w' 5280

——_—== SC21-7790-1

1 $5280-21

IBM 5280
Distributed Data
System

Assembler Language Reference Manual

Program Number 5708-AS1

Second Edition (April 1981)
This is a major revision of, and obsoletes, SC21-7790-0 and incorporates TNL SN20-9582.

Because the changes and additions are extensive, this publication should be reviewed in
its entirety.

Changes are periodically made to the information herein; these changes will be reported
in technical newsletters or in new editions of this publication,

Use this publication only for the purposes stated in the Preface.

This material may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address below. Requests for copies of 1BM
publications and for technical information about the system should be made to your
IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader’s Comment Form at the back of this publication to make comments about this’
publication. If the form has been removed, address your comments to I1BM Corporation,
Information Design and Development, Department 997, 11400 Burnet Road, Austin,
Texas 78758. 1BM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright international Business Machines Corporation 1980, 1981

This reference manual is intended for programmers who
want to write programs for the IBM 5280 using the
assembler language. The programmer is expected to
either have previous experience using an assembler lan-
guage or be familiar with the 3741 Application Control
Language (ACL).

Using this publication, the programmer should be able to:
® Understand the general organization of main storage.

® Understand the purpose of each control statement and
the proper order for using each control statement in
an assembler program.

® Understand the purpose of each instruction and the
proper order for using each instruction in an assembler
program.

® Write a source program.

@ Load the assembler program product into the IBM 5280
system, respond to the assembler prompts, assemble the
source program, and write the object program to a
diskette.

® Understand the assembly listing and cross reference
listing.

® Debug the assembler source program to get an error-free
listing.

Chapter 1 contains a general overview of how (1) a source
program is written, (2) an object program is executed, and
(3) main storage is organized. It also explains the coding
conventions used in the assembler language and in this
publication.

Chapter 2 discusses such programming concepts as tables,
subroutines, formats, external status, and self-check compu-
tations. It describes data management for input and output
operations.

Chapter 3 describes each control statement.

Preface

Chapter 4 describes each instruction.
Chapter 5 explains how to load the assembler program
product and how to assemble a source program. It describes

an assembly listing and cross-reference listing.

Chapter 6 describes control areas and functions. The func-
tions include optional common functions.

Chapter 7 explains how to use the ACL to assembler lan-
guage conversion program to convert ACL programs.

Appendix A lists the instruction mnemonics in alphabetic
order and gives the op code and format for each mnemonic.

Appendix B describes SCS control codes.

Appendix C describes the computations generated by the
SELFCHK control statement parameters.

Appendix D consists of codes and charts, including
EBCDIC charts and scan codes.

Appendix E lists all error codes for the assembler program
and conversion program.

Related Publications

® /BM 5280 General Information, GA21-9350

® /BM 5280 System Concepts, GA21-9352

® /BM 5280 Functions Reference Manual, GA21-9353

® /BM 5280 Message Manual, GA21-9354

® [BM 3270 Information Display System Component
Description, GA27-2749

CHAPTER1.INTRODUCTIONt 1
Overview of the Assembler Language 1
The Control Statements vt vttt i v o e v 1
The lnstructions« . v i i it vt e e e e, 2
The Source Program Format 2
The Assembler Program 3
Loadingthe ObjectCode 3
Overview of Program Execution 3
Overlapped 1/0 i it i it e et e e e 4
External Status i i it it e e e 4
Datalnput i 4
DataManipulationt 4
DataOutput v ittt e e et e e e e e e e e 5
Overviewof MainStorage ¢t i i v, 5
Logical Device Identifiers 6
Common Functionsot ienennn. 6
Partitions o i e e e e e, 6
Modes of Operation e e e e e e e e 6
Partition Control Areao eunnnn. 8
Indicatorsand Registers 8
Storage e e 1
AddressingMethods 1
PartitionWork Area 12
Main Storage Boundary Alignment 13
Blanks, Constants, and CodingSymbols 14
Symbols Used in ThisManual 15
CHAPTER 2. PROGRAMMING CONCEPTS 17
Tables.............. 17
SystemTables, 17
DataTables e e e e e e e e e e e 18
Label Tables 18
DataTypest 19
Subroutines e 19
The Partition SubroutineStack 20
SubroutineReturns 20
TheStatusLine iunenenen. 22
Nondisplay of the Status Line 23
External Status and Error Conditions 24
Keyboard Data ENtry v v o v v e et e 25
Keystroke Buffering 26
Modesof Entry i 26
Automatic Functions 28
AutoEnter e e 29
AutoDuplicate/Skip e 29
Alternate Record Advance 29
Screen Formats it i e 29
Prompts e e 30
ConstantlnsertData 31
Field Definitions 31
FieldControl ¢, 32
Returning (RG)Exitso enn.. 34
EditFormatsttt 34
Data Directed Formatting 35
Field Modification Indicators 35
Diskette DataManagementc..... 36
LabelUpdatet rmunnnn. 36
Physical and Logical Buffers 36
Automatic Logical Buffering 36

Contents

Pointer 1/O . v . i i e e e e e e e e e e 37
KeyedDataSetso uenurenenennnn 38
SharedDataSetso it i ittt in oo 40
SCSConversionDataSets ., . . .« v v v v v v v v v v vt e e 40
ExtendingDataSets 0.t 40
Self-Check . . v i vttt e e e e e 41
Choosing Your Algorithm e e e e e 44
Using the GSCK Instruction 47
Using the IF .. . CHK Instruction 47

CHAPTER 3. ASSEMBLER LANGUAGE CONTROL

STATEMENTSttt sttt nnnnneaens 49
Format e e e e e 51
Blanks e e e 51
COMMENTS v . v it it e e e e e e e e e e e e e e 51
Initialize the PartitionControl Area 52
START Control Statement 52
.KBCRT Control Statement 53
.EDITC Control Statement c v 56
Declare and Label Data Areas v ... 57
.DCControl Statement, 57
.DCLBR Control Statement 65
.DCLDR Control Statementc..... .. 65
.DCLIND Control Statementc.... 65
.EQUATE Control Statement 66
Set Up and Initialize Device Control Blocks 69
.COMM Control Statementt 69
.DATASET Control Statement 72
SetUpand Label Tables 79
.TABLE Control Statement 79
.LABTAB Control Statement 81
SYSTAB Control Statement 82
SetUpEditFormats:t ennnnnn.. 84
FMTST Control Statemento 85
.FMTFLD Control Statement 85
.FMTEND Control Statement 92
Set Up Screen Control Formats 92
SFMTST Control Statement 97
.SFMTCTL Control Statement 98
.SFMTPMT Control Statement %. . 100
.SFMTCNS Control Statement 102
SFMTFLD Control Statemento .. 103
.SFMTEND Control Statement 106
Field Type Keywordsc.cueeunennn 107
Field Definition Keywords ovvunnnn. 109
Control the Assembly Listingovvvueenn 113
.TITLE Control Statementc.uvou... 113
LEJECT Control Statement ouveonnnn 114
SPACE Control Statement v« v v v v v v o v e o 114
_PRINTON Control Statement ouo.. - 115
PRINTOFF Control Statement 115
Miscellaneous Control v v v v v vttt 115
.INCLUDE Control Statement 116
SELFCHK Control Statement oo v v v v v v 116
XTRN Control Statement v v v vt v e oo 120
LEND Control Statement v v v v o v v m v e ae e 121
CHAPTER 4. IBM 5280 ASSEMBLER LANGUAGE
INSTRUCTIONSo ccnesonaossonsasan 123
Instructions Format i it it e 123

Contents v

Blanks et e . 123

Symbolic Labels . :.,...........00.. e 123
The Instruction Fields 000 . 124
Comments e e e s 124
Storage Specifications0 e R 1)
l.abeled Addressing e aeeaa 126
Base Displacement Addressing e 126

Constant Specifications . . ., vv e, 126
Register and Indicator Specifications 126
Operation TYPES .+ v v v e v v v v v e s nnnserraas s 128
Assembly Time Arithmetic o0 132
Arithmetic Expressions . , oo v v raoa. 132
The ADDR Function, v uv s o eraeaass 133
The LENG Funetion v vhe s enaaas 134
Changing a Declared Length 134
ChangingaDataType s L e . 134
Arithmetic/l.ogical Instructionsc0.....,. 138
Binary Register Arithmetic/Logical 1386
Binary Register Shift/Rotate v 139
Decimal Register Arithmetic . ., v v v s v v v n s 141
Decimal Register Shift ch e e 14B
Decimal Register Zone Modlflcation e .. 148

Branch and Skip Instructions . , . . . e e e .. 149
Unconditional Branch , e 149
Subroutine Call and Return e 151
Full Conditional Branchon Test . ., 164
Short Conditional Branch on Relational Compare 158
Skip on Constant Compare e e e 162
SkiponBitMask ., e 164
Skip on AND/Exclusive-OR Mask 166
LOOP CONtrol . . v v v vt e e et e e 166

Communications Instructionso v v v i 168

Diskette Instructions ., v v i vt e e e 174
Control Operations v« v v v v v v un e e n e 174
Search Operationsot v v v et noaan 188

Printer Instructions it ittt e 192
Error Recovery Procedureso v v 197

Keyboard and Display Instructions 199
Key Entry Instructions v vt v v v v o 199
Keyboard Operations v v vv i v nnsn 204

Data Movement Instructions 229
Load Binary Register00 229
Load Decimal Registerc.0o0.. 231
Store ata Labeled Address 233
Store at Base Displacement Address 235
ExchangeDatauuuuueuunenenenn 236
Convert Register Contentso v e v wvn oo 237
Move Bytes Between Decimal Registers 240
Move Bytes inStorage v v v v v v vt e e 241
Move Bytes Between Storage and Screen 243
Move Formatted Data0ouvunn.. 246

Partition Load and Exit Instructions 248
LoadaPartitioncuivinennunnnn 249
EXitaPartition . o v v v vttt e e 250
The Load Parameterso vv e ennnnnn 250
Partial Overlay v i i i inennnnnn 252
Error RECOVEIY . & v v v v v vt e ettt e e et it e s 252

Table INStructions v v vttt i e 253
Table Read Operations oo evvunnnn 254
Table Write Operationsvoveeennnnnn 255
Table Search Operationso v v v v m v mnnn. 258
Global Tableso enn.. 261

Miscellaneous INStruCtions v v v v v v e n v v v n e 262
Compare Logical Character Strings 262
Generate a Self-Check Digit 263

vi

Modification for Indirect Instruction Execution 263
DuplicateaByteinStorage+ . . . +v v v e v v v v s+ 265

Search Resource Allocation Table e e 265
SetBitswithMaskvvvin v N 266
Setindicatorsc0 0. 266
Exclusive-OR Write, Sklp on AND Mask . Ve e 287

SystemLockandUnlock....................268
Translation vt e e .., 268

CHAPTER 6. HOW TO ASSEMBLE YOUR PROGRAM 271
The IBMB280 Assembler v 21
Loading the Assembler intoaPartition 272
The Assembler Prompts v v v v v v v s vnn. . 272
The Assembler Listing v v v v v v v v v it .. 279
A Printed Assembly Listing oo h b n i aa ..., 279
The Cross-Reference Listing, v vvrvsr,... 280
ErrorMessageso v v v nus e inenonr e a. . 281

CHAPTER 6. CONTROL AREAS :s04..., 283
System Indicators within a Partition,........ 283
System Registers within a Partition 284
ProgramChackErron.............,..........285

Keystroke Counters P -]
Data Entry Keystroke Counter et .. 286
Verify Correction Keystroke Counter e e 286

Common Function Routines ., Ve, . 288

Common Function Error Routines , 288

Keyboard/Display External Status« oo v v v v w v v 302
Restricted External Status Indicator ., s 304
External Status Subroutines e r e e 304
External Status Conditions 305

CHAPTER 7. THE ACL TO ASSEMBLER LANGUAGE

CONVERSIONPROGRAM:cnvv s nnnss . 317
Operationttt 317
Notes About the Converted Program 320

The Format of the Converted Program 320
Labels and Sequence Numbers 320
The Format of the Display Screen ., e 321
Buffers . . . i e e 323
The .FORMAT Control Statement 325
Indexed Branch Instructions 325
The OPEN Instructions v v v v e v v e e 325
The ENTR Instructionsov ... 325
The EXEC lInstructionc..u ... 326
Keyed DataSets. ennnn 326
The ACL Deleted Record Subroutme 326
Physical Buffers., 326
Print Instructions, 327
LeadingBlanks00, 327
FunctionKeys.ottt i i 327
TheMinusKey o v i it i ittt i it 327
ACL Toggle Switchest euanon 329
ConversionChart¢.utvvueeueenua. 329
Control Statementso vvvuunnnnn 330
INStructions v v vttt i e e e e e 331
Indicator Conversioncoteuuenn.. 334

APPENDIX A. MNEMONIC TO OPERATION CODE
CONVERSION CHART AND INSTRUCTIONS FORMAT . . 337

APPENDI!X B. SCS CONTROL CHARACTERS 343
Function Types Available for Use with the Format (Fmt)

Printer Control Character. v v ans 345

Valid Values for the SHF and SVF Set Types. 347

APPENDIX C. SELF-CHECK COMPUTATIONS

APPENDIX D. KEYBOARD CODES AND EBCDIC

CHARTS0t0vtnenns
EBCDIC Charts for Printable Characters

Keyboard Functions: EBCDIC Codes and Bit Numbers

|BM 5280 Mode Keyboard Functions . .
IBM 3270 Mode Keyboard Functions . .

APPENDIX E. ERROR MESSAGES . .
Assembler Errors and Messages

Conversion Program Errors

APPENDIX F.SAMPLE PROGRAM . .
GLOSSARY. . . .+ v v v cvnnnns

INDEXvurnennnnnnnns

Contents

vii

Chapter 1. Introduction

The IBM 5280 is a diskette-based data entry system with partitioned main storage.

It consists of keyboard/display data stations with optional diskette drives, a com-
munications line, and printers. The IBM 5280 operates with multiple tasks, each run-
ning in a main storage partition. It can be used in data entry, remote batch, remote
inquiry, or preprocessing environments. Input source records can be edited, veri-
fied, and placed into main storage registers, tables, or other data areas. In main
storage, the records can be manipulated with arithmetic and logical operations.

The records can then be reformatted and written to a data set. (A datasetisa

group of records stored on a diskette.) The data sets on the diskettes can then be
used as input to a data processing system.

The data stations and 1/0 (input/output) devices are described in the General
Information manual. You should be familiar with these units before you begin pro-
gramming in the IBM 5280 assembler language. You must also be familiar with the
organization of main storage, which is described in this chapter. Preceding the
overview of main storage, this chapter gives overviews of the assembler language and
of program execution. These overviews briefly describe the format of the source
statements, the generation of the object code, how the iBM 5280 executes the object
code instructions, and the major functions the object code can perform.
OVERVIEW OF THE ASSEMBLER LANGUAGE
The IBM 5280 assembler language consists of control statements and instructions.
The control statements define the main storage control and data areas. The instruc-
tions specify the operations and operands. No job control language is necessary for
the IBM 5280.
The Control Statements
In your source program, a control statement is always preceded by a period (.).
Control statement parameters are written with uppercase letters. The control
statements are described in Chapter 3, where they are organized by function:
® [Initialize control areas and /O control blocks (IOBs)
® Declare and label data areas
® QOrganize tables
® Set up screen formats

® Set up edit formats

® Control the assembly listing

Intreduction 1

The Instructions

In your source program, the instructions specify the operations and the operands.
Operations are specified by arithmetic symbols or by uppercase mnemonics. Oper-
ands are specified as immediate data or as the contents of a data area. Data areas
are referred to by a label or by a base displacement address. The instructions are
described in Chapter 4, where they are organized by the types of operation they
perform. The operations include:

Arithmetlc/logicm

® Branch and subroutine

® Communications input and output

® Input and output to diskette or printer
® Input and output to keyboard/display
® Data movement

@ Partition load and exit

@ Table read, write, and search

9

Miscellaneous

The Source Program Format

Source statements are written with a length of 72 positions per line. Parameters

are separated with spaces. You may space freely between parameters, but spaces
are not allowed between a parameter and a parameter value. A control statement
may be written on one or more lines. An instruction, however, must be complete
within the first 72 positions of a line. Comments may be written on a control state-
ment or instruction line, or an entire line may be written as a comment line.

Certain control statements must be written in a prescribed order. This order is
explained in Figure 3-1, Control Statement Summary in Chapter 3.

The control statements and instructions of a source program must be written to a
diskette data set before the source program can be processed by the assembler pro-
gram. Enter each line of the source program as an 80-position record. The
assembler program ignores the data in positions 73-80.

The Assembler Program

The IBM 5280 assembler program reads the source program from the diskette and
uses it to generate the object code. It detects syntax errors in the source control
statements and instructions. It converts each label and base displacement address to
an address relative to the beginning of the partition. It converts each series of
screen format control statements to a string of object code, which is referred to as

a screen format control string. From each source instruction, it generates a 4-byte ,
object code instruction; the first byte always contains the operation code that
determines the operation, and the other 3 bytes contain the operands. An operand
may be immediate data, a format number, a table index, or the address of data to
be operated upon. When the assembler program has converted the source program
to object code, it then writes the object code to a diskette data set. It also gener-
ates an assembly listing that can include:

® Source code and object code

® Syntax error messages

® Storage allocation messages

® Alphabetic cross-reference of symbols used in the source program

The assembly listing can be written to a printer or to a diskette data set. Chapter 5
describes how to load and execute the assembler program.

Loading the Object Code

The object code data set that is written by the assembler program must be loaded
into a main storage partition for execution. The object code for a program can be
loaded into any partition that is of sufficient size. An operator may load the object
code by responding to a load prompt. Or a program being executed in a partition
can have instructions to load another object program into another partition or into
the same partition. See Partition Load and Exit Instructions in Chapter 4 for more
information about loading the object code.

OVERVIEW OF PROGRAM EXECUTION

When the object data set is loaded into main storage partition, control informa-
tion and address pointers are stored in a partition control area. This control infor-
mation is used by the IBM 5280 and the I/O devices during program execution. The
control information is followed (1) by the data areas specified in the source pro-
gram control statements and (2) by the 4-byte object code instructions.

The IBM 5280 executes the object code instructions sequentially until a specified
time limit is expired or until an 1/0 instruction is encountered. When the time limit
expires, the |IBM 5280 suspends processing in that partition. The IBM 5280 then
enters the next partition that has been loaded with an object data set and begins
executing instructions in that partition.

Introduction

If an 1/0 instruction is encountered, the IBM 5280 determines which 1/0 device is to
process the operation. It places control information into the partition control area
and issues the 1/0 instruction to the device. The 1/O device processes the 1/0
operation, using the control information in the partition control area and in the

10B that describes that 1/0 operation. ‘)

Overlappéd 1/0

Certain instructions may specify overlapped 1/0. (The instruction descriptions in
Chapter 4 indicate when overlapped.1/O may be specified.) When the IBM 5280
encounters an 1/0 instruction that requests overlapped 1/0, it issues the instruction
to the appropriate 1/0O device. The IBM 5280 then either: (1) remains in the current
partition and executes the instruction following the 1/0 instruction, or (2) if the
time limit has expired for the current partition, exits the current partition and
executes instructions in the next partition that contains an object data set. The

1/0 device processes the 1/0 operation concurrently with the sequential instruction
execution,

If overlapped 1/0 is not specified, the IBM 5280 issues the 1/0 instruction to the 1/O
device and exits the partition. The instruction following the |1/O instruction is not
executed until the 1/0 instruction is completed by the device.

External Status

While an 1/O device is processing an 1/O operation, it may encounter an external
status condition that requires operator intervention or processing by the I1BM 5280
controller. A four-digit condition code is placed into the 10B; it may also be dis-
played on the status line. These condition codes are described in Chapter 2 under
External Status and Error Conditions.

Data Input

For input via the keyboard/display, the screen format (which you specify with
control statements) determines the prompts that are displayed on the screen and
the display attributes for the screen, such as blink or underscore. The screen format
can specify which characters are valid for each individual field of the input record.
Valid fields of the input record are stored in an 1/O buffer.

For input from a diskette data set, a program instruction can direct the IBM 5280 to
read a data set record. The records in a data set can be accessed sequentially,
directly by relative record number, or directly by key. The input record is stored

in the 1/0 buffer. ‘

Data Manipulation

““Your instructions direct the IBM 5280 to move the record from the 1/0 buffer. You
can move a complete record or individual fields of a record to registers for arithmetic/
logical operations. You can place the data into a table and can search the table
entries for logical comparisons. You cah keep running totals or perform self-check
validation. You can test the contents of a register or a storage byte. You can
perform simple or complex data movement and data comparison operations.

Data Output

Your program instructions and formats also control record output. Records can be
moved from main storage data areas to an 1/0 buffer. An edit format can reformat
the record and insert punctuation. The records can then be written to a display, a
diskette data set, a printer, or the communications line.

OVERVIEW OF MAIN STORAGE

Main storage is organized into areas for system control, tables, common functions,
partitions, and a system work buffer, as illustrated in Figure 1-1.

(X'0000' |
System Control Block
(256 bytes)
X‘00FF’
Absolute | N N Global Tables J-
Addresses ~T (variable length) ~r
. Common Functions Ja
~
- (variable length) -
¢ X000’
4 First Partition J
- (variable length) T
X‘0000'
L Next Partitions
~r (each of variable length) «~r~
Relative) .
Addresses | X"0000
J- Last Partition g
~ (variable length) -
System Work Buffer
(256 bytes)

Figure 1-1. The Organization of Main Storage
The system control block is located in the first. 256 bytes of main storage.

The fields of the system control block have fixed locations. However, all partitions,
and all storage locations within a partition, are accessed by pointers. The pointers,
which are set up and maintained by the IBM 5280, are located in the fixed locations of
the system control block. These pointers make it possible for each of your assembler
source programs to address locations as they relate to the partition, rather than as
they relate to main storage as a whole. These relative addresses remain valid for

any partition into which your program is loaded.

Introduction 5

Logical Device ldentifiers

Logical device identifiers are two-character IDs that allow you to symbolically ad-
dress a resource independently of machine or partition configuration. The logical
device IDs are stored in a resource allocation table, which is created and loaded into
the global tables area by the system configuration portion of the SCP (system

Control Program). The resource allocation table specifies the logical devices that can
be accessed by each partition. Each resource allocation table entry contains both the
logical device ID and the physical address of that device. Whenever a program
instruction requires a device address, you can specify the two-character ID. The IBM
5280 searches the resource allocation table for the physical address of the device with
the matching ID. The IBM 5280 uses the device at that physical address to access the
data set that is available to that device.

The logical device IDs are used only in program instructions. Do not enter a
logical device ID via the keyboard in response to a prompt that requests a physical
address.

Common Functions

The common functions area contains IBM-supplied global subroutines. They can be
accessed by a subroutine call from any partition. The labels and functions of these
subroutines are listed in Chapter 6 under Common Function Routines.

PARTITIONS

There may be up to eight partitions numbered sequentially from zero. There must
be at least one partition for each keyboard. A partition is of variable length, but it
cannot cross a 64 K byte boundary. The number, size, and location of the parti-
tions is. defined at system configuration time. The first 266 bytes of each partition
contains control information in fixed locations from the beginning of the partition.
The next 3840 bytes may be used as needed for indicators, decimal registers, binary
registers, or storage areas. This area is followed by a variable-length storage area.
The last 256 bytes of each partition is used for a work area. Each byte of a parti-
tion is addressable relative to the first byte of the partition. Figure 1-2 shows the
different areas of a main storage partition.

Modes of Operation
Each partition operates in either IBM 5280 mode or IBM 3270 mode (emulation).

See the /IBM 5280 Distributed Data System, IBM 5280-3270 Emulation Reference
Manual, SC34-0384 for specific information concerning this mode of operation.

uo11oNPOo.IIU|

L

*do3 ay3 3e s1 uBIP Y14n0j 8yl pue ‘348| oyl aé aJe sassaippe eAlejea

|ewidapexay ey} Jo sHBIp seayl 3sily 8yl "uoililied abeiolg uieyy e jo uoneziuebiQ sy) °Z-1 2:nbiy

Relative

Addresses
X
; ILO 1 2 3 4 5 6 7 8 9 A B c D E F
000- |]
: Partition Control Area
OOF-
o010- |BRO BR1 BR2 BR3 | BR4 BR5 BR6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111 1112-1127 RO
o011- |BR8 BR9 BR10 | BR11 BR12 BR13 BR14 | BR15 |
1128-1143 1144-1159 1160-i1175 1176-1191 1192-1207 1208-1223 1224-1239 1240-1254 R1
012- |BR16 BR17 BR18 BR19 BR20 BR21 BR22 BR23
R2
N N2
- o™ et
01F-IgRr120 BR121 BR122 BR123 BR124 BR125 BR126 BR127 R15
020-
R16
021-
. R17
. R
T =
OFE- :
R238
OFF-
R239
100-
. ™ ad —
L = ad
i StorageI Area
Work Bluffer
|

1

Indicators

Binary
Registers

| Decimal
Registers

Partition Control Area

The partition control area contains control information that describes the program
that is loaded into the partition and defines the 1/0 devices used in the program.
The IBM 5280 loads this information into fixed locations within the control area,
using information from the common area and from the source program control state-
ments. During program execution, the |BM 5280 uses this control information each
time it enters the partition to determine the partition status, the 1/O status of the
program, and the address of the next executable instruction.

indicators and Registers

Immediately following the partition control area is an area that may be used for
indicators, binary registers, and decimal registers. These bytes may be used in any
desired combination of indicators and registers as described in the following para-
graphs: if some of these bytes are not used for their binary register/decimal
register capabilities, the unused bytes may be used as storage. Figure 1-2 shows
the bytes that may be used for indicators and registers.

Indicators

The first 32 bytes of this area contain 255 one-bit indicators. In your source pro-
gram, the indicators can be represented by the letter | and the indicator number.
They are numbered sequentially from 10 to 1254. The first 100 indicators (10-199)
may be labeled, set, tested, and reset as your source program dictates. These indi-
cators are referred to as program indicators. The remaining indicators (1100-1254)
are set and maintained by the IBM 5280, and are referred to as system indicators.
System indicators have specific meanings assigned to them, as described in Chapter
6 under System Indicators Within a Partition.

You can label program indicators with a .DCLIND control statement. When the
assembler processes the .DCLIND control statement, it assigns each specified label
to an available program indicator.

You can label system indicators with an .EQUATE control statement. The
.EQUATE control statement allows you to specify the number of the indicator you
want assigned to each label. You could use the .EQUATE statement to label pro-
gram indicators also; however, you usually don‘t care which program indicator is
assigned to each label.

Two instructions are available to test indicators. The IFI instruction can test the
indicator and perform a conditional branch. The IFIR instruction tests the indicator
and performs a conditional branch, but it also resets the indicator to 0. Your pro-
gram can use these instructions to test program or system indicators.

You can use the instruction SON to set an indicator (1), or the instruction SOFF
to reset an indicator (0). See Set Indicators under Miscellaneous Instructions in
Chapter 4 for a description of these instructions.

As Figure 1-2 illustrates, the bytes that are used for the indicators are also used for
the first 16 binary registers or for the first two decimal registers. The last bit of the
sixteenth binary register, or the second decimal register, is not used as an indicator.

Binary Registers

The first 256 bytes of this area may be used for up to 128 two-byte binary registers.
Binary registers can be represented by the letters ‘BR’ or ‘B’ followed by the register
number. The registers are numbered sequentially from BRO to BR127. BR0O-BR15
are used as indicators (as described in the preceding paragraphs), and BR16-BR31
are used as system registers. The system registers are used and maintained by the
IBM 5280 during program execution and hold information as described in Chapter 6
under System Registers Within a Partition. You should not assign these registers

to any other purpose. The system registers should always be reserved (see the
RGLT parameter of the START control statement). In your source program you
can access the reserved registers by register number, or you can use the . EQUATE
control statement to assign them labels.

The binary registers that are not reserved by the RGLT parameter of the START
control statement can be labeled and initialized by declare control statements in
your source program. Use the .DC control statement to label and initialize one
binary register, or the .DCLBR control statement to-tabel several uninitialized
binary registers.

Although binary registers are 2 bytes in length, you can access either 1 or 4 bytes
by defining the byte length, in parentheses, following the register number or label.
If you specify a length of 1 byte (BR40(1)), only the rightmost byte of BR40 is
accessed. If you specify a length of 4 bytes (BR40(4)), the 2 bytes of BR40 and »
the 2 bytes of BR41 are accessed. A binary register specification with a length of
4 bytes is referred to as a binary double register.

Binary registers are often used to hold addresses. The instructions to load a binary
register are described in Load Binary Register under Data Movement Instructions in
Chapter 4. In your source program, you can load a 2-byte binary register with:

® An unsigned decimal mteger (0-65535)

® Two EBCDIC characters

Figure 1-3 shows the hex representation of binary data in two binary registers.

High- Low-
Order Order
Byte Byte

s W
BR75 FOE1A

BR76 {C D i O F

Figure 1-3. Binary Registers

Introduction 9

10

The fol‘lowing examples illustrate the different ways you can refer to BR75 if you

assign it the label BREG1.

BR75 .
BR75(2) specifies the full 2-byte binary register, which contains
BREG1 hexadecimal FO1A.
BREG1(2)
BREG1(1) specifies the low-order byte of BR75, which contains
BR75(1) hexadecimal 1A. ‘ '
BR75(4) specifies the 4 bytes of BR75 and BR76, which contain
BREG1(4) hexadecimal FO1ACDOF.

Decimal Registers

The 3840 bytes of this area may be used for up to 240 sixteen-byte decimal
registers. Decimal registers can be represented by the letter R and the register
number. The registers are numbered sequentially from RO to R239. The bytes
within RO and R1 are used for indicators; the bytes within R2 and R3 are used for
system registers. You should not assign RO-R3 for any other purpose. In your
source program, the decimal registers reserved by the RGLT parameter of the
START control statement can be accessed by register number. Or you can use
the .EQUATE control statement to assign them labels,

Decimal registers not reserved by the RGLT parameter of the .START control
statement can be labeled and initialized by the declare control statements in your
source program. Use the .DC control statement to label and initialize one decimal
register, or the .DCLDR control statement to label several uninitialized decimal
registers.

Although a decimal register is 16 bytes in length, a double decimal register of 32
bytes may be specified by defining the byte length in parentheses, following the
register number or label. Decimal registers and double decimal registers are valid

in decimal arithmetic and shift operations, branch operations, and table operations.
All data in decimal registers-is stored in EBCDIC notation. The instructions to
load a decimal register are in Load Decimal Register under Data Movement Instruc-
tions in Chapter 4. In your source program, you can load a 16-byte decimal
register with:

® A positive or negative decimal number (+0 to 10'¢-1)
® Up to 16 EBCDIC characters

The following examples illustrate the different ways that you can refer to R120 if
you assign it the label REGX,

R120 ‘ "
REGX } specifies the 16 bytes of R120.

R120(32)

REGX(32) specifies the 32 bytes of R120 and R121.

The contents of a decimal register may be positive or negative; the sign is deter-
mined by the zone half of the byte in the units position (byte 15) of the decimal
register. |f the register contains a positive number, hex F is in the zone half; if it
contains a negative number, hex D is in the zone half. Figure 1-4 illustrates the sign
control position in a decimal register.

Sign Control Position

<
Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
zone ------------------------------ LI ERCEE Y P eoeePpooscefens o
Digit

Figure 1-4. The Sign Control Position in a Decimal Register

The zone halves of the bytes are used for sign control; however, no checking is done
by the IBM 5280 to determine whether the register contents are numeric or alpha-
betic.

Storage .

Following the registers is a variable-length area of storage. The size of this area is the
size of the partition, less the 256 bytes of the partition control area and the bytes
used for indicators and registers. The instruction object code is stored in this area,
with the buffers, tables, formats, messages, device 10Bs, control tables, data, and
data structures necessary for the program.

Addressing Methods
In your source program, each byte of storage within a partition can be addressed
directly, using an assigned label, or indirectly, using a displacement and a base
address.
Direct labeled addressing of a storage location is accomplished by using a declare

control statement to assign a label to a storage area of any length. To access this
labeled area in a source program instruction, the following format is used.

label [(length)]
where:

label is the assigned label from the declare control statement. The label
addresses the leftmost byte of the storage area.

length is the length, in bytes, of the storage area. If length is not specified in

the instruction, the length defaults to the length assigned to that area by the
declare statement.

Introduction

11

12

Indirect base displacement addressing of a storage location is accomplished by
specifying in the instruction (1) the location of the base addres and (2) the dis-
placement from that base address at which the storage area is located. The length
may be specified for many, but not all, instructions. To access a storage location
by indirect addressing, one of the following formats is used.

[displacement] ([length], BRn)
[displacement] (BRn)

where:

displacement is the number of bytes (0-255) from the base address at which the
storage area is located. If the displacement is not specified, it defaults to 0.

length is the length, in bytes, of the storage area. The instruction descriptions
indicate whether or not length is allowed in the address. If a length specification
is allowed, it must be followed by a comma. If length is omitted from an instruc-
tion that allows a length specification, the comma must be retained. If the
instruction does not allow a length specification, the comma must not be
included in the address.

BRn is a binary register that contains the base address. The base address is rela-
tive to the start of the partition.

When a source program instruction that has an indirect storage address is
assembled, the displacement is added to the base address in the binary register.
The result is the relative address of the leftmost byte of the data area. This address
is placed in the object code.

Examples:

Direct: BIN1 = STOR1(2)
The contents of the byte at STOR1 and the next byte (length is 2)
are loaded into the binary register labeled BIN1.

Indirect: BIN2 = 1(2, BREG)
The displacement of 1 is added to the address stored in the binary
register labeled BREG. The contents of the byte at the resulting
address and the contents of the next byte (length is 2) are loaded
into the binary register labeled BIN2.

Partition Work Area

Following the variable-length storage area is a 256-byte work area. This area is set
up by the assembler, and it is used by the IBM 5280 during program load and
program execution. Your assembler program should not access or change the bytes
of this work area.

MAIN STORAGE BOUNDARY ALIGNMENT

Main storage is divided by several types of boundaries. Each type of boundary
encloses an area of a specific number of bytes. Many data areas must begin on a
certain type of boundary. Figure 1-5 represents a main storage partition and

points out the different types of boundaries. The system configuration portion of

the SCP begins each partition on a 256-byte boundary and measures the length
of each partition in multiples of 256 bytes.

The address of a
The address of a

0 1 2 3 4 5 6 7 8 9 A B c D E F
000- ‘
Partition Control Area
00F:
010. |BRO BR1 BR2 BR3 | BR4 BRS BR6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111 1112:1127
011. |BR8 BR9 BR10 | BR11 | BR12 BR13 BR14 BR15
1128-1143 1144-1159 11601175 1176-1191 1192-1207 1208-1223 1224-1239 1240-1254
012- |BR16 BR17 BR18 BR19 BR20 BR21 BR22 BR23
(-

X‘0126’ is on a 2-byte boundary -

X'0124' is on a 2-byte and 4-byte boundary.
L——— X’0120' is on a 2-byte, 4-byte, and 16-byte boundary .

X'0100’ is on a 2-byte, 4-byte, 16-byte, 128-byte, and 256-byte boundary.
X'0000’ is always on a 256-byte boundary.

2-byte boundary ends in 0, 2, 4,6, 8, A, or C.

4-byte boundary ends in 0,4, 8, or C.

The address of a 16-byte boundary ends in 0.

The address of a 128-byte boundary ends in 00 or 80.

The address of a 256-byte boundary ends in 00.

Figure 1-5. Main Storage Boundaries

When you declare a register in your source program, the assembler places it on the
next sequential boundary appropriate for the type; it places a binary register on a
2-byte boundary and a decimal register on a 16-byte boundary. It places all other
data types on 1-byte boundaries unless you specify a boundary. When you are build-
ing a storage structure, you may want to specify a boundary. When the IBM 5280
assembler processes your source control statements and sets up these data areas, it
skips over any storage bytes between the current location and the next appropriate
boundary in order to observe the boundary restrictions. These bytes cannot be
used by your program. Your assembly listing indicates how many storage bytes are
lost due to boundary alignment. See the examples following the description of the
.DC control statement in Chapter 3 for an illustration of boundary alignment.

Introduction

RO

R1

R2

13

14

BLANKS, CONSTANTS, AND CODING SYMBOLS

In your source program, you may specify optional blanks before or after an equal
sign, arithmetic operator, or parenthesis. Blanks may follow a comma but must not
precede a comma. Blanks are not allowed within a field; however, one or more
blanks must separate fields if no other delimiter is used.

A constant may be specified as a decimal value, a hexadecimal value, a binary value,
or a character. A constant may also be equated to a label; the label can be specified
in an instruction that accepts a constant. Decimal digits are simply written as digits.
Binary, hexadecimal, and character data are prefixed by a capital letter (B, X, and

C respectively) and enclosed in single quotes. For character data the capital C is
optional. Do not leave a blank between the capital letter and the first quote.

n Decimal digits

XV Hexadecimal digits; | = O-F

Bl Binary digits; | =10r 0

c'r EBCDIC characters; | = any valid EBCDIC character

To specify the single quote character, use two quotes (C‘IT"'S’).

Symbols Used in This Manual

The symbols used in this manual are of two types, syntax symbols and statement
symbols. The syntax symbols are used to illustrate syntax and are not to be used in
writing your source programs. The statement symbols are a part of the language
and must be coded as shown.

Syntax Symbols

Syntax symbols are not to be coded in the source program.

Symbol

[1]

9

BRn

Rn

BRa
Rb

constant

Definition

Brackets enclose optional item(s) to be used or not, at your
discretion.

Braces enclose two or more items from which you must select one.
Three dots indicate that the preceding can be repeated.

Lowercase letters represent information you must supply. (You
must substitute your own values for the lowercase terms.)

Represents an unsigned decimal number.
Represents a signed decimal number.

Represents a range of numbers from which one number can be
selected. (The dash is not coded.)

Represents an indicator, which can be referred to by label or
number.

Represents a binary register, which can be referred to by label or
number.

Represents a decimal register, which can be referred to by label or
number.

When more than one register may be used in a statement, the letters
a, b, and ¢ may replace the n to more clearly demonstrate the posi-

tions in the statement that the different registers may occupy.

Represents any form of constant as described in this chapter.

Introduction

15

16

Statement Symbols

Statement symbols must be used in an assembler source program as shown in the
syntax illustrations:

Symbol

LABEL

Definition

Colon is used after symbolic labels.

Semicolon delimits statements.

Point, or period, begins control statements.

Equal sign causes the value of the data area on the left of the equal
sign to be changed according to the value of the data area on the
right of the equal sign.

Parentheses enclose certain parameter values.

Single quotes enclose literals and are used to specify numeric data
other than decimal. The use of single quotes is interchangeable with
the use of capital C and single quotes. For example, C'abc’ and ‘abc’
produce the same results.

Comma separates parameter values.

Uppercase letters are assembler language and must be coded as
shown.

Chapter 2. Programming Concepts

This chapter discusses various data areas that are set up according to your control
statements and are used by the IBM 5280 during program execution. The discus-
sions often refer to the control statements that generate the areas and the instruc-
tions that use the areas during program execution. Each control statement is
described in Chapter 3; each instruction is described in Chapter 4.

TABLES

Tables play an important part in IBM 5280 assembler programming. Two kinds of
tables may be set up and used by your program: data tables, which are set up by
.TABLE control statements, and label tables, which are set up by .LABTAB
control statements. Also, the assembler builds system tables, which are used by the
1BM 5280 during program execution. These system tables allow you to refer to a
data area with a label; the IBM 5280 converts the label to an index that points into
a system table and locates the address and parameters of the area.

System Tables

When the assembler processes control statements that set up as tables, formats, or
prompts, it places the address of each table, format, or prompt in a table. This table
of addresses is a system table, and is used by the IBM 5280 during program execu-
tion. System tables are stored in the partition storage area. You can specify the ad-
dress of the system tables by using the .SYSTAB control statement in your source pro-
gram. Otherwise, when the assembler encounters the .END control statement, it
stores the system tables at the addresses immediately following the last address that
contains program object code. The address of each system table is stored in the
partition control area. The control statements that generate a system table argu-
ment are listed below, with the system table into which the argument is entered.

System Table Control Statements

Table control .TABLE

Edit format control .FMT series (each series = 1 argument)
Screen format control .SFMT series (each series = 1 argument)
Prompt control .DC TYPE=PRMT

Duplicate and store control .DC TYPE=MDUP

Programming Concepts 17

When a source instruction refers to a prompt, table, duplicate field, store field, or
format, the instruction specifies only the label. The IBM 5280 uses this label to find
the system table entry; the system table entry provides the address and other control
parameters. The system table entries are stored sequentially, in the order they
occur in the source program. Except for the prompt system table, the first entry

in a system table is at index O; for the prompt system table, the first entry is at
index 1. The assembler places the table index into the object code instruction.

This method requires only 8 to 10 bits of the 4-byte object code to provide the
address and parameters of the requested data area. The .SYSTAB control state-
ment description in Chapter 3 describes how to specify the labels and addresses of
the system tables.

Data Tables

Contiguous fields of related data can be referred to as a data table. In your source
program, you can allocate and initialize the fields of a data table by using .DC
control statements. After you have allocated the fields, you must use the .TABLE
control statement to structure the fields into a table. The first argument in a data
table is at index 1. You may have up to 128 tables within a partition. You must
include one .TABLE control statement for each table in your source program.

You can use instructions in your source program to request that the IBM 5280
search, read, or write the entries in a data table. See Table /nstructions in Chapter 4
for a description of these instructions.

Data tables can be fixed length or variable length, according to your .TABLE control
statement. See the .TABLE control statement definition in Chapter 3 for an
example of .DC and .TABLE control statements that build a variable length table.

Label Tables

Label tables are tables that contain addresses; they are used by your program to
make indexed branches and indexed subroutine calls. In your source program you
use a .LABTAB control statement to set up a label table.

The parameters of the .LABTARB control statement specify the labels of the sub-
routines or instructions you wish to enter into the label table. The address of the:
first label specified in the .LABTAB statement is entered at index 0 in the label
table, the address of the second label is entered at index 1, and so on. When you
code a GOTAB or CALLTB instruction, you specify (1) the label of the label table
and (2) the label table index of the subroutine or instruction you wish to execute.

The IBM 5280 makes similar indexed branches through the label table you use for
your external status condition subroutines, if you code a separate subroutine to
handle each condition. (See Keyboard/Display External Status in Chapter 6.) You
specify this label table in the ETAB parameter of the .KBCRT control statement.

DATA TYPES
Each source instruction and control statement requires specific types of data to be
used as operands. For some operands only one type of data is accepted. For
example, the format operand of the ENTR instruction requires a screen format
specification; no other type of data is accepted. For other operands more than one
type of data may be specified. For example, the operand of the ZONE instruction
may be specified as a decimal register or as a constant.

The following data types can be used in the instruction and control statement
operands.

® Label or number of an indicator

® Label or number of a binary register

® Label or number of a decimal register

® Label of an instruction

® Label of a data storage area (from a STOR type .DC)
® Label of a prompt (from a PRMT type .DC)

® Label of a duplicate area (from a MDUP type .DC)
® Label of an edit format

® Label of a screen format

® Number of a data set

® Index of a table

® Constant

SUBROUTINES

A program can call any subroutine that is stored within the partition. Calls to
routines in the common function area are discussed under Common Function
Routines in Chapter 6.

Two source instructions can be used to call a subroutine: the CALL and CALLTB
instructions. These instructions are described in Chapter 4 under the Subroutine
Call and Return instructions. A CALL instruction must include a label or a binary
register, or both. If the CALL instruction includes a label, a normal call is made to
the statement at the specified label. If the CALL instruction specifies a binary
register and no label, a call is made to the address contained in the register. If the
CALL instruction specifies a binary register and a label, the contents of the binary
register are added to the address of the specified label, and a branch is made to the
resulting address.

Programming Concepts

The CALLTB instruction is used to make an indexed branch through a label table.
The label table must be set up and labeled by a .LABTAB control statement. You
include this label table and a binary register when you write the CALLTB instruc-
tion. The binary register contains the index of the subroutine you wish to call. The
first entry in the label table is at index 0. When the CALLTB instruction is
executed, the call is made to the subroutine at the specified index into the label
table. If you use a separate subroutine for each external status condition, the IBM
5280 uses this method to call the appropriate external status subroutine. The IBM
5280 uses BR23 to hold the index into the external status subroutine label table.

The Partition Subroutine Stack

Whenever a subroutine call instruction is executed, the address of the next sequen-
tial instruction is assumed to be the return address and is stored into the partition .
stack. When an external status condition is detected during an 1/O operation, and
the 1BM 5280 branches to the external status routine, it checks byte 13 bit 5 of the
DATASET IOB. If the bit is set; the address of the I/O operation will be used as the
subroutine return address and is stored into the partition stack. Otherwise the ad-
dress of the next sequential instruction following the 1/0O operation will be used as
the return address. The partition stack is a system table with 2-byte entries, located in
partition storage. You may use the .SYSTAB control statement in your source
program to specify the address and size of the partition stack. Otherwise, when the
assembler encounters the .END statement it locates the beginning of the partition
stack in the address following the last address that contains program object code or
system tables. In either case, it stores the address of the beginning of the partition
stack in BR18, which is referred to as the stack pointer. When the first subroutine
call is executed, the 2-byte return address is placed in storage at the address indi-
cated by BR18. Then the address in BR18 is incremented by two, so that it points
to the next available stack entry. If another call is executed before a return is
made to the first call, the return address for the second call is placed in the address
indicated by BR18, and BR18 is incremented by two. In this way, you can have
nested subroutine calls. You must remember, however, that each nested call adds
another 2-byte entry to the partition stack. If the partition stack extends beyond
the end of the partition, a program check error results.

Subroutine Returns

External status subroutine returns depend upon the particular external status
condition and are described under External Status and Error Conditions in this
chapter.

Other subroutines end with a RETURN instruction. When this instruction is exe-
cuted, the content of BR18 is decremented by two so it points to the last address
entered into the partition subroutine stack. If the RETURN instruction includes a
binary register, an indexed return is made. The content of the binary register is
added to the address pointed to by BR18, and control returns to the resulting
address.

Figure 2-1 illustrates how the partition stack and stack pointer are used during sub-
routine calls and during returns.

Yes

Go to the subrou-
tine stack address
specified by BR18

Write the return
address (of the
next sequential
instruction) in the
subroutine stack

Increment BR18
by 2

L

Branch to the
subroutine

©

Get an
instruction
No
Is
his a
Yes t N
RETURN g
Decrement Execute the
BR18 by 2 instruction

|
Go to the subrou-
tine stack address
specified by BR18
|
Return to the
address stored in
this subroutine
stack position

Figure 2-1. Overview of Subroutine Calls and Returns

Programming Concepts 21

THE STATUS LINE
The top line of the data station screen normally displays the status line. The IBM

5280 maintains status line fields, which communicate status information to the
operator. Figure 2-2 illustrates the status line fields.

Position

123456789 1011121314 1516 17 18 19 20 21 22 23 24 25 26 ... 32

Mode

P cccc S R R H H Normal Entry

P cccc S R R>HH Normal Entry,
Insert Mode

P CCCC-EEE E — S R R H H Keystroke
Error

P CCCC-EEE E - L L N NNNNNNN DD ...D 1/0 Error

Key

P is the partition number.

C is the current position counter.

E is the error or condition code.

S is the field shift.

> is the insert mode symbol.

R is the positions remaining in the field.

H is the hex value of the current position.

L is the logical device ID.

N is the program name (first 8 characters).

D is the data set name.

Figure 2-2, The Status Line Fislds

The Partition Number

The partition number is maintained only during an attach or detach operation.
Upon completion of a successful attach operation, this status line field contains
the partition number of the attached partition. Upon completion of a successful
detach operation, this field contains the partition number of the foreground parti-
tion that is permanently associated with the keyboard.

The Current Position Counter

The current position counter is maintained only during the processing of an

ENTR command. This status line field contains the value of the position counter.’

The value is automatically updated with each keystroke. The value reflects the
current position, relative to: (1) the beginning of the 1/0 buffer, (2) the first posi-
tion on the screen, (3) the first position of the record, or (4) the first position of
the field. The CNTR parameter of the .KBCRT control statement determines
which value is maintained in the counter.

The Error Code

- The error code field of the status line contains the error code of the current error.
It is maintained by the I1BM 5280 to reflect all errors. |f your program issues a key-
board operation to send an error code to the status line, you may place the code in
positions 1-65 of the status line; however, the code is normally placed in positions
3-11.

The Field Shift

The field shift position of the status line is maintained only while an ENTR com-
mand is being processed. It contains the symbol that reflects the keyboard shift
for the current field or subfield.

The Insert Mode Symbol

The insert mode symbol is maintained only during the processing of an ENTR
command in insert mode, after the operator has pressed the Ins (Insert) key.

The Positions Remaining in the Field

This status line field is maintained only while an ENTR command is being processed.
It reflects the number of field positions remaining to be entered in the current input
field. If the value is greater than 99, two asterisks (**) are contained in the status
line field. .

The Hex Value of the Current Position

The hex value is maintained on the status line only while an ENTR command is
being processed. It is the hex value contained in the I/O buffer position that corre-.
sponds to the current position of the cursor.

Nondisplay of the Status Line

Certain applications may require the use of every line on the screen. For these
applications, the DISPEX instruction can remove the status line from the screen so
the top line can be used to display data or prompts, or both, The IBM 5280 main-
tains the status line whether or not it is displayed on the screen. 1f an error occurs
when the status line is not being displayed, the DISPST instruction can temporarily
replace the current top line with the status line in order to communicate error
information to the operator, Or the FUNC parameter of the .KBCRT control state-
ment can specify that the IBM 5280 determines whether the status line is being dis-
played whenever an error occurs; if it is not, the IBM 5280 displays it, then returns
the top line when the error'is reset. The data from the top line is not lost and may
be returned to the screen after appropriate error recovery has been accomplished.

The DISPEX and DISPST instructions are discussed under Keyboard Operations in
Chapter 4. The .KBCRT control statement is discussed under .KBCRT Contro/
Statement in Chapter 3.

Programming Concepts

24

EXTERNAL STATUS AND ERROR CONDITIONS

When an |/O error condition or a condition that requires"operator intervention
occurs, the |BM 5280 generates an appropriate condition code and places it into the
10B of the data set that was being processed when the condition occurred. The
condition code is made up of four digits that describe the condition:

@ Device reporting the condition (first digit)

® (Category of the condition (second digit) -

® Condition number (third and fourth digits)
The device digits are:

Digit Device

{BM 5280 controller
Keyboard/display

Printer

Diskette

SNA communications access method
BSC communications access method
Program

QO HWN=0

The category digits are:
Digit Device

Communications completion codes
Operator intervention required
Hard error (has not been retried)
Error has been unsuccessfully retried
10B error
Soft error (has been retried)
Exception condition
' Warning message, program execution may continue
Reserved
Software termination

OO NI HLWN-=Q

The last two digits of the condition code are the condition number. The condition
number specifies the condition and varies depending upon the device and category.
All condition codes and messages will be described in the Message Manual.

The following information concerning the condition is placed into system binary
registers within the partition when the condition occurs.

Register Information

BR19 Used only with keyboard/display external status, this register con-
tains the relative address of the field in the 1/0O buffer that holds the
current record. The address is relative to the beginning of the parti-
tion and is valid only when BR21 contains a field specification.

BR20 Used only with keyboard/display external status, this register con-
tains the absolute address of the current field in the screen refresh
buffer and is valid only when BR21 contains a field specification.
The screen refresh buffer is located within the keyboard/display unit
and holds the data that appears on the screen.

BR21 Used only with keyboard/display external status, this register con-
tains a control specification or a field specification. If it contains a
field specification, it also contains the length minus one of the
current field in the 1/O buffer. See Keyboard/Display External
Status in Chapter 6 for the format of the contents of this register.

BR22 Used with all external status except keyboard/display, this register
contains the relative address of the last IOB to report external status.

BR23 Used with all external status, this register contains the index of the
current external status condition. This index can be used by your
program as the index into your external status subroutine label table.
Except for keyboard/display external status, this index is the cate-
gory digit from the condition code. See Keyboard/Display External
Status in Chapter 6 for information about this index for keyboard/
display external status.

If you write subroutines to handle certain external status conditions, such as the
keyboard/display external status conditions, your program may use the data in
these registers. Do not change the data in the system registers.

KEYBOARD DATA ENTRY

Keyboard entry of each input record is initiated with an ENTR command. The
input record is formatted according to the screen format. The operator enters
characters into the fields of the input record, and the IBM 5280 makes character and
edit checks to make sure the characters are valid for the field, according to the speci-
fications in the screen format. Data keys and many function keys sound a response
click from the keyboard. The characters, as they are entered, are stored into the

1/0 buffer and are displayed on the screen. For enter, update, and verify modes a
keystroke counter is incremented when each character is entered. (See Keystroke
Counters in Chapter 6 for more information.) The cursor is moved to the screen
position where the next character is to be entered. The operator can move the
cursor forward and backward within the current record.

Programming Concepts

25

“The status line displays data entry information such as the current keying position,
the number of positions remaining to be filled in the current field, and the key-
board shift for the field.

The operator can select functions, such as duplicate or skip, by pressing the appro-
priate function keys. You can let the IBM 5280 process keyboard functions, or you
can include your own routines to handle these functions. See the Functions Refer-
ence Manual for more information about the keyboard functions.

Keystroke Buffering

Keystroke buffering gives the application program the ability to protect the operator
from 1110 message codes during interrecord and return-to-program processing by
postponing the processing of keys“pressed during those time periods. Across record
boundaries, the KB/CRT MPU can at a user option buffer keystrokes in a main
storage buffer until processing on a new ENTR command begins. During return-to- '
program, the KB/CRT MPU can at a user option buffer keystrokes in a main storage
buffer until processing on a RESUME operation begins.

For a further description of keystroke buffering, see the /BM 5280 Functions Refer-
ence Manual, GA21-9353.

Modes of Entry
The IBM 5280 supports three basic modes for data entry:
® Enter mode, for initial data entr\/
® Update mode, for inspection and modification of previously entered data

® Verify mode, for having data checked for accuracy and making necessary
corrections

In addition to these basic modes, rerun mode or display mode can be selected by
your program to perform special functions. You can select one of these five modes
with the MODE parameter of the .KBCRT control statement. (See .KXBCRT Con-
trol Statement in Chapter 3.) Insert mode or field correct mode is automatically
selected by the IBM 5280 when the appropriate keystroke is entered.

Enter Mode

When the IBM 5280 executes an ENTR command in enter mode, each data character
is displayed on the screen and placed into the 1/0 buffer as it is entered. Prompts,
constant inserts, duplicate fields, skip fields, and display attributes are displayed
when the cursor moves to the first position of the field or to the attribute position;
these positions are specified in the screen format. Constant inserts are also placed
into the 1/0 buffer as they are displayed. When the complete screen format has
been processed, the 1/0 buffer holds the constant inserts and the newly entered
data.

Update Mode

When the IBM 5280 executes an ENTR command in update mode, prior instructions
in your program must have placed a previously-entered record into the /0 buffer,

The IBM 5280 displays prompts, display attributes, and the contents of the 1/0
buffer. The display attributes and prompts are determined by the screen format,
The operator can enter a new data character into any record position to replace the:

- data character currently in the record. The new data character is displayed on the
screen and placed into the 1/O buffer as it is entered. When the operator has
completed all necessary modifications, the 1/O buffer contains the original data in
all positions that were not modified and the new data in the positions that were
modified.

Verify Mode

When the IBM 5280 executes an ENTR command in verify mode, prior instructions in
your program must have placed a previously-entered record into the |/O buffer. The
I1BM 5280 displays the prompts and display attributes as for enter mode, according to
the screen format. It does not display the contents of the I/O buffer. As the operator
enters a data character into a record field position, it is verified against the contents
of the corresponding field position in the 1/0O buffer. If the newly entered

character matches the original character, which is in the 1/0 buffer, it is displayed
on the screen and the cursor moves to the next position. If the newly entered
character does not match the original character, the cursor remains at the character
position, the original character and the remainder of the field in the 1/0 buffer are
displayed, and a verify mismatch error is reported. The operator must press the
Reset key, then enter either the character displayed above the cursor or reenter

the character that caused the mismatch. If the character that is displayed above the
cursor is entered, the remainder of the field is removed from the screen and the
cursor moves to the next position. If the character that caused the mismatch is
reentered, that character is displayed above the cursor and replaces the original
character in the 1/0 buffer. A verify-correction keystroke counter is incremented
(see Keystroke Counters in Chapter 6) and the cursor moves to the next position.

If the character entered is neither the original character nor the character that
caused the mismatch, another verify mismatch error is reported. |If the operator
backspaces over a data position on the screen, the position is blanked and must be
reentered and reverified.

Rerun Mode

When the IBM 5280 executes an ENTR command in rerun mode, no data or prompts
are displayed on the screen. The status line counters, keyboard shift, and hex
display information is not maintained. The entire screen format is processed,
except that a clear-screen function that is specified at the start or end of the format
is ignored. Character and field edit checks are bypassed. Auto duplicate, auto skip,
and main storage duplicate and store functions are performed if the auto-dup/Akip
switch is turned on or if the field has the AA (absolutely automatic) attribute speci-
fied in the screen format. Constant inserts are placed into the 1/O buffer. When

~an RG (return to program) exit specification is encountered in the format, the
appropriate external status condition occurs.

Rerun/Display Mode

When the 1BM 5280 processes an'ENTR command in rerun/display mode, the prompts,
display attributes and the contents of the 1/O buffer are displayed as for update

Programming Concepts

mode. The status line information is maintained. Character and field edit checks
are bypassed. Auto duplicate, auto skip, main storage duplicate and store, and RG
functions are performed as for rerun mode.

Rerun mode requires less execution time than rerun/display mode, and is the mode
usually selected for the rerun function. Rerun/display mode can be used when an
error occurs when a record is being processed in rerun mode, and the operator
must inspect the record data order to recover from the error.

Display Mode

When the IBM 5280 executes an ENTR command in display mode, prior instruc-
tions in your program must have placed a previously-entered record into the /O
buffer. The |BM 5280 displays prompts, display attributes and the contents of the
1/O buffer. The display attributes and prompts are determined by the screen format.
The cursor is not displayed, and no data can be entered. |f a buzz or clear-screen
function is specified at the end of the screen format, it is ignored. When the IBM
5280 has processed the complete screen format, the external status condition for
record advance (condition 6) occurs.

You can use display mode to inspect the prompts and display attributes of a screen
format. Do not confuse display mode with rerun/display mode.

Insert Mode

Insert mode is initiated when the operator presses the Ins key. Insert mode is valid
only when an ENTR command is being processed. When the Ins key is pressed, the
insert mode symbol is displayed on the status line. When the operator presses a
data key, the data character is inserted into the field at the current cursor position.
All field positions to the right of the cursor, and the cursor and character above the
cursor, are shifted one position to the right. Insert mode is canceled when the
operator presses the Reset key.

Field Correct Mode

Field correct mode is selected by the IBM 5280 when it is processing an ENTR in
verify mode and the operator presses the unshifted Corr key. The cursor moves to the
first position of the field, and the field is filled with blanks in the 1/O buffer and

on the screen. The operator can then enter data into the entire field as for enter
mode. The character and field edit checks are performed. When the cursor exits

the field in the forward direction, the IBM 5280 returns to verify mode. The field
can now be verified.

AUTOMATIC FUNCTIONS

While the IBM 5280 is processing formatted data entry, certain functions may be
initiated automatically as specified in your application program. These functions
include auto enter, auto duplicate/skip, and alternate record advance. You can
activate these automatic functions by including the FUNC parameter of the
.KBCRT control statement. You can activate automatic functions by providing
support in your program for the Auto Enter and Dup Skip keys. See the
Functions Reference Manual for a detailed description of all keyboard functions.

Auto Enter

If you specify auto enter in your .KBCRT control statement, the IBM 5280 automati-
cally performs a record advance function when the operator enters the last input position
of arecord.

If you do not specify auto enter, the IBM 5280 sets the system in the awaiting record
advance state when the operator enters the last position of a record. The operator
must then press the Enter key or Rec Adv key to initiate a record advance function.

Auto Duplicate/Skip

If you specify auto duplicate/skip in your .KBCRT control statement, the IBM 5280
automatically processes any field that is defined in your program as an auto dupli-
cate or auto skip field. When the cursor moves to the first position of an auto dupli-
cate field, the IBM 5280 duplicates data into the field from the area specified by
your program. (See Field Definitions later in this chapter for more information
about duplicate fields.) When the cursor moves to the first position of a skip field,
the IBM 5280 fills the field with blanks and then moves the cursor to the first
position of the next field.

If you do not specify auto duplicate/skip in the .KBCRT control statement, a dupli-
cate field or skip field is processed as for a manual field. In order to initiate the
duplicate or skip function, the field must have also been specified as absolutely
automatic in the program, or the operator must press the Dup Skip key. (Software
must provide support for this key.)

Alternate Record Advance

If you specify alternate record advance in your .KBCRT contro! statement, when
the operator presses the Enter key or Rec Adv (Record Advance) key the processing
of the current record stops. Any specifications for fields or screen control that is
defined in your program for positions between the cursor position and the end of
the record are ignored.

If you do not specify alternate record advance, any specifications for fields or
screen control defined for positions between the cursor position and the end of
the record are processed. Input fields are processed as though a > (Field Advance)
key were pressed for each field.

SCREEN FORMATS

A screen format is a series of source program control statements that define each
field of a record to be entered via the keyboard. The control statements also define
the prompts and display attributes that appear on the screen while the record is
being entered. The series of control statements must begin with a SFMTST state-
ment and must end with a . SFMTEND statement. You can write up to 256 screen
formats for each partition.

Programming Concepts

30

When the assembler processes each series of control statements, it generates a string
of object code referred to as a screen format control string. The assembler stores
each screen format control string in the partition storage area, and places the address
of each string in a system table.

During program execution, formatted key entry is initiated by a key entry com-
mand, the ENTR command. Each ENTR command specifies the format to be used
to enter the record. The IBM 5280 searches the system table for the address of the
screen format controlstring generated from the specified format. The IBM 5280 then
processes the screen format control string in the same order that the source program
control statements were written,

Besides the .SFMTST and .SFMTEND control statements, the screen format control
series includes the following control statements:

Control
Statement Purpose

SFMTPMT To specify prompts

SFMTCNS To specify constant insert data
SFMTFLD To define each field and subfield of the record
SFMTCTL To specify keyboard, screen, and format control

The sequence of a screen format for a typical key entry job could begin with a
statement to display a prompt requesting the operator to enter a field of data.

The next format statement could define the valid characters that the operator may
enter into the field. As the operator enters the field, the IBM 5280 checks each input
character to make sure it is valid according to the screen format statement that
defines the field. Each valid input character is placed into an 1/0 buffer. The next
screen format statement could move the cursor or the pointer in the 1/0 buffer

that contains the current record. Then another prompt could request the operator
to enter the next field.

When all the specifications of a screen format are processed, the complete input
record is in the current record buffer. The I1BM 5280 must then execute object code
instructions to move the data from the current record buffer to registers or other
storage areas. When the IBM 5280 has moved the data from the buffer, another
ENTR may be issued, with the same'or a different screen format specification.

Prompts

In your source program, you label and initialize each prompt by using a .DC
(declare) control statement. You must specify PRMT for the TYPE parameter and
define the prompt message with the INIT parameter. Then, when you write a
screen format using the .SFMT control statements, you specify the label of the
prompt with a .SFMTPMT statement.

When the assembler processes your source statements, it stores the prompt labels
in a system table. It stores the system table index for the prompt in the screen
format control string.

During program execution, when the IBM 5280 encounters a prompt index while
processing a screen format control string, it finds the address of the appropriate
prompt at that index into the system table. It takes the prompt message from the
storage address and displays it on the screen. The prompt message is not inserted
into the current record buffer,

You can specify the screen position where each of your prompts are displayed. A
prompt can be displayed in the standard fixed prompt location, which begins in
column one of line two. You can specify a different line for the fixed prompt posi-
tion by including the FPLC parameter of the .KBCRT statement. Each current
fixed prompt replaces the previous fixed prompt on the prompt line. You can also
have the prompt displayed at the current cursor position, or at a specified number
of positions to the right or left of the current cursor position, or on the beginning
of the next line. All of these options for the placement of your prompt are
described under .SFMTPMT Control Statement in Chapter 3.

Constant Insert Data

In your source program, you can specify constant data to be inserted into the
current record buffer and displayed upon the screen during program execution. The
constant data is labeled and initialized with a .DC control statement, with PRMT
specified for the TYPE parameter. It is specified in a source screen format with a
.SFMTCNS statement. The IBM 5280 finds the appropriate constant insert data by
using the prompt system table. The insert is processed as if it were a prompt, except
that the constant is displayed on the screen and inserted into the current record
buffer,

Field Definitions

You can define the individual fields of the record by including a SFMTFLD state-
ment for every field. The parameters of the .SFMTFLD statement specify the field
length and the character set that is valid for the field. Other parameters can break
a field down into a number of subfields, or indicate that the field is a data required,
automatic duplicate, or right adjust field. Parameters can also specify display attri-
butes that effect the individual field, such as blink, highlight, or underscore.

Main Storage Duplicate and Store

You can specify a main storage duplicate field, or a main storage store field, by
including an MD or MS parameter in the SFMTFLD statement that defines the field.
The MD or MS parameter specifies the label of the main storage data area. This
main storage data area must be allocated and labeled with a .DC statement that
specifies MDUP for the TYPE parameter.

When a main storage duplicate field (MD) is entered, the contents of the specified
main storage area are automatically copied into the field in the current record buffer
if one of the following is true:

® The field is also specified as auto duplicate and absolutely automatic (AD, AA
in the third FLDF position).

® The field is also specified as auto duplicate (AD in the third FLDF position) and
the auto dup/skip mode is active.

Programming Concepts 31

32

If the field is defined only as MD, duplication can be initiated by pressing the Dup
key. When the Dup key is pressed, the duplication starts at the current field posi-
tion and continues to the end of the field.

When a main storage store field (MS) is exited, the contents of the field are auto-
matically copied into the specified main storage location if one of the following is
true:

® The field is also defined as absolutely automatic (AA in the third FLDF position).

® The auto dup/skip mode is active.

Example: The following declare control statements allocate and initialize a prompt
and a constant insert and allocate a data area in main storage. The screen format
control statements use the prompt, constant insert, and data area to illustrate a
main storage store and main storage duplicate.

.DC LABEL=PTNAME TYPE=PRMT INIT="Name: *;
.DC LABEL=CONST1 TYPE=PRMT INIT="Hello *;
.DC LABEL=DUPNAME TYPE=MDUP LEN=20;

SFMTST LABEL=PFT04 CNTL=MV;

SFMTPMT PRMT=SP,PTNAME ; display a standard position prompt
SFMTFLD FLDF=A,20,AA MS=DUPNAME;

*The operator enters a name into the 20-byte alphabetic field, which is
*specified as absolutely automatic. The characters are displayed and placed
*into the 1/0O buffer as they are entered. When the field is exited, the
*contents of the field are stored into the main storage data area labeled
*DUPNAME because the AA is specified.

SFMTCNS = CNST=CONST1 BFPS=1 CSPS=NL;

*The constant is displayed on a new line, the 1/O buffer pointer is incremented
*1 to skip 1 position in the buffer, and the constant is placed into the 1/O
*buffer.

SFMTFLD FLDF=A,20,AD,AA MD=DUPNAME ;

*When the cursor moves to the first position of this field, the name is
*automatically copied from the data area labeled DUPNAME into the 1/0
*buffer and is displayed on the screen.

Field Control

You can specify control of the screen, of the keyboard, and of the format with a
SFMTCTL control statement. The parameters of this control statement can specify
display attributes for the screen, such as blink, reverse image, and nondisplay. Other
parameters can enable or disable the Dup key or specify whether a field exit key is
required to exit the current field. Other parameters can cause a field to be duplicated
or stored, cause a conditional bypass of a portion of the format, or cause a secondary
format to be processed.

Secondary Screen Format

You can specify a secondary screen format series by including a .SFMTCTL control
statement at the position where you want the secondary screen format to begin.
The SFMTCTL statement must have an ES parameter that indicates the label
(LABEL parameter of the .SFMTST statement) of the secondary screen format.

The secondary screen format specification acts in a way similar to a subroutine

call. When an ES parameter is encountered while the primary screen format series
specifications are being processed, control goes to the first specification of the
secondary screen format. All specifications of the secondary screen format series
are processed. Then control returns to the primary screen format, to the statement
following the ES parameter.

Only one level of secondary formats is allowed.

Example: In the following example, three screen formats are used 10 enter a
record: the primary format FMTO04, the secondary screen format FMT 16, and the
secondary screen format FMT17.

SFMTST LABEL = FMTO04; begin primary screen format.
SFMTPMT LABEL = PROMPT6; primary format displays a prompt.
SFMTCTL ES= FMT16; process complete screen format FMT16.
SFMTPMT LABEL =PROMPT7; primary format displays a prompt.
SFMTCTL ES=FMT17; process complete screen format FMT17.
SFMTPMT LABEL =PMTEOR;

.SFMTEND; primary screen format ends.

Conditional Bypass

You can specify a conditional bypass for any section of a screen format. Include a
SFMTCTL control statement with a Cl parameter at the position in the screen
format series where the bypass begins. Then include a SFMTCTL statement with
a CNTL = CE parameter at the position where the bypass section ends.

For the Cl parameter, you must specify an indicator label followed by either ON

or OFF. Use the label assigned by a .DCLIND control statement. When the IBM 5280
encounters the bypass specification, it checks the specified indicator. If the indica-
tor is 1 and the CI parameter specified ON, or if the indicator is 0 and the Ci para-

meter specified OFF, the IBM 5280 bypasses all field, display attribute, and prompt
specifications between the Cl and the CE specifications. However, the cursor and

current record buffer pointer are moved past the space on the screen and in the
current record buffer where the bypassed fields, display attributes, or prompts
would have appeared. If the bypass specifications are encountered in a forward
direction, the current field counter is incremented by the number of fields by-
passed. If it is encountered in a backward direction, the current field counter is
decremented. If an RG (return to program), BFPS {change buffer position pointer),
CSPS (change screen position pointer), or a control specification to change status

is encountered during bypass, it is processed as normal. If an ES (execute second-
ary format) specification is encountered, the fields and control