapter 5. PL/I Data Organizationand Use 5-1
DATA ORGANIZATION e 5-1
Using Arrays and the Dimension Attribute 5-1
Using Structures and Level Numbers 5-3
Arraysof Structures L 5-5
Performance Considerations with Large Aggregates 5-7
Data Alignment and the Alignment Attbutes 5-7
Data Mapping« . . ot ittt e e e e 5-9
Scalar Data Mapping it e 5-10
Array Mapping e e e e e 5-11
Structure Mappifi€ o e e e e e e e e e e e 5-12
STORAGE CONTROL 5-15
Using the STATIC Attrbute 5-16
Using the INITIAL Attbute 5-17
Using the AUTOMATIC Attribute 5-18
Using the BASED Attribute 5-19
Based Variable Reference and Pointer Qualification 5-20
ALLOCATE Statement for Based Varables 5-22
FREE Statement for Based Variables 5-23
Data Assignment e e 5-24
String Data Assignment 5-25

xii PL/I User’s Guide and Reference

Arithmetic Data Assignment 5-26

Data Conversion v i i it e e 5-27
Built-In Conversion Functions 5-28
Calculating String Length and Precision 5-29
Conversion Rules, 5-29
Truncation of Floating-Point Data 5-34
Examples of Data Conversion 5-34

Chapter 6. AS/400 PL/I File and Record Management 6-1

File Management 6-1
File Independence« ... 6-1
Device Independence e 6-1
System Override Considerations 6-2
Security e 6-3

Typesof Files e 6-4
DataBase Files 6-4
File Locking e 6-6
Record Locking i 6-7
DEVICE Files i 6-8
DISPLAY Files 6-8
Other Types of Device Files 6-9

Using Record Formats 6-11
Externally Described Record Formats 6-11
Program-Described Files 6-12

Chapter 7. File Declaration and Input/Output 7-1

The ENVIRONMENT Attribute 7-1
File Organization Options v i vt it it it et 7-2
File Locking Options ittt it 7-3

Key Options e 7-3
CTLASA Optiono e e e e e e 7-4
BUFSIZE (integer constant) Option 7-5
DESCRIBED Option vt ittt it e e e e e e e 7-6
Commitment Control Option 7-6
Blocking Option 7-7
NOINDARA Option it 7-8

Openingand Closing Files 7-11
Scoping of Open Files (File Sharing) 7-11
Considerations for Opening a Print Stream File 7-12
Considerations for Opening a Non-Print Stream File 7-12
Considerations for Opening SYSPRINT 7-12
Considerations for File Closing after an Error 7-13

The OPTIONS Option of Record Data Transmission Statements 7-13
RECORD Parameter, 7-15
KEYSEARCH Parameter 0.0, 7-17
POSITION Parameter 7-17
NBRKEYFLDS Parameter00o...... 7-18
INDICATORS Parameter, 7-19
MODIFIED Parameter 7-20

Chapter 8. Using AS/400 Files 8-1

Contents Xiii

Using DataBase Files 8-1

Externally Described Data Base Files 8-2
Program-Described Data Base Files 8-2
Data Description Specifications 82
Using Display Files 8-22
Externally Described Display Files 8-23
Example of Using a Display File 8-23
Example of Using a Subfile for Displaying Data 8-29
Example of Using Indicators 8-43
Using Device Files i 8-49
Externally Described Device Files 8-50
Program-Described Device Files 8-50
Example of Usinga Printer File 8-50
Using STREAM Files i, 8-55
Example of Usinga Stream File 8-56
Commitment Control 8-58
Using the COMMITTABLE Option 8-59
Using the PLICOMMIT Built-In Subroutine 8-59
Using the PLIROLLBACK Built-In Subroutine 8-60
Using PLICOMMIT and PLIROLLBACK 8-61
Examples Using Commitment Control 8-64
Using the % INCLUDE Directive for External File Descriptions 8-73
Using the % INCLUDE Directive with Externally Described Files 8-75
Using the % INCLUDE Directive with Program-Described Files 8-76
Using the %INCLUDE Directive with Display Files 8-76
DDS to PL/I Mappingt 8-77
DDS Features You Can Use in Your PL/I Program 8-78
Sample Program Showing Use of DDS Features 8-79
Chapter 9. References and Expressions 9-1
Operational Expressions 9-4
Arithmetic Operations 9-5
Bit Operationst e 9-9
Comparison Operations o v v v it e 9-10
Concatenation Operations, 9-14
Combinations of Operations 9-14
Chapter 10. Condition Handling Statements 10-1
Specifiable Conditions in ON and SIGNAL Statements 10-1
Unspecifiable Conditions 10-2
Established Action e e 10-2
Implicit Action e 10-2
ON Statement e 10-2
Running an On-Unit e e 10-3
Scope of the Established Action 10-4
Scope of Values of Condition Handling Built-In Functions 10-4
SIGNAL Statement e e 10-4
Example of Use of Conditions 10-5
Chapter 11. Input and Qutput Statements 11-1
Inputand Output e 11-1

xiv PL/1 User’s Guide and Reference

Files e e 11-2

AS/A00 Files e 11-2
Use of the File Attributes i 11-3
File Name e 11-3
Type Of Data Transmissiont 11-3
Direction of Data Transmission, 11-3
Openingand Closing Files 11-4
OPEN Statementttt 11-4
CLOSE Statementttt 11-8
Record Data Transmissiont v ... 11-8
Use of File Description Attributes 11-9
Data Transmission Statements 11-10
Options of Record Data Transmission Statements 11-16
Stream Data Transmission, 11-22
File Description Attributes 11-23
Data Transmission Statements 11-23
Options of Stream Data Transmission Statements 11-26
Data Specifications e 11-27
Data Lists e 11-27
Format Lists e 11-28
Format Items e 11-31
Transmission of Array Elements and Structure Fields 11-41
Prnt Files e e 11-42
SYSINFile e 11-44
SYSPRINT File 11-44
Chapter 12. Declaring Names and Attributes of Variables 12-1
The DECLARE Statement, 12-1
Factoring of Attributesc.... 12-2
Classification of Attributes 12-2
Required Attributes 12-5
Implied Attributes e 12-5
File Attributes e 12-6
Data Types oot it e 12-8
Problem Data Attributes, 12-9
Coded Arithmetic Data Attributes 12-10
String Data Attributes, 12-15
PICTURE Data Attribute 12-19
Digit and Decimal Point Characters 12-22
Zero Suppression Characters 12-23
Insertion Charactersvvue... 12-23
Sign and Currency Characters 12-24
Credit and Debit Characters 12-26
Digit and Signed Character 12-26
Program Control Data Attributes 12-30
POINTER Attribute 12-30
LABEL Attribute 12-31
ENTRY Attribute e 12-32
BUILTIN Attribute i 12-36
VARIABLE Attribute 12-37
Aggregate Data Declarations 12-38

Contents XV

Arrays and the Dimension Attribute 12-38

Structures and Level Numbers 12-39
Alignment Attributes 12-40
Scope Attributes L 12-40
Storage Attributes 12-41

AUTOMATIC Attribute i i .. 12-41

BASED Attobute e 12-42

STATIC Attribute 12-42

INITIAL Attribute e 12-42
Chapter 13. General PL/I Statements 13-1
Assignment Statement L oL L 13-1

Examples of Assignment Statements 13-2

BY NAME ASSIGNMENT 13-3
DO Statement e 13-5

Examples of DO Statements 13-8
END Statement 13-10
GO TO Statement e 13-11
IF Statement 13-13

Examples of IF Statements 13-14
ITERATE Statement 13-14

Example of the ITERATE Statement 13-15
LEAVE Statement e 13-15

Examples of LEAVE Statements 13-16
Null Statement e 13-17

Examples of Null Statements 13-17
SELECT, WHEN, and OTHERWISE Statements 13-18

Examples of Select-Groups 13-19
STOP Statement e 13-20
Chapter 14. Procedures, Subroutines, and Functions 14-1
Defining a Procedure 14-1

PROCEDURE Statement 14-2

RETURN Statement 14-4
Callinga Procedure 14-4

Function Reference 14-4

CALL Staterment e 14-7

Association of Arguments and Parameters 14-9

Recursive Procedures 14-11
Chapter 15. Built-In Functions, Subroutines, and Pseudovariables 15-1

Declaring a Built-In Function or Built-In Subroutine 15-1
Built-In Functions e 15-1

Classification of Built-In Functions 15-2
Built-In Subroutines e 15-4

Pseudovariables e 15-5

Aggrepate Arguments L Lo 15-5

Empty Argument Lists 15-5
Descriptions of Built-In Functions, Subroutines and Pseudovariables 15-5

ABS(X) . . e 15-5

ACOS(X) . . e 15-6

xvi PL/I User's Guide and Reference

ADDR(X) 15-6

ASIN(X) . . e 15-6
ATANGLYD « v v e oo oo e e e 15-7
ATANDLYD) - o v o o e e e 15-7
ATANH(X) ... e 15-7
BINARY(x[,p[.OID) - . . . o oo 15-8
BIT(X[LYD . . o o e 15-8
CHARACTER(XLYD) - - - v oo e e e e e 15-8
COPY(X,Y) - o ot it e e e e 15-8
COS(X) o e e e e e 15-9
COSD(X) . . v i e e e e e e 15-9
COSH(X) . .. ot e s e e 15-9
DATE[O)] . . o o o e 15-9
DECIMALGLPLAID - - - - - v o e e e e e e e e e 15-9
DIMENSION(X,Y) .« ¢ o o it e e e e e e e e e e e e e 15-10
DIVIDE(XY,PLA]) - - -« c v o o e e e e e e e 15-10
EXP(X) « o o oe oo 15-11
FIXEDX,PLA]) - - -« o o oo e e e e e 15-11
FLOAT(X,D) « « v e e oo e e e e e e e 15-11
HBOUND(X,Y) . o o vt e e e e e e e e e e e e e e e 15-11
INDEX(X,¥) .« - oo e e e e 15-12
LBOUND(X,Y) . . ottt e e s e e e e e e e 15-12
LENGTH(X) e e e 15-12
LINENO(X) e e e e e e e 15-12
LOG(X) . . o e e e 15-12
LOG2(X) . .. o e e 15-13
LOGIO(X) « o v oo e e e e 15-13
MAX(X1,X2) . . . e 15-13
MIN(XLX2) . . 15-13
MOD(X,¥) - - o o e e 15-14
L0 5 I) 15-14
ONCODE[)] -+« v o e e e e e e e e e 15-14
ONFILE[O)] . - . o o e e 15-15
ONKEY[()] -« -« v o oo e e e e e e e e e e 15-15
PLICOMMIT Built-In Subroutine 15-15
PLIDUMP Built-In Subroutine 15-16
PLIIOFDB Built-In Subroutine 15-16
PLIOPNFDB Built-In Subroutine 15-17
PLIRCVMSG Built-In Subroutine 15-18
PLIRETC Built-In Subroutine 15-18
PLIRETVI()] . - . . o e e e s e 15-19
PLIROLLBACK Built-In Subroutine 15-20
PLISHUTDNIO] o o e e e e s e e 15-20
ROUND(KY) « « e e eoee e e 15-20
SAMEKEY(X) .« « o v v o oot e e 15-21
SIGN(X) . . . e 15-21
SIN(X) . o e 15-22
SIND(X) . .o e e 15-22
SINH(X) . .. e e 15-22
SQRT(X) 15-22
STORAGE(X) .« « v v e oo e e 15-22

Contents XVii

Xviii

SUBSTRGYLZD) « - v o v o eeeeee e e 15-23

SUBSTR(x,y[,z]) Pseudovariable 15-23
TAN(X) . . e 15-24
TAND(X) . . . oo e 15-24
TANH(X) e 15-24
TIME[()] . . . o o e 15-24
TRANSLATE(X,Y[,Z]) - - -« o o o e e e e e e e 15-24
TRUNC(X) . .. i it i e e e e e e e e e e 15-25
UNSPEC(X) e e e e e e 15-25
UNSPEC(x) Pseudovariable 15-25
VERIFY(X,Y) .. o e e e e e 15-26
Appendix A. Compiler Service Information A-1
Compiler Overview i i e e e A-1
Compiler Organizationttt A-3
Compiler Phases A-3
Intermediate Text A-5
Compiler Segments A-5
Formatters and Intermediate Text A-9
Error Message Organization A-9
Compiler Debugging Options A-10
Examples of Using Compiler Debugging Options A-10
Using the SERVICE Parameter A-15
Quantitative Limits of Compiler A-19

Appendix B. The AS/400 PL/I Language Summary and Character Set ... B-1

The PL/I Character Set B-14
Extralingual Characters B-15
Appendix C. Valid Combinations of Options for Input/Output Statements . . C-1
Data Base Files with CONSECUTIVE organization C-2
Data Base Files with INDEXED organization C-3
Display Files with INTERACTIVE organization C4
Subfiles with INTERACTIVE organization C-5
Display Files with CONSECUTIVE organization C-6
Inline Files with CONSECUTIVE organization C-7
Printer Files with CONSECUTIVE organization C-7
Tape and Diskette Files with CONSECUTIVE organization C-8
Communications and BSC Files with INTERACTIVEand C-9
Appendix D. Conditions and Condition Codes D-1
Conditions e e D-1
Condition Codes i i e D-6
Appendix E. EBCDICCODES E-1
Appendix F. Converting from System/38 to the AS/400 System F-1
Your Choice of Two Environments: AS/400 System or the System/38
Environment e F-1
Compiling in the System/38 Environment F-1
Writing Programs in the System/38 Environment F-2

PL/I User’s Guide and Reference

Writing Programs in the System/38 Environment F-2

Using the % INCLUDE Directive F-2
Using the %INCLUDE Directive for External File Descriptions F-2
Syntax of TITLE Parameter of the OPEN Statement F-3
Appendix G. Glossary of Abbreviations G-1
Glossaryof Terms GLOSS-1
Index e X-1

Contents XiX

XX PL/I User's Guide and Reference

Part 1. User’s Guide

Part 1 is a user’s guide. It contains the basic information you need to program in
AS/400 pL/1. This information is organized sequentially to allow you to read
through it and develop an understanding of PL/1 programming: how to create,
compile, run, test, and debug your program.
The user’s guide is organized into:

e Chapter 1, “An Introduction to PL/I and the AS/400 System”

e Chapter 2, “Creating, Compiling, and Running Your PL/I Program”

e Chapter 3, “Testing and Debugging PL/I Programs.”

Part 1. User's Guide

PL/I User's Guide and Reference

ACCESSING PL/I on the AS/400 System

C

Chapter 1. An Introduction to PL/lI and the AS/400 System

This chapter is a brief introduction to using AS/400 pL/1. The topics include:

* The AS/400 Operating System and Control Language
* Accessing PL/1 from 0s/400

The AS/400 Operating System and Control Language
The AS/400 Operating System

The operating system that controls all your interactions with the AS/400 System is
called Operating System/400 (OS/400). From your display work station, OS/400
& allows you to:

+ Sign on and sign off the AS/400 System
Interact with the displays

Use Help

Enter control commands and procedures
Respond to messages

Manage files

Call up other utilities and run other programs.

Q- The AS/400 Control Language

You interact with the AS/400 System by entering or selecting Control Language
(cL) commands.

The AS/400 cL commands you will be using most often with PL/I are:

» STRSEU to call up the Source Entry Utility (SEU), a full-screen editor that can be
used to enter PL/I program code
g e CRTPLIPGM to compile PL/I source programs
e CALL program-name to run a PL/l program
* CALL QCL to access the System/38 Environment
* RETURN to exit from System/38 Environment.

The Control Language and all its commands are described in detail in the Program-
ming: Control Language Reference.

Accessing PL/I on the AS/400 System

When you start working on the AS/400 System, you will see the following screen.

Chapter 1. An Introduction to PL/I and the AS/400 System 1-1

ACCESSING PL/I on the AS/400 System

(
Sign On
Systemo XXXXXXXX
Subsystem . 1 XOOOXXX
Display . . . T XXX
User ID o v v v v v v 0 0 0 o o
Password
Program/procedure
Menu & v v v v v e e e e e
Current library . +
error message line----- © COPYRIGHT IBM CORP. 1988
\

Figure 1-1. The AS/400 System Sign-on Screen

The following screen appears, when you enter your ID and password, and you can

begin working on the AS/400 System.

-
MAIN AS/400 Main Menu

Select one of the following:

1. User tasks

2. Office tasks

3. General system tasks

4. Files, libraries, and folders
5. Programming

6. Communications

7. Define or change the system
8. Problem handling

9. Display a menu

90. Sign off

Selection or command

===>

System: XXXXXXXX

F3=Exit F4=Prompt F9=Retrieve F12=Previous
F23=Set initial menu

.

F13=User Support

© COPYRIGHT IBM CORP. 1988

Figure 1-2. AS/400 Main Menu Screen

To begin working in PL/1, enter or select the appropriate CL command.

1-2 PL/I User’s Guide and Reference

<9

C

CREATING AND EDITING PROGRAMS

Chapter 2. Creating, Compiling, and Running Your PL/I

Program

To run a program, you must enter and store it on the AS/400 System as a source
file, and then compile it. You can connect programs written in different languages,
including pL/1, and run the PL/1 program as part of a system of programs. The
chapter describes:

Creating and editing the source program

Compiling your source program using the CRTPLIPGM command
Using compiler directives

Running the program

Compiler output

Interlanguage calls.

Creating and Editing the Source Program

You can enter your source program onto the system interactively, by using the
Source Entry Utility (SEU). Enter the CL command STRSEU (Start SEU) to call SEU.

For a description of how to use the STRSEU command, refer to the SEU User’s
Guide and Reference.

You can enter your source program onto the system in batch mode (for example,
from diskettes) by using the OS/400 copy or spooling functions. For more informa-
tion on how to use the copy and spooling functions for batch entry, refer to the
Programming: Data Management Guide.

The first procedure in creating your program is to name the file that will store the
source program. The AS/400 file naming convention that you use to do this is
library-name/file-name.

Note: A pL/1 program that is entered in the System/38 Environment should also be
compiled and run in the System/38 Environment. The program can access
any file unless the file name contains characters other than A-Z, 0-9, #, @,
and _. Because this restriction does not apply to AS/400 file names, you
may not be able to use a AS/400 file from the System/38 Environment.

On the AS/400 System, you can use upper or lowercase characters in a file

name or a member name. However, all lowercase characters are converted to
uppercase in the System/38 Environment.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2~1

CREATING AND EDITING PROGRAMS

Using SEU to Create and Edit a Source Program
$EU provides you with a screen that you can use to enter your source program, and
a PL/1 syntax checker that checks each line for errors as you enter it. There are also
three screens that you can use for various functions on a file you are editing. The
screens are:

» The Edit Services Screen shown in Figure 2-1 on page 2-3
¢ The Find/Change Services Screen shown in Figure 2-2 on page 2-3
* The Browse/Copy Services Screen shown in Figure 2-3 on page 2-4.

The PL/I Syntax Checker

The following commands allow you to use the PL/I syntax checker.

¢ The cL command STRSEU TYPE(PLI) accesses SEU with the PL/I syntax checker
in effect. You can also select the TYPE(PLI) parameter from the SEU edit ser-
vices screen (see Figure 2-1 on page 2-3).

* The cL command STRSEU TYPE(TEXT) accesses SEU as an editor only; no syntax
checker is in effect.

* The cL command STRSEU TYPE(PLI38) calls up the System/38 pPL/I syntax
checker. The syntax rules for System/38 PL/1 apply.

If you use the PL/1 syntax checker while entering your source program, pressing
Enter at any time automatically processes the syntax checker on any line that has
been changed and on any new lines that have been added to the screen. Any state-
ment that contains a syntax error is then shown in reverse image, and an error
message appears on the screen telling you what is wrong with the statement. When
you correct the error and press Enter, the error message is taken off the screen and
the normal image of the statement is restored.

The syntax checker only checks individual statements, independently of preceding
statements. Therefore no errors based on relationships with other statements are
detected. For instance, if you declare WAGETOT at the beginning of your
program and misspell the variable name in a later statement

WAGETOTAL = CURMONTHTOTAL + YTDTOTAL;

no error is detected. Similarly, if you make an error in nesting loops and code too
many END statements, the syntax checker cannot detect the error. This type of
error is found when you compile the source program.

2-2 PL/I User’s Guide and Reference

CREATING AND EDITING PROGRAMS

r R
Edit Services
Type choices, press Enter.
Anount to roll v . o v v v 1 1=Half page
2=Full page
Uppercase input only Y Y=Yes, N=No
Tabson . ¢« v v v v v e v oo N Y=Yes, N=No
Increment of insert record 0.01 0.01 to 999.99
Source type . . v ¢ ¢ ¢ s ¢ o0 oo PLI
Syntax checking:
When added/modified Y Y=Yes, N=No
From sequence number 0b0B.00 to 9999.99
To sequence number . . . + 0000.00 to 9999.99
Left margin .« v v o v v 0. 2 1 to 80
Right margin . « + ¢« v ¢ v v v o« 72 1 to 80
Set records to date / / YY/MM/DD or YYMMDD
Screensize . . .4 v 0000 1 1=27x132, 2=24x80
F3=Exit F5=Refresh F12=Previous
F14=Find/Change Services F15=Browse/Copy Services
\\§ J
Figure 2-1. SEU Edit Services Screen
4 ™\

Find/Change Services

Type choices, press Enter.
Find ¢« v v v v v v
Change

From column number 1 1 to 80

To column number 80 1 to 80

Allow data shift Y Y=Yes, N=No

Occurrences to process 1 1=Next, 2=A11
3=Previous

Records to search 1 1=A11, 2=Excluded
3=Non-excluded

Kind of match 2 1=Same case
2=Ignore case

Search for date 88/11/19 YY/MM/DD or YYMMDD

Compare « « v ¢ o o o o o 4 o 1=Less than

2=Equal to

3=Greater than

F3=Exit F5=Refresh F12=Previous F13=Edit Services
F15=Browse/Copy Services F16=Find F17=Change
_ .

Figure 2-2. SEU Find/Change Services Screen

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-3

CREATING AND EDITING PROGRAMS

Browse/Copy Services
Type choices, press Enter.
Selection « v v ¢ v v v v o o W 1 1=Member
2=Spool file
3=0utput queue
Copy all records . . +« « « « . N Y=Yes, N=No
Browse/copy member ALC0O2 Name, F4 for list
Library « v v v v o 0 0 0 0 DBLIB Name, *CURLIB, *LIBL
File o v v v v o v 0 v o QPLISRC Name
Browse/copy spool file QSYSPRT Name
Job v v v v e e e e E24 Name
User .+ v v v v v o o o o BRODEUR Name
Job number *LAST Number, *LAST
Spool number *LAST Number, *LAST, *ONLY
Display output queue QPRINT Name, *ALL
Library « « ¢ v v v v 0 0w *LIBL Name, *CURLIB, *LIBL
F3=Exit F5=Refresh F12=Previous
F13=Edit Services F14=Find/Change Services
. J

Figure 2-3. SEU Browse/Copy Services Screen

The PL/1 syntax checker sets the margins for your source entry to column 2 and

column 72. You can see the margin settings by looking at the lower right-hand]
corner of your file’s services screen. For normal PL/1 programming this is the J
standard and desirable setting, but at times you may need to change the setting. For

instance, the % PROCESS directive must begin in column 1. %PROCESS is not

valid if it begins in any other column. In this case, you should alter the left margin

to column | so that you can enter the % PROCESS directive correctly. You use

the Edit Services screen and change the column number for the left margin from 002

to 001. If you change the margin to 001, you must make sure that the standard pL/1

statements in your program do not begin in the first column of the screen.

SEU automatically runs the PL;I syntax checker whenever there are lines that are J
changed or added on the screen. The new source program is then passed to the

syntax checker one statement at a time. Because PL/I source data can be entered in

free format and its statements can span more than one line, SEU uses the semicolon

to determine the statement boundaries.

Note: The scanning of the semicolon in the backward direction to find the start of a
statement may occasionally produce unwanted results when the semicolon is
imbedded inside a comment or a string literal, or when the %INCLUDE directive is
used in the middle of a statement.

Using SEU to Browse a Compiler Listing
You may use the SEU split-edit display to browse through a compiler listing that is
on an output queue. For more information on browsing through a compiler listing,
see the SEU User’s Guide and Reference.

2-4 PL/1 User’s Guide and Reference

C

C

COMPILING SOURCE PROGRAMS

Entering SQL Statements into a PL/l Program

The Structured Query Language (SQL) is a high level data base storage and retrieval
language that uses structured techniques. You can place sQL statements into a PL/I
program at any point using the SEU to enter the statements.

To enter sQL statement(s) into a PL/I program, you would enter:
EXEC SQL sql-statement;

Each sQL statement should end with a semicolon and must be on a separate line.
The Programming: Structured Query Language/400 Reference describes SQL in
detail.

Note: sQL statements are recognized and syntax checked by the editor only; not the
compiler. They are not processed.

If your program contains SQL statements, you must call the sQL preprocessor before
using CRTPLIPGM to compile the source program. Refer to Programming:
Structured Query Language/400 Reference for a description of how this is done.
This is not necessary if the source program has no sQL statements.

Compiling Your Source Program Using the CRTPLIPGM Command

To compile a PL/1 source program use the CL command CRTPLIPGM (Create PL/1
Program). The compiler checks the syntax of each line of the PL/1 source program,
and checks relationships among the lines. By selecting options with the
CRTPLIPGM command, you can request a program object, a compiler listing, or
any of the other options provided. You may use the command directly from
0S§/400, in a CL program, or in interactive or batch mode.

You can use compiler directives in your PL/I source program to direct some of the
operations of the PLj1 compiler. Compiler directives allow you to:
* Copy external text into the program

* Copy data description specifications for externally described files into the
program
» Control batch compilation

* Control the format of the program listing.
For more information, see “Using Compiler Directives” on page 2-16.

When compiling takes place, an attribute character string is produced that specifies
the environment that the program was compiled in. The character string is PLI for
the AS/400 System and PL138 for the System/38 Environment. Other differences in
compiling in the System/38 Environment are described in “Compiling in the
System/38 Environment” on page F-1.

If the compilation is successful, a message identified by code PLCO000S is sent and

the return code is set to zero. If the compilation is not successful, a message identi-
fied by code PLC9001 is sent and the return code is set to 2. The cL command

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-5

COMPILING SOURCE PROGRAMS

MONMSG (Monitor Message) can be used in a CL program to monitor for these J
messages.

All object names specified on the CRTPLIPGM command must be composed of
alphanumeric characters, the first of which must be alphabetic. The length of the
names cannot exceed ten characters. See Programming: Control Language Refer-
ence for a detailed description of OS/400 object naming rules and for a complete
description of CL command syntax.

Completing the First CRTPLIPGM Screen

4 ™\
CRTPLIPGM Create PL/I Program
Type choices, press Enter.
Program .+ « « v v « v ¢ v o W *PROC Name, *PROC
Library « v ¢ v ¢ v v 0 0 0 *CURLIB Name, *CURLIB
Source file + v v v v v v v 0 W QPLISRC Name
Library . ¢ v o 0 0 0 e e e *LIBL Name, *LIBL, *CURLIB
Source member . . . 4 4 0 . 0. W *PGM Name, *PGM
Generation severity level ... 15 0-29
Text ‘description' 4 . *SRCMBRTXT
F3=Exit F4=List F5=Refresh F10=Additional parameters Fll=Keywords
F12=Previous F13=Prompter help

\\§ J/

Figure 2-4. The First CRTPLIPGM Screen

Each parameter on the screen displays a default value. Move the cursor past items J
where you want the default value to apply. Type over any items where you want to

set a different value or option. If you are not sure about the setting of a particular

parameter, type a question mark (?) as the first character in that field and press

Enter to receive more detailed information. The ? must be followed by a blank.

You must enter values for the library and program name by which the compiled
program is known, and the name of the source file that contains the program

source.

All other parameters have default values, which you can change if necessary. Press
F10 to display additional parameters (see Figure 2-5 on page 2-9). Press F3 to exit
without processing the command.

The descriptions of the parameters and options follows (the defaults are underlined
and are explained first).

PGM
Specifies the library and program name by which the compiled PL/1 program
is known. If no library is specified, the created program is stored in the
current library. The program must not already exist in the library.

*PROC
The program name is the name of the first external procedure in the
compilation. If there is more than one program in the compilation, each
subsequent program name is the name of the first external procedure fol- J
lowing each %PROCESS directive.

2-6 PL/I User's Guide and Reference

COMPILING SOURCE PROGRAMS

program-name

The name by which the program will be known. This name must
match the name of the first external procedure in the compilation.

Note: If the name you enter does not match the name of the first
external procedure in the compilation, there will be an unrecoverable
error, and the program will not be compiled.

If there is more than one program in the compilation, each subsequent

program name is the name of the first external procedure following each
%PROCESS directive.

*CURLIB

The current library will be used. If you have not specified a current
library, QGPL will be used.

library-name
Enter the name of the library where the compiled program will be
stored.
SRCFILE

Specifies the name of the source file that contains the PL/1 source program to
be compiled.

QPLISRC
The default source file, QPLISRC, contains the PL/I source file to be com-
piled.

source-file-name

Enter the name of the source file that contains the PL/I source program
to be compiled.

Note: The recommended record length of the PL/I source file is 92. If
the record length is greater than 92, only the first 92 bytes of each record
is used. The record length must not be less than the value of the right
margin plus 12.

*xLIBL
The system searches the library list to find the library where the source

file is located.
*CURLIB

The current library will be used. If you have not specified a current

library, QGPL will be used.
library-name

Enter the name of the library where the source file is stored.

SRCMBR

Specifies the name of the member of the source file that contains the PL1
source program to be compiled. This parameter can only be specified if the
source file in the SRCFILE parameter is a data base file.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-7

COMPILING SOURCE PROGRAMS

xPGM
Use the name specified by the PGM parameter as the source file member
name. The source program will have the same name as the object
program. If no program name is specified by the PGM parameter the
system uses the first member created in or added to the source file as the
source file member name.

source-file-member-name
Enter the name of the member that contains the PL/1 source program.

GENLVL

Specifies whether an object program is generated depending on the severity of
the errors encountered. A severity level value corresponding to the severity
level of the messages produced during compilation can be specified with this
parameter. If errors occur in a program with a severity equal to or greater
than the value specified in this parameter, the compilation is ended. For
example, if you do not want a program generated if you have messages with a
severity level of 20 or greater, specify 20 in this parameter.

15
If a severity level value greater than 15 is specified, the program may

contain errors that will cause unpredictable results when the compiled
program is run.

severity-level
Enter a two-digit number, 01 through 29.

Note: The severity level value of PL/l messages does not exceed 29.

TEXT
Lets the user enter text that briefly describes the program and its function.
The text appears whenever the program runs.

*SRCMBRTXT
The text of the source member is used.

*BLANK
No text appears.

'description’
Enter the text that briefly describes the program and its function. The
text can be a maximum of 50 characters in length and must be enclosed
in apostrophes. The apostrophes are not part of the 50-character string.

If these parameter values are sufficient, press F16 to process the command. Other-
wise, press F10 to display additional parameters.

2-8 PL/I User’s Guide and Reference

9

C

COMPILING SOURCE PROGRAMS

Completing the Second CRTPLIPGM Screen

<)
CRTPLIPGM Create PL/I Program
Type choices, press Enter.
Program . . « ¢« v v v o o0 . *PROC Name, *PROC
Library « . v v v v o v 0w *CURLIB Name, *CURLIB
Source file ¢ v v o o QPLISRC Name
Library v v v v 0 o 0 0w e *LIBL Name, *LIBL, *CURLIB
Source member *PGM Name, *PGM
Generation severity level . .. 15 0-29
Text ‘'description' *SRCMBRTXT
Additional Parameters
Compiler options
+ for more values
Generation options . .+
+ for more values
More...
F3=Exit F4=List F5=Refresh Fll=Keywords F12=Previous Fl3=Prompter help
\. J

Figure 2-5. The Second CRTPLIPGM Screen

The additional parameters and their descriptions are listed below. Default values are
underlined.

OPTION

Specifies the options to use when the PL/I source program is compiled. Any
or all of the options can be specified in any order. Separate the options with a
blank space.

+*SOURCE

Produce a source listing, consisting of PL/I program input and all
compile-time errors.

+*NOSOURCE

A source listing is not produced. If «NOSOURCE is specified the system
defaults to *NOXREF.

The acceptable abbreviation for *SOURCE is *SRC, and for *NOSOURCE is
*NOSRC.

*XREF

Produce a cross-reference listing between the items declared in your
program and the numbers of the statements in your program that refer
to these items. If you specify both «ATR and «XREF, the attribute table
and cross-reference listing are combined.

*NOXREF

Do not produce a cross-reference listing.

*SREF

Produce a cross-reference listing of only referenced names. Unrefer-
enced names are omitted.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-9

COMPILING SOURCE PROGRAMS

*GEN
Create a program object that can be run after the program is compiled.

»NOGEN
Do not create a program object.

*NOOPTIONS
Do not list options in effect for this compilation.

*OPTIONS
List options in effect for this compilation.

The acceptable abbreviations for *NOOPTIONS is *NOOPT, and for *OPTIONS
is *OPT.

<NOAGGREGATE
Do not generate an aggregate table.

*AGGREGATE
Generate an aggregate table. The aggregate table gives the lengths of all
arrays and major structures in the source program.

The acceptable abbreviations for *NOAGGREGATE is *NOAGR, and for
*AGGREGATE is *AGR.

*NOATTRIBUTES
Do not generate a table of the attributes of the identifiers in the source.

*ATTRIBUTES
Generate a table of the attributes. If you specify both «ATTRIBUTES and
*XREF, the attribute table and cross-reference listing are combined. If
you specify both «ATTRIBUTES and +SREF, the attribute table and cross-
reference listing for referenced names are combined.

The acceptable abbreviations for *ATTRIBUTES is *ATR, and for
*NOATTRIBUTES is *NOATR.

*NOSECLVL
Do not list second-level message text for this compilation.

*SECLVL
List second-level message text for this compilation.

GENOPT
Specifies the options used to create the program object: the printing of the
IRP (intermediate representation of a program), a cross-reference listing of
objects defined in the IRP, and the program template. GENOPT reserves a
program patch area, and specifies optimization of a program for more efficient
running. These results may be useful if a problem occurs when trying to run
the compiled program. Any or all of the options can be specified in any
order. Separate the values with a delimiter.

2-10 PL/I User's Guide and Reference

COMPILING SOURCE PROGRAMS

*NOLIST
Do not list the intermediate representation of the program (IRP), associ-
ated hexadecimal code, and error messages. If you specify «XREF, «DUMP,
or «ATR, a listing will be generated, even if you specify «NOLIST.

*LIST
List the intermediate representation of the program.

x*NOXREF
Do not produce a cross-reference listing of all objects defined in the
IRP.

*XREF
Produce, a cross-reference listing of all objects defined in the 1rRP. If
you specify +XREF, a listing will be generated, even if you specify
*NOLIST.

*NOPATCH
Do not reserve space in the compiled program for a program patch
area. The program patch area can be used for debugging.

*PATCH
Reserve space in the compiled program for a program patch area.

*NODUMP
Do not list the program template.

*DUMP
List the program template. If you specify «+DUMP, a listing will be gener-
ated, even if you specify «NOLIST.

*NOATTRIBUTES
Do not list the attributes for the IRP source.

*ATTRIBUTES
List the attributes for the IRP source. If you specify «ATTRIBUTES, a
listing will be generated, even if you specify «NOLIST.

The acceptable abbreviations for *NOATTRIBUTES is *NOATR, and for
*ATTRIBUTES is *ATR.

*NODIAGNOSE
Do not process program-checking functions at run time. For more

information on the functions provided by the «DIAGNOSE option, see
“The +DIAGNOSE Option of the GENOPT Parameter” on page 2-16.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2«11

COMPILING SOURCE PROGRAMS

*DIAGNOSE
Process program-checking functions at run time.

*NOOPTIMIZE
Do not process program optimization.

*OPTIMIZE
Process program optimization. With *OPTIMIZE the compiler generates
a program for more efficient processing and that will possibly require less
storage. However, specifying *OPTIMIZE can substantially increase the
time required to create the program. Existing object programs may be
optimized using the cL command CHGPGM.

If these parameter values are sufficient, press F16 to process the command. Other-
wise, roll the screen to display additional parameters.

Completing the Third CRTPLIPGM Screen

' ™\
CRTPLIPGM Create PL/I Program
Type choices, press Enter.
Source margins
*SRCFILE 1-80
1-80
Include file . « v v v v v v v *SRCFILE Name
Library « v ¢ v o 0 0 0 0 0 Name, *LIBL, *CURLIB
Print file . . « « v v o v v v QSYSPRT Name
Library . v o 0 v 0 0w *LIBL Name, *LIBL, *CURLIB
Flagging severity 0 0-49
Replace existing program *YES *YES, *NO
User profile . « « « v v v v « *USER *USER, *OWNER
Authority . . « v v v v v v . *CHANGE Name, *CHANGE, *ALL, *USE...
Compiler problem determination *NO *NO, *YES
Bottom
F3=Exit F4=List F5=Refresh Fll=Keywords Fl2=Previous F13=Prompter help
. J

Figure 2-6. The Third CRTPLIPGM Screen

The additional parameters and their descriptions are listed below. Default values are
underlined.

MARGINS
Specifies the part of the compiler input record that contains source text.

*SRCFILE
Use the margin values of the file member you specify in the SRCMBR
parameter. If the file is of type PLI, the margin values are the values
specified on the SEU services display. If the file is of a different type, the
margin values are the default values of 2 and 72.

left, right
Enter the values for the left and right margins. The margins must not
be less than 1 or more than 80, and the left margin must be smaller than
the right margin.

2-12 PL/I User’s Guide and Reference

COMPILING SOURCE PROGRAMS

Note: MARGINS does not apply to the %PROCESS directive, which
must have a percent sign (%) in column 1.

INCFILE
Specifies the qualified name of the source file that contains member(s)
included in the program with the %INCLUDE directive(s).

*SRCFILE
The qualified source file you specify in the SRCFILE parameter con-
tains the source file member(s) specified on any %INCLUDE
directive(s) in the program that either specify SYSLIB or do not specify
a file name.

source-file-name
Enter the name of the source file that contains the source file
member(s) specified on any %INCLUDE directive(s) in the program
that either specify SYSLIB or do not specify a file name. The record
length of the source file you specify here must be no less than the record
length of the source file you specify for the SRCFILE parameter.

xLIBL
The system searches the library list to find the library.

*CURLIB
The current library will be used. If you have not specified a current
library, QGPL will be used.

library-name
Enter the name of the library where the source file is located.

PRTFILE
Specifies the name of the file where the compiler listing is placed and the

library where the file is located. If you specify a file whose record length is
less than 132, information will be lost.

QSYSPRT
If a file name is not specified, the compiler listing is placed in the

IBM-supplied file, QSYSPRT. If the file is spooled, the file goes to the
QPRINT queue. The file QSYSPRT has a record length of 132.

print-file-name
Enter the name of the file where the compiler listing is directed.

*LIBL
The system searches the library list to find the library.

«CURLIB
The name of the current library. If you have not specified a current
library, QGPL will be used.

1ibrary-name
Enter the name of the library where the file is located.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-13

COMPILING SOURCE PROGRAMS

FLAG
Specifies the minimum severity level of messages to be listed.

0

All messages are listed.

severity-level
Enter a number that specifies the minimum severity level of the mes-
sages that are listed. Messages that have severity levels of the specified
level or higher are listed.

REPLACE
Specifies if a new program object will be created when there is an existing
program object of the same name in the same library.

*YES
A new program object will be created and any existing program object
of the same name in the specified library will be moved to library
QRPLOBJ.

*NO
A new program object will not be created if a program object of the
same name already exists in the specified library.

USRPRF
Specifies the user profile the compiled PL/I program runs under. This profile
controls which objects can be used by the program (including what authority
the program has for each object).

*USER
The program runs under the user profile of the program'’s user.

+*OWNER
The program runs under the user profiles of both the program’s owner
and user. The collective sets of object authority in both user profiles are
used to find and access objects while the program is running. Any
objects that are created while the program is running are owned by the
program’s user.

Note: The USRPRF parameter reflects the security requirements of your
installation. The security facilities available on the AS/400 System are
described in detail in Programming: Control Language Programmer’s
Guide and the Programming: Control Language Reference.

AUT
Specifies what authority for the program and its description is being granted
to the public. The authority can be altered for all or for specified users after
program creation with the CL commands GRTOBJAUT (Grant Object Authority)
and RVKOBJAUT (Revoke Object Authority). For further information on these
commands and for an expanded description of the AUT parameter, see the Pro-
gramming: Control Language Reference.

*CHANGE
The public has operational rights only for the compiled program. Any
user can run the program and debug it but cannot change it.

2-14 PL/I User's Guide and Reference

COMPILING SOURCE PROGRAMS

*USE
The public can run the program, but cannot debug or change it.

*ALL
The public has complete authority for the program.

*EXCLUDE
The public cannot use the program.

authorization-list
Name of an authorization list to which the program is added. For a
description of the authorization list and how to create it see the Pro-
gramming: Control Language Reference.

Note: Use the AUT parameter to reflect the security requirements of your
installation. The security facilities available on the AS/400 System are
described in detail in Programming: Control Language Programmer’s
Guide and the Programming: Control Language Reference.

SERVICE
Specifies the use of the compiler problem determination facilities. For a
description of how to use these facilities, refer to Appendix A, “Compiler
Service Information.”

*NO
Deactivate the compiler problem determination facilities while com-

piling.

«YES
Activate the compiler problem determination facilities while compiling.

Examples

The following command compiles a program named PAYROL.
CRTPLIPGM PAYROL TEXT ('Payroll Program')

The source program is in the default source file QPLISRC, in a member named
PAYROL. A compiler listing is generated. The program is run under the *USER
user profile, and can be run by any system user.

The following command creates a PL/I program named PARTS.

CRTPLIPGM PGM(PARTS) +
SRCFILE (MYLIB/PARTDATA) +
OPTION (*XREF *OPT) AUT (*EXCLUDE) +
TEXT ('This program displays all parts data')

The program object is stored in the library pointed to by *CURLIB. The source
program is in the PARTS member of the source file PARTDATA in the library
MYLIB. A compiler listing, cross-reference listing, and compiler-option list is gen-
erated. This program, which cannot be used by the public, can be run by the owner
or another user that the owner has explicitly authorized by name with the cL
command GRTOBJAUT (Grant Object Authority).

Chapter 2. Creatirig, Compiling, and Running Your PL/I Program 2-15

USING COMPILER DIRECTIVES

The *DIAGNOSE Option of the GENOPT Parameter
The «xDIAGNOSE option provides the following program-checking functions at run
time:

Checking of substring range for non-adjustable strings is done automatically.
Because of the many ways a string can be referenced, not all substring range
violations will be detected. When a string range exception is raised by the
machine, PL/I raises the ERROR condition.

The attributes of EXTERNAL variables are matched to their external
descriptions. If the attributes do not match, a diagnostic message is issued.

All pL/1 runtime informational messages which normally go to the program log

are also written to the LI file SYSPRINT. Therefore, both user-written debug
information and compiler-generated information will be intermixed in the order
in which they occur.

If you specify «DIAGNOSE, 0s/400, MCH, and PL/I messages will remain on the
program message queue.

The STRINGSIZE condition informational message is sent when the
STRINGSIZE condition is raised.

Using Compiler Directives

Compiler directives are statements that direct the operation of the compiler. They
always begin with the percent symbol (%). They are:

%INCLUDE

%PAGE

%PROCESS (*PROCESS)
%SKIP.

The %PAGE and %SKIP directives are listing control directives.

The %PROCESS statement is used for multiple compilation.

The %INCLUDE statement has two different uses:

e Copying external text into the source program.

¢ Copying Data Description Specifications (DDs) for externally described files into

the source program.

Using the %INCLUDE Directive
The %INCLUDE directive can be used to copy external text into the source
program and copy DDs for externally described files into the source program.

Including External Text

The %INCLUDE directive, when used with the following syntax, includes external
text into the source program.

2-16 PL/I User’s Guide and Reference

USING COMPILER DIRECTIVES

’
»»—%INCLUDE —member_name Hesmma)
(member_name)
——SYSLIB (member_name)—
—f1i1e_name (member_name)—
member_name

An identifier of up to ten characters. The name must be unique within one file.

¢ The member_name specifies the name of the file member included into the
source program.

¢ If the member_name appears in more than one file in your library list, and you
do not specify the file_ name or SYSLIB, the member used is from the first file
with a member of that name found on the library list.

* You can specify up to twenty member_names in any %INCLUDE statement.

SYSLIB
This name is included for compatibility. If you enter SYSLIB instead of a
file_name, the name used is the one specified on the INCFILE parameter of the
Create pL/1 Program (CRTPLIPGM) command. Refer to “Compiling Your
Source Program Using the CRTPLIPGM Command” on page 2-5 for a
description of the parameters of the CRTPLIPGM command.

file_name
An identifier of up to ten characters. The file is located by using the *LIBL
search list in effect at compile time. The file name can begin with and contain
numeric characters and periods. The valid characters are: A-Z, 0-9, #, $,@, _
You cannot name your file SYSLIB.

SYSLIB and parentheses on either side of a member name are supported for com-
patibility with other implementations of pL1.

Included text can contain %INCLUDE directives, nested to a maximum depth of
64 levels.

The included text can be parts of statements. This provides an efficient way of cre-
ating identical declarations for different structure variables. For example:

DECLARE 1 A,
%INCLUDE X;
DECLARE 1Y,
%INCLUDE X;

where X contains:

2 B BINARY,
2 C FIXED;

results in:

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-17

USING COMPILER DIRECTIVES

DECLARE 1 A,
2 B BINARY,
2 C FIXED;
DECLARE 1 Y,
2 B BINARY,
2 C FIXED;
You can include text that consists of a constant, an identifier, a delimiter, or one
external procedure. You cannot include any of the following:

* Parts of constants

 Parts of identifiers

* Parts of delimiters

* More than one external procedure
The %PROCESS directive.

| IBM Extension |

Including DDS

For a discussion of how to use the %INCLUDE directive to copy DDs, see “Using
the %INCLUDE Directive for External File Descriptions” on page 8-73.

I End of IBM Extension |
| IBM Extension |

Using the %PAGE Directive
The %PAGE directive controls the source program listing when the program is
compiled. The text following a % PAGE directive is printed in the source program
listing starting on the first line of the next page. The %PAGE directive does not
appear in the source program compile listing.

»>—%PAGE;—><

The %PAGE directive must be the only text on a line. No label prefix or comment
may be specified on this line.

| End of IBM Extension

Using the % PROCESS Directive
The %PROCESS directive supports batched compilation. The syntax is:

[

> PROCESS: L H
* compiler_options—

o

2-18 PL/I User's Guide and Reference

COMPILER OUTPUT

Q, The % or » must be coded in column 1. PROCESS must be coded in columns 2
through 8. The text and semicolon must be coded in columns 9 through 72 in the
first line and, if necessary, in columns 1 through 72 in subsequent lines. Text
appearing after the semicolon on the same line is ignored.

The » is provided for compatibility with other compilers. The text or any options
specified with this directive are ignored. You cannot copy the %PROCESS direc-
tive into your program with the %INCLUDE directive. If the % PROCESS direc-
tive precedes the first program in the source file, it must be the first record in the
file.

I IBM Extension I

L Using the %SKIP Directive
The %SKIP directive controls the source program listing when the program is com-
piled. The specified number of lines following a %SKIP directive in the program
listing are left blank. The %SKIP directive does not appear in the source program
listing.

»>—%SKIP L —j Hmma)l
(number_of_1lines)

number_of_lines
An integer constant in the range 1 through 99. It specifies the number of lines
left blank. If you omit this, 1 is assumed.

The %SKIP directive must be the only text on a line. No label prefix or comment
may be specified on this line.

‘ If number_of lines is greater than the number of lines remaining on the page, the
rest of the page is skipped and printing continues at the top of the new page. In
this case, the %SKIP directive is equivalent to a % PAGE directive.

I End of IBM Extension |

Compiler Output

In this example, the CRTPLIPGM command was entered as follows:

CRTPLIPGM QTEMP/LP1413 PLIST/PLISRC +
OPTION(«XREF +OPT xAGR »ATR) +
GENOPT (+LIST «XREF «PATCH «DUMP «ATR «DIAGNOSE)

The program source listing can be seen in Figure 8-3 on page 8-5.

‘ The components of the listing that are produced by the various options of the
GENOPT parameter document the translation of the program into machine lan-

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-19

COMPILER OUTPUT

5728PL1 RO1 Mee 886715

§728PL1 RO1 MOO 886715

STMT. SUBS

a g

2

Identifiers

BIT_FLAGS
IN_FILE

2.1 IND_FILE

.

3
3.
3
3

N =W

.

Wwww
& o N

4.2

4.3

2-20

moex_eaL B
INDEX_KEY
INDEX_NAME
INDEX_RECORD

INPUT_BAL
INPUT_KEY
INPUT_NAME
INPUT_RECORD
LP1413
MORE_RECORDS
NO

YES

guage. They are discussed at “Examples of Using Compiler Debugging Options” on
page A-10.

PL/1 Compilation Options PLITST/LP1413 11/30/88 15:51:24 Page 2
PL/I Compiler Options in Effect
AGGREGATE
NOATTRIBUTES
NOSECLVL
FLAG(8)
GENERATE
GENLVL(15)
MARGINS(2,72)
OPTIONS
SOURCE
XREF
PL/I Generation Options in Effect EI
NOATTRIBUTES
NODIAGNOSE
NODUMP
LIST
NOPATCH
XREF
NOOPTIMIZE

A listing of the options (specified explicitly or by default) which were in effect when
the program was compiled is produced when you specify the +0PT option in the
OPTION parameter of the CL command CRTPLIPGM.

The options which were in effect for the compilation process.

H Options specifying the debugging aids the compiler can generate. Many of
them are discussed at “Examples of Using Compiler Debugging Options” on

page A-10.
Attribute/Cross Reference Tahle PLITST/LP1413 12/16/88 11:47:31 Page 4
LP1413: PROCEDURE; PUB0O166

Attributes and References

STATIC /* STRUCTURE */
!’ FILE RECORD INPUT SEQUENTIAL CONSECUTIVE BUFSIZE(38)
5,7,9,13,15
FILE RECORD OUTPUT SEQUENTIAL INDEXED KEYLENGTH(10) KEYDISP(®8)
8,12,16
/* In: INDEX_RECORD */ AUTOMATIC UNALIGNED PICTURE FIXED(8,2)
/* In: INDEX_RECORD */ AUTOMATIC UNALIGNED CHARACTER(16)
/* In: INDEX_RECORD */ AUTOMATIC UNALIGNED CHARACTER(20)
AUTOMATIC /* STRUCTURE */
11,12
/* In: INPUT_RECORD */ AUTOMATIC UNALIGNED PICTURE FIXED(8,2)
/* In: INPUT_RECORD */ AUTOMATIC UNALIGNED CHARACTER(16)
/* In: INPUT_RECORD */ AUTOMATIC UNALIGNED CHARACTER(20)
AUTOMATIC /* STRUCTURE */
9,11,13
EXTERNWAL ENTRY
/* In: BIT_FLAGS */ STATIC ALIGNED BIT(1)
6,10
5
/* In: BIT_FLAGS */ STATIC ALIGNED BIT(1) INITIAL
5
/* In: BIT_FLAGS */ STATIC ALIGNED BIT(1) INITIAL
6

To produce a cross-reference listing of all of the variables in your program, specify
the «XREF option in the OPTION parameter of the cL CRTPLIPGM command.

PL/I User’s Guide and Reference

9

C

C

B mE

COMPILER OUTPUT

Statement numbers for the declarations of each of the variables.

When a data item is declared as part of a multiple declaration, both the state-
ment and substatement where the item is declared are specified.

The identifiers used in the program (including names of procedures, files, and
structures).

Attributes of each of the items and the numbers of the statements in which
each item is referenced. Since the CRTPLIPGM command specifies «ATR as an
option of the OPTION parameter, the attributes of each item declared in the
program are also listed. If you specify both »XREF and «ATR, the compiler
produces a combined cross-reference and attribute table; but you can specify
one or the other and obtain a list of statements declaring and referencing the
variables, or a list of the attributes of each item declared.

5728PL1 RO1 MBO 880715 PL/1 Aggregate Length Tahle PLITST/LP1413 11/30/88 15:51:24 Page 6
LP1413: PROCEDURE; PUB0O166
STMT. SUBS Identifier LVL DIMS 0ffset From Major Element Length Aggregate Length
3 BIT_FLAGS [HI 1 3
MORE_RECORDS 2 0(1)
--PADDING--~ 2 0(1) 0(7)
NO 2 1 o(1)
--PADDING-- 2 1(1) 08(7)
YES 2 2 0(1)
--PADDING-~ 2 2(1) 0(7)
3 INDEX_RECORD 1 38 33 B
INDEX_KEY 2 10
INDEX_NAME 2 1 @ 20
INDEX_BAL 2 36 8
3.4 [INPUT_RECORD 1 38 38
INPUT_KEY 2 10
INPUT_NAME 2 10 20
INPUT_BAL 2 30 8

sum of Constant Lengths - 79]

The aggregate length table is produced when you specify the »AGR option in the
OPTION parameter of the CRTPLIPGM command.

BOS BEOo0fl8 §@

The statement in which the aggregate was declared.

When an aggregate is declared as part of a multiple declaration, both the
statement and substatement for the declaration are specified.

The names of the aggregates and their components.
The level number of each identifier.
For arrays, the number of dimensions in the array is listed.

The offset of each element from the first byte of storage occupied by the
aggregate.

The length of each element, and each aggregate’s total length.
The length of each aggregate.
The total number of bytes occupied by the aggregates.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-21

RUNNING THE PROGRAM

Running the Program
The most common ways to run a PL/I program are:

* Using the cL command CALL as part of a batch job, entered interactively by
the work station user, or included in a CL program.

» Using the PL/I statement CALL in a PL/1 program (see “CALL Statement” on
page 14-7).

» Using the other AS/400 language call statements

* Using a menu, from which the user can choose an option that calls the
program.

* Creating your own command (see the CL Programmer’s Guide for information
on creating your own command.)

For more information on how to call a compiled program, see the CL Program-
mer’'s Guide.

Interrupting or Ending the Running of a Compiled Program
You can interrupt or end the running of a compiled PL/1 program as follows.

If you are running the program from a batch job, you should issue the CL. command
ENDBCHIOB (End Batch Job). For information on the ENDBCHIJOB
command, see the Programming: Control Language Reference.

If you are running the program interactively, press the Sys Req key to interrupt.
Then press Enter to get the System Request Menu. You then have a choice of
various options from the System Request Menu. For example, if you want to end
processing of the program, enter option 2. If you want to resume the processing of
the program, either press the F3 key, or press Enter with the options field left blank.

Abnormal Program Ending
If the processing of a PL/1 run unit ends abnormally, escape message PLI9001 or
PLI9002 or PLI9003 is sent to the program that called the first procedure in the run
unit. This results in a function check if the escape message is not monitored. In a
CL program, you can monitor these messages with the CL. command MONMSG
(Monitor Message). See the Programvning: Control Language Reference for more
information.

A program that causes an error that cannot be handled through the normal flow of
control will set the return code to 4. If the program processes a SIGNAL statement
for the ERROR condition, the return code is set to 3. The processing of a STOP
statement or a call to PLIDUMP with the stop option (S) will set the return code
to 2. For information on return codes, see the entries in the Programming: Control
Language Reference on the cL commands RTVJOBA (Retrieve Job Attributes) and
WRKIJIOB (Work With Job).

2-22 PL/I User’s Guide and Reference

INTERLANGUAGE CALLS

C

Interlanguage Calls

The AS/400 System allows you to call programs written in different languages. The
techniques used for transferring between programs and passing parameters are
similar to those used for communicating between different programs written in PL/I
There are two cases to consider:

* When your PL/I program calls a program written in another language
* When a program written in another language calls your PL/1 program.

Calling a Non-PL/l Program
In a calling PL/1 program, you must code an ENTRY declaration for the program you
will link to. For example:

DECLARE COBOLPGM ENTRY
L (CHARACTER (8),

FIXED DECIMAL (4,1),

FIXED DECIMAL (3)),

OPTIONS (ASSEMBLER);

The OPTIONS (ASSEMBLER) attribute tells the compiler that the interface with
the called program will be at the machine interface level: that is, that pL/1 will pass
parameters directly to the program instead of using PL/1 control blocks.

Arrays are not supported as parameters between PL/1 and BASIC, because PL/I does
(not build the array descriptors which BAsIC requires for arrays.

After the ENTRY attribute, you should list t' . attributes (not the variable names)
of the parameters passed to the called program.

When you call a non-PL/1 program, you list the variables that you are using as
parameters. These variables must be declared with exactly the same attributes as
those you have listed in the ENTRY declaration. For the ENTRY declaration
given above, you may declare the parameter variables as follows:

‘ DECLARE ITEM1 CHARACTER (8),
ITEM2 FIXED DECIMAL (4,1),
RESULT FIXED DECIMAL (3);

You would then initialize the variables for which you wish to pass a value to the
program you are calling:

GET FILE (SYSIN) EDIT (ITEM1,ITEM2)(A(8),F(4,1));

The actual CALL statement has the same format as for the calling of a PL/1
procedure:

CALL COBOLPGM (ITEMl,ITEMZ,RESULT);

Control is passed to COBOLPGM, which could use ITEM1 and ITEM2 as input

data and place a value in RESULT that will be returned to the calling PL/1 program.

When the called program finishes running, control is returned to the statement fol-
L lowing the call statement.

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-23

INTERLANGUAGE CALLS

If a non-PL/1 program ends abnormally, the ERROR condition is raised in the
calling program. You can use an on-unit to take appropriate action.

Calling a PL/I Program from a Non-PL/lI Program

In a PL/1 program called by a program that is coded in another language, you must
list the parameters in the PROCEDURE statement at the start of the program:

SUBPGM: PROCEDURE (INTEGER1,INTEGER2,CHAR1);

The parameter variables must be declared inside the PL/1 program:

DECLARE INTEGER1 FIXED BINARY (15),
INTEGER2 FIXED DECIMAL (7),
CHARL CHARACTER (8);

The attributes of the parameter variables declared in the PL/1 program must exactly
match the attributes in the calling program. You cannot use asterisks or variables to
indicate the length of a character or bit scalar data item, or the bounds of an array,
as in:

DECLARE CHARITEM CHARACTER (),
ARRAY1(INDEX1) FIXED DECIMAL (7),
BITARRAY () BIT (%) ALIGNED;

The necessary PL/1 control blocks which furnish these values when the program is
called are available only when the calling program is written in PL/I.

When a floating-point value is passed to a PL/1 program from CL, the variable that
the data is placed in must have the UNALIGNED attribute in the pL/1 program.

The following tables show you how to code matching data types in PL/I and the
other languages available on the AS/400 System.

Data type PL/I RPG
Packed FIXED DECIMAL (p,q) Columns Code
Decimal Where: 6 I
p = total number of digits 43 P
and 1<p<15. 44-47 a, where b-a+1 =
q = number of digits to the (p+1)/2 and 1<p<1S
right of the decimal point 48-51 b
and 1<q<15. 52 q, where q is the
p = greater than or equal to q number of decimal
digits
53-58 name of the packed
field

Figure 2-7 (Part 1 of 3). Matching PL/I Attributes in RPG

2-24 PL/I User’s Guide and Reference

INTERLANGUAGE CALLS

Where:

p = total number of digits
and 1<p<53

Data type PL/I RPG
Zoned PICTURE 'p' Columns Code
Decimal Where: 6 I
p is the number of 9s 43 blank
44-47 a, where a is the
-or- starting position of
PICTURE 'pVq' the field
48-51 b, where b is the end
Where: position of the field
p is the number of 9s to the 52 q, where q is ﬂ.le
left of the V and 1<p<15 number of decimal
V is the implied decimal point digits and 0<q<9
q is the number of 9s to the 53-58 name of the zoned
right of the V and 1<q<15 subfield
p is greater than or equal to q
Fixed FIXED BINARY (p) Columns Code
Binary :
Where: 6 I
p = total number of binary 43 B
digits and 1<p<31 44-47 a, where a is the
starting position of
the field
48-51 b, where b is the end
position of the field
52 q, where q is the
number of decimal
digits and 0<q<9
53-58 name of the binary
subfield
Float FLOAT DECIMAL (p) Not supported.
Decimal Where:
p = total number of digits
and 1<p<16
Float FLOAT BINARY (p) Not supported.
Binary

Figure 2-7 (Part 2 of 3). Matching PL/I Attributes in RPG

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-25

INTERLANGUAGE CALLS

Data type PL/I RPG
Bit BIT (w) The use of bit strings is not sup-
) ported. A bit string can be passed
Where: as a character string in which the
w = total number of bits and length of the character string in
1<w<32 767 bytes is equal to (w + 7)/8. The
receiving program must define the
bits in the bytes being passed.
Character CHARACTER (w) Columns Code
Where: 28-32 PARM
w = total number of charac- 49-51 w, where 1<w<999
ters and 1<w<32 767
Varying CHARACTER (w) Not supported.
Length VARYING
Character Where:
w = total number of charac-
ters and 1<w<32 765

Figure 2-7 (Part 3 of 3). Matching PL/I Attributes in RPG

Data type COBOL BASIC CL
Packed PIC S9(p)V9(q) DECLARE PROGRAM | TYPE(«DEC) LEN(p q)
Decimal USAGE COMP-3 ..PDpgq
Where:
Where: Where: _
p=15
I<p<l15 I<p<15 q=>5
1<q<15 I<q<l1s
-or- -or-
PIC S9(p) USAGE DECLARE PROGRAM
COMP-3 ..PDp
Where: Where:
1<p<l5 1<p<l15
q=0 q=0

Figure 2-8 (Part 1 of 3). Matching PL/I Attributes in COBOL, BASIC, and CL

2-26 PL/I User's Guide and Reference

INTERLANGUAGE CALLS

Data type COBOL BASIC CL
Zoned PIC S9(p)V9(q) DECLARE PROGRAM | Not supported.
Decimal USAGE DISPLAY | ..ZDpg
Where: Where:
p=15 l<p<l15
1<q<15 IEGE R
-or- - or -
PIC S9(p) DECLARE PROGRAM
USAGE DISPLAY | ..ZDp
Where: Where:
‘ 1<p<15 1<p<15
q=0
Fixed PIC S9(4) USAGE INTEGER Not supported.
Binary COMP-4 Where:
Where: 1<p<l$
1<p<15 or-
- or -
DECLARE PROGRAM
Q PIC §9(9) USAGE ..B2
COMP-4 Where:
Where: 1<p<15
1<p<15
Float Not supported. DECIMAL A floating-point literal
Decimal with double precision
Where:
1<p<6 Where:
(-or- 1<p<6
DECLARE PROGRAM
.S
Where:
1<p<7

Figure 2-8 (Part 2 of 3). Matching PL/I Attributes in COBOL, BASIC, and CL

Chapter 2. Creating, Compiling, and Running Your PL/I Program 2-27

INTERLANGUAGE CALLS

Data type COBOL BASIC CL
Float Not supported. DECIMAL A floating-point literal
Binary “Where: with double precision
p>24 Where:
or- 1<p<24
DECLARE PROGRAM
.. S
Where:
1<p<24
Bit The use of bit The use of bit strings is The use of bit strings is
strings is not sup- not supported. A bit not supported. A bit
ported. A bit string | string can be passed as a | string can be passed as a
can be passed as a character string in which | character string in which
character string in the length of the char- the length of the char-
which the length of acter string in bytes is acter string in bytes is
the character string equal to (w + 7)/8. The |equalto (w + 7)/8. The
in bytes is equal to receiving program must receiving program must
(w+ 7)/8. The define the bits in the define the bits in the
receiving program bytes being passed. bytes being passed.
must define the bits
in the bytes being
passed.
Character PICTURE X(w) DECLARE PROGRAM | TYPE(+CHAR)
Where: .Cw LEN(w)
1<w<32 767 Where: Where:
I<w<255 1<w<2 000
Varying 01 name-1. DECLARE PROGRAM | Not supported.
Length 02 name-2 PIC "
Character $9999 COMP-4. Where:
02 name-3 PIC ere:
X(w) OCCURS I<w<255
DEPENDING
ON name-2.
Where:
l<w<9 999

Figure 2-8 (Part 3 of 3). Matching PL/I Attributes in COBOL, BASIC, and CL

2-28 PL/I User’s Guide and Reference

MESSAGES

C

Chapter 3. Testing and Debugging PL/l Programs

Both OS/400 and pL/1 offer features that you can use to test and debug your L/
programs.

0S/400 provides:

Test library
Breakpoints
Traces

A debug feature.

PL/I provides:

(e PLIDUMP

* An error dump option screen
» PLIIOFDB

» PLIOPNFDB

* ON conditions.

Note: Some of these PL;1 features may use OS/400 functions to provide input.
The 0S/400 features let you test programs while protecting your production files,

and let you observe and debug operations as a program runs. No special source
(code is required to use the OS/400 features.

The pL/1 features can be used independently of the OS/400 functions or in combina-
tion with them to:

* Debug a program

¢ Produce a formatted dump of the contents of fields, data structures, arrays, and

tables.

Source code in the form of compiler directives is required to use the PL/1 debugging
features and formatted dump.

Using, Displaying, and Printing Messages

Using Messages
This manual refers to messages you receive from the compiler. These messages are
displayed on your screen or printed on your compiler listing. There are no message
manuals for this product.

Chapter 3. Testing and Debugging PL/I Programs 3-1

MESSAGES

Each compiler message contains a minimum of three parts as illustrated in the fol-
lowing screen example:

e

.

MSGID: PLC2188 Severity: 20
Message : An unexpected continuation was found. An

Cause : This text cannot be interpreted as a

Recovery . . . : Check for a missing delimiter,

N

end of statement is assumed before 'PUT SKIP EDIT (A',

continuation of the statement. A delimiter, such as an
operator in the expression or a semicolon may be missing.
The compiler ignores the text up to the next semicolon.

[} A number indicating the severity of the error.

Severity
00

10

20

30

40

50

99

Meaning

An informational message displayed during entering, compiling, and
running: This level is used to convey information to the user. No error
has been detected and no corrective action is necessary.

A warning message displayed during entering, compiling and running:
This level indicates that an error was detected but is not severe enough
to interfere with the running of the program. The results of the opera-
tion are assumed successful.

An error message displayed during compiling: This level indicates that
an error was made, but the compiler is taking a recovery that might yield
the desired code. The program may not work as the author intended.

A severe error message displayed during compiling: This level indicates
that an error too severe for automatic recovery was detected. Compila-
tion is completed, but running the program cannot be attempted.

An abnormal end of program or function message displayed during
running: This level indicates an error that forces cancellation of proc-
essing. The operation may have ended because it was unable to handle
valid data, or possibly because the user cancelled it.

An abnormal end of job message displayed during running: This level
indicates an error that forces cancellation of job. The job may have
ended because a function failed to perform as required, or possibly
because the user cancelled it.

A user action taken during running: This level indicates that some
manual action is required of the operator, such as entering a reply,
changing diskettes, or changing printer forms.

[} The text you see online or on a listing. This text is a brief, generally one sen-
tence, description of the problem.

@ The text you see online when you press F4 from the screen with the first-level
text. This text will be printed on your listing if you specify *SECLVL in your
compile-time options. The 1BM-supplied default for this option is *NOSECLVL. This

3-2 PL/I User's Guide and Reference

C

C

USING TEST LIBRARIES

N

text contains an expanded description of the message (Cause) and a section detailing
the correct user response (Recovery).

Displaying and Printing Messages

To display or print a particular message or messages, use the DSPMSGF or
DSPMSGD commands. These commands are described in the Programming:
Control Language Reference.

Note: If you have any comments or suggestions concerning the messages, please use
the Reader Comment Form included with this manual and send them to us.

Using a Test Library

Job

Program 1
Program 5

Program 10

Programs that run in a normal operating environment can read, update, and write
records in both test and production libraries. Programs that run in a testing envi-
ronment can also read, update, and write records in both test and production
libraries. However, to prevent data base files in production libraries from being
accidentally changed, you can use UPDPROD(xN0) in the cL command STRDBG
(Start Debug) or in the cL command CHGDBG (Change Debug). See the Pro-
gramming: Control Language Programmer’s Guide and the Programming: Control
Language Reference for more information.

On the AS/400 System, you can copy production files into a test library or you can
create special files for testing in the test library. A production file and its test copy
can have the same name if they are in different libraries. You can then use the same
file name in the program for either testing or normal processing.

Normal Operating Environment

Production Library

» Production Files —

Debug Environment

Test Library

> Test Files <«—(copy)—

Figure 3-1. Using a Test Library

For testing, you must put the test library name ahead of the production library
name in the library list for the job that contains the program tested. For normal

Chapter 3. Testing and Debugging PL/I Programs 3-3

USING TEST LIBRARIES

processing, the test library should not be named in the library list for the job, as J
shown in the following diagram.

Debugging
— TESTLIB
Library List
TESTLIB
Program ————————| PRODLIB1 > PRODLIB1 J
PRODLIB2
QTEMP
— PRODLIB2
Normal Operating Environment
Library List —> PRODLIB1
PRODLIB1)
Program ———| PRODLIB2
QTEMP
L PRODLIB2

Figure 3-2. Using a Library List

No special statements for testing are necessary within the program being tested. The

program can be run normally without any changes. All debug functions are given in

the job that contains the program instead of in the program. However, you can J
include statements such as CALL PLIDUMP in your program if you need them.

3-4 PL/I User’s Guide and Reference

USING BREAKPOINTS

Job

Debug Functions <«———— T These functions are given
through CL commands.

Programs

Figure 3-3. Using Debug Functions

Debug functions apply only to the job in which they are given. A program can be
used at the same time in two jobs: one job that is in a testing environment, and
another job that is in a normal operating environment.

Using Breakpoints

A breakpoint is a point in your program where you want the program to stop
running and wait. You can use any of the following as a breakpoint:

» A statement number from the compiled program source listing.
* A machine interface (MI) instruction number from an IRP program listing.

You cannot use SEU2 source sequence numbers or labels and procedure names
from the program.

When a breakpoint statement is about to be processed in an interactive job, the
system displays the breakpoint at which the program is stopped. The values of the
program variables you have asked for on the ADDBKP command, if any, are dis-
played. After this information is displayed, press F10 to get the command entry
screen, from which you can enter CL commands to ask for other functions (such as
displaying or changing a variable value, adding a breakpoint, or adding a trace), or
press Enter to continue processing, or press F3 to cancel the program or function
being processed.

For a batch job, a breakpoint program can be called when a breakpoint is reached
in the program being tested. The breakpoint information is passed to the break-
point program. For a description of the actual parameters passed, see the
description of the BKPPGM parameter of the CL. command ADDBKP in the Pro-
gramming: Control Language Reference.

Example of Using Breakpoints
The following cL program calls the program shown in Figure 8-5 on page 8-10,
adds breakpoints, and displays the values on the screen.

Chapter 3. Testing and Debugging PL/I Programs 3-S5

USING BREAKPOINTS

5728PW1 RO1IMGO 886715 SEU SOURCE LISTING 11/36/88 69:51:06

SOURCE FILE PLITST/CL

MEMBER ¢« o ¢ . BREAKPT

SEQNBR*..o#eee 1 suetuee 2 coatuee 3 ceatenn 8 Liitiii B iiatis 6 caetein 7 iati 8 bl 9 L4l 0
100 PGM

200 ENTDBG PGM(LP1414) UPDPROD(*YES)
300 ADDBKP STMT(18)

460 ADDBKP STMT(20) PGMVAR((INPUT_KEY))
500 CALL PGM(LP1414)

600 ENDDBG

760 ENDPGM

Figure 3-4 (Part1 of 2). CL Program and Display for Breakpoints

- ~

Display Program Variables

Program « + ¢« ¢« + « « « « « . . LP1414

Invocation level ¢ 1

Start position 1

Format ¢t *CHAR

length *DCL

Variable 02 INPUT_KEY
Type « ¢« ¢ ¢ v « ¢ ¢ « « « o « « « ¢ CHARACTER
Length 20
L R P - R FURPL DU : TR S
'1111 !

Press Enter to continue.
F3=Exit F12=Previous

Figure 3-4 (Part 2 of 2). CL Program and Display for Breakpoints

Considerations for Using Breakpoints
You should be aware of the following before you use breakpoints:

« If a breakpoint is bypassed by a PL/I statement, such as GOTO, that breakpoint

is ignored.

A\ J/

PAGE

06/16/83
01/09/85
03/01/84
03/01/84
03/61/84

06/16/83

1

* When a breakpoint is added for a statement, the program stops just before the

statement is processed.

¢ Breakpoint functions are specified through CL commands.

These functions include adding breakpoints to programs, displaying breakpoint

information, removing breakpoints from programs, and continuing to run a

program after a breakpoint display is shown. See the Programming: Control
Language Reference for information on these commands, and the Programming:
Control Language Programmer’s Guide for more information about breakpoints.

3-6 PL/I User's Guide and Reference

J

C

C

USING TRACES

Using a Trace

A trace is a record of some or all of the statements in a compiled program that were
processed and the values of any variables that were specified on the cL command
ADDTRC. A trace is different than a breakpoint in that you are not given control
during the trace.

The system records the traced statements that were processed. You must ask for a
display of the traced information using the cL command DSPTRCDTA. The
display shows the sequence in which the statements were processed and the values
of variables you specified.

You enter the statements that the system should trace. You can also specify that
variables be recorded or displayed before each traced statement is processed, or only
when the value of some traced variable changes from the last time a traced state-
ment was processed.

You can request a trace of one statement in a program, a group of statements in a
program, or all the statements in a program.

Example of Using a Trace

The following CL program adds a trace requests, calls the program shown in
Figure 8-5 on page 8-10, and displays the trace data.

5728PW1 ROIMOO 880715 SEU SOURCE LISTING 11/30/88 09:54:53 PAGE 1

SOURCE FILE PLITST/CL

MEMBER TRACE

SEQNBR*...+..c 1 tiutis 2 ciebeee 3 vt 4 Lo 0B Latl L B el T bl 8 Ll 9 L+l 0
100 PGM 66/16/83
200 ENTDBG PGM(LP1414) UPDPROD(*YES) 61/09/85
300 ADDTRC STMT((19 23)) PGMVAR((INPUT_KEY)) OUTVAR(*CHG) 03/01/84
400 CALL PGM(LP1414) 83/01/84
500 DSPTRCDTA CLEAR(*YES) 61/09/85
600 ENDDBG
700 ENDPGM 06/10/83

Figure 3-S5 (Part 1 of 2). CL Program for Requesting a Trace and Displaying Trace Data

Chapter 3. Testing and Debugging PL/I Programs 3=7

USING TRACES

~ ™
1/07/88 18:49:50 TRACE DATA DISPLAY
Stmt/Inst: 19 Pgm: LP1414 Inv 1vl: 1 1
Start pos: 1 Len: *DCL Format: *CHAR
Variable: 02 INPUT_KEY
Type: CHARACTER Length: 10
L R P T A, SR P R R TS
‘11111 !
Stmt/Inst: 23 Pgm: LP1414 Inv 1vl: 1 2
Stmt/Inst: 20 Pgm: LP1414 Inv Tvl: 1 3
Stmt/Inst: 20 Pgm: LP1414 Inv Tvli: 1 4
Stmt/Inst: 22 Pgm: LP1414 Inv 1vli: 1 5
Stmt/Inst: 23 Pgm: LP1414 Inv 1vl: 1 6
Start pos: 1 Len: *DCL Format: *CHAR
*Variable: 02 INPUT_KEY
Type: CHARACTER Length: 10
[P R PR TR S . Y SR S
12222211111"
Stmt/Inst: 20 Pgm: LP1414 Inv Tvli: 1 7
Stmt/Inst: 21 Pgm: LP1414 Inv 1vli: 1 8
Stmt/Inst: 22 Pgm: LP1414 Inv 1vl: 1 9
Stmt/Inst: 23 Pgm: LP1414 Inv Tvi: 1 10
Start pos: 1 Len: *DCL Format: *CHAR
*Variable: 02 [INPUT_KEY
L J

Figure 3-S5 (Part 2 of 2). CL Program for Requesting a Trace and Displaying Trace Data

Considerations When Using a Trace
You should be aware of the following before you use traces with PL/1 programs:

 If a group of PL/I statements is bypassed, they are not included in the trace.
The case is similar with breakpoints (see “Considerations for Using
Breakpoints” on page 3-6).

* Trace functions are given by CL commands in the job that contains the traced
program.

These functions include adding trace requests to a program, removing trace
requests from a program, removing data collected from previous traces, dis-
playing trace information, and displaying the traces that have been entered for a
program.

* In addition to statement numbers, names of routines generated by PL/ can
appear on the trace output STMT field.

The compiler reorganizes the source statements in your program by denesting the
blocks (including procedures). The effect of denesting is illustrated below:

3-8 PL/I User’s Guide and Reference

USING TRACES

Program Source

PL/I PL/I
Statement Source
Number Statement

1 OUTER: PROCEDURE;
20 iNNER: PROCEDURE 3
50 iTEMl = ITEM1 + 1;
60 END INN!.ZR;
70 iTEMZ = ITEM2 + 1;
100 END OUTER;

Sequence of MI Instructions Generated in the Source Listing
When This Source is Compiled
PL/I PL/I

Statement Source
Number Statement

1 OUTER: PROCEDURE;
70 iTEMZ = ITEM2 + 1;
100 END OUTéR:
20 INNER: PROCEDURE;
50 iTEMl = ITEM1 + 1;
60 END INNéR;

This denesting of blocks has the following consequences:

* You should not specify a trace range where the starting and ending statements
are contained in different blocks, because the range may not be valid or may
trace a set of statements different from the one you intended. For example, the
following cL command would not be valid for the example above:

ADDTRC STMT((50 70))

because statement 50 corresponds to a higher MI instruction number than state-
ment 70 in the MI program.

* If you specify a range of statements that includes a nested block, no trace will be
processed on the statements contained by the inner block. For instance,

ADDTRC STMT((1 160))

Chapter 3. Testing and Debugging PL/I Programs 3-9

USING DEBUG

does not trace any of the statements in INNER, because the Mi instructions for
INNER are all beyond the M1 instruction for statement 100 in the M1 program.:

You can always specify
ADDTRC STMT (+ALL)

to trace all statements processed in the entire program.

See the Programming: Control Language Programmer’s Guide for more information
about traces.

Using Debug

PL/l1 Storage

Calling Levels

0S/400 Debug is used in a test environment that you can enter using CL commands
like STRDBG (Start Debug) or CHGDBG (Change Debug). This environment
allows you to use the debugging features and run the program without affecting the
normal program environment. The following items should be taken into account
when using debug:

» Calling Levels

Scoping of names

Fully qualified names

PL/1 pointers

Floating point variables

Changing varying length strings

Specifying variables by ODV number
Displaying level numbers

References to static variables

Determination of active blocks in a program.

PL/I variables use storage areas allocated and maintained by pPL/i. The system
Program Static Storage Area (PSSA) or the Program Automatic Storage Area (PASA)
are not used for any PL/I variables.

When you use a recursive program or procedure, you should be aware of two calling
levels: the program calling level and the procedure calling level.

When a program or external procedure is called recursively, the program calling level
is incremented. You can specify the program calling level on the OS/400 debug
commands through the INVLVL parameter.

When an internal procedure is called recursively, the procedure calling level is incre-
mented. You cannot specify the procedure calling level on the OS/400 debug com-
mands. Only the last (most recent) procedure calling level is available for

debugging.

3-10 PL/I User’s Guide and Reference

J

9

C

USING DEBUG

Scoping of Names

In PL/1, the scope of a name is determined by the block(s) in which it is declared. A
block is defined by a PROCEDURE or BEGIN statement. If a name is declared in
more than one block in a program, PL/1 scoping rules determine which declaration is
used when you refer to the name. For more information on scoping, see “Names”
on page 4-12.

08S/400 debug operates outside of the PL/1 program and cannot use PL/I scoping
rules to determine which declaration you are referring to. When a name is unique
only because of PL/I scoping rules, debug will not be able to determine which decla-
ration should be used (a message is issued saying the name is ambiguous).

To specify a unique reference to a name declared in more than one block, use the
block number on the compiled program source listing. The block number is the
highest level qualifier for a name in a PL/I program. That qualifier represents the
block that the variable is declared in. When you specify the block number that the
variable is declared in, OS/400 debug can determine which declaration of a name
should be used.

The qualifier is of the form *BLKn, where n is a one to three digit block number.

For example, if variable K is defined in blocks 2 and 5 in your program, and you
wish to display the value of K in block 5, specify a PGMVAR parameter of
+BLK5.K. If block 5 is not currently active, the value of K in block 5 cannot be
displayed: instead, a message is displayed that indicates that the variable is not cur-
rently active. Note that the value of K in block 5 is displayed even if block 2 is also
active.

Fully Qualified Names

The test environment recognizes a concept of a fully qualified name similar to the
PL/I concept. However, because every PL/I variable has a block number as the
highest level qualifier, you must specify the block number qualifier (xBLKn) as a
part of the fully qualified name, whenever it is necessary to specify the fully qualified
name. For example, consider the following declarations:

DECLARE 1 SAMPLESTRUCTURE,
5 ITEM1 FIXED BINARY (15);
DECLARE ITEM1 CHARACTER (10);

A request to display or change ITEM1 is ambiguous to the OS/400 debug facility.
Assuming the variables are both in block 7, you must specify

*BLK7 . SAMPLESTRUCTURE. ITEM1

or
SAMPLESTRUCTURE. ITEM1

to process the variable ITEMI1 that is an element of SAMPLESTRUCTURE, and
*BLK7.ITEM1

to process the scalar character variable ITEMI.

Chapter 3. Testing and Debugging PL/I Programs 3-11

USING DEBUG

PL/l1 Pointers
Names that are declared with the POINTER attribute in the PL/1 source program
are called High Level Language (HLL) pointers in the test environment. These
pointers are maintained at the machine level as space pointers. You can only
change them in the test environment using the CL command CHGHLLPTR
(Change High Level Language Pointer) or CHGPTR (Change Pointer) to contain a
space pointer value or a null pointer.

The CHGHLLPTR command allows you to change the value of a HLL pointer.
This pointer can be a pointer variable or a basing-pointer name. The value of the
pointer copied can be a pointer variable or a program variable address referred to by
the variable name. The reference pointer or program variable can have another HLL
pointer(s) specified as its basing pointer(s).

The following CL statements illustrate the use of the command:
CHGHLLPTR PTR('PTR1') REFPTR('PTR2')

CHGHLLPTR PTR('PTR3(4)') ADR('VAR1(VAR2,5)' 'PTR4(3)")

For more information on the cL command CHGHLLPTR, see the Programming:
Control Language Reference.

Floating Point Variables
In the test environment, floating point variables are displayed with the precision in
which they are stored internally, and not as they are declared in your PL/l program.
Short floating point variables are displayed with a precision of BINARY
FLOAT(24) or DECIMAL FLOAT (7), which requires four bytes of storage.
Long floating-point variables are displayed with a precision of BINARY
FLOAT(53) or DECIMAL FLOAT (16), which requires eight bytes of storage.
0S/400 debug does not use the value of the precision declared in the program before
displaying or changing the value.

Changing Varying Length Strings
When you use the CL command CHGPGMVAR to change a varying length char-
acter string, the bytes changed must either start within the current length of the
string or start at the next byte after the end of the string as defined by the current
length. If the current length is negative, the length is treated as though it were 0.
The length of the string is always adjusted to match the last byte changed by the
command. If updating the variable exceeds the maximum length, an error message
is issued and the variable is not changed.

A varying-length s.ring can be truncated without changing the value in the part of
the string that remains after truncation. To do this, specify a null string for the new
value. For example:

CHGPGMVAR PGMVAR(VARYINGCHARSTRING) VALUE(' ') START(11)

truncates the current length of VARYINGCHARSTRING to ten characters. The
byte count at the start of the string is updated to a value of ten.

3-12 PL/I User's Guide and Reference

C

C

C

USING DEBUG

Specifying Variables by ODV Number

You can display and change program data using oDV (Object Definition Table
Directory Vector) numbers. These numbers are found on the program IRP listing,
which is obtained by specifying GENOPT (+LIST) on the CRTPLIPGM
command. A cross-reference of oDV numbers can be obtained by specifying
GENOPT(«XREF) on the CRTPLIPGM command. For more information on
the format of ODV numbers, refer to the Programming: Control Language Program-
mer’s Guide.

If oDV numbers are used to specify the names of variables, OS/400 debug only uses

the information that is defined for the variable at the machine instruction (MI) inter-
face. The value and attributes of the variable presented to you may be very different
from what would be presented if the HLL variable name was specified.

Displaying Level Numbers

Any PL/I variable declared with a structure level number is shown on the OS/400
debug display with the level number immediately preceding the variable name. The
level numbers displayed by OS/400 debug start at 1 for each structure and increment
by I for each new level in the structure. The following example shows the level
numbers for a structure in a PL/1 program, and the corresponding level numbers that
would be displayed by 0S/400 debug.

PL/1 0S/400
Level Level
Number Number
01 PARTS, 01
05 ITEM, 02
16 OLD FIXED DECIMAL (5,0), 03
10 NEW FIXED DECIMAL (9,0), 03
05 DESCRIPT CHAR(10); 02

References to Static Variables

A variable declared in your PL/l program with the STATIC attribute can only be
referenced by 0S/400 debug when the program and block in which it is declared are
currently active.

Determination of Active Blocks in a Program

A variable can only be displayed or changed by OS/400 debug if the block that
defined the variable is active. This is true regardless of the storage class of the vari-
able. You can determine if a block is active at any point while debugging by dis-
playing any variable that is declared in the block, or by displaying the special
variable «BLKn where n is the block number that you want to check. If you
receive a message that the variable is not active, the block is not currently active.

Chapter 3. Testing and Debugging PL/I Programs 3-13

USING PLIDUMP

Using PLIDUMP

The PLIDUMP built-in subroutine produces a symbolic dump of the variables of
the currently running program. The output of PLIDUMP appears on the system
dump file QPPGMDMP.

The program variables that are dumped depend on the options you specify when
you call PLIDUMP. The dump also contains:

» A list of any ONCODE, ONFILE, or ONKEY data which is relevant
* The date and time of the dump
» The statement number from which the dump was called.

PF—CALL—-PLIDUMP—I_ J —>
('options_list’)

L. user_identifi t:athmJ

options_list
A contiguous string of characters consisting of one or more of the following
dump options.

TNTFNFVNVHNHSC

The dump options are described as follows. The default dump options are
underlined.

T

NT

I

NF

<

fam

NH

@)

Displays a trace of the currently active blocks in the run unit, containing
the name of the blocks (if applicable), statement numbers of calling state-
ments, and error information for on-units.

No trace information is displayed.

Displays the symbolic attributes and record contents of the buffers of all
open files.

No file information is displayed.

Generates a dump of all AUTOMATIC and STATIC variables (with a
non-zero length) for the current calling of the external procedure with
their identifiers. Recursive procedures and ON units are dumped for
only the most recent call.

No variables are dumped.

Produces a hexadecimal dump of the PL;1 data spaces of the environment
in which the program is running. This option is provided to assist in
servicing the program.

No hexadecimal dump is produced.
Continues running the program after the dump.

Ends the program after the dump. When you select this option, an
“Operator Requested Error Dump” will not be produced (see “Error
Dump Option Screen” on page 3-16 for more information).

3-14 PL/I User’s Guide and Reference

USING PLIDUMP

Options are read from left to right. Invalid options are ignored, and if contra-
dictory options are coded, the rightmost options are used.

user_identification
A character string variable or constant chosen by the PL/1 programmer. It can
be of any length, but a maximum of 36 characters is printed at the head of the
formatted dump. The rest is truncated. If the character string is omitted, no
identification is printed.

When you are debugging, you may call PLIDUMP from an on-unit, however, it
may be called from anywhere else in your program.

You can specify the C (continuation) option of PLIDUMP to get a series of dumps
of storage while the program is running.

If you call PLIDUMP several times in a program, use a different user identification
to identify each dump.

PLIDUMP can also be called whenever the program encounters a system error that
is not handled by OS/400 or by your program (see the following section).

Example of Using PLIDUMP

The program used for the dump in Figure 3-6 is the same as that shown in
Figure 8-5 on page 8-10, except that the following statement has been added to the
program between statements 23 and 24:

CALL PLIDUMP;
This procedure produces the default dump as shown in Figure 3-6.

To produce the maximum amount of information, including a variable dump and
hexadecimal dump, use the following statement:

CALL PLIDUMP('TFVHC','FULL PL/I PROGRAM DUMP');

18:62:28 01/67/88 PLIDUMP CALLED FROM STATEMENT 68625 PROGRAM LP1427.

CURRENT OPTIONS IN EFFECT (TFNVNHC)

TRACE

FILE
NOVARIABLES
NOHEXADECIMAL
CONTINUE

Figure 3-6 (Part 1 of 3). PL/I program calling PLIDUMP

Chapter 3. Testing and Debugging PL/I Programs 3-15

ERROR DUMP OPTION SCREEN

TRACE OF CURRENT DSA STACK

DSA BLOCK NUMBER
BLOCK NAME
FROM STATEMENT
PROGRAM NAME

END OF DSA TRACE

66001
LP1427
*«EXT
LP1427

Figure 3-6 (Part 2 of 3). PL/I program calling PLIDUMP

SYMBOLIC DUMP OF FILE SYSPRINT

STATUS - OPEN
ACTUAL FILE NAME - QPRINT
SEPARATE INDICATORS NO
LAST OPERATION - PUT

COMPLETED FILE ATTRIBUTES
STREAM
PRINT
ouTPUT
EXTERNAL

ENVIRONMENTAL ATTRIBUTES
CONSECUTIVE

OUTPUT BUFFER

000060 SAME AS ABOVE
000080 40404046

000000 AGF8F8F8 F8F8F2F2 F2F2F246 40404046 D2D9YESE3
060020 40404040 40404040 40404040 40404048 F24BFAFO
000040- 40404040 40404040 40404040 40404040 40404040

9404040
40404040
46404040

40484040
40404040
40404040

* 8888822222

*
*

KYRTON 11
2.40

*

Figure 3-6 (Part 3 of 3). PL/I program calling PLIDUMP

Error Dump Option Screen

When your program encounters a system error that is not handled by OS/400 or by

PL/I, the following display appears on your work station screen:

3-16 PL/I User's Guide and Reference

9

USING ON CONDITIONS

‘ A
1/07/88 19:21:28 PROGRAM MESSAGES

Job J19.QSECOFR.000929 started 01/07/88 19:20:31 in subsystem QGPL/QINTER

UNDEFINEDFILE condition raised at statement 16 in LP1414 for file MST_FILE.

ERROR condition raised as a default action at statement 16 in LP1414. ONCODE

No error on-unit existed in LP1414, Select dump option. (C D F)

. J

Figure 3-7. Error Dump Option Screen

To request a dump on the display, enter a D or F; the default is D. The output is on
the system-wide dump file QPPGMDMP. The response D produces the same dump
data as the PLIDUMP options T (trace), F (file information), and V (variables).

The response F provides the same information as response D, and also produces a
hexadecimal dump of the PL/I data spaces in which the program is running. The
dump is the same as that produced by option H of PLIDUMP.

To cancel a dump, enter response C.

Using PLIIOFDB and PLIOPNFDB

You can obtain the contents of the system-defined input/output feedback area and
the system-defined open feedback area by using the PLIIOFDB and PLIOPNFDB
built-in subroutines. For a description of these subroutines, and a discussion of
how to use them, see “PLIIOFDB Built-In Subroutine” on page 15-16 and
“PLIOPNFDB Built-In Subroutine” on page 15-17.

Using ON Conditions

You can write your programs using specifiable ON conditions to monitor for prob-
lems you may encounter. ON conditions and condition codes are described in
Appendix D, “Conditions and Condition Codes,” and their use is discussed in
Chapter 10, “Condition Handling Statements.”

The figure below illustrates how you can use ON conditions in your program to
alert you of problems.

Chapter 3. Testing and Debugging PL/I Programs 3-17

USING ON CONDITIONS

5728PW1 RO1MBG 880715 SEU SOURCE LISTING 11/30/87 10:24:49
SOURCE FILE PLITST/PLISRC
MEMBER ONCONDSEG 4

SEQNBR*...+... 1 cooti.e 2 coatene 3 oot 8 Lot 5 il 6 ikl T Lt 8 Ll 9 L.

300 DECLARE ONCODE BUILTIN;
400 .
500 .

760 ON ERROR

800 BEGIN;

960 ON ERROR SYSTEM;

1000 PUT FILE (SYSPRINT) SKIP(2) EDIT('** ERROR DETECTED **')(X(16),A);
1100 PUT FILE (SYSPRINT) SKIP EDIT('THE CONDITION CODE WAS ',ONCODE)
1200 (X(13),A,F(4));

1300 END; /* BEGIN */

l408 .

1500 .

1600 .

1708
1800
1960
2006 'ON ENDFILE' CONDITION
2100
2200 DECLARE
2300 1 BIT_FLAGS STATIC,

2400 2 MORE_RECORDS BIT(1) ALIGNED,

2500 2 NO BIT(1) ALIGNED INIT('6'B),
2600 2 YES BIT(1) ALIGNED INIT('1'B);
2700 .

2860 .

2908

3000 ON ENDFILE (IN_FILE)

3108 MORE_RECORDS = NO;

3200 .

3300 .

3400 .

3500 MORE_RECORDS = YES;

3600 READ FILE (IN_FILE) INTO (INPUT_RECORD);

3700 .

3800 .

3908

4000

4100 --e=--ememmmeemecmmomcmeecccccmeececcceec oo meae e
4200

4300 'ON ENDPAGE' CONDITION

4400
4500 DECLARE PAGE_NUMBER BINARY FIXED(2);
4600 .

4700 .

4800 .

4900 PAGE_NUMBER = 1;

5600 .

5100 .

5200 .

5300 ON ENDPAGE (SYSPRINT)

Figure 3-8 (Part 1l of 3). Examples of ON conditions

3-18 PL/I User’s Guide and Reference

5728PW1 RO1MBO 880715 SEU SOURCE LISTING

SOURCE
MEMBER

SEQNBR*...ot.en 1 coetens 2 cuetene 3 aetei 8 ouatii 5 caetan B outein 7 st 8 it 9 Lkl 0

5400
5560
5600
5760
5860
5900
6000
6160
6200
6300
6400
6500
6660
6760
6866
6960
7060
7160
7260
7300
7400
75600
7600
7768
7800
7900
8000
8160
8200
8300
8400

FILE. PLITST/PLISRC
e e e s e e« o« ONCONDSEG

BEGIN;
PUT FILE (SYSPRINT) PAGE EDIT('PAGE ‘',PAGE_NUMBER)(X(81),A,F(2));
PUT FILE (SYSPRINT) SKIP(2) EDIT('UPDATE REPORT')(X(38),A);
PUT FILE (SYSPRINT) SKIP(2) EDIT('KEY ID','NAME',’'CUR BALANCE',
'UPDATE AMOUNT', 'NEW BALANCE')(A,X(9),A,X(21),A,X(6),A,X(4),A);
PAGE_NUMBER = PAGE_NUMBER + 1;
END; /* BEGIN */

'ON KEY' CONDITION

DECLARE ONCODE BUILTIN;

ON KEY (MST_FILE)
BEGIN;
ON ERROR SYSTEM;
PUT FILE (SYSPRINT) SKIP(2) EDIT('** ERROR DETECTED **')(X(16),A);
PUT FILE (SYSPRINT) SKIP EDIT('INVALID OPERATION INVOLVING KEY OF',
' MST_FILE. CONDITION CODE WAS *,ONCODE)(X(13),A,A,F(4));
END; /* BEGIN */

8500
8666
8760
8866
8960
9060
9100
92600
9300
9460
9500
9600
9760
9806
9960
16000
10166
16260
10366
16400

'ON TRANSMIT' CONDITION

DECLARE ONCODE BUILTIN;

ON TRANSMIT (MST_FILE)

BEGIN;
ON ERROR SYSTEM;
PUT FILE (SYSPRINT) SKIP(2) EDIT('** UNEXPECTED ERROR ON 1/0 *,

OPERATION OF MST_FILE')(X(16),A,A);
PUT FILE (SYSPRINT) SKIP EDIT('THE FILE STATUS WAS ',ONCODE)
(x(13),A,F(2));
END; /* BEGIN */

16500
16600

Figure

'ON UNDEFINEDFILE' CONDITION (ALSO 'ON UNDF')
3-8 (Part 2 of 3). Examples of ON conditions

USING ON CONDITIONS

11/36/87 10:24:49

PAGE

2

Chapter 3. Testing and Debugging PL/I Programs 3-19

USING ON CONDITIONS

5728PW1 RO1MEG 8860715
SOURCE FILE PLITST/PLISRC
MEMBER ONCONDSEG

SEQNBR*...#.0 1 viatiee 2 viatene 3 atiin 8 04000 5 Luutll B oLl

10700
16800 DECLARE ONCODE BUILTIN;
10900 .

11000 .

11100 .

11200 ON UNDEFINEDFILE (IN_FILE)
11300 BEGIN;

11400 ON ERROR SYSTEM;

SEU SOURCE LISTING

11/36/87 10:24:49

O AR ST I O T O

11500 PUT FILE (SYSPRINT) SKIP(2) EDIT('** UNEXPECTED ERROR, UNDEFINED °',
11600 'FILE COMDITION RAISED ON OPENING OF IN_FILE')(X(10),A,A);
11700 PUT FILE (SYSPRINT) SKIP EDIT('THE CONDITION CODE WAS *,ONCODE)

11800 (X(13),A,F(4));
11900 END; /* BEGIN */

12008 .

121600

12208

12300

12400 - --

Figure 3-8 (Part 3 of 3). Examples of ON conditions

3-20 PL/I User’s Guide and Reference

PAGE

3

Part 2. Reference

The user’s guide provides you with information on entering AS/400 PL/1 programs,
compiling and running these programs and finding errors in them. The reference
information in Part 2 is provided if you need specific detailed information on P11
compiler directives, references, expressions, statements, procedures, functions, sub-
routines, and pseudovariables.

The reference information is arranged as follows:

Chapter 4, “Program Elements and Organization”

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

5,
6,

“PL/I Data Organization and Use”
“AS/400 PL/I File and Record Management”
“File Declaration and Input/Output”
“Using AS/400 Files”
“References and Expressions”
“Condition Handling Statements”
“Input and Output Statements”
“Declaring Names and Attributes of Variables”
“General PL/I Statements”
“Procedures, Subroutines, and Functions”

“Built-In Functions, Subroutines, and Pseudovariables.”

Part 2. Reference

PL/I User's Guide and Reference

PL/I PROGRAM STRUCTURE

C

Chapter 4. Program Elements and Organization

This chapter gives information on:
» PL/I statements and how to combine them into larger units:

— Compound statements,
— Do-groups
— Blocks.

¢ The different types of blocks and how to combine them into a PL/I program.

* Names and how to declare and use them.

Characters That are Used in PL/I
L AS/400 pL/1 uses the standard PL/I character set. A complete listing of the character
set can be found in “EBCDIC Codes” on page B-15. Note that in AS/400 pL/,
you can use lowercase characters when creating a source program. The lowercase
character is equivalent to its corresponding uppercase character except when used in
comments and character literals.

PL/l Program Structure

L A PLjI program is constructed from basic program elements called statements and
directives. There can be up to 9999 statements in a program and up to 9999 sub-

statements in a statement. There are two types of statements: simple and com-
pound. Statements make up larger program elements called do-groups and blocks.

Statements and Directives
PL/I statements and directives are groupings of identifiers, constants, and delimiters.
The syntax is:

k » L J L ;1mp]e_statement—‘—|————><
label: compound_statement

directive

Statement Labels

A label is an identifier that names a statement so that it can be referred to at some
other point in the program. Statement labels are either label constants or entry con-
stants (see “LABEL Attribute” on page 12-31 and “ENTRY Attribute” on

page 12-32).

The descriptions of individual statements do not generally include the label. You

can use a label for any statement unless it is explicitly stated that you cannot use
(, one.

Chapter 4. Program Elements and Organization 4-1

PL/I PROGRAM STRUCTURE

It is a good idea to use labels following the IF, THEN, ELSE, WHEN, and OTH-
ERWISE keywords to make the program easy to read. The following example
shows the format you should use:

IF REMAINING_ITEMS = 0
THEN

CASE1: SIGNAL FINISH;
ELSE

CASE2: CALL NEXT_ITEM

Note: You cannot use a label with a compiler directive.

Simple Statements

There are three types of simple statements: keyword, assignment, and null. Each
type ends with a semicolon.

A keyword statement begins with a keyword that indicates the function of the state-
ment. For example:

READ FILE (INFILE) INTO (CURRENT RECORD);

The assignment statement contains the assignment symbol (=). The statement
does not begin with a keyword. For example:

A=B+C;

The null statement consists of a semicolon and may contain a label. For example:
LABEL:

Directives
A directive consists of a % sign (or, optionally, an » for the %PROCESS directive)
followed by an instruction to the compiler. Each directive ends with a semicolon.

Labels are not allowed on directives. Directives are discussed in “Using Compiler
Directives” on page 2-16.

Elements of a PL/l Statement
A PL/I statement consists of constants, identifiers, and delimiters.

Constants

A constant is a data item whose value cannot change. You refer to an arithmetic
constant by directly representing the value of the constant, for example, 3.14.

4-2 PL/I User’s Guide and Reference

PL/I PROGRAM STRUCTURE

Identifiers

An identifier consists of one or more alphabetic characters, and may contain digits,
break characters _ and the $, #, and @ characters. An identifier must start with an
alphabetic character and must not exceed 31 characters. The break character
improves readability, as in GROSS_PAY.

If you use an identifier as a AS/400 program or file name, it must not exceed ten
characters.

An identifier can be a user-defined name or a pL/I keyword, depending on how it is
used.

User-Defined Names: A user-defined name, commonly called a name, is an identi-
fier given to a variable or to a named constant. Any identifier can be used as a
name.

At any point in a program, a name can have only one meaning. For example, you
cannot use the same name for both a built-in function and a variable in the same
block.

Examples of names are:

A
FILE2
LOOP_3
PAY_RATE
#32

Additional requirements for names are discussed later in this chapter.

PL/I Keywords: A keyword is an identifier that has a specific meaning when used in
the predefined context. A keyword can specify an action to be taken or the attri-
butes of data. Some examples are the keywords READ, ENDFILE, and
DECIMAL. Some keywords can be abbreviated; the abbreviation is shown in the
description of the individual keywords.

Delimiters

Delimiters are used to separate identifiers and constants. Delimiters, other than
operators, are shown in Figure 4-1; operators are shown in Figure 4-2.

Name Delimiter Use
operators See Figure 4-2 on page 4-4
blank Separates elements of a statement

Figure 4-1 (Part 1 of 2). Delimiters

Chapter 4. Program Elements and Organization 4-3

PL/I PROGRAM STRUCTURE

Name Delimiter Use
comment [+[text]«/ Documents the program
comma , Separates elements of a list
period Connects elements of a qualified name
semicolon ; Ends a statement
assignment = Indicates assignment of a value. You can also
symbol use the character = as a comparison operator
colon : Connects a label prefix to a statement;
delimits bounds in a dimension attribute
parentheses O) Encloses a list, expression, or iteration factor;
encloses information associated with various
keywords
pointer - > Denotes a pointer qualifier
directive %INCLUDE Directs the compiler
%PAGE
%PROCESS
+PROCESS
%SKIP

Figure 4-1 (Part 2 of 2). Delimiters

Name Operator Use
Arithmetic + Addition or prefix plus
- Subtraction or prefix minus
Multiplication
Division
o Exponentiation
Comparison > Greater than
—> Not greater than
> = Greater than or equal to
= Equal to
- = Not equal to
<= Less than or equal to
< Less than
- < Not less than
& And
| Or

Figure 4-2 (Part 1 of 2). Operators

4-4 PL/I User’s Guide and Reference

PL/1 PROGRAM STRUCTURE

Name Operator Use

String Il Concatenation

Figure 4-2 (Part 2 of 2). Operators

The characters that can be used as delimiters can also be used in other contexts.
For example, the period is a delimiter when used in structure qualification, such as
A.B, but it is not considered a delimiter when used in a decimal constant, such as
3.14.

Blanks: You can surround each delimiter with blanks. One or more blanks must
separate identifiers and constants that are not separated by another delimiter. In
general, any number of blanks can appear wherever one blank is allowed.

Blanks cannot occur within identifiers, arithmetic and bit constants, or composite
symbols. They are valid as data characters in character constants.

Other cases that require or permit blanks (for example, in GO TO or GOTO) are
noted in the text where the feature of the language is discussed.

Some examples are:
TABLE(10) is equivalent to TABLE (10)
FIRST,SECOND is equivalent to FIRST, SECOND
AB«#BC is equivalent to AB «« BC
AB+#BC is not equivalent to AB » » BC
Comments: You can use comments wherever blanks are allowed as delimiters in a

program. A comment is treated as a blank and can therefore be used in place of a
required separating blank. Comments do not affect the running of a program.

T
text

The composite symbol /+ indicates the beginning of a comment and the composite
symbol #/ indicates its end. The text can contain any of the language or extralingual
characters, except the #/ composite symbol, which would end it.

An example of a comment in an assignment statement is:
A =1; /» INITIALIZE «/

The following example assigns a character constant to A; it does not contain a
comment:

A='/x THIS IS A CONSTANT,
NOT A COMMENT /'3

Chapter 4. Program Elements and Organization 4-5

PROGRAM ORGANIZATION

Program Organization

This section discusses how a PL/I program is organized and how control flows
between blocks.

Programs

A PLj1 program is a collection of one or more procedures, called external
procedures, each of which can contain internal procedures or begin-blocks or both.
Activating a Program
A PLjI program becomes active when a calling program calls the initial procedure.
This calling program may be a AS/400 Control Language (CL) program, or it could
be a program written in another high level language. The initial procedure must be
one of the external procedures of the program. In the following example:
CONTRL: PROCEDURE OPTIONS (MAIN);

DECLARE (PROC1,PROCZ,PROC3) ENTRY EXTERNAL;

CALL PROC1;

CALL PROCZ;

CALL PROC3;

END CONTRL;
the initial procedure is CONTRL; it calls external procedures PROCI1, PROC2, and
PROC3.
For more information about starting a PL/1 program, see “Running the Program”
on page 2-22.
Ending a Program
A program ends when the initial procedure ends. If a program ends normally or
abnormally, control returns to the calling program.

Blocks

A block is the smallest delimited sequence of statements to which scoping and
storage allocation rules apply.

There are two kinds of blocks: procedures and begin-blocks. The maximum
number of blocks in any external procedure is equal to 255 minus the number of
on-units in the procedure.

You can limit the scope of a name to a particular block (internal) or it can be
known in all the blocks in a program (external). Storage may be allocated for a
name only while a block is active (automatic) or while the program is running
(static). You can define these attributes by explicit or implicit declarations within a
block. (See “Names” on page 4-12 for more information about the scope of names
and “STORAGE CONTROL” on page 5-15 for more information about the allo-
cation of storage.)

4-6 PL/I User’s Guide and Reference

PROGRAM ORGANIZATION

You may find it easier to write and test a program by dividing it into blocks, partic-
ularly when a number of programmers are writing parts of the same program.

Some storage and some extra run time is used each time a block is activated.
However, a program using multiple small blocks requires less storage to run,
because storage for automatic variables is allocated on entry to the block, and is
released on exit from the block.

Activating a Block

When an external procedure is called for the first time, storage is allocated for the
static variables of all the blocks contained by the external procedure.
When an internal procedure or begin-block is activated:

* Array dimensions and string lengths of adjustable automatic variables which are
not known at compile time are evaluated. The dimensions and lengths are
those of the parameters passed to the procedure when it is called.

¢ Storage is allocated for automatic variables.

Begin-blocks and procedures are activated in different ways:

* Procedures other than the initial procedure are activated only when they are
called by a procedure reference (see “Activating a Procedure” on page 4-10).

» Begin-blocks are activated through sequential flow (see “Activating a Begin-
Block” on page 4-11) or by an on-unit.

Ending a Block

A procedure or begin-block can end in a number of ways, depending on the type of
block. (See “Ending a Procedure” on page 4-11 and “Ending a Begin-Block” on
page 4-12 for more information.)

‘When a block ends:

* The on-unit environment that existed before the block was activated is reestab-
lished.

*» Storage for all automatic variables allocated in the block is released.

 Static storage is released, and open files are closed if the block is the initial pro-
cedure of the program.

For more information on closing files, refer to “CLOSE Statement” on
page 11-8.

Storage allocated for an automatic variable cannot be referred to after the block con-
taining the declaration of the variable has ended. If such a reference is attempted
(by means of a pointer variable to which the address of the automatic variable has
been assigned, for example), the results are undefined. Similarly, the value of a label
or internal entry constant cannot be referred to after the block containing its declara-
tion has ended. If such a reference is attempted (by means of a label or entry vari-

Chapter 4. Program Elements and Organization 4=7

PROGRAM ORGANIZATION

able to which the value has been assigned, for example), the results are undefined.)
Consider the following program:

MAINPROC: PROCEDURE OPTIONS (MAIN);
DECLARE (ITEM1,ITEM2) FIXED DECIMAL (3);
ITEM1 = 5;
ITEM2 = 8;
BLOCK1: BEGIN;
DECLARE BLOCKITEM
FIXED DECIMAL (3,0) AUTOMATIC;
BLOCKITEM = ITEM1;
STMT1: ITEM1 = 0;
END BLOCK1;
INVALID1: ITEM2 = BLOCKITEM;
INVALID2: GO TO STMT1;
END MAINPROC;

When this program is compiled, the variable BLOCKITEM within the statement J
labelled INVALIDI1 will be identified as being in error. The compiler will not rec-

ognize the variable name BLOCKITEM, because BLOCKITEM is declared in

BLOCK1, and its scope does not include statement INVALIDI1. Similarly, the

label STMT] in statement INVALID2 will be identified as being in error.

If a GO TO statement transfers control out of a block, several blocks may be ended.
If the label specified in the GO TO statement is contained in a block that did not
directly activate the block being ended, all currently activated blocks in the acti-
vation sequence are ended. This is shown in the following example: ;

A: PROCEDURE;
statement-al
statement-a2
B: BEGIN;

statement-bl
statement-b2
CALL C;
statement-b3
END B;
statement-a3 J
statement-a4
C: PROCEDURE;
statement-cl
statement-c2
statement-c3
D: BEGIN;
statement-dl
statement-d2
GO TO LAB;
statement-d3
END D;
statement-c4
END C;
statement-a5
LAB: statement-ab
statement-a7

END A; J

4-8 PL/I User's Guide and Reference

PROGRAM ORGANIZATION

In this example, procedure A activates begin-block B, which activates procedure C,
which activates begin-block D. In D, the statement GO TO LAB transfers control
to statement-a6 in A. Because this statement is not contained in D, C, or B, all
three blocks are ended; A remains active. Therefore, the transfer of control out of D
ends intervening blocks B and C as well as block D.

Internal and External Procedures
A procedure is a sequence of statements that may be called for processing at one or
more points in one or more programs within a run unit. The first statement is a
PROCEDURE statement and the last is a corresponding END statement. (See
“PROCEDURE Statement” on page 14-2 and “END Statement” on page 13-10.)

A procedure can be a subroutine or a function (see “Defining a Procedure” on
page 14-1).

Any block can contain one or more blocks nested within it; that is, procedures and
begin-blocks can contain other procedures and begin-blocks, which can contain
others, and so on. A block must completely encompass any block contained within
it.

A procedure can be external or internal. An internal procedure is contained in
another block. An external procedure is not contained in another block.

Begin-blocks are always internal: they are always contained in another block. In the
following example,

Chapter 4. Program Elements and Organization 4-9

PROGRAM ORGANIZATION
A: PROCEDURE;
B: BEGIN;

END B;
C: PROCEDURE;

D: BEGIN;

E: PROCEDURE;

END E;

END Dj
END C;

END A;

procedure A is an external procedure because it is not contained in any other block.
Block B is a begin-block that is contained in A; it contains no other blocks. Block
C is an internal procedure; it contains begin-block D, which in turn contains
internal procedure E. There are three levels of nesting relative to A: B and C are at
a depth of one, D is at a depth of two, and E is at a depth of three.

The maximum depth of block nesting is 50.

Activating a Procedure

Normal sequential program processing ignores a procedure. Control passes directly
from the statement immediately before the procedure’s beginning to the statement
immediately following the procedure’s end.

A procedure is activated or called by an entry reference:

* Following the keyword CALL in a CALL statement (see “CALL Statement”
on page 14-7).

* In a function reference (see “Function Reference” on page 14-4).
The point at which the entry reference appears is called the point of calling, and the

block in which it appears is called the calling block. A calling block remains active
when control is transferred to the called block.

4-10 PL/I User’s Guide and Reference

Begin-Blocks

PROGRAM ORGANIZATION

When a procedure is called, processing begins with the first statement that can be
processed. Processing is synchronous; that is, the calling procedure stops running
until control is returned to it.

Communication between two procedures is by means of variables (“‘arguments”)
passed from the calling procedure to the called procedure, by variables returned
from the called procedure, and by names known within both procedures. Therefore,
a procedure can operate upon different data when it is called at different times.

Ending a Procedure

A procedure ends when:

* A RETURN statement is processed within the procedure. Control then returns
to the calling point in the calling procedure. If the calling point is a CALL
statement, processing in the calling procedure resumes with the statement fol-
lowing the CALL. If the point of calling is a function reference, processing
resumes with the statement containing the reference.

» The END statement of the procedure is reached. This is equivalent to a
RETURN statement.

* A GO TO statement is processed and control is transferred out of the proce-
dure. (The GO TO statement is discussed under “GO TO Statement” on
page 13-11.)

* A STOP statement is processed. This also ends the run unit.

* A condition is raised and the implicit action ends the procedure. This also ends
the run unit.

A begin-block is a sequence of statements delimited by a BEGIN statement and a
corresponding END statement.

A label is optional for a begin-block.

Activating a Begin-Block

Begin-blocks are activated through normal flow or by error-handling on-conditions.
In general, they can appear wherever a single statement can appear.

When a begin-block is activated, the encompassing block or blocks remain active.

Control can be transferred to a labeled BEGIN statement by means of a GO TO
statement.

Chapter 4. Program Elements and Organization 4-11

NAMES

Ending a Begin-Block

A begin-block ends when:

» Control reaches the END statement for the block. Control is then transferred
to the statement following the END statement. (See “Running an On-Unit"” on
page 10-3 for a discussion of normal return from an on-unit.)

A STOP statement is processed. This also ends the run-unit.

A condition is raised and the implicit action ends the run-unit.

A GO TO statement is processed and control is transferred to a point outside of
the block.

A RETURN statement is processed and control is transferred out of both the
begin-block and its containing procedure.

Names

You refer to each variable, and each file, label, and entry constant in a PL/1 program
by a name.

Each name and its attributes must be made known in the block in which it is used
by either an explicit or a contextual declaration.

A name need not have the same meaning throughout a program. A name declared
within a block has a meaning only within that block. Qutside the block, it is
unknown unless the same name is also declared in the outer block. The name in
the outer block refers to a different data item. You can specify local definitions and
write a block (a procedure or a begin-block) without knowing all the names being
used in other blocks.

The part of the program to which a name applies is called the scope of that name.
Each declaration of a name establishes a scope for it.

To understand the rules for the scope of a name, you need to know the meaning of
the terms “contained in” and “internal to.”

Everything in a block, from the PROCEDURE or BEGIN statement through to
the corresponding END statement, is contained in that block. However, the label of
the BEGIN or PROCEDURE statement that heads the block is not contained in
that block. Nested blocks are contained in the block in which they appear.

Elements contained in a block, but not contained in any block nested within it, are
internal to that block. Consider the following example:

PROC1: PROCEDURE;
STMT1: INTEGERL = SQRT(INTEGER2);
PROC2: PROCEDURE;
STMT2: INTEGER3 = INTEGER1;
END PROC2;
END PROCI;

4-12 PL/I User’s Guide and Reference

C

NAMES

STMT1 and STMT?2 are both contained in PROC1. STMT?2 is also contained in
PROC2. STMT1 is internal to PROC1. STMT?2 is internal to PROC2.

The entry name of an internal procedure or the label of a BEGIN statement is
internal to the containing block. The entry name of an external procédure is not
internal to the external procedure.

Explicit Declaration of a Name

A name is explicitly declared if it appears:

* In a DECLARE statement. The DECLARE statement explicitly declares attri-
butes of names.

* In a parameter list. The appearance of the name in a parameter list constitutes
an explicit declaration of the name as a parameter of the containing procedure.
The attributes for this parameter must be in a DECLARE statement internal to
the same procedure.

e As the label prefix of a PROCEDURE statement. A labeled PROCEDURE
statement constitutes a declaration, within the containing block, of the proce-
dure name as an entry constant.

* As the label prefix of a statement other than a PROCEDURE statement. The
label prefix constitutes an explicit declaration of a label constant within the con-
taining block.

Note: An explicit declaration overrides a contextual declaration.
The scope of an explicit declaration of a name is the block it is internal to. This

includes all contained blocks. This does not include blocks that have another
explicit declaration of the same name internal to them.

The syntax and use of the DECLARE statement is described in
Chapter 12, “Declaring Names and Attributes of Variables.”

Contextual Declaration of a Name

Only built-in function and built-in subroutine names can be declared contextually.
To contextually declare a name as a built-in function name, it must appear as a ref-
erence and be followed by a parenthesized argument list. To contextually declare a
name as a built-in subroutine name, it must appear as a reference in a subroutine
call.

Contextual declaration of a built-in function or built-in subroutine name has the
same effect as if the name was declared in the external procedure, even when the
statement that causes the contextual declaration is internal to another block that is
contained in the external procedure. Consequently, the scope of the contextual dec-
laration is the entire external procedure, except for any blocks in which the name is
explicitly declared.

Chapter 4. Program Elements and Organization 4-13

NAMES

Multiple Declarations of Names

Scopes of Names

Multiple declarations are not valid. They occur when two or more declarations of
the same name are internal to the same block. Multiple declarations are valid when
at least one of the names is declared within a structure in such a way that structure
qualification can be used to make references unique.

Figure 4-3 is a sample procedure that illustrates the scopes of data declarations.
The brackets to the left indicate the block structure; the brackets to the right show
the scope of each declaration of a name. The scopes of the two declarations of Q
are shown as Q and Q’.

P Q Q' S R X SIN
r A: PROCEDURE; 1] q
DECLARE (P,Q) FLOAT;
- B: PROCEDURE;
DECLARE Q FIXED,
(RyX) FLOAT;
R=20Q;
X=SIN(R);
END B;
- C: PROCEDURE; }]

DECLARE S FIXED;
END C;
END Aj

Figure 4-3. Scopes of Data Declarations
P is declared in block A and known throughout A.

Q is declared in block A and in block B. The scope of the first declaration of Q is
all of A except B; the scope of the second declaration of Q (Q") is block B only.

SIN is referred to in block B. This results in a contextual declaration in the external
procedure A. This declaration therefore applies to all of procedure A, including its
contained procedures B and C.

S is explicitly declared in procedure C and is known only within C. R and X are
declared in block B and are known only within block B.

Figure 4-4 on page 4-15 illustrates the scopes of entry constant and statement label
declarations. The example shows two external procedures.

4-14 PL/I User's Guide and Reference

NAMES

L1 L1’ L2 A B C D E
- A: PROCEDURE; 1 . 7 .
DECLARE E ENTRY;
Ll: P =Q;
r B: PROCEDURE;
L2: CALL C;
C: PROCEDURE;
Ll: X = Y;
CALL E;
END C;
{ GO TO L1;
END B;
[D: PROCEDURE;
END D;
CALL B;
- END A - . 4=
r %PROCESS; -
E: PROCEDURE;
END E; —

Figure 4-4. Scopes of Entry and Label Declarations

E is explicitly declared in A as an external entry constant. The explicit declaration
of E in block A applies throughout block A; its explicit declaration as the entry con-
stant of block E applies throughout block E. The scope of the name E is all of
block A and all of block E. The scope of the name A is all of the block A only,
and not block E.

The label L1 appears on statements internal to A and to C. Two separate declara-
tions are therefore established; the first applies to all of block A except block C, and
the second applies to block C only. Therefore, when the GO TO statement in
block B is processed, control is transferred to L1 in block A, and block B is ended.

B and D are explicitly declared in block A and can be referred to from anywhere
within A. Because they are internal, however, they cannot be referred to in block E.

C is explicitly declared in B and can be referred to from within B, but not from
outside B.

L2 is declared in B and can be referred to in block B, including C, which is con-
tained in B, but not from outside B.

If a PL/1 keyword and its abbreviation are both declared as user-defined names in a
program, the scopes of the two declarations may be different. For example:

Chapter 4. Program Elements and Organization 4-15

NAMES

A: PROCEDURE;
DECLARE DEC FIXED DECIMAL (6),
DECIMAL FILE;
B: BEGIN;
DECLARE DEC BUILTIN,
(Y,Z) FIXED DECIMAL (6);
Y=DEC(Z,6);
END B;
CLOSE FILE (DECIMAL);
END A;

DEC is known as a fixed-point decimal data item in block A, and as a built-in func-
tion in block B, where it is declared again. DECIMAL is known as a file
throughout blocks A and B.

Using the Scope Attributes

You can use the INTERNAL and EXTERNAL attributes to specify the scope of a
name.

For a description of the syntax of the scope attributes, INTERNAL and
EXTERNAL, see “Scope Attributes” on page 12-40. For a description of how PL/1
handles INTERNAL and EXTERNAL files, see "Scoping of Open Files (File
Sharing)” on page 7-11.

INTERNAL specifies that the name is known only in the declaring block. The
scope of the name is the same as the scope of its declaration. Any other explicit
declaration of that name refers to a new object with a different, non-overlapping
scope.

A name with the EXTERNAL attribute can be declared in more than one external
procedure. It is linked across external procedures. No external name can be
declared more than once in the same external procedure. The scope of the name
includes the scopes of all the declarations of that name (with the EXTERNAL attri-
bute) within the run unit.

External names cannot exceed ten characters in length.

Different declarations of the same name with the EXTERNAL attribute must have
identical attributes after any defaults have been applied.

When you declare a major structure name as EXTERNAL in more than one
external procedure, the attributes of the structure members must be the same,
although the corresponding member names need not be identical. For example:

4-16 PL/I User's Guide and Reference

NAMES

PROCA: PROCEDURE;
DECLARE 1 A EXTERNAL,
2 B FIXED,
2 C FLOAT;

END PROCA;

PROCB: PROCEDURE;
DECLARE 1 A EXTERNAL,

2 B FIXED,

2 D FLOAT;

END PROCB;

In this example, if A.B is changed in PROCA, it is also changed in PROCB, and if
it is changed in PROCSB, it is also changed in PROCA. If A.C is changed in
PROCA, A.D is changed in PROCB, and if A.D is changed in PROCB, A.C is
changed in PROCA.

The attribute listing, which is available as optional output from the compiler, helps
to check the use and attributes of names. The following program example illustrates
the use and attributes of names, and the rules for scopes of names:

A: PROCEDURE;
DECLARE S CHARACTER (21),
M FIXED DECIMAL (7),
N BINARY (15);
DECLARE SYSIN FILE INPUT;
DECLARE SET ENTRY(FIXED DECIMAL(1));
CALL SET (3);
E: GET FILE(SYSIN) EDIT (S,M,N)
(A(Zl):F(7)’F(3));
B: BEGIN;
DECLARE X(M,N) FIXED DECIMAL (7),
Y(M) FIXED DECIMAL (7);
GET FILE(SYSIN) EDIT (X,Y)

(F(7),F(7))3
CALL C(X,Y);

C: PROCEDURE (P,Q);
DECLARE (I,J) FIXED BINARY (15)
INTERNAL,
P(+,+) FIXED DECIMAL (7),
Q(+) FIXED DECIMAL (7),
FIXED BINARY (15)

EXTERNAL,
ouT ENTRY (LABEL),
SUM FIXED DECIMAL (9);
S =0
DOI =1T0M
SUM = 03
DO J=1T0N;

Chapter 4. Program Elements and Organization 4~17

NAMES

SUM = SUM + P(I,J);
END;
IF SUM = Q(I) THEN
GO TO B;
S=S+1;
IF S =3 THEN
CALL OUT (E);
CALL D(I);
B: END;
END C;
D: PROCEDURE (N);
DECLARE N FIXED BINARY (15);
DECLARE SYSPRINT FILE OUTPUT;
PUT FILE(SYSPRINT) EDIT
(*ERROR IN ROW' ,
N, 'TABLE NAME ', S)
(A(12),F (4),X(1),
A(11),A(21));
END D;
END B;
GO TO E;
END A;
%PROCESS;
OUT: PROCEDURE (R);
DECLARE R LABEL,
(M,L) FIXED DECIMAL (7)
STATIC INTERNAL
INITIAL (0),
S FIXED BINARY (15)
EXTERNAL;

M = Mtl;
S =0
IF M<L THEN STOP;
ELSE GO TO R;
END OUT;
%PROCESS;

SET: PROCEDURE(Z);
DECLARE Z FIXED DECIMAL(1),
L FIXED DECIMAL(1) STATIC
L=Z;
RETURN;
END SET;

A is an external name. The scope of A is all of block A, plus any other blocks
where A is declared as external.

S is declared in block A and block C, as well as in block OUT. The declarations of
S in block C and in block OUT declare S as external. They specify identical attri-
butes for S, and declare the same external variable. The declaration of S in block A
introduces a different, internal variable.

Within external procedure A, the character variable declaration of S applies to all of
block A except block C. The fixed binary declaration of S applies only within block

4-18 PL/I User’s Guide and Reference

NAMES

C. Although D is called from within block C, the reference to S in the PUT state-
ment in D is to the character variable S and not to the S declared in block C.

N is a parameter in block D, but is also declared in block A. These two declara-
tions on the name N refer to different objects, although, in this case, the objects
have the same attributes, which are BINARY FIXED(15) and INTERNAL.

X and Y are known throughout B and could be referred to in block C or D within
B, but not in that part of A outside B.

P and Q are parameters and therefore require explicit declaration. Although the
arguments X and Y are declared as arrays and are known in block C, it is still neces-
sary to declare P and Q in a DECLARE statement to establish that they, too, are
arrays. (Asterisks indicate that the bounds of the parameters are taken from the
corresponding arguments.)

I and J are known only in block C. M is known throughout block A, including all
its contained blocks.

The second external procedure in the example has the entry name OUT, and the
third external procedure has the name SET. The entry constants SET and OUT get
the attributes ENTRY and EXTERNAL and are known throughout their external
procedures. Because these external procedures are referenced in the external proce-
dure A, they must be declared with an appropriate ENTRY attribute in procedure
A.

The label prefix B appears twice in the program. It is first declared explicitly by its
appearance as the label of a begin-block A. It is declared again as a label within
block C by its appearance as a prefix to an END statement. The GO TO B state-
ment within block C, therefore, refers to the label on the END statement within
block C. Outside block C, any reference to B would be to the label of the begin-
block.

C and D can be called from any point within B, but not from that part of A outside
B or from another external procedure like OUT or SET. Similarly, because E is
known throughout the external procedure A, a transfer can be made to E from any
point within A. The label B within block C, however can only be referred to from
within C.

Control can be transferred out of a block and back to a block that was activated, by
means of a GO TO statement. In the external procedure OUT, the label E from
block A is passed as an argument to the label parameter R. The statement GO TO
R causes control to pass to the label E, although E is declared within A and is not
within OUT.

The variables M and L are declared as STATIC within the procedure OUT; their
values are preserved between calls to OUT.

Chapter 4. Program Elements and Organization 4-19

NAMES

4-20 PL/I User's Guide and Reference

C

DATA ORGANIZATION

Chapter 5. PL/l Data Organization and Use

This chapter contains information on how data is stored and manipulated. Data
items come in two forms: scalars, or aggregates. You can use alignment and
mapping attributes as well as the DECLARE statement to control how this data is
stored. There are three data types: arithmetic, character, and bit. You can assign
data items to one of these types and convert between types using built-in conversion
functions.

DATA ORGANIZATION

Data items can be single data items, called scalars, or they can be grouped together
to form data aggregates, in which they can be referred to either individually or col-
lectively. Data aggregates can be arrays or structures. A variable that represents a
single data item is a scalar variable. A variable that represents an aggregate of data
items is either an array variable or a structure variable.

Any type of problem data variable or program control variable can be grouped into
arrays or structures.

Using Arrays and the Dimension Attribute

An array is a collection, into one or more dimensions, of one or more array-
elements with identical attributes. An array-element can be a scalar variable or a
structure. Only the array itself is given a name. An individual item of an array is
referred to by the array name and a subscript giving the item’s position inside the
array.

An array is declared with the dimension attribute, which defines the subscript
format. For a description of the syntax of the dimension attribute, see “Arrays and
the Dimension Attribute” on page 12-38.

Examples of Array Declarations
DECLARE LIST(8) FIXED DECIMAL (3);

In the example above, LIST is declared a one-dimensional array of eight elements,
each of which is a fixed-point decimal element of three digits. The single dimension
of LIST has bounds of 1 and 8; its extent is 8.

DECLARE TABLE1(4,2) FIXED DECIMAL (3);

TABLE] is declared a two-dimensional array, also of eight fixed-point decimal ele-
ments. The two dimensions of TABLE1 have bounds of 1 and 4, and 1 and 2; the
extents are 4 and 2.

DECLARE TABLE2(10,1:8) FIXED DECIMAL (6,2);

TABLE?2 is declared a two-dimensional array of eighty fixed-point decimal elements,
each with six digits, of which two are to the right of the decimal point. The two

Chapter 5. PL/I Data Organization and Use S-1

DATA ORGANIZATION

dimensions of TABLE?2 have bounds of 1 and 10, and 1 and 8; the extents are 10
and 8.

In AS/400 pL/1, the only lower bound you can specify is 1.

DECLARE INDEX1 FIXED BINARY (15) STATIC INITIAL (8);

DECLARE LIST(1:INDEX1) FIXED DECIMAL (4);

The bounds of LIST are 1 and INDEX1, with INDEX1 initialized as 8.

The following example shows a factored array declaration:
DECLARE (A,B,C,D)(10) BINARY FIXED;

The variables A, B, C, and D are to represent one-dimensional arrays, each con-
sisting of ten fixed-point binary items with a default length of 15.

Subscripts

The dimensions of an array determine the way the elements of the array are referred
to. For example, the array LIST, which is declared above as a one-dimensional
array, can be considered as a linear sequence of eight elements. If the contents of
the elements of the array are

20 5 10 30 630 150 310 70

in that order, they can be referred to as follows:

Reference Element
LIST(1) 20
LIST(2) 5
LIST(3) 10
LIST(4) 30
LIST(5) 630
LIST(6) 150
LIST(7) 310
LIST(8) 70

Each of the numbers following LIST is a subscript. A subscript identifies a partic-
ular element of the array. A reference to a subscripted name, such as LIST(4),
refers to a single item. In the example, LIST(4) has a value of 30. The entire array
can be referred to by the name of the array, with no following subscript. For
example, all of the elements of LIST could be set to zero by the statement

LIST = 0.

The same data could be organized in the two-dimensional array TABLE1 declared
above. TABLEI could then be considered as a matrix of four rows (m) and two
columns (n), as follows:

5-2 PL/I User’s Guide and Reference

DATA ORGANIZATION

n 1 2
m
1 20 5
2 10 30
3 630 150
4 310 70

TABLEI is referred to by a subscripted name with two parenthesized subscripts,
separated by a comma. For example, TABLEI (2,1) specifies the first item in the
second row, which is 10.

The use here of a matrix to illustrate TABLE] bears no relationship to the way in
which the items are actually organized in storage. Elements of an array are stored in
row major order with the right-most subscript varying most rapidly. For example,
the array TABLEI is stored in the order TABLE1(1,1), TABLEI1(1,2),
TABLEI1(2,1), TABLE1(2,2) and so on.

A subscripted reference to an array must contain as many subscripts as there are
dimensions in the array. (See “Arrays of Structures” on page S5-5 for arrays with
inherited dimensions.)

The examples in this chapter have arrays of arithmetic data. Variables of any data
type except FILE can be collected into an array. String arrays (character or bit) are
valid, as are arrays of label, entry, or pointer data.

Expressions as Subscripts

Any integer expression can be used as a subscript. The expression is converted to
fixed-point binary with a precision of 31. Therefore, TABLE(I,J«K) could refer to
the different elements of TABLE by varying the values of the integers I, J, and K.

Using Structures and Level Numbers
A structure is a collection of data items that need not have identical attributes.

Like an array, the entire structure is given a name, which can be used to refer to the
entire aggregate of data. But, unlike an array, each field of a structure also has a
name.

A structure has different levels. At the first level is the major structure; at lower
levels are the minor structures; and at the lowest are the fields of the structure. A

structure field can be a scalar variable or an array.

The members at the next lower level of a structure or substructure are the immediate
components of the structure or substructure.

Chapter 5. PL/I Data Organization and Use 95-3

DATA ORGANIZATION

You specify the organization of a structure in a DECLARE statement by placing
level numbers before the names, as described in “Structures and Level Numbers” on
page 12-39. The major structure name must be declared with the level number 1,
and minor structures and field names with level numbers greater than 1; level
numbers must be integer constants.

For example, the items of a payroll could be declared as follows:

DECLARE 1 PAYROLL,
2 EMPLOYEE_NO FIXED DECIMAL (7),

2 NAME,
3 LAST CHARACTER (15),
3 FIRST CHARACTER (15),
2 HOURS,

3 REGULAR FIXED DECIMAL (5,2),

3 OVERTIME FIXED DECIMAL (5,2),
2 RATE,

3 REGULAR FIXED DECIMAL (5,2),

3 OVERTIME FIXED DECIMAL (5,2);

In this example, PAYROLL is a major structure with the immediate components
EMPLOYEE_NO, NAME, HOURS, and RATE. EMPLOYEE_NO is a field;
NAME, HOURS, and RATE are minor structures, each containing two fields.
You can refer to the entire structure by the name PAYROLL, to portions of the
structure by the minor structure names, or to a field by the name of the field.

The level numbers you choose for successively deeper levels need not be the imme-
diately succeeding integers. A minor structure at level » contains all the names with
level numbers greater than n that lie between that minor structure name and the
next name with a level number less than or equal to 7.

PAYROLL could have been declared as follows:

DECLARE 1 PAYROLL,
4 EMPLOYEE_NO FIXED DECIMAL (7),

3 NAME,
5 LAST CHARACTER (15),
5 FIRST CHARACTER (15),
2 HOURS,

6 REGULAR FIXED DECIMAL (5,2),

5 OVERTIME FIXED DECIMAL (5,2),
2 RATE,

45 REGULAR FIXED DECIMAL (5,2),

30 OVERTIME FIXED DECIMAL (5,2);

This declaration would result in exactly the same structuring as that of the previous
declaration.

Therefore, there is a difference between logical level and level number. The item
with the greatest level number is not necessarily the item with the deepest logical
level. But if the structure declaration is written with consistent level numbers and
suitable indentation, the logical levels are immediately apparent.

5-4 PL/I User’s Guide and Reference

DATA ORGANIZATION

You can, in any case, determine the logical level of each item in the structure by
applying the following rule to each item in turn, starting at the beginning of the
structure declaration: the logical level of a given item is always one unit deeper than
that of its immediate containing structure. For example, in the first declaration of
PAYROLL, the logical levels and level numbers are the same. In the second decla-
ration, the level numbers are different, but the logical levels are the same as in the
first declaration.

The description of a major structure is ended by the declaration of another item
with the level number 1, by the declaration of another item with no level number,
or by the end of the DECLARE statement or descriptor list.

The maximum depth of logical levels is 15, and the highest valid level number is
255. The maximum length of a structure is 32 767 bytes.

Structure-Qualification

A minor structure can be referred to by the minor structure name alone and a struc-
ture field by the field name alone if there is no ambiguity. In the PAYROLL
example, a reference to either REGULAR or OVERTIME would be ambiguous
without structure-qualification to make the reference unique.

A qualified reference is a field name or a minor structure name that is qualified with
one or more names at a higher level, connected by periods. Blanks may appear on
either side of the period.

Structure-qualification is in the order of levels; that is, the name at the highest level
must appear first, with the name at the deepest level appearing last.

Names within a structure need not be unique within the block in which they are
declared. Also, one or more qualifying names can be omitted, provided that the
name or names used identify a single field or minor structure. The qualified refer-
ences PAYROLL.LAST and NAME.LAST, for example, are both equivalent to
the name PAYROLL.NAME.LAST.

Arrays of Structures
A structure name, either major or minor, can be given a dimension attribute in a
DECLARE statement to declare an array of structures. An array of structures is an
array whose elements are structures that have identical names, levels, and element
attributes.

For example, if you were to use a structure, WEATHER, to process meteorological
information for each month of a year, you might declare it as:

Chapter 5. PL/I Data Organization and Use 5-§

DATA ORGANIZATION

DECLARE 1 WEATHER(12), J
5 TEMPERATURE,
10 HIGH DECIMAL FIXED (5,1),
16 LOW DECIMAL FIXED (3,1),
5 WIND_VELOCITY,
10 HIGH DECIMAL FIXED (3),
10 LOW DECIMAL FIXED (3),
5 PRECIPITATION,
10 TOTAL DECIMAL FIXED (3,1),
10 AVERAGE DECIMAL FIXED (3,1);

You could then refer to all the weather data for July by specifying WEATHER(7)
and to the particular aspects of the July weather by TEMPERATURE(7) and
WIND_VELOCITY(7). The specifications PRECIPITATION.TOTAL(7) and
TOTAL(7) would both refer to the total precipitation during the month of July.

TEMPERATURE.HIGH(3), which would refer to the high temperature in March, J
is a subscripted qualified reference.

The need for subscripted qualified references becomes more apparent when an array
of structures contains an array of minor structures. For example, consider the fol-
lowing array of structures:

DECLARE 1 A (6,6),

58 (),
10 C FIXED,

10 D FIXED, J
E FIXED;

Both A and B are arrays of structures. To reference a data item, it may be neces-
sary to use as many as three names and three subscripts.

You must include the subscripts to the right of the name or qualified list of names.
For example, A.B.C(1,1,2) is valid, whereas A(1,1).B(2).C is not. A.B.C(1,1,2) ref-
erences a particular C that is in an element of B in a structure in A.

Any item declared within an array of structures inherits dimensions declared in the J
containing structure. For example, in the above declaration for the array of struc-

tures A, B is a three-dimensional array of structures, because it inherits the two

dimensions declared for A. If B is unique and requires no qualification, any refer-

ence to a particular element of B would require three subscripts: two to identify the

specific structure in A and one to identify the specific element of B within that

structure in A.

A reference to an array with inherited dimensions must be subscripted, and the
number of subscripts must equal the number of inherited dimensions or the total
number of dimensions of the array. Therefore, with the declaration above, A,
A(1,2), B(1,2), B(1,2,3) and C(1,2,3) are valid references, but B, C, and C(1,2) are
not.

5-6 PL/I User’s Guide and Reference

DATA ALIGNMENT

L Performance Considerations with Large Aggregates
Programs which process large STATIC or AUTOMATIC aggregates (those
approaching or exceeding 32 767 bytes in size) may take a long time to run. The
reason for this is that the machine brings into main memory all static and automatic
work areas before running the program. If the work areas become too large, the
excessive paging results in system overhead which can significantly increase the time
required to run the program.

You can reduce this paging activity by declaring large aggregates as BASED vari-
ables and using the ALLOCATE statement (see “ALLOCATE Statement for Based
Variables” on page 5-22) before referencing the variables. Allocated storage for
BASED variables is paged into main memory on a demand “paging” basis: only the
pages that the program references are paged in.

Qr Data Alignment and the Alignment Attributes

Data is stored in units of eight bits, or a multiple of eight bits. Each eight-bit unit
of information is called a byte.

Bytes may be grouped together in units of information as a halfword (two bytes), a
word (four bytes; also called a fullword), a doubleword (eight bytes), or a
quadword (16 bytes), starting at an integral boundary for that unit. An integral
boundary for a unit is at a multiple of that unit: a byte boundary can be at any byte,

L a halfword boundary at a multiple of two bytes, a word boundary at a multiple of
four bytes, a doubleword at a multiple of eight bytes, and a quadword at a multiple
of 16 bytes.

Byte locations in storage are consecutively numbered, starting with zero. Each
number is considered the address of the corresponding byte. A group of bytes in
storage is addressed by the leftmost byte of the group.

A field aligned on a halfword or word boundary can be accessed faster than a field
_ of the same length that is not aligned on an integral boundary. For some oper-
&, ations, the data used must be aligned on its integral boundary.

Data items can be aligned on their integral boundaries to give the fastest possible
processing. But this is not always desirable, as there may be unused bytes between
successive data items, which increases the use of storage. This is particularly impor-
tant when the data items are members of aggregates that are used to create a file,
because the unused bytes will increase the amount of external storage required.
Consequently, although the UNALIGNED attribute may increase run time, it can
reduce storage requirements.

By means of the ALIGNED and UNALIGNED attributes, you can choose to align
data on the appropriate integral boundary.

ALIGNED specifies that the data item is aligned on the storage boundary corre-
sponding to its data type requirement. For example, BIN (15) data is aligned on a

L halfword boundary and BIN (31) data on a fullword boundary. See “Data
Mapping” on page 5-9 for a definition of these requirements.

Chapter 5. PL/I Data Organization and Use -7

DATA ALIGNMENT

UNALIGNED specifies that the data need not be aligned. The compiler may gen- J
erate code that moves the data to an appropriate integral boundary before an opera-
tion is processed, if the operation requires data alignment.

Bit data must be declared as ALIGNED. Aligned bit strings start at a byte
boundary. Consider the following example:

DECLARE BITSTRING1 BIT (3) ALIGNED,
BITSTRING2 BIT (5) ALIGNED;

BITSTRINGI starts on a byte boundary. BITSTRING?2 starts on the next byte
boundary. The five bits intervening between BITSTRINGI1 and BITSTRING?2 are
not addressable by the program.

The default for character data and picture data is UNALIGNED. For all other data

types, the default is ALIGNED. If you specify UNALIGNED with character data,

the compiler will issue an error message. If you specify ALIGNED with non- J
varying character data, the specification of ALIGNED will be ignored, and the com-

piler will issue an error message.

You can specify alignment attributes for scalars and arrays only.

ALIGNED can be specified for character varying data and must be specified for bit
data.

UNALIGNED can be specified for fixed-point binary, floating-point binary, and '
floating-point decimal data. J

The following example illustrates explicit and default alignment.

5-8 PL/I User's Guide and Reference

DATA MAPPING

DECLARE 1 SAMPLESTRUCTURE,
5 BIT1 BIT (3) ALIGNED,
/« ALIGNED EXPLICITLY «/

5 MINORSTRUCTURE1,
10 BIT2 BIT (5) ALIGNED,
/* ALIGNED EXPLICITLY &/

10 MINORSTRUCTUREZ2,
15 BINFLT1 FLOAT UNALIGNED,
/% UNALIGNED EXPLICITLY #/

15 DECFIXED FIXED DECIMAL,
/+ ALIGNED BY DEFAULT «/

15 CHAR1 CHARACTER (1),
/* UNALIGNED BY DEFAULT «/

15 CHAR2 CHARACTER(2)
VARYING ALIGNED,
/+ ALIGNED EXPLICITLY «/

10 BINFIXED1 FIXED,
[+ ALIGNED BY DEFAULT «/

5 PIC1 PICTURE '99.V9';
/« UNALIGNED BY DEFAULT «/

Data Mapping

This section describes the mapping of data onto storage. In general, you need not
know the precise rules for data mapping; the compiler can print an aggregate length
table of all the arrays and major structures in the source program. (You can print
this table using the +tAGGREGATE option of the OPTION parameter for the cL
command CRTPLIPGM. See Chapter 2, “Creating, Compiling, and Running
Your PL/I Program” for more information.) However, you may want to know the
rules for data mapping in the following cases:

* To determine record lengths and alignments when you use record data trans-
mission.
* To determine the correspondence of pointers and based variables.
e When using the UNSPEC built-in function or pseudovariable.
A unit of data is mapped onto storage by determining the alignment (a), displace-
ment (d), and length (l) of the unit, where:
a is the alignment boundary:

a=1 for byte alignment

a=2 for halfword alignment
a=4 for word alignment

a=8 for doubleword alignment.

Chapter 5. PL/I Data Organization and Use S5-9

DATA MAPPING

a= 16 for quadword alignment.

d is the displacement, in bytes, of the start of the unit from the alignment
boundary.

| is the length, in bytes, of the unit.

Scalar Data Mapping
The scalar data mapping algorithm derives immediately from Figure 5-1. The
values of “a” and “1” are determined from the appropriate variable type in the
figure. The value of “d” is always 0.

Examples:

DECLARE A BINARY FIXED (15) ALIGNED
where: a=2, d=0, 1=2

DECLARE B BINARY FIXED (12) ALIGNED
where: a=2, d=0, 1=2

DECLARE C BINARY FIXED (31) UNALIGNED
where: a=1, d=0, 1=4

DECLARE A BIT (2) ALIGNED
where: a=1, d=0, 1=1

Variable Stored Length ALIGNED UNALIGNED
Type internally (in bytes) boundary boundary
as

One byte for
each group
BIT (n) of 8 bits ceil(n/8) Byte Not

(or part applicable
thereof)

CHARACTER One byte per n Not Byte
(n) character applicable

PICTURE One byte for Number of
each PICTURE | PICTURE Not Byte
character characters applicable
(except V) (other than V)

Packed
decimal
DECIMAL format (1/2 ceil(p+1)/2) | Byte Not
FIXED byte per applicable
((oXs)] digit, plus
1/2 byte for
sign)
CHARACTER (n)| One byte per n+2 Halfword Byte!
VARYING character

Figure 5-1 (Part 1 of 2). Storage and Alignment Requirements of Scalar Data

5-10 PL/I User's Guide and Reference

DATA MAPPING

Variable Stored Length ALIGNED UNALIGNED
Type internally (in bytes) boundary boundary
as

BINARY Halfword

FIXED (p) binary integer 2 Halfword! Byte

l<p<15

BINARY Fullword

FIXED (p) binary integer 4 Word! Byte

16 <p <3l

BINARY Short

FLOAT (p) floating- 4 Word! Byte

l<p<24 point

DECIMAL Short

FLOAT (p) floating- 4 Word! Byte

l<p<7? point

POINTER - 16 Quadword Not appli-
cable

ENTRY - 16 Halfword Not appli-
cable

LABEL - 16 Halfword Not appli-
cable

Doubleword

BINARY Long within struc-

FLOAT (p) floating- 8 tures; other- | Byte

25<p<353 point wise word?

Doubleword

DECIMAL Long within struc-

FLOAT (p) floating- 8 tures; other- | Byte

8<px<1lé6 point wise word!

Figure 5-1 (Part 2 of 2). Storage and Alignment Requirements of Scalar Data
Footnotes
! This is the default alignment boundary.

Note: For a table of ceil values, see Figure 9-4 on page 9-9.

Array Mapping
The alignment (a'), displacement (d'), and length (1') of an array element can be
calculated using the rules given in the preceding section for an array of scalars, or in
the following section for an array of structures. In the following equations, N is the
number of array elements.

Chapter 5. PL/I Data Organization and Use S-11

DATA MAPPING

The padding required between an array element ending at d'+1' and the next
element starting at d' is

pad = mod(-1',a")
where mod gives the smallest non-negative remainder after division.

No padding is needed after the last element. The total length of the array is there-
fore

1= Nel' + (N-1) » pad
The alignment boundary and displacement of the array are those of the element:

a=a'
d=d'
For example:

DECLARE 1 A (2,5),
5 B BINARY (15),
5 C BINARY (31);

A is an array of structures. According to the rules for mapping a structure, which
are given in the next section, each element of A has a length of 6 bytes and starts at
a displacement of 2 bytes from a word boundary:

al=4, d'=2, 1'=6

The number of array elements (N) is ten. The padding between successive elements
is:

pad = mod(-6,4) = 2

The array is therefore mapped as:

4
2
10x6 + 9x2 = 78

a
d
1

Structure Mapping

The rules for structure mapping are:
1. Map the first immediate component, resulting in a, d, and 1.

2. Given that the structure consisting of the first k immediate components has
been mapped into a, d, and 1 (initially k= 1, and a, d, and 1 are the values
obtained from step 1), map the immediate component k+1, to obtain a', d'
and I'. Combine the two units therefore obtained according to the rules given
below, to obtain a, d, and 1 for the structure consisting of the first k+1 compo-
nents.

3. Repeat step 2 with increasing values of k until the whole structure has been
mapped.

This process is recursive if any of the components of the structure you are mapping
is a structure.

5-12 PL/I User’s Guide and Reference

DATA MAPPING

Rules for Combining Two Units

To combine a unit mapped as al, d1, and 11 and a unit mapped as a2, d2, and 12
into a new unit, which is mapped as a, d, and 1, proceed as follows:

1. Some padding may be required after the first unit, which ends at d1+11, to align
the second unit at d2:

pad = mod(d2-(d1+11), min(al,a2))

(This is calculated relative to min(al,a2), which is the weaker of the two align-
ment boundaries. The proper boundary is taken into account in the calculation
of a and d below.) Again, mod gives the smallest non-negative remainder after
division. The offset of the second unit from the start of the new unit will be

11 + pad
2. The length of the new unit will be
1=11+ pad + 12

3. Compare the alignment boundaries of the two units. If a2 > al (that is, if the
alignment of the second unit is stronger than that of the first), the alignment
boundary of the new unit is that of the second, and the displacement of the new
unit must be calculated from that boundary:

a2
mod (d2- (11+pad), a2)

a-=
d =
If a2 = al, the alignment boundary and displacement of the new unit are those
of the first unit:

al
dl

a
d

nu

Example of Structure Mapping

This example shows the application of the structure mapping rules for a structure
declared as follows:

DECLARE 1 A,
58,
10 C CHARACTER (2),
10 D FLOAT DECIMAL (8),
10 E BIT (2) ALIGNED,
10 F CHARACTER (4),
56,
10 H BINARY (4),
10 1 PICTURE 'V99',
10 J CHARACTER (1),
10 K FLOAT DECIMAL (1);

Figure 5-2 and Figure 5-3 on page 5-14 show the steps involved in mapping the
minor structures B and G, respectively. Figure 5-4 on page 5-15 shows how the
results of mapping the two substructures B and G are combined to map the major
structure A. The storage layout of structure A is shown in Figure 5-5 on

page 5-15.

Chapter 5. PL/I Data Organization and Use S5-13

DATA MAPPING

Name a d | pad offset
C 1 0 2

D 8 0 8 0 2
CD 8 6 10

E 1 0 1 0 10
C,D.E 8 6 11

F 1 0 4 0 11
B 8 6 15

Figure 5-2. Mapping Minor Structure B

As an example of applying the rules for combining two units, consider the step of
combining units C and D in Figure 5-2. C and D have been mapped as

al=1, di=0, 11=2
and
a2=8, d2=0, 12=28

respectively (these values are obtained from Figure 5-1 on page 5-10). No padding
is required:

pad = mod(d2-(d14+11),al) = mod(0-2,1) = ©
D has the stronger boundary (a2 = 8), so
a=a =38

and

d = mod(d2-(11+4pad),a2) = mod(0-2,8) = 6
and

1=11+4+pad +12=2 4+ 04 8 =10

The unit obtained, which consists of fields C and D, will be used as the first unit in
the next step.

Name a d 1 pad offset
H 2 0 2

I 1 0 2 0 2
H,I 2 0 4

J 1 0 1 0 4
H,IJ 2 0 5

K 4 0 4 1 6

G 4 2 10

Figure 5-3. Mapping Minor Structure G

As a second example, consider the step of combining the unit consisting of the fields
H, I, and J with unit K, as shown in Figure 5-3, where

5-14 PL/I User’s Guide and Reference

STORAGE CONTROL

al=2, dl=0, 11=5
and
a2=4, d2=0, 12=4

The padding between the two units is

pad = mod(d2-(d14+11),al) = mod(0-5,2) = 1

Again, the second unit has the stronger boundary (a2 = 4), so
a=a =4

and

d = mod (d2-(11+pad),a2) = wod(0-6,4) = 2

and

1=114+pad+12=5+14+4=10

The resulting unit, G, is used as the second unit in Figure 5-4.

Name a d 1 pad offset
B 8 6 15

G 4 2 10 1 16
A 8 6 26

Figure 5-4. Mapping Major Structure A

Figure 5-5 shows the resulting storage layout of structure A.

Name Alignment Padding Offset Displacement
of Requirement Length after from A from
Item Item (in bytes) Doubleword
C byte 2 bytes 0 6
D doubleword 8 bytes 2 0
E byte 2 bits 6 bits 10 0
F byte 4 bytes 1 byte 11 1
H halfword 2 bytes 16 6
I byte 2 bytes 18 0
J byte 1 byte 1 byte 20 2
K word 4 bytes 22 4

Figure 5-5. Storage Layout of Structure A

STORAGE CONTROL

The following describes how to control the allocation of storage.
Variables of both problem data and program control data require storage. The attri-

butes specified for a variable define the amount of storage required and how it is
interpreted. For example:

Chapter 5. PL/I Data Organization and Use 5-15

STORAGE CONTROL

DECLARE INTEGER1 FIXED BINARY (31) AUTOMATIC;

A reference to INTEGERI is a reference to a fullword that contains a value to be
interpreted as a fixed-point binary integer (see “Data Mapping” on page 5-9).

Storage allocation is the association of an area of storage with a variable, so that the
data item to be represented by the variable can be recorded internally. When
storage has been associated with a variable, the variable is said to be allocated.

The declaration of a variable includes a storage class attribute either by explicit spec-
ification or by default.

The way storage is allocated for a variable, and the degree of control you can exer-
cise over storage, are determined by the storage class of that variable. There are
three storage classes: static, automatic, and based. Each is specified by its corre-
sponding storage class attribute.

You can specify the storage class for level-one variables only. Elements of arrays
and members of structures inherit the storage class of the array or structure.

You cannot specify a storage class for a parameter or a named constant.

The default storage class attribute is AUTOMATIC for internal variables and
STATIC for external variables.

Automatic and based variables can have internal scope only. Static variables can
have either internal or external scope.

Using the STATIC Attribute

The allocation of storage for a static variable depends on the scope of the variable:

¢+ If the variable has the INTERNAL attribute, storage is allocated on the first
entry to the external procedure that contains the declaration.

¢ If the variable has the EXTERNAL attribute, storage is allocated on the first
entry to the first external procedure that contains the declaration.

Storage for a static variable remains allocated until the run unit ends.
When storage is allocated, it is not initialized with zeros or blanks; the program
must explicitly assign any initial values either by assignment statements or by use of

the INITIAL attribute.

Variables declared with the STATIC attribute follow normal scope rules for the
validity of references to them. For example:

5-16 PL/I User’s Guide and Reference

STORAGE CONTROL
MAINPROC: PROCEDURE OPTION<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>