
GC20·1755"()

Systems

Systems

GC20-1755-0

A Guide to the IBM
System/370 Model 168

This guide presents hardware, programming systems, and
other pertinent information about the IBM System/370
Model 168 that describes its significant new features and
advantages. Knowledge of the IBM System/370 Mode1165
is assumed. Features common to Models 165 and 168 are
indicated but not discussed in detail. The contents of the
guide are intended to acquaint the reader with the Model
168 and to be of benefit in planning for its installation.

Associated with this guide are three optional supplements
that describe operating systems for the Model 168 that
support a virtual storage environment. Each supplement
has its own form number and must be ordered individually,
if required. Optional supplements are the following:

• as/Virtual Storage 1 Features Supplement
(GC20-1752)

• as/Virtual Storage 2 Features Supplement
(GC20-1753)

• Virtual Machine Facility/370 Features Supplement*

* Availability to be announced

First Edition (August 1972)

This guide is intended for planning purposes only. It will be updated from time to time; huwever,
the reader should remember that the authoritative sources of system information are the system
library pUblications (or the Model 168, its associated components and its programming support.
These publications will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form has been provided at the back of this publication for readers' comments. If this form has
been removed, address comments to: IBM Corporation, Technical Publications Department,
1133 Westchester Avenue, White Plains, New York 10604. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972

PREFACE

It is assumed that the reader of this publication is familar with
System/370 Model 165 hardware features, channels, I/O devices, and
programming support as described in ~ Guide to the IBM system/370 Model
165, GC20-1130, and/or system library publications concerning Model 165
hardware and programming systems support. This guide discusses in
detail only the hardware features of the Model 168 that are different
from those of the Model 165 and the programming support provided for new
features of the Model 168. The Model 168 is not compared with a Model
165 II, which is a purchased Model 165 (storage model J, K, or KJ) with
the optional Dynamic Address Translation Facility installed. However,
functional descriptions of Model 168 features that are also part of the
Dynamic Address Translation Facility of the Model 165 II apply to the
Model 165 II as well, unless otherwise noted. This publication applies
to systems with 60-cycle power.

The total Model 168 guide consists of this base publication (Sections
01 to 70), which covers virtual storage concepts and Model 168 hardware
and I/O devices, and from one to three optional supplements (Sections 90
to 110). The optional supplements describe the facilities of the IBM
operating systems that support a virtual storage environment using the
dynamic address translation hardware of the Model 168. Each optional
supplement has its own unique form number and each supplement desired
must be ordered separately and inserted in this base publication, which
is distributed without the automatic inclusion of any optional
supplements.

The following optional supplements can be inserted in this base
publication:

• as/Virtual Storage 1 Features Supplement CGC20-1152) - assumes
knowledge of as MFT

• as/Virtual Storage 2 Features Supplement CGC20-1153) - assumes
knowledge of as MVT

• Virtual Machine Facility/370 Features Supplement*

All optional supplements also assume knowledge of virtual storage,
dynamic address translation, and other new Model 168 features as
described in this base publication or appropriate system library
documents. However, no optional supplement requires knowledge of the
contents of any other optional supplement.

This base publication, as well as each optional supplement, begins
with page 1 and includes its own table of contents and index. The base
publication or supplement title is printed at the bottom of each page as
a means of identification.

*Availability to be announced

A Guide to the IBM Systern/3?0 Model 168

The optional programming systems supplements contain System/370
model-independent information. unless otherwise noted, and are designed
to be included in the guides for System/3?O Models 135, 145, 158, and
168 as shown below.

supplements

DOS/VS OS/VS1 OS/VS2 VM/3?O
Features Features Features Features

Base Supplement Supplement Supplement Supplement
Publications (*) (GC20-1752) (GC20-1153) (.)

A Guide to the IBM
system/370 Model 135 X X X
(GC20-1?38-4 or
later editions)

A Guide to the IBM
system/3?O Model 145 X X X X
(GC20-1734-2 or
later editions)

A Guide to the IBM
system/370 Model 158 X X X X
(GC20-1154)

A Guide to the IBM
System/370 Model 168 X X X
(GC20-1755)

*Availability to be announced

A Guide to the IBM System/3?O Model 168

CONTENTS

Base Publication Sections (Sections 01 to 10)

Section 01: System Highlights ••••• 1

Section 10: Major Components and System Technology. 4

Section 20: Architecture Design and System Components •••••
20:05 Architecture Design. • • • • • •••••••

1
7

10
11

20:10 The Central Processing Unit •••••
Extended Control Mode •
Monitoring Feature. • • •
New Instructions. • • • • • • • • •
Clock Comparator and CPU Timer. • • • •
Reliability, Availability, and serviceability Features.

20:15 Storage. • • • • • • • • • • •••

16
• 16
• 16
• 18

21
21 Processor (Main) Storage. •

High-Speed Buffer Storage • • • •
20:20 Channels •••••••••••

. . • • • • 23

20:25 System Console ••••••••••••
20:30 Standard and Optional System Features.

Standard Features •
Optional Features • • • • • •

• 28
• 29

29
• 29
• 30

Section 30: Virtual Storage and Dynamic Address Translation • • 31
30:05 Virtual Storage Concepts, Advantages, and Terminology. 31

The Need for Larger Address Space • • • • • • • •• • 31
virtual Storage and Dynamic Address Translation Concepts. 35
General Advantages Offered by IBM Operating systems that
Support a Virtual Storage Environment •••••••••• 41
Virtual Storage and Dynamic Address Translation
Terminology • 48

30:10 Dynamic Address Translation Hardware for the Model 168 ••• 53
Virtual Storage Organization. • • • • • • • • • •• • 53
Operation of Dynamic Address Translation Hardware • 54
Features to Support Demand Paging • • • • • • • • • 61
Channel Indirect Data Addressing. • • • • • • • • • 64

30:15 System Performance in a Virtual storage Environment. • 66
System Resources Required to Support a Virtual Storage
Environment • 67
New Factors that Affect System Performance. • • • •• 70
Relationship Between Virtual storage Size and System
performance • 13
Increasing System Performance in a Virtual Storage
Environment • • • • • • • • • • 11

Section 50: I/O Devices •••
50:05 I/O Device Support ••
50:10 Integrated Storage Control Feature for 3330-Series Disk

Storage • • • • • • • • • • •

• 81
• 81

81

Section 70: Comparison Tables • • • • • • • • • • 82
70:05 Comparison Table of Hardware Features of the Systern/360

Model 65 and System/310 Models 165, 165 II, and 168 • • 83
70:10 as Support of the Model 168 • • •••• 88

Index (Sections 01 to 70). 91

A Guide to the IBM System/310 Model 168

optional sections (see each supplement for detailed contents and index)

section 90: as/Virtual storage 1 Features • • 95

Section 100: OS/Virtual Storage 2 Features. 91

Section 110: Virtual Machine Facility/310 Features. • • 99

Note: This guide does not have a Section 80. DOS/Virtual Storage
features are discussed in the Section 80 supplement and the Model
168 is not supported by DOS/VS.

FIGURES (Sections 01 to 10)

10.1
10.2
20. 10.1
20.10.2

20.10.3
20.10.4
20.15.1

20.15.2
20.15.3
30.05.1

30.05.2

30.05.3

30.05.4

30.10.1
30.10.2

30.10.3
30.10.4
30.10.5
30.15.1

30.15.2

30.15.3

30.15.4

30.15.5

System/370 Model 168 ••••••• • • •• 4
SLT substrate • • • • • • • • • • • • • • 5
BC mode and EC mode PSW formats • • 12
Model 168 model-independent fixed storage locations for
BC and EC modes • • • • • • • • • • • • • • • • • 13

• 14 Model 168 model-dependent fixed storage locations •
Model 168 machine check code. • • • • • • • •••
Model 168 processor storage organization and
configuration panel • • • • • • •

• • 20

8K and 16K buffer organization. • • • • • •
Model 168 components and controls • • • • ••
Names and location of instructions and data in a virtual

• 22
• 25

21

storage environment • • • • • • • • •• •• • • • • • 31
Relationship of virtual storage r direct access storage r
and real storage. • 38
Conceptual illustration of real storage utilization in
a mixed batch and online virtual storage environment. • • 41
Layout of virtual storage r external page storage r and
real storage. • 50
Virtual storage address fields for a 64K segment. • • • • 55
Segment table and page tables used for dynamic address
translation • 51
Dynamic address translation procedure • • • • • • • 58

• 60 TLB purging when control register 1 is changed. •
Example of IDAL's required for a CCW list ••••
Possible system performance when a virtual storage
operating system is used with a Model 168 with the

• • 65

same I/O configuration and real storage size as the
replaced Model 165 •••••••••••••••••
General effect on page faults of increasing the ratio of
the virtual storage used to real storage present in
the system. • • • • • • • • • • • • •• • • • • •

69

74
General effect on system performance of the paging factor
only. • 15
General effect of the paging factor on system performance
with various active-to-passive page ratios •••••••• 16
General system performance curve for a virtual storage
environment • 11

TABLES (Sections 01 to 70)

20.15.1
30.10.1

30.iO.2

Model 168 cycle and access times. • •
Number and size of segments and pages for a 16-million­
byte virtual storage. • • • • • • • •
Virtual and real storage addresses used by and supplied
to programs in the Model 168. • • • • • • • • • • • • •

• 23

53

• 62

A Guide to the IBM System/310 Model 168

SECTION 01: SYSTEM HIGHLIGHTS

The System/310 Model 168 is an advanced function growth system for
System/360 Models 65, 61, and 75 and System/310 Models 155, 158, and
165. The Model 168 provides major new functions that are not basic to
System/360 architecture. The Model 168 has new features and new
programming systems support that are designed to facilitate application
development and maintenance. In addition, a Model 168 and its new
programming support can ease entry into, and expansion of, online data
processing operations.

The Model 168 makes new functions available to Model 65, 15, and 165
users without requiring a major conversion effort as the Model 168 is
upward compatible with these models. Existing System/360 operating
systems that support these models, namely as MFT and MVT, support the
Model 168. However, the Model 168 has standard features that are
designed to support a virtual storage environment and new versions of as
are provided that use these features.

Compatible growth from a System/360 operating system to a Model 168
virtual storage environment can be achieved using the new System/310
operating systems: as/Virtual Storage 1 (OS/VS1> and as/Virtual Storage
2 (OS/VS2>, which are based on as MFT and as MVT, respectively. These
operating systems will run only on System/310 models with extended
system/310 functions, namely on those with extended control mode of
system operation and dynamic address translation facilities. They
cannot operate on system/360 models. In addition to implementing
virtual storage, the System/370 operating systems offer many other new
capabilities and performance-oriented enhancements that are not provided
by as MFT or MVT.

A virtual machine environment is supported by Virtual Machine
Facility/310 (VM/310>, the successor to CP/61 for System/310. While
CP/61 is available only to Model 67 System/360 users, VM/370 operates on
System/370 Models 135, 1Q5, 155 II, 158, 165 II, and 168. Model 61
users who have CP/67 installed can use VM/370 on a Model 168 with some
conversion effort.

Transition with little or no reprogramming is also provided for Model
65, 67, and 165 users who are emulating 7070-, 7080-, and 7090-series
systems under OS MFT or MVT and for users with these systems installed,
since the integrated emulators for 7000-series systems are also
supported by OS/VS1 and OS/VS2.

Highlights of the Model 168, when compared with a Model 165, are as
follows:

• A basic control (BC> mode and an extended control (EC> mode of
system operation are standard. Only BC mode is provided in the
Model 165. EC mode of operation provides additional system control
and supports new functions that are not provided in System/360 or a
Model 165 •

• Internal performance of a Model 168 operating in BC mode is faster
than that of a Model 165. The instruction execution rate of the
Model 168 is generally in the range of 10 to 30 percent faster than
that of the Model 165 when identical system configurations,
identical programs, and the same operating system are used.
Increased internal performance results primarily from the
significantly faster cycle times of processor storage in the Model
168.

A Guide to the IBM System/370 Model 168 1

2

• Dynamic address translation (DAT) is a standard facility that can be
made operative only when the Model 168 is in EC mode. It provides
hardware translation of addresses during program execution. One
virtual storage of up to 16 million bytes or multiple virtual
storages of up to 16 million bytes each can be supported using OAT
hardware. (The amount of virtual storage that can be efficiently
supported by a Model 168 depends on the hardware configuration and
job stream characteristics.) The optional channel indirect data
addressing feature must be installed on 2860, 2870, and 2880
channels when dynamic address translation is used. Channel indirect
data addressing enables the channels to access an I/O buffer that is
contained in noncontiguous processor storage areas.

• Program event recording (PER) is standard and can be made operative
when the Model 168 is in EC mode. It is designed to be used as a
problem determination aid. This feature includes hardware that
monitors the following during program execution: successful
branches, the alteration of general registers, and instruction
fetches from and alterations of specified areas of processor
storage.

• A monitoring feature is standard that can be used to trace user­
defined program events for the purpose of debugging or statistics
gathering.

• A CPU timer and clock comparator are standard. The CPU timer
provides an interval timing capability similar to that of the
interval timer at location 80 but it is updated every microsecond,
as is the time of day clock. The clock comparator can be used to
cause an interruption when the time of day clock passes a specified
value. These items provide higher resolution timing facilities than
the interval timer and enable more efficient timing services
routines to be written.

• New instructions that support dynamic address translation, the new
timing hardware, and system control facilities are added to the
System/370 instructions available for the Model 165.

• Processor storage is implemented using monolithic technology instead
of discrete ferrite cores, and a Model 168 can have one million more
bytes ~han a Model 165. Processor storage sizes of 1024K, 2048K,
3072K, and 4096K are available for the Model 168. Monolithic
storage for the Model 168 is faster and more compact than core
storage for the Model 165.

As in a Model 165, processor storage in a Model 168 is four-way
interleaved. However, each logical storage in Model 168 processor
storage has a 480 nanosecond read/write cycle time for eight bytes
on a doubleword boundary. A CPU fetch of a doubleword from
processor storage (to a CPU register) requires 800 nanoseconds in
the Model 168, which compares with 1440 nanoseconds in the Model 165~

The physical size of a Model 168 CPU is not a function Ot tne amount
of processor storage installed. A Model 168 is smaller than a Model
165 with 512K and, therefore, is significantly smaller than Model
165 CPU's with more than 512K installed.

• The maximum aggregate channel data rate a Model 168 can support is
significantly increased over that supported by a Model 165 because
of the faster cycle time of processor storage and the new channel
dual I/O bus that is used to transfer data from the channels to the
storage control unit. A Model 168 configuration can handle a
maximum aggregate data rate of 16 megabytes per second (MB). The
maximum aggregate data rate possible on a Model 165 is 9.4 MB.

A Guide to the IBM System/3?0 Model 168

• 3330-series disk storage can be attached to a 2880 channel on a
Model 168 via the Integrated Storage Control (ISC) feature as well
as via 3830 Storage Control (Models 1 and 2). The optional ISC
feature provides dual direct access storage control functions
equivalent to two 3830 Storage Control Model 2 units r with the
exception of four-channel switching. Two strings of from two to
eight drives each can be attached to each of the two logical storage
controls for a total of four 3330-series strings (32 drives)
attached via the ISC feature.

The Model 168 is designed primarily to support a virtual storage
environment that allows programmers to write and execute programs that
are larger than the processor storage available to them. When virtual
storage is supported r restraints normally imposed by the amount of
processor storage actually available in a system are eased. The removal
of certain restraints can enable applications to be installed more
easilYr and can be valuable in the installation and operation of online
applications. While some of the new hardware features of the Model 168
and some of the new facilities supported by System/370 operating systems
are designed to improve performance r a virtual storage environment is
designed primarily to help improve the productivity of data processing
personnel and enhance the operational flexibility of the installation.

A Guide to the IBM System/370 Model 168 3

SECTION 10: MAJOR COMPONENTS AND SYSTEM TECHNOLOGY -----

The System/370 Model 168 is shown in Figure 10.1. The physical size
of a Model 168 CPU does not depend on the amount of processor storage
installed, and processor storage is contained within the CPU frames of a
Model 168. All Model 168 systems (excluding the I/O configuration) are
the same size, which is smaller than the size of a 512K Model 165. The
physical size of a Model 168 is smaller than the size of a Model 165 as
a result of the implementation of monolithic, instead of magnetic core,
processor storage. Like a Model 165 CPU, a Model 168 CPU is water­
cooled.

A Model 168 configuration consists of (1) a Model 168 CPU with
integrated monolithic processor storage and, optionally, the Integrated
Storage Control feature for 3330-series disk storage, (2) a stand-alone
3066 Model 2 system Console, (3) a stand-alone 3067 Model 2 Power and
Coolant Distribution Unit, (4) stand-alone 2860, 2870, and 2880 channels
(up to twelve channels maximum), and (5) a motor generator set. Field
conversion of 3066 Model 1 and 3067 Model 1 units to Model 2 units is
possible. The same motor generator set that is used to supply power to
a Model 165 can be used with a Model 168 configuration. The motor
generator supplies power to the Model 168 CPU but not to the integrated
monolithic processor storage. A Model 165 CPU cannot be converted to a
Model 168.

Figure 10.1. System/370 Model 168 (design model)

4 A Guide to the IBM System/370 Model 168

Monolithic technology is used to implement nearly all logic and all
storage (processor, local, writable control, read-only control, and
buffer) in the Model 168. Use of monolithic technology for processor
storage, as well as for logic, represents a significant technological
advance in storage implementation. The monolithic storage implemented
in the Model 168 provides several advantages over the wired, discrete
ferrite core storage implemented in the Model 165.

Monolithic storage is similar in design to monolithic logic
circuitry, the latter representing a technological advance over the
solid logic technology (SLT) introduced with the announcement of
System/360. Since the technology associated with monolithic storage is
like that used to produce monolithic logic, monolithic storage can be
batch-fabricated.

Solid Logic Technology (SLT)

Monolithic technology is a breakaway from the hybrid circuit design
concept of SLT and can best be explained by comparison with SLT. As
shown in Figure 10.2, SLT circuits were implemented on half-inch ceramic
squares called substrates. Metallic lands on the substrate formed
interconnections onto which the components were soldered. These
components consisted of transistors and diodes, which were integrated on
silicon chips about the size of a pinhead, and thin film resistors. An
SLT chip usually contained one component, and several chips and
resistors were needed to form a circuit. In general, an SLT substrate
contained a single circuit.

one component

Figure 10.2. SLT substrate

Monolithic System Technology (MST)

Ceram ic substrate

with interconnections

Monolithic system technology also makes use of a half-inch-square
ceramic substrate with metal interconnections onto which chips are
placed. However, in monolithic logic circuitry, large numbers of
elementary components, such as transistors and resistors, are integrated
on a single chip. An MST logic chip usually contains several
interconnected logic circuits instead of only one component, as does an
SLT chip. MST logic modules, each consisting of one substrate, are
mounted on circuit cards, which are in turn mounted on circuit boards
(as in SLT logic).

MST logic offers the following advantages over SLT:

• MST logic circuitry is intrinsically more reliable because many
circuit connections are made on the chip, significantly reducing the
number of external connections.

A Guide to the IBM System/3?0 Model 168 5

• Faster circuit spee~s can be obtained because the path between
circuits is considerably shorter.

• Space requirements for logic circuitry are reduced by the
significantly higher density of components per chip.

Monolithic Storage

Monolithic storage design incorporates the same concepts described
for monolithic logic. However, storage cells that are used to contain
storage bits instead of logic circuits are implemented on a metal oxide
semiconductor chip. In the Model 168, a monolithic storage array chip
is approximately 1/8 by 3/16 of an inch in size and contains a large
number of interconnected circuits. These circuits form storage bits and
support circuitry (decoding, addressing, and sensing) on the chip.

Since power is required to maintain a one or zero state in a
monolithic storage bit, data is lost when power is turned off, and
monolithic storage is, therefore, said to be volatile. This is not true
of core storage, which retains a magnetized state when power is removed.

6

The following are the advantages of monolithic over core storage:

• Faster storage speeds are obtained, first, because of the shorter
paths between storage circuitry and, second, because of the
nondestructive read-out capability of monolithic storage. Since
core storage read-out is destructive, a regeneration cycle is
required after a read and a readout cycle is required prior to a
write. These types of regeneration cycles are not required for
monolithic storage.

• Storage serviceability is enhanced because storage is implemented in
accessible, easily replaceable cards. Diagnostic routines need only
identify the failing storage card, which can be replaced in a matter
of minutes.

• Space requirements for system storage are reduced. Dense bit
packaging per chip is achieved by the use of monolithic teChnology
and by the fact that the regularity of a storage pattern lends
itself to such packaging.

A Guide to the IBM System/370 Model 168

SECTION 20: ARCHITECTURE DESIGN AND SYSTEM COMPONENTS

20:05 ARCHITECTURE DESIGN

Extended System/370 architecture embodies two different modes of
system operation, basic control (BC) mode and extended control (EC)
mode, as determined by bit 12 of the current PSW. When a Model 168
operates in BC mode, the contents, layout, and function of permanently
assigned processor storage locations 0 to 127 are identical to these
locations in System/360 Models 22 and up (except 44 and 67) with the
exception of the use of PSW bit 12. BC mode essentially is the
system/360-compatible mode of System/370 operation.

When EC mode is operative in the Model 168, the format of the PSW is
altered and the number of permanently assigned locations extends beyond
processor storage address 121. Changes to the PSW consist of the
removal of certain fields to create space for additional mode and mask
bits that are required for new functions, such as dynamic address
translation and program event recording. The removed fields are
assigned to locations above 121 and to a control register.

EC mode is effective when PSW bit 12 is a one. BC mode is effective
when this bit is a zero. BC mode is established during initial program
reset. Therefore, a control program must turn on bit 12 of the PSW in
order to cause EC mode to become operative. As a result, control and
processing programs written for System/360 (Models 22 and up except 44
and 61) will run without modification in BC mode on a System/3?0 Model
168 that has a comparable hardware configuration, with the following
exceptions:

1. Time-dependent programs.
correctly.)

(They mayor may not execute

2. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area. (OS SER error­
logging routines for System/360 models will not execute
correctly.)

3. Programs that use the ASCII mode bit in the PSW (bit 12). ASCII
mode is not implemented and this bit is used in System/370 to
specify BC or EC mode of operation.

4. Programs that depend on the nonusable lower processor storage
area being smaller than 1938 bytes. This area can be reduced to
512 bytes by moving the CPU extended logout area.

5. Programs deliberately written to cause certain program checks.

6. Programs that depend on devices or facilities not implemented in
the Model 168.

7. Programs that use model-dependent operations of the System/3?0
Model 168 that are not necessarily compatible with the same
operations on System/360 models.

8. Programs that depend on the validity of storage data after system
power has been turned off and then on.

Only BC mode is implemented in the Model 165. Hence, control and
processing programs that currently operate on a Model 165 will run

A Guide to the IBM System/370 Model 168 7

without modification in BC mode on a Model 168 that has a comparable
hardware configuration. with the following exceptions:

1. Time-dependent programs. (They mayor may not execute correctly.)

2. Programs that depend on the nonusable lower processor storage
area being smaller than 1938 bytes. (The nonusable area in the
Model 165 is 1504 bytes.)

3. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area.

4. Programs deliberately written to cause certain program checks.

5. Programs that depend on the validity of storage data after system
power has been turned off and then on.

OS control programs are designed to support either BC or EC mode of
system operation. os PCP. MFT. and MVT control programs generated for a
Model 65. 61. or 15 support BC mode operations on a Model 168. OS
control and processing programs being used on a Model 65. 61, or 15 are
subject to the eight compatibility restrictions in the first list. If
an OS MFT or MVT control program that was generated for a Model 65, 61,
or 15 is used on a Model 168. the system should be set to check stop on
machine checks. (Section 60:30 in ~ Guide to the IBM system/310 Model
165. GC20-1130. discusses the reason.)

OS MFT and MVT support for the Model 168 in BC mode will be provided
in Release 21.6. OS MFT and MVT control programs generated for a Model
165 using OS Release 21.6 will also operate on a Model 168 to support BC
mode of system oper,ation. Processing programs that are used on the
Model 165 will operate under os MFT or MVT control on a Model 168 in BC
mode subject to the five compatibility restrictions in the second list.

Support of Model 168 systems operating in EC mode is provided by
OS/VS1. OS/VS2. and VM/310. each of Which is designated as system
control programming (SCP). All of these operating systems support a
virtual storage environment using dynamic address translation. which
operates only when the system is in EC mode. VM/370 supports a virtual
machine environment. User-written processing programs that operate on a
Model 165 or 168 under OS MFT or MVT control can operate under OS/VS1 or
OS/VS2, respectively. on a Model 168 with little or no modification, as
discussed in the optional programming systems supplements (Sections 90
and 100). Hence, compatible growth from a System/360 or a BC mode
nonvirtual storage environment to an EC mode virtual storage environment
is provided.

The following are standard features of the Model 168 that are
functionally identical to the same features of the Model 165:

8

• Instruction set that includes System/360 instructions and the
following System/310 instructions:

COMPARE LOGICAL CHARACTERS
UNDER MASK

COMPARE LOGICAL LONG
INSERT CHARACTERS UNDER MASK
LOAD CONTROL
MOVE LONG
SET CLOCK

• Extended precision floating point

SHIFT AND ROUND DECIMAL
START I/O FAST RELEASE
STORE CHANNEL ID
STORE CHARACTERS UNDER MASK
STORE CLOCK
STORE CONTROL
STORE CPU ID

• Overlap of instruction fetching and preparation with instruction exe~Jtion
(implementation of the instruction and execution units is enhanced
in the Model 168*)

A Guide to the IBM System/310 Model 168

• Store and fetch protection
• Multiple control r~gisters (more registers are implemented in the

Model 168 than in the Model 165*)
• Interval timer (3.3 millisecond resolution)
• Time of day clock
• Byte-oriented operands
• Extended external interruption masking
• Expanded machine check interruption class (additional facilities are

provided in the Model 168*)
• Extended channel logout
• Instruction retry, ECC on processor storage, and command retry (RAS

features)
• Writable monolithic control storage
• High-speed buffer storage - 8K
• Direct Control

The following are optional features of the Model 168 that are
functionally identical to the same features on the Model 165:

• High-speed mUltiply (increases speed of fixed- and floating-point
multiply operations by a factor of two to three)

• Buffer Expansion for the addition of 8K of buffer storage (the 16K
buffer has a slightly different organization in the Model 168*)

• 7070/7074 Compatibility
• 7080 Compatibility
• 709/7090/709411 Compatibility
• 2870 Multiplexer Channels and attachment feature, 2860 Selector

Channels and attachment feature, and 2880 Block Multiplexer Channels
(one 2860, one 2880, or one 2870 with one selector subchannel is
required)

• Extended Channels (for up to twelve channels)
• Channel-to-Channel Adapter on 2860
• 3066 Model 2 System Console (required) - a few new items are

implemented

The following are new standard features of the Model 168:

• EC mode of system operation*
• Dynamic address translation*
• Reference and change recording*
• CPU timer and clock comparator*
• Program event recording*
• Monitoring feature*
• Program interruption for SET SYSTEM MASK instruction*
• Store status function*
• New instructions*

LOAD REAL ADDRESS
MONITOR CALL
PURGE TLB
RESET REFERENCE BIT
SET CLOCK COMPARATOR
SET CPU TIMER
STORE CLOCK COMPARATOR
STORE CPU TIMER
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK

• Monolithic read-only control storage (instead of capacitor read-only*)
• Monolithic processor storage (instead of core storage)
• Channel dual I/O bus

*Part of the Dynamic Address Translation Facility of a Model 165 II.
The functional descriptions of these items in this publication apply
to their implementation in both the Model 168 and the Model 165 II,
unless otherwise indicated.

A Guide to the IBM System/370 Model 168 9

The following are new optional features of the Model 168:

• Channel Indirect Data Addressing for 2860, 2870, and 28RO channels
(required by the virtual storage operating systems and available for
the Model 165 II)

• Integrated Storage Control for attachment of 3330-series disk storage

• Two-Channel Switch for Integrated Storage Control

All the new features of the Model 168 except Integrated Storage
Control and those related to implementing virtual storage (such as
dynamic address translation and reference and change recording) are
discussed in the remainder of this section.

20:10 THE CENTRAL PROCESSING UNIT

Like the Model 165, the Model 168 has a CPU cycle time of 80
nanoseconds and an internal data path that is eight bytes wide. The
implementation of local storage, read-only and writable control storage,
expanded external interruption masking, and parity checking is the same
in the two models. Control registers in addition to the four
implemented in the Model 165 are implemented in the Model 168 in order
to support new EC-mode-only functions. Additional control registers are
implemented in the Model 165 II as well.

Implementation of the instruction and execution units in Models 168
and 165 differs in several aspects in order to provide better overlap of
instruction preparation with instruction execution and to provide
functions required by new Model 168 hardware features, such as dynamic
address translation. (This new implementation is also provided in a
Model 165 II.) Significant differences are the following:

10

• In the Model 168, up to four instructions can be prepared and await
execution while one instruction is being executed. The Model 165
can prepare and hold up to three instructions.

• When an incorrect estimate of the success of a conditional branch
has been made, the Model 168 can access the correct instruction one
cycle sooner than can the Model 165.

• In the Model 168, a doubleword from a given instruction stream can
be placed in the instruction buffers every machine cycle. This can
be done every other cycle in a Model 165.

• In the Model 168, two registers are provided to hold data that is
awaiting placement in processor storage. Each can hold up to eight
bytes. The Model 165 has only one such register.

• The instruction unit in the Model 168 includes an instruction
pretest function (explained under "Instruction Nullification" in
Section 30:iOi.

• Imprecise interruptions do not occur in a Model 168. In a Model
165, an imprecise interruption occurs if an attempt is made to store
data at an invalid storage address or at a storage protected
location. The Model 168 implementation of pretesting (for the
dynamic address translation function) also ensures that such
conditions do not cause imprecise interruptions in the Model 168.

A Guide to the IBM System/3?0 Model 168

EXTENDED CONTROL MODE

Extended control mode. unlike basic control mode, is exclusively a
System/310 mode and is not implemented in System/360. In a Model 168,
the optional Channel Indirect Data Addressing feature must be installed
on all stand-alone channels in order for the channels to operate with EC
mode enabled. Note that IBM-supplied operating systems do not support
System/370 models operating in EC mode without dynamic address
translation operative also. Facilities that depend on which mode is in
effect are discussed below. Any item not covered operates identically
in BC and EC modes. (The discussion of EC/BC mode differences applies
to the Model 165 II also.)

Change in PSW Format

When a System/370 operates in EC mode, the format of the PSW differs
from the BC mode format. Both PSW formats are shown in Figure 20.10.1.
In EC mode. the PSW does not contain individual channel mask bits, an
instruction length code. or the interruption code for a supervisor call,
external. or program interruption. The channel masks are contained in
control register 2, and the other fields are allocated permanently
assigned locations in fixed processor storage above address 121.

Removal of the fields indicated provides room in the EC mode PSW for
control of new features that are unique to EC mode (such as PER and DAT)
and for the addition of summary mask bits (such as channel and I/O
masks). Use of a single mask bit to control the operation of an entire
facility (such as program event recording) or an entire interruption
class (such as I/O and external) simplifies the coding required to
enable and disable the system for these interruptions.

Change in Permanently Assigned Processor Storage Locations

When a system/370 operates in EC mode, the number of permanently
assigned locations in lower processor storage is increased to include
fields for storing instruction length codes, interruption codes (for
supervisor call, external, and program interruptions), program event
recording data, the I/O device address for an I/O interruption, and an
exception address for the OAT feature. The model-independent BC mode
and EC mode fixed storage areas for System/370 models are shown in
Figure 20.10.2. The balance of the fixed area for the Model 168, that
which has model-dependent fields. is shown in Figure 20.10.3. This
model-dependent area is not affected by whether EC or BC mode is in
effect except for locations 185 to 187. which contain the I/O address
after an I/O interruption and an IPL only when EC mode is in effect.

The machine check interruption procedure and the format of the data
logged on a machine check are the same in EC and Be modes, except for
differences in the PSW format and the permanently assigned locations
previously discussed.

Channel Masking Changes

When a System/370 operates in EC mode, interruptions from each
channel are controlled by the summary I/O mask bit in the current PSW
(bit 6) and an individual channel mask bit in control register 2. In
the Model 168. bits 0 to 11 in control register 2 are assigned to
control channels 0 to 11. respectively. Both the summary mask bit and
the appropriate individual channel mask bit must be on in order for an
interruption from a given channel to occur. In BC mode, only
interruptions from channels 6 to 11 are controlled by individual channel
mask bits in control register 2 and the I/O mask bit in the PSW.
Interruptions from channels 0 to 5 are controlled only by channel mask
bits in the current PSW (bits 0 to 5) in BC mode.

A Guide to the IBM Systern/3?0 Model 168 11

-.,

Bit

0 !
1
2
3
4
5
6
7
8
9

10
11

12
13

14
15
16
17
18

I 19

20 1 21
22
23
24

30
31

BC MODE PSW FORMAT

Content

Channel 0 mask

Channel 1 mask
Channel 2 mask
Channel 3 mask
Channel 4 mask
Channel 5 mask

I/O mask

External mask
Protect key

t
EC/BC mode (0 is BC)
Machine check mask

Wait/running state
Problem/supervisor state
I nterruption code

32 I nstruction length code

33 t
34 Condition code

35
36 Program mask

: t
40 I nstruction address

l~Ij

,."

r

System
mask

EC MODE PSW FORMAT

Bit Content

0 0

1 PER mask

2 0
3 0
4 0
5 Translation mode (OAT feature mask)

6 110 summary mask

7 External summary mask

8 Protect key

9

1 10
11
12 EC/BC mode (1 is ECl
13 Machine check mask

14 Wait/running state

15 Problem/supervisor state

16 0

17 0
18 ~ondition code
19
20 Program mask

21

~ 22
23
24 0

:~ :::~

30
31
32 0
33

I 34
35

1
36
37
38
39
40 I nstruction address·
41
42

,1"
,~

Figure 20.10.1. BC mode and EC mode PSW formats

Expansion of Storage Protect Key Size

I)' S,,,,m
mask

, " .,,,

,1"

J

The size of the storage protect key associated with each 2K storage
block is expanded from five to seven bits in the Model 168. The two
""..:I..:I';~';,....,.",,1 h';~~ ,,,..o~o,,..o.,.,..o ."..,..:1 ,.. .. "".,.~o\ """..13 ;..,.,..1".:113.:1 oF",.. "C!O t.J;+-n ~"'7n::llm;,...
'-A'-A'-AL'-'aa"""..a- ..., '-~ '.&."-L'-'~'-.&.I."'- ~..I.&'-A ".&.aa..&~'-I fo.AA.'- ~ ... &."""..a..\oA."""''-'"'', "At.J'- --- -~ ... - •• '--

address translation and are discussed in Section 30:10. The SET STORAGE
KEY instruction sets a seven-bit key regardless of the mode, BC or EC,
in effect. The INSERT STORAGE KEY loads a five-bit or a seven-bit key
into the register indicated depending on whether BC or EC mode,
respectively, is in effect.

12 A Guide to the IBM System/370 Model 168

Decimal

locations
0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

152

BC MODE FIXED AREA 0-159

IPL PSW

IPL CCW 1

IPL CCW 2

External old PSW

Supervisor call old PSW

Program old PSW

Machine check old PSW

I/O old PSW

Channel status word - CSW

Channel address word - CAW 76 Unused

I nterval timer 84 Unused

External new PSW

Supervisor call new PSW

Program new PSW

Machine check new PSW

I/O new PSW

0 132 0

0 140 0

0 148 0 Monitorl
class 0

0 156 0 Monitor code

EC MODE FIXED AREA 0-159

IPL PSW

IPL CCW 1

IPL CCW 2
-

External old PSW

Supervisor call old PSW

Program old PSW

Machine check old PSW

I/O old PSW

Channel status word - CSW

Channel address word - CAW 76 Unused

I nterval timer 84 Unused

External new PSW

Supervisor call new PSW

Program new PSW

Machine check new PSW

I/O new PSW

0 132 0 External into code

0 ILC I SVC into code 140 0 ILC Program into code

0 Translation excp. addr. 148 0
Monitor PER code I 0 class

0 PER address 156 0 Monitor code

• Modej independent among
System/360 and System/370
models in BC mode except
for PSW bit 12

• Processed by the control program

• Model independent among
System/370 models in
EC mode

• PSW format is different
from that of BC mode
PSW

• Processed by the control
program

Figure 20.10.2. Model 168 model-independent fixed storage locations
for BC and EC modes

A Guide to the IBM System/370 Model 168 13

160

168

176

184
192

216

224

232

240

248

256

!~

" IJ

0

Reserved

Channel 10 172 I/O extended log pointer

Unused 180 0

I * I/O address 188 0

Unused ;~

Contents of CPU timer

Contents of clock comparator

Machine check code

Reserved

Failing storage address 252 Reserved

'>J ~ Five doublewords of retry status
352,ct----------------I!

l' Floating point register save area
384L~------------------------~r

General register save area
448It--------------~T

,'" Control register save area ~

I/O COMMUNICATIONS AREA
160 - 191

*Stored for EC mode
operations only

FIXED LOGOUT AREA
216-511

Layout varies bySystem/370
model

• Always logged on a
machine check interruption

• Processed b y RM S

512r---~-----------------------

CPU extended logout-1416 bytes

(Pointer in control register 15
set to 512 at IPL)

CPU EXTENDED LOGOUT AREA

• Model dependent

• Stored on all exigent machine
checks and first and seventh
instruction retry,if specified,
and logged by RMS

• Processed by Logout
Analysis Program

Figure 20.10.3. Model 168 model-dependent fixed storage locations

Changes to Certain System/370 Instruction Definitions

All Model 168 instructions are valid in BC and EC modes. However,
because of differences between the PSW format and the permanently
assigned storage locations in EC and BC modes, the definition of certain
instructions is affected. Instructions provided for both System/360 and
system/370 whose definition is altered for EC mode are:

BRANCH AND LINK (RR, RX)
INSERT STORAGE KEY
LOAD PSW
SET PROGRAM MASK

SET STORAGE KEY
SET SYSTEM MASK
SUPERVISOR CALL

Revised definitions of these instructions to include BC/EC mode
differences are contained in system/3?0 Principles of Operation (GA22-
7000-2, or later editions). Programs that operate in BC mode and that
use LOAD PSW and/or SET SYSTEM MASK (SSM) instructions must be modified
in order to operate correctly in EC mode# The eight-byte PSW to be
loaded by LPSW instructions and the eight-bit system mask to be set by
SSM instructions must be changed to EC mode format. (Programs that use
SSM instructions and that are executed in an OS/VS1 or OS/VS2
environment need not be modified because the interruption for SSM
instructions and an SSM simulation routine, described next, are
supported.)

14 A Guide to the IBM System/3?0 Model 168

Programs that use the other instructions listed do not have to be
changed in order to operate correctly in EC mode, unless they use other
facilities that are mode dependent. Programs that operate in BC mode
and that use the STORE THEN OR SYSTEM MASK and STORE THEN AND SYSTEM
MASK instructions (not provided in,system/360) must also be modified in
order to operate correctly in EC mode.

program Interruption for Set System Mask Instruction

When a System/370 is operating in EC mode, execution of the SET
SYSTEM MASK instruction is under the control of the SSM mask in control
register O. When the SSM mask bit is a one, an attempt to execute an
SSM instruction causes a program interruption without execution of the
SSM instruction. When the SSM mask bit is a zero, SSM instructions are
executed as usual.

This interruption is implemented to enable existing programs that
were written for System/360 models or for System/370 BC mode of
operation to execute correctly in EC mode without modification of the
system mask field addressed by existing SSM instructions. When an
interruption occurs for an SSM instruction, the contents of the BC mode
format system mask indicated by the SSM instruction can be inspected,
and the appropriate EC mode mask bits can then be set by an SSM
simulation routine.

program Event Recording

Program event recording (PER), a standard feature of the Model 168,
is designed to assist in program debugging by enabling a program to be
alerted to any combination of the following events via a program
interruption:

• successful execution of any type of branch instruction

• Alteration of the contents of the general registers designated by
the user

• Fetching of an instruction from a processor storage area defined by
the user

• Alteration of the contents of a processor storage area defined by
the user

The PER feature can operate only when EC mode is in effect and the
PER mask, bit 1 of the current PSW, is on. Control register 9 (bits 0
to 3) is used to specify which of the four PER event types are to be
monitored. A PER program interruption is taken after the occurrence of
an event only if both the PER mask bit and the respective event mask bit
in control register 9 are on. Control register 9 (bits 16 to 31) also
specifies which of the 16 general registers are to be monitored if
monitoring of this event is specified. Control registers 10 and 11
indicate the beginning address and the ending address, respectively, of
the contiguous processor storage area that is to be monitored for
instruction fetching and/or alteration.

When an event that is being monitored is detected, PER hardware
causes a program interruption, if the PER mask bit is on, and
identification of the type of event is stored in the fixed processor
storage area (location 150). The address of the instruction associated
with the event is also stored (locations 153 to 155). Program event
interruptions are lost if they occur when the PER mask bit or the
particular event mask bit is off.

If dynamic address translation mode is also specified when PER is
active, virtual storage addresses instead of real storage addresses

A Guide to the IBM System/370 Model 168 15

(discussed in Section 30) are placed in the control registers to monitor
references to a contiguous virtual storage area.

MONITORING FEATURE

The monitoring feature is standard on the Model 168 (and on the Model
165 II). This feature provides the capability of monitoring the
occurrence of programmed events. For example, monitoring can be used to
perform measurement functions (how many times a routine was executed) or
tracing functions for the purpose of program debugging (which routines
were executed).

The MONITOR CALL instruction is provided with the monitoring feature.
Execution of this instruction indicates the occurrence of one of the
events being monitored. The operands of the MONITOR CALL instruction
permit specification of up to 16 classes of events, each class with up
to 16 million unique types of events. The 16 monitor classes are
individually maskable via mask bits in control register 8. A program
interruption occurs when a MONITOR CALL instruction is executed, if the
monitor class indicated is specified in control register 8, and the
event identification (class and type) is stored in the fixed storage
area.

Both the PER facility and the monitoring feature are provided for
debugging purposes. The two features differ from one another in (1) the
number of events that can be defined, (2) whether events are defined by
the hardware or the programmer, and (3) whether hardware or the
programmer checks for the events and causes the interruptions. When PER
is used, once the events to be monitored have been designated by the
user, CPU hardware checks for the occurrence of the events and causes
the interruption. When the monitoring feature is used, the user defines
the events to be monitored (up to 16 classes with up to 16 million
monitor codes each instead of only four events), determines when the
events occur, and causes program interruptions by issuing MONITOR CALL
instructions.

NEW INSTRUCTIONS

Two of the new instructions provided in the Model 168 enable a
program to directly manipulate the system mask. Other new instructions
provided are related to specific features (such as monitoring, dynamic
address translation, the clock comparator, and the CPU timer) and are
discussed with these features.

STORE THEN AND SYSTEM MASK and STORE THEN OR SYSTEM MASK are two new
privileged instructions that affect the system mask (bits 0 to 7 in the
current PSW). The STORE THEN AND SYSTEM MASK instruction provides, via
a single instruction, the capability of storing the current system maSK
for later restoration, while selectively zeroing certain system mask
bits. The STORE THEN OR SYSTEM MASK provides system mask storing and
selective setting of system mask bits to ones. These two instructions
simplify the coding required to alter the system mask, particularly when
the existing settings must be saved. (These instructions are
implemented in the Model 165 II also.)

CLOCK COMPARATOR AND CPU TIMER

These timing facilities are standard on the Model 168. (They are
also provided in a Model 165 II.> The clock comparator provides a means
of causing an external interruption when the time of day clock has
passed a time specified by a program. This feature can be used to

16 A Guide to the IBM System/370 Model 168

initiate an action, terminate an operation, or inspect an activity, for
example, at specific clock times during system operation.

The clock comparator has the same format as the time of day clock and
is set to zero during initial program reset. The SET CLOCK COMPARATOR
privileged instruction is provided to place a value that represents a
time of day in the clock comparator. When clock comparator
interruptions are specified via the external interruption summary mask
bit in the current PSW and the clock comparator subclass mask bit in
control register 0, an external interruption occurs when the time of day
clock value is greater than the clock comparator value. Bits 0 to 51 of
the time of day clock and the clock comparator are compared. If clock
comparator interruptions are masked when this condition occurs, the
interruption remains pending only as long as the time of day clock value
remains higher than the value in the clock comparator. The STORE CLOCK
COMPARATOR privileged instruction can be used to obtain the current
value of the clock comparator.

The use of a clock comparator to cause an interruption when a
specified time is passed, instead of the interval timer at location 80,
offers two advantages. First, the time of day clock increments when the
system is in the stopped state while the interval timer does not.
Hence, if a system stop occurs during processing and the system is
restarted, the clock comparator can still cause an interruption at the
time requested. The interruption caused by the interval timer in such a
situation is late. Second, implementing the time of day clock and the
clock comparator in the same doubleword format eliminates having to
convert doubleword time of day clock units to single word interval timer
units.

The CPU timer provides a means of causing an external interruption
when an interval of time specified by a program has elapsed. The CPU
timer is implemented as a binary counter with a format identical to that
of the time of day clock; however, bit 0 of the CPU timer is considered
to be a sign. The CPU timer has a maximum time period half as large as
that of the time of day clock and the same resolution of one
microsecond. When both the CPU timer and the time of day clock are
running, the stepping rates of the two are synchronized such that they
are stepped at exactly the same rate.

The CPU timer is set to zero at initial program reset and the SET CPU
TIMER privileged instruction is provided to place an interval of time in
the CPU timer. The STORE CPU TIMER privileged instruction can be used
to obtain the current CPU timer value. The CPU timer decrements every
microsecond. If the external interruption summary mask bit in the
current PSW and the CPU timer subclass mask bit in control register 0
are on, an external interruption occurs whenever the CPU timer value is
negative (not just when the timer goes from positive to negative),
indicating that the time interval has elapsed. The CPU timer decrements
when the CPU is executing instructions (including instruction retry
operations) and while the CPU is in the wait state. It is not
decremented when the system is in the stopped state.

While providing essentially the same function as the interval timer
at location 80, the CPU timer provides advantages over the interval
timer as follows. Task processing intervals of less than 3.3
milliseconds are accurately measured because of the one microsecond
resolution of the CPU timer. A pending CPU timer interruption is reset
when a SET CPU TIMER instruction is issued to set a positive value in
the CPU timer, eliminating the need to take an interruption in order to
reset the CPU timer, as is required for the interval timer. In
addition, the amount of timing facilities processing required during a
task switch can be reduced. This can result from the fact that the
format of the time of day clock and the CPU timer are the same.
Conversion of doubleword time of day clock values to single-word

A Guide to the IBM System/3?0 Model 168 17

interval timer values is eliminated, and timer queues can be structured
such that little of the processing currently required during a task
switch, when the interval timer is used, is necessary.

RELIABILITY, AVAILABILITY, AND SERVICEABILITY FEATURES

The following hardware RAS features implemented in the Model 168 are
identical to those provided in the Model 165:

• Automatic retry of most failing CPU operations by hardware

• ECC checking on processor storage to correct all single-bit and
detect all double-bit errors

• I/O operation retry facilities, including the storing of channel
retry data during an I/O interruption that results from an error,
and channel/control unit command retry procedures to correct certain
failing I/O operations

Implementation of machine check interruption facilities is expanded
in the Model 168 to provide more definitive logout information when a
machine check interruption is taken, and a new buffer row deletion
function is implemented. Machine check interruption facilities are the
same in Models 168 and 165 except for the following (which also applies
to a Model 165 II):

18

• The instruction processing damage subclass of machine check
interruption, not implemented in the Model 165, is implemented in
the Model 168. Instruction processing damage will be indicated in
the machine check code (shown in Figure 20.10.4) when a CPU error
occurs that is not retryable or that was unsuccessfully retried,
unless an LPSW instruction or an interruption was in process at the
time of the failure or the failure was a hang detect. In these
cases, system damage is indicated. In the Model 165, system damage
is indicated for all CPU and storage errors that cannot be retried
or that are unsuccessfully retried. Implementation of the
instruction processing damage subclass in the Model 168 is designed
to identify errors that can be associated with a specific task so
that only that task need be abnormally terminated. Code is included
in the Model 165 MCH routine that attempts, when a system damage
error is indicated, to distinguish system damage from damage that
can be associated with a task. This code will not be required for
the Model 168.

• Whenever a machine check interruption is taken to record information
about a correctable or an uncorrectable processor storage error, the
failing processor storage address is placed in locations 248-251.
The machine check code will indicate the type of processor storage
error and whether or not the stored failing storage address is
valid~

• In tne Model lb~, each block in the hlgh-speea bu~~er has a delete
bit associated with it in the address array for the buffer, as in
the Model 165. However, in the Model 168 each row within the buffer
also has a row delete trigger associated with it. (There are four
rows in the 8K buffer and eight rows in the 16K buffer, as shown
later in Figure 20.15.2.) Whenever certain buffer errors occur and
the Model 168 CPU is enabled for system recovery machine check
interruptions, hardware determines the buffer row in which the error
occurred. The row delete trigger is turned on for that row. This
indicates that the buffer row is disabled and that the CPU can no
longer fetch data from or store data in the deleted buffer row. The
machine check code stored during the interruption that occurs after
a buffer row is deleted indicates a degradation error condition.

A Guide to the IBM System/310 Model 168

The mode bit implemented in the Model 165 that can be set by a
DIAGNOSE instruction to cause the entire buffer to be disabled is
not implemented in the Model 168. However, the Model 168 contains a
mode bit that can be set to cause the buffer row deletion mechanism
to be disabled. This selective buffer deletion facility allows only
one-quarter of an 8K buffer or one-eighth of a 16K buffer to be
automatically disabled by hardware at the time certain buffer errors
occur and avoids total buffer disabling after an error.

• The time of day clock damage interruption, maskable by the external
mask bit and PSW bit 13, is expanded to include clock comparator and
CPU timer errors. Its name is changed to "Timing Facilities
Damage". When a STORE CLOCK COMPARATOR or a STORE CPU TIMER
instruction is issued and the addressed timing facility has an
error, or when the CPU timer or the clock comparator develops an
error, a timing facilities damage interruption occurs if the timing
facilities damage mask bit is a one.

• Whenever a machine check interruption occurs in a Model 168, the
current value of the CPU timer is stored in locations 216 to 223 and
the current value of the clock comparator is stored in locations 224
to 231. Bits 46 and 47 of the machine check code, shown in Figure
20.10.4, are used to indicate whether or not these values were
stored correctly. Whenever a machine check interruption occurs as a
result of a processor storage error, the address of the error
location is stored in locations 249 to 251. Bit 24 of the machine
check code is used to indicate whether or not the value was
correctly stored.

• The size of the CPU extended logout area in the Model 168 is 1416
bytes instead of 992 bytes as in the Model 165 in order to log
additional status information when a machine check occurs.

Model 168 recovery management routines (machine check and channel
check handlers) that operate in BC mode will be included in OS MFT and
OS MVT as of Release 21.6. They will provide the same recovery
functions as are provided for the Model 165 and support of new Model 168
machine check facilities. Model 168 RMS routines will provide recovery
for system damage errors similar to that provided by Model 165 RMS
routines (attempt to repair damaged control program storage areas by
loading a refreshable module). In addition, an instruction processing
damage interruption will be recognized in the Model 168, and RMS will
attempt to identify the affected task and abnormally terminate it.
Model 168 RMS will also recognize a degradation interruption that
indicates buffer row deletion by the hardware, and the operator will be
notified of this hardware action.

These recovery routines are also included in OS/VS1 and OS/VS2 and
are modified to operate correctly when the Model 168 is operating in EC
and dynamic address translation modes. A discussion of how these
recovery routines differ from those provided for BC mode operations is
contained in each optional programming systems supplement, which also
discusses the programmed repair facilities (OLTEP, OLT's, Logout
Analysis program) provided.

A Guide to the IBM System/370 Model 168 19

N
o

0-- 8
Machine Check

Types

0 0
lJ.J lJ.J

0 0 (J: CJ) 0 0 CJ) (!)
CJ) a.. (f) :J U lJ.J :J 0

Z Z
:J :J

13it 0 2 3 4 5 6 7

Bit Interrupt Type

0 SD System DamGlge
1 PD Instruction

Processing Damage
2 SR System Hecovery
4 CD Timing Facilities

Damage
5 ED - External Damage
7 DG - Degradation

Fixed Logout Area Locations 232-239

16 - 18
20 - 31, 46, 47 48 - 63 Storage

Validity Bits CPU Extended Log Length Error

a..
0 0 :J

0 0 0 0
lJ.J lJ.J 0 lJ.J lJ.J lJ.J lJ.J Zero if no logout CJ) CJ) lJ.J

lJ.J U lJ.J CJ) CJ) CJ) CJ)

:J :J ~ CJ) CJ) ~ :J :J :J :J or 1416 bytes
Z Z U Z Z Z Z
:J :J « :J :J :J :J

CXJ

8 9-14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132-4546 47 48 63

Bit Error

15 Delayed Interruption
16 Storage

Error
Uncorrected

17 Storage
Error
Corrected

18 Protection
Key
Error

Bit Valid Fixed Area Data

20-23 Machine Check Old PSW (48-55)
20 AMWP
21 Masks and Protect Key
22 Program Mask and Condition Code
23 I nstruction Address

24 Failing Storage Address
27 Floating Point Registers (352-383)
28 General Registers (384-447)
29 Control Registers (448-511)
30 CPU Extended Logout
31 Storage (Validity of storage being

processed by instructions when
interruPtion occurred.)

46 CPU Timer Value
47 Clock Comparator Value

Figure 20.10.4. ftlodel 16 R machine check code

20:15 STORAGE -------

PROCESSOR (MAIN) STORAGE

Like the Model 165, the Model 16~ has a two-level storage system in
which large high-speed monolithic processor storage backs up small,
higher speed buffer storage. A maximum of 4096K of processor storage
can be installed in a Model 168. The Model 165 can have a maximum of
3072K. Processor storage is available for the Model 168 in 1024K
increments as follows:

Model CaEacity

J 1024K
K 2048K

KJ 3072K
L 4096K

Processor storage in a Model 168 is four-way doubleword interleaved,
as it is in a Model 165. The processor storage installed in a Model 168
is divided into four logical storages, each of which can operate
independently from the other three logical storages. Logical storages
can be selected at 80 nanosecond intervals. Consecutively addressed
doublewords are spread across logical storages, as shown in Figure
20.15.1, so that access to four doublewords can be overlapped.

The data path to and from processor storage is eight bytes wide. As
in a Model 165, the storage control unit (SCU) provides the interface to
the logical storages. A logical storage in the Model 168 has a
read/write cycle time of 480 nanoseconds for eight bytes on a doubleword
boundary. A cycle time of 800 nanoseconds is required for a partial
write (any number of bytes less than eight). Once selected, a logical
storage remains busy for the storage cycle and cannot be selected again
until 480 or 800 nanoseconds have passed.

The access time of processor storage is 560 nanoseconds for eight
bytes. That is, once the SCU sends a storage selection, 560 nanoseconds
are required to fetch eight bytes of data and make them available in the
storage control unit, from which they can be sent to the instruction
unit, the buffer, etc. A CPU fetch of eight bytes from processor
storage in the Model 168 requires 800 nanoseconds. This is the time
between request acceptance and availability of the eight bytes in a CPU
register. A CPU fetch of eight bytes in the Model 165 requires 1440
nanoseconds. Table 20.15.1 summarizes cycle and access times for the
Model 168.

As in a Model 165, processor storage in a Model 168 can be accessed
concurrently by any combination of one or more channels and the CPU for
a total of four unique logical storage requests. When simultaneous
requests for the same logical storage are received, the storage control
unit schedules the requests according to a priority scheme. This
priority is the same in Models 168 and 165. That is, the channels have
priority over the CPU and the priority among channels is definable at
channel installation time. Processor storage access times stated are
obtainable assuming the logical storages are free at the time a request
is directe1 to them.

Processor Storage Reconfiguration

As shown in Figure 20.15.1, the processor storage present in the
Mndel 168 is divided into from one to four segments of 1024K bytes each.
segment numbers 0 to 3 are used. If an uncorrectable processor storage
error occurs, the segment containing the malfunctioning location(s) can
be manually configured out of the system by the operator.

A Guide to the IBM System/370 Model 168 21

The configuration panel on the 3066 Model 2 system Console is use~ to
enable storage segments, assign a one megabyt p range of addresses to
each enabled segment, and establish four-way interleaving or serial
operations. ~he configuration panel is shown in Figure 20.15.1. The
operator selects a configuration by inserting pins in the appropriate
hubs. The storage configuration indicated by the panel is made
effective during a system reset.

Storage
Segment
Number

o

2

3

ow 0

OW 4

Logical
Storage

o

Storage
Segment
Number

4-Megabyte Processor Storage

OW 1

OW 5

Logical
Storage

1

OW 2

OW 6

Logical
Storage

2

Configuration Panel

CPU Address Bits

~
9 10 11

0 0 0 0

0 0 0

2 0 0 •
l3 0 • 0

I ntei"leave Mode

•

Enable

•
0

•
•

OW 3

OW 7

Logical
Storage

3

1024K

1024K

1024K

1024K

Figure 20.15.1. Model 16R processor storage organization and configuration
panel

22 A Guide to the IBM System/370 Model 168

Table 20.15.1. Model 168 cycle and access times

Cycle or Access Time I Time in Nanoseconds

CPU cycle time
Local storage cycle time
Control storage cycle time
Processor (logical) storage read/write cycle
time (for eight bytes on a doubleword boundary)

Processor (logical) storage cycle time for a
partial write (fewer than 8 bytes)

Minimum time between successive selects to
processor storage

Processor storage access time (from time of SCU
select to availability of data in the storage
control unit)

CPU fetch of 8 bytes from processor storage
(from time of request acceptance to availability
data in a CPU register)

CPU fetch of eight bytes from buffer
(from time of request acceptance to availability
of data in a CPU register, as in the Model 165)

~inimum time between successive buffer requests

80
80
80

480

~OO

80

560

800
of

160

80

When a pin is inserted in the interleave mode hub, four-way
interleaving is selected. The absence of a pin selects serial
(noninterleaved) operations. The presence of a pin in an enable hub
indicates the associated segment is to be included in the active storage
configuration. The three CPU address bit hubs for a segment are used to
indicate the range of processor storage addresses that are to be
assigned to the segment. When none of the three address bit hubs for a
segment contains a pin, address range 0 to 1024K is selected. When only
the address bit 11 hub for a segment contains a pin, addresses 1024K to
2048K are selected. ~he presence of a pin only in the address bit 10
hub selects addresses 2048K to 30?2K, and a pin only in the address bit
9 hub selects addresses 3012K to 4096K.

The storage configuration selected by the control panel shown in
Figure 20.15.1 is the following:

• Segments 0, 2, and 3 are enabled and segment 1 is disabled.

• segment 0 is assigned addresses 0 to 1024K, segment 2 is assigned
addresses 1024K to 2048K, and segment 3 is assigned addresses 2048K
to 3012K.

• Four-way interleaving is enabled.

Storage ripple functions are provided in the Model 168 for read-only
control storage, writable control storage, local storage, and processor
storage, as for the Model 165. The inline ripple facility of the Model
165 is not implemented in the Model 168.

HIGH-SPEED BUFFER STORAGE

As in the Model 165, an 8K buffer is standard in the Model 168 and
installation of the optional Buffer Expansion feature permits inclusion
of an additional 8K of buffer storage. Buffer storage provides high­
speed data access for CPU fetches. In a Model 168, as in a Model 165,
the CPU can obtain eight bytes from the buffer in 160 nanoseconds (two
CPU cycles) and a request can be initiated every cycle. This is the
time between request acceptance and availability of the data in a CPU

A Guide to the IBM System/370 Model 168 23

register. If the buffer does not contain the data required, the data
must be obtained from processor storage. A CPU to processor storage
fetch requires 800 nanoseconds.

Use of the high-speed buffer in Models 168 and 165 is almost
identical. (This description of the buffer in the Model 168 also
applies to the Model 165 II.l When a data fetch request is made by the
CPU, a determination is made of whether or not the requeste1 data is in
the high-speed buffer by the interrogation of the address array of the
buffer's contents. If the data requested is present in the buffer, it
is sent directly to the CPU without a processor storage reference. If
the requested data is not currently in the buffer, a processor storage
fetch is made and the data obtained is sent to the CPU. The data is
also assigned a buffer location and stored in the buffer. When data is
stored by the CPU, both the buffer and processor storage are updated if
the contents of the processor storage location being altere1 are
currently being maintained in the buffer.

The channels never access the buffer directly. They read into and
write from processor storage using a eight-byte-wide path between the
CPU and processor storage that bypasses the buffer. When a channel
stores data in processor storage. the address array is inspected. If
the data from the affected processor storage address is being maintained
in the buffer, appropriate bits are set in the address array to indicate
that this buffer data is no longer valid. In a Model 165, the buffer is
updated instead of invalidated when a channel stores data in a processor
storage location whose contents are currently in the buffer.

As in a Model 165, the entire buffer in a Model 168 can be disabled
manually by a system console switch. When the buffer is disabled, all
CPU fetches are made directly to processor storage and effective system
execution speed is reduced. Selective buffer disabling by row performed
by hardware. as described previously, is also provided for the buffer in
the Model 168.

The BK and 16K buffers are shown in Figure 20.15.2 together with
their address arrays. The BK buffer is organized in the same way in
Models 168 and 165. The BK buffer contains 64 columns of 128 bytes
each. Every buffer column is subdivided into four blocks. A block is
32 bytes and can contain 32 consecutive bytes from processor storage
that are on a 32-byte boundary. The 8K buffer can contain a maximum of
256 different blocks of processor storage data (four blocks per column
times 64 columns). A valid trigger is associated with each buffer block
and is set to indicate whether or not the block contains valid data.
~ll valid triggers are set off during an initial program reset. There
are four rows in the BK buffer. The first row consists of block 0 of
each column (64 blocks). The last row consists of block 3 of each
column.

The organization of the 16K buffer in Models 168 and 165 is slightly
different; In the Model 16Rv the 16K buffer still contains 64 columns
but each column has eight blocks instead of four. In a Model 165, the
16K buffer has 128 columns of four blocks each. Tne approach taken In
the Model 168 enables bits 21 to 31 of the storage address in an
instruction to be used to address the index array for the buffer
regardless of whether the storage address is virtual or real. This
enables interrogation of the index array to be performe~ simultaneously
with interrogation of the translation lookaside buffer, which is part of
the dynamic address translation facility. (See section 30:10 for more
details.) There are eight rows in the 16K buffer. The first row
consists of block 0 of each column (64 blocks). The last row consists
of block 7 of each column.

24 A Guide to the IBM System/370 Model 168

Address Array - 8K Buffer Address Array - 16K Buffer
.. .. .,.,

Block 0 13·bit
address .. , Block 0

13-bit
address

. "
.. ., ,

2 2 -.1~
3 3

--
~

Column 0
,

63
....

4
-.11_

256 block address registers
5
6

-.1~
7
Column 0 63

512 block address registers

Buffer Storage - 8K Buffer Storage - 16K
.. .. ~ _ ..

Block 0 32 bytes Block 0 32 bytes
.~ ~
.. , ,

2 2 .. ,
3 3
Column 0

..
63

.. ..
4

256 blocks "
5

....
6
7
Column 0

....
63

512 blocks

Processor Storage-2048K

Block 0 32 bytes Addresses 0 - 2047

Addresses 2048 - 4095

2

- '-"- -- -,- -
1021

1022

1023

Column 0 63

Figure 20.15.2. BK and 16K buffer organization

A Guide to the IBM System/370 Model 168 25

Processor storage is logically divided into the same number of
columns as buffer storage, which is always 64 in the Model 168. While
there are four or eight blocks in a buffer column, depending on buffer
size, the number of blocks in a processor storage column varies with the
size of processor storage. When buffer storage is assigned, bits 21-26
of the processor storage address determine which one of the 64 columns
in buffer storage is to be used. The organization of 2048K bytes of
processor storage is shown in Figure 20.15.2. Any of the 1024 blocks in
a given processor storage column can be placed in anyone of the four
(8K buffer) or eight (16K buffer) blocks in a corresponding buffer
column.

Figure 20.15.2 also shows the organization of the address array for
the 8K and the 16K buffer. The address array contains the processor
storage addresses of the data that is currently in the buffer. A least­
recently-used algorithm, similar to that used in the Model 165, is
implemented in the Model 168 to determine which block within a buffer
column is to be assigned when data is placed in the buffer.

Buffer and processor storage components and controls in the Model 168
are shown in Figure 20.15.3.

26 A Guide to the IBM System/3?O Model 168

Channel h
~I b

Channel 14--

... --..
... ..

Channel +-

Channel f+-

Central Processing Unit

Processor Storage

Storage Arrays

Logical
storage

Logical
storage

Logical
storage

Logical
storage

o 2 3

~\ //----
Channel
signal
conversion

4. n

Channel
buffers
and
control

Storage control
and ECC logic

Buffer
inval­
idate

4~

..
-..

address --Il1o.
stack ~-----..

Dynamic address
translation
hardware and
controls

Instruction unit

Storage .. protect
keys

Storage Control Unit

High-speed
buffer
address array
buffer control

Translation
lookaside
buffer

Execution unit

Figure 20.15.3. Model 168 components and controls

A Guide to the IBM System/370 Model 168 27

20:20 CHANNELS

The number and types of channels that can be attached to Models 165
and 168 are the same. The capability of attaching up to seven stand­
alone channels to the Model 168 is standard. Any combination of one or
two 2810 Multiplexer, up to six 2860 Selector, and up to six 2880 Block
Multiplexer channels can be attached to a Model 168, up to the limit of
seven channels. Installation of the optional Extended Channels feature
permits attachment of a maximum of twelve channels. Any combination of
one (with address 0) or two (with an address from 1 to 6) 2810's, six
2860's (with addresses 1 through 6), and eleven 2880's (with addresses 1
through 11), up to the limit of twelve, can be installed.

As for a Model 165 channel configuration, the addresses and
priorities of the channels present in a Model 168 configuration are
established at channel installation time as indicated by the user,
within the restraints specified for the Model 168. The channel
buffering scheme implemented in the storage control unit is the same for
Models 168 and 165.

The 2810, 2860, and 2880 channels that attach to the Model 168 are
functionally and physically identical to those that attach to a Model
165. The same attachment feature that must be installed on a 2810 or a
2860 channel in order to attach the channel to a Model 165 must be
installed on 2810 and 2860 channels that are to be attached to a
Model 168.

While the data rates of channels that attach to the Model 168 are the
same as for the Model 165, the maximum aggregate data rate that a Model
168 can sustain with minimal overrun exposure is significantly higher
than that of the Model 165. The Model 168 can also have more high-speed
I/O devices, such as the 2305, operating concurrently. The increased
data rate is made possible by the use of a channel dual I/O bus to
transfer data between the channels and the storage control unit so that
the faster cycle time of Model 168 processor storage can be utilized to
advantage.

The channel dual I/O bus in the Model 168 consists of bus A and bus
B. Each bus provides a path between from one to six channels and a
register in the storage control unit. A channel is connected to one bus
or the other (not to both). Data can be transferred simultaneously on
the two buses. This facility is used for input operations to transfer
simultaneously data from two different channels to registers in the
storage control unit.

At the time channels are installed, each is assigned to one of the
two buses. A maximum of four channel frames (with up to six channels)
can be attached to a bus. A maximum of seven channel frames (for a
maximum of twelve channels) can be attached to a Model 168 system.
Channel priorities 1, 2, 3, 9, 10, and 11 are assigned to bus A. Bus B
has priorities q, 5, 6, 7, 12, and 13 assigned. Priority 8 is not used.
Simulation shows that each bus can handle a maximum data rate of 8 MD.
ThUS, the maximum aggregrate data rate a Model i68 can sustain is 16 MB.

28

The following must be observed when channel priorities are assigned:

• priority positions 1, 2, 4, and 5 can sustain a 3-megabyte data rate
concurrently. Hence, 2305 Fixed Head Storage Files (Models 1 and 2)
and 2301 drums attached to 2880 channels can be assigned these
priorities •

• 2301 drums attached to 2860 channels must be assigned priority
positions 1 and/or 2.

A Guide to the IBM System/3?0 Model 168

• The maximum data transfer capability of a 2870 channel can be
supported when it is assigned priority 1, 2, or 3.

The presence of the channel dual I/O bus in the Model 168 permits
greater flexibility in the physical layout of Model 168 components since
the channel frames are attached to two separate cables instead of only
one, as for a Model 165. Greater flexibility in the cable lengths
between channel frames attached to the same I/O bus is also provided by
the Model 168.

20:25 SYSTEM CONSOLE

The 3066 Model 2 System Console for the Model 168 has the same
features as the 3066 Model 1 System Console for the Model 165: a
cathode ray tube and keyboard, a microfiche indicator viewer, a
microfiche document viewer, a processor storage configuration panel, a
system activity monitor, and a device for loading microcode and
diagnostics. In addition, the store status function is implemented.
(The store status function is implemented in a Model 165 II as well.)

The operator can cause the contents of the following to be placed in
processor storage by pressing the new store status button on the control
panel:

CPU timer - locations 216-223

Clock comparator - locations 224-231

Current PSW - locations 256-263

Floating-point registers - locations 352-383

General registers - locations 384-447

Control registers - locations 448-511

In addition to the store status button, the control panel on the 3066
Model 2 has system clear and cooling reset alarm pushbuttons, and a
switch associated with the dynamic address translation feature.

20:30 STANDARD AND OPTIONAL SYSTEM FEATURES

STANDARD FEATURES

standard features for the System/370 Model 168 are:

• BC and EC mode of operation
• Instruction set that includes binary, decimal, floating-point, and

extended precision floating-point arithmetic, and System/370
instructions. Standard System/370 instructions for the Model 168
are:

COMPARE LOGICAL CHARACTERS UNDER MASK
COMPARE LOGICAL LONG
INSERT CHARACTERS UNDER MASK

*LOAD CONTROL
*LOAD REAL ADDRESS

MONITOR CALL
MOVE LONG

*PURGE TLB
*RESET REFERENCE BIT
*SET CLOCK

A Guide to the IBM System/370 Model 168 29

*SET CLOCK COMPARATOR
*SET CPU TIMER

SHIFT AND ROUND DECIMAL
*START I/O FAST RELEASE
*STORE CHANNEL ID

STORE CHARACTERS UNDER MASK
STORE CLOCK

*STORE CLOCK COMPARATOR
*STORE CONTROL
*STORE CPU ID
*STORE CPU TIMER
*STORE THEN AND SYSTEM MASK
*STORE THEN OR SYSTEM MASK

• Dynamic Address Translation
• Reference and Change Recording
• Instruction retry
• Interval timer (3.3 ms resolution)
• Time of day clock
• Clock comparator and CPU timer
• Monitoring feature
• Program Event Recording
• Program interruption for SSM instruction
• Expanded machine check interruption class
• ECC on processor storage
• Byte-oriented operands
• Store and fetch protection
• High-speed buffer storage - 8K bytes
• Attachment for up to seven channels
• Channel dual I/O bus
• Channel retry data in extended channel logout area
• Writable and read-only control storage
• Store status function
• Direct Control

*Privileged instructions

OPTIONAL FEATURES

Optional features for the System/310 Model 168, which can be
field installed unless indicated otherwise, are:

• 3066 Model 2 System Console (required in all configurations)
• High-Speed Multiply **
• Buffer Expansion for inclusion of a 16K buffer
• 1070/1014 Compatibility **
• 7080 Compatibility **
• 109/1090/1094/109411 Compatibility **
• 2810 Byte Multiplexer Channels, 2860 Selector Channels, and 2880

Block Multiplexer Channels
• Channel Indirect Data Addressing for 2810 p 2860 p and 2~~0 channels

(required when OS/VS1, OS/VS2. or VM/310 is used)
• Extended Channels (for up to twelve channels)
• Channel-to-Channel Adapter
• Integrated Storage Control
• Two-Channel Switch for Integrated Storage Control

**Not recommended for field installation

Note: Compatibility features are mutually exclusive

30 A Guide to the IBM System/310 Model 168

SECTION 30: VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION

The first subsection. 30:05. discusses the needs that virtual storage
and dynamic address translation in System/370 are designed to address.
No previous understanding of these facilities is assumed. In this
discussion. an address space is defined as a consecutive set of
addresses that can be used in programs to reference data and
instructions. System operation in IBM-supplied virtual storage
environments is explained conceptually. without use of all the
terminology new to such an environment.

The general advantages of IBM-supplied virtual storage operating
systems are presented also. Included in this subsection are those that
apply to OS/VS1 and OS/VS2. Additional advantages of virtual storage
that are specific to a particular IBM-supplied operating system are
discussed in the optional supplement for that operating system.

The last portion of subsection 30:05 defines the terminology
associated with virtual storage and dynamic address translation
hardware. The terminology included is that common to the IBM-supplied
operating systems that support a virtual storage environment for
System/370. However. specific references to DOS/VS are not made where a
difference between DOS and OS exists. since DOS/VS does not support the
Model 168. Terms unique to a particular operating system are defined in
the optional supplement that describes that operating system.

Subsection 30:10 describes in detail the implementation and operation
of dynamic address translation and channel indirect data addressing
hardware in the Model 168. Other hardware items associated with dynamic
address translation. such as reference and change recording. are
discussed as well.

The last subsection. 30:15. discusses the new factors that affect
system performance in a virtual storage environment. The information
presented is related to efficient installation and utilization of an
IBM-supplied virtual storage operating system.

The optional programming systems supplements (Sections 90 to 110)
assume knowledge of the entire contents of Section 30. This entire
section applies to the Model 165 II as well as the the Model 168, except
where differences are noted.

30:05 VIRTUAL STORAGE CONCEPTS. ADVANTAGES. AND TERMINOLOGY

THE NEED FOR LARGER ADDRESS SPACE

The past and present rapid growth in the number and types of data
processing applications being installed has led to an increasing demand
for more freedom to design applications without being concerned about,
or functionally constrained by. the physical characteristics of a
particular computer system--system architecture, I/O device types. and
processor storage size. As program design and implementation become
easier. they can enable more rapid installation of applications so that
the benefits of data processing can be achieved sooner.

The design of systern/360 and OS MFT and MVT allowed programmers to be
less concerned than before about specific CPU architecture and I/O
device types when designing and implementing applications by (1)

A Guide to the IBM System/370 Model 168 31

providing a compatible set of CPU models ranging in size from small to
large scale, (2) providing a variety of high-level languages with
greatly expanded capabilities, including a new language (PL/I), (3)
providing comprehensive data management functions, including support of
I/O device independence where data organization and the physical
characteristics of devices permitted, and (4) supporting dynamic
allocation of system resources (channels, I/O devices, direct access
space, and processor storage).

While Systeml360 and OS represented major steps toward giving
programmers a larger measure of system configuration independence,
constraints that resulted from the necessity to design applications to
fit within the amount of processor storage available still existed. In
addition, although System/360 models provided more and less costly
processor storage than was previously available, increasingly larger
amounts of processor storage began to be required as the use of high­
level languages increased, the usage and level of multiprogramming
increased, the functions supported by operating system control programs
expanded, and applications that require relatively larger amounts of
processor storage (such as teleprocessing and data base) were designed
and installed more frequently.

The requirement for more processor storage is still growing. The new
applications being developed and installed tend to have larger and
larger storage design points in order to provide the functions desired.
More processor storage is also required for I/O buffer areas to achieve
maximum capacity and performance for sequential operations using new
System/370 direct access devices with significantly larger track
capacities. Larger blocking of tape records, which requires larger I/O
buffers, also results in increased tape reel capacity and decreased tape
processing time. As a result, system/370 models provide significantly
more processor storage than their predecessor System/360 models and
offer it for a lower cost.

The availability of more processor storage, however, has not relieved
all the constraints associated with processor storage. Applications
still must be tailored to the amount of processor storage actually
available in a given system even though storage design points (partition
and region sizes) can be larger than they were previously.

Consider the following situations that can occur in installations:

1. An application is designed to operate in a SOK processor storage
area that is adequate to handle current processing needs and that
provides room for some expansion. Some time after the
application is installed, however, maintenance changes and the
addition of new functions cause one of the programs in the
application to require 51K and another to require 52K.
Installation of the next processor storage increment cannot be
justified on the basis of these two programs, so time must be
spent restructuring and retesting the programs to fit within SOK.

2. An existing app~lca~10n has programs with a planned overlay
structure. The volume of transactions processed by these
programs has doubled and better performance is now required.
Additional processor storage is installed. However, the overlay
programs cannot automatically use the additional storage.
Therefore, reworking of the overlay programs is required to take
them out of planned overlay structure and, thereby, achieve the
better performance desired.

3~ A low-volume, terminal-oriented, simple inquiry program that will
operate for three hours a day is to be installed~ If the program
is written without any type of overlay structure, it will require
60K of ~essor storage to handle all the various types of

32 A Guide to the IBM System/370 Model 168

inquiries. However w because of a low inquiry rate w only 8K to
12K of the total program will be active at any given time. In
order to justify its operational costw considerable additional
program development time is spent designing the inquiry program
to operate with a dynamic overlay structure so that only 12K of
processor storage is required for its execution.

4. A multiprogramming installation has a daily workload consisting
primarily of long-running jobs. There are also certain jobs that
require a relatively small amount of time to execute. The times
at which these jobs must be executed is unpredictable: however,
when they are to be runw they have a high completion priority.
While it is desirable to be able to initiate these high-priority
jobs as soon as the request to execute them is received w this
cannot be done because long-running jobs are usually in
operation. Hence w a certain time of day is established for
initiating high-priority jobs and the turnaround time for these
jobs is considerably longer than is desired.

5. A series of new applications are to be installed that require
additional computing speed and twice the amount of processor
storage available in the existing system. The new application
programs have been designed and are being tested on the currently
installed system until the new one is delivered. However w
because many of the new application programs have storage design
points that are much larger than those of existing applications,
testing has to be limited to those times when the required amount
of processor storage can be made available. Although another
smaller scale model is also installed that has time available for
program testingw it cannot be used because it does not have the
amount of processor storage required by the new application
programs. In additionw although the smaller scale model now
provides backup for the currently installed larger scale model,
the smaller scale model cannot be used to back up the new system
because of processor storage size limitations.

6. A large terminal-oriented application is to be operative during
one entire shift. During times of peak activityw four times more
processor storage is required than during low-activity periods.
Peak activity is experienced about 20 percent of the time and low
activity about 40 percent. The rest of the time, activity ranges
from low to peak. Allocation of the peak activity processor
storage requirement for the entire shift cannot be justified and
a significantly smaller storage design point is chosen. As a
result w a dynamic program structure must be used, certain desired
functions are not included in the program, and response times
during peak and near-peak activity periods are increased above
that originally planned.

In this installation, most of the batched jobs are processed
during the second shift. However w there is also a need to
operate the large terminal-oriented application for a few hours
during second shift. This cannot be done because the system does
not have the amount of processor storage required for concurrent
operation of the batched jobs and the terminal program (which
must have its storage design point amount allocated even though
that amount of processor storage would not be required during
second shift operations). The large amount of additional
processor storage required to operate the terminal program for
only a portion of the second shift cannot be justified.

7. An application program with a very large storage design point is
executed only once a day as a hatched job. A significant benefit
would result from putting the program online to a few terminals
during the morning hours. However, the program continues to be

A Guide to the IBM System/370 Model 168 33

run as a batched job because it is very large and would be made
larger by putting it online. The large amount of additional
processor storage required to operate the program concurrently
with the existing morning workload cannot be justified.

8. A terminal-based application has been installed on a full
production basis for several months. During this period, the
benefits accrued from the online application have encouraged the
gradual addition of several more terminals, and peak activity is
considerably higher than it was initially. Because growth has
been gradual, much additional programming time (significantly
more than is required to maintain batch-oriented applications)
has to be spent periodically restructuring the terminal-based
application program to handle the increasing volume of activity.

9. An online application is currently active during an entire shift
and operates concurrently with batched jobs. It would be
advantageous to install a second terminal-oriented application
that would operate concurrently with the existing workload during
the entire shift. However. the amount of processor storage that
would have to be dedicated to each online application for the
entire shift in order to handle its peak activity is very large,
and times of peak activity for the two applications do not
completely overlap. Because so much processor storage would be
unused during a large portion of the shift if both online
applications were always active, installation of the second
online application is difficult to justify.

In the situations described. processor storage is a constraining
factor in one way or another and the constraints highlighted can apply
in some degree to all systems regardless of their scale (small,
intermediate, large) or processor storage size. The fact that larger,
less expensive processor storage is now available on System/310 models
does not remove these constraints for two major reasons.

First, once a storage design point has been chosen for an
application, whether the design point is relatively large or small, the
application is dependent on that processor storage size for its
operation. The application cannot execute in less than its design point
storage amount, nor can it take advantage of additional available
processor storage without being modified (unless it has been
specifically structured to use additional storage as, for example, are
most IBM-supplied language translators).

Second, although processor storage has become less costly, it still
is a resource that should be used efficiently because of its importance
in the total system operation. Thus, when storage design points are
chosen, tradeoffs among processor storage cost, application function,
and system performance are often made. Making applications fit within
the storage design points selected becomes the responsibility of
application designers and programmers. This situation is made more
difficult by the fact that for many applications an optimum storage
design point cannot be determined until the application is w7itten and
tested using expected transaction volumes.

The significance of processor storage restraints should be evaluated
in light of the following trends evidenced by new types of applications:
(1) the total amount of storage required to support their new facilities
continues to grow larger, (2) the storage they actually require for
operation during their execution is tending to become more variable, and
(3) it is becoming as desirable to install many of these new
applications on smaller scale systems with relatively small maximum
processor storage sizes and low volume requirements as it is to install
them on larger scale systems. Reduction of the constraining factors
currently imposed by processor storage is, therefore, a necessary step

34 A Guide to the IBM System/310 Model 168

in making new applications easier and less costly to install and
available to a wider range of data processing installations.

Given the existing processor storage restraints on application design
and development and the storage requirements that are becoming
increasingly more characteristic of many of the new types of
applications, it becomes advantageous to allow programmers to design and
code applications for a larger address space than they currently have.
That is, programmers should be able to use as much address space as an
application requires so that special program structures and techniques
are not required to fit the application into a given storage size.
Programmers can then concentrate more on the application and less on the
techniques of programming. In addition, the size of the address space
provided should not be determined by processor storage size, as it is in
os MFT and MVT, so that the address space can be larger than the
processor storage available.

A larger address space should be provided, therefore, by a means
other than making processor storage as large as the address space
desired. This requirement can be satisfied by providing programmers
with an address space (called virtual storage) that is supported using
online direct access storage and dynamic address translation hardware.
This approach also offers the advantage of supporting a larger address
space for a lower cost than if larger processor storage is used, since
direct access storage continues to be significantly less expensive per
bit than processor storage. In addition, dynamic address translation
hardware offers functional capabilities that large processor storage
alone cannot provide.

VIRTUAL STORAGE AND .DYNAMIC ADDRESS TRANSLATION CONCEPTS

Virtual storage is an address space the maximum size of which is
determined by the addressing scheme of the computing system that
supports it rather than by the actual number of physical processor
storage locations present in the computing system. In System/370, for
example, which uses a 24-bit binary address, a virtual storage as large
as 16,777,216 bytes can be supported. When virtual storage is
implemented, the storage that can be directly accessed by the CPU,
normally called processor or main storage, is referred to as real
storage.

The concept of virtual storage is made possible by distinguishing
between the names of data and instructions and their physical location.
In a virtual storage environment, there is a distinction between address
space and real storage space. Address space (virtual storage) is a set
of identifiers or names (virtual storage addresses> that can be used in
a program to refer to data and instructions. Real storage space is a
set of physical storage locations in the computer system in which
instructions and data can be placed for processing by the CPU. The
number of addresses in the two spaces need not be the same, although
both spaces begin with address zero and have consecutive addresses. The
programmer refers to data and instructions by name (virtual storage
address> without knowing their physical location.

When virtual storage is not implemented, there is, in effect, no
differentiation between address space and real storage space. The
address space that can be used in programs is identical in size to the
real storage space available and the address in an instruction
represents both the name and the location of the information it
references.

In a virtual storage environment, therefore, the address space
available to programmers is that provided by the virtual storage size
implemented by a given system--not the address space provided by the

A Guide to the IBM System/370 Model 168 35

real storage available in the given system configuration. In OS/VS1 and
OS/VS2, virtual storage rather than real storage is divided into
consecutively addressed partitions or dynamically allocated regions for
allocation to problem programs. The fact that storage addresses in
executable programs are virtual rather than real does not affect the way
in which the programmer handles addressing. In System/370. for example.
an Assembler Language programmer assigns and loads base registers and
manipulates virtual storage addresses in a program just as if they were
real storage addresses.

virtual storage is so named because it represents an "image of
storage" rather than physical processor storage. Since virtual storage
does not actually exist as a physical entity. the instructions and data
to which its virtual storage addresses refer. which are the contents of
virtual storage, must be contained in some physical location. --

In OS/VS1 and OS/VS2 environments, the contents of virtual storage
are divided into a portion that is always present in real storage.
namely, part of the control program, and another portion that is not
always present in real storage. The instructions and data that are not
always present in real storage must be placed in locations from which
they can be brought into real storage for processing by the CPU during
system operation. This requirement is met by using direct access
storage to contain this portion of the contents of virtual storage (see
Figure 30.05.1). The amount of direct access storage required to
support a given amount of virtual storage varies by operating system.
depending on how direct access storage is organized and allocated.

In addition, a mechanism is required for associating the virtual
storage addresses of instructions and data contained in direct access
storage with their actual locations in real storage when the
instructions and data are being processed by the cpu. This requirement
is met by using dynamic address translation (DAT) hardware in the CPU to
associate virtual storage addresses with appropriate real storage
addresses.

With this design, a system can support an address space that is
larger than the actual size of the real storage present in the system.
This is accomplished by bringing instructions and data from direct
access storage into real storage only when they are actually required by
an executing program, and by returning altered instructions and data to
direct access storage when the real storage they occupy is needed and
they are no longer being used. At any given time, real storage contains
only a portion of the total contents of virtual storage.

Such a design is made practical by the fact that the logical flow of
processing within the majority of programs is such that the entire
program need not be resident in real storage at all times during
execution of the program. For example, initialization and termination
routines are executed only once during the operation of a program. Any
exception-handling procedure, such as an error routine. is required only
if the exception condition occurs. A program that handles a variety of
.... r::anC!::a; nn "' .. ,..,.O~ ,'-7'"'0 '"'07" h::a~ ... h "7" " 1.; 0 ,.,. ; o ~~~, oo~ h""T'~ _ ,..; ~,..- ... '-....... &&....,~"''-~'''' '-",Zt:''''- , '- '-'~ ...,'-&'-""'&.& "' ... '-'&&~ .. .&&'- '-'~..L'-.I.&'-'-'-4' 1..&~~\oA J..&u.v~ .LCi:»-LUCJ.J.\...

at any given time only the transaction routine required to process the
current transaction type. It is this property of programs that has
enabled planned overlay and other dynamic program structures to be used
successfully in nonvirtual storage environments when the amount of
processor storage available was not large enough. As indicated
previously, this variable storage requirement characteristic of programs
tends to be even more pronounced in new types of applications and in
online environments in which processing is event-driven.

36 A Guide to the IBM systern/370 Model 168

Consecutive
addresses
Oto 16,777,215
maximum in
System/370

Virtual Storage

r-------l
I I
I I
I I
I

Address space I
available to - mapped

I programmers I
I I
I I
I I
I I

Address space allocated I
to the control program I

I that is always present
in real storage I

L _ ---- __ J
Names of instructions
and data

Contains
virtual storage
addresses

Executable program

Direct Access Storage

Contents of a portion
of virtual storage
(instructions and data)

Location of data
and instructions

Figure 30.05.1. Names and location of instructions and data in a
virtual storage environment

For the purpose of resource management in a virtual storage
environment r virtual storage and its contents, direct access storage
used to contain a portion of the contents of virtual storage r and real
storage are divided into contiguous fixed-length sections of equal size.
Once a program has been fetched from a program library and initiated,
instructions and data within a program are transferred between real
storage and direct access storage a section at a timer during program
execution. A section of an executing program is brought into a real
storage section only when it is required, that iS r only when a virtual
storage address in the section is referenced by the executing program.
A program section that is present in real storage is written in a direct
access storage section only when the real storage assigned to it is
required by another program section and only if the section has been
changed.

A virtual storage operating system control program monitors the
activity of the sections of all executing programs and attempts to keep
the most active sections in real storage r leaving the least active
sections in direct access storage. Figure 30.05.2 illustrates the
relationship of virtual storage r direct access storager and real storage

A Guide to the IBM System/370 Model 168 37

without regard to a specific virtual storage operating system
implementation.

The division of a program and its data into sections, and the
transfer of these sections between direct access storage and real
storage during program execution is handled entirely by the virtual
storage operating system without any effort by the programmer. When a
planned overlay or dynamic overlay program structure is used, the
programmer is responsible for dividing the program and its data into
phases, determining which phases can be present at the same time in the
amount of real storage available (partition or region), and indicating
when phases are to be loaded into real storage during processing.

Virtual Storage
r-----------_'- - - - - -

Address space
allocated to
executing programs

Tables or an
algorithm used
to map virtual
storage sections
to direct access
storage sections

Direct Access Storage

Contents of a portion
of virtual storage
(instructions and
data for executing
programs)

Tables map
virtual storage
sections to real
storage sections

"
Real Storage

Active sections
of executing
programs

Control program Control program

Figure 30.05.2. Relationship of virtual storage, direct access
storage, and real storage

While a virtual storage up to 16 million bytes in size can be
addressed by any System/3?0 model with OAT hardware, the virtual storage
size that can be effectively implemented by a given system is affected
by (1) the amount of real storage present, (2) the amount of direct
access storage space available to contain the contents of virtual
storage, (3) the speed of the direct access storage devices containing
virtual storage contents and contention for these devices or the
channels to which they are attached, (4) the speed of the CPU, and (5)
the characteristics of the programs operating concurrently~ Hence i the
amount of real storage required to effectively implement a specific
amount of virtual storage can vary by system, depending on the
characteristics of the applications in the workload and the performance
desired, as is discussed in Section 30:15.

Once a program section has been loaded into real storage, its virtual
storage addresses can be translated when they are referenced6 Dynamic
address translation hardware is the mechanism that translates the
virtual storage addresses contained in instructions into real storage
addresses during instruction execution. Address translation is
accomplished in System/370 using a hardware-implemented table lookup
procedure that accesses tables contained in real storage. TheSe tables,
which are maintained by control program routines, (1) define the amount
of virtual storage supported and allocated, (2) indicate whether or not

38 A Guide to the IBM System/370 Model 168

any given program section is currently present in real storage, and (3)
contain the addresses of real storage sections allocated to the program
sections that are currently present in real storage.

During the execution of each instruction, address translation is
performed on any virtual storage address in the instruction that refers
to data or to an instruction. Translation occurs after the 24-bit
effective virtual storage address has been computed by adding base,
displacement, and, if any, index values together, as usual. The result
of the address translation is a 24-bit real storage address designating
the location containing the data or instruction referenced by the
virtual storage address in the instruction. The virtual storage
addresses in channel programs (CCW lists) are not translated by channel
hardware during channel program execution; therefore, programmed
translation is required prior to initiation of a channel operation.

In reality, DAT hardware provides dynamic relocation of the sections
of a program during its execution. This capability is not provided by
OS MFT and OS MVT, which support program relocation at link-edit and
program load time only. Once a program has been loaded into an area of
real storage by the program fetch routine, these operating systems
cannot relocate the program to another area of real storage during its
execution. Thus, an entire program or a portion of a program cannot be
written on direct access storage during execution and later reloaded
into different real storage locations to continue execution. Once
loaded, therefore, a program is bound during its execution to its
initially allocated real storage addresses. In a virtual storage
environment, a program is bound only to the virtual storage addresses it
was assigned during loading.

The dynamic relocation provided by OAT hardware eliminates, for most
programs, the need for allocating and dedicating a contiguous area of
real storage to an entire program for the duration of its execution, a
requirement for all programs in MFT and MVT. (As discussed later in
this subsection, some programs cannot operate in the manner being
described, that is, with sections transferred only as required between
direct access storage and real storage.) In a virtual storage
environment, real storage is no longer divided into contiguously
addressed partitions or dynamically allocated regions that can contain
one executing job step (program) at a time.

Further, when real storage is allocated to a section of an executing
program, the real storage is not dedicated to that program section for
the duration of program execution. Concurrently executing programs can
dynamically share the same real storage sections. That is, is general,
the real storage available for allocation to executing programs can be
allocated to any program section as needed. When a section of an
executing program must be loaded, any available section of real storage
can be assigned (subject to certain restrictions imposed by operating­
system-dependent real storage organizations). When the program section
is no longer required, it can be written in direct access storage, if it
has been altered, and the real storage assigned to it can be made
available for allocation to another section of the same program or to a
section of another program.

The assignment of real storage sections is handled entirely by the
operating system, which also keeps account of which sections of
concurrently operating programs are the most active. The operating
system does not attempt to allocate a given amount of real storage to
each executing program. It merely allocates real storage to those
sections it determines are the most active, without taking into account
the particular program to which the active section belongs.

DAT hardware, therefore, provides more than translation from address
space (vir~ual storage) to real storage space. It provides the

A Guide to the IBM System/370 Model 168 39

capability of implementing dynamic real storage management that requires
no effort on the part of the programmer and significantly less CPU time
than programmed address translation during program execution. (The
large amount of CPU time required to translate addresses during program
execution using programmed means has precluded implementation by IBM of
an operating system that supports such programmed dynamic address
translation.) Much of the real storage utilization preplanning required
for OS MVT and MVT environments in order to use real storage effectively
can be eliminated in a virtual storage environment. Dynamic real
storage management capability is another advantage the technique of
using direct access storage and DAT hardware to support a larger address
space has over using larger real storage to provide a larger address
space.

Another capability made available by the implementation of large
address space using direct access storage and dynamic address
translation is that of supporting more than one virtual storage with
only one system. Multiple virtual storages can be used to support
multiple virtual machines. A discussion of virtual machines is
contained in Virtual Machine Facility/370 (VM/370): Introduction
(GC20-1800).

The use of virtual storage and OAT hardware to enable programs to
operate in less real storage than the total storage requirement of the
programs can also offer better performance potential than the technique
of using a planned overlay program structure. When a planned overlay
program executes in MFT or MVT, considerable time can be spent executing
the overlay supervisor in order to perform programmed address
translation (relocation) when a program phase is loaded. In addition,
more efficient real storage utilization may be aChieved in a virtual
storage environment, since the control program reacts to changing
processing needs and only portions of the program that are actually
required are loaded (all phases of an overlay program may not be the
same size and all code within a phase may not be used when the phase is
loaded). Once a planned overlay program has been structured to handle
the currently required set of program phases efficiently, it cannot
automatically adapt to a change in the set of program phases required or
to a change in the activity of the required set of phases.

In a virtual storage environment, the performance of the system can
be directly affected by the amount of time spent transferring program
sections between direct access storage and real storage. Satisfactory
system performance is aChieved when each of the concurrently executing
programs has enough real storage dynamically allocated to it such that
the need for transferring program sections into and out of real storage
is kept at an acceptable level.

As previously mentioned, most programs can be structured such that
processing activity is localized in one area of the program or another
during time intervals rather than equally spread over the entire
program. In other words, at any given time period during execution of
the program, only a subset of the entire program need be referenced.
This is sometimes called the =locality of reference= characteristic of
programs. Therefore, a program achieves satisfactory performance when
its most active sections in any given time interval remain in real
storage and there is a limited amount of program section transfer
activity.

Most programs require a certain mlnlmum amount of real storage in
which to execute in order to achieve satisfactory performance. If such
programs operate with less than their minimum requirement dynamically
allocated, program section transfer activity increases and performance
degradation can occur. The minim~T. real storage requirement of a
program is related to the amount of real storage required by the most
active sections of the program. Because of the locality of reference

40 A Guide to the IBM System/3?0 Model 168

characteristic of most programs, the minimum real storage requirement of
a program for satisfactory operation frequently can be less than its
total storage requirement. This fact enables an operating system to
efficiently support a virtual storage that is larger than the real
storage actually present in the computing system.

A virtual storage environment, therefore, enables most programs to be
independent of real storage size to a large degree. A program can
execute using varying amounts of dynamically available real storage
without being modified. The amount of real storage dynamically
available to a program during its execution primarily affects its
performance, to the extent that program section transfer activity is
affected, rather than its capability to be executed. For example, while
a given 200K language translator might be able to operate with an
average of lOOK of real storage dynamically available to it during its
operation, the time required to compile a program under these conditions
might be unacceptable. Alternatively, the performance desired might be
achieved if an average of 130K is dynamically available to the language
translator while it operates. without a virtual storage operating
system, the 200K language translator might not be used at all because of
its design point size.

In addition to the requirement for larger address space, there is
still a requirement for larger real storage sizes in order to meet the
functional and performance needs of the larger, more complex,
multiprogramming environments. The availability of large lower cost
real storage for the Model 168 and the real storage independence that a
virtual storage environment offers provide new flexibility in tradeoffs
among real storage cost, function, and individual program or total
system performance.

GENERAL ADVANTAGES OFFERED BY IBM OPERATING SYSTEMS THAT SUPPORT A
VIRTUAL STORAGE ENVIRONMENT

Each of the IBM operating systems that supports a virtual storage
environment for System/370 models using dynamic address translation
offers the capability of using address space that is larger than that
provided by available real storage, and each supports dynamic real
storage management that is transparent to the user. As a result, these
operating systems offer certain general potential advantages that do not
depend on their unique features. The implementation of virtual storage
also provides benefits that are specific to each of these operating
systems because of their design and the particular functions they
support. The following discusses the potential advantages of virtual
storage and dynamic address translation that are common to OS/VS1 and
OS/vS2 environments.

The general advantages of virtual storage operating systems are the
potential they offer for:

• Increased application development

• Expanded operational flexibility

• System performance improvement

A virtual storage operating system can facilitate more rapid
development of new applications because, by removing most existing real
storage restraints on application design, it can help improve the
productivity of programmers. Specifically. a virtual storage operating
system has characteristics that can be used to reduce the effort, time.
and cost associated with application design, coding, testing, and
maintenance. This makes the installation of new applications more
readily justifiable and encourages the addition of new functions to

A Guide to the IBM System/370 Model 168 41

existing applications. The potential advantage of improved operational
flexibility is made possible by the greater independence of applications
from real storage size. Enhanced system performance can result from
improved real storage utilization. While these latter two benefits have
their own individual value, they too. either indirectly or directly.
ease the installation of new applications.

potential for Increased New Application Development

The following capabilities are characteristic of a virtual storage
operating system environment:

42

• Greater flexibility in the design of applications is possible.

Larger programs can be written without the necessity of using
planned overlay techniques or other dynamic program structures
designed to fit programs into the amount of real storage available.
The need for intermediate (or working) data sets is reduced or
eliminated because tables, relatively small data groups. etc •• that
are placed on direct access storage because of real storage
limitations. can become part of the program and will be brought into
real storage automatically as required. Program planning. coding.
and testing time can be reduced by elimination of the use of these
programming techniques and other real storage management facilities.
which also require additional programming knowledge and skill. Also
avoided is the restructuring of application programs after they have
been written. because they are larger than the real storage
available for their execution. Hence, applications can become
operational more quickly.

open-ended. straightforward application design is possible and more
comprehensive programs can be written. An application can be
segmented into a series of programs according to its logical flow
instead of according to the functions that can be performed in the
specific amount of real storage available to each step in the
application. Programming and processing duplication inherent in the
approach of using two or more job steps to perform one logical
process is thereby avoided.

Additional programming facilities can become available that
otherwise could not be used because of real storage limitations.
Specifically, full function high-level language translators. which
offer more capabilities than their subset versions (such as
additional debugging facilities and performance options) but which
also have larger storage design points. can be used because they can
operate in a virtual storage environment using less real storage
than their design point requirement.

• Preproduction testing of larger than average application programs
can be increased if enough virtual storage can be made available to
enable them to run during normal testing periods. Turnaround time
during testing can be reduced.

In a nonvirtual storage environment such programs are usually
grouped together and executed only at certain times when their
larger design point storage requirements can be made available.

• Fine tuning of application programs to achieve performance
improvements. when necessary, can be delayed until after the
application is in production. This capability enables an
application to become operative sooner.

A Guide to the IBM System/370 Model 168

• Startup costs for new applications may be reduced.

A new application can be developed and tested on the existing
system, assuming the required I/O devices are present in the
configuration, before the additional real storage the application
requires for performance on a production basis is actually
installed. When the application is ready for production, the
additional real storage required can be added to the system. In
some cases it may be possible to operate the application on a
production basis on the existing system without adding real storage
initially, because during the startup period, transaction volume is
very low. As the volume grows, real storage can be added to achieve
better performance.

• Growth of existing applications and the maintenance of operational
programs is simplified.

Because of the removal of most real storage restraints, new
functions can be more easily and more rapidly added to most existing
applications. Program expansion because of added functions or
maintenance changes does not require the use of overlay techniques,
multiple job steps, etc., when the size of the extended program
exceeds the original storage design point size.

In general, alteration and debugging of nonoverlay programs are also
easier than alteration and debugging of programs with planned
overlay or dynamic structures.

• Application programs whose real storage requirements, based on
transaction volume and complexity, vary widely during their
execution may be justified, designed, and installed more easily.

Design, coding, and testing time can be reduced because dynamic
storage management is automatically provided by the operating
system. Time and effort need not be spent structuring such programs
to use available real storage dynamically to support the functions
and/or response times required.

• Design and installation of one-time, low-usage, or low-volume
programs of very large storage size are more easily justified.
Existing applications in these categories that currently operate in
a batch environment can also more easily be altered to operate
online, a growth step that might not be justifiable in a nonvirtual
storage environment.

• Applications can be installed on a trial basis for the purpose of
observing and evaluating their functions and their operation.

Most IBM-supplied application program products can be temporarily
installed on an existing system, assuming the required I/O devices
are present. The additional hardware resources that may be required
to operate the application on a production basis can be added later,
when the application is permanently installed.

• The benefits of the functions provided by many IBM-supplied
application program products with larger storage design points can
be realized using smaller amounts of available real storage.

It may be difficult to justify the real storage required to install
a relatively large storage design point application on a system to
handle a low volume of transactions, even though the functions
provided by the application are very desirable. In a virtual
storage environment, such an application can execute using that
amount of dynamically available real storage required to satisfy the
desired performance requirements for the low volume of activity.

A Guide to the IBM System/310 Model 168 43

Potential for Additional Operational Flexibility

The reduction of real storage restraints makes most applications more
independent of the real storage size of a system configuration and
permits most applications to be processed on systems with varying
amounts of available real storage without program modification. Dynamic
real storage management reduces the amount of job stream and operations
preplanning that is normally done to use real storage as efficiently as
possible in a multiprogramming environment. The following benefits can
be the result:

44

• A system can back up another system even though it has less real
storage than the system it backs up.

A smaller scale system with the appropriate I/O configuration can
provide backup for a larger scale system if necessary. (Performance
experienced on the backup system may vary from that normally
achieved depending on the two system configurations involved.)

• A single design and one operating procedure can be used for an
application that is to operate on multiple systems with varying
amounts of real storage, as long as the virtual storage required is
supported by all the systems.

When data processing is decentralized among multiple installations
with systems that have different amounts of real storage, one
location can design, implement, and maintain an application that can
be used by other installations. Duplication of this type of effort
can be minimized or eliminated.

• Most applications can be tested on systems with less real storage
than the one on which they will run in a production environment, as
long as the required amount of virtual storage is supported.

• Growth to a larger real storage configuration can be easier.

Real storage can be added to an existing system to improve system
performance (by the reduction of program section transfer activity)
without the necessity of modifying existing application programs so
that they take advantage of additional real storage. Additional
real storage (up to a maximum of their design point size) is
automatically used by programs that operate in a virtual storage
environment.

• Operators need not perform certain procedures that are solely
related to efficiently managing real storage.

The operator is concerned with the division of virtual storage and
therefore need not change partition sizes at various times (in
OS/VS1, for example) for the purpose of making storage available for
larger than average jobs. (An installation can define virtual
storage partitions that are larger than those currently defined in
the OS MFT environment~ and the partitions can be made big enough to
contain the largest existing or currently planned storage design
point programs.) Similarly, in an OS/VS2 environment, the operator
no longer need start long running jobs at certain points in time to
ensure that available real storage is fragmented as little as
possible.

• Priority jobs whose need to be processed cannot be predicted can be
scheduled when required.

A nonvirtual storage environment does not provide the capability of
effectively handling the scheduling of high-priority jobs on a
random basis. Hence, this type of job is not permitted to exist in

A Guide to the IBM System/370 Model 168

an installation, or such jobs must be scheduled to operate only at
certain times. In a virtual storage environment, a high-priority
virtual partition can be defined in an os/vs1 environment and
reserved for the purpose of processing only high-priority jobs.
Except for that required for certain tables, real storage is not
required for this partition until a job is actually scheduled. In
an Os/vs2 environment, an initiator with a special class can be
started that will handle only high-priority jobs. This can be done
in MVT as well but because of the possibility of real storage
fragmentation, there is no assurance that the high-priority job can
be started.

Potential for Performance Improvement

The improved real storage utilization made possible by the use of
dynamic address translation hardware can have a positive effect on the
performance of a system that handles a job mix whose use of real storage
varies considerably while it is being processed. The extent of the
performance improvement depends on the types of applications involved
and the current utilization of system resources. Therefore, the amount
of performance gain, if any, that may be achieved is highly variable by
installation. Environments with the greatest potential for improved
performance are as follows:

• Batch-oriented multiprogramming environments with application
programs of widely varying real storage requirements.

Real storage may not be most efficiently used in such an environment
because (1) real storage can become fragmented when regions are
dynamically allocated and freed or (2) it is difficult to divide
real storage into a set of areas that is optimum for all programs
when real storage is partitioned. (Consider the inefficient use of
real storage in an 80K partition allocated for assemble, link-edit,
and test jobs in which a 80K language translator, a 44K linkage
editor, and problem programs no larger than 60K execute.) In
addition, real storage is not efficiently used when the real storage
requirement of a given program, based on transaction mix or volume,
varies widely, and the amount of real storage that is allocated is
designed to handle the peak requirement. (This is typically true of
graphics applications, for example.) Further, real storage assigned
to a program is not productively used during the time the program is
waiting for a human response, such as for the operator to locate
and/or mount a volume or to make a decision and enter a message on
the console, or during the time required to quiesce the system in
order to change partition definitions, start high-priority jobs, or
start a teleprocessing program in high real storage.

In a virtual storage environment, in which all concurrently
executing job steps share real storage dynamically and use real
storage only when it is actually required for program execution,
real storage is more efficiently used. Hence, if real storage
currently is the restraint, a given real storage size might be
capable of supporting a higher level of multiprogramming than can be
achieved without the use of dynamic storage management (assuming
other required resources such as CPU time, I/O devices, and
channels, are available). For example, installation of a large
storage design point, terminal-based application to handle only a
few terminals might be possible. Alternatively, a higher level of
mUltiprogramming might be supported by the addition of a smaller
real storage increment than would otherwise be required.

system performance may also be improved if more efficient use of
available real storage enables additional heavily used functions to
be made resident instead of transient or allows the incorporation of
performance-oriented options in the control program. This

A Guide to the IBM System/370 Model 168 45

improvement can apply to environments with batch and online
operations, as well as to batch-only multiprogramming environments •

• Multiprogramming environments with a mixture of batch-oriented and
terminal-based applications.

While the real storage required for the communication control
portion of a teleprocessing application remains constant, terminal­
based processing programs are typically subject to wide variations
in the amount of real storage they require during their execution
because the transaction mix being handled concurrently varies, the
activity of each terminal online varies, or the number of terminals
operating concurrently changes. In order to provide the functions
desired, ensure the capability of handling peak activity periods and
maximum transaction type mixes, and guarantee a given response
during times of peak activity, a certain amount of real storage is
required. This peak requirement is generally significantly more
than is needed during periods of medium and low activity.
Allocation of the maximum storage requirement results in inefficient
use of real storage, since unused real storage dedicated to any
terminal program cannot be used by other concurrently operating
hatched or terminal-oriented jobs in a nonvirtual storage
environment. In addition, it is usually difficult, and sometimes
impossible, to effectively preplan real storage usage for an online
application.

Dynamic real storage management in a virtual storage environment
automatically provides a much more efficient method of allocating
real storage in such an environment. Real storage is not divided
into that which can be used only by the terminal-based program(s)
and that which can be used only by batched jobs. During times of
peak terminal actiVity, the active sections of terminal-oriented
processing programs with a higher priority are automatically
allocated real storage, making less real storage available to the
lower priority batched jobs in execution at that time. During
periods when terminal activity is relatively low, real storage not
used by any terminal program is available for assignment to the
active sections of executing batched jobs. Such an environment is
represented conceptually in Figure 30.05.3.

In existing mixed batch and online-oriented installations, dynamic
real storage management allows programming techniques that can
improve the performance of the online application. This improvement
can be in the form of better response for existing terminals or the
ability to support more terminals. A given online application may
also be able to support a higher level of multiprogramming, as a
result of better real storage utilization, without any additional
programming effort (more TSO regions, for example). A virtual
storage environment also makes the concurrent operation of multiple
terminal-based applications more practical.

Figure 30.05.3 shows sample allocations of real storage to two
batched jobs and two terminal-oriented jobs in a multiprogramming
environment during low, medium, and peak activity points in time. Job
priority from high to low is TP2, TP1, BJ2, BJ1. For simplicity,
virtual and real storage are shown to be totally allocated at all times
and no particular virtual storage operating system (OS/VS1 or OS/VS2) is
assumed, since the concepts illustrated apply to both, regardless of
differences in the way virtual storage is allocated by these operating
systems. Real storage is shown to be contiguously allocated to each job
in high-to-low priority sequence. This is done only to illustrate the
relative amount of real storage the control program has dynamically
allocated to each program during the instant shown. In reality, the
total amount of real storage allocated to an executing program at any
given time is usually not contiguous in a virtual storage environment.

46 A Guide to the IBM Systern/310 Model 168

In addition r during times of low terminal program activitYr it may be
possible to support a higher level of batched job multiprogramming,
which is not shown in the figure.

Control

program

Batched
jobs
(BJ1)

Lowest

execution
priority

Low activity

for TPl and

TP2

Peak activity
for TP2 and
low for TPl

Peak activity

for TPl and
medium activity

for TP2

Virtual Storage

Batched Terminal program 1
jobs (Total storage requirement
(BJ2)

Next to lowest

execution

priority

without overlays)

Next to highest

execution

priority

Real Storage

Control

program BJl BJ2 TPl

Real Storage

Control BJ BJ TPl TP2
program 4 6

Real Storage

Control

program TPl TP2

BJ7 ~.
BJ6

TP2

Terminal program 2
(Total storage requirement

without overlays)

Highest

execution
priority

Figure 30.05.3. Conceptual illustration of real storage utilization in
a mixed batch and online virtual storage environment

Summary

As the preceding discussion indicates, a virtual storage environment
is designed primarily to provide new functional capabilities for the
installation as a whole, although performance gains are possible for
installations with particular environmental characteristics. The

A Guide to the IBM system/370 Model 168 47

general functional aims of IBM-supplied virtual storage operating
systems are (1) to use new hardware features and additional control
program processing to support certain facilities that are not possible
in a nonvirtual storage environment because of real storage restraints,
and (2) to handle other functions that must be performed by installation
personnel (programmers, operators, and system designers) when virtual
storage and dynamic address translation are not used.

It is also important to note that while a virtual storage operating
system per~ts an installation to be independent of real storage
restraints to a large degree and enables real storage to be utilized
more efficiently, the performance of the system and the specific
advantages that can be achieved are still largely dependent on the
amount of real storage present in the system and on the computing speed
of the CPU, among other things. Hence, virtual storage and dynamic
address translation are not a substitute for real storage. Rather, they
provide an installation with greater flexibility in the tradeoff between
real storage size and function or performance.

The degree to which a particular installation experiences the
potential benefits of a virtual storage/dynamic address translation
environment is system-configuration dependent and highly application
dependent (number, type, complexity of applications installed). In
addition, consideration must be given to the system resources that are
specifically required to support a virtual storage environment
(discussed in Section 30:15). Some of the potential advantages, such as
those associated with application maintenance and operational
flexibility and those that result from better management of real
storage, can be experienced as soon as a virtual storage operating
system is installed. Others may be achieved in the future when new
applications are installed, and the less restrictive program design
techniques available in a virtual storage environment are more fully
utilized. In any case, installation of a virtual storage operating
system can make System/370 easier to use and can be a major step toward
more rapid installation of applications. Such an operating system can
be of greatest benefit to installations desiring to move to or to extend
online operations and thereby attain the advantages such an environment
offers.

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION TERMINOLOGY

For the purpose of presenting the concepts of virtual storage and
dynamic address translation, in the previous discussion, virtual
storage, programs and data, direct access storage, and real storage were
described as being divided into areas called sections. In reality, a
unique term is used to describe each one of the various sections,
namely, virtual storage page, page, slot, and page frame. In addition,
virtual storage has two levels of subdivision in System/370. The
following defines the new terminology actually used by the System/370
virtual storage operating systems.

T7~_..I.- ___ ' _.&..._ _____ .!_ ,... ___ ..a.... __ ,-. I'\ ...:_ ~.! __ .!~_...3; .!_..a.... ____ ...L..'! ___ .. ________ .L_

V..L.LLUC1..L. ::>LULC1yt::: ..L.11 vy::>Lt:::lI"~IV ..L.::> U..L.V..L.ut:::u ..L.llLU ~UllL..L.':::lUUU~ ~t:::':::lHlt:::llL~,

which contain virtual storage pages. A virtual storage segment, as
implemented in System/370, is a fixed-length, consecutive set of
addresses for either 64K or 1024K bytes which begins on a 64K or 1024K
boundary, respectively, in virtual storage. A virtual storage is
divided into segments all of one size or the other. In general, in
OS/VS1 and OS/VS2 environments, a segment is the unit of virtual storage
allocation. Each segment of virtual storage is divided into contiguous,
fixed-length, consecutive sets of addresses called virtual storage
pages. Each segment in the virtual storage contains the same number of
virtual storage pages, each of which is the same size. A virtual
storage page, as implemented in System/370, can be either 2K or 4K bytes

48 A Guide to the IBM System/370 Model 168

and is located on a 2K or 4K virtual storage boundary, respectively,
within a segment.

The contents of virtual storage--instructions and data--are divided
(by the operating system) into fixed-length contiguous areas called
~, corresponding in size to the virtual storage page size chosen,
either 2K or 4K bytes. The addresses associated with a virtual storage
page refer to the contents of a page.

The direct access storage used to contain the portion of the total
contents of virtual storage that is not always present in real storage
is called external ~ storage. Direct access space within external
page storage is divided into physical records called slots, which are of
page size, either 2K or 4K bytes. A slot, therefore, can contain one
page at a time. A virtual storage page that is allocated and that
actually has contents usually has a slot in external page storage
associated with it to contain these contents (depending on the nature of
the contents and how external page storage is managed by the operating
system).

Instructions and data are transferred between external page storage
and real storage as needed on a page basis. This transfer process is
called paging, and a direct access device that contains external page
storage is called a paging device. A slot in external page storage is
associated with a particular virtual storage page by means of an
algorithm or via tables that are maintained by the control program.

Real storage also is divided into fixed-length, consecutively
addressed areas called ~ frames, which are always the same size as
the virtual storage page being used, either 2K or 4K bytes. Page frames
are located on 2K or 4K real storage boundaries. A page frame is a
block of real storage that can contain one page. Hence, a page of data
and/or instructions occupies a slot when it is in external page storage
and a page frame when it is in real storage. Whether or not a page is
present in real storage, a program addresses the contents of the page
using virtual storage addresses.

The act of transferring a page from external page storage into real
storage is called a page-in. This action may also be described as the
loading of ~~. The reverse act, transferral of a page contained in
real storage to a slot in external page storage, is called a page-out.
Figure 30.05.4 illustrates the relationship of virtual storage, external
page storage, and real storage that was conceptually shown in Figure
30.05.2. (Note that the terms swap-in, swap-out, and working set have a
specific meaning in a time-sharing environment and are defined in
OS/Virtual Storage l Features Supplement under "Time Sharing option".)

As previously indicated, DAT hardware uses tables to perform address
translation. These tables are the segment table and ~ tables. One
segment table and a set of page tables are required to perform address
translation for one virtual storage. The segment table defines the
virtual storage size, indicates allocated virtual storage, and points to
the real storage location of the page tables. The page tables indicate
which pages are currently in real' storage and contain the real storage
addresses of these pages. As pages are paged in and out, the control
program makes changes to the page tables as required.

Basic to the implementation of virtual storage using direct access
storage and DAT hardware is the method of determining when pages are to
be brought into real storage and, therefore, when real storage is
allocated to pages. The method supported by IBM-supplied virtual
storage operating systems, that of bringing a page into real storage
only when it is needed by an executing program, is called a demand
paging technique. Since programs execute on a priority basis in OS/VS1

A Guide to the IBM System/370 Model 168 49

and OS/VS2 environments. as they do in os (MFT and MVT) environments.
real storage is. in effect. still allocated on a priority basis.

A request for a page-in is generated by the occurrence of a ~
exception or a ~ translation exception. a condition that is also
called a ~ fault. An interruption occurs during the execution of an
instruction when OAT hardware attempts to translate a virtual storage
address into a real storage address and the appropriate page table
indicates that the page is not currently present in real storage. A
page fault condition causes an interruption in order to alert the
control program to the fact that a page frame must be allocated.
Usually. a page-in is required also to bring in the referenced
instruction or data.

~~

'"-I

Virtual Storage

Segment N
(pagesOto 150r31)

Virtual

storage
pages

within
segments

Segment 1
(pages 0 to 15 or 31)

Segment 0
(pagesOto 150r31)

"""

Tables or an
algorithm

map pages
and slots

~~
Paged area

~ ---

'"-I

Nonpaged area

External
Page Storage

'" '" " '" '" " Real Storage

Slots
Tables map

(containing
pages of

virtual storage

instructions
pages and

and data)
page frames Page frames

(containing active
pages of executing

Page-out
programs)

Page-in

Contents of
pageable
virtual storage

Control

J """-------------' "'-- - - -- -- - - -- ---- --

_l~program I
Address space for
programmers use

Figure 30.05.4. Layout of virtual storage. external page storage. and
real storage

While page-ins are usually initiated as a result of a page fault.
OS/VS1 and OS/VS2 provide an Assembler Language macro that can be used
to cause one or more pages to be brought into real storage before they
are referenced. Such requests are sometimes referred to as page-ahead
requests. A page-ahead is required if. for reasons of proper system
operation. a routine must operate without incurring any page faults.

50 A Guide to the IBM System/370 Model 168

Use of this macro is restricted because unlimited use of this facility
can defeat the objective of demand paging.

When a page fault occurs and the control program determines that a
page frame is not currently available for allocation, a choice must be
made as to which allocated page frame will be taken away from the page
to which it is currently assigned. The rule governing this choice is
called the ~ replacement algorithm. If the page replacement
algorithm is designed to choose from among only those page frames
currently allocated to the program that caused the page fault, it is
said to operate locally. If a page frame can be chosen from among all
those available for allocation to all executing programs, the algorithm
is said to operate globally. OS/vS1 and OS/VS2 implement a global page
replacement algorithm. VM/370 supports a global page replacement
algorithm and supports a local page replacement algorithm as an option.
The algorithms used attempt to keep the most active pages of executing
programs present in real storage. Hardware is included in system/370
models with dynamic address translation that indicates whether or not a
page has been referenced or changed. Hence, when a page frame is
required, a page determined by the algorithm to be relatively inactive
is chosen for replacement.

prior to loading a new page into the page frame chosen, the existing
contents of the page frame must be saved if they were modified during
processing. If modification occurred, a page-out operation is required;
otherwise, an exact copy of the page already exists in external page
storage. Code that is not modified during its execution, therefore, has
an additional advantage in a virtual storage environment in that it need
never be paged out once it has been written in external page storage. A
program requiring a page-in is placed in the wait state until the page
it requires has been loaded, during which time CPU control is given to
another ready task, if one is available.

For various reasons, it is necessary to prevent a page-out of certain
pages that are in real storage. One reason is for better operation of
the system. This reason applies to certain frequently used control
program routines, some routines that operate with the CPU in a disabled
state (masked for I/O and external interruptions), most system tables,
and most system control blocks. Integrity of system operation is
another reason. Pages associated with certain types of operations must
not be paged out while the operation is in progress, in order for the
operation to proceed correctly. For example, pages that contain I/O
buffer areas must remain in real storage while the buffers are being
referenced during an I/O operation, after which a page-out can take
place, if necessary. Another reason is the existence of time
dependency. A page should not be written out if the program to which
the page belongs must complete a logical operation that requires the
page in less time than it takes to perform a page-in. Programs that
handle I/O device testing operations, such as online tests (OLT's), can
have such a time dependency.

A page that is identified as one that cannot be paged out (or, that
is nonpageable) is called a fixed~. IBM-supplied operating systems
support both long-term fixing and short-term fixing. Pages that should
never be paged out when they are present in real storage are marked
long-term fixed. The resident portion of an operating system control
program is never paged and, therefore, its pages are marked long-term
fixed. Pages that must be fixed for only a portion of the time they are
present in real storage are marked short-term fixed. For example, a
page containing an I/O buffer is marked short-term fixed prior to the
initiation of the I/O operation that references the buffer. After the
I/O operation completes, the page is unfixed and it becomes eligible for
a page-out. Pages should be marked fixed only when necessary since page
fixing reduces the amount of real storage that can be shared by
concurrently executing paged programs (that which is available to be

A Guide to the IBM System/370 Model 168 51

allocated to the nonfixed pages) and can, therefore, affect system
performance.

As indicated previously, in OS/VS1 and OS/vS2 environments, a portion
of the control program is resident in real storage. Its pages are
marked fixed. This portion of the control program is not placed in
external page storage (because it is not paged) even though it is
allocated space in virtual storage. certain other portions of an OS/VS1
and an OS/VS2 control program are pageable and are made resident in
virtual storage, which means they are contained in external page storage
during system operation. During system initialization, these pageable
control program routines are allocated virtual storage and loaded into
real storage from system libraries by the program fetch routine. These
routines will be written in external page storage as a result of normal
paging activity in OS/VS1 and as a result of specific page-out requests
in OS/VS2. Control program routines that are resident in virtual
storage are brought into real storage from external page storage,
instead of from a system library, when they are required during system
operation.

Just as control program routines can be fixed or pageable, problem
programs operate in one of two modes in Os/VS1 and OS/vS2 environments:
~ mode or nonpaged mode. The latter is also sometimes called
virtual equals real (V=R) mode. When a problem program operates in
paged mode, it is resident in virtual storage and pageable. A pageable
program operates in a contiguous area of virtual storage (partition or
region) and is assigned available real storage on a demand paged basis.
Hence, virtual storage addresses must be translated into real storage
addresses. The real storage dynamically allocated to programs operating
in paged mode need not be contiguous and such programs normally can
operate with less real storage than their design point (virtual storage)
amount dynamically allocated to them. This is the mode of operation
described in Section 30:05.

Paged mode is the normal mode of operation of programs in a virtual
storage environment. However, certain programs cannot operate correctly
in this mode, and must run in nonpaged (V=R) mode. In general, a
program must operate in nonpaged mode if it:

• Contains a channel program that is modified while the channel
program is active (Section 30:10 discusses the reason)

• Is highly time dependent (involves certain testing operations on I/O
devices, for example)

• Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

Other characteristics that require a program to be executed in
nonpaged mode and that are operating system dependent are listed in the
progrw7w.ing systems supplements, Which also discuss steps that can be
taken to avoid running a program in nonpaged mode.

In OS/VS1 and OS/VS2 environments, a program that operates in
nonpaged mode is dynamically allocated a contiguous virtual storage area
and a contiguous real storage area of the same size with addresses
identical to those of the allocated virtual storage area. (That is,
virtual and real storage addresses of the allocated area are equal.)
Since programs operating in V=R mode are not paged, they do not occupy
external page storage. The entire program (except for dynamically
requested modules) is loaded into real storage when it is initiated, and
all its pages are fixed. The amount of real storage allocated to a
program that runs in nonpaged mode must be a multiple of the page size
used.

52 A Guide to the IBM System/370 Model 168

30:10 DYNAMIC ADDRESS TRANSLATION HARDWARE FOR THE MODEL 168 --- --- ----- ---
Dynamic address translation is a standard facility of the Model 168.

It is made operative by turning on the translation mode bit in the
current PSW. The system must also be operating in EC mode. When DAT is
operative, storage addresses in programs referring to instructions and
data are translated into real storage addresses after instructions are
fetched during program execution. The address in the instruction
counter is translated also. When DAT is not in operation, storage
addresses in programs are used as real storage addresses. The storage
addresses in CCW lists are not translated by channel hardware during
channel program operation. The channel indirect data addressing
feature, required on all installed channels for a Model 168 when a
virtual storage operating system is used, and programmed channel program
translation are discussed later in this subsection under "Channel
Indirect Data Addressing".

The following instructions are associated with dynamic address
translation: LOAD REAL ADDRESS, RESET REFERENCE BIT, and PURGE TLB.
These instructions are valid in BC mode as well as in EC mode. They
operate identically regardless of which mode is in effect. All are
privileged instructions.

VIRTUAL STORAGE ORGANIZATION

The Model 168 (as well as other System/370 models with DAT hardware)
supports a virtual storage segment size of either 64K or 1024K bytes, as
determined by bits 11 and 12 of control register O. With either segment
size, the page size can be 2K or 4K, as determined by bits 8 and 9 of
control register O. A segment size of 1024K bytes is not supported by
DOS/VS, OS/VS1, OS/VS2, or VM/3~0. Table 30.10.1 summarizes the virtual
storage organization provided in System/370.

Table 30.10.1. Number and size of segments and pages for a 16-million-
byte virtual storage

Number of
CR 0 Bits Segment Size Segments in the Page Size Number of Pages
11,12 8,9 in Bytes Virtual Storage in Bytes in a se~ent

10 01 1,048,576 16 2048 512

10 10 1,048,576 16 4096 256

00 01 65,536 256 2048 32

00 10 65,536 256 4096 16

As already described, the addresses supplied in programs directly
address a location in the virtual storage that is supported by the
virtual storage operating system. In this sense, program-supplied
addresses can be viewed as virtual storage addresses that specify a byte
within a particular virtual storage page and segment. The logic of the
translation process is described in this subsection in these terms. The
architectural definition of dynamic address translation found in
System/370 PrinCiples of Operation (GA22-7000-2 and later editions)
assumes that the addresses in programs consist of three fields, two of
which are used to index tables during the translation process. Under
these conditions, the addresses supplied by a program are considered to
be loqical addresses instead of virtual storage addresses.

A Guide to the IBM System/370 Model 168 53

For the purpose of translation, a virtual storage address is divided
into three fields: (1) a segment field. which identifies a segment
within the virtual storage, (2) a page field, which identifies a page
within the segment addressed. and (3) a byte displacement field, which
identifies a byte within the page addressed. The number of bits in each
field varies depending on the segment and page sizes used. Virtual
storage address fields for a segment size of 64K and a specific example
of how the fields are used to address a location in virtual storage are
shown in Figure 30.10.1.

OPERATION OF DYNAMIC ADDRESS TRANSLATION HARDWARE

Address Translation Tables

One segment table is required to describe one virtual storage. If
more than one virtual storage is supported by a single computing system,
there is a segment table for each virtual storage implemented. A
segment table contains one four-byte entry for each segment in the
virtual storage the table describes, up to a maximum of 256 entries for
the maximum size virtual storage of 16 million bytes (using 64K
segments). The real storage address of the segment table (or of the
currently active segment table if multiple virtual storages are
implemented) is contained in control register 1. The current length of
the segment table is also indicated in control register 1. The length
value is used by the hardware during translation to ensure that the
segment entry being referenced falls within the segment table.

The segment table entries point to the real storage locations of the
page tables. There is one page table for each segment in the virtual
storage defined (or. in OS/VS2. currently allocated), up to a maximum of
256 page tables for a 16-million-byte virtual storage with 64K segments.
A segment table entry contains an indication of the length of the page
table. the high-order 21 bits of the real storage address of the page
table. and an indication of whether or not the entry itself is valid and
can be used for translation purposes (invalid bit). If the invalid bit
is on in a segment table entry, a segment translation exception occurs
during the translation process.

A page table has one entry for each page in the particular segment
the page table describes. For a 64K segment, there are 32 or 16 entries
in a page table depending on whether a 2K or a 4K page is used,
respectively. A page table entry is two bytes in size. It contains the
12 (for a 4K page) or 13 (for a 2K page) high-order bits of the real
storage address of the page frame that is currently allocated to the
virtual storage page that the page table entry describes. Each page
table entry also contains an invalid bit to indicate whether the entry
can be used for translation. The invalid bit is on when a virtual
storage page does not have real storage currently allocated to it. A
page translation exception occurs during the translation procedure if
this invalid bit is on.

Segment and page ~dU~~ formats and entries used for address
translation are shown in Figure 30.10.2. In effect. the segment and
page tables define the relationship between virtual and real storage at
any given time. The segment table reflects the current size of virtual
storage, which must be a multiple of the segment size (64K for IBM­
supplied support), and the location of required page tables. The
segment table also indicates. by means of its invalid bits, which
segments of virtual storage are currently allocated and have a page
table available. The page tables indicate, via their invalid bits,
which virtual storage pages currently have a page frame allocated and
the location (real storage address) of these page frames.

54 A Guide to the IBM System/310 Model 168

64K segment
2K page

64K segment
4K page

16,320K

FORMATS
Effective 24-bit virtual storage address

f~----------------------~A~------------------------~,
8 16 21 31

Segment Page 8yte displacement
address address from beginning of page
bits bits

-----...... V..----------J/~\.'-----__..V~-----J

o to 255 o to 31 o to 2047

Effective 24-bit virtual storage address

f..----------------------~A------------------------~,
8 16 20 31

Page 0

Segment Page 8yte displacement
address address from beginning of page
bits bits

o to 255 o to 15 o to 4095

EXAMPLE OF ADDRESSING A 4K PAGE

Virtual storage of
16, 777, 216 bytes
(16, 384K)

I
Segment 255

I

Page 15

~~ Segments 2 to 254 ~~

Virtual
storage

128K

64K

address 0

I Page 15

Segment 1 t
Page 0 J

l Page 15

Segment 0

Page 0 I
64K segments, 4K pages

Hex address 0 1 F

8 16 20

00000001 1111

Segment Page
1 15

Supported by
DOS/vS
and OS/vS1

Supported by
OS/vS2 and
VM/370

0 0 4

31

000000000100

Byte
4

Figure 30.10.1. Virtual storage address fields for a 64K segment

A Guide to the IBM System/310 Model 168 55

In an OS/VS1 environment, segment and page tables are established at
system initialization. Page tables are modified during system operation
by control program routines to reflect the current allocation of real
storage to virtual storage so that address translation can take place.
In an OS/VS2 environment, in which virtual storage as well as real
storage is dynamically allocated and deallocated, the segment table
constructed during IPL is modified as required during system operation
to reflect the allocation of virtual storage, and page tables are
created and destroyed as necessary.

Address Translation Process

A translation request is either explicit or impliCit. Explicit
translation is invoked via execution of the LOAD REAL ADDRESS
instruction. Implicit translation is invoked to translate all
instruction addresses and data addresses contained in other
instructions. Implicit address translation takes place during
instruction execution.

The logical flow and the details of the translation process are given
in Figure 30.10.3. The procedure consists of a two-level, direct
address table lookup operation. Any type of translation exception
causes a program interruption and termination of the hardware
translation process. The CPU cannot be disabled for translation
exception interruptions. Segment and page translation exceptions that
occur during an explicit translation request (LOAD REAL ADDRESS
instruction) are indicated via the condition code setting instead of via
an interruption.

Translation Lookaside Buffer

In the Model 168, a translation lookaside buffer (TLB) is implemented
to reduce the amount of time required to perform address translation.
The translation lookaside buffer is used to retain up to 128 previously
translated addresses. Addresses associated with up to six different
virtual storages can be contained in the TLB at any time. Every time a
virtual storage address is translated during instruction execution, the
virtual storage address, the reSUlting real storage address and its
associated storage protect key, and identification of the virtual
storage to which the virtual storage address belongs are placed in one
of the 128 TLB locations. A hashing algorithm is applied to the virtual
storage address in order to determine which of the 128 TLB locations is
to be used.

After the effective virtual storage address has been computed and
prior to performing the translation using segment and page tables, the
TLB is interrogated to determine whether or not it contains the required
translated address. Interrogation of the TLB is done in parallel with
reference to the index array for the buffer. Therefore, no translation
cycles are required when the translated address is obtained from the
TLB. If the TLB does not contain the required translation or if the
entry is invalid, as indicated by a zero identification code, the
complete table-lookup translation procedure~ as previously described, is
performed. In the Model 168, the number of CPU (80 nanosecond) cycles
required for address translation when the translation is not obtained
from the TLB varies from a minimum of 8 to a maximum of 26, assuming no
I/O interference, depending on the locations of the segment table and
the page table entries required for the translation. In the Model 165 II,
from 8 to 46 CPU cycles are required for the translation process when
the required translation is not contained in the TLB.

56 A Guide to the IBM System/370 Model 168

256 entries
for
16 million
bytes

Control register 1

0
Segment 0 entry

Segment 1 entry

4 bytes

255 Segment 255 entry

Segment Table
for one virtual
storage - 1024
bytes maximum

0 4 29 31

Bits

0-3 Page table length
8-28 Page table origin

address
31 Invalid bit

64
bytes

0

~

31

,

Page Tables
for 2K pages

Segment 0 Page Table

Page 0 entry

" 2 bytes

Page 31 entry

•
•
•

,

::

Segment 255 Page Table

o 1 Page 0 en'''' j
. :

Page 31 entry 31 ______________ __

Page Tables
for 4K pages

Segment 0 Page Table

1 Page 0 entry

or

J
2 bytes

Page 15 entry

•
•
•

Segment 255 Page Table

01 Page 0 entry

or

J Page 15 entry

256 Page Tables
maximum

2K Page Table Entry

0 131415

Bits

0-12 High-order 13
bits of real
storage address
of page

13 Invalid bit
15 User bit for

programming
systems use

4K Page Table Entry

o
Bits

0-11

12
15

Page
address

H igh-order 12
bits of real
storage address
of page
Invalid bit
User bit for
programming
systems use

-1) J ~es

~

Figure 30.10.2. Segment table and page tables used for dynamic address
translation

A Guide to the IBM System/370 Model 168 57

Effective 24-Bit Virtual Storage Address

64K 2K

Segment Page

8 1516 2021

Control Register 1

o-oxxxxxxxxo o-oxxxxxo

8 / ! / /
8 29 8 30

8 28

\\
r--~-----" X-XOOO

Segment Table Page Table

Page Table

Page Table x--x
8 20

Displacement

31

x--x
21 31

1. Bits 8, 9, 11, and 12 in control register 0 are checked for
validity. A translation specification interruption occurs if an
invalid setting is present. Segment address bits from the
virtual storage address are checked using length bits in control
register 1. If the segment entry address is outside the segment
table, a segment translation exception is indicated.

2. Six low-order zeros are appended to the segment table address in
control register 1. Two low-order zeros are appended to the
segment bits from the virtual storage address. The two values
are added to obtain a segment table entry. If the invalid bit is
on in this entry, a segment translation exception is indicated.

3. Page address bits from the virtual storage address are checked
using page table length bits contained in the segment table
entry. A page translation exception is indicated if the entry
addressed is outside the page table.

4. Three low-order zeros are appended to the page table address
contained in the segment entry. One low-order zero is appended
to the page address from the virtual storage address. The two
values are added to obtain a page table entry. If the invalid
bit is on in this entry, a page translation exception is
indicated.

5. The 24-bit real storage address is formed using the 12 or 13
high-order bits from the page table entry and the 12 or 11 low­
order bits from the virtual storage address.

Figure 30.10.3. Dynamic address translation procedure

58 A Guide to the IBM System/310 Model 168

All the entries in the TLB are invalidated (identification codes set
to zero) when a reset occurs, the operator enters a storage
configuration via the configuration panel, or retry recovery is
attempted after a machine check occurs. When a SET STORAGE KEY is
issued and valid translated addresses are in the TLB, the TLB is
searched and each entry is invalidated that has the same real address as
the one for which the key is being set. The PURGE TLB instruction is
provided to enable a program to invalidate all 128 TLB entries. In
general, this instruction must be issued when an entry in a page table
is invalidated, since the real storage address being invalidated could
be contained in the TLB. The TLB will be purged by the virtual storage
operating systems as required.

A change in segment table origin address, segment size, or page size
can also affect the validity of current TLB entries. In order to reduce
the number of full TLB purges required by such changes, a segment table
origin address register stack (STO-stack) is implemented. The STO-stack
can contain the address of six different segment tables at a time. Each
segment table could define a different virtual storage. A STO-stack
entry also indicates the segment and page size in effect for the virtual
storage associated with the segment table address.

The six entries in the STO-stack have a unique identification number
associated with them. One of these numbers is denoted to be the
currently active identification number. Whenever a segment table
address is placed in control register 1, the segment table address is
also placed in the STO-stack, if it is not already there, and the
identification number the segment table address is assigned becomes the
new active identification number.

A STO-stack identification number is stored with each TLB entry to
identify the segment table, and thereby the virtual storage, with which
the TLB entry is associated. When the TLB is interrogated to see if it
contains the required translation, the STO-stack identification number
of the TLB entry is compared to the active identification number. If
the identifications are equal, this indicates the TLB location contains
a translation from the virtual storage associated with the active
identification number. If the identifications are not equal, the TLB
location contains a translation for a different virtual storage and,
therefore, the TLB entry does not contain the required translation even
though it may contain a virtual storage address equal to the one that is
to be translated.

When DAT mode is entered or a LOAD CONTROL instruction is issued when
OAT mode is operative, the segment table address in control register 1
and page and segment size specifications from control register 0 are
compared with each of the STO-stack locations to determine whether a
change in these specifications is being made. If a change is indicated,
some TLB purging may be required.

If an equal comparison is found between an STO-stack entry and the
segment table address, segment size, and page size in control registers
o and 1, this indicates that the virtual storage associated with the
segment table address now in control register 1 is currently one of the
six virtual storages whose translations are being maintained in the TLB
and that segment and page size have not been changed. The STO-stack
identification number of the segment table address now in control
register 1 is designated to be the active identification. No TLB
purging is required.

If no equal comparison is found between an STO-stack entry and the
segment table address, segment size, and page size in control registers
o and 1, this indicates translations for the segment table now indicated
by control register 1 are not currently being maintained in the TLB or
that segment or page size is being changed. The new segment table

A Guide to the IBM System/310 Model 168 59

address is placed in the STO-stack r and the STO-stack identification
number assigned becomes the active identification. A first-in first-out
algorithm is used to determine which STO-stack location to assign. If
the new address displaces another segment table address r the TLB entries
associated with the displaced segment table (and virtual storage) must
be purged. This is done by setting the identification number to zero
for each entry in the TLB that has the same STO-stack identification
number as the segment table address that was displaced. This
identification number is now assigned to the newly stored segment table
address. The other TLB entries need not be invalidated. See Figure
30.10.4 for an example of TLB purging when control register 1 is
changed.

ID

2

3

4

5

6

10

2

3

4

5

6

STO-stack

ST05

ST03

ST06

ST07 ~
ST02

ST08

STO-stack

ST05

ST03

ST06

ST04

ST02 ~
ST08

Control

register 1

[§J

next location
to be assigned

Active
ID

Translation Lookaside Buffer

Virtual
storage

10 address

4 VSA1

3 VSA2

0 VSA3

2 VSA4

6 VSA5

4 VSA6

3 VSA7

3 VSA8

tv"'" .. IJ

Real
storage
address

RSA1

RSA2

RSA3

RSA4

RSA5

RSA6

RSA7

RSA8

I"V

Storage
protect

. key

SPK1

SPK3

SPK1

SPK2

SPKO

SPKO

SPK1

SPK1

A ...

"'L--...JI T_....L..-T --------L..T --------IT-

Effect of Changing Control Register 1

Control
register 1

~

next location
to be assigned

Active
10

~

Translation Lookaside Buffer

Virtual
storage

10 address

0 VSA1

3 VSA2

0 VSA3

2 VSA4

6 VSA5

0 VSA6

J VSA7

3 VSA8

,.L, ,..v

r r
I I

N

r
I

Real
storage
address

RSA1

RSA2

RSA3

RSA4

RSA5

RSA6

RSA7

RSA8

N

r
I

Storage
protect
key

SPK1

SPK3

SPK1

SPK2

SPKO

SPKO

SPK1

SPK1

tV

r
I

Figure 30.10.4. TLB purging when control register 1 is changed

Implementation of the STO-stack in the Model 168 enables a control
program that supports multiple virtual storages (such as VM/370) to
alter control registers 0 and 1 in order to change the virtual storage
for which address translation is effective r without automatically
causing purging of the entire TLB. The STO-stack facility will also be
of benefit in an OS/VS2 environment since OS/VS2 supports two segment

60 A Guide to the IBM System/370 Model 168

tables in order to provide fetch protection for all regions (see
OS/virtual Storage l Features Supplement).

Addresses Translated

All storage addresses that are explicitly designated by a program and
that are used by the CPU to refer to instructions or data in processor
storage are virtual storage addresses and are subject to address
translation. Thus, when DAT is operative, the starting and ending
storage addresses used with the program event recording feature are
virtual, as are the storage addresses stored in PSW's during
interruptions. Address translation is not applied to addresses that
explicitly designate protect key storage locations or to quantities that
are formed as storage addresses from the values designated in the base
and displacement fields of an instruction but that are not used to
address processor storage (shift instructions, for example). In
addition, address translation is not applied to the storage addresses in
CCW lists used for I/O operations.

Some of the storage addresses supplied to a program by the CPU are
virtual and some are real. Table 30.10.2 lists, for the Model 168,
those storage addresses designated by a program, either explicitly or
implicitly, that are virtual (and, therefore, are subject to
translation) and those addresses that are real or not used to reference
processor storage and, thus, are not translated. The table also
indicates which storage addresses supplied to a program are virtual and
which are real.

FEATURES TO SUPPORT DEMAND PAGING

Reference and Change Recording Facility for Real Storage Blocks

A hardware recording facility is standard in the Model 168. This
facility provides continuous recording of the activity of all 2K real
storage blocks via reference and change bits. The settings of these
recording bits can be used by control program routines to support a
demand paging environment. This hardware facility is always active; it
does not depend on EC or translation mode being operative.

The seven-bit key associated with each 2K real storage block in the
Model 168 has four storage-protect bits, one fetch-protect bit, one
reference bit, and one change bit. During system operation, the
activity of each 2K real storage block is monitored by hardware.
Whenever a fetch is made either by a CPU or a channel to a real storage
address, the reference bit in the key associated with the 2K storage
block that contains that real storage address is turned on by the
hardware. A store into any real storage address causes the hardware to
turn on both the change bit and the reference bit for the affected 2K
block.

Store/display operations initiated from the 3066 console also cause
appropriate changing of the reference and change bits. The RESET
REFERENCE BIT instruction is provided to allow the reference bit of any
2K real storage block to be reset by programming without altering the
contents of the other six bits in the protect key. A CPU fetch that is
satisfied with data contained in the buffer does not cause reference
recording in the Model 168. There are situations, however, in which
instruction or operand prefetching may cause the reference bit for a
page frame to be turned on even though the contents of that page are
never used.

A Guide to the IBM System/3?0 Model 168 61

Table 30.10.2. Virtual and real storage addresses used by and
supplied to programs in the Model 168

Virtual Storage Addresses Explicitly Designated ~ the Program (translated)

• Instruction address in the PSW
• Branch addresses in instructions
• Addresses of operands in instructions
• Operand address in the LOAD REAL ADDRESS instruction
• PER starting address in control register 10 and PER ending address

in control register 11

Real Storage Addresses Explicitly Designated ~ the Program (not translated)

• Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,
and RESET REFERENCE BIT instructions

• Machine check extended log pointer in control register 15
• I/O extended log pointer in location 172
• segment-table-origin address in control register 1
• Page-table-origin address in a segment table entry
• Page frame address in a page table entry
• ccw address in the channel address word (CAW)
• Address in a CCW specifying a data area or the location

of another CCW
• Data address in channel indirect data address lists

Addresses Not Used to Address Storage (not translated)

• Operand addresses specifying the amount of shift in fixed-point,
logical, or decimal shift instructions

• Operand address in LOAD ADDRESS and MONITOR CALL instructions
• I/O addresses in I/O instructions and in the Input/Output

Communication Area (IOCA)

Real Storage Addresses Used Implicitly (not translated)

• Addresses of PSW's used during an interruption and in
executing the programmed or manually initiated restart function

• Address used by the CPU to update the timer at location 80
• Address of the CAW, the CSW, and the I/O address within the IOCA

used during an I/O interruption or during execution of an I/O
instruction, including execution of STORE CHANNEL 10

• Addresses used for the store status function

Virtual storage Addresses Provided to the Program

• Address stored in the instruction address field of the old PSW during an
interruption

• Address stored by a BRANCH AND LINK instruction
• Address stored in register 1 by TRANSLATE AND TEST and

EDIT AND MARK instructions
• Address stored in location 144 on a program interruption

for a page translation or segment translation exception
• Address stored in location 152 on a PER interruption

Real Storage Addresses Provided to the Program

62

• The translated address generated by the LOAD REAL ADDRESS
instruction

• Address of the segment table entry or page table entry provided
by the LOAD REAL ADDRESS instruction

• Failing storage address in location 248
• ccw address in the CSW

A Guide to the IBM System/370 Model 168

The hardware reference and change recording facility is used by the
page replacement algorithm of a virtual storage operating system. When
a page is loaded into a page frame, the reference and change bits for
that page frame are set to zero. (When a 4K page size is used, the
reference and change bits for both of the 2K storage blocks involved are
reset.) Thereafter, the reference bit is used to determine the activity
of a page. The change bit is inspected to determine whether a page must
be paged out when its page frame is reassigned. The SET STORAGE KEY
instruction must be used to reset the change bit.

Instruction Nullification

When a page fault occurs in a demand paging environment, execution of
the instruction that caused the page fault stops and the control program
gains control to initiate a page-in operation. When the contents of the
missing page have been loaded (and the appropriate page table entry has
been updated), the instruction that caused the page fault is reissued.
In order for the instruction to operate correctly the second time,
execution of the instruction must have been stopped such that
reexecution gives the same results as would occur if the instruction had
been executed only once. Therefore, the contents of real storage, the
general and floating-point registers, and the PSW must not be altered.

The execution of an instruction is said to be nullified when it is
stopped such that no operation was performed, no fields were changed,
and the PSW indicates the address of the instruction that was stopped.
Interruptible instructions, such as MOVE LONG, are divided into
execution units. One or more execution units may have completed before
a page fault is detected. In this case, only the current execution unit
is nullified.

Various methods are used, depending on the type of instruction, to
determine the need for nullification. In some cases, execution is
attempted where hardware detection of page faults permits nullification.
In other cases, pretesting is required to determine whether the virtual
storage pages to be referenced have page frames allocated.
Nullification testing is required only for instructions whose translated
addresses reference storage. In the Model 168, testing is performed by
instruction unit hardware and/or additional microcode routines that are
executed prior to normal instruction execution. However, for some
instructions, prefetching of the data accomplishes pretesting so that no
additional pretesting cycles are required. A LOAD instruction that
addresses a word on a fullword boundary is an example of such an
instruction.

Similarly, if a store fullword instruction addresses a four-byte
field that is not on a fullword boundary, a pretest is required to
determine whether all four bytes are contained in real storage. The
pretest microcode for this instruction issues a fetch to the highest
addressed byte in the four-byte data field (virtual storage address in
the instruction plus three). The absence of a page translation
exception during translation of the virtual storage address indicates
that (1) if the data field spans two pages, at least the second of the
two pages is present in real storage or (2) the data field is totally
contained in one page, which is present in real storage. Hence the
instruction is allowed to proceed without nullification. If the data
field actually does span two pages and the first page is not present in
real storage, this fact will be indicated by a page fault during
translation of the address of the high-order byte of the field.
Instruction nullification will occur and the page fault will cause a
page-in of the first page to be initiated by the control program as
usual.

If the pretest fetch operation does cause a translation exception,
the store full word instruction is nullified and the control program

A Guide to the IBM system/370 Model 168 63

gains CPU control to load the missing page. Once again, the page-in
caused by the pretest may have brought in the second of two pages
spanned by the data field or the only page containing the data field.
After the page-in, the instruction is reexecuted.

CHANNEL INDIRECT DATA ADDRESSING

since address translation is not performed by the channels for
programs that operate in paged mode, address translation must be
performed on CCW lists by programming prior to the initiation of START
I/O instructions. Such address translation need not be performed on the
CCW lists in programs that operate in nonpaged mode.

In addition, a contiguously addressed I/O area in virtual storage can
span a set of noncontiguous page frames. Hence, a method of handling a
noncontiguously addressed I/O area in real storage during the operation
of a CCW list is required. The channel indirect data addressing feature
is used to provide this capability. As is shown in Figure 30.10.5, the
use of channel indirect data addressing allows the channel program logic
used in the CCW list with virtual storage addresses to be maintained in
the new CCW list that contains real storage addresses.

When channel indirect data addressing is present, bit 37 of a CCW is
designated as the indirect data address (IDA) flag. The IDA flag
applies to read, read backward, write, control, and sense commands and
is valid in both BC and EC modes. When the IDA flag in a CCW is zero,
bits 8 to 31 of the CCW specify the real storage address of the
beginning of the I/O area as usual. When the I/O area referenced by a
CCW is completely contained in one page, an indirect data address list
(IDAL) is not required and the IDA flag is set to zero. When the IDA
flag is one, CCW bits 8 to 31 specify the real storage address of an
IDAL instead of an I/O area. When the I/O area referenced by a CCW
spans two or more pages, an IDAL is required and the IDA flag is set to
one.

An IDAL consists of two or more contiguous indirect data address
words (IDAW's) of four bytes each. There is one IDAW in an IDAL for
each 2K storage block spanned by the I/O area. An IDAW, which must be
aligned on a fullword boundary, contains a real storage I/O area address
in bits 8 to 31. Bits 0 to 7 must be zero. The first IDAW in the list
points to the beginning of the I/O area to be used by the CCW and is
obtained by translating the virtual storage address contained in the
original CCW. Any valid real storage address can be specified in the
first IDAW of a list. All IDAW·s after the first must address the
beginning (or end for a read backward operation) of a 2048-byte block
located on a 2048-byte boundary, or a program check occurs. That is,
bits 21-31 of the address in the IDAW must be zeros (or ones for a read
backward).

Figure 30.10.5 shows an example of the
chained eew list when 2K pages are used.
storage operating systems construct a new
addresses that is used to control the I/O
points to any required IDAL's.

IDAL's required for a command­
The IBM-supplied virtual
CCW list with translated
operation. The new CCW list

When a START I/O instruction is executed, the channel fetches the
first CCW in the list, pointed to by the channel address word (CAW), and
inspects bit 37. If it is zero, the operation is started in the I/O
area specified by the real storage address in the CCW. If bit 37 is a
one, the first IDAW is fetched from the real storage address in the CCW.
The I/O operation is begun using the real storage address in the first
IDAW and, assuming that the I/O operation is not a read backward,
ascending real storage addresses in the 1/0 area are used by the channel
until a 2048-byte boundary is reached.

64 A Guide to the IBM Systern/370 Model 168

CCW1

CCW2

CAW at location 72

CCWl

CCW2

CCW List Provided by the Program

0

I/O area
address

I/O area
address

8 j 31

Virtual storage
address

, 1 3625

0 3625

33 48 63

CCW List and IDAL's Constructed for the I/O Operation

New translated CCW list
used for Start I/O

IDAll
address

IOAl2
address

o

IDA
flag

IOAWl

IOAW2

IOAW3

0

3625

IOAll

0
Real storage
address I/O area

0
Real storage
address I/O area

0
Real storage
address I/O area
8 31

CCWl I/O area in real
storage - 3625 bytes

[]fJ bytes

Page frame X

2048
bytes

Page frame Y

Page frame Z

o 8 , 31 33

Real storage

37 CCW2 I/O area in real
storage - 3625 bytes

address

IOAWl o

IOAW2 o

o 8

IOAl2

Real storage
address I/O area

Real storage
address I/O area

31

Figure 30.10.5. Example of IDAL·s required for a CCW list

Page frame B

The channel detects a 2K boundary by monitoring I/O area address bits
21-31. When these bits change from all ones to all zeros r the first
byte of the next 2K real storage block is indicated. At this pointr the
channel accesses the second IDAW in the list to obtain the next real
storage I/O area address to be used r and the data transfer operation
continues. The channel continues using the IDAL until the operation
indicated by the CCW completes (CCW count reaches zero, interrecord gap
on tape reached r etc.). The next CCW is accessed if command or data
chaining is indicated. Bit 31 is inspected and the I/O operation
continues as described until the CCW list is exhausted.

When a program operates in paged mode r the CCW list for an I/O
operation must be inspected and the appropriate IDAL's must be
constructed prior to issuing a START I/O instruction. At the completion
of the I/O operation, some retranslation is also required. In general,
the following steps must be taken for each CCW in a given list:

1. Determine whether the I/O area referred to in the CCW spans pages
or is contained in only one. If a single page is involved,
translate the virtual storage address to real and store it in the

A Guide to the IBM System/3?0 Model 168 65

ccw. Ensure that a page frame is allocated to the page
containing the buffer and that the page frame is marked fixed.

2. If two or more pages are involved, set up the required number of
IDAW's, place a pointer to the IDAL in the ccw, and turn on CCW
bit 37.

3. While setting up IDAW's, determine whether all pages in the I/O
area have real storage allocated. If not, ensure that page
frames are allocated and fixed.

At the completion of the I/O operation, the real storage address in
the channel status word must be translated to a virtual storage address,
and the pages that were short-term fixed prior to initiation of the I/O
operation must be unfixed. Channel program translation and page fixing
are performed by the I/O control portion of the control program in IBM­
supplied operating system support. A program that contains a CCW list
that is dynamically modified during its execution cannot operate
correctly in paged mode, since the modification is made to the CCW list
with virtual storage addresses rather than to the translated CCW list
that is actually controlling the I/O operation on the channel.

30:15 SYSTEM PERFORMANCE IN ~ VIRTUAL STORAGE ENVIRONMENT

A virtual storage environment is designed to provide new data
processing capabilities. As is true about any other capability offered
by an operating system, support of a new function requires control
program use of a certain amount of the hardware resources of the system.
In this respect, virtual storage is no different from multiprogramming
and the many other new capabilities that have continuously been added to
OS since its initial release.

The characteristic that makes virtual storage different from most
other features is that virtual storage is not primarily designed to
improve system performance, as are many other control program
facilities. virtual storage is first a functional tool and, in certain
cases, can also be a performance tool. The objectives of OS virtual
storage operating systems are to (1) provide new functions, (2) maintain
upward compatibility with OS nonvirtual storage environments, and (3)
provide performance equal to or better than that achieved with a
nonvirtual storage operating system using the same system configuration.
Attainment of the last objective will not be possible for all existing
System/370 configurations.

In addition, some of the new functions a virtual storage environment
provides cannot be achieved in a nonvirtual storage environment or are
not practical, and in these cases, performance is not the primary
consideration when using the facility virtual storage offers. As the
cost of hardware resources continues to decline on a unit cost basis
(cost per processor storage bit, cost per direct access bit, etc.), it
becomes increasingly more economical to use system resources to perform
functions that otherwise are handled by installation personnel.

The other new characteristic of virtual storage is that it enables a
given system configuration to provide a wider range of performance, as
well as function, as a result of the new factors that affect operation
of a system with virtual storage support. Thus, a slightly different
approach must be taken in planning for and in evaluating system
performance in a virtual storage environment.

Many of the same factors that affect system performance in an OS/VSl
or OS/VS2 environment are the same as those that apply to OS MFT or OS
MVT, respectively. First, the system configuration must include the
hardware resources (CPU speed, channels, I/O devices, real storage)

66 A Guide to the IBM System/370 Model 168

required for the control program and job mix. This subsection
identifies the system resources specifically required to support a
virtual storage environment. Second, the system should be designed to
balance resource usage to achieve optimum throughput, and to use
applicable performance and control program design options the particular
operating system offers, taking into account the characteristics of the
installation job stream.

The performance of a system in a virtual storage environment is also
affected by certain new factors that do not apply to systems without
virtual storage support. This subsection identifies these new factors,
explains how they generally affect system performance, and indicates
steps that can be taken to increase and maximize system performance when
a virtual storage operating system is used.

This discussion applies to OS/VS1 and OS/VS2, and is restricted to
performance factors that are common to the virtual storage environments
they support. The virtual storage operating systems also offer new
performance-oriented enhancements that are not related to the
implementation of virtual storage. These unique performance features
are discussed in the optional programming systems supplements.

The performance information in this subsection is designed to present
concepts and considerations for a virtual storage environment. Figures
and graphs are used for illustrative purposes. They do not represent
any particular installation or measured results. Their purpose is to
illustrate the interrelated factors of multiprogramming performance in a
virtual storage environment. The performance information presented is
conceptual. It is based on the experience and judgment of IBM
individuals with performance knowledge and on performance measurements
made during development of OS/VS1 and OS/vS2. Therefore, it may not
apply to all installations.

SYSTEM RESOURCES REQUIRED TO SUPPORT A VIRTUAL STORAGE ENVIRONMENT

In order to support a demand paged virtual storage environment using
System/310, in which programs are operating in paged mode, additional
system resources are used by the IBM-supplied virtual storage operating
systems, as follows:

• Dynamic address translation hardware requires CPU time to perform
virtual storage to real storage address translation. The amount of
time required is determined by the System/370 model and the number
of times the full table-lookup translation procedure must be
performed. The Model 168, for example, has a translation lookaside
buffer that is designed to reduce use of the full table-lookup
translation procedure. The CPU time required is also affected by
program structure (which is discussed later). A small amount of
additional CPU time is also required to pretest certain instructions
that reference storage, as discussed under ftInstruction
Nullificationft in Section 30:10. Studies have shown that a
relatively small percentage of the total CPU time specifically
required to support a virtual storage environment is devoted to
address translation by OAT hardware.

• CPU time is required to translate the virtual storage addresses in
channel programs (CCW lists) into real storage addresses, build
indirect data address lists (where necessary), and short-term fix
pages that will be referenced during I/O initiation, execution, and
interruption handling. Channel program translation and page fixing
are performed prior to the initiation of each I/O operation with a
channel program that contains virtual storage addresses. Channel
status word retranslation and page unfixing is performed at the
completion of these I/O operations. The amount of CPU time this

A Guide to the IBM System/310 Model 168 61

function requires per data set is affected by the number of I/O
requests (EXCP macros) issued. the number of CCW's in the channel
programs started, the number of pages that must be fixed, and
whether or not indirect data address lists have to be constructed.
Studies have shown that a large portion of the total CPU time
specifically required to support a virtual storage environment is
used to perform channel program translation and page fixing.

• CPU time is required to process page faults and for the execution of
other control program code that is specifically required to support
a virtual storage environment. CPU time is required for such things
as servicing additional program interruptions, managing and
allocating real and external page storage, maintaining tables used
by DAT hardware, and testing for paged or nonpaged mode of program
operation.

• I/O time is required for paging operations. The amount of paging
I/O time required is related to the number of page faults that occur
and the speed of the paging I/O device(s) used. In OS/vS2
environments, the total I/O time required for paging includes some
I/O time that is also required in OS MVT environments to load
transient control program routines.

• Direct access storage is required for external page storage. The
amount required depends on the amount of virtual storage that is to
be supported and the way in which the particular operating system
organizes and manages external page storage. (See the optional
programming systems supplements for external page requirements by
device type.)

• The amount of real storage required by the resident (fixed) control
program is increased by the amount of real storage needed for
additional routines and code that are included specifically to
support a demand paged virtual storage environment.

The effect this additional use of hardware resources has on the
performance of a given system configuration depends on the resource
requirements of the job stream and the current utilization of system
resources. To the degree that the additional required CPU and I/O time
can be overlapped with existing CPU and I/O time that is currently
unoverlapped, system throughput is not affected. System throughput will
be affected by the increase in CPU and I/O time that cannot be
overlapped.

When a virtual storage operating system is used with an existing
system configuration, for example. and the same job stream is processed,
performance is affected by the use of any new performance enhancements
these operating systems provide as well as by an increase in resource
utilization that is required to support a virtual storage environment.
When a Model 168 replaces a Model 165, performance is also affected by
the fact that the Model 168 has a faster internal performance than the
Model 165.

Fi~~re 30.15.1 conceptually illustrates possible system performance
when a virtual storage operating system is installed on a Model 168 with
the same amount of real storage and the same I/O device configuration as
the replaced Model 165. A sample throughput for a Model 165 is shown in
panel 1. (It is not meant to represent any specific Model 165
throughput.) Panels 2 and 3 illustrate the conditions under which
existing performance can be maintained and the last two illustrate the
conditions under which existing performance can be improved.

68 A Guide to the IBM System/370 Model 168

Panel 1 cpt (a)

-I
sample existing CPU and I/O I .. (b)

utilization and overlap for
1/0

a Model 165. \. ,,------------------~)

EXISTING SYSTEM THROUGHPUT
MAINTAINED

Panel 2

Some of the additional CPU and I/O
time required is overlapped with pre­
viously unoverlapped I/O and CPU time
(points A). Additional CPU and I/O
time that cannot be overlapped
(point B) is offset by a reduction
in the amount of CPU and I/O time
required to process the same job
stream. Results are aChieved in the
same elasped time.

Panel 3

Elapsed time

® I Reduced CPU Time 1 ® 1 CPU -- .. _ --

I/O 1 __ I_ Reduced I/O

®

CPU --_ Reduced CPU Time -1--1

-I -®

Additional CPU and I/O time required
(dotted lines) is overlapped and off­
set by operating the system at a
higher level of multiprogramming to
achieve greater overlap. Results are
achieved in the same elapsed time.

I/O 1 It-.. -----(b-) -----.f_\--

EXISTING SYSTEM THROUGHPUT IMPROVED

Panel 4

Unoverlapped CPU and I/O time required
is exceeded by reductions in previ­
ously used CPU and I/O time. Better
overlap of previously used CPU and I/O
time is also achieved. Same results
are achieved in less elapsed time.

Panel 5

A higher level of multiprogramming
is used to perform more work and
achieve better overlap of CPU and I/O
time. More results are achieved in
the same elasped time.

,---""----}
Better Overlap

I
Reduced CPU Time 1 1

CPU --. - .,. -

I/O 1 __ 1_ Reduced I/O Time -1--
"----..,--J

\ Better Overlap I ,,-----------------
Elapsed Time Reduced

CPU _ ... I ____ ---'-nc-r-ea-s-ed--C-PU--T-im-e--___ \

1 I Increased I/O Time 1
I/O - - ---------..-.4. --

,~------~,,----------~
Better Overlap

Figure 30.15.1. Possible system performance when a virtual storage
operating system is used with a Model 168 with the same
I/O configuration and real storage size as the
replaced Model 165

Existing throughput is maintained if both of the following occur:

1. A portion of the additional CPU and I/O time required to support
a virtual storage environment is overlapped with CPU and I/O time
that previously was not overlappedw as shown by points A in panel 2.

A Guide to the IBM System/370 Model 168 69

2. The amount of additional CPU and I/O time that cannot be
overlapped (shown by points B in panel 2) is offset by reductions
in previously used CPU and I/O time that occur as a result of the
faster internal performance of the Model 168 and use of new
performance features of the virtual storage operating system. as
shown in panel 2. The unoverlapped CPU and I/O time may also be
offset by a combination of the faster internal performance of the
Model 168 and the achievement of better overlap as a result of
operating the system at a higher level of multiprogramming to
process the same work (as shown in panel 3).

Existing system throughput can improve if (1) unoverlapped CPU and
I/O time required to support a virtual storage environment is exceeded
by reductions in previously used CPU and I/O time and/or if previously
used CPU and I/O time are better overlapped (as shown in panel q) or (2)
a higher level of multiprogramming is used to perform more work and
provide better CPU and I/O overlap in the same elapsed time (as shown in
panel 5).

NEW FACTORS THAT AFFECT SYSTEM PERFORMANCE

In addition to the factors that affect system performance in a
nonvirtual storage environment, the performance of a system in a virtual
storage environment is affected by the relationship of the following
factors: the speed and number of paging devices, the speed of the CPU,
the size of real storage, the structure of the programs in the job
stream, and the way in which real storage is organized and allocated by
the virtual storage operating system. The interrelationship of each of
these factors and their individual effect on performance, except for the
last factor listed, are as follows (page replacement algorithms are not
discussed):

speed and Number of Paging Devices. A certain amount of I/O time is
required to read in (or write out) a page using a given direct access
device type. This time is a function of device type characteristics-­
seek time, rotation time, and data transfer rate. Assuming one page-in
is performed at a time, no page-outs, and no contention for the paging
device or its channel, a maximum paging rate, in terms of the number of
page faults that can be serviced per time interval, could be calculated
for a given device type. This rate could be improved by certain
programming techniques, such as use of rotational position sensing when
it is present, and initiation of multiple page-in and page-out requests
with a single channel program. (Various techniques are implemented in
OS/VSl and OS/VS2.) The maximum paging capability of a given system can
be increased by various means, such as using more than one paging device
or using a faster paging device.

The paging characteristic of a virtual storage environment is the
feature that permits an operating system to support virtual storage that
is larger than real storage. The paging activity of a system begins to
adversely affect system performance: however: once the CPU is in the
position of frequently having to wait for paging I/O operations to
complete. When requests for paging operations are permitted to occur
faster than the paging rate the system can sustain, such that the system
can do little or no processing except that related to paging, the system
is in a paging-I/O bound situation and is said to be thrashing. When a
thrashing condition exists, little or no productive work can be
accomplished unless paging activity is reduced.

In order to prevent thrashing, the System/310 virtual storage
operating systems monitor the activity of" the system to determine when
paging activity becomes excessive. At this point, the os control
program performs task deactivation. This involves placing a task
(partition or region) in deactivated st~tus and releasing the page

70 A Guide to the IBM System/310 Model 168

frames currently allocated to the partition or region. These page
frames are then available for allocation to other tasks to reduce paging
activity. Later, when paging activity becomes sufficiently low, the
deactivated partition or region is reactivated.

CPU speed. An improperly balanced relationship between CPU speed and
paging device speed can also cause the system to become I/O-bound as a
result of paging. A Model 168 can execute a certain number of
instructions during the time required to service a page-in request using
a given direct access device type. A Model 168 can execute many more
instructions during a page-in from a 2305 Model 2, for example, than can
a Model 158. As long as there is useful work for the CPU to perform
while paging operations occur, the system is not kept waiting for paging
I/O. However, if the concurrently operating programs are constantly
executing instructions faster than the pages they require can be brought
into real storage, an excessively high paging rate can develop and task
deactivation will be the result. In general, therefore, the larger
scale System/370 models require faster paging devices to handle a
particular page fault rate than do the smaller scale models.

Real Storage Size. The amount of real storage present in a system
affects the number of page faults that occur when a given job stream is
processed. If the amount of real storage present in the system is equal
to the total amount of virtual storage being used by the concurrently
executing tasks, no page faults occur for programs that have been
fetched and initiated. When the amount of real storage present is less
than the amount of virtual storage being used, page faults occur. The
total number of page faults that occur for a given job stream is
affected by the ratio of virtual storage used to real storage available.

Assuming the amount of virtual storage used in a given system remains
the same, the virtual-to-real storage ratio can vary. This occurs while
a given system experiences variations in the amount of real storage
actually available for paging as the amount of fixed real storage
changes during job stream processing. The real storage available for
paging at any point in time is the difference between the amount of real
storage in the system and the total amount of long- and short-term fixed
real storage. For IBM-supplied virtual storage operating systems, the
total amount of fixed real storage at any given time is the sum of the:

• Resident (fixed) control program size, which does not vary after IPL

• Amount of long-term fixed real storage required for control blocks,
which can change as the level of multiprogramming changes in os/vs1
and OS/vS2 environments

• Amount of short-term fixed real storage required for outstanding I/O
operations that have virtual channel programs, which flucuates with
the I/O activity of the system

• Amount of long-term fixed real storage required by the job steps
executing in nonpaged mode, if any

• Amount of long-term fixed real storage required by programs that
operate in paged mode but that have a portion of their partition or
region always fixed (TCAM in OS/VS1 and OS/VS2, for example)

As the virtual-to-real'storage ratio of a job stream increases, so
usually does the page fault rate. In general, the page fault rate
increases slowly for a while. At some point, the increase in page
faults begins rising rapidly as the virtual-to-real storage ratio
continues to increase. Figure 30.15.2, shown later, illustrates the
general relationship between .the number of page faults and the virtual-
to-real storage ratio. !

A Guide to the IBM System/370 Model 168 71

The amount of real storage available to process a given job stream
also varies when a given job stream is processed on systems with various
amounts of real storage. such as when a smaller scale system is used to
back up a larger scale system.

The degree to which reducing the real storage available for paging
affects the page fault rate depends on the paging activity pattern of
the programs in a job stream. Therefore. the virtual-to-real storage
ratio at the point at which a given number of page faults occurs will
usually vary by job stream. The point can also be different for systems
with similar paging activity patterns and the same amount of real
storage installed. but with different amounts of long-term fixed real
storage.

As the virtual-to-real storage ratio increases. because of a
reduction in the real storage available (or an increase in the amount of
virtual storage used). and the page fault rate increases. more demand is
placed on the paging devices. If too small an amount of real storage is
present in a system. this situation can cause the page fault rate to
exceed the permiSSible rate and task deactivation will occur. In
general. therefore. in order to obtain a certain level of performance. a
configuration that supports a given job stream and virtual storage size
may require more real storage when a relatively slower paging device is
used than if a faster paging device is used.

Program Structure. The total amount of virtual storage a program
uses is not nearly as significant a factor in system performance as the
way in which virtual storage is used. That is. the pattern and
frequency of reference to pages in a program has more effect on the
number of page faults that occur than the total size of the program.
For example. assume a case in which a program has a lOOK virtual storage
design point. If the program can be structured to execute as a series
of logical phases of four or five pages each. and the pages of each
logical phase reference only each other. no more than four or five page
frames (SK to 10K or 16K to 20K of real storage, depending on page size)
need be dynamically available to the program at one time and paging
activity occurs only as the program progresses from one logical phase to
the next. However. assume the program is structured such that during
its execution each page of instructions constantly references a large
number of different pages of instructions and data for very short
durations on a highly random basis. An excessively high paging rate
could occur if only four or five page frames were dynamically available
to such a program at any time.

As indicated previously. most types of programs naturally have a
locality of reference characteristic so that they can be structured to
operate as a series of logical phases. In the simplest case, for
example. a program can logically consist of an initialization phase, a
main phase. one or more exception handling phases, and a termination
phase. The total amount of virtual storage referenced in each logical
phase usually varies but, generally, the amount is less than the total
size of the program. In addition. the pages that are part of
(referenced in) a given logical phase can usually be described as active
or passive.

For the purpose of the discussion in this subsection, an active ~
is defined as one with a high probability of being referenced multiple
times during execution of the logical phase, while a passive ~ has a
low probability of being referenced more than once during execution of
the phase. A logical phase experiences the least amount of paging
activity as it executes when its active pages remain in real storage
during its execution and its passive pages are paged in when required.
A program uses real storage most efficiently when the active
instructions and data in each logical phase are contained within the
fewest number of pages possible.

72 A Guide to the IBM System/370 Model 168

The locality of reference characteristic does not apply to certain
types of programs. For example, it does not apply to any program that
is designed to optimize its performance at execution time by using the
total amount of storage it has been allocated. This characteristic is
usually true of sort/merge programs that initialize themselves to use
all the storage made available to them in their partition or region
during the sorting passes. The reference pattern for such a sort/merge
is random and encompasses all the storage (and, therefore, all the
pages) the program is assigned.

RELATIONSHIP BETWEEN VIRTUAL STORAGE SIZE AND SYSTEM PERFORMANCE

Assuming other required system resources are available, a given
configuration can support a given virtual storage size and provide
satisfactory performance when paging activity is kept at an acceptable
level. Minimal paging activity occurs when enough real storage is
present in the system to contain most or all of those pages of
concurrently executing programs that are active at any given time.
Paging activity then is required primarily for passive pages. Active
pages are paged in (and later paged out as required) as the set of
active pages for each program changes from one logical phase to another.
The paging device(s) present must be capable of handling the demand for
pages that results from the range of paging activity of the system.

As the amount of virtual storage used in a given system increases,
the number of active and passive pages that the system must handle
increases also. The ratio of active to passive pages will vary for a
given increase in virtual storage, depending on how the additional
virtual storage is used. As long as enough real storage is present to
contain all or most of the increased number of active pages, the
increase in paging activity required to support the additional virtual
storage will be needed primarily for passive pages and should be
relatively small. As soon as the use of more virtual storage causes the
number of concurrently active pages to constantly exceed the capacity of
real storage, the paging activity increase required to support the
additional virtual storage becomes relatively large. As more and more
active pages must be handled, paging activity could exceed the maximum
paging capability of the system if task deactivation did not occur.

Figure 30.15.2 illustrates the increase in page faults that generally
occurs as more virtual storage is used in a given system configuration.
The curve begins at the point at which the amount of virtual storage
used is equal to the amount of real storage present (virtual-to-real­
storage ratio is 1). Paging activity begins as soon as the amount of
virtual storage used exceeds the real storage present. As the virtual­
to-real-storage ratio increases, so does paging activity. The system
moves from passive paging activity (primarily paging of passive pages)
into active paging (paging active pages in and out more of the time) and
approaches the maximum paging capability of the system. As indicated
previously, Figure 30.15.2 also illustrates the increase in page faults
that generally occurs as less real storage is made available to support
a given virtual storage size. The increase in page faults also causes
the virtual-to-real storage ratio to increase.

A Guide to the IBM System/3?0 Model 168 13

Number of
page faults
per second

~=1
R

I~"---- Passive paging ----+­
I
I
I
I
I

Virtual-to-real storage ratio

Maximum
paging

capability------/

Task
deactivation

Active
paging

I
/

I
I

Figure 30.15.2. General effect on page faults of increasing the ratio
of the virtual storage used to real storage present
in the system

Figure 30.15.3 illustrates how the paging factor only generally
affects system performance. Figure 30.15.5, shown later, illustrates
system performance taking into account all factors. The curve shows the
performance of the system when passive and active paging are occurring,
relative to the virtual-to-real storage ratio. The use of virtual
storage can be increased with little or no adverse effect on performance
as long as paging remains in the passive area. This is true because in
the passive paging area there is a relatively small amount of paging and
a high probability that all or most paging processing (CPU and I/O time)
can be overlapped with other processing. As paging activity increases,
there is a higher probability that CPU processing will be held up
waiting for a paging operation to complete. As the CPU enters the wait
state more frequently to wait for paging I/O and less paging I/O is
overlapped, the paging factor causes performance to degrade more
rapidly.

The actual virtual-to-real storage ratio at the time active paging
begins in Figures 30.15.2 and 30.15.3 is a variable and depends on the
way in which virtual storage is used, that is, active-to-passive page
ratio of concurrently executing tasks.

Figure 30.15.4 illustrates the way in which the paging factor only
can affect system performance in a given configuration, based on the
active-to-passive page ratio. If the ratio of active to passive pages
for executing tasks is relatively high most of the time, as shown in
curve 1, the virtual-to-real storage ratio at the point at which active
paging begins will be relatively low. Performance drops very rapidly in
this case as more virtual storage is used. This happens because the
increased paging processing (I/O and CPU time) cannot be overlapped with
other processing. This situation may apply to an installation initially
when a switch from a nonvirtual storage to a virtual storage environment
is made and more virtual storage is used, since existing programs were

74 A Guide to the IBM Systeml370 Model 168

structured for optimum performance in a given partition or a region size
rather than for optimum performance in a virtual storage environment.

If the active-to-passive page ratio for the system is low, as shown
in curve 3, the virtual-to-real storage ratio can be relatively high
when active paging begins. The performance curve stays flatter longer
as virtual storage is increased when the active-to-passive page ratio is
low. This situation can apply to an installation in which all executing
programs are structured such that real storage requirements and page
faults are minimized. An installation that continues executing all or
most existing programs as they are presently designed and that
structures new applications for optimum performance (low active-to­
passive ratio) may be more common. Such installations may experience a
virtual-to-real storage ratio somewhere between the low and the high
extremes possible for a given job stream, as shown in curve 2.

)
System
performance

~ = 1
R

Figure 30.15.3.

Paging Overhead

1"'111 '4------- Passive paging ---_
I

V irtual-to-real storage ratio

Active
paging--~

" " , ,

General effect on system performance of the paging
factor only

The amount of virtual storage used in a system can be increased in
several ways. First, the size of existing application programs can be
increased by the addition of new functions. Second, the level of
multiprogramming or multitasking can be increased, assuming other
required resources, such as CPU time and I/O devices, are available.
Third, the size of existing application programs can be expanded by el)
restructuring programs with a planned overlay or a dynamic structure to
take them out of these structures and (2) combining two or more job
steps within a job into one logical job step. The active-to-passive
ratio of the additional pages the system must handle will usually be
higher when the level of multiprogramming is increased than when
existing jobs are restructured.

A Guide to the IBM System/3?O Model 168 15

System
performance

~=1
R

Curve 1
(active-to-passive
page ratio high­
nonoverlapped
paging)

Paging Overhead

Virtual-to-real storage ratio

Curve 3
(active-to-passive
page ratio low­
overlapped paging)

\.

Figure 30.15.4. General effect of the paging factor on system performance
with various active-to-passive page ratios.

The way in which an installation should view the amount of virtual
storage used and system performance for a given configuration, taking
all performance factors into account, is illustrated in Figure 30.15.5.
The increased use of virtual storage is beneficial to system performance
up to a point. Thereafter, additional virtual storage can be used to
handle additional functions at a variable cost in system performance.
In reality, the virtual-to-real storage ratio and the page-fault rate
vary during system processing as the amount of virtual storage used (out
of the total amount supported) and the amount of real storage available
for paging vary. Best overall system performance is achieved when
paging activity falls most of the time in the area identified on the
curve as the operating range. More significant performance reduction
begins when active paging is experienced.

Occasional active paging on an exception basis should be acceptable.
More frequent active paging can be performed to achieve a desired
function that does not justify changing the system configuration.
However, when paging activity in a system is constantly at the point at
which task deactivation occurs, system configuration changes should be
made to improve system performance. Such changes might be the addition
of more real storage, the addition of more or faster paging devices, or
installation of a faster cpu. A history of the paging activity of the
system can be maintained by recording the paging statistics provided by
OS/VS1 and OS/VS2.

-'6 A Guide to the IBM System/3-'0 Model 168

1
System
performance

Performance-All Factors

"*---- Passive paging ---.

----- Operating range ---_

Active
- •• 1 paging

Configuration
1 changes
I
I
I
I

/

1"
1 ,
1 ,

Task I ,

deactivation I',
point

~=1
R

Virtual-to-real storage ratio

Figure 30.15.5. General system performance curve for a virtual storage
environment

INCREASING SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

The IBM-supplied virtual storage operating systems are designed to
provide an acceptable level of performance when existing problem
programs are run without modification. However, given the additional
resource requirements of virtual storage support and the new factors
that affect system performance in a virtual storage environment, once a
virtual storage operating system is installed (either on an existing
configuration or a larger configuration) certain steps can be taken to
improve performance or to achieve optimum performance. The benefit to
be achieved by taking anyone of the steps outlined must be evaluated on
an installation basis, taking the specific configuration and operating
environment into account. Some steps, for example, are more practical
for large configurations than for small configurations. The following
can be done:

• Use larger I/O buffers. This step is practical primarily for
sequential data sets and can be used most effectively when previous
real storage limitations prevented the use of larger buffer sizes,
in general, and optimum buffer sizes for disk data sets. In
addition to reducing the total I/O time required to process a data
set, as would occur in a nonvirtual storage environment, increasing
buffer size reduces the number of I/O requests required to process
the data set and, thereby, reduces the CPU time required for channel
program translation and page fixing. This technique should be used
taking into account the amount of real storage present in the
system. If the buffer size of several data sets that are being
processed concurrently is increased considerably or made large
initially, the amount of real storage that must be short-term fixed
increases considerably also and potentially increases the number of
active pages. This may adversely affect system performance if the
system has a relatively limited amount of real storage available for
paging ..

A Guide to the IBM System/370 Model 168 71

78

• Increase the page fault handling capability of the system when
paging activity constantly causes task deactivation. This can be
accomplished by (1) using a direct access device for paging that is
faster than the currently used paging device, (2) allocating more
direct access devices for paging to enable more overlap of paging
activity, or (3) reducing or eliminating contention for the existing
paging device(s). Contention for the paging device can be relieved
by using dedicated paging devices, or reducing the amount of other
I/O activity on the channel to which the paging device is attached,
or dedicating a channel to paging. Alternatively, the same paging
device configuration can be maintained while page fault occurrence
is decreased by the addition of real storage.

• Use code that does not modify itself. Use of this type of code can
reduce the amount of page-out activity required. Such code can be
produced using OS PL/I and the OS Assembler Language.

• Execute programs in nonpaged mode only when actually required. Use
of nonpaged mode should be limited because the amount of real
storage available for paging operations during the operation of a
nonpaged program is reduced by the size of the program and can
affect system performance. If a nonpageable program is to be
present in a system for an extended period of time or at all times,
it should be considered part of the fixed real storage requirement
so that the amount of real storage actually available for paging can
be more accurately determined.

• Structure new application programs to operate efficiently in a
paging environment. This is done by structuring programs to achieve
a reasonable balance between page faults and real storage
requirements. The extent to which this is done can vary widely by
installation. The benefits that can be obtained should be evaluated
in light of the additional programmer effort required. In this
respect, deciding on the degree to which programs should be
structured for efficient operation in a paging environment is
similar to deciding how a high-level language should be used. The
emphasis can be on most efficient program execution, which can
require more programmer effort, or on most efficient use of
programmer time, which can result in less efficient programs.
Alternatively, there can be a tradeoff between programmer time and
efficient programs (only the most frequently used programs are
optimized, for example).

Many of the general program structure techniques discussed do not
require a large amount of additional effort or knowledge on the part
of programmers--only that they adopt a particular programming style.
All of the suggested techniques can be used by Assembler Language
programmers. Some can be used with certain high-level languages and
not with others. More of the suggested techniques can be used in
PL/I programs than in other high-level language programs.

TWo major steps can be taken to structure programs to use real
storage most efficiently and to incur the smallest possible number
of page faults. The first is to adopt a certain programming style,
one aspect of which is similar to the style that has been encouraged
with system/360 and System/370. namely, that of modular programming.
The second is to package program code and data within page
boundaries. The objective of improving progra~ming style is to
construct a program that consists of a series of logical processing
phases each of which contains a relatively small number of active
pages. The objective of packaging code within pages is to group
active code together to avoid crossing page boundaries such that
more real storage than is really necessary is required to contain
the active pages of a logical phase.

A Guide to the IBM System/310 Model 168

In order to cause references to active instructions and data to be
localized, the following general rules should be applied to
programs:

1. A program should consist of a series of sequentially executed
logical phases or--in System/370 programming terminology--a
series of subroutines or subprograms. The mainline of the
program should contain the most frequently used subroutines in
the sequence of most probable use, so that processing proceeds
sequentially, with calls being made to the infrequently used
subroutines, such as exception and error routines. This
structure contrasts with one in which the mainline consists of a
series of calls to subroutines. Frequently used subroutines
should be located near each other. Infrequently used subroutines
that tend to be used at the same time whenever they are executed
should be located near each other also.

2. The data most frequently used by a subroutine should be defined
together so that it is placed within the same page, or group of
pages, instead of scattered among several pages. If possible,
the data should be placed next to the subroutine so that part or
all of the data is contained within a page that contains active
subroutine instructions (unless the routine is to be written such
that it is not modified during its execution). This eliminates
references to more pages than are actually required to contain
the data and tends to keep the pages with frequently referenced
data in real storage.

3. Data that is to be used by several subroutines of a program
(either in series or in parallel by concurrently executing
subtasks) should be defined together in an area that can be
referenced by each subroutine.

4. A data field should be initialized as close as possible to the
time it will be used to avoid a page-out and a page-in between
initialization and first use of the data field.

5. Structures of data, such as arrays, should be defined in virtual
storage in the sequence they will be referenced, or referenced by
the program in the sequence in which a high-level language stores
them (by row or by column for arrays, for example).

6. Subroutines should be packaged within pages when possible. For
example, avoid starting a lS00-byte subroutine in the middle of a
2K page so that it crosses a page boundary and requires two page
frames instead of one when it is active. Subroutines that are
smaller than page size should be packaged together to require the
fewest number of pages, with frequently used subroutines placed
in the same page when possible. This applies to large groups of
data as well. The linkage editor supplied with OS/VS1 and OS/VS2
has new control statements that can be used to cause CSECTS and
COMMON areas to be aligned on page boundaries, and to indicate
the order in which CSECTS are placed in the load module. This
linkage editor facility can be used with certain high-level
language programs that contain multiple CSECTS (such as PL/I and
ANS COBOL) as well as with Assembler Language programs •

• Use the OS PL/I Optimizing Compiler instead of OS PL/I F. The code
produced by this language translator has characteristics that makes
it more suited to a virtual storage environment than the code
produced by PL/I F. First, generated code is grouped into
functionally related segments, by PROCEDURE and DO group, for
example, which can help reduce paging. When PL/I allocates buffers
and I/O control blocks, they are packed together and can potentially
require fewer pages than if no attempt was made to define them

A Guide to the IBM System/370 Model 168 79

together. Reentrant code can be produced by the os PL/I Optimizing
Compiler, and its library routines are reentrant. This reduces
page-out requirements. User-written reentrant PL/I routines that
are required by concurrently executing problem programs can be made
resident in virtual storage and shared to reduce real storage and
paging requirements for active pages of these routines.

• Use the shared library feature of the OS PL/I Optimizing Compiler
and the COBOL Library Management Facility of the OS ANS COBOL
language translator to make library modules resident in virtual
storage so they can be shared by concurrently executing problem
programs. Pages containing active libraray modules will tend to
remain in real storage and thereby reduce paging and real storage
requirements for these modules.

• Restructure existing application programs to incur as few page
faults as possible, use the least amount of real storage, and take
advantage of the program structure facilities that a virtual storage
environment offers. This can be accomplished by (1) using the
techniques described above, (2) taking planned overlay and dynamic
structure programs out of these structures, and (3) combining into
one logical step two or more steps of a job that would have been one
job step if the required real storage were available. The last
technique can eliminate redundant I/O time that is currently used to
read the same sequential input file into two or more job steps, and
to write intermediate results from one job step in one or more
sequential data sets for input to the next job step.

• Increase the level of multiprogramming in the system. This can be
accomplished by (1) performing more peripheral I/O operations
concurrently (more readers and writers in OS), (2) operating more
regions or partitions concurrently, or (3) increasing the use of
multitasking (structuring a TCAM message processing program to use
multitasking to enable several different types of transactions to be
processed concurrently, for example).

system throughput can be improved in a virtual storage environemnt
if a higher level of multiprogramming causes more CPU and I/O time
to be overlapped, which results in more effective utilization of
available system resources. When a larger number of tasks are in
the system under these conditions, the less chance there is for the
CPU to enter the wait state because no task is ready to execute.
Better utilization of real storage in a virtual storage environment
can enable more tasks to be present in the system.

In order to achieve performance gains by increasing the level of
multiprogramming, the potential for more overlap of CPU and I/O time
must exist in a system and/or the potential must exist for reduction
of I/O time via increased overlapping of channel activity and
reductions in unoverlapped seek time (that can result from new
system performance enhancements)~ The required hardware resources,
such as CPU time, real storage, I/O devices, and direct access
storage, must be available as well. Tne most Crltlcai resource in
this situation is available CPU time. As the percentage of CPU
utilization gets higher, there is less potential for increasing
throughput via increasing the level of multiprogramming.

The information presented in this subsection is designed to enable
the reader to more fully understand the way a system operates in a
virtual storage environment and the facts that influence system
performance. Understanding the environment and knowing the actions that
can be taken to increase system performance will enable each
installation to quantify the amount of effort that is to be devoted to
optimizing the performance of a virtual storage operating system.

80 A Guide to the IBM System/370 Model 168

SECTION 50: I/O DEVICES

50:05 I/O DEVICE SUPPORT

All I/O devices, consoles, and telecommunications terminals that can
be attached to the Model 165 can be attached to the Model 168. However,
all I/O devices supported by OS MFT and MVT are not also supported by
OS/VS1 and OS/VS2. (See the optional programming systems supplements
for I/O device support.) Model 65 devices that are not part of the
standard Model 165 I/O configuration are not part of the standard Model
168 I/O configuration. The only difference between Models 165 and 168,
as far as I/O device attachability is concerned, is inclusion of the
capability of connecting 3330-series direct access storage to the Model
168 via the Integrated Storage Control feature.

50:10 INTEGRATED STORAGE CONTROL FEATURE FOR 3330-SERIES DISK STORriGE

Optionally, one Integrated Storage Control (ISC) feature can be
installed on a Model 168 to attach 3330-series disk storage to one or
two 2880 Block Multiplexer Channels. Attachment of 3330-series disk
storage via 3830 Storage Control. Models 1 and 2, is possible as well.

The Integrated Storage Control feature includes dual direct access
storage controls, each of which is functionally like 3830 Storage
Control Model 2 except for the following:

• The Integrated Storage Control feature is contained in the main
frame of the Model 168 and is powered by the Model 168 CPU •

• The Two-Channel switch, Additional feature (that provides four­
channel switching) cannot be attached to the storage controls in the
ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same 2880 channel or they can be attached to two different 2880
channels connected to the Model 168. Each logical storage control can
have attached a maximum of two 3330-series strings of up to eight drives
each. (The first module in each string must be a 3333 Disk Storage and
Control unit.) Therefore, up to 32 drives (four strings) can be
attached to the Model 168 via the ISC feature. The 3330-series drives
operate just as if they were attached via 3830 Storage Control Model 2.
That is, when multiple requesting is used, each logical storage control
within the ISC can handle up to 16 channel programs concurrently, one on
each of its drives, and only one of the 16 drives can be transferring
data at a time. When a malfunction occurs, diagnostics can be run on
one logical storage control and its drives, while normal operations take
place on the other logical storage control in the ISC.

The Two-Channel Switch optional feature is also available for the ISC
feature. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch feature permits each integrated storage control unit to be
attached to two channels in the same Model 168 or to one channel in the
Model 168 and one channel in another System/370.

The ISC feature provides lower cost attachment of 3330-series disk
storage than 3830 Storage Control Model 2 when two storage control units
are required, and floor space is saved since the ISC is in the Model 168
cpu.

A Guide to the IBM System/3?0 Model 168 81

SECTION 70: COMPARISON TABLES

These tables have been included for quick reference. The first
compares hardware features of the System/360 Model 65 and System/370
Models 165. 165 II. and 168. The second compares OS MFT, MVT. VS1. and
VS2 support of the Model 168.

82 A Guide to the IBM System/370 Model 168

10:05: COMPARISON TABLE OF HARDWARE FEATURES OF THE SYSTEM/360 MODEL 65 AND SYSTEM/310 MODELS ~, ~ II, AND ~

Hardware Feature
System/360
Model 65

1. CPU

A. BC mode of system
operation

B. EC mode of system
operation

C. Instruction set

Comparable to BC
mode

Not implemented

1. Standard set Standard
(binary arithmetic)

2. Decimal arithmetic Standard

3. Floating-point standard
arithmetic

4. Extended precision Not available
floating-point

5. New instructions Not available
a. COMPARE LOGICAL

CHARACTERS UNDER
MASK

COMPARE LOGICAL LONG
HALT DEVICE
INSERT CHARACTERS

UNDER MASK
LOAD CONTROL
MONITOR CALL
MOVE LONG
SET CLOCK
SHIFT AND ROUND

DECIMAL
START I/O FAST

RELEASE
STORE CHANNEL ID
STORE CHARACTERS

UNDER MASK
STORE CLOCK
STORE CONTROL
STORE CPU ID

b. LOAD REAL ADDRESS Not available
PURGE TLB
RESET REFERENCE BIT
SET CLOCK COMPARATOR
SET CPU TIMER
STORE CLOCK

COMPARATOR
STORE CPU TIMER
STORE THEN AND

SYSTEM MASK
STORE THEN OR

SYSTEM MASK

System/310
Model 165

Standard

Not implemented

Standard

Standard

Standard

Standard

Standard
(except for
MONITOR CALL)

Not available

system/310
Model HiS II

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

System/310
Model 168

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Hardware Feature

D. overlap of instruction
fetching and preparation
with instruction
execution

E. High-speed multiply

F. CPU cycle t:ime

G. Dynamic adclress
translation

H. Interval timer

I. Time of day clock

J. CPU timer and clock
comparator

K. Monitoring feature

L. Program event
recording

M. Direct cont:rol

N. Interruption for SSM
instruction

O. Compatibility features
(all are optional and
mutually exclusive)

P. Control loqic

Q. Instruction retry by
hardware

R. Machine chE~ck
interruption

System/360
Model 65

Instruction unit
normally prepares
one instruction at
a time. Imprecise
interruptions occur
only for storage
violations.

Not available

200 nanoseconds,
S-byte data path

Not available

Standard (16.6 ms
resolution)

Not available

Not available

Not available

Not available

Optional

Not implemented

1. 7070/107q
2. 70S0 (for both

705 and 70S0)
3. 709/70QO/7044/

7090/709Q/7094II

Microprogram in ROS

NO

One level of
machine check
provided for all
machine errors
and one machine
check mask

System/370
Model 165

System/370
Model 165 II

Instruction unit Same as Model 16S
can process several
instructions while
execution unit
executes one
instruction. Impre-
cise interruptions
can occur.

Optional Optional

SO nanoseconds, Same as Model 165
S-byte data path

Not available Standard

Standard (3.33 ms
resolution)

Standard

Not available

Not available

Not available

standard

Not implemented

1. 7070/7074
2. 7080 (for both

705 and 70S0)
3. 709/7090/709Q/

709411 (does not
include 704,
7040, 70Q4)

Microprogram in
capacitor ROS and
monolithic WCS.

Yes

Occurs after
corrected and
uncorrected errors.
There are four
types of machine
check and many are
individually
maskable.

Standard (3.33 ms
resolution)

Standard

Standard

standard

Standard

Standard

Standard

Same as Model 165

Same as Model 168

Yes

Same as Model 168

System/370
Model 168

Same as Model 165
except that instruction
and execution unit
implementation is
enhanced and imprecise
interruptions cannot
occur.

Optional

Same as Model 165

standard

standard (].33 ms
resolution)

Standard

Standard

Standard

Standard

Standard

Standard

Same as Model 165

Microprogram in
monolithic ROS
and monolithic WCS

Yes

Same as Model 165,
except five types
of machine check are
implemented and more
data is logged by a
Model 168.

Hardware Feature

II.

S. Fixed storage area size
in lower storage
(including logout
area for machine and
channel errors)

T. Multiprocessor systems

STORAGE

A. Processor (main
storage sizes

B. Type of processor
storage

C. Processor storage cycle

D. High-speed buffer
storage

System/360
Model 65

328 bytes including
CPU and channel
logouts

1. Multisystem
optional feature
permits inter­
connection of
two Model 65s.
Main storage is
shared (512K or
more). Direct
control is
required.

2. The support or
main processor in
an ASP configu­
ration can be a
Model 65. Two or
three systems are
connected via a
Channel-to-Channel
Adapter.

256K
512K
768K
1024K

Ferrite cores

750 nanoseconds
(for 8 bytes).
Two-way inter­
leaving of sequen­
tial accesses
other than by the
channels is
provided.

No

System/370
Model 165

1504 bytes reduc­
ible to 512 if the
extended logout
area of 992 bytes
is moved

1. A multisystem
feature is not
available

2. A Model 165 can
be a support
or a main pro­
cessor in an ASP
configuration

512K

1024K
1536K
2048K
3072K

Ferrite cores

2 microseconds.
Storage is 4-way
doubleword inter­
leaved for CPU
and channel
requests. 32
bytes can be
obtained every
two microseconds.

8K is standard,
8K more can be
added. 80 nano­
second cycle.

system/370
Model 165 II

Same as Model 168

Same as Model 165

1024K

2048K
3072K

Ferrite cores

Same as Model 165

Same as Model 168

System/370
Model 168

1928 bytes reducible
to 512 if the extended
logout area of 1416
bytes is moved

Same as Model 165

1024K

2048K
3072K
4096K

Monolithic technology

Storage is 4-way doubleword
interleaved. Read/write
cycle for 8 bytes on a
doubleword boundary is 480
nanoseconds. Partial write
requires 800 nanosecond
cycle.

Same as Model 165.
Buffer row deletion
is implemented also.

co
0'1

-0'1
CO

Hardware Feature

E. Processor s1:orage
validity chf~cking

F. Byte-oriented operands

G. Store and ff~tch
protection

H. Shared processor
storage

1. 2361 Core S1:orage

I I 1. CHANNELS

A. Total numbe]~ per system

B. 2870 Multiplexe'r Channel

C. 2860 Selector Channel
(1.3 MB)

D. 2880 Block ~1ul tiplexer
Channel (1.!i MB).
TWo-Byte In1:erface
feature permits a
3.0 MB data rate

E. Channel dual I/O bus

F. Maximum aggregate dat.a
rate for channe,ls

G. Channel ret]~y data
provided af1:er channel
error

H. Channel-to-ehannel
adapter

I. Channel indirect data
addressing

System/360
Model 65

parity checking
by byte. No
hardware error
correction is
provided.

No

Standard

Optional (Model
65 system shares
2361 Core Storage
with a Model 50, 65,
or 75)

Optional.
Up to 8 million
bytes can be
attached.

Up to 7

One or two can be
attached

A maximum of 6 can
be attached

Cannot be attached

Not available

In excess of 4 MB
for one 2870
and six 2860's

Yes

Optional on 2860

Not available

System/370
Model 165

ECC checking on a
doubleword.
Single-bit errors
are corrected by
hardware.

Standard

Standard

Not available

Cannot be attached

System/370
Model 165 II

Same as Model 165

Standard

Standard

Not available

Cannot be attached

1. Up to 7 standard Same as Model 165
2. Up to 12 with

Extended Channels
optional feature

Same as Model 65 Same as Model 65

Same as Model 65 Same as Model 65

A maximum of 6 can Same as Model 165
be attached without
the Extended
Channels feature, a
maximum of 11 with
this feature

Not implemented

In excess of 9 MB
with twelve channels

Yes

Optional on 2860

Not available

Not implemented

Same as Model 165

Yes

Optional on 2860

optional (required
by the virtual
storage operating
systems)

System/370
Model 168

Same as Model 165

Standard

Standard

Not available

Cannot be attached

Same as Model 165

Same as Model 65

Same as Model 65

Same as Model 165

Standard

16 MB

Yes

Optional on 2860

Optional (required by the
virtual storage operating
systems)

.....

'" 00

Hardware Feature

IV. OPERATOR CONSOLE DEVICES

V. I/O DEVICES

A. 3505 Card Reader and
3525 Card Punch

B. 3211 Printer

C. 3803/3420 Magnetic
Tape Subsystem

D. Direct access devices
(2311,2314,2303, 2301,
and 2321)

E. 3330-series with RPS
and multiple requesting
1. 3830 storage Control

Model 1
2. 3830 storage Control

Model 2
3. Integrated Storage

Control feature

F. 2305 facility Models
and 2 with RPS and
multiple requesting

System/360
Model 65

1. 1052 Printer­
Reyboard
(optional)

2. Second 1052
Printer-Rey­
board is
optional

3. A 2250 Display
Unit and a
remote 2150
Console are
optional

4. Other devices
can be used as
primary and
secondary
consoles

No

Yes

Yes

All attach

No

No

System/310
Model 165

System/310
Model 165 II

1. stand-alone 3066
Model 1 System
Console is
required. It
includes:
a. A CRT-Keyboard

combination
for operator/
system
communication

b. An indicator
viewer

c. A microfiche
document viewer

d. A processor
storage config­
uration plug­
board

e. A system
activity meter

1. stand-alone 3066
Model 1 System
Console is
required. The
store status
function is
supported.

f. A device for
loading WCS and
microdiagnostics

The store status
function is not
provided.

2. Optionally, other
devices can be
used as secondary
consoles as listed
for the Model 65

Yes

Yes

Yes

Same as Model 65

Yes

Yes

Yes

No

Yes on 2880

Yes

Yes

Yes

Same as Model 65

Yes

Yes

Yes

No

Yes on 2880

System/310
Model 168

1. Stand-alone 3066 Model 2
System Console provides
same features as 3066
Model 1 and store status
function. Other consoles
can be attached as for
Model 165.

Yes

Yes

Yes

Same as Model 65

Yes

Yes

Yes

Yes

Yes on 2880

00
00

-(7'1

00

Hardware Feature

I. CPU

A. Mode of sys:tem operation

B. Instruction se·t

1. Standardl se·t
(binary arithmetic)

2. Decimal ari'thmetic

3. Floating-point arithmetic

4. Extended pr,ec1s].on
floating-point

5. New instrucjtions
a. COMPARE I .. OGICAL

CHARACTERS UNDER
MASR

COMPARE ~['OGICAL

LONG
INSERT CHARACTERS

UNDER MJ~SK

LOAD CON':rROL
MONITOR CALL
MOVE LONG
SET CLOC1~
SHIFT AND ROUND

DECIMAL
START I/O FAST

RELEASE
STORE Cfij~NNEL ID
STORE Cfij~RACTERS UNDER

MASK
STORE CL(XK
STORE CONTROL
STORE CPU ID

OS MFT and MVT

BC mode only. Up to 15
problem program partitions
or regions.

All languages

All languages except
FORTRAN

All languages except
RPG

Assemblers F and H. PL/I
Optimizing Compiler. PL/I
Checkout Compiler.
FORTRAN H. FORTRAN
H-Extended

EC and DAT modes only.
One virtual storage of
up to 16 million bytes
is supported. Up to
15 problem program
partitions. Up to 37
system task partitions.

All languages

All languages except
FORTRAN

All languages except
RPG

Same as MFT and MVT

Mnemonics in Assemblers Same as OS MFT
F and H. Option to generate and MVT
certain instructions in ANS
Full COBOL Version 3 (CLCL.
MVCL. ICM. SRP)

EC and DAT modes only. One
virtual storage of 16 million
bytes is supported. Up to 63
problem program regions of which
up to 42 can be TSO foreground
regions.

All languages

All languages except
FORTRAN

All languages except
RPG

Same as MFT and MVT

Same as OS MFT
and MVT

Hardware Feature OS MFT and MVT

b. LOAD REAL ADDRESS Not supported
PURGE TLB
RESET REFERENCE BIT
SET CLOCK

COMPARATOR
SET CPU TIMER
STORE CLOCK

COMPARATOR
STORE CPU TIMER
STORE THEN AND

SYSTEM MASK
STORE THEN OR

SYSTEM MASK

C. Interval timer Supported for timing
facilities, except for
time of day

D. Time of day clock Supported for time of day

E. Clock comparator and CPU timer Not supported

F. Expanded machine check Supported by MCH
interruptions

G. Monitoring feature supported by GTF and an
Assembler mnemonic

H. Program event recording

I. Interruption for SSM
instruction

J. Compatibility features

II. STORAGE

A. Real storage sizes
(1024K to 4096K)

B. Byte-oriented operands

C. Store and fetch protection

Not supported

Not supported

All are supported

All are supported

Programmers can use the
byte alignment hardware
facility in Assembler
programs

Store protect only
is supported

All are supported Same as OS/VSl
by the System Assembler

Same as MFT and MVT Not supported

Same as MFT and MVT supported for time of day

Not supported supported for timing facilities
except for time of day

Same as MFT and MVT Same as MFT and MVT

Same as OS MFT and MVT Same as OS MFT and MVT

Supported by Dynamic
Support System

supported

All are supported

All are supported

Same as MFT and MVT

store protect only
is supported

Supported by Dynamic Support
System

Supported

All are supported

All are supported

Same as MFT and MVT

Store and fetch protection
are supported for all regions

3:
o
~
(l)
.....

Hardware Feature OS MFT and MVT

III. CHANNELS

A. Byte multiplexer channels One or two are supported

B. Block multiplexer and selector Supported
ehannels

C. Channel ret:ry performed Yes

D. Channel indirect data Not supported
addressing

IV. CONSOLES

A. 3066 Console

B. Alternate and additional
consoles supported

V. 1/0 DEVICES

A. 3505 Card Reader and 3525
Card Punch

B.]211 Printer

C. 3803/3420 f.lagnetic
Tape Subsystem

D. 2314/2319 facilities

E.]330-series with RPS and
multiple requesting attached
via 3830 St:orage Control Model
1, 3830 Storage Control Model
2, or Inte9rated Storage
Control

F. 2305 Facility Models 1 and 2
with RPS and multiple
requesting

supported. MCS and DIDOCS
required

Yes

Supported

Supported

Supported

Supported for system
residence, data sets,
SYSIN devices, and SYSIN
and SYSOUT data sets

supported as V.D.
above. RPS, multiple
requesting, and sixteen­
drive addressing are
supported.

Supported for system
residence, data sets, and
SYSIN/SYSOUT data sets.
RPS and multiple requesting
are supported.

One or two are
supported

Supported

Yes

Supported

Same as MFT and MVT

Yes

Supported

supported

Supported

Supported for syst:em
residence, data sets,
paging devices, JES
spooling devices, and
SYSIN devices

Same as V.D.
above. RPS, multiple
requesting and sixteen­
drive addressing are
supported.

Same as V.D. above
except for SYSIN
devices. RPS and
multiple requesting
are supported.

One or two are supported

Supported

Yes

Supported

Same as MFT and MVT

Yes

Supported

Supported

Supported

supported for system
residence, data sets,
paging devices, SYSIN and
SYSOUT data sets, and SYSIN devices

Same as V.D. above. RPS,
multiple requesting, and
sixteen-drive addressing
are supported.

Same as V.D. above except
for SYSIN devices. RPS and
multiple requesting are supported.

INDEX (Sections 01 to 70)

address space, definition 31
alter/display mode for the 3066 Model 2 61
architecture design 1
ASCII/EBCDIC mode 7

basic control mode
compatibility with Systern/360 7
programming systems support 88-90

buffer row deletion 18
buffer storage 23-26

change bit 61
channel dual I/O bus 28
channel indirect data addressing 64
channel masking changes for EC mode 11
channel program translation 65
channel retry 18
channels 28
clock comparator 17,19
command retry 18
comparison table, Model 65, 165, 165 II, and 168 hardware features 83-81
comparison table, OS MFT, MVT, VS1,

and VS2 support of the Model 168 88-90
compatibility

BC mode with System/360 1
Model 165 with Model 168 8

control registers 10
control storage

read-only 9,10
writable 10

CPU
access times 23
cooling 4
cycle time 10
extended logout area 19

cycle time
control storage 23
CPU 10
local storage 23
processor storage 21

CPU timer 11,19

OAT hardware (see dynamic address translation)
dynamic address translation

addresses translated 61,62
functions 38-40
instruction nullification 63
segment table origin address saving 59
time to perform 56
translation lookaside buffer 56
translation process 56,58
translation tables 54

execution unit 10
extended control mode

description 11-16
programming systems support 8

external page storage 49

A Guide to the IBM System/310 Model 168 91

features
optional 30
standard 29

fixed processor storage locations
model-dependent 14
model-independent 13

imprecise interruptions 10
indirect data address list 64
indirect data address word 64
interleaving 21
instruction nullification 63
Instruction processing Damage interruption 18
instruction unit 10
instructions

buffering 10
changes to for EC mode 14
list of standard 29

Integrated Storage Control feature 81
internal performance 1
interruptions

machine check 18,19
page translation exception 50,58
segment translation exception 58
SSM instruction 15

interval timer 17
I/O devices for the Model 168 81

LOAD REAL ADDRESS instruction 56
local storage 10
logical storage 21
long-term fixing 51

machine check code 20
machine check interruptions 18,19
main storage (see processor storage)
Model 165 II 9,10,11,16,18,24,29,31,56
monitoring feature, description 16
monolithic technology for processor storage 6
motor generator set 4

nonpaged mode of program operation 52

optional features 30
OS MFT and MVT 1,8
OS/VS1 and OS/VS2 1,8,19

page 49,53
page fault 50
paqe frame 49
page-in 49
____ _£- 'In
pOYC-VUL. -.:7
page replacement algorithm 51
page table 49,54,51
page translation exception 50,58
paged mode of program operation 52
paging 49
paging device 49
performance in a virtual storage environment 66-80

factors affecting 10
increasing 11
relationship to virtual storage size 73

92 A Guide to the IBM System/370 Model 168

processor storage
access time 21
cycle time 21
reconfiguration 21
sizes 21
technology 6

program event recording
comparison with monitoring feature 16
description 15

programming systems support of the Model 168
OS MFT and MVT 88-90
OS/VS1 and OS/VS2 88-90

PSW
BC mode format 12
change for EC mode 11
EC mode format 12

PURGE TLB instruction 59

RAS features 18-19
read-only storage 9,10
real storage 35
reconfiguration, processor storage 21
reference bit 61
RESET REFERENCE BIT instruction 61

segment 49,53
segment table 49,54,57
segment table origin address saving 59
segment translation exception 58
SET CLOCK COMPARATOR instruction 17
SET CPU TIMER instruction 1-'
SET SYSTEM MASK instruction interruption 15
short-term fixing 51
slot 49
standard features 29
storage

buffer 23
control 10
external page 49
interleaving 21
local 10
processor (main) 21
protect key expansion 12
real 35
reconfiguration 21
ripples 23
virtual (See virtual storage)

storage control unit 21
storage protect key 12,61
STORE CLOCK COMPARATOR instruction 17
STORE CPU TIMER instruction 11
store status function 29
STORE THEN AND SYSTEM MASK instruction 16
STORE THEN OR SYSTEM MASK instruction 16
STO-stack 59
system console 4,29,61
system highlights 1-3
system space requirements 4
system technology 5,6

thrashing condition 70
translation lookaside buffer 56

virtual equals real mode 52
Virtual Machine Facility/370 1,8,40

A Guide to the IBM System/370 Model 168 93

virtual machines 40
virtual storage

advantages 41-41
definition 35
organization 53
need for 31
relationship between size and performance 13
resources required to support 61

virtual storage address fields 55
virtual storage page 48

writable control storage 10

3066 Model 2 System Console 4,29
3061 Model 2 Power and Coolant Distribution Unit 4

94 A Guide to the IBM System/310 Model 168

SECTION 90: OS/VIRTUAL STORAGE 1 FEATURES

If required, the as/Virtual Storage 1 Features supplement, GC20-1752,
should be inserted here.

A Guide to the IBM System/370 Model 168 95

This page intentionally left blank

96 A Guide to the IBM System/310 Model 168

SECTION 100: as/VIRTUAL STORAGE 2 FEATURES

If required, the as/Virtual storage 2 Features Supplement, GC20-1753,
should be inserted here.

A Guide to the IBM System/370 Model 168 97

This page intentionally left blank

98 A Guide to the IBM System/3?Q Model 168

SECTION 110: VIRTUAL MACHINE FACILITY/370 FEATURES

If required, the Virtual Machine Facility/370 Features Supplement
should be inserted here. Availability of this supplement is to be
announced.

A Guide to the IBM System/370 Model 168 99

This page intentionally left blank

100 A Guide to the IBM System/3?0 Model 168

A Guide to the IBM System/370

Model 168

READER'S COMMENT FORM

GC20-1755-0

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers) . All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postag~ necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GC20·1755·0

Your comments, please ...

Your comments on the other side of this form will help us improve future editions of this
publication. Each reply will be carefully reviewed by the persons responsible for writing

and publishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or the IBM branch office serving

your locality.

Fold

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 812
1133 Westchester Avenue
White Plains, New York 10604

Fold

First Class
Permit 40
Armonk
New York

..

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(lntematlonal)

Fold

»
G')
c
0:
CD

,!t.
o
....
::J"
CD

c
en
l>
G')
()
tV
9
-.J
UI
(]"I

6

GC20-1755-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

CD
s:
CJ)
<
~
CD
3
W
-...J
o
s:
8.
~

en
00

"tJ ...,
:;'
~
0..

:;'
C
en
l>
C)
(')
N
9
-...J
(J'1
(J'1

6

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	replyA
	replyB
	xBack

